Dataset Viewer
Auto-converted to Parquet Duplicate
spec_position
stringlengths
41
140
minilang
stringlengths
4
2.76M
proof_position
stringlengths
43
144
isar
stringlengths
1
726k
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:192
RULE subset_antisym subsetI (*goal: "\<I> (\<V> (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) \<subseteq> \<surd>ideal F" and "\<surd>ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subseteq> \<I> (\<V> F)" *) RULE subset_antisym subsetI (*goal: "\<And>x::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b. x \<in> \<I> (\<V> (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) \<Longrightarrow> x \<in> \<surd>ideal F" *) INTRO VARS f (*fixes variables x :: "('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b" *) (*introduces facts assm0: "(f__::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) \<in> \<I> (\<V> (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set))" *) NEXT WITH Nullstellensatz assms assm0 (*goal: "\<surd>ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subseteq> \<I> (\<V> F)" *) END WITH ideal_ofI variety_ofD variety_of_radical_ideal
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:195:1
proof (intro subset_antisym subsetI) fix f assume "f \<in> \<I> (\<V> F)" with assms show "f \<in> \<surd>ideal F" by (rule Nullstellensatz) qed (metis ideal_ofI variety_ofD variety_of_radical_ideal)
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:201
HAVE fact0: "\<I> (\<V> (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) = \<surd>ideal F" END WITH strong_Nullstellensatz assms(1,2) (*introduces facts local.fact0: "\<I> (\<V> (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) = \<surd>ideal F" *) END WITH radical_ideal_eq_UNIV_iff[symmetric] assms(3) fact0 WITHOUT radical_ideal_eq_UNIV_iff
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:204:1
proof - from assms(1, 2) have "\<I> (\<V> F) = \<surd>ideal F" by (rule strong_Nullstellensatz) thus ?thesis by (simp add: assms(3) flip: radical_ideal_eq_UNIV_iff) qed
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:264
END WITH generates_max_ideal_def assms
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:267:3
using assms by (simp add: generates_max_ideal_def)
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:269
RULE generates_max_idealI WITH assms(1) (*goal: "\<And>F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set. \<lbrakk>F' \<subseteq> P[X::'a set]; ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subset> ideal F'\<rbrakk> \<Longrightarrow> ideal F' = UNIV" *) INTRO VARS F' (*fixes variables F' :: "(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set" *) (*introduces facts assm0: "(F'__::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subseteq> P[X::'a set]" and assm1: "ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subset> ideal (F'__::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)" *) HAVE fact1: "\<not> (F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subseteq> ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)" END WITH ideal.span_subset_spanI assm1 (*introduces facts local.fact1: "\<not> (F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subseteq> ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)" *) CONSIDER p :: "('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b" where fact2: "p \<in> F'" and fact3: "p \<notin> ideal F" (*goal: "\<exists>p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b. p \<in> (F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<and> p \<notin> ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)" *) END WITH fact1 (*fixes variables p :: "('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b" *) (*introduces facts local.fact2: "(p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) \<in> (F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)" and local.fact3: "(p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) \<notin> ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)" *) HAVE fact4: "(p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) \<in> P[X::'a set]" END WITH fact2 assm0 (*introduces facts local.fact4: "(p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) \<in> P[X::'a set]" *) HAVE fact5: "(1::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) \<in> ideal (insert (p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set))" END WITH fact4 fact3 assms(2) (*introduces facts local.fact5: "(1::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) \<in> ideal (insert (p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set))" *) HAVE fact6: "ideal (insert (p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) \<subseteq> ideal ((F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<union> F)" END WITH ideal.span_mono \<open>p \<in> F'\<close> (*introduces facts local.fact6: "ideal (insert (p::('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) \<subseteq> ideal ((F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<union> F)" *) HAVE fact7: "ideal ((F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<union> (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) = ideal (ideal F' \<union> ideal F)" END WITH ideal.span_Un ideal.span_span (*introduces facts local.fact7: "ideal ((F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<union> (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set)) = ideal (ideal F' \<union> ideal F)" *) HAVE fact8: "ideal (F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<union> ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) = ideal F'" END WITH assm1 (*introduces facts local.fact8: "ideal (F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<union> ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) = ideal F'" *) END WITH subsetD ideal_eq_UNIV_iff_contains_one ideal.span_span fact5 fact6 fact7 fact8
