Spaces:
Running
Running
Commit
Β·
3ece5ec
1
Parent(s):
b6a80c5
Add real MagicFace model structure (simplified for now)
Browse files- app.py +99 -181
- magicface_model.py +130 -0
- requirements.txt +4 -3
app.py
CHANGED
|
@@ -1,68 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
from PIL import Image
|
| 5 |
import base64
|
| 6 |
from io import BytesIO
|
| 7 |
import json
|
| 8 |
-
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
print("π Starting Affecto Inference Service...")
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
# ============================================
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
print(f"π₯οΈ Device: {device}")
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
repo_id="gauravvjhaa/magicface-affecto-model",
|
| 23 |
-
filename="79999_iter.pth",
|
| 24 |
-
cache_dir="./models"
|
| 25 |
-
)
|
| 26 |
-
print(f"β
Model downloaded to: {model_path}")
|
| 27 |
-
|
| 28 |
-
# Load checkpoint
|
| 29 |
-
checkpoint = torch.load(model_path, map_location=device)
|
| 30 |
-
print(f"π¦ Checkpoint loaded successfully")
|
| 31 |
|
| 32 |
# ============================================
|
| 33 |
-
#
|
| 34 |
# ============================================
|
| 35 |
|
| 36 |
-
import torchvision.transforms as transforms
|
| 37 |
-
|
| 38 |
-
def preprocess_image(image):
|
| 39 |
-
"""Convert PIL image to tensor"""
|
| 40 |
-
if not isinstance(image, Image.Image):
|
| 41 |
-
image = Image.fromarray(image)
|
| 42 |
-
|
| 43 |
-
if image.mode != 'RGB':
|
| 44 |
-
image = image.convert('RGB')
|
| 45 |
-
|
| 46 |
-
transform = transforms.Compose([
|
| 47 |
-
transforms.Resize((256, 256)),
|
| 48 |
-
transforms.ToTensor(),
|
| 49 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 50 |
-
])
|
| 51 |
-
|
| 52 |
-
tensor = transform(image).unsqueeze(0)
|
| 53 |
-
return tensor.to(device)
|
| 54 |
-
|
| 55 |
-
def postprocess_tensor(tensor):
|
| 56 |
-
"""Convert tensor to PIL image"""
|
| 57 |
-
tensor = tensor.squeeze(0).cpu()
|
| 58 |
-
tensor = tensor * 0.5 + 0.5
|
| 59 |
-
tensor = torch.clamp(tensor, 0, 1)
|
| 60 |
-
|
| 61 |
-
numpy_image = tensor.numpy().transpose(1, 2, 0)
|
| 62 |
-
numpy_image = (numpy_image * 255).astype(np.uint8)
|
| 63 |
-
|
| 64 |
-
return Image.fromarray(numpy_image)
|
| 65 |
-
|
| 66 |
def pil_to_base64(image):
|
| 67 |
"""Convert PIL to base64"""
|
| 68 |
buffered = BytesIO()
|
|
@@ -75,115 +34,76 @@ def base64_to_pil(base64_str):
|
|
| 75 |
return Image.open(BytesIO(image_bytes))
|
| 76 |
|
| 77 |
# ============================================
|
| 78 |
-
#
|
| 79 |
# ============================================
|
| 80 |
|
| 81 |
-
def
|
| 82 |
-
"""
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# ============================================
|
| 101 |
|
| 102 |
-
def transform_api(
|
| 103 |
"""API function for external calls"""
|
| 104 |
try:
|
| 105 |
-
|
| 106 |
-
au_params = data["au_params"]
|
| 107 |
-
|
| 108 |
-
print(f"π₯ Received API request with AU params: {au_params}")
|
| 109 |
|
|
|
|
| 110 |
image = base64_to_pil(image_base64)
|
| 111 |
print(f"πΈ Image size: {image.size}")
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
result_base64 = pil_to_base64(result_image)
|
| 117 |
|
| 118 |
print("β
Transformation complete")
|
| 119 |
|
| 120 |
-
return
|
| 121 |
-
"success": True,
|
| 122 |
-
"transformed_image": result_base64,
|
| 123 |
-
"au_params": au_params,
|
| 124 |
-
"message": "Transformation successful"
|
| 125 |
-
}
|
| 126 |
except Exception as e:
|
| 127 |
print(f"β API Error: {str(e)}")
|
| 128 |
import traceback
|
| 129 |
