task_name
string | initial_board
string | solution
string | title
string | rules
string | visual_elements
string | rows
int64 | cols
int64 | initial_observation
string | description
string | task_type
string | data_source
string | difficulty
string | _hint_raw
string |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
normal_sudoku_4890
|
2.....1...16.2..54.7.51..6.527.3..9.6819725.3.9...5..11....87....8.4.....6.3...1.
|
235496187916827354874513962527134896681972543493685271149268735358741629762359418
|
normal_sudoku_4890
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
2 . . . . . 1 . .
. 1 6 . 2 . . 5 4
. 7 . 5 1 . . 6 .
5 2 7 . 3 . . 9 .
6 8 1 9 7 2 5 . 3
. 9 . . . 5 . . 1
1 . . . . 8 7 . .
. . 8 . 4 . . . .
. 6 . 3 . . . 1 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
235496187916827354874513962527134896681972543493685271149268735358741629762359418 #1 Easy (314)
Full House: r5c8=4
Hidden Single: r6c8=7
Hidden Single: r1c9=7
Hidden Single: r9c7=4
Hidden Single: r6c7=2
Hidden Single: r1c8=8
Hidden Single: r9c9=8
Naked Single: r4c9=6
Full House: r4c7=8
Hidden Single: r3c9=2
Hidden Single: r6c5=8
Hidden Single: r2c4=8
Hidden Single: r3c1=8
Hidden Single: r9c3=2
Hidden Single: r8c7=6
Hidden Single: r6c4=6
Naked Single: r1c4=4
Naked Single: r7c4=2
Naked Single: r4c4=1
Full House: r4c6=4
Full House: r8c4=7
Naked Single: r7c8=3
Full House: r8c8=2
Naked Single: r9c6=9
Naked Single: r3c6=3
Naked Single: r8c6=1
Naked Single: r9c1=7
Full House: r9c5=5
Full House: r7c5=6
Full House: r1c5=9
Naked Single: r1c6=6
Full House: r2c6=7
Naked Single: r3c7=9
Full House: r2c7=3
Full House: r3c3=4
Full House: r2c1=9
Naked Single: r6c3=3
Full House: r6c1=4
Full House: r8c1=3
Naked Single: r1c3=5
Full House: r1c2=3
Full House: r7c3=9
Naked Single: r8c2=5
Full House: r7c2=4
Full House: r7c9=5
Full House: r8c9=9
|
normal_sudoku_2729
|
..51..37..1......57....561...1..3..7.7.2189..8...9.....4.3..7....7.46..32....1.4.
|
685129374412637895739485612921563487374218956856794231148352769597846123263971548
|
normal_sudoku_2729
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 5 1 . . 3 7 .
. 1 . . . . . . 5
7 . . . . 5 6 1 .
. . 1 . . 3 . . 7
. 7 . 2 1 8 9 . .
8 . . . 9 . . . .
. 4 . 3 . . 7 . .
. . 7 . 4 6 . . 3
2 . . . . 1 . 4 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
685129374412637895739485612921563487374218956856794231148352769597846123263971548 #1 Extreme (9056)
Locked Candidates Type 1 (Pointing): 2 in b8 => r7c89<>2
Finned Franken Swordfish: 4 r35b5 c349 fr5c1 fr6c6 => r6c3<>4
Almost Locked Set XY-Wing: A=r4c1245 {24569}, B=r5c9 {46}, C=r5c13,r6c23 {23456}, X,Y=2,4, Z=6 => r4c8<>6
Almost Locked Set XY-Wing: A=r9c4579 {56789}, B=r46c2,r5c13,r6c3 {234569}, C=r5c9 {46}, X,Y=4,6, Z=9 => r9c2<>9
Forcing Chain Contradiction in r7c1 => r6c8<>2
r6c8=2 r8c8<>2 r8c7=2 r8c7<>1 r8c1=1 r7c1<>1
r6c8=2 r6c8<>3 r5c8=3 r5c8<>5 r5c1=5 r7c1<>5
r6c8=2 r4c78<>2 r4c2=2 r4c2<>9 r4c1=9 r4c1<>4 r5c13=4 r5c9<>4 r5c9=6 r9c9<>6 r7c89=6 r7c1<>6
r6c8=2 r4c78<>2 r4c2=2 r4c2<>9 r4c1=9 r7c1<>9
Almost Locked Set XY-Wing: A=r4c1245 {24569}, B=r5c89,r6c8 {3456}, C=r5c13,r6c23 {23456}, X,Y=2,4, Z=5 => r4c78<>5
Almost Locked Set XZ-Rule: A=r8c124 {1589}, B=r2489c7 {12458}, X=1, Z=5 => r8c8<>5
Naked Triple: 2,8,9 in r248c8 => r7c8<>8, r7c8<>9
Grouped Discontinuous Nice Loop: 6 r7c1 -6- r7c8 -5- r89c7 =5= r6c7 =1= r6c9 -1- r7c9 =1= r7c1 => r7c1<>6
Almost Locked Set XZ-Rule: A=r7c13,r8c12 {15689}, B=r7c8,r9c7 {568}, X=6, Z=8 => r9c23<>8
Forcing Net Verity => r7c6=2
r7c1=9 r7c6<>9 r7c6=2
r7c3=9 r7c6<>9 r7c6=2
r8c1=9 (r1c1<>9) (r4c1<>9 r4c2=9 r1c2<>9) r8c8<>9 r2c8=9 r1c9<>9 r1c6=9 r7c6<>9 r7c6=2
r8c2=9 (r1c2<>9) (r4c2<>9 r4c1=9 r1c1<>9) r8c8<>9 r2c8=9 r1c9<>9 r1c6=9 r7c6<>9 r7c6=2
r9c3=9 (r9c3<>6) r9c3<>3 r9c2=3 r9c2<>6 r9c9=6 (r7c9<>6 r7c3=6 r7c3<>8) r7c8<>6 r7c8=5 r9c7<>5 r9c7=8 r7c9<>8 r7c5=8 r7c5<>2 r7c6=2
Locked Candidates Type 1 (Pointing): 9 in b8 => r23c4<>9
Forcing Chain Contradiction in r1 => r7c8=6
r7c8<>6 r56c8=6 r5c9<>6 r5c9=4 r5c3<>4 r45c1=4 r1c1<>4
r7c8<>6 r7c8=5 r89c7<>5 r6c7=5 r6c7<>1 r8c7=1 r8c7<>2 r8c8=2 r8c8<>9 r2c8=9 r2c6<>9 r1c6=9 r1c6<>4
r7c8<>6 r56c8=6 r5c9<>6 r5c9=4 r1c9<>4
Locked Candidates Type 1 (Pointing): 5 in b9 => r6c7<>5
Hidden Pair: 3,6 in r9c23 => r9c2<>5, r9c3<>9
Forcing Chain Contradiction in r1 => r1c1<>9
r1c1=9 r23c3<>9 r7c3=9 r7c3<>8 r8c2=8 r1c2<>8
r1c1=9 r1c6<>9 r1c6=4 r3c4<>4 r3c4=8 r1c5<>8
r1c1=9 r3c23<>9 r3c9=9 r9c9<>9 r9c9=8 r1c9<>8
Almost Locked Set XY-Wing: A=r1c1 {46}, B=r5c39 {346}, C=r23679c3 {234689}, X,Y=3,4, Z=6 => r5c1<>6
Forcing Chain Contradiction in r1 => r1c2<>9
r1c2=9 r1c2<>8
r1c2=9 r1c6<>9 r1c6=4 r3c4<>4 r3c4=8 r1c5<>8
r1c2=9 r3c23<>9 r3c9=9 r9c9<>9 r9c9=8 r1c9<>8
Forcing Chain Verity => r2c3<>6
r2c3=8 r2c3<>6
r3c3=8 r3c4<>8 r3c4=4 r46c4<>4 r6c6=4 r6c6<>7 r6c4=7 r6c4<>6 r4c45=6 r4c1<>6 r12c1=6 r2c3<>6
r7c3=8 r7c5<>8 r7c5=5 r4c5<>5 r4c5=6 r4c1<>6 r12c1=6 r2c3<>6
Forcing Chain Contradiction in r1 => r8c4<>5
r8c4=5 r7c5<>5 r7c5=8 r7c3<>8 r8c2=8 r1c2<>8
r8c4=5 r7c5<>5 r7c5=8 r1c5<>8
r8c4=5 r8c4<>9 r9c4=9 r9c9<>9 r9c9=8 r1c9<>8
AIC: 9 9- r1c6 -4- r3c4 -8- r8c4 -9- r8c8 =9= r2c8 -9 => r1c9,r2c6<>9
Hidden Single: r1c6=9
Empty Rectangle: 4 in b3 (r26c6) => r6c9<>4
Empty Rectangle: 4 in b4 (r1c19) => r5c9<>4
Naked Single: r5c9=6
Locked Candidates Type 1 (Pointing): 4 in b6 => r2c7<>4
Locked Candidates Type 2 (Claiming): 4 in r5 => r4c1<>4
W-Wing: 8/2 in r2c7,r4c8 connected by 2 in r8c78 => r2c8,r4c7<>8
Hidden Single: r4c8=8
Discontinuous Nice Loop: 9 r2c1 -9- r2c8 -2- r8c8 =2= r8c7 -2- r4c7 =2= r4c2 =9= r4c1 -9- r2c1 => r2c1<>9
Discontinuous Nice Loop: 6 r4c1 -6- r4c5 -5- r7c5 =5= r7c1 =1= r7c9 -1- r6c9 -2- r4c7 =2= r4c2 =9= r4c1 => r4c1<>6
Locked Candidates Type 2 (Claiming): 6 in c1 => r1c2<>6
Naked Triple: 1,5,9 in r478c1 => r5c1<>5
Hidden Single: r5c8=5
Naked Single: r6c8=3
W-Wing: 8/2 in r1c2,r2c7 connected by 2 in r4c27 => r1c9,r2c3<>8
2-String Kite: 8 in r1c5,r7c3 (connected by r1c2,r3c3) => r7c5<>8
Naked Single: r7c5=5
Naked Single: r4c5=6
Hidden Single: r9c7=5
Hidden Single: r1c1=6
Hidden Single: r2c4=6
Hidden Single: r1c9=4
2-String Kite: 2 in r3c9,r4c2 (connected by r4c7,r6c9) => r3c2<>2
Uniqueness Test 1: 3/4 in r2c13,r5c13 => r2c3<>3, r2c3<>4
Naked Pair: 2,9 in r2c38 => r2c57<>2
Naked Single: r2c7=8
Skyscraper: 8 in r1c5,r8c4 (connected by r18c2) => r3c4,r9c5<>8
Naked Single: r3c4=4
Naked Single: r9c5=7
Naked Single: r2c6=7
Full House: r6c6=4
Naked Single: r4c4=5
Full House: r6c4=7
Naked Single: r2c5=3
Naked Single: r4c1=9
Naked Single: r2c1=4
Naked Single: r4c2=2
Full House: r4c7=4
Naked Single: r7c1=1
Naked Single: r5c1=3
Full House: r8c1=5
Full House: r5c3=4
Naked Single: r1c2=8
Full House: r1c5=2
Full House: r3c5=8
Naked Single: r6c3=6
Full House: r6c2=5
Naked Single: r8c2=9
Naked Single: r9c3=3
Naked Single: r3c2=3
Full House: r9c2=6
Full House: r7c3=8
Full House: r7c9=9
Naked Single: r8c4=8
Full House: r9c4=9
Full House: r9c9=8
Naked Single: r8c8=2
Full House: r2c8=9
Full House: r3c9=2
Full House: r8c7=1
Full House: r2c3=2
Full House: r3c3=9
Full House: r6c9=1
Full House: r6c7=2
|
normal_sudoku_1639
|
.67....121.42.7..69.2..8..73.9.8.1.4..6..9..8..1....73..58713.9..8.2...1.13946..5
|
867394512134257896952618437329785164476139258581462973645871329798523641213946785
|
normal_sudoku_1639
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 6 7 . . . . 1 2
1 . 4 2 . 7 . . 6
9 . 2 . . 8 . . 7
3 . 9 . 8 . 1 . 4
. . 6 . . 9 . . 8
. . 1 . . . . 7 3
. . 5 8 7 1 3 . 9
. . 8 . 2 . . . 1
. 1 3 9 4 6 . . 5
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
867394512134257896952618437329785164476139258581462973645871329798523641213946785 #1 Easy (218)
Hidden Single: r6c7=9
Hidden Single: r2c8=9
Hidden Single: r8c2=9
Hidden Single: r1c5=9
Hidden Single: r8c7=6
Naked Single: r8c8=4
Naked Single: r7c8=2
Naked Single: r8c1=7
Naked Single: r5c8=5
Naked Single: r7c2=4
Full House: r7c1=6
Full House: r9c1=2
Naked Single: r9c8=8
Full House: r9c7=7
Naked Single: r3c8=3
Full House: r4c8=6
Full House: r5c7=2
Naked Single: r5c1=4
Naked Single: r3c2=5
Naked Single: r5c2=7
Naked Single: r1c1=8
Full House: r2c2=3
Full House: r6c1=5
Naked Single: r3c7=4
Naked Single: r4c2=2
Full House: r6c2=8
Naked Single: r2c5=5
Full House: r2c7=8
Full House: r1c7=5
Naked Single: r6c5=6
Naked Single: r4c6=5
Full House: r4c4=7
Naked Single: r3c5=1
Full House: r3c4=6
Full House: r5c5=3
Full House: r5c4=1
Naked Single: r6c4=4
Full House: r6c6=2
Naked Single: r8c6=3
Full House: r1c6=4
Full House: r1c4=3
Full House: r8c4=5
|
normal_sudoku_1443
|
.......8..9.5......2.13....68.42.3.99528.3....34...82..4938.26.86.......213..94.8
|
375692184196548732428137596681425379952873641734916825549381267867254913213769458
|
normal_sudoku_1443
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . . . . . . 8 .
. 9 . 5 . . . . .
. 2 . 1 3 . . . .
6 8 . 4 2 . 3 . 9
9 5 2 8 . 3 . . .
. 3 4 . . . 8 2 .
. 4 9 3 8 . 2 6 .
8 6 . . . . . . .
2 1 3 . . 9 4 . 8
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
375692184196548732428137596681425379952873641734916825549381267867254913213769458 #1 Unfair (1204)
Full House: r1c2=7
Locked Candidates Type 1 (Pointing): 9 in b2 => r1c7<>9
Skyscraper: 5 in r4c6,r9c5 (connected by r49c8) => r6c5,r78c6<>5
W-Wing: 1/7 in r4c3,r7c6 connected by 7 in r67c1 => r4c6<>1
W-Wing: 7/5 in r8c3,r9c8 connected by 5 in r7c19 => r8c789<>7
Sashimi X-Wing: 7 c14 r67 fr8c4 fr9c4 => r7c6<>7
Naked Single: r7c6=1
Naked Pair: 5,7 in r7c9,r9c8 => r8c789<>5
Locked Candidates Type 2 (Claiming): 5 in c7 => r13c9,r3c8<>5
XY-Chain: 5 5- r4c6 -7- r4c3 -1- r6c1 -7- r7c1 -5- r7c9 -7- r9c8 -5 => r4c8<>5
Hidden Single: r4c6=5
Hidden Single: r9c8=5
Naked Single: r7c9=7
Full House: r7c1=5
Full House: r8c3=7
Naked Single: r3c1=4
Naked Single: r4c3=1
Full House: r4c8=7
Full House: r6c1=7
Naked Single: r8c4=2
Naked Single: r3c9=6
Naked Single: r3c8=9
Naked Single: r6c6=6
Naked Single: r8c6=4
Naked Single: r6c4=9
Naked Single: r1c6=2
Naked Single: r8c5=5
Naked Single: r1c4=6
Full House: r9c4=7
Full House: r9c5=6
Naked Single: r6c5=1
Full House: r5c5=7
Full House: r6c9=5
Naked Single: r1c3=5
Naked Single: r2c5=4
Full House: r1c5=9
Naked Single: r1c7=1
Naked Single: r3c3=8
Full House: r2c3=6
Naked Single: r1c1=3
Full House: r1c9=4
Full House: r2c1=1
Naked Single: r2c7=7
Naked Single: r2c8=3
Naked Single: r5c7=6
Naked Single: r8c7=9
Full House: r3c7=5
Full House: r3c6=7
Full House: r2c6=8
Full House: r2c9=2
Naked Single: r5c9=1
Full House: r5c8=4
Full House: r8c8=1
Full House: r8c9=3
|
normal_sudoku_3274
|
3.715..26.4..3.7.55..7..3...5.4..17.17.563...9...7156.43..17.5..1594..377.93.5...
|
387154926641239785592786341856492173174563892923871564438617259215948637769325418
|
normal_sudoku_3274
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
3 . 7 1 5 . . 2 6
. 4 . . 3 . 7 . 5
5 . . 7 . . 3 . .
. 5 . 4 . . 1 7 .
1 7 . 5 6 3 . . .
9 . . . 7 1 5 6 .
4 3 . . 1 7 . 5 .
. 1 5 9 4 . . 3 7
7 . 9 3 . 5 . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
387154926641239785592786341856492173174563892923871564438617259215948637769325418 #1 Extreme (2192)
Locked Candidates Type 1 (Pointing): 9 in b5 => r4c9<>9
Naked Pair: 2,8 in r6c24 => r6c39<>2, r6c39<>8
Forcing Net Verity => r9c2=6
r9c2=2 (r6c2<>2 r6c4=2 r7c4<>2 r7c4=6 r8c6<>6) r9c5<>2 r9c5=8 r7c4<>8 r2c4=8 (r2c1<>8) r6c4<>8 r6c2=8 (r6c4<>8) r4c1<>8 r8c1=8 r8c1<>6 r8c7=6 r9c7<>6 r9c2=6
r9c2=6 r9c2=6
r9c2=8 (r6c2<>8 r6c4=8 r7c4<>8 r7c4=6 r8c6<>6) r9c5<>8 r9c5=2 r7c4<>2 r2c4=2 (r2c1<>2) r6c4<>2 r6c2=2 (r6c4<>2) r4c1<>2 r8c1=2 r8c1<>6 r8c7=6 r9c7<>6 r9c2=6
Finned Franken Swordfish: 2 c24b7 r267 fr3c2 fr8c1 => r2c1<>2
W-Wing: 8/2 in r6c2,r7c3 connected by 2 in r48c1 => r45c3<>8
Locked Candidates Type 2 (Claiming): 8 in r5 => r4c9<>8
Sashimi Swordfish: 8 c234 r267 fr1c2 fr3c2 fr3c3 => r2c1<>8
Naked Single: r2c1=6
Hidden Single: r7c4=6
Hidden Single: r3c6=6
Hidden Single: r4c3=6
Hidden Single: r8c7=6
Hidden Single: r1c6=4
Hidden Single: r4c9=3
Naked Single: r6c9=4
Naked Single: r6c3=3
Hidden Single: r3c8=4
Hidden Single: r9c7=4
Hidden Single: r5c3=4
Remote Pair: 2/8 r2c4 -8- r6c4 -2- r6c2 -8- r4c1 -2- r8c1 -8- r7c3 => r2c3<>2, r2c3<>8
Naked Single: r2c3=1
Hidden Single: r9c8=1
Hidden Single: r3c9=1
Locked Candidates Type 1 (Pointing): 2 in b1 => r3c5<>2
Remote Pair: 2/8 r2c4 -8- r6c4 -2- r6c2 -8- r4c1 -2- r8c1 -8- r8c6 => r2c6<>2, r2c6<>8
Naked Single: r2c6=9
Naked Single: r2c8=8
Full House: r1c7=9
Full House: r2c4=2
Full House: r3c5=8
Full House: r5c8=9
Full House: r1c2=8
Full House: r6c4=8
Full House: r6c2=2
Full House: r3c2=9
Full House: r3c3=2
Full House: r4c1=8
Full House: r7c3=8
Full House: r8c1=2
Full House: r8c6=8
Full House: r9c5=2
Full House: r4c6=2
Full House: r4c5=9
Full House: r9c9=8
Naked Single: r7c7=2
Full House: r5c7=8
Full House: r5c9=2
Full House: r7c9=9
|
normal_sudoku_6339
|
4.5.1...9968.7...32.1..6..485..4...6....28.9.1.97653.8....3.8..58769..31.1..5...2
|
475213689968574213231986574853149726746328195129765348692431857587692431314857962
|
normal_sudoku_6339
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
4 . 5 . 1 . . . 9
9 6 8 . 7 . . . 3
2 . 1 . . 6 . . 4
8 5 . . 4 . . . 6
. . . . 2 8 . 9 .
1 . 9 7 6 5 3 . 8
. . . . 3 . 8 . .
5 8 7 6 9 . . 3 1
. 1 . . 5 . . . 2
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
475213689968574213231986574853149726746328195129765348692431857587692431314857962 #1 Easy (168)
Full House: r3c5=8
Naked Single: r7c1=6
Naked Single: r8c7=4
Full House: r8c6=2
Naked Single: r9c1=3
Full House: r5c1=7
Naked Single: r1c6=3
Naked Single: r2c6=4
Naked Single: r9c3=4
Naked Single: r5c9=5
Full House: r7c9=7
Naked Single: r1c2=7
Full House: r3c2=3
Naked Single: r1c4=2
Naked Single: r9c6=7
Naked Single: r7c3=2
Full House: r7c2=9
Naked Single: r9c4=8
Naked Single: r5c7=1
Naked Single: r7c6=1
Full House: r4c6=9
Full House: r7c4=4
Full House: r7c8=5
Naked Single: r9c8=6
Full House: r9c7=9
Naked Single: r5c2=4
Full House: r6c2=2
Full House: r6c8=4
Naked Single: r1c7=6
Full House: r1c8=8
Naked Single: r2c4=5
Full House: r3c4=9
Naked Single: r4c3=3
Full House: r5c3=6
Full House: r5c4=3
Full House: r4c4=1
Naked Single: r3c8=7
Full House: r3c7=5
Naked Single: r2c7=2
Full House: r2c8=1
Full House: r4c8=2
Full House: r4c7=7
|
normal_sudoku_866
|
92..7..4.5...8.29.748.9256..1.2...8...54.8.29.9...1.5...9...812...81.975...92.634
|
921576348536184297748392561413259786675438129892761453359647812264813975187925634
|
normal_sudoku_866
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
9 2 . . 7 . . 4 .
5 . . . 8 . 2 9 .
7 4 8 . 9 2 5 6 .
. 1 . 2 . . . 8 .
. . 5 4 . 8 . 2 9
. 9 . . . 1 . 5 .
. . 9 . . . 8 1 2
. . . 8 1 . 9 7 5
. . . 9 2 . 6 3 4
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
921576348536184297748392561413259786675438129892761453359647812264813975187925634 #1 Easy (214)
Hidden Single: r2c9=7
Hidden Single: r2c6=4
Hidden Single: r4c6=9
Hidden Single: r6c1=8
Naked Single: r9c1=1
Naked Single: r9c3=7
Naked Single: r9c6=5
Full House: r9c2=8
Hidden Single: r5c7=1
Naked Single: r1c7=3
Naked Single: r1c6=6
Naked Single: r3c9=1
Full House: r1c9=8
Full House: r3c4=3
Naked Single: r1c3=1
Full House: r1c4=5
Full House: r2c4=1
Naked Single: r8c6=3
Full House: r7c6=7
Naked Single: r8c2=6
Naked Single: r7c4=6
Full House: r6c4=7
Full House: r7c5=4
Naked Single: r2c2=3
Full House: r2c3=6
Naked Single: r6c7=4
Full House: r4c7=7
Naked Single: r7c1=3
Full House: r7c2=5
Full House: r5c2=7
Naked Single: r5c1=6
Full House: r5c5=3
Naked Single: r4c1=4
Full House: r8c1=2
Full House: r8c3=4
Naked Single: r6c5=6
Full House: r4c5=5
Naked Single: r4c3=3
Full House: r4c9=6
Full House: r6c9=3
Full House: r6c3=2
|
normal_sudoku_2710
|
..1746.327.2..3.4..43...6.72.9.5847.5371249864........32....19.6.....7.4......36.
|
951746832762813549843295617219658473537124986486379251325467198698531724174982365
|
normal_sudoku_2710
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 1 7 4 6 . 3 2
7 . 2 . . 3 . 4 .
. 4 3 . . . 6 . 7
2 . 9 . 5 8 4 7 .
5 3 7 1 2 4 9 8 6
4 . . . . . . . .
3 2 . . . . 1 9 .
6 . . . . . 7 . 4
. . . . . . 3 6 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
951746832762813549843295617219658473537124986486379251325467198698531724174982365 #1 Easy (238)
Hidden Single: r2c2=6
Naked Single: r4c2=1
Naked Single: r4c9=3
Full House: r4c4=6
Naked Single: r6c2=8
Full House: r6c3=6
Hidden Single: r2c9=9
Hidden Single: r9c1=1
Hidden Single: r9c2=7
Hidden Single: r6c7=2
Hidden Single: r8c8=2
Hidden Single: r1c2=5
Full House: r8c2=9
Naked Single: r1c7=8
Full House: r1c1=9
Full House: r2c7=5
Full House: r3c1=8
Full House: r3c8=1
Full House: r6c8=5
Full House: r6c9=1
Naked Single: r2c4=8
Full House: r2c5=1
Naked Single: r3c5=9
Naked Single: r9c5=8
Naked Single: r8c5=3
Naked Single: r9c9=5
Full House: r7c9=8
Naked Single: r6c5=7
Full House: r7c5=6
Naked Single: r8c4=5
Naked Single: r9c3=4
Naked Single: r6c6=9
Full House: r6c4=3
Naked Single: r3c4=2
Full House: r3c6=5
Naked Single: r7c4=4
Full House: r9c4=9
Full House: r9c6=2
Naked Single: r7c6=7
Full House: r8c6=1
Full House: r8c3=8
Full House: r7c3=5
|
normal_sudoku_3305
|
.3...9..55.....2...965.....9.8...4..4532189766..9.4........78......4..1.3..6....2
|
132479685547186293896523147928765431453218976671934528219357864765842319384691752
|
normal_sudoku_3305
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 3 . . . 9 . . 5
5 . . . . . 2 . .
. 9 6 5 . . . . .
9 . 8 . . . 4 . .
4 5 3 2 1 8 9 7 6
6 . . 9 . 4 . . .
. . . . . 7 8 . .
. . . . 4 . . 1 .
3 . . 6 . . . . 2
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
132479685547186293896523147928765431453218976671934528219357864765842319384691752 #1 Extreme (5956)
Locked Candidates Type 2 (Claiming): 4 in r3 => r12c8,r2c9<>4
Discontinuous Nice Loop: 3 r8c6 -3- r7c4 -1- r7c1 -2- r7c5 =2= r8c6 => r8c6<>3
Discontinuous Nice Loop: 7 r9c2 -7- r9c7 -5- r9c6 -1- r7c4 -3- r8c4 -8- r9c5 =8= r9c2 => r9c2<>7
Grouped Discontinuous Nice Loop: 7 r1c4 -7- r4c4 -3- r7c4 -1- r7c1 -2- r13c1 =2= r1c3 =4= r1c4 => r1c4<>7
Grouped Discontinuous Nice Loop: 8 r1c4 -8- r8c4 -3- r7c4 -1- r7c1 -2- r13c1 =2= r1c3 =4= r1c4 => r1c4<>8
2-String Kite: 8 in r2c4,r9c2 (connected by r8c4,r9c5) => r2c2<>8
Locked Candidates Type 1 (Pointing): 8 in b1 => r8c1<>8
Almost Locked Set XZ-Rule: A=r7c4,r9c6 {135}, B=r78c9,r9c78 {34579}, X=5, Z=3 => r7c8<>3
Grouped Discontinuous Nice Loop: 1 r6c9 -1- r4c9 -3- r78c9 =3= r8c7 =6= r1c7 -6- r1c8 -8- r6c8 =8= r6c9 => r6c9<>1
Grouped AIC: 8 8- r1c8 -6- r1c7 =6= r8c7 =3= r78c9 -3- r6c9 -8 => r23c9,r6c8<>8
Hidden Single: r6c9=8
Forcing Chain Contradiction in b1 => r4c4=7
r4c4<>7 r4c4=3 r7c4<>3 r7c4=1 r7c1<>1 r7c1=2 r8c1<>2 r8c1=7 r1c1<>7
r4c4<>7 r4c4=3 r7c4<>3 r7c4=1 r7c1<>1 r7c1=2 r13c1<>2 r1c3=2 r1c3<>7
r4c4<>7 r2c4=7 r2c2<>7
r4c4<>7 r2c4=7 r2c3<>7
r4c4<>7 r4c4=3 r7c4<>3 r7c4=1 r7c1<>1 r7c1=2 r8c1<>2 r8c1=7 r3c1<>7
XYZ-Wing: 1/3/5 in r4c9,r6c57 => r6c8<>3
Grouped Discontinuous Nice Loop: 2 r8c2 -2- r4c2 -1- r4c9 -3- r78c9 =3= r8c7 =6= r8c2 => r8c2<>2
Forcing Chain Contradiction in r8c2 => r1c5<>2
r1c5=2 r1c13<>2 r3c1=2 r3c1<>8 r1c1=8 r1c8<>8 r1c8=6 r1c7<>6 r8c7=6 r8c2<>6
r1c5=2 r1c3<>2 r13c1=2 r8c1<>2 r8c1=7 r8c2<>7
r1c5=2 r1c3<>2 r13c1=2 r7c1<>2 r7c1=1 r7c4<>1 r7c4=3 r8c4<>3 r8c4=8 r8c2<>8
Locked Candidates Type 1 (Pointing): 2 in b2 => r3c1<>2
Forcing Chain Contradiction in r3 => r8c4=8
r8c4<>8 r8c4=3 r7c4<>3 r7c4=1 r7c1<>1 r7c1=2 r8c1<>2 r8c1=7 r3c1<>7
r8c4<>8 r9c5=8 r9c5<>9 r7c5=9 r7c5<>2 r3c5=2 r3c5<>7
r8c4<>8 r8c4=3 r7c4<>3 r7c4=1 r9c6<>1 r9c6=5 r9c7<>5 r9c7=7 r3c7<>7
r8c4<>8 r8c4=3 r7c45<>3 r7c9=3 r7c9<>4 r3c9=4 r3c9<>7
Hidden Single: r9c2=8
Locked Candidates Type 1 (Pointing): 3 in b8 => r7c9<>3
Discontinuous Nice Loop: 7 r1c7 -7- r9c7 =7= r9c3 -7- r8c2 -6- r8c7 =6= r1c7 => r1c7<>7
Discontinuous Nice Loop: 1 r3c1 -1- r7c1 -2- r8c1 -7- r8c2 -6- r8c7 =6= r1c7 -6- r1c8 -8- r1c1 =8= r3c1 => r3c1<>1
Discontinuous Nice Loop: 9 r9c3 -9- r9c5 =9= r7c5 -9- r7c9 -4- r9c8 =4= r9c3 => r9c3<>9
Grouped AIC: 6 6- r7c8 =6= r7c2 -6- r8c2 -7- r8c1 -2- r8c6 =2= r3c6 =1= r3c79 -1- r1c7 -6 => r12c8,r8c7<>6
Naked Single: r1c8=8
Hidden Single: r7c8=6
Hidden Single: r1c7=6
Naked Single: r1c5=7
Hidden Single: r8c2=6
Hidden Single: r3c1=8
Hidden Single: r2c5=8
Hidden Single: r8c1=7
Hidden Single: r2c6=6
Hidden Single: r4c5=6
Hidden Single: r9c7=7
Hidden Single: r3c9=7
Hidden Single: r3c8=4
Hidden Single: r7c9=4
Hidden Single: r9c3=4
Hidden Single: r2c2=4
Hidden Single: r1c4=4
Hidden Single: r9c6=1
Naked Single: r7c4=3
Full House: r2c4=1
Naked Single: r2c3=7
Hidden Single: r6c2=7
Hidden Single: r3c7=1
Hidden Single: r4c9=1
Naked Single: r4c2=2
Full House: r6c3=1
Full House: r7c2=1
Naked Single: r1c3=2
Full House: r1c1=1
Full House: r7c1=2
Hidden Single: r6c8=2
Hidden Single: r8c6=2
Naked Single: r3c6=3
Full House: r3c5=2
Full House: r4c6=5
Full House: r4c8=3
Full House: r6c5=3
Full House: r6c7=5
Full House: r8c7=3
Naked Single: r2c8=9
Full House: r2c9=3
Full House: r8c9=9
Full House: r9c8=5
Full House: r8c3=5
Full House: r9c5=9
Full House: r7c3=9
Full House: r7c5=5
|
normal_sudoku_1922
|
.58..6....3.....98.1.9....7174......329581764865473129.....52.3.41.9..86..3.4...1
|
958736412732154698416928357174269835329581764865473129697815243241397586583642971
|
normal_sudoku_1922
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 5 8 . . 6 . . .
