Spaces:
Sleeping
Sleeping
File size: 21,404 Bytes
c4c41cc a380f06 c4c41cc a380f06 e2d3e54 a380f06 e2d3e54 a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 e2d3e54 a380f06 e2d3e54 a380f06 e2d3e54 a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 c4c41cc a380f06 eb515b5 c4c41cc a380f06 e2d3e54 a380f06 e2d3e54 eb515b5 e2d3e54 c4c41cc a380f06 eb515b5 a380f06 c4c41cc a380f06 eb515b5 c4c41cc eb515b5 a380f06 e2d3e54 a380f06 eb515b5 a380f06 e2d3e54 a380f06 eb515b5 a380f06 eb515b5 c4c41cc eb515b5 a380f06 e2d3e54 c4c41cc a380f06 c4c41cc a380f06 c4c41cc eb515b5 a380f06 eb515b5 c4c41cc eb515b5 a380f06 e2d3e54 a380f06 eb515b5 c4c41cc eb515b5 a380f06 e2d3e54 eb515b5 c4c41cc a380f06 e2d3e54 eb515b5 a380f06 e2d3e54 a380f06 e2d3e54 a380f06 e2d3e54 a380f06 eb515b5 c4c41cc eb515b5 a380f06 e2d3e54 eb515b5 e2d3e54 eb515b5 c4c41cc eb515b5 c4c41cc a380f06 eb515b5 a380f06 e2d3e54 a380f06 eb515b5 a380f06 eb515b5 a380f06 eb515b5 a380f06 e2d3e54 eb515b5 a380f06 e2d3e54 eb515b5 a380f06 e2d3e54 eb515b5 e2d3e54 a380f06 eb515b5 a380f06 eb515b5 a380f06 c4c41cc a380f06 eb515b5 a380f06 e2d3e54 c4c41cc e2d3e54 a380f06 eb515b5 a380f06 0f9daa0 a380f06 eb515b5 a380f06 eb515b5 a380f06 eb515b5 c4c41cc eb515b5 a380f06 eb515b5 a380f06 eb515b5 a380f06 e2d3e54 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 c4c41cc eb515b5 a380f06 eb515b5 a380f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import os, re, json, time, math
from dataclasses import dataclass
from typing import List, Dict, Tuple, Optional
import gradio as gr
# Optional imports for email classifier (loaded lazily).
# Space still runs if these aren't available (pure lexical fallback).
try:
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
except Exception:
torch = None
AutoTokenizer = None
AutoModelForSequenceClassification = None
# =========================
# Config (env-overridable)
# =========================
EMAIL_CLASSIFIER_ID = os.getenv("EMAIL_CLASSIFIER_ID", "your-username/mini-phish") # <- swap to your HF repo when ready
EMAIL_BACKBONE_ID = os.getenv("EMAIL_BACKBONE_ID", "microsoft/MiniLM-L6-H384-uncased")
THRESHOLD_TAU = float(os.getenv("THRESHOLD_TAU", "0.40"))
MAX_SEQ_LEN = int(os.getenv("MAX_SEQ_LEN", "320"))
SUBJECT_TOKEN_BUDGET = int(os.getenv("SUBJECT_TOKEN_BUDGET", "64"))
FUSION_EMAIL_W = float(os.getenv("FUSION_EMAIL_W", "0.6"))
FUSION_URL_W = float(os.getenv("FUSION_URL_W", "0.4"))
URL_OVERRIDE_HIGH = float(os.getenv("URL_OVERRIDE_HIGH", "0.85"))
URL_OVERRIDE_KW = float(os.getenv("URL_OVERRIDE_KW", "0.70"))
ALLOWLIST_SAFE_CAP = float(os.getenv("ALLOWLIST_SAFE_CAP", "0.15"))
# =========================
# Simple data classes
# =========================
@dataclass
class UrlResult:
url: str
risk: float
reasons: List[str]
contrib: Dict[str, float] # per‑reason contribution for transparency
@dataclass
class EmailResult:
p_email: float # final probability after boosts
kw_hits: List[str]
strong_hits: List[str] # subset of kw_hits considered strong
