Dataset
stringlengths 4
17
| Category
stringclasses 4
values | Dataset Size
int64 197
57.6k
| Elasticsearch - Vector (Quantized)
float64 0.14
0.75
| Pinecone with Cohere - Vector (Quantized)
float64 0.11
0.79
| PGVector - Vector (Quantized)
float64 0.14
0.76
| Qdrant - Vector (Quantized)
float64 0.14
0.75
| Moorcheh - Vector (Quantized)
float64 0.14
0.74
| Elasticsearch - Vector (Floating-Point)
float64 0.17
0.77
| Pinecone with Cohere - Vector (Floating-Point)
float64 0.11
0.79
| PGVector - Vector (Floating-Point)
float64 0.17
0.77
| Qdrant- Vector (Floating-Point)
float64 0.17
0.76
|
|---|---|---|---|---|---|---|---|---|---|---|---|
AILA2019-Statutes
|
Legal & Regulatory
| 197
| 0.2198
| 0.212844
| 0.229867
| 0.223707
| 0.228303
| 0.222806
| 0.209694
| 0.2222
| 0.221341
|
Apple
|
API Documentation
| 678
| 0.64897
| 0.6353
| 0.645061
| 0.640306
| 0.642484
| 0.63617
| 0.652698
| 0.6362
| 0.636662
|
AILA2019-Case
|
Legal & Regulatory
| 2,914
| 0.13892
| 0.1072
| 0.14128
| 0.140458
| 0.137408
| 0.169442
| 0.112211
| 0.1693
| 0.169729
|
LeCaRDv2
|
Legal & Regulatory
| 3,000
| 0.657
| 0.537713
| 0.661937
| 0.657162
| 0.661731
| 0.694548
| 0.540271
| 0.6938
| 0.696224
|
NFCorpus
|
Medical & Clinical
| 3,633
| 0.3595
| 0.365433
| 0.361258
| 0.35498
| 0.361107
| 0.394753
| 0.360817
| 0.3947
| 0.393532
|
REGIR-UK2EU
|
Legal & Regulatory
| 3,930
| 0.5793
| 0.5843
| 0.588652
| 0.580402
| 0.578363
| 0.667594
| 0.485664
| 0.6676
| 0.667251
|
HC3Finance
|
Financial
| 3,933
| 0.39112
| 0.38077
| 0.400777
| 0.384289
| 0.400558
| 0.427735
| 0.378612
| 0.4277
| 0.432085
|
ConvFinQA
|
Financial
| 6,503
| 0.75093
| 0.786163
| 0.757566
| 0.754182
| 0.742992
| 0.768612
| 0.78801
| 0.7691
| 0.764325
|
REGIR-EU2UK
|
Legal & Regulatory
| 10,000
| 0.62068
| 0.5572
| 0.621976
| 0.622248
| 0.621456
| 0.641452
| 0.645327
| 0.6315
| 0.636338
|
FinQA
|
Financial
| 11,865
| 0.6733
| 0.756056
| 0.671825
| 0.677121
| 0.683209
| 0.692795
| 0.740212
| 0.6816
| 0.6916
|
FinanceBench
|
Financial
| 15,325
| 0.5751
| 0.5142
| 0.585165
| 0.545155
| 0.578197
| 0.673586
| 0.63823
| 0.6636
| 0.671871
|
LegalQuAD
|
Legal & Regulatory
| 17,702
| 0.6778
| 0.6478
| 0.668643
| 0.676531
| 0.667329
| 0.684662
| 0.789092
| 0.6685
| 0.685607
|
ACORDAR
|
Legal & Regulatory
| 31,589
| 0.3137
| 0.3139
| 0.278278
| 0.280378
| 0.308483
| 0.341478
| 0.301194
| 0.3402
| 0.321282
|
FiQA
|
Financial
| 57,638
| 0.5362
| 0.5325
| 0.534397
| 0.541937
| 0.539874
| 0.56898
| 0.533496
| 0.5633
| 0.568467
|
MAIR Benchmark: NDCG@10 Performance Across Vector Providers
This dataset contains comprehensive NDCG@10 (Normalized Discounted Cumulative Gain) accuracy results across various vector database providers and retrieval configurations. The benchmarks compare performance using both Quantized and Floating-Point vectors across multiple specialized domains (Legal, Financial, Medical, and API Documentation).
π Overview of Comparisons
The results compare the retrieval accuracy of Moorcheh against industry standards:
- Providers: Elasticsearch, Pinecone (with Cohere), PGVector, Qdrant, and Moorcheh.
- Data Types: Quantized Vectors vs. Floating-Point Vectors.
- Datasets: 14 specialized datasets ranging from 197 to 57,638 corpus records.
π Dataset Structure
The main file mair-ndcg10-results-all-providers.csv includes the following columns:
| Column | Description |
|---|---|
| Dataset | Name of the benchmark dataset (e.g., AILA2019, FiQA, FinanceBench). |
| Category | Domain of the data (Legal & Regulatory, Financial, Medical, etc.). |
| Dataset Size | Total number of documents in the corpus. |
| [Provider] - Vector (Quantized) | NDCG@10 score using 8-bit or similar quantization. |
| [Provider] - Vector (Floating-Point) | NDCG@10 score using standard FP32/FP16 precision. |
π Performance Summary
Based on the benchmark data:
- Moorcheh maintains highly competitive accuracy, often outperforming or matching standard PGVector and Qdrant implementations in legal and financial domains.
- Quantization Impact: The data tracks the minimal "accuracy drop" when moving from Floating-Point to Quantized vectors, demonstrating the efficiency of modern embedding compression.
π How to Use
Loading with Python
from datasets import load_dataset
# Load the NDCG@10 results
dataset = load_dataset("moorcheh/mair-ndcg10-results-all-providers", split="all_providers_ndcg10")
# Convert to Pandas for analysis
df = dataset.to_pandas()
# Filter for Financial datasets
financial_results = df[df['Category'] == 'Financial']
print(financial_results)
- Downloads last month
- 11