. 3 . . . . . 9 8
. 1 . 9 . . . . 7
1 7 4 . . . . . .
3 2 9 5 8 1 7 6 4
8 6 5 4 7 3 1 2 9
. . . . . 5 2 . 3
. 4 1 . 9 . . 8 6
. . 3 . 4 . . . 1
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
958736412732154698416928357174269835329581764865473129697815243241397586583642971 #1 Easy (160)
Naked Single: r4c9=5
Full House: r1c9=2
Naked Single: r8c7=5
Naked Single: r4c8=3
Full House: r4c7=8
Naked Single: r9c7=9
Naked Single: r9c8=7
Full House: r7c8=4
Naked Single: r9c2=8
Full House: r7c2=9
Naked Single: r1c8=1
Full House: r3c8=5
Naked Single: r9c6=2
Naked Single: r1c5=3
Naked Single: r4c6=9
Naked Single: r8c6=7
Naked Single: r9c4=6
Full House: r9c1=5
Naked Single: r1c4=7
Naked Single: r1c7=4
Full House: r1c1=9
Naked Single: r3c5=2
Naked Single: r2c6=4
Full House: r3c6=8
Naked Single: r8c1=2
Full House: r8c4=3
Naked Single: r4c4=2
Full House: r4c5=6
Naked Single: r7c5=1
Full House: r2c5=5
Full House: r2c4=1
Full House: r7c4=8
Naked Single: r2c7=6
Full House: r3c7=3
Naked Single: r3c3=6
Full House: r3c1=4
Naked Single: r2c1=7
Full House: r2c3=2
Full House: r7c3=7
Full House: r7c1=6
|
normal_sudoku_2645
|
..1.86.9.6..15.8..58.9..1.6.5.6..2....6.9.71.1...7..6.863.4.95.2...6.483..58..6..
|
471286395639154827582937146754618239326495718198372564863741952217569483945823671
|
normal_sudoku_2645
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 1 . 8 6 . 9 .
6 . . 1 5 . 8 . .
5 8 . 9 . . 1 . 6
. 5 . 6 . . 2 . .
. . 6 . 9 . 7 1 .
1 . . . 7 . . 6 .
8 6 3 . 4 . 9 5 .
2 . . . 6 . 4 8 3
. . 5 8 . . 6 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
471286395639154827582937146754618239326495718198372564863741952217569483945823671 #1 Unfair (1126)
Empty Rectangle: 3 in b1 (r16c7) => r6c2<>3
Finned X-Wing: 3 c47 r16 fr5c4 => r6c6<>3
Finned Swordfish: 3 c147 r156 fr4c1 => r5c2<>3
Locked Candidates Type 1 (Pointing): 3 in b4 => r1c1<>3
Continuous Nice Loop: 3/4/7/9 9= r4c1 =7= r4c3 -7- r8c3 -9- r9c1 =9= r4c1 =7 => r4c1<>3, r4c1<>4, r23c3<>7, r89c2<>9
Hidden Single: r5c1=3
X-Wing: 3 c47 r16 => r1c2<>3
Hidden Single: r2c2=3
Hidden Single: r2c3=9
Naked Single: r8c3=7
Naked Single: r8c2=1
Naked Single: r8c4=5
Full House: r8c6=9
Naked Single: r9c2=4
Full House: r9c1=9
Naked Single: r5c2=2
Naked Single: r4c1=7
Full House: r1c1=4
Naked Single: r1c2=7
Full House: r6c2=9
Full House: r3c3=2
Naked Single: r5c4=4
Naked Single: r3c5=3
Naked Single: r1c4=2
Naked Single: r4c5=1
Full House: r9c5=2
Naked Single: r1c9=5
Full House: r1c7=3
Full House: r6c7=5
Naked Single: r6c4=3
Full House: r7c4=7
Naked Single: r9c8=7
Naked Single: r5c9=8
Full House: r5c6=5
Naked Single: r4c6=8
Full House: r6c6=2
Naked Single: r7c6=1
Full House: r7c9=2
Full House: r9c9=1
Full House: r9c6=3
Naked Single: r3c8=4
Full House: r3c6=7
Full House: r2c6=4
Naked Single: r6c9=4
Full House: r6c3=8
Full House: r4c3=4
Naked Single: r2c8=2
Full House: r2c9=7
Full House: r4c8=3
Full House: r4c9=9
|
normal_sudoku_6523
|
..1.9..359....38..3.8...9.4.1.9..3.78...3...959327...143....59.1.935.748.85..91.3
|
641897235972543816358612974214968357867135429593274681436781592129356748785429163
|
normal_sudoku_6523
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 1 . 9 . . 3 5
9 . . . . 3 8 . .
3 . 8 . . . 9 . 4
. 1 . 9 . . 3 . 7
8 . . . 3 . . . 9
5 9 3 2 7 . . . 1
4 3 . . . . 5 9 .
1 . 9 3 5 . 7 4 8
. 8 5 . . 9 1 . 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
641897235972543816358612974214968357867135429593274681436781592129356748785429163 #1 Extreme (3464)
Naked Pair: 2,6 in r1c7,r2c9 => r23c8<>2, r23c8<>6
Finned X-Wing: 2 r38 c26 fr3c5 => r1c6<>2
Finned X-Wing: 6 r38 c26 fr3c4 fr3c5 => r1c6<>6
Forcing Chain Contradiction in c5 => r1c4<>6
r1c4=6 r2c5<>6
r1c4=6 r3c5<>6
r1c4=6 r1c4<>8 r1c6=8 r46c6<>8 r4c5=8 r4c5<>6
r1c4=6 r3c456<>6 r3c2=6 r8c2<>6 r8c6=6 r7c5<>6
r1c4=6 r1c7<>6 r2c9=6 r7c9<>6 r9c8=6 r9c5<>6
Forcing Chain Contradiction in c1 => r4c8<>6
r4c8=6 r56c7<>6 r1c7=6 r1c1<>6
r4c8=6 r4c1<>6
r4c8=6 r6c78<>6 r6c6=6 r8c6<>6 r8c2=6 r9c1<>6
Forcing Chain Contradiction in r1c1 => r5c2<>2
r5c2=2 r5c7<>2 r1c7=2 r1c1<>2
r5c2=2 r4c1<>2 r4c1=6 r1c1<>6
r5c2=2 r5c2<>7 r123c2=7 r1c1<>7
Forcing Chain Contradiction in r7c3 => r1c1<>2
r1c1=2 r4c1<>2 r45c3=2 r7c3<>2
r1c1=2 r1c7<>2 r1c7=6 r2c9<>6 r7c9=6 r7c3<>6
r1c1=2 r1c1<>7 r9c1=7 r7c3<>7
W-Wing: 6/2 in r2c9,r8c2 connected by 2 in r1c27 => r2c2<>6
Multi Colors 1: 2 (r1c2,r2c9,r5c7,r9c8) / (r1c7,r7c9), (r8c2) / (r8c6) => r7c56<>2
W-Wing: 6/2 in r8c2,r9c8 connected by 2 in r7c39 => r9c1<>6
XY-Wing: 2/7/6 in r19c1,r8c2 => r13c2<>6
Locked Candidates Type 2 (Claiming): 6 in r3 => r2c45<>6
XY-Chain: 6 6- r1c1 -7- r9c1 -2- r9c8 -6- r7c9 -2- r2c9 -6 => r1c7,r2c3<>6
Naked Single: r1c7=2
Naked Single: r2c9=6
Full House: r7c9=2
Full House: r9c8=6
Naked Single: r6c8=8
Hidden Single: r1c1=6
Naked Single: r4c1=2
Full House: r9c1=7
Naked Single: r4c8=5
Naked Single: r7c3=6
Full House: r8c2=2
Full House: r8c6=6
Naked Single: r9c4=4
Full House: r9c5=2
Naked Single: r5c8=2
Naked Single: r4c3=4
Naked Single: r6c6=4
Full House: r6c7=6
Full House: r5c7=4
Naked Single: r4c6=8
Full House: r4c5=6
Naked Single: r5c3=7
Full House: r2c3=2
Full House: r5c2=6
Naked Single: r1c6=7
Naked Single: r3c5=1
Naked Single: r1c2=4
Full House: r1c4=8
Naked Single: r7c6=1
Naked Single: r2c4=5
Naked Single: r2c5=4
Full House: r7c5=8
Full House: r7c4=7
Naked Single: r3c8=7
Full House: r2c8=1
Full House: r2c2=7
Full House: r3c2=5
Naked Single: r5c6=5
Full House: r3c6=2
Full House: r3c4=6
Full House: r5c4=1
|
normal_sudoku_3209
|
2.58....4...51.....7...4.5.5....3..764725..3..3....4.5.63..584...9...5...5...6.7.
|
215837694496512783378694251581463927647259138932781465163975842729348516854126379
|
normal_sudoku_3209
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
2 . 5 8 . . . . 4
. . . 5 1 . . . .
. 7 . . . 4 . 5 .
5 . . . . 3 . . 7
6 4 7 2 5 . . 3 .
. 3 . . . . 4 . 5
. 6 3 . . 5 8 4 .
. . 9 . . . 5 . .
. 5 . . . 6 . 7 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
215837694496512783378694251581463927647259138932781465163975842729348516854126379 #1 Extreme (2390)
2-String Kite: 2 in r6c8,r8c2 (connected by r4c2,r6c3) => r8c8<>2
2-String Kite: 2 in r2c6,r7c9 (connected by r7c5,r8c6) => r2c9<>2
Hidden Rectangle: 7/9 in r1c67,r2c67 => r2c7<>9
Finned Swordfish: 2 c268 r248 fr6c8 => r4c7<>2
Locked Candidates Type 1 (Pointing): 2 in b6 => r2c8<>2
Hidden Pair: 2,7 in r2c67 => r2c6<>9, r2c7<>3, r2c7<>6
Grouped Continuous Nice Loop: 3/6/7/8/9 6= r1c5 =3= r1c7 -3- r2c9 =3= r2c1 =4= r2c3 =6= r3c3 -6- r3c45 =6= r1c5 =3 => r3c79<>3, r3c79<>6, r1c5<>7, r2c13<>8, r1c5,r2c1<>9
Locked Candidates Type 1 (Pointing): 7 in b2 => r68c6<>7
Empty Rectangle: 9 in b2 (r36c1) => r6c6<>9
W-Wing: 1/9 in r1c2,r5c7 connected by 9 in r15c6 => r1c7<>1
AIC: 1 1- r5c7 -9- r5c6 =9= r1c6 =7= r1c7 =3= r2c9 =6= r8c9 -6- r8c8 -1 => r46c8,r9c7<>1
Sashimi Swordfish: 1 c268 r148 fr5c6 fr6c6 => r4c4<>1
AIC: 7 7- r1c6 =7= r1c7 =3= r2c9 -3- r2c1 -4- r2c3 =4= r9c3 =2= r8c2 -2- r8c6 =2= r2c6 =7= r2c7 -7 => r1c7,r2c6<>7
Naked Single: r2c6=2
Naked Single: r2c7=7
Hidden Single: r1c6=7
Hidden Single: r5c6=9
Naked Single: r5c7=1
Full House: r5c9=8
Hidden Single: r2c8=8
Naked Single: r2c2=9
Naked Single: r1c2=1
Hidden Single: r6c1=9
Hidden Single: r8c8=1
Naked Single: r8c6=8
Full House: r6c6=1
Naked Single: r8c2=2
Full House: r4c2=8
Naked Single: r6c3=2
Full House: r4c3=1
Naked Single: r6c8=6
Naked Single: r1c8=9
Full House: r4c8=2
Full House: r4c7=9
Naked Single: r6c4=7
Full House: r6c5=8
Naked Single: r3c7=2
Naked Single: r3c9=1
Naked Single: r9c7=3
Full House: r1c7=6
Full House: r1c5=3
Full House: r2c9=3
Naked Single: r8c9=6
Naked Single: r2c1=4
Full House: r2c3=6
Naked Single: r8c1=7
Naked Single: r3c3=8
Full House: r3c1=3
Full House: r9c3=4
Naked Single: r7c1=1
Full House: r9c1=8
Naked Single: r8c5=4
Full House: r8c4=3
Naked Single: r7c4=9
Naked Single: r4c5=6
Full House: r4c4=4
Naked Single: r3c4=6
Full House: r9c4=1
Full House: r3c5=9
Naked Single: r7c9=2
Full House: r7c5=7
Full House: r9c5=2
Full House: r9c9=9
|
normal_sudoku_2575
|
.79..841558...12...1..5..8..256.41.8..8.157421..82.65.851..6.2....5..8.1...1825..
|
679238415584961237213457986325674198968315742147829653851796324792543861436182579
|
normal_sudoku_2575
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 7 9 . . 8 4 1 5
5 8 . . . 1 2 . .
. 1 . . 5 . . 8 .
. 2 5 6 . 4 1 . 8
. . 8 . 1 5 7 4 2
1 . . 8 2 . 6 5 .
8 5 1 . . 6 . 2 .
. . . 5 . . 8 . 1
. . . 1 8 2 5 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
679238415584961237213457986325674198968315742147829653851796324792543861436182579 #1 Extreme (5776)
Finned Franken Swordfish: 3 c67b6 r368 fr4c8 fr7c7 => r8c8<>3
Finned Franken Swordfish: 9 c67b6 r368 fr4c8 fr7c7 => r8c8<>9
Forcing Chain Contradiction in c6 => r9c8<>3
r9c8=3 r7c7<>3 r3c7=3 r3c6<>3
r9c8=3 r4c8<>3 r6c9=3 r6c6<>3
r9c8=3 r7c79<>3 r7c45=3 r8c6<>3
W-Wing: 9/3 in r3c7,r6c9 connected by 3 in r24c8 => r23c9<>9
Forcing Chain Contradiction in c5 => r7c4<>3
r7c4=3 r7c7<>3 r7c7=9 r3c7<>9 r2c8=9 r2c5<>9
r7c4=3 r5c4<>3 r5c4=9 r4c5<>9
r7c4=3 r7c7<>3 r7c7=9 r7c5<>9
r7c4=3 r7c79<>3 r9c9=3 r9c9<>4 r7c9=4 r7c45<>4 r8c5=4 r8c5<>9
Forcing Chain Contradiction in r3c6 => r4c5<>3
r4c5=3 r5c4<>3 r123c4=3 r3c6<>3
r4c5=3 r4c5<>7 r6c6=7 r3c6<>7
r4c5=3 r4c8<>3 r4c8=9 r2c8<>9 r3c7=9 r3c6<>9
Discontinuous Nice Loop: 9 r6c2 -9- r6c9 -3- r4c8 =3= r4c1 =7= r6c3 =4= r6c2 => r6c2<>9
Forcing Chain Contradiction in c6 => r8c6<>7
r8c6=7 r7c45<>7 r7c9=7 r89c8<>7 r2c8=7 r2c8<>9 r3c7=9 r3c6<>9
r8c6=7 r7c45<>7 r7c9=7 r89c8<>7 r2c8=7 r2c8<>3 r4c8=3 r4c8<>9 r6c9=9 r6c6<>9
r8c6=7 r8c6<>9
Forcing Chain Verity => r3c4<>3
r2c8=9 r3c7<>9 r3c7=3 r3c4<>3
r4c8=9 r4c8<>3 r4c1=3 r1c1<>3 r1c45=3 r3c4<>3
r9c8=9 r7c79<>9 r7c45=9 r8c6<>9 r8c6=3 r6c6<>3 r5c4=3 r3c4<>3
Forcing Chain Verity => r3c6<>3
r2c8=9 r3c7<>9 r3c7=3 r3c6<>3
r4c8=9 r4c8<>3 r4c1=3 r1c1<>3 r1c45=3 r3c6<>3
r9c8=9 r7c79<>9 r7c45=9 r8c6<>9 r8c6=3 r3c6<>3
Grouped Discontinuous Nice Loop: 9 r7c4 -9- r7c7 =9= r3c7 -9- r3c6 -7- r23c4 =7= r7c4 => r7c4<>9
Grouped AIC: 7 7- r7c4 =7= r78c5 -7- r4c5 -9- r5c4 =9= r23c4 -9- r3c6 -7 => r23c4<>7
Hidden Single: r7c4=7
Locked Candidates Type 1 (Pointing): 4 in b8 => r2c5<>4
Grouped AIC: 7/9 9- r4c1 =9= r5c12 -9- r5c4 =9= r23c4 -9- r3c6 -7- r6c6 =7= r4c5 -7 => r4c1<>7, r4c5<>9
Naked Single: r4c5=7
Hidden Single: r6c3=7
Hidden Single: r3c6=7
Hidden Single: r6c2=4
Multi Colors 2: 9 (r2c8,r3c4,r7c7) / (r3c7), (r4c1,r5c4,r6c9,r8c6) / (r4c8,r6c6) => r2c8,r3c4,r7c7<>9
Naked Single: r7c7=3
Full House: r3c7=9
Locked Candidates Type 1 (Pointing): 3 in b8 => r8c123<>3
Skyscraper: 9 in r6c6,r7c5 (connected by r67c9) => r8c6<>9
Naked Single: r8c6=3
Full House: r6c6=9
Full House: r5c4=3
Full House: r6c9=3
Full House: r4c8=9
Full House: r4c1=3
Naked Single: r1c4=2
Naked Single: r3c9=6
Naked Single: r1c1=6
Full House: r1c5=3
Naked Single: r3c4=4
Full House: r2c4=9
Full House: r2c5=6
Naked Single: r2c9=7
Full House: r2c8=3
Full House: r2c3=4
Naked Single: r5c1=9
Full House: r5c2=6
Naked Single: r3c1=2
Full House: r3c3=3
Naked Single: r8c2=9
Full House: r9c2=3
Naked Single: r9c3=6
Full House: r8c3=2
Naked Single: r8c5=4
Full House: r7c5=9
Full House: r7c9=4
Full House: r9c9=9
Naked Single: r9c8=7
Full House: r8c8=6
Full House: r8c1=7
Full House: r9c1=4
|
normal_sudoku_4866
|
..642.5..7..53.9...5...9.3..75.1.8...1.9..72.2....36..........8.4..9..5...7..42..
|
936421587721538964458679132375216849614985723289743615593162478142897356867354291
|
normal_sudoku_4866
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 6 4 2 . 5 . .
7 . . 5 3 . 9 . .
. 5 . . . 9 . 3 .
. 7 5 . 1 . 8 . .
. 1 . 9 . . 7 2 .
2 . . . . 3 6 . .
. . . . . . . . 8
. 4 . . 9 . . 5 .
. . 7 . . 4 2 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
936421587721538964458679132375216849614985723289743615593162478142897356867354291 #1 Extreme (1888)
Locked Pair: 2,6 in r4c46 => r4c1,r5c56<>6
Hidden Single: r5c1=6
Locked Candidates Type 1 (Pointing): 3 in b6 => r89c9<>3
Naked Triple: 1,7,8 in r1c689 => r1c1<>1, r1c12<>8
Finned X-Wing: 7 c68 r17 fr8c6 => r7c45<>7
Finned Swordfish: 6 r248 c469 fr2c8 => r3c9<>6
Locked Candidates Type 1 (Pointing): 6 in b3 => r2c6<>6
Hidden Rectangle: 1/8 in r1c68,r2c68 => r1c8<>1
Sue de Coq: r3c13 - {1248} (r3c7 - {14}, r1c12,r2c2 - {2389}) => r2c3<>2, r2c3<>8, r3c49<>1, r3c9<>4
Locked Candidates Type 1 (Pointing): 1 in b2 => r78c6<>1
Continuous Nice Loop: 1/6/7/9 7= r7c8 =4= r7c7 -4- r3c7 -1- r1c9 -7- r1c8 =7= r7c8 =4 => r2c89,r7c8<>1, r7c8<>6, r1c6,r3c9<>7, r7c8<>9
Naked Single: r3c9=2
Hidden Single: r2c2=2
Locked Pair: 1,8 in r12c6 => r3c45,r58c6<>8
Naked Single: r5c6=5
Hidden Single: r6c9=5
Hidden Single: r6c8=1
Locked Candidates Type 1 (Pointing): 9 in b6 => r4c1<>9
Locked Candidates Type 1 (Pointing): 9 in b9 => r9c12<>9
Locked Candidates Type 2 (Claiming): 7 in c6 => r8c4<>7
2-String Kite: 8 in r5c5,r9c2 (connected by r5c3,r6c2) => r9c5<>8
Locked Pair: 5,6 in r79c5 => r3c5,r7c46,r8c46,r9c4<>6
Naked Single: r3c5=7
Naked Single: r3c4=6
Naked Single: r4c4=2
Naked Single: r4c6=6
Hidden Single: r8c9=6
Naked Single: r2c9=4
Naked Single: r9c8=9
Naked Single: r2c3=1
Naked Single: r3c7=1
Naked Single: r5c9=3
Naked Single: r4c8=4
Full House: r4c9=9
Full House: r4c1=3
Naked Single: r9c9=1
Full House: r1c9=7
Naked Single: r2c6=8
Full House: r1c6=1
Full House: r2c8=6
Full House: r1c8=8
Full House: r7c8=7
Naked Single: r8c7=3
Full House: r7c7=4
Naked Single: r1c1=9
Full House: r1c2=3
Naked Single: r7c6=2
Full House: r8c6=7
Hidden Single: r6c4=7
Hidden Single: r3c1=4
Full House: r3c3=8
Naked Single: r5c3=4
Full House: r5c5=8
Full House: r6c5=4
Naked Single: r8c3=2
Naked Single: r6c3=9
Full House: r6c2=8
Full House: r7c3=3
Naked Single: r9c2=6
Full House: r7c2=9
Naked Single: r7c4=1
Naked Single: r9c5=5
Full House: r7c5=6
Full House: r7c1=5
Naked Single: r8c4=8
Full House: r8c1=1
Full House: r9c1=8
Full House: r9c4=3
|
normal_sudoku_3585
|
....9...2..7..2..9.2.1..5.375.6..1.48....4..5..4....86648279351.7..316.8.3.8...27
|
361495872587362419429187563753628194896714235214953786648279351972531648135846927
|
normal_sudoku_3585
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . . . 9 . . . 2
. . 7 . . 2 . . 9
. 2 . 1 . . 5 . 3
7 5 . 6 . . 1 . 4
8 . . . . 4 . . 5
. . 4 . . . . 8 6
6 4 8 2 7 9 3 5 1
. 7 . . 3 1 6 . 8
. 3 . 8 . . . 2 7
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
361495872587362419429187563753628194896714235214953786648279351972531648135846927 #1 Medium (312)
Locked Candidates Type 2 (Claiming): 8 in r3 => r1c6,r2c5<>8
Locked Candidates Type 2 (Claiming): 9 in c2 => r45c3,r6c1<>9
Hidden Single: r4c8=9
Naked Single: r8c8=4
Full House: r9c7=9
Naked Single: r8c4=5
Naked Single: r9c6=6
Full House: r9c5=4
Hidden Single: r5c8=3
Hidden Single: r3c1=4
Hidden Single: r3c3=9
Naked Single: r8c3=2
Full House: r8c1=9
Naked Single: r4c3=3
Naked Single: r4c6=8
Full House: r4c5=2
Naked Single: r3c6=7
Naked Single: r5c5=1
Naked Single: r3c8=6
Full House: r3c5=8
Naked Single: r5c3=6
Naked Single: r6c5=5
Full House: r2c5=6
Naked Single: r2c8=1
Full House: r1c8=7
Naked Single: r5c2=9
Naked Single: r6c6=3
Full House: r1c6=5
Naked Single: r2c2=8
Naked Single: r5c4=7
Full House: r5c7=2
Full House: r6c4=9
Full House: r6c7=7
Naked Single: r6c2=1
Full House: r1c2=6
Full House: r6c1=2
Naked Single: r1c3=1
Full House: r9c3=5
Full House: r9c1=1
Naked Single: r2c7=4
Full House: r1c7=8
Naked Single: r1c1=3
Full House: r1c4=4
Full House: r2c4=3
Full House: r2c1=5
|
normal_sudoku_5497
|
.465..872...7.369.5...8.31.1...9.528.53...9.7...4..1...8..5.2399.2...451415.3.786
|
346519872821743695579286314164397528253861947798425163687154239932678451415932786
|
normal_sudoku_5497
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 4 6 5 . . 8 7 2
. . . 7 . 3 6 9 .
5 . . . 8 . 3 1 .
1 . . . 9 . 5 2 8
. 5 3 . . . 9 . 7
. . . 4 . . 1 . .
. 8 . . 5 . 2 3 9
9 . 2 . . . 4 5 1
4 1 5 . 3 . 7 8 6
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
346519872821743695579286314164397528253861947798425163687154239932678451415932786 #1 Easy (156)
Naked Single: r3c9=4
Full House: r2c9=5
Full House: r6c9=3
Naked Single: r1c5=1
Naked Single: r6c8=6
Full House: r5c8=4
Naked Single: r1c1=3
Full House: r1c6=9
Naked Single: r2c2=2
Naked Single: r7c3=7
Naked Single: r9c6=2
Full House: r9c4=9
Naked Single: r2c1=8
Naked Single: r2c5=4
Full House: r2c3=1
Naked Single: r3c3=9
Full House: r3c2=7
Naked Single: r4c3=4
Full House: r6c3=8
Naked Single: r7c1=6
Full House: r8c2=3
Naked Single: r3c6=6
Full House: r3c4=2
Naked Single: r4c2=6
Full House: r6c2=9
Naked Single: r5c1=2
Full House: r6c1=7
Naked Single: r7c4=1
Full House: r7c6=4
Naked Single: r4c6=7
Full House: r4c4=3
Naked Single: r5c5=6
Naked Single: r6c5=2
Full House: r6c6=5
Full House: r8c5=7
Naked Single: r8c6=8
Full House: r5c6=1
Full House: r5c4=8
Full House: r8c4=6
|
normal_sudoku_1750
|
.8..3.1.7.3.71...871.28.5..1.3...8..8421..6..957863241..4.7...6678.5....3.14.....
|
489635127235714968716289534163542879842197653957863241524978316678351492391426785
|
normal_sudoku_1750
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 8 . . 3 . 1 . 7
. 3 . 7 1 . . . 8
7 1 . 2 8 . 5 . .
1 . 3 . . . 8 . .
8 4 2 1 . . 6 . .
9 5 7 8 6 3 2 4 1
. . 4 . 7 . . . 6
6 7 8 . 5 . . . .
3 . 1 4 . . . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
489635127235714968716289534163542879842197653957863241524978316678351492391426785 #1 Easy (164)
Full House: r4c2=6
Naked Single: r5c5=9
Naked Single: r4c4=5
Naked Single: r9c5=2
Full House: r4c5=4
Naked Single: r4c9=9
Naked Single: r5c6=7
Full House: r4c6=2
Full House: r4c8=7
Naked Single: r9c2=9
Full House: r7c2=2
Full House: r7c1=5
Naked Single: r9c9=5
Naked Single: r9c7=7
Naked Single: r5c9=3
Full House: r5c8=5
Naked Single: r9c8=8
Full House: r9c6=6
Naked Single: r3c9=4
Full House: r8c9=2
Naked Single: r2c7=9
Naked Single: r3c6=9
Naked Single: r7c7=3
Full House: r8c7=4
Naked Single: r1c4=6
Naked Single: r3c3=6
Full House: r3c8=3
Naked Single: r8c6=1
Naked Single: r7c4=9
Full House: r8c4=3
Full House: r7c6=8
Full House: r8c8=9
Full House: r7c8=1
Naked Single: r1c8=2
Full House: r2c8=6
Naked Single: r2c3=5
Full House: r1c3=9
Naked Single: r1c1=4
Full House: r1c6=5
Full House: r2c6=4
Full House: r2c1=2
|
normal_sudoku_702
|
4973.58..25....49.8.6.9457.5.2.4.6..964...735...65...97.5...1.....5..9.2.294.83.7
|
497365821253187496816294573532749618964821735178653249785932164341576982629418357
|
normal_sudoku_702
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
4 9 7 3 . 5 8 . .
2 5 . . . . 4 9 .
8 . 6 . 9 4 5 7 .
5 . 2 . 4 . 6 . .
9 6 4 . . . 7 3 5
. . . 6 5 . . . 9
7 . 5 . . . 1 . .
