Spaces:
Running
Running
File size: 9,484 Bytes
3ece5ec 7dcd378 3ece5ec 6061890 3ece5ec 6061890 3ece5ec 6061890 3ece5ec 6061890 3ece5ec 7dcd378 3ece5ec 6061890 7dcd378 6061890 3ece5ec 7dcd378 3ece5ec 7dcd378 3ece5ec 7dcd378 6061890 7dcd378 3ece5ec 7dcd378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from diffusers import AutoencoderKL, UniPCMultistepScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from huggingface_hub import hf_hub_download
from mgface.pipelines_mgface.pipeline_mgface import MgPipeline
from mgface.pipelines_mgface.unet_ID_2d_condition import UNetID2DConditionModel
from mgface.pipelines_mgface.unet_deno_2d_condition import UNetDeno2DConditionModel
class MagicFaceModel:
def __init__(self, device='cuda'):
self.device = device if torch.cuda.is_available() else 'cpu'
print(f"π₯οΈ Initializing MagicFace on: {self.device}")
# AU mapping
self.ind_dict = {
'AU1':0, 'AU2':1, 'AU4':2, 'AU5':3, 'AU6':4, 'AU9':5,
'AU12':6, 'AU15':7, 'AU17':8, 'AU20':9, 'AU25':10, 'AU26':11
}
self.weight_dtype = torch.float16 if self.device == 'cuda' else torch.float32
self.load_models()
def load_models(self):
"""Load all MagicFace components"""
print("π₯ Loading MagicFace components...")
sd_model = 'runwayml/stable-diffusion-v1-5'
try:
# Load VAE from SD 1.5
print(" - Loading VAE...")
self.vae = AutoencoderKL.from_pretrained(
sd_model,
subfolder="vae",
torch_dtype=self.weight_dtype
).to(self.device)
# Load Text Encoder from SD 1.5
print(" - Loading Text Encoder...")
self.text_encoder = CLIPTextModel.from_pretrained(
sd_model,
subfolder="text_encoder",
torch_dtype=self.weight_dtype
).to(self.device)
# Load Tokenizer
print(" - Loading Tokenizer...")
self.tokenizer = CLIPTokenizer.from_pretrained(
sd_model,
subfolder="tokenizer",
)
# Download YOUR MagicFace model
print(" - Downloading YOUR MagicFace model (79999_iter.pth)...")
magicface_path = hf_hub_download(
repo_id="gauravvjhaa/magicface-affecto-model",
filename="79999_iter.pth",
cache_dir="./models"
)
print(f" - MagicFace model downloaded: {magicface_path}")
# Load MagicFace weights
print(" - Loading MagicFace weights...")
magicface_weights = torch.load(magicface_path, map_location=self.device)
# Initialize UNets (you need to define architecture or load from checkpoint)
print(" - Initializing ID UNet...")
self.unet_ID = UNetID2DConditionModel.from_pretrained(
'mengtingwei/magicface', # Use official architecture
subfolder='ID_enc',
torch_dtype=self.weight_dtype,
use_safetensors=True,
low_cpu_mem_usage=True,
).to(self.device)
print(" - Initializing Denoising UNet...")
self.unet_deno = UNetDeno2DConditionModel.from_pretrained(
'mengtingwei/magicface', # Use official architecture
subfolder='denoising_unet',
torch_dtype=self.weight_dtype,
use_safetensors=True,
low_cpu_mem_usage=True,
).to(self.device)
# Load YOUR weights into the UNets
print(" - Loading YOUR trained weights...")
# This depends on how 79999_iter.pth is structured
# It might contain both UNets or just one
try:
# Try loading as state dict
if isinstance(magicface_weights, dict):
# Check what keys are in the checkpoint
print(f" - Checkpoint keys: {list(magicface_weights.keys())[:5]}...")
# Load weights (adjust based on actual structure)
# Option 1: If it's a full model checkpoint
if 'unet_ID' in magicface_weights:
self.unet_ID.load_state_dict(magicface_weights['unet_ID'])
if 'unet_deno' in magicface_weights:
self.unet_deno.load_state_dict(magicface_weights['unet_deno'])
# Option 2: If it's just one UNet
elif 'state_dict' in magicface_weights:
self.unet_deno.load_state_dict(magicface_weights['state_dict'])
# Option 3: If it's the raw state dict
else:
self.unet_deno.load_state_dict(magicface_weights)
print(" β
YOUR weights loaded successfully!")
else:
print(" β οΈ Unexpected checkpoint format, using default weights")
except Exception as e:
print(f" β οΈ Could not load your weights: {str(e)}")
print(" β οΈ Using default pretrained weights from mengtingwei/magicface")
# Set to eval mode
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.unet_ID.requires_grad_(False)
self.unet_deno.requires_grad_(False)
self.vae.eval()
self.text_encoder.eval()
self.unet_ID.eval()
self.unet_deno.eval()
# Create pipeline
print(" - Creating MagicFace pipeline...")
self.pipeline = MgPipeline.from_pretrained(
sd_model,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet_ID=self.unet_ID,
unet_deno=self.unet_deno,
safety_checker=None,
torch_dtype=self.weight_dtype,
).to(self.device)
# Set scheduler
self.pipeline.scheduler = UniPCMultistepScheduler.from_config(
self.pipeline.scheduler.config
)
self.pipeline.set_progress_bar_config(disable=False)
print("β
MagicFace loaded successfully!")
except Exception as e:
print(f"β Error loading MagicFace: {str(e)}")
import traceback
traceback.print_exc()
raise
def tokenize_caption(self, caption: str):
"""Tokenize text prompt"""
inputs = self.tokenizer(
caption,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return inputs.input_ids.to(self.device)
def prepare_au_vector(self, au_params: dict):
"""Convert AU parameters dict to tensor"""
au_prompt = np.zeros((12,))
for au_name, value in au_params.items():
if au_name in self.ind_dict:
au_prompt[self.ind_dict[au_name]] = float(value)
print(f" π AU vector: {au_prompt}")
return torch.from_numpy(au_prompt).float().unsqueeze(0).to(self.device)
@torch.no_grad()
def transform(self, source_image, bg_image, au_params, num_inference_steps=50, seed=424):
"""
Transform facial expression using MagicFace
Args:
source_image: PIL Image (512x512, cropped face)
bg_image: PIL Image (512x512, background)
au_params: dict like {"AU6": 2.0, "AU12": 2.0}
num_inference_steps: number of diffusion steps
seed: random seed
Returns:
PIL Image (transformed)
"""
print(f"π Starting MagicFace transformation...")
print(f" AU params: {au_params}")
print(f" Inference steps: {num_inference_steps}")
try:
# Prepare inputs
transform = transforms.ToTensor()
source = transform(source_image).unsqueeze(0).to(self.device)
bg = transform(bg_image).unsqueeze(0).to(self.device)
# Get text embeddings
prompt = "A close up of a person."
prompt_ids = self.tokenize_caption(prompt)
prompt_embeds = self.text_encoder(prompt_ids)[0]
# Prepare AU vector
au_vector = self.prepare_au_vector(au_params)
# Set seed
generator = torch.Generator(device=self.device).manual_seed(seed)
# Run inference
print(" π Running diffusion pipeline...")
result = self.pipeline(
prompt_embeds=prompt_embeds,
source=source,
bg=bg,
au=au_vector,
num_inference_steps=num_inference_steps,
generator=generator,
)
print("β
Transformation complete!")
return result.images[0]
except Exception as e:
print(f"β Transformation error: {str(e)}")
import traceback
traceback.print_exc()
raise |