token_counts: Dict[str, int] # {"subject_tokens":..,"body_tokens":..,"sequence_len":..}
p_raw: Optional[float] # raw model probability (before boosts); None in lexical fallback
path: Optional[str] # "classifier" | "backbone" | None (lexical)
# =========================
# URL extraction & heuristics (swap with your real URL model when ready)
# =========================
URL_REGEX = r'(?i)\b((?:https?://|www\.)[^\s<>")]+)'
SUSPICIOUS_TLDS = {
".xyz", ".top", ".click", ".link", ".ru", ".cn", ".country", ".gq", ".ga", ".ml", ".tk"
}
SHORTENERS = {"bit.ly","t.co","tinyurl.com","goo.gl","ow.ly","is.gd","cutt.ly","tiny.one","lnkd.in"}
def extract_urls(text: str) -> List[str]:
if not text: return []
urls = re.findall(URL_REGEX, text)
uniq, seen = [], set()
for u in urls:
u = u.strip().strip(').,;\'"')
if u and u not in seen:
uniq.append(u)
seen.add(u)
return uniq
def url_host(url: str) -> str:
host = re.sub(r"^https?://", "", url, flags=re.I).split("/")[0].lower()
return host
def score_url_heuristic(url: str) -> UrlResult:
"""
Heuristic scoring with a transparent per‑reason contribution map.
This keeps the POC explainable and makes the Forensics panel richer.
"""
host = url_host(url)
score = 0.0
reasons = []
contrib = {}
def add(amount: float, tag: str):
nonlocal score
score += amount
reasons.append(tag)
contrib[tag] = round(contrib.get(tag, 0.0) + amount, 3)
base = 0.05
add(base, "base")
if len(url) > 140:
add(0.15, "very_long_url")
if "@" in url or "%" in url:
add(0.20, "special_chars")
if any(host.endswith(t) for t in SUSPICIOUS_TLDS):
add(0.35, "suspicious_tld")
if any(s in host for s in SHORTENERS):
add(0.50, "shortener")
if host.count(".") >= 3:
add(0.20, "deep_subdomain")
if len(re.findall(r"[A-Z]", url)) > 16:
add(0.10, "mixed_case")
score = min(score, 1.0)
return UrlResult(url=url, risk=score, reasons=reasons, contrib=contrib)
def score_urls(urls: List[str]) -> List[UrlResult]:
return [score_url_heuristic(u) for u in urls]
# =========================
# Email classifier with fallback
# =========================
_tokenizer = None
_model = None
_model_loaded_from = None # "classifier", "backbone", or None
_model_load_ms = None
_model_quantized = False
# Strong vs normal cues (lowercase)
STRONG_CUES = [
"otp", "one-time password", "one time password", "cvv", "pin", "pan",
"password", "bank details", "netbanking", "debit card", "credit card",
"lottery", "jackpot", "prize", "reward", "winner", "you have won",
"send otp", "share otp", "confirm otp", "verify otp",
"account restricted", "reactivate account", "unlock your account"
]
NORMAL_CUES = [
"verify your account", "update your password", "immediately",
"within 24 hours", "suspended", "unusual activity", "confirm",
"login", "click", "invoice", "payment", "security alert",
"urgent", "limited time"
]
LEXICAL_CUES = sorted(set(STRONG_CUES + NORMAL_CUES))
def load_email_model() -> Tuple[object, object, str]:
"""Try to load EMAIL_CLASSIFIER_ID; on failure, fall back to backbone with small head.