. . . 5 . . 9 . 2
. 2 9 4 . 8 3 . 7
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
497365821253187496816294573532749618964821735178653249785932164341576982629418357 #1 Easy (240)
Full House: r6c7=2
Hidden Single: r6c8=4
Hidden Single: r9c8=5
Hidden Single: r3c4=2
Naked Single: r7c4=9
Hidden Single: r1c8=2
Hidden Single: r7c9=4
Hidden Single: r8c2=4
Hidden Single: r4c6=9
Hidden Single: r4c8=1
Full House: r4c9=8
Naked Single: r4c4=7
Full House: r4c2=3
Naked Single: r3c2=1
Full House: r2c3=3
Full House: r3c9=3
Naked Single: r6c1=1
Naked Single: r7c2=8
Full House: r6c2=7
Full House: r6c3=8
Full House: r6c6=3
Full House: r8c3=1
Naked Single: r9c1=6
Full House: r8c1=3
Full House: r9c5=1
Naked Single: r7c8=6
Full House: r8c8=8
Naked Single: r1c5=6
Full House: r1c9=1
Full House: r2c9=6
Naked Single: r7c6=2
Full House: r7c5=3
Naked Single: r8c5=7
Full House: r8c6=6
Naked Single: r5c6=1
Full House: r2c6=7
Naked Single: r2c5=8
Full House: r2c4=1
Full House: r5c4=8
Full House: r5c5=2
|
normal_sudoku_2302
|
.1..3.54...65.4..15.41..23...275...4859.2671..7..8.....6.8.9......3.5.9...3.1.4.5
|
718632549326594871594178236632751984859426713471983652165849327247365198983217465
|
normal_sudoku_2302
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 1 . . 3 . 5 4 .
. . 6 5 . 4 . . 1
5 . 4 1 . . 2 3 .
. . 2 7 5 . . . 4
8 5 9 . 2 6 7 1 .
. 7 . . 8 . . . .
. 6 . 8 . 9 . . .
. . . 3 . 5 . 9 .
. . 3 . 1 . 4 . 5
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
718632549326594871594178236632751984859426713471983652165849327247365198983217465 #1 Easy (180)
Naked Single: r5c9=3
Full House: r5c4=4
Naked Single: r4c2=3
Naked Single: r6c3=1
Naked Single: r6c4=9
Naked Single: r4c6=1
Full House: r6c6=3
Naked Single: r4c1=6
Full House: r6c1=4
Naked Single: r6c7=6
Naked Single: r4c8=8
Full House: r4c7=9
Naked Single: r6c9=2
Full House: r6c8=5
Naked Single: r2c8=7
Naked Single: r2c7=8
Naked Single: r7c9=7
Naked Single: r2c5=9
Naked Single: r7c8=2
Full House: r9c8=6
Naked Single: r8c7=1
Full House: r7c7=3
Full House: r8c9=8
Naked Single: r7c3=5
Naked Single: r7c5=4
Full House: r7c1=1
Naked Single: r2c2=2
Full House: r2c1=3
Naked Single: r9c4=2
Full House: r1c4=6
Naked Single: r8c3=7
Full House: r1c3=8
Naked Single: r8c2=4
Naked Single: r9c6=7
Full House: r8c5=6
Full House: r3c5=7
Full House: r8c1=2
Naked Single: r1c9=9
Full House: r3c9=6
Naked Single: r9c1=9
Full House: r1c1=7
Full House: r3c2=9
Full House: r1c6=2
Full House: r3c6=8
Full House: r9c2=8
|
normal_sudoku_2158
|
.92..54.6.5...27.973...952.....58...5.7.93.4..8.1....5..35.496.9...8.1...6.9.1...
|
892715436651432789734869521349258617517693842286147395173524968925386174468971253
|
normal_sudoku_2158
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 9 2 . . 5 4 . 6
. 5 . . . 2 7 . 9
7 3 . . . 9 5 2 .
. . . . 5 8 . . .
5 . 7 . 9 3 . 4 .
. 8 . 1 . . . . 5
. . 3 5 . 4 9 6 .
9 . . . 8 . 1 . .
. 6 . 9 . 1 . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
892715436651432789734869521349258617517693842286147395173524968925386174468971253 #1 Hard (1104)
Locked Candidates Type 1 (Pointing): 3 in b3 => r4689c8<>3
W-Wing: 1/8 in r1c1,r3c9 connected by 8 in r7c19 => r1c8,r3c3<>1
X-Wing: 1 c38 r24 => r2c15,r4c129<>1
Hidden Pair: 1,9 in r4c38 => r4c3<>4, r4c3<>6, r4c8<>7
2-String Kite: 7 in r4c9,r8c6 (connected by r4c4,r6c6) => r8c9<>7
W-Wing: 8/1 in r1c1,r3c9 connected by 1 in r2c38 => r1c8,r3c3<>8
Naked Single: r1c8=3
X-Wing: 8 c38 r29 => r2c14,r9c179<>8
Hidden Single: r5c7=8
Hidden Single: r5c4=6
Naked Single: r6c6=7
Full House: r8c6=6
Naked Single: r6c8=9
Naked Single: r4c8=1
Naked Single: r2c8=8
Full House: r3c9=1
Naked Single: r4c3=9
Naked Single: r5c9=2
Full House: r5c2=1
Hidden Single: r4c9=7
Naked Single: r7c9=8
Hidden Single: r2c3=1
Naked Single: r1c1=8
Naked Single: r1c4=7
Full House: r1c5=1
Hidden Single: r9c3=8
Hidden Single: r3c4=8
Hidden Single: r9c7=2
Naked Single: r9c1=4
Naked Single: r2c1=6
Full House: r3c3=4
Full House: r3c5=6
Naked Single: r8c3=5
Full House: r6c3=6
Naked Single: r9c9=3
Full House: r8c9=4
Naked Single: r8c8=7
Full House: r9c8=5
Full House: r9c5=7
Naked Single: r6c7=3
Full House: r4c7=6
Naked Single: r8c2=2
Full House: r8c4=3
Full House: r7c5=2
Naked Single: r6c1=2
Full House: r6c5=4
Full House: r2c5=3
Full House: r2c4=4
Full House: r4c4=2
Naked Single: r4c2=4
Full House: r7c2=7
Full House: r7c1=1
Full House: r4c1=3
|
normal_sudoku_3137
|
.....8.....7.269...3.41758...61...29....6217.1..7..65...1.7.2..4....1..5.5...3...
|
214958367587326941639417582376145829945862173128739654891574236463281795752693418
|
normal_sudoku_3137
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . . . . 8 . . .
. . 7 . 2 6 9 . .
. 3 . 4 1 7 5 8 .
. . 6 1 . . . 2 9
. . . . 6 2 1 7 .
1 . . 7 . . 6 5 .
. . 1 . 7 . 2 . .
4 . . . . 1 . . 5
. 5 . . . 3 . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
214958367587326941639417582376145829945862173128739654891574236463281795752693418 #1 Extreme (9892)
Locked Candidates Type 1 (Pointing): 9 in b2 => r1c123<>9
Skyscraper: 5 in r4c5,r5c3 (connected by r1c35) => r4c1,r5c4<>5
Discontinuous Nice Loop: 9 r5c4 -9- r1c4 =9= r1c5 =5= r4c5 -5- r4c6 -4- r6c6 -9- r5c4 => r5c4<>9
Locked Candidates Type 1 (Pointing): 9 in b5 => r6c23<>9
XY-Wing: 3/5/8 in r2c14,r5c4 => r5c1<>8
Discontinuous Nice Loop: 8 r4c5 -8- r5c4 -3- r2c4 -5- r1c5 =5= r4c5 => r4c5<>8
Grouped Discontinuous Nice Loop: 4 r1c9 -4- r1c23 =4= r2c2 =8= r2c1 =5= r2c4 -5- r7c4 =5= r7c6 -5- r4c6 -4- r4c7 =4= r56c9 -4- r1c9 => r1c9<>4
Almost Locked Set XZ-Rule: A=r9c13457 {246789}, B=r25679c9 {134678}, X=7, Z=6 => r9c8<>6
Almost Locked Set XZ-Rule: A=r245678c2 {1246789}, B=r2567c9 {13468}, X=1, Z=6 => r7c1<>6
Almost Locked Set XZ-Rule: A=r2789c8 {13469}, B=r2567c9 {13468}, X=6, Z=1 => r1c8<>1
Discontinuous Nice Loop: 6 r1c2 -6- r3c1 =6= r3c9 =2= r1c9 =1= r1c2 => r1c2<>6
Locked Candidates Type 1 (Pointing): 6 in b1 => r9c1<>6
Almost Locked Set XZ-Rule: A=r25679c9 {134678}, B=r7c12,r89c3,r9c1 {236789}, X=7, Z=6 => r7c8<>6
Almost Locked Set XY-Wing: A=r3c3 {29}, B=r12456c2 {124789}, C=r123457c1 {2356789}, X,Y=2,7, Z=9 => r5c3<>9
Almost Locked Set Chain: 2- r123457c1 {2356789} -7- r124567c2 {1246789} -6- r2567c9 {13468} -1- r1c13,r2c12,r3c13 {1245689} -2 => r1c2<>2
Forcing Chain Contradiction in c9 => r1c2=1
r1c2<>1 r1c9=1 r1c9<>6
r1c2<>1 r1c9=1 r1c9<>2 r3c9=2 r3c9<>6
r1c2<>1 r1c9=1 r1c9<>7 r1c7=7 r8c7<>7 r8c2=7 r8c2<>6 r7c2=6 r7c9<>6
r1c2<>1 r1c9=1 r1c9<>7 r9c9=7 r9c9<>6
Forcing Chain Contradiction in c7 => r1c4<>5
r1c4=5 r2c4<>5 r2c1=5 r2c1<>8 r2c2=8 r2c2<>4 r1c3=4 r1c7<>4
r1c4=5 r1c5<>5 r4c5=5 r4c6<>5 r4c6=4 r4c7<>4
r1c4=5 r7c4<>5 r7c6=5 r7c6<>4 r9c5=4 r9c7<>4
Forcing Chain Contradiction in r7 => r1c8<>4
r1c8=4 r1c3<>4 r2c2=4 r2c2<>8 r2c1=8 r2c1<>5 r2c4=5 r7c4<>5 r7c6=5 r7c6<>4
r1c8=4 r7c8<>4
r1c8=4 r1c3<>4 r2c2=4 r2c2<>8 r2c1=8 r2c1<>5 r2c4=5 r7c4<>5 r7c6=5 r4c6<>5 r4c6=4 r4c7<>4 r56c9=4 r7c9<>4
Forcing Chain Contradiction in r8 => r1c3<>2
r1c3=2 r13c1<>2 r9c1=2 r9c1<>7 r8c2=7 r8c2<>6
r1c3=2 r13c1<>2 r9c1=2 r9c4<>2 r8c4=2 r8c4<>6
r1c3=2 r1c3<>4 r2c2=4 r2c2<>8 r2c1=8 r2c1<>5 r2c4=5 r2c4<>3 r1c45=3 r1c8<>3 r1c8=6 r8c8<>6
Naked Triple: 4,5,8 in r1c3,r2c12 => r1c1<>5
Discontinuous Nice Loop: 8 r5c2 -8- r2c2 =8= r2c1 =5= r5c1 =9= r5c2 => r5c2<>8
Forcing Chain Contradiction in r8 => r1c9<>3
r1c9=3 r1c9<>7 r1c7=7 r8c7<>7 r8c2=7 r8c2<>6
r1c9=3 r1c9<>7 r9c9=7 r9c9<>6 r9c4=6 r8c4<>6
r1c9=3 r1c8<>3 r1c8=6 r8c8<>6
Forcing Chain Contradiction in r7 => r2c9<>4
r2c9=4 r56c9<>4 r4c7=4 r4c7<>8 r4c12=8 r56c3<>8 r89c3=8 r7c1<>8
r2c9=4 r2c2<>4 r2c2=8 r7c2<>8
r2c9=4 r2c2<>4 r2c2=8 r2c1<>8 r2c1=5 r2c4<>5 r7c4=5 r7c4<>8
r2c9=4 r56c9<>4 r4c7=4 r4c7<>8 r89c7=8 r7c9<>8
Discontinuous Nice Loop: 4 r9c8 -4- r9c5 =4= r7c6 =5= r7c4 -5- r2c4 -3- r2c9 -1- r2c8 =1= r9c8 => r9c8<>4
Forcing Chain Contradiction in r7 => r4c1<>8
r4c1=8 r7c1<>8
r4c1=8 r2c1<>8 r2c2=8 r7c2<>8
r4c1=8 r2c1<>8 r2c1=5 r2c4<>5 r7c4=5 r7c4<>8
r4c1=8 r4c7<>8 r89c7=8 r7c9<>8
Discontinuous Nice Loop: 4 r4c7 -4- r1c7 =4= r1c3 -4- r2c2 -8- r4c2 =8= r4c7 => r4c7<>4
Locked Candidates Type 1 (Pointing): 4 in b6 => r79c9<>4
Finned Swordfish: 4 r247 c268 fr4c5 => r6c6<>4
Naked Single: r6c6=9
Almost Locked Set Chain: 4- r2c12 {458} -5- r134579c1 {2356789} -8- r39c3 {289} -2- r4c12,r5c123,r6c3 {2345789} -4 => r6c2<>4
Forcing Chain Contradiction in r8 => r2c9=1
r2c9<>1 r2c9=3 r56c9<>3 r4c7=3 r4c7<>8 r4c2=8 r4c2<>7 r8c2=7 r8c2<>6
r2c9<>1 r9c9=1 r9c9<>6 r9c4=6 r8c4<>6
r2c9<>1 r2c9=3 r1c8<>3 r1c8=6 r8c8<>6
Hidden Single: r9c8=1
AIC: 8 8- r5c4 -3- r2c4 =3= r2c8 =4= r7c8 =9= r8c8 -9- r8c5 -8 => r6c5,r789c4<>8
Hidden Single: r5c4=8
Locked Candidates Type 1 (Pointing): 3 in b5 => r1c5<>3
Finned Swordfish: 8 r247 c127 fr7c9 => r89c7<>8
Hidden Single: r4c7=8
Locked Candidates Type 1 (Pointing): 3 in b6 => r7c9<>3
Naked Pair: 3,4 in r6c59 => r6c3<>3, r6c3<>4
Naked Triple: 2,8,9 in r369c3 => r8c3<>2, r8c3<>8, r8c3<>9
Naked Single: r8c3=3
Naked Single: r8c7=7
Naked Single: r9c7=4
Full House: r1c7=3
Naked Single: r1c4=9
Naked Single: r1c8=6
Naked Single: r2c8=4
Naked Single: r1c5=5
Full House: r2c4=3
Naked Single: r1c1=2
Naked Single: r3c9=2
Full House: r1c9=7
Full House: r1c3=4
Naked Single: r8c8=9
Full House: r7c8=3
Naked Single: r2c2=8
Full House: r2c1=5
Naked Single: r3c3=9
Full House: r3c1=6
Naked Single: r5c3=5
Naked Single: r8c5=8
Naked Single: r6c2=2
Naked Single: r9c5=9
Naked Single: r6c3=8
Full House: r9c3=2
Naked Single: r8c2=6
Full House: r8c4=2
Naked Single: r9c4=6
Full House: r7c4=5
Full House: r7c6=4
Full House: r4c6=5
Naked Single: r7c2=9
Naked Single: r9c9=8
Full House: r7c9=6
Full House: r7c1=8
Full House: r9c1=7
Naked Single: r5c2=4
Full House: r4c2=7
Naked Single: r4c1=3
Full House: r4c5=4
Full House: r5c1=9
Full House: r5c9=3
Full House: r6c5=3
Full House: r6c9=4
|
normal_sudoku_2512
|
7..1....33.89..12.149372856286.1....51...9..2...2...816...9......7..136.8..6.7.45
|
725168493368954127149372856286513974514789632973246581632495718457821369891637245
|
normal_sudoku_2512
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
7 . . 1 . . . . 3
3 . 8 9 . . 1 2 .
1 4 9 3 7 2 8 5 6
2 8 6 . 1 . . . .
5 1 . . . 9 . . 2
. . . 2 . . . 8 1
6 . . . 9 . . . .
. . 7 . . 1 3 6 .
8 . . 6 . 7 . 4 5
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
725168493368954127149372856286513974514789632973246581632495718457821369891637245 #1 Easy (198)
Naked Single: r1c8=9
Naked Single: r1c7=4
Full House: r2c9=7
Naked Single: r7c9=8
Naked Single: r8c9=9
Full House: r4c9=4
Naked Single: r8c1=4
Full House: r6c1=9
Naked Single: r9c7=2
Naked Single: r7c7=7
Full House: r7c8=1
Naked Single: r9c5=3
Naked Single: r5c7=6
Naked Single: r9c2=9
Full House: r9c3=1
Naked Single: r6c7=5
Full House: r4c7=9
Hidden Single: r6c2=7
Hidden Single: r1c6=8
Hidden Single: r8c5=2
Naked Single: r8c2=5
Full House: r8c4=8
Naked Single: r2c2=6
Naked Single: r1c2=2
Full House: r1c3=5
Full House: r7c2=3
Full House: r1c5=6
Full House: r7c3=2
Naked Single: r6c5=4
Naked Single: r2c5=5
Full House: r5c5=8
Full House: r2c6=4
Naked Single: r5c4=7
Naked Single: r6c3=3
Full House: r5c3=4
Full House: r5c8=3
Full House: r6c6=6
Full House: r4c8=7
Naked Single: r7c6=5
Full House: r4c6=3
Full House: r4c4=5
Full House: r7c4=4
|
normal_sudoku_2332
|
..7.3946.6.9.4.3.73487..5292.....1..8..........5.87..298..5.......178..676.4..8..
|
157239468629845317348716529273964185896521734415387692984653271532178946761492853
|
normal_sudoku_2332
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 7 . 3 9 4 6 .
6 . 9 . 4 . 3 . 7
3 4 8 7 . . 5 2 9
2 . . . . . 1 . .
8 . . . . . . . .
. . 5 . 8 7 . . 2
9 8 . . 5 . . . .
. . . 1 7 8 . . 6
7 6 . 4 . . 8 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
157239468629845317348716529273964185896521734415387692984653271532178946761492853 #1 Easy (254)
Hidden Single: r9c5=9
Naked Single: r4c5=6
Naked Single: r3c5=1
Full House: r3c6=6
Full House: r5c5=2
Hidden Single: r5c3=6
Hidden Single: r6c7=6
Hidden Single: r7c4=6
Hidden Single: r5c6=1
Hidden Single: r4c6=4
Naked Single: r4c3=3
Hidden Single: r6c1=4
Naked Single: r8c1=5
Full House: r1c1=1
Naked Single: r1c9=8
Full House: r2c8=1
Naked Single: r4c9=5
Naked Single: r4c4=9
Naked Single: r4c2=7
Full House: r4c8=8
Naked Single: r6c4=3
Full House: r5c4=5
Naked Single: r5c2=9
Full House: r6c2=1
Full House: r6c8=9
Naked Single: r1c4=2
Full House: r1c2=5
Full House: r2c4=8
Full House: r2c6=5
Full House: r2c2=2
Full House: r8c2=3
Naked Single: r5c7=7
Naked Single: r8c8=4
Naked Single: r7c7=2
Full House: r8c7=9
Full House: r8c3=2
Naked Single: r5c8=3
Full House: r5c9=4
Naked Single: r7c6=3
Full House: r9c6=2
Naked Single: r9c3=1
Full House: r7c3=4
Naked Single: r7c8=7
Full House: r9c8=5
Full House: r7c9=1
Full House: r9c9=3
|
normal_sudoku_1238
|
8...........4...8.7..839.2.1279685343985.4..2....2....971.....8.8.19...52..6871..
|
842716953639452781715839426127968534398574612564321897971245368486193275253687149
|
normal_sudoku_1238
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
8 . . . . . . . .
. . . 4 . . . 8 .
7 . . 8 3 9 . 2 .
1 2 7 9 6 8 5 3 4
3 9 8 5 . 4 . . 2
. . . . 2 . . . .
9 7 1 . . . . . 8
. 8 . 1 9 . . . 5
2 . . 6 8 7 1 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
842716953639452781715839426127968534398574612564321897971245368486193275253687149 #1 Easy (226)
Hidden Single: r6c7=8
Hidden Single: r1c8=5
Hidden Single: r7c5=4
Naked Single: r7c8=6
Hidden Single: r7c6=5
Hidden Single: r2c5=5
Naked Single: r2c1=6
Naked Single: r8c1=4
Full House: r6c1=5
Naked Single: r8c8=7
Naked Single: r5c8=1
Naked Single: r5c5=7
Full House: r1c5=1
Full House: r5c7=6
Naked Single: r6c8=9
Full House: r6c9=7
Full House: r9c8=4
Naked Single: r6c4=3
Full House: r6c6=1
Naked Single: r2c6=2
Naked Single: r3c7=4
Naked Single: r7c4=2
Full House: r1c4=7
Full House: r1c6=6
Full House: r8c6=3
Full House: r7c7=3
Naked Single: r3c3=5
Naked Single: r8c3=6
Full House: r8c7=2
Full House: r9c9=9
Naked Single: r1c7=9
Full House: r2c7=7
Naked Single: r3c2=1
Full House: r3c9=6
Naked Single: r9c3=3
Full House: r9c2=5
Naked Single: r6c3=4
Full House: r6c2=6
Naked Single: r1c9=3
Full House: r2c9=1
Naked Single: r2c2=3
Full House: r2c3=9
Full House: r1c3=2
Full House: r1c2=4
|
normal_sudoku_2179
|
.78.534..39.4718...426..7..5147...26987.....3263....7872..6.....3.14...745...7.81
|
678253419395471862142689735514738926987526143263914578721865394839142657456397281
|
normal_sudoku_2179
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 7 8 . 5 3 4 . .
3 9 . 4 7 1 8 . .
. 4 2 6 . . 7 . .
5 1 4 7 . . . 2 6
9 8 7 . . . . . 3
2 6 3 . . . . 7 8
7 2 . . 6 . . . .
. 3 . 1 4 . . . 7
4 5 . . . 7 . 8 1
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
678253419395471862142689735514738926987526143263914578721865394839142657456397281 #1 Easy (156)
Naked Single: r3c1=1
Naked Single: r4c7=9
Naked Single: r1c1=6
Full House: r2c3=5
Full House: r8c1=8
Naked Single: r4c6=8
Full House: r4c5=3
Naked Single: r2c8=6
Full House: r2c9=2
Naked Single: r3c6=9
Naked Single: r1c9=9
Naked Single: r1c4=2
Full House: r3c5=8
Full House: r1c8=1
Naked Single: r3c9=5
Full House: r3c8=3
Full House: r7c9=4
Naked Single: r7c6=5
Naked Single: r5c4=5
Naked Single: r6c6=4
Naked Single: r7c7=3
Naked Single: r7c8=9
Naked Single: r8c6=2
Full House: r5c6=6
Naked Single: r5c7=1
Naked Single: r5c8=4
Full House: r8c8=5
Full House: r5c5=2
Full House: r6c7=5
Naked Single: r6c4=9
Full House: r6c5=1
Full House: r9c5=9
Naked Single: r7c3=1
Full House: r7c4=8
Full House: r9c4=3
Naked Single: r8c7=6
Full House: r8c3=9
Full House: r9c3=6
Full House: r9c7=2
|
normal_sudoku_937
|
..2.1.......7645.....82....5..4762....3.9.84.....82.......3.468176248359438659127
|
852913674319764582647825931581476293723591846964382715295137468176248359438659127
|
normal_sudoku_937
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 2 . 1 . . . .
. . . 7 6 4 5 . .
. . . 8 2 . . . .
5 . . 4 7 6 2 . .
. . 3 . 9 . 8 4 .
. . . . 8 2 . . .
. . . . 3 . 4 6 8
1 7 6 2 4 8 3 5 9
4 3 8 6 5 9 1 2 7
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
852913674319764582647825931581476293723591846964382715295137468176248359438659127 #1 Easy (230)
Naked Single: r7c4=1
Full House: r7c6=7
Naked Single: r5c4=5
Naked Single: r5c6=1
Full House: r6c4=3
Full House: r1c4=9
Naked Single: r5c9=6
Naked Single: r5c2=2
Full House: r5c1=7
Hidden Single: r4c2=8
Hidden Single: r2c9=2
Hidden Single: r6c9=5
Hidden Single: r7c1=2
Hidden Single: r3c3=7
Hidden Single: r6c3=4
Hidden Single: r7c3=5
Full House: r7c2=9
Naked Single: r2c2=1
Naked Single: r2c3=9
Full House: r4c3=1
Naked Single: r6c2=6
Full House: r6c1=9
Naked Single: r4c9=3
Full House: r4c8=9
Naked Single: r6c7=7
Full House: r6c8=1
Naked Single: r1c9=4
Full House: r3c9=1
Naked Single: r1c7=6
Full House: r3c7=9
Naked Single: r3c8=3
Naked Single: r1c2=5
Full House: r3c2=4
Naked Single: r2c8=8
Full House: r1c8=7
Full House: r2c1=3
Naked Single: r3c1=6
Full House: r3c6=5
Full House: r1c6=3
Full House: r1c1=8
|
normal_sudoku_1755
|
.15..283..3...621926....7.48.6..794.3.....6...9.62.5..1..27.3656..35.42.5.3.681.7
|
915742836437586219268913754856137942342895671791624583184279365679351428523468197
|
normal_sudoku_1755
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 1 5 . . 2 8 3 .
. 3 . . . 6 2 1 9
2 6 . . . . 7 . 4
8 . 6 . . 7 9 4 .
3 . . . . . 6 . .
. 9 . 6 2 . 5 . .
1 . . 2 7 . 3 6 5
6 . . 3 5 . 4 2 .
5 . 3 . 6 8 1 . 7
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
915742836437586219268913754856137942342895671791624583184279365679351428523468197 #1 Easy (156)
Naked Single: r1c9=6
Full House: r3c8=5
Naked Single: r8c9=8
Full House: r9c8=9
Naked Single: r8c2=7
Naked Single: r9c4=4
Full House: r9c2=2
Naked Single: r8c3=9
Full House: r8c6=1
Full House: r7c6=9
Naked Single: r4c2=5
Naked Single: r3c3=8
Naked Single: r3c6=3
Naked Single: r4c4=1
Naked Single: r5c2=4
Full House: r7c2=8
Full House: r7c3=4
Naked Single: r6c6=4
Full House: r5c6=5
Naked Single: r3c4=9
Full House: r3c5=1
Naked Single: r4c5=3
Full House: r4c9=2
Naked Single: r6c1=7
Naked Single: r2c3=7
Naked Single: r1c4=7
Naked Single: r1c5=4
Full House: r1c1=9
Full House: r2c1=4
Naked Single: r5c4=8
Full House: r2c4=5
Full House: r2c5=8
Full House: r5c5=9
Naked Single: r5c9=1
Full House: r6c9=3
Naked Single: r6c3=1
Full House: r6c8=8
Full House: r5c8=7
Full House: r5c3=2
|
normal_sudoku_1754
|
..971...84...6.975...49..6......76....79248533.518679..36.71.8...86....7...8.92.6
|
659712348412368975873495162984537621167924853325186794536271489298643517741859236
|
normal_sudoku_1754
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 9 7 1 . . . 8
4 . . . 6 . 9 7 5
. . . 4 9 . . 6 .
. . . . . 7 6 . .
. . 7 9 2 4 8 5 3
3 . 5 1 8 6 7 9 .
. 3 6 . 7 1 . 8 .
. . 8 6 . . . . 7
. . . 8 . 9 2 . 6
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
659712348412368975873495162984537621167924853325186794536271489298643517741859236 #1 Easy (184)
Hidden Single: r7c9=9
Hidden Single: r7c7=4
Naked Single: r1c7=3
Naked Single: r3c7=1
Full House: r8c7=5
Naked Single: r3c9=2
Full House: r1c8=4
Naked Single: r3c3=3
Naked Single: r6c9=4
Full House: r4c9=1
Full House: r6c2=2
Full House: r4c8=2
Naked Single: r4c3=4
Naked Single: r9c3=1
Full House: r2c3=2
Naked Single: r9c8=3
Full House: r8c8=1
Naked Single: r2c4=3
Naked Single: r2c6=8
Full House: r2c2=1
Naked Single: r4c4=5
Full House: r4c5=3
Full House: r7c4=2
Full House: r7c1=5
Naked Single: r3c6=5
Full House: r1c6=2
Full House: r8c6=3
Naked Single: r5c2=6
Full House: r5c1=1
Naked Single: r8c5=4
Full House: r9c5=5
Naked Single: r1c1=6
Full House: r1c2=5
Naked Single: r9c1=7
Full House: r9c2=4
Naked Single: r8c2=9
Full House: r8c1=2
Naked Single: r3c1=8
Full House: r3c2=7
Full House: r4c2=8
Full House: r4c1=9
|
normal_sudoku_175
|
...87..5.78..9..3..4961.287..17..892..7..831.8..9.174..2.187.6..7.349.28..85..47.
|
612873954785294631349615287451736892297458316863921745924187563576349128138562479
|
normal_sudoku_175
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . . 8 7 . . 5 .
7 8 . . 9 . . 3 .
. 4 9 6 1 . 2 8 7
. . 1 7 . . 8 9 2
. . 7 . . 8 3 1 .
8 . . 9 . 1 7 4 .
. 2 . 1 8 7 . 6 .
. 7 . 3 4 9 . 2 8
. . 8 5 . . 4 7 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
612873954785294631349615287451736892297458316863921745924187563576349128138562479 #1 Hard (872)
Hidden Single: r7c3=4
Locked Candidates Type 1 (Pointing): 1 in b1 => r1c79<>1
Locked Candidates Type 1 (Pointing): 3 in b2 => r4c6<>3
Locked Candidates Type 1 (Pointing): 5 in b2 => r4c6<>5
Locked Candidates Type 1 (Pointing): 5 in b6 => r7c9<>5
Locked Candidates Type 1 (Pointing): 6 in b6 => r12c9<>6
Locked Candidates Type 1 (Pointing): 6 in b8 => r9c12<>6
Locked Candidates Type 2 (Claiming): 5 in c2 => r45c1,r6c3<>5
Skyscraper: 2 in r1c1,r2c4 (connected by r5c14) => r1c6,r2c3<>2
Naked Pair: 5,6 in r28c3 => r16c3<>6
XY-Wing: 1/6/5 in r2c37,r8c7 => r8c3<>5
Naked Single: r8c3=6
Naked Single: r2c3=5
Naked Single: r3c1=3
Full House: r3c6=5
Naked Single: r1c3=2
Full House: r6c3=3
Hidden Single: r2c7=6
Naked Single: r1c7=9
Naked Single: r1c9=4
Full House: r2c9=1
Naked Single: r7c7=5
Full House: r8c7=1
Full House: r8c1=5
Naked Single: r1c6=3
Naked Single: r7c1=9
Full House: r7c9=3
Full House: r9c9=9
Naked Single: r9c1=1
Full House: r9c2=3
Naked Single: r1c1=6
Full House: r1c2=1
Naked Single: r4c1=4
Full House: r5c1=2
Naked Single: r4c6=6
Naked Single: r5c4=4
Full House: r2c4=2
Full House: r2c6=4
Full House: r9c6=2
Full House: r9c5=6
Naked Single: r4c2=5
Full House: r4c5=3
Naked Single: r5c5=5
Full House: r6c5=2
Naked Single: r6c2=6
Full House: r5c2=9
Full House: r5c9=6
Full House: r6c9=5
|
normal_sudoku_3195
|
....83.92..9..58.38...9..1.6.7359.8.3..8.6..55....2.3....5.13.91..92..589...3812.
|
461783592279165843853294716617359284324816975598472631782541369136927458945638127
|
normal_sudoku_3195
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . . . 8 3 . 9 2
. . 9 . . 5 8 . 3
8 . . . 9 . . 1 .
