language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:533177
- loss:Distillation
base_model: jhu-clsp/ettin-encoder-17m
datasets:
- lightonai/ms-marco-en-bge-gemma
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: PyLate model based on jhu-clsp/ettin-encoder-17m
results:
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.26
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.44
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.5
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.66
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.26
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.1733333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.12400000000000003
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.09399999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.11999999999999998
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.23
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2633333333333333
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.3633333333333333
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.29395826199725617
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.3784047619047619
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.231284051620486
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: MaxSim_accuracy@1
value: 0.68
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.88
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.92
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.94
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.68
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.6066666666666667
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.5680000000000001
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.494
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.06222360938745945
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.16562290067990149
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.21972810393423486
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.3392565206081787
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5881083754655376
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7823333333333333
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.46517551645100963
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.84
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.92
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.96
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.98
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.84
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.32666666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.20399999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.10599999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.7766666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.8833333333333333
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.9233333333333333
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.95
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8841799436094412
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8886666666666666
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8554913040176197
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.62
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.74
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2733333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.22399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.13399999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.2336904761904762
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.36584920634920637
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.48478571428571426
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.5576746031746032
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.4740939890542888
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.548888888888889
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.3980291516731858
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: MaxSim_accuracy@1
value: 0.92
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.98
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.92
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.5466666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.3479999999999999
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.17999999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.46
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.82
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.87
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.9
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8652980930293053
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9506666666666667
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8099667544930703
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: MaxSim_accuracy@1
value: 0.5
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.64
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.72
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.76
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.21333333333333335
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.14400000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.07600000000000001
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.5
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.64
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.72
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.76
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6287612190483125
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5868333333333333
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6008008574077579
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.56
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.6
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.64
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3533333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.332
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.28
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.04357010703802988
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.07777734405444285
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.09734551359622909
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.1435404238995474
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.3414422865226277
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5042222222222221
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.15035838038861857
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: MaxSim_accuracy@1
