|
|
--- |
|
|
license: fair-noncommercial-research-license |
|
|
task_categories: |
|
|
- depth-estimation |
|
|
- mask-generation |
|
|
- image-segmentation |
|
|
- image-classification |
|
|
tags: |
|
|
- forestry |
|
|
- sachsen |
|
|
- lidar |
|
|
- multispectral |
|
|
- aerial |
|
|
pretty_name: forestpatch |
|
|
size_categories: |
|
|
- 1K<n<10K |
|
|
--- |
|
|
|
|
|
# ForestPatch: Voxelized Aerial LiDAR and Multispectral Forest Structure Dataset for Saxony, Germany |
|
|
|
|
|
A multi-resolution dense geospatial dataset comprising spatially-aligned 4-band RGBI imagery (0.2m GSD), LiDAR(ALS)-derived planar forest metrics (1m resolution: Canopy Height (CHM), Plant Area Index (PAI), Foliage Height Diversity (FHD), height percentiles (5, 50, 95)), and 3D vertical Plant Area Density profiles (1m resolution, 12 height bins) for 87 tiles covering forested regions in Saxony, Germany. |
|
|
|
|
|
 |
|
|
|
|
|
## Data Structure |
|
|
|
|
|
The daatsets are following the 2x2km grid from the original GeoSN data source: [https://www.geodaten.sachsen.de/downloadbereich-dop-4826.html](https://www.geodaten.sachsen.de/downloadbereich-dop-4826.html) |
|
|
|
|
|
Each 2x2 km tile is stored as 3 dense numpy binary files, in format: |
|
|
|
|
|
- `{grid_coords}_sn_rgb.npy`(4, 10000, 10000) --> band order: ['r', 'g', 'b', 'i'] |
|
|
- `{grid_coords}_sn_planar.npy` (6, 10000, 10000) --> band order: ['chm', 'p05', 'p50', 'p95', 'fhd', 'pai'] |
|
|
- `{grid_coords}_sn_vertical.npy` (12, 2500, 2500) --> band order index '0'= 0 cm 0-1m and index '11' = 11-12m |
|
|
|
|
|
|
|
|
|
|
|
## Metrics Definitions |
|
|
|
|
|
- **CHM** (Canopy Height Model): Maximum vegetation height [meters] |
|
|
- **P05, P50, P95**: 5th, 50th, 95th percentile heights [meters] |
|
|
- **FHD** (Foliage Height Diversity): Vertical structural complexity [Shannon entropy] |
|
|
- **PAI** (Plant Area Index): Total leaf area per ground area |
|
|
- **PAD** (Plant Area Index): The amount of plant material in a vertical slice of the forest |
|
|
|
|
|
## Usage Example |
|
|
```python |
|
|
import numpy as np |
|
|
|
|
|
# Load tile |
|
|
data = np.load('33282_5586_2_sn_rgb', allow_pickle=True) # (4, 10000, 10000) |
|
|
|
|
|
metadata = data['metadata'].item() |
|
|
|
|
|
print(f"Tile: {metadata['origin']}") |
|
|
print(f"Bounds: {metadata['bounds']}") |
|
|
``` |
|
|
If you use ForestStack, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{taimur_khan_2026, |
|
|
author = { Taimur Khan }, |
|
|
title = { ForestPatch (Revision c05a74a) }, |
|
|
year = 2026, |
|
|
url = { https://huggingface.co/datasets/thisistaimur/ForestPatch }, |
|
|
doi = { 10.57967/hf/7462 }, |
|
|
publisher = { Hugging Face } |
|
|
} |
|
|
``` |
|
|
|