6 . 7 3 5 9 . 8 .
3 . . 8 . 6 . . 5
5 . . . . 2 . 3 .
. . . 5 . 1 3 . 9
1 . . 9 2 . . 5 8
9 . . . 3 8 1 2 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
461783592279165843853294716617359284324816975598472631782541369136927458945638127 #1 Extreme (8080)
X-Wing: 6 c58 r27 => r2c24,r7c23<>6
Forcing Chain Contradiction in c8 => r2c2<>4
r2c2=4 r2c8<>4
r2c2=4 r4c2<>4 r4c79=4 r5c8<>4
r2c2=4 r12c1<>4 r7c1=4 r7c8<>4
Forcing Chain Contradiction in b3 => r3c2<>4
r3c2=4 r1c1<>4 r1c1=7 r1c7<>7
r3c2=4 r4c2<>4 r4c79=4 r5c8<>4 r5c8=7 r2c8<>7
r3c2=4 r3c6<>4 r3c6=7 r3c7<>7
r3c2=4 r3c6<>4 r3c6=7 r3c9<>7
Forcing Net Verity => r4c7=2
r3c9=4 (r9c9<>4) r3c6<>4 r8c6=4 (r9c4<>4) r8c7<>4 r7c8=4 r7c8<>6 r7c5=6 r9c4<>6 r9c4=7 (r9c9<>7) r8c6<>7 r3c6=7 r3c9<>7 r6c9=7 r5c8<>7 r5c8=4 r4c7<>4 r4c7=2
r3c9=6 r6c9<>6 r6c7=6 r6c7<>9 r6c2=9 r5c2<>9 r5c7=9 r5c7<>2 r4c7=2
r3c9=7 (r9c9<>7) r3c6<>7 r8c6=7 r8c7<>7 r7c8=7 r5c8<>7 r5c8=4 r4c7<>4 r4c7=2
Discontinuous Nice Loop: 4 r6c2 -4- r4c2 -1- r4c9 =1= r6c9 =6= r6c7 =9= r6c2 => r6c2<>4
Discontinuous Nice Loop: 4 r6c3 -4- r4c2 -1- r4c9 =1= r6c9 =6= r6c7 =9= r6c2 =8= r6c3 => r6c3<>4
Discontinuous Nice Loop: 4 r7c2 -4- r4c2 -1- r6c3 -8- r6c2 =8= r7c2 => r7c2<>4
Almost Locked Set XZ-Rule: A=r4c2 {14}, B=r12c1,r2c2 {1247}, X=1, Z=4 => r1c2<>4
Almost Locked Set XY-Wing: A=r4c2 {14}, B=r8c67 {467}, C=r4c9,r5c78,r6c7 {14679}, X,Y=1,6, Z=4 => r8c2<>4
Forcing Net Verity => r5c7=9
r3c9=4 (r9c9<>4) r3c6<>4 r8c6=4 (r9c4<>4) r8c7<>4 r7c8=4 (r5c8<>4 r5c8=7 r5c7<>7) r7c8<>6 r7c5=6 r9c4<>6 r9c4=7 (r9c9<>7) r8c6<>7 r3c6=7 r3c9<>7 r6c9=7 r5c8<>7 r5c8=4 r5c7<>4 r5c7=9
r3c9=6 r6c9<>6 r6c7=6 r6c7<>9 r6c2=9 r5c2<>9 r5c7=9
r3c9=7 (r3c9<>4) (r9c9<>7) r3c6<>7 r8c6=7 (r9c4<>7) r8c7<>7 r7c8=7 r7c8<>6 r7c5=6 r9c4<>6 r9c4=4 (r9c9<>4) r9c4<>6 r7c5=6 r2c5<>6 r2c8=6 r3c9<>6 r3c9=7 (r3c9<>4) (r9c9<>7) r9c9<>7 r9c9=6 r6c9<>6 r6c7=6 r6c7<>9 r6c2=9 r5c2<>9 r5c7=9
Hidden Single: r6c2=9
Hidden Single: r6c3=8
Hidden Single: r7c2=8
Almost Locked Set XZ-Rule: A=r12c1 {247}, B=r245c2 {1247}, X=7, Z=2 => r3c2<>2
Forcing Net Verity => r1c1=4
r1c7=7 r1c1<>7 r1c1=4
r2c8=7 (r7c8<>7) r5c8<>7 r5c5=7 r7c5<>7 r7c1=7 r1c1<>7 r1c1=4
r3c7=7 (r3c6<>7 r8c6=7 r7c5<>7) (r3c7<>4) (r3c6<>7 r3c6=4 r3c9<>4) r3c7<>5 r1c7=5 r1c7<>4 r2c8=4 r5c8<>4 r5c8=7 r7c8<>7 r7c1=7 r1c1<>7 r1c1=4
r3c9=7 (r2c8<>7) (r1c7<>7) (r3c7<>7) r3c6<>7 (r3c6=4 r8c6<>4) (r3c6=4 r1c4<>4) (r3c6=4 r2c4<>4) (r3c6=4 r2c5<>4) r8c6=7 (r9c4<>7) r8c7<>7 r6c7=7 r5c8<>7 r7c8=7 r7c8<>6 r7c5=6 r9c4<>6 r9c4=4 r9c4<>6 r7c5=6 r2c5<>6 r2c8=6 r2c8<>4 r2c1=4 (r7c1<>4) (r1c1<>4) r1c3<>4 r1c7=4 r8c7<>4 r8c3=4 r7c3<>4 r7c3=2 r7c1<>2 r7c1=7 r1c1<>7 r1c1=4
Grouped Discontinuous Nice Loop: 4 r9c4 =6= r7c5 -6- r7c8 =6= r2c8 =4= r2c45 -4- r3c6 =4= r8c6 -4- r9c4 => r9c4<>4
Discontinuous Nice Loop: 7 r2c5 -7- r3c6 -4- r8c6 =4= r7c5 =6= r2c5 => r2c5<>7
Discontinuous Nice Loop: 7 r3c4 -7- r3c6 -4- r8c6 =4= r7c5 -4- r7c3 -2- r3c3 =2= r3c4 => r3c4<>7
Grouped Discontinuous Nice Loop: 4 r5c2 -4- r4c2 =4= r4c9 -4- r9c9 =4= r9c23 -4- r7c3 -2- r5c3 =2= r5c2 => r5c2<>4
Almost Locked Set XZ-Rule: A=r7c13,r9c23 {24567}, B=r8c6,r9c4 {467}, X=6, Z=4 => r8c3<>4
Hidden Rectangle: 3/6 in r3c23,r8c23 => r3c2<>6
Forcing Chain Contradiction in r7c5 => r2c8<>7
r2c8=7 r2c8<>4 r2c45=4 r3c6<>4 r8c6=4 r7c5<>4
r2c8=7 r2c8<>6 r2c5=6 r7c5<>6
r2c8=7 r2c1<>7 r7c1=7 r7c5<>7
Empty Rectangle: 7 in b3 (r38c6) => r8c7<>7
XY-Wing: 4/7/6 in r8c67,r9c4 => r9c9<>6
W-Wing: 7/4 in r3c6,r9c9 connected by 4 in r8c67 => r3c9<>7
Locked Candidates Type 1 (Pointing): 7 in b3 => r6c7<>7
Naked Pair: 4,6 in r2c8,r3c9 => r13c7<>6, r3c7<>4
Turbot Fish: 4 r6c7 =4= r8c7 -4- r8c6 =4= r7c5 => r6c5<>4
W-Wing: 4/6 in r2c8,r6c7 connected by 6 in r36c9 => r5c8<>4
Naked Single: r5c8=7
Hidden Single: r9c9=7
Naked Single: r9c4=6
Hidden Single: r2c5=6
Naked Single: r2c8=4
Full House: r7c8=6
Full House: r8c7=4
Naked Single: r3c9=6
Naked Single: r6c7=6
Naked Single: r8c6=7
Full House: r3c6=4
Full House: r7c5=4
Naked Single: r3c4=2
Naked Single: r5c5=1
Full House: r6c5=7
Full House: r6c4=4
Full House: r6c9=1
Full House: r4c9=4
Full House: r4c2=1
Naked Single: r7c3=2
Full House: r7c1=7
Full House: r2c1=2
Naked Single: r5c2=2
Full House: r5c3=4
Naked Single: r2c2=7
Full House: r2c4=1
Full House: r1c4=7
Naked Single: r9c3=5
Full House: r9c2=4
Naked Single: r1c7=5
Full House: r3c7=7
Naked Single: r3c3=3
Full House: r3c2=5
Naked Single: r1c2=6
Full House: r1c3=1
Full House: r8c3=6
Full House: r8c2=3
|
normal_sudoku_4848
|
1.57.28....2.9...448.3....2.....93.5.5.43.92.6.....4....6.84.1..1.5..2.......7..3
|
165742839372896154489351762824619375751438926693275481236984517917563248548127693
|
normal_sudoku_4848
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
1 . 5 7 . 2 8 . .
. . 2 . 9 . . . 4
4 8 . 3 . . . . 2
. . . . . 9 3 . 5
. 5 . 4 3 . 9 2 .
6 . . . . . 4 . .
. . 6 . 8 4 . 1 .
. 1 . 5 . . 2 . .
. . . . . 7 . . 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
165742839372896154489351762824619375751438926693275481236984517917563248548127693 #1 Hard (600)
Naked Single: r8c5=6
Naked Single: r1c5=4
Naked Single: r8c6=3
Hidden Single: r6c3=3
Hidden Single: r6c2=9
Hidden Single: r3c3=9
Locked Candidates Type 1 (Pointing): 7 in b1 => r2c78<>7
Locked Candidates Type 1 (Pointing): 2 in b4 => r4c45<>2
Hidden Rectangle: 4/8 in r8c38,r9c38 => r8c8<>8
Sashimi X-Wing: 6 r35 c69 fr3c7 fr3c8 => r1c9<>6
Naked Single: r1c9=9
Naked Single: r7c9=7
Naked Single: r7c7=5
Naked Single: r8c9=8
Naked Single: r9c7=6
Naked Single: r6c9=1
Full House: r5c9=6
Naked Single: r2c7=1
Full House: r3c7=7
Hidden Single: r9c1=5
Hidden Single: r4c4=6
Naked Single: r2c4=8
Naked Single: r6c4=2
Naked Single: r7c4=9
Full House: r9c4=1
Full House: r9c5=2
Naked Single: r9c2=4
Naked Single: r8c3=7
Naked Single: r9c3=8
Full House: r9c8=9
Full House: r8c8=4
Full House: r8c1=9
Naked Single: r5c3=1
Full House: r4c3=4
Naked Single: r5c6=8
Full House: r5c1=7
Naked Single: r6c6=5
Naked Single: r2c1=3
Naked Single: r4c2=2
Full House: r4c1=8
Full House: r7c1=2
Full House: r7c2=3
Naked Single: r2c6=6
Full House: r3c6=1
Full House: r3c5=5
Full House: r3c8=6
Naked Single: r6c5=7
Full House: r4c5=1
Full House: r4c8=7
Full House: r6c8=8
Naked Single: r1c2=6
Full House: r2c2=7
Full House: r2c8=5
Full House: r1c8=3
|
normal_sudoku_592
|
71598..32.29.7....6..21.579.9...17.....43..9.1..79...394386...52..1..3.8..13....7
|
715986432429573816638214579392651784576438291184792653943867125257149368861325947
|
normal_sudoku_592
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
7 1 5 9 8 . . 3 2
. 2 9 . 7 . . . .
6 . . 2 1 . 5 7 9
. 9 . . . 1 7 . .
. . . 4 3 . . 9 .
1 . . 7 9 . . . 3
9 4 3 8 6 . . . 5
2 . . 1 . . 3 . 8
. . 1 3 . . . . 7
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
715986432429573816638214579392651784576438291184792653943867125257149368861325947 #1 Easy (188)
Hidden Single: r4c1=3
Hidden Single: r3c2=3
Naked Single: r3c6=4
Full House: r3c3=8
Full House: r2c1=4
Naked Single: r1c6=6
Full House: r1c7=4
Naked Single: r2c4=5
Full House: r2c6=3
Full House: r4c4=6
Naked Single: r4c9=4
Naked Single: r4c3=2
Naked Single: r4c5=5
Full House: r4c8=8
Naked Single: r8c5=4
Full House: r9c5=2
Naked Single: r8c8=6
Naked Single: r7c6=7
Naked Single: r2c8=1
Naked Single: r8c3=7
Naked Single: r9c7=9
Naked Single: r9c8=4
Naked Single: r2c9=6
Full House: r2c7=8
Full House: r5c9=1
Naked Single: r7c8=2
Full House: r6c8=5
Full House: r7c7=1
Naked Single: r5c3=6
Full House: r6c3=4
Naked Single: r8c2=5
Full House: r8c6=9
Full House: r9c6=5
Naked Single: r5c7=2
Full House: r6c7=6
Naked Single: r6c2=8
Full House: r6c6=2
Full House: r5c6=8
Naked Single: r9c1=8
Full House: r5c1=5
Full House: r5c2=7
Full House: r9c2=6
|
normal_sudoku_2188
|
4...3859.9.....32.563...8148..45.1737....12..1..7..6.96..24593.351...4822.....76.
|
472138596918564327563927814829456173746391258135782649687245931351679482294813765
|
normal_sudoku_2188
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
4 . . . 3 8 5 9 .
9 . . . . . 3 2 .
5 6 3 . . . 8 1 4
8 . . 4 5 . 1 7 3
7 . . . . 1 2 . .
1 . . 7 . . 6 . 9
6 . . 2 4 5 9 3 .
3 5 1 . . . 4 8 2
2 . . . . . 7 6 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
472138596918564327563927814829456173746391258135782649687245931351679482294813765 #1 Easy (156)
Naked Single: r3c4=9
Naked Single: r7c9=1
Full House: r9c9=5
Naked Single: r8c4=6
Naked Single: r5c9=8
Naked Single: r1c4=1
Naked Single: r5c4=3
Naked Single: r2c4=5
Full House: r9c4=8
Naked Single: r6c6=2
Naked Single: r3c6=7
Full House: r3c5=2
Naked Single: r6c5=8
Naked Single: r2c5=6
Full House: r2c6=4
Naked Single: r8c6=9
Full House: r8c5=7
Naked Single: r2c9=7
Full House: r1c9=6
Naked Single: r5c5=9
Full House: r4c6=6
Full House: r9c5=1
Full House: r9c6=3
Naked Single: r2c3=8
Full House: r2c2=1
Naked Single: r5c2=4
Naked Single: r7c3=7
Full House: r7c2=8
Naked Single: r5c8=5
Full House: r5c3=6
Full House: r6c8=4
Naked Single: r6c2=3
Full House: r6c3=5
Naked Single: r9c2=9
Full House: r9c3=4
Naked Single: r1c3=2
Full House: r1c2=7
Full House: r4c2=2
Full House: r4c3=9
|
normal_sudoku_183
|
97.13.6..2....41....1.........5.8.91.1..79386.9.3615..129.53.67......91..6.91..53
|
974135628286794135351826749637548291415279386892361574129453867543687912768912453
|
normal_sudoku_183
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
9 7 . 1 3 . 6 . .
2 . . . . 4 1 . .
. . 1 . . . . . .
. . . 5 . 8 . 9 1
. 1 . . 7 9 3 8 6
. 9 . 3 6 1 5 . .
1 2 9 . 5 3 . 6 7
. . . . . . 9 1 .
. 6 . 9 1 . . 5 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
974135628286794135351826749637548291415279386892361574129453867543687912768912453 #1 Unfair (1392)
2-String Kite: 4 in r4c5,r7c7 (connected by r7c4,r8c5) => r4c7<>4
Locked Candidates Type 1 (Pointing): 4 in b6 => r6c13<>4
Empty Rectangle: 2 in b2 (r9c67) => r3c7<>2
Hidden Rectangle: 8/9 in r2c59,r3c59 => r3c9<>8
Finned Swordfish: 8 r169 c139 fr9c7 => r8c9<>8
Locked Candidates Type 1 (Pointing): 8 in b9 => r3c7<>8
Naked Pair: 2,4 in r68c9 => r13c9<>2, r13c9<>4
Locked Candidates Type 1 (Pointing): 2 in b3 => r6c8<>2
W-Wing: 4/2 in r4c5,r8c9 connected by 2 in r49c7 => r8c5<>4
Hidden Single: r4c5=4
Full House: r5c4=2
Naked Single: r4c2=3
Naked Triple: 4,5,8 in r1c3,r23c2 => r2c3,r3c1<>5, r2c3,r3c1<>8, r3c1<>4
Naked Triple: 5,8,9 in r2c259 => r2c4<>8
Empty Rectangle: 4 in b9 (r38c2) => r3c7<>4
Naked Single: r3c7=7
Naked Single: r2c8=3
Naked Single: r4c7=2
Naked Single: r2c3=6
Naked Single: r6c9=4
Full House: r6c8=7
Naked Single: r2c4=7
Naked Single: r3c1=3
Naked Single: r4c3=7
Full House: r4c1=6
Naked Single: r8c9=2
Naked Single: r6c1=8
Full House: r6c3=2
Naked Single: r8c5=8
Naked Single: r2c5=9
Full House: r3c5=2
Naked Single: r7c4=4
Full House: r7c7=8
Full House: r9c7=4
Naked Single: r1c6=5
Naked Single: r3c8=4
Full House: r1c8=2
Naked Single: r8c4=6
Full House: r3c4=8
Full House: r3c6=6
Naked Single: r9c1=7
Naked Single: r9c3=8
Full House: r9c6=2
Full House: r8c6=7
Naked Single: r1c9=8
Full House: r1c3=4
Naked Single: r3c2=5
Full House: r2c2=8
Full House: r2c9=5
Full House: r3c9=9
Full House: r8c2=4
Naked Single: r5c3=5
Full House: r5c1=4
Full House: r8c1=5
Full House: r8c3=3
|
normal_sudoku_333
|
5.6371..9931842756....9.31...521.....6...45...2..6..83.17.....56581.7....9..5....
|
586371249931842756472596318845213697763984521129765483217439865658127934394658172
|
normal_sudoku_333
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
5 . 6 3 7 1 . . 9
9 3 1 8 4 2 7 5 6
. . . . 9 . 3 1 .
. . 5 2 1 . . . .
. 6 . . . 4 5 . .
. 2 . . 6 . . 8 3
. 1 7 . . . . . 5
6 5 8 1 . 7 . . .
. 9 . . 5 . . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
586371249931842756472596318845213697763984521129765483217439865658127934394658172 #1 Hard (1422)
Locked Candidates Type 1 (Pointing): 2 in b1 => r3c9<>2
Locked Candidates Type 1 (Pointing): 9 in b8 => r7c78<>9
Locked Candidates Type 2 (Claiming): 4 in r8 => r7c78,r9c789<>4
Naked Triple: 5,7,9 in r56c4,r6c6 => r4c6<>9
Locked Candidates Type 2 (Claiming): 9 in r4 => r5c8,r6c7<>9
Hidden Pair: 6,9 in r4c78 => r4c78<>4, r4c8<>7
2-String Kite: 3 in r4c6,r9c3 (connected by r4c1,r5c3) => r9c6<>3
W-Wing: 4/2 in r1c8,r8c9 connected by 2 in r5c89 => r3c9,r8c8<>4
Naked Single: r3c9=8
Hidden Single: r1c8=4
Full House: r1c7=2
Full House: r1c2=8
Naked Pair: 4,7 in r4c29 => r4c1<>4, r4c1<>7
XY-Wing: 4/7/2 in r48c9,r5c8 => r5c9,r789c8<>2
Hidden Single: r5c8=2
Hidden Single: r9c8=7
Locked Candidates Type 2 (Claiming): 3 in r9 => r7c1<>3
XYZ-Wing: 1/4/7 in r4c2,r6c17 => r6c3<>4
Naked Single: r6c3=9
Naked Single: r5c3=3
Naked Single: r6c6=5
Naked Single: r4c1=8
Naked Single: r5c5=8
Naked Single: r3c6=6
Full House: r3c4=5
Naked Single: r6c4=7
Naked Single: r4c6=3
Full House: r5c4=9
Naked Single: r9c6=8
Full House: r7c6=9
Hidden Single: r9c1=3
Hidden Single: r7c7=8
Bivalue Universal Grave + 1 => r3c1<>2, r3c1<>7
Naked Single: r3c1=4
Naked Single: r3c2=7
Full House: r3c3=2
Full House: r4c2=4
Full House: r9c3=4
Full House: r7c1=2
Naked Single: r6c1=1
Full House: r5c1=7
Full House: r6c7=4
Full House: r5c9=1
Naked Single: r4c9=7
Naked Single: r9c4=6
Full House: r7c4=4
Naked Single: r7c5=3
Full House: r7c8=6
Full House: r8c5=2
Naked Single: r8c7=9
Naked Single: r9c9=2
Full House: r9c7=1
Full House: r8c9=4
Full House: r4c7=6
Full House: r4c8=9
Full House: r8c8=3
|
normal_sudoku_3557
|
.3.47..514.15.973....3.1.8424.6..19..7....8....9..5..3.5..1.4..6..25.3.......35.8
|
832476951461589732597321684245638197376192845189745263953817426618254379724963518
|
normal_sudoku_3557
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 3 . 4 7 . . 5 1
4 . 1 5 . 9 7 3 .
. . . 3 . 1 . 8 4
2 4 . 6 . . 1 9 .
. 7 . . . . 8 . .
. . 9 . . 5 . . 3
. 5 . . 1 . 4 . .
6 . . 2 5 . 3 . .
. . . . . 3 5 . 8
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
832476951461589732597321684245638197376192845189745263953817426618254379724963518 #1 Unfair (1484)
Naked Triple: 2,6,9 in r3c257 => r3c1<>9, r3c3<>2, r3c3<>6
Empty Rectangle: 8 in b4 (r67c4) => r7c3<>8
XYZ-Wing: 2/4/6 in r5c68,r6c7 => r5c9<>2
XYZ-Wing: 1/7/8 in r4c6,r6c14 => r6c5<>8
Naked Pair: 2,4 in r5c6,r6c5 => r5c5<>2, r5c5<>4
Hidden Pair: 2,4 in r5c68 => r5c8<>6
Finned Swordfish: 6 c369 r157 fr2c9 => r1c7<>6
Multi Colors 1: 6 (r1c3,r5c9,r6c2,r7c6,r9c8) / (r1c6,r5c3,r9c5), (r2c9,r6c7) / (r3c7) => r3c5<>6
Naked Single: r3c5=2
Naked Single: r6c5=4
Naked Single: r5c6=2
Naked Single: r5c8=4
Hidden Single: r8c6=4
Hidden Single: r9c3=4
Locked Candidates Type 1 (Pointing): 8 in b8 => r7c1<>8
Skyscraper: 2 in r2c9,r9c8 (connected by r29c2) => r7c9<>2
Hidden Single: r2c9=2
Naked Single: r1c7=9
Full House: r3c7=6
Full House: r6c7=2
Naked Single: r1c1=8
Naked Single: r3c2=9
Naked Single: r1c6=6
Full House: r1c3=2
Full House: r2c5=8
Full House: r2c2=6
Naked Single: r6c1=1
Naked Single: r4c5=3
Naked Single: r6c2=8
Naked Single: r5c5=9
Full House: r9c5=6
Naked Single: r4c3=5
Naked Single: r6c4=7
Full House: r6c8=6
Naked Single: r8c2=1
Full House: r9c2=2
Naked Single: r5c4=1
Full House: r4c6=8
Full House: r4c9=7
Full House: r5c9=5
Full House: r7c6=7
Naked Single: r3c3=7
Full House: r3c1=5
Naked Single: r5c1=3
Full House: r5c3=6
Naked Single: r9c4=9
Full House: r7c4=8
Naked Single: r8c8=7
Naked Single: r8c9=9
Full House: r8c3=8
Full House: r7c3=3
Full House: r7c9=6
Naked Single: r7c8=2
Full House: r7c1=9
Full House: r9c1=7
Full House: r9c8=1
|
normal_sudoku_835
|
.3.7.4.....7.....424..1.67.5..842.6....5.1842428.6...5..4..9.3...2...4.91..45.28.
|
936724518817635924245918673591842367763591842428367195654289731382176459179453286
|
normal_sudoku_835
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 3 . 7 . 4 . . .
. . 7 . . . . . 4
2 4 . . 1 . 6 7 .
5 . . 8 4 2 . 6 .
. . . 5 . 1 8 4 2
4 2 8 . 6 . . . 5
. . 4 . . 9 . 3 .
. . 2 . . . 4 . 9
1 . . 4 5 . 2 8 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
936724518817635924245918673591842367763591842428367195654289731382176459179453286 #1 Extreme (2360)
Locked Candidates Type 1 (Pointing): 6 in b2 => r2c12<>6
Locked Candidates Type 1 (Pointing): 1 in b4 => r4c79<>1
Locked Candidates Type 1 (Pointing): 5 in b7 => r2c2<>5
Naked Pair: 3,9 in r36c4 => r28c4<>3, r2c4<>9
Skyscraper: 3 in r4c9,r6c4 (connected by r3c49) => r6c7<>3
Locked Candidates Type 1 (Pointing): 3 in b6 => r4c3<>3
Locked Candidates Type 1 (Pointing): 3 in b4 => r5c5<>3
Turbot Fish: 9 r3c3 =9= r3c4 -9- r6c4 =9= r5c5 => r5c3<>9
Multi Colors 1: 9 (r3c3,r6c4) / (r3c4,r5c5), (r9c2) / (r9c3) => r5c2<>9
AIC: 9 9- r3c4 -3- r2c5 =3= r8c5 -3- r8c1 =3= r5c1 =9= r5c5 -9 => r12c5,r6c4<>9
Naked Single: r6c4=3
Naked Single: r3c4=9
Naked Single: r6c6=7
Full House: r5c5=9
Naked Single: r3c3=5
Hidden Single: r2c6=5
Hidden Single: r2c4=6
Naked Single: r8c4=1
Full House: r7c4=2
Naked Single: r8c8=5
Hidden Single: r1c7=5
Hidden Single: r7c2=5
Locked Candidates Type 1 (Pointing): 9 in b4 => r4c7<>9
Locked Candidates Type 1 (Pointing): 7 in b6 => r4c2<>7
Locked Candidates Type 2 (Claiming): 9 in c1 => r1c3,r2c2<>9
Skyscraper: 8 in r2c2,r3c6 (connected by r8c26) => r2c5<>8
Locked Candidates Type 2 (Claiming): 8 in r2 => r1c1<>8
XY-Chain: 6 6- r9c6 -3- r3c6 -8- r3c9 -3- r4c9 -7- r9c9 -6 => r9c23<>6
Sue de Coq: r78c1 - {3678} (r12c1 - {689}, r9c23 - {379}) => r8c2<>7, r5c1<>6
XY-Chain: 1 1- r1c9 -8- r3c9 -3- r4c9 -7- r9c9 -6- r9c6 -3- r9c3 -9- r9c2 -7- r5c2 -6- r8c2 -8- r2c2 -1 => r1c3,r2c78<>1
Naked Single: r1c3=6
Naked Single: r1c1=9
Naked Single: r5c3=3
Naked Single: r2c1=8
Full House: r2c2=1
Naked Single: r5c1=7
Full House: r5c2=6
Naked Single: r9c3=9
Full House: r4c3=1
Full House: r4c2=9
Naked Single: r7c1=6
Full House: r8c1=3
Naked Single: r8c2=8
Full House: r9c2=7
Naked Single: r8c5=7
Full House: r8c6=6
Naked Single: r9c9=6
Full House: r9c6=3
Full House: r7c5=8
Full House: r3c6=8
Full House: r3c9=3
Naked Single: r1c5=2
Full House: r2c5=3
Naked Single: r2c7=9
Full House: r2c8=2
Naked Single: r4c9=7
Full House: r4c7=3
Naked Single: r1c8=1
Full House: r1c9=8
Full House: r7c9=1
Full House: r6c8=9
Full House: r6c7=1
Full House: r7c7=7
|
normal_sudoku_2222
|
.3.18.42....4.971314..2385..7..4.23.6......48.14...675.8.3.4.97...2.83644...7..82
|
539187426826459713147623859978546231652731948314892675281364597795218364463975182
|
normal_sudoku_2222
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 3 . 1 8 . 4 2 .
. . . 4 . 9 7 1 3
1 4 . . 2 3 8 5 .
. 7 . . 4 . 2 3 .
6 . . . . . . 4 8
. 1 4 . . . 6 7 5
. 8 . 3 . 4 . 9 7
. . . 2 . 8 3 6 4
4 . . . 7 . . 8 2
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
539187426826459713147623859978546231652731948314892675281364597795218364463975182 #1 Easy (246)
Naked Single: r6c6=2
Hidden Single: r5c7=9
Full House: r4c9=1
Hidden Single: r9c3=3
Hidden Single: r6c1=3
Naked Single: r6c5=9
Full House: r6c4=8
Hidden Single: r5c5=3
Hidden Single: r9c4=9
Hidden Single: r5c6=1
Hidden Single: r8c2=9
Hidden Single: r9c7=1
Full House: r7c7=5
Naked Single: r7c1=2
Hidden Single: r5c4=7
Naked Single: r3c4=6
Full House: r4c4=5
Full House: r4c6=6
Naked Single: r2c5=5
Full House: r1c6=7
Full House: r9c6=5
Full House: r9c2=6
Naked Single: r3c9=9
Full House: r1c9=6
Full House: r3c3=7
Naked Single: r2c1=8
Naked Single: r8c5=1
Full House: r7c5=6
Full House: r7c3=1
Naked Single: r2c2=2
Full House: r2c3=6
Full House: r5c2=5
Full House: r5c3=2
Naked Single: r4c1=9
Full House: r4c3=8
Naked Single: r8c3=5
Full House: r1c3=9
Full House: r1c1=5
Full House: r8c1=7
|
normal_sudoku_3451
|
.2.......4....36..1.82...5..14.7...8.5..1..7.6....41..3..69...1.....1.....143.9..
|
526748319497153682138269754914576238853912476672384195345697821769821543281435967
|
normal_sudoku_3451
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 2 . . . . . . .
4 . . . . 3 6 . .
1 . 8 2 . . . 5 .
. 1 4 . 7 . . . 8
. 5 . . 1 . . 7 .
6 . . . . 4 1 . .
3 . . 6 9 . . . 1
. . . . . 1 . . .
