RF-DETR License Plate Detector
A fine-tuned RF-DETR Medium model for license plate detection, optimized for edge deployment.
Model Details
- Base Model: RF-DETR Medium
- Task: License plate detection (single class)
- Input Resolution: 576x576
- Training Framework: PyTorch
Available Formats
| File | Format | Size | Use Case |
|---|---|---|---|
rfdetr_alpr.onnx |
ONNX | 117MB | Cross-platform inference |
rfdetr_alpr_optimized.onnx |
ONNX (optimized) | 115MB | Optimized for TensorRT |
rfdetr_alpr_int8.onnx |
ONNX INT8 | 34MB | Edge inference (ARM/NPU) |
license_plate_detector_fp16.engine |
TensorRT FP16 | 64MB | GPU inference (balanced) |
license_plate_detector_int8.engine |
TensorRT INT8 | 82MB | GPU inference (fastest) |
calibration.cache |
Calibration data | 103KB | INT8 calibration cache |
Deployment Paths
- NVIDIA GPU: Use TensorRT engines (
.engine) for fastest inference - Edge/ARM (i.MX8M Plus, i.MX93): Use INT8 ONNX with ONNX Runtime or convert to TFLite
TensorRT Engine Details
- TensorRT Version: 10.14.1
- Target GPU: NVIDIA GB10 (Compute Capability 12.1)
- Input Shape: 1x3x576x576 (fixed batch size)
- Precision: FP16 / INT8
Usage
ONNX Inference
import onnxruntime as ort
import numpy as np
session = ort.InferenceSession("rfdetr_alpr_optimized.onnx")
# Input: (1, 3, 576, 576) normalized to [0, 1]
outputs = session.run(None, {"images": input_tensor})
boxes, scores = outputs[0], outputs[1]
TensorRT Inference
import tensorrt as trt
import pycuda.driver as cuda
# Load engine
with open("license_plate_detector_int8.engine", "rb") as f:
engine = trt.Runtime(trt.Logger()).deserialize_cuda_engine(f.read())
Edge Inference (INT8 ONNX)
For ARM/edge devices without NVIDIA GPU:
import onnxruntime as ort
# Use INT8 quantized model for edge deployment
session = ort.InferenceSession(
"rfdetr_alpr_int8.onnx",
providers=['CPUExecutionProvider'] # or platform-specific NPU provider
)
# Input: (1, 3, 576, 576) with ImageNet normalization
outputs = session.run(None, {"images": input_tensor})
boxes, scores = outputs[0], outputs[1]
License
Apache 2.0 (same as RF-DETR)
- Downloads last month
- 19