LSG Attention: Extrapolation of pretrained Transformers to long sequences
Paper
•
2210.15497
•
Published
•
1
Transformers >= 4.36.1
This model relies on a custom modeling file, you need to add trust_remote_code=True
See #13467
LSG ArXiv paper.
Github/conversion script is available at this link.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-booksum", trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-booksum", trust_remote_code=True)
text = "Replace by what you want."
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0)
generated_text = pipe(
text,
truncation=True,
max_length=64,
no_repeat_ngram_size=7,
num_beams=2,
early_stopping=True
)
This model is a fine-tuned version of ccdv/lsg-bart-base-4096 on the kmfoda/booksum kmfoda--booksum dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
The following hyperparameters were used during generation: