Fix model registration for AutoModel compatibility
Browse files- __init__.py +31 -0
- configuration_nanogpt.py +5 -0
- modeling_nanogpt.py +41 -4
__init__.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""NanoGPT HuggingFace Integration"""
|
| 2 |
+
|
| 3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
# Import our classes
|
| 6 |
+
try:
|
| 7 |
+
from .configuration_nanogpt import NanoGPTConfig
|
| 8 |
+
from .modeling_nanogpt import (
|
| 9 |
+
NanoGPTModel,
|
| 10 |
+
NanoGPTForCausalLM,
|
| 11 |
+
NanoGPTPreTrainedModel
|
| 12 |
+
)
|
| 13 |
+
except ImportError:
|
| 14 |
+
from configuration_nanogpt import NanoGPTConfig
|
| 15 |
+
from modeling_nanogpt import (
|
| 16 |
+
NanoGPTModel,
|
| 17 |
+
NanoGPTForCausalLM,
|
| 18 |
+
NanoGPTPreTrainedModel
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Register the model with Auto* classes
|
| 22 |
+
AutoConfig.register("nanogpt", NanoGPTConfig)
|
| 23 |
+
AutoModel.register(NanoGPTConfig, NanoGPTModel)
|
| 24 |
+
AutoModelForCausalLM.register(NanoGPTConfig, NanoGPTForCausalLM)
|
| 25 |
+
|
| 26 |
+
__all__ = [
|
| 27 |
+
"NanoGPTConfig",
|
| 28 |
+
"NanoGPTModel",
|
| 29 |
+
"NanoGPTForCausalLM",
|
| 30 |
+
"NanoGPTPreTrainedModel"
|
| 31 |
+
]
|
configuration_nanogpt.py
CHANGED
|
@@ -1,8 +1,13 @@
|
|
| 1 |
"""NanoGPT model configuration"""
|
| 2 |
|
| 3 |
from transformers import PretrainedConfig
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class NanoGPTConfig(PretrainedConfig):
|
|
|
|
|
|
|
| 6 |
model_type = "nanogpt"
|
| 7 |
|
| 8 |
def __init__(
|
|
|
|
| 1 |
"""NanoGPT model configuration"""
|
| 2 |
|
| 3 |
from transformers import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.get_logger(__name__)
|
| 7 |
|
| 8 |
class NanoGPTConfig(PretrainedConfig):
|
| 9 |
+
"""Configuration for NanoGPT model"""
|
| 10 |
+
|
| 11 |
model_type = "nanogpt"
|
| 12 |
|
| 13 |
def __init__(
|
modeling_nanogpt.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
"""NanoGPT model implementation"""
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
|
@@ -6,7 +6,15 @@ import torch.nn.functional as F
|
|
| 6 |
import math
|
| 7 |
from transformers import PreTrainedModel
|
| 8 |
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 9 |
-
from .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
class ExactNanoGPTAttention(nn.Module):
|
| 12 |
def __init__(self, config):
|
|
@@ -80,8 +88,26 @@ class ExactNanoGPTBlock(nn.Module):
|
|
| 80 |
x = x + self.mlp(self.ln_2(x))
|
| 81 |
return x
|
| 82 |
|
| 83 |
-
class
|
|
|
|
| 84 |
config_class = NanoGPTConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def __init__(self, config):
|
| 87 |
super().__init__(config)
|
|
@@ -96,8 +122,15 @@ class NanoGPTModel(PreTrainedModel):
|
|
| 96 |
))
|
| 97 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 98 |
|
|
|
|
| 99 |
self.post_init()
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
def forward(self, input_ids, attention_mask=None, **kwargs):
|
| 102 |
device = input_ids.device
|
| 103 |
b, t = input_ids.size()
|
|
@@ -115,7 +148,8 @@ class NanoGPTModel(PreTrainedModel):
|
|
| 115 |
|
| 116 |
return CausalLMOutputWithCrossAttentions(logits=logits)
|
| 117 |
|
| 118 |
-
