Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| import gc | |
| from ..utils import log | |
| from accelerate import init_empty_weights | |
| from accelerate.utils import set_module_tensor_to_device | |
| import comfy.model_management as mm | |
| from comfy.utils import load_torch_file | |
| import folder_paths | |
| script_directory = os.path.dirname(os.path.abspath(__file__)) | |
| class DownloadAndLoadWav2VecModel: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": (["facebook/wav2vec2-base-960h"],), | |
| "base_precision": (["fp32", "bf16", "fp16"], {"default": "fp16"}), | |
| "load_device": (["main_device", "offload_device"], {"default": "main_device", "tooltip": "Initial device to load the model to, NOT recommended with the larger models unless you have 48GB+ VRAM"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("WAV2VECMODEL",) | |
| RETURN_NAMES = ("wav2vec_model", ) | |
| FUNCTION = "loadmodel" | |
| CATEGORY = "WanVideoWrapper" | |
| def loadmodel(self, model, base_precision, load_device): | |
| from transformers import Wav2Vec2Model, Wav2Vec2Processor | |
| base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[base_precision] | |
| device = mm.get_torch_device() | |
| offload_device = mm.unet_offload_device() | |
| if load_device == "offload_device": | |
| transfomer_load_device = offload_device | |
| else: | |
| transfomer_load_device = device | |
| model_path = os.path.join(folder_paths.models_dir, "transformers", model) | |
| if not os.path.exists(model_path): | |
| log.info(f"Downloading Qwen model to: {model_path}") | |
| from huggingface_hub import snapshot_download | |
| snapshot_download( | |
| repo_id=model, | |
| ignore_patterns=["*.bin", "*.h5"], | |
| local_dir=model_path, | |
| local_dir_use_symlinks=False, | |
| ) | |
| wav2vec_processor = Wav2Vec2Processor.from_pretrained(model_path) | |
| wav2vec = Wav2Vec2Model.from_pretrained(model_path).to(base_dtype).to(transfomer_load_device).eval() | |
| wav2vec_processor_model = { | |
| "processor": wav2vec_processor, | |
| "model": wav2vec, | |
| "dtype": base_dtype,} | |
| return (wav2vec_processor_model,) | |
| class FantasyTalkingModelLoader: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' -folder",}), | |
| "base_precision": (["fp32", "bf16", "fp16"], {"default": "fp16"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("FANTASYTALKINGMODEL",) | |
| RETURN_NAMES = ("model", ) | |
| FUNCTION = "loadmodel" | |
| CATEGORY = "WanVideoWrapper" | |
| def loadmodel(self, model, base_precision): | |
| from .model import FantasyTalkingAudioConditionModel | |
| device = mm.get_torch_device() | |
| offload_device = mm.unet_offload_device() | |
| base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[base_precision] | |
| model_path = folder_paths.get_full_path_or_raise("diffusion_models", model) | |
| sd = load_torch_file(model_path, device=offload_device, safe_load=True) | |
| with init_empty_weights(): | |
| fantasytalking_proj_model = FantasyTalkingAudioConditionModel(audio_in_dim=768, audio_proj_dim=2048) | |
| #fantasytalking_proj_model.load_state_dict(sd, strict=False) | |
| for name, param in fantasytalking_proj_model.named_parameters(): | |
| set_module_tensor_to_device(fantasytalking_proj_model, name, device=offload_device, dtype=base_dtype, value=sd[name]) | |
| fantasytalking = { | |
| "proj_model": fantasytalking_proj_model, | |
| "sd": sd, | |
| } | |
| return (fantasytalking,) | |
| class FantasyTalkingWav2VecEmbeds: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "wav2vec_model": ("WAV2VECMODEL",), | |
| "fantasytalking_model": ("FANTASYTALKINGMODEL",), | |
| "audio": ("AUDIO",), | |
| "num_frames": ("INT", {"default": 81, "min": 1, "max": 1000, "step": 1}), | |
| "fps": ("FLOAT", {"default": 23.0, "min": 1.0, "max": 60.0, "step": 0.1}), | |
| "audio_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1, "tooltip": "Strength of the audio conditioning"}), | |
| "audio_cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1, "tooltip": "When not 1.0, an extra model pass without audio conditioning is done: slower inference but more motion is allowed"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("FANTASYTALKING_EMBEDS", ) | |
| RETURN_NAMES = ("fantasytalking_embeds",) | |
| FUNCTION = "process" | |
| CATEGORY = "WanVideoWrapper" | |
| def process(self, wav2vec_model, fantasytalking_model, fps, num_frames, audio_scale, audio_cfg_scale, audio): | |
| import torchaudio | |
| device = mm.get_torch_device() | |
| offload_device = mm.unet_offload_device() | |
| dtype = wav2vec_model["dtype"] | |
| wav2vec = wav2vec_model["model"] | |
| wav2vec_processor = wav2vec_model["processor"] | |
| audio_proj_model = fantasytalking_model["proj_model"] | |
| sr = 16000 | |
| audio_input = audio["waveform"] | |
| sample_rate = audio["sample_rate"] | |
| if sample_rate != sr: | |
| audio_input = torchaudio.functional.resample(audio_input, sample_rate, sr) | |
| audio_input = audio_input[0][0] | |
| start_time = 0 | |
| end_time = num_frames / fps | |
| start_sample = int(start_time * sr) | |
| end_sample = int(end_time * sr) | |
| try: | |
| audio_segment = audio_input[start_sample:end_sample] | |
| except: | |
| audio_segment = audio_input | |
| print("audio_segment.shape", audio_segment.shape) | |
| input_values = wav2vec_processor( | |
| audio_segment.numpy(), sampling_rate=sr, return_tensors="pt" | |
| ).input_values.to(dtype).to(device) | |
| audio_features = wav2vec(input_values).last_hidden_state | |
| audio_proj_model.proj_model.to(device) | |
| audio_proj_fea = audio_proj_model.get_proj_fea(audio_features) | |
| pos_idx_ranges = audio_proj_model.split_audio_sequence( | |
| audio_proj_fea.size(1), num_frames=num_frames | |
| ) | |
| audio_proj_split, audio_context_lens = audio_proj_model.split_tensor_with_padding( | |
| audio_proj_fea, pos_idx_ranges, expand_length=4 | |
| ) # [b,21,9+8,768] | |
| audio_proj_model.proj_model.to(offload_device) | |
| mm.soft_empty_cache() | |
| out = { | |
| "audio_proj": audio_proj_split, | |
| "audio_context_lens": audio_context_lens, | |
| "audio_scale": audio_scale, | |
| "audio_cfg_scale": audio_cfg_scale | |
| } | |
| return (out,) | |
| NODE_CLASS_MAPPINGS = { | |
| "DownloadAndLoadWav2VecModel": DownloadAndLoadWav2VecModel, | |
| "FantasyTalkingModelLoader": FantasyTalkingModelLoader, | |
| "FantasyTalkingWav2VecEmbeds": FantasyTalkingWav2VecEmbeds, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "DownloadAndLoadWav2VecModel": "(Down)load Wav2Vec Model", | |
| "FantasyTalkingModelLoader": "FantasyTalking Model Loader", | |
| "FantasyTalkingWav2VecEmbeds": "FantasyTalking Wav2Vec Embeds", | |
| } | |