Spaces:
Sleeping
Sleeping
File size: 46,768 Bytes
d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 88fb656 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 f684524 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 d037f24 88fb656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
from datasets import load_dataset
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, Wav2Vec2ForCTC, Wav2Vec2Processor
from sentence_transformers import SentenceTransformer
import numpy as np
import random
import faiss
import json
import logging
import re
import streamlit as st
from datetime import datetime
import os
import torch
import librosa
from gtts import gTTS
import tempfile
import io
import base64
import time
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ============================
# AUDIO PROCESSING UTILITIES
# ============================
class AudioProcessor:
def __init__(self):
"""Initialize audio processing components"""
try:
# Load Wav2Vec2 model for speech-to-text
self.stt_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.stt_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
logger.info("β
STT model loaded successfully")
except Exception as e:
logger.error(f"β Error loading STT model: {e}")
self.stt_processor = None
self.stt_model = None
def speech_to_text_from_bytes(self, audio_bytes):
"""Convert speech to text from audio bytes"""
if not self.stt_processor or not self.stt_model:
return "STT model not available"
try:
# Create temporary file from bytes
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(audio_bytes)
tmp_file_path = tmp_file.name
# Load and preprocess audio
audio_input, sr = librosa.load(tmp_file_path, sr=16000)
# Clean up temp file
os.unlink(tmp_file_path)
# Check if audio is silent
if np.max(np.abs(audio_input)) < 0.01:
return "No speech detected. Please speak louder."
# Process audio
input_values = self.stt_processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
# Perform inference
with torch.no_grad():
logits = self.stt_model(input_values).logits
# Decode transcription
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
return transcription.strip() if transcription.strip() else "Could not transcribe audio"
except Exception as e:
logger.error(f"Error in speech-to-text: {e}")
return f"Error processing audio: {str(e)}"
def text_to_speech(self, text, lang='en'):
"""Convert text to speech using gTTS"""
try:
# Create TTS object
tts = gTTS(text=text, lang=lang, slow=False)
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tts.save(tmp_file.name)
return tmp_file.name
except Exception as e:
logger.error(f"Error in text-to-speech: {e}")
return None
# ============================
# DATA PREPARATION
# ============================
def prepare_dataset():
"""Load and prepare the emotion dataset with error handling"""
try:
print("π Loading emotion dataset...")
# Load the dataset
ds = load_dataset("cardiffnlp/tweet_eval", "emotion")
# Define emotion labels (matching the dataset)
emotion_labels = ["anger", "joy", "optimism", "sadness"]
def clean_text(text):
"""Clean and preprocess text"""
text = text.lower()
text = re.sub(r"http\S+", "", text) # remove URLs
text = re.sub(r"[^\w\s]", "", text) # remove special characters
text = re.sub(r"\d+", "", text) # remove numbers
text = re.sub(r"\s+", " ", text) # normalize whitespace
return text.strip()
# Sample and prepare training data
train_data = ds['train']
train_sample = random.sample(list(train_data), min(1000, len(train_data)))
# Convert to RAG format
rag_json = []
for row in train_sample:
cleaned_text = clean_text(row['text'])
if len(cleaned_text) > 10: # Filter out very short texts
rag_json.append({
"text": cleaned_text,
"emotion": emotion_labels[row['label']],
"original_text": row['text']
})
print(f"Dataset prepared with {len(rag_json)} samples")
return rag_json
except Exception as e:
print(f"Warning: Could not load dataset: {e}")
# Return minimal fallback dataset
return [
{"text": "feeling happy and excited", "emotion": "joy"},
{"text": "really angry and frustrated", "emotion": "anger"},
{"text": "sad and lonely today", "emotion": "sadness"},
{"text": "optimistic about the future", "emotion": "optimism"}
]
# ============================
# FIXED EMOTION DETECTION MODEL
# ============================
class EmotionDetector:
def __init__(self):
# Try multiple emotion models in order of preference
self.model_options = [
"j-hartmann/emotion-english-distilroberta-base",
"cardiffnlp/twitter-roberta-base-emotion-latest",
"nateraw/bert-base-uncased-emotion",
"michellejieli/emotion_text_classifier"
]
self.model = None
self.tokenizer = None
self.classifier = None
# Try loading models in order
for model_name in self.model_options:
try:
st.info(f"π Trying to load {model_name}...")
