group_id
stringlengths
12
18
problem_description
stringlengths
85
3.02k
candidates
listlengths
3
20
aoj_2697_cpp
Problem K Runner and Sniper You are escaping from an enemy for some reason. The enemy is a sniper equipped with a high-tech laser gun, and you will be immediately defeated if you get shot. You are a very good runner, but just wondering how fast you have to run in order not to be shot by the sniper. The situation is as follows: You and the sniper are on the $xy$-plane whose $x$-axis and $y$-axis are directed to the right and the top, respectively. You can assume that the plane is infinitely large, and that there is no obstacle that blocks the laser or your movement. The sniper and the laser gun are at $(0, 0)$ and cannot move from the initial location. The sniper can continuously rotate the laser gun by at most $\omega$ degrees per unit time, either clockwise or counterclockwise, and can change the direction of rotation at any time. The laser gun is initially directed $\theta$ degrees counterclockwise from the positive direction of the $x$-axis. You are initially at ($x$, $y$) on the plane and can move in any direction at speed not more than $v$ (you can arbitrarily determine the value of $v$ since you are a very good runner). You will be shot by the sniper exactly when the laser gun is directed toward your position, that is, you can ignore the time that the laser reaches you from the laser gun. Assume that your body is a point and the laser is a half-line whose end point is (0, 0). Find the maximum speed $v$ at which you are shot by the sniper in finite time when you and the sniper behave optimally. Input The input consists of a single test case. The input contains four integers in a line, $x$, $y$, $\theta$ and $\omega$. The two integers $x$ and $y$ $(0 \leq |x|, |y| \leq 1,000$, ($x$, $y$) $\ne$ (0, 0)) represent your initial position on the $xy$-plane. The integer $\theta$ $(0 \leq \theta < 360)$ represents the initial direction of the laser gun: it is the counterclockwise angle in degrees from the positive direction of the $x$-axis. The integer $\omega$ $(1 \leq \omega \leq 100)$ is the angle which the laser gun can rotate in unit time. You can assume that you are not shot by the sniper at the initial position. Output Display a line containing the maximum speed $v$ at which you are shot by the sniper in finite time. The absolute error or the relative error should be less than $10^{-6}$. Sample Input 1 100 100 0 1 Output for the Sample Input 1 1.16699564
[ { "submission_id": "aoj_2697_2139713", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\ntypedef complex<double> P;\n\ndouble modf(double x){\n while(x>2*PI){\n x-=2*PI;\n }\n while(x<0){\n x+=2*PI;\n }\n return x;\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = modf(arg(p)) - distA*b*rate;\n \n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n double tx=x,ty=y;\n double left=0,right=PI,midL,midR;\n \n if(x<0){\n left=PI*0.5;\n right=PI*1.5;\n }\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res= ( (check(v,midL) >= 0 )|| (check(v,midR) >=0) );\n \n x=tx;\n y=ty;\n return res;\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n // assert( x>=0 || y==0);\n\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 3696, "score_of_the_acc": -0.8762, "final_rank": 1 }, { "submission_id": "aoj_2697_2138681", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\ntypedef complex<double> P;\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n double tx=x,ty=y;\n\n if(x<0){\n double k=(arg(P(x,y)) - PI*0.5)/b;\n if( k*v >= abs(P(x,y)) )return true;\n double dd=abs(P(x,y))-k*v;\n x=0,y=dd;\n }\n\n \n double left=0,right=PI,midL,midR;\n\n\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res= ( (check(v,midL) >= 0 )|| (check(v,midR) >=0) );\n \n x=tx;\n y=ty;\n return res;\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n // assert( x>=0 || y==0);\n double fg=1e9;\n if( x < 0 ){\n fg = abs(P(x,y)) / ( arg(P(x,y)) / b );\n }\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return min(fg,left);\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 290, "memory_kb": 3744, "score_of_the_acc": -0.6173, "final_rank": 15 }, { "submission_id": "aoj_2697_2138676", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\ntypedef complex<double> P;\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n double tx=x,ty=y;\n /*\n if(x<0){\n double k=(arg(P(x,y)) - PI*0.5)/b;\n if( k*v >= abs(P(x,y)) )return true;\n double dd=abs(P(x,y))-k*v;\n x=0,y=dd;\n }\n */\n \n double left=0,right=PI,midL,midR;\n\n if( x < 0 ){\n left=arg(P(x,y));\n right=arg(P(x,y));\n }\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res= ( (check(v,midL) >= 0 )|| (check(v,midR) >=0) );\n \n x=tx;\n y=ty;\n return res;\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n // assert( x>=0 || y==0);\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 280, "memory_kb": 3664, "score_of_the_acc": -0.5923, "final_rank": 13 }, { "submission_id": "aoj_2697_2138673", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\ntypedef complex<double> P;\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n double tx=x,ty=y;\n /*\n if(x<0){\n double k=(arg(P(x,y)) - PI*0.5)/b;\n if( k*v >= abs(P(x,y)) )return true;\n double dd=abs(P(x,y))-k*v;\n x=0,y=dd;\n }\n */\n \n double left=0,right=PI,midL,midR;\n\n if( x < 0 ){\n left=arg(P(x,y));\n right=PI*1.5;\n }\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res= ( (check(v,midL) >= 0 )|| (check(v,midR) >=0) );\n \n x=tx;\n y=ty;\n return res;\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n // assert( x>=0 || y==0);\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 350, "memory_kb": 3576, "score_of_the_acc": -0.7409, "final_rank": 16 }, { "submission_id": "aoj_2697_2138671", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\ntypedef complex<double> P;\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n double tx=x,ty=y;\n /*\n if(x<0){\n double k=(arg(P(x,y)) - PI*0.5)/b;\n if( k*v >= abs(P(x,y)) )return true;\n double dd=abs(P(x,y))-k*v;\n x=0,y=dd;\n }\n */\n \n double left=0,right=PI,midL,midR;\n\n if( x < 0 ){\n left=PI;\n right=PI*1.9999999999;\n }\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res= ( (check(v,midL) >= 0 )|| (check(v,midR) >=0) );\n \n x=tx;\n y=ty;\n return res;\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n // assert( x>=0 || y==0);\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 280, "memory_kb": 3696, "score_of_the_acc": -0.5936, "final_rank": 14 }, { "submission_id": "aoj_2697_2138670", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\ntypedef complex<double> P;\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n double tx=x,ty=y;\n /*\n if(x<0){\n double k=(arg(P(x,y)) - PI*0.5)/b;\n if( k*v >= abs(P(x,y)) )return true;\n double dd=abs(P(x,y))-k*v;\n x=0,y=dd;\n }\n */\n \n double left=0,right=PI,midL,midR;\n\n if( x < 0 ){\n left=PI;\n right=PI*1.9999999999;\n }\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res= ( (check(v,midL) >= 0 )|| (check(v,midR) >=0) );\n \n x=tx;\n y=ty;\n return res;\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n assert( x>=0 || y==0);\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 240, "memory_kb": 3608, "score_of_the_acc": -0.5031, "final_rank": 10 }, { "submission_id": "aoj_2697_2138050", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v,bool flag=false){\n\n\n\n \n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n \n if(x<0){\n double tx=x;\n double ty=y;\n \n double k=(arg(P(x,y)) - PI*0.5)/b;\n if( k*v >= abs(P(x,y)) )return true;\n double dd=abs(P(x,y))-k*v;\n x=0,y=dd;\n \n double left=0,right=PI*1.5,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res=(check(v,midL) >= 0 )|| (check(v,midR) >=0);\n x=tx;\n y=ty;\n return res;\n }\n\n double left=0,right=PI*1.5,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n return (check(v,midL) >= 0 )|| (check(v,midR) >=0);\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n\n \n double left=0,right=1e9,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 260, "memory_kb": 3664, "score_of_the_acc": -0.5488, "final_rank": 12 }, { "submission_id": "aoj_2697_2138048", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v,bool flag=false){\n\n\n\n \n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n \n if(x<0){\n double tx=x;\n double ty=y;\n \n double k=(arg(P(x,y)) - PI*0.5)/b;\n if( k*v >= abs(P(x,y)) )return true;\n\n P np = P(x,y) / abs(P(x,y)) * ( abs(P(x,y))-k*v);\n x=np.real(); y=np.imag();\n \n double left=0,right=PI*1.5,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n bool res=(check(v,midL) >= 0 )|| (check(v,midR) >=0);\n x=tx;\n y=ty;\n return res;\n }\n\n double left=0,right=PI*1.5,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n return (check(v,midL) >= 0 )|| (check(v,midR) >=0);\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n\n \n double left=0,right=1e9,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 420, "memory_kb": 3712, "score_of_the_acc": -0.8986, "final_rank": 18 }, { "submission_id": "aoj_2697_2138016", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v,bool flag=false){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n \n double left=0,right=PI,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n \n if(flag){\n cout<<left<<' '<<right<<endl;\n cout<<left/PI<<' '<<right/PI<<endl; \n }\n \n return (check(v,midL) >= 0 )|| (check(v,midR) >=0);\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n\n \n double left=0,right=1e9,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 410, "memory_kb": 3680, "score_of_the_acc": -0.8756, "final_rank": 17 }, { "submission_id": "aoj_2697_2138015", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v,bool flag=false){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n \n double left=0,right=PI,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n \n if(flag){\n cout<<left<<' '<<right<<endl;\n cout<<left/PI<<' '<<right/PI<<endl; \n }\n \n return (check(v,midL) >= 0 )|| (check(v,midR) >=0);\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n\n assert(y>=0);\n \n y=abs(p.imag());\n\n\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 470, "memory_kb": 3576, "score_of_the_acc": -1.0018, "final_rank": 19 }, { "submission_id": "aoj_2697_2138012", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v,bool flag=false){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n \n double left=0,right=PI,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n \n if(flag){\n cout<<left<<' '<<right<<endl;\n cout<<left/PI<<' '<<right/PI<<endl; \n }\n \n return (check(v,midL) >= 0 )|| (check(v,midR) >=0);\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n assert(x>=0);\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n // func(left,true);\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 240, "memory_kb": 3532, "score_of_the_acc": -0.5, "final_rank": 9 }, { "submission_id": "aoj_2697_2138011", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v,bool flag=false){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n \n double left=0,right=PI,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n \n if(flag){\n cout<<left<<' '<<right<<endl;\n cout<<left/PI<<' '<<right/PI<<endl; \n }\n \n return (check(v,midL) >= 0 )|| (check(v,midR) >=0);\n}\n\ndouble solve(){\n assert(x>=0);\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n // func(left,true);\n return left;\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 240, "memory_kb": 3608, "score_of_the_acc": -0.5031, "final_rank": 10 }, { "submission_id": "aoj_2697_2138005", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\ndouble compute(double v,double m,double rate){\n double R=v/b;\n\n P target=polar(R,m);\n double distA=abs( target - P(x,y) ) / v;\n P base=target-P(x,y);\n P p = P(x,y) + ( base * rate );\n double f = arg(p) - distA*b*rate;\n return f;\n}\n\ndouble check(double v,double m){\n double left=0,right=1,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl = compute(v,m,midL);\n double fr = compute(v,m,midR);\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return compute(v,m,left);\n}\n\nbool func(double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n \n double left=0,right=PI,midL,midR;\n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n double fl=check(v,midL);\n double fr=check(v,midR);\n \n if( fl < fr ){\n left=midL;\n }else{\n right=midR;\n }\n }\n\n return (check(v,midL) >= 0 )|| (check(v,midR) >=0);\n}\n\ndouble solve(){\n \n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n check(1.0,0.5);\n \n double left=0,right=1e5,mid;\n \n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if( func(mid) ) right=mid;\n else left=mid;\n }\n\n return left;\n\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 470, "memory_kb": 3664, "score_of_the_acc": -1.0054, "final_rank": 20 }, { "submission_id": "aoj_2697_2137877", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble x,y,a,b;\n\nbool check(double m,double v){\n // R*b == v\n // R==v/b\n double R=v/b;\n \n if( abs( P(x,y) ) < R+eps )return true;\n\n P target=polar(R,m);\n \n double distA=abs( target - P(x,y) ) / v;\n\n if( distA*b > m+eps )return false;\n\n double left=0,right=1,midL,midR;\n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n P base=target-P(x,y);\n P pl = P(x,y) + ( base * midL );\n P pr = P(x,y) + ( base * midR );\n \n double fl = arg(pl) - distA*b*midL;\n if(fl<-eps)return false;\n \n double fr = arg(pr) - distA*b*midR;\n if(fr<-eps)return false;\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return true;\n\n}\n\ndouble func(double m){\n double left=0,right=1e9,mid;\n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if(check(m,mid))right=mid;\n else left=mid;\n }\n return left;\n}\n\ndouble solve(){\n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n \n double left=0,right=PI,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n if( func(midL) < func(midR) ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return func(left);\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 60, "memory_kb": 3740, "score_of_the_acc": -0.1171, "final_rank": 3 }, { "submission_id": "aoj_2697_2137867", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble dot(P a,P b){ return real( b*conj(a) ); }\ndouble cross(P a,P b){ return imag( b*conj(a) ); }\n\ndouble calcdist(P a,P b,P p){\n if( dot(b-a,p-a) < 0 )return abs(p-a);\n if( dot(a-b,p-b) < 0 )return abs(p-b);\n return abs( cross(b-a,p-a) ) / abs(b-a);\n}\n\ndouble x,y,a,b;\n\nbool check(double m,double v){\n // R*b == v\n // R==v/b\n \n \n double R=v/b;\n if( abs( P(x,y) ) <= R )return true;\n\n P target=polar(R,m);\n // if( abs(target) < 1e-10 ) return false;\n\n \n // if( calcdist(target , P(x,y) , P(0,0) ) < R-eps )return false;\n \n double distA=abs( target - P(x,y) ) / v;\n\n if( distA*b > m )return false;\n\n double left=0,right=1,midL,midR;\n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n P base=target-P(x,y);\n P pl = P(x,y) + ( base * midL );\n P pr = P(x,y) + ( base * midR );\n \n double fl = arg(pl) - distA*b*midL;\n if(fl<0)return false;\n \n double fr = arg(pr) - distA*b*midR;\n if(fr<0)return false;\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return true;\n\n}\n\ndouble func(double m){\n double left=0,right=10000,mid;\n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if(check(m,mid))right=mid;\n else left=mid;\n }\n return left;\n}\n\ndouble solve(){\n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n // y=abs(p.imag());\n y=p.imag();\n \n if(y<=0){\n return func( arg(P(x,y)) );\n }\n \n // cout<<x<<' '<<y<<endl;\n \n double left=0,right=PI,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n if( func(midL) < func(midR) ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n // printf(\"%.10f\\n\",left/PI);\n return func(left);\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 70, "memory_kb": 3612, "score_of_the_acc": -0.1337, "final_rank": 5 }, { "submission_id": "aoj_2697_2137865", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble dot(P a,P b){ return real( b*conj(a) ); }\ndouble cross(P a,P b){ return imag( b*conj(a) ); }\n\ndouble calcdist(P a,P b,P p){\n if( dot(b-a,p-a) < 0 )return abs(p-a);\n if( dot(a-b,p-b) < 0 )return abs(p-b);\n return abs( cross(b-a,p-a) ) / abs(b-a);\n}\n\ndouble x,y,a,b;\n\nbool check(double m,double v){\n // R*b == v\n // R==v/b\n \n \n double R=v/b;\n if( abs( P(x,y) ) <= R )return true;\n\n P target=polar(R,m);\n // if( abs(target) < 1e-10 ) return false;\n\n \n // if( calcdist(target , P(x,y) , P(0,0) ) < R-eps )return false;\n \n double distA=abs( target - P(x,y) ) / v;\n\n if( distA*b > m )return false;\n\n double left=0,right=1,midL,midR;\n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n P base=target-P(x,y);\n P pl = P(x,y) + ( base * midL );\n P pr = P(x,y) + ( base * midR );\n \n double fl = arg(pl) - distA*b*midL;\n if(fl<0)return false;\n \n double fr = arg(pr) - distA*b*midR;\n if(fr<0)return false;\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return true;\n\n}\n\ndouble func(double m){\n double left=0,right=10000,mid;\n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if(check(m,mid))right=mid;\n else left=mid;\n }\n return left;\n}\n\ndouble solve(){\n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n if(x<=0){\n return func( arg(P(x,y)) );\n }\n \n // cout<<x<<' '<<y<<endl;\n \n double left=0,right=PI,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n if( func(midL) < func(midR) ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n // printf(\"%.10f\\n\",left/PI);\n return func(left);\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 70, "memory_kb": 3532, "score_of_the_acc": -0.1304, "final_rank": 4 }, { "submission_id": "aoj_2697_2137863", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble dot(P a,P b){ return real( b*conj(a) ); }\ndouble cross(P a,P b){ return imag( b*conj(a) ); }\n\ndouble calcdist(P a,P b,P p){\n if( dot(b-a,p-a) < 0 )return abs(p-a);\n if( dot(a-b,p-b) < 0 )return abs(p-b);\n return abs( cross(b-a,p-a) ) / abs(b-a);\n}\n\ndouble x,y,a,b;\n\nbool check(double m,double v){\n // R*b == v\n // R==v/b\n \n \n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n P target=polar(R,m);\n if( abs(target) < eps ) return false;\n\n \n // if( calcdist(target , P(x,y) , P(0,0) ) < R-eps )return false;\n \n double distA=abs( target - P(x,y) ) / v;\n\n if( distA*b > m )return false;\n\n double left=0,right=1,midL,midR;\n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n P base=target-P(x,y);\n P pl = P(x,y) + ( base * midL );\n P pr = P(x,y) + ( base * midR );\n \n double fl = arg(pl) - distA*b*midL;\n if(fl<0)return false;\n double fr = arg(pr) - distA*b*midR;\n if(fr<0)return false;\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return true;\n\n}\n\ndouble func(double m){\n double left=0,right=10000,mid;\n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if(check(m,mid))right=mid;\n else left=mid;\n }\n return left;\n}\n\ndouble solve(){\n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n\n if(x<=0){\n return func( arg(P(x,y)) );\n }\n \n // cout<<x<<' '<<y<<endl;\n \n double left=0,right=PI,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n if( func(midL) < func(midR) ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n // printf(\"%.10f\\n\",left/PI);\n return func(left);\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 70, "memory_kb": 3632, "score_of_the_acc": -0.1345, "final_rank": 7 }, { "submission_id": "aoj_2697_2137861", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble dot(P a,P b){ return real( b*conj(a) ); }\ndouble cross(P a,P b){ return imag( b*conj(a) ); }\n\ndouble calcdist(P a,P b,P p){\n if( dot(b-a,p-a) < 0 )return abs(p-a);\n if( dot(a-b,p-b) < 0 )return abs(p-b);\n return abs( cross(b-a,p-a) ) / abs(b-a);\n}\n\ndouble x,y,a,b;\n\nbool check(double m,double v){\n // R*b == v\n // R==v/b\n \n \n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n P target=polar(R,m);\n if( abs(target) < eps ) return false;\n\n \n // if( calcdist(target , P(x,y) , P(0,0) ) < R-eps )return false;\n \n double distA=abs( target - P(x,y) ) / v;\n\n if( distA*b > m )return false;\n\n double left=0,right=1,midL,midR;\n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n P base=target-P(x,y);\n P pl = P(x,y) + ( base * midL );\n P pr = P(x,y) + ( base * midR );\n \n double fl = arg(pl) - distA*b*midL;\n if(fl<0)return false;\n double fr = arg(pr) - distA*b*midR;\n if(fr<0)return false;\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return true;\n\n}\n\ndouble func(double m){\n double left=0,right=10000,mid;\n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if(check(m,mid))right=mid;\n else left=mid;\n }\n return left;\n}\n\ndouble solve(){\n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n // cout<<x<<' '<<y<<endl;\n \n double left=0,right=PI,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n if( func(midL) < func(midR) ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n // printf(\"%.10f\\n\",left/PI);\n return func(left);\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 70, "memory_kb": 3628, "score_of_the_acc": -0.1343, "final_rank": 6 }, { "submission_id": "aoj_2697_2137855", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ndouble PI=acos(-1);\ndouble eps=1e-7;\n\ntypedef complex<double> P;\n\ndouble Sqrt(double x){\n if(x<0)return 0;\n return sqrt(x);\n}\n\ndouble dot(P a,P b){ return real( b*conj(a) ); }\ndouble cross(P a,P b){ return imag( b*conj(a) ); }\n\ndouble calcdist(P a,P b,P p){\n if( dot(b-a,p-a) < 0 )return abs(p-a);\n if( dot(a-b,p-b) < 0 )return abs(p-b);\n return abs( cross(b-a,p-a) ) / abs(b-a);\n}\n\ndouble x,y,a,b;\n\nbool check(double m,double v){\n // R*b == v\n // R==v/b\n \n \n double R=v/b;\n if( abs( P(x,y) ) < R )return true;\n\n P target=polar(R,m);\n if( abs(target) < eps ) return false;\n\n \n // if( calcdist(target , P(x,y) , P(0,0) ) < R-eps )return false;\n \n double distA=abs( target - P(x,y) ) / v;\n\n if( distA*b > m )return false;\n\n double left=0,right=1,midL,midR;\n for(int i=0;i<100;i++){\n double dist=( right-left ) /3.0;\n midL=left+dist;\n midR=right-dist;\n \n P base=target-P(x,y);\n P pl = P(x,y) + ( base * midL );\n P pr = P(x,y) + ( base * midR );\n \n double fl = arg(pl) - distA*b*midL;\n if(fl<0)return false;\n double fr = arg(pr) - distA*b*midR;\n if(fr<0)return false;\n \n if( fl < fr ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n return true;\n\n}\n\ndouble func(double m){\n double left=0,right=100,mid;\n for(int i=0;i<100;i++){\n mid=(left+right)*0.5;\n if(check(m,mid))right=mid;\n else left=mid;\n }\n return left;\n}\n\ndouble solve(){\n P p=P(x,y) / polar(1.0, a);\n x=p.real();\n y=abs(p.imag());\n // cout<<x<<' '<<y<<endl;\n \n double left=0,right=PI,midL,midR;\n \n for(int i=0;i<100;i++){\n double dist=(right-left)/3.0;\n midL=left+dist;\n midR=right-dist;\n \n if( func(midL) < func(midR) ){\n right=midR;\n }else{\n left=midL;\n }\n }\n\n // printf(\"%.10f\\n\",left/PI);\n return func(left);\n}\n\nint main(){\n cin>>x>>y>>a>>b;\n a=a/180.0*PI;\n b=b/180.0*PI;\n printf(\"%.10f\\n\", (double)solve());\n return 0;\n}", "accuracy": 0.02040816326530612, "time_ms": 80, "memory_kb": 3680, "score_of_the_acc": -0.1582, "final_rank": 8 }, { "submission_id": "aoj_2697_1817816", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld = long double;\ntemplate<class T>\nusing Table = vector<vector<T>>;\nconst ld eps = 1e-9;\n\n\n/* ??????????????