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:272:3
using assms(1) proof (rule generates_max_idealI) fix F' assume "F' \<subseteq> P[X]" and sub: "ideal F \<subset> ideal F'" from this(2) ideal.span_subset_spanI have "\<not> F' \<subseteq> ideal F" by blast then obtain p where "p \<in> F'" and "p \<notin> ideal F" by blast from this(1) \<open>F' \<subseteq> P[X]\<close> have "p \<in> P[X]" .. hence "1 \<in> ideal (insert p F)" using \<open>p \<notin> _\<close> by (rule assms(2)) also have "\<dots> \<subseteq> ideal (F' \<union> F)" by (rule ideal.span_mono) (simp add: \<open>p \<in> F'\<close>) also have "\<dots> = ideal (ideal F' \<union> ideal F)" by (simp add: ideal.span_Un ideal.span_span) also from sub have "ideal F' \<union> ideal F = ideal F'" by blast finally show "ideal F' = UNIV" by (simp only: ideal_eq_UNIV_iff_contains_one ideal.span_span) qed
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:286
NEXT WITH generates_max_ideal_def assms (*goal: "\<lbrakk>(F'::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subseteq> P[X::'a set]; ideal (F::(('a \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'b) set) \<subset> ideal F'\<rbrakk> \<Longrightarrow> ideal F' = UNIV" *) END WITH generates_max_ideal_def assms
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:289:3
using assms by (simp_all add: generates_max_ideal_def)
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:291
END WITH generates_max_ideal_def assms
./contrib/afp-2025-02-12/thys/Nullstellensatz/Nullstellensatz_Field.thy:294:3
using assms by (auto simp: generates_max_ideal_def)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneGraphIso.thy:10
END WITH image_iff
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneGraphIso.thy:11:1
by (auto simp: image_iff)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:10
END
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:12:1
by simp
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ListAux.thy:14
END
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ListAux.thy:15:1
by auto
./contrib/afp-2025-02-12/thys/Formal_SSA/While_Combinator_Exts.thy:11
APPLY (insert assms) (*goal: "\<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; wf (r::('a \<times> 'a) set); (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> r\<rbrakk> \<Longrightarrow> False" *) APPLY (drule wf_rel_while_option_Some [of r I b c]) (*goal: "\<And>sa::'a. \<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> (r::('a \<times> 'a) set); I sa \<and> b sa\<rbrakk> \<Longrightarrow> (c sa, sa) \<in> r" and "\<And>sa::'a. \<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> (r::('a \<times> 'a) set); I sa \<and> b sa\<rbrakk> \<Longrightarrow> I (c sa)" and "\<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> (r::('a \<times> 'a) set)\<rbrakk> \<Longrightarrow> I (?s7::'a)" and "\<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> (r::('a \<times> 'a) set); \<exists>t::'a. while_option b c (?s7::'a) = Some t\<rbrakk> \<Longrightarrow> False" *) NEXT (*goal: "\<And>sa::'a. \<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> (r::('a \<times> 'a) set); I sa \<and> b sa\<rbrakk> \<Longrightarrow> I (c sa)" *) NEXT (*goal: "\<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> (r::('a \<times> 'a) set)\<rbrakk> \<Longrightarrow> I (?s7::'a)" *) NEXT (*goal: "\<lbrakk>while_option (b::'a \<Rightarrow> bool) (c::'a \<Rightarrow> 'a) (s::'a) = None; (I::'a \<Rightarrow> bool) s; \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> I (c s); \<And>s::'a. \<lbrakk>I s; b s\<rbrakk> \<Longrightarrow> (c s, s) \<in> (r::('a \<times> 'a) set); \<exists>t::'a. while_option b c s = Some t\<rbrakk> \<Longrightarrow> False" *) END
./contrib/afp-2025-02-12/thys/Formal_SSA/While_Combinator_Exts.thy:16:3
using assms by -(drule wf_rel_while_option_Some [of r I b c], auto)
./contrib/afp-2025-02-12/thys/Consensus_Refined/MRU/Three_Steps.thy:14
END WITH three_phase_def
./contrib/afp-2025-02-12/thys/Consensus_Refined/MRU/Three_Steps.thy:15:1
by (simp add: three_phase_def)
./contrib/afp-2025-02-12/thys/Consensus_Refined/Two_Steps.thy:12
END WITH two_phase_def
./contrib/afp-2025-02-12/thys/Consensus_Refined/Two_Steps.thy:13:1
by (simp add: two_phase_def)
./contrib/afp-2025-02-12/thys/AutoCorres2/SimplConv.thy:31
NEXT (*goal: "switch (v::'e \<Rightarrow> 'h) ((a::'h set, b::('e, 'f, 'g) com) # (vs::('h set \<times> ('e, 'f, 'g) com) list)) \<equiv> IF \<acute>v \<in> a THEN b ELSE switch v vs FI" *) END
./contrib/afp-2025-02-12/thys/AutoCorres2/SimplConv.thy:34:3
by auto
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:14