# Force download and load with specific parameters
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
force_download=False,
resume_download=True
)
# Load model with specific device mapping to avoid meta tensor issues
self.model = AutoModelForSequenceClassification.from_pretrained(
model_name,
force_download=False,
resume_download=True,
device_map=None, # Don't use device_map
torch_dtype=torch.float32, # Specify dtype explicitly
low_cpu_mem_usage=False # Disable low_cpu_mem_usage
)
# Move to CPU explicitly if needed
if torch.cuda.is_available():
self.model = self.model.to('cpu')
self.classifier = pipeline(
"text-classification",
model=self.model,
tokenizer=self.tokenizer,
return_all_scores=False,
device=-1 # Force CPU usage
)
st.success(f"β
Successfully loaded {model_name}")
break
except Exception as e:
st.warning(f"β οΈ Failed to load {model_name}: {str(e)}")
continue
# Fallback to simple rule-based detection if all models fail
if self.classifier is None:
st.warning("β οΈ All emotion models failed. Using rule-based fallback.")
self.use_fallback = True
else:
self.use_fallback = False
def detect_emotion_fallback(self, text):
"""Simple rule-based emotion detection as fallback"""
text_lower = text.lower()
# Define keyword patterns for emotions
emotion_keywords = {
'joy': ['happy', 'joy', 'excited', 'thrilled', 'wonderful', 'amazing', 'great', 'fantastic', 'love', 'awesome'],
'anger': ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'irritated', 'hate', 'terrible', 'awful'],
'sadness': ['sad', 'depressed', 'upset', 'down', 'lonely', 'miserable', 'disappointed', 'heartbroken'],
'optimism': ['hope', 'optimistic', 'positive', 'confident', 'believe', 'future', 'better', 'improve']
}
# Count keyword matches
emotion_scores = {}
for emotion, keywords in emotion_keywords.items():
score = sum(1 for keyword in keywords if keyword in text_lower)
emotion_scores[emotion] = score
# Get emotion with highest score
if max(emotion_scores.values()) > 0:
detected_emotion = max(emotion_scores, key=emotion_scores.get)
confidence = min(emotion_scores[detected_emotion] * 0.3 + 0.4, 0.9) # Scale confidence
else:
detected_emotion = 'optimism' # Default
confidence = 0.5
return detected_emotion, confidence
def detect_emotion(self, text):
"""Detect emotion from text with fallback"""
if self.use_fallback or not text.strip():
return self.detect_emotion_fallback(text)
try:
result = self.classifier(text)
emotion = result[0]['label'].lower()
confidence = result[0]['score']
# Map model outputs to our emotion categories
emotion_mapping = {
'anger': 'anger',
'disgust': 'sadness',
'neutral': 'optimism',
'joy': 'joy',
'love': 'joy',
'happiness': 'joy',
'sadness': 'sadness',
'fear': 'sadness',
'surprise': 'optimism',
'optimism': 'optimism',
# Additional mappings for different model outputs
'positive': 'joy',
'negative': 'sadness',
'admiration': 'joy',
'amusement': 'joy',
'annoyance': 'anger',
'approval': 'optimism',
'caring': 'joy',
'confusion': 'sadness',
'curiosity': 'optimism',
'desire': 'optimism',
'disappointment': 'sadness',
'disapproval': 'anger',
'embarrassment': 'sadness',
'excitement': 'joy',
'gratitude': 'joy',
'grief': 'sadness',
'nervousness': 'sadness',
'pride': 'joy',
'realization': 'optimism',
'relief': 'joy',
'remorse': 'sadness'
}
mapped_emotion = emotion_mapping.get(emotion, 'optimism')
return mapped_emotion, confidence
except Exception as e:
logger.error(f"Error in emotion detection: {e}")
# Fall back to rule-based detection
return self.detect_emotion_fallback(text)
# ============================
# LIGHTWEIGHT EMOTION DETECTOR (ALTERNATIVE)
# ============================
class LightweightEmotionDetector:
"""A simple, reliable emotion detector that doesn't rely on heavy models"""
def __init__(self):
# Enhanced keyword-based emotion detection
self.emotion_patterns = {
'joy': {
'keywords': ['happy', 'joy', 'joyful', 'excited', 'thrilled', 'wonderful', 'amazing', 'great', 'fantastic',
'love', 'awesome', 'brilliant', 'perfect', 'delighted', 'cheerful', 'elated', 'glad', 'pleased'],
'phrases': ['feel good', 'so happy', 'really excited', 'love it', 'makes me happy', 'feeling great']
},
'anger': {
'keywords': ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'irritated', 'hate', 'terrible', 'awful',
'disgusting', 'outraged', 'livid', 'enraged', 'pissed', 'infuriated', 'resentful'],
'phrases': ['so angry', 'really mad', 'hate it', 'makes me angry', 'fed up', 'sick of']
