demo-alfa / app.py
jonathanjordan21's picture
Update app.py
4d0f703 verified
raw
history blame
2.77 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
CHAT_URL = os.getenv("CHAT_URL")
PROJECT_ID = os.getenv("PROJECT_ID")
def respond(
message,
history: list[dict[str, str]],
system_message,
token,
# max_tokens,
# temperature,
# top_p,
# hf_token: gr.OAuthToken,
):
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
# messages = [{"role": "system", "content": system_message}]
# messages.extend(history)
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# choices = message.choices
# token = ""
# if len(choices) and choices[0].delta.content:
# token = choices[0].delta.content
# response += token
# yield response
req = requests.post(
CHAT_URL,
json={
"project_id": PROJECT_ID,
"session_id":system_message,
"user_input":message,
"update_variables": {
"alfamidi":"",
"alfagift":"",
"karir":"",
"layanan":"",
"program":"",
"voucher":"",
"results":"",
"identitas":"",
"kerjasama":""
},
"output_variables": ["results"]
},
headers={"Authorization" : f"Bearer {token}"}
)
out = req.json()["data"]["results"]
print("[OUT]",out)
return out.encode('utf-8').decode('unicode_escape')
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
chatbot = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
gr.Textbox(value="<TEST_123>", label="session_id"),
gr.Textbox(value="[TOKEN]", label="token"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
],
)
with gr.Blocks() as demo:
chatbot.render()
title = gr.HTML("<h3>Use #ai to ask the ai</h3>")
if __name__ == "__main__":
demo.launch()