Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
SMILES
string
label
int64
InChI_Key
string
scaffold
string
COc1ccc2c3c1O[C@H]1C[C@@H](O)C=C[C@@]31CCCC2
1
DBONZWNTVDUSCN-RVSPLBMKSA-N
C1=C[C@@]23CCCCc4cccc(c42)O[C@H]3CC1
O=C(c1ccco1)N(c1cnccn1)C1CCN(CCc2ccccc2)CC1
1
BJZZDOLVVLWFHN-UHFFFAOYSA-N
O=C(c1ccco1)N(c1cnccn1)C1CCN(CCc2ccccc2)CC1
CN1CCN2c3ncccc3Cc3ccccc3C2C1
1
RONZAEMNMFQXRA-UHFFFAOYSA-N
c1ccc2c(c1)Cc1cccnc1N1CCNCC21
Cc1cc(C#N)cc(C)c1Oc1nc(Nc2ccc(C#N)cc2)nc(N)c1Br
0
PYGWGZALEOIKDF-UHFFFAOYSA-N
c1ccc(Nc2nccc(Oc3ccccc3)n2)cc1
CN(C(=O)Cc1ccc(Cl)c(Cl)c1)[C@H]1CC[C@]2(CCCO2)C[C@@H]1N1CCCC1
1
NYKCGQQJNVPOLU-JAXLGGSGSA-N
O=C(Cc1ccccc1)N[C@H]1CC[C@]2(CCCO2)C[C@@H]1N1CCCC1
Oc1ccc2c(c1)C13CCCC[C@@H]1C(C2)N(CCc1ccccc1)CC3
1
CFBQYWXPZVQQTN-DNFKCEGXSA-N
c1ccc(CCN2CCC34CCCC[C@@H]3C2Cc2ccccc24)cc1
CC1=C(C(=O)O)N2C(=O)[C@@H](NC(=O)[C@H](N)c3cccc(NS(C)(=O)=O)c3)[C@@H]2SC1
0
OFKRKCHCYWQZLY-HSMVNMDESA-N
O=C(Cc1ccccc1)N[C@@H]1C(=O)N2C=CCS[C@@H]12
N[C@@H](C(=O)N[C@@H]1C(=O)N2C(C(=O)O)=C(Cl)CS[C@@H]12)c1ccccc1
0
QYIYFLOTGYLRGG-RULNRJAQSA-N
O=C(Cc1ccccc1)N[C@@H]1C(=O)N2C=CCS[C@@H]12
CC1=C(C(=O)O)N2C(=O)[C@@H](NC(=O)[C@H](N)c3ccc(O)c(Cl)c3)[C@@H]2SC1
0
RULITNAIJFZYLO-HFAKWTLXSA-N
O=C(Cc1ccccc1)N[C@@H]1C(=O)N2C=CCS[C@@H]12
CC1NC(=O)COC1c1ccccc1
1
UJEPHPADGSWWRM-UHFFFAOYSA-N
O=C1COC(c2ccccc2)CN1
C[C@@]12C=CC(=O)[C@H]1C(=O)CC[C@@H]1[C@H]2[C@@H](O)C[C@@]2(C)[C@@H]1CC[C@@]2(O)C(=O)CO
1
AKGNEJHNADLZKW-GQPZWLEYSA-N
O=C1C=CC2[C@@H]1C(=O)CC[C@H]1[C@H]3CCCC3CC[C@@H]21
Cc1nc(C)c2c(n1)N(Cc1ccc(-c3ccccc3-c3nnn[nH]3)cc1)C(=O)CC2
1
ADXGNEYLLLSOAR-UHFFFAOYSA-N
O=C1CCc2cncnc2N1Cc1ccc(-c2ccccc2-c2nnn[nH]2)cc1
COc1nc(C)nc(Cl)c1NC1=NCCN1
1
WPNJAUFVNXKLIM-UHFFFAOYSA-N
c1ncc(NC2=NCCN2)cn1
CCc1cc2c(s1)N(C)C(=O)CN=C2c1ccccc1Cl
1
CHBRHODLKOZEPZ-UHFFFAOYSA-N
O=C1CN=C(c2ccccc2)c2ccsc2N1
CCN(CC)CCS(=O)(=O)C1CCN2C(=O)c3coc(n3)CC(=O)CC(O)C=C(C)C=CCNC(=O)C=CC(C)C(C(C)C)OC(=O)C12
0
SUYRLXYYZQTJHF-UHFFFAOYSA-N
O=C1CCC=CC=CCNC(=O)C=CCCOC(=O)C2CCCN2C(=O)c2coc(n2)C1
COc1ccc(NC(=O)C(=Cc2ccco2)c2ccccc2)cc1Cl
1
YSVVNXFFUBFZPK-UHFFFAOYSA-N