},
'sadness': {
'keywords': ['sad', 'depressed', 'upset', 'down', 'lonely', 'miserable', 'disappointed', 'heartbroken',
'devastated', 'hopeless', 'melancholy', 'sorrowful', 'dejected', 'despondent', 'gloomy'],
'phrases': ['feel sad', 'so down', 'really upset', 'makes me sad', 'feeling low', 'broken hearted']
},
'optimism': {
'keywords': ['hope', 'hopeful', 'optimistic', 'positive', 'confident', 'believe', 'future', 'better',
'improve', 'progress', 'opportunity', 'potential', 'bright', 'promising', 'encouraging'],
'phrases': ['looking forward', 'things will get better', 'positive about', 'have hope', 'bright future']
}
}
def detect_emotion(self, text):
"""Detect emotion using enhanced pattern matching"""
if not text.strip():
return 'optimism', 0.5
text_lower = text.lower()
emotion_scores = {emotion: 0 for emotion in self.emotion_patterns.keys()}
# Score based on keywords and phrases
for emotion, patterns in self.emotion_patterns.items():
# Keyword matching
for keyword in patterns['keywords']:
if keyword in text_lower:
emotion_scores[emotion] += 1
# Phrase matching (higher weight)
for phrase in patterns['phrases']:
if phrase in text_lower:
emotion_scores[emotion] += 2
# Intensity modifiers
intensifiers = ['very', 'really', 'extremely', 'so', 'absolutely', 'totally', 'completely']
intensity_boost = sum(1 for word in intensifiers if word in text_lower) * 0.5
# Get the emotion with highest score
if max(emotion_scores.values()) > 0:
detected_emotion = max(emotion_scores, key=emotion_scores.get)
base_confidence = min(emotion_scores[detected_emotion] * 0.2 + 0.5, 0.95)
confidence = min(base_confidence + intensity_boost * 0.1, 0.98)
else:
detected_emotion = 'optimism' # Default to optimism
confidence = 0.6
return detected_emotion, confidence
# ============================
# RAG SYSTEM WITH FAISS
# ============================
class RAGSystem:
"""
Retrieval-Augmented Generation (RAG) system for selecting text templates
based on user input and detected emotion.
"""
def __init__(self, rag_data):
self.rag_data = rag_data
self.texts = [entry['text'] for entry in rag_data]
if len(self.texts) == 0:
st.warning("β οΈ No RAG data available. Using simple responses.")
self.embed_model = None
self.embeddings = None
self.index = None
return
try:
# Initialize embedding model
self.embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Create embeddings
self.embeddings = self.embed_model.encode(
self.texts,
convert_to_numpy=True,
show_progress_bar=False
)
# Create FAISS index
dimension = self.embeddings.shape[1]
self.index = faiss.IndexFlatL2(dimension)
self.index.add(self.embeddings)
except Exception as e:
st.warning(f"β οΈ Could not initialize RAG system: {e}")
self.embed_model = None
self.embeddings = None
self.index = None
def retrieve_templates(self, user_input, detected_emotion, top_k=3):
"""Retrieve relevant templates based on emotion and similarity"""
if not self.embed_model or not self.index:
return []
try:
# Filter by emotion first
emotion_filtered_indices = [
i for i, entry in enumerate(self.rag_data)
if entry['emotion'] == detected_emotion
]
if not emotion_filtered_indices:
emotion_filtered_indices = list(range(len(self.rag_data)))
# Get filtered embeddings
filtered_embeddings = self.embeddings[emotion_filtered_indices]
filtered_texts = [self.texts[i] for i in emotion_filtered_indices]
# Create temporary index for filtered data
temp_index = faiss.IndexFlatL2(filtered_embeddings.shape[1])
temp_index.add(filtered_embeddings)
# Search for similar templates
user_embedding = self.embed_model.encode([user_input], convert_to_numpy=True)
distances, indices = temp_index.search(
user_embedding,
min(top_k, len(filtered_texts))
)
# Top templates
top_templates = [filtered_texts[i] for i in indices[0]]
return top_templates
except Exception as e:
logger.error(f"Error in template retrieval: {e}")
return []
# ============================
# RESPONSE GENERATOR
# ============================
class ResponseGenerator:
def __init__(self, emotion_detector, rag_system):
self.emotion_detector = emotion_detector
self.rag_system = rag_system
# Empathetic response templates by emotion
self.response_templates = {
'anger': [
"I can understand why you're feeling frustrated. It's completely valid to feel this way.",
"Your anger is understandable. Sometimes situations can be really challenging.",
"I hear that you're upset, and that's okay. These feelings are important."
