affecto-inference / magicface_model.py
gauravvjhaa's picture
major changes in preprocessing
7dcd378
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from diffusers import AutoencoderKL, UniPCMultistepScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from huggingface_hub import hf_hub_download
from mgface.pipelines_mgface.pipeline_mgface import MgPipeline
from mgface.pipelines_mgface.unet_ID_2d_condition import UNetID2DConditionModel
from mgface.pipelines_mgface.unet_deno_2d_condition import UNetDeno2DConditionModel
class MagicFaceModel:
def __init__(self, device='cuda'):
self.device = device if torch.cuda.is_available() else 'cpu'
print(f"πŸ–₯️ Initializing MagicFace on: {self.device}")
# AU mapping
self.ind_dict = {
'AU1':0, 'AU2':1, 'AU4':2, 'AU5':3, 'AU6':4, 'AU9':5,
'AU12':6, 'AU15':7, 'AU17':8, 'AU20':9, 'AU25':10, 'AU26':11
}
self.weight_dtype = torch.float16 if self.device == 'cuda' else torch.float32
self.load_models()
def load_models(self):
"""Load all MagicFace components"""
print("πŸ“₯ Loading MagicFace components...")
sd_model = 'runwayml/stable-diffusion-v1-5'
try:
# Load VAE from SD 1.5
print(" - Loading VAE...")
self.vae = AutoencoderKL.from_pretrained(
sd_model,
subfolder="vae",
torch_dtype=self.weight_dtype
).to(self.device)
# Load Text Encoder from SD 1.5
print(" - Loading Text Encoder...")
self.text_encoder = CLIPTextModel.from_pretrained(
sd_model,
subfolder="text_encoder",
torch_dtype=self.weight_dtype
).to(self.device)
# Load Tokenizer
print(" - Loading Tokenizer...")
self.tokenizer = CLIPTokenizer.from_pretrained(
sd_model,
subfolder="tokenizer",
)
# Download YOUR MagicFace model
print(" - Downloading YOUR MagicFace model (79999_iter.pth)...")
magicface_path = hf_hub_download(
repo_id="gauravvjhaa/magicface-affecto-model",
filename="79999_iter.pth",
cache_dir="./models"
)
print(f" - MagicFace model downloaded: {magicface_path}")
# Load MagicFace weights
print(" - Loading MagicFace weights...")
magicface_weights = torch.load(magicface_path, map_location=self.device)
# Initialize UNets (you need to define architecture or load from checkpoint)
print(" - Initializing ID UNet...")
self.unet_ID = UNetID2DConditionModel.from_pretrained(
'mengtingwei/magicface', # Use official architecture
subfolder='ID_enc',
torch_dtype=self.weight_dtype,
use_safetensors=True,
low_cpu_mem_usage=True,
).to(self.device)
print(" - Initializing Denoising UNet...")
self.unet_deno = UNetDeno2DConditionModel.from_pretrained(
'mengtingwei/magicface', # Use official architecture
subfolder='denoising_unet',
torch_dtype=self.weight_dtype,
use_safetensors=True,
low_cpu_mem_usage=True,
).to(self.device)
# Load YOUR weights into the UNets
print(" - Loading YOUR trained weights...")
# This depends on how 79999_iter.pth is structured
# It might contain both UNets or just one
try:
# Try loading as state dict
if isinstance(magicface_weights, dict):
# Check what keys are in the checkpoint
print(f" - Checkpoint keys: {list(magicface_weights.keys())[:5]}...")
# Load weights (adjust based on actual structure)
# Option 1: If it's a full model checkpoint
if 'unet_ID' in magicface_weights:
self.unet_ID.load_state_dict(magicface_weights['unet_ID'])
if 'unet_deno' in magicface_weights:
self.unet_deno.load_state_dict(magicface_weights['unet_deno'])
# Option 2: If it's just one UNet
elif 'state_dict' in magicface_weights:
self.unet_deno.load_state_dict(magicface_weights['state_dict'])
# Option 3: If it's the raw state dict
else:
self.unet_deno.load_state_dict(magicface_weights)
print(" βœ… YOUR weights loaded successfully!")
else:
print(" ⚠️ Unexpected checkpoint format, using default weights")
except Exception as e:
print(f" ⚠️ Could not load your weights: {str(e)}")
print(" ⚠️ Using default pretrained weights from mengtingwei/magicface")
# Set to eval mode
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.unet_ID.requires_grad_(False)
self.unet_deno.requires_grad_(False)
self.vae.eval()
self.text_encoder.eval()
self.unet_ID.eval()
self.unet_deno.eval()
# Create pipeline
print(" - Creating MagicFace pipeline...")
self.pipeline = MgPipeline.from_pretrained(
sd_model,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet_ID=self.unet_ID,
unet_deno=self.unet_deno,
safety_checker=None,
torch_dtype=self.weight_dtype,
).to(self.device)
# Set scheduler
self.pipeline.scheduler = UniPCMultistepScheduler.from_config(
self.pipeline.scheduler.config
)
self.pipeline.set_progress_bar_config(disable=False)
print("βœ… MagicFace loaded successfully!")
except Exception as e:
print(f"❌ Error loading MagicFace: {str(e)}")
import traceback
traceback.print_exc()
raise
def tokenize_caption(self, caption: str):
"""Tokenize text prompt"""
inputs = self.tokenizer(
caption,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return inputs.input_ids.to(self.device)
def prepare_au_vector(self, au_params: dict):
"""Convert AU parameters dict to tensor"""
au_prompt = np.zeros((12,))
for au_name, value in au_params.items():
if au_name in self.ind_dict:
au_prompt[self.ind_dict[au_name]] = float(value)
print(f" 🎭 AU vector: {au_prompt}")
return torch.from_numpy(au_prompt).float().unsqueeze(0).to(self.device)
@torch.no_grad()
def transform(self, source_image, bg_image, au_params, num_inference_steps=50, seed=424):
"""
Transform facial expression using MagicFace
Args:
source_image: PIL Image (512x512, cropped face)
bg_image: PIL Image (512x512, background)
au_params: dict like {"AU6": 2.0, "AU12": 2.0}
num_inference_steps: number of diffusion steps
seed: random seed
Returns:
PIL Image (transformed)
"""
print(f"🎭 Starting MagicFace transformation...")
print(f" AU params: {au_params}")
print(f" Inference steps: {num_inference_steps}")
try:
# Prepare inputs
transform = transforms.ToTensor()
source = transform(source_image).unsqueeze(0).to(self.device)
bg = transform(bg_image).unsqueeze(0).to(self.device)
# Get text embeddings
prompt = "A close up of a person."
prompt_ids = self.tokenize_caption(prompt)
prompt_embeds = self.text_encoder(prompt_ids)[0]
# Prepare AU vector
au_vector = self.prepare_au_vector(au_params)
# Set seed
generator = torch.Generator(device=self.device).manual_seed(seed)
# Run inference
print(" πŸš€ Running diffusion pipeline...")
result = self.pipeline(
prompt_embeds=prompt_embeds,
source=source,
bg=bg,
au=au_vector,
num_inference_steps=num_inference_steps,
generator=generator,
)
print("βœ… Transformation complete!")
return result.images[0]
except Exception as e:
print(f"❌ Transformation error: {str(e)}")
import traceback
traceback.print_exc()
raise