¬ */\n\n#include <complex>\n\ntypedef long double ld;\ntypedef complex<ld> Point;\n#define REP(i,n) for(int i=0;i<(int)(n);i++)\n#define ALL(x) (x).begin(),(x).end()\n\n\nconst ld pi = acos(-1.0);\nconst ld dtop = pi / 180.;\nconst ld ptod = 1. / dtop;\n\nnamespace std {\n\tbool operator<(const Point &lhs, const Point &rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() > rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\n// ????????\\???\nPoint input_point() {\n\tld x, y;\n\tcin >> x >> y;\n\treturn Point(x, y);\n}\n\n// ????????????????????????\nbool eq(const ld a, const ld b) {\n\treturn (abs(a - b) < eps);\n}\n\n// ??????\nld dot(const Point& a, const Point& b) {\n\treturn real(conj(a) * b);\n}\n\n// ??????\nld cross(const Point& a, const Point& b) {\n\treturn imag(conj(a) * b);\n}\n\n// ??´????????????\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() : a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) : a(a), b(b) {}\n\tPoint operator[](const int _num)const {\n\t\tif (_num == 0)return a;\n\t\telse if (_num == 1)return b;\n\t\telse {\n\t\t\tassert(false);\n\t\t\treturn Point();\n\t\t}\n\t}\n};\n\n// ????????????\nclass Circle {\npublic:\n\tPoint p;\n\tld r;\n\tCircle() : p(Point(0, 0)), r(0) {}\n\tCircle(Point p, ld r) : p(p), r(r) {}\n};\n\n// CCW\nint ccw(const Point& a, const Point &b, const Point &c) {\n\tconst Point nb(b - a);\n\tconst Point nc(c - a);\n\tif (cross(nb, nc) > eps) return 1; // a,b,c??????????¨???¨?????????????????¶\n\tif (cross(nb, nc) < -eps) return -1; // a,b,c???????¨???¨?????????????????¶\n\tif (dot(nb, nc) < 0) return 2; // c,a,b???????????´???????????¶\n\tif (norm(nb) < norm(nc)) return -2; // a,b,c???????????´???????????¶\n\treturn 0; // a,c,b???????????´???????????¶\n}\n\n\n/* ???????????? */\n\n// ??´?????¨??´??????????????????\nbool isis_ll(const Line& l, const Line& m) {\n\treturn !eq(cross(l.b - l.a, m.b - m.a), 0);\n}\n\n// ??´?????¨?????????????????????\nbool isis_ls(const Line& l, const Line& s) {\n\treturn isis_ll(l, s) &&\n\t\t(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// ????????¨?????????????????????\nbool isis_ss(const Line& s, const Line& t) {\n\treturn ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n\t\tccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// ????????´????????????\nbool isis_lp(const Line& l, const Point& p) {\n\treturn (abs(cross(l.b - p, l.a - p)) < eps);\n}\n\n// ?????????????????????\nbool isis_sp(const Line& s, const Point& p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\n// ??????????¶?\nPoint proj(const Line &l, const Point& p) {\n\tld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n\treturn l.a + t * (l.a - l.b);\n}\n\n// ??´?????¨??´????????????\nPoint is_ll(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tassert(cross(sv, tv) != 0);\n\treturn s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);\n}\n// ??´?????¨??´????????????\nvector<Point> is_ll2(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tif (cross(sv, tv) != 0)return vector<Point>(1, is_ll(s, t));\n\telse {\n\t\tvector<Point>ans;\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tif (isis_sp(s, t[k]) && find(ans.begin(), ans.end(), t[k]) == ans.end())ans.push_back(t[k]);\n\t\t\tif (isis_sp(t, s[k]) && find(ans.begin(), ans.end(), s[k]) == ans.end())ans.push_back(s[k]);\n\t\t}\n\t\treturn ans;\n\t}\n}\n// ????????¨???????????????\n//???????????£????????¨???????????¨assert(false)\nPoint is_ss(const Line &s, const Line& t) {\n\tif (isis_ss(s, t)) {\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tfor (int l = 0; l < 2; ++l) {\n\t\t\t\tif (s[k] == t[l])return s[k];\n\t\t\t}\n\t\t}\n\t\treturn is_ll(s, t);\n\t}\n\telse {\n\t\t//??????isis_ss?????????\n\t\tassert(false);\n\t\treturn Point(0, 0);\n\t}\n}\n// ??´?????¨???????????¢\nld dist_lp(const Line& l, const Point& p) {\n\treturn abs(p - proj(l, p));\n}\n\n// ??´?????¨??´???????????¢\nld dist_ll(const Line& l, const Line& m) {\n\treturn isis_ll(l, m) ? 0 : dist_lp(l, m.a);\n}\n\n// ??´?????¨??????????????¢\nld dist_ls(const Line& l, const Line& s) {\n\treturn isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\n\n// ????????¨???????????¢\nld dist_sp(const Line& s, const Point& p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\n// ????????¨??????????????¢\nld dist_ss(const Line& s, const Line& t) {\n\tif (isis_ss(s, t)) return 0;\n\treturn min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });\n}\n\n\n//??´?????¨??´?????????????????????????????????\nLine bisection(const Line &s, const Line &t) {\n\tconst Point laglanju(is_ll(s, t));\n\tconst Point avec = !(abs(laglanju - s[0])<eps) ? s[0] - laglanju : s[1] - laglanju;\n\tconst Point bvec = !(abs(laglanju - t[0])<eps) ? t[0] - laglanju : t[1] - laglanju;\n\n\treturn Line(laglanju, laglanju + (abs(bvec)*avec + abs(avec)*bvec) / (abs(avec) + abs(bvec)));\n}\n\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nPoint inner_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i <static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (vertics[0] == vertics[1] || vertics[1] == vertics[2] || vertics[2] == vertics[0])return vertics[0];\n\tLine bi1(bisection(Line(vertics[0], vertics[1]), Line(vertics[0], vertics[2])));\n\tLine bi2(bisection(Line(vertics[1], vertics[2]), Line(vertics[1], vertics[0])));\n\tif (bi1[0] == bi2[0])return bi1[0];\n\telse {\n\t\treturn is_ll(bi1, bi2);\n\t}\n}\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nvector<Point> ex_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i < static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (abs(vertics[0] - vertics[1])<eps || abs(vertics[1] - vertics[2])<eps || (abs(vertics[2] - vertics[0])<eps))return vector<Point>();\n\tvector<Point>ecs;\n\tfor (int i = 0; i < 3; ++i) {\n\t\tLine bi1(bisection(Line(vertics[i], vertics[i] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[i], vertics[(i + 1) % 3])));\n\t\tLine bi2(bisection(Line(vertics[(i + 1) % 3], vertics[(i + 1) % 3] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[(i + 1) % 3], vertics[i])));\n\t\tecs.push_back(is_ll(bi1, bi2));\n\t}\n\treturn ecs;\n}\n\n\n//a,b:??????\n//c:????????§??????\n//???????????´?????????????????¢?????????????±??????????\nvector<Point> same_dis(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tvertics.push_back(is_ll(ls[0], ls[2]));\n\tvertics.push_back(is_ll(ls[1], ls[2]));\n\n\tif (abs(vertics[0] - vertics[1]) < eps)return vector<Point>{vertics[0]};\n\tLine bis(bisection(ls[0], ls[1]));\n\tvector<Point>ecs;\n\n\tLine abi(bisection(Line(vertics[0], vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, abi));\n\n\n\tLine bbi(bisection(Line(vertics[0], 2.l*vertics[0] - vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, bbi));\n\n\treturn ecs;\n}\n/* ??? */\n\n// ?????¨????????????\nvector<Point> is_cc(const Circle& c1, const Circle& c2) {\n\tvector<Point> res;\n\tld d = abs(c1.p - c2.p);\n\tld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);\n\tld dfr = c1.r * c1.r - rc * rc;\n\tif (abs(dfr) < eps) dfr = 0.0;\n\telse if (dfr < 0.0) return res; // no intersection\n\tld rs = sqrt(dfr);\n\tPoint diff = (c2.p - c1.p) / d;\n\tres.push_back(c1.p + diff * Point(rc, rs));\n\tif (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));\n\treturn res;\n}\n\n//???????????????????????????\n// 0 => out\n// 1 => on\n// 2 => in\nint is_in_circle(const Circle &cir, const Point& p) {\n\tld dis = abs(cir.p - p);\n\tif (dis > cir.r + eps)return 0;\n\telse if (dis < cir.r - eps)return 2;\n\telse return 1;\n}\n//???lc??????rc??????????????????\n// 0 => out\n// 1 => on\n// 2 => in\nint circle_in_circle(const Circle &lc, const Circle&rc) {\n\tld dis = abs(lc.p - rc.p);\n\tif (dis < rc.r - lc.r - eps)return 2;\n\telse if (dis>rc.r - lc.r + eps)return 0;\n\telse return 1;\n}\n\n// ?????¨??´????????????\nvector<Point> is_lc(const Circle& c, const Line& l) {\n\tvector<Point> res;\n\tld d = dist_lp(l, c.p);\n\tif (d < c.r + eps) {\n\t\tld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;\n\t\tPoint nor = (l.a - l.b) / abs(l.a - l.b);\n\t\tres.push_back(proj(l, c.p) + len * nor);\n\t\tres.push_back(proj(l, c.p) - len * nor);\n\t}\n\treturn res;\n}\n\n// ?????¨??????????????¢\nvector<Point> is_sc(const Circle& c, const Line& l) {\n\tvector<Point> v = is_lc(c, l), res;\n\tfor (Point p : v)\n\t\tif (isis_sp(l, p)) res.push_back(p);\n\treturn res;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cp(const Circle& c, const Point& p) {\n\tvector<Line> ret;\n\tPoint v = c.p - p;\n\tld d = abs(v);\n\tld l = sqrt(norm(v) - c.r * c.r);\n\tif (isnan(l)) { return ret; }\n\tPoint v1 = v * Point(l / d, c.r / d);\n\tPoint v2 = v * Point(l / d, -c.r / d);\n\tret.push_back(Line(p, p + v1));\n\tif (l < eps) return ret;\n\tret.push_back(Line(p, p + v2));\n\treturn ret;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cc(const Circle& c1, const Circle& c2) {\n\tvector<Line> ret;\n\tif (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {\n\t\tPoint center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);\n\t\tret = tangent_cp(c1, center);\n\t}\n\tif (abs(c1.r - c2.r) > eps) {\n\t\tPoint out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);\n\t\tvector<Line> nret = tangent_cp(c1, out);\n\t\tret.insert(ret.end(), ALL(nret));\n\t}\n\telse {\n\t\tPoint v = c2.p - c1.p;\n\t\tv /= abs(v);\n\t\tPoint q1 = c1.p + v * Point(0, 1) * c1.r;\n\t\tPoint q2 = c1.p + v * Point(0, -1) * c1.r;\n\t\tret.push_back(Line(q1, q1 + v));\n\t\tret.push_back(Line(q2, q2 + v));\n\t}\n\treturn ret;\n}\n//??????????????????????????¢???\nld two_circle_area(const Circle&l, const Circle&r) {\n\tld dis = abs(l.p - r.p);\n\tif (dis > l.r + r.r)return 0;\n\telse if (dis + r.r < l.r) {\n\t\treturn r.r*r.r*pi;\n\t}\n\telse if (dis + l.r < r.r) {\n\t\treturn l.r*l.r*pi;\n\t}\n\telse {\n\t\tld ans = (l.r)*(l.r)*acos((dis*dis + l.r*l.r - r.r*r.r) / (2 * dis*l.r)) +\n\t\t\t(r.r)*(r.r)*acos((dis*dis + r.r*r.r - l.r*l.r) / (2 * dis*r.r)) -\n\t\t\tsqrt(4 * dis*dis*l.r*l.r - (dis*dis + l.r*l.r - r.r*r.r)*(dis*dis + l.r*l.r - r.r*r.r)) / 2;\n\t\treturn ans;\n\t}\n\n}\n\n/* ????§???¢ */\n\ntypedef vector<Point> Polygon;\n\n// ??¢???\nld area(const Polygon &p) {\n\tld res = 0;\n\tint n = p.size();\n\tREP(j, n) res += cross(p[j], p[(j + 1) % n]);\n\treturn res / 2;\n}\n\n// ????§???¢????????¢??????\nbool is_counter_clockwise(const Polygon &poly) {\n\tld angle = 0;\n\tint n = poly.size();\n\tREP(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];\n\t\tangle += arg((c - b) / (b - a));\n\t}\n\treturn angle > eps;\n}\n\n// ??????????????????\n// 0 => out\n// 1 => on\n// 2 => in\nint is_in_polygon(const Polygon &poly, const Point& p) {\n\tld angle = 0;\n\tint n = poly.size();\n\tREP(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n];\n\t\tif (isis_sp(Line(a, b), p)) return 1;\n\t\tangle += arg((b - p) / (a - p));\n\t}\n\treturn eq(angle, 0) ? 0 : 2;\n}\n//??????????????????2?????????\nenum { OUT, ON, IN };\nint convex_contains(const Polygon &P, const Point &p) {\n\tconst int n = P.size();\n\tPoint g = (P[0] + P[n / 3] + P[2 * n / 3]) / 3.0l; // inner-point\n\tint a = 0, b = n;\n\twhile (a + 1 < b) { // invariant: c is in fan g-P[a]-P[b]\n\t\tint c = (a + b) / 2;\n\t\tif (cross(P[a] - g, P[c] - g) > 0) { // angle < 180 deg\n\t\t\tif (cross(P[a] - g, p - g) > 0 && cross(P[c] - g, p - g) < 0) b = c;\n\t\t\telse a = c;\n\t\t}\n\t\telse {\n\t\t\tif (cross(P[a] - g, p - g) < 0 && cross(P[c] - g, p - g) > 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t}\n\tb %= n;\n\tif (cross(P[a] - p, P[b] - p) < 0) return 0;\n\tif (cross(P[a] - p, P[b] - p) > 0) return 2;\n\treturn 1;\n}\n\n// ??????\n// ???????????????????????¨????????????????????§??¨???\nPolygon convex_hull(vector<Point> ps) {\n\tint n = ps.size();\n\tint k = 0;\n\tsort(ps.begin(), ps.end());\n\tPolygon ch(2 * n);\n\tfor (int i = 0; i < n; ch[k++] = ps[i++])\n\t\twhile (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tfor (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])\n\t\twhile (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tch.resize(k - 1);\n\treturn ch;\n}\n\n\n\n// ????????????\nvector<Polygon> convex_cut(const Polygon &ps, const Line& l) {\n\tint n = ps.size();\n\tPolygon Q;\n\tPolygon R;\n\tREP(i, n) {\n\t\tPoint A = ps[i], B = ps[(i + 1) % n];\n\t\tLine m = Line(A, B);\n\t\tif (ccw(l.a, l.b, A) != -1) Q.push_back(A);\n\t\tif (ccw(l.a, l.b, A) != 1) R.push_back(A);\n\t\tif (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0 && isis_ll(l, m)) {\n\t\t\tQ.push_back(is_ll(l, m));\n\t\t\tR.push_back(is_ll(l, m));\n\t\t}\n\t}\n\tconst vector<Polygon>polys{ Q,R };\n\treturn polys;\n}\n\n\n/* ??¢??¬??????????????? */\nvoid add_point(vector<Point> &ps, const Point p) {\n\tfor (Point q : ps) if (abs(q - p) < eps) return;\n\tps.push_back(p);\n}\n\ntypedef int Weight;\nstruct Edge {\n\tint src, dst;\n\tWeight weight;\n\tEdge(int src, int dst, Weight weight) :\n\t\tsrc(src), dst(dst), weight(weight) { }\n};\n\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &g, const int from, const int to, const Weight weight) {\n\tg[from].push_back(Edge{ from, to, weight });\n}\n\nGraph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {\n\tint n = p.size(), m = s.size();\n\tGraph g(n);\n\tREP(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\tREP(j, n) if (isis_sp(s[i], p[j]))\n\t\t\tvec.emplace_back(abs(s[i].a - p[j]), j);\n\t\tsort(ALL(vec));\n\t\tREP(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tadd_edge(g, from, to, static_cast<Weight>(abs(p[from] - p[to])));\n\t\t}\n\t}\n\treturn g;\n}\nGraph sennbunn_arrangement(const vector<Line>&s) {\n\tvector<Point>crss;\n\tfor (int i = 0; i < static_cast<int>(s.size()); ++i) {\n\t\tfor (int j = i + 1; j < static_cast<int>(s.size()); ++j) {\n\t\t\tif (isis_ss(s[i], s[j])) {\n\t\t\t\tcrss.push_back(is_ll(s[i], s[j]));\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i <static_cast<int>(s.size()); ++i) {\n\t\tcrss.push_back(s[i][0]);\n\t\tcrss.push_back(s[i][1]);\n\t}\n\treturn segment_arrangement(s, crss);\n}\n\n//Graph circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {\n//\tint n = p.size(), m = c.size();\n//\tGraph g(n);\n//\tREP(i, m) {\n//\t\tvector<pair<ld, int>> vec;\n//\t\tREP(j, n) if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)\n//\t\t\tvec.emplace_back(arg(c[i].p - p[j]), j);\n//\t\tsort(ALL(vec));\n//\t\tREP(j, vec.size() - 1) {\n//\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n//\t\t\tld angle = vec[j + 1].first - vec[j].first;\n//\t\t\tadd_edge(g, from, to, static_cast<Weight>(angle * c[i].r));\n//\t\t}\n//\t\tif (vec.size() >= 2) {\n//\t\t\tint from = vec.back().second, to = vec.front().first;\n//\t\t\tld angle = vec.front().first - vec.back().first;\n//\t\t\tadd_edge(g, from, to, static_cast<Weight>(angle * c[i].r));\n//\t\t}\n//\t}\n//\treturn g;\n//}\n\n\n/* ????????°?????? */\n\n// ?????????????????¢?????¢??¬??????????????????????????????????????°???????????????\n// ?????´?????????????¨?????????§????????´????????????????¨?????????§???????????????\n// ?????° polygon ??????vector<int> ??§??¨?????????????§???¢???????????§?????????\n// vector<int> ??§??¨????????? ????§???¢???i???????????????????????????????????????p????????????????????§?????????\nvector<vector<int>> polygon;\nvector<int> seg2p[1024][1024];\n\n//Graph dual_graph(const vector<Line> &s, const vector<Point> &p) {\n//\tint N = p.size();\n//\tpolygon.clear();\n//\tREP(i, 1024) REP(j, 1024) seg2p[i][j].clear();\n//\tvector<vector<tuple<ld, int, bool>>> tup(N);\n//\tREP(i, s.size()) {\n//\t\tint a = -1, b = -1;\n//\t\tREP(j, N) if (abs(s[i].a - p[j]) < eps) a = j;\n//\t\tREP(j, N) if (abs(s[i].b - p[j]) < eps) b = j;\n//\t\tassert(a >= 0 && b >= 0);\n//\t\ttup[a].emplace_back(arg(s[i].b - s[i].a), b, false);\n//\t\ttup[b].emplace_back(arg(s[i].a - s[i].b), a, false);\n//\t}\n//\tREP(i, N) sort(ALL(tup[i]));\n//\tREP(i, N) {\n//\t\tREP(j, tup[i].size()) {\n//\t\t\tld angle; int pos = j, from = i, to; bool flag;\n//\t\t\ttie(angle, to, flag) = tup[i][j];\n//\t\t\tif (flag) continue;\n//\t\t\tvector<int> ps;\n//\t\t\twhile (!flag) {\n//\t\t\t\tps.push_back(from);\n//\t\t\t\tget<2>(tup[from][pos]) = true;\n//\t\t\t\tseg2p[from][to].push_back(polygon.size());\n//\t\t\t\tseg2p[to][from].push_back(polygon.size());\n//\t\t\t\tangle += pi + eps;\n//\t\t\t\tif (angle > pi) angle -= 2 * pi;\n//\t\t\t\tauto it = lower_bound(ALL(tup[to]), make_tuple(angle, 0, false));\n//\t\t\t\tif (it == tup[to].end()) it = tup[to].begin();\n//\t\t\t\tfrom = to; tie(angle, to, flag) = *it;\n//\t\t\t\tpos = it - tup[from].begin();\n//\t\t\t}\n//\t\t\tpolygon.push_back(ps);\n//\t\t}\n//\t}\n//\tGraph g(polygon.size());\n//\tREP(i, N) REP(j, i) {\n//\t\tif (seg2p[i][j].size() == 2) {\n//\t\t\tint from = seg2p[i][j][0], to = seg2p[i][j][1];\n//\t\t\tg[from].push_back(Edge{ from, to });\n//\t\t\tg[to].push_back(Edge{ to, from });\n//\t\t}\n//\t}\n//\treturn g;\n//}\n\n\n\n\n// < \"D:\\D_Download\\Visual Studio 2015\\Projects\\programing_contest_c++\\Debug\\a.txt\"\nint x, y, theta, w;\n\n\nld gettheta(const Point &l, const Point&r) {\n\tld bb((dot(l, r) / (abs(l)*abs(r))));\n\n\tld satheta = acos(bb);\n\n\treturn satheta;\n}\nbool check(ld v) {\n\tPoint start(x, y);\n\t//cout << v << endl;\n\tld goalr = v / w * 360 / pi / 2;\n\tif (abs(start) - 5e-7< goalr)return true;\n\tCircle goal(Point(0, 0), goalr);\n\n\tvector<Line>ls(tangent_cp(goal, start));\n\tif (ls.empty()) {\n\t\tif (y == 671)\n\t\t\tif (x == -y)\n\t\t\t\tif (67 == w)\n\t\t\t\t\tif (theta == 315)//assert(false);\n\t\t\t\t\t\t//cout << \"bagu!\" << v << endl;\n\t\treturn true;\n\t}\n\n\t{\n\t\tconst Point astartvec = Point(cos(theta*dtop), sin(theta*dtop));\n\t\tconst Point afirstvec = start;\n\t\tconst Point agoalvec = (is_lc(goal, ls[0])[0]);\n\t\tld time = abs(start - agoalvec) / v;\n\t\tld bb((dot(astartvec, afirstvec) / (abs(astartvec)*abs(afirstvec))));\n\t\tld cc((dot(afirstvec, agoalvec) / (abs(afirstvec)*abs(agoalvec))));\n\t\t//cout << \"b \" << bb << \"c \" << cc << endl;\n\t\tld ab = acos(bb);\n\t\tld ac = acos(cc);\n\t\tif (isnan(ab)) {\n\t\t\tif (bb> 0)ab = 0;\n\t\t\telse ab = pi;\n\t\t}\n\t\tif (isnan(ac)) {\n\t\t\tif (cc > 0)ac = 0;\n\t\t\telse ac = pi;\n\t\t}\n\t\tld satheta = ab + ac;\n\t\tld aaa = time - satheta*ptod / w;\n\t\t//cout << \"time\" << time << \"sat\" << satheta << endl;\n\t\tif (aaa < 0)return true;\n\t\telse return false;\n\t}\n\n\n\n\n}\nint main() {\n\tcin >> x >> y >> theta >> w;\n\tld amin = 0;\n\tld amax = 1e20;\n\tint rest = 1000;\n\twhile (rest--) {\n\t\tld amid = (amin + amax) / 2;\n\t\tif (check(amid)) {\n\t\t\tamax = amid;\n\t\t}\n\t\telse {\n\t\t\tamin = amid;\n\t\t}\n\t}\n\tcout << setprecision(12) << fixed << amin << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 28204, "score_of_the_acc": -1, "final_rank": 2 } ]
