MuseTalk / scripts /realtime_inference.py
gaolegao's picture
fix: use torch.no_grad() in inference to prevent excessive memory usage (~30GB) with inference (#349)
834f57d unverified
import argparse
import os
from omegaconf import OmegaConf
import numpy as np
import cv2
import torch
import glob
import pickle
import sys
from tqdm import tqdm
import copy
import json
from transformers import WhisperModel
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.utils import datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs
from musetalk.utils.blending import get_image_prepare_material, get_image_blending
from musetalk.utils.utils import load_all_model
from musetalk.utils.audio_processor import AudioProcessor
import shutil
import threading
import queue
import time
import subprocess
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
def video2imgs(vid_path, save_path, ext='.png', cut_frame=10000000):
cap = cv2.VideoCapture(vid_path)
count = 0
while True:
if count > cut_frame:
break
ret, frame = cap.read()
if ret:
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
count += 1
else:
break
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
@torch.no_grad()
class Avatar:
def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation):
self.avatar_id = avatar_id
self.video_path = video_path
self.bbox_shift = bbox_shift
# 根据版本设置不同的基础路径
if args.version == "v15":
self.base_path = f"./results/{args.version}/avatars/{avatar_id}"
else: # v1
self.base_path = f"./results/avatars/{avatar_id}"
self.avatar_path = self.base_path
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path = f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path = f"{self.avatar_path}/mask"
self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
self.avatar_info = {
"avatar_id": avatar_id,
"video_path": video_path,
"bbox_shift": bbox_shift,
"version": args.version
}
self.preparation = preparation
self.batch_size = batch_size
self.idx = 0
self.init()
def init(self):
if self.preparation:
if os.path.exists(self.avatar_path):
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)")
if response.lower() == "y":
shutil.rmtree(self.avatar_path)
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
with open(self.mask_coords_path, 'rb') as f:
self.mask_coords_list_cycle = pickle.load(f)
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
else:
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
if not os.path.exists(self.avatar_path):
print(f"{self.avatar_id} does not exist, you should set preparation to True")
sys.exit()
with open(self.avatar_info_path, "r") as f:
avatar_info = json.load(f)
if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']:
response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)")
if response.lower() == "c":
shutil.rmtree(self.avatar_path)
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
sys.exit()
else:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
with open(self.mask_coords_path, 'rb') as f:
self.mask_coords_list_cycle = pickle.load(f)
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
def prepare_material(self):
print("preparing data materials ... ...")
with open(self.avatar_info_path, "w") as f:
json.dump(self.avatar_info, f)
if os.path.isfile(self.video_path):
video2imgs(self.video_path, self.full_imgs_path, ext='png')
else:
print(f"copy files in {self.video_path}")
files = os.listdir(self.video_path)
files.sort()
files = [file for file in files if file.split(".")[-1] == "png"]
for filename in files:
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
print("extracting landmarks...")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift)
input_latent_list = []
idx = -1
# maker if the bbox is not sufficient
coord_placeholder = (0.0, 0.0, 0.0, 0.0)
for bbox, frame in zip(coord_list, frame_list):
idx = idx + 1
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
if args.version == "v15":
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
coord_list[idx] = [x1, y1, x2, y2] # 更新coord_list中的bbox
crop_frame = frame[y1:y2, x1:x2]
resized_crop_frame = cv2.resize(crop_frame, (256, 256), interpolation=cv2.INTER_LANCZOS4)
latents = vae.get_latents_for_unet(resized_crop_frame)
input_latent_list.append(latents)
self.frame_list_cycle = frame_list + frame_list[::-1]
self.coord_list_cycle = coord_list + coord_list[::-1]
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
self.mask_coords_list_cycle = []
self.mask_list_cycle = []
for i, frame in enumerate(tqdm(self.frame_list_cycle)):
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png", frame)
x1, y1, x2, y2 = self.coord_list_cycle[i]
if args.version == "v15":
mode = args.parsing_mode
else:
mode = "raw"
mask, crop_box = get_image_prepare_material(frame, [x1, y1, x2, y2], fp=fp, mode=mode)
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png", mask)
self.mask_coords_list_cycle += [crop_box]
self.mask_list_cycle.append(mask)
with open(self.mask_coords_path, 'wb') as f:
pickle.dump(self.mask_coords_list_cycle, f)
with open(self.coords_path, 'wb') as f:
pickle.dump(self.coord_list_cycle, f)
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
def process_frames(self, res_frame_queue, video_len, skip_save_images):
print(video_len)
while True:
if self.idx >= video_len - 1:
break
try:
start = time.time()
res_frame = res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
bbox = self.coord_list_cycle[self.idx % (len(self.coord_list_cycle))]
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx % (len(self.frame_list_cycle))])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
except:
continue
mask = self.mask_list_cycle[self.idx % (len(self.mask_list_cycle))]
mask_crop_box = self.mask_coords_list_cycle[self.idx % (len(self.mask_coords_list_cycle))]
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
if skip_save_images is False:
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png", combine_frame)
self.idx = self.idx + 1
@torch.no_grad()
def inference(self, audio_path, out_vid_name, fps, skip_save_images):
os.makedirs(self.avatar_path + '/tmp', exist_ok=True)
print("start inference")