END
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:15:1
by simp
./contrib/afp-2025-02-12/thys/Dependent_SIFUM_Refinement/CompositionalRefinement.thy:10
END WITH card_inj_on_le
./contrib/afp-2025-02-12/thys/Dependent_SIFUM_Refinement/CompositionalRefinement.thy:12:3
by (blast intro: card_inj_on_le)
./contrib/afp-2025-02-12/thys/Consensus_Refined/Consensus_Misc.thy:17
RULE option.expand (*goal: "\<lbrakk>((option::'a option) = None) = ((option'::'a option) = None); \<And>(x::'a) y::'a. \<lbrakk>option = Some x; option' = Some y\<rbrakk> \<Longrightarrow> x = y\<rbrakk> \<Longrightarrow> (option = None) = (option' = None)" and "\<lbrakk>((option::'a option) = None) = ((option'::'a option) = None); \<And>(x::'a) y::'a. \<lbrakk>option = Some x; option' = Some y\<rbrakk> \<Longrightarrow> x = y; option \<noteq> None; option' \<noteq> None\<rbrakk> \<Longrightarrow> the option = the option'" *) NEXT (*goal: "\<lbrakk>((option::'a option) = None) = ((option'::'a option) = None); \<And>(x::'a) y::'a. \<lbrakk>option = Some x; option' = Some y\<rbrakk> \<Longrightarrow> x = y; option \<noteq> None; option' \<noteq> None\<rbrakk> \<Longrightarrow> the option = the option'" *) END
./contrib/afp-2025-02-12/thys/Consensus_Refined/Consensus_Misc.thy:20:3
by (rule option.expand, auto)
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Trace.thy:14
APPLY (coinduction arbitrary: n) (*goal: "\<And>n::'a. \<forall>n::'a. n \<le> (f::'a \<Rightarrow> 'a) n \<Longrightarrow> \<exists>s::'a stream. siterate f n = s \<and> shd s \<le> shd (stl s) \<and> ((\<exists>n::'a. stl s = siterate f n \<and> (\<forall>n::'a. n \<le> f n)) \<or> ssorted (stl s))" *) END
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Trace.thy:15:3
by (coinduction arbitrary: n) auto
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Quasi_Order.thy:22
END WITH subseteq_qle_def in_qle_def
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Quasi_Order.thy:23:1
by (auto simp add: subseteq_qle_def in_qle_def)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ScoreProps.thy:10
END WITH deleteAround_def
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ScoreProps.thy:11:1
by (simp add: deleteAround_def)
./contrib/afp-2025-02-12/thys/AutoCorres2/TypeStrengthen.thy:24
END WITH ogets_def spec_monad_eqI runs_to_iff(1-31)
./contrib/afp-2025-02-12/thys/AutoCorres2/TypeStrengthen.thy:25:3
apply (rule spec_monad_eqI) apply (auto simp add: runs_to_iff ogets_def) done
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Table.thy:13
INDUCT n arbitrary: x (*fixes variables x :: nat *) (*goal: "\<And>x::nat. tabulate (f::nat \<Rightarrow> 'a) x (0::nat) = map f [x..<x + (0::nat)]" and "\<And>(n::nat) x::nat. (\<And>x::nat. tabulate (f::nat \<Rightarrow> 'a) x n = map f [x..<x + n]) \<Longrightarrow> tabulate f x (Suc n) = map f [x..<x + Suc n]" *) NEXT WITH upt_rec not_le Suc_le_eq (*fixes variables n :: nat and x :: nat *) (*introduces facts Suc.IH: "tabulate (f::nat \<Rightarrow> 'a) (?x::nat) (na__::nat) = map f [?x..<?x + na__]" *) (*goal: "tabulate (f::nat \<Rightarrow> 'a) (x::nat) (Suc (na__::nat)) = map f [x..<x + Suc na__]" *) END WITH upt_rec not_le Suc_le_eq Suc
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Table.thy:14:3
by (induct n arbitrary: x) (auto simp: not_le Suc_le_eq upt_rec)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Computation/ArchComp.thy:11
APPLY (eval) (*no goal remains!*) END
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Computation/ArchComp.thy:12:1
by eval
./contrib/afp-2025-02-12/thys/AutoCorres2/LocalVarExtract.thy:18
END WITH set_eqI
./contrib/afp-2025-02-12/thys/AutoCorres2/LocalVarExtract.thy:20:3
by (fastforce intro: set_eqI)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ListSum.thy:18
INDUCT V (*goal: "(\<Sum>\<^bsub>v::'a\<in>[]\<^esub> (0::nat)) = (0::nat)" and "\<And>(a::'a) V::'a list. (\<Sum>\<^bsub>v::'a\<in>V\<^esub> (0::nat)) = (0::nat) \<Longrightarrow> (\<Sum>\<^bsub>v::'a\<in>a # V\<^esub> (0::nat)) = (0::nat)" *) NEXT (*fixes variables a :: 'a and V :: "'a list" *) (*introduces facts Cons.IH: "(\<Sum>\<^bsub>v::'a\<in>Va__::'a list\<^esub> (0::nat)) = (0::nat)" *) (*goal: "(\<Sum>\<^bsub>v::'a\<in>(a__::'a) # (Va__::'a list)\<^esub> (0::nat)) = (0::nat)" *) END WITH Cons
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ListSum.thy:18:64
by (induct V) simp_all
./contrib/afp-2025-02-12/thys/LocalLexing/InductRules.thy:5
END WITH AB AP BP
./contrib/afp-2025-02-12/thys/LocalLexing/InductRules.thy:10:1
proof - from AB AP BP show ?thesis by blast qed
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/EnumeratorProps.thy:9
INDUCT xs (*fixes variables x :: 'a *) (*goal: "\<And>x::'a. |hideDupsRec x []| = |[]|" and "\<And>(a::'a) (xs::'a list) x::'a. (\<And>x::'a. |hideDupsRec x xs| = |xs|) \<Longrightarrow> |hideDupsRec x (a # xs)| = |a # xs|" *) NEXT (*fixes variables a :: 'a and xs :: "'a list" and x :: 'a *) (*introduces facts Cons.IH: "|hideDupsRec (?x::'a) (xsa__::'a list)| = |xsa__|" *) (*goal: "|hideDupsRec (x::'a) ((a__::'a) # (xsa__::'a list))| = |a__ # xsa__|" *) END WITH Cons
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/EnumeratorProps.thy:10:1
by (induct xs) auto