traceback.print_exc()
|
| 130 |
-
|
| 131 |
-
"success": False,
|
| 132 |
-
"error": str(e),
|
| 133 |
-
"message": "Transformation failed"
|
| 134 |
-
}
|
| 135 |
-
|
| 136 |
-
def health_check():
|
| 137 |
-
"""Health check function"""
|
| 138 |
-
return {
|
| 139 |
-
"status": "healthy",
|
| 140 |
-
"model": "magicface",
|
| 141 |
-
"device": str(device),
|
| 142 |
-
"version": "1.0.0"
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
def root_info():
|
| 146 |
-
"""Root info function"""
|
| 147 |
-
return {
|
| 148 |
-
"message": "Affecto Inference API",
|
| 149 |
-
"status": "running",
|
| 150 |
-
"version": "1.0.0",
|
| 151 |
-
"endpoints": {
|
| 152 |
-
"health": "/health",
|
| 153 |
-
"transform": "/transform"
|
| 154 |
-
}
|
| 155 |
-
}
|
| 156 |
|
| 157 |
# ============================================
|
| 158 |
# GRADIO INTERFACE
|
| 159 |
# ============================================
|
| 160 |
|
| 161 |
-
|
| 162 |
-
"
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
input_tensor = preprocess_image(image)
|
| 166 |
-
output_tensor = apply_emotion_transform(input_tensor, au_params)
|
| 167 |
-
result_image = postprocess_tensor(output_tensor)
|
| 168 |
-
return result_image
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"β Error: {str(e)}")
|
| 171 |
-
import traceback
|
| 172 |
-
traceback.print_exc()
|
| 173 |
-
return image
|
| 174 |
-
|
| 175 |
-
# Build Gradio interface
|
| 176 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Affecto Inference API") as demo:
|
| 177 |
-
gr.Markdown("# π Affecto - Emotion Transformation API")
|
| 178 |
-
gr.Markdown("Transform facial emotions using MagicFace Action Units")
|
| 179 |
|
| 180 |
with gr.Tab("πΌοΈ Web Interface"):
|
| 181 |
with gr.Row():
|
| 182 |
with gr.Column():
|
| 183 |
-
input_image = gr.Image(type="pil", label="Upload Image")
|
| 184 |
au_params_input = gr.Textbox(
|
| 185 |
label="AU Parameters (JSON)",
|
| 186 |
-
value='{"AU6":
|
| 187 |
lines=3
|
| 188 |
)
|
| 189 |
transform_btn = gr.Button("β¨ Transform", variant="primary", size="lg")
|
|
@@ -191,15 +111,16 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Affecto Inference API") as demo:
|
|
| 191 |
with gr.Column():
|
| 192 |
output_image = gr.Image(type="pil", label="Transformed Result")
|
| 193 |
|
| 194 |
-
gr.Markdown("### π¨ Emotion Presets:")
|
| 195 |
gr.Examples(
|
| 196 |
examples=[
|
| 197 |
-
['{"AU6":
|
| 198 |
-
['{"AU1":
|
| 199 |
-
['{"AU4":
|
| 200 |
-
['{"AU1":
|
| 201 |
],
|
| 202 |
inputs=[au_params_input],
|
|
|
|
| 203 |
)
|
| 204 |
|
| 205 |
transform_btn.click(
|
|
@@ -210,60 +131,57 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Affecto Inference API") as demo:
|
|
| 210 |
|
| 211 |
with gr.Tab("π‘ API Documentation"):
|
| 212 |
gr.Markdown("""
|
| 213 |
-
## API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
|
|
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
"
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
```
|
| 224 |
|
| 225 |
-
###
|
| 226 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
""")
|
| 230 |
-
|
| 231 |
-
# API endpoints as Gradio functions
|
| 232 |
-
with gr.Tab("π API"):
|
| 233 |
-
with gr.Row():
|
| 234 |
-
with gr.Column():
|
| 235 |
-
gr.Markdown("### POST /api/transform")
|
| 236 |
-
api_input = gr.Textbox(
|
| 237 |
-
label="Request JSON",
|
| 238 |
-
value='{"image": "BASE64_STRING", "au_params": {"AU6": 1.0}}',
|
| 239 |
-
lines=5
|
| 240 |
-
)
|
| 241 |
-
api_btn = gr.Button("Test API")
|
| 242 |
-
api_output = gr.JSON(label="Response")
|
| 243 |
-
|
| 244 |
-
api_btn.click(
|
| 245 |
-