aoj_2696_cpp
Problem J New Game AI Aoba is a beginner programmer who works for a game company. She was appointed to develop a battle strategy for the enemy AI (Artificial Intelligence) in a new game. In this game, each character has two parameters, hit point ($hp$) and defence point ($dp$). No two characters have the same $hp$ and $dp$ at the same time. The player forms a party by selecting one or more characters to battle with the enemy. Aoba decided to develop a strategy in which the AI attacks the weakest character in the party: that is, the AI attacks the character with the minimum hit point in the party (or, if there are several such characters, the character with the minimum defense point among them). She wrote a function selectTarget ($v$) that takes an array of characters representing a party and returns a character that her AI will attack. However, the project manager Ms. Yagami was not satisfied with the behavior of her AI. Ms. Yagami said this AI was not interesting. Aoba struggled a lot, and eventually she found that it is interesting if she substitutes one of the constant zeros in her program with a constant $C$. The rewritten program is as follows. Note that Character is a type representing a character and has fields $hp$ and $dp$ which represent the hit point and the defense point of the character respectively. int C = <constant integer>; Character selectTarget(Character v[]) { int n = length(v); int r = 0; for (int i = 1; i < n; i++) { if (abs(v[r].hp - v[i].hp) > C) { if (v[r].hp > v[i].hp) r = i; } else { if (v[r].dp > v[i].dp) r = i; } } return v[r]; } By the way, this function may return different characters according to the order of the characters in $v$, even if $v$ contains the same set of characters. Ms. Yagami wants to know how many characters in a party may become the target of the new AI. Aoba's next task is to write a program that takes a given party $v$ and a constant $C$, and then counts the number of characters that may become the return value of selectTarget ($v$) if $v$ is re-ordered. Input The input consists of a single test case. The first line contains two integers $N$ $(1 \leq N \leq 50,000)$ and $C$ $(0 \leq C \leq 10^9)$. The first integer $N$ represents the size of $v$. The second integer $C$ represents the constant $C$ in Aoba's program. The i -th line of the following $N$ lines contains two integers $hp_i$ and $dp_i$ $(0 \leq hp_i, dp_i \leq 10^9)$. $hp_i$ represents the hit point of the $i$-th character in $v$, and $dp_i$ represents the defense point of the $i$-th character in $v$. You can assume that $hp_i \ne hp_j$ or $dpi \ne dp_j$ if $i \ne j$ for any $1 \leq i, j \leq N$. Output Display the number of characters that may become the return value of selectTarget ($v$), if $v$ is shuffled in an arbitrary order. Sample Input 1 5 3 1 5 3 4 5 3 7 2 9 1 Output for the Sample Input 1 5 Sample Input 2 3 2 1 2 3 1 5 1 Output for the Sample Input 2 2 Sample Input 3 4 1 2 0 0 4 1 1 5 9 Outp ...(truncated)
[ { "submission_id": "aoj_2696_10319485", "code_snippet": "// AOJ #2098 Two-finger Programming\n// 2025.3.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nconst int NMAX = 50005;\n\nint n, c;\nint usd[NMAX] = {0};\nint flag[NMAX] = {0};\nint nw = 1, tp = 1;\nint stk[NMAX];\nint ct = 0;\npair<int,int> st[NMAX];\n\nbool cmp(int a, int b) {\n return st[a].second == st[b].second ? st[a].first > st[b].first : st[a].second < st[b].second;\n}\n\nstruct Seg {\n struct Nd { int l, r, mn; } e[NMAX * 4];\n\n void pu(int i) {\n int lmn = e[i << 1].mn, rmn = e[i << 1 | 1].mn;\n if (!lmn || !rmn) e[i].mn = lmn + rmn;\n else e[i].mn = cmp(lmn, rmn) ? lmn : rmn;\n }\n\n void bd(int i, int l, int r) {\n e[i].l = l; e[i].r = r;\n if (l == r) { e[i].mn = l; return; }\n int mid = (l + r) >> 1;\n bd(i << 1, l, mid);\n bd(i << 1 | 1, mid + 1, r);\n pu(i);\n }\n\n void mod(int i, int v) {\n if (e[i].l == e[i].r) { e[i].mn = 0; return; }\n int mid = (e[i].l + e[i].r) >> 1;\n if (v <= mid) mod(i << 1, v);\n else mod(i << 1 | 1, v);\n pu(i);\n }\n\n int qu(int i, int l, int r) {\n if (e[i].l == l && e[i].r == r) return e[i].mn;\n int mid = (e[i].l + e[i].r) >> 1;\n if (r <= mid) return qu(i << 1, l, r);\n if (l > mid) return qu(i << 1 | 1, l, r);\n int vl = qu(i << 1, l, mid), vr = qu(i << 1 | 1, mid + 1, r);\n if (!vl || !vr) return vl + vr;\n return cmp(vl, vr) ? vl : vr;\n }\n} seg;\n\nint qry(int v) {\n int pos = lower_bound(st + 1, st + n + 1, make_pair(v + 1, 0)) - st - 1;\n return seg.qu(1, 1, pos);\n}\n\nvoid run() {\n while (usd[nw]) nw++;\n if (nw > n) { tp = 0; return; }\n\n ct = 0;\n int idx = qry(st[nw].first + c);\n if (st[idx].second == st[nw].second) {\n idx = nw;\n usd[idx] = 1;\n stk[++ct] = idx;\n seg.mod(1, idx);\n } else {\n while (st[idx].second == st[stk[1]].second || ct == 0) {\n usd[idx] = 1;\n stk[++ct] = idx;\n seg.mod(1, idx);\n idx = qry(st[nw].first + c);\n }\n }\n\n for (int i = 1; i <= ct; i++) {\n if (flag[stk[i]]) tp = 0;\n while (usd[nw]) nw++;\n while (nw <= n && st[nw].first < st[stk[i]].first - c) {\n stk[++ct] = nw;\n usd[nw] = 1;\n seg.mod(1, nw);\n while (usd[nw]) nw++;\n }\n while (true) {\n int tmp = qry(st[stk[i]].first + c);\n if (!tmp || st[tmp].second >= st[stk[i]].second) break;\n stk[++ct] = tmp;\n usd[tmp] = 1;\n seg.mod(1, tmp);\n }\n }\n int base = st[stk[1]].second;\n for (int i = 1; i <= ct; i++) {\n if (st[stk[i]].second != base) tp = 0;\n }\n if (tp) {\n int mn = 1e9;\n for (int i = 1; i <= ct; i++) mn = min(mn, st[stk[i]].first);\n int tmp = qry(mn + c);\n if (!tmp || st[tmp].second > base) tp = 0;\n else flag[tmp] = 1;\n }\n}\n\nint main() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n cin >> n >> c;\n for (int i = 1; i <= n; i++) cin >> st[i].first >> st[i].second;\n sort(st + 1, st + n + 1);\n seg.bd(1, 1, n);\n while (tp) run();\n int ans = 0;\n for (int i = 1; i <= n; i++) ans += usd[i];\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5816, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2696_3832931", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\n#include <map>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\n//#define int long long int\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse if(l<r){\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(l==r)v[n].F=INF;\n\t\telse if(l<r){\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nmap<int,int> m;\nvoid dfs(int x){\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(m.find(v[x].S)==m.end())m[v[x].S]=r[x];\n\telse m[v[x].S]=min(m[v[x].S],r[x]);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\telse if(temp.S>m[v[x].S])ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\t//for(int i=0;i<n;i++)sg.ask(0,0,n-1,i,i);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tv.PB({INF,INF});\n\tfor(int i=0;i<n;i++){\n\t lpos=lower_bound(v.begin(),v.end(),make_pair(v[i].F-c,0))-v.begin();\n\t rpos=lower_bound(v.begin(),v.end(),make_pair(v[i].F+c+1,0))-v.begin();\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 25388, "score_of_the_acc": -1.3377, "final_rank": 2 }, { "submission_id": "aoj_2696_3832912", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\n//#define int long long int\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse if(l<r){\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(l==r)v[n].F=INF;\n\t\telse if(l<r){\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nsigned main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\t//for(int i=0;i<n;i++)sg.ask(0,0,n-1,i,i);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tv.PB({INF,INF});\n\tfor(int i=0;i<n;i++){\n\t lpos=lower_bound(v.begin(),v.end(),make_pair(v[i].F-c,0))-v.begin();\n\t rpos=lower_bound(v.begin(),v.end(),make_pair(v[i].F+c+1,0))-v.begin();\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 40, "memory_kb": 22968, "score_of_the_acc": -0.9626, "final_rank": 6 }, { "submission_id": "aoj_2696_3832900", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\n#define int long long int\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse if(l<r){\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(l==r)v[n].F=INF;\n\t\telse if(l<r){\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nsigned main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%lld%lld\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%lld%lld\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\t//for(int i=0;i<n;i++)sg.ask(0,0,n-1,i,i);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 40, "memory_kb": 24800, "score_of_the_acc": -0.9942, "final_rank": 7 }, { "submission_id": "aoj_2696_3832896", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\n#define int long long int\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nsigned main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%lld%lld\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%lld%lld\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\t//for(int i=0;i<n;i++)sg.ask(0,0,n-1,i,i);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 40, "memory_kb": 24808, "score_of_the_acc": -0.9944, "final_rank": 8 }, { "submission_id": "aoj_2696_3832894", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\t//for(int i=0;i<n;i++)sg.ask(0,0,n-1,i,i);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 40, "memory_kb": 22120, "score_of_the_acc": -0.948, "final_rank": 5 }, { "submission_id": "aoj_2696_3832893", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)sg.ask(0,0,n-1,i,i);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 40, "memory_kb": 20852, "score_of_the_acc": -0.9261, "final_rank": 4 }, { "submission_id": "aoj_2696_3832890", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 40, "memory_kb": 20836, "score_of_the_acc": -0.9258, "final_rank": 3 }, { "submission_id": "aoj_2696_3832877", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.v.resize(N<<2);\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 50, "memory_kb": 9728, "score_of_the_acc": -1.0675, "final_rank": 11 }, { "submission_id": "aoj_2696_3832875", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(N<<2);\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 50, "memory_kb": 9744, "score_of_the_acc": -1.0678, "final_rank": 12 }, { "submission_id": "aoj_2696_3832874", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 50, "memory_kb": 7684, "score_of_the_acc": -1.0322, "final_rank": 9 }, { "submission_id": "aoj_2696_3832873", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(const pair<int,int> &a,const pair<int,int> &b){\n\t if(a.F<=b.F)return a;\n\t else return b;\n\t}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 50, "memory_kb": 7684, "score_of_the_acc": -1.0322, "final_rank": 9 }, { "submission_id": "aoj_2696_3832872", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){return a.F<=b.F?a:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.4358974358974359, "time_ms": 50, "memory_kb": 63768, "score_of_the_acc": -2, "final_rank": 15 }, { "submission_id": "aoj_2696_3832871", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){\n\t if(a.F<b.F)return a;\n\t else if(b.F<a.F)return b;\n\t else return a.S<b.S?a:b;\n\t}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 50, "memory_kb": 23224, "score_of_the_acc": -1.3004, "final_rank": 13 }, { "submission_id": "aoj_2696_3832869", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){\n\t if(a.F<b.F)return a;\n\t else if(b.F<a.F)return b;\n\t else return a.S<b.S?a:b;\n\t}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.23076923076923078, "time_ms": 40, "memory_kb": 57104, "score_of_the_acc": -1.5517, "final_rank": 17 }, { "submission_id": "aoj_2696_3832860", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){return a.F<b.F?a:a.F==b.F?a.S<b.S?a:b:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]=make_pair(a[l],l);\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.23076923076923078, "time_ms": 30, "memory_kb": 60228, "score_of_the_acc": -1.2722, "final_rank": 16 }, { "submission_id": "aoj_2696_3832853", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){return a.F<b.F?a:a.F==b.F?a.S<b.S?a:b:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]={a[l],l};\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\tif(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.23076923076923078, "time_ms": 40, "memory_kb": 60248, "score_of_the_acc": -1.6059, "final_rank": 20 }, { "submission_id": "aoj_2696_3832852", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){return a.F<b.F?a:a.F==b.F?a.S<b.S?a:b:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]={a[l],l};\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\t//if(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\tif(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.23076923076923078, "time_ms": 40, "memory_kb": 59688, "score_of_the_acc": -1.5963, "final_rank": 18 }, { "submission_id": "aoj_2696_3832851", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){return a.F<b.F?a:a.F==b.F?a.S<b.S?a:b:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]={a[l],l};\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t //if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\t//if(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\t//if(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.23076923076923078, "time_ms": 40, "memory_kb": 59760, "score_of_the_acc": -1.5975, "final_rank": 19 }, { "submission_id": "aoj_2696_3832850", "code_snippet": "bool debug=false;\n#include <queue>\n#include <vector>\n#include <stdio.h>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n#define F first\n#define S second\n#define PB push_back\nconst int N=(int)1e5+10;\nconst int INF=(int)1e9+10;\nstruct seg_tree{\n\tvector<pair<int,int>> v;\n\tpair<int,int> better(pair<int,int> a,pair<int,int> b){return a.F<b.F?a:a.F==b.F?a.S<b.S?a:b:b;}\n\tvoid pull(int n){v[n]=better(v[n*2+1],v[n*2+2]);}\n\tvoid init(int n,int l,int r,int a[]){\n\t\tif((int)v.size()<=n)v.resize(n+1);\n\t\tif(l==r)v[n]={a[l],l};\n\t\telse{\n\t\t\tint mid=(l+r)>>1;\n\t\t\tinit(n*2+1,l,mid,a);\n\t\t\tinit(n*2+2,mid+1,r,a);\n\t\t\tpull(n);\n\t\t}\n\t}\n\tvoid fix(int n,int l,int r,int pos){\n\t\tif(debug)printf(\"fix(%d,%d,%d,%d)\\n\",n,l,r,pos);\n\t\tif(l==r)v[n].F=INF;\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\tif(pos>mid)fix(n*2+2,mid+1,r,pos);\n\t\t\telse fix(n*2+1,l,mid,pos);\n\t\t\tpull(n);\n\t\t}\n\t\treturn ;\n\t}\n\tpair<int,int> ask(int n,int l,int r,int L,int R){\n\t if(L>R)while(true);\n\t\tif(L<=l&&r<=R)return v[n];\n\t\telse if(L>r||l>R)return {INF,-1};\n\t\telse {\n\t\t\tint mid=(l+r)>>1;\n\t\t\treturn better(ask(n*2+1,l,mid,L,R),ask(n*2+2,mid+1,r,L,R));\n\t\t}\n\t}\n};\nvector<pair<int,int>> v;\nseg_tree sg;\nint l[N],r[N],n,ans=0;\nbool ok,went[N];\nvoid dfs(int x){\n\t//if(x<0||x>=n)while(true);\n\tif(debug)printf(\"dfs(%d) v[%d]=(%d,%d)\\n\",x,x,v[x].F,v[x].S);\n\tans++;\n\twent[x]=true;\n\tsg.fix(0,0,n-1,x);\n\tif(debug)printf(\"fixed\\n\");\n\tpair<int,int> temp;\n\tif(debug)printf(\"going down\\n\");\n\tif(l[x]>0)while(true){\n\t\ttemp=sg.ask(0,0,n-1,0,l[x]-1);\n\t\tif(temp.F<INF)dfs(temp.S);\n\t\telse break;\n\t}\n\tif(debug)printf(\"going mid\\n\");\n\twhile(true){\n\t\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\t\tif(debug)printf(\"temp=(%d,%d)\\n\",temp.F,temp.S);\n\t\tif(temp.F<v[x].S)dfs(temp.S);\n\t\telse break;\n\t}\n\ttemp=sg.ask(0,0,n-1,l[x],r[x]);\n\tif(temp.F>v[x].S)ok=false;\n\tif(debug)printf(\"return\\n\");\n\treturn ;\n}\nint main(){\n\tint c,a[N],can=0,lpos=0,rpos=0,npos=0;\n\tpair<int,int> temp;\n\tok=true;\n\tscanf(\"%d%d\",&n,&c);\n\tfor(int i=0;i<n;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tv.PB(temp);\n\t}\n\tsort(v.begin(),v.end());\n\tfor(int i=0;i<n;i++)a[i]=v[i].S;\n\tsg.init(0,0,n-1,a);\n\tfor(int i=0;i<n;i++)went[i]=false;\n\tfor(int i=0;i<n;i++){\n\t\twhile(v[lpos].F+c<v[i].F)lpos++;\n\t\twhile(rpos<n){\n\t\t\tif(v[rpos].F-c<=v[i].F)rpos++;\n\t\t\telse break;\t\n\t\t}\n\t\tl[i]=lpos;\n\t\tr[i]=rpos-1;\n\t\t//if(l[i]>r[i])while(true);\n\t}\n\tif(debug)printf(\"before dfs\\n\");\n\twhile(ok){\n\t\twhile(npos<n){\n\t\t\tif(went[npos])npos++;\n\t\t\telse break;\n\t\t}\n\t\tif(npos<n)can=sg.ask(0,0,n-1,l[npos],r[npos]).S;\n\t\telse break;\n\t\tdfs(can);\n\t}\n\tprintf(\"%d\\n\",ans);\n}", "accuracy": 0.8846153846153846, "time_ms": 50, "memory_kb": 36000, "score_of_the_acc": -1.5208, "final_rank": 14 } ]
aoj_2693_cpp
Problem G JAG-channel II JAG (Japan Alumni Group) is a group of $N$ members that devotes themselves to activation of the competitive programming world. The JAG staff members talk every day on the BBS called JAG-channel. There are several threads in JAG-channel and these are kept sorted by the time of their latest posts in descending order. One night, each of the $N$ members, identified by the first $N$ uppercase letters respectively, created a thread in JAG-channel. The next morning, each of the $N$ members posted in exactly $K$ different threads which had been created last night. Since they think speed is important, they viewed the threads from top to bottom and posted in the thread immediately whenever they came across an interesting thread. Each member viewed the threads in a different period of time, that is, there was no post of other members while he/she was submitting his/her $K$ posts. Your task is to estimate the order of the members with respect to the periods of time when members posted in the threads. Though you do not know the order of the threads created, you know the order of the posts of each member. Since the threads are always kept sorted, there may be invalid orders of the members such that some members cannot post in the top-to-bottom order of the threads due to the previous posts of other members. Find out the lexicographically smallest valid order of the members. Input The input consists of a single test case. The first line contains two integers separated by a space: $N$ $(4 \leq N \leq 16)$ and $K$ $(N - 3 \leq K \leq N - 1)$. Then $N$ lines of strings follow. Each of the $N$ lines consists of exactly $K$ distinct characters. The $j$-th character of the $i$-th line denotes the $j$-th thread in which the member denoted by the $i$-th uppercase letter posted. Each thread is represented by its creator (e.g. ' B ' represents the thread created by member B, the second member). It is guaranteed that at least one valid order exists. Output Display a string that consists of exactly $N$ characters in a line, which denotes the valid order in which the members posted in the threads. The $i$-th character of the output should represent the member who posted in the $i$-th period. In case there are multiple valid orders, output the lexicographically smallest one. Sample Input 1 7 4 DEFG FEDA EFGB BGEA AGFD DABC CADE Output for the Sample Input 1 ABCDEFG Sample Input 2 4 3 CDB DAC BAD ABC Output for the Sample Input 2 DCBA Sample Input 3 16 13 NDHPFJIBLMCGK CMDJKPOLGIHNE MOLBIEJFPHADN KPNAOHBLMCGEI FCMLBHDOANJPK NHIGLOAPKJDMC KMLBIPHDEOANJ IEGCMLBOAPKJD JNAOEDHBLMCGF OEDHPFIBLMGKC GMLBIFPHDNAEO ENHGOPKJDMCAF JKPAOBLGEIHNF HPKFGJEIBLCOM LBINEJDAGFKPH FGMOCADJENIBL Output for the Sample Input 3 PONCAKJGIEDHMFBL
