Timesformer_BDSLW60_U5_20_coR_withoutAug

This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6824
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 18560
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
8.9317 0.0501 929 1.3730 0.7133
0.2876 1.0501 1858 0.8184 0.7533
0.0452 2.0501 2787 0.9445 0.77
0.0835 3.0501 3716 0.9543 0.7467
0.0683 4.0501 4645 1.0189 0.7617
0.0685 5.0501 5574 0.7519 0.8117
0.0687 6.0501 6503 0.9610 0.7933
0.0559 7.0501 7432 0.8073 0.8
0.0611 8.0501 8361 1.0215 0.815
0.0238 9.0501 9290 0.8073 0.825
0.009 10.0501 10219 0.7593 0.8167
0.0 11.0501 11148 0.7160 0.8367
0.0 12.0501 12077 0.7014 0.8483
0.0 13.0501 13006 0.6960 0.8467
0.0 14.0501 13935 0.6924 0.8483
0.0 15.0501 14864 0.6880 0.855
0.0 16.0501 15793 0.6872 0.8567
0.0 17.0501 16722 0.6850 0.8583
0.0 18.0501 17651 0.6835 0.86
0.0 19.0490 18560 0.6824 0.86

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Shawon16/Timesformer_BDSLW60_U5_20_coR_withoutAug

Finetuned
(81)
this model