fn=lambda x: transform_api(json.loads(x)),
|
| 246 |
-
inputs=[api_input],
|
| 247 |
-
outputs=[api_output]
|
| 248 |
-
)
|
| 249 |
-
|
| 250 |
-
with gr.Column():
|
| 251 |
-
gr.Markdown("### GET /api/health")
|
| 252 |
-
health_btn = gr.Button("Check Health")
|
| 253 |
-
health_output = gr.JSON(label="Health Status")
|
| 254 |
-
|
| 255 |
-
health_btn.click(
|
| 256 |
-
fn=health_check,
|
| 257 |
-
inputs=[],
|
| 258 |
-
outputs=[health_output]
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
# Add API routes using Gradio's API
|
| 262 |
-
demo.api_names = ["transform", "health", "root"]
|
| 263 |
|
| 264 |
-
print("β
Affecto
|
| 265 |
print(f"π Gradio UI: https://gauravvjhaa-affecto-inference.hf.space/")
|
| 266 |
|
| 267 |
-
# Launch
|
| 268 |
if __name__ == "__main__":
|
| 269 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import base64
|
| 5 |
from io import BytesIO
|
| 6 |
import json
|
|
|
|
| 7 |
|
| 8 |
print("π Starting Affecto Inference Service...")
|
| 9 |
|
| 10 |
+
# Import our MagicFace model
|
| 11 |
+
from magicface_model import MagicFaceModel
|
|
|
|
| 12 |
|
| 13 |
+
# Initialize model
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
print(f"π₯οΈ Device: {device}")
|
| 16 |
|
| 17 |
+
print("π₯ Loading MagicFace model...")
|
| 18 |
+
model = MagicFaceModel(device=device)
|
| 19 |
+
print("β
Model ready!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# ============================================
|
| 22 |
+
# UTILITY FUNCTIONS
|
| 23 |
# ============================================
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def pil_to_base64(image):
|
| 26 |
"""Convert PIL to base64"""
|
| 27 |
buffered = BytesIO()
|
|
|
|
| 34 |
return Image.open(BytesIO(image_bytes))
|
| 35 |
|
| 36 |
# ============================================
|
| 37 |
+
# INFERENCE FUNCTIONS
|
| 38 |
# ============================================
|
| 39 |
|
| 40 |
+
def transform_gradio(image, au_params_str):
|
| 41 |
+
"""Gradio interface function"""
|
| 42 |
+
try:
|
| 43 |
+
# Parse AU params
|
| 44 |
+
au_params = json.loads(au_params_str)
|
| 45 |
+
|
| 46 |
+
# Ensure image is 512x512
|
| 47 |
+
if image.size != (512, 512):
|
| 48 |
+
image = image.resize((512, 512), Image.LANCZOS)
|
| 49 |
+
|
| 50 |
+
# Transform
|
| 51 |
+
result_image = model.transform(image, au_params)
|
| 52 |
+
|
| 53 |
+
return result_image
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"β Error: {str(e)}")
|
| 56 |
+
import traceback
|
| 57 |
+
traceback.print_exc()
|
| 58 |
+
return image
|
|
|
|
| 59 |
|
| 60 |
+
def transform_api(image_base64, au_params_str):
|
| 61 |
"""API function for external calls"""
|
| 62 |
try:
|
| 63 |
+
print(f"π₯ Received API request")
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Decode image
|
| 66 |
image = base64_to_pil(image_base64)
|
| 67 |
print(f"πΈ Image size: {image.size}")
|
| 68 |
|
| 69 |
+
# Parse AU params
|
| 70 |
+
au_params = json.loads(au_params_str)
|
| 71 |
+
|
| 72 |
+
# Ensure 512x512
|
| 73 |
+
if image.size != (512, 512):
|
| 74 |
+
image = image.resize((512, 512), Image.LANCZOS)
|
| 75 |
+
|
| 76 |
+
# Transform
|
| 77 |
+
result_image = model.transform(image, au_params)
|
| 78 |
+
|
| 79 |
+
# Encode result
|
| 80 |
result_base64 = pil_to_base64(result_image)
|
| 81 |
|
| 82 |
print("β
Transformation complete")
|
| 83 |
|
| 84 |
+
return result_base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
except Exception as e:
|
| 86 |
print(f"β API Error: {str(e)}")
|
| 87 |
import traceback
|
| 88 |
traceback.print_exc()
|
| 89 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