./contrib/afp-2025-02-12/thys/AutoCorres2/tests/examples/Memcpy.thy:18
END WITH intvl_Suc ptr_aligned_def c_null_guard_def c_guard_def
./contrib/afp-2025-02-12/thys/AutoCorres2/tests/examples/Memcpy.thy:20:3
unfolding c_guard_def c_null_guard_def ptr_aligned_def by (clarsimp simp: intvl_Suc)
./contrib/afp-2025-02-12/thys/AutoCorres2/L1Peephole.thy:17
END WITH L1_seq_def bind_assoc
./contrib/afp-2025-02-12/thys/AutoCorres2/L1Peephole.thy:18:3
apply (clarsimp simp: L1_seq_def bind_assoc) done
./contrib/afp-2025-02-12/thys/Formal_SSA/RBT_Mapping_Exts.thy:12
APPLY (transfer) (*goal: "\<And>(f::'a \<Rightarrow> 'b) r::('a, unit) RBT.rbt. (Some \<circ> f) |` RBT_Set.Set r = RBT.lookup (RBT.map (\<lambda>(a::'a) _::unit. f a) r)" *) END WITH restrict_map_def RBT_Set.Set_def
./contrib/afp-2025-02-12/thys/Formal_SSA/RBT_Mapping_Exts.thy:14:3
by transfer (auto simp: RBT_Set.Set_def restrict_map_def)
./contrib/afp-2025-02-12/thys/Consensus_Refined/MRU/Three_Steps.thy:17
END WITH three_step_def
./contrib/afp-2025-02-12/thys/Consensus_Refined/MRU/Three_Steps.thy:18:1
by (simp add: three_step_def)
./contrib/afp-2025-02-12/thys/Consensus_Refined/Two_Steps.thy:15
END WITH two_step_def
./contrib/afp-2025-02-12/thys/Consensus_Refined/Two_Steps.thy:16:1
by (simp add: two_step_def)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneGraphIso.thy:36
END WITH Iso_def
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneGraphIso.thy:37:1
by (simp add:Iso_def)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Worklist.thy:20
END WITH worklist_aux_def while_option_unfold
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Worklist.thy:21:1
by (simp add: worklist_aux_def while_option_unfold)
./contrib/afp-2025-02-12/thys/BurrowsWheeler/util/Nat_Mod_Helper.thy:7
END WITH add_diff_cancel_left' mod_if mod_mult_div_eq mod_mult_self1_is_0
./contrib/afp-2025-02-12/thys/BurrowsWheeler/util/Nat_Mod_Helper.thy:9:3
by (metis add_diff_cancel_left' mod_if mod_mult_div_eq mod_mult_self1_is_0)
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Trace.thy:17
INDUCT i arbitrary: s (*fixes variables s :: "'a stream" *) (*introduces facts 0.prems: "ssorted (sa__::'a stream)" *) (*goal: "\<And>s::'a stream. ssorted s \<Longrightarrow> s !! (0::nat) \<le> stl s !! (0::nat)" and "\<And>(i::nat) s::'a stream. \<lbrakk>\<And>s::'a stream. ssorted s \<Longrightarrow> s !! i \<le> stl s !! i; ssorted s\<rbrakk> \<Longrightarrow> s !! Suc i \<le> stl s !! Suc i" *) NEXT WITH ssorted.cases "0" (*fixes variables i :: nat and s :: "'a stream" *) (*introduces facts Suc.IH: "ssorted (?s::'a stream) \<Longrightarrow> ?s !! (ia__::nat) \<le> stl ?s !! ia__" and Suc.prems: "ssorted (s::'a stream)" *) (*goal: "(s::'a stream) !! Suc (ia__::nat) \<le> stl s !! Suc ia__" *) END WITH ssorted.cases Suc
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Trace.thy:18:3
by (induct i arbitrary: s) (auto elim: ssorted.cases)
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Table.thy:16
INDUCT n arbitrary: x (*fixes variables x :: nat *) (*goal: "\<And>x::nat. length (tabulate (f::nat \<Rightarrow> 'a) x (0::nat)) = (0::nat)" and "\<And>(n::nat) x::nat. (\<And>x::nat. length (tabulate (f::nat \<Rightarrow> 'a) x n) = n) \<Longrightarrow> length (tabulate f x (Suc n)) = Suc n" *) NEXT (*fixes variables n :: nat and x :: nat *) (*introduces facts Suc.IH: "length (tabulate (f::nat \<Rightarrow> 'a) (?x::nat) (na__::nat)) = na__" *) (*goal: "length (tabulate (f::nat \<Rightarrow> 'a) (x::nat) (Suc (na__::nat))) = Suc na__" *) END WITH Suc
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Table.thy:17:3
by (induction n arbitrary: x) simp_all
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneProps.thy:11
HAVE fact0: "(f::face) \<in> \<F> (g::graph)" END WITH inv_mgp minGraphProps assms(1,3,4) (*introduces facts local.fact0: "(f::face) \<in> \<F> (g::graph)" *) END WITH finalGraph_face assms(2) fact0
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneProps.thy:13:1
proof - from assms(1,3,4) have "f \<in> \<F> g" by (blast intro: minGraphProps inv_mgp) with assms(2) show ?thesis by (rule finalGraph_face) qed
./contrib/afp-2025-02-12/thys/Green/Derivs.thy:5
END WITH has_real_derivative_iff_has_vector_derivative
./contrib/afp-2025-02-12/thys/Green/Derivs.thy:7:3
by (simp add: has_real_derivative_iff_has_vector_derivative)
./contrib/afp-2025-02-12/thys/AutoCorres2/LocalVarExtract.thy:22
END WITH set_eqI
./contrib/afp-2025-02-12/thys/AutoCorres2/LocalVarExtract.thy:24:3
by (fastforce intro: set_eqI)
./contrib/afp-2025-02-12/thys/AutoCorres2/ExceptionRewrite.thy:16
END WITH top_post_state_def always_fail_def
./contrib/afp-2025-02-12/thys/AutoCorres2/ExceptionRewrite.thy:17:3
by (clarsimp simp: always_fail_def top_post_state_def)
./contrib/afp-2025-02-12/thys/AutoCorres2/TypeStrengthen.thy:29
END WITH ogets_def spec_monad_eqI runs_to_iff(1-31)
./contrib/afp-2025-02-12/thys/AutoCorres2/TypeStrengthen.thy:30:3
apply (rule spec_monad_eqI) apply (auto simp add: runs_to_iff ogets_def) done
./contrib/afp-2025-02-12/thys/LocalLexing/InductRules.thy:14
END WITH AB AP BP CP
./contrib/afp-2025-02-12/thys/LocalLexing/InductRules.thy:20:1
proof - from AB AP BP CP show ?thesis by blast qed