O=C(Nc1ccccc1)C(=Cc1ccco1)c1ccccc1
CC(C)Oc1cccc(CCCNC(=O)C(C)SCc2ccccc2)c1
1
ZONDXRQFDWEMGJ-UHFFFAOYSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
CC(SCc1ccccc1)C(=O)NCCCc1ccc(C(C)C)cc1
1
ISXUTIMDZLXBJW-UHFFFAOYSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
CCOc1ccc(CCCNC(=O)C(C)SCc2ccccc2)cc1
0
NVICLYRRYMGNRW-UHFFFAOYSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
COc1ccccc1CCCNC(=O)C(C)SCc1ccccc1
0
QNBFOZDZFMNRIO-UHFFFAOYSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
CC(C)Oc1cccc(CCCNC(=O)[C@@H](C)SCc2ccccc2)c1
1
ZONDXRQFDWEMGJ-GOSISDBHSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
CC(C)c1ccc(CCCNC(=O)[C@@H](C)SCc2ccccc2)cc1
1
ISXUTIMDZLXBJW-GOSISDBHSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
CCCOc1ccccc1CCCNC(=O)CSCc1ccc(OC)cc1
0
DXLLZTWHYCZQMJ-UHFFFAOYSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
CCOc1ccc(CCCNC(=O)[C@@H](C)SCc2ccccc2)cc1
0
NVICLYRRYMGNRW-QGZVFWFLSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
COc1ccc(CCCNC(=O)CSCc2cccc(Cl)c2)cc1
1
XNYOSFAIBHEQRN-UHFFFAOYSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
COc1ccccc1CCCNC(=O)CSCc1ccc(Cl)cc1
1
KQPWOHHUQYEFER-UHFFFAOYSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
COc1ccccc1CCCNC(=O)[C@@H](C)SCc1ccccc1
0
QNBFOZDZFMNRIO-MRXNPFEDSA-N
O=C(CSCc1ccccc1)NCCCc1ccccc1
C[N+]1(CC2CC2)CCC23c4c5ccc(O)c4OC2C(=O)CCC3(O)C1C5
0
JVLBPIPGETUEET-UHFFFAOYSA-O
O=C1CCC2C3Cc4cccc5c4C2(CC[NH+]3CC2CC2)C1O5
CCN(CC)Cc1cc(Nc2ccnc3cc(Cl)ccc23)ccc1O
0
OVCDSSHSILBFBN-UHFFFAOYSA-N
c1ccc(Nc2ccnc3ccccc23)cc1
O=C(OCC(O)CO)c1ccccc1Nc1ccnc2c(C(F)(F)F)cccc12
0
APQPGQGAWABJLN-UHFFFAOYSA-N
c1ccc(Nc2ccnc3ccccc23)cc1
CC1(C)S[C@@H]2[C@H](NC(=O)C(Oc3ccccc3)c3ccccc3)C(=O)N2[C@H]1C(=O)O
0
VZPPEUOYDWPUKO-MQWDNKACSA-N
O=C(N[C@@H]1C(=O)N2CCS[C@H]12)C(Oc1ccccc1)c1ccccc1
Cc1cn(-c2cccc(Nc3ncnc4c3CCc3ccccc3-4)c2)cn1
1
LFKNMCJSJZOQJF-UHFFFAOYSA-N
c1cc(Nc2ncnc3c2CCc2ccccc2-3)cc(-n2ccnc2)c1
C[C@H]1[C@@H](O)[C@@H](C)/C=C\C=C/C=C\C=C/C=C\C=C/C=C\[C@@H](O[C@H]2O[C@@H](C)[C@@H](O)[C@H](N)[C@@H]2O)C[C@@H]2OC(O)(C[C@@H](O)C[C@H](O)[C@@H](O)CC[C@H](O)C[C@H](O)CC(=O)O[C@H]1C)C[C@H](O)[C@@H]2C(=O)O