. . 1 4 3 . 9 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
526748319497153682138269754914576238853912476672384195345697821769821543281435967 #1 Extreme (12768)
Locked Candidates Type 1 (Pointing): 6 in b5 => r13c6<>6
Naked Triple: 5,7,9 in r1c1,r2c23 => r1c3<>5, r1c3,r3c2<>7, r1c3,r3c2<>9
Naked Triple: 2,5,8 in r268c5 => r1c5<>5, r1c5<>8
Forcing Chain Contradiction in r7 => r1c7<>7
r1c7=7 r1c1<>7 r89c1=7 r7c2<>7
r1c7=7 r1c1<>7 r89c1=7 r7c3<>7
r1c7=7 r3c79<>7 r3c6=7 r7c6<>7
r1c7=7 r7c7<>7
Forcing Net Contradiction in r7c7 => r2c4<>9
r2c4=9 (r2c4<>5) (r2c3<>9 r1c1=9 r1c1<>5) r2c4<>1 r2c8=1 r1c8<>1 r1c4=1 r1c4<>5 r1c6=5 (r7c6<>5) r2c5<>5 r2c3=5 r7c3<>5 r7c7=5
r2c4=9 (r3c6<>9 r3c6=7 r7c6<>7) r2c2<>9 r2c2=7 (r7c2<>7) r6c2<>7 r6c3=7 r7c3<>7 r7c7=7
Forcing Net Verity => r4c8<>9
r4c7=2 r4c1<>2 r4c1=9 r4c8<>9
r4c8=2 r4c8<>9
r5c7=2 r5c7<>4 r5c9=4 r5c9<>6 r5c6=6 r4c6<>6 r4c8=6 r4c8<>9
r5c9=2 r5c9<>6 r5c6=6 r4c6<>6 r4c8=6 r4c8<>9
r6c8=2 (r9c8<>2) (r2c8<>2 r2c9=2 r9c9<>2) r6c5<>2 r8c5=2 r9c6<>2 r9c1=2 r4c1<>2 r4c1=9 r4c8<>9
r6c9=2 (r2c9<>2 r2c8=2 r9c8<>2) (r9c9<>2) r6c5<>2 r8c5=2 r9c6<>2 r9c1=2 r4c1<>2 r4c1=9 r4c8<>9
Forcing Chain Contradiction in r5 => r6c2<>9
r6c2=9 r6c2<>8 r5c1=8 r5c1<>2
r6c2=9 r4c1<>9 r4c1=2 r5c3<>2
r6c2=9 r6c89<>9 r5c9=9 r5c9<>6 r5c6=6 r5c6<>2
r6c2=9 r6c89<>9 r5c9=9 r5c9<>4 r5c7=4 r5c7<>2
r6c2=9 r6c89<>9 r5c9=9 r5c9<>2
Forcing Chain Contradiction in r5 => r6c3<>9
r6c3=9 r4c1<>9 r4c1=2 r5c1<>2
r6c3=9 r4c1<>9 r4c1=2 r5c3<>2
r6c3=9 r6c89<>9 r5c9=9 r5c9<>6 r5c6=6 r5c6<>2
r6c3=9 r6c89<>9 r5c9=9 r5c9<>4 r5c7=4 r5c7<>2
r6c3=9 r6c89<>9 r5c9=9 r5c9<>2
Forcing Net Contradiction in r7 => r1c1<>9
r1c1=9 (r1c1<>5 r2c3=5 r7c3<>5) r2c2<>9 (r8c2=9 r8c2<>4 r7c2=4 r7c2<>8) (r8c2=9 r8c2<>4 r7c2=4 r7c8<>4) r2c2=7 r6c2<>7 r6c3=7 r7c3<>7 r7c3=2 r7c8<>2 r7c8=8 r7c7<>8 r7c6=8
r1c1=9 (r1c1<>5 r2c3=5 r7c3<>5) r2c2<>9 (r8c2=9 r8c2<>4 r7c2=4 r7c8<>4) r2c2=7 r6c2<>7 r6c3=7 r7c3<>7 r7c3=2 r7c8<>2 r7c8=8
Locked Candidates Type 1 (Pointing): 9 in b1 => r2c89<>9
Forcing Net Contradiction in r4c1 => r4c6<>5
r4c6=5 (r1c6<>5) (r9c6<>5) (r6c4<>5) r6c5<>5 r6c9=5 r9c9<>5 r9c1=5 (r7c3<>5) r1c1<>5 (r1c1=7 r1c4<>7) r1c4=5 r1c4<>1 r1c8=1 r2c8<>1 r2c4=1 r2c4<>7 (r2c9=7 r3c7<>7) r8c4=7 r8c7<>7 r7c7=7 r7c7<>5 r7c6=5 r4c6<>5
Forcing Chain Contradiction in r7 => r8c4<>5
r8c4=5 r79c6<>5 r1c6=5 r1c1<>5 r2c3=5 r7c3<>5
r8c4=5 r7c6<>5
r8c4=5 r4c4<>5 r4c7=5 r7c7<>5
Forcing Chain Contradiction in r6 => r8c3<>7
r8c3=7 r6c3<>7 r6c2=7 r6c2<>8
r8c3=7 r8c4<>7 r8c4=8 r6c4<>8
r8c3=7 r89c1<>7 r1c1=7 r1c1<>5 r2c3=5 r2c5<>5 r2c5=8 r6c5<>8
Forcing Net Contradiction in r5c9 => r1c4<>5
r1c4=5 (r4c4<>5 r4c7=5 r4c7<>2) (r4c4<>5 r4c7=5 r6c9<>5 r6c5=5 r8c5<>5 r8c5=2 r8c7<>2) (r1c4<>7) r1c4<>1 r1c8=1 r2c8<>1 r2c4=1 r2c4<>7 (r2c9=7 r3c7<>7) r8c4=7 r8c7<>7 r7c7=7 r7c7<>2 r5c7=2 r5c7<>4 r5c9=4
r1c4=5 (r4c4<>5 r4c7=5 r6c9<>5 r6c5=5 r8c5<>5 r8c5=2 r9c6<>2) (r4c4<>5 r4c7=5 r7c7<>5 r7c6=5 r9c6<>5) (r1c4<>7) r1c4<>1 r1c8=1 r2c8<>1 (r2c8=2 r9c8<>2) r2c4=1 r2c4<>7 r8c4=7 r9c6<>7 r9c6=8 r9c8<>8 r9c8=6 r89c9<>6 r5c9=6
Empty Rectangle: 5 in b8 (r1c16) => r8c1<>5
Grouped Discontinuous Nice Loop: 2 r6c9 -2- r6c5 =2= r8c5 =5= r79c6 -5- r1c6 =5= r1c1 =7= r2c23 -7- r2c9 -2- r6c9 => r6c9<>2
Forcing Net Contradiction in r1c1 => r2c9=2
r2c9<>2 r2c9=7 (r2c2<>7 r2c2=9 r2c3<>9 r2c3=5 r8c3<>5) (r2c2<>7) r2c3<>7 r1c1=7 r1c1<>5 r1c6=5 (r7c6<>5) r9c6<>5 r8c5=5 r8c7<>5 r8c9=5 r8c5<>5 r79c6=5 r1c6<>5 r1c1=5
r2c9<>2 r2c9=7 (r2c2<>7) r2c3<>7 r1c1=7
Hidden Rectangle: 1/8 in r1c48,r2c48 => r1c4<>8
Forcing Chain Contradiction in c9 => r5c6<>9
r5c6=9 r3c6<>9 r3c6=7 r3c79<>7 r1c9=7 r1c9<>4
r5c6=9 r3c6<>9 r3c9=9 r3c9<>4
r5c6=9 r5c6<>6 r5c9=6 r5c9<>4
r5c6=9 r456c4<>9 r1c4=9 r1c4<>1 r1c8=1 r1c8<>4 r78c8=4 r8c9<>4
Forcing Chain Contradiction in r6 => r7c3<>7
r7c3=7 r6c3<>7 r6c2=7 r6c2<>8
r7c3=7 r89c1<>7 r1c1=7 r2c23<>7 r2c4=7 r8c4<>7 r8c4=8 r6c4<>8
r7c3=7 r89c1<>7 r1c1=7 r1c1<>5 r1c6=5 r2c5<>5 r2c5=8 r6c5<>8
Forcing Chain Contradiction in r7c6 => r7c2<>7
r7c2=7 r89c1<>7 r1c1=7 r1c1<>5 r9c1=5 r7c3<>5 r7c3=2 r7c6<>2
r7c2=7 r89c1<>7 r1c1=7 r1c1<>5 r1c6=5 r7c6<>5
r7c2=7 r7c6<>7
r7c2=7 r89c1<>7 r1c1=7 r2c23<>7 r2c4=7 r8c4<>7 r8c4=8 r7c6<>8
Forcing Chain Contradiction in c7 => r1c4<>9
r1c4=9 r1c4<>1 r1c8=1 r2c8<>1 r2c8=8 r1c7<>8
r1c4=9 r3c6<>9 r3c6=7 r7c6<>7 r7c7=7 r7c7<>8
r1c4=9 r1c4<>1 r1c8=1 r2c8<>1 r2c8=8 r1c78<>8 r1c6=8 r79c6<>8 r8c45=8 r8c7<>8
Locked Candidates Type 1 (Pointing): 9 in b2 => r4c6<>9
Forcing Chain Contradiction in r8 => r7c7<>4
r7c7=4 r5c7<>4 r5c9=4 r5c9<>6 r5c6=6 r4c6<>6 r4c6=2 r4c1<>2 r4c1=9 r8c1<>9
r7c7=4 r7c2<>4 r8c2=4 r8c2<>9
r7c7=4 r78c8<>4 r1c8=4 r1c5<>4 r1c5=6 r1c3<>6 r8c3=6 r8c3<>9
Forcing Chain Contradiction in r6 => r8c7<>4
r8c7=4 r78c8<>4 r1c8=4 r1c5<>4 r1c5=6 r1c3<>6 r1c3=3 r3c2<>3 r6c2=3 r6c2<>7 r6c3=7 r6c3<>2
r8c7=4 r5c7<>4 r5c9=4 r5c9<>6 r5c6=6 r4c6<>6 r4c6=2 r6c5<>2
r8c7=4 r78c8<>4 r1c8=4 r1c8<>9 r6c8=9 r6c8<>2
Forcing Chain Contradiction in r9c9 => r9c2<>7
r9c2=7 r89c1<>7 r1c1=7 r1c1<>5 r9c1=5 r9c9<>5
r9c2=7 r89c1<>7 r1c1=7 r1c1<>5 r1c6=5 r79c6<>5 r8c5=5 r8c5<>2 r6c5=2 r4c6<>2 r4c6=6 r4c8<>6 r5c9=6 r9c9<>6
r9c2=7 r9c9<>7
Forcing Net Contradiction in r1c1 => r1c1=5
r1c1<>5 (r1c1=7 r2c3<>7 r2c4=7 r8c4<>7 r8c4=8 r8c1<>8) (r1c6=5 r7c6<>5) r9c1=5 r7c3<>5 (r7c3=2 r8c1<>2) r7c7=5 r4c7<>5 r4c4=5 r4c4<>9 r4c1=9 r8c1<>9 r8c1=7 r1c1<>7 r1c1=5
Locked Candidates Type 1 (Pointing): 7 in b1 => r2c4<>7
Locked Candidates Type 2 (Claiming): 7 in c1 => r8c2<>7
Locked Candidates Type 2 (Claiming): 5 in c6 => r8c5<>5
Forcing Chain Contradiction in c1 => r5c6<>8
r5c6=8 r5c1<>8
r5c6=8 r79c6<>8 r8c45=8 r8c1<>8
r5c6=8 r1c6<>8 r1c78=8 r2c8<>8 r2c8=1 r2c4<>1 r1c4=1 r1c4<>7 r8c4=7 r8c1<>7 r9c1=7 r9c1<>8
Locked Pair: 2,6 in r45c6 => r6c5,r79c6<>2
Hidden Single: r8c5=2
Skyscraper: 2 in r6c3,r9c1 (connected by r69c8) => r45c1,r7c3<>2
Naked Single: r4c1=9
Naked Single: r7c3=5
Naked Single: r5c1=8
Naked Single: r8c1=7
Full House: r9c1=2
Naked Single: r8c4=8
Naked Single: r7c6=7
Full House: r9c6=5
Naked Single: r3c6=9
Naked Single: r1c6=8
Naked Single: r2c5=5
Naked Single: r2c4=1
Naked Single: r6c5=8
Naked Single: r1c4=7
Naked Single: r2c8=8
Naked Single: r9c8=6
Naked Single: r9c2=8
Full House: r9c9=7
Naked Single: r7c2=4
Naked Single: r7c8=2
Full House: r7c7=8
Naked Single: r4c8=3
Naked Single: r4c4=5
Naked Single: r6c8=9
Naked Single: r8c8=4
Full House: r1c8=1
Naked Single: r4c7=2
Full House: r4c6=6
Full House: r5c6=2
Naked Single: r6c4=3
Full House: r5c4=9
Naked Single: r6c9=5
Naked Single: r5c7=4
Full House: r5c9=6
Full House: r5c3=3
Naked Single: r6c2=7
Full House: r6c3=2
Naked Single: r8c9=3
Full House: r8c7=5
Naked Single: r1c7=3
Full House: r3c7=7
Naked Single: r1c3=6
Naked Single: r2c2=9
Full House: r2c3=7
Full House: r3c2=3
Full House: r8c3=9
Full House: r8c2=6
Naked Single: r3c9=4
Full House: r1c9=9
Full House: r1c5=4
Full House: r3c5=6
|
normal_sudoku_2377
|
8725.6......2......193....6...4....1...93...52...5..9..5674..827.48..6........7..
|
872516439563294178419387526935472861687931245241658397156743982794825613328169754
|
normal_sudoku_2377
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
8 7 2 5 . 6 . . .
. . . 2 . . . . .
. 1 9 3 . . . . 6
. . . 4 . . . . 1
. . . 9 3 . . . 5
2 . . . 5 . . 9 .
. 5 6 7 4 . . 8 2
7 . 4 8 . . 6 . .
. . . . . . 7 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
872516439563294178419387526935472861687931245241658397156743982794825613328169754 #1 Extreme (4368)
Locked Candidates Type 1 (Pointing): 3 in b1 => r2c789<>3
Locked Candidates Type 1 (Pointing): 5 in b9 => r23c8<>5
Locked Candidates Type 2 (Claiming): 4 in r1 => r2c789,r3c78<>4
Naked Triple: 3,4,9 in r189c9 => r2c9<>9, r6c9<>3, r6c9<>4
Grouped Discontinuous Nice Loop: 1 r2c6 -1- r1c5 -9- r1c79 =9= r2c7 =5= r3c7 -5- r3c1 -4- r3c6 =4= r2c6 => r2c6<>1
Locked Candidates Type 1 (Pointing): 1 in b2 => r89c5<>1
Naked Triple: 2,3,9 in r8c259 => r8c6<>2, r8c68<>3, r8c6<>9
Uniqueness Test 4: 1/5 in r8c68,r9c68 => r9c68<>1
Discontinuous Nice Loop: 2 r5c8 -2- r3c8 -7- r2c8 -1- r8c8 =1= r8c6 -1- r9c4 -6- r9c5 =6= r4c5 -6- r4c8 =6= r5c8 => r5c8<>2
Discontinuous Nice Loop: 7 r5c8 -7- r2c8 -1- r8c8 =1= r8c6 -1- r9c4 -6- r9c5 =6= r4c5 -6- r4c8 =6= r5c8 => r5c8<>7
Grouped Discontinuous Nice Loop: 7 r2c6 -7- r2c8 -1- r8c8 =1= r8c6 -1- r9c4 -6- r9c5 =6= r4c5 =7= r23c5 -7- r2c6 => r2c6<>7
Grouped Discontinuous Nice Loop: 8 r2c6 -8- r2c9 -7- r2c8 -1- r8c8 =1= r8c6 -1- r9c4 -6- r9c5 =6= r4c5 =8= r23c5 -8- r2c6 => r2c6<>8
Grouped Discontinuous Nice Loop: 8 r4c3 -8- r9c3 =8= r9c2 =2= r8c2 -2- r8c5 -9- r12c5 =9= r2c6 =4= r3c6 -4- r3c1 -5- r4c1 =5= r4c3 => r4c3<>8
Grouped Discontinuous Nice Loop: 3 r9c3 -3- r2c3 -5- r3c1 -4- r3c6 =4= r2c6 =9= r12c5 -9- r8c5 -2- r8c2 =2= r9c2 =8= r9c3 => r9c3<>3
Almost Locked Set XZ-Rule: A=r5c128 {1468}, B=r2456c3 {13578}, X=1,8 => r46c2<>8, r5c7<>4
Discontinuous Nice Loop: 6 r5c2 -6- r6c2 =6= r6c4 =1= r9c4 -1- r9c3 -8- r9c2 =8= r5c2 => r5c2<>6
Almost Locked Set XZ-Rule: A=r6c469 {1678}, B=r9c34 {168}, X=6, Z=8 => r6c3<>8
Locked Candidates Type 1 (Pointing): 8 in b4 => r5c67<>8
Naked Single: r5c7=2
Hidden Single: r3c8=2
Locked Candidates Type 1 (Pointing): 7 in b3 => r2c5<>7
XY-Chain: 7 7- r5c6 -1- r8c6 -5- r8c8 -1- r2c8 -7- r2c9 -8- r6c9 -7 => r6c6<>7
XY-Chain: 7 7- r2c8 -1- r8c8 -5- r8c6 -1- r6c6 -8- r6c9 -7 => r2c9,r4c8<>7
Naked Single: r2c9=8
Naked Single: r3c7=5
Naked Single: r6c9=7
Naked Single: r3c1=4
Hidden Single: r2c8=7
Hidden Single: r2c6=4
Locked Candidates Type 1 (Pointing): 9 in b2 => r89c5<>9
Naked Single: r8c5=2
Naked Single: r9c5=6
Naked Single: r9c4=1
Full House: r6c4=6
Naked Single: r8c6=5
Naked Single: r9c3=8
Naked Single: r8c8=1
Hidden Single: r4c6=2
Hidden Single: r9c2=2
Hidden Single: r7c1=1
Naked Single: r5c1=6
Naked Single: r5c8=4
Naked Single: r1c8=3
Naked Single: r5c2=8
Naked Single: r4c8=6
Full House: r9c8=5
Hidden Single: r2c2=6
Hidden Single: r6c2=4
Hidden Single: r1c7=4
Naked Single: r1c9=9
Full House: r1c5=1
Full House: r2c7=1
Naked Single: r8c9=3
Full House: r8c2=9
Full House: r9c9=4
Full House: r7c7=9
Full House: r4c2=3
Full House: r9c1=3
Full House: r7c6=3
Full House: r9c6=9
Naked Single: r2c5=9
Naked Single: r4c7=8
Full House: r6c7=3
Naked Single: r6c3=1
Full House: r6c6=8
Naked Single: r2c1=5
Full House: r2c3=3
Full House: r4c1=9
Naked Single: r4c5=7
Full House: r3c5=8
Full House: r3c6=7
Full House: r4c3=5
Full House: r5c3=7
Full House: r5c6=1
|
normal_sudoku_3226
|
8.563....37..5468..64....355.73..84..43.78.5668.5413..43..25........35...5..1...3
|
815639274372154689964782135527396841143278956689541327431925768798463512256817493
|
normal_sudoku_3226
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
8 . 5 6 3 . . . .
3 7 . . 5 4 6 8 .
. 6 4 . . . . 3 5
5 . 7 3 . . 8 4 .
. 4 3 . 7 8 . 5 6
6 8 . 5 4 1 3 . .
4 3 . . 2 5 . . .
. . . . . 3 5 . .
. 5 . . 1 . . . 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
815639274372154689964782135527396841143278956689541327431925768798463512256817493 #1 Extreme (3094)
Finned X-Wing: 1 r14 c29 fr1c7 fr1c8 => r2c9<>1
Finned Franken Swordfish: 2 r26b5 c349 fr4c6 fr6c8 => r4c9<>2
W-Wing: 9/2 in r5c4,r6c3 connected by 2 in r4c26 => r5c1<>9
Sashimi Swordfish: 9 r256 c349 fr5c7 fr6c8 => r4c9<>9
Naked Single: r4c9=1
Hidden Single: r5c1=1
Finned Franken Swordfish: 9 c15b4 r348 fr6c3 fr9c1 => r8c3<>9
Forcing Chain Contradiction in r3 => r1c2<>2
r1c2=2 r3c1<>2
r1c2=2 r1c2<>1 r2c3=1 r2c4<>1 r3c4=1 r3c4<>2
r1c2=2 r4c2<>2 r4c6=2 r3c6<>2
r1c2=2 r4c2<>2 r4c6=2 r5c4<>2 r5c7=2 r3c7<>2
Multi Colors 1: 2 (r2c3) / (r3c1), (r4c2,r5c4) / (r4c6,r5c7,r6c3,r8c2) => r3c4<>2
W-Wing: 9/2 in r2c9,r5c7 connected by 2 in r25c4 => r13c7,r6c9<>9
AIC: 9 9- r1c2 -1- r2c3 =1= r2c4 =2= r5c4 =9= r5c7 -9- r6c8 =9= r6c3 -9 => r2c3,r4c2<>9
Naked Single: r4c2=2
Full House: r6c3=9
Hidden Single: r5c4=2
Full House: r5c7=9
Empty Rectangle: 9 in b3 (r18c2) => r8c9<>9
W-Wing: 9/1 in r2c4,r8c2 connected by 1 in r1c2,r2c3 => r8c4<>9
XY-Wing: 1/2/9 in r1c2,r2c39 => r1c89<>9
Hidden Single: r2c9=9
Naked Single: r2c4=1
Full House: r2c3=2
Naked Single: r3c1=9
Full House: r1c2=1
Full House: r8c2=9
Naked Single: r3c5=8
Naked Single: r3c4=7
Naked Single: r8c5=6
Full House: r4c5=9
Full House: r4c6=6
Naked Single: r3c6=2
Full House: r1c6=9
Full House: r3c7=1
Full House: r9c6=7
Naked Single: r7c7=7
Naked Single: r9c1=2
Full House: r8c1=7
Naked Single: r7c9=8
Naked Single: r9c7=4
Full House: r1c7=2
Naked Single: r7c4=9
Naked Single: r8c9=2
Naked Single: r1c8=7
Full House: r1c9=4
Full House: r6c9=7
Full House: r6c8=2
Naked Single: r9c4=8
Full House: r8c4=4
Naked Single: r8c8=1
Full House: r8c3=8
Naked Single: r9c3=6
Full House: r7c3=1
Full House: r7c8=6
Full House: r9c8=9
|
normal_sudoku_5286
|
..52....8.78..31..4.......3.83..2..9....65...5..3...1....72.......6..9.7.67..9.8.
|
135276498278943165496581723683412579719865342542397816954728631821634957367159284
|
normal_sudoku_5286
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 5 2 . . . . 8
. 7 8 . . 3 1 . .
4 . . . . . . . 3
. 8 3 . . 2 . . 9
. . . . 6 5 . . .
5 . . 3 . . . 1 .
. . . 7 2 . . . .