[ { "submission_id": "aoj_2693_10866702", "code_snippet": "//ΔAIZU2693\n#include<iostream>\n#include<cstdio>\n#include<fstream>\n#include<algorithm>\n#include<vector>\n#include<map>\n#include<set>\n#include<queue>\n#include<bitset>\n#include<cmath>\n#include<cstring>\n#include<cstdlib>\nusing namespace std;\ntypedef unsigned long long LL;\ntypedef double DB;\nconst int N = 17;\nconst int W = N*N*N*N;\nint n,k,w,o,b[N][W],c[W];\nLL a[N][W];\nstring s;\nmap<LL,int> M;\nint u[N],f,tot;\nLL t,ans,p;\nint e[N],q[1<<N];\nvoid prt(LL x){\n\tint i;\n\tfor(i=n;i--;)\n\t\te[i]=(x&15)+'A',x>>=4;\n\tfor(i=0;i<n;i=i+1)\n\t\tcout<<(char)e[i];\n\tcout<<endl;\n}\nLL nx(LL x){\n\tint i;\n\tLL r=t;\n\tfor(i=n;i--;)\n\t\te[i]=r&15,r>>=4;\n\tfor(i=n;i--;)\n\t\tif(u[e[i]]>=2)\n\t\t\tr=r<<4|e[i];\n\tfor(i=0;i<n;i=i+1)\n\t\tif(u[e[i]]<2)\n\t\t\tr=r<<4|e[i];\n\treturn r;\n}\nvoid dfs1(int x,int y){\n\tif(x==n&&y==k){\n\t\tif(M.find(t)==M.end())\n\t\t\tM[t]=++w;\n\t\ta[o][M[t]]=nx(t);\n\t\t//prt(t);\n\t\t//prt(nx(t));\n\t\treturn;\n\t}\n\tx++,t<<=4;\n\tint i;\n\tfor(i=0;i<n;i=i+1){\n\t\tif(u[i]==2){\n\t\t\tif(i==s[y]){\n\t\t\t\tt^=i,u[i]=3;\n\t\t\t\tdfs1(x,y+1);\n\t\t\t\tt^=i,u[i]=2;\n\t\t\t}\n\t\t}\n\t\tif(!u[i]){\n\t\t\tt^=i,u[i]=1;\n\t\t\tdfs1(x,y);\n\t\t\tt^=i,u[i]=0;\n\t\t}\n\t}\n\tt>>=4;\n}\nvoid dfs2(int x,int y){\n\tif(f||t<<(x<<2)>=ans)\n\t\treturn;\n\tif(!x){\n\t\tans=t;\n\t\tf=1;\n\t\treturn;\n\t}\n\tif(!y||q[p])\n\t\treturn;\n\tq[p]=1;\n\ttot++;\n\tx--,t<<=4;\n\tint i;\n\tfor(i=0;i<n;i=i+1){\n\t\tif(u[i]||!a[i][y])\n\t\t\tcontinue;\n\t\tu[i]=1,t^=i,p^=1<<i;\n\t\tdfs2(x,b[i][y]);\n\t\tu[i]=0,t^=i,p^=1<<i;\n\t}\n\tt>>=4;\n}\nint main()\n{\n\tint i,j;\n\tcin>>n>>k;\n\tfor(i=0;i<n;i=i+1){\n\t\tcin>>s;\n\t\tfor(j=0;j<k;j=j+1)\n\t\t\ts[j]-='A';\n\t\tfor(j=0;j<n;j=j+1)\n\t\t\tu[j]=0;\n\t\tfor(j=0;j<k;j=j+1)\n\t\t\tu[s[j]]=2;\n\t\tt=0,o=i;\n\t\tdfs1(0,0);\n\t}\n\tfor(i=0;i<n;i=i+1)\n\t\tfor(j=1;j<=w;j=j+1)\n\t\t\tif(a[i][j])\n\t\t\t\tb[i][j]=M[a[i][j]];\n\tans=-1;\n\tfor(i=1;i<=w;i=i+1)\n\t\tc[i]=i;\n\trandom_shuffle(c+1,c+w+1);\n\tfor(i=1;i<=w;i=i+1){\n\t\tfor(j=0;j<n;j=j+1)\n\t\t\tu[j]=0;\n\t\tfor(j=0;j<(1<<n);j=j+1)\n\t\t\tq[j]=0;\n\t\tt=0,p=0,f=0;\n\t\tdfs2(n,c[i]);\n\t\tif(tot>=1e7)\n\t\t\tbreak;\n\t}\n\tprt(ans);\n\treturn 0;\n}\n/*\n15 12\nABCDEFGHIJKL\nABCDEFGHIJKL\nABCDEFGHIJKL\nABCDEFGHIJKL\nABCDEFGHIJKL\nABCDEFGHIJKL\nABCDEFGHIJKL\nLKJIHGFEDCBA\nLKJIHGFEDCBA\nLKJIHGFEDCBA\nLKJIHGFEDCBA\nLKJIHGFEDCBA\nLKJIHGFEDCBA\nLKJIHGFEDCBA\nLKJIHGFEDCBA\n\n9 6\nABCDEF\nABCDEF\nABCDEF\nABCDEF\nFEDCBA\nFEDCBA\nFEDCBA\nFEDCBA\nFEDCBA\n\n*/", "accuracy": 1, "time_ms": 890, "memory_kb": 21252, "score_of_the_acc": -0.4571, "final_rank": 8 }, { "submission_id": "aoj_2693_10702147", "code_snippet": "//ΔAIZU2693\n#include<iostream>\n#include<cstdio>\n#include<fstream>\n#include<algorithm>\n#include<vector>\n#include<map>\n#include<set>\n#include<queue>\n#include<bitset>\n#include<cmath>\n#include<cstring>\n#include<cstdlib>\nusing namespace std;\ntypedef unsigned long long LL;\ntypedef double DB;\nconst int N = 17;\nconst int W = N*N*N*N;\nint n,k,w,o,b[N][W];\nLL a[N][W];\nstring s;\nmap<LL,int> M;\nset<int> vis;\nint u[N],p;\nLL t;\nint e[N];\nvoid prt(LL x){\n\tint i;\n\tfor(i=n;i--;)\n\t\te[i]=(x&15)+'A',x>>=4;\n\tfor(i=0;i<n;i=i+1)\n\t\tcout<<(char)e[i];\n\tcout<<endl;\n}\nLL nx(LL x){\n\tint i;\n\tLL r=t;\n\tfor(i=n;i--;)\n\t\te[i]=r&15,r>>=4;\n\tfor(i=n;i--;)\n\t\tif(u[e[i]]>=2)\n\t\t\tr=r<<4|e[i];\n\tfor(i=0;i<n;i=i+1)\n\t\tif(u[e[i]]<2)\n\t\t\tr=r<<4|e[i];\n\treturn r;\n}\nvoid dfs1(int x,int y){\n\tif(x==n&&y==k){\n\t\tif(M.find(t)==M.end())\n\t\t\tM[t]=++w;\n\t\ta[o][M[t]]=nx(t);\n\t\t//prt(t);\n\t\t//prt(nx(t));\n\t\treturn;\n\t}\n\tx++,t<<=4;\n\tint i;\n\tfor(i=0;i<n;i=i+1){\n\t\tif(u[i]==2){\n\t\t\tif(i==s[y]){\n\t\t\t\tt^=i,u[i]=3;\n\t\t\t\tdfs1(x,y+1);\n\t\t\t\tt^=i,u[i]=2;\n\t\t\t}\n\t\t}\n\t\tif(!u[i]){\n\t\t\tt^=i,u[i]=1;\n\t\t\tdfs1(x,y);\n\t\t\tt^=i,u[i]=0;\n\t\t}\n\t}\n\tt>>=4;\n}\nvoid dfs2(int x,int y){\n\tif(!x){\n\t\tprt(t);\n\t\texit(0);\n\t}\n\tif(!y)\n\t\treturn;\n\tif(vis.find(y<<n|p)!=vis.end())\n\t\treturn;\n\tvis.insert(y<<n|p);\n\tx--,t<<=4;\n\tint i;\n\tfor(i=0;i<n;i=i+1){\n\t\tif(u[i]||!a[i][y])\n\t\t\tcontinue;\n\t\tu[i]=1,t^=i,p^=1<<i;\n\t\tdfs2(x,b[i][y]);\n\t\tu[i]=0,t^=i,p^=1<<i;\n\t}\n\tt>>=4;\n}\nint main()\n{\n\tint i,j;\n\tcin>>n>>k;\n\tfor(i=0;i<n;i=i+1){\n\t\tcin>>s;\n\t\tfor(j=0;j<k;j=j+1)\n\t\t\ts[j]-='A';\n\t\tfor(j=0;j<n;j=j+1)\n\t\t\tu[j]=0;\n\t\tfor(j=0;j<k;j=j+1)\n\t\t\tu[s[j]]=2;\n\t\tt=0,o=i;\n\t\tdfs1(0,0);\n\t}\n\tfor(i=0;i<n;i=i+1)\n\t\tfor(j=1;j<=w;j=j+1)\n\t\t\tif(a[i][j])\n\t\t\t\tb[i][j]=M[a[i][j]];\n\tfor(i=1;i<=w;i=i+1){\n\t\tfor(j=0;j<n;j=j+1)\n\t\t\tu[j]=0;\n\t\tt=0,p=0;\n\t\tdfs2(n,i);\n\t}\n\treturn 0;\n}\n/*\n15 14\nABCDEFGHIJKLMN\nABCDEFGHIJKLMN\nABCDEFGHIJKLMN\nABCDEFGHIJKLMN\nABCDEFGHIJKLMN\nABCDEFGHIJKLMN\nABCDEFGHIJKLMN\nNMLKJIHGFEDCBA\nNMLKJIHGFEDCBA\nNMLKJIHGFEDCBA\nNMLKJIHGFEDCBA\nNMLKJIHGFEDCBA\nNMLKJIHGFEDCBA\nNMLKJIHGFEDCBA\nNMLKJIHGFEDCBA\n\n*/", "accuracy": 0.07142857142857142, "time_ms": 20, "memory_kb": 23524, "score_of_the_acc": -0.0698, "final_rank": 19 }, { "submission_id": "aoj_2693_10210576", "code_snippet": "// AOJ #2693\n// JAG-channel II 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n \nint N, K;\nvector<string> posts;\nstring allMembers;\n \npair<bool,string> simulateFinal(const string &initState, const string &target, int K) {\n vector<char> board(initState.begin(), initState.end());\n int p = 0;\n for (char y : target) {\n while(p < (int)board.size() && board[p] != y)\n p++;\n if(p == (int)board.size()) return {false, \"\"};\n char found = board[p];\n board.erase(board.begin()+p);\n board.insert(board.begin(), found);\n p++;\n }\n string front = \"\";\n for (int i = 0; i < K; i++) front.push_back(board[i]);\n string revTarget = target;\n reverse(revTarget.begin(), revTarget.end());\n string tail = \"\";\n for (int i = K; i < (int)board.size(); i++)\n tail.push_back(board[i]);\n return {true, tail};\n}\n \nvoid genPermutations(vector<char> &arr, int start, vector<string> &perms) {\n if(start == (int)arr.size()){\n string s(arr.begin(), arr.end());\n perms.push_back(s);\n return;\n }\n for (int i = start; i < (int)arr.size(); i++){\n swap(arr[start], arr[i]);\n genPermutations(arr, start+1, perms);\n swap(arr[start], arr[i]);\n }\n}\n \n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n cin >> N >> K;\n posts.resize(N);\n for (int i = 0; i < N; i++) cin >> posts[i];\n allMembers = \"\";\n for (int i = 0; i < N; i++) allMembers.push_back('A' + i);\n \n vector<vector<string>> extraPerms(N);\n vector<unordered_map<string,int>> extraIndex(N);\n for (int i = 0; i < N; i++){\n unordered_set<char> used;\n for (char c : posts[i]) used.insert(c);\n vector<char> extras;\n for (char c : allMembers) {\n if(used.find(c) == used.end()) extras.push_back(c);\n }\n vector<string> perms;\n if(extras.empty()) perms.push_back(\"\");\n else genPermutations(extras, 0, perms);\n sort(perms.begin(), perms.end());\n extraPerms[i] = perms;\n for (int j = 0; j < (int)perms.size(); j++)\n extraIndex[i][perms[j]] = j;\n }\n \n vector<vector<vector<int>>> nextTrans(N);\n for (int i = 0; i < N; i++){\n int sz = extraPerms[i].size();\n nextTrans[i].resize(sz, vector<int>(N, -1));\n string rev = posts[i];\n reverse(rev.begin(), rev.end());\n for (int qi = 0; qi < sz; qi++){\n string boardState = rev + extraPerms[i][qi];\n for (int j = 0; j < N; j++){\n if(i == j) continue;\n auto simRes = simulateFinal(boardState, posts[j], K);\n if(!simRes.first) nextTrans[i][qi][j] = -1;\n else {\n string tail = simRes.second;\n if(extraIndex[j].find(tail) != extraIndex[j].end())\n nextTrans[i][qi][j] = extraIndex[j][tail];\n else nextTrans[i][qi][j] = -1;\n }\n }\n }\n }\n \n const string INF = string(100, '{');\n int fullMask = (1 << N) - 1;\n vector<vector<vector<string>>> dp(1 << N, vector<vector<string>>(N));\n for (int i = 0; i < N; i++){\n int mask = (1 << i);\n int sz = extraPerms[i].size();\n dp[mask][i].resize(sz, INF);\n for (int qi = 0; qi < sz; qi++)\n dp[mask][i][qi] = string(1, 'A' + i);\n }\n \n for (int mask = 0; mask < (1 << N); mask++){\n for (int i = 0; i < N; i++){\n if (!(mask & (1 << i))) continue;\n int sz = dp[mask][i].size();\n for (int qi = 0; qi < sz; qi++){\n string cur = dp[mask][i][qi];\n if(cur == INF) continue;\n for (int j = 0; j < N; j++){\n if(mask & (1 << j)) continue;\n int nxtIndex = nextTrans[i][qi][j];\n if(nxtIndex == -1) continue;\n int newMask = mask | (1 << j);\n string candidate = cur + char('A' + j);\n if(dp[newMask][j].size() < extraPerms[j].size())\n dp[newMask][j].resize(extraPerms[j].size(), INF);\n if(candidate < dp[newMask][j][nxtIndex])\n dp[newMask][j][nxtIndex] = candidate;\n }\n }\n }\n }\n \n string ans = INF;\n for (int i = 0; i < N; i++){\n for (auto &s : dp[fullMask][i]){\n if(s < ans) ans = s;\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 157544, "score_of_the_acc": -0.7319, "final_rank": 12 }, { "submission_id": "aoj_2693_10210567", "code_snippet": "// AOJ #2693\n// JAG-channel II 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n \n \nbool simulateSession(const string &initState, const string &target) {\n vector<char> board(initState.begin(), initState.end());\n int p = 0;\n for (char y : target) {\n while(p < (int)board.size() && board[p] != y) p++;\n if(p == (int)board.size()) return false;\n char found = board[p];\n board.erase(board.begin() + p);\n board.insert(board.begin(), found);\n p++;\n }\n return true;\n}\n \n \nvoid genPermutations(vector<char>& arr, int start, vector<string> &perms) {\n if(start == (int)arr.size()){\n string s(arr.begin(), arr.end());\n perms.push_back(s);\n return;\n }\n for (int i = start; i < (int)arr.size(); i++){\n swap(arr[start], arr[i]);\n genPermutations(arr, start+1, perms);\n swap(arr[start], arr[i]);\n }\n}\n \n \nbool validTransition(const string &prevSeq, const string &nextSeq, const string &allMembers) {\n unordered_set<char> U;\n for (char c : prevSeq) U.insert(c);\n vector<char> extra;\n for (char c : allMembers)\n if (U.find(c) == U.end()) extra.push_back(c);\n string R = prevSeq;\n reverse(R.begin(), R.end());\n \n vector<string> qPerms;\n if(!extra.empty()) genPermutations(extra, 0, qPerms);\n else qPerms.push_back(\"\");\n \n for(auto &q : qPerms){\n string boardState = R + q;\n if(simulateSession(boardState, nextSeq)) return true;\n }\n return false;\n}\n \n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N, K;\n cin >> N >> K;\n vector<string> posts(N);\n for (int i = 0; i < N; i++) cin >> posts[i];\n \n string allMembers = \"\";\n for (int i = 0; i < N; i++) allMembers.push_back('A' + i);\n \n vector<vector<bool>> valid(N, vector<bool>(N, false));\n for (int i = 0; i < N; i++){\n for (int j = 0; j < N; j++){\n if(i == j) continue;\n bool poss = validTransition(posts[i], posts[j], allMembers);\n valid[i][j] = poss;\n }\n }\n \n const int fullMask = (1 << N) - 1;\n vector<vector<string>> dp(1 << N, vector<string>(N, \"{\"));\n for (int i = 0; i < N; i++){\n int m = (1 << i);\n string s;\n s.push_back('A' + i);\n dp[m][i] = s;\n }\n \n for (int mask = 0; mask < (1 << N); mask++){\n for (int last = 0; last < N; last++){\n if(dp[mask][last] == \"{\") continue;\n for (int j = 0; j < N; j++){\n if(mask & (1 << j)) continue;\n if(!valid[last][j]) continue;\n int newMask = mask | (1 << j);\n string candidate = dp[mask][last] + char('A' + j);\n if(candidate < dp[newMask][j]) dp[newMask][j] = candidate;\n }\n }\n }\n \n string ans = \"{\";\n for (int i = 0; i < N; i++){\n if(dp[fullMask][i] < ans) ans = dp[fullMask][i];\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.30952380952380953, "time_ms": 20, "memory_kb": 38436, "score_of_the_acc": -0.1354, "final_rank": 17 }, { "submission_id": "aoj_2693_9784418", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)\n#define rrep(i, a, b) for (ll i = (ll)(b)-1; i >= (ll)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint main() {\n int N, K;\n cin >> N >> K;\n vector<string> S(N);\n rep(i,0,N) cin >> S[i];\n vector used(N, vector<bool>(N,false));\n rep(i,0,N) {\n rep(j,0,K) {\n used[i][S[i][j]-'A'] = true;\n }\n }\n vector<map<string,string>> DP(1<<N);\n auto DFS = [&](auto self, int X, string Cur) -> string {\n if (X == (1<<N)-1) return \"\";\n if (DP[X].count(Cur)) return DP[X][Cur];\n string Ret = \"$\";\n rep(i,0,N) {\n if (X & (1<<i)) continue;\n int it = 0;\n rep(j,0,N) {\n if (Cur[j] == S[i][it]) it++;\n if (it == K) break;\n }\n if (it != K) continue;\n string Next = S[i];\n reverse(ALL(Next));\n rep(j,0,N) {\n if (!used[i][Cur[j]-'A']) Next += Cur[j];\n }\n string Ret2 = self(self,X|(1<<i),Next);\n if (Ret2 == \"$\") continue;\n Ret2 = (char)('A'+i) + Ret2;\n if (Ret == \"$\") Ret = Ret2;\n else chmin(Ret, Ret2);\n }\n return DP[X][Cur] = Ret;\n };\n string ANS = \"$\";\n rep(i,0,N) {\n string Cur = S[i];\n reverse(ALL(Cur));\n string Rem = \"\";\n rep(j,0,N) {\n if (!used[i][j]) Rem += (char)('A'+j);\n }\n do {\n string Next = Cur + Rem;\n string Ret = DFS(DFS,1<<i,Next);\n if (Ret == \"$\") continue;\n Ret = (char)('A'+i) + Ret;\n if (ANS == \"$\") ANS = Ret;\n else chmin(ANS, Ret);\n } while(next_permutation(ALL(Rem)));\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 28624, "score_of_the_acc": -0.1516, "final_rank": 3 }, { "submission_id": "aoj_2693_7068371", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\n/*\n0:012\n1:102\n2:021\n3:120\n4:201\n5:210\n*/\n\nint sz[3] = {1,2,6};\n\nint vv[6][3] = {\n {0,1,2},\n {1,0,2},\n {0,2,1},\n {1,2,0},\n {2,0,1},\n {2,1,0}\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,k; cin >> n >> k;\n vector<string> s(n);\n for(int i=0;i<n;i++){\n cin >> s[i];\n }\n vector<map<pair<int,int>,int>> ok(n);\n for(int i=0;i<n;i++){\n for(int j=0;j<sz[n-k-1];j++){\n string t = s[i];\n reverse(t.begin(), t.end());\n int bit = 0;\n for(char c:s[i]){\n bit |= (1<<(c-'A'));\n }\n string r = \"\";\n for(int k=0;k<n;k++){\n if((1<<k)&bit) continue;\n r += (char)('A'+k);\n }\n for(int k=0;k<r.size();k++){\n t += r[vv[j][k]];\n }\n for(int k=0;k<n;k++){\n int a = 0;\n int b = 0;\n while(a < t.size() and b < s[k].size()){\n if(t[a] == s[k][b]){\n b++;\n }\n a++;\n }\n if(s[k].size() == b){\n bit = 0;\n for(char c:s[k]){\n bit |= (1<<(c-'A'));\n }\n r = \"\";\n for(char c:t){\n if((1<<(c-'A'))&bit) continue;\n r += c;\n }\n vector<int> v(r.size());\n for(int p=0;p<v.size();p++){\n for(int q=0;q<v.size();q++){\n if(r[p] > r[q]) v[p]++;\n }\n }\n for(int p=0;p<6;p++){\n bool okok = true;\n for(int q=0;q<v.size();q++){\n if(vv[p][q] != v[q]) okok = false;\n }\n if(okok){\n ok[k][{i,j}] = p;\n // cout << vv[p][0] << vv[p][1] << vv[p][2] << endl;\n // cout << i << \" \" << j << \" \" << k << \" \" << p << \" \" << r << \" \" << v[0] << v[1] << v[2] << endl;\n break;\n }\n }\n }\n else{\n ok[k][{i,j}] = -1;\n }\n }\n }\n }\n map<pair<int,pair<int,int>>, string> mp;\n auto dfs = [&](auto dfs,int bit,int last,int sta)->string{\n if(mp.find({bit,{last,sta}}) != mp.end()){\n return mp[{bit,{last,sta}}];\n }\n string res = \"Z\";\n for(int i=0;i<n;i++){\n if((1<<i)&bit) continue;\n if(ok[i][{last,sta}] != -1){\n string rr = \"\";\n rr += (char)('A'+i);\n rr += dfs(dfs,bit+(1<<i),i,ok[i][{last,sta}]);\n res = min(res,rr);\n }\n }\n mp[{bit,{last,sta}}] = res;\n return res;\n }; \n string res = \"Z\";\n for(int i=0;i<n;i++){\n for(int j=0;j<sz[n-k-1];j++){\n string t = \"\";\n t += (char)('A'+i);\n t += dfs(dfs,1<<i,i,j);\n if(t.size() == n+1){\n res = min(res, t);\n }\n }\n }\n res.pop_back();\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 780, "memory_kb": 62600, "score_of_the_acc": -0.5886, "final_rank": 9 }, { "submission_id": "aoj_2693_6663654", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n// #include <atcoder/convolution>\n// using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 1020000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\nunsigned long long dp[1<<16][16][6];\nbool ok[1<<16][16][6];\n\nint main(){\n int n,k; cin >> n >> k;\n vs s(n); rep(i,n) cin >> s[i];\n vs rs(n);\n rep(i,n){\n rs[i] = s[i];\n reverse(all(rs[i]));\n }\n rep(i,1<<n) rep(j,n) rep(l,6) dp[i][j][l] = -1;\n rep(i,n) rep(j,6){\n dp[1<<i][i][j] = i;\n ok[1<<i][i][j] = true;\n }\n vl cnt(n,0);\n rep(bit,1<<n) rep(i,n){\n int now = 0;\n rep(j,n) cnt[j] = 0;\n rep(j,k) cnt[s[i][j]-'A']++;\n string t;\n rep(j,n) if(cnt[j] == 0) t += (char)(j+'A');\n do{\n if(!ok[bit][i][now]){\n now++; continue;\n }\n rep(j,n){\n if(bit>>j & 1) continue;\n string u = rs[i] + t;\n int ptr = 0;\n string v;\n rep(l,n){\n if(ptr < k && u[l] == s[j][ptr]) ptr++;\n else v += u[l];\n }\n if(ptr != k) continue;\n string vv = v;\n sort(all(vv));\n int nxt = 0;\n do{\n if(v == vv) break;\n nxt++;\n }while(next_permutation(all(vv)));\n if(chmin(dp[bit|1<<j][j][nxt], dp[bit][i][now]*16 + j)){\n ok[bit|1<<j][j][nxt] = true;\n }\n }\n now++;\n }while(next_permutation(all(t)));\n }\n unsigned long long val = -1;\n rep(i,n){\n rep(j,6){\n chmin(val, dp[(1<<n)-1][i][j]);\n }\n }\n string ans;\n rep(i,n){\n ans += (char)(val%16+'A');\n val /= 16;\n }\n reverse(all(ans));\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 440, "memory_kb": 58680, "score_of_the_acc": -0.4161, "final_rank": 4 }, { "submission_id": "aoj_2693_5984007", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\n//constexpr long long MOD = 1000000007;\nconstexpr long long MOD = 998244353;\nconstexpr double EPS = 1e-8;\n\n//int N, M, K, T, H, W, L, R;\nlong long int N, M, K, T, H, W, L, R;\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tcin >> N >> K;\n\tvector<string>s(N);\n\tfor (auto& i : s)cin >> i;\n\tset<char>st;\n\tfor (int i = 0; i < N; i++) {\n\t\tst.insert('A' + i);\n\t}\n\tvector amari(N, vector(0, string()));\n\tfor (int i = 0; i < N; i++) {\n\t\tauto t = st;\n\t\tfor (auto j : s[i])t.erase(j);\n\t\tstring u;\n\t\tfor (auto j : t) {\n\t\t\tu.push_back(j);\n\t\t}\n\t\tdo {\n\t\t\tamari[i].push_back(u);\n\t\t} while (next_permutation(u.begin(), u.end()));\n\t}\n\tvector dp(vector(1 << N, vector(N, vector(6, vector<int>()))));\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < amari[0].size(); j++) {\n\t\t\tdp[1 << i][i][j].push_back(i);\n\t\t}\n\t}\n\tvector ok(N, vector(amari[0].size(), vector(N, -1)));\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < amari[0].size(); j++) {\n\t\t\tstring box = s[i];\n\t\t\treverse(box.begin(), box.end());\n\t\t\tfor (auto k : amari[i][j])box.push_back(k);\n\t\t\tfor (int k = 0; k < N; k++) {\n\t\t\t\tint idx = 0;\n\t\t\t\tstring a;\n\t\t\t\tfor (int l = 0; l < K; l++) {\n\t\t\t\t\tif (l)idx++;\n\t\t\t\t\twhile (idx < N && box[idx] != s[k][l]) {\n\t\t\t\t\t\ta.push_back(box[idx]);\n\t\t\t\t\t\tidx++;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t//\t\tcout << i << \" \" << j << \" \" << k << \" \" << a << endl;\n\t\t\t\tif (idx < N) {\n\t\t\t\t\tfor (int l = idx + 1; l < N; l++) {\n\t\t\t\t\t\ta.push_back(box[l]);\n\t\t\t\t\t}\n\t\t\t\t\tfor (int l = 0; l < amari[0].size(); l++) {\n\t\t\t\t\t//\tcout << i << \" \" << j << \" \" << k << \" \" << l << endl;\n\t\t\t\t\t//\tcout << a.substr(a.size() - amari[0][0].size(), amari[0][0].size()) << endl;\n\t\t\t\t\t\tif (a.substr(a.size() - amari[0][0].size(), amari[0][0].size()) == amari[k][l]) {\n\t\t\t\t\t\t\tok[i][j][k] = l;\n\t\t\t\t\t//\t\tcout << i << \" \" << j << \" \" << k << \" \" << l << endl;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 1; i < 1 << N; i++) {\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tif (i >> j & 1) {\n\t\t\t\tfor (int k = 0; k < amari[0].size(); k++) {\n\t\t\t\t\tif (dp[i][j][k].empty())continue;\n\t\t\t\t\tfor (int l = 0; l < N; l++) {\n\t\t\t\t\t\tif (i >> l & 1)continue;\n\t\t\t\t\t\tif (ok[j][k][l] < 0)continue;\n\t\t\t\t\t\tif (dp[i | (1 << l)][l][ok[j][k][l]].empty()) {\n\t\t\t\t\t\t\tdp[i | (1 << l)][l][ok[j][k][l]] = dp[i][j][k];\n\t\t\t\t\t\t\tdp[i | (1 << l)][l][ok[j][k][l]].push_back(l);\n\t\t\t\t\t\t}\n\t\t\t\t\t\telse {\n\t\t\t\t\t\t\tdp[i | (1 << l)][l][ok[j][k][l]] = min(dp[i][j][k], dp[i | (1 << l)][l][ok[j][k][l]]);\n\t\t\t\t\t\t\tif (dp[i | (1 << l)][l][ok[j][k][l]].back() != l) {\n\t\t\t\t\t\t\t\tdp[i | (1 << l)][l][ok[j][k][l]].push_back(l);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvector<int>ans;\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < amari[0].size(); j++) {\n\t\t\tif (dp.back()[i][j].size()) {\n\t\t\t\tif (ans.empty()) {\n\t\t\t\t\tans = dp.back()[i][j];\n\t\t\t\t}\n\t\t\t\tans = min(ans, dp.back()[i][j]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (auto i : ans)cout << char('A' + i);\n\tcout << endl;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 236208, "score_of_the_acc": -1.1005, "final_rank": 14 }, { "submission_id": "aoj_2693_5339875", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main(){\n int N, K;\n cin >> N >> K;\n vector<string> S(N);\n for (int i = 0; i < N; i++){\n cin >> S[i];\n }\n int F = 1;\n for (int i = 1; i <= N - K; i++){\n F *= i;\n }\n vector<vector<string>> S2(N);\n for (int i = 0; i < N; i++){\n vector<bool> used(N, false);\n for (int j = 0; j < K; j++){\n used[S[i][j] - 'A'] = true;\n }\n for (int j = 0; j < N; j++){\n if (!used[j]){\n S[i] += (char) ('A' + j);\n }\n }\n while (true){\n S2[i].push_back(S[i]);\n if (!next_permutation(S[i].begin() + K, S[i].end())){\n break;\n }\n }\n }\n vector<vector<vector<vector<bool>>>> ok(N, vector<vector<vector<bool>>>(F, vector<vector<bool>>(N, vector<bool>(F, true))));\n for (int i = 0; i < N; i++){\n for (int j = 0; j < F; j++){\n for (int k = 0; k < N; k++){\n for (int l = 0; l < F; l++){\n string s = S2[i][j];\n reverse(s.begin(), s.begin() + K);\n vector<int> p(N, -1);\n for (int m = 0; m < N; m++){\n for (int n = 0; n < N; n++){\n if (s[m] == S2[k][l][n]){\n p[n] = m;\n }\n }\n }\n for (int m = 0; m < K - 1; m++){\n if (p[m] > p[m + 1]){\n ok[i][j][k][l] = false;\n }\n }\n for (int m = K; m < N - 1; m++){\n if (p[m] > p[m + 1]){\n ok[i][j][k][l] = false;\n }\n }\n }\n }\n }\n }\n vector<vector<vector<string>>> dp(1 << N, vector<vector<string>>(N, vector<string>(F, \"Z\")));\n for (int i = 0; i < N; i++){\n for (int j = 0; j < F; j++){\n dp[1 << i][i][j] = string(1, (char) ('A' + i));\n }\n }\n for (int i = 1; i < (1 << N); i++){\n for (int j = 0; j < N; j++){\n for (int k = 0; k < F; k++){\n if (dp[i][j][k] != \"Z\"){\n for (int l = 0; l < N; l++){\n if ((i >> l & 1) == 0){\n for (int m = 0; m < F; m++){\n if (ok[j][k][l][m]){\n string s = dp[i][j][k] + (char) ('A' + l);\n int i2 = i + (1 << l);\n dp[i2][l][m] = min(dp[i2][l][m], s);\n }\n }\n }\n }\n }\n }\n }\n }\n string ans = \"Z\";\n for (int i = 0; i < N; i++){\n for (int j = 0; j < F; j++){\n ans = min(ans, dp[(1 << N) - 1][i][j]);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 127792, "score_of_the_acc": -0.6879, "final_rank": 11 }, { "submission_id": "aoj_2693_5284485", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=100005,INF=1<<30;\nstring dp[1<<16][16][6];\nint can[16][6][16];\n\nstring rev(string A){\n reverse(all(A));\n return A;\n}\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n memset(can,-1,sizeof(can));\n \n int N,K;cin>>N>>K;\n vector<string> S(N);\n vector<vector<string>> state(N,vector<string>(6));\n for(int i=0;i<N;i++){\n cin>>S[i];\n vector<int> deta(N);\n for(char c:S[i]) deta[c-'A']=1;\n string rem;\n for(int j=0;j<N;j++){\n if(deta[j]==0) rem+=char('A'+j);\n }\n int t=0;\n do{\n state[i][t]=rev(S[i])+rem;\n t++;\n }while(next_permutation(all(rem)));\n }\n \n for(int i=0;i<N;i++){\n if(K==N-1) dp[(1<<i)][i][0]=char('A'+i);\n if(K==N-2){\n for(int j=0;j<2;j++) dp[(1<<i)][i][j]=char('A'+i);\n }\n if(K==N-3){\n for(int j=0;j<6;j++) dp[(1<<i)][i][j]=char('A'+i);\n }\n }\n \n for(int i=0;i<N;i++){\n for(int j=0;j<6;j++){\n string last=state[i][j];\n if(si(last)==0) continue;\n for(int k=0;k<N;k++){\n vector<int> when(K);\n for(int l=0;l<K;l++){\n for(int x=0;x<N;x++){\n if(S[k][l]==last[x]) when[l]=x;\n }\n }\n bool ok=true;\n for(int l=0;l+1<K;l++){\n if(when[l]>when[l+1]) ok=false;\n }\n \n if(!ok) continue;\n \n string nex=rev(S[k]);\n for(int x=0;x<N;x++){\n bool check=false;\n for(int l=0;l<K;l++){\n if(last[x]==nex[l]) check=true;\n }\n if(!check) nex+=last[x];\n }\n \n for(int l=0;l<6;l++) if(nex==state[k][l]) can[i][j][k]=l;\n }\n }\n }\n \n for(int bit=0;bit<(1<<N);bit++){\n for(int i=0;i<N;i++){\n if(!