Dataset Viewer
Auto-converted to Parquet Duplicate
Dataset
stringlengths
4
17
Category
stringclasses
4 values
Dataset Size
int64
197
57.6k
Elasticsearch - Vector (Quantized)
float64
0.14
0.75
Pinecone with Cohere - Vector (Quantized)
float64
0.11
0.79
PGVector - Vector (Quantized)
float64
0.14
0.76
Qdrant - Vector (Quantized)
float64
0.14
0.75
Moorcheh - Vector (Quantized)
float64
0.14
0.74
Elasticsearch - Vector (Floating-Point)
float64
0.17
0.77
Pinecone with Cohere - Vector (Floating-Point)
float64
0.11
0.79
PGVector - Vector (Floating-Point)
float64
0.17
0.77
Qdrant- Vector (Floating-Point)
float64
0.17
0.76
AILA2019-Statutes
Legal & Regulatory
197
0.2198
0.212844
0.229867
0.223707
0.228303
0.222806
0.209694
0.2222
0.221341
Apple
API Documentation
678
0.64897
0.6353
0.645061
0.640306
0.642484
0.63617
0.652698
0.6362
0.636662
AILA2019-Case
Legal & Regulatory
2,914
0.13892
0.1072
0.14128
0.140458
0.137408
0.169442
0.112211
0.1693
0.169729
LeCaRDv2
Legal & Regulatory
3,000
0.657
0.537713
0.661937
0.657162
0.661731
0.694548
0.540271
0.6938
0.696224
NFCorpus
Medical & Clinical
3,633
0.3595
0.365433
0.361258
0.35498
0.361107
0.394753
0.360817
0.3947
0.393532
REGIR-UK2EU
Legal & Regulatory
3,930
0.5793
0.5843
0.588652
0.580402
0.578363
0.667594
0.485664
0.6676
0.667251
HC3Finance
Financial
3,933
0.39112
0.38077
0.400777
0.384289
0.400558
0.427735
0.378612
0.4277
0.432085
ConvFinQA
Financial
6,503
0.75093
0.786163
0.757566
0.754182
0.742992
0.768612
0.78801
0.7691
0.764325
REGIR-EU2UK
Legal & Regulatory
10,000
0.62068
0.5572
0.621976
0.622248
0.621456
0.641452
0.645327
0.6315
0.636338
FinQA
Financial
11,865
0.6733
0.756056
0.671825
0.677121
0.683209
0.692795
0.740212
0.6816
0.6916
FinanceBench
Financial
15,325
0.5751
0.5142
0.585165
0.545155
0.578197
0.673586
0.63823
0.6636
0.671871
LegalQuAD
Legal & Regulatory
17,702
0.6778
0.6478
0.668643
0.676531
0.667329
0.684662
0.789092
0.6685
0.685607
ACORDAR
Legal & Regulatory
31,589
0.3137
0.3139
0.278278
0.280378
0.308483
0.341478
0.301194
0.3402
0.321282
FiQA
Financial
57,638
0.5362
0.5325
0.534397
0.541937
0.539874
0.56898
0.533496
0.5633
0.568467

MAIR Benchmark: NDCG@10 Performance Across Vector Providers

This dataset contains comprehensive NDCG@10 (Normalized Discounted Cumulative Gain) accuracy results across various vector database providers and retrieval configurations. The benchmarks compare performance using both Quantized and Floating-Point vectors across multiple specialized domains (Legal, Financial, Medical, and API Documentation).

πŸ“Š Overview of Comparisons

The results compare the retrieval accuracy of Moorcheh against industry standards:

  • Providers: Elasticsearch, Pinecone (with Cohere), PGVector, Qdrant, and Moorcheh.
  • Data Types: Quantized Vectors vs. Floating-Point Vectors.
  • Datasets: 14 specialized datasets ranging from 197 to 57,638 corpus records.

πŸ“‚ Dataset Structure

The main file mair-ndcg10-results-all-providers.csv includes the following columns:

Column Description
Dataset Name of the benchmark dataset (e.g., AILA2019, FiQA, FinanceBench).
Category Domain of the data (Legal & Regulatory, Financial, Medical, etc.).
Dataset Size Total number of documents in the corpus.
[Provider] - Vector (Quantized) NDCG@10 score using 8-bit or similar quantization.
[Provider] - Vector (Floating-Point) NDCG@10 score using standard FP32/FP16 precision.

NDCG@10 Comparison of Floating-Point and Quantized Vector Embeddings on MAIR Datasets

πŸ“ˆ Performance Summary

Based on the benchmark data:

  • Moorcheh maintains highly competitive accuracy, often outperforming or matching standard PGVector and Qdrant implementations in legal and financial domains.
  • Quantization Impact: The data tracks the minimal "accuracy drop" when moving from Floating-Point to Quantized vectors, demonstrating the efficiency of modern embedding compression.

πŸ›  How to Use

Loading with Python

from datasets import load_dataset

# Load the NDCG@10 results
dataset = load_dataset("moorcheh/mair-ndcg10-results-all-providers", split="all_providers_ndcg10")

# Convert to Pandas for analysis
df = dataset.to_pandas()

# Filter for Financial datasets
financial_results = df[df['Category'] == 'Financial']
print(financial_results)
Downloads last month
11