Apply dynamic int8 quantization for CPU if available."""
global _tokenizer, _model, _model_loaded_from, _model_load_ms, _model_quantized
if _tokenizer is not None and _model is not None:
return _tokenizer, _model, _model_loaded_from
start = time.perf_counter()
if AutoTokenizer is None or AutoModelForSequenceClassification is None or torch is None:
_model_loaded_from = None
_model_load_ms = round((time.perf_counter() - start) * 1000, 2)
return None, None, _model_loaded_from # environment without torch/transformers
# Preferred classifier
try:
_tokenizer = AutoTokenizer.from_pretrained(EMAIL_CLASSIFIER_ID)
_model = AutoModelForSequenceClassification.from_pretrained(EMAIL_CLASSIFIER_ID)
_model_loaded_from = "classifier"
except Exception:
# Fallback: backbone + fresh 2-class head
try:
_tokenizer = AutoTokenizer.from_pretrained(EMAIL_BACKBONE_ID)
_model = AutoModelForSequenceClassification.from_pretrained(
EMAIL_BACKBONE_ID, num_labels=2, problem_type="single_label_classification"
)
_model_loaded_from = "backbone"
except Exception:
_tokenizer, _model, _model_loaded_from = None, None, None
_model_load_ms = round((time.perf_counter() - start) * 1000, 2)
return None, None, _model_loaded_from
# Dynamic quantization (CPU)
_model_quantized = False
try:
_model.eval()
_model.to("cpu")
if hasattr(torch, "quantization"):
from torch.quantization import quantize_dynamic
_model = quantize_dynamic(_model, {torch.nn.Linear}, dtype=torch.qint8) # type: ignore
_model_quantized = True
except Exception:
pass
_model_load_ms = round((time.perf_counter() - start) * 1000, 2)
return _tokenizer, _model, _model_loaded_from
def _truncate_for_budget(tokens_subject: List[int], tokens_body: List[int], max_len: int, subj_budget: int):
subj = tokens_subject[:subj_budget]
remain = max(0, max_len - len(subj))
body = tokens_body[:remain]
return subj + body
def score_email(subject: str, body: str) -> Tuple[EmailResult, Dict]:
"""Return EmailResult + debug dict with probability, hits, boosts, timings, token counts, and model info."""
dbg = {"path": None, "p_raw": None, "boost_from_strong": 0.0, "boost_from_normal": 0.0,
"timing_ms": {}, "token_counts": {}, "model_info": {}}
t0 = time.perf_counter()
text = (subject or "") + "\n" + (body or "")
low = text.lower()
strong_hits = [c for c in STRONG_CUES if c in low]
normal_hits = [c for c in NORMAL_CUES if c in low]
all_hits = sorted(set(strong_hits + normal_hits))
tok, mdl, path = load_email_model()
dbg["path"] = path
dbg["model_info"] = {
"loaded_from": path,
"classifier_id": EMAIL_CLASSIFIER_ID,
"backbone_id": EMAIL_BACKBONE_ID,
"quantized": _model_quantized,
"model_load_ms": _model_load_ms
}
if tok is None or mdl is None:
# Pure lexical fallback (no model available):
base = 0.10
p_email = base + 0.18 * len(strong_hits) + 0.07 * len(normal_hits)
p_email = float(max(0.01, min(0.99, p_email)))
dbg["p_raw"] = None
dbg["boost_from_strong"] = 0.18 * len(strong_hits)
dbg["boost_from_normal"] = 0.07 * len(normal_hits)
dbg["timing_ms"]["email_infer"] = round((time.perf_counter() - t0) * 1000, 2)
dbg["token_counts"] = {"subject_tokens": 0, "body_tokens": 0, "sequence_len": 0}
return EmailResult(
p_email=p_email, kw_hits=all_hits, strong_hits=strong_hits,
token_counts=dbg["token_counts"], p_raw=None, path=path
), dbg
# Model path (MiniLM or your classifier)
enc_t0 = time.perf_counter()
encoded_subj = tok.encode(subject or "", add_special_tokens=False)
encoded_body = tok.encode(body or "", add_special_tokens=False)
input_ids = _truncate_for_budget(encoded_subj, encoded_body, MAX_SEQ_LEN - 2, SUBJECT_TOKEN_BUDGET)
