|
|
import argparse |
|
|
import os |
|
|
from omegaconf import OmegaConf |
|
|
import numpy as np |
|
|
import cv2 |
|
|
import torch |
|
|
import glob |
|
|
import pickle |
|
|
import sys |
|
|
from tqdm import tqdm |
|
|
import copy |
|
|
import json |
|
|
from transformers import WhisperModel |
|
|
|
|
|
from musetalk.utils.face_parsing import FaceParsing |
|
|
from musetalk.utils.utils import datagen |
|
|
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs |
|
|
from musetalk.utils.blending import get_image_prepare_material, get_image_blending |
|
|
from musetalk.utils.utils import load_all_model |
|
|
from musetalk.utils.audio_processor import AudioProcessor |
|
|
|
|
|
import shutil |
|
|
import threading |
|
|
import queue |
|
|
import time |
|
|
import subprocess |
|
|
|
|
|
|
|
|
def fast_check_ffmpeg(): |
|
|
try: |
|
|
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True) |
|
|
return True |
|
|
except: |
|
|
return False |
|
|
|
|
|
|
|
|
def video2imgs(vid_path, save_path, ext='.png', cut_frame=10000000): |
|
|
cap = cv2.VideoCapture(vid_path) |
|
|
count = 0 |
|
|
while True: |
|
|
if count > cut_frame: |
|
|
break |
|
|
ret, frame = cap.read() |
|
|
if ret: |
|
|
cv2.imwrite(f"{save_path}/{count:08d}.png", frame) |
|
|
count += 1 |
|
|
else: |
|
|
break |
|
|
|
|
|
|
|
|
def osmakedirs(path_list): |
|
|
for path in path_list: |
|
|
os.makedirs(path) if not os.path.exists(path) else None |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
class Avatar: |
|
|
def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation): |
|
|
self.avatar_id = avatar_id |
|
|
self.video_path = video_path |
|
|
self.bbox_shift = bbox_shift |
|
|
|
|
|
if args.version == "v15": |
|
|
self.base_path = f"./results/{args.version}/avatars/{avatar_id}" |
|
|
else: |
|
|
self.base_path = f"./results/avatars/{avatar_id}" |
|
|
|
|
|
self.avatar_path = self.base_path |
|
|
self.full_imgs_path = f"{self.avatar_path}/full_imgs" |
|
|
self.coords_path = f"{self.avatar_path}/coords.pkl" |
|
|
self.latents_out_path = f"{self.avatar_path}/latents.pt" |
|
|
self.video_out_path = f"{self.avatar_path}/vid_output/" |
|
|
self.mask_out_path = f"{self.avatar_path}/mask" |
|
|
self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl" |
|
|
self.avatar_info_path = f"{self.avatar_path}/avator_info.json" |
|
|
self.avatar_info = { |
|
|
"avatar_id": avatar_id, |
|
|
"video_path": video_path, |
|
|
"bbox_shift": bbox_shift, |
|
|
"version": args.version |
|
|
} |
|
|
self.preparation = preparation |
|
|
self.batch_size = batch_size |
|
|
self.idx = 0 |
|
|
self.init() |
|
|
|
|
|
def init(self): |
|
|
if self.preparation: |
|
|
if os.path.exists(self.avatar_path): |
|
|
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)") |
|
|
if response.lower() == "y": |
|
|
shutil.rmtree(self.avatar_path) |
|
|
print("*********************************") |
|
|
print(f" creating avator: {self.avatar_id}") |
|
|
print("*********************************") |
|
|
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path]) |
|
|
self.prepare_material() |
|
|
else: |
|
|
self.input_latent_list_cycle = torch.load(self.latents_out_path) |
|
|
with open(self.coords_path, 'rb') as f: |
|
|
self.coord_list_cycle = pickle.load(f) |
|
|
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) |
|
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) |
|
|
self.frame_list_cycle = read_imgs(input_img_list) |
|
|
with open(self.mask_coords_path, 'rb') as f: |
|
|
self.mask_coords_list_cycle = pickle.load(f) |
|
|
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) |
|
|
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) |
|
|
self.mask_list_cycle = read_imgs(input_mask_list) |
|
|
else: |
|
|
print("*********************************") |
|
|
print(f" creating avator: {self.avatar_id}") |
|
|
print("*********************************") |
