distil-new-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0646
- Precision: 0.9374
- Recall: 0.9473
- F1: 0.9423
- Accuracy: 0.9423
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0423 | 1.0 | 1064 | 0.0570 | 0.9217 | 0.9233 | 0.9225 | 0.9225 |
| 0.0203 | 2.0 | 2128 | 0.0533 | 0.9109 | 0.9408 | 0.9256 | 0.9256 |
| 0.0121 | 3.0 | 3192 | 0.0527 | 0.9303 | 0.9408 | 0.9355 | 0.9355 |
| 0.0076 | 4.0 | 4256 | 0.0559 | 0.9365 | 0.9381 | 0.9373 | 0.9373 |
| 0.0054 | 5.0 | 5320 | 0.0553 | 0.9339 | 0.9433 | 0.9385 | 0.9385 |
| 0.0043 | 6.0 | 6384 | 0.0590 | 0.9364 | 0.9445 | 0.9404 | 0.9404 |
| 0.0029 | 7.0 | 7448 | 0.0609 | 0.9366 | 0.9428 | 0.9397 | 0.9397 |
| 0.0022 | 8.0 | 8512 | 0.0608 | 0.9372 | 0.9467 | 0.9419 | 0.9419 |
| 0.0019 | 9.0 | 9576 | 0.0639 | 0.9363 | 0.9451 | 0.9407 | 0.9407 |
| 0.0013 | 10.0 | 10640 | 0.0646 | 0.9374 | 0.9473 | 0.9423 | 0.9423 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 7
Model tree for abishekcodes/distil-new-ner
Base model
distilbert/distilbert-base-uncased