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:17
END
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:19:1
by simp
./contrib/afp-2025-02-12/thys/AutoCorres2/tests/examples/FactorialTest.thy:23
END WITH fact.simps
./contrib/afp-2025-02-12/thys/AutoCorres2/tests/examples/FactorialTest.thy:24:3
by (subst fact.simps) simp
./contrib/afp-2025-02-12/thys/AutoCorres2/SimplConv.thy:36
APPLY (subst signed.less_le) (*goal: "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word)\<rbrakk> \<Longrightarrow> a \<le>s n \<and> a \<noteq> n" *) APPLY (safe) (*goal: "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word)\<rbrakk> \<Longrightarrow> a \<le>s n" *) APPLY (subst word_sle_msb_le) (*goal: "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word)\<rbrakk> \<Longrightarrow> (msb n \<longrightarrow> msb a) \<and> (msb a \<and> \<not> msb n \<or> a \<le> n)" *) APPLY (safe) (*goal: "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word); msb n\<rbrakk> \<Longrightarrow> msb a" and "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word); \<not> a \<le> n\<rbrakk> \<Longrightarrow> msb a" and "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word); \<not> a \<le> n; msb n\<rbrakk> \<Longrightarrow> False" *) NEXT WITH not_msb_from_less (*goal: "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word); \<not> a \<le> n\<rbrakk> \<Longrightarrow> msb a" *) NEXT (*goal: "\<lbrakk>(a::'a word) < (n::'a word); n \<le> (2::'a word) ^ (LENGTH('a) - (1::nat)) - (1::'a word); \<not> a \<le> n; msb n\<rbrakk> \<Longrightarrow> False" *) END
./contrib/afp-2025-02-12/thys/AutoCorres2/SimplConv.thy:38:3
apply (subst signed.less_le) apply safe apply (subst word_sle_msb_le) apply safe apply (force simp: not_msb_from_less) apply simp apply simp done
./contrib/afp-2025-02-12/thys/Ordered_Resolution_Prover/Lazy_List_Liminf.thy:24
END
./contrib/afp-2025-02-12/thys/Ordered_Resolution_Prover/Lazy_List_Liminf.thy:25:3
by simp
./contrib/afp-2025-02-12/thys/LocalLexing/TheoremD10.thy:7
END WITH admissible_wellformed_tokens "\<P>_are_admissible"
./contrib/afp-2025-02-12/thys/LocalLexing/TheoremD10.thy:8:1
using \<P>_are_admissible admissible_wellformed_tokens by blast
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_VCG.thy:8
END WITH HT'_def BB_PROTECT_def assms[unfolded "BB_PROTECT_def" "HT'_def"]
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_VCG.thy:11:5
using assms unfolding BB_PROTECT_def HT'_def by auto
./contrib/afp-2025-02-12/thys/BurrowsWheeler/counting/Count_Util.thy:12
END WITH gr0I count_list_0_iff
./contrib/afp-2025-02-12/thys/BurrowsWheeler/counting/Count_Util.thy:14:3
by (meson count_list_0_iff gr0I)
./contrib/afp-2025-02-12/thys/BurrowsWheeler/util/Rotated_Substring.thy:21
NEXT WITH inc_one_bounded_def (*goal: "\<lbrakk>inc_one_bounded (n::nat) (xs::nat list); (i::nat) < length xs\<rbrakk> \<Longrightarrow> xs ! i < n" *) END WITH inc_one_bounded_def
./contrib/afp-2025-02-12/thys/BurrowsWheeler/util/Rotated_Substring.thy:24:3
using inc_one_bounded_def by blast+
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_Var_Postprocessor.thy:8
END WITH RENAMING_def
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_Var_Postprocessor.thy:8:59
unfolding RENAMING_def by auto
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/EnumeratorProps.thy:12
CASE_SPLIT xs (*introduces facts Nil.prem0: "(xs::'a list) = []" *) (*goal: "(xs::'a list) = [] \<Longrightarrow> |hideDups xs| = |xs|" and "\<And>(a::'a) list::'a list. (xs::'a list) = a # list \<Longrightarrow> |hideDups xs| = |xs|" *) NEXT WITH Nil (*fixes variables a :: 'a and list :: "'a list" *) (*introduces facts Cons.prem0: "(xs::'a list) = (a__::'a) # (list__::'a list)" *) (*goal: "|hideDups (xs::'a list)| = |xs|" *) END WITH Cons
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/EnumeratorProps.thy:13:1
by (cases xs) simp_all
./contrib/afp-2025-02-12/thys/AutoCorres2/L1Peephole.thy:21
NEXT WITH L1_skip_def L1_seq_def (*goal: "L1_seq L1_skip (A::(unit option, unit, 'a) spec_monad) = A" *) END WITH L1_skip_def L1_seq_def
./contrib/afp-2025-02-12/thys/AutoCorres2/L1Peephole.thy:24:3
apply (clarsimp simp: L1_seq_def L1_skip_def)+ done
./contrib/afp-2025-02-12/thys/Consensus_Refined/MRU/Three_Steps.thy:20
END WITH three_step_def three_phase_def
./contrib/afp-2025-02-12/thys/Consensus_Refined/MRU/Three_Steps.thy:21:3
by (auto simp add: three_phase_def three_step_def)
./contrib/afp-2025-02-12/thys/Consensus_Refined/Two_Steps.thy:18
END WITH two_step_def two_phase_def
./contrib/afp-2025-02-12/thys/Consensus_Refined/Two_Steps.thy:19:3
by (auto simp add: two_phase_def two_step_def)
./contrib/afp-2025-02-12/thys/AutoCorres2/Split_Heap.thy:20
END WITH array_fields_def
./contrib/afp-2025-02-12/thys/AutoCorres2/Split_Heap.thy:21:3
by (auto simp add: array_fields_def)
./contrib/afp-2025-02-12/thys/MDP-Rewards/Blinfun_Util.thy:11
NEXT WITH blinfun_eqI (*goal: "(f::'a \<Rightarrow>\<^sub>L 'b) o\<^sub>L id_blinfun = f" *) END WITH blinfun_eqI
./contrib/afp-2025-02-12/thys/MDP-Rewards/Blinfun_Util.thy:14:3
by (auto intro!: blinfun_eqI)
./contrib/afp-2025-02-12/thys/Bernoulli/Bernoulli.thy:14
END WITH power_Suc numeral_eq_Suc
./contrib/afp-2025-02-12/thys/Bernoulli/Bernoulli.thy:15:3