. . . 6 . . 9 . 7
. 6 7 . . 9 . 8 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
135276498278943165496581723683412579719865342542397816954728631821634957367159284 #1 Extreme (13848)
Forcing Net Contradiction in r6 => r4c1<>1
r4c1=1 r4c1<>6 r6c3=6
r4c1=1 (r9c1<>1) (r5c1<>1) (r5c2<>1) r5c3<>1 r5c4=1 (r5c4<>8 r3c4=8 r3c5<>8) r5c4<>9 r6c5=9 r6c5<>8 r8c5=8 r8c5<>3 r9c5=3 r9c1<>3 r9c1=2 (r2c1<>2) (r8c1<>2) (r8c2<>2) r8c3<>2 r8c8=2 r2c8<>2 r2c9=2 (r6c9<>2) r5c9<>2 r5c9=4 r6c9<>4 r6c9=6
Locked Candidates Type 1 (Pointing): 1 in b4 => r5c4<>1
Forcing Net Verity => r1c6<>7
r5c4=8 (r6c6<>8 r6c7=8 r6c7<>7) r5c4<>9 r6c5=9 r6c5<>7 r6c6=7 r1c6<>7
r5c7=8 (r5c7<>7) r5c7<>3 r5c8=3 r5c8<>7 r5c1=7 r4c1<>7 r4c1=6 r6c3<>6 r3c3=6 r3c6<>6 r1c6=6 r1c6<>7
Forcing Net Contradiction in c9 => r4c5<>7
r4c5=7 (r6c5<>7) r6c6<>7 r6c7=7 (r6c7<>2) (r6c7<>6 r6c9=6 r6c9<>2) r6c7<>8 r5c7=8 (r5c7<>2) r5c7<>3 r5c8=3 r5c8<>2 r5c9=2
r4c5=7 (r4c5<>4) (r4c5<>1 r4c4=1 r4c4<>4) r6c6<>7 (r6c7=7 r1c7<>7) r3c6=7 (r3c7<>7) r3c6<>6 r1c6=6 r1c7<>6 (r7c7=6 r7c7<>3 r9c7=3 r9c7<>2) r1c7=4 r4c7<>4 (r4c7=5 r3c7<>5) r4c8=4 r5c9<>4 r5c9=2 r6c9<>2 r6c9=6 (r2c9<>6 r2c8=6 r2c8<>2) (r6c9<>4) r6c3<>6 r3c3=6 r3c7<>6 r3c7=2 r2c9<>2 r2c1=2 r9c1<>2 r9c9=2
Locked Pair: 1,4 in r4c45 => r4c78,r5c4,r6c56<>4
Locked Candidates Type 1 (Pointing): 7 in b5 => r6c7<>7
Forcing Chain Contradiction in r6c9 => r7c9<>4
r7c9=4 r5c9<>4 r5c9=2 r6c9<>2
r7c9=4 r6c9<>4
r7c9=4 r9c79<>4 r9c45=4 r78c6<>4 r1c6=4 r1c6<>6 r3c6=6 r3c3<>6 r6c3=6 r6c9<>6
Forcing Net Verity => r7c8<>4
r1c7=4 r1c6<>4 r78c6=4 r9c45<>4 r9c79=4 r7c8<>4
r1c8=4 r7c8<>4
r2c8=4 r7c8<>4
r2c9=4 (r2c9<>6) (r6c9<>4) r5c9<>4 r5c9=2 r6c9<>2 r6c9=6 (r4c7<>6) r4c8<>6 r4c1=6 (r1c1<>6) r2c1<>6 r2c8=6 (r1c7<>6) r1c8<>6 r1c6=6 r1c6<>4 r78c6=4 r9c45<>4 r9c79=4 r7c8<>4
Forcing Net Verity => r8c8<>4
r1c7=4 r1c6<>4 r78c6=4 r9c45<>4 r9c79=4 r8c8<>4
r1c8=4 r8c8<>4
r2c8=4 r8c8<>4
r2c9=4 (r2c9<>6) (r6c9<>4) r5c9<>4 r5c9=2 r6c9<>2 r6c9=6 (r4c7<>6) r4c8<>6 r4c1=6 (r1c1<>6) r2c1<>6 r2c8=6 (r1c7<>6) r1c8<>6 r1c6=6 r1c6<>4 r78c6=4 r9c45<>4 r9c79=4 r8c8<>4
Forcing Net Verity => r9c4<>4
r2c5=4 r4c5<>4 r4c4=4 r9c4<>4
r2c5=5 (r2c4<>5) r3c4<>5 r9c4=5 r9c4<>4
r2c5=9 (r2c4<>9) r3c4<>9 r5c4=9 r5c4<>8 r5c7=8 (r5c7<>7) r5c7<>3 r5c8=3 r5c8<>7 r5c1=7 r4c1<>7 r4c1=6 r6c3<>6 r3c3=6 r3c6<>6 r1c6=6 r1c6<>4 r78c6=4 r9c4<>4
Forcing Net Contradiction in r3 => r1c8<>6
r1c8=6 (r7c8<>6) (r4c8<>6) (r2c8<>6) r2c9<>6 r2c1=6 r4c1<>6 r4c1=7 r4c8<>7 r4c8=5 r7c8<>5 r7c8=3 r5c8<>3 r5c7=3 r5c7<>8 r5c4=8 r3c4<>8
r1c8=6 (r7c8<>6) (r4c8<>6) (r2c8<>6) r2c9<>6 r2c1=6 r4c1<>6 r4c7=6 r7c7<>6 r7c9=6 (r7c9<>5) r7c9<>1 r9c9=1 (r9c4<>1 r9c4=5 r3c4<>5) r9c9<>5 r2c9=5 (r3c7<>5) r3c8<>5 r3c5=5 r3c5<>8
r1c8=6 r1c6<>6 r3c6=6 r3c6<>8
Forcing Net Verity => r8c5<>4
r9c1=1 (r9c4<>1 r9c4=5 r9c9<>5) r9c9<>1 r7c9=1 (r7c9<>6) r7c9<>5 r2c9=5 (r2c9<>6) r2c9<>6 r6c9=6 (r4c7<>6) r4c8<>6 r4c1=6 (r1c1<>6) r2c1<>6 r2c8=6 r1c7<>6 r1c6=6 r1c6<>4 r78c6=4 r8c5<>4
r9c1=2 (r2c1<>2) (r8c1<>2) (r8c2<>2) r8c3<>2 r8c8=2 r2c8<>2 r2c9=2 (r2c9<>6) (r6c9<>2) r5c9<>2 r5c9=4 r6c9<>4 r6c9=6 (r4c7<>6) r4c8<>6 r4c1=6 (r1c1<>6) r2c1<>6 r2c8=6 r1c7<>6 r1c6=6 r1c6<>4 r78c6=4 r8c5<>4
r9c1=3 r9c5<>3 r8c5=3 r8c5<>4
Forcing Net Contradiction in r1c7 => r9c5<>1
r9c5=1 (r9c4<>1 r9c4=5 r3c4<>5) (r4c5<>1 r4c4=1 r3c4<>1) (r4c5<>1 r4c5=4 r2c5<>4) (r9c4<>1 r9c4=5 r9c9<>5) r9c9<>1 r7c9=1 r7c9<>5 r2c9=5 r2c5<>5 r2c5=9 r3c4<>9 r3c4=8 r5c4<>8 r5c7=8 r5c7<>3 r5c8=3 r5c8<>4 r12c8=4 r1c7<>4
r9c5=1 (r9c4<>1 r9c4=5 r9c9<>5) r9c9<>1 r7c9=1 (r7c9<>6) r7c9<>5 r2c9=5 (r2c9<>6) r2c9<>6 r6c9=6 (r4c7<>6) r4c8<>6 r4c1=6 r2c1<>6 r2c8=6 r1c7<>6
r9c5=1 (r1c5<>1) (r4c5<>1 r4c5=4 r1c5<>4) (r4c5<>1 r4c5=4 r2c5<>4) (r9c4<>1 r9c4=5 r9c9<>5) r9c9<>1 r7c9=1 r7c9<>5 r2c9=5 r2c5<>5 r2c5=9 r1c5<>9 r1c5=7 r1c7<>7
Forcing Net Contradiction in c7 => r6c7<>4
r6c7=4 r6c7<>8 r5c7=8 r5c7<>3
r6c7=4 (r6c9<>4) r5c9<>4 r5c9=2 r6c9<>2 r6c9=6 (r7c9<>6) (r2c9<>6) (r4c7<>6) r4c8<>6 r4c1=6 r2c1<>6 r2c8=6 r7c8<>6 r7c7=6 r7c7<>3
r6c7=4 (r9c7<>4 r9c9=4 r9c5<>4) (r6c7<>8 r5c7=8 r5c4<>8 r5c4=9 r2c4<>9) (r9c7<>4 r9c9=4 r2c9<>4) (r6c9<>4) r5c9<>4 r5c9=2 (r2c9<>2) r6c9<>2 r6c9=6 r2c9<>6 r2c9=5 r2c4<>5 r2c4=4 r4c4<>4 r4c4=1 r9c4<>1 r9c4=5 r9c5<>5 r9c5=3 r9c7<>3
Forcing Net Verity => r9c7<>5
r9c1=1 r9c4<>1 r9c4=5 r9c7<>5
r9c1=2 (r2c1<>2) (r8c1<>2) (r8c2<>2) r8c3<>2 r8c8=2 r2c8<>2 r2c9=2 r2c9<>5 r79c9=5 r9c7<>5
r9c1=3 r9c5<>3 r8c5=3 r8c5<>5 r9c45=5 r9c7<>5
Forcing Net Contradiction in r3c7 => r4c7<>7
r4c7=7 (r1c7<>7) r4c1<>7 r4c1=6 r6c3<>6 r3c3=6 r3c6<>6 r1c6=6 r1c7<>6 r1c7=4 (r9c7<>4) (r1c8<>4) r2c8<>4 r5c8=4 r5c8<>3 r5c7=3 r9c7<>3 r9c7=2 r3c7<>2
r4c7=7 (r1c7<>7) r4c1<>7 r4c1=6 r6c3<>6 r3c3=6 r3c6<>6 r1c6=6 r1c7<>6 r1c7=4 (r2c9<>4) (r1c8<>4) r2c8<>4 r5c8=4 (r5c9<>4) r6c9<>4 r9c9=4 (r9c9<>5) r9c9<>1 r7c9=1 r7c9<>5 r2c9=5 r3c7<>5
r4c7=7 r4c1<>7 r4c1=6 r6c3<>6 r3c3=6 r3c7<>6
r4c7=7 r3c7<>7
Forcing Net Contradiction in r3 => r1c8<>7
r1c8=7 (r1c7<>7) r3c7<>7 r5c7=7 r5c7<>8 r5c4=8 r3c4<>8
r1c8=7 (r3c7<>7) (r3c8<>7) (r1c7<>7) r3c7<>7 r5c7=7 r5c7<>8 r5c4=8 r6c6<>8 r6c6=7 r3c6<>7 r3c5=7 r3c5<>8
r1c8=7 (r1c7<>7) (r1c8<>4) (r1c7<>7) r3c7<>7 r5c7=7 r5c7<>3 r5c8=3 r5c8<>4 r2c8=4 r1c7<>4 r1c7=6 r1c6<>6 r3c6=6 r3c6<>8
Forcing Net Contradiction in c9 => r1c6<>4
r1c6=4 (r1c7<>4) (r1c5<>4) (r1c8<>4 r1c8=9 r1c5<>9) r2c4<>4 r4c4=4 r4c5<>4 r4c5=1 r1c5<>1 r1c5=7 r1c7<>7 r1c7=6 r2c9<>6
r1c6=4 r1c6<>6 r3c6=6 r3c3<>6 r6c3=6 r6c9<>6
r1c6=4 (r2c5<>4) (r2c4<>4) (r1c5<>4) (r2c5<>4) r2c4<>4 r4c4=4 r4c5<>4 r9c5=4 (r9c5<>5) r9c5<>3 r8c5=3 r8c5<>5 r9c4=5 (r2c4<>5) r2c4<>5 r2c4=9 r2c5<>9 r2c5=5 (r2c9<>5) r3c4<>5 r9c4=5 (r2c4<>5) r9c9<>5 r7c9=5 r7c9<>6
Locked Candidates Type 2 (Claiming): 4 in c6 => r9c5<>4
Locked Candidates Type 2 (Claiming): 4 in r9 => r7c7<>4
Forcing Net Verity => r1c6=6
r6c9=2 (r5c7<>2) (r6c7<>2) r5c9<>2 r5c9=4 r9c9<>4 r9c7=4 (r9c7<>2) r9c7<>2 r3c7=2 (r2c8<>2) (r3c8<>2) (r2c8<>2) r2c9<>2 r2c1=2 r9c1<>2 r9c9=2 r8c8<>2 r5c8=2 (r6c9<>2) r5c9<>2 r5c9=4 r6c9<>4 r6c9=6 r6c3<>6 r3c3=6 r3c6<>6 r1c6=6
r6c9=4 (r6c9<>2) r5c9<>4 r5c9=2 r6c7<>2 r6c3=2 r6c3<>6 r3c3=6 r3c6<>6 r1c6=6
r6c9=6 (r2c9<>6) (r4c7<>6) r4c8<>6 r4c1=6 (r1c1<>6) r2c1<>6 r2c8=6 r1c7<>6 r1c6=6
Grouped Discontinuous Nice Loop: 7 r5c7 -7- r1c7 -4- r12c8 =4= r5c8 =3= r5c7 => r5c7<>7
Locked Candidates Type 1 (Pointing): 7 in b6 => r3c8<>7
Forcing Chain Contradiction in r7c7 => r3c7<>5
r3c7=5 r4c7<>5 r4c8=5 r4c8<>7 r5c8=7 r5c8<>3 r5c7=3 r7c7<>3
r3c7=5 r7c7<>5
r3c7=5 r4c7<>5 r4c7=6 r7c7<>6
Forcing Chain Contradiction in r3c7 => r4c7=5
r4c7<>5 r4c7=6 r4c1<>6 r2c1=6 r2c1<>2 r2c89=2 r3c7<>2
r4c7<>5 r4c7=6 r3c7<>6
r4c7<>5 r4c8=5 r4c8<>7 r5c8=7 r5c8<>4 r12c8=4 r1c7<>4 r1c7=7 r3c7<>7
2-String Kite: 6 in r3c3,r4c8 (connected by r4c1,r6c3) => r3c8<>6
Discontinuous Nice Loop: 1/2/9 r3c3 =6= r3c7 -6- r7c7 -3- r5c7 =3= r5c8 =7= r5c1 -7- r4c1 -6- r2c1 =6= r3c3 => r3c3<>1, r3c3<>2, r3c3<>9
Naked Single: r3c3=6
Hidden Single: r4c1=6
Naked Single: r4c8=7
Hidden Single: r5c1=7
AIC: 2 2- r3c7 -7- r1c7 -4- r9c7 =4= r9c9 -4- r5c9 -2 => r2c9,r56c7<>2
2-String Kite: 2 in r2c1,r9c7 (connected by r2c8,r3c7) => r9c1<>2
Locked Candidates Type 1 (Pointing): 2 in b7 => r8c8<>2
Naked Triple: 3,5,6 in r7c78,r8c8 => r79c9<>5, r7c9<>6, r9c7<>3
Naked Single: r7c9=1
Hidden Single: r2c9=5
Hidden Single: r2c8=6
Hidden Single: r6c9=6
Naked Single: r6c7=8
Naked Single: r6c6=7
Naked Single: r6c5=9
Naked Single: r2c5=4
Naked Single: r5c4=8
Naked Single: r2c4=9
Full House: r2c1=2
Naked Single: r4c5=1
Full House: r4c4=4
Naked Single: r1c5=7
Naked Single: r1c7=4
Naked Single: r1c8=9
Naked Single: r5c7=3
Naked Single: r9c7=2
Naked Single: r3c8=2
Full House: r3c7=7
Full House: r7c7=6
Naked Single: r9c9=4
Full House: r5c9=2
Full House: r5c8=4
Hidden Single: r7c1=9
Naked Single: r7c3=4
Naked Single: r6c3=2
Full House: r6c2=4
Naked Single: r7c6=8
Naked Single: r8c3=1
Full House: r5c3=9
Full House: r5c2=1
Naked Single: r3c6=1
Full House: r8c6=4
Naked Single: r9c1=3
Naked Single: r1c2=3
Full House: r1c1=1
Full House: r3c2=9
Full House: r8c1=8
Naked Single: r3c4=5
Full House: r3c5=8
Full House: r9c4=1
Full House: r9c5=5
Full House: r8c5=3
Naked Single: r7c2=5
Full House: r7c8=3
Full House: r8c8=5
Full House: r8c2=2
|
normal_sudoku_6818
|
.82..6.3...6...8..3...9..6...19...5.23975...68....29...43.....55.83.96..6.7..53.8
|
982476531476531829315298764761983452239754186854612973143867295528349617697125348
|
normal_sudoku_6818
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 8 2 . . 6 . 3 .
. . 6 . . . 8 . .
3 . . . 9 . . 6 .
. . 1 9 . . . 5 .
2 3 9 7 5 . . . 6
8 . . . . 2 9 . .
. 4 3 . . . . . 5
5 . 8 3 . 9 6 . .
6 . 7 . . 5 3 . 8
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
982476531476531829315298764761983452239754186854612973143867295528349617697125348 #1 Extreme (7986)
Hidden Single: r5c8=8
Locked Candidates Type 1 (Pointing): 9 in b9 => r2c8<>9
Almost Locked Set XZ-Rule: A=r12689c5 {123467}, B=r5c6,r6c4 {146}, X=6, Z=4 => r4c5<>4
Empty Rectangle: 4 in b5 (r36c3) => r3c6<>4
Forcing Chain Contradiction in r7 => r3c4<>5
r3c4=5 r3c4<>8 r7c4=8 r7c4<>2
r3c4=5 r3c4<>8 r7c4=8 r7c4<>6 r7c5=6 r7c5<>2
r3c4=5 r3c4<>2 r2c45=2 r2c8<>2 r789c8=2 r7c7<>2
r3c4=5 r2c4<>5 r2c2=5 r2c2<>9 r9c2=9 r9c8<>9 r7c8=9 r7c8<>2
Forcing Chain Contradiction in r7 => r8c9<>2
r8c9=2 r789c8<>2 r2c8=2 r2c5<>2 r23c4=2 r7c4<>2
r8c9=2 r789c8<>2 r2c8=2 r2c45<>2 r3c4=2 r3c4<>8 r7c4=8 r7c4<>6 r7c5=6 r7c5<>2
r8c9=2 r7c7<>2
r8c9=2 r7c8<>2
Forcing Net Contradiction in r7c8 => r4c2=6
r4c2<>6 (r4c2=7 r4c1<>7 r4c1=4 r4c7<>4 r4c7=2 r7c7<>2) r4c5=6 (r7c5<>6 r7c4=6 r7c4<>2) (r7c5<>6 r7c4=6 r7c4<>8) r4c5<>8 r4c6=8 r7c6<>8 r7c5=8 r7c5<>2 r7c8=2
r4c2<>6 (r4c2=7 r4c1<>7 r4c1=4 r4c7<>4) (r4c2=7 r4c1<>7 r4c1=4 r6c3<>4 r3c3=4 r3c7<>4) (r4c2=7 r4c1<>7 r4c1=4 r4c6<>4) r4c5=6 r4c5<>8 r4c6=8 r4c6<>3 r2c6=3 r2c6<>4 r5c6=4 r5c7<>4 r1c7=4 r1c7<>5 r1c4=5 r2c4<>5 r2c2=5 r2c2<>9 r9c2=9 r7c1<>9 r7c8=9
Almost Locked Set XZ-Rule: A=r5c7 {14}, B=r6c238 {1457}, X=1, Z=4 => r6c9<>4
Forcing Net Contradiction in r7c7 => r1c7<>7
r1c7=7 r1c7<>5 r1c4=5 r2c4<>5 r2c2=5 r2c2<>9 r9c2=9 r7c1<>9 r7c1=1 r7c7<>1
r1c7=7 (r4c7<>7) r1c7<>5 r3c7=5 r3c3<>5 r3c3=4 (r1c1<>4) r2c1<>4 r4c1=4 r4c7<>4 r4c7=2 r7c7<>2
r1c7=7 r7c7<>7
Forcing Net Verity => r7c1=1
r3c2=1 (r1c1<>1) r2c1<>1 r7c1=1
r3c2=5 (r2c2<>5 r2c4=5 r1c4<>5 r1c7=5 r1c7<>4) (r3c3<>5 r3c3=4 r3c7<>4) (r2c2<>5 r2c4=5 r1c4<>5 r1c7=5 r1c7<>4) r6c2<>5 r6c2=7 r4c1<>7 r4c1=4 (r4c6<>4) (r4c7<>4) (r4c6<>4) r4c7<>4 r5c7=4 r5c6<>4 r2c6=4 (r1c4<>4) (r1c5<>4) r5c6<>4 r5c7=4 r4c9<>4 r4c1=4 (r4c6<>4) (r4c7<>4) (r4c6<>4) r1c1<>4 r1c9=4 r1c9<>9 r1c1=9 r7c1<>9 r7c1=1
r3c2=7 (r1c1<>7) (r3c6<>7) (r3c7<>7) (r1c1<>7) r2c1<>7 r4c1=7 r4c7<>7 r7c7=7 r7c6<>7 r2c6=7 r1c5<>7 r1c9=7 r1c9<>9 r1c1=9 r7c1<>9 r7c1=1
Naked Single: r8c2=2
Full House: r9c2=9
Hidden Single: r7c8=9
Empty Rectangle: 2 in b2 (r29c8) => r9c4<>2
Finned Swordfish: 1 c267 r235 fr1c7 => r2c89,r3c9<>1
Grouped Continuous Nice Loop: 1/2/4/7/8 2= r3c4 =8= r3c6 -8- r7c6 -7- r7c7 -2- r9c8 =2= r2c8 -2- r2c45 =2= r3c4 =8 => r3c4<>1, r2c9<>2, r3c4<>4, r7c5<>7, r4c6<>8
Hidden Single: r4c5=8
Discontinuous Nice Loop: 7 r2c5 -7- r8c5 =7= r7c6 -7- r7c7 -2- r4c7 =2= r4c9 =3= r4c6 -3- r2c6 =3= r2c5 => r2c5<>7
Almost Locked Set XY-Wing: A=r2c189 {2479}, B=r7c6 {78}, C=r3c23679 {124578}, X,Y=2,8, Z=7 => r2c6<>7
Naked Triple: 1,3,4 in r245c6 => r3c6<>1
Sashimi Swordfish: 7 c167 r347 fr1c1 fr2c1 => r3c2<>7
Almost Locked Set XY-Wing: A=r3c46 {278}, B=r123c9,r2c8 {12479}, C=r1c457 {1457}, X,Y=1,7, Z=2 => r3c7<>2
Forcing Chain Contradiction in r2c8 => r2c5=3
r2c5<>3 r2c6=3 r4c6<>3 r4c9=3 r4c9<>2 r3c9=2 r2c8<>2
r2c5<>3 r2c6=3 r4c6<>3 r4c6=4 r4c1<>4 r6c3=4 r3c3<>4 r3c79=4 r2c8<>4
r2c5<>3 r2c6=3 r4c6<>3 r4c6=4 r4c1<>4 r4c1=7 r1c1<>7 r2c12=7 r2c8<>7
Hidden Single: r4c6=3
Hidden Single: r6c9=3
Locked Candidates Type 1 (Pointing): 2 in b2 => r7c4<>2
Discontinuous Nice Loop: 4 r4c9 -4- r4c1 -7- r6c2 -5- r2c2 =5= r2c4 =2= r2c8 -2- r3c9 =2= r4c9 => r4c9<>4
2-String Kite: 4 in r3c3,r4c7 (connected by r4c1,r6c3) => r3c7<>4
Discontinuous Nice Loop: 7 r1c9 -7- r1c5 =7= r8c5 -7- r7c6 =7= r7c7 =2= r4c7 -2- r4c9 -7- r1c9 => r1c9<>7
Grouped Discontinuous Nice Loop: 4 r1c1 -4- r4c1 =4= r4c7 -4- r5c7 -1- r13c7 =1= r1c9 =9= r1c1 => r1c1<>4
Hidden Rectangle: 7/9 in r1c19,r2c19 => r2c9<>7
Finned Swordfish: 4 c167 r245 fr1c7 => r2c89<>4
Naked Single: r2c9=9
Hidden Single: r1c1=9
Hidden Single: r1c5=7
Naked Single: r3c6=8
Naked Single: r3c4=2
Naked Single: r7c6=7
Naked Single: r7c7=2
Naked Single: r7c5=6
Full House: r7c4=8
Hidden Single: r2c8=2
Hidden Single: r4c9=2
Hidden Single: r9c5=2
Hidden Single: r6c4=6
Remote Pair: 1/4 r6c5 -4- r8c5 -1- r9c4 -4- r9c8 => r6c8<>1, r6c8<>4
Naked Single: r6c8=7
Naked Single: r4c7=4
Full House: r4c1=7
Full House: r5c7=1
Full House: r2c1=4
Full House: r5c6=4
Full House: r2c6=1
Full House: r6c5=1
Full House: r8c5=4
Full House: r9c4=1
Full House: r9c8=4
Full House: r8c8=1
Full House: r8c9=7
Naked Single: r6c2=5
Full House: r6c3=4
Full House: r3c3=5
Naked Single: r1c7=5
Full House: r3c7=7
Naked Single: r2c4=5
Full House: r2c2=7
Full House: r3c2=1
Full House: r3c9=4
Full House: r1c4=4
Full House: r1c9=1
|
normal_sudoku_1661
|
2...8..56..56..2..6..2.5.3..9.754..2..21963...6732859.7..5....3....1.7....1....25
|
234987156975631248618245937193754862852196374467328591789562413526413789341879625
|
normal_sudoku_1661
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
2 . . . 8 . . 5 6
. . 5 6 . . 2 . .
6 . . 2 . 5 . 3 .
. 9 . 7 5 4 . . 2
. . 2 1 9 6 3 . .
. 6 7 3 2 8 5 9 .
7 . . 5 . . . . 3
. . . . 1 . 7 . .
. . 1 . . . . 2 5
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
234987156975631248618245937193754862852196374467328591789562413526413789341879625 #1 Extreme (2420)
Locked Candidates Type 1 (Pointing): 1 in b4 => r2c1<>1
Almost Locked Set XZ-Rule: A=r8c124689 {2345689}, B=r9c1247 {34689}, X=6, Z=3 => r8c3<>3
Hidden Triple: 2,3,5 in r8c126 => r8c12<>4, r8c12<>8, r8c16<>9
Almost Locked Set Chain: 1- r1c347 {1349} -3- r4c3 {38} -8- r4c78 {168} -1- r6c9 {14} -4- r2358c9 {14789} -1 => r2c8,r3c7<>1
Discontinuous Nice Loop: 4 r7c8 -4- r7c5 -6- r9c5 =6= r9c7 -6- r4c7 =6= r4c8 =1= r7c8 => r7c8<>4
Finned Franken Swordfish: 9 r37b2 c367 fr1c4 fr3c9 => r1c7<>9
Discontinuous Nice Loop: 9 r2c6 -9- r1c4 -4- r1c7 -1- r1c6 =1= r2c6 => r2c6<>9
Locked Candidates Type 1 (Pointing): 9 in b2 => r1c3<>9
Grouped Continuous Nice Loop: 4/8 3= r4c1 =1= r6c1 -1- r6c9 =1= r23c9 -1- r1c7 -4- r1c3 -3- r4c3 =3= r4c1 =1 => r1c24<>4, r4c1<>8
Naked Single: r1c4=9
Locked Candidates Type 1 (Pointing): 4 in b2 => r79c5<>4
Naked Single: r7c5=6
Hidden Single: r8c3=6
Hidden Single: r9c7=6
Hidden Single: r4c8=6
Hidden Single: r8c9=9
Hidden Single: r7c8=1
Hidden Single: r2c1=9
Hidden Single: r3c7=9
Hidden Single: r7c3=9
Naked Single: r7c6=2
Naked Single: r8c6=3
Naked Single: r8c1=5
Naked Single: r9c5=7
Naked Single: r8c2=2
Naked Single: r3c5=4
Full House: r2c5=3
Naked Single: r9c6=9
Naked Single: r3c3=8
Naked Single: r4c3=3
Full House: r1c3=4
Naked Single: r4c1=1
Full House: r4c7=8
Naked Single: r1c7=1
Full House: r7c7=4
Full House: r7c2=8
Full House: r8c8=8
Full House: r8c4=4
Full House: r9c4=8
Naked Single: r6c1=4
Full House: r6c9=1
Naked Single: r1c6=7
Full House: r1c2=3
Full House: r2c6=1
Naked Single: r3c9=7
Full House: r3c2=1
Full House: r2c2=7
Naked Single: r5c1=8
Full House: r5c2=5
Full House: r9c1=3
Full House: r9c2=4
Naked Single: r2c8=4
Full House: r2c9=8
Full House: r5c9=4
Full House: r5c8=7
|
normal_sudoku_1131
|
..2.9.5.......3.4....8....61.......5.4735..8..59...7..9...31.5..8..7.2....56....3
|
362194578871563942594827316138749625247356189659218734926431857483975261715682493
|
normal_sudoku_1131
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 2 . 9 . 5 . .
. . . . . 3 . 4 .
. . . 8 . . . . 6
1 . . . . . . . 5
. 4 7 3 5 . . 8 .
. 5 9 . . . 7 . .
9 . . . 3 1 . 5 .
. 8 . . 7 . 2 . .
. . 5 6 . . . . 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
362194578871563942594827316138749625247356189659218734926431857483975261715682493 #1 Extreme (8292)
Locked Candidates Type 1 (Pointing): 1 in b5 => r6c89<>1
Locked Candidates Type 1 (Pointing): 8 in b8 => r9c7<>8
2-String Kite: 3 in r3c7,r6c1 (connected by r4c7,r6c8) => r3c1<>3
Finned X-Wing: 3 c27 r34 fr1c2 => r3c3<>3
Discontinuous Nice Loop: 6 r8c3 -6- r8c8 =6= r7c7 =8= r2c7 -8- r2c3 =8= r4c3 =3= r8c3 => r8c3<>6
Empty Rectangle: 6 in b4 (r8c18) => r4c8<>6
Forcing Chain Contradiction in r9c1 => r8c8=6
r8c8<>6 r8c1=6 r5c1<>6 r5c1=2 r9c1<>2
r8c8<>6 r8c1=6 r7c3<>6 r7c3=4 r9c1<>4
r8c8<>6 r7c7=6 r7c7<>8 r7c9=8 r7c9<>7 r7c2=7 r9c1<>7
XYZ-Wing: 1/3/4 in r38c3,r8c1 => r7c3<>4
Naked Single: r7c3=6
AIC: 3 3- r3c7 =3= r4c7 =6= r5c7 =1= r5c9 -1- r8c9 =1= r8c3 =3= r8c1 -3- r6c1 =3= r6c8 -3 => r13c8,r4c7<>3
Hidden Single: r3c7=3
Discontinuous Nice Loop: 1 r1c2 -1- r9c2 =1= r8c3 =3= r8c1 -3- r1c1 =3= r1c2 => r1c2<>1
Discontinuous Nice Loop: 1 r1c9 -1- r8c9 =1= r8c3 -1- r2c3 -8- r1c1 =8= r1c9 => r1c9<>1
Grouped Discontinuous Nice Loop: 6 r4c5 -6- r4c7 =6= r5c7 =1= r5c9 -1- r8c9 =1= r8c3 =3= r4c3 =8= r6c1 =6= r6c56 -6- r4c5 => r4c5<>6
Grouped Discontinuous Nice Loop: 6 r4c6 -6- r4c7 =6= r5c7 =1= r5c9 -1- r8c9 =1= r8c3 =3= r4c3 =8= r6c1 =6= r6c56 -6- r4c6 => r4c6<>6
Almost Locked Set XZ-Rule: A=r1c48 {147}, B=r7c24 {247}, X=4, Z=7 => r1c2<>7
Forcing Chain Contradiction in r4c8 => r2c4<>2
r2c4=2 r2c9<>2 r3c8=2 r4c8<>2
r2c4=2 r2c9<>2 r3c8=2 r6c8<>2 r6c8=3 r4c8<>3
r2c4=2 r2c4<>5 r8c4=5 r8c4<>9 r4c4=9 r4c8<>9
Discontinuous Nice Loop: 1 r2c9 -1- r1c8 =1= r1c4 -1- r6c4 =1= r6c5 =6= r2c5 =2= r2c9 => r2c9<>1
Discontinuous Nice Loop: 4 r6c4 -4- r6c9 -2- r2c9 =2= r2c5 =6= r6c5 =1= r6c4 => r6c4<>4
Discontinuous Nice Loop: 4 r6c5 -4- r6c9 -2- r2c9 =2= r2c5 =6= r6c5 => r6c5<>4
Forcing Chain Contradiction in r5c6 => r2c4<>1
r2c4=1 r6c4<>1 r6c4=2 r5c6<>2
r2c4=1 r2c3<>1 r2c3=8 r4c3<>8 r6c1=8 r6c1<>6 r6c56=6 r5c6<>6
r2c4=1 r2c4<>5 r8c4=5 r8c4<>9 r4c4=9 r5c6<>9
Forcing Chain Contradiction in r8 => r2c7<>1
r2c7=1 r2c3<>1 r2c3=8 r4c3<>8 r4c3=3 r8c3<>3 r8c1=3 r8c1<>4
r2c7=1 r5c7<>1 r5c9=1 r8c9<>1 r8c3=1 r8c3<>4
r2c7=1 r1c8<>1 r1c4=1 r6c4<>1 r6c4=2 r7c4<>2 r7c4=4 r8c4<>4
r2c7=1 r1c8<>1 r1c4=1 r6c4<>1 r6c4=2 r7c4<>2 r7c4=4 r8c6<>4
r2c7=1 r1c8<>1 r1c4=1 r6c4<>1 r6c4=2 r6c9<>2 r6c9=4 r8c9<>4
Locked Candidates Type 1 (Pointing): 1 in b3 => r9c8<>1
Discontinuous Nice Loop: 1 r3c2 -1- r2c3 -8- r2c7 -9- r2c2 =9= r3c2 => r3c2<>1
W-Wing: 9/7 in r3c2,r9c8 connected by 7 in r7c29 => r3c8<>9
Hidden Single: r3c2=9
Skyscraper: 9 in r8c4,r9c8 (connected by r4c48) => r8c9,r9c6<>9
Naked Triple: 2,4,8 in r7c4,r9c56 => r8c46<>4
Sue de Coq: r79c7 - {1489} (r2c7 - {89}, r8c9 - {14}) => r7c9<>4, r45c7<>9
Naked Pair: 7,8 in r17c9 => r2c9<>7, r2c9<>8
XY-Chain: 4 4- r6c9 -2- r2c9 -9- r2c7 -8- r7c7 -4 => r4c7,r8c9<>4
Naked Single: r4c7=6
Naked Single: r8c9=1
Naked Single: r5c7=1
Hidden Single: r6c9=4
Hidden Single: r9c2=1
Locked Candidates Type 1 (Pointing): 6 in b4 => r12c1<>6
Locked Candidates Type 2 (Claiming): 4 in r8 => r9c1<>4
Skyscraper: 7 in r1c9,r2c2 (connected by r7c29) => r1c1<>7
Finned X-Wing: 2 c24 r47 fr6c4 => r4c56<>2
Sue de Coq: r2c12 - {5678} (r2c4 - {57}, r1c12,r23c3 - {13468}) => r3c1<>4
XY-Chain: 8 8- r2c7 -9- r9c7 -4- r7c7 -8- r7c9 -7- r7c2 -2- r4c2 -3- r4c3 -8 => r2c3<>8
Naked Single: r2c3=1
Naked Single: r3c3=4
Naked Single: r8c3=3
Full House: r4c3=8
Naked Single: r8c1=4
Naked Single: r4c5=4
Hidden Rectangle: 2/8 in r6c56,r9c56 => r6c6<>2
XY-Chain: 3 3- r4c2 -2- r7c2 -7- r2c2 -6- r2c5 -2- r2c9 -9- r5c9 -2- r6c8 -3 => r4c8,r6c1<>3
Hidden Single: r4c2=3
Naked Single: r1c2=6
Naked Single: r2c2=7
Full House: r7c2=2
Full House: r9c1=7
Naked Single: r2c4=5
Naked Single: r3c1=5
Naked Single: r7c4=4
Naked Single: r9c8=9
Naked Single: r2c1=8
Full House: r1c1=3
Naked Single: r8c4=9
Full House: r8c6=5
Naked Single: r7c7=8
Full House: r7c9=7
Full House: r9c7=4
Full House: r2c7=9
Naked Single: r4c8=2
Naked Single: r1c9=8
Naked Single: r2c9=2
Full House: r5c9=9
Full House: r6c8=3
Full House: r2c5=6
Naked Single: r4c4=7
Full House: r4c6=9
Naked Single: r1c4=1
Full House: r6c4=2
Naked Single: r1c8=7
Full House: r1c6=4
Full House: r3c8=1
Naked Single: r3c5=2
Full House: r3c6=7
Naked Single: r5c6=6
Full House: r5c1=2
Full House: r6c1=6
Naked Single: r9c5=8
Full House: r6c5=1
Full House: r6c6=8
Full House: r9c6=2
|
normal_sudoku_5562
|
.7..4......1..6....63..725..4963.1..6579.1...31..746....671..4.7.4.63.1.13.4.9...
|
975342861281596437463187259849635172657921384312874695526718943794263518138459726
|
normal_sudoku_5562
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 7 . . 4 . . . .
. . 1 . . 6 . . .
. 6 3 . . 7 2 5 .
. 4 9 6 3 . 1 . .
6 5 7 9 . 1 . . .
3 1 . . 7 4 6 . .
. . 6 7 1 . . 4 .
7 . 4 . 6 3 . 1 .