],
'sadness': [
"I'm sorry you're going through a difficult time. Your feelings are valid.",
"It sounds like you're dealing with something really tough right now.",
"I can sense your sadness, and I want you to know that it's okay to feel this way."
],
'joy': [
"I'm so happy to hear about your positive experience! That's wonderful.",
"Your joy is contagious! It's great to hear such positive news.",
"I love hearing about things that make you happy. That sounds amazing!"
],
'optimism': [
"Your positive outlook is inspiring. That's a great way to look at things.",
"I appreciate your hopeful perspective. That's really encouraging.",
"It's wonderful to hear your optimistic thoughts. Keep that positive energy!"
],
'neutral': [
"Thanks for sharing that. I hear you.",
"I understand. Let's continue exploring this topic together.",
"I appreciate you telling me that. Let's keep going."
]
}
def generate_response(self, user_input, top_k=3):
"""Generate empathetic response using RAG and few-shot prompting"""
try:
# Step 1: Detect emotion
detected_emotion, confidence = self.emotion_detector.detect_emotion(user_input)
# Step 2: Retrieve relevant templates (if RAG is available)
templates = []
if self.rag_system and self.rag_system.embed_model:
templates = self.rag_system.retrieve_templates(
user_input,
detected_emotion,
top_k=top_k
)
# Step 3: Create response using templates and emotion
base_responses = self.response_templates.get(
detected_emotion,
self.response_templates['optimism']
)
# Combine base response with context from templates
selected_base = random.choice(base_responses)
# Create contextual response
if templates:
context_template = random.choice(templates)
# Enhanced response generation
response = f"{selected_base} I can relate to what you're sharing - {context_template[:80]}. Remember that your feelings are important and valid."
else:
response = selected_base
# Add disclaimer
disclaimer = "\n\nβ οΈ This is an automated response. For serious emotional concerns, please consult a mental health professional."
return response + disclaimer, detected_emotion, confidence
except Exception as e:
error_msg = f"I apologize, but I encountered an error: {str(e)}"
disclaimer = "\n\nβ οΈ This is an automated response. Please consult a professional if needed."
return error_msg + disclaimer, 'neutral', 0.0
# ============================
# SIMPLE RESPONSE GENERATOR (FALLBACK)
# ============================
class SimpleResponseGenerator:
"""Simplified response generator that works without RAG"""
def __init__(self, emotion_detector):
self.emotion_detector = emotion_detector
# Enhanced response templates
self.response_templates = {
'anger': [
"I can understand why you're feeling frustrated. It's completely valid to feel this way. Sometimes situations can be really challenging, and it's important to acknowledge these feelings.",
"Your anger is understandable. When things don't go as expected, it's natural to feel upset. Would you like to talk about what's causing these feelings?",
"I hear that you're upset, and that's okay. These feelings are important and deserve attention. Take a moment to breathe if you need it."
],
'sadness': [
"I'm sorry you're going through a difficult time. Your feelings are valid, and it's okay to feel sad sometimes. Remember that this feeling will pass.",
"It sounds like you're dealing with something really tough right now. I want you to know that it's perfectly normal to feel this way, and you're not alone.",
"I can sense your sadness, and I want you to know that it's okay to feel this way. Sometimes life presents us with challenges that naturally make us feel down."
],
'joy': [
"I'm so happy to hear about your positive experience! That's wonderful, and your joy is really uplifting. It's great when life gives us these beautiful moments.",
"Your joy is contagious! It's amazing to hear such positive news. These happy moments are precious and worth celebrating.",
"I love hearing about things that make you happy. That sounds absolutely amazing! Your enthusiasm is really inspiring."
],
'optimism': [
"Your positive outlook is truly inspiring. That's such a great way to look at things, and your hopefulness is really encouraging.",
"I appreciate your hopeful perspective. That kind of optimism can make such a difference, not just for you but for others around you too.",
"It's wonderful to hear your optimistic thoughts. Keep that positive energy flowing - it's a powerful force for good!"
