cometadata/jina-reranker-v2-multilingual-affiliations-comet-affilgood-training-mix

This is a Cross Encoder model finetuned from jinaai/jina-reranker-v2-base-multilingual using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("cometadata/jina-reranker-v2-multilingual-affiliations-v4")
# Get scores for pairs of texts
pairs = [
    ['Universitรฉ Toulouse', 'a  Universitรฉ de Toulouse, Mines Albi, CNRS, Centre RAPSODEE ,  Albi ,  France'],
    ['Universitรฉ Toulouse', 'National Polytechnic Institute of Toulouse'],
    ['School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan', 'Center for Supercentenarian Research, Keio University, Tokyo, Japan'],
    ['School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan', 'g    Toin Human Science and Technology Center, Department of Materials Science and Technology, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225, Japan'],
    ['Division of Pulmonary and Critical Care Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina', 'Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7295, Chapel Hill, NC 27599, USA'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Universitรฉ Toulouse',
    [
        'a  Universitรฉ de Toulouse, Mines Albi, CNRS, Centre RAPSODEE ,  Albi ,  France',
        'National Polytechnic Institute of Toulouse',
        'Center for Supercentenarian Research, Keio University, Tokyo, Japan',
        'g    Toin Human Science and Technology Center, Department of Materials Science and Technology, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225, Japan',
        'Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7295, Chapel Hill, NC 27599, USA',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.9307 (-0.0693)
mrr@10 0.9307 (-0.0693)
ndcg@10 0.9502 (-0.0498)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 16,862 training samples
  • Columns: query, document, and label
  • Approximate statistics based on the first 1000 samples:
    query document label
    type string string int
    details
    • min: 6 characters
    • mean: 95.73 characters
    • max: 505 characters
    • min: 8 characters
    • mean: 92.11 characters
    • max: 393 characters
    • 0: ~50.00%
    • 1: ~50.00%
  • Samples:
    query document label
    Nanjing University of Science and Technology,Computer Science and Engineering,Nanjing,China Nanjing University of Science And Technology, China 1
    Nanjing University of Science and Technology,Computer Science and Engineering,Nanjing,China Nanjing university of finance & economics, China. 0
    University of Bonn, Bonn, Germany Department of Geophysics, University of Bonn, 53115 Bonn, Germany 1
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 808 evaluation samples
  • Columns: query, document, and label
  • Approximate statistics based on the first 808 samples:
    query document label
    type string string int
    details
    • min: 14 characters
    • mean: 80.47 characters
    • max: 394 characters
    • min: 15 characters
    • mean: 109.87 characters
    • max: 500 characters
    • 0: ~50.00%
    • 1: ~50.00%
  • Samples:
    query document label
    Universitรฉ Toulouse a Universitรฉ de Toulouse, Mines Albi, CNRS, Centre RAPSODEE , Albi , France 1
    Universitรฉ Toulouse National Polytechnic Institute of Toulouse 0
    School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan Center for Supercentenarian Research, Keio University, Tokyo, Japan 1
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • hub_model_id: cometadata/jina-reranker-v2-multilingual-affiliations-v4

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: cometadata/jina-reranker-v2-multilingual-affiliations-v4
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss affiliation-val_ndcg@10
-1 -1 - - 0.8812 (-0.1188)
0.0019 1 0.577 - -
0.1898 100 0.5546 - -
0.3795 200 0.3925 - -
0.5693 300 0.3369 - -
0.7590 400 0.3175 - -
0.9488 500 0.3233 0.5399 0.9502 (-0.0498)
1.1385 600 0.2847 - -
1.3283 700 0.2864 - -
1.5180 800 0.3 - -
1.7078 900 0.2782 - -
1.8975 1000 0.2783 0.528 0.9502 (-0.0498)
-1 -1 - - 0.9502 (-0.0498)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.2.0
  • Transformers: 4.57.3
  • PyTorch: 2.9.1+cu128
  • Accelerate: 1.12.0
  • Datasets: 4.4.2
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
256
Safetensors
Model size
0.3B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cometadata/jina-reranker-v2-multilingual-affiliations

Finetuned
(25)
this model

Evaluation results