1 3 . 4 . 9 . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
975342861281596437463187259849635172657921384312874695526718943794263518138459726 #1 Extreme (3852)
Locked Candidates Type 1 (Pointing): 5 in b6 => r789c9<>5
Skyscraper: 5 in r1c3,r2c5 (connected by r9c35) => r1c46,r2c1<>5
Hidden Rectangle: 1/8 in r1c49,r3c49 => r1c9<>8
Grouped Discontinuous Nice Loop: 9 r2c8 -9- r6c8 =9= r6c9 =5= r6c4 -5- r4c6 =5= r7c6 -5- r7c1 =5= r1c1 =9= r1c789 -9- r2c8 => r2c8<>9
Forcing Chain Contradiction in r1c3 => r4c6<>2
r4c6=2 r4c1<>2 r6c3=2 r1c3<>2
r4c6=2 r4c6<>5 r7c6=5 r7c1<>5 r1c1=5 r1c3<>5
r4c6=2 r1c6<>2 r1c6=8 r1c3<>8
Discontinuous Nice Loop: 8 r6c8 -8- r6c3 =8= r4c1 -8- r4c6 -5- r4c9 =5= r6c9 =9= r6c8 => r6c8<>8
Discontinuous Nice Loop: 8 r6c9 -8- r6c3 =8= r4c1 -8- r4c6 -5- r4c9 =5= r6c9 => r6c9<>8
Finned Franken Swordfish: 2 c36b5 r169 fr5c5 fr7c6 => r9c5<>2
Discontinuous Nice Loop: 8 r9c9 -8- r9c5 -5- r2c5 =5= r2c4 =3= r1c4 =1= r1c9 =6= r9c9 => r9c9<>8
Forcing Chain Contradiction in r1c3 => r4c6=5
r4c6<>5 r4c6=8 r1c6<>8 r1c6=2 r1c3<>2
r4c6<>5 r7c6=5 r7c1<>5 r1c1=5 r1c3<>5
r4c6<>5 r4c6=8 r4c1<>8 r6c3=8 r1c3<>8
Hidden Single: r6c9=5
Hidden Single: r6c8=9
W-Wing: 8/2 in r1c6,r6c4 connected by 2 in r25c5 => r123c4<>8
Naked Single: r3c4=1
Hidden Single: r1c9=1
Hidden Single: r1c8=6
Hidden Single: r9c9=6
Turbot Fish: 2 r4c1 =2= r6c3 -2- r9c3 =2= r9c8 => r4c8<>2
Sashimi Swordfish: 2 c258 r259 fr7c2 fr8c2 => r9c3<>2
Hidden Single: r9c8=2
Hidden Single: r9c7=7
Skyscraper: 8 in r6c4,r9c5 (connected by r69c3) => r5c5,r8c4<>8
Naked Single: r5c5=2
Full House: r6c4=8
Full House: r6c3=2
Full House: r4c1=8
Naked Single: r4c8=7
Full House: r4c9=2
Hidden Single: r2c9=7
Skyscraper: 8 in r7c6,r9c3 (connected by r1c36) => r7c2,r9c5<>8
Naked Single: r9c5=5
Full House: r9c3=8
Full House: r1c3=5
Naked Single: r8c4=2
Full House: r7c6=8
Full House: r1c6=2
Naked Single: r1c4=3
Full House: r2c4=5
Naked Single: r8c2=9
Naked Single: r1c1=9
Full House: r1c7=8
Naked Single: r7c2=2
Full House: r2c2=8
Full House: r7c1=5
Naked Single: r8c9=8
Full House: r8c7=5
Naked Single: r3c1=4
Full House: r2c1=2
Naked Single: r2c8=3
Full House: r5c8=8
Naked Single: r2c5=9
Full House: r2c7=4
Full House: r3c9=9
Full House: r3c5=8
Naked Single: r5c7=3
Full House: r5c9=4
Full House: r7c9=3
Full House: r7c7=9
|
normal_sudoku_4539
|
..87...9..945..2..2....4..3.458.7....2..61...18..593......7.4.14....8.3..6......2
|
318726594794513268256984713645837129923461857187259346539672481472198635861345972
|
normal_sudoku_4539
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . 8 7 . . . 9 .
. 9 4 5 . . 2 . .
2 . . . . 4 . . 3
. 4 5 8 . 7 . . .
. 2 . . 6 1 . . .
1 8 . . 5 9 3 . .
. . . . 7 . 4 . 1
4 . . . . 8 . 3 .
. 6 . . . . . . 2
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
318726594794513268256984713645837129923461857187259346539672481472198635861345972 #1 Extreme (4154)
Hidden Single: r1c9=4
Hidden Single: r9c5=4
Naked Pair: 6,7 in r6c39 => r6c8<>6, r6c8<>7
Empty Rectangle: 3 in b1 (r4c15) => r1c5<>3
AIC: 1 1- r2c8 =1= r2c5 =3= r4c5 =2= r4c8 =1= r4c7 -1 => r13c7,r4c8<>1
Hidden Single: r4c7=1
Discontinuous Nice Loop: 9 r8c9 -9- r8c5 =9= r3c5 =8= r2c5 -8- r2c9 =8= r5c9 =5= r8c9 => r8c9<>9
Locked Candidates Type 1 (Pointing): 9 in b9 => r5c7<>9
Discontinuous Nice Loop: 5 r9c7 -5- r8c9 =5= r5c9 =8= r2c9 -8- r2c5 =8= r3c5 =9= r8c5 -9- r8c7 =9= r9c7 => r9c7<>5
Grouped AIC: 5 5- r7c2 -3- r79c3 =3= r5c3 -3- r5c4 =3= r79c4 -3- r9c6 -5 => r7c6,r9c1<>5
Hidden Single: r9c6=5
Grouped Discontinuous Nice Loop: 6 r2c9 -6- r2c6 -3- r2c5 =3= r4c5 =2= r4c8 =6= r46c9 -6- r2c9 => r2c9<>6
Discontinuous Nice Loop: 6 r3c4 -6- r3c3 =6= r6c3 =7= r6c9 -7- r2c9 -8- r2c5 =8= r3c5 =9= r3c4 => r3c4<>6
Locked Candidates Type 1 (Pointing): 6 in b2 => r7c6<>6
Sue de Coq: r789c4 - {12369} (r3c4 - {19}, r7c6 - {23}) => r8c5<>2
Continuous Nice Loop: 3/5 3= r1c2 =1= r1c5 =2= r1c6 -2- r7c6 -3- r7c2 =3= r1c2 =1 => r7c134<>3, r1c2<>5
X-Wing: 3 c34 r59 => r59c1<>3
Naked Triple: 7,8,9 in r9c178 => r9c3<>7, r9c34<>9
XY-Chain: 9 9- r7c3 -2- r7c6 -3- r9c4 -1- r8c5 -9 => r7c4,r8c3<>9
Locked Candidates Type 1 (Pointing): 9 in b8 => r8c7<>9
Hidden Single: r9c7=9
Locked Candidates Type 1 (Pointing): 8 in b9 => r235c8<>8
2-String Kite: 7 in r3c2,r9c8 (connected by r8c2,r9c1) => r3c8<>7
W-Wing: 6/2 in r4c8,r7c4 connected by 2 in r6c48 => r7c8<>6
Hidden Single: r7c4=6
Uniqueness Test 6: 1/9 in r3c45,r8c45 => r3c5,r8c4<>9
Hidden Single: r3c4=9
Hidden Single: r8c5=9
Finned Swordfish: 6 r368 c379 fr3c8 => r1c7<>6
Naked Single: r1c7=5
Hidden Single: r7c1=5
Naked Single: r7c2=3
Naked Single: r7c8=8
Naked Single: r1c2=1
Naked Single: r7c6=2
Full House: r7c3=9
Naked Single: r9c3=1
Naked Single: r9c8=7
Naked Single: r1c5=2
Naked Single: r8c2=7
Full House: r3c2=5
Naked Single: r8c4=1
Full House: r9c4=3
Full House: r9c1=8
Full House: r8c3=2
Naked Single: r8c7=6
Full House: r8c9=5
Naked Single: r4c5=3
Naked Single: r5c4=4
Full House: r6c4=2
Naked Single: r5c8=5
Naked Single: r6c8=4
Hidden Single: r5c3=3
Hidden Single: r4c8=2
Skyscraper: 7 in r2c1,r6c3 (connected by r26c9) => r3c3,r5c1<>7
Naked Single: r3c3=6
Full House: r6c3=7
Full House: r6c9=6
Naked Single: r5c1=9
Full House: r4c1=6
Full House: r4c9=9
Naked Single: r1c1=3
Full House: r1c6=6
Full House: r2c1=7
Full House: r2c6=3
Naked Single: r3c8=1
Full House: r2c8=6
Naked Single: r2c9=8
Full House: r2c5=1
Full House: r3c5=8
Full House: r3c7=7
Full House: r5c9=7
Full House: r5c7=8
|
normal_sudoku_86
|
5.4.....7.12.7.59.97.1.5.241.72.945.42.5...79.957482..7516........3..7.......7...
|
584926317312874596976135824137269458428513679695748231751682943849351762263497185
|
normal_sudoku_86
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
5 . 4 . . . . . 7
. 1 2 . 7 . 5 9 .
9 7 . 1 . 5 . 2 4
1 . 7 2 . 9 4 5 .
4 2 . 5 . . . 7 9
. 9 5 7 4 8 2 . .
7 5 1 6 . . . . .
. . . 3 . . 7 . .
. . . . . 7 . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
584926317312874596976135824137269458428513679695748231751682943849351762263497185 #1 Extreme (7344)
Locked Candidates Type 1 (Pointing): 1 in b5 => r5c7<>1
Locked Candidates Type 1 (Pointing): 3 in b7 => r9c789<>3
Finned Swordfish: 8 r357 c357 fr7c8 fr7c9 => r9c7<>8
Finned Franken Swordfish: 8 r35b8 c357 fr9c4 => r9c3<>8
Forcing Net Verity => r1c5<>3
r4c2=3 (r1c2<>3) (r4c5<>3 r4c5=6 r3c5<>6) (r4c5<>3 r4c5=6 r5c5<>6) (r4c5<>3 r4c5=6 r5c6<>6) r6c1<>3 r6c1=6 r5c3<>6 r5c7=6 r3c7<>6 r3c3=6 r1c2<>6 r1c2=8 (r2c1<>8) r4c2<>8 r4c9=8 r2c9<>8 r2c4=8 r2c4<>4 r2c6=4 r7c6<>4 r7c6=2 r1c6<>2 r1c5=2 r1c5<>3
r4c5=3 r1c5<>3
r4c9=3 (r2c9<>3) (r6c8<>3) r6c9<>3 r6c1=3 r2c1<>3 r2c6=3 r1c5<>3
Forcing Net Verity => r1c5<>6
r4c2=6 (r1c2<>6) (r4c5<>6 r4c5=3 r3c5<>3) (r4c5<>6 r4c5=3 r5c5<>3) (r4c5<>6 r4c5=3 r5c6<>3) r6c1<>6 r6c1=3 r5c3<>3 r5c7=3 r3c7<>3 r3c3=3 r1c2<>3 r1c2=8 (r2c1<>8) r4c2<>8 r4c9=8 r2c9<>8 r2c4=8 r2c4<>4 r2c6=4 r7c6<>4 r7c6=2 r1c6<>2 r1c5=2 r1c5<>6
r4c5=6 r1c5<>6
r4c9=6 (r2c9<>6) (r6c8<>6) r6c9<>6 r6c1=6 r2c1<>6 r2c6=6 r1c5<>6
Forcing Net Contradiction in r7c7 => r1c7<>8
r1c7=8 (r1c4<>8 r1c4=9 r1c5<>9 r1c5=2 r7c5<>2) (r3c7<>8) r5c7<>8 r5c3=8 r3c3<>8 r3c5=8 r7c5<>8 r7c5=9 r7c7<>9 r9c7=9 r9c7<>1 r1c7=1 r1c7<>8
Forcing Net Verity => r2c9<>8
r4c9=3 (r4c9<>8 r4c2=8 r1c2<>8) (r4c5<>3 r4c5=6 r3c5<>6) (r2c9<>3) (r6c8<>3) r6c9<>3 r6c1=3 r2c1<>3 r2c6=3 r3c5<>3 r3c5=8 (r1c4<>8) r1c5<>8 r1c8=8 r2c9<>8
r4c9=6 (r4c9<>8 r4c2=8 r1c2<>8) (r4c5<>6 r4c5=3 r3c5<>3) (r2c9<>6) (r6c8<>6) r6c9<>6 r6c1=6 r2c1<>6 r2c6=6 r3c5<>6 r3c5=8 (r1c4<>8) r1c5<>8 r1c8=8 r2c9<>8
r4c9=8 r2c9<>8
Forcing Chain Verity => r2c1<>6
r1c8=3 r2c9<>3 r2c9=6 r2c1<>6
r6c8=3 r6c1<>3 r6c1=6 r2c1<>6
r7c8=3 r7c8<>4 r7c6=4 r2c6<>4 r2c4=4 r2c4<>8 r2c1=8 r2c1<>6
Finned Franken Swordfish: 6 r24b1 c259 fr2c6 fr3c3 => r3c5<>6
Locked Candidates Type 1 (Pointing): 6 in b2 => r5c6<>6
Discontinuous Nice Loop: 8 r3c3 -8- r2c1 -3- r2c9 -6- r3c7 =6= r3c3 => r3c3<>8
2-String Kite: 8 in r4c9,r8c3 (connected by r4c2,r5c3) => r8c9<>8
Grouped Discontinuous Nice Loop: 8 r9c9 -8- r9c4 =8= r12c4 -8- r3c5 =8= r3c7 -8- r5c7 =8= r4c9 -8- r9c9 => r9c9<>8
Almost Locked Set XY-Wing: A=r3c3 {36}, B=r8c125689 {1245689}, C=r137c5 {2389}, X,Y=3,9, Z=6 => r8c3<>6
Forcing Chain Verity => r1c4=9
r1c7=3 r2c9<>3 r2c9=6 r2c6<>6 r1c6=6 r1c6<>2 r1c5=2 r1c5<>9 r1c4=9
r3c7=3 r3c7<>8 r3c5=8 r1c4<>8 r1c4=9
r5c7=3 r5c6<>3 r45c5=3 r3c5<>3 r3c5=8 r1c4<>8 r1c4=9
r7c7=3 r7c7<>9 r7c5=9 r1c5<>9 r1c4=9
Turbot Fish: 8 r1c2 =8= r2c1 -8- r2c4 =8= r9c4 => r9c2<>8
Forcing Chain Contradiction in r7c5 => r4c9=8
r4c9<>8 r7c9=8 r789c8<>8 r1c8=8 r1c5<>8 r1c5=2 r7c5<>2
r4c9<>8 r7c9=8 r7c5<>8
r4c9<>8 r4c2=8 r5c3<>8 r8c3=8 r8c3<>9 r8c5=9 r7c5<>9
Hidden Single: r5c3=8
Naked Single: r8c3=9
W-Wing: 3/6 in r4c2,r9c3 connected by 6 in r1c2,r3c3 => r9c2<>3
Sashimi Swordfish: 6 r345 c257 fr3c3 => r1c2<>6
Hidden Single: r3c3=6
Full House: r9c3=3
Empty Rectangle: 3 in b5 (r3c57) => r5c7<>3
Naked Single: r5c7=6
Hidden Single: r4c5=6
Full House: r4c2=3
Full House: r6c1=6
Naked Single: r1c2=8
Full House: r2c1=3
Naked Single: r1c5=2
Naked Single: r2c9=6
Naked Single: r2c6=4
Full House: r2c4=8
Full House: r9c4=4
Naked Single: r7c6=2
Naked Single: r3c5=3
Full House: r1c6=6
Full House: r3c7=8
Naked Single: r9c2=6
Full House: r8c2=4
Naked Single: r7c9=3
Naked Single: r8c6=1
Full House: r5c6=3
Full House: r5c5=1
Naked Single: r6c9=1
Full House: r6c8=3
Naked Single: r7c7=9
Naked Single: r1c8=1
Full House: r1c7=3
Full House: r9c7=1
Naked Single: r7c5=8
Full House: r7c8=4
Naked Single: r9c8=8
Full House: r8c8=6
Naked Single: r8c5=5
Full House: r9c5=9
Naked Single: r9c1=2
Full House: r8c1=8
Full House: r8c9=2
Full House: r9c9=5
|
normal_sudoku_2510
|
...7......2..9...8.....314...9..5.34...97.5..5..34.91.1....74....6.89.2..9.6..8..
|
914758263623491758857263149279815634431976582568342917182537496746189325395624871
|
normal_sudoku_2510
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . . 7 . . . . .
. 2 . . 9 . . . 8
. . . . . 3 1 4 .
. . 9 . . 5 . 3 4
. . . 9 7 . 5 . .
5 . . 3 4 . 9 1 .
1 . . . . 7 4 . .
. . 6 . 8 9 . 2 .
. 9 . 6 . . 8 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
914758263623491758857263149279815634431976582568342917182537496746189325395624871 #1 Extreme (4884)
Hidden Single: r5c8=8
Hidden Pair: 6,9 in r7c89 => r7c89<>5, r7c9<>3
Empty Rectangle: 2 in b5 (r14c7) => r1c6<>2
Finned X-Wing: 8 c14 r34 fr1c1 => r3c23<>8
Forcing Chain Contradiction in c1 => r4c5<>2
r4c5=2 r4c1<>2
r4c5=2 r13c5<>2 r3c4=2 r3c4<>8 r3c1=8 r3c1<>9 r3c9=9 r7c9<>9 r7c9=6 r5c9<>6 r5c9=2 r5c1<>2
r4c5=2 r56c6<>2 r9c6=2 r9c1<>2
Forcing Chain Verity => r5c3<>2
r5c6=2 r5c3<>2
r6c6=2 r6c6<>8 r1c6=8 r3c4<>8 r3c1=8 r3c1<>9 r3c9=9 r7c9<>9 r7c9=6 r5c9<>6 r5c9=2 r5c3<>2
r9c6=2 r9c1<>2 r45c1=2 r5c3<>2
Forcing Chain Contradiction in r5c6 => r6c6<>6
r6c6=6 r4c5<>6 r4c5=1 r5c6<>1
r6c6=6 r6c6<>8 r1c6=8 r3c4<>8 r3c1=8 r3c1<>9 r3c9=9 r7c9<>9 r7c9=6 r5c9<>6 r5c9=2 r5c6<>2
r6c6=6 r5c6<>6
Discontinuous Nice Loop: 8 r6c2 -8- r6c6 =8= r1c6 -8- r3c4 =8= r3c1 =9= r3c9 -9- r7c9 -6- r6c9 =6= r6c2 => r6c2<>8
Almost Locked Set Chain: 7- r3c23 {567} -6- r6c2 {67} -7- r6c369 {2678} -6- r7c23459 {235689} -9- r7c8 {69} -6- r129c8 {5679} -9- r1c123,r2c13,r3c23 {13456789} -7 => r3c1<>7
Almost Locked Set Chain: 5- r3c23 {567} -6- r6c2 {67} -7- r6c369 {2678} -6- r7c23459 {235689} -9- r7c8 {69} -6- r129c8 {5679} -9- r1c123,r2c13,r3c23 {13456789} -8- r1c56,r2c46,r3c5 {124568} -5 => r3c4<>5
Grouped Discontinuous Nice Loop: 5 r9c5 -5- r9c89 =5= r8c9 =1= r8c4 =4= r2c4 =5= r78c4 -5- r9c5 => r9c5<>5
Forcing Chain Contradiction in r3 => r1c7=2
r1c7<>2 r4c7=2 r4c7<>6 r56c9=6 r7c9<>6 r7c9=9 r3c9<>9 r3c1=9 r3c1<>6
r1c7<>2 r4c7=2 r4c7<>7 r6c9=7 r6c9<>6 r6c2=6 r3c2<>6
r1c7<>2 r4c7=2 r5c9<>2 r5c9=6 r5c6<>6 r4c5=6 r3c5<>6
r1c7<>2 r4c7=2 r4c7<>6 r12c7=6 r3c9<>6
Turbot Fish: 6 r2c7 =6= r4c7 -6- r4c5 =6= r5c6 => r2c6<>6
Finned Swordfish: 2 r347 c145 fr7c3 => r9c1<>2
Locked Candidates Type 1 (Pointing): 2 in b7 => r6c3<>2
Continuous Nice Loop: 1/4/6 8= r1c6 =6= r5c6 -6- r5c9 -2- r6c9 =2= r6c6 =8= r1c6 =6 => r1c6<>1, r1c6<>4, r5c12<>6
Locked Candidates Type 1 (Pointing): 4 in b2 => r2c13<>4
Continuous Nice Loop: 6/9 9= r3c1 =8= r3c4 -8- r1c6 -6- r5c6 =6= r5c9 -6- r7c9 -9- r3c9 =9= r3c1 =8 => r16c9,r3c1<>6, r1c9<>9
Hidden Single: r6c2=6
Locked Pair: 5,7 in r3c23 => r1c23,r2c3,r3c59<>5, r2c13,r3c9<>7
Naked Pair: 6,9 in r37c9 => r5c9<>6
Naked Single: r5c9=2
Naked Single: r6c9=7
Full House: r4c7=6
Naked Single: r6c3=8
Full House: r6c6=2
Naked Single: r4c5=1
Naked Single: r4c2=7
Naked Single: r4c4=8
Full House: r5c6=6
Full House: r4c1=2
Naked Single: r3c2=5
Naked Single: r3c4=2
Naked Single: r1c6=8
Naked Single: r3c3=7
Naked Single: r3c5=6
Naked Single: r7c4=5
Naked Single: r1c5=5
Naked Single: r3c9=9
Full House: r3c1=8
Naked Single: r1c9=3
Naked Single: r1c8=6
Naked Single: r7c9=6
Naked Single: r2c7=7
Full House: r2c8=5
Full House: r8c7=3
Naked Single: r7c8=9
Full House: r9c8=7
Naked Single: r8c2=4
Naked Single: r1c2=1
Naked Single: r8c1=7
Naked Single: r8c4=1
Full House: r2c4=4
Full House: r8c9=5
Full House: r2c6=1
Full House: r9c6=4
Full House: r9c9=1
Naked Single: r9c1=3
Naked Single: r1c3=4
Full House: r1c1=9
Naked Single: r2c3=3
Full House: r2c1=6
Full House: r5c1=4
Naked Single: r5c2=3
Full House: r7c2=8
Full House: r5c3=1
Naked Single: r7c3=2
Full House: r7c5=3
Full House: r9c5=2
Full House: r9c3=5
|
normal_sudoku_1834
|
1....376.....6..5..6.4..9..9...468...46..8..98..9..426.238..69..8.6..2..6...72...
|
192583764478169352365427981931246875246758139857931426523814697784695213619372548
|
normal_sudoku_1834
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
1 . . . . 3 7 6 .
. . . . 6 . . 5 .
. 6 . 4 . . 9 . .
9 . . . 4 6 8 . .
. 4 6 . . 8 . . 9
8 . . 9 . . 4 2 6
. 2 3 8 . . 6 9 .
. 8 . 6 . . 2 . .
6 . . . 7 2 . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
192583764478169352365427981931246875246758139857931426523814697784695213619372548 #1 Extreme (3722)
Locked Candidates Type 1 (Pointing): 4 in b3 => r789c9<>4
Locked Candidates Type 1 (Pointing): 9 in b8 => r8c3<>9
Discontinuous Nice Loop: 2 r1c5 -2- r1c4 -5- r1c2 -9- r9c2 =9= r9c3 =4= r9c8 =8= r3c8 -8- r3c5 =8= r1c5 => r1c5<>2
2-String Kite: 2 in r3c5,r4c3 (connected by r4c4,r5c5) => r3c3<>2
Discontinuous Nice Loop: 5 r1c5 -5- r1c2 -9- r9c2 =9= r9c3 =4= r9c8 =8= r3c8 -8- r3c5 =8= r1c5 => r1c5<>5
Discontinuous Nice Loop: 2 r2c3 -2- r4c3 =2= r4c4 -2- r1c4 -5- r1c2 -9- r9c2 =9= r9c3 =4= r9c8 =8= r9c9 -8- r2c9 =8= r2c3 => r2c3<>2
Discontinuous Nice Loop: 4 r2c3 -4- r9c3 =4= r9c8 =8= r9c9 -8- r2c9 =8= r2c3 => r2c3<>4
Discontinuous Nice Loop: 8 r1c9 -8- r9c9 =8= r9c8 =4= r9c3 -4- r1c3 =4= r1c9 => r1c9<>8
Discontinuous Nice Loop: 9 r2c2 -9- r2c6 =9= r1c5 =8= r3c5 -8- r3c8 =8= r9c8 =4= r9c3 =9= r9c2 -9- r2c2 => r2c2<>9
Discontinuous Nice Loop: 3 r9c8 -3- r9c4 =3= r8c5 =9= r1c5 =8= r3c5 -8- r3c8 =8= r9c8 => r9c8<>3
Grouped Discontinuous Nice Loop: 7 r4c3 -7- r6c23 =7= r6c6 -7- r3c6 =7= r2c46 -7- r2c2 =7= r46c2 -7- r4c3 => r4c3<>7
Grouped Discontinuous Nice Loop: 7 r5c1 -7- r6c23 =7= r6c6 -7- r3c6 =7= r2c46 -7- r2c2 =7= r46c2 -7- r5c1 => r5c1<>7
Almost Locked Set XZ-Rule: A=r1c24 {259}, B=r2c2467 {12379}, X=2, Z=9 => r1c5,r2c3<>9
Naked Single: r1c5=8
Hidden Single: r8c5=9
Hidden Single: r2c6=9
Hidden Single: r9c4=3
Empty Rectangle: 3 in b1 (r25c7) => r5c1<>3
Locked Candidates Type 1 (Pointing): 3 in b4 => r2c2<>3
Naked Single: r2c2=7
Naked Single: r2c3=8
Naked Single: r3c3=5
Naked Single: r1c2=9
Hidden Single: r3c6=7
Hidden Single: r6c3=7
Hidden Single: r1c4=5
Hidden Single: r9c3=9
Hidden Single: r9c8=4
Hidden Single: r9c9=8
Hidden Single: r3c8=8
Skyscraper: 5 in r4c9,r9c7 (connected by r49c2) => r5c7,r78c9<>5
Hidden Single: r9c7=5
Full House: r9c2=1
Naked Single: r8c3=4
Naked Single: r1c3=2
Full House: r1c9=4
Full House: r4c3=1
Naked Single: r3c1=3
Full House: r2c1=4
Hidden Single: r4c9=5
Naked Single: r4c2=3
Full House: r6c2=5
Full House: r5c1=2
Naked Single: r4c8=7
Full House: r4c4=2
Naked Single: r6c6=1
Full House: r6c5=3
Naked Single: r2c4=1
Full House: r5c4=7
Full House: r5c5=5
Full House: r3c5=2
Full House: r7c5=1
Full House: r3c9=1
Naked Single: r8c6=5
Full House: r7c6=4
Naked Single: r2c7=3
Full House: r2c9=2
Full House: r5c7=1
Full House: r5c8=3
Full House: r8c8=1
Naked Single: r7c9=7
Full House: r7c1=5
Full House: r8c1=7
Full House: r8c9=3
|
normal_sudoku_5957
|
764..3.128.54.26.99...6...41.8...946..967.3816.3..172535...72.82...5...7.......53
|
764593812835412679912768534178235946529674381643981725356147298281359467497826153
|
normal_sudoku_5957
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
7 6 4 . . 3 . 1 2
8 . 5 4 . 2 6 . 9
9 . . . 6 . . . 4
1 . 8 . . . 9 4 6
. . 9 6 7 . 3 8 1
6 . 3 . . 1 7 2 5
3 5 . . . 7 2 . 8
2 . . . 5 . . . 7
. . . . . . . 5 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
764593812835412679912768534178235946529674381643981725356147298281359467497826153 #1 Easy (156)
Naked Single: r2c5=1
Naked Single: r4c6=5
Naked Single: r6c2=4
Naked Single: r9c1=4
Full House: r5c1=5
Naked Single: r2c2=3
Full House: r2c8=7
Naked Single: r3c6=8
Naked Single: r5c6=4
Full House: r5c2=2
Full House: r4c2=7
Naked Single: r9c7=1
Naked Single: r3c8=3
Naked Single: r1c5=9
Naked Single: r3c7=5
Full House: r1c7=8
Full House: r8c7=4
Full House: r1c4=5
Full House: r3c4=7
Naked Single: r3c2=1
Full House: r3c3=2
Naked Single: r6c5=8
Full House: r6c4=9
Naked Single: r7c5=4
Naked Single: r9c5=2
Full House: r4c5=3
Full House: r4c4=2
Naked Single: r7c4=1
Naked Single: r9c4=8
Full House: r8c4=3
Naked Single: r7c3=6
Full House: r7c8=9
Full House: r8c8=6
Naked Single: r9c2=9
Full House: r8c2=8
Naked Single: r8c3=1
Full House: r9c3=7
Full House: r8c6=9
Full House: r9c6=6
|
normal_sudoku_4757
|
3.67...2.5.7...43..42.3.6.763...17..25.37.9...7...82.3.6.5.3.727.386254..25..73.6
|
386749125517286439942135687638921754251374968479658213164593872793862541825417396
|
normal_sudoku_4757
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
3 . 6 7 . . . 2 .
5 . 7 . . . 4 3 .
. 4 2 . 3 . 6 . 7
6 3 . . . 1 7 . .
2 5 . 3 7 . 9 . .
. 7 . . . 8 2 . 3
. 6 . 5 . 3 . 7 2
7 . 3 8 6 2 5 4 .
. 2 5 . . 7 3 . 6
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
386749125517286439942135687638921754251374968479658213164593872793862541825417396 #1 Medium (312)
Locked Candidates Type 1 (Pointing): 8 in b4 => r7c3<>8
Locked Candidates Type 1 (Pointing): 5 in b5 => r1c5<>5
Locked Candidates Type 1 (Pointing): 8 in b7 => r3c1<>8
Hidden Single: r3c8=8
Naked Single: r1c7=1
Full House: r7c7=8
Naked Single: r4c8=5
Naked Single: r2c9=9
Full House: r1c9=5
Naked Single: r2c6=6
Naked Single: r8c9=1
Full House: r8c2=9
Full House: r9c8=9
Naked Single: r5c6=4
Naked Single: r1c2=8
Full House: r2c2=1
Full House: r3c1=9
Naked Single: r1c6=9
Full House: r3c6=5
Full House: r3c4=1
Full House: r1c5=4
Naked Single: r5c9=8
Full House: r4c9=4
Naked Single: r2c4=2
Full House: r2c5=8
Naked Single: r9c4=4
Naked Single: r9c5=1
Full House: r7c5=9
Full House: r9c1=8
Naked Single: r5c3=1
Full House: r5c8=6
Full House: r6c8=1
Naked Single: r4c4=9
Full House: r6c4=6
Naked Single: r4c5=2
Full House: r6c5=5
Full House: r4c3=8
Naked Single: r6c1=4
Full House: r6c3=9
Full House: r7c3=4
Full House: r7c1=1
|
normal_sudoku_284
|
15.6.7..276...45.124.5197....1348.9...4..5....3..614....6.73..44..1.6....174.2.5.
|
158637942769824531243519768671348295824795316935261487586973124492156873317482659
|
normal_sudoku_284
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
1 5 . 6 . 7 . . 2
7 6 . . . 4 5 . 1
2 4 . 5 1 9 7 . .
. . 1 3 4 8 . 9 .
. . 4 . . 5 . . .
. 3 . . 6 1 4 . .
. . 6 . 7 3 . . 4
4 . . 1 . 6 . . .