value: 0.52
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.74
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.8
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.88
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.52
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.24666666666666665
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.16399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.09399999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.49
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.69
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.75
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.85
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6734308736769101
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6378571428571428
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6101497044852526
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: MaxSim_accuracy@1
value: 0.8
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.96
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.8
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.37999999999999995
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.244
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.12999999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.7140000000000001
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.9079999999999999
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.956
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.9766666666666667
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.9000031870284702
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8866666666666667
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8674409882409881
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: MaxSim_accuracy@1
value: 0.4
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.6
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.66
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.76
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.4
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.28
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.22399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.154
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.08266666666666668
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.17266666666666663
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.22866666666666663
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.31566666666666665
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.31512629399072817
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5242142857142857
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.24328629653255643
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: MaxSim_accuracy@1
value: 0.16
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.42
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.66
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.76
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.16
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.13999999999999999
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.132
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.07600000000000001
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.16
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.42
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.66
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.76
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.43614499171452126
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.33396031746031746
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.3405763964850652
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: MaxSim_accuracy@1
value: 0.6
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.78
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.82
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.88
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.6
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2733333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.17999999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.09799999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.575
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.76
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.805
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.87
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.7386685832487809
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6985238095238094
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6954227202692824
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: MaxSim_accuracy@1
value: 0.6326530612244898
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.9591836734693877
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.6326530612244898
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.6598639455782312
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.6448979591836735
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.49795918367346936
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.0449977773405886
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.13494804700990798
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.21526106139721918
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.3174352806599615
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5609702325937416
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7914965986394559
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.4138510754295502
name: Maxsim Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: MaxSim_accuracy@1
value: 0.5532810047095761
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.7307064364207221
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7953846153846154
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8461538461538463
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5532810047095761
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3440920983778126
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.27176138147566725
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.18568916797488227
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.3279088694838376
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4821690383148814
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5533425943497485
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.6233518073083814
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.592322025459994
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6548257456828886
