deberta-v3-base-finetuned-t_refund
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4533
- Accuracy: 0.97
- F1: 0.9714
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.6724 | 1.0 | 26 | 0.6274 | 0.955 | 0.9330 |
| 0.4383 | 2.0 | 52 | 0.3402 | 0.94 | 0.9499 |
| 0.2518 | 3.0 | 78 | 0.3444 | 0.975 | 0.9767 |
| 0.1072 | 4.0 | 104 | 0.4791 | 0.975 | 0.9756 |
| 0.1466 | 5.0 | 130 | 0.4533 | 0.97 | 0.9714 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Gregorig/deberta-v3-base-finetuned-t_refund
Base model
microsoft/deberta-v3-base