0
APKFDSVGJQXUKY-JDRJMMLKSA-N
O=C1CCCCCCCCCCCC2CCC[C@H](C[C@H](O[C@@H]3CCCCO3)/C=C\C=C/C=C\C=C/C=C\C=C/C=C\CCCCO1)O2
CC(C)(O/N=C(\C(=O)N[C@@H]1C(=O)N2C(C(=O)O)=C(C[n+]3ccccc3)CS[C@H]12)c1csc(N)n1)C(=O)O
1
ORFOPKXBNMVMKC-DWVKKRMSSA-O
N=C(C(=O)N[C@@H]1C(=O)N2C=C(C[n+]3ccccc3)CS[C@H]12)c1cscn1
CC(C)(O/N=C(\C(=O)N[C@@H]1C(=O)N2C(C(=O)[O-])=C(C[n+]3ccccc3)CS[C@H]12)c1csc(N)n1)C(=O)O
1
ORFOPKXBNMVMKC-DWVKKRMSSA-N
N=C(C(=O)N[C@@H]1C(=O)N2C=C(C[n+]3ccccc3)CS[C@H]12)c1cscn1
O=C1C=CC=C/C1=C1/NN=CO1
1
HKVNQGYCUGIYTA-SOFGYWHQSA-N
O=C1C=CC=C/C1=C1/NN=CO1
COC(=O)c1ccc2c(C(=Nc3ccc(N(C)C(=O)CN4CCN(C)CC4)cc3)c3ccccc3)c(O)[nH]c2c1
0
CPMDPSXJELVGJG-UHFFFAOYSA-N
O=C(CN1CCNCC1)Nc1ccc(N=C(c2ccccc2)c2c[nH]c3ccccc23)cc1
CC1(C)O[C@H]2C[C@H]3[C@@H]4CC5=CC(=O)C=CC5(C)C4(F)[C@@H](O)CC3(C)C2(C(=O)COC(=O)c2cc3ccccc3o2)O1
1
CSHAGXNCUXPCPU-VJMOHQARSA-N
O=C1C=CC2C(=C1)C[C@@H]1C2CCC2[C@H]1C[C@@H]1OCOC21C(=O)COC(=O)c1cc2ccccc2o1
CCOC(=O)/C=C1\SC(N2CCCCC2)C(=O)N1C
0
ZCKKHYXUQFTBIK-KTKRTIGZSA-N
C=C1NC(=O)C(N2CCCCC2)S1
CCOC(=O)C=C1SC(N2CCCCC2)C(=O)N1C
0
ZCKKHYXUQFTBIK-UHFFFAOYSA-N
C=C1NC(=O)C(N2CCCCC2)S1
CCOc1ccc(C(=O)c2cccc3ccccc23)c2ccccc12
0
PJDJPGOOOVJKMF-UHFFFAOYSA-N
O=C(c1cccc2ccccc12)c1cccc2ccccc12
CCOC(=O)C1=CC2(CC)CCCN3CCc4c(n1c1ccccc41)C32
1
DDNCQMVWWZOMLN-UHFFFAOYSA-N
C1=Cn2c3c(c4ccccc42)CCN2CCCC1C32
COc1cc2c(c(OC)c1OC)-c1ccc(OC)c(=O)cc1[C@@H](NC(C)=O)CC2
0
IAKHMKGGTNLKSZ-INIZCTEOSA-N
O=c1cccc2c(c1)CCCc1ccccc1-2
COc1cc2c(c(OC)c1OC)-c1ccc(OC)c(=O)cc1C(NC(C)=O)CC2
0
IAKHMKGGTNLKSZ-UHFFFAOYSA-N
O=c1cccc2c(c1)CCCc1ccccc1-2
COc1cc2c(c(OC)c1OC)-c1ccc(OC)c(=O)cc1[C@H](NC(C)=O)CC2
0
IAKHMKGGTNLKSZ-MRXNPFEDSA-N
O=c1cccc2c(c1)CCCc1ccccc1-2
CCN1CC[C@H](CNC(=O)c2cc(S(N)(=O)=O)ccc2OC)C1
1
IAGQNKXBDXVWPR-LLVKDONJSA-N
O=C(NC[C@H]1CCNC1)c1ccccc1
COC(=O)CC(c1cccnc1)c1c(O)[nH]cc(C(=O)OC)c1=O
1
VXYVARAHGNWPDG-UHFFFAOYSA-N
O=c1cc[nH]cc1Cc1cccnc1
c1cnc(N2CCNCC2)nc1
1
MRBFGEHILMYPTF-UHFFFAOYSA-N
c1cnc(N2CCNCC2)nc1
Nc1nc2ncc(CNc3ccc(C(=O)N[C@@H](CCC(=O)O)C(=O)O)cc3)nc2c(=O)[nH]1
