You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Misraj-DocOCR: An Arabic Document OCR BenchmarkπŸ“„

Dataset: Misraj/Misraj-DocOCR Domain: Arabic Document OCR (text + structure)
Size: 400 expertly verified pages (real + synthetic)
Use cases: OCR, Document Understanding, Markdown/HTML structure preservation
Status: Public 🀝

✨ Overview

Misraj-DocOCR is a curated, expert-verified benchmark for Arabic document OCR with an emphasis on structure preservation (Markdown/HTML tables, lists, footnotes, math, watermarks, multi-column, marginalia, etc.). Each page includes high-quality ground truth designed to evaluate both text fidelity and layout/structure fidelity.

  • Diverse content: books, reports, forms, scholarly pages, and complex layouts.
  • Expert-verified ground truth: human-reviewed for text and structure.
  • Open & reproducible: intended for fair comparisons and reliable benchmarking.

πŸ“¦ Data format

Each example typically includes:

  • uuid: id of sample
  • image: page image (PIL-compatible)
  • markdown: target transcription with structure

πŸ”Œ Loading

from datasets import load_dataset

ds = load_dataset("Misraj/Misraj-DocOCR")
split = ds["train"]  # or another available split

ex = split[0]
img = ex["image"]  # PIL.Image
gt  = ex.get("markdown") or ex.get("text")
print(gt[:400])
# img.show()  # uncomment in a local environment

πŸ§ͺ Metrics

We report both text and structure metrics:

  • Text: WER ↓, CER ↓, BLEU ↑, ChrF ↑
  • Structure: TEDS ↑, MARS ↑ (Markdown/HTML structure fidelity)

πŸ† Leaderboard (Misraj-DocOCR)

Best values are bold, second-best are underlined.

Model WER ↓ CER ↓ BLEU ↑ CHRF ↑ TEDS ↑ MARS ↑
Baseer (ours) 0.25 0.53 76.18 87.77 66 76.885
Gemini-2.5-pro 0.37 0.31 77.92 89.55 52 70.775
Azure AI Document Intelligence[^azure] 0.44 0.27 62.04 82.49 42 62.245
Dots.ocr 0.50 0.40 58.16 78.41 40 59.205
Nanonets 0.71 0.55 42.22 67.89 37 52.445
Qari 0.76 0.64 38.59 64.50 21 42.750
Qwen2.5-VL-32B 0.76 0.59 37.62 62.64 41 51.820
GPT-5 0.86 0.62 40.67 61.6 48 54.8
Qwen2.5-VL-3B-Instruct 0.87 0.71 25.39 53.42 27 40.210
Qwen2.5-VL-7B 0.92 0.77 31.57 54.70 27 40.850
Gemma3-12B 0.96 0.80 19.75 44.53 33 38.765
Gemma3-4B 1.01 0.85 9.57 31.39 28 29.695
GPT-4o-mini 1.36 1.10 22.63 47.04 26 36.52
AIN 1.23 1.11 1.25 2.24 21 11.620
Aya-vision 1.41 1.07 2.91 9.81 26 17.905

Highlights:

  • Baseer (ours) leads on WER, TEDS, and MARS β†’ strong text & structure fidelity.
  • Gemini-2.5-pro tops BLEU/ChrF; Azure AI Document Intelligence attains lowest CER.

πŸ“š How to cite

If you use Misraj-DocOCR, please cite:

@misc{hennara2025baseervisionlanguagemodelarabic,
      title={Baseer: A Vision-Language Model for Arabic Document-to-Markdown OCR}, 
      author={Khalil Hennara and Muhammad Hreden and Mohamed Motasim Hamed and Ahmad Bastati and Zeina Aldallal and Sara Chrouf and Safwan AlModhayan},
      year={2025},
      eprint={2509.18174},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2509.18174}, 
}
Downloads last month
238

Collection including Misraj/Misraj-DocOCR