detr_finetuned_bccd
This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.6123
- Map: 0.5265
- Map 50: 0.7826
- Map 75: 0.5744
- Map Small: 0.2152
- Map Medium: 0.4756
- Map Large: 0.6938
- Mar 1: 0.3992
- Mar 10: 0.6443
- Mar 100: 0.7154
- Mar Small: 0.4536
- Mar Medium: 0.6485
- Mar Large: 0.8102
- Map Platelets: 0.2758
- Mar 100 Platelets: 0.5431
- Map Rbc: 0.5698
- Mar 100 Rbc: 0.7495
- Map Wbc: 0.7337
- Mar 100 Wbc: 0.8537
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Platelets | Mar 100 Platelets | Map Rbc | Mar 100 Rbc | Map Wbc | Mar 100 Wbc |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 13 | 1.1546 | 0.0333 | 0.0707 | 0.0249 | 0.0 | 0.0271 | 0.1446 | 0.0064 | 0.0421 | 0.2061 | 0.0 | 0.2014 | 0.3274 | 0.0067 | 0.0069 | 0.0833 | 0.605 | 0.0099 | 0.0063 |
| No log | 2.0 | 26 | 0.9313 | 0.0482 | 0.0836 | 0.0527 | 0.0 | 0.0438 | 0.2079 | 0.0087 | 0.0602 | 0.2274 | 0.0 | 0.2266 | 0.3448 | 0.0 | 0.0 | 0.1446 | 0.6821 | 0.0 | 0.0 |
| No log | 3.0 | 39 | 0.8843 | 0.0595 | 0.0931 | 0.0709 | 0.0 | 0.0531 | 0.2013 | 0.0122 | 0.0742 | 0.24 | 0.0 | 0.238 | 0.3705 | 0.0 | 0.0 | 0.1784 | 0.72 | 0.0 | 0.0 |
| No log | 4.0 | 52 | 0.8400 | 0.076 | 0.1146 | 0.093 | 0.0139 | 0.0696 | 0.1556 | 0.0179 | 0.0936 | 0.2514 | 0.025 | 0.2439 | 0.395 | 0.0069 | 0.0097 | 0.2212 | 0.7445 | 0.0 | 0.0 |
| No log | 5.0 | 65 | 0.8139 | 0.0959 | 0.1534 | 0.111 | 0.0302 | 0.0836 | 0.2469 | 0.0246 | 0.1213 | 0.2634 | 0.1 | 0.252 | 0.3775 | 0.0152 | 0.0556 | 0.2725 | 0.7346 | 0.0 | 0.0 |
| No log | 6.0 | 78 | 0.7977 | 0.146 | 0.2567 | 0.1544 | 0.0786 | 0.1605 | 0.2663 | 0.0631 | 0.2102 | 0.3363 | 0.2786 | 0.3275 | 0.3838 | 0.0966 | 0.2625 | 0.3335 | 0.7363 | 0.0079 | 0.01 |
| No log | 7.0 | 91 | 0.7647 | 0.2556 | 0.4191 | 0.274 | 0.1006 | 0.1952 | 0.4013 | 0.2166 | 0.4411 | 0.5528 | 0.475 | 0.4013 | 0.6032 | 0.1285 | 0.4653 | 0.3944 | 0.7468 | 0.2439 | 0.4462 |
| No log | 8.0 | 104 | 0.7444 | 0.291 | 0.4664 | 0.3125 | 0.1267 | 0.2016 | 0.4213 | 0.2909 | 0.5785 | 0.6785 | 0.3143 | 0.4412 | 0.7984 | 0.147 | 0.4875 | 0.4502 | 0.7368 | 0.2757 | 0.8112 |