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.513987169038034
name: Maxsim Map@100
PyLate model based on jhu-clsp/ettin-encoder-17m
This is a PyLate model finetuned from jhu-clsp/ettin-encoder-17m on the ms-marco-en-bge-gemma dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: jhu-clsp/ettin-encoder-17m
- Document Length: 300 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
- Training Dataset:
- Language: en
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 256, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Py Late Information Retrieval
- Dataset:
['NanoClimateFEVER', 'NanoDBPedia', 'NanoFEVER', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNFCorpus', 'NanoNQ', 'NanoQuoraRetrieval', 'NanoSCIDOCS', 'NanoArguAna', 'NanoSciFact', 'NanoTouche2020'] - Evaluated with
pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MaxSim_accuracy@1 | 0.26 | 0.68 | 0.84 | 0.44 | 0.92 | 0.5 | 0.44 | 0.52 | 0.8 | 0.4 | 0.16 | 0.6 | 0.6327 |
| MaxSim_accuracy@3 | 0.44 | 0.88 | 0.92 | 0.62 | 0.98 | 0.64 | 0.56 | 0.74 | 0.96 | 0.6 | 0.42 | 0.78 | 0.9592 |
| MaxSim_accuracy@5 | 0.5 | 0.92 | 0.96 | 0.7 | 1.0 | 0.72 | 0.6 | 0.8 | 1.0 | 0.66 | 0.66 | 0.82 | 1.0 |
| MaxSim_accuracy@10 | 0.66 | 0.94 | 0.98 | 0.74 | 1.0 | 0.76 | 0.64 | 0.88 | 1.0 | 0.76 | 0.76 | 0.88 | 1.0 |
| MaxSim_precision@1 | 0.26 | 0.68 | 0.84 | 0.44 | 0.92 | 0.5 | 0.44 | 0.52 | 0.8 | 0.4 | 0.16 | 0.6 | 0.6327 |
| MaxSim_precision@3 | 0.1733 | 0.6067 | 0.3267 | 0.2733 | 0.5467 | 0.2133 | 0.3533 | 0.2467 | 0.38 | 0.28 | 0.14 | 0.2733 | 0.6599 |
| MaxSim_precision@5 | 0.124 | 0.568 | 0.204 | 0.224 | 0.348 | 0.144 | 0.332 | 0.164 | 0.244 | 0.224 | 0.132 | 0.18 | 0.6449 |
| MaxSim_precision@10 | 0.094 | 0.494 | 0.106 | 0.134 | 0.18 | 0.076 | 0.28 | 0.094 | 0.13 | 0.154 | 0.076 | 0.098 | 0.498 |
| MaxSim_recall@1 | 0.12 | 0.0622 | 0.7767 | 0.2337 | 0.46 | 0.5 | 0.0436 | 0.49 | 0.714 | 0.0827 | 0.16 | 0.575 | 0.045 |
| MaxSim_recall@3 | 0.23 | 0.1656 | 0.8833 | 0.3658 | 0.82 | 0.64 | 0.0778 | 0.69 | 0.908 | 0.1727 | 0.42 | 0.76 | 0.1349 |
| MaxSim_recall@5 | 0.2633 | 0.2197 | 0.9233 | 0.4848 | 0.87 | 0.72 | 0.0973 | 0.75 | 0.956 | 0.2287 | 0.66 | 0.805 | 0.2153 |
| MaxSim_recall@10 | 0.3633 | 0.3393 | 0.95 | 0.5577 | 0.9 | 0.76 | 0.1435 | 0.85 | 0.9767 | 0.3157 | 0.76 | 0.87 | 0.3174 |
| MaxSim_ndcg@10 | 0.294 | 0.5881 | 0.8842 | 0.4741 | 0.8653 | 0.6288 | 0.3414 | 0.6734 | 0.9 | 0.3151 | 0.4361 | 0.7387 | 0.561 |
| MaxSim_mrr@10 | 0.3784 | 0.7823 | 0.8887 | 0.5489 | 0.9507 | 0.5868 | 0.5042 | 0.6379 | 0.8867 | 0.5242 | 0.334 | 0.6985 | 0.7915 |
| MaxSim_map@100 | 0.2313 | 0.4652 | 0.8555 | 0.398 | 0.81 | 0.6008 | 0.1504 | 0.6101 | 0.8674 | 0.2433 | 0.3406 | 0.6954 | 0.4139 |
Nano BEIR
- Dataset:
NanoBEIR_mean - Evaluated with
pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
| Metric | Value |
|---|---|
| MaxSim_accuracy@1 | 0.5533 |
| MaxSim_accuracy@3 | 0.7307 |
| MaxSim_accuracy@5 | 0.7954 |
| MaxSim_accuracy@10 | 0.8462 |
| MaxSim_precision@1 | 0.5533 |
| MaxSim_precision@3 | 0.3441 |
| MaxSim_precision@5 | 0.2718 |
| MaxSim_precision@10 | 0.1857 |
| MaxSim_recall@1 | 0.3279 |
| MaxSim_recall@3 | 0.4822 |
| MaxSim_recall@5 | 0.5533 |
| MaxSim_recall@10 | 0.6234 |
| MaxSim_ndcg@10 | 0.5923 |
| MaxSim_mrr@10 | 0.6548 |
| MaxSim_map@100 | 0.514 |
Training Details
Training Dataset
ms-marco-en-bge-gemma
- Dataset: ms-marco-en-bge-gemma at d8bad49
- Size: 533,177 training samples
- Columns:
query_id,document_ids, andscores - Approximate statistics based on the first 1000 samples:
query_id document_ids scores type int list list details - 836: ~0.10%
- 3582: ~0.10%
- 4599: ~0.10%
- 4645: ~0.10%
- 4853: ~0.10%
- 5154: ~0.10%
- 7504: ~0.10%
- 12283: ~0.10%
- 12335: ~0.10%
- 12916: ~0.10%
- 14049: ~0.10%
- 14828: ~0.10%
- 15674: ~0.10%
- 15813: ~0.10%
- 16728: ~0.10%
- 22006: ~0.10%
- 23675: ~0.10%
- 24199: ~0.10%
- 25323: ~0.10%
- 28517: ~0.10%
- 29213: ~0.10%
- 32344: ~0.10%
- 34071: ~0.10%
- 34604: ~0.10%
- 35424: ~0.10%
- 35445: ~0.10%
- 36148: ~0.10%
- 37078: ~0.10%
- 37826: ~0.10%
- 38185: ~0.10%
- 40855: ~0.10%
- 42077: ~0.10%
- 43614: ~0.10%
- 45073: ~0.10%
- 46289: ~0.10%
- 47507: ~0.10%
- 48005: ~0.10%
- 48629: ~0.10%
- 48785: ~0.10%
- 49216: ~0.10%
- 49636: ~0.10%
- 49970: ~0.10%
- 52075: ~0.10%
- 52725: ~0.10%
- 54142: ~0.10%
- 54210: ~0.10%
- 55032: ~0.10%
- 59546: ~0.10%
- 60087: ~0.10%
- 60862: ~0.10%
- 60941: ~0.10%
- 61037: ~0.10%
- 61762: ~0.10%
- 62649: ~0.10%
- 63333: ~0.10%
- 64197: ~0.10%
- 64879: ~0.10%
- 67608: ~0.10%
- 67627: ~0.10%
- 69463: ~0.10%
- 70002: ~0.10%
- 70429: ~0.10%
- 72166: ~0.10%
- 72518: ~0.10%
- 72607: ~0.10%
- 72791: ~0.10%
- 73325: ~0.10%
- 74078: ~0.10%
- 74857: ~0.10%
- 75323: ~0.10%
- 75816: ~0.10%
- 76929: ~0.10%
- 77845: ~0.10%
- 77889: ~0.10%
- 78077: ~0.10%
- 78256: ~0.10%
- 78401: ~0.10%
- 78798: ~0.10%
- 80871: ~0.10%
- 81089: ~0.10%
- 82179: ~0.10%
- 82883: ~0.10%
- 84168: ~0.10%
- 86891: ~0.10%
- 88282: ~0.10%
- 89346: ~0.10%
- 89386: ~0.10%
- 90699: ~0.10%
- 90795: ~0.10%
- 91367: ~0.10%
- 91795: ~0.10%
- 92070: ~0.10%
- 92523: ~0.10%
- 92597: ~0.10%
- 92753: ~0.10%
- 92787: ~0.10%
- 96382: ~0.10%
- 96455: ~0.10%
- 97274: ~0.10%
- 97603: ~0.10%
- 100904: ~0.10%
- 101205: ~0.10%
- 101305: ~0.10%
- 102707: ~0.10%
- 103074: ~0.10%
- 105437: ~0.10%
- 108207: ~0.10%
- 109776: ~0.10%
- 112056: ~0.10%
- 112955: ~0.10%
- 112977: ~0.10%
- 113635: ~0.10%
- 115280: ~0.10%
- 115551: ~0.10%
- 116098: ~0.10%
- 117658: ~0.10%
- 120255: ~0.10%
- 120298: ~0.10%
- 121437: ~0.10%
- 123429: ~0.10%
- 125043: ~0.10%
- 125979: ~0.10%
- 126851: ~0.10%
- 128218: ~0.10%
- 128804: ~0.10%
- 129598: ~0.10%
- 131299: ~0.10%
- 132114: ~0.10%
- 133696: ~0.10%
- 134460: ~0.10%
- 137602: ~0.10%
- 137679: ~0.10%
- 138121: ~0.10%
- 138260: ~0.10%
- 138823: ~0.10%
- 139039: ~0.10%
- 140392: ~0.10%
- 140651: ~0.10%
- 142305: ~0.10%
- 145653: ~0.10%
- 145683: ~0.10%
- 145763: ~0.10%
- 150202: ~0.10%
- 151135: ~0.10%
- 152307: ~0.10%
- 152675: ~0.10%
- 153693: ~0.10%
- 154470: ~0.10%
- 155587: ~0.10%
- 157602: ~0.10%
- 157779: ~0.10%
- 158565: ~0.10%
- 159177: ~0.10%
- 159224: ~0.10%
- 159341: ~0.10%
- 159892: ~0.10%
- 161881: ~0.10%
- 162414: ~0.10%
- 163765: ~0.10%
- 165888: ~0.10%
- 168048: ~0.10%
- 168425: ~0.10%
- 168894: ~0.10%
- 169991: ~0.10%
- 170731: ~0.10%
- 171705: ~0.10%
- 176165: ~0.10%
- 176798: ~0.10%
- 180259: ~0.10%
- 181243: ~0.10%
- 182102: ~0.10%
- 182660: ~0.10%
- 183426: ~0.10%
- 183930: ~0.10%
- 184045: ~0.10%
- 184676: ~0.10%
- 185294: ~0.10%
- 186475: ~0.10%
- 187155: ~0.10%
- 188198: ~0.10%
- 191383: ~0.10%
- 192165: ~0.10%
- 193507: ~0.10%
- 194207: ~0.10%
