Log Surgeon SLM
A specialist small language model fine-tuned for analyzing CI/CD and infrastructure logs.
Model Description
Log Surgeon SLM is a ~1.5B parameter model specialized in:
- Identifying failure regions in logs
- Extracting root causes
- Classifying errors into 8 categories
- Providing actionable fix suggestions
- Returning structured JSON output
Supported Platforms
- GitHub Actions
- GitLab CI
- Jenkins
- ArgoCD
- Docker
- Dagger
- systemd
Error Classifications
CONFIG_ERROR: Configuration issuesDEPENDENCY_ERROR: Package/dependency problemsNETWORK_ERROR: Network connectivity issuesCREDENTIALS_ERROR: Authentication failuresTEST_FAILURE: Test failuresLINT_ERROR: Code quality issuesINFRASTRUCTURE_ERROR: Infrastructure problemsTIMEOUT: Timeout errors
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load model
base_model = "Qwen/Qwen2.5-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(base_model)
model = PeftModel.from_pretrained(model, "sylvester-francis/log-surgeon-slm")
tokenizer = AutoTokenizer.from_pretrained("sylvester-francis/log-surgeon-slm")
# Analyze log
log_content = """
ERROR: npm install failed
npm ERR! code ENOTFOUND
npm ERR! network request failed
"""
prompt = f"""<role>You are a senior CI/CD diagnostics assistant.</role>
<log>
{log_content}
</log>
<task>Analyze the log above. Identify the failure region, determine root cause, classify the error, and suggest fixes.</task>
<output_format>
Respond with valid JSON only.
</output_format>"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
Training
- Base Model: Qwen/Qwen2.5-1.5B-Instruct
- Method: LoRA/PEFT fine-tuning
- Data: Synthetic CI/CD logs
- LoRA Rank: 16
- LoRA Alpha: 32
Limitations
- Trained on synthetic data; may not cover all real-world scenarios
- Best performance on logs similar to training distribution
- May hallucinate details not present in logs
- Always verify suggested fixes before applying
Intended Use
- DevOps automation and log analysis
- CI/CD pipeline debugging
- Educational purposes
License
MIT License
Citation
@software{log_surgeon_slm,
author = {Sylvester Francis},
title = {Log Surgeon SLM: A Specialist Model for CI/CD Log Analysis},
year = {2025},
url = {https://huggingface.co/sylvester-francis/log-surgeon-slm},
note = {Fine-tuned language model for analyzing CI/CD and infrastructure logs}
}
- Downloads last month
- 46