Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
from fastapi import FastAPI, Query
|
| 2 |
from pydantic import BaseModel
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
import math
|
| 5 |
|
|
@@ -18,17 +19,35 @@ def health():
|
|
| 18 |
return {"status": "healthy", "model": loaded_model_id}
|
| 19 |
|
| 20 |
def load_pipeline():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
global clf, loaded_model_id
|
| 22 |
if clf is not None:
|
| 23 |
return clf
|
|
|
|
| 24 |
for model_id in (PRIMARY_MODEL, FALLBACK_MODEL):
|
| 25 |
try:
|
| 26 |
-
tok = AutoTokenizer.from_pretrained(model_id)
|
| 27 |
-
mdl = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
loaded_model_id = model_id
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
except Exception as e:
|
| 31 |
print(f"Failed to load {model_id}: {e}")
|
|
|
|
| 32 |
raise RuntimeError("No sentiment model could be loaded")
|
| 33 |
|
| 34 |
def compute_score(pos: float, neg: float, neu: float, mode: str) -> float:
|
|
@@ -39,9 +58,10 @@ def compute_score(pos: float, neg: float, neu: float, mode: str) -> float:
|
|
| 39 |
return pos - neg
|
| 40 |
elif mode == "logit": # optional slightly squashed
|
| 41 |
# difference of logits, then tanh to clamp to [-1,1]
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
else:
|
| 46 |
return pos - neg
|
| 47 |
|
|
@@ -70,7 +90,7 @@ def scores_to_label(scores, mode: str, binary_hint: bool | None, min_conf: float
|
|
| 70 |
detected_binary = (neu == 0.0)
|
| 71 |
|
| 72 |
is_binary = detected_binary if binary_hint is None else bool(binary_hint)
|
| 73 |
-
if is_binary:
|
| 74 |
neu = 0.0
|
| 75 |
|
| 76 |
score = compute_score(pos, neg, neu, mode)
|
|
@@ -94,13 +114,29 @@ def scores_to_label(scores, mode: str, binary_hint: bool | None, min_conf: float
|
|
| 94 |
@app.post("/predict")
|
| 95 |
def predict(
|
| 96 |
payload: Payload,
|
| 97 |
-
mode:
|
| 98 |
-
min_conf: float = Query(0.60, ge=0.0, le=1.0),
|
| 99 |
-
neutral_zone: float = Query(0.20, ge=0.0, le=1.0)
|
| 100 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
clf = load_pipeline()
|
| 102 |
texts = payload.sentences or []
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
binary_hint = (loaded_model_id == FALLBACK_MODEL)
|
| 105 |
results = [scores_to_label(s, mode, binary_hint, min_conf, neutral_zone) for s in outs]
|
| 106 |
return {"model": loaded_model_id, "results": results}
|
|
|
|
| 1 |
from fastapi import FastAPI, Query
|
| 2 |
from pydantic import BaseModel
|
| 3 |
+
from typing import Literal
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 5 |
import math
|
| 6 |
|
|
|
|
| 19 |
return {"status": "healthy", "model": loaded_model_id}
|
| 20 |
|
| 21 |
def load_pipeline():
|
| 22 |
+
"""
|
| 23 |
+
Robust loader:
|
| 24 |
+
- Avoid meta-tensor issue by forcing low_cpu_mem_usage=False
|
| 25 |
+
- No device_map; keep on CPU
|
| 26 |
+
- Cache the pipeline in the global `clf`
|
| 27 |
+
"""
|
| 28 |
global clf, loaded_model_id
|
| 29 |
if clf is not None:
|
| 30 |
return clf
|
| 31 |
+
|
| 32 |
for model_id in (PRIMARY_MODEL, FALLBACK_MODEL):
|
| 33 |
try:
|
| 34 |
+
tok = AutoTokenizer.from_pretrained(model_id) # use_fast default is fine
|
| 35 |
+
mdl = AutoModelForSequenceClassification.from_pretrained(
|
| 36 |
+
model_id,
|
| 37 |
+
low_cpu_mem_usage=False, # <-- important to avoid meta tensors
|
| 38 |
+
trust_remote_code=False
|
| 39 |
+
)
|
| 40 |
loaded_model_id = model_id
|
| 41 |
+
clf = pipeline(
|
| 42 |
+
"text-classification",
|
| 43 |
+
model=mdl,
|
| 44 |
+
tokenizer=tok,
|
| 45 |
+
device=-1 # CPU
|
| 46 |
+
)
|
| 47 |
+
return clf
|
| 48 |
except Exception as e:
|
| 49 |
print(f"Failed to load {model_id}: {e}")
|
| 50 |
+
|
| 51 |
raise RuntimeError("No sentiment model could be loaded")
|
| 52 |
|
| 53 |
def compute_score(pos: float, neg: float, neu: float, mode: str) -> float:
|
|
|
|
| 58 |
return pos - neg
|
| 59 |
elif mode == "logit": # optional slightly squashed
|
| 60 |
# difference of logits, then tanh to clamp to [-1,1]
|
| 61 |
+
import math as _m
|
| 62 |
+
lp = _m.log(max(1e-9, pos)) - _m.log(max(1e-9, 1-pos))
|
| 63 |
+
ln = _m.log(max(1e-9, neg)) - _m.log(max(1e-9, 1-neg))
|
| 64 |
+
return _m.tanh((lp - ln) / 4.0)
|
| 65 |
else:
|
| 66 |
return pos - neg
|
| 67 |
|
|
|
|
| 90 |
detected_binary = (neu == 0.0)
|
| 91 |
|
| 92 |
is_binary = detected_binary if binary_hint is None else bool(binary_hint)
|
| 93 |
+
if is_binary:
|
| 94 |
neu = 0.0
|
| 95 |
|
| 96 |
score = compute_score(pos, neg, neu, mode)
|
|
|
|
| 114 |
@app.post("/predict")
|
| 115 |
def predict(
|
| 116 |
payload: Payload,
|
| 117 |
+
mode: Literal["raw","debias","logit"] = Query("raw"),
|
| 118 |
+
min_conf: float = Query(0.60, ge=0.0, le=1.0),
|
| 119 |
+
neutral_zone: float = Query(0.20, ge=0.0, le=1.0)
|
| 120 |
):
|
| 121 |
+
"""
|
| 122 |
+
- Use top_k=None (replacement for deprecated return_all_scores=True)
|
| 123 |
+
- Force truncation/padding/max_length to avoid 631>514 crashes
|
| 124 |
+
"""
|
| 125 |
clf = load_pipeline()
|
| 126 |
texts = payload.sentences or []
|
| 127 |
+
|
| 128 |
+
outs = clf(
|
| 129 |
+
texts,
|
| 130 |
+
top_k=None, # replaces return_all_scores=True
|
| 131 |
+
truncation=True, # <-- important for long inputs
|
| 132 |
+
padding=True,
|
| 133 |
+
max_length=512
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# If a single string was passed, HF may return a single item; normalize to list
|
| 137 |
+
if isinstance(outs, dict) or (outs and isinstance(outs[0], dict)):
|
| 138 |
+
outs = [outs] # ensure list[list[dict]]
|
| 139 |
+
|
| 140 |
binary_hint = (loaded_model_id == FALLBACK_MODEL)
|
| 141 |
results = [scores_to_label(s, mode, binary_hint, min_conf, neutral_zone) for s in outs]
|
| 142 |
return {"model": loaded_model_id, "results": results}
|