by (simp only: numeral_eq_Suc power_Suc)
./contrib/afp-2025-02-12/thys/Ordered_Resolution_Prover/Map2.thy:22
END WITH zip_Nil zip_Cons_Cons zip.simps list.simps Nil_is_map_conv
./contrib/afp-2025-02-12/thys/Ordered_Resolution_Prover/Map2.thy:23:3
by (metis Nil_is_map_conv list.exhaust list.simps(3) zip.simps(1) zip_Cons_Cons zip_Nil)
./contrib/afp-2025-02-12/thys/MDP-Rewards/MDP_reward_Util.thy:8
END WITH mult.commute assms
./contrib/afp-2025-02-12/thys/MDP-Rewards/MDP_reward_Util.thy:12:3
using assms by (auto simp: mult.commute)
./contrib/afp-2025-02-12/thys/AutoCorres2/AbstractArrays.thy:26
CASE_SPLIT n (*introduces facts 0.prem0: "(n::nat) = (0::nat)" *) (*goal: "(n::nat) = (0::nat) \<Longrightarrow> ((x::'a ptr) \<in> set (array_addrs x n)) = ((0::nat) < n)" and "\<And>nat::nat. (n::nat) = Suc nat \<Longrightarrow> ((x::'a ptr) \<in> set (array_addrs x n)) = ((0::nat) < n)" *) NEXT WITH array_addrs.simps(2) "0" (*fixes variables nat :: nat *) (*introduces facts Suc.prem0: "(n::nat) = Suc (nat__::nat)" *) (*goal: "((x::'a ptr) \<in> set (array_addrs x (n::nat))) = ((0::nat) < n)" *) END WITH array_addrs.simps(2) Suc
./contrib/afp-2025-02-12/thys/AutoCorres2/AbstractArrays.thy:28:3
by (cases n, auto simp: array_addrs.simps(2))
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/FaceDivisionProps.thy:13
INDUCT g (*fixes variables x1a :: "face list" and x2a :: nat and x3a :: "face list list" and x4a :: "nat list" *) (*goal: "\<And>(x1a::face list) (x2a::nat) (x3a::face list list) x4a::nat list. vertices (makeFaceFinal (f::face) (Graph x1a x2a x3a x4a)) = vertices (Graph x1a x2a x3a x4a)" *) END WITH makeFaceFinal_def vertices_graph_def
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/FaceDivisionProps.thy:14:1
by (induct g)(simp add:vertices_graph_def makeFaceFinal_def)
./contrib/afp-2025-02-12/thys/Amicable_Numbers/Amicable_Numbers.thy:18
END WITH assms
./contrib/afp-2025-02-12/thys/Amicable_Numbers/Amicable_Numbers.thy:22:3
using assms by linarith
./contrib/afp-2025-02-12/thys/HOL-CSP/Stop.thy:56
END WITH FAILURES_def Failures.rep_eq STOP.rep_eq
./contrib/afp-2025-02-12/thys/HOL-CSP/Stop.thy:57:3
by (simp add: FAILURES_def Failures.rep_eq STOP.rep_eq)
./contrib/afp-2025-02-12/thys/Formal_SSA/Serial_Rel.thy:21
INDUCT m (*goal: "iterated_serial_on (A::'a set) (r::('a \<times> 'a) set) (x::'a) ((n::nat) + (0::nat)) = iterated_serial_on A r (iterated_serial_on A r x n) (0::nat)" and "\<And>m::nat. iterated_serial_on (A::'a set) (r::('a \<times> 'a) set) (x::'a) ((n::nat) + m) = iterated_serial_on A r (iterated_serial_on A r x n) m \<Longrightarrow> iterated_serial_on A r x (n + Suc m) = iterated_serial_on A r (iterated_serial_on A r x n) (Suc m)" *) NEXT (*fixes variables m :: nat *) (*introduces facts Suc.IH: "iterated_serial_on (A::'a set) (r::('a \<times> 'a) set) (x::'a) ((n::nat) + (ma__::nat)) = iterated_serial_on A r (iterated_serial_on A r x n) ma__" *) (*goal: "iterated_serial_on (A::'a set) (r::('a \<times> 'a) set) (x::'a) ((n::nat) + Suc (ma__::nat)) = iterated_serial_on A r (iterated_serial_on A r x n) (Suc ma__)" *) END WITH Suc
./contrib/afp-2025-02-12/thys/Formal_SSA/Serial_Rel.thy:22:1
by (induction m) auto
./contrib/afp-2025-02-12/thys/Combinatorics_Words_Graph_Lemma/Glued_Codes.thy:16
END WITH last_append if_split
./contrib/afp-2025-02-12/thys/Combinatorics_Words_Graph_Lemma/Glued_Codes.thy:18:3
by (auto simp only: last_append split: if_split)
./contrib/afp-2025-02-12/thys/Euler_Partition/Euler_Partition.thy:17
END WITH assms nonzero_mult_div_cancel_right le_add_diff_inverse2 less_not_refl2 power_add power_not_zero
./contrib/afp-2025-02-12/thys/Euler_Partition/Euler_Partition.thy:21:1
by (metis assms nonzero_mult_div_cancel_right le_add_diff_inverse2 less_not_refl2 power_add power_not_zero)
./contrib/afp-2025-02-12/thys/BurrowsWheeler/util/Nat_Mod_Helper.thy:11
END
./contrib/afp-2025-02-12/thys/BurrowsWheeler/util/Nat_Mod_Helper.thy:13:3
using order_le_less_trans by blast
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Table.thy:19
INDUCT n arbitrary: x (*fixes variables x :: nat *) (*goal: "\<And>x::nat. map (f::'b \<Rightarrow> 'a) (tabulate (g::nat \<Rightarrow> 'b) x (0::nat)) = tabulate (\<lambda>x::nat. f (g x)) x (0::nat)" and "\<And>(n::nat) x::nat. (\<And>x::nat. map (f::'b \<Rightarrow> 'a) (tabulate (g::nat \<Rightarrow> 'b) x n) = tabulate (\<lambda>x::nat. f (g x)) x n) \<Longrightarrow> map f (tabulate g x (Suc n)) = tabulate (\<lambda>x::nat. f (g x)) x (Suc n)" *) NEXT (*fixes variables n :: nat and x :: nat *) (*introduces facts Suc.IH: "map (f::'b \<Rightarrow> 'a) (tabulate (g::nat \<Rightarrow> 'b) (?x::nat) (na__::nat)) = tabulate (\<lambda>x::nat. f (g x)) ?x na__" *) (*goal: "map (f::'b \<Rightarrow> 'a) (tabulate (g::nat \<Rightarrow> 'b) (x::nat) (Suc (na__::nat))) = tabulate (\<lambda>x::nat. f (g x)) x (Suc na__)" *) END WITH Suc
./contrib/afp-2025-02-12/thys/MFOTL_Monitor/Table.thy:20:3
by (induction n arbitrary: x) simp_all
./contrib/afp-2025-02-12/thys/Green/DiamExample.thy:7
END WITH dual_order.order_iff_strict abs_if
./contrib/afp-2025-02-12/thys/Green/DiamExample.thy:10:3
by (simp add: abs_if dual_order.order_iff_strict)
./contrib/afp-2025-02-12/thys/AutoCorres2/tests/examples/Memcpy.thy:24
