nielsr's picture
nielsr HF Staff
Improve dataset card: Add task categories, paper link, project page, tags, and sample usage
0983258 verified
|
raw
history blame
1.95 kB
metadata
language:
  - en
task_categories:
  - time-series-forecasting
tags:
  - time-series
  - self-supervised-learning
  - representation-learning
  - time-series-classification
  - time-series-regression

This dataset repository contains the preprocessed data used in our NeurIPS 2025 paper Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections.

Paper: Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections Project Page: https://neurips.cc/virtual/2025/poster/118514 GitHub Repository: https://github.com/eth-siplab/Learning-with-FrameProjections

Datasets Included

This repository includes all nine datasets across five time-series tasks in different ready-to-use formats, as used in the paper:

  • Heart rate estimation: IEEE SPC12, IEEE SPC22, DaLiA
  • Activity recognition: HHAR, USC
  • Cardiovascular disease classification: CPSC2018, Chapman
  • Step counting: Clemson
  • Sleep staging: Sleep-EDF

Sample Usage

This dataset contains the preprocessed data that can be used with the associated code from the Learning-with-FrameProjections GitHub repository. Here are the quickstart commands for pre-training and testing:

Pre-training + testing (our method)

python main.py \
  --framework isoalign \
  --backbone resnet \
  --dataset ieee_small \
  --n_epoch 256 \
  --batch_size 1024 \
  --lr 1e-3 \
  --lr_cls 0.03 \
  --cuda 0 \
  --cases subject_large

Supervised baseline

python main_supervised_baseline.py \
  --dataset ieee_small \
  --backbone resnet \
  --block 8 \
  --lr 5e-4 \
  --n_epoch 999 \
  --cuda 0