polar4

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5187
  • Accuracy: 0.7426
  • F1: 0.7199
  • Precision: 0.7477
  • Recall: 0.7426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 200
  • eval_batch_size: 200
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6359 7.6923 100 0.6229 0.6357 0.4941 0.4041 0.6357
0.5953 15.3846 200 0.5654 0.7039 0.6698 0.7030 0.7039
0.5605 23.0769 300 0.5510 0.6930 0.6297 0.7259 0.6930
0.5578 30.7692 400 0.5273 0.7426 0.7384 0.7376 0.7426
0.5635 38.4615 500 0.5198 0.7364 0.7257 0.7301 0.7364
0.5443 46.1538 600 0.5214 0.7271 0.6978 0.7338 0.7271

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
24
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RaspberryVitriol/polar4

Finetuned
(502)
this model