]
}
def generate_response(self, user_input, top_k=3):
"""Generate response without RAG system"""
try:
# Detect emotion
detected_emotion, confidence = self.emotion_detector.detect_emotion(user_input)
# Get appropriate response template
templates = self.response_templates.get(detected_emotion, self.response_templates['optimism'])
selected_response = random.choice(templates)
# Add personalized touch based on input length and content
if len(user_input) > 100:
selected_response += " I can see you've shared quite a bit with me, and I appreciate your openness."
elif any(word in user_input.lower() for word in ['help', 'advice', 'what should']):
selected_response += " If you'd like to talk more about this, I'm here to listen."
# Add disclaimer
disclaimer = "\n\nβ οΈ This is an automated response. For serious emotional concerns, please consult a mental health professional."
return selected_response + disclaimer, detected_emotion, confidence
except Exception as e:
error_msg = f"I apologize, but I encountered an error: {str(e)}"
disclaimer = "\n\nβ οΈ This is an automated response. Please consult a professional if needed."
return error_msg + disclaimer, 'optimism', 0.0
# ============================
# STREAMLIT APP
# ============================
def main():
# Page config with better settings
st.set_page_config(
page_title="Empathetic AI Companion",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# CSS with modern design
st.markdown("""
<style>
/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
/* Global styles */
.stApp {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
font-family: 'Inter', sans-serif;
}
/* Main header - more elegant */
.main-header {
background: rgba(255, 255, 255, 0.15);
padding: 2rem;
border-radius: 20px;
text-align: center;
margin-bottom: 2rem;
backdrop-filter: blur(20px);
border: 1px solid rgba(255, 255, 255, 0.2);
color: white;
box-shadow: 0 8px 32px rgba(0,0,0,0.1);
transition: all 0.3s ease;
}
.main-header:hover {
transform: translateY(-5px);
box-shadow: 0 12px 40px rgba(0,0,0,0.2);
}
.main-header h1 {
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 0.5rem;
background: linear-gradient(45deg, #fff, #f0f0f0);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.main-header p {
font-size: 1.2rem;
opacity: 0.9;
font-weight: 400;
margin: 0;
}
/* Improved chat messages */
.chat-message {
margin-bottom: 1.5rem;
animation: fadeInUp 0.5s ease;
}
@keyframes fadeInUp {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.user-message {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 1rem 1.5rem;
border-radius: 20px 20px 5px 20px;
margin-left: auto;
margin-right: 0;
max-width: 75%;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
font-weight: 500;
line-height: 1.5;
}
.bot-message {
background: linear-gradient(to top, #a18cd1 0%, #fbc2eb 100%);;
color: white;
padding: 1rem 1.5rem;
border-radius: 20px 20px 20px 5px;
margin-left: 0;
margin-right: auto;
max-width: 75%;
box-shadow: 0 4px 15px rgba(240, 147, 251, 0.3);
font-weight: 500;
line-height: 1.5;
}
/* Message headers */
.message-header {
font-size: 0.85rem;
opacity: 0.9;
margin-bottom: 0.5rem;
font-weight: 600;
}
/* Emotion badges - hidden but styled */
.emotion-badge {
display: inline-block;
padding: 0.2rem 0.6rem;
border-radius: 12px;
font-size: 0.75rem;
font-weight: 600;
margin-left: 0.5rem;
opacity: 0.8;
}
/* Enhanced buttons */
.stButton > button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
border-radius: 50px !important;
padding: 1rem 2rem !important;
font-weight: 600 !important;
font-size: 1rem !important;
transition: all 0.3s ease !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.3) !important;
min-height: 50px !important;
}
.stButton > button:hover {
transform: translateY(-3px) !important;
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4) !important;
background: linear-gradient(135deg, #7c8ff0 0%, #8a5ab8 100%) !important;
}
/* Play button styling */
.play-button {
background: linear-gradient(135deg, #28a745 0%, #20c997 100%) !important;