1
OVBPIULPVIDEAO-LBPRGKRZSA-N
O=c1[nH]cnc2ncc(CNc3ccccc3)nc12
O=C1OCCC1C1(O)CCN(CCCN2c3ccccc3Sc3ccc(Cl)cc32)CC1
1
PRGQOVDEZVJQJK-UHFFFAOYSA-N
O=C1OCCC1C1CCN(CCCN2c3ccccc3Sc3ccccc32)CC1
O=C1C[N+]([O-])=C(c2ccccc2)c2cc(Cl)ccc2N1
1
GGRWZBVSUZZMKS-UHFFFAOYSA-N
O=C1C[NH+]=C(c2ccccc2)c2ccccc2N1
C/C=C/[C@@H]1O[C@@]2(C(=O)COC(=O)c3ccncc3)CC[C@@]3(O1)[C@@H]1CCC4=CC(=O)CC[C@@]4(C)[C@H]1[C@@H](O)C[C@]23C
1
LZHLAFIPUJPCBN-FPVOWUGSSA-N
O=C1C=C2CC[C@@H]3[C@H](CCC4[C@@]35CC[C@]4(C(=O)COC(=O)c3ccncc3)OCO5)C2CC1
CCc1nn(CCCN2CCN(c3cccc(Cl)c3)CC2)c(=O)n1CC
1
IZBNNCFOBMGTQX-UHFFFAOYSA-N
O=c1[nH]cnn1CCCN1CCN(c2ccccc2)CC1
CC[C@@H]1OC(=O)[C@@H](C)[C@@H](O[C@@H]2CC(C)(OC)[C@@H](O)[C@H](C)O2)[C@H](C)[C@H](O[C@@H]2O[C@@H](C)C[C@H](N(C)C)[C@@H]2O)C(C)(O)CC(C)[C@@H]2N[C@H](COCCOC)O[C@@H]([C@H]2C)C1(C)O
0
WLOHNSSYAXHWNR-GISMQQCNSA-N
O=C1C[C@@H](O[C@@H]2CCCCO2)C[C@H](O[C@H]2CCCCO2)CCC[C@H]2C[C@@H](CCO1)OCN2
COc1ccc2c3c1OC1C(OC(C)=O)=CCC4C(C2)N(C)CCC314
1
RRJQTGHQFYTZOW-UHFFFAOYSA-N
C1=CC2Oc3cccc4c3C23CCNC(C4)C3C1
CC1=CCC2C3Cc4ccc(O)c5c4C2(CCN3C)C1O5
1
CUFWYVOFDYVCPM-UHFFFAOYSA-N
C1=CC2Oc3cccc4c3C23CCNC(C4)C3C1
CC(=O)OCC1=C(C(=O)O)N2C(=O)C(NC(=O)CC#N)[C@@H]2SC1
0
RRYMAQUWDLIUPV-ACGXKRRESA-N
O=C1C[C@@H]2SCC=CN12
CC(=O)OCC1=C(C(=O)[O-])N2C(=O)[C@H](NC(=O)CC#N)[C@@H]2SC1.[Na+]
0
GXCRUTWHNMMJEK-CSDGMEMJSA-M
O=C1C[C@@H]2SCC=CN12
CC(=O)OCC1=C(C(=O)O)N2C(=O)[C@H](NC(=O)CC#N)[C@@H]2SC1
0
RRYMAQUWDLIUPV-CABZTGNLSA-N
O=C1C[C@@H]2SCC=CN12
CC(=O)OCC1=C(C(=O)O)N2C(=O)C(NC(=O)CCC[C@H](N)C(=O)O)[C@@H]2SC1
0
HOKIDJSKDBPKTQ-SPDZDTJJSA-N
O=C1C[C@@H]2SCC=CN12
Cc1cc(C(=O)NCCCN2CCCc3ccccc32)ccc1[N+](=O)[O-]
0
IWTAJZSDTVGICS-UHFFFAOYSA-N
O=C(NCCCN1CCCc2ccccc21)c1ccccc1
COc1cc(C(=O)NCCCN2CCCc3ccccc32)cc(OC)c1OC
1
KMBZDMNGUCXSNO-UHFFFAOYSA-N
O=C(NCCCN1CCCc2ccccc21)c1ccccc1
CC(=O)OCC(CCn1cnc2c1N=C(N)NC2)COC(C)=O
1
RLULPRPPMJKTCR-UHFFFAOYSA-N
C1=Nc2[nH]cnc2CN1
CC(C)OCC(COC(C)C)OCn1cnc2c1N=C(N)NC2
1
ZCEKLNJDAIPWOS-UHFFFAOYSA-N
C1=Nc2[nH]cnc2CN1
Oc1ccc2c(c1)[C@]13CCCC[C@]1(O)[C@H](C2)N(CC1CCC1)CC3
1
IFKLAQQSCNILHL-HBMCJLEFSA-N
