02ae2ee64c482dc0195df7603a14436f
This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll03-english on the nyu-mll/glue [stsb] dataset. It achieves the following results on the evaluation set:
- Loss: 0.5588
- Data Size: 1.0
- Epoch Runtime: 32.3731
- Mse: 0.5590
- Mae: 0.5565
- R2: 0.7499
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Mse | Mae | R2 |
|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 8.5180 | 0 | 2.6304 | 8.5193 | 2.5063 | -2.8110 |
| No log | 1 | 179 | 3.0070 | 0.0078 | 3.2396 | 3.0077 | 1.4102 | -0.3455 |
| No log | 2 | 358 | 6.1398 | 0.0156 | 3.7437 | 6.1402 | 2.0618 | -1.7467 |
| No log | 3 | 537 | 2.3541 | 0.0312 | 5.0857 | 2.3549 | 1.2827 | -0.0534 |
| No log | 4 | 716 | 2.7737 | 0.0625 | 6.4949 | 2.7744 | 1.3554 | -0.2411 |
| No log | 5 | 895 | 1.0113 | 0.125 | 9.4204 | 1.0117 | 0.8162 | 0.5474 |
| 0.1158 | 6 | 1074 | 0.7006 | 0.25 | 13.3036 | 0.7009 | 0.6706 | 0.6865 |
| 0.8871 | 7 | 1253 | 0.6890 | 0.5 | 20.6175 | 0.6895 | 0.6517 | 0.6915 |
| 0.6328 | 8.0 | 1432 | 0.5982 | 1.0 | 34.6432 | 0.5984 | 0.6096 | 0.7323 |
| 0.4819 | 9.0 | 1611 | 0.5746 | 1.0 | 33.6333 | 0.5749 | 0.5757 | 0.7428 |
| 0.3352 | 10.0 | 1790 | 0.7025 | 1.0 | 33.6064 | 0.7026 | 0.6354 | 0.6857 |
| 0.2879 | 11.0 | 1969 | 0.5954 | 1.0 | 32.6148 | 0.5956 | 0.5862 | 0.7336 |
| 0.2524 | 12.0 | 2148 | 0.5738 | 1.0 | 34.1349 | 0.5740 | 0.5573 | 0.7432 |
| 0.2163 | 13.0 | 2327 | 0.5680 | 1.0 | 33.9930 | 0.5682 | 0.5717 | 0.7458 |
| 0.2 | 14.0 | 2506 | 0.5136 | 1.0 | 32.6220 | 0.5138 | 0.5313 | 0.7702 |
| 0.1794 | 15.0 | 2685 | 0.5070 | 1.0 | 33.7685 | 0.5071 | 0.5441 | 0.7731 |
| 1.5192 | 16.0 | 2864 | 0.5400 | 1.0 | 33.7515 | 0.5401 | 0.5549 | 0.7584 |
| 0.1882 | 17.0 | 3043 | 0.5486 | 1.0 | 32.9490 | 0.5489 | 0.5567 | 0.7544 |
| 0.1478 | 18.0 | 3222 | 0.6155 | 1.0 | 33.8709 | 0.6156 | 0.5937 | 0.7246 |
| 0.1634 | 19.0 | 3401 | 0.5588 | 1.0 | 32.3731 | 0.5590 | 0.5565 | 0.7499 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 3