input_ids = [tok.cls_token_id] + input_ids + [tok.sep_token_id]
attn_mask = [1] * len(input_ids)
ids = torch.tensor([input_ids], dtype=torch.long)
mask = torch.tensor([attn_mask], dtype=torch.long)
with torch.no_grad():
out = mdl(input_ids=ids, attention_mask=mask)
if hasattr(out, "logits"):
logits = out.logits[0].detach().cpu().numpy().tolist()
exps = [math.exp(x) for x in logits]
p_raw = float(exps[1] / (exps[0] + exps[1])) # assume label 1 = phishing
else:
p_raw = 0.5
# Nudge with cues: stronger boost for strong hits
boost_s = 0.10 * len(strong_hits)
boost_n = 0.03 * len(normal_hits)
p_email = float(max(0.01, min(0.99, p_raw + boost_s + boost_n)))
dbg["p_raw"] = round(p_raw, 3)
dbg["boost_from_strong"] = round(boost_s, 3)
dbg["boost_from_normal"] = round(boost_n, 3)
dbg["timing_ms"]["email_infer"] = round((time.perf_counter() - enc_t0) * 1000, 2)
dbg["token_counts"] = {
"subject_tokens": len(encoded_subj),
"body_tokens": len(encoded_body),
"sequence_len": len(input_ids)
}
return EmailResult(
p_email=p_email, kw_hits=all_hits, strong_hits=strong_hits,
token_counts=dbg["token_counts"], p_raw=p_raw, path=path
), dbg
# =========================
# Fusion
# =========================
def fuse(email_res: EmailResult, url_results: List[UrlResult], allowlist_domains: List[str]) -> Tuple[Dict, Dict]:
"""Return fused decision dict + debug dict explaining the math & overrides."""
fdbg = {
"weights": {"email": FUSION_EMAIL_W, "url": FUSION_URL_W},
"threshold_tau": THRESHOLD_TAU,
"overrides": {"url_high": URL_OVERRIDE_HIGH, "url_kw": URL_OVERRIDE_KW, "allowlist_safe_cap": ALLOWLIST_SAFE_CAP},
"applied_overrides": [],
}
r_url_max = max([u.risk for u in url_results], default=0.0)
no_urls = (len(url_results) == 0)
# Allowlist check
allowlist_hit = False
matched_allow = None
for u in url_results:
h = url_host(u.url)
for d in [d.strip().lower() for d in allowlist_domains if d.strip()]:
if h.endswith(d):
allowlist_hit = True
matched_allow = d
break
if allowlist_hit:
break
# Base fusion
r_before = FUSION_EMAIL_W * email_res.p_email + FUSION_URL_W * r_url_max
# URL-driven overrides
kw_flag = 1 if email_res.kw_hits else 0
r_after = r_before
if r_url_max >= URL_OVERRIDE_HIGH:
r_after = max(r_after, 0.90)
fdbg["applied_overrides"].append("URL_OVERRIDE_HIGH")
elif kw_flag and r_url_max >= URL_OVERRIDE_KW:
r_after = max(r_after, 0.90)
fdbg["applied_overrides"].append("URL_OVERRIDE_KW")
# Email-only strong-cue override
if no_urls and len(email_res.strong_hits) > 0:
r_after = max(r_after, 0.85)
fdbg["applied_overrides"].append("EMAIL_ONLY_STRONG_CUES")
# Allowlist cap
if allowlist_hit:
r_after = min(r_after, ALLOWLIST_SAFE_CAP)
fdbg["applied_overrides"].append(f"ALLOWLIST({matched_allow})")
verdict = "UNSAFE" if r_after >= THRESHOLD_TAU else "SAFE"
fused = {
"P_email": round(email_res.p_email, 3),
"P_email_raw": round(email_res.p_raw, 3) if email_res.p_raw is not None else None,
"R_url_max": round(r_url_max, 3),
"R_total": round(r_after, 3),
"R_total_before_overrides": round(r_before, 3),
"kw_hits": email_res.kw_hits,
"strong_hits": email_res.strong_hits,
"token_counts": email_res.token_counts,
"no_urls": no_urls,
"allowlist_hit": allowlist_hit,
"verdict": verdict
}
fdbg.update({
"components": {"P_email": fused["P_email"], "R_url_max": fused["R_url_max"]},
"no_urls": no_urls,
"allowlist_hit": allowlist_hit,
"matched_allow": matched_allow
})
return fused, fdbg
# =========================
# Gradio UI
# =========================
with gr.Blocks(title="PhishingMail-Lab") as demo:
gr.Markdown("# 🧪 PhishingMail‑Lab\n**POC** — Hybrid (email + URL) with explainable forensics.")
