Datasets:

Languages:
English
ArXiv:
License:

Improve dataset card: Add task category, paper/code links, and LMDB sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -1,16 +1,21 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - en
 
 
 
5
  tags:
6
  - medical
7
  - pathology
8
- size_categories:
9
- - 100B<n<1T
10
  ---
11
 
12
  # CPathPatchFeature: Pre-extracted WSI Features for Computational Pathology
13
 
 
 
 
14
  ## Dataset Summary
15
 
16
  This dataset provides a comprehensive collection of pre-extracted features from Whole Slide Images (WSIs) for various cancer types, designed to facilitate research in computational pathology. The features are extracted using multiple state-of-the-art encoders, offering a rich resource for developing and evaluating Multiple Instance Learning (MIL) models and other deep learning architectures.
@@ -73,6 +78,58 @@ Then, clone the dataset repository:
73
  git clone https://huggingface.co/datasets/Dearcat/CPathPatchFeature
74
  ```
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  ### Citation
78
  This dataset has been used in the following publications. If you find it useful for your research, please consider citing them:
 
1
  ---
 
2
  language:
3
  - en
4
+ license: apache-2.0
5
+ size_categories:
6
+ - 100B<n<1T
7
  tags:
8
  - medical
9
  - pathology
10
+ task_categories:
11
+ - image-feature-extraction
12
  ---
13
 
14
  # CPathPatchFeature: Pre-extracted WSI Features for Computational Pathology
15
 
16
+ Paper: [Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology](https://huggingface.co/papers/2506.02408)
17
+ Code: [https://github.com/DearCaat/E2E-WSI-ABMILX](https://github.com/DearCaat/E2E-WSI-ABMILX)
18
+
19
  ## Dataset Summary
20
 
21
  This dataset provides a comprehensive collection of pre-extracted features from Whole Slide Images (WSIs) for various cancer types, designed to facilitate research in computational pathology. The features are extracted using multiple state-of-the-art encoders, offering a rich resource for developing and evaluating Multiple Instance Learning (MIL) models and other deep learning architectures.
 
78
  git clone https://huggingface.co/datasets/Dearcat/CPathPatchFeature
79
  ```
80
 
81
+ ## Sample Usage
82
+
83
+ Here is an example of loading data from an LMDB dataset, as provided in the GitHub repository:
84
+
85
+ ```python
86
+ import lmdb
87
+ import torch
88
+ import pickle
89
+ from datasets.utils import imfrombytes # Ensure this utility function is correctly referenced
90
+
91
+ slide_name = "xxxx" # Example slide name
92
+ path_to_lmdb = "YOUR_PATH_TO_LMDB_FILE" # e.g., "/path/to/my_dataset_256_level0.lmdb"
93
+
94
+ # Open LMDB dataset
95
+ env = lmdb.open(path_to_lmdb, subdir=False, readonly=True, lock=False,
96
+ readahead=False, meminit=False, map_size=100 * (1024**3))
97
+
98
+ with env.begin(write=False) as txn:
99
+ # Get patch count for the slide
100
+ pn_dict = pickle.loads(txn.get(b'__pn__'))
101
+ if slide_name not in pn_dict:
102
+ raise ValueError(f"Slide ID {slide_name} not found in LMDB metadata.")
103
+ num_patches = pn_dict[slide_name]
104
+
105
+ # Generate patch IDs
106
+ patch_ids = [f"{slide_name}-{i}" for i in range(num_patches)]
107
+
108
+ # Allocate memory for patches (adjust dimensions and dtype as needed)
109
+ # Assuming patches are 224x224, 3 channels, and will be normalized later
110
+ patches_tensor = torch.empty((len(patch_ids), 3, 224, 224), dtype=torch.float32)
111
+
112
+ # Load and decode data into torch.tensor
113
+ for i, key_str in enumerate(patch_ids):
114
+ patch_bytes = txn.get(key_str.encode('ascii'))
115
+ if patch_bytes is None:
116
+ print(f"Warning: Key {key_str} not found in LMDB.")
117
+ continue
118
+ # Assuming the stored value is pickled image bytes
119
+ img_array = imfrombytes(pickle.loads(patch_bytes).tobytes()) # Or .tobytes() if it's already bytes
120
+ patches_tensor[i] = torch.from_numpy(img_array.transpose(2, 0, 1)) # HWC to CHW
121
+
122
+ # Normalize the data (example using ImageNet stats)
123
+ # Ensure values are in [0, 255] before this normalization if they aren't already
124
+ mean = torch.tensor([0.485, 0.456, 0.406]).view((1, 3, 1, 1)) * 255.0
125
+ std = torch.tensor([0.229, 0.224, 0.225]).view((1, 3, 1, 1)) * 255.0
126
+
127
+ # If your patches_tensor is already in [0,1] range, remove * 255.0 from mean/std
128
+ # If your patches_tensor is uint8 [0,255], convert to float first: patches_tensor.float()
129
+ patches_tensor = (patches_tensor.float() - mean) / std
130
+
131
+ env.close()
132
+ ```
133
 
134
  ### Citation
135
  This dataset has been used in the following publications. If you find it useful for your research, please consider citing them: