detr_finetuned_bccd

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5863
  • Map: 0.5535
  • Map 50: 0.823
  • Map 75: 0.6013
  • Map Small: -1.0
  • Map Medium: 0.3472
  • Map Large: 0.638
  • Mar 1: 0.4031
  • Mar 10: 0.6432
  • Mar 100: 0.7115
  • Mar Small: -1.0
  • Mar Medium: 0.542
  • Mar Large: 0.73
  • Map Platelets: 0.3468
  • Mar 100 Platelets: 0.5444
  • Map Rbc: 0.5782
  • Mar 100 Rbc: 0.75
  • Map Wbc: 0.7356
  • Mar 100 Wbc: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Platelets Mar 100 Platelets Map Rbc Mar 100 Rbc Map Wbc Mar 100 Wbc
No log 1.0 26 0.9642 0.1078 0.177 0.1243 -1.0 0.0 0.113 0.0193 0.1197 0.2165 -1.0 0.0 0.2165 0.0 0.0 0.3235 0.6496 0.0 0.0
No log 2.0 52 0.9589 0.1277 0.2441 0.1207 -1.0 0.0405 0.1148 0.0413 0.1585 0.2468 -1.0 0.1101 0.2116 0.0391 0.1056 0.3441 0.6349 0.0 0.0
No log 3.0 78 0.8392 0.2048 0.363 0.2117 -1.0 0.111 0.2378 0.1376 0.459 0.6004 -1.0 0.4609 0.5277 0.1078 0.4514 0.405 0.6685 0.1018 0.6812
No log 4.0 104 0.7755 0.3901 0.6199 0.436 -1.0 0.149 0.4846 0.3071 0.5539 0.6514 -1.0 0.4754 0.6805 0.1471 0.4792 0.4421 0.6862 0.581 0.7887
No log 5.0 130 0.7384 0.4471 0.7188 0.488 -1.0 0.1917 0.5099 0.3475 0.5664 0.6504 -1.0 0.4507 0.7194 0.1887 0.4597 0.4747 0.694 0.678 0.7975
No log 6.0 156 0.7484 0.4525 0.7284 0.4858 -1.0 0.2084 0.5322 0.3549 0.5697 0.6437 -1.0 0.4449 0.7039 0.2053 0.4528 0.4713 0.6784 0.681 0.8
No log 7.0 182 0.7283 0.4352 0.7337 0.4859 -1.0 0.1647 0.4529 0.3455 0.5486 0.6284 -1.0 0.4 0.6178 0.1618 0.3986 0.4761 0.688 0.6677 0.7987
No log 8.0 208 0.7011 0.4873 0.7735 0.527 -1.0 0.2589 0.5811 0.3658 0.6008 0.6773 -1.0 0.5058 0.7181 0.2553 0.5111 0.5051 0.7121 0.7015 0.8087
No log 9.0 234 0.6765 0.482 0.757 0.5214 -1.0 0.257 0.5759 0.3619 0.5998 0.6877 -1.0 0.5507 0.7247 0.2518 0.5556 0.5037 0.7212 0.6903 0.7862
No log 10.0 260 0.6977 0.4837 0.7833 0.5141 -1.0 0.2669 0.5117 0.373 0.5761 0.654 -1.0 0.4377 0.6952 0.2618 0.4431 0.4919 0.7077 0.6973 0.8112
No log 11.0 286 0.6463 0.5015 0.7766 0.552 -1.0 0.2568 0.5259 0.3789 0.5999 0.6817 -1.0 0.5043 0.6271 0.2527 0.4972 0.54 0.7416 0.7118 0.8062
No log 12.0 312 0.6382 0.5109 0.7939 0.5519 -1.0 0.275 0.565 0.3855 0.612 0.6902 -1.0 0.5101 0.7083 0.2719 0.5125 0.5403 0.7307 0.7206 0.8275
No log 13.0 338 0.6360 0.504 0.7943 0.5412 -1.0 0.2616 0.562 0.3762 0.6118 0.6923 -1.0 0.5188 0.7076 0.2602 0.5208 0.5406 0.7311 0.7111 0.825
No log 14.0 364 0.6422 0.5205 0.8 0.5632 -1.0 0.305 0.6082 0.3915 0.6112 0.6849 -1.0 0.5058 0.715 0.3038 0.5097 0.5381 0.7212 0.7197 0.8238