############################################## extract audio feature ##############################################
start_time = time.time()
# Extract audio features
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path, weight_dtype=weight_dtype)
whisper_chunks = audio_processor.get_whisper_chunk(
whisper_input_features,
device,
weight_dtype,
whisper,
librosa_length,
fps=fps,
audio_padding_length_left=args.audio_padding_length_left,
audio_padding_length_right=args.audio_padding_length_right,
)
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
############################################## inference batch by batch ##############################################
video_num = len(whisper_chunks)
res_frame_queue = queue.Queue()
self.idx = 0
# Create a sub-thread and start it
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num, skip_save_images))
process_thread.start()
gen = datagen(whisper_chunks,
self.input_latent_list_cycle,
self.batch_size)
start_time = time.time()
res_frame_list = []
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=int(np.ceil(float(video_num) / self.batch_size)))):
audio_feature_batch = pe(whisper_batch.to(device))
latent_batch = latent_batch.to(device=device, dtype=unet.model.dtype)
pred_latents = unet.model(latent_batch,
timesteps,
encoder_hidden_states=audio_feature_batch).sample
pred_latents = pred_latents.to(device=device, dtype=vae.vae.dtype)
recon = vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_queue.put(res_frame)
# Close the queue and sub-thread after all tasks are completed
process_thread.join()
if args.skip_save_images is True:
print('Total process time of {} frames without saving images = {}s'.format(
video_num,
time.time() - start_time))
else:
print('Total process time of {} frames including saving images = {}s'.format(
video_num,
time.time() - start_time))
if out_vid_name is not None and args.skip_save_images is False:
# optional
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
print(cmd_img2video)
os.system(cmd_img2video)
output_vid = os.path.join(self.video_out_path, out_vid_name + ".mp4") # on
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
print(cmd_combine_audio)
os.system(cmd_combine_audio)
os.remove(f"{self.avatar_path}/temp.mp4")
shutil.rmtree(f"{self.avatar_path}/tmp")
print(f"result is save to {output_vid}")
print("\n")
if __name__ == "__main__":
'''
This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
'''
parser = argparse.ArgumentParser()
parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Version of MuseTalk: v1 or v15")
parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable")
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use")
parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model")
parser.add_argument("--unet_config", type=str, default="./models/musetalk/musetalk.json", help="Path to UNet configuration file")
parser.add_argument("--unet_model_path", type=str, default="./models/musetalk/pytorch_model.bin", help="Path to UNet model weights")
parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model")
parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml")
parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value")
parser.add_argument("--result_dir", default='./results', help="Directory for output results")
parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping")
parser.add_argument("--fps", type=int, default=25, help="Video frames per second")
parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio")
parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio")
parser.add_argument("--batch_size", type=int, default=20, help="Batch size for inference")
parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file")
parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time')
parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use')
parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode")
parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region")
parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region")
parser.add_argument("--skip_save_images",
action="store_true",
help="Whether skip saving images for better generation speed calculation",
)
args = parser.parse_args()
# Configure ffmpeg path
if not fast_check_ffmpeg():
print("Adding ffmpeg to PATH")
# Choose path separator based on operating system
path_separator = ';' if sys.platform == 'win32' else ':'
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
if not fast_check_ffmpeg():
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
# Set computing device
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
# Load model weights
vae, unet, pe = load_all_model(
unet_model_path=args.unet_model_path,
vae_type=args.vae_type,
unet_config=args.unet_config,
device=device
)
timesteps = torch.tensor([0], device=device)
pe = pe.half().to(device)
vae.vae = vae.vae.half().to(device)
unet.model = unet.model.half().to(device)
# Initialize audio processor and Whisper model
audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir)
weight_dtype = unet.model.dtype
whisper = WhisperModel.from_pretrained(args.whisper_dir)
whisper = whisper.to(device=device, dtype=weight_dtype).eval()
whisper.requires_grad_(False)
# Initialize face parser with configurable parameters based on version
if args.version == "v15":
fp = FaceParsing(
left_cheek_width=args.left_cheek_width,
right_cheek_width=args.right_cheek_width
)
else: # v1
fp = FaceParsing()
inference_config = OmegaConf.load(args.inference_config)
print(inference_config)
for avatar_id in inference_config:
data_preparation = inference_config[avatar_id]["preparation"]
video_path = inference_config[avatar_id]["video_path"]
if args.version == "v15":
bbox_shift = 0
else:
bbox_shift = inference_config[avatar_id]["bbox_shift"]
avatar = Avatar(
avatar_id=avatar_id,
video_path=video_path,
bbox_shift=bbox_shift,
batch_size=args.batch_size,
preparation=data_preparation)
audio_clips = inference_config[avatar_id]["audio_clips"]
for audio_num, audio_path in audio_clips.items():
print("Inferring using:", audio_path)
avatar.inference(audio_path,
audio_num,
args.fps,
args.skip_save_images)