YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
See axolotl config
axolotl version: 0.9.1.post1
base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 4
learning_rate: 0.0001
optimizer: adamw_torch_fused
lr_scheduler: cosine
load_in_8bit: false
load_in_4bit: false
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
datasets:
- path: /workspace/FinLoRA/data/train/headline_train.jsonl
type:
field_instruction: context
field_output: target
format: '[INST] {instruction} [/INST]'
no_input_format: '[INST] {instruction} [/INST]'
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/headline_llama_3_1_8b_fp16_r8
sequence_len: 4096
gradient_checkpointing: true
logging_steps: 500
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
deepspeed: deepspeed_configs/zero1.json
bf16: auto
tf32: false
chat_template: llama3
wandb_name: headline_llama_3_1_8b_fp16_r8
workspace/FinLoRA/lora/axolotl-output/headline_llama_3_1_8b_fp16_r8
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/headline_train.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.0465
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0006 | 1 | 6.7673 |
| No log | 0.2504 | 420 | 0.0517 |
| 0.2063 | 0.5007 | 840 | 0.0496 |
| 0.0491 | 0.7511 | 1260 | 0.0389 |
| 0.0424 | 1.0012 | 1680 | 0.0421 |
| 0.0363 | 1.2516 | 2100 | 0.0386 |
| 0.035 | 1.5019 | 2520 | 0.0441 |
| 0.035 | 1.7523 | 2940 | 0.0452 |
| 0.0321 | 2.0024 | 3360 | 0.0408 |
| 0.031 | 2.2528 | 3780 | 0.0442 |
| 0.0249 | 2.5031 | 4200 | 0.0414 |
| 0.0263 | 2.7535 | 4620 | 0.0404 |
| 0.0245 | 3.0036 | 5040 | 0.0420 |
| 0.0245 | 3.2539 | 5460 | 0.0484 |
| 0.0183 | 3.5043 | 5880 | 0.0483 |
| 0.0164 | 3.7547 | 6300 | 0.0465 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support