with gr.Row():
with gr.Column(scale=3):
subject = gr.Textbox(label="Subject", placeholder="Subject: Important account update")
body = gr.Textbox(label="Email Body (paste text or HTML)", lines=12, placeholder="Paste the email content here...")
with gr.Row():
allowlist = gr.Textbox(label="Allowlist domains (comma-separated)", placeholder="microsoft.com, amazon.in")
tau = gr.Slider(0, 1, value=THRESHOLD_TAU, step=0.01, label="Decision Threshold τ")
analyze_btn = gr.Button("Analyze", variant="primary")
verdict = gr.Label(label="Verdict")
# Banner under verdict
context_banner = gr.Markdown(visible=False)
fusion_json = gr.JSON(label="Fusion & Flags")
url_table = gr.Dataframe(headers=["URL","Risk","Reasons"], label="Per‑URL risk (heuristics demo)", interactive=False)
# Forensics column
with gr.Column(scale=2):
gr.Markdown("### 🔎 Forensics")
forensics_json = gr.JSON(label="Forensics (structured log)")
forensics_md = gr.Markdown(label="Forensics (human‑readable)")
def run(subject_text, body_text, allowlist_text, tau_val):
# Timers for forensics
t_all = time.perf_counter()
# Update threshold
global THRESHOLD_TAU
THRESHOLD_TAU = float(tau_val)
# URL pipeline
t0 = time.perf_counter()
raw_text = (subject_text or "") + "\n" + (body_text or "")
urls = list(dict.fromkeys(extract_urls(raw_text))) # uniq & ordered
t1 = time.perf_counter()
url_results = score_urls(urls)
t2 = time.perf_counter()
# Email pipeline
email_res, email_dbg = score_email(subject_text or "", body_text or "")
# Fusion
allow_domains = [d.strip().lower() for d in (allowlist_text or "").split(",") if d.strip()]
fused, fuse_dbg = fuse(email_res, url_results, allow_domains)
# Build banner text/visibility
banners = []
if fused.get("no_urls"):
banners.append("⚠️ **No URLs found** — decision based **only on email body**.")
if fused.get("allowlist_hit"):
banners.append("🛈 **Allowlist active** — risk **capped** for trusted domain.")
banner_text = "<br>".join(banners) if banners else ""
banner_visible = bool(banners)
# Forensics JSON (deeper detail)
per_url = [{
"url": u.url,
"risk": round(u.risk,3),
"reasons": u.reasons,
"contrib": u.contrib
} for u in url_results]
fx = {
"config": {
"weights": {"email": FUSION_EMAIL_W, "url": FUSION_URL_W},
"threshold_tau": THRESHOLD_TAU,
"overrides": {
"url_high": URL_OVERRIDE_HIGH,
"url_kw": URL_OVERRIDE_KW,
"allowlist_safe_cap": ALLOWLIST_SAFE_CAP
},
"model_ids": {"classifier": EMAIL_CLASSIFIER_ID, "backbone": EMAIL_BACKBONE_ID}
},
"input_summary": {
"chars_subject": len(subject_text or ""),
"chars_body": len(body_text or ""),
"num_urls": len(urls),
"allowlist_domains": allow_domains
},
"email": {
"path": email_dbg["path"] or "lexical-fallback",
"p_email_final": fused["P_email"],
"p_email_raw": email_dbg["p_raw"],
"boost_from_strong": email_dbg["boost_from_strong"],
"boost_from_normal": email_dbg["boost_from_normal"],
"token_counts": email_dbg["token_counts"],
"kw_hits": email_res.kw_hits,
"strong_hits": email_res.strong_hits,
"model_info": email_dbg["model_info"]
},
"urls": per_url,
"fusion": {
