opus-mt-caenes-eo / README.md
odegiber's picture
Create README.md
fa874b2 verified
metadata
language:
  - eo
  - en
  - es
  - ca
tags:
  - translation
  - machine-translation
  - marian
  - opus-mt
  - multilingual
license: cc-by-4.0
pipeline_tag: translation
metrics:
  - bleu
  - chrf

Catalan, English, Spanish -> Esperanto MT Model

Model description

This repository contains a multilingual MarianMT model for (English, Spanish, Catalan) → Esperanto translation.

Usage

The model is loaded and used with transformers as:

from transformers import MarianMTModel, MarianTokenizer
import torch

model_name = "Helsinki-NLP/opus-mt-caenes-eo"

device = "cuda" if torch.cuda.is_available() else "cpu"
model = MarianMTModel.from_pretrained(model_name).to(device)
tokenizer = MarianTokenizer.from_pretrained(model_name)

source_texts = [
    "Buenos días, qué tal?",
    "Bon dia, com estàs?",
    "Good morning, how are you?"
    ]

inputs = tokenizer(source_texts, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}

translated_ids = model.generate(inputs["input_ids"])
translated_texts = tokenizer.batch_decode(translated_ids, skip_special_tokens=True)

for src, tgt in zip(source_texts, translated_texts):
    print(f"Source: {src} => Translated: {tgt}")

Training data

The model was trained using Tatoeba parallel data, with FLORES-200 used as the development set.

Training sentence-pair counts:

  • ca-eo: 672,931
  • es-eo: 4,677,945
  • eo-en: 5,000,000

Evaluation on FLORES

Language Pair BLEU ChrF++
spa-epo 16.25 49.10
cat-epo 21.43 51.37
eng-epo 26.42 58.23