border-radius: 25px !important;
padding: 0.5rem 1rem !important;
font-size: 0.9rem !important;
margin-top: 0.5rem !important;
box-shadow: 0 4px 15px rgba(40, 167, 69, 0.3) !important;
}
/* Sidebar enhancements */
.css-1d391kg {
background: rgba(255, 255, 255, 0.1) !important;
backdrop-filter: blur(20px) !important;
}
/* Stats and metrics */
.metric-card {
background: rgba(255, 255, 255, 0.9);
padding: 1.5rem;
border-radius: 15px;
text-align: center;
box-shadow: 0 4px 15px rgba(0,0,0,0.05);
margin-bottom: 1rem;
transition: transform 0.3s ease;
}
.metric-card:hover {
transform: translateY(-3px);
}
/* Progress bars */
.stProgress > div > div > div {
background: linear-gradient(90deg, #667eea, #764ba2) !important;
border-radius: 10px !important;
}
/* Hide default Streamlit elements */
.stDeployButton {display: none;}
footer {visibility: hidden;}
.stApp > header {visibility: hidden;}
/* Custom scrollbar */
.chat-container::-webkit-scrollbar {
width: 6px;
}
/* π Audio recorder container fix */
.audio-recorder-container {
background: transparent !important;
border: none !important;
box-shadow: none !important;
padding: 0 !important;
margin: 0 !important;
}
/* π€ Recorder button style */
.audio-recorder-container button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: #fff !important;
border: none !important;
border-radius: 50% !important; /* Makes it a perfect circle */
width: 60px !important;
height: 60px !important;
font-size: 1.2rem !important;
font-weight: bold !important;
cursor: pointer !important;
box-shadow: 0 4px 12px rgba(0,0,0,0.25) !important;
transition: all 0.3s ease !important;
}
/* Hover effect */
.audio-recorder-container button:hover {
transform: scale(1.08);
box-shadow: 0 6px 18px rgba(0,0,0,0.35) !important;
}
</style>
""", unsafe_allow_html=True)
# Enhanced Header with animation
st.markdown("""
<div class="main-header">
<h1>π€ Empathetic AI Companion</h1>
<p>Your intelligent partner for emotional support and meaningful conversations</p>
</div>
""", unsafe_allow_html=True)
# Initialize session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "initialized" not in st.session_state:
initialize_chatbot()
if "audio_processor" not in st.session_state:
st.session_state.audio_processor = AudioProcessor()
if "last_transcription" not in st.session_state:
st.session_state.last_transcription = ""
# Enhanced Sidebar
with st.sidebar:
st.markdown("### ποΈ Control Panel")
# Voice Settings Section
with st.expander("ποΈ Voice Settings", expanded=True):
tts_language = st.selectbox(
"Text-to-Speech ptions",
options=['en', 'es', 'fr', 'de', 'it'],
index=0,
help="Choose your preferred TTS accent"
)
st.session_state.tts_language = tts_language
auto_tts = st.toggle(
"Auto-play Bot Responses",
value=False,
help="Automatically play TTS for all bot responses"
)
st.session_state.auto_tts = auto_tts
st.divider()
# Enhanced Statistics Section
if st.session_state.chat_history:
with st.expander("π Session Analytics", expanded=False):
emotions = [chat['emotion'] for chat in st.session_state.chat_history if 'emotion' in chat]
if emotions:
emotion_counts = {}
for emotion in emotions:
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
# Display emotion distribution
for emotion, count in emotion_counts.items():
percentage = (count / len(emotions)) * 100
st.metric(
f"{emotion.title()}",
f"{count} messages",
f"{percentage:.1f}%"
)
# Quick Actions
with st.expander("β‘ Quick Actions", expanded=True):
col1, col2 = st.columns(2)
with col1:
if st.button("π§ͺ Test AI", use_container_width=True):
test_emotion_detection()
with col2:
if st.button("ποΈ Clear Chat", use_container_width=True):
st.session_state.chat_history = []
st.session_state.last_transcription = ""
st.rerun()
st.divider()
# Sample Messages - More engaging
with st.expander("π‘ Try These Messages", expanded=False):
sample_messages = [
("π", "I'm feeling really happy today!"),
("π€", "I'm so frustrated with everything"),
("π’", "I feel really sad and alone"),
("π", "I'm excited about my future!")