# ============================================
|
| 92 |
# GRADIO INTERFACE
|
| 93 |
# ============================================
|
| 94 |
|
| 95 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Affecto MagicFace API") as demo:
|
| 96 |
+
gr.Markdown("# π Affecto - MagicFace Emotion Transformation")
|
| 97 |
+
gr.Markdown("Transform facial emotions using Action Units (AU)")
|
| 98 |
+
gr.Markdown("β οΈ **Note:** Currently using simplified model. Full MagicFace pipeline coming soon!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
with gr.Tab("πΌοΈ Web Interface"):
|
| 101 |
with gr.Row():
|
| 102 |
with gr.Column():
|
| 103 |
+
input_image = gr.Image(type="pil", label="Upload Face Image (512x512 recommended)")
|
| 104 |
au_params_input = gr.Textbox(
|
| 105 |
label="AU Parameters (JSON)",
|
| 106 |
+
value='{"AU6": 2.0, "AU12": 2.0}',
|
| 107 |
lines=3
|
| 108 |
)
|
| 109 |
transform_btn = gr.Button("β¨ Transform", variant="primary", size="lg")
|
|
|
|
| 111 |
with gr.Column():
|
| 112 |
output_image = gr.Image(type="pil", label="Transformed Result")
|
| 113 |
|
| 114 |
+
gr.Markdown("### π¨ Emotion Presets (click to use):")
|
| 115 |
gr.Examples(
|
| 116 |
examples=[
|
| 117 |
+
['{"AU6": 2.0, "AU12": 2.0}'], # Happy
|
| 118 |
+
['{"AU1": 2.0, "AU4": 2.0, "AU15": 2.0}'], # Sad
|
| 119 |
+
['{"AU4": 3.0, "AU5": 2.0, "AU7": 2.0}'], # Angry
|
| 120 |
+
['{"AU1": 3.0, "AU2": 2.0, "AU5": 3.0, "AU26": 2.0}'], # Surprised
|
| 121 |
],
|
| 122 |
inputs=[au_params_input],
|
| 123 |
+
label="Emotion Presets"
|
| 124 |
)
|
| 125 |
|
| 126 |
transform_btn.click(
|
|
|
|
| 131 |
|
| 132 |
with gr.Tab("π‘ API Documentation"):
|
| 133 |
gr.Markdown("""
|
| 134 |
+
## API Usage
|
| 135 |
+
|
| 136 |
+
### Gradio API Endpoint
|
| 137 |
+
|
| 138 |
+
```python
|
| 139 |
+
import requests
|
| 140 |
+
import base64
|
| 141 |
+
import json
|
| 142 |
|
| 143 |
+
# Prepare image
|
| 144 |
+
with open("face.jpg", "rb") as f:
|
| 145 |
+
image_base64 = base64.b64encode(f.read()).decode()
|
| 146 |
|
| 147 |
+
# Call API
|
| 148 |
+
response = requests.post(
|
| 149 |
+
"https://gauravvjhaa-affecto-inference.hf.space/api/predict",
|
| 150 |
+
json={
|
| 151 |
+
"data": [
|
| 152 |
+
image_base64,
|
| 153 |
+
'{"AU6": 2.0, "AU12": 2.0}'
|
| 154 |
+
]
|
| 155 |
+
}
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
result = response.json()
|
| 159 |
+
result_image = result["data"][0] # base64 string
|
| 160 |
```
|
| 161 |
|
| 162 |
+
### Available Action Units:
|
| 163 |
+
- **AU1** (0): Inner Brow Raiser - Values: 0-4
|
| 164 |
+
- **AU2** (1): Outer Brow Raiser - Values: 0-4
|
| 165 |
+
- **AU4** (2): Brow Lowerer - Values: 0-4
|
| 166 |
+
- **AU5** (3): Upper Lid Raiser - Values: 0-4
|
| 167 |
+
- **AU6** (4): Cheek Raiser - Values: 0-4
|
| 168 |
+
- **AU9** (5): Nose Wrinkler - Values: 0-4
|
| 169 |
+
- **AU12** (6): Lip Corner Puller (Smile) - Values: 0-4
|
| 170 |
+
- **AU15** (7): Lip Corner Depressor - Values: 0-4
|
| 171 |
+
- **AU17** (8): Chin Raiser - Values: 0-4
|
| 172 |
+
- **AU20** (9): Lip Stretcher - Values: 0-4
|
| 173 |
+
- **AU25** (10): Lips Part - Values: 0-4
|
| 174 |
+
- **AU26** (11): Jaw Drop - Values: 0-4
|
| 175 |
|
| 176 |
+
### Example Combinations:
|
| 177 |
+
- **Happy**: `{"AU6": 2, "AU12": 2}`
|
| 178 |
+
- **Sad**: `{"AU1": 2, "AU4": 2, "AU15": 2}`
|
| 179 |
+
- **Angry**: `{"AU4": 3, "AU5": 2, "AU7": 2}`
|
| 180 |
+
- **Surprised**: `{"AU1": 3, "AU2": 2, "AU5": 3, "AU26": 2}`
|
| 181 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
print("β
Affecto MagicFace API Ready!")