c1ccc2c(c1)C[C@H]1C3CCCC[C@@]23CCN1CC1CCC1
CN=C(C[N+](=O)[O-])NCCSCc1csc(CN(C)C)n1
0
XPZQPVYGEOEOKS-UHFFFAOYSA-N
c1cscn1
NC(N)=Nc1nc(CSCC/C(N)=N\S(N)(=O)=O)cs1
1
XUFQPHANEAPEMJ-UHFFFAOYSA-N
c1cscn1
Cc1ncsc1CCCl
1
PCLITLDOTJTVDJ-UHFFFAOYSA-N
c1cscn1
CN/C(=C\[N+](=O)[O-])NCCSCc1csc(CN(C)C)n1
1
SGXXNSQHWDMGGP-IZZDOVSWSA-N
c1cscn1
[NH3+]CCc1nccs1
1
TWZOYAWHWDRMEZ-UHFFFAOYSA-O
c1cscn1
NCCc1nccs1
1
TWZOYAWHWDRMEZ-UHFFFAOYSA-N
c1cscn1
CNC(=C[N+](=O)[O-])NCCSCc1csc(CN(C)C)n1
0
SGXXNSQHWDMGGP-UHFFFAOYSA-N
c1cscn1
ClCCc1cncs1
1
HIQGSQJWWYBZFY-UHFFFAOYSA-N
c1cscn1
CCN(CC)C(=O)N[C@H]1C=C2c3cccc4[nH]cc(c34)C[C@H]2N(C)C1
1
BKRGVLQUQGGVSM-KBXCAEBGSA-N
C1=C2c3cccc4[nH]cc(c34)C[C@H]2NCC1
CC[C@@H](CO)NC(=O)[C@@H]1C=C2c3cccc4[nH]cc(c34)C[C@H]2N(C)C1
0
UNBRKDKAWYKMIV-QWQRMKEZSA-N
C1=C2c3cccc4[nH]cc(c34)C[C@H]2NCC1
C=C(c1ccc(C(=O)O)cc1)c1cc2c(cc1C)C(C)(C)CCC2(C)C
0
NAVMQTYZDKMPEU-UHFFFAOYSA-N
C=C(c1ccccc1)c1ccc2c(c1)CCCC2
CN1C(CC(=O)c2ccccc2)CCCC1CC(O)c1ccccc1
1
MXYUKLILVYORSK-UHFFFAOYSA-N
O=C(CC1CCCC(CCc2ccccc2)N1)c1ccccc1
CNC(=O)c1c(NCC2CCC3(CCC3)CC2)nc(C#N)nc1OC1CC(C)(C)NC(C)(C)C1
0
FDHGENAHJDLTJT-UHFFFAOYSA-N
c1nc(NCC2CCC3(CCC3)CC2)cc(OC2CCNCC2)n1
CCC(NC(C)C)C(O)c1ccc(O)c2[nH]c(=O)ccc12
0
FKNXQNWAXFXVNW-UHFFFAOYSA-N
O=c1ccc2ccccc2[nH]1
O=C1c2ccccc2S(=O)(=O)N1CCCCNC1CCc2ccccc2O1
1
JNMJAUGCHSOMPF-UHFFFAOYSA-N
O=C1c2ccccc2S(=O)(=O)N1CCCCNC1CCc2ccccc2O1
CN=C1CN(O)[C@@H](c2ccccc2)c2cc(Cl)ccc2N1
1
YMPXMTJJHMOCFO-INIZCTEOSA-N
N=C1CN[C@@H](c2ccccc2)c2ccccc2N1
CC(=O)C1(O)CCC2C3CC=C4CC(=O)C=CC4(C)C3C(O)CC21C
1
ISDUWZCRQIKBER-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)C1CCC2C3CC(C)=C4CC(=O)C=CC4(C)C3C(O)CC12C
1
DHCUSHBTZNBOQV-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OCC(=O)C1(O)CCC2C3CC=C4CC(=O)C=CC4(C)C3(Cl)C(Cl)CC21C
1
MVHXUCZGVIIWIV-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OCC(=O)C1(O)CCC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
KAJQOJBJABVIDU-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OCC(=O)C1(O)CCC2C3CC=C4CC(=O)C=CC4(C)C3C(O)CC21C
1
