Metricas_teste_wan

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1473
  • Accuracy: 0.9818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 248 0.3574 0.9114
No log 2.0 496 0.1911 0.9386
0.7732 3.0 744 0.1919 0.9386
0.7732 4.0 992 0.1044 0.9727
0.0987 5.0 1240 0.0928 0.9682
0.0987 6.0 1488 0.0545 0.9841
0.0406 7.0 1736 0.1183 0.9727
0.0406 8.0 1984 0.1114 0.9773
0.0204 9.0 2232 0.0838 0.9773
0.0204 10.0 2480 0.0726 0.9818
0.0084 11.0 2728 0.1100 0.975
0.0084 12.0 2976 0.1133 0.9773
0.0032 13.0 3224 0.1283 0.9773
0.0032 14.0 3472 0.0935 0.9795
0.0084 15.0 3720 0.1318 0.9705
0.0084 16.0 3968 0.1446 0.9773
0.0031 17.0 4216 0.1123 0.9773
0.0031 18.0 4464 0.0971 0.975
0.0049 19.0 4712 0.1369 0.9773
0.0049 20.0 4960 0.1855 0.9773
0.0018 21.0 5208 0.2224 0.9659
0.0018 22.0 5456 0.1444 0.9795
0.0045 23.0 5704 0.1544 0.9795
0.0045 24.0 5952 0.1495 0.9705
0.0037 25.0 6200 0.1741 0.975
0.0037 26.0 6448 0.1658 0.9705
0.0001 27.0 6696 0.2132 0.9727
0.0001 28.0 6944 0.2222 0.9682
0.0079 29.0 7192 0.1348 0.9795
0.0079 30.0 7440 0.1656 0.9773
0.0016 31.0 7688 0.1584 0.975
0.0016 32.0 7936 0.1674 0.9795
0.0005 33.0 8184 0.1837 0.9795
0.0005 34.0 8432 0.1595 0.9773
0.0016 35.0 8680 0.1949 0.9795
0.0016 36.0 8928 0.0991 0.9818
0.0004 37.0 9176 0.1864 0.9795
0.0004 38.0 9424 0.1444 0.9795
0.0024 39.0 9672 0.1486 0.9773
0.0024 40.0 9920 0.1457 0.9773
0.0004 41.0 10168 0.1486 0.9773
0.0004 42.0 10416 0.1518 0.9773
0.0 43.0 10664 0.1517 0.9773
0.0 44.0 10912 0.1480 0.9773
0.0 45.0 11160 0.1458 0.9818
0.0 46.0 11408 0.1462 0.9818
0.0 47.0 11656 0.1466 0.9818
0.0 48.0 11904 0.1470 0.9818
0.0 49.0 12152 0.1472 0.9818
0.0 50.0 12400 0.1473 0.9818

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for gsl22/Metricas_teste_wan

Finetuned
(10483)
this model

Evaluation results