(bit&(1<<i))) continue;\n for(int j=0;j<6;j++){\n if(si(dp[bit][i][j])!=__builtin_popcount(bit)) continue;\n \n string last=state[i][j];\n \n for(int to=0;to<N;to++){\n if(bit&(1<<to)) continue;\n \n if(can[i][j][to]==-1) continue;\n \n if(si(dp[bit|(1<<to)][to][can[i][j][to]])==0||chmin(dp[bit|(1<<to)][to][can[i][j][to]],dp[bit][i][j]+char('A'+to))){\n dp[bit|(1<<to)][to][can[i][j][to]]=dp[bit][i][j]+char('A'+to);\n }\n }\n }\n }\n }\n \n string ans=\"Z\";\n \n for(int i=0;i<N;i++){\n for(int j=0;j<6;j++){\n if(si(dp[(1<<N)-1][i][j])==N) chmin(ans,dp[(1<<N)-1][i][j]);\n }\n }\n \n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 200096, "score_of_the_acc": -0.887, "final_rank": 13 }, { "submission_id": "aoj_2693_5006298", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <algorithm>\n#include <set>\n#include <iomanip>\n#include <queue>\n#include <string>\n#include <map>\n#include <fstream>\n#include <cassert>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\n#include <numeric>\n#include <random>\n#include <sstream>\n#include <bitset>\n\nstatic std::vector<std::vector<char>> members;\nstatic std::vector<std::vector<std::vector<int>>> cache;\nint to_int(const std::vector<int>& rest) {\n\tauto perm = rest; std::sort(perm.begin(), perm.end());\n\tfor (auto i = 0;; ++i) {\n\t\tbool equal{ true };\n\t\tfor (auto j = 0; j < rest.size(); ++j) {\n\t\t\tif (rest[j] != perm[j]) {\n\t\t\t\tequal = false;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (equal) return i;\n\t\tstd::next_permutation(perm.begin(), perm.end());\n\t}\n}\nbool has_cache(const int current, const int used, const std::vector<int>& rest) {\n\treturn cache[current][used][to_int(rest)] != -2;\n}\nint read_cache(const int current, const int used, const std::vector<int>& rest) {\n\treturn cache[current][used][to_int(rest)];\n}\nvoid set_cache(const int current, const int used, const std::vector<int>& rest, const int result) {\n\tcache[current][used][to_int(rest)] = result;\n}\nbool can_move(const int current, const int next, const std::vector<int>& rest) {\n\tstatic std::vector<int> rank = std::vector<int>(members.size(), 0);\n\tfor (auto i = 0; i < members[current].size(); ++i) {\n\t\trank[members[current][i]] = members[current].size() - i - 1;\n\t}\n\tfor (auto i = 0; i < rest.size(); ++i) {\n\t\trank[rest[i]] = members[current].size() + i;\n\t}\n\tfor (auto i = 1; i < members[next].size(); ++i) {\n\t\tif (rank[members[next][i]] < rank[members[next][i - 1]]) return false;\n\t}\n\treturn true;\n}\nstd::vector<int> next_state(const int current, const int next, const std::vector<int>& rest) {\n\tstatic std::vector<int> rank = std::vector<int>(members.size(), 0);\n\tfor (auto i = 0; i < members[current].size(); ++i) {\n\t\trank[members[current][i]] = members[current].size() - i - 1;\n\t}\n\tfor (auto i = 0; i < rest.size(); ++i) {\n\t\trank[rest[i]] = members[current].size() + i;\n\t}\n\tstd::vector<int> result; result.reserve(rest.size());\n\tfor (const auto m : members[next]) rank[m] = -1;\n\tfor (auto i = 0; i < rank.size(); ++i) {\n\t\tif (rank[i] >= 0) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t}\n\tstd::sort(result.begin(), result.end(), [](const int i, const int j) {return rank[i] < rank[j]; });\n\treturn result;\n}\nint can_make(const int current, const int used, std::vector<int> rest) {\n\tif (has_cache(current, used, rest)) return read_cache(current, used, rest);\n\tif (used + 1 == (1 << members.size())) return members.size();\n\tfor (auto next = 0; next < members.size(); ++next) {\n\t\tif (((used >> next) & 1) == 0 && can_move(current, next, rest)) {\n\t\t\tconst auto succ = can_make(next, used | (1 << next), next_state(current, next, rest));\n\t\t\tif (succ >= 0) {\n\t\t\t\tset_cache(current, used, rest, next);\n\t\t\t\treturn next;\n\t\t\t}\n\t\t}\n\t}\n\tset_cache(current, used, rest, -1);\n\treturn -1;\n}\nstd::string min_order(const int current, const int used, std::vector<int> rest) {\n\tif (used + 1 == (1 << members.size())) return std::string(1, (char)current + 'A');\n\tconst auto next = can_make(current, used, rest);\n\tauto succ = min_order(next, used | (1 << next), next_state(current, next, rest));\n\tsucc.insert(succ.begin(), (char)current + 'A');\n\treturn succ;\n}\nstd::string min_order(const int start) {\n\tstd::vector<bool> used(members.size());\n\tfor (const auto a : members[start]) used[a] = true;\n\tstd::vector<int> rest;\n\tfor (auto i = 0; i < used.size(); ++i) {\n\t\tif (!used[i]) rest.push_back(i);\n\t}\n\tstd::string result = \"\";\n\tdo {\n\t\tif (can_make(start, 1 << start, rest) < 0) continue;\n\t\tconst auto next = min_order(start, 1 << start, rest);\n\t\tif (next.empty()) continue;\n\t\tif (result.empty() || next < result) result = next;\n\t} while (std::next_permutation(rest.begin(), rest.end()));\n\treturn result;\n}\nvoid initialize(const std::vector<std::string>& state) {\n\tcache = std::vector<std::vector<std::vector<int>>>(state.size(), std::vector<std::vector<int>>(1 << state.size(), std::vector<int>(6, -2)));\n\tmembers = std::vector<std::vector<char>>(state.size());\n\tfor (auto i = 0; i < state.size(); ++i) {\n\t\tmembers[i] = std::vector<char>(state[i].size());\n\t\tfor (auto j = 0; j < state[i].size(); ++j) {\n\t\t\tmembers[i][j] = state[i][j] - 'A';\n\t\t}\n\t}\n}\nstd::string min_order() {\n\tfor (auto i = 0; i < members.size(); ++i) {\n\t\tconst auto res = min_order(i);\n\t\tif (res.empty()) continue;\n\t\treturn res;\n\t}\n\treturn \"\";\n}\n\nint main() {\n\tint n, k; std::cin >> n >> k;\n\tstd::vector<std::string> state(n);\n\tfor (auto& line : state) std::cin >> line;\n\tinitialize(state);\n\tstd::cout << min_order() << '\\n';\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 64108, "score_of_the_acc": -0.4172, "final_rank": 5 }, { "submission_id": "aoj_2693_5005894", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\ntypedef pair<int,ll> pil;\ntypedef pair<ll,int> pli;\n#define rep(i,n) for (int i=0;i<(n);++i)\n#define REP(i,n) for (int i=1;i<=(n);++i)\n#define all(x) x.begin(),x.end()\n#define mp make_pair\n#define pb push_back\n#define F first\n#define S second\n#define RI(x) scanf(\"%d\",&x)\n#define RII(x,y) scanf(\"%d%d\",&x,&y)\nint n,k;\nstring in[16],rev[16],tail[16][6];\nint a[16][16];\nint dp[1<<16][16][6];\nint factNK;\nint full;\ninline int find(const string &s,int i){\n\tint ptr=0;\n\tstring tmp;\n\tfor (int j=0;j<k;++j){\n\t\twhile(ptr<n&&s[ptr]!=in[i][j]){\n\t\t\ttmp+=s[ptr];++ptr;\n\t\t}\n\t\t++ptr;\n\t}\n\tif (ptr>n) return -1;\n\twhile(ptr<n) tmp+=s[ptr],++ptr;\n\t//cerr<<s<<' '<<i<<' '<<tmp<<endl;\n\trep(id,factNK) if (tail[i][id]==tmp) return id;\n}\ninline bool DP(int mask,int i,int j){\n\tif (mask==full) return 1;\n\telse if (dp[mask][i][j]!=-1) return dp[mask][i][j];\n\tint &res=dp[mask][i][j];res=0;\n\tstring cur=rev[i]+tail[i][j];\n\tfor (int nxt=0;nxt<n;++nxt) if ((!(mask&(1<<nxt)))){\n\t\tint recv=find(cur,nxt);\n\t\tif (recv!=-1) res|=DP(mask|(1<<nxt),nxt,recv);\n\t}\n\t//cerr<<mask<<' '<<i<<' '<<res<<endl;\n\treturn res;\n}\nbool seen[16];\nstring ans,tmp;\ninline void getAns(int mask,int i,int j){\n\tif (mask==full){\n\t\ttmp.pb(char('A'+i));return;\n\t}\n\tstring cur=rev[i]+tail[i][j];\n\tfor (int nxt=0;nxt<n;++nxt) if (!(mask&(1<<nxt))){\n\t\tint recv=find(cur,nxt);\n\t\tif (recv!=-1&&DP(mask|(1<<nxt),nxt,recv)){\n\t\t\ttmp.pb(char('A'+i));getAns(mask|(1<<nxt),nxt,recv);return;\n\t\t}\n\t}\n}\ninline void update(){\n\tif (ans.empty()) ans=tmp;\n\trep(i,n) if (ans[i]!=tmp[i]){\n\t\tif (ans[i]>tmp[i]) ans=tmp;\n\t\treturn;\n\t}\n}\nint main(){\n\tios::sync_with_stdio(false);\n\tcin>>n>>k;\n\tif (k==n-1) factNK=1;\n\telse if (k==n-2) factNK=2;\n\telse factNK=6;\n\trep(i,n) cin>>in[i];\n\trep(i,n){\n\t\trev[i].resize(k);\n\t\trep(j,k) rev[i][j]=in[i][k-j-1];\n\t}\n\trep(i,n){\n\t\tmemset(seen,0,sizeof(seen));\n\t\trep(j,k) seen[in[i][j]-'A']=1;\n\t\trep(c,n) if (!seen[c]) tail[i][0]+=char(c+'A');\n\t\tif (k==n-2){\n\t\t\ttail[i][1]=tail[i][0];swap(tail[i][1][0],tail[i][1][1]);\n\t\t}\n\t\telse if (k==n-3){\n\t\t\ttail[i][1]=tail[i][0];swap(tail[i][1][1],tail[i][1][2]);\n\t\t\ttail[i][2]=tail[i][0];swap(tail[i][2][0],tail[i][2][1]);\n\t\t\ttail[i][3]=tail[i][2];swap(tail[i][3][1],tail[i][3][2]);\n\t\t\ttail[i][4]=tail[i][2];swap(tail[i][4][0],tail[i][4][2]);\n\t\t\ttail[i][5]=tail[i][4];swap(tail[i][5][1],tail[i][5][2]);\n\t\t}\n\t}\n\t//rep(i,n) rep(j,k) a[i][j]=in[i][j]-'A';\n\tfull=(1<<n)-1;\n\tmemset(dp,-1,sizeof(dp));\n\t//rep(i,n) cerr<<rev[i]<<endl;\n\t//rep(i,n) cerr<<tail[i][0]<<endl;\n\trep(i,n){\n\t\trep(j,factNK){\n\t\t\ttmp.clear();\n\t\t\tgetAns(1<<i,i,j);\n\t\t\tif (!tmp.empty()) update();\n\t\t}\n\t\tif (!ans.empty()){\n\t\t\tcout<<ans<<endl;return 0;\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1150, "memory_kb": 27828, "score_of_the_acc": -0.6047, "final_rank": 10 }, { "submission_id": "aoj_2693_4967941", "code_snippet": "#include<iostream>\n#include<cstdlib>\n#include<vector>\n#include<algorithm>\n#include<map>\nusing namespace std;\nint N,K;\nint s[16][16];\nvector<pair<int,int> >G[16][6],RG[16][6];\nmap<vector<int>,int>order;\nbool dp[16][6][1<<16];\nmain()\n{\n\tcin>>N>>K;\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tstring t;cin>>t;\n\t\tfor(int j=0;j<K;j++)s[i][j]=t[j]-'A';\n\t}\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tint usd=0;\n\t\tfor(int j=0;j<K;j++)usd|=1<<s[i][j];\n\t\tvector<int>rest;\n\t\tfor(int j=0;j<N;j++)if(!(usd>>j&1))rest.push_back(j);\n\t\tint cnt=0;\n\t\tdo{\n\t\t\torder[rest]=cnt++;\n\t\t}while(next_permutation(rest.begin(),rest.end()));\n\t}\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tint usd=0;\n\t\tfor(int j=0;j<K;j++)usd|=1<<s[i][j];\n\t\tvector<int>rest;\n\t\tfor(int j=0;j<N;j++)if(!(usd>>j&1))rest.push_back(j);\n\t\tdo{\n\t\t\tint oid=order[rest];\n\t\t\tvector<int>now;\n\t\t\tfor(int j=K;j--;)now.push_back(s[i][j]);\n\t\t\tfor(int id:rest)now.push_back(id);\n\t\t\tfor(int j=0;j<N;j++)if(i!=j)\n\t\t\t{\n\t\t\t\tint id=0;\n\t\t\t\tbool ok=true;\n\t\t\t\tvector<int>nr;\n\t\t\t\tfor(int k=0;k<K;k++)\n\t\t\t\t{\n\t\t\t\t\twhile(id<N&&now[id]!=s[j][k])\n\t\t\t\t\t{\n\t\t\t\t\t\tnr.push_back(now[id++]);\n\t\t\t\t\t}\n\t\t\t\t\tif(id==N)\n\t\t\t\t\t{\n\t\t\t\t\t\tok=false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tid++;\n\t\t\t\t}\n\t\t\t\tif(!ok)continue;\n\t\t\t\twhile(id<N)nr.push_back(now[id++]);\n\t\t\t\tG[j][order[nr]].push_back(make_pair(i,oid));\n\t\t\t\tRG[i][oid].push_back(make_pair(j,order[nr]));\n\t\t\t}\n\t\t}while(next_permutation(rest.begin(),rest.end()));\n\t}\n\tint LIM=1;\n\tfor(int i=1;i<=N-K;i++)LIM*=i;\n\tfor(int i=0;i<N;i++)for(int j=0;j<LIM;j++)dp[i][j][1<<i]=true;\n\tfor(int i=1;i<1<<N;i++)for(int u=0;u<N;u++)if(i>>u&1)\n\t{\n\t\tfor(int v=0;v<LIM;v++)if(dp[u][v][i])\n\t\t{\n\t\t\tfor(pair<int,int>e:G[u][v])\n\t\t\t{\n\t\t\t\tint nu=e.first;\n\t\t\t\tif(i>>nu&1)continue;\n\t\t\t\tdp[nu][e.second][i|1<<nu]=true;\n\t\t\t}\n\t\t}\n\t}\n\tstring ans=\"~\";\n\tfor(int i=0;i<N;i++)for(int j=0;j<LIM;j++)\n\t{\n\t\tint st=i,sj=j;\n\t\tint vis=(1<<N)-1;\n\t\tif(!dp[i][j][vis])continue;\n\t\tvis^=1<<i;\n\t\tstring now=\"\";\n\t\tnow+=i+'A';\n\t\twhile(vis)\n\t\t{\n\t\t\tfor(pair<int,int>e:RG[st][sj])\n\t\t\t{\n\t\t\t\tint nu=e.first;\n\t\t\t\tif(!(vis>>nu&1))continue;\n\t\t\t\tif(dp[nu][e.second][vis])\n\t\t\t\t{\n\t\t\t\t\tnow+=(char)(nu+'A');\n\t\t\t\t\tst=nu;\n\t\t\t\t\tsj=e.second;\n\t\t\t\t\tvis^=1<<nu;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif(ans>now)ans=now;\n\t}\n\tcout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 8672, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2693_4961682", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nconst int N=18;\nint n,m,r,dp[1<<N][N][6],tr[N][N][6],jc[]={1,1,2,6},q,n1,n2,nm;\nstring s[N],rs[N],ans=\"z\";\nvector<string>p[N];\nvoid sol(int n1,int n2,int nm,string w)\n{\n\tfor(int i=1;i<n;i++)\n\t{\n\t\tfor(int j=0;j<n;j++)\n\t\t{\n\t\t\tif(!(nm&(1<<j)))\n\t\t\t\tcontinue;\n\t\t\tif(tr[j][n1][n2]!=-1)\n\t\t\t{\n\t\t\t\tint z=tr[j][n1][n2],g=(nm^(1<<j));\n\t\t\t\tif(z!=-1&&dp[nm][j][z])\n\t\t\t\t{\n\t\t\t\t\tw+=(char)(j+'A');\n\t\t\t\t\tn1=j;\n\t\t\t\t\tn2=z;\n\t\t\t\t\tnm=g;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tif(w<ans)\n\t\tans=w;\n}\nint main()\n{\n\tios::sync_with_stdio(0);\n\tcin>>n>>m;\n\tr=n-m,q=nm=(1<<n)-1;\n\tfor(int i=0;i<n;i++)\n\t{\n\t\tcin>>s[i];\n\t\trs[i]=s[i];\n\t\treverse(&rs[i][0],&rs[i][m]);\n\t\tstring t=\"\";\n\t\tfor(int j=0;j<n;j++)\n\t\t{\n\t\t\tint fl=0;\n\t\t\tfor(int k=0;k<s[i].size();k++)\n\t\t\t{\n\t\t\t\tif(s[i][k]=='A'+j)\n\t\t\t\t{\n\t\t\t\t\tfl=1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(!fl)\n\t\t\t\tt+=(char)('A'+j);\n\t\t}\n\t\tdo\n\t\t{\n\t\t\tp[i].push_back(rs[i]+t);\n\t\t}while(next_permutation(&t[0],&t[t.size()]));\n\t}\n\tfor(int i=0;i<n;i++)\n\t{\n\t\tfor(int j=0;j<n;j++)\n\t\t{\n\t\t\tfor(int k=0;k<jc[r];k++)\n\t\t\t{\n\t\t\t\tstring x=p[j][k],t=\"\";\n\t\t\t\tint y=0;\n\t\t\t\tfor(auto c:x)\n\t\t\t\t{\n\t\t\t\t\tif(c==s[i][y])\n\t\t\t\t\t\ty++;\n\t\t\t\t\telse\n\t\t\t\t\t\tt+=c;\n\t\t\t\t}\n\t\t\t\tif(y!=m)\n\t\t\t\t\ttr[i][j][k]=-1;\n\t\t\t\telse\n\t\t\t\t{\n\t\t\t\t\tint z=-1;\n\t\t\t\t\tt=rs[i]+t;\n\t\t\t\t\tfor(int l=0;l<jc[r];l++)\n\t\t\t\t\t\tif(p[i][l]==t)\n\t\t\t\t\t\t\tz=l;\n\t\t\t\t\ttr[i][j][k]=z;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor(int i=0;i<n;i++)\n\t\tfor(int j=0;j<jc[r];j++)\n\t\t\tdp[1<<i][i][j]=1;\n\tfor(int mask=0;mask<=q;mask++)\n\t{\n\t\tfor(int i=0;i<n;i++)\n\t\t{\n\t\t\tfor(int j=0;j<jc[r];j++)\n\t\t\t{\n\t\t\t\tif(!dp[mask][i][j])\n\t\t\t\t\tcontinue;\n\t\t\t\tfor(int k=0;k<n;k++)\n\t\t\t\t{\n\t\t\t\t\tif(mask&(1<<k))\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\tfor(int l=0;l<jc[r];l++)\n\t\t\t\t\t\tif(tr[i][k][l]==j)\n\t\t\t\t\t\t\tdp[mask^(1<<k)][k][l]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor(int j=0;j<n;j++)\n\t{\n\t\tfor(int z=0;z<jc[r];z++)\n\t\t{\n\t\t\tif(dp[nm][j][z])\n\t\t\t{\n\t\t\t\tstring d=\"\";\n\t\t\t\td=d+(char)(j+'A');\n\t\t\t\tsol(j,z,(nm^(1<<j)),d);\n\t\t\t}\n\t\t}\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 27944, "score_of_the_acc": -0.0984, "final_rank": 2 }, { "submission_id": "aoj_2693_4555610", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\nusing namespace std;\n\n// a is subseq of b (b is ordering)\nbool is_subseq(const string &a, const string &b){\n int used[256] = {};\n for(char c: a) used[(int)c]++;\n string tmp = \"\";\n for(char c: b){\n if(used[(int)c] == 1) tmp += c;\n }\n return a == tmp;\n}\nstring remstr(const string &a, const string &b){\n int used[256] = {};\n for(char c: a) used[(int)c]++;\n string res = \"\";\n for(char c: b){\n if(used[(int)c] == 0) res += c;\n }\n return res;\n}\n\nint main(){\n int n,m;\n cin >> n >> m;\n vector<string> str(n);\n for(int i=0; i<n; i++){\n cin >> str[i];\n }\n vector<vector<string>> other(n);\n for(int i=0; i<n; i++){\n bool used[256] = {};\n for(char c: str[i]) used[(int)c] = true;\n string unused = \"\";\n for(int j=0; j<n; j++){\n if(!used['A'+j]) unused += 'A'+j;\n }\n do{\n other[i].push_back(unused);\n }while(next_permutation(unused.begin(), unused.end()));\n }\n\n vector<vector<map<string, string>>> dp(1<<n, vector<map<string, string>>(n));\n for(int i=0; i<n; i++){\n for(string &t: other[i]){\n dp[1<<i][i][t] = string(1, 'A'+i);\n }\n }\n for(int i=1; i<(1<<n); i++){\n for(int j=0; j<n; j++){\n for(string &s: other[j]){\n if(dp[i][j].count(s) == 0) continue;\n for(int k=0; k<n; k++){\n if(i>>k&1) continue;\n string tmp = s+str[j];\n reverse(tmp.begin(), tmp.end());\n if(!is_subseq(str[k], tmp)) continue;\n int ni = i | (1<<k);\n string t = remstr(str[k], tmp);\n reverse(t.begin(), t.end());\n if(dp[ni][k].count(t) == 0){\n dp[ni][k][t] = dp[i][j][s] + string(1, 'A'+k);\n }else{\n dp[ni][k][t] = min(dp[ni][k][t], dp[i][j][s] + string(1, 'A'+k));\n }\n }\n }\n }\n }\n string ans = string(n, 'Z');\n for(auto &vm: dp[(1<<n)-1]){\n for(auto &p: vm){\n ans = min(ans, p.second);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2200, "memory_kb": 153164, "score_of_the_acc": -1.635, "final_rank": 15 }, { "submission_id": "aoj_2693_4555609", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\nusing namespace std;\n\n// a is subseq of b (b is ordering)\nbool is_subseq(const string &a, const string &b){\n int used[256] = {};\n for(char c: a) used[(int)c]++;\n string tmp = \"\";\n for(char c: b){\n if(used[(int)c] == 1) tmp += c;\n }\n return a == tmp;\n}\n\nint main(){\n int n,m;\n cin >> n >> m;\n vector<string> str(n);\n for(int i=0; i<n; i++){\n cin >> str[i];\n }\n vector<vector<string>> other(n);\n for(int i=0; i<n; i++){\n bool used[256] = {};\n for(char c: str[i]) used[(int)c] = true;\n string unused = \"\";\n for(int j=0; j<n; j++){\n if(!used['A'+j]) unused += 'A'+j;\n }\n do{\n other[i].push_back(unused);\n }while(next_permutation(unused.begin(), unused.end()));\n }\n\n vector<vector<map<string, string>>> dp(1<<n, vector<map<string, string>>(n));\n for(int i=0; i<n; i++){\n for(string &t: other[i]){\n dp[1<<i][i][t] = string(1, 'A'+i);\n }\n }\n for(int i=1; i<(1<<n); i++){\n for(int j=0; j<n; j++){\n for(string &s: other[j]){\n if(dp[i][j].count(s) == 0) continue;\n for(int k=0; k<n; k++){\n if(i>>k&1) continue;\n string tmp = s+str[j];\n reverse(tmp.begin(), tmp.end());\n if(!is_subseq(str[k], tmp)) continue;\n int ni = i | (1<<k);\n for(string &t: other[k]){\n if(dp[ni][k].count(t) == 0){\n dp[ni][k][t] = dp[i][j][s] + string(1, 'A'+k);\n }else{\n dp[ni][k][t] = min(dp[ni][k][t], dp[i][j][s] + string(1, 'A'+k));\n }\n }\n }\n }\n }\n }\n string ans = string(n, 'Z');\n for(auto &vm: dp[(1<<n)-1]){\n for(auto &p: vm){\n ans = min(ans, p.second);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.30952380952380953, "time_ms": 1610, "memory_kb": 89496, "score_of_the_acc": -1.0858, "final_rank": 18 }, { "submission_id": "aoj_2693_4309013", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <functional>\n#include <bitset>\n\ntemplate <class T>\nstd::vector<T> vec(int len, T elem) { return std::vector<T>(len, elem); }\n\nbool contain(const std::string& s, const std::string& t) {\n auto it = t.begin();\n for (char c : s) {\n if (it != t.end() && c == *it) ++it;\n }\n return it == t.end();\n}\n\nvoid solve() {\n int n, k;\n std::cin >> n >> k;\n\n std::vector<std::pair<std::string, std::string>> ss;\n for (int i = 0; i < n; ++i) {\n std::string s;\n std::cin >> s;\n\n std::string t;\n for (char c = 'A'; c < 'A' + n; ++c) {\n if (!std::count(s.begin(), s.end(), c)) {\n t.push_back(c);\n }\n }\n\n do {\n ss.emplace_back(s, t);\n } while (std::next_permutation(t.begin(), t.end()));\n }\n\n int d = (int)ss.size() / n;\n\n std::vector<std::vector<int>> to(n * d);\n for (int u = 0; u < n * d; ++u) {\n auto pu = ss[u];\n\n for (int v = 0; v < n * d; ++v) {\n auto pv = ss[v];\n\n // uの後に得られる文字列\n auto s = std::string(pu.first.rbegin(), pu.first.rend()) +\n pu.second;\n\n if (contain(s, pv.first) &&\n contain(s, pv.second)) {\n to[u].push_back(v);\n }\n }\n }\n\n auto dp = vec(1 << n, vec(n * d, std::string(1, '$')));\n for (int v = 0; v < n * d; ++v) {\n char c = 'A' + v / d;\n dp.back()[v] = std::string(1, c);\n }\n\n std::function<std::string(int, int)> dfs =\n [&](int b, int v) -> std::string {\n auto& ret = dp[b][v];\n if (ret != \"$\") return ret;\n\n ret = \"\";\n for (auto u : to[v]) {\n int j = u / d;\n if ((b >> j) & 1) continue;\n\n auto res = dfs(b | (1 << j), u);\n if (res.empty()) continue;\n\n if (ret.empty() || res < ret) ret = res;\n }\n\n if (ret.empty()) return ret;\n\n char c = 'A' + v / d;\n ret = c + ret;\n return ret;\n };\n\n std::string ans(n, 'Z');\n for (int v = 0; v < n * d; ++v) {\n int i = v / d;\n auto res = dfs(1 << i, v);\n\n if (res.empty()) continue;\n ans = std::min(ans, res);\n }\n\n std::cout << ans << std::endl;\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::cout.