Context Cascade Compression: Exploring the Upper Limits of Text Compression

🌟GitHub | 📜Paper

Fanfan Liu, Haibo Qiu

image/jpeg

Usage

from transformers import AutoModel, AutoTokenizer

model_name = 'liufanfanlff/C3-Context-Cascade-Compression'
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name , trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
prompt = 'Repeat the text: '
context = "帝高阳之苗裔兮,朕皇考曰伯庸。摄提贞于孟陬兮,"
#context = "lfflfflfflfflfflfflfflfflff"
outputs = model.chat(tokenizer, context, prompt)
print ("Repeat the text: ",outputs)

viz

image/jpeg

Contact

Don't hesitate to contact me by email, [email protected], if you have any questions.

Acknowledgement

  • DeepSeek-OCR: the idea originated from reconsideration of this work.
  • GOT-OCR2.0: the code was adapted from GOT-OCR2.0.
  • Qwen: the LLM base model of C3.

Citation

@article{liu2025context,
  title={Context Cascade Compression: Exploring the Upper Limits of Text Compression},
  author={Liu, Fanfan and Qiu, Haibo},
  journal={arXiv preprint arXiv:2511.15244},
  year={2025}
}
Downloads last month
529
Safetensors
Model size
3B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support