detr_finetuned_bccd

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6123
  • Map: 0.5265
  • Map 50: 0.7826
  • Map 75: 0.5744
  • Map Small: 0.2152
  • Map Medium: 0.4756
  • Map Large: 0.6938
  • Mar 1: 0.3992
  • Mar 10: 0.6443
  • Mar 100: 0.7154
  • Mar Small: 0.4536
  • Mar Medium: 0.6485
  • Mar Large: 0.8102
  • Map Platelets: 0.2758
  • Mar 100 Platelets: 0.5431
  • Map Rbc: 0.5698
  • Mar 100 Rbc: 0.7495
  • Map Wbc: 0.7337
  • Mar 100 Wbc: 0.8537

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Platelets Mar 100 Platelets Map Rbc Mar 100 Rbc Map Wbc Mar 100 Wbc
No log 1.0 13 1.1546 0.0333 0.0707 0.0249 0.0 0.0271 0.1446 0.0064 0.0421 0.2061 0.0 0.2014 0.3274 0.0067 0.0069 0.0833 0.605 0.0099 0.0063
No log 2.0 26 0.9313 0.0482 0.0836 0.0527 0.0 0.0438 0.2079 0.0087 0.0602 0.2274 0.0 0.2266 0.3448 0.0 0.0 0.1446 0.6821 0.0 0.0
No log 3.0 39 0.8843 0.0595 0.0931 0.0709 0.0 0.0531 0.2013 0.0122 0.0742 0.24 0.0 0.238 0.3705 0.0 0.0 0.1784 0.72 0.0 0.0
No log 4.0 52 0.8400 0.076 0.1146 0.093 0.0139 0.0696 0.1556 0.0179 0.0936 0.2514 0.025 0.2439 0.395 0.0069 0.0097 0.2212 0.7445 0.0 0.0
No log 5.0 65 0.8139 0.0959 0.1534 0.111 0.0302 0.0836 0.2469 0.0246 0.1213 0.2634 0.1 0.252 0.3775 0.0152 0.0556 0.2725 0.7346 0.0 0.0
No log 6.0 78 0.7977 0.146 0.2567 0.1544 0.0786 0.1605 0.2663 0.0631 0.2102 0.3363 0.2786 0.3275 0.3838 0.0966 0.2625 0.3335 0.7363 0.0079 0.01
No log 7.0 91 0.7647 0.2556 0.4191 0.274 0.1006 0.1952 0.4013 0.2166 0.4411 0.5528 0.475 0.4013 0.6032 0.1285 0.4653 0.3944 0.7468 0.2439 0.4462
No log 8.0 104 0.7444 0.291 0.4664 0.3125 0.1267 0.2016 0.4213 0.2909 0.5785 0.6785 0.3143 0.4412 0.7984 0.147 0.4875 0.4502 0.7368 0.2757 0.8112
No log 9.0 117 0.7266 0.2924 0.485 0.3148 0.1268 0.2331 0.4203 0.2878 0.6042 0.7038 0.3536 0.6701 0.819 0.1681 0.4903 0.4673 0.7373 0.2416 0.8838
No log 10.0 130 0.7287 0.2959 0.4868 0.3108 0.1195 0.2577 0.4443 0.2997 0.5952 0.6973 0.5107 0.6539 0.7842 0.1684 0.5194 0.4671 0.735 0.2521 0.8375
No log 11.0 143 0.7002 0.3551 0.5616 0.3713 0.1406 0.2663 0.4856 0.335 0.6162 0.7094 0.4393 0.6747 0.8098 0.1974 0.5292 0.4936 0.7429 0.3745 0.8562
No log 12.0 156 0.7192 0.3779 0.602 0.4117 0.1314 0.2696 0.4934 0.3521 0.5962 0.6861 0.3964 0.6607 0.8063 0.1954 0.5042 0.4779 0.7254 0.4604 0.8288
No log 13.0 169 0.6769 0.3992 0.6147 0.4365 0.1841 0.2564 0.5507 0.3647 0.6143 0.7046 0.4464 0.6746 0.7946 0.2153 0.5347 0.5117 0.7353 0.4705 0.8438
No log 14.0 182 0.6575 0.4304 0.6396 0.4777 0.1562 0.3608 0.5942 0.3753 0.63 0.7125 0.45 0.7042 0.8135 0.2083 0.525 0.5272 0.7437 0.5557 0.8687