. 1 7 4 . 2 . 5 .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
158637942769824531243519768671348295824795316935261487586973124492156873317482659 #1 Easy (248)
Hidden Single: r2c3=9
Hidden Single: r1c7=9
Hidden Single: r1c8=4
Hidden Single: r9c1=3
Hidden Single: r7c1=5
Naked Single: r4c1=6
Naked Single: r4c7=2
Naked Single: r4c2=7
Full House: r4c9=5
Hidden Single: r8c5=5
Hidden Single: r6c3=5
Hidden Single: r6c4=2
Naked Single: r2c4=8
Naked Single: r5c5=9
Full House: r5c4=7
Full House: r7c4=9
Full House: r9c5=8
Naked Single: r1c5=3
Full House: r1c3=8
Full House: r2c5=2
Full House: r2c8=3
Full House: r3c3=3
Full House: r8c3=2
Naked Single: r5c1=8
Full House: r6c1=9
Full House: r5c2=2
Naked Single: r9c7=6
Full House: r9c9=9
Naked Single: r7c2=8
Full House: r8c2=9
Naked Single: r7c7=1
Full House: r7c8=2
Naked Single: r5c7=3
Full House: r8c7=8
Naked Single: r5c9=6
Full House: r5c8=1
Naked Single: r8c8=7
Full House: r8c9=3
Naked Single: r3c9=8
Full House: r3c8=6
Full House: r6c8=8
Full House: r6c9=7
|
normal_sudoku_4561
|
8597..2..64...5..1.13............7....1.43..993..67142.9..8.427.8..79315...4..698
|
859714236642935871713628954564192783271843569938567142195386427486279315327451698
|
normal_sudoku_4561
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
8 5 9 7 . . 2 . .
6 4 . . . 5 . . 1
. 1 3 . . . . . .
. . . . . . 7 . .
. . 1 . 4 3 . . 9
9 3 . . 6 7 1 4 2
. 9 . . 8 . 4 2 7
. 8 . . 7 9 3 1 5
. . . 4 . . 6 9 8
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
859714236642935871713628954564192783271843569938567142195386427486279315327451698 #1 Medium (452)
Locked Candidates Type 1 (Pointing): 6 in b7 => r4c3<>6
Naked Triple: 3,4,6 in r1c89,r3c9 => r2c8<>3, r3c8<>6
Locked Candidates Type 1 (Pointing): 3 in b3 => r1c5<>3
Naked Single: r1c5=1
Naked Triple: 1,2,6 in r79c6,r8c4 => r7c4<>1, r7c4<>6, r9c5<>2
Hidden Single: r4c4=1
Hidden Single: r4c5=9
Naked Single: r3c5=2
Naked Single: r2c5=3
Full House: r9c5=5
Naked Single: r3c1=7
Full House: r2c3=2
Naked Single: r7c4=3
Naked Single: r9c3=7
Naked Single: r9c2=2
Naked Single: r4c2=6
Full House: r5c2=7
Naked Single: r8c1=4
Naked Single: r9c6=1
Full House: r9c1=3
Naked Single: r4c9=3
Naked Single: r8c3=6
Full House: r8c4=2
Full House: r7c6=6
Naked Single: r7c3=5
Full House: r7c1=1
Naked Single: r1c6=4
Naked Single: r6c3=8
Full House: r4c3=4
Full House: r6c4=5
Naked Single: r1c9=6
Full House: r1c8=3
Full House: r3c9=4
Naked Single: r3c6=8
Full House: r4c6=2
Full House: r5c4=8
Naked Single: r2c4=9
Full House: r3c4=6
Naked Single: r3c8=5
Full House: r3c7=9
Naked Single: r4c1=5
Full House: r4c8=8
Full House: r5c1=2
Naked Single: r5c7=5
Full House: r2c7=8
Full House: r5c8=6
Full House: r2c8=7
|
normal_sudoku_555
|
2..1.46......5..121..2..3.46...41..3..3.624..8..37.....81.2...9.....7...3..4..2..
|
238194657946753812157286394625841973793562481814379526481625739562937148379418265
|
normal_sudoku_555
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
2 . . 1 . 4 6 . .
. . . . 5 . . 1 2
1 . . 2 . . 3 . 4
6 . . . 4 1 . . 3
. . 3 . 6 2 4 . .
8 . . 3 7 . . . .
. 8 1 . 2 . . . 9
. . . . . 7 . . .
3 . . 4 . . 2 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
238194657946753812157286394625841973793562481814379526481625739562937148379418265 #1 Extreme (2084)
Hidden Single: r2c4=7
Locked Candidates Type 1 (Pointing): 6 in b2 => r79c6<>6
Locked Candidates Type 1 (Pointing): 8 in b5 => r8c4<>8
Hidden Pair: 3,4 in r78c8 => r78c8<>5, r78c8<>6, r7c8<>7, r8c8<>8
Hidden Single: r7c4=6
Skyscraper: 7 in r4c7,r5c1 (connected by r7c17) => r4c23,r5c89<>7
Finned X-Wing: 7 c39 r19 fr3c3 => r1c2<>7
Discontinuous Nice Loop: 9 r2c2 -9- r2c1 -4- r7c1 =4= r7c8 =3= r7c6 -3- r2c6 =3= r2c2 => r2c2<>9
Discontinuous Nice Loop: 2 r6c2 -2- r6c8 =2= r4c8 =7= r4c7 -7- r7c7 =7= r7c1 -7- r5c1 =7= r5c2 =1= r6c2 => r6c2<>2
Discontinuous Nice Loop: 5/6/9 r6c8 =2= r6c3 =4= r6c2 =1= r5c2 =7= r5c1 -7- r7c1 =7= r7c7 -7- r4c7 =7= r4c8 =2= r6c8 => r6c8<>5, r6c8<>6, r6c8<>9
Naked Single: r6c8=2
Hidden Single: r6c9=6
Hidden Single: r9c8=6
Hidden Pair: 2,6 in r8c23 => r8c23<>4, r8c23<>5, r8c23<>9
Locked Candidates Type 1 (Pointing): 4 in b7 => r2c1<>4
Naked Single: r2c1=9
Naked Single: r2c7=8
Locked Candidates Type 1 (Pointing): 9 in b3 => r45c8<>9
Locked Candidates Type 1 (Pointing): 9 in b7 => r9c56<>9
Locked Candidates Type 1 (Pointing): 8 in b9 => r5c9<>8
Hidden Rectangle: 5/8 in r4c48,r5c48 => r4c4<>5
W-Wing: 1/5 in r5c9,r8c7 connected by 5 in r58c4 => r6c7,r89c9<>1
Hidden Single: r6c2=1
Hidden Single: r8c7=1
Hidden Single: r5c9=1
Hidden Single: r9c5=1
Hidden Single: r6c3=4
Naked Single: r2c3=6
Naked Single: r2c6=3
Full House: r2c2=4
Naked Single: r8c3=2
Naked Single: r7c6=5
Naked Single: r8c2=6
Naked Single: r6c6=9
Full House: r6c7=5
Naked Single: r7c7=7
Full House: r4c7=9
Naked Single: r8c4=9
Naked Single: r9c6=8
Full House: r3c6=6
Full House: r8c5=3
Naked Single: r4c4=8
Full House: r5c4=5
Naked Single: r5c8=8
Full House: r4c8=7
Naked Single: r7c1=4
Full House: r7c8=3
Naked Single: r4c3=5
Full House: r4c2=2
Naked Single: r9c9=5
Naked Single: r8c8=4
Full House: r8c9=8
Full House: r8c1=5
Full House: r5c1=7
Full House: r1c9=7
Full House: r5c2=9
Naked Single: r1c3=8
Naked Single: r9c2=7
Full House: r9c3=9
Full House: r3c3=7
Naked Single: r1c5=9
Full House: r3c5=8
Naked Single: r3c2=5
Full House: r1c2=3
Full House: r1c8=5
Full House: r3c8=9
|
normal_sudoku_2737
|
18...9..44....8....2.....6..18..234.3.9...27.2.4..3.51..2.3.......95...2..12.46.3
|
187629534436578129925341867518792346369415278274863951692137485843956712751284693
|
normal_sudoku_2737
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
1 8 . . . 9 . . 4
4 . . . . 8 . . .
. 2 . . . . . 6 .
. 1 8 . . 2 3 4 .
3 . 9 . . . 2 7 .
2 . 4 . . 3 . 5 1
. . 2 . 3 . . . .
. . . 9 5 . . . 2
. . 1 2 . 4 6 . 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
187629534436578129925341867518792346369415278274863951692137485843956712751284693 #1 Extreme (3126)
Locked Triple: 1,8,9 in r789c8 => r2c8,r78c7<>1, r2c8,r7c79<>9, r7c79,r8c7<>8
Locked Candidates Type 1 (Pointing): 5 in b9 => r7c12<>5
Locked Candidates Type 2 (Claiming): 5 in c3 => r2c2,r3c1<>5
Naked Triple: 4,5,7 in r178c7 => r23c7<>5, r23c7<>7
Hidden Rectangle: 4/7 in r7c27,r8c27 => r7c2<>7
Discontinuous Nice Loop: 6 r4c4 -6- r4c9 =6= r5c9 -6- r5c2 -5- r4c1 =5= r4c4 => r4c4<>6
Grouped Discontinuous Nice Loop: 7 r2c2 -7- r6c2 -6- r5c2 -5- r5c6 =5= r3c6 =7= r78c6 -7- r9c5 =7= r9c12 -7- r8c3 =7= r123c3 -7- r2c2 => r2c2<>7
Grouped Discontinuous Nice Loop: 7 r3c1 -7- r3c6 =7= r78c6 -7- r9c5 =7= r9c12 -7- r8c3 =7= r123c3 -7- r3c1 => r3c1<>7
Naked Single: r3c1=9
Locked Candidates Type 1 (Pointing): 7 in b1 => r8c3<>7
AIC: 5 5- r1c7 =5= r7c7 =4= r7c2 =9= r9c2 =5= r5c2 -5- r5c6 =5= r3c6 -5 => r1c4,r3c9<>5
Discontinuous Nice Loop: 7 r1c5 -7- r9c5 -8- r9c8 -9- r9c2 =9= r7c2 =4= r8c2 =3= r2c2 -3- r2c8 -2- r2c5 =2= r1c5 => r1c5<>7
Discontinuous Nice Loop: 5 r3c4 -5- r3c6 =5= r5c6 -5- r5c2 -6- r2c2 -3- r3c3 =3= r3c4 => r3c4<>5
Discontinuous Nice Loop: 7 r3c5 -7- r9c5 -8- r9c8 -9- r9c2 =9= r7c2 =4= r8c2 =3= r8c3 -3- r3c3 =3= r3c4 =4= r3c5 => r3c5<>7
Hidden Rectangle: 1/4 in r3c45,r5c45 => r5c4<>1
Discontinuous Nice Loop: 7 r3c6 -7- r3c9 -8- r5c9 -6- r5c2 -5- r5c6 =5= r3c6 => r3c6<>7
Locked Candidates Type 2 (Claiming): 7 in c6 => r7c4,r9c5<>7
Naked Single: r9c5=8
Naked Single: r9c8=9
Hidden Single: r7c2=9
Hidden Single: r7c7=4
Naked Single: r8c7=7
Naked Single: r1c7=5
Naked Single: r7c9=5
Hidden Single: r8c2=4
Hidden Single: r7c6=7
Hidden Single: r8c3=3
Hidden Single: r2c2=3
Naked Single: r2c8=2
Naked Single: r1c8=3
Hidden Single: r3c4=3
Hidden Single: r1c5=2
Hidden Single: r3c5=4
Hidden Single: r5c4=4
Hidden Single: r5c9=8
Naked Single: r3c9=7
Naked Single: r6c7=9
Full House: r4c9=6
Full House: r2c9=9
Naked Single: r3c3=5
Naked Single: r2c7=1
Full House: r3c7=8
Full House: r3c6=1
Naked Single: r8c6=6
Full House: r5c6=5
Full House: r7c4=1
Naked Single: r8c1=8
Full House: r8c8=1
Full House: r7c8=8
Full House: r7c1=6
Naked Single: r4c4=7
Naked Single: r5c2=6
Full House: r5c5=1
Naked Single: r1c4=6
Full House: r1c3=7
Full House: r2c3=6
Naked Single: r4c1=5
Full House: r4c5=9
Full House: r6c2=7
Full House: r9c1=7
Full House: r9c2=5
Naked Single: r6c5=6
Full House: r2c5=7
Full House: r2c4=5
Full House: r6c4=8
|
normal_sudoku_941
|
3.5.24....2163.....6.5.1.3...61438.9..32.7....4...63..61.3.2..4.34.15...5.246.1.3
|
385724916421639785967581432276143859853297641149856327618372594734915268592468173
|
normal_sudoku_941
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
3 . 5 . 2 4 . . .
. 2 1 6 3 . . . .
. 6 . 5 . 1 . 3 .
. . 6 1 4 3 8 . 9
. . 3 2 . 7 . . .
. 4 . . . 6 3 . .
6 1 . 3 . 2 . . 4
. 3 4 . 1 5 . . .
5 . 2 4 6 . 1 . 3
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
385724916421639785967581432276143859853297641149856327618372594734915268592468173 #1 Extreme (5540)
Finned Swordfish: 7 r249 c128 fr2c7 fr2c9 => r1c8<>7
Finned Franken Swordfish: 7 c35b6 r367 fr4c8 => r7c8<>7
Forcing Net Verity => r1c2<>7
r1c4=7 r1c2<>7
r1c4=8 (r1c4<>7 r8c4=7 r7c5<>7 r3c5=7 r3c1<>7) (r1c4<>7 r8c4=7 r8c1<>7) (r6c4<>8 r6c4=9 r6c3<>9) (r1c2<>8) r2c6<>8 r9c6=8 r9c2<>8 r5c2=8 r6c3<>8 r6c3=7 (r4c1<>7) r6c1<>7 r2c1=7 r1c2<>7
r1c4=9 (r1c4<>7 r8c4=7 r7c5<>7 r3c5=7 r3c1<>7) (r1c4<>7 r8c4=7 r8c1<>7) (r6c4<>9 r6c4=8 r6c3<>8) (r1c2<>9) r2c6<>9 r9c6=9 r9c2<>9 r5c2=9 r6c3<>9 r6c3=7 (r4c1<>7) r6c1<>7 r2c1=7 r1c2<>7
Forcing Net Verity => r4c1=2
r3c5=7 (r3c1<>7) r3c3<>7 r2c1=7 r4c1<>7 r4c1=2
r3c5=8 (r3c5<>7 r7c5=7 r8c4<>7 r8c4=9 r8c1<>9) (r3c3<>8) (r1c4<>8) r2c6<>8 r9c6=8 r8c4<>8 r6c4=8 r6c3<>8 r7c3=8 r8c1<>8 r8c1=7 r4c1<>7 r4c1=2
r3c5=9 (r3c5<>7 r7c5=7 r8c4<>7 r8c4=8 r8c1<>8) (r3c3<>9) (r1c4<>9) r2c6<>9 r9c6=9 r8c4<>9 r6c4=9 r6c3<>9 r7c3=9 r8c1<>9 r8c1=7 r4c1<>7 r4c1=2
X-Wing: 7 r49 c28 => r268c8<>7
Forcing Net Contradiction in c3 => r1c4<>8
r1c4=8 r1c2<>8 r1c2=9 r3c3<>9
r1c4=8 r6c4<>8 r6c4=9 r6c3<>9
r1c4=8 (r2c6<>8 r9c6=8 r7c5<>8) r1c4<>7 r8c4=7 r7c5<>7 r7c5=9 r7c3<>9
Discontinuous Nice Loop: 9 r7c5 -9- r9c6 -8- r2c6 =8= r3c5 =7= r7c5 => r7c5<>9
Forcing Chain Contradiction in c3 => r1c4=7
r1c4<>7 r1c4=9 r1c2<>9 r1c2=8 r3c3<>8
r1c4<>7 r1c4=9 r6c4<>9 r6c4=8 r6c3<>8
r1c4<>7 r8c4=7 r7c5<>7 r7c5=8 r7c3<>8
Hidden Single: r7c5=7
Forcing Chain Contradiction in b7 => r1c8<>8
r1c8=8 r7c8<>8 r7c3=8 r7c3<>9
r1c8=8 r789c8<>8 r8c9=8 r8c4<>8 r8c4=9 r8c1<>9
r1c8=8 r1c2<>8 r1c2=9 r9c2<>9
Forcing Chain Contradiction in r8c1 => r3c3<>8
r3c3=8 r3c3<>7 r23c1=7 r8c1<>7
r3c3=8 r3c5<>8 r2c6=8 r9c6<>8 r8c4=8 r8c1<>8
r3c3=8 r7c3<>8 r7c3=9 r8c1<>9
Skyscraper: 8 in r7c3,r8c4 (connected by r6c34) => r8c1<>8
XY-Chain: 7 7- r3c3 -9- r3c5 -8- r2c6 -9- r9c6 -8- r8c4 -9- r8c1 -7 => r23c1<>7
Hidden Single: r3c3=7
Naked Pair: 8,9 in r6c34 => r6c15<>8, r6c15<>9
Naked Single: r6c5=5
Remote Pair: 9/8 r7c3 -8- r6c3 -9- r6c4 -8- r8c4 => r8c1<>9
Naked Single: r8c1=7
Naked Single: r6c1=1
Naked Single: r6c8=2
Naked Single: r6c9=7
Naked Single: r4c8=5
Full House: r4c2=7
Hidden Single: r2c7=7
Hidden Single: r9c8=7
Hidden Single: r5c2=5
Hidden Single: r2c9=5
Hidden Single: r7c7=5
Remote Pair: 9/8 r1c2 -8- r9c2 -9- r9c6 -8- r2c6 -9- r3c5 -8- r5c5 -9- r5c1 -8- r6c3 -9- r7c3 -8- r7c8 => r2c1<>8, r1c8,r2c1<>9
Naked Single: r2c1=4
Hidden Single: r5c8=4
Naked Single: r5c7=6
Full House: r5c9=1
Naked Single: r1c7=9
Naked Single: r1c2=8
Full House: r3c1=9
Full House: r9c2=9
Full House: r5c1=8
Full House: r7c3=8
Full House: r9c6=8
Full House: r5c5=9
Full House: r3c5=8
Full House: r6c3=9
Full House: r7c8=9
Full House: r2c6=9
Full House: r2c8=8
Full House: r8c4=9
Full House: r6c4=8
Naked Single: r8c7=2
Full House: r3c7=4
Full House: r3c9=2
Naked Single: r1c9=6
Full House: r1c8=1
Full House: r8c8=6
Full House: r8c9=8
|
normal_sudoku_877
|
...4.1.3..9136.8.72..7..1.....8..9...5.1...467..649.851..276.9.362984571..7513...
|
578421639491365827236798154624857913859132746713649285145276398362984571987513462
|
normal_sudoku_877
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. . . 4 . 1 . 3 .
. 9 1 3 6 . 8 . 7
2 . . 7 . . 1 . .
. . . 8 . . 9 . .
. 5 . 1 . . . 4 6
7 . . 6 4 9 . 8 5
1 . . 2 7 6 . 9 .
3 6 2 9 8 4 5 7 1
. . 7 5 1 3 . . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
578421639491365827236798154624857913859132746713649285145276398362984571987513462 #1 Easy (156)
Naked Single: r6c3=3
Naked Single: r6c7=2
Full House: r6c2=1
Naked Single: r1c7=6
Naked Single: r4c8=1
Naked Single: r4c9=3
Full House: r5c7=7
Naked Single: r3c8=5
Naked Single: r9c7=4
Full House: r7c7=3
Naked Single: r5c6=2
Naked Single: r2c8=2
Full House: r9c8=6
Naked Single: r3c5=9
Naked Single: r3c6=8
Naked Single: r7c9=8
Full House: r9c9=2
Naked Single: r9c2=8
Full House: r9c1=9
Naked Single: r2c6=5
Full House: r1c5=2
Full House: r2c1=4
Full House: r4c6=7
Naked Single: r4c5=5
Full House: r5c5=3
Naked Single: r1c9=9
Full House: r3c9=4
Naked Single: r7c2=4
Full House: r7c3=5
Naked Single: r1c2=7
Naked Single: r5c1=8
Full House: r5c3=9
Naked Single: r3c2=3
Full House: r3c3=6
Full House: r4c2=2
Naked Single: r4c1=6
Full House: r1c1=5
Full House: r1c3=8
Full House: r4c3=4
|
normal_sudoku_2436
|
1.9.....35..3...9.3.46....2813...27592.73.14664.1..938.3....5.4.9..8.....5..7..69
|
169827453582314697374695812813946275925738146647152938731269584496583721258471369
|
normal_sudoku_2436
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
1 . 9 . . . . . 3
5 . . 3 . . . 9 .
3 . 4 6 . . . . 2
8 1 3 . . . 2 7 5
9 2 . 7 3 . 1 4 6
6 4 . 1 . . 9 3 8
. 3 . . . . 5 . 4
. 9 . . 8 . . . .
. 5 . . 7 . . 6 9
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
169827453582314697374695812813946275925738146647152938731269584496583721258471369 #1 Medium (322)
Naked Single: r5c3=5
Full House: r5c6=8
Full House: r6c3=7
Hidden Single: r2c3=2
Hidden Single: r1c4=8
Naked Single: r1c8=5
Hidden Single: r7c1=7
Hidden Single: r8c4=5
Locked Candidates Type 2 (Claiming): 2 in c4 => r7c56,r89c6<>2
Naked Pair: 7,8 in r3c27 => r3c6<>7, r3c8<>8
Naked Single: r3c8=1
Naked Single: r2c9=7
Full House: r8c9=1
Naked Single: r8c8=2
Full House: r7c8=8
Naked Single: r3c7=8
Naked Single: r8c3=6
Naked Single: r8c1=4
Full House: r9c1=2
Naked Single: r9c7=3
Full House: r8c7=7
Full House: r8c6=3
Naked Single: r3c2=7
Naked Single: r7c3=1
Full House: r9c3=8
Naked Single: r9c4=4
Full House: r9c6=1
Naked Single: r1c2=6
Full House: r2c2=8
Naked Single: r4c4=9
Full House: r7c4=2
Naked Single: r2c6=4
Naked Single: r1c7=4
Full House: r2c7=6
Full House: r2c5=1
Naked Single: r1c5=2
Full House: r1c6=7
Naked Single: r4c6=6
Full House: r4c5=4
Naked Single: r6c5=5
Full House: r6c6=2
Naked Single: r7c6=9
Full House: r3c6=5
Full House: r3c5=9
Full House: r7c5=6
|
normal_sudoku_5903
|
.5.62...46.............19.6.7....2454.5.....8..8.5..7..1..8.5.75.72634...4.175..2
|
751629384694538721832741956173896245425317698968452173216984537587263419349175862
|
normal_sudoku_5903
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 5 . 6 2 . . . 4
6 . . . . . . . .
. . . . . 1 9 . 6
. 7 . . . . 2 4 5
4 . 5 . . . . . 8
. . 8 . 5 . . 7 .
. 1 . . 8 . 5 . 7
5 . 7 2 6 3 4 . .
. 4 . 1 7 5 . . 2
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
751629384694538721832741956173896245425317698968452173216984537587263419349175862 #1 Extreme (2212)
Locked Candidates Type 1 (Pointing): 6 in b7 => r4c3<>6
Hidden Single: r4c6=6
Hidden Single: r4c4=8
Locked Candidates Type 1 (Pointing): 9 in b8 => r7c138<>9
Locked Candidates Type 2 (Claiming): 4 in c5 => r2c46,r3c4<>4
Hidden Pair: 2,5 in r23c8 => r2c8<>1, r23c8<>3, r23c8<>8
Locked Candidates Type 2 (Claiming): 8 in r3 => r1c1,r2c2<>8
Uniqueness Test 4: 4/9 in r6c46,r7c46 => r6c46<>9
Hidden Rectangle: 3/4 in r2c35,r3c35 => r2c3<>3
Discontinuous Nice Loop: 3 r2c4 -3- r2c9 -1- r8c9 -9- r8c2 -8- r3c2 =8= r3c1 =7= r3c4 =5= r2c4 => r2c4<>3
Discontinuous Nice Loop: 3 r2c7 -3- r2c9 -1- r8c9 -9- r8c2 -8- r3c2 =8= r3c1 =7= r1c1 -7- r1c7 =7= r2c7 => r2c7<>3
Discontinuous Nice Loop: 2 r3c2 -2- r5c2 =2= r5c6 =7= r5c4 -7- r3c4 =7= r3c1 =8= r3c2 => r3c2<>2
XY-Chain: 3 3- r2c9 -1- r8c9 -9- r8c2 -8- r3c2 -3 => r2c2<>3
Continuous Nice Loop: 2/3/9 8= r3c1 =7= r3c4 =5= r3c8 =2= r2c8 -2- r2c2 -9- r8c2 -8- r3c2 =8= r3c1 =7 => r2c3,r3c1<>2, r3c14<>3, r56c2<>9
Locked Candidates Type 1 (Pointing): 3 in b2 => r45c5<>3
Locked Pair: 1,9 in r45c5 => r2c5,r5c46<>9
Locked Candidates Type 2 (Claiming): 3 in r4 => r56c2,r6c1<>3
Hidden Single: r3c2=3
Naked Single: r3c5=4
Naked Single: r2c5=3
Naked Single: r3c3=2
Naked Single: r2c9=1
Naked Single: r2c2=9
Naked Single: r3c8=5
Naked Single: r8c9=9
Full House: r6c9=3
Naked Single: r1c3=1
Naked Single: r2c3=4
Naked Single: r8c2=8
Full House: r8c8=1
Naked Single: r2c8=2
Naked Single: r3c4=7
Full House: r3c1=8
Full House: r1c1=7
Naked Single: r6c4=4
Naked Single: r2c4=5
Naked Single: r2c6=8
Full House: r1c6=9
Full House: r2c7=7
Naked Single: r5c4=3
Full House: r7c4=9
Full House: r7c6=4
Naked Single: r6c6=2
Full House: r5c6=7
Naked Single: r6c2=6
Full House: r5c2=2
Naked Single: r6c7=1
Full House: r6c1=9
Naked Single: r5c7=6
Full House: r5c8=9
Full House: r5c5=1
Full House: r4c5=9
Naked Single: r4c3=3
Full House: r4c1=1
Naked Single: r9c1=3
Full House: r7c1=2
Naked Single: r7c3=6
Full House: r7c8=3
Full House: r9c3=9
Naked Single: r9c7=8
Full House: r1c7=3
Full House: r1c8=8
Full House: r9c8=6
|
normal_sudoku_1856
|
14362.97.98.7136.4..79.413.3..172...4.139...6..9..6.13.3.2.1..7....3786.7.....3..
|
143628975985713624627954138368172459471395286259846713834261597592437861716589342
|
normal_sudoku_1856
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
1 4 3 6 2 . 9 7 .
9 8 . 7 1 3 6 . 4
. . 7 9 . 4 1 3 .
3 . . 1 7 2 . . .
4 . 1 3 9 . . . 6
. . 9 . . 6 . 1 3
. 3 . 2 . 1 . . 7
. . . . 3 7 8 6 .
7 . . . . . 3 . .
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
143628975985713624627954138368172459471395286259846713834261597592437861716589342 #1 Hard (876)
Hidden Single: r7c8=9
Hidden Single: r9c6=9
Hidden Single: r4c9=9
Hidden Single: r8c2=9
Hidden Single: r8c9=1
Hidden Single: r9c2=1
Locked Candidates Type 1 (Pointing): 4 in b5 => r6c7<>4
Locked Candidates Type 1 (Pointing): 2 in b9 => r9c3<>2
Locked Candidates Type 2 (Claiming): 2 in c7 => r5c8<>2
Naked Pair: 5,8 in r5c68 => r5c27<>5
Naked Pair: 4,5 in r47c7 => r6c7<>5
Remote Pair: 5/8 r1c9 -8- r1c6 -5- r5c6 -8- r5c8 => r2c8<>5
Naked Single: r2c8=2
Full House: r2c3=5
Hidden Single: r8c3=2
Naked Single: r8c1=5
Full House: r8c4=4
Hidden Single: r9c9=2
Hidden Single: r6c5=4
Remote Pair: 5/8 r5c8 -8- r5c6 -5- r6c4 -8- r9c4 => r9c8<>5
Naked Single: r9c8=4
Full House: r7c7=5
Naked Single: r4c7=4
Hidden Single: r7c3=4
Skyscraper: 8 in r6c4,r7c5 (connected by r67c1) => r9c4<>8
Naked Single: r9c4=5
Full House: r6c4=8
Full House: r5c6=5
Full House: r1c6=8
Full House: r1c9=5
Full House: r3c5=5
Full House: r3c9=8
Naked Single: r6c1=2
Naked Single: r5c8=8
Full House: r4c8=5
Naked Single: r3c1=6
Full House: r3c2=2
Full House: r7c1=8
Full House: r7c5=6
Full House: r9c3=6
Full House: r9c5=8
Full House: r4c3=8
Full House: r4c2=6
Naked Single: r5c2=7
Full House: r5c7=2
Full House: r6c7=7
Full House: r6c2=5
|
normal_sudoku_2000
|
.3.6..285659.2.4172.8.4.6939..27.851.7....32.5.68..97.7....4.69...7...4.....8..32
|
437691285659328417218547693943276851871459326526813974782134569395762148164985732
|
normal_sudoku_2000
|
Each row, column, and 3×3 subgrid must contain all digits from 1 to 9 exactly once. Digits cannot be repeated within any row, column, or 3×3 subgrid.
|
None
| 9
| 9
|
. 3 . 6 . . 2 8 5
6 5 9 . 2 . 4 1 7
2 . 8 . 4 . 6 9 3
9 . . 2 7 . 8 5 1
. 7 . . . . 3 2 .
5 . 6 8 . . 9 7 .
7 . . . . 4 . 6 9
. . . 7 . . . 4 .
. . . . 8 . . 3 2
|
Complete the sudoku board based on the rules and visual elements.
|
sudoku
|
sudoku_benchmark
|
hard
|
437691285659328417218547693943276851871459326526813974782134569395762148164985732 #1 Easy (160)
Naked Single: r3c2=1
Naked Single: r4c2=4
Naked Single: r2c4=3
Full House: r2c6=8
Naked Single: r6c9=4
Full House: r5c9=6
Full House: r8c9=8
Naked Single: r1c1=4
Full House: r1c3=7
Naked Single: r3c4=5
Full House: r3c6=7
Naked Single: r4c3=3
Full House: r4c6=6
Naked Single: r5c3=1
Naked Single: r6c2=2
Full House: r5c1=8
Naked Single: r9c1=1
Full House: r8c1=3
Naked Single: r7c4=1
Naked Single: r7c2=8
Naked Single: r9c4=9
Full House: r5c4=4
Naked Single: r7c7=5
Naked Single: r9c2=6
Full House: r8c2=9
Naked Single: r9c6=5
Naked Single: r7c3=2
Full House: r7c5=3
Naked Single: r8c7=1
Full House: r9c7=7
Full House: r9c3=4
Full House: r8c3=5
Naked Single: r5c6=9
Full House: r5c5=5
Naked Single: r8c5=6
Full House: r8c6=2
Naked Single: r6c5=1
Full House: r1c5=9
Full House: r1c6=1
Full House: r6c6=3
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 14