CASE_SPLIT x (*fixes variables x :: "32 word" *) (*introduces facts Ptr.prem0: "(x::'b ptr) = PTR('b) (xa__::32 word)" *) (*goal: "\<And>xa::32 word. (x::'b ptr) = PTR('b) xa \<Longrightarrow> ptr_val (PTR_COERCE('b \<rightarrow> 'a) x +\<^sub>p (a::int)) = ptr_val x + word_of_int a * of_nat_addr (size_of TYPE('a))" *) END WITH CTypesDefs.ptr_add_def Ptr
./contrib/afp-2025-02-12/thys/AutoCorres2/tests/examples/Memcpy.thy:25:3
apply (case_tac x) apply (clarsimp simp: CTypesDefs.ptr_add_def) done
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Worklist.thy:23
END WITH worklist_aux_def while_option_unfold
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Worklist.thy:25:1
by (simp add: worklist_aux_def while_option_unfold)
./contrib/afp-2025-02-12/thys/CoreC++/Auxiliary.thy:19
END
./contrib/afp-2025-02-12/thys/CoreC++/Auxiliary.thy:21:2
by arith
./contrib/afp-2025-02-12/thys/AutoCorres2/L2Peephole.thy:17
END
./contrib/afp-2025-02-12/thys/AutoCorres2/L2Peephole.thy:18:3
by simp
./contrib/afp-2025-02-12/thys/Formal_SSA/SSA_Transfer_Rules.thy:16
END WITH right_totalE rel_funE
./contrib/afp-2025-02-12/thys/Formal_SSA/SSA_Transfer_Rules.thy:17:3
by (auto 4 4 elim: right_totalE rel_funE)
./contrib/afp-2025-02-12/thys/CoreC++/WWellForm.thy:16
END WITH wwf_mdecl_def
./contrib/afp-2025-02-12/thys/CoreC++/WWellForm.thy:19:1
by (simp add:wwf_mdecl_def)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ListSum.thy:20
INDUCT xs (*goal: "ListSum (filter (\<lambda>x::'a. \<not> (P::'a \<Rightarrow> bool) x) []) (f::'a \<Rightarrow> nat) + ListSum (filter P []) f = ListSum [] f" and "\<And>(a::'a) xs::'a list. ListSum (filter (\<lambda>x::'a. \<not> (P::'a \<Rightarrow> bool) x) xs) (f::'a \<Rightarrow> nat) + ListSum (filter P xs) f = ListSum xs f \<Longrightarrow> ListSum (filter (\<lambda>x::'a. \<not> P x) (a # xs)) f + ListSum (filter P (a # xs)) f = ListSum (a # xs) f" *) NEXT (*fixes variables a :: 'a and xs :: "'a list" *) (*introduces facts Cons.IH: "ListSum (filter (\<lambda>x::'a. \<not> (P::'a \<Rightarrow> bool) x) (xsa__::'a list)) (f::'a \<Rightarrow> nat) + ListSum (filter P xsa__) f = ListSum xsa__ f" *) (*goal: "ListSum (filter (\<lambda>x::'a. \<not> (P::'a \<Rightarrow> bool) x) ((a__::'a) # (xsa__::'a list))) (f::'a \<Rightarrow> nat) + ListSum (filter P (a__ # xsa__)) f = ListSum (a__ # xsa__) f" *) END WITH Cons
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/ListSum.thy:22:2
by (induct xs) simp_all
./contrib/afp-2025-02-12/thys/Consensus_Refined/Voting/OneThirdRule_Proofs.thy:13
HAVE fact0: "((HOL.eq::nat \<Rightarrow> nat \<Rightarrow> bool) ((Groups.plus_class.plus::nat \<Rightarrow> nat \<Rightarrow> nat) ((Finite_Set.card::'a set \<Rightarrow> nat) (S::'a set)) ((Finite_Set.card::'a set \<Rightarrow> nat) ((Groups.uminus_class.uminus::'a set \<Rightarrow> 'a set) (S::'a set)))) ((Finite_Set.card::'a set \<Rightarrow> nat) (Orderings.top_class.top::'a set)))" RULE card_Un_disjoint[of S "-S", simplified Compl_partition, symmetric] (*goal: "finite (S::'a set)" and "finite (- (S::'a set))" and "(S::'a set) \<inter> - S = {}" *) NEXT (*goal: "finite (- (S::'a set))" *) NEXT (*goal: "(S::'a set) \<inter> - S = {}" *) END (*introduces facts local.fact0: "card (S::'a set) + card (- S) = card UNIV" *) END WITH fact0
./contrib/afp-2025-02-12/thys/Consensus_Refined/Voting/OneThirdRule_Proofs.thy:16:1
proof- have "card S + card (-S) = card (UNIV :: 'a set)" by (rule card_Un_disjoint[of S "-S", simplified Compl_partition, symmetric]) (auto) thus ?thesis by simp qed
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneProps.thy:18
END WITH finalVertex_def nonFinals_def filter_empty_conv plane_final_facesAt
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/PlaneProps.thy:20:1
by (auto simp add: finalVertex_def nonFinals_def filter_empty_conv plane_final_facesAt)
./contrib/afp-2025-02-12/thys/AutoCorres2/c-parser/CLanguage.thy:18
END WITH addr_card_def card_word
./contrib/afp-2025-02-12/thys/AutoCorres2/c-parser/CLanguage.thy:19:3
by (simp add: addr_card_def card_word)
./contrib/afp-2025-02-12/thys/IMP2/IMP2.thy:14
END
./contrib/afp-2025-02-12/thys/IMP2/IMP2.thy:14:63
by auto
./contrib/afp-2025-02-12/thys/Case_Labeling/Examples/Hoare/Labeled_Hoare_Examples.thy:12
APPLY (vcg_simp) (*no goal remains!*) END
./contrib/afp-2025-02-12/thys/Case_Labeling/Examples/Hoare/Labeled_Hoare_Examples.thy:19:1
by vcg_simp
./contrib/afp-2025-02-12/thys/AutoCorres2/lib/Mutual_CCPO_Recursion.thy:18
END WITH image_def fun_lub_def fun_eq_iff Inf_apply
./contrib/afp-2025-02-12/thys/AutoCorres2/lib/Mutual_CCPO_Recursion.thy:19:3
unfolding fun_lub_def fun_eq_iff Inf_apply image_def by simp
./contrib/afp-2025-02-12/thys/AutoCorres2/AutoCorres.thy:33
END WITH o_def
./contrib/afp-2025-02-12/thys/AutoCorres2/AutoCorres.thy:34:3
by (simp add: o_def)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Computation/ArchComp.thy:14
APPLY (eval) (*no goal remains!*) END
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/Computation/ArchComp.thy:15:1
by eval
./contrib/afp-2025-02-12/thys/LocalLexing/InductRules.thy:24
END WITH AB AP BP CP DP
./contrib/afp-2025-02-12/thys/LocalLexing/InductRules.thy:31:1
proof - from AB AP BP CP DP show ?thesis by blast qed