No log 15.0 195 0.6548 0.4677 0.706 0.5117 0.1505 0.3777 0.6348 0.3825 0.629 0.7109 0.4393 0.7014 0.8238 0.2287 0.5194 0.5292 0.7432 0.6453 0.87
No log 16.0 208 0.6408 0.4898 0.726 0.5319 0.1853 0.4655 0.6638 0.3887 0.6322 0.7091 0.425 0.7033 0.8108 0.2375 0.5125 0.542 0.7434 0.69 0.8712
No log 17.0 221 0.6440 0.5086 0.7475 0.5633 0.2068 0.5118 0.6656 0.3957 0.6419 0.716 0.4464 0.7125 0.8189 0.2637 0.5458 0.5399 0.7384 0.7221 0.8637
No log 18.0 234 0.6331 0.4936 0.7323 0.5389 0.1818 0.4665 0.6635 0.3808 0.6353 0.707 0.4321 0.673 0.8094 0.2339 0.525 0.5437 0.7409 0.7031 0.855
No log 19.0 247 0.6370 0.4993 0.7416 0.5503 0.1747 0.4907 0.6774 0.3913 0.634 0.7071 0.4964 0.6626 0.7922 0.2353 0.5264 0.546 0.7387 0.7166 0.8562
No log 20.0 260 0.6358 0.5138 0.7644 0.5612 0.2402 0.4921 0.6847 0.3973 0.6412 0.7106 0.4821 0.6697 0.7934 0.2691 0.5361 0.547 0.7356 0.7254 0.86
No log 21.0 273 0.6298 0.5153 0.7664 0.5838 0.252 0.475 0.6879 0.3969 0.6429 0.7162 0.4821 0.6788 0.7913 0.2728 0.5458 0.5511 0.7439 0.7221 0.8587
No log 22.0 286 0.6224 0.5235 0.7714 0.5621 0.2005 0.4708 0.6961 0.3993 0.6465 0.7172 0.5107 0.6344 0.8087 0.2725 0.5431 0.5574 0.741 0.7405 0.8675
No log 23.0 299 0.6223 0.5284 0.7818 0.5855 0.2549 0.4685 0.6927 0.3978 0.6473 0.72 0.4821 0.648 0.806 0.2869 0.5556 0.5603 0.7431 0.7379 0.8612
No log 24.0 312 0.6161 0.5177 0.7654 0.5585 0.2368 0.4677 0.6801 0.3982 0.6446 0.7191 0.4607 0.6496 0.8169 0.2787 0.55 0.5626 0.7486 0.7118 0.8587
No log 25.0 325 0.6119 0.5295 0.7813 0.5905 0.2328 0.4801 0.6872 0.3988 0.647 0.722 0.475 0.6528 0.8113 0.2968 0.5583 0.5671 0.7502 0.7245 0.8575
No log 26.0 338 0.6147 0.5268 0.7812 0.5798 0.2004 0.4825 0.6897 0.3992 0.6483 0.721 0.4893 0.6459 0.8119 0.2863 0.5514 0.5677 0.7492 0.7264 0.8625
No log 27.0 351 0.6134 0.5246 0.7813 0.57 0.2177 0.4736 0.6895 0.3994 0.6459 0.7178 0.4643 0.6457 0.8126 0.2763 0.5417 0.5681 0.7491 0.7294 0.8625
No log 28.0 364 0.6120 0.5261 0.7826 0.5809 0.2197 0.4755 0.6931 0.3991 0.6444 0.7167 0.4607 0.6483 0.811 0.2773 0.5458 0.5693 0.7491 0.7317 0.855
No log 29.0 377 0.6123 0.526 0.7821 0.5743 0.2131 0.4755 0.6935 0.3987 0.6435 0.7157 0.4536 0.6484 0.8108 0.2754 0.5431 0.5696 0.7491 0.7332 0.855
No log 30.0 390 0.6123 0.5265 0.7826 0.5744 0.2152 0.4756 0.6938 0.3992 0.6443 0.7154 0.4536 0.6485 0.8102 0.2758 0.5431 0.5698 0.7495 0.7337 0.8537

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
19
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for amSOwO/detr_finetuned_bccd

Finetuned
(93)
this model

Evaluation results