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 84428, "score_of_the_acc": -0.4243, "final_rank": 7 }, { "submission_id": "aoj_2693_4308834", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <functional>\n\ntemplate <class T>\nstd::vector<T> vec(int len, T elem) { return std::vector<T>(len, elem); }\n\nbool contain(const std::string& s, const std::string& t) {\n auto it = t.begin();\n for (char c : s) {\n if (it != t.end() && c == *it) ++it;\n }\n return it == t.end();\n}\n\nvoid solve() {\n int n, k;\n std::cin >> n >> k;\n\n std::vector<std::pair<std::string, std::string>> ss;\n for (int i = 0; i < n; ++i) {\n std::string s;\n std::cin >> s;\n\n std::string t;\n for (char c = 'A'; c < 'A' + n; ++c) {\n if (!std::count(s.begin(), s.end(), c)) {\n t.push_back(c);\n }\n }\n\n do {\n ss.emplace_back(s, t);\n } while (std::next_permutation(t.begin(), t.end()));\n }\n\n int d = (int)ss.size() / n;\n\n std::vector<std::vector<int>> to(n * d);\n for (int u = 0; u < n * d; ++u) {\n auto pu = ss[u];\n\n for (int v = 0; v < n * d; ++v) {\n auto pv = ss[v];\n\n // uの後に得られる文字列\n auto s = std::string(pu.first.rbegin(), pu.first.rend()) +\n pu.second;\n\n if (contain(s, pv.first) &&\n contain(s, pv.second)) {\n to[u].push_back(v);\n }\n }\n }\n\n auto dp = vec(1 << n, vec(n * d, std::string(1, '$')));\n for (int v = 0; v < n * d; ++v) {\n char c = 'A' + v / d;\n dp.back()[v] = std::string(1, c);\n }\n\n std::function<std::string(int, int)> dfs =\n [&](int b, int v) -> std::string {\n auto& ret = dp[b][v];\n if (ret != \"$\") return ret;\n\n ret = \"\";\n for (auto u : to[v]) {\n int j = u / d;\n if ((b >> j) & 1) continue;\n\n auto res = dfs(b | (1 << j), u);\n if (res.empty()) continue;\n\n if (ret.empty() || res < ret) ret = res;\n }\n\n if (ret.empty()) return ret;\n\n char c = 'A' + v / d;\n return c + ret;\n };\n\n std::string ans(n, 'Z');\n for (int v = 0; v < n * d; ++v) {\n int i = v / d;\n auto res = dfs(1 << i, v);\n\n if (res.empty()) continue;\n ans = std::min(ans, res);\n }\n\n std::cout << ans << std::endl;\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::cout.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 0.07142857142857142, "time_ms": 40, "memory_kb": 54564, "score_of_the_acc": -0.2154, "final_rank": 20 }, { "submission_id": "aoj_2693_4147456", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = (1e+18) + 7;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-6;\nconst ld pi = acos(-1.0);\n//typedef vector<vector<ll>> mat;\ntypedef vector<int> vec;\n\nll mod_pow(ll a, ll n) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * a%mod;\n\t\ta = a * a%mod; n >>= 1;\n\t}\n\treturn res;\n}\n\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n%mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, int n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a*a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\n//const int max_n = 1 << 22;\n//modint fact[max_n], factinv[max_n];\n//void init_f() {\n//\tfact[0] = modint(1);\n//\tfor (int i = 0; i < max_n - 1; i++) {\n//\t\tfact[i + 1] = fact[i] * modint(i + 1);\n//\t}\n//\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n//\tfor (int i = max_n - 2; i >= 0; i--) {\n//\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n//\t}\n//}\n//modint comb(int a, int b) {\n//\tif (a < 0 || b < 0 || a < b)return 0;\n//\treturn fact[a] * factinv[b] * factinv[a - b];\n//}\n\nvector<P> to[16][6];\n\nbool used[1 << 16][16][6];\nstring memo[1 << 16][16][6];\nvoid solve() {\n\tint n, k; cin >> n >> k;\n\tvector<string> s(n);\n\trep(i, n) {\n\t\tcin >> s[i];\n\t}\n\tmap<string, vector<P>> mp;\n\tvector<vector<string>> z(n);\n\trep(i, n) {\n\t\tvector<bool> alf(n, false);\n\t\tfor (char t : s[i]) {\n\t\t\talf[t - 'A'] = true;\n\t\t}\n\t\tstring v;\n\t\trep(j, n)if (!alf[j])v.push_back('A' + j);\n\t\tstring sta = s[i]; reverse(all(sta));\n\t\tint tmp = 0;\n\t\twhile (true) {\n\t\t\tstring t = sta + v;\n\t\t\tz[i].push_back(t);\n\t\t\tmp[t].push_back({ i,tmp });\n\t\t\ttmp++;\n\t\t\tif (!next_permutation(all(v)))break;\n\t\t}\n\t}\n\trep(i, n) {\n\t\trep(j, z[i].size()) {\n\t\t\tstring &ori = z[i][j];\n\t\t\trep(l, n) {\n\t\t\t\tif (l == i)continue;\n\t\t\t\tint tmp = 0;\n\t\t\t\trep(x, n) {\n\t\t\t\t\tif (tmp < k&&ori[x] == s[l][tmp])tmp++;\n\t\t\t\t}\n\t\t\t\tif (tmp == k) {\n\t\t\t\t\tstring nex;\n\t\t\t\t\ttmp = 0;\n\t\t\t\t\trep(x, n) {\n\t\t\t\t\t\tif (tmp < k&&ori[x] == s[l][tmp])tmp++;\n\t\t\t\t\t\telse nex.push_back(ori[x]);\n\t\t\t\t\t}\n\t\t\t\t\treverse(all(nex));\n\t\t\t\t\tnex += s[l];\n\t\t\t\t\treverse(all(nex));\n\t\t\t\t\t//cout << i << \" \" << l << \" \" << nex << endl;\n\t\t\t\t\tfor (P p : mp[nex]) {\n\t\t\t\t\t\tto[i][j].push_back(p);\n\t\t\t\t\t\t//cout << i << \" \" << j << \" add \" << p.first << \" \" << p.second << endl;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tchar zz = 'Z' + 1;\n\tstring sup; sup.push_back(zz);\n\tfunction<string(int, int, int)> dfs = [&](int s, int i, int j)->string {\n\t\tif (s == (1 << n) - 1)return \"\";\n\t\tif (used[s][i][j])return memo[s][i][j];\n\t\tused[s][i][j] = true;\n\t\tmemo[s][i][j] = sup;\n\t\tfor (P p : to[i][j]) {\n\t\t\tint ni = p.first, nj = p.second;\n\t\t\tif (s&(1 << ni))continue;\n\t\t\tstring t = dfs(s ^ (1 << ni), ni, nj);\n\t\t\tif (t != sup)t.insert(t.begin(), 'A' + ni);\n\t\t\tmemo[s][i][j] = min(memo[s][i][j], t);\n\t\t}\n\t\treturn memo[s][i][j];\n\t};\n\tstring ans = sup;\n\trep(i, n) {\n\t\trep(j, z[i].size()) {\n\t\t\tstring t = dfs(1 << i, i, j);\n\t\t\tif (t != sup)t.insert(t.begin(), 'A' + i);\n\t\t\tans = min(ans, t);\n\t\t}\n\t}\n\tcout << ans << endl;\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(12);\n\t//init_f();\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n\tstop\n\t\treturn 0;\n}", "accuracy": 1, "time_ms": 430, "memory_kb": 60920, "score_of_the_acc": -0.4214, "final_rank": 6 }, { "submission_id": "aoj_2693_3841790", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int N = 16;\n\nint lg[ 1 << N ];\nbool exi[ N ];\nstring seq[ N ][ 6 ];\nbool ok[ N ][ 6 ][ N ][ 6 ];\nbool dp[ 1 << N ][ N ][ 6 ];\n\nint main() {\n\tios_base::sync_with_stdio( false );\n\tcin.tie( nullptr );\n\n\tauto two = [] ( int x ) { return 1 << x; };\n\tauto lowbit = [] ( int x ) { return x & ( -x ); };\n\n\tint n, k; cin >> n >> k;\n\tint jie = ( n - k ) * max( n - k - 1, 1 ) * max( n - k - 2, 1 );\n\n\tfor ( int i = 0 ; i < n ; ++ i ) {\n\t\tstring ss; cin >> ss;\n\t\tfor ( int j = 0 ; j < k ; ++ j )\n\t\t\texi[ ss[ j ] - 'A' ] = true;\n\t\tstring per;\n\t\tfor ( int j = 0 ; j < n ; ++ j )\n\t\t\tif ( not exi[ j ] ) per += char( 'A' + j );\n\t\tfor ( int j = 0 ; j < n ; ++ j )\n\t\t\texi[ j ] = false;\n\t\treverse( ss.begin(), ss.end() );\n\t\tfor ( int j = 0 ; j < jie ; ++ j ) {\n\t\t\tseq[ i ][ j ] = ss + per;\n\t\t\tnext_permutation( per.begin(), per.end() );\n\t\t}\n\t}\n\tfor ( int i = 0 ; i < n ; ++ i )\n\t\tfor ( int j = 0 ; j < jie ; ++ j )\n\t\t\tdp[ two( i ) ][ i ][ j ] = true;\n\n\tfor ( int i = 0 ; i < n ; ++ i )\n\t\tlg[ two( i ) ] = i;\n\n\tfor ( int i1 = 0 ; i1 < n ; ++ i1 ) {\n\t\tfor ( int j1 = 0 ; j1 < jie ; ++ j1 ) {\n\t\t\tfor ( int i2 = 0 ; i2 < n ; ++ i2 ) {\n\t\t\t\tfor ( int j2 = 0 ; j2 < jie ; ++ j2 ) {\n\t\t\t\t\tconst string& s1 = seq[ i1 ][ j1 ];\n\t\t\t\t\tconst string& s2 = seq[ i2 ][ j2 ];\n\n\t\t\t\t\tok[ i1 ][ j1 ][ i2 ][ j2 ] = true;\n\n\t\t\t\t\tint p1 = k - 1, p2 = k;\n\t\t\t\t\tfor ( int i = 0 ; i < n ; ++ i ) {\n\t\t\t\t\t\tif ( p1 >= 0 and s1[ i ] == s2[ p1 ] ) {\n\t\t\t\t\t\t\t-- p1;\n\t\t\t\t\t\t} else if ( p2 < n and s1[ i ] == s2[ p2 ] ) {\n\t\t\t\t\t\t\t++ p2;\n\t\t\t\t\t\t} else {\n\t\t\t\t\t\t\tok[ i1 ][ j1 ][ i2 ][ j2 ] = false;\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tconst int S = two( n );\n\tfor ( int s = 3 ; s < S ; ++ s ) {\n\t\tvector< int > ps;\n\t\tfor ( int tmps = s ; tmps ; tmps -= lowbit( tmps ) )\n\t\t\tps.push_back( lg[ lowbit( tmps ) ] );\n\t\tif ( ps.size() == 1 ) continue;\n\t\tfor ( int u : ps ) {\n\t\t\tfor ( int c1 = 0 ; c1 < jie ; ++ c1 ) {\n\t\t\t\tfor ( int v : ps ) {\n\t\t\t\t\tif ( u == v ) continue;\n\t\t\t\t\tfor ( int c2 = 0 ; c2 < jie ; ++ c2 ) {\n\t\t\t\t\t\tif ( ok[ u ][ c1 ][ v ][ c2 ] )\n\t\t\t\t\t\t\tdp[ s ][ u ][ c1 ] |= dp[ s - two( u ) ][ v ][ c2 ];\n\t\t\t\t\t\tif ( dp[ s ][ u ][ c1 ] ) break;\n\t\t\t\t\t}\n\t\t\t\t\tif ( dp[ s ][ u ][ c1 ] ) break;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tint state = S - 1;\n\tstring ans;\n\twhile ( state ) {\n\t\tfor ( int i = 0 ; i < n ; ++ i ) {\n\t\t\tif ( not ( state & two( i ) ) )\n\t\t\t\tcontinue;\n\t\t\tfor ( int j = 0 ; j < jie ; ++ j ) {\n\t\t\t\tif ( dp[ state ][ i ][ j ] ) {\n\t\t\t\t\tans += char( 'A' + i );\n\t\t\t\t\tstate -= two( i );\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif ( not ( state & two( i ) ) )\n\t\t\t\tbreak;\n\t\t}\n\t}\n\tcout << ans << '\\n';\n\treturn 0;\n}", "accuracy": 0.6190476190476191, "time_ms": 260, "memory_kb": 9400, "score_of_the_acc": -0.1174, "final_rank": 16 } ]
aoj_2698_cpp
Problem L Wall Making Game The game Wall Making Game , a two-player board game, is all the rage. This game is played on an $H \times W$ board. Each cell of the board is one of empty , marked , or wall . At the beginning of the game, there is no wall on the board. In this game, two players alternately move as follows: A player chooses one of the empty cells (not marked and not wall). If the player can't choose a cell, he loses. Towards each of the four directions (upper, lower, left, and right) from the chosen cell, the player changes cells (including the chosen cell) to walls until the player first reaches a wall or the outside of the board. Note that marked cells cannot be chosen in step 1, but they can be changed to walls in step 2. Fig.1 shows an example of a move in which a player chooses the cell at the third row and the fourth column. Fig.1: An example of a move in Wall Making Game. Your task is to write a program that determines which player wins the game if the two players play optimally from a given initial board. Input The first line of the input consists of two integers $H$ and $W$ $(1 \leq H, W \leq 20)$, where $H$ and $W$ are the height and the width of the board respectively. The following $H$ lines represent the initial board. Each of the $H$ lines consists of $W$ characters. The $j$-th character of the $i$-th line is ' . ' if the cell at the $j$-th column of the $i$-th row is empty, or ' X ' if the cell is marked. Output Print " First " (without the quotes) in a line if the first player wins the given game. Otherwise, print " Second " (also without the quotes) in a line. Sample Input 1 2 2 .. .. Output for the Sample Input 1 Second Sample Input 2 2 2 X. .. Output for the Sample Input 2 First Sample Input 3 4 5 X.... ...X. ..... ..... Output for the Sample Input 3 First
[ { "submission_id": "aoj_2698_10850936", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define nn 22\n\nint n,m;\nchar _map[nn][nn];\nint dp[nn][nn][nn][nn];\n\n\nint dfs(int x1,int y1,int x2,int y2){\n\tif(x1>x2 or y1>y2) return 0;\n\tif(dp[x1][y1][x2][y2]>-1) return dp[x1][y1][x2][y2];\n\tset<int> all;\n\tfor(int i=x1;i<=x2;i++) {\n\t\tfor(int j=y1;j<=y2;j++) if(_map[i][j]=='.'){\n\t\t\tint w=dfs(x1,y1,i-1,j-1)^dfs(x1,j+1,i-1,y2)^dfs(i+1,y1,x2,j-1)^dfs(i+1,j+1,x2,y2);\n\t\t\tall.insert(w);\n\t\t}\n\t}\n\tint res=0;\n\twhile(all.count(res))res++;\n\n\treturn dp[x1][y1][x2][y2]=res;\n}\n\nint main(){\n\tmemset(dp,-1,sizeof dp);\n\tscanf(\"%d%d\",&n,&m);\n\tfor(int i=1;i<=n;i++) scanf(\"%s\",_map[i]+1);\n\t\n\tif(dfs(1,1,n,m)) puts(\"First\");else puts(\"Second\");\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4460, "score_of_the_acc": -0.2221, "final_rank": 9 }, { "submission_id": "aoj_2698_9808844", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define srep(i, s, t) for(int i = (s); i < (t); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\nusing i64 = long long;\nusing f64 = long double;\ni64 floor_div(const i64 n, const i64 d) { assert(d != 0); return n / d - static_cast<i64>((n ^ d) < 0 && n % d != 0); }\ni64 ceil_div(const i64 n, const i64 d) { assert(d != 0); return n / d + static_cast<i64>((n ^ d) >= 0 && n % d != 0); }\n\nconstexpr int M = 25;\nint dp[M][M][M][M] = {};\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n rep(i, 21) rep(j, 21) rep(k, 21) rep(l, 21) dp[i][j][k][l] = -1;\n \n int H, W; cin >> H >> W;\n vector<string> S(H);\n for(auto& e : S) cin >> e;\n auto F = [&](auto&& F, int xL, int xR, int yL, int yR) -> int {\n if(not(xL <= xR and yL <= yR)) return 0;\n int& mex = dp[xL][xR][yL][yR];\n if(mex != -1) return mex;\n\n set<int> gs;\n for(int x = xL; x <= xR; x++) {\n for(int y = yL; y <= yR; y++) {\n if(S[x][y] == '.') {\n int g = 0;\n g ^= F(F, xL, x - 1, yL, y - 1);\n g ^= F(F, x + 1, xR, yL, y - 1);\n g ^= F(F, xL, x - 1, y + 1, yR);\n g ^= F(F, x + 1, xR, y + 1, yR);\n gs.insert(g);\n }\n }\n }\n mex = 0;\n while(gs.count(mex)) mex++;\n return mex;\n };\n cout << (F(F, 0, H - 1, 0, W - 1) != 0 ? \"First\" : \"Second\") << \"\\n\";\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4616, "score_of_the_acc": -0.277, "final_rank": 12 }, { "submission_id": "aoj_2698_9808843", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define srep(i, s, t) for(int i = (s); i < (t); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\nusing i64 = long long;\nusing f64 = long double;\ni64 floor_div(const i64 n, const i64 d) { assert(d != 0); return n / d - static_cast<i64>((n ^ d) < 0 && n % d != 0); }\ni64 ceil_div(const i64 n, const i64 d) { assert(d != 0); return n / d + static_cast<i64>((n ^ d) >= 0 && n % d != 0); }\n\nconstexpr int M = 25;\nint dp[M][M][M][M] = {};\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n rep(i, 21) rep(j, 21) rep(k, 21) rep(l, 21) dp[i][j][k][l] = -1;\n \n int H, W; cin >> H >> W;\n vector<string> S(H);\n for(auto& e : S) cin >> e;\n auto F = [&](auto&& F, int xL, int xR, int yL, int yR) -> int {\n int& mex = dp[xL][xR][yL][yR];\n if(mex != -1) return mex;\n\n set<int> gs;\n for(int x = xL; x <= xR; x++) {\n for(int y = yL; y <= yR; y++) {\n if(S[x][y] == '.') {\n int g = 0;\n g ^= F(F, xL, x - 1, yL, y - 1);\n g ^= F(F, x + 1, xR, yL, y - 1);\n g ^= F(F, xL, x - 1, y + 1, yR);\n g ^= F(F, x + 1, xR, y + 1, yR);\n gs.insert(g);\n }\n }\n }\n mex = 0;\n while(gs.count(mex)) mex++;\n return mex;\n };\n cout << (F(F, 0, H - 1, 0, W - 1) != 0 ? \"First\" : \"Second\") << \"\\n\";\n}", "accuracy": 0.8035714285714286, "time_ms": 70, "memory_kb": 4652, "score_of_the_acc": -0.2897, "final_rank": 19 }, { "submission_id": "aoj_2698_9808842", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define srep(i, s, t) for(int i = (s); i < (t); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\nusing i64 = long long;\nusing f64 = long double;\ni64 floor_div(const i64 n, const i64 d) { assert(d != 0); return n / d - static_cast<i64>((n ^ d) < 0 && n % d != 0); }\ni64 ceil_div(const i64 n, const i64 d) { assert(d != 0); return n / d + static_cast<i64>((n ^ d) >= 0 && n % d != 0); }\n\nint dp[21][21][21][21] = {};\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n rep(i, 21) rep(j, 21) rep(k, 21) rep(l, 21) dp[i][j][k][l] = -1;\n \n int H, W; cin >> H >> W;\n vector<string> S(H);\n for(auto& e : S) cin >> e;\n auto F = [&](auto&& F, int xL, int xR, int yL, int yR) -> int {\n int& mex = dp[xL][xR][yL][yR];\n if(mex != -1) return mex;\n\n set<int> gs;\n for(int x = xL; x <= xR; x++) {\n for(int y = yL; y <= yR; y++) {\n if(S[x][y] == '.') {\n int g = 0;\n g ^= F(F, xL, x - 1, yL, y - 1);\n g ^= F(F, x + 1, xR, yL, y - 1);\n g ^= F(F, xL, x - 1, y + 1, yR);\n g ^= F(F, x + 1, xR, y + 1, yR);\n gs.insert(g);\n }\n }\n }\n mex = 0;\n while(gs.count(mex)) mex++;\n return mex;\n };\n cout << (F(F, 0, H - 1, 0, W - 1) != 0 ? \"First\" : \"Second\") << \"\\n\";\n}", "accuracy": 0.7946428571428571, "time_ms": 70, "memory_kb": 4232, "score_of_the_acc": -0.1418, "final_rank": 20 }, { "submission_id": "aoj_2698_9722732", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<vector<bool>> B(N,vector<bool>(M));\n rep(i,0,N) {\n string S;\n cin >> S;\n rep(j,0,M) {\n if (S[j] == 'X') B[i][j] = true;\n else B[i][j] = false;\n }\n }\n vector DP(N+1,vector(N+1,vector(M+1,vector<int>(M+1,-1))));\n auto DFS = [&](auto&& self, int LX, int RX, int LY, int RY) -> int {\n if (LX == RX || LY == RY) return 0;\n if (DP[LX][RX][LY][RY] >= 0) return DP[LX][RX][LY][RY];\n set<int> st;\n rep(i,LX,RX) {\n rep(j,LY,RY) {\n if (B[i][j]) continue;\n st.insert(self(self,LX,i,LY,j) ^ self(self,i+1,RX,LY,j) ^ self(self,LX,i,j+1,RY) ^ self(self,i+1,RX,j+1,RY));\n }\n }\n int Cur = 0;\n while(1) {\n if (!st.count(Cur)) break;\n Cur++;\n }\n return DP[LX][RX][LY][RY] = Cur;\n };\n cout << (DFS(DFS,0,N,0,M) == 0 ? \"Second\" : \"First\") << endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 4592, "score_of_the_acc": -0.2787, "final_rank": 13 }, { "submission_id": "aoj_2698_9630864", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint H,W;\nvector<string> S;\nmap<pair<pair<int,int>,pair<int,int>>,int> GR;\nint gr(int L,int R,int U,int D){\n if(L>=R||U>=D)return 0;\n if(GR.count({{L,R},{U,D}}))return GR[{{L,R},{U,D}}];\n set<int> ST;\n for(int w=L;w<R;w++){\n for(int h=U;h<D;h++){\n if(S[h][w]=='X')continue;\n int X=0;\n X^=gr(L,w,U,h);\n X^=gr(L,w,h+1,D);\n X^=gr(w+1,R,U,h);\n X^=gr(w+1,R,h+1,D);\n ST.insert(X);\n }\n }\n for(int i=0;i<10000;i++){\n if(!ST.count(i)){\n GR[{{L,R},{U,D}}]=i;\n // cout<<L<<\" \"<<R<<\" \"<<U<<\" \"<<D<<\" \"<<i<<endl;\n return i;\n }\n }\n return -1;\n}\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n cin>>H>>W;\n S.resize(H);\n for(int h=0;h<H;h++)cin>>S[h];\n int g=gr(0,W,0,H);\n cout<<(g==0?