|
|
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path]) |
|
|
self.prepare_material() |
|
|
else: |
|
|
if not os.path.exists(self.avatar_path): |
|
|
print(f"{self.avatar_id} does not exist, you should set preparation to True") |
|
|
sys.exit() |
|
|
|
|
|
with open(self.avatar_info_path, "r") as f: |
|
|
avatar_info = json.load(f) |
|
|
|
|
|
if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']: |
|
|
response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)") |
|
|
if response.lower() == "c": |
|
|
shutil.rmtree(self.avatar_path) |
|
|
print("*********************************") |
|
|
print(f" creating avator: {self.avatar_id}") |
|
|
print("*********************************") |
|
|
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path]) |
|
|
self.prepare_material() |
|
|
else: |
|
|
sys.exit() |
|
|
else: |
|
|
self.input_latent_list_cycle = torch.load(self.latents_out_path) |
|
|
with open(self.coords_path, 'rb') as f: |
|
|
self.coord_list_cycle = pickle.load(f) |
|
|
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) |
|
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) |
|
|
self.frame_list_cycle = read_imgs(input_img_list) |
|
|
with open(self.mask_coords_path, 'rb') as f: |
|
|
self.mask_coords_list_cycle = pickle.load(f) |
|
|
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) |
|
|
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) |
|
|
self.mask_list_cycle = read_imgs(input_mask_list) |
|
|
|
|
|
def prepare_material(self): |
|
|
print("preparing data materials ... ...") |
|
|
with open(self.avatar_info_path, "w") as f: |
|
|
json.dump(self.avatar_info, f) |
|
|
|
|
|
if os.path.isfile(self.video_path): |
|
|
video2imgs(self.video_path, self.full_imgs_path, ext='png') |
|
|
else: |
|
|
print(f"copy files in {self.video_path}") |
|
|
files = os.listdir(self.video_path) |
|
|
files.sort() |
|
|
files = [file for file in files if file.split(".")[-1] == "png"] |
|
|
for filename in files: |
|
|
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}") |
|
|
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))) |
|
|
|
|
|
print("extracting landmarks...") |
|
|
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift) |
|
|
input_latent_list = [] |
|
|
idx = -1 |
|
|
|
|
|
coord_placeholder = (0.0, 0.0, 0.0, 0.0) |
|
|
for bbox, frame in zip(coord_list, frame_list): |
|
|
idx = idx + 1 |
|
|
if bbox == coord_placeholder: |
|
|
continue |
|
|
x1, y1, x2, y2 = bbox |
|
|
if args.version == "v15": |
|
|
y2 = y2 + args.extra_margin |
|
|
y2 = min(y2, frame.shape[0]) |
|
|
coord_list[idx] = [x1, y1, x2, y2] |
|
|
crop_frame = frame[y1:y2, x1:x2] |
|
|
resized_crop_frame = cv2.resize(crop_frame, (256, 256), interpolation=cv2.INTER_LANCZOS4) |
|
|
latents = vae.get_latents_for_unet(resized_crop_frame) |
|
|
input_latent_list.append(latents) |
|
|
|
|
|
self.frame_list_cycle = frame_list + frame_list[::-1] |
|
|
self.coord_list_cycle = coord_list + coord_list[::-1] |
|
|
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1] |
|
|
self.mask_coords_list_cycle = [] |
|
|
self.mask_list_cycle = [] |
|
|
|
|
|
for i, frame in enumerate(tqdm(self.frame_list_cycle)): |
|
|
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png", frame) |
|
|
|
|
|
x1, y1, x2, y2 = self.coord_list_cycle[i] |
|
|
if args.version == "v15": |
|
|
mode = args.parsing_mode |
|
|
else: |
|
|
mode = "raw" |
|
|
mask, crop_box = get_image_prepare_material(frame, [x1, y1, x2, y2], fp=fp, mode=mode) |
|
|
|
|
|
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png", mask) |
|
|
self.mask_coords_list_cycle += [crop_box] |
|
|
self.mask_list_cycle.append(mask) |
|
|
|
|
|
with open(self.mask_coords_path, 'wb') as f: |
|
|
pickle.dump(self.mask_coords_list_cycle, f) |
|
|
|
|
|
with open(self.coords_path, 'wb') as f: |
|
|
pickle.dump(self.coord_list_cycle, f) |
|