- 195056: ~0.10%
- 197377: ~0.10%
- 198224: ~0.10%
- 198546: ~0.10%
- 202122: ~0.10%
- 203519: ~0.10%
- 206220: ~0.10%
- 209739: ~0.10%
- 210554: ~0.10%
- 212638: ~0.10%
- 213096: ~0.10%
- 213410: ~0.10%
- 214255: ~0.10%
- 217541: ~0.10%
- 219718: ~0.10%
- 220993: ~0.10%
- 223241: ~0.10%
- 224657: ~0.10%
- 227101: ~0.10%
- 227497: ~0.10%
- 227726: ~0.10%
- 228099: ~0.10%
- 228451: ~0.10%
- 230413: ~0.10%
- 231416: ~0.10%
- 233312: ~0.10%
- 234348: ~0.10%
- 235869: ~0.10%
- 237784: ~0.10%
- 240739: ~0.10%
- 246495: ~0.10%
- 246821: ~0.10%
- 248675: ~0.10%
- 249798: ~0.10%
- 249962: ~0.10%
- 249977: ~0.10%
- 250019: ~0.10%
- 250548: ~0.10%
- 251089: ~0.10%
- 254878: ~0.10%
- 255183: ~0.10%
- 255727: ~0.10%
- 256321: ~0.10%
- 258276: ~0.10%
- 260993: ~0.10%
- 261247: ~0.10%
- 262123: ~0.10%
- 262508: ~0.10%
- 266047: ~0.10%
- 267089: ~0.10%
- 267192: ~0.10%
- 268642: ~0.10%
- 269025: ~0.10%
- 273171: ~0.10%
- 273864: ~0.10%
- 274521: ~0.10%
- 274586: ~0.10%
- 275037: ~0.10%
- 275643: ~0.10%
- 276744: ~0.10%
- 277212: ~0.10%
- 277990: ~0.10%
- 279931: ~0.10%
- 280012: ~0.10%
- 281699: ~0.10%
- 282128: ~0.10%
- 283298: ~0.10%
- 284268: ~0.10%
- 285697: ~0.10%
- 285905: ~0.10%
- 287456: ~0.10%
- 287506: ~0.10%
- 288154: ~0.10%
- 289046: ~0.10%
- 292211: ~0.10%
- 292588: ~0.10%
- 293357: ~0.10%
- 293661: ~0.10%
- 294123: ~0.10%
- 299287: ~0.10%
- 300622: ~0.10%
- 302135: ~0.10%
- 303224: ~0.10%
- 304353: ~0.10%
- 304820: ~0.10%
- 310215: ~0.10%
- 310236: ~0.10%
- 310409: ~0.10%
- 311231: ~0.10%
- 312821: ~0.10%
- 314244: ~0.10%
- 314415: ~0.10%
- 314745: ~0.10%
- 316385: ~0.10%
- 316883: ~0.10%
- 317442: ~0.10%
- 318639: ~0.10%
- 318652: ~0.10%
- 320855: ~0.10%
- 321867: ~0.10%
- 322114: ~0.10%
- 323196: ~0.10%
- 324868: ~0.10%
- 327581: ~0.10%
- 329337: ~0.10%
- 331572: ~0.10%
- 331650: ~0.10%
- 331993: ~0.10%
- 332500: ~0.10%
- 334757: ~0.10%
- 336561: ~0.10%
- 336791: ~0.10%
- 337002: ~0.10%
- 338332: ~0.10%
- 338456: ~0.10%
- 339065: ~0.10%
- 339870: ~0.10%
- 340599: ~0.10%
- 341156: ~0.10%
- 342121: ~0.10%
- 342381: ~0.10%
- 343411: ~0.10%
- 344860: ~0.10%
- 345924: ~0.10%
- 346421: ~0.10%
- 346425: ~0.10%
- 348157: ~0.10%
- 351281: ~0.10%
- 351858: ~0.10%
- 352641: ~0.10%
- 353748: ~0.10%
- 357399: ~0.10%
- 359787: ~0.10%
- 359893: ~0.10%
- 360094: ~0.10%
- 360168: ~0.10%
- 361127: ~0.10%
- 362220: ~0.10%
- 362560: ~0.10%
- 366835: ~0.10%
- 367185: ~0.10%
- 369045: ~0.10%
- 371113: ~0.10%
- 376044: ~0.10%
- 376524: ~0.10%
- 377231: ~0.10%
- 377735: ~0.10%
- 378574: ~0.10%
- 379749: ~0.10%
- 379953: ~0.10%
- 381834: ~0.10%
- 384039: ~0.10%
- 384364: ~0.10%
- 384398: ~0.10%
- 384751: ~0.10%
- 385758: ~0.10%
- 385893: ~0.10%
- 386098: ~0.10%
- 387205: ~0.10%
- 387374: ~0.10%
- 388450: ~0.10%
- 388589: ~0.10%
- 388593: ~0.10%
- 389571: ~0.10%
- 389572: ~0.10%
- 391531: ~0.10%
- 391857: ~0.10%
- 393174: ~0.10%
- 393426: ~0.10%
- 396601: ~0.10%
- 396905: ~0.10%
- 397801: ~0.10%
- 398011: ~0.10%
- 398132: ~0.10%
- 398721: ~0.10%
- 399016: ~0.10%
- 401601: ~0.10%
- 403876: ~0.10%
- 403897: ~0.10%
- 404830: ~0.10%
- 406102: ~0.10%
- 406397: ~0.10%
- 407151: ~0.10%
- 409373: ~0.10%
- 410084: ~0.10%
- 410859: ~0.10%
- 411693: ~0.10%
- 411984: ~0.10%
- 412214: ~0.10%
- 412560: ~0.10%
- 413117: ~0.10%
- 416391: ~0.10%
- 417066: ~0.10%
- 417198: ~0.10%
- 417751: ~0.10%
- 417778: ~0.10%
- 420257: ~0.10%
- 420787: ~0.10%
- 421001: ~0.10%
- 421045: ~0.10%
- 421354: ~0.10%
- 428114: ~0.10%
- 429057: ~0.10%
- 429459: ~0.10%
- 430319: ~0.10%
- 431215: ~0.10%
- 431332: ~0.10%
- 431488: ~0.10%
- 432097: ~0.10%
- 432283: ~0.10%
- 434131: ~0.10%
- 434934: ~0.10%
- 435353: ~0.10%
- 437793: ~0.10%
- 438297: ~0.10%
- 438806: ~0.10%
- 439016: ~0.10%
- 439129: ~0.10%
- 439217: ~0.10%
- 439755: ~0.10%
- 440343: ~0.10%
- 440506: ~0.10%
- 441030: ~0.10%
- 441509: ~0.10%
- 443408: ~0.10%
- 443686: ~0.10%
- 445516: ~0.10%
- 445999: ~0.10%
- 447039: ~0.10%
- 447219: ~0.10%
- 447298: ~0.10%
- 453040: ~0.10%
- 453745: ~0.10%
- 454869: ~0.10%
- 456224: ~0.10%
- 456251: ~0.10%
- 457065: ~0.10%
- 459890: ~0.10%
- 460010: ~0.10%
- 463716: ~0.10%
- 465235: ~0.10%
- 470470: ~0.10%
- 471875: ~0.10%
- 472462: ~0.10%
- 474016: ~0.10%
- 479266: ~0.10%
- 479360: ~0.10%
- 480621: ~0.10%
- 483014: ~0.10%
- 484553: ~0.10%
- 485031: ~0.10%
- 485828: ~0.10%
- 486664: ~0.10%
- 488266: ~0.10%
- 489488: ~0.10%
- 490992: ~0.10%
- 491894: ~0.10%
- 491983: ~0.10%
- 492620: ~0.10%
- 493035: ~0.10%
- 493461: ~0.10%
- 494255: ~0.10%
- 496473: ~0.10%
- 496474: ~0.10%
- 496516: ~0.10%
- 496813: ~0.10%
- 496853: ~0.10%
- 499553: ~0.10%
- 499565: ~0.10%
- 499737: ~0.10%
- 500057: ~0.10%
- 500546: ~0.10%
- 501510: ~0.10%
- 501978: ~0.10%
- 503905: ~0.10%
- 510559: ~0.10%
- 511473: ~0.10%
- 512440: ~0.10%
- 513832: ~0.10%
- 514106: ~0.10%
- 514902: ~0.10%
- 515053: ~0.10%
- 515507: ~0.10%
- 516205: ~0.10%
- 517903: ~0.10%
- 518096: ~0.10%
- 520796: ~0.10%
- 521570: ~0.10%
- 522112: ~0.10%
- 523814: ~0.10%
- 525505: ~0.10%
- 525583: ~0.10%
- 525764: ~0.10%
- 528105: ~0.10%
- 530985: ~0.10%
- 532014: ~0.10%
- 534952: ~0.10%
- 538836: ~0.10%
- 539326: ~0.10%
- 539504: ~0.10%
- 541861: ~0.10%
- 542925: ~0.10%
- 543525: ~0.10%
- 544853: ~0.10%
- 545091: ~0.10%
- 546527: ~0.10%
- 546753: ~0.10%
- 548007: ~0.10%
- 548100: ~0.10%
- 554548: ~0.10%
- 555064: ~0.10%
- 560255: ~0.10%
- 560711: ~0.10%
- 561084: ~0.10%
- 561114: ~0.10%
- 561329: ~0.10%
- 561838: ~0.10%
- 561946: ~0.10%
- 564894: ~0.10%
- 566884: ~0.10%
- 568110: ~0.10%
- 569541: ~0.10%
- 570881: ~0.10%
- 571286: ~0.10%
- 571515: ~0.10%
- 571577: ~0.10%
- 572354: ~0.10%
- 573015: ~0.10%
- 573283: ~0.10%
- 577767: ~0.10%
- 578249: ~0.10%
- 578805: ~0.10%
- 580872: ~0.10%
- 581072: ~0.10%
- 581684: ~0.10%
- 582341: ~0.10%
- 583169: ~0.10%
- 583322: ~0.10%
- 583889: ~0.10%
- 584173: ~0.10%
- 585406: ~0.10%
- 585523: ~0.10%
- 585660: ~0.10%
- 587005: ~0.10%
- 587399: ~0.10%
- 588010: ~0.10%
- 588337: ~0.10%
- 590946: ~0.10%
- 593319: ~0.10%
- 595246: ~0.10%
- 597157: ~0.10%
- 597215: ~0.10%
- 597368: ~0.10%
- 597453: ~0.10%
- 598538: ~0.10%
- 601120: ~0.10%
- 604762: ~0.10%
- 605111: ~0.10%
- 605547: ~0.10%
- 606244: ~0.10%
- 606935: ~0.10%
- 607099: ~0.10%
- 609731: ~0.10%
- 609910: ~0.10%
- 610485: ~0.10%
- 613040: ~0.10%
- 614720: ~0.10%
- 615525: ~0.10%
- 616416: ~0.10%
- 618280: ~0.10%
- 619151: ~0.10%
- 619170: ~0.10%
- 622593: ~0.10%
- 622755: ~0.10%
- 623529: ~0.10%
- 625333: ~0.10%
- 625780: ~0.10%
- 626317: ~0.10%
- 626670: ~0.10%
- 628299: ~0.10%
- 628510: ~0.10%
- 629166: ~0.10%
- 630995: ~0.10%
- 632641: ~0.10%
- 634324: ~0.10%
- 634750: ~0.10%
- 636542: ~0.10%
- 637420: ~0.10%
- 641046: ~0.10%