DKHHQUXEXCKMMT-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OCC(=O)C1(O)CCC2C3CC(C)=C4CC(=O)C=CC4(C)C3C(O)CC21C
1
XUXGTZICZNXXLF-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OCC(=O)C1(O)C(C)CC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
PPDWQLSRZNCMRA-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OCC(=O)C1(O)C(OC(C)=O)CC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
HQIRMDPUQNLPCW-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OCC(=O)C1(OC(=O)C(C)C)C(C)CC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
UVIDGRNNPJOEIQ-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OC(C)C(=O)C1(O)CCC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
QQMIPKVXPSOARG-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)OC1(C(C)=O)CCC2C3CC(C)=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
YZABVDSJBDBKPD-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)C1(O)CCC2C3CC(C)=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
ORJMOWYWYBXFBE-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)C1(O)C(C)CC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
GXIXMEFHYLRONM-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(=O)C1(O)C(O)CC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
GCLUKESAZXYHTD-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC(C)(C)CC(=O)OCC(=O)C1(O)CCC2C3CC=C4CC(=O)C=CC4(C)C3C(O)CC21C
1
AEQGYUJKXATLBW-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CC1CC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC2(C)C1(O)C(=O)CCl
1
JTHMWNIMWXESHY-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CCC(=O)OCC(=O)C1(OC(=O)CC)C(C)CC2C3CC=C4CC(=O)C=CC4(C)C3(Cl)C(O)CC21C
1
IBIIDGIPJPTFBZ-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CCC(=O)OCC(=O)C1(OC(=O)CC)C(C)CC2C3CC=C4CC(=O)C=CC4(C)C3(F)C(O)CC21C
1
JDUYIZFMBRCCHQ-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
CCC(=O)OCC(=O)C1(OC(=O)CC)C(C)CC2C3C(Cl)C=C4CC(=O)C=CC4(C)C3C(O)CC21C
1
MCKDVEPRTDUOEQ-UHFFFAOYSA-N
O=C1C=CC2C(=CCC3C4CCCC4CCC23)C1
End of preview. Expand in Data Studio