|
|
|
|
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path)) |
|
|
|
|
|
def process_frames(self, res_frame_queue, video_len, skip_save_images): |
|
|
print(video_len) |
|
|
while True: |
|
|
if self.idx >= video_len - 1: |
|
|
break |
|
|
try: |
|
|
start = time.time() |
|
|
res_frame = res_frame_queue.get(block=True, timeout=1) |
|
|
except queue.Empty: |
|
|
continue |
|
|
|
|
|
bbox = self.coord_list_cycle[self.idx % (len(self.coord_list_cycle))] |
|
|
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx % (len(self.frame_list_cycle))]) |
|
|
x1, y1, x2, y2 = bbox |
|
|
try: |
|
|
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1)) |
|
|
except: |
|
|
continue |
|
|
mask = self.mask_list_cycle[self.idx % (len(self.mask_list_cycle))] |
|
|
mask_crop_box = self.mask_coords_list_cycle[self.idx % (len(self.mask_coords_list_cycle))] |
|
|
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box) |
|
|
|
|
|
if skip_save_images is False: |
|
|
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png", combine_frame) |
|
|
self.idx = self.idx + 1 |
|
|
|
|
|
@torch.no_grad() |
|
|
def inference(self, audio_path, out_vid_name, fps, skip_save_images): |
|
|
os.makedirs(self.avatar_path + '/tmp', exist_ok=True) |
|
|
print("start inference") |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path, weight_dtype=weight_dtype) |
|
|
whisper_chunks = audio_processor.get_whisper_chunk( |
|
|
whisper_input_features, |
|
|
device, |
|
|
weight_dtype, |
|
|
whisper, |
|
|
librosa_length, |
|
|
fps=fps, |
|
|
audio_padding_length_left=args.audio_padding_length_left, |
|
|
audio_padding_length_right=args.audio_padding_length_right, |
|
|
) |
|
|
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms") |
|
|
|
|
|
video_num = len(whisper_chunks) |
|
|
res_frame_queue = queue.Queue() |
|
|
self.idx = 0 |
|
|
|
|
|
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num, skip_save_images)) |
|
|
process_thread.start() |
|
|
|
|
|
gen = datagen(whisper_chunks, |
|
|
self.input_latent_list_cycle, |
|
|
self.batch_size) |
|
|
start_time = time.time() |
|
|
res_frame_list = [] |
|
|
|
|
|
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=int(np.ceil(float(video_num) / self.batch_size)))): |
|
|
audio_feature_batch = pe(whisper_batch.to(device)) |
|
|
latent_batch = latent_batch.to(device=device, dtype=unet.model.dtype) |
|
|
|
|
|
pred_latents = unet.model(latent_batch, |
|
|
timesteps, |
|
|
encoder_hidden_states=audio_feature_batch).sample |
|
|
pred_latents = pred_latents.to(device=device, dtype=vae.vae.dtype) |
|
|
recon = vae.decode_latents(pred_latents) |
|
|
for res_frame in recon: |
|
|
res_frame_queue.put(res_frame) |
|
|
|
|
|
process_thread.join() |
|
|
|
|
|
if args.skip_save_images is True: |
|
|
print('Total process time of {} frames without saving images = {}s'.format( |
|
|
video_num, |
|
|
time.time() - start_time)) |
|
|
else: |
|
|
print('Total process time of {} frames including saving images = {}s'.format( |
|
|
video_num, |
|
|
time.time() - start_time)) |
|
|
|
|
|
if out_vid_name is not None and args.skip_save_images is False: |
|
|
|
|
|
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {self.avatar_path}/temp.mp4" |
|
|
print(cmd_img2video) |
|
|
os.system(cmd_img2video) |
|
|
|
|
|
output_vid = os.path.join(self.video_out_path, out_vid_name + ".mp4") |
|
|
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}" |
|
|
print(cmd_combine_audio) |
|
|
os.system(cmd_combine_audio) |
|
|
|
|
|
os.remove(f"{self.avatar_path}/temp.mp4") |
|
|
shutil.rmtree(f"{self.avatar_path}/tmp") |
|
|
print(f"result is save to {output_vid}") |
|
|
print("\n") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
''' |
|
|
This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time. |
|
|
''' |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Version of MuseTalk: v1 or v15") |
