Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from lufercho/ArxBert-MLM. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Approximation of the distribution of a stationary Markov process with\n application to option pricing',
" We build a sequence of empirical measures on the space D(R_+,R^d) of\nR^d-valued c\\`adl\\`ag functions on R_+ in order to approximate the law of a\nstationary R^d-valued Markov and Feller process (X_t). We obtain some general\nresults of convergence of this sequence. Then, we apply them to Brownian\ndiffusions and solutions to L\\'evy driven SDE's under some Lyapunov-type\nstability assumptions. As a numerical application of this work, we show that\nthis procedure gives an efficient way of option pricing in stochastic\nvolatility models.\n",
" We provide a new estimate of the local supermassive black hole mass function\nusing (i) the empirical relation between supermassive black hole mass and the\nSersic index of the host spheroidal stellar system and (ii) the measured\n(spheroid) Sersic indices drawn from 10k galaxies in the Millennium Galaxy\nCatalogue. The observational simplicity of our approach, and the direct\nmeasurements of the black hole predictor quantity, i.e. the Sersic index, for\nboth elliptical galaxies and the bulges of disc galaxies makes it\nstraightforward to estimate accurate black hole masses in early- and late-type\ngalaxies alike. We have parameterised the supermassive black hole mass function\nwith a Schechter function and find, at the low-mass end, a logarithmic slope\n(1+alpha) of ~0.7 for the full galaxy sample and ~1.0 for the early-type galaxy\nsample. Considering spheroidal stellar systems brighter than M_B = -18 mag, and\nintegrating down to black hole masses of 10^6 M_sun, we find that the local\nmass density of supermassive black holes in early-type galaxies rho_{bh,\nearly-type} = (3.5+/-1.2) x 10^5 h^3_{70} M_sun Mpc^{-3}, and in late-type\ngalaxies rho_{bh, late-type} = (1.0+/-0.5) x 10^5 h^3_{70} M_sun Mpc^{-3}. The\nuncertainties are derived from Monte Carlo simulations which include\nuncertainties in the M_bh-n relation, the catalogue of Sersic indices, the\ngalaxy weights and Malmquist bias. The combined, cosmological, supermassive\nblack hole mass density is thus Omega_{bh, total} = (3.2+/-1.2) x 10^{-6} h_70.\nThat is, using a new and independent method, we conclude that (0.007+/-0.003)\nh^3_{70} per cent of the universe's baryons are presently locked up in\nsupermassive black holes at the centres of galaxies.\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
Lifetime of doubly charmed baryons |
In this work, we evaluate the lifetimes of the doubly charmed baryons |
Broadening the Higgs Boson with Right-Handed Neutrinos and a Higher |
The existence of certain TeV suppressed higher-dimension operators may open |
Infrared Evolution Equations: Method and Applications |
It is a brief review on composing and solving Infrared Evolution Equations. |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 10multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}