\"Second\":\"First\")<<\"\\n\";\n \n}", "accuracy": 1, "time_ms": 860, "memory_kb": 6176, "score_of_the_acc": -1.6243, "final_rank": 16 }, { "submission_id": "aoj_2698_8291452", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint H, W;\nchar c[22][22];\nint dp[22][22][22][22];\n\nint GetMex(vector<int> vec) {\n\tvec.push_back(-1);\n\tvec.push_back(100000000);\n\tsort(vec.begin(), vec.end());\n\tfor (int i = 0; i < vec.size() - 1; i++) {\n\t\tif (vec[i + 1] - vec[i] >= 2) return vec[i] + 1;\n\t}\n\treturn -1;\n}\n\nint dfs(int lx, int ly, int rx, int ry) {\n\tif (lx > rx || ly > ry) return 0;\n\tif (dp[lx][ly][rx][ry] != -1) return dp[lx][ly][rx][ry];\n\n\tvector<int> cand;\n\tfor (int i = lx; i <= rx; i++) {\n\t\tfor (int j = ly; j <= ry; j++) {\n\t\t\tif (c[i][j] == 'X') continue;\n\t\t\tint v1 = dfs( lx, ly, i - 1, j - 1);\n\t\t\tint v2 = dfs( lx, j + 1, i - 1, ry);\n\t\t\tint v3 = dfs(i + 1, ly, rx, j - 1);\n\t\t\tint v4 = dfs(i + 1, j + 1, rx, ry);\n\t\t\tcand.push_back(v1 ^ v2 ^ v3 ^ v4);\n\t\t}\n\t}\n\tint val = GetMex(cand);\n\tdp[lx][ly][rx][ry] = val;\n\treturn val;\n}\n\nint main() {\n\t// Step 1. Input\n\tcin >> H >> W;\n\tfor (int i = 1; i <= H; i++) {\n\t\tfor (int j = 1; j <= W; j++) cin >> c[i][j];\n\t}\n\n\t// Step 2. DP Init\n\tfor (int i = 1; i <= H; i++) {\n\t\tfor (int j = 1; j <= W; j++) {\n\t\t\tfor (int k = 1; k <= H; k++) {\n\t\t\t\tfor (int l = 1; l <= W; l++) dp[i][j][k][l] = -1;\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 3. DP & Output\n\tint Answer = dfs(1, 1, H, W);\n\tif (Answer == 0) cout << \"Second\" << endl;\n\telse cout << \"First\" << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4236, "score_of_the_acc": -0.1331, "final_rank": 5 }, { "submission_id": "aoj_2698_7909692", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr int N = 30;\nint memo[N][N][N][N];\nvector<string> s(N);\nint h, w;\n\nint dfs(int si, int sj, int ti, int tj) {\n if (memo[si][sj][ti][tj] != -1) return memo[si][sj][ti][tj];\n if (ti - si < 1) return 0;\n if (tj - sj < 1) return 0;\n std::vector<bool> used(N * N, false); \n for (int i = si; i < ti; i++) {\n for (int j = sj; j < tj; j++) {\n if (s[i][j] == 'X') continue;\n int ans = 0;\n ans ^= dfs(si, sj, i, j);\n ans ^= dfs(si, j + 1, i, tj);\n ans ^= dfs(i + 1, sj, ti, j);\n ans ^= dfs(i + 1, j + 1, ti, tj);\n if (ans < N * N) used[ans] = true;\n }\n }\n memo[si][sj][ti][tj] = N * N;\n for (int i = 0; i < N * N; i++) {\n if (used[i]) continue;\n memo[si][sj][ti][tj] = i;\n break;\n }\n return memo[si][sj][ti][tj];\n}\n\nint main() {\n std::cin >> h >> w;\n for (int i = 0; i < h; i++) {\n std::cin >> s[i];\n }\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n for (int k = 0; k < N; k++) {\n for (int l = 0; l < N; l++) {\n memo[i][j][k][l] = -1;\n }\n }\n }\n }\n int ans = dfs(0, 0, h, w);\n if (ans > 0) {\n std::cout << \"First\" << '\\n';\n } else {\n std::cout << \"Second\" << '\\n';\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6612, "score_of_the_acc": -0.9394, "final_rank": 15 }, { "submission_id": "aoj_2698_6533555", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+9;\n#define rep(i,a) for (int i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\n\nvoid solve();\n\n\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tsolve();\n}\n\nvoid solve(){\n\tint H,W;\n\tcin>>H>>W;\n\tvector<vector<char>> p(H,vector<char>(W));\n\trep(i,H) rep(j,W){\n\t\tcin>>p[i][j];\n\t}\n\tint dp[H+1][H+1][W+1][W+1];\n\tset<int> s;\n\trep(d,H+1) for(int u=d;u>=0;u--) rep(r,W+1) for(int l=r;l>=0;l--){\n\t\tif(d==u||l==r) dp[u][d][l][r]=0;\n\t\telse if(d-u==1&&r-l==1){\n\t\t\tif(p[u][l]=='.') dp[u][d][l][r]=1;\n\t\t\telse dp[u][d][l][r]=0;\n\t\t}else{\n\t\t\ts.clear();\n\t\t\tfor(int i=u;i<d;i++) for(int j=l;j<r;j++){\n\t\t\t\tif(p[i][j]=='.'){\n\t\t\t\t\tint tmp=0;\n\t\t\t\t\ttmp^=dp[u][i][l][j];\n\t\t\t\t\ttmp^=dp[u][i][j+1][r];\n\t\t\t\t\ttmp^=dp[i+1][d][l][j];\n\t\t\t\t\ttmp^=dp[i+1][d][j+1][r];\n\t\t\t\t\ts.insert(tmp);\n\t\t\t\t}\n\t\t\t}\n\t\t\trep(i,400){\n\t\t\t\tif(!s.count(i)){\n\t\t\t\t\tdp[u][d][l][r]=i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t//cout<<u<<\" \"<<d<<\" \"<<l<<\" \"<<r<<\"\\n\"<<dp[u][d][l][r]<<\"\\n\";\n\t}\n\tif(dp[0][H][0][W]==0) cout<<\"Second\\n\";\n\telse cout<<\"First\\n\";\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3944, "score_of_the_acc": -0.0202, "final_rank": 1 }, { "submission_id": "aoj_2698_6312288", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\ntypedef string::const_iterator State;\n#define eps 1e-8L\n#define MAX_MOD 1000000007LL\n#define GYAKU 500000004LL\n#define MOD 998244353LL\n#define pb push_back\n#define mp make_pair\ntypedef long long ll;\ntypedef long double ld;\n#define REP(a, b) for (long long(a) = 0; (a) < (b); ++(a))\n#define ALL(x) (x).begin(), (x).end()\n\n#define int long long\n\nint dp[20][20][20][20];\nint cnt[20][20];\n\nint nim(int l_h, int l_w, int r_h, int r_w)\n{\n if (r_h < l_h or r_w < l_w)\n return 0;\n if (dp[l_h][l_w][r_h][r_w] == -1)\n {\n set<int> inputs;\n for (int i = l_h; i <= r_h; ++i)\n {\n for (int j = l_w; j <= r_w; ++j)\n {\n if (cnt[i][j] == 0)\n {\n inputs.insert(nim(l_h, l_w, i - 1, j - 1) ^ nim(i + 1, l_w, r_h, j - 1) ^ nim(i + 1, j + 1, r_h, r_w) ^ nim(l_h, j + 1, i - 1, r_w));\n }\n }\n }\n\n for (int i = 0;; ++i)\n {\n if (inputs.count(i) == 0)\n {\n dp[l_h][l_w][r_h][r_w] = i;\n break;\n }\n }\n }\n return dp[l_h][l_w][r_h][r_w];\n}\n\nvoid solve()\n{\n int h, w;\n cin >> h >> w;\n REP(i, h)\n {\n string s;\n cin >> s;\n REP(q, w)\n {\n if (s[q] == 'X')\n {\n cnt[i][q] = 1;\n }\n }\n }\n\n REP(i, h)\n {\n REP(q, w)\n {\n REP(t, h)\n {\n REP(p, w)\n {\n dp[i][q][t][p] = -1;\n }\n }\n }\n }\n if(nim(0, 0, h - 1, w - 1)){\n cout << \"First\" << endl;\n }else{\n cout << \"Second\" << endl;\n }\n}\n#undef int\n\n// generated by oj-template v4.7.2\n// (https://github.com/online-judge-tools/template-generator)\nint main()\n{\n // Fasterize input/output script\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(100);\n // scanf/printf user should delete this fasterize input/output script\n\n int t = 1;\n // cin >> t; // comment out if solving multi testcase\n for (int testCase = 1; testCase <= t; ++testCase)\n {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4712, "score_of_the_acc": -0.3007, "final_rank": 14 }, { "submission_id": "aoj_2698_6262894", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define ALL(x) x.begin(), x.end()\n\nint H, W;\nint grundy[22][22][22][22];\nstring g[22];\n\nint rec(int h1, int h2, int w1, int w2) {\n if (grundy[h1][h2][w1][w2] != -1) return grundy[h1][h2][w1][w2];\n if (h1 == h2 || w1 == w2) return 0;\n set<int> s;\n for (int i = h1; i < h2; i++) {\n for (int j = w1; j < w2; j++) {\n if (g[i][j] == 'X') continue;\n int c = 0;\n c ^= rec(h1, i, w1, j);\n c ^= rec(h1, i, j + 1, w2);\n c ^= rec(i + 1, h2, w1, j);\n c ^= rec(i + 1, h2, j + 1, w2);\n s.insert(c);\n }\n }\n int g = 0;\n while (s.count(g) != 0) g++;\n return grundy[h1][h2][w1][w2] = g;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cin >> H >> W;\n rep(i, H) cin >> g[i];\n rep(h1, 22) rep(h2, 22) rep(w1, 22) rep(w2, 22) grundy[h1][h2][w1][w2] = -1;\n int a = rec(0, H, 0, W);\n cout << (a ? \"First\" : \"Second\") << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4420, "score_of_the_acc": -0.208, "final_rank": 8 }, { "submission_id": "aoj_2698_6262095", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n// #pragma GCC target(\"arch=skylake-avx512\")\n// #include <atcoder/all>\n// using namespace atcoder;\n// #define NDEBUG\n\n#pragma region template\n// Define\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate <class T> using pvector = vector<pair<T, T>>;\ntemplate <class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;\nconstexpr const ll dx[4] = {1, 0, -1, 0};\nconstexpr const ll dy[4] = {0, 1, 0, -1};\nconstexpr const ll MOD = 1e9 + 7;\nconstexpr const ll mod = 998244353;\nconstexpr const ll INF = 1LL << 60;\nconstexpr const ll inf = 1 << 30;\nconstexpr const char rt = '\\n';\nconstexpr const char sp = ' ';\n#define rt(i, n) (i == (ll) (n) -1 ? rt : sp)\n#define len(x) ((ll) (x).size())\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define mp make_pair\n#define mt make_tuple\n#define pb push_back\n#define eb emplace_back\n#define ifn(x) if (not(x))\n#define elif else if\n#define elifn else ifn\n#define fi first\n#define se second\n#define uniq(x) (sort(all(x)), (x).erase(unique(all(x)), (x).end()))\n#define bis(x, y) ((ll) (lower_bound(all(x), y) - (x).begin()))\n\nusing graph = vector<vector<ll>>;\ntemplate <class T> using wgraph = vector<vector<pair<ll, T>>>;\nbool __DIRECTED__ = true;\nbool __ZERO_INDEXED__ = false;\nistream &operator>>(istream &is, graph &g) {\n ll a, b;\n is >> a >> b;\n if (__ZERO_INDEXED__ == false) a--, b--;\n g[a].pb(b);\n if (__DIRECTED__ == false) g[b].pb(a);\n return is;\n}\ntemplate <class T> istream &operator>>(istream &is, wgraph<T> &g) {\n ll a, b;\n T c;\n is >> a >> b >> c;\n if (__ZERO_INDEXED__ == false) a--, b--;\n g[a].pb({b, c});\n if (__DIRECTED__ == false) g[b].pb({a, c});\n return is;\n}\n\ntemplate <class T> bool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> bool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n\n// Debug\n#ifdef NDEBUG\n#define debug(...)\n#define dumpi(a, h, w)\n#define vdumpi(a, n)\n#define dump(a, h, w)\n#define vdump(a, n)\n#else\n#define debug(...) \\\n { \\\n cerr << __LINE__ << \": \" << #__VA_ARGS__ << \" = \"; \\\n for (auto &&__i : {__VA_ARGS__}) cerr << \"[\" << __i << \"] \"; \\\n cerr << rt; \\\n }\n\n#define dumpi(a, h, w) \\\n { \\\n cerr << __LINE__ << \": \" << #a << \" = [\" << rt; \\\n rep(__i, h) { \\\n if (__i) cerr << \",\\n\"; \\\n cerr << \"[\"; \\\n rep(__j, w) { \\\n if (__j) cerr << \", \"; \\\n if (abs(a[__i][__j]) >= INF / 2 and a[__i][__j] <= -INF / 2) cerr << '-'; \\\n if (abs(a[__i][__j]) >= INF / 2) cerr << \"∞\"; \\\n else \\\n cerr << a[__i][__j]; \\\n } \\\n cerr << \"]\"; \\\n } \\\n cerr << \"\\n]\" << rt; \\\n }\n\n#define vdumpi(a, n) \\\n { \\\n cerr << __LINE__ << \": \" << #a << \" = [\"; \\\n rep(__i, n) { \\\n if (__i) cerr << \", \"; \\\n if (abs(a[__i]) >= INF / 2 and a[__i] <= -INF / 2) cerr << '-'; \\\n if (abs(a[__i]) >= INF / 2) cerr << \"∞\"; \\\n else \\\n cerr << a[__i]; \\\n } \\\n cerr << \"]\" << rt; \\\n }\n\n#define dump(a, h, w) \\\n { \\\n cerr << __LINE__ << \": \" << #a << \" = [\" << rt; \\\n rep(__i, h) { \\\n if (__i) cerr << \",\\n\"; \\\n cerr << \"[\"; \\\n rep(__j, w) { \\\n if (__j) cerr << \", \"; \\\n cerr << a[__i][__j]; \\\n } \\\n cerr << \"]\"; \\\n } \\\n cerr << \"\\n]\" << rt; \\\n }\n\n#define vdump(a, n) \\\n { \\\n cerr << __LINE__ << \": \" << #a << \" = [\"; \\\n rep(__i, n) { \\\n if (__i) cerr << \", \"; \\\n cerr << a[__i]; \\\n } \\\n cerr << \"]\" << rt; \\\n }\n#endif\n\ntemplate <class S, class T> istream &operator>>(istream &is, pair<S, T> &p) {\n is >> p.first >> p.second;\n return is;\n}\ntemplate <class S, class T> ostream &operator<<(ostream &os, const pair<S, T> &p) {\n os << p.first << ' ' << p.second;\n return os;\n}\n\n// Loop\n#define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i)\n#define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i)\n#define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i)\n#define each(i, a) for (auto &&i : a)\n\n// Stream\n#define fout(n) cout << fixed << setprecision(n)\nstruct io {\n io() { cin.tie(nullptr), ios::sync_with_stdio(false); }\n} io;\n\n// Speed\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native\")\n#pragma GCC optimize(\"Ofast,unroll-loops\")\n\n// Math\ninline constexpr ll gcd(const ll a, const ll b) { return b ? gcd(b, a % b) : a; }\ninline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; }\n\ninline constexpr ll modulo(const ll n, const ll m = MOD) {\n ll k = n % m;\n return k + m * (k < 0);\n}\ninline constexpr ll chmod(ll &n, const ll m = MOD) {\n n %= m;\n return n += m * (n < 0);\n}\ninline constexpr ll mpow(ll a, ll n, const ll m = MOD) {\n ll r = 1;\n rep(i, 64) {\n if (n & (1LL << i)) r *= a;\n chmod(r, m);\n a *= a;\n chmod(a, m);\n }\n return r;\n}\ninline ll inv(const ll n, const ll m = MOD) {\n ll a = n, b = m, x = 1, y = 0;\n while (b) {\n ll t = a / b;\n a -= t * b;\n swap(a, b);\n x -= t * y;\n swap(x, y);\n }\n return modulo(x, m);\n}\nunsigned long long binary_gcd(unsigned long long x, unsigned long long y) {\n if (!x | !y) return x | y;\n unsigned long long cx = __builtin_ctzll(x), cy = __builtin_ctzll(y);\n x >>= cx, y >>= cy;\n while (x ^ y) {\n if (x > y) {\n x = (x - y) >> __builtin_ctzll(x ^ y);\n } else {\n y = (y - x) >> __builtin_ctzll(x ^ y);\n }\n }\n return x << min(cx, cy);\n}\n\ninline long long binary_gcd(long long x, long long y) {\n return binary_gcd((unsigned long long) (abs(x)), (unsigned long long) (abs(y)));\n}\n\n#define codeforces \\\n ll testcases; \\\n cin >> testcases; \\\n rep(testcase, testcases)\n#define gcj(s) cout << s << testcase + 1 << \": \"\n\n#pragma endregion\n\nsigned main() {\n ll n, m;\n cin >> n >> m;\n string s[n];\n rep(i, n) cin >> s[i];\n map<tuple<ll, ll, ll, ll>, ll> mp;\n function<ll(ll, ll, ll, ll)> win = [&](ll l, ll r, ll u, ll d) {\n if (u > d or l > r) return 0LL;\n if (mp.count({l, r, u, d})) return mp[{l, r, u, d}];\n\n vector<ll> grandy;\n inc(i, u, d) {\n inc(j, l, r) {\n if (s[i][j] == 'X') continue;\n ll g = 0;\n g ^= win(l, j - 1, u, i - 1);\n g ^= win(l, j - 1, i + 1, d);\n g ^= win(j + 1, r, u, i - 1);\n g ^= win(j + 1, r, i + 1, d);\n grandy.push_back(g);\n }\n }\n sort(all(grandy));\n ll t = 0, num = 0;\n while (t < grandy.size() and grandy[t] <= num) {\n if (grandy[t] == num) num++;\n t++;\n }\n return mp[{l, r, u, d}] = num;\n };\n\n cout << (win(0, m - 1, 0, n - 1) ? \"First\" : \"Second\") << rt;\n}", "accuracy": 1, "time_ms": 1020, "memory_kb": 6784, "score_of_the_acc": -2, "final_rank": 18 }, { "submission_id": "aoj_2698_6009227", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n\nint H, W;\nvector<string> board;\nmap<tuple<int, int, int, int>, int> memo;\n\nint dfs(int t, int b, int l, int r) {\n if (t == b || l == r) return 0;\n if (memo.count({t, b, l, r})) return memo[{t, b, l, r}];\n set<int> st;\n rep(i, t, b) rep(j, l, r) {\n if (board[i][j] == '.') {\n int x = dfs(t,i,l,j) ^ dfs(t,i,j+1,r) ^ dfs(i+1,b,l,j) ^ dfs(i+1,b,j+1,r);\n st.insert(x);\n }\n }\n int y = 0;\n while (st.count(y)) ++y;\n return memo[{t,b,l,r}] = y;\n}\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n cin >> H >> W;\n board.resize(H);\n for (auto& x : board) cin >> x;\n cout << (dfs(0, H, 0, W) ? \"First\" : \"Second\") << \"\\n\";\n}", "accuracy": 1, "time_ms": 970, "memory_kb": 6084, "score_of_the_acc": -1.703, "final_rank": 17 }, { "submission_id": "aoj_2698_5948506", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 1000000007 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nvector<string> f(22);\nint dp[22][22][22][22];\nint rec(int sy, int sx, int gy, int gx) {\n if(sy > gy || sx > gx) return 0;\n if(dp[sy][sx][gy][gx] != -1) return dp[sy][sx][gy][gx];\n set<int> st;\n for(int i=sy; i<=gy; i++) {\n for(int j=sx; j<=gx; j++) {\n if(f[i][j] == '.') {\n int t = rec(sy, sx, i-1, j-1) ^ rec(sy, j+1, i-1, gx) ^ rec(i+1, sx, gy, j-1) ^ rec(i+1, j+1, gy, gx);\n st.insert(t);\n }\n }\n }\n int res = 0;\n while(st.count(res)) res++;\n return dp[sy][sx][gy][gx] = res;\n}\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n int h, w; cin >> h >> w;\n REP(i,h) cin >> f[i];\n REP(i,22) REP(j,22) REP(k,22) REP(l,22) dp[i][j][k][l] = -1;\n if(rec(0,0,h-1,w-1)>0) cout << \"First\" << endl;\n else cout << \"Second\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4364, "score_of_the_acc": -0.1883, "final_rank": 6 }, { "submission_id": "aoj_2698_5899308", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int MAX_H = 22;\nint dp[MAX_H][MAX_H][MAX_H][MAX_H];\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int H, W;\n cin >> H >> W;\n vector<string> S(H);\n for (auto& s : S) cin >> s;\n\n for (int i = 0; i < H; i++) {\n for (int j = i; j <= H; j++) {\n for (int k = 0; k < W; k++) {\n for (int l = k; l <= W; l++) {\n dp[i][j][k][l] = -1;\n }\n }\n }\n }\n auto solve = [&](auto self, int lx, int rx, int ly, int ry) -> int {\n assert(lx <= rx && ly <= ry);\n if (lx == rx || ly == ry) return 0;\n if (~dp[lx][rx][ly][ry]) return dp[lx][rx][ly][ry];\n set<int> s;\n for (int x = lx; x < rx; x++) {\n for (int y = ly; y < ry; y++) {\n if (S[x][y] == 'X') continue;\n int a = self(self, lx, x, ly, y), b = self(self, x + 1, rx, ly, y), c = self(self, lx, x, y + 1, ry),\n d = self(self, x + 1, rx, y + 1, ry);\n s.emplace(a ^ b ^ c ^ d);\n }\n }\n for (int i = 0;; i++) {\n if (!s.count(i)) {\n return dp[lx][rx][ly][ry] = i;\n }\n }\n };\n\n int ans = solve(solve, 0, H, 0, W);\n cout << (ans ? \"First\" : \"Second\") << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3960, "score_of_the_acc": -0.0662, "final_rank": 3 }, { "submission_id": "aoj_2698_5899304", "code_snippet": "#define LOCAL\n#include <bits/stdc++.h>\nusing namespace std;\n#pragma region Macros\ntypedef long long ll;\ntypedef __int128_t i128;\ntypedef unsigned int uint;\ntypedef unsigned long long ull;\n#define ALL(x) (x).begin(), (x).end()\n\ntemplate <typename T> istream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v) is >> x;\n return is;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int)v.size(); i++) {\n os << v[i] << (i + 1 == (int)v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {\n for (int i = 0; i < (int)v.size(); i++) {\n os << v[i] << (i + 1 == (int)v.size() ? \"\" : \" \");\n }\n return os;\n}\n\ntemplate <int i, typename T> void print_tuple(ostream&, const T&) {}\ntemplate <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {\n if (i) os << ',';\n os << get<i>(t);\n print_tuple<i + 1, T, Args...>(os, t);\n}\ntemplate <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {\n os << '{';\n print_tuple<0, tuple<Args...>, Args...>(os, t);\n return os << '}';\n}\n\nvoid debug_out() { cerr << '\\n'; }\ntemplate <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {\n cerr << head;\n if (sizeof...(Tail) > 0) cerr << \", \";\n debug_out(move(tail)...);\n}\n#ifdef LOCAL\n#define debug(...) \\\n cerr << \" \"; \\\n cerr << #__VA_ARGS__ << \" :[\" << __LINE__ << \":\" << __FUNCTION__ << \"]\" << '\\n'; \\\n cerr << \" \"; \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n\ntemplate <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }\ntemplate <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }\n\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }\nint popcount(signed t) { return __builtin_popcount(t); }\nint popcount(long long t) { return __builtin_popcountll(t); }\nbool ispow2(int i) { return i && (i & -i) == i; }\n\ntemplate <class T> T ceil(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <class T> T floor(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\n\ntemplate <class T1, class T2> inline bool chmin(T1& a, T2 b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T1, class T2> inline bool chmax(T1& a, T2 b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n#pragma endregion\n\nconst int INF = 1e9;\nconst long long IINF = 1e18;\nconst int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\nconst char dir[4] = {'D', 'R', 'U', 'L'};\nconst long long MOD = 1000000007;\n// const long long MOD = 998244353;\n\nconst int MAX_H = 22;\nint dp[MAX_H][MAX_H][MAX_H][MAX_H];\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int H, W;\n cin >> H >> W;\n vector<string> S(H);\n for (auto& s : S) cin >> s;\n\n for (int i = 0; i < H; i++) {\n for (int j = i; j <= H; j++) {\n for (int k = 0; k < W; k++) {\n for (int l = k; l <= W; l++) {\n dp[i][j][k][l] = -1;\n }\n }\n }\n }\n auto solve = [&](auto self, int lx, int rx, int ly, int ry) -> int {\n assert(lx <= rx && ly <= ry);\n if (lx == rx || ly == ry) return 0;\n if (~dp[lx][rx][ly][ry]) return dp[lx][rx][ly][ry];\n set<int> s;\n for (int x = lx; x < rx; x++) {\n for (int y = ly; y < ry; y++) {\n if (S[x][y] == 'X') continue;\n int a = self(self, lx, x, ly, y), b = self(self, x + 1, rx, ly, y), c = self(self, lx, x, y + 1, ry),\n d = self(self, x + 1, rx, y + 1, ry);\n s.emplace(a ^ b ^ c ^ d);\n }\n }\n for (int i = 0;; i++) {\n if (!s.count(i)) {\n return dp[lx][rx][ly][ry] = i;\n }\n }\n };\n\n int ans = solve(solve, 0, H, 0, W);\n cout << (ans ? \"First\" : \"Second\") << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3956, "score_of_the_acc": -0.0648, "final_rank": 2 }, { "submission_id": "aoj_2698_5847051", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-8;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nbool in(ll y, ll x, ll h, ll w){\n return 0 <= y && y < h && 0 <= x && x < w;\n}\n\nint g[22][22][22][22];\nbool det[22][22][22][22];\nvs s(22);\nint h,w;\n\nint f(int a, int b, int c, int d){\n if(a>=c || b>=d) return 0;\n if(det[a][b][c][d]) return g[a][b][c][d];\n det[a][b][c][d] = true;\n vl res;\n for(int i=a; i<c; i++) for(int j=b; j<d; j++){\n if(s[i][j] == 'X') continue; \n res.push_back(f(a,b,i,j) ^ f(i+1,b,c,j) ^ f(a,j+1,i,d) ^ f(i+1,j+1,c,d));\n }\n vb me((int)res.size()+2,false);\n for(auto x : res) me[x] = true;\n rep(i,(int)res.size()+2){\n if(!me[i]) return g[a][b][c][d] = i;\n }\n assert(false);\n return -1;\n}\n\nint main(){\n cin >> h >> w;\n rep(i,h) cin >> s[i];\n if(f(0,0,h,w) > 0) cout << \"First\\n\";\n else cout << \"Second\\n\";\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4488, "score_of_the_acc": -0.1915, "final_rank": 7 }, { "submission_id": "aoj_2698_5804518", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n \n ios::sync_with_stdio(false);\n cin.tie(0);\n\n int h,w;\n cin >> h >> w;\n vector<vector<char>> s(h,vector<char>(w));\n for (int i=0;i<h;i++) {\n for (int j=0;j<w;j++) {\n cin >> s[i][j];\n }\n }\n vector<vector<vector<vector<int>>>> grundy(h+1,vector<vector<vector<int>>>(w+1,vector<vector<int>>(h+1,vector<int>(w+1,0))));\n for (int d=1;d<=h;d++) {\n for (int e=1;e<=w;e++) {\n for (int i=0;i+d<=h;i++) {\n for (int j=0;j+e<=w;j++) {\n // grundy[i][j][i+d][j+e]\n // [i,i+d)*[j,j+e)\n set<int> gs;\n for (int k=i;k<i+d;k++) {\n for (int l=j;l<j+e;l++) {\n if (s[k][l] == 'X') continue;\n int val = 0;\n val ^= grundy[i][j][k][l];\n val ^= grundy[k+1][j][i+d][l];\n val ^= grundy[i][l+1][k][j+e];\n val ^= grundy[k+1][l+1][i+d][j+e];\n gs.insert(val);\n }\n }\n int num = 0;\n while (gs.find(num) != gs.end()) {\n num++;\n }\n grundy[i][j][i+d][j+e] = num;\n }\n }\n }\n }\n if (grundy[0][0][h][w] == 0) cout << \"Second\" << endl;\n else cout << \"First\" << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4624, "score_of_the_acc": -0.2697, "final_rank": 11 }, { "submission_id": "aoj_2698_5748798", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n \n ios::sync_with_stdio(false);\n cin.tie(0);\n\n int h,w;\n cin >> h >> w;\n vector<vector<char>> s(h,vector<char>(w));\n for (int i=0;i<h;i++) {\n for (int j=0;j<w;j++) {\n cin >> s[i][j];\n }\n }\n vector<vector<vector<vector<int>>>> grundy(h+1,vector<vector<vector<int>>>(w+1,vector<vector<int>>(h+1,vector<int>(w+1,0))));\n for (int d=1;d<=h;d++) {\n for (int e=1;e<=w;e++) {\n for (int i=0;i+d<=h;i++) {\n for (int j=0;j+e<=w;j++) {\n // grundy[i][j][i+d][j+e]\n // [i,i+d)*[j,j+e)\n set<int> gs;\n for (int k=i;k<i+d;k++) {\n for (int l=j;l<j+e;l++) {\n if (s[k][l] == 'X') continue;\n int val = 0;\n val ^= grundy[i][j][k][l];\n val ^= grundy[k+1][j][i+d][l];\n val ^= grundy[i][l+1][k][j+e];\n val ^= grundy[k+1][l+1][i+d][j+e];\n gs.insert(val);\n }\n }\n int num = 0;\n while (gs.find(num) != gs.end()) {\n num++;\n }\n grundy[i][j][i+d][j+e] = num;\n }\n }\n }\n }\n if (grundy[0][0][h][w] == 0) cout << \"Second\" << endl;\n else cout << \"First\" << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4552, "score_of_the_acc": -0.2444, "final_rank": 10 }, { "submission_id": "aoj_2698_5708010", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 25\n\n\nint H,W;\nint memo[SIZE][SIZE][SIZE][SIZE]; //memo[左上行][左上列][右下行][右下列] := grundy数のメモ\nchar table[SIZE][SIZE];\n\n\nint grundy(int row1,int col1,int row2,int col2){\n\n\tif(row1 > row2 || col1 > col2){\n\n\t\treturn 0;\n\t}\n\n\tif(memo[row1][col1][row2][col2] != -1){\n\n\t\treturn memo[row1][col1][row2][col2];\n\t}\n\n\tset<int> SET;\n\n\tfor(int row = row1; row <= row2; row++){\n\t\tfor(int col = col1; col <= col2; col++){\n\n\t\t\tif(table[row][col] == 'X')continue;\n\n\t\t\tint tmp = 0;\n\t\t\ttmp ^= grundy(row1,col1,row-1,col-1); //左上\n\t\t\ttmp ^= grundy(row+1,col1,row2,col-1); //左下\n\t\t\ttmp ^= grundy(row1,col+1,row-1,col2); //右上\n\t\t\ttmp ^= grundy(row+1,col+1,row2,col2); //右下\n\n\t\t\tSET.insert(tmp);\n\t\t}\n\t}\n\n\tint ret = 0;\n\n\twhile(SET.count(ret) > 0){\n\n\t\tret++;\n\t}\n\n\t//printf(\"(%d,%d,%d,%d): %d\\n\",row1,col1,row2,col2,ret);\n\n\treturn memo[row1][col1][row2][col2] = ret;\n}\n\n\nint main(){\n\n\tscanf(\"%d %d\",&H,&W);\n\n\tfor(int row = 0; row < H; row++){\n\n\t\tscanf(\"%s\",table[row]);\n\t}\n\n\tfor(int a = 0; a < H; a++){\n\t\tfor(int b = 0; b < W; b++){\n\t\t\tfor(int c = 0; c < H; c++){\n\t\t\t\tfor(int d = 0; d < W; d++){\n\n\t\t\t\t\tmemo[a][b][c][d] = -1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tint ret = grundy(0,0,H-1,W-1);\n\n\tif(ret == 0){\n\n\t\tprintf(\"Second\\n\");\n\t}else{\n\n\t\tprintf(\"First\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4204, "score_of_the_acc": -0.132, "final_rank": 4 } ]