|
| 184 |
print(f"π Gradio UI: https://gauravvjhaa-affecto-inference.hf.space/")
|
| 185 |
|
|
|
|
| 186 |
if __name__ == "__main__":
|
| 187 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
magicface_model.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
from diffusers import AutoencoderKL, UniPCMultistepScheduler
|
| 6 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 7 |
+
|
| 8 |
+
# We'll need to implement these custom UNet classes
|
| 9 |
+
# For now, we'll use a simplified version
|
| 10 |
+
|
| 11 |
+
class MagicFaceModel:
|
| 12 |
+
def __init__(self, device='cuda'):
|
| 13 |
+
self.device = device if torch.cuda.is_available() else 'cpu'
|
| 14 |
+
print(f"π₯οΈ Initializing MagicFace on: {self.device}")
|
| 15 |
+
|
| 16 |
+
# AU mapping (same as original)
|
| 17 |
+
self.ind_dict = {
|
| 18 |
+
'AU1':0, 'AU2':1, 'AU4':2, 'AU5':3, 'AU6':4, 'AU9':5,
|
| 19 |
+
'AU12':6, 'AU15':7, 'AU17':8, 'AU20':9, 'AU25':10, 'AU26':11
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
self.load_models()
|
| 23 |
+
|
| 24 |
+
def load_models(self):
|
| 25 |
+
"""Load all required models"""
|
| 26 |
+
print("π₯ Loading Stable Diffusion components...")
|
| 27 |
+
|
| 28 |
+
# Load VAE
|
| 29 |
+
self.vae = AutoencoderKL.from_pretrained(
|
| 30 |
+
'runwayml/stable-diffusion-v1-5',
|
| 31 |
+
subfolder="vae",
|
| 32 |
+
torch_dtype=torch.float16 if self.device == 'cuda' else torch.float32
|
| 33 |
+
).to(self.device)
|
| 34 |
+
|
| 35 |
+
# Load Text Encoder
|
| 36 |
+
self.text_encoder = CLIPTextModel.from_pretrained(
|
| 37 |
+
'runwayml/stable-diffusion-v1-5',
|
| 38 |
+
subfolder="text_encoder",
|
| 39 |
+
).to(self.device)
|
| 40 |
+
|
| 41 |
+
# Load Tokenizer
|
| 42 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
| 43 |
+
'runwayml/stable-diffusion-v1-5',
|
| 44 |
+
subfolder="tokenizer",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# TODO: Load custom UNets from mengtingwei/magicface
|
| 48 |
+
# For now, we'll use a simplified approach
|
| 49 |
+
print("β οΈ Using simplified model (custom UNets not yet loaded)")
|
| 50 |
+
|
| 51 |
+
self.vae.requires_grad_(False)
|
| 52 |
+
self.text_encoder.requires_grad_(False)
|
| 53 |
+
|
| 54 |
+
print("β
Models loaded successfully")
|
| 55 |
+
|
| 56 |
+
def preprocess_image(self, image: Image.Image):
|
| 57 |
+
"""Preprocess image for inference"""
|
| 58 |
+
transform = transforms.Compose([
|
| 59 |
+
transforms.Resize((512, 512)),
|
| 60 |
+
transforms.ToTensor(),
|
| 61 |
+
])
|
| 62 |
+
return transform(image).unsqueeze(0).to(self.device)
|
| 63 |
+
|
| 64 |
+
def prepare_au_vector(self, au_params: dict):
|
| 65 |
+
"""Convert AU parameters dict to numpy array"""
|
| 66 |
+
au_prompt = np.zeros((12,))
|
| 67 |
+
|
| 68 |
+
for au_name, value in au_params.items():
|
| 69 |
+
if au_name in self.ind_dict:
|
| 70 |
+
au_prompt[self.ind_dict[au_name]] = value
|
| 71 |
+
|
| 72 |
+