- 643232: ~0.10%
- 643901: ~0.10%
- 644517: ~0.10%
- 645962: ~0.10%
- 647293: ~0.10%
- 647443: ~0.10%
- 648173: ~0.10%
- 649204: ~0.10%
- 650521: ~0.10%
- 651961: ~0.10%
- 652493: ~0.10%
- 655888: ~0.10%
- 656535: ~0.10%
- 658715: ~0.10%
- 659035: ~0.10%
- 659593: ~0.10%
- 660535: ~0.10%
- 662154: ~0.10%
- 662784: ~0.10%
- 663142: ~0.10%
- 666319: ~0.10%
- 666386: ~0.10%
- 666561: ~0.10%
- 668151: ~0.10%
- 668862: ~0.10%
- 670341: ~0.10%
- 671801: ~0.10%
- 673081: ~0.10%
- 673634: ~0.10%
- 673875: ~0.10%
- 673881: ~0.10%
- 674082: ~0.10%
- 675319: ~0.10%
- 675492: ~0.10%
- 676147: ~0.10%
- 676238: ~0.10%
- 676318: ~0.10%
- 676431: ~0.10%
- 677459: ~0.10%
- 678468: ~0.10%
- 679216: ~0.10%
- 679307: ~0.10%
- 680354: ~0.10%
- 681098: ~0.10%
- 681873: ~0.10%
- 684800: ~0.10%
- 685613: ~0.10%
- 685690: ~0.10%
- 686886: ~0.10%
- 689687: ~0.10%
- 689748: ~0.10%
- 694425: ~0.10%
- 694466: ~0.10%
- 698130: ~0.10%
- 702137: ~0.10%
- 703138: ~0.10%
- 704067: ~0.10%
- 704460: ~0.10%
- 705420: ~0.10%
- 706199: ~0.10%
- 706878: ~0.10%
- 708333: ~0.10%
- 710580: ~0.10%
- 710897: ~0.10%
- 713539: ~0.10%
- 713584: ~0.10%
- 714733: ~0.10%
- 718172: ~0.10%
- 719545: ~0.10%
- 719580: ~0.10%
- 720471: ~0.10%
- 720690: ~0.10%
- 722394: ~0.10%
- 723568: ~0.10%
- 724334: ~0.10%
- 724700: ~0.10%
- 727908: ~0.10%
- 728088: ~0.10%
- 729096: ~0.10%
- 730499: ~0.10%
- 730711: ~0.10%
- 733963: ~0.10%
- 734912: ~0.10%
- 736431: ~0.10%
- 738012: ~0.10%
- 738173: ~0.10%
- 739026: ~0.10%
- 739605: ~0.10%
- 740181: ~0.10%
- 742066: ~0.10%
- 742298: ~0.10%
- 745799: ~0.10%
- 748392: ~0.10%
- 748838: ~0.10%
- 749148: ~0.10%
- 751762: ~0.10%
- 752092: ~0.10%
- 752527: ~0.10%
- 753568: ~0.10%
- 755386: ~0.10%
- 756558: ~0.10%
- 756736: ~0.10%
- 758706: ~0.10%
- 759523: ~0.10%
- 760550: ~0.10%
- 762688: ~0.10%
- 762918: ~0.10%
- 763569: ~0.10%
- 763766: ~0.10%
- 765769: ~0.10%
- 766789: ~0.10%
- 768119: ~0.10%
- 768537: ~0.10%
- 773106: ~0.10%
- 775589: ~0.10%
- 775964: ~0.10%
- 776055: ~0.10%
- 777088: ~0.10%
- 777529: ~0.10%
- 778375: ~0.10%
- 781066: ~0.10%
- 782328: ~0.10%
- 783231: ~0.10%
- 784413: ~0.10%
- 785781: ~0.10%
- 786250: ~0.10%
- 786845: ~0.10%
- 788012: ~0.10%
- 791857: ~0.10%
- 792788: ~0.10%
- 793182: ~0.10%
- 794187: ~0.10%
- 794308: ~0.10%
- 794318: ~0.10%
- 796097: ~0.10%
- 796117: ~0.10%
- 797182: ~0.10%
- 798215: ~0.10%
- 802050: ~0.10%
- 802669: ~0.10%
- 804168: ~0.10%
- 804253: ~0.10%
- 804461: ~0.10%
- 805743: ~0.10%
- 808416: ~0.10%
- 808455: ~0.10%
- 810577: ~0.10%
- 811702: ~0.10%
- 811843: ~0.10%
- 815923: ~0.10%
- 816475: ~0.10%
- 818312: ~0.10%
- 818521: ~0.10%
- 819278: ~0.10%
- 820890: ~0.10%
- 821615: ~0.10%
- 823136: ~0.10%
- 823735: ~0.10%
- 829476: ~0.10%
- 830591: ~0.10%
- 832433: ~0.10%
- 832597: ~0.10%
- 833053: ~0.10%
- 835043: ~0.10%
- 835759: ~0.10%
- 837731: ~0.10%
- 837942: ~0.10%
- 839448: ~0.10%
- 840228: ~0.10%
- 840417: ~0.10%
- 841851: ~0.10%
- 843327: ~0.10%
- 843622: ~0.10%
- 844870: ~0.10%
- 846084: ~0.10%
- 846807: ~0.10%
- 847076: ~0.10%
- 847535: ~0.10%
- 847977: ~0.10%
- 848075: ~0.10%
- 848326: ~0.10%
- 852725: ~0.10%
- 853465: ~0.10%
- 856427: ~0.10%
- 857186: ~0.10%
- 858377: ~0.10%
- 858543: ~0.10%
- 860426: ~0.10%
- 863804: ~0.10%
- 866039: ~0.10%
- 866406: ~0.10%
- 867180: ~0.10%
- 868280: ~0.10%
- 872156: ~0.10%
- 872791: ~0.10%
- 872953: ~0.10%
- 872959: ~0.10%
- 875015: ~0.10%
- 876522: ~0.10%
- 878407: ~0.10%
- 878710: ~0.10%
- 878855: ~0.10%
- 880495: ~0.10%
- 882732: ~0.10%
- 884335: ~0.10%
- 884941: ~0.10%
- 885893: ~0.10%
- 886713: ~0.10%
- 887068: ~0.10%
- 887751: ~0.10%
- 888027: ~0.10%
- 890152: ~0.10%
- 891137: ~0.10%
- 891890: ~0.10%
- 892662: ~0.10%
- 892973: ~0.10%
- 893360: ~0.10%
- 893915: ~0.10%
- 893976: ~0.10%
- 894324: ~0.10%
- 895709: ~0.10%
- 897065: ~0.10%
- 898387: ~0.10%
- 899291: ~0.10%
- 899604: ~0.10%
- 900513: ~0.10%
- 900619: ~0.10%
- 901170: ~0.10%
- 902794: ~0.10%
- 903238: ~0.10%
- 904294: ~0.10%
- 904520: ~0.10%
- 904992: ~0.10%
- 907212: ~0.10%
- 908062: ~0.10%
- 908561: ~0.10%
- 911034: ~0.10%
- 911982: ~0.10%
- 913716: ~0.10%
- 914819: ~0.10%
- 915750: ~0.10%
- 915766: ~0.10%
- 916125: ~0.10%
- 916648: ~0.10%
- 917285: ~0.10%
- 918194: ~0.10%
- 926035: ~0.10%
- 927726: ~0.10%
- 929821: ~0.10%
- 930300: ~0.10%
- 930796: ~0.10%
- 931617: ~0.10%
- 932719: ~0.10%
- 933784: ~0.10%
- 934378: ~0.10%
- 935900: ~0.10%
- 936118: ~0.10%
- 936336: ~0.10%
- 937231: ~0.10%
- 938420: ~0.10%
- 939184: ~0.10%
- 939567: ~0.10%
- 941588: ~0.10%
- 944093: ~0.10%
- 944912: ~0.10%
- 945069: ~0.10%
- 945659: ~0.10%
- 946110: ~0.10%
- 950044: ~0.10%
- 954101: ~0.10%
- 954147: ~0.10%
- 958697: ~0.10%
- 959530: ~0.10%
- 961721: ~0.10%
- 963582: ~0.10%
- 964471: ~0.10%
- 965026: ~0.10%
- 966573: ~0.10%
- 967330: ~0.10%
- 968346: ~0.10%
- 970649: ~0.10%
- 970873: ~0.10%
- 971636: ~0.10%
- 971664: ~0.10%
- 973555: ~0.10%
- 973851: ~0.10%
- 974207: ~0.10%
- 976896: ~0.10%
- 981402: ~0.10%
- 983723: ~0.10%
- 984358: ~0.10%
- 984653: ~0.10%
- 987107: ~0.10%
- 987167: ~0.10%
- 994360: ~0.10%
- 995049: ~0.10%
- 1002688: ~0.10%
- 1004305: ~0.10%
- 1004650: ~0.10%
- 1004849: ~0.10%
- 1005118: ~0.10%
- 1005614: ~0.10%
- 1005626: ~0.10%
- 1005669: ~0.10%
- 1006835: ~0.10%
- 1011008: ~0.10%
- 1012299: ~0.10%
- 1014010: ~0.10%
- 1014030: ~0.10%
- 1016549: ~0.10%
- 1017016: ~0.10%
- 1017335: ~0.10%
- 1018386: ~0.10%
- 1020640: ~0.10%
- 1021041: ~0.10%
- 1021411: ~0.10%
- 1025341: ~0.10%
- 1025423: ~0.10%
- 1025767: ~0.10%
- 1026066: ~0.10%
- 1026434: ~0.10%
- 1027516: ~0.10%
- 1027703: ~0.10%
- 1028119: ~0.10%
- 1028642: ~0.10%
- 1031554: ~0.10%
- 1032300: ~0.10%
- 1033639: ~0.10%
- 1033660: ~0.10%
- 1034832: ~0.10%
- 1035274: ~0.10%
- 1037432: ~0.10%
- 1037536: ~0.10%
- 1037759: ~0.10%
- 1039860: ~0.10%
- 1041131: ~0.10%
- 1041892: ~0.10%
- 1043066: ~0.10%
- 1044326: ~0.10%
- 1044905: ~0.10%
- 1047848: ~0.10%
- 1048534: ~0.10%
- 1049477: ~0.10%
- 1050531: ~0.10%
- 1052073: ~0.10%
- 1052617: ~0.10%
- 1054049: ~0.10%
- 1055142: ~0.10%
- 1056933: ~0.10%
- 1057358: ~0.10%
- 1057911: ~0.10%
- 1061411: ~0.10%
- 1062328: ~0.10%
- 1062485: ~0.10%
- 1062534: ~0.10%
- 1062794: ~0.10%
- 1063269: ~0.10%
- 1063467: ~0.10%
- 1064568: ~0.10%
- 1064868: ~0.10%
- 1065481: ~0.10%
- 1065565: ~0.10%
- 1067970: ~0.10%
- 1068014: ~0.10%
- 1070203: ~0.10%
- 1070708: ~0.10%
- 1072038: ~0.10%
- 1072214: ~0.10%
- 1074885: ~0.10%
- 1075308: ~0.10%
- 1078872: ~0.10%
- 1078979: ~0.10%
- 1079266: ~0.10%
- 1079736: ~0.10%
- 1080075: ~0.10%
- 1081716: ~0.10%
- 1137391: ~0.10%
- 1138530: ~0.10%
- 1139697: ~0.10%
- 1140119: ~0.10%
- 1140869: ~0.10%
- 1141527: ~0.10%
- 1144693: ~0.10%