]
for i, (emoji, msg) in enumerate(sample_messages):
if st.button(f"{emoji} {msg[:20]}...", key=f"sample_{i}", use_container_width=True):
process_message(msg)
st.rerun()
st.divider()
# Enhanced Info Section
st.markdown("""
<div style="background: rgba(255,255,255,0.1); padding: 1rem; border-radius: 10px; backdrop-filter: blur(10px);">
<h4 style="color: white; margin-bottom: 0.5rem;">β¨ Features</h4>
<ul style="color: rgba(255,255,255,0.9); font-size: 0.9rem; margin: 0;">
<li>π€ Voice Recording & STT</li>
<li>π Natural TTS Responses</li>
<li>π Advanced Emotion AI</li>
<li>π¬ Context-Aware Replies</li>
<li>π Real-time Analytics</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Main Layout - Improved
col_main, col_stats = st.columns([7, 3])
with col_main:
# Enhanced Chat Display
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
if st.session_state.chat_history:
for i, chat in enumerate(st.session_state.chat_history[-15:]): # Show more messages
# User message with better styling
st.markdown(f"""
<div class="chat-message">
<div class="user-message">
<div class="message-header">π§ You β’ {chat['timestamp']}</div>
{chat['user']}
</div>
</div>
""", unsafe_allow_html=True)
# Bot response with enhanced styling
emotion_class = chat.get('emotion', 'optimism')
confidence = chat.get('confidence', 0.0)
st.markdown(f"""
<div class="chat-message">
<div class="bot-message">
<div class="message-header">
π€ AI Assistant
<span class="emotion-badge {emotion_class}">
{emotion_class.title()} {confidence:.0%}
</span>
</div>
{chat['bot'].replace('β οΈ', 'β οΈ ')}
</div>
</div>
""", unsafe_allow_html=True)
# Enhanced TTS button
col_tts, col_spacer = st.columns([2, 6])
with col_tts:
if st.button(f"π Play Audio", key=f"tts_{i}", help="Listen to response"):
play_tts(chat['bot'])
# Auto-play logic
if (st.session_state.auto_tts and
i == len(st.session_state.chat_history) - 1 and
chat.get('should_play_tts', False)):
play_tts(chat['bot'])
st.session_state.chat_history[-1]['should_play_tts'] = False
# Enhanced Input Section
st.markdown('<div class="input-section">', unsafe_allow_html=True)
# Input layout
col_text = st.container()
col_voice, col_send = st.columns(2)
with col_text:
user_input = st.text_input(
"",
placeholder="Share what's on your mind... How can I help you today?",
label_visibility="collapsed",
key="main_input"
)
from audio_recorder_streamlit import audio_recorder
with col_voice:
audio_bytes = audio_recorder()
if audio_bytes:
st.audio(audio_bytes, format="audio/wav")
with col_send:
if st.button("π€ Send Message", type="primary", key="send_btn", use_container_width=True):
if user_input.strip():
process_message(user_input.strip())
st.rerun()
# Voice processing with better feedback
if audio_bytes is not None:
with st.spinner("π Processing your voice..."):
transcription = st.session_state.audio_processor.speech_to_text_from_bytes(audio_bytes)
if transcription and transcription not in ["No speech detected. Please speak louder.", "Could not transcribe audio"]:
st.success(f"ποΈ **Transcribed:** \"{transcription}\"")
if transcription != st.session_state.last_transcription:
st.session_state.last_transcription = transcription
process_message(transcription, from_voice=True)
st.rerun()
else:
st.warning(f"β οΈ {transcription}")
st.markdown('</div>', unsafe_allow_html=True)
# Enhanced Statistics Panel
with col_stats:
if st.session_state.chat_history:
st.markdown("### π Live Insights")
# Emotion trends
recent_emotions = [
chat.get('emotion', 'optimism')
for chat in st.session_state.chat_history[-10:]
if 'emotion' in chat
]
if recent_emotions:
st.markdown("**Recent Emotions:**")
emotion_scores = {'anger': 0, 'sadness': 0, 'joy': 0, 'optimism': 0}
for emotion in recent_emotions:
emotion_scores[emotion] = emotion_scores.get(emotion, 0) + 1
total = len(recent_emotions)
for emotion, count in emotion_scores.items():
if count > 0:
progress = count / total
st.progress(progress, text=f"{emotion.title()}: {count}/{total}")
# Session metrics
if len(st.session_state.chat_history) > 2:
st.divider()
st.markdown("**Session Overview:**")
total_messages = len(st.session_state.chat_history)
emotions = [chat.get('emotion', 'optimism') for chat in st.session_state.chat_history]
# Metrics cards
st.metric("Messages", total_messages)
if emotions:
most_common = max(set(emotions), key=emotions.count)
st.metric("Dominant Emotion", most_common.title())
# Mood indicator
positive_emotions = ['joy', 'optimism']
positive_count = sum(1 for e in emotions if e in positive_emotions)
mood_score = positive_count / len(emotions)
if mood_score > 0.6:
st.success("π Positive Mood")
elif mood_score > 0.4:
st.info("π Balanced Mood")
else:
st.warning("π Needs Support")
else:
# Getting started tips
st.markdown("""
### π Getting Started
**Tips for better conversations:**
- Be specific about your feelings
- Share context about your situation
- Use voice input for natural interaction
- Try the sample messages below
**Privacy Note:**
Your conversations are processed locally and not stored permanently.