"equation": f"R_total = {FUSION_EMAIL_W} * P_email + {FUSION_URL_W} * R_url_max",
"values": {
"P_email": fused["P_email"],
"R_url_max": fused["R_url_max"],
"R_total_before_overrides": fused["R_total_before_overrides"],
"R_total_final": fused["R_total"],
"overrides_applied": fuse_dbg["applied_overrides"]
},
"decision": {
"threshold_tau": THRESHOLD_TAU,
"verdict": fused["verdict"]
},
"flags": {
"no_urls": fused["no_urls"],
"allowlist_hit": fused["allowlist_hit"]
}
},
"timings_ms": {
"model_load": email_dbg["model_info"]["model_load_ms"],
"url_extract": round((t1 - t0) * 1000, 2),
"url_score": round((t2 - t1) * 1000, 2),
"email_infer": email_dbg["timing_ms"].get("email_infer"),
"total": round((time.perf_counter() - t_all) * 1000, 2)
}
}
# Forensics Markdown (human‑readable, denser detail)
lines = []
lines.append(f"**Verdict:** `{fused['verdict']}` | **R_total:** `{fused['R_total']}` (before: `{fused['R_total_before_overrides']}`) | **τ:** `{THRESHOLD_TAU}`")
lines.append(f"**Fusion:** R = {FUSION_EMAIL_W}×P_email + {FUSION_URL_W}×R_url_max → {FUSION_EMAIL_W}×{fused['P_email']} + {FUSION_URL_W}×{fused['R_url_max']}")
if fuse_dbg["applied_overrides"]:
lines.append(f"**Overrides:** {', '.join(fuse_dbg['applied_overrides'])}")
else:
lines.append("**Overrides:** (none)")
if fused["no_urls"]:
lines.append("• No URLs found → email‑only decision path.")
if fused["allowlist_hit"]:
lines.append("• Allowlist matched → risk capped.")
lines.append("")
lines.append(f"**Email path:** `{email_dbg['path'] or 'lexical-fallback'}` | p_raw={email_dbg['p_raw']} | +strong={email_dbg['boost_from_strong']} | +normal={email_dbg['boost_from_normal']}")
tc = email_dbg["token_counts"]
lines.append(f"• Tokens: subject={tc.get('subject_tokens',0)}, body={tc.get('body_tokens',0)}, sequence_len={tc.get('sequence_len',0)} (max={MAX_SEQ_LEN}) | subject_budget={SUBJECT_TOKEN_BUDGET}")
if email_res.strong_hits:
lines.append(f"• Strong cues: {', '.join(email_res.strong_hits)}")
if email_res.kw_hits:
lines.append(f"• All cues: {', '.join(email_res.kw_hits)}")
lines.append("")
if per_url:
lines.append("**URLs & contributions:**")
for u in per_url:
contrib_str = ", ".join([f"{k}:{v}" for k,v in u["contrib"].items()])
lines.append(f"• {u['url']} → risk={u['risk']} | reasons=({', '.join(u['reasons']) or 'none'}) | contrib=({contrib_str or 'n/a'})")
else:
lines.append("**URLs:** (none)")
lines.append("")
lines.append(f"**Model info:** loaded_from={email_dbg['model_info']['loaded_from']}, quantized={email_dbg['model_info']['quantized']}, load_ms={email_dbg['model_info']['model_load_ms']}")
lines.append("")
lines.append("**Timings (ms):** " + json.dumps(fx["timings_ms"]))
forensic_markdown = "\n".join(lines)
rows = [[u.url, round(u.risk,3), ", ".join(u.reasons)] for u in url_results]
return (
fused["verdict"],
gr.update(value=banner_text, visible=banner_visible),
fused,
rows,
fx,
forensic_markdown
)
analyze_btn.click(
run,
[subject, body, allowlist, tau],
[verdict, context_banner, fusion_json, url_table, forensics_json, forensics_md]
)
if __name__ == "__main__":
demo.launch()
|