- 1145425: ~0.10%
- 1149162: ~0.10%
- 1149207: ~0.10%
- 1150086: ~0.10%
- 1150398: ~0.10%
- 1150731: ~0.10%
- 1151256: ~0.10%
- 1151403: ~0.10%
- 1152236: ~0.10%
- 1153693: ~0.10%
- 1155859: ~0.10%
- 1156918: ~0.10%
- 1158007: ~0.10%
- 1158559: ~0.10%
- 1158952: ~0.10%
- 1159165: ~0.10%
- 1161242: ~0.10%
- 1163227: ~0.10%
- 1166023: ~0.10%
- 1166231: ~0.10%
- 1167002: ~0.10%
- 1169844: ~0.10%
- 1170663: ~0.10%
- 1171580: ~0.10%
- 1172072: ~0.10%
- 1172083: ~0.10%
- 1173371: ~0.10%
- 1173809: ~0.10%
- 1174049: ~0.10%
- 1175044: ~0.10%
- 1175745: ~0.10%
- 1176061: ~0.10%
- 1176414: ~0.10%
- 1176993: ~0.10%
- 1177449: ~0.10%
- 1178311: ~0.10%
- 1179029: ~0.10%
- 1179069: ~0.10%
- 1180579: ~0.10%
- 1181077: ~0.10%
- 1183293: ~0.10%
- 1184313: ~0.10%
- 1185090: ~0.10%
- 1185669: ~0.10%
- size: 32 elements
- size: 32 elements
- Samples:
query_id document_ids scores 685613[7546874, 1176459, 197677, 2306318, 8541504, ...][0.9999999992804947, 0.24845418756716053, 0.7594154013647826, 0.26644182105618575, 0.390668914839766, ...]237784[6366584, 4034101, 2325374, 6914618, 6042146, ...][0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...]904294[448408, 8743975, 49600, 7339401, 2714261, ...][0.9999999991841937, 0.877629062381539, 0.8330146583389045, 0.3116634796692611, 0.4633524534142185, ...] - Loss:
pylate.losses.distillation.Distillation
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16learning_rate: 3e-05num_train_epochs: 1bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | NanoClimateFEVER_MaxSim_ndcg@10 | NanoDBPedia_MaxSim_ndcg@10 | NanoFEVER_MaxSim_ndcg@10 | NanoFiQA2018_MaxSim_ndcg@10 | NanoHotpotQA_MaxSim_ndcg@10 | NanoMSMARCO_MaxSim_ndcg@10 | NanoNFCorpus_MaxSim_ndcg@10 | NanoNQ_MaxSim_ndcg@10 | NanoQuoraRetrieval_MaxSim_ndcg@10 | NanoSCIDOCS_MaxSim_ndcg@10 | NanoArguAna_MaxSim_ndcg@10 | NanoSciFact_MaxSim_ndcg@10 | NanoTouche2020_MaxSim_ndcg@10 | NanoBEIR_mean_MaxSim_ndcg@10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0030 | 100 | 0.0366 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0060 | 200 | 0.0325 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0090 | 300 | 0.0308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0120 | 400 | 0.0277 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0150 | 500 | 0.0268 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0180 | 600 | 0.0264 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0210 | 700 | 0.0254 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0240 | 800 | 0.0247 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0270 | 900 | 0.0246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0300 | 1000 | 0.0244 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0330 | 1100 | 0.0242 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0360 | 1200 | 0.023 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0390 | 1300 | 0.0233 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0420 | 1400 | 0.0224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0450 | 1500 | 0.0233 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0480 | 1600 | 0.0221 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0510 | 1700 | 0.0222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0540 | 1800 | 0.0216 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0570 | 1900 | 0.0215 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0600 | 2000 | 0.0211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0630 | 2100 | 0.021 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0660 | 2200 | 0.0208 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0690 | 2300 | 0.0205 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0720 | 2400 | 0.0207 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0750 | 2500 | 0.0204 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0780 | 2600 | 0.0201 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0810 | 2700 | 0.0199 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0840 | 2800 | 0.0197 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0870 | 2900 | 0.0201 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0900 | 3000 | 0.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0930 | 3100 | 0.0198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0960 | 3200 | 0.0192 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0990 | 3300 | 0.0194 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1020 | 3400 | 0.0188 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1050 | 3500 | 0.0193 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1080 | 3600 | 0.0193 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1110 | 3700 | 0.0186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1140 | 3800 | 0.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1170 | 3900 | 0.0186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1200 | 4000 | 0.0186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1230 | 4100 | 0.0181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1260 | 4200 | 0.0181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1290 | 4300 | 0.0182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1320 | 4400 | 0.0184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1350 | 4500 | 0.0178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1380 | 4600 | 0.017 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1410 | 4700 | 0.0175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1440 | 4800 | 0.0174 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1470 | 4900 | 0.0176 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1500 | 5000 | 0.0177 | 0.2830 | 0.5426 | 0.8641 | 0.4244 | 0.8531 | 0.6244 | 0.3106 | 0.5798 | 0.9230 | 0.3109 | 0.3815 | 0.7461 | 0.5805 | 0.5711 |
