File size: 2,376 Bytes
59f415d
 
 
 
 
 
4fdb54d
59f415d
 
 
 
 
 
 
 
 
 
 
 
0899fd3
 
 
59f415d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0899fd3
59f415d
 
 
 
 
0899fd3
59f415d
 
 
4fdb54d
 
0899fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59f415d
 
 
 
4559628
 
59f415d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: my_awesome_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0970
- Accuracy: 0.8681
- F1: 0.8376

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.0   | 167  | 0.3828          | 0.8501   | 0.8031 |
| No log        | 2.0   | 334  | 0.4787          | 0.8456   | 0.8275 |
| 0.2101        | 3.0   | 501  | 0.6186          | 0.8666   | 0.8367 |
| 0.2101        | 4.0   | 668  | 0.7201          | 0.8546   | 0.8265 |
| 0.2101        | 5.0   | 835  | 0.7675          | 0.8651   | 0.8346 |
| 0.0339        | 6.0   | 1002 | 0.8561          | 0.8681   | 0.8434 |
| 0.0339        | 7.0   | 1169 | 0.8898          | 0.8681   | 0.8382 |
| 0.0339        | 8.0   | 1336 | 0.9854          | 0.8711   | 0.8436 |
| 0.0069        | 9.0   | 1503 | 0.9919          | 0.8711   | 0.8407 |
| 0.0069        | 10.0  | 1670 | 1.0695          | 0.8561   | 0.8280 |
| 0.0069        | 11.0  | 1837 | 1.0542          | 0.8666   | 0.8349 |
| 0.0007        | 12.0  | 2004 | 1.0896          | 0.8681   | 0.8370 |
| 0.0007        | 13.0  | 2171 | 1.1001          | 0.8666   | 0.8349 |
| 0.0007        | 14.0  | 2338 | 1.0888          | 0.8606   | 0.8312 |
| 0.0012        | 15.0  | 2505 | 1.0970          | 0.8681   | 0.8376 |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3