def generate(self, input_ids, max_length=None, max_new_tokens=None, temperature=1.0,
|
|
|
|
| 119 |
if max_new_tokens is None:
|
| 120 |
max_new_tokens = max_length - input_ids.shape[1] if max_length else 50
|
| 121 |
|
|
@@ -153,3 +187,6 @@ class NanoGPTModel(PreTrainedModel):
|
|
| 153 |
input_ids = torch.cat((input_ids, idx_next), dim=1)
|
| 154 |
|
| 155 |
return input_ids
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""NanoGPT model implementation for HuggingFace"""
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
|
|
|
| 6 |
import math
|
| 7 |
from transformers import PreTrainedModel
|
| 8 |
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 9 |
+
from transformers.utils import logging
|
| 10 |
+
|
| 11 |
+
# Import configuration
|
| 12 |
+
try:
|
| 13 |
+
from .configuration_nanogpt import NanoGPTConfig
|
| 14 |
+
except ImportError:
|
| 15 |
+
from configuration_nanogpt import NanoGPTConfig
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
|
| 19 |
class ExactNanoGPTAttention(nn.Module):
|
| 20 |
def __init__(self, config):
|
|
|
|
| 88 |
x = x + self.mlp(self.ln_2(x))
|
| 89 |
return x
|
| 90 |
|
| 91 |
+
class NanoGPTPreTrainedModel(PreTrainedModel):
|
| 92 |
+
"""Base class for NanoGPT models"""
|
| 93 |
config_class = NanoGPTConfig
|
| 94 |
+
base_model_prefix = "transformer"
|
| 95 |
+
supports_gradient_checkpointing = False
|
| 96 |
+
_no_split_modules = ["ExactNanoGPTBlock"]
|
| 97 |
+
|
| 98 |
+
def _init_weights(self, module):
|
| 99 |
+
if isinstance(module, nn.Linear):
|
| 100 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 101 |
+
if module.bias is not None:
|
| 102 |
+
torch.nn.init.zeros_(module.bias)
|
| 103 |
+
elif isinstance(module, nn.Embedding):
|
| 104 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 105 |
+
elif isinstance(module, nn.LayerNorm):
|
| 106 |
+
torch.nn.init.zeros_(module.bias)
|
| 107 |
+
torch.nn.init.ones_(module.weight)
|
| 108 |
+
|
| 109 |
+
class NanoGPTModel(NanoGPTPreTrainedModel):
|
| 110 |
+
"""The main NanoGPT model"""
|
| 111 |
|
| 112 |
def __init__(self, config):
|
| 113 |
super().__init__(config)
|
|
|
|
| 122 |
))
|
| 123 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 124 |
|
| 125 |
+
# Initialize weights
|
| 126 |
self.post_init()
|
| 127 |
|
| 128 |
+
def get_input_embeddings(self):
|
| 129 |
+
return self.transformer.wte
|
| 130 |
+
|
| 131 |
+
def set_input_embeddings(self, new_embeddings):
|
| 132 |
+
self.transformer.wte = new_embeddings
|
| 133 |
+
|
| 134 |
def forward(self, input_ids, attention_mask=None, **kwargs):
|
| 135 |
device = input_ids.device
|
| 136 |
b, t = input_ids.size()
|
|
|
|
| 148 |
|
| 149 |
return CausalLMOutputWithCrossAttentions(logits=logits)
|
| 150 |
|
| 151 |
+
def generate(self, input_ids, max_length=None, max_new_tokens=None, temperature=1.0,
|
| 152 |
+
top_k=None, do_sample=True, top_p=None, pad_token_id=None, eos_token_id=None, **kwargs):
|
| 153 |
if max_new_tokens is None:
|
| 154 |
max_new_tokens = max_length - input_ids.shape[1] if max_length else 50
|
| 155 |
|
|
|
|
| 187 |
input_ids = torch.cat((input_ids, idx_next), dim=1)
|
| 188 |
|
| 189 |
return input_ids
|
| 190 |
+
|
| 191 |
+
# For backward compatibility
|
| 192 |
+
NanoGPTForCausalLM = NanoGPTModel
|