No log 15.0 390 0.7001 0.4877 0.7964 0.5097 -1.0 0.3002 0.546 0.3682 0.5841 0.6589 -1.0 0.513 0.6866 0.2976 0.5167 0.4969 0.6761 0.6685 0.7837
No log 16.0 416 0.6330 0.5173 0.7955 0.5706 -1.0 0.3087 0.572 0.3811 0.6138 0.6855 -1.0 0.5304 0.6651 0.3025 0.5278 0.5454 0.7236 0.7038 0.805
No log 17.0 442 0.6013 0.5356 0.8156 0.5856 -1.0 0.3084 0.6229 0.3936 0.6348 0.7128 -1.0 0.5565 0.7586 0.3051 0.5625 0.5594 0.7396 0.7423 0.8363
No log 18.0 468 0.6173 0.5414 0.8115 0.5947 -1.0 0.3382 0.6081 0.4042 0.6367 0.7073 -1.0 0.5435 0.736 0.3342 0.5472 0.5528 0.7334 0.7371 0.8413
No log 19.0 494 0.5997 0.5368 0.8061 0.5793 -1.0 0.3236 0.641 0.3981 0.6291 0.7038 -1.0 0.5319 0.7575 0.3217 0.5389 0.564 0.7474 0.7246 0.825
0.7657 20.0 520 0.5929 0.5384 0.8159 0.5793 -1.0 0.3278 0.6412 0.3973 0.6361 0.7103 -1.0 0.5449 0.7386 0.3258 0.5486 0.5732 0.7524 0.716 0.83
0.7657 21.0 546 0.5932 0.5403 0.8167 0.5962 -1.0 0.3445 0.6262 0.401 0.6382 0.7129 -1.0 0.5623 0.7249 0.3424 0.5639 0.571 0.7485 0.7074 0.8263
0.7657 22.0 572 0.5931 0.5422 0.82 0.5838 -1.0 0.3427 0.6289 0.3984 0.6363 0.7068 -1.0 0.5362 0.7272 0.3403 0.5389 0.5722 0.7478 0.7141 0.8338
0.7657 23.0 598 0.5896 0.5454 0.8141 0.6003 -1.0 0.3437 0.6427 0.4001 0.6333 0.7036 -1.0 0.5304 0.7365 0.3421 0.5347 0.5739 0.7486 0.7202 0.8275
0.7657 24.0 624 0.5918 0.5473 0.8161 0.5912 -1.0 0.3487 0.61 0.4027 0.6445 0.7132 -1.0 0.5551 0.7275 0.3462 0.5569 0.5733 0.7464 0.7225 0.8363
0.7657 25.0 650 0.5874 0.5496 0.8117 0.6142 -1.0 0.3503 0.6333 0.4026 0.6448 0.7145 -1.0 0.558 0.7279 0.3494 0.5597 0.5751 0.7487 0.7244 0.835
0.7657 26.0 676 0.5887 0.5453 0.8162 0.6013 -1.0 0.3375 0.6329 0.4004 0.6365 0.7085 -1.0 0.5391 0.7279 0.3376 0.5417 0.5754 0.7476 0.723 0.8363
0.7657 27.0 702 0.5881 0.5518 0.8205 0.6036 -1.0 0.3489 0.6358 0.4014 0.6438 0.7113 -1.0 0.5478 0.728 0.3483 0.55 0.5777 0.7489 0.7293 0.835
0.7657 28.0 728 0.5865 0.5531 0.8225 0.6003 -1.0 0.3494 0.6369 0.4022 0.6443 0.7122 -1.0 0.5478 0.7289 0.3487 0.55 0.5784 0.7504 0.7321 0.8363
0.7657 29.0 754 0.5864 0.5532 0.8226 0.6009 -1.0 0.3464 0.6379 0.4031 0.6431 0.7114 -1.0 0.542 0.73 0.3462 0.5444 0.5779 0.7499 0.7356 0.84
0.7657 30.0 780 0.5863 0.5535 0.823 0.6013 -1.0 0.3472 0.638 0.4031 0.6432 0.7115 -1.0 0.542 0.73 0.3468 0.5444 0.5782 0.75 0.7356 0.84

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
19
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Punn1403/detr_finetuned_bccd

Finetuned
(93)
this model

Evaluation results