-
ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Paper • 2508.04038 • Published • 1 -
SensorLLM: Human-Intuitive Alignment of Multivariate Sensor Data with LLMs for Activity Recognition
Paper • 2410.10624 • Published • 1 -
COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Paper • 2503.07259 • Published -
zechenli03/sensor_qa_data
Updated • 44 • 1
AI & ML interests
None defined yet.
Papers
Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Organization Card
CRUISE
Collaborative Human-Centric AI Systems (CRUISE) Lab, led by Prof. Flora Salim, works on machine learning for time-series, spatio-temporal data, and multimodal sensor data, and on trustworthy AI (including fairness, explainability, mechanistic interpretablity) for decision making systems. Our research is supported by the ARC, CRC, and many local and international industry and government partners. We share our codes and some sample datasets in our CRUISE GitHub repository.
Massive Semantic Trajectories for Understanding POI Check-ins (Wongso et al., 2025). https://github.com/cruiseresearchgroup/Massive-STEPS
-
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Paper • 2505.11239 • Published -
CRUISEResearchGroup/Massive-STEPS-Bandung
Viewer • Updated • 217k • 71 -
CRUISEResearchGroup/Massive-STEPS-Beijing
Viewer • Updated • 2.04k • 252 -
CRUISEResearchGroup/Massive-STEPS-Istanbul
Viewer • Updated • 761k • 342
-
ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Paper • 2508.04038 • Published • 1 -
SensorLLM: Human-Intuitive Alignment of Multivariate Sensor Data with LLMs for Activity Recognition
Paper • 2410.10624 • Published • 1 -
COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Paper • 2503.07259 • Published -
zechenli03/sensor_qa_data
Updated • 44 • 1
Massive Semantic Trajectories for Understanding POI Check-ins (Wongso et al., 2025). https://github.com/cruiseresearchgroup/Massive-STEPS
-
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Paper • 2505.11239 • Published -
CRUISEResearchGroup/Massive-STEPS-Bandung
Viewer • Updated • 217k • 71 -
CRUISEResearchGroup/Massive-STEPS-Beijing
Viewer • Updated • 2.04k • 252 -
CRUISEResearchGroup/Massive-STEPS-Istanbul
Viewer • Updated • 761k • 342
models
0
None public yet
datasets
16
CRUISEResearchGroup/Massive-STEPS-Beijing
Viewer
•
Updated
•
2.04k
•
252
CRUISEResearchGroup/Massive-STEPS-Tokyo
Viewer
•
Updated
•
19.3k
•
117
CRUISEResearchGroup/Massive-STEPS-Sydney
Viewer
•
Updated
•
40k
•
94
CRUISEResearchGroup/Massive-STEPS-Shanghai
Viewer
•
Updated
•
14.1k
•
122
CRUISEResearchGroup/Massive-STEPS-Sao-Paulo
Viewer
•
Updated
•
347k
•
85
CRUISEResearchGroup/Massive-STEPS-Petaling-Jaya
Viewer
•
Updated
•
687k
•
101
CRUISEResearchGroup/Massive-STEPS-New-York
Viewer
•
Updated
•
364k
•
110
CRUISEResearchGroup/Massive-STEPS-Moscow
Viewer
•
Updated
•
145k
•
146
CRUISEResearchGroup/Massive-STEPS-Melbourne
Viewer
•
Updated
•
29.9k
•
104
CRUISEResearchGroup/Massive-STEPS-Jakarta
Viewer
•
Updated
•
549k
•
168