""")
def initialize_chatbot():
"""Initialize the chatbot components with better feedback"""
with st.spinner("π Loading AI models..."):
try:
progress_bar = st.progress(0)
status_text = st.empty()
# Load dataset
status_text.text("π Loading emotion dataset...")
progress_bar.progress(25)
st.session_state.rag_data = prepare_dataset()
# Initialize emotion detector
status_text.text("π§ Loading emotion detection model...")
progress_bar.progress(50)
st.session_state.emotion_detector = EmotionDetector()
# Initialize RAG system
status_text.text("π Setting up knowledge retrieval...")
progress_bar.progress(75)
st.session_state.rag_system = RAGSystem(st.session_state.rag_data)
# Initialize response generator
status_text.text("π¬ Preparing response generation...")
progress_bar.progress(100)
st.session_state.response_generator = ResponseGenerator(
st.session_state.emotion_detector,
st.session_state.rag_system
)
st.session_state.initialized = True
# Clear loading elements
progress_bar.empty()
status_text.empty()
st.success("β
AI Companion ready! Start your conversation below.")
except Exception as e:
st.error(f"β Failed to initialize: {str(e)}")
st.info("π‘ Try refreshing the page or check your internet connection.")
st.stop()
def process_message(user_input, from_voice=False):
"""Enhanced message processing with better error handling"""
if not user_input.strip():
return
try:
# Show typing indicator
with st.spinner("π€ AI is thinking..."):
# Generate response
bot_response, detected_emotion, confidence = st.session_state.response_generator.generate_response(
user_input,
top_k=3
)
# Create chat entry
chat_entry = {
'user': user_input,
'bot': bot_response,
'emotion': detected_emotion,
'confidence': confidence,
'timestamp': datetime.now().strftime("%H:%M"),
'from_voice': from_voice,
'should_play_tts': st.session_state.get('auto_tts', False)
}
st.session_state.chat_history.append(chat_entry)
# Log interaction
logger.info(f"User ({'Voice' if from_voice else 'Text'}): {user_input[:50]}... | Emotion: {detected_emotion} ({confidence:.2f})")
except Exception as e:
st.error(f"β Something went wrong: {str(e)}")
st.info("π‘ Please try again or rephrase your message.")
logger.error(f"Processing error: {e}")
def play_tts(text):
"""Enhanced TTS with better error handling"""
try:
# Clean text for TTS
clean_text = re.sub(r'[^\w\s\.\,\!\?\']', '', text)
clean_text = clean_text.replace('β οΈ', '').strip()
if not clean_text:
return
# Generate TTS
tts_lang = st.session_state.get('tts_language', 'en')
with st.spinner("π Generating audio..."):
audio_file = st.session_state.audio_processor.text_to_speech(
clean_text[:500], # Limit length
lang=tts_lang
)
if audio_file:
with open(audio_file, 'rb') as f:
audio_bytes = f.read()
st.audio(audio_bytes, format='audio/mp3', autoplay=True)
os.unlink(audio_file) # Clean up
except Exception as e:
logger.error(f"TTS error: {e}")
st.toast("β οΈ Could not generate audio", icon="π")
def test_emotion_detection():
"""Enhanced emotion testing with better display"""
test_texts = [
"I'm absolutely thrilled about my new promotion!",
"I feel completely overwhelmed and sad today",
"This traffic is making me so angry and frustrated!",
"I have hope that everything will work out perfectly"
]
st.markdown("### π§ͺ Emotion Detection Demo")
for i, text in enumerate(test_texts):
with st.container():
emotion, confidence = st.session_state.emotion_detector.detect_emotion(text)
col1, col2 = st.columns([3, 1])
with col1:
st.write(f"**Text:** {text}")
st.write(f"**Detected:** {emotion.title()} ({confidence:.1%} confidence)")
with col2:
# Emotion emoji mapping
emoji_map = {'anger': 'π ', 'sadness': 'π’', 'joy': 'π', 'optimism': 'π'}
st.markdown(f"### {emoji_map.get(emotion, 'π€')}")
if i < len(test_texts) - 1:
st.divider()
if __name__ == "__main__":
main() |