|
|
parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable") |
|
|
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use") |
|
|
parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model") |
|
|
parser.add_argument("--unet_config", type=str, default="./models/musetalk/musetalk.json", help="Path to UNet configuration file") |
|
|
parser.add_argument("--unet_model_path", type=str, default="./models/musetalk/pytorch_model.bin", help="Path to UNet model weights") |
|
|
parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model") |
|
|
parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml") |
|
|
parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value") |
|
|
parser.add_argument("--result_dir", default='./results', help="Directory for output results") |
|
|
parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping") |
|
|
parser.add_argument("--fps", type=int, default=25, help="Video frames per second") |
|
|
parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio") |
|
|
parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio") |
|
|
parser.add_argument("--batch_size", type=int, default=20, help="Batch size for inference") |
|
|
parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file") |
|
|
parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time') |
|
|
parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use') |
|
|
parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode") |
|
|
parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region") |
|
|
parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region") |
|
|
parser.add_argument("--skip_save_images", |
|
|
action="store_true", |
|
|
help="Whether skip saving images for better generation speed calculation", |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
if not fast_check_ffmpeg(): |
|
|
print("Adding ffmpeg to PATH") |
|
|
|
|
|
path_separator = ';' if sys.platform == 'win32' else ':' |
|
|
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}" |
|
|
if not fast_check_ffmpeg(): |
|
|
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed") |
|
|
|
|
|
|
|
|
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
|
vae, unet, pe = load_all_model( |
|
|
unet_model_path=args.unet_model_path, |
|
|
vae_type=args.vae_type, |
|
|
unet_config=args.unet_config, |
|
|
device=device |
|
|
) |
|
|
timesteps = torch.tensor([0], device=device) |
|
|
|
|
|
pe = pe.half().to(device) |
|
|
vae.vae = vae.vae.half().to(device) |
|
|
unet.model = unet.model.half().to(device) |
|
|
|
|
|
|
|
|
audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir) |
|
|
weight_dtype = unet.model.dtype |
|
|
whisper = WhisperModel.from_pretrained(args.whisper_dir) |
|
|
whisper = whisper.to(device=device, dtype=weight_dtype).eval() |
|
|
whisper.requires_grad_(False) |
|
|
|
|
|
|
|
|
if args.version == "v15": |
|
|
fp = FaceParsing( |
|
|
left_cheek_width=args.left_cheek_width, |
|
|
right_cheek_width=args.right_cheek_width |
|
|
) |
|
|
else: |
|
|
fp = FaceParsing() |
|
|
|
|
|
inference_config = OmegaConf.load(args.inference_config) |
|
|
print(inference_config) |
|
|
|
|
|
for avatar_id in inference_config: |
|
|
data_preparation = inference_config[avatar_id]["preparation"] |
|
|
video_path = inference_config[avatar_id]["video_path"] |
|
|
if args.version == "v15": |
|
|
bbox_shift = 0 |
|
|
else: |
|
|
bbox_shift = inference_config[avatar_id]["bbox_shift"] |
|
|
avatar = Avatar( |
|
|
avatar_id=avatar_id, |
|
|
video_path=video_path, |
|
|
bbox_shift=bbox_shift, |
|
|
batch_size=args.batch_size, |
|
|
preparation=data_preparation) |
|
|
|
|
|
audio_clips = inference_config[avatar_id]["audio_clips"] |
|
|
for audio_num, audio_path in audio_clips.items(): |
|
|
print("Inferring using:", audio_path) |
|
|
avatar.inference(audio_path, |
|
|
audio_num, |
|
|
args.fps, |
|
|
args.skip_save_images) |
|
|
|