| No log | 9.0 | 117 | 0.7266 | 0.2924 | 0.485 | 0.3148 | 0.1268 | 0.2331 | 0.4203 | 0.2878 | 0.6042 | 0.7038 | 0.3536 | 0.6701 | 0.819 | 0.1681 | 0.4903 | 0.4673 | 0.7373 | 0.2416 | 0.8838 |
| No log | 10.0 | 130 | 0.7287 | 0.2959 | 0.4868 | 0.3108 | 0.1195 | 0.2577 | 0.4443 | 0.2997 | 0.5952 | 0.6973 | 0.5107 | 0.6539 | 0.7842 | 0.1684 | 0.5194 | 0.4671 | 0.735 | 0.2521 | 0.8375 |
| No log | 11.0 | 143 | 0.7002 | 0.3551 | 0.5616 | 0.3713 | 0.1406 | 0.2663 | 0.4856 | 0.335 | 0.6162 | 0.7094 | 0.4393 | 0.6747 | 0.8098 | 0.1974 | 0.5292 | 0.4936 | 0.7429 | 0.3745 | 0.8562 |
| No log | 12.0 | 156 | 0.7192 | 0.3779 | 0.602 | 0.4117 | 0.1314 | 0.2696 | 0.4934 | 0.3521 | 0.5962 | 0.6861 | 0.3964 | 0.6607 | 0.8063 | 0.1954 | 0.5042 | 0.4779 | 0.7254 | 0.4604 | 0.8288 |
| No log | 13.0 | 169 | 0.6769 | 0.3992 | 0.6147 | 0.4365 | 0.1841 | 0.2564 | 0.5507 | 0.3647 | 0.6143 | 0.7046 | 0.4464 | 0.6746 | 0.7946 | 0.2153 | 0.5347 | 0.5117 | 0.7353 | 0.4705 | 0.8438 |
| No log | 14.0 | 182 | 0.6575 | 0.4304 | 0.6396 | 0.4777 | 0.1562 | 0.3608 | 0.5942 | 0.3753 | 0.63 | 0.7125 | 0.45 | 0.7042 | 0.8135 | 0.2083 | 0.525 | 0.5272 | 0.7437 | 0.5557 | 0.8687 |
| No log | 15.0 | 195 | 0.6548 | 0.4677 | 0.706 | 0.5117 | 0.1505 | 0.3777 | 0.6348 | 0.3825 | 0.629 | 0.7109 | 0.4393 | 0.7014 | 0.8238 | 0.2287 | 0.5194 | 0.5292 | 0.7432 | 0.6453 | 0.87 |
| No log | 16.0 | 208 | 0.6408 | 0.4898 | 0.726 | 0.5319 | 0.1853 | 0.4655 | 0.6638 | 0.3887 | 0.6322 | 0.7091 | 0.425 | 0.7033 | 0.8108 | 0.2375 | 0.5125 | 0.542 | 0.7434 | 0.69 | 0.8712 |
| No log | 17.0 | 221 | 0.6440 | 0.5086 | 0.7475 | 0.5633 | 0.2068 | 0.5118 | 0.6656 | 0.3957 | 0.6419 | 0.716 | 0.4464 | 0.7125 | 0.8189 | 0.2637 | 0.5458 | 0.5399 | 0.7384 | 0.7221 | 0.8637 |
| No log | 18.0 | 234 | 0.6331 | 0.4936 | 0.7323 | 0.5389 | 0.1818 | 0.4665 | 0.6635 | 0.3808 | 0.6353 | 0.707 | 0.4321 | 0.673 | 0.8094 | 0.2339 | 0.525 | 0.5437 | 0.7409 | 0.7031 | 0.855 |
| No log | 19.0 | 247 | 0.6370 | 0.4993 | 0.7416 | 0.5503 | 0.1747 | 0.4907 | 0.6774 | 0.3913 | 0.634 | 0.7071 | 0.4964 | 0.6626 | 0.7922 | 0.2353 | 0.5264 | 0.546 | 0.7387 | 0.7166 | 0.8562 |
| No log | 20.0 | 260 | 0.6358 | 0.5138 | 0.7644 | 0.5612 | 0.2402 | 0.4921 | 0.6847 | 0.3973 | 0.6412 | 0.7106 | 0.4821 | 0.6697 | 0.7934 | 0.2691 | 0.5361 | 0.547 | 0.7356 | 0.7254 | 0.86 |