| 0.1530 | 5100 | 0.0172 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1560 | 5200 | 0.017 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1590 | 5300 | 0.0173 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1620 | 5400 | 0.0169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1650 | 5500 | 0.017 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1680 | 5600 | 0.0168 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1710 | 5700 | 0.0171 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1740 | 5800 | 0.0165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1770 | 5900 | 0.0165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1801 | 6000 | 0.0169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1831 | 6100 | 0.0167 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1861 | 6200 | 0.0169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1891 | 6300 | 0.0163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1921 | 6400 | 0.0165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1951 | 6500 | 0.0163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1981 | 6600 | 0.0166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2011 | 6700 | 0.0163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2041 | 6800 | 0.0162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2071 | 6900 | 0.0163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2101 | 7000 | 0.016 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2131 | 7100 | 0.0164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2161 | 7200 | 0.0162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2191 | 7300 | 0.0158 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2221 | 7400 | 0.0156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2251 | 7500 | 0.0154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2281 | 7600 | 0.016 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2311 | 7700 | 0.0157 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2341 | 7800 | 0.0161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2371 | 7900 | 0.0157 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2401 | 8000 | 0.0156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2431 | 8100 | 0.0156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2461 | 8200 | 0.0156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2491 | 8300 | 0.0154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2521 | 8400 | 0.0153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2551 | 8500 | 0.0157 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2581 | 8600 | 0.0155 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2611 | 8700 | 0.0156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2641 | 8800 | 0.0155 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2671 | 8900 | 0.0154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2701 | 9000 | 0.0152 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2731 | 9100 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2761 | 9200 | 0.0154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2791 | 9300 | 0.0149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2821 | 9400 | 0.0149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2851 | 9500 | 0.0153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2881 | 9600 | 0.0146 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2911 | 9700 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2941 | 9800 | 0.015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2971 | 9900 | 0.0149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3001 | 10000 | 0.0146 | 0.2674 | 0.5466 | 0.8739 | 0.4547 | 0.8499 | 0.5933 | 0.3170 | 0.6256 | 0.9321 | 0.3137 | 0.3855 | 0.7387 | 0.5768 | 0.5750 |
| 0.3031 | 10100 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3061 | 10200 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3091 | 10300 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3121 | 10400 | 0.0148 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3151 | 10500 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3181 | 10600 | 0.0143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3211 | 10700 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3241 | 10800 | 0.0145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3271 | 10900 | 0.0148 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3301 | 11000 | 0.015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3331 | 11100 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3361 | 11200 | 0.0148 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3391 | 11300 | 0.0145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3421 | 11400 | 0.014 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3451 | 11500 | 0.0146 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3481 | 11600 | 0.0143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3511 | 11700 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3541 | 11800 | 0.0141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3571 | 11900 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3601 | 12000 | 0.0141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3631 | 12100 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3661 | 12200 | 0.0143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3691 | 12300 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3721 | 12400 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3751 | 12500 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3781 | 12600 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3811 | 12700 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3841 | 12800 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3871 | 12900 | 0.014 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3901 | 13000 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3931 | 13100 | 0.014 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3961 | 13200 | 0.0141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3991 | 13300 | 0.014 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4021 | 13400 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4051 | 13500 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4081 | 13600 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4111 | 13700 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4141 | 13800 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4171 | 13900 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4201 | 14000 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4231 | 14100 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4261 | 14200 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4291 | 14300 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4321 | 14400 | 0.0135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4351 | 14500 | 0.0133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4381 | 14600 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4411 | 14700 | 0.0134 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4441 | 14800 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4471 | 14900 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4501 | 15000 | 0.0131 | 0.2885 | 0.5666 | 0.8718 | 0.4695 | 0.8453 | 0.6405 | 0.3128 | 0.6500 | 0.9257 | 0.3081 | 0.3923 | 0.7361 | 0.5852 | 0.5840 |
