DolphinInference / README.md
luquiT4's picture
Update README.md
c3b9e2b verified
---
license: mit
language:
- zh
- en
tags:
- document-parsing
- document-understanding
- document-intelligence
- ocr
- layout-analysis
- table-extraction
- multimodal
- vision-language-model
datasets:
- custom
pipeline_tag: image-text-to-text
library_name: transformers
---
# Dolphin OCR Deployment on Hugging Face Inference Toolkit
This guide provides step-by-step instructions to deploy the **Bytedance Dolphin OCR model** using the **Hugging Face Inference Toolkit** with GPU support.
---
## πŸ”Ή Prerequisites
- Docker installed
- a GPU in your local machine
- A [Hugging Face account](https://huggingface.co/)
- Basic familiarity with command-line tools
---
## πŸ”’ Step 1: Duplicate the Dolphin Model Repository
1. Visit: [https://huggingface.co/spaces/huggingface-projects/repo\_duplicator](https://huggingface.co/spaces/huggingface-projects/repo_duplicator)
2. Enter the source repo, in this case `Bytedance/Dolphin`.
3. Name your new repo: `luquiT4/DolphinInference` (or any name you prefer).
---
## πŸ”’ Step 2: Add the handler to the Model Repository
to in the documentation they mention that this files helps for compatibility https://github.com/huggingface/huggingface-inference-toolkit/#custom-handler-and-dependency-support
- `handler.py` (Custom inference handler)
- `requirements.txt` (Dependencies)
to add them we need to...
1. Add a new file to the new repo:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/67116e3a75abfd0db8e1b154/wlXCsuIQJlMOf-kKG4c0U.png)
2. And paste this:
```python
import base64
import io
from typing import Dict, Any
import torch
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
class EndpointHandler:
def __init__(self, path=""):
# Load processor and model from the provided path or model ID
self.processor = AutoProcessor.from_pretrained(path or "bytedance/Dolphin")
self.model = VisionEncoderDecoderModel.from_pretrained(path or "bytedance/Dolphin")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
self.model = self.model.half() # Half precision for speed
self.tokenizer = self.processor.tokenizer
def decode_base64_image(self, image_base64: str) -> Image.Image:
image_bytes = base64.b64decode(image_base64)
return Image.open(io.BytesIO(image_bytes)).convert("RGB")
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
# Check for image input
if "inputs" not in data:
return {"error": "No inputs provided"}
image_input = data["inputs"]
# Support both base64 image strings and raw images (Hugging Face supports both)
if isinstance(image_input, str):
try:
image = self.decode_base64_image(image_input)
except Exception as e:
return {"error": f"Invalid base64 image: {str(e)}"}
else:
image = image_input # Assume PIL-compatible image
# Optional: Custom prompt (default: text reading)
prompt = data.get("prompt", "Read text in the image.")
full_prompt = f"<s>{prompt} <Answer/>"
# Preprocess inputs
inputs = self.processor(image, return_tensors="pt")
pixel_values = inputs.pixel_values.half().to(self.device)
prompt_ids = self.tokenizer(full_prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(self.device)
decoder_attention_mask = torch.ones_like(prompt_ids).to(self.device)
# Inference
outputs = self.model.generate(
pixel_values=pixel_values,
decoder_input_ids=prompt_ids,
decoder_attention_mask=decoder_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
)
sequence = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)[0]
# Clean up
generated_text = sequence.replace(full_prompt, "").replace("<pad>", "").replace("</s>", "").strip()
return {"text": generated_text}
```
this has been generated using ChatGPT and this sources:
- https://huggingface.co/docs/inference-endpoints/guides/custom_handler (main documentation)
- https://github.com/bytedance/Dolphin/blob/master/demo_page_hf.py (Demo script of Dolphin)
- https://github.com/bytedance/Dolphin/blob/master/demo_element_hf.py (Demo script of Dolphin)
- https://github.com/bytedance/Dolphin/blob/master/deployment/vllm/api_server.py (VLLM implementation of Dolphin)
- https://huggingface.co/philschmid/donut-base-finetuned-cord-v2/blob/main/handler.py (similar model `handler.py`)
in this case it works using only `handler.py` without `requirements.txt`
---
## πŸ”’ Step 3: Build the Hugging Face Inference Toolkit Docker Image
1. Clone the toolkit:
```bash
git clone https://github.com/huggingface/huggingface-inference-toolkit.git
cd huggingface-inference-toolkit
```
2. **Important:** If you are on Windows, use **WSL or Linux** to avoid line-ending issues (`^M: bad interpreter`).
3. Build the GPU Docker image:
```bash
make inference-pytorch-gpu
# on the back will run this
# docker build -t integration-test-pytorch:gpu -f docker/Dockerfile.pytorch .
```
---
## πŸ”’ Step 4: Run the Inference Server with Dolphin Model
```bash
docker run -ti -p 5001:5000 --gpus all \
-e HF_MODEL_ID=luquiT4/DolphinInference \
-e HF_TASK=image-to-text \
integration-test-pytorch:gpu
```
- `HF_MODEL_ID` = your Hugging Face model name
- `HF_TASK` = task type (image-to-text)
---
## πŸ”’ Step 5: Test the Endpoint
1. Send an inference request:
```bash
curl --request POST \
--url http://localhost:5001/ \
--header 'accept: application/json' \
--header 'content-type: application/octet-stream' \
--data 'C:\path\to\imagewithtext.png'
```
1. Enjoy a successful request
---
## πŸ”’ Step 6 (Coming Soon): Deploy to Azure Serverless Function as an API
- Use **serverless GPU (NC T4 v3)** for low-cost inference.
- Configure **scale-to-zero** in Azure Container Apps to avoid idle GPU charges.
- Monitor with Azure budgets and alerts.
info:
- https://learn.microsoft.com/en-us/azure/container-apps/gpu-image-generation?pivots=azure-portal
- https://azure.microsoft.com/en-us/pricing/details/container-apps/?cdn=disable
- https://learn.microsoft.com/en-us/azure/container-apps/gpu-serverless-overview
---
## πŸ”Ή Troubleshooting
| Issue | Solution |
| --------------------------- | -------------------------------------------------------------- |
| `404 requirements.txt` | (Optionaal) Create `requirements.txt` on your HF model repo |
| `Safetensor HeaderTooLarge` | Clone the repo on the cloud using Hugging Face Repo Duplicator |
| `^M bad interpreter` | Build Docker image on WSL or Linux |
---
## πŸ‘ Useful Links
- Dolphin GitHub: [https://github.com/bytedance/Dolphin](https://github.com/bytedance/Dolphin)
- Hugging Face Inference Toolkit: [https://github.com/huggingface/huggingface-inference-toolkit](https://github.com/huggingface/huggingface-inference-toolkit)
- Hugging Face Repo Duplicator: [https://huggingface.co/spaces/huggingface-projects/repo\_duplicator](https://huggingface.co/spaces/huggingface-projects/repo_duplicator)
---
You are now ready to deploy and run Dolphin OCR as a custom Hugging Face Inference Endpoint!