| No log | 21.0 | 273 | 0.6298 | 0.5153 | 0.7664 | 0.5838 | 0.252 | 0.475 | 0.6879 | 0.3969 | 0.6429 | 0.7162 | 0.4821 | 0.6788 | 0.7913 | 0.2728 | 0.5458 | 0.5511 | 0.7439 | 0.7221 | 0.8587 |
| No log | 22.0 | 286 | 0.6224 | 0.5235 | 0.7714 | 0.5621 | 0.2005 | 0.4708 | 0.6961 | 0.3993 | 0.6465 | 0.7172 | 0.5107 | 0.6344 | 0.8087 | 0.2725 | 0.5431 | 0.5574 | 0.741 | 0.7405 | 0.8675 |
| No log | 23.0 | 299 | 0.6223 | 0.5284 | 0.7818 | 0.5855 | 0.2549 | 0.4685 | 0.6927 | 0.3978 | 0.6473 | 0.72 | 0.4821 | 0.648 | 0.806 | 0.2869 | 0.5556 | 0.5603 | 0.7431 | 0.7379 | 0.8612 |
| No log | 24.0 | 312 | 0.6161 | 0.5177 | 0.7654 | 0.5585 | 0.2368 | 0.4677 | 0.6801 | 0.3982 | 0.6446 | 0.7191 | 0.4607 | 0.6496 | 0.8169 | 0.2787 | 0.55 | 0.5626 | 0.7486 | 0.7118 | 0.8587 |
| No log | 25.0 | 325 | 0.6119 | 0.5295 | 0.7813 | 0.5905 | 0.2328 | 0.4801 | 0.6872 | 0.3988 | 0.647 | 0.722 | 0.475 | 0.6528 | 0.8113 | 0.2968 | 0.5583 | 0.5671 | 0.7502 | 0.7245 | 0.8575 |
| No log | 26.0 | 338 | 0.6147 | 0.5268 | 0.7812 | 0.5798 | 0.2004 | 0.4825 | 0.6897 | 0.3992 | 0.6483 | 0.721 | 0.4893 | 0.6459 | 0.8119 | 0.2863 | 0.5514 | 0.5677 | 0.7492 | 0.7264 | 0.8625 |
| No log | 27.0 | 351 | 0.6134 | 0.5246 | 0.7813 | 0.57 | 0.2177 | 0.4736 | 0.6895 | 0.3994 | 0.6459 | 0.7178 | 0.4643 | 0.6457 | 0.8126 | 0.2763 | 0.5417 | 0.5681 | 0.7491 | 0.7294 | 0.8625 |
| No log | 28.0 | 364 | 0.6120 | 0.5261 | 0.7826 | 0.5809 | 0.2197 | 0.4755 | 0.6931 | 0.3991 | 0.6444 | 0.7167 | 0.4607 | 0.6483 | 0.811 | 0.2773 | 0.5458 | 0.5693 | 0.7491 | 0.7317 | 0.855 |
| No log | 29.0 | 377 | 0.6123 | 0.526 | 0.7821 | 0.5743 | 0.2131 | 0.4755 | 0.6935 | 0.3987 | 0.6435 | 0.7157 | 0.4536 | 0.6484 | 0.8108 | 0.2754 | 0.5431 | 0.5696 | 0.7491 | 0.7332 | 0.855 |
| No log | 30.0 | 390 | 0.6123 | 0.5265 | 0.7826 | 0.5744 | 0.2152 | 0.4756 | 0.6938 | 0.3992 | 0.6443 | 0.7154 | 0.4536 | 0.6485 | 0.8102 | 0.2758 | 0.5431 | 0.5698 | 0.7495 | 0.7337 | 0.8537 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 19
Model tree for amSOwO/detr_finetuned_bccd
Base model
microsoft/conditional-detr-resnet-50