| 0.4531 | 15100 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4561 | 15200 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4591 | 15300 | 0.0134 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4621 | 15400 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4651 | 15500 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4681 | 15600 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4711 | 15700 | 0.0134 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4741 | 15800 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4771 | 15900 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4801 | 16000 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4831 | 16100 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4861 | 16200 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4891 | 16300 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4921 | 16400 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4951 | 16500 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4981 | 16600 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5011 | 16700 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5041 | 16800 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5071 | 16900 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5101 | 17000 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5131 | 17100 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5161 | 17200 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5191 | 17300 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5221 | 17400 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5251 | 17500 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5281 | 17600 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5311 | 17700 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5341 | 17800 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5372 | 17900 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5402 | 18000 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5432 | 18100 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5462 | 18200 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5492 | 18300 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5522 | 18400 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5552 | 18500 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5582 | 18600 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5612 | 18700 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5642 | 18800 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5672 | 18900 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5702 | 19000 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5732 | 19100 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5762 | 19200 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5792 | 19300 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5822 | 19400 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5852 | 19500 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5882 | 19600 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5912 | 19700 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5942 | 19800 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5972 | 19900 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6002 | 20000 | 0.0124 | 0.2807 | 0.5738 | 0.8748 | 0.4586 | 0.8533 | 0.6174 | 0.3227 | 0.6215 | 0.9219 | 0.3104 | 0.4132 | 0.7348 | 0.5696 | 0.5810 |
| 0.6032 | 20100 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6062 | 20200 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6092 | 20300 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6122 | 20400 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6152 | 20500 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6182 | 20600 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6212 | 20700 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6242 | 20800 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6272 | 20900 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6302 | 21000 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6332 | 21100 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6362 | 21200 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6392 | 21300 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6422 | 21400 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6452 | 21500 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6482 | 21600 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6512 | 21700 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6542 | 21800 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6572 | 21900 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6602 | 22000 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6632 | 22100 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6662 | 22200 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6692 | 22300 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6722 | 22400 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6752 | 22500 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6782 | 22600 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6812 | 22700 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6842 | 22800 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6872 | 22900 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6902 | 23000 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6932 | 23100 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6962 | 23200 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6992 | 23300 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7022 | 23400 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7052 | 23500 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7082 | 23600 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7112 | 23700 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7142 | 23800 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7172 | 23900 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7202 | 24000 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7232 | 24100 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7262 | 24200 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7292 | 24300 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7322 | 24400 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7352 | 24500 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7382 | 24600 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7412 | 24700 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7442 | 24800 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7472 | 24900 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7502 | 25000 | 0.0118 | 0.2940 | 0.5881 | 0.8842 | 0.4741 | 0.8653 | 0.6288 | 0.3414 | 0.6734 | 0.9000 | 0.3151 | 0.4361 | 0.7387 | 0.5610 | 0.5923 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}