Model Card for act

Action Chunking with Transformers (ACT) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.

This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.


How to Get Started with the Model

For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:

Train from scratch

lerobot-train \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true

Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.

Evaluate the policy/run inference

lerobot-record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10

Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.


Model Details

  • License: apache-2.0

Evaluation Results

Evaluated on 2026-02-06 19:40

Metric Value
Success Rate 0.0%
Average Reward 0.000
Max Reward (Avg) 0.000
Episodes 1000
Eval Speed 9.76 s/ep
Seed 26

Detailed per-episode results can be found in eval/eval_info.json.

Downloads last month
37
Video Preview
loading

Dataset used to train arclabmit/xarm7_act_beavrsim_vanishing_blueprint_model

Collection including arclabmit/xarm7_act_beavrsim_vanishing_blueprint_model

Paper for arclabmit/xarm7_act_beavrsim_vanishing_blueprint_model

Evaluation results