cometadata/jina-reranker-v2-multilingual-affiliations-comet-affilgood-training-mix
This is a Cross Encoder model finetuned from jinaai/jina-reranker-v2-base-multilingual using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: jinaai/jina-reranker-v2-base-multilingual
- Maximum Sequence Length: 1024 tokens
- Number of Output Labels: 1 label
- Language: multilingual
- License: cc-by-nc-4.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("cometadata/jina-reranker-v2-multilingual-affiliations-v4")
# Get scores for pairs of texts
pairs = [
['Universitรฉ Toulouse', 'a Universitรฉ de Toulouse, Mines Albi, CNRS, Centre RAPSODEE , Albi , France'],
['Universitรฉ Toulouse', 'National Polytechnic Institute of Toulouse'],
['School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan', 'Center for Supercentenarian Research, Keio University, Tokyo, Japan'],
['School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan', 'g Toin Human Science and Technology Center, Department of Materials Science and Technology, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225, Japan'],
['Division of Pulmonary and Critical Care Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina', 'Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7295, Chapel Hill, NC 27599, USA'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Universitรฉ Toulouse',
[
'a Universitรฉ de Toulouse, Mines Albi, CNRS, Centre RAPSODEE , Albi , France',
'National Polytechnic Institute of Toulouse',
'Center for Supercentenarian Research, Keio University, Tokyo, Japan',
'g Toin Human Science and Technology Center, Department of Materials Science and Technology, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225, Japan',
'Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7295, Chapel Hill, NC 27599, USA',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
affiliation-val - Evaluated with
CrossEncoderRerankingEvaluatorwith these parameters:{ "at_k": 10, "always_rerank_positives": true }
| Metric | Value |
|---|---|
| map | 0.9307 (-0.0693) |
| mrr@10 | 0.9307 (-0.0693) |
| ndcg@10 | 0.9502 (-0.0498) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 16,862 training samples
- Columns:
query,document, andlabel - Approximate statistics based on the first 1000 samples:
query document label type string string int details - min: 6 characters
- mean: 95.73 characters
- max: 505 characters
- min: 8 characters
- mean: 92.11 characters
- max: 393 characters
- 0: ~50.00%
- 1: ~50.00%
- Samples:
query document label Nanjing University of Science and Technology,Computer Science and Engineering,Nanjing,ChinaNanjing University of Science And Technology, China1Nanjing University of Science and Technology,Computer Science and Engineering,Nanjing,ChinaNanjing university of finance & economics, China.0University of Bonn, Bonn, GermanyDepartment of Geophysics, University of Bonn, 53115 Bonn, Germany1 - Loss:
BinaryCrossEntropyLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Evaluation Dataset
Unnamed Dataset
- Size: 808 evaluation samples
- Columns:
query,document, andlabel - Approximate statistics based on the first 808 samples:
query document label type string string int details - min: 14 characters
- mean: 80.47 characters
- max: 394 characters
- min: 15 characters
- mean: 109.87 characters
- max: 500 characters
- 0: ~50.00%
- 1: ~50.00%
- Samples:
query document label Universitรฉ Toulousea Universitรฉ de Toulouse, Mines Albi, CNRS, Centre RAPSODEE , Albi , France1Universitรฉ ToulouseNational Polytechnic Institute of Toulouse0School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, JapanCenter for Supercentenarian Research, Keio University, Tokyo, Japan1 - Loss:
BinaryCrossEntropyLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 2e-05num_train_epochs: 2warmup_ratio: 0.1bf16: Trueload_best_model_at_end: Truehub_model_id: cometadata/jina-reranker-v2-multilingual-affiliations-v4
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: cometadata/jina-reranker-v2-multilingual-affiliations-v4hub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | affiliation-val_ndcg@10 |
|---|---|---|---|---|
| -1 | -1 | - | - | 0.8812 (-0.1188) |
| 0.0019 | 1 | 0.577 | - | - |
| 0.1898 | 100 | 0.5546 | - | - |
| 0.3795 | 200 | 0.3925 | - | - |
| 0.5693 | 300 | 0.3369 | - | - |
| 0.7590 | 400 | 0.3175 | - | - |
| 0.9488 | 500 | 0.3233 | 0.5399 | 0.9502 (-0.0498) |
| 1.1385 | 600 | 0.2847 | - | - |
| 1.3283 | 700 | 0.2864 | - | - |
| 1.5180 | 800 | 0.3 | - | - |
| 1.7078 | 900 | 0.2782 | - | - |
| 1.8975 | 1000 | 0.2783 | 0.528 | 0.9502 (-0.0498) |
| -1 | -1 | - | - | 0.9502 (-0.0498) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 4.4.2
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 256
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cometadata/jina-reranker-v2-multilingual-affiliations
Base model
jinaai/jina-reranker-v2-base-multilingualEvaluation results
- Map on affiliation valself-reported0.931
- Mrr@10 on affiliation valself-reported0.931
- Ndcg@10 on affiliation valself-reported0.950