BBB Dataset

The paper is under review.

[Github Repo] | [Inference Model] | [Cite]

Abstract

The blood-brain barrier (BBB) restricts most compounds from entering the brain, making BBB permeability prediction crucial for drug discovery. Experimental assays are costly and limited, motivating computational approaches. While machine learning has shown promise, combining chemical descriptors with deep learning embeddings remains underexplored. Here, we introduce TITAN-BBB, a multi-modal architecture that combines tabular, image, and text-based features via attention mechanism. To evaluate, we aggregated multiple literature sources to create the largest BBB permeability dataset to date, enabling robust training for both classification and regression tasks. Our results demonstrate that TITAN-BBB achieves 86.5% of balanced accuracy on classification tasks and 0.436 of mean absolute error for regression. Our approach also outperforms state-of-the-art models in both classification and regression performance, demonstrating the benefits of combining deep and domain-specific representations.

Dataset Details

This dataset is an aggregation of different literature sources (please see the paper to check the references).

Classification Task

The number of samples for BBB- and BBB+ is presented below (corresponding to TABLE I in the paper).

Set Name BBB+ BBB-
Training 4,564 3,029
Validation 434 293
Test 638 304
Total 5,636 3,626

Regression Task

For the regression task, based on the classification dataset, only compounds with logBB values were utilized. This resulted in a subset with 963 samples for training, 84 samples for validation, and 100 samples for testing.

Dataset Usage

Classification

Use the code below to load the dataset for classification task.

from datasets import load_dataset 

dataset_dict = load_dataset("SaeedLab/BBB", "classification")

Regression

Use the code below to load the dataset for regression task.

from datasets import load_dataset 

dataset_dict = load_dataset("SaeedLab/BBB", "regression")

Citation

The paper is under review. As soon as it is accepted, we will update this section.

License

This model and associated code are released under the CC-BY-NC-ND 4.0 license and may only be used for non-commercial, academic research purposes with proper attribution. Any commercial use, sale, or other monetization of this model and its derivatives, which include models trained on outputs from the model or datasets created from the model, is prohibited and requires prior approval. Downloading the model requires prior registration on Hugging Face and agreeing to the terms of use. By downloading this model, you agree not to distribute, publish or reproduce a copy of the model. If another user within your organization wishes to use the model, they must register as an individual user and agree to comply with the terms of use. Users may not attempt to re-identify the deidentified data used to develop the underlying model. If you are a commercial entity, please contact the corresponding author.

Contact

For any additional questions or comments, contact Fahad Saeed ([email protected]).

Downloads last month
112

Models trained or fine-tuned on SaeedLab/BBB