./contrib/afp-2025-02-12/thys/ROBDD/BDD_Code.thy:8
END WITH blit'_def
./contrib/afp-2025-02-12/thys/ROBDD/BDD_Code.thy:11:33
by (simp add: blit'_def)
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/TameProps.thy:10
INDUCT xs (*introduces facts Nil.prems: "\<forall>x::'a\<in>set []. \<not> ((P::'a \<Rightarrow> bool) x \<and> (Q::'a \<Rightarrow> bool) x)" *) (*goal: "\<forall>x::'a\<in>set []. \<not> ((P::'a \<Rightarrow> bool) x \<and> (Q::'a \<Rightarrow> bool) x) \<Longrightarrow> |filter P []| + |filter Q []| \<le> |[]|" and "\<And>(a::'a) xs::'a list. \<lbrakk>\<forall>x::'a\<in>set xs. \<not> ((P::'a \<Rightarrow> bool) x \<and> (Q::'a \<Rightarrow> bool) x) \<Longrightarrow> |filter P xs| + |filter Q xs| \<le> |xs|; \<forall>x::'a\<in>set (a # xs). \<not> (P x \<and> Q x)\<rbrakk> \<Longrightarrow> |filter P (a # xs)| + |filter Q (a # xs)| \<le> |a # xs|" *) NEXT WITH Nil (*fixes variables a :: 'a and xs :: "'a list" *) (*introduces facts Cons.IH: "\<forall>x::'a\<in>set (xsa__::'a list). \<not> ((P::'a \<Rightarrow> bool) x \<and> (Q::'a \<Rightarrow> bool) x) \<Longrightarrow> |filter P xsa__| + |filter Q xsa__| \<le> |xsa__|" and Cons.prems: "\<forall>x::'a\<in>set ((a__::'a) # (xsa__::'a list)). \<not> ((P::'a \<Rightarrow> bool) x \<and> (Q::'a \<Rightarrow> bool) x)" *) (*goal: "|filter (P::'a \<Rightarrow> bool) ((a__::'a) # (xsa__::'a list))| + |filter (Q::'a \<Rightarrow> bool) (a__ # xsa__)| \<le> |a__ # xsa__|" *) END WITH Cons
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/TameProps.thy:12:1
by (induct xs) auto
./contrib/afp-2025-02-12/thys/BurrowsWheeler/counting/Rank_Select.thy:15
END WITH rank_def count_list_eq_count
./contrib/afp-2025-02-12/thys/BurrowsWheeler/counting/Rank_Select.thy:17:3
by (simp add: count_list_eq_count rank_def)
./contrib/afp-2025-02-12/thys/Directed_Sets/Well_Order_Connection.thy:11
END WITH refl_on_def reflexive_def relation_of_def
./contrib/afp-2025-02-12/thys/Directed_Sets/Well_Order_Connection.thy:12:3
by (auto simp: refl_on_def reflexive_def relation_of_def)
./contrib/afp-2025-02-12/thys/LocalLexing/Limit.thy:9
INDUCT n (*introduces facts 0.prems: "setmonotone (f::'a set \<Rightarrow> 'a set)" *) (*goal: "setmonotone (f::'a set \<Rightarrow> 'a set) \<Longrightarrow> setmonotone (funpower f (0::nat))" and "\<And>n::nat. \<lbrakk>setmonotone (f::'a set \<Rightarrow> 'a set) \<Longrightarrow> setmonotone (funpower f n); setmonotone f\<rbrakk> \<Longrightarrow> setmonotone (funpower f (Suc n))" *) NEXT WITH setmonotone_def "0" (*fixes variables n :: nat *) (*introduces facts Suc.IH: "setmonotone (f::'a set \<Rightarrow> 'a set) \<Longrightarrow> setmonotone (funpower f (na__::nat))" and Suc.prems: "setmonotone (f::'a set \<Rightarrow> 'a set)" *) (*goal: "setmonotone (funpower (f::'a set \<Rightarrow> 'a set) (Suc (na__::nat)))" *) END WITH setmonotone_def Suc
./contrib/afp-2025-02-12/thys/LocalLexing/Limit.thy:10:3
by (induct n, auto simp add: setmonotone_def)
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_VCG.thy:14
END WITH HT'_partial_def BB_PROTECT_def assms[unfolded "BB_PROTECT_def" "HT'_partial_def"]
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_VCG.thy:17:5
using assms unfolding BB_PROTECT_def HT'_partial_def by auto
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_Var_Postprocessor.thy:9
END WITH assms[unfolded "RENAMING_def"]
./contrib/afp-2025-02-12/thys/IMP2/automation/IMP2_Var_Postprocessor.thy:11:15
using assms unfolding RENAMING_def by simp
./contrib/afp-2025-02-12/thys/MonoBoolTranAlgebra/Mono_Bool_Tran.thy:28
END WITH image_comp fun_eq_iff
./contrib/afp-2025-02-12/thys/MonoBoolTranAlgebra/Mono_Bool_Tran.thy:30:3
by (simp add: fun_eq_iff image_comp)
./contrib/afp-2025-02-12/thys/CoreC++/CWellForm.thy:20
END WITH wf_C_mdecl_def
./contrib/afp-2025-02-12/thys/CoreC++/CWellForm.thy:27:1
by (simp add:wf_C_mdecl_def)
./contrib/afp-2025-02-12/thys/AutoCorres2/c-parser/umm_heap/SepTactic.thy:21
END WITH sep_conj_extract_def
./contrib/afp-2025-02-12/thys/AutoCorres2/c-parser/umm_heap/SepTactic.thy:23:3
by (simp add: sep_conj_extract_def)
./contrib/afp-2025-02-12/thys/AutoCorres2/TypeStrengthen.thy:34
END WITH ogets_def spec_monad_eqI runs_to_iff(1-31)
./contrib/afp-2025-02-12/thys/AutoCorres2/TypeStrengthen.thy:35:3
apply (simp add: gets_the_def assert_opt_def[abs_def] ogets_def gets_def) apply (rule spec_monad_eqI) apply (auto simp add: runs_to_iff) done
./contrib/afp-2025-02-12/thys/AutoCorres2/ExceptionRewrite.thy:19
END WITH always_fail_def run_bind
./contrib/afp-2025-02-12/thys/AutoCorres2/ExceptionRewrite.thy:20:3
apply (clarsimp simp: always_fail_def run_bind) done
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:21
END
./contrib/afp-2025-02-12/thys/Flyspeck-Tame/LowerBound.thy:22:1
by simp
./contrib/afp-2025-02-12/thys/Affine_Arithmetic/Counterclockwise_Vector.thy:13
END WITH ac_simps(1-48)
./contrib/afp-2025-02-12/thys/Affine_Arithmetic/Counterclockwise_Vector.thy:15:3
by (auto simp: ac_simps)
End of preview. Expand in Data Studio

The extraction was incomplete due to limited time. We plan to rerun the extraction pipeline (especially after our improved Sledgehammer is finished) to involve more complete data.

Downloads last month
11