GKT: Optimized for Mobile Deployment
Construct a bird’s eye view from sensors mounted on a vehicle
Geometry-guided Kernel Transformer is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.
This model is an implementation of GKT found [here](https://github.com/hustvl/GKT/ https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
This repository provides scripts to run GKT on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.driver_assistance
- Model Stats:
- Model checkpoint: map_segmentation_gkt_7x1_conv_setting2.ckpt
- Input resolution: 1 x 6 x 3 x 224 x 480
- Number of parameters: 1.18M
- Model size: 4.66 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| GKT | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 178.364 ms | 4 - 13 MB | NPU | Use Export Script |
| GKT | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 204.304 ms | 7 - 25 MB | NPU | Use Export Script |
| GKT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 105.774 ms | 8 - 10 MB | NPU | Use Export Script |
| GKT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 80.205 ms | 7 - 12 MB | NPU | Use Export Script |
| GKT | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 107.699 ms | 0 - 9 MB | NPU | Use Export Script |
| GKT | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 178.364 ms | 4 - 13 MB | NPU | Use Export Script |
| GKT | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 106.111 ms | 8 - 10 MB | NPU | Use Export Script |
| GKT | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 139.075 ms | 0 - 17 MB | NPU | Use Export Script |
| GKT | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 105.282 ms | 8 - 10 MB | NPU | Use Export Script |
| GKT | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 107.699 ms | 0 - 9 MB | NPU | Use Export Script |
| GKT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 76.659 ms | 8 - 28 MB | NPU | Use Export Script |
| GKT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 55.17 ms | 8 - 26 MB | NPU | Use Export Script |
| GKT | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 67.44 ms | 7 - 20 MB | NPU | Use Export Script |
| GKT | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 50.897 ms | 1 - 11 MB | NPU | Use Export Script |
| GKT | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 56.469 ms | 7 - 18 MB | NPU | Use Export Script |
| GKT | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 40.318 ms | 8 - 18 MB | NPU | Use Export Script |
| GKT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 99.942 ms | 7 - 7 MB | NPU | Use Export Script |
| GKT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 77.464 ms | 7 - 7 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 192.276 ms | 4 - 13 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 145.984 ms | 4 - 24 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 130.987 ms | 4 - 6 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 128.848 ms | 4 - 6 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 130.062 ms | 1 - 11 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 192.276 ms | 4 - 13 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 129.938 ms | 4 - 6 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 153.875 ms | 0 - 17 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 130.476 ms | 4 - 7 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 130.062 ms | 1 - 11 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 93.949 ms | 4 - 22 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 97.679 ms | 4 - 23 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 82.23 ms | 4 - 20 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 83.95 ms | 0 - 14 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 74.446 ms | 4 - 15 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 70.609 ms | 4 - 14 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 130.182 ms | 4 - 4 MB | NPU | Use Export Script |
| GKT | w8a16_mixed_fp16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 129.483 ms | 7 - 7 MB | NPU | Use Export Script |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install nuscenes-devkit==1.2.0 --no-deps
pip install "qai-hub-models[gkt]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.gkt.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.gkt.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.gkt.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.gkt import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.gkt.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.gkt.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on GKT's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of GKT can be found here.
References
- Efficient and Robust 2D-to-BEV Representation Learning via Geometry-guided Kernel Transformer
- [Source Model Implementation](https://github.com/hustvl/GKT/ https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
