Spaces:
Paused
Paused
metadata
license: mit
tags:
- amop-optimized
- onnx
AMOP-Optimized ONNX Model: {repo_name}
This model was automatically optimized for CPU inference using the Adaptive Model Optimization Pipeline (AMOP).
- Base Model: {model_id}
- Optimization Date: {optimization_date}
Optimization Details
The following AMOP ONNX pipeline stages were applied:
- Pruning: {pruning_status} (Percentage: {pruning_percent}%)
- Quantization & ONNX Conversion: Enabled ({quant_type} Quantization)
How to Use
This model is in ONNX format and can be run with optimum-onnxruntime. Make sure you have optimum, onnxruntime, and transformers installed.
from optimum.onnxruntime import ORTModelForCausalLM
from transformers import AutoTokenizer
model_id = "{repo_id}"
model = ORTModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "The future of AI is"
inputs = tokenizer(prompt, return_tensors="pt")
gen_tokens = model.generate(**inputs)
print(tokenizer.batch_decode(gen_tokens))
AMOP Pipeline Log
Click to expand
{pipeline_log}