return torch.from_numpy(au_prompt).float().unsqueeze(0).to(self.device)
|
| 73 |
+
|
| 74 |
+
def tokenize_caption(self, caption: str):
|
| 75 |
+
"""Tokenize text prompt"""
|
| 76 |
+
inputs = self.tokenizer(
|
| 77 |
+
caption,
|
| 78 |
+
max_length=self.tokenizer.model_max_length,
|
| 79 |
+
padding="max_length",
|
| 80 |
+
truncation=True,
|
| 81 |
+
return_tensors="pt"
|
| 82 |
+
)
|
| 83 |
+
return inputs.input_ids.to(self.device)
|
| 84 |
+
|
| 85 |
+
@torch.no_grad()
|
| 86 |
+
def transform(self, image: Image.Image, au_params: dict):
|
| 87 |
+
"""
|
| 88 |
+
Transform facial expression based on AU parameters
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
image: PIL Image (512x512)
|
| 92 |
+
au_params: dict like {"AU6": 1.0, "AU12": 1.0}
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
PIL Image (transformed)
|
| 96 |
+
"""
|
| 97 |
+
print(f"π Transforming with AU params: {au_params}")
|
| 98 |
+
|
| 99 |
+
# Preprocess
|
| 100 |
+
source_tensor = self.preprocess_image(image)
|
| 101 |
+
au_vector = self.prepare_au_vector(au_params)
|
| 102 |
+
|
| 103 |
+
# Get text embeddings
|
| 104 |
+
prompt = "A close up of a person."
|
| 105 |
+
prompt_ids = self.tokenize_caption(prompt)
|
| 106 |
+
prompt_embeds = self.text_encoder(prompt_ids)[0]
|
| 107 |
+
|
| 108 |
+
# TODO: Implement full diffusion pipeline with custom UNets
|
| 109 |
+
# For now, return a simple transformation
|
| 110 |
+
print("β οΈ Using simplified transformation (full pipeline not yet implemented)")
|
| 111 |
+
|
| 112 |
+
# Placeholder: Apply simple brightness adjustment based on AUs
|
| 113 |
+
output_tensor = source_tensor.clone()
|
| 114 |
+
|
| 115 |
+
# AU12 (smile) - brighten
|
| 116 |
+
if "AU12" in au_params:
|
| 117 |
+
output_tensor = output_tensor * (1.0 + au_params["AU12"] * 0.3)
|
| 118 |
+
|
| 119 |
+
# AU4 (frown) - darken
|
| 120 |
+
if "AU4" in au_params:
|
| 121 |
+
output_tensor = output_tensor * (1.0 - au_params["AU4"] * 0.2)
|
| 122 |
+
|
| 123 |
+
output_tensor = torch.clamp(output_tensor, 0, 1)
|
| 124 |
+
|
| 125 |
+
# Convert back to PIL
|
| 126 |
+
output_np = output_tensor.squeeze(0).cpu().numpy().transpose(1, 2, 0)
|
| 127 |
+
output_np = (output_np * 255).astype(np.uint8)
|
| 128 |
+
result_image = Image.fromarray(output_np)
|
| 129 |
+
|
| 130 |
+
return result_image
|
requirements.txt
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
torch==2.0.1
|
| 2 |
torchvision==0.15.2
|
| 3 |
gradio==4.16.0
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
Pillow==10.2.0
|
| 7 |
numpy==1.26.3
|
| 8 |
huggingface-hub==0.20.3
|
| 9 |
-
python-multipart==0.0.6
|
|
|
|
| 1 |
torch==2.0.1
|
| 2 |
torchvision==0.15.2
|
| 3 |
gradio==4.16.0
|
| 4 |
+
diffusers==0.21.4
|
| 5 |
+
transformers==4.35.2
|
| 6 |
+
accelerate==0.24.1
|
| 7 |
+
safetensors==0.4.1
|
| 8 |
Pillow==10.2.0
|
| 9 |
numpy==1.26.3
|
| 10 |
huggingface-hub==0.20.3
|
|
|