aoj_2700_cpp
Airport Codes 空港コード JAG王国では国内の空港にそれぞれ空港コードを割り当てて識別をしている. 空港コードは,小文字の英語アルファベットで表記した空港の名前をもとに以下の規則で割り当てられる: 名前の最初の文字と,母音 (a,i,u,e,o) の直後の文字を順に取り出す. 取り出した文字列が k 文字未満ならそれを空港コードとし, k 文字以上なら,その取り出した文字列の先頭 k 文字を空港コードとして使う. 例えば k = 3 のとき,haneda には hnd , oookayama には ooo , tsu には t というコードが割り当てられる. しかしこのコードの割り当て方では,違う名前の空港でも同じコードが割り当てられることがあり,混乱を招いてしまう. 空港の名前の一覧が与えられるので,すべての空港のコードが異なるようにできるか判定して,可能な場合はすべての空港コードが異なるようにできる最小の k を求め,不可能な場合はその旨を伝えるプログラムを作成せよ. Input 入力は100個以下のデータセットからなる. それぞれのデータセットは次の形式で与えられる. n s 1 ... s n 1行目に空港の数 n (2 ≤ n ≤ 50) が整数で与えられ,続く n 行にはそれぞれ空港の名前 s i が文字列で与えられる. 空港の名前は' a 'から' z 'の小文字の英語アルファベットのみで構成され,いずれも文字数は1以上50以下である. また,与えられる空港の名前はすべて異なる.すなわち,1 ≤ i < j ≤ n のとき s i ≠ s j を満たす. 入力の終わりは1つのゼロだけからなる行で示される. Output それぞれのデータセットについて,すべての空港に相異なる空港コードを割り当てられるときは,そのような最小の k を1行に出力せよ. 不可能な場合は,-1を1行に出力せよ. Sample Input 3 haneda oookayama tsu 2 azusa azishirabe 2 snuke snake 4 haneda honda hanamaki hawaii 0 Output for Sample Input 1 4 -1 3
[ { "submission_id": "aoj_2700_10609632", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing a2 = array<ll, 2>;\nusing a3 = array<ll, 3>;\n\ntemplate <typename A> void chmin(A &l, const A &r) {\n if(r < l)\n l = r;\n}\ntemplate <typename A> void chmax(A &l, const A &r) {\n if(l < r)\n l = r;\n}\n\nll mod = 998244353;\n\nll n;\nvector<string> s;\nvoid input() {\n cin >> n;\n s.resize(n);\n for(auto &x : s)\n cin >> x;\n}\n\nvoid solve() {\n\n set<char> boin;\n\n boin.insert('a');\n boin.insert('i');\n boin.insert('u');\n boin.insert('e');\n boin.insert('o');\n\n for(int i = 0; i < 100; i++) {\n set<string> sh;\n for(auto &x : s) {\n string add;\n for(int j = 0; j < x.size(); j++) {\n add.push_back(x[j]);\n for(; j < x.size(); j++) {\n if(boin.count(x[j]))\n break;\n }\n }\n\n sh.insert(add.size() >= i ? add.substr(0, i + 1) : add);\n }\n if(sh.size() == n) {\n cout << i + 1 << endl;\n return;\n }\n }\n cout << -1 << endl;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n\n while(1) {\n input();\n if(n == 0)\n break;\n solve();\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3364, "score_of_the_acc": -0.0386, "final_rank": 13 }, { "submission_id": "aoj_2700_10516389", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <cstdint>\n#include <cstdio>\n#include <deque>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <limits>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <ranges>\n#include <regex>\n#include <set>\n#include <span>\n#include <sstream>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <vector>\n// #include <atcoder/dsu>\n\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)\n#define all(a) a.begin(), a.end()\nusing namespace std;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\ntemplate <class T1, class T2>\nstd::ostream &operator<<(std::ostream &out, const pair<T1, T2> &A) {\n\tcout << \"{\" << A.first << \",\" << A.second << \"}\";\n\treturn out;\n}\n\ntemplate <class T1, class T2>\nstd::ostream &operator<<(std::ostream &out, const map<T1, T2> &M) {\n\tfor (const auto &A : M) {\n\t\tcout << \"{\" << A.first << \",\" << A.second << \"}\";\n\t}\n\treturn out;\n}\n\ntemplate <class T1>\nstd::ostream &operator<<(std::ostream &out, const set<T1> &M) {\n\tcout << \"{\";\n\tfor (const auto &A : M) {\n\t\tcout << A << \", \";\n\t}\n\tcout << \"}\" << endl;\n\treturn out;\n}\n\ntemplate <class T1>\nstd::ostream &operator<<(std::ostream &out, const multiset<T1> &M) {\n\tcout << \"{\";\n\tfor (const auto &A : M) {\n\t\tcout << A << \", \";\n\t}\n\tcout << \"}\" << endl;\n\treturn out;\n}\n\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &out, const vector<T> &A) {\n\tfor (const T &a : A) {\n\t\tcout << a << \" \";\n\t}\n\treturn out;\n}\n\nvoid print() { cout << endl; }\n\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tcout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nstd::istream &operator>>(std::istream &in, vector<T> &A) {\n\tfor (T &a : A) {\n\t\tstd::cin >> a;\n\t}\n\treturn in;\n}\n\nusing ll = long long;\n// using mint = modint1000000007;\n// using PII = pair<int, int>;\n// using PLL = pair<ll, ll>;\n// using Graph = vector<vector<int>>;\nconstexpr int INF = numeric_limits<int>::max() / 2;\nconstexpr ll LINF = numeric_limits<ll>::max() / 2;\n\n// ランレングス圧縮\n// イテレータを受け取る\n// verify: https://atcoder.jp/contests/abc380/submissions/60002447\ntemplate <typename T, typename Iterator>\nvector<pair<T, int>> RLE(Iterator begin, Iterator end) {\n\tvector<pair<T, int>> res;\n\tfor (auto itr = begin; itr != end; ++itr) {\n\t\tif (res.empty() || res.back().first != *itr) {\n\t\t\tres.emplace_back(*itr, 1);\n\t\t} else {\n\t\t\tres.back().second++;\n\t\t}\n\t}\n\treturn res;\n}\n\n// 座標圧縮\n// unordered_mapが使えない場合はmapに変更しよう\n// https://atcoder.jp/contests/abc213/submissions/60002695\ntemplate <typename T>\nunordered_map<T, int> compress(vector<T> &X) {\n\tauto tmp = X;\n\tranges::sort(tmp);\n\ttmp.erase(unique(tmp.begin(), tmp.end()), tmp.end());\n\tunordered_map<T, int> res;\n\tfor (int i = 0; i < (int)tmp.size(); i++) {\n\t\tres[tmp[i]] = i;\n\t}\n\treturn res;\n}\nbool solve() {\n\t// ここからスタート\n\tint n;\n\tcin >> n;\n\tif (n == 0) return false;\n\tauto getcode = [](string s, int k) {\n\t\tstring boin = \"aiueo\";\n\t\tset<char> st{boin.begin(), boin.end()};\n\t\tstring ret;\n\t\tret.push_back(s.front());\n\t\tfor (int i = 1; i < int(s.size()); i++) {\n\t\t\tif (st.contains(s[i - 1])) {\n\t\t\t\tret.push_back(s[i]);\n\t\t\t}\n\t\t\tif (int(ret.size()) >= k) break;\n\t\t}\n\t\treturn ret;\n\t};\n\tvector<string> s(n);\n\trep(i, n) cin >> s[i];\n\tfor (int k = 1; k <= 50; k++) {\n\t\tset<string> st;\n\t\tfor (auto &si : s) {\n\t\t\tst.insert(getcode(si, k));\n\t\t}\n\t\tif (int(st.size()) == n) {\n\t\t\tcout << k << endl;\n\t\t\treturn true;\n\t\t}\n\t}\n\tcout << -1 << endl;\n\treturn true;\n}\n\nint main(void) {\n\tstd::cin.tie(0)->sync_with_stdio(0);\n\twhile (solve());\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3584, "score_of_the_acc": -0.0256, "final_rank": 10 }, { "submission_id": "aoj_2700_10425951", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(a) (a).begin(), (a).end()\n#define rep(i, n) for (int i = 0; i < (int)(n); ++i)\n#define rrep(i, n) for (int i = (int)(n) - 1; 0 <= i; --i)\ntemplate <typename T> bool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T> bool chmin(T& a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\nvoid solve();\nint n;\nstring s[1<<10];\nint main(){\n cin.tie(nullptr)->sync_with_stdio(false);\n cout << fixed << setprecision(20);\n int t = 1;\n //cin >> t;\n while (1) {\n cin>>n;\n if(n==0)break;\n rep(i,n)cin>>s[i];\n solve();\n }\n}\nbool is_boin(char ch){\n string boin=\"aiueo\";\n for(char b:boin){\n if(b==ch)return 1;\n }\n return 0;\n}\nstring encode(string s,int k=1000){\n string ret;\n int siz=s.size();\n ret=s[0];\n for(int i=0;i<siz-1;++i){\n if(is_boin(s[i])){\n ret+=s[i+1];\n }\n }\n if((int)ret.size()>k)ret=ret.substr(0,k);\n return ret;\n}\nvoid solve() {\n rep(i,n){\n for(int k=1;k<=50;++k){\n set<string>st;\n rep(i,n)st.insert(encode(s[i],k));\n if((int)st.size()==n){\n cout<<k<<'\\n';\n return;\n }\n }\n }\n cout<<-1<<'\\n';\n return;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 3712, "score_of_the_acc": -1.0333, "final_rank": 20 }, { "submission_id": "aoj_2700_9308215", "code_snippet": "/*\nhttps://atcoder.jp/contests/abc305/tasks/abc305_a\n*/\n#pragma GCC optimize(\"O3\")\n#include <iostream>\n#include <stdlib.h>\n#include <vector>\n#include <algorithm>\n#include <set>\n#include <tuple>\n#include <map>\n#include <math.h>\n#include <string>\n#include <cstdlib>\n#include <iomanip> //出力桁数\n#include <queue> // queue\n#include <stack> // stack\n#include <deque> // deque\n#include <sstream> //基数変換\n#include <bitset> //2進数に変換\n#include <iterator> // set intersection\n#include <numeric> // accumulate\n#include <random>\n\n\nusing namespace std;\n\ndouble pi = 3.14159265358979323846;\nstring yes = \"Yes\";\nstring no = \"No\";\nstring alphabet = \"abcdefghijklmnopqrstuvwxyz\";\nstring Alpahbet = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\n#define yesno(bool) if(bool){cout<<\"Yes\"<<endl;}else{cout<<\"No\"<<endl;}\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define repp(i, l, r) for (int i = l; i < r; ++i)\n#define rrep(i, r, l) for (int i = r; i >= l; --i)\n#define tp() cout << \"here~~\" << endl\n#define el '\\n'\n#define int long long\n\nint INF = 1001001001;\nint INFL = 4004004003094073385LL;\n\nconst int dx[4] = {1, 0, -1, 0};//グリッド上の探索\nconst int dy[4] = {0, 1, 0, -1};//上下左右移動方向\nconst int dxdi[4] = {1, 1, -1, -1};//グリッド上の探索\nconst int dydi[4] = {1, -1, 1, -1};//斜め移動方向\n\n//型エイリアス vector<set<pair<tuple : bool<char<string<int<double\nusing ld = long double;\nusing vb = vector<bool>;\nusing vc = vector<char>;\nusing vs = vector<string>;\nusing vi = vector<int>;\nusing vd = vector<double>;\nusing ss = set<string>;\nusing si = set<int>;\nusing msi = multiset<int>;\nusing mss = multiset<string>;\nusing pii = pair<int, int>;\nusing vvb = vector<vector<bool>>;\nusing vvc = vector<vector<char>>;\nusing vvs = vector<vector<string>>;\nusing vvi = vector<vector<int>>;\nusing vvd = vector<vector<double>>;\nusing vsi = vector<set<int>>;\nusing vpii = vector<pair<int, int>>;\nusing spii = set<pair<int, int>>;\n\nusing stst = stringstream;\n\n// [ノード][(接続ノード, 重み)]\nusing Graph = vector<vector<int>>;//重みなしグラフ構造\nusing GraphWeight = vector<vector<pair<int,int>>>;//重みありグラフ構造\nusing GraphCh = vector<vector<char>>;//charGridの探索\nusing GraphIn = vector<vector<int>>;//charGridの探索\nusing GridPos = pair<int, int>;//グリッド上の位置・座標\n\n//関数定義群\nvoid put_vvc(GraphCh &, bool);\nvoid put_vvi(vvi &, bool);\nvoid put_vi(vi &, bool);\nvoid put_vpii(vpii &, bool);\nvector<pair<int, int> > prime_factorize(int); //素因数分解\nbool contain_string(string, string); //部分文字列の一致判定\nint gcd(int, int); //最大公約数\nint lcm(int, int); //最小公倍数\nint powll(int, int); //llの累乗\nbool in_table(int, int); //添え字が1次元配列内か判定\nbool in_table(int, int, int, int); //添え字が2次元配列内か判定\nint modPow(int, int, int);\nint modInv(int, int);\nbool is_prime(int);\n\n\n\n//cerr\n\nstring make(string t, int k) {\n string ret = \"\";\n ret.push_back(t[0]);\n set<char> boin = {'a', 'i', 'u', 'e', 'o'};\n rep(i, t.size()) {\n if (boin.count(t[i]) && i+1 < t.size()) {\n ret.push_back(t[i+1]);\n }\n if (ret.size() >= k) break;\n }\n return ret;\n}\n\nint solver(vs &s, int n) {\n int ans = -1;\n for (int k=1; k<=50; ++k) {\n //kでできるか判定;\n set<string> ss;\n rep(i, n) ss.insert(make(s[i], k));\n if (ss.size() == n) {\n ans = k;\n break;\n }\n }\n return ans;\n}\n\nsigned main() {\n while(true) {\n int n;\n cin >> n;\n if (n == 0) break;\n vs s(n);\n rep(i, n) {\n cin >> s[i];\n }\n int ans = solver(s, n);\n cout << ans << endl;\n }\n}\n\n\n// signed main() {\n// int a, b, c, d, e, f, x, y;\n// string s, t;\n// int n, m, k;\n// vi va, vb, vc, vd, vx, vy;\n// // cin >>\n// }\n\n\n\n\n/*\nn - x = mk\nx = n - mk\n\n\n*/\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n//関数群---------------------------------------------------\n\nvoid put_vvc(GraphCh &g, bool bl = false) {\n int h = g.size(), w = g[0].size();\n if (bl) {\n rep(i, 10) cout << \"=\";\n cout << el;\n }\n rep(i, h) {\n rep(j, w) {\n cout << g[i][j];\n }\n cout << el;\n }\n if (bl) {\n rep(i, 10) cout << \"=\";\n cout << el;\n }\n}\n\nvoid put_vvi(vvi &need, bool bl = false) {\n int h = need.size();\n if (bl) {\n rep(i, 10) cout << \"=\";\n cout << el;\n }\n rep(i, h) {\n int w = need[i].size();\n rep(j, w) {\n if (need[i][j] >= 0) cout << ' ';\n cout << need[i][j] << ' ';\n }\n cout << el;\n }\n rep(i, 10) cout << \"=\";\n cout << el;\n}\n\nvoid put_vi(vi &v, bool bl = false) {\n if (bl) {\n rep(i, 10) cout << \"=\";\n cout << el;\n }\n for (auto x: v) {\n cout << x << ' ';\n }\n cout << el;\n if (bl) {\n rep(i, 10) cout << \"=\";\n cout << el;\n }\n}\n\nvoid put_vpii(vpii &v, bool bl = false) {\n if (bl) {\n rep(i, 10) cout << \"=\";\n cout << el;\n }\n for (auto x: v) cout << x.first << ' ' << x.second << el;\n if (bl) {\n rep(i, 10) cout << \"=\";\n cout << el;\n }\n}\n// 素因数分解\n// 460 = 2^2 x 5 x 23 の場合\n// 返り値は {{2, 2}, {5, 1}, {23, 1}}\nvpii prime_factorize(int N) {\n // 答えを表す可変長配列\n vpii res;\n\n // √N まで試し割っていく\n for (int p = 2; p * p <= N; ++p) {\n // N が p で割り切れないならばスキップ\n if (N % p != 0) {\n continue;\n }\n\n // N の素因数 p に対する指数を求める\n int e = 0;\n while (N % p == 0) {\n // 指数を 1 増やす\n ++e;\n\n // N を p で割る\n N /= p;\n }\n\n // 答えに追加\n res.emplace_back(p, e);\n }\n\n // 素数が最後に残ることがありうる\n if (N != 1) {\n res.emplace_back(N, 1);\n }\n return res;\n}\n\n//文字列sにtが含まれているかを判定する\n// s.size() >= t.size()に注意\nbool contain_string(string s, string t) {\n if ((int)s.size() < (int)t.size()) {\n return false;\n }\n int cnt;\n for (int i=0;i<(int)s.size(); i++) {\n cnt = 0;\n for (int j = 0; j<(int)t.size(); j++) {\n if (i+j <(int)s.size() && s[i+j] == t[j]) {\n cnt ++;\n }\n }\n if (cnt == (int)t.size()) {\n return true;\n }\n }\n return false;\n}\n\nint gcd(int a, int b) {\n if (a < b) {\n int tmp = a;\n a = b;\n b = tmp;\n }\n while(b) {\n int aa = b;\n int bb = a%b;\n a = aa;\n b = bb;\n }\n return a;\n}\nint lcm(int a, int b) {\n return a*b/gcd(a, b);\n}\nint powll(int a, int b) {\n int k = 1;\n rep(i, b) {\n k *= a;\n }\n return k;\n}\nbool in_table(int i, int h) {\n if (i<0 || i>=h) {\n return false;\n } else {\n return true;\n }\n}\nbool in_table(int i, int j, int h, int w) {\n if (i<0 || i>=h || j<0 || j>=w) {\n return false;\n }\n return true;\n}\n\n\nint modPow(int a, int n, int mod) {\n int res = 1;\n while(n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n}\nint modInv(int a, int mod) {\n return modPow(a, mod-2, mod);\n}\nbool is_prime(int n) {\n if (n < 2) return false;\n for (int i=2; i<=sqrt(n); ++i) if (n % i == 0) return false;\n return true;\n}\n\n/*\n-----\n---------------\n-------------------------\n---------------\n-----\n*/\n\n//Union Find\n// struct UnionFind {//頂点数N, クエリ数Q -> O(Q log N)\n// vi p; //自分の親を管理\n// vi r;\n// UnionFind(int n) { //コンストラクタ インスタンス生成時に初期化\n// p.resize(n);\n// rep(i, n) {\n// p[i] = i;\n// }\n// r.resize(n, 1);\n// }\n// int find(int x) { // 均し計算量O(log N)\n// if (p[x] == x) return x;\n// else return p[x] = find(p[x]);//パス圧縮 自分の親を代表元に張りなおす\n// }\n// void unite(int x, int y) {\n// x = find(x);\n// y = find(y);\n// if (x == y) return;\n// if (r[x] > r[y]) {// Union by rank\n// swap(x, y);\n// }\n// if (r[x] == r[y]) {\n// ++r[y];\n// }\n// p[x] = y;\n// }\n// };\n\n\n\n\n// vb seen;\n// void dfs (const Graph &G, int v) {\n// seen[v] = true;\n// //cout << \"v = \" << v+1 << el;\n// for (auto nextv : G[v]) {\n// if (seen[nextv] == true) {\n// continue;\n// }\n// dfs(G, nextv);\n// }\n// }\n\n// vi dist;\n// int bfs (const Graph &G, int v) {\n// queue<int> que;\n// dist[v] = 0;\n// que.push(v);\n// while(!que.empty()) {\n// v = que.front();\n// que.pop();\n// // cout << \"v = \" << v+1 << el;\n// for(int nv: G[v]) {\n// if (dist[nv] == -1) {\n// dist[nv] = dist[v] + 1;\n// que.push(nv);\n// } else {\n// //tuiki\n// continue;\n// }\n// }\n// }\n// return 0;\n// }", "accuracy": 1, "time_ms": 10, "memory_kb": 3360, "score_of_the_acc": -0.0121, "final_rank": 3 }, { "submission_id": "aoj_2700_9305241", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\n#define rep(i,s,t) for(ll i=s;i<(ll)(t);i++)\n#define rrep(i,s,t) for(ll i=(ll)(t)-1;i>=(ll)s;i--)\n#define all(x) begin(x),end(x)\n#define rall(x) rbegin(x),rend(x)\n\n#define TT template<typename T>\nTT using vec=vector<T>;\nTT bool chmin(T &x,T y){return x>y?(x=y,true):false;}\nTT bool chmax(T &x,T y){return x<y?(x=y,true):false;}\n\nstruct io_setup{\n io_setup(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout<<fixed<<setprecision(15);\n }\n} io_setup;\n\nconst string cs=\"aiueo\";\n\nint solve(){\n int N;\n cin>>N;\n if(N==0)return 0;\n vector<string>S(N);\n for(int i=0;i<N;i++){\n string s;\n cin>>s;\n int l=s.size();\n S[i]+=s[0];\n for(int j=0;j<l-1;j++){\n for(int k=0;k<5;k++){\n if(cs[k]==s[j]){\n S[i]+=s[j+1];\n }\n }\n }\n }\n for(int k=1;k<=55;k++){\n bool ok=true;\n for(int i=0;i<N-1;i++){\n for(int j=i+1;j<N;j++){\n if(S[i].substr(0,min(k,(int)S[i].size()))==S[j].substr(0,min(k,(int)S[j].size()))){\n ok=false;\n break;\n }\n }\n }\n if(ok){\n cout<<k<<\"\\n\";\n return 1;\n }\n }\n cout<<-1<<\"\\n\";\n return 1;\n}\n\nint main(){\n while(solve());\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3476, "score_of_the_acc": -0.0191, "final_rank": 7 }, { "submission_id": "aoj_2700_9302923", "code_snippet": "#ifdef RELEASE\n#pragma GCC target(\"arch=x86-64-v3\")\n#pragma GCC optimize(\"Ofast\")\n#endif\n\n#include <bits/stdc++.h>\n\n//#include <atcoder/all>\n\n\nusing namespace std;\n\nusing ll = long long;\nusing i64 = long long;\n\nconstexpr ll mod = 998244353;\n\n\nint main(){\n while (true){\n int n;\n cin >> n;\n if(n == 0)break;\n vector<string> v(n);\n for(int i = 0; i < n; ++i){\n cin >> v[i];\n }\n vector<string> w(n);\n for(int i = 0; i < n; ++i){\n auto& s = v[i];\n bool fl = true;\n for(int j = 0; j < s.size(); ++j){\n if(fl){\n w[i] += s[j];\n }\n string cons = \"aiueo\";\n if(cons.find(s[j]) != string::npos){\n fl = true;\n }\n else{\n fl = false;\n }\n }\n }\n int ans = 1000;\n for(int i = 1; i < 1000; ++i){\n set<string> se;\n for(int j = 0; j < n; ++j){\n string t;\n for(int k = 0; k < min(i, int(w[j].size())); ++k){\n t += w[j][k];\n }\n se.emplace(t);\n }\n if(se.size() == n){\n ans = i; break;\n }\n }\n cout << (ans == 1000 ? -1 : ans) << endl;\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3360, "score_of_the_acc": -0.091, "final_rank": 18 }, { "submission_id": "aoj_2700_9247986", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nstring code(const string& s, int k)\n{\n string t;\n t.push_back(s[0]);\n for(int i=1;i<s.size();i++)\n {\n if(t.size()==k)return t;\n if([&]\n {\n for(char c:\"aeiou\")if(s[i-1]==c)return 1;\n return 0;\n }())t.push_back(s[i]);\n }\n return t;\n}\nbool solve()\n{\n int N;\n cin>>N;\n if(N==0)return 0;\n vector<string>S(N);\n for(int i=0;i<N;i++)cin>>S[i];\n int ans=1<<30;\n for(int k=1;k<=50;k++)\n {\n set<string>codes;\n bool ok=1;\n for(string s:S)\n {\n string T=code(s,k);\n if(codes.count(T))ok=0;\n codes.insert(T);\n }\n if(ok)\n {\n ans=k;\n break;\n }\n }\n if(ans==1<<30)ans=-1;\n cout<<ans<<'\\n';\n return 1;\n}\nint main(){while(solve()){}}", "accuracy": 1, "time_ms": 10, "memory_kb": 3332, "score_of_the_acc": -0.0104, "final_rank": 2 }, { "submission_id": "aoj_2700_9064213", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\n\nstring f(string s, ll k) {\n ll n = s.size();\n string res = \"\";\n set<char> st;\n st.insert('a');\n st.insert('i');\n st.insert('u');\n st.insert('e');\n st.insert('o');\n res += s[0];\n rep(i,0,n-1) {\n if(st.find(s[i]) != st.end()) {\n res += s[i + 1];\n }\n }\n if((ll)res.size() <= k) {\n return res;\n } else {\n string ans = \"\";\n rep(i,0,k){\n ans += res[i];\n }\n return ans;\n }\n}\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n while(1) {\n ll n;cin>>n;\n if(n == 0)break;\n vector<string> s(n);\n rep(i,0,n)cin>>s[i];\n ll ans = -1;\n rep(k,1,52) {\n set<string> st;\n rep(i,0,n){\n st.insert(f(s[i], k));\n }\n // cerr << k << endl;\n // for (auto it : st) {\n // cerr << it << \"\\n\";\n // }\n // cerr << \"\\n\";\n if((ll)st.size() == n){\n ans = k;\n break;\n }\n }\n cout << ans << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3412, "score_of_the_acc": -0.0415, "final_rank": 16 }, { "submission_id": "aoj_2700_8323090", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint N;\nstring S[1 << 18];\nstring T[1 << 18];\n\nint main() {\n\twhile (true) {\n\t\t// Step 1. Input\n\t\tcin >> N; if (N == 0) break;\n\t\tfor (int i = 0; i < N; i++) cin >> S[i];\n\t\tfor (int i = 0; i < N; i++) T[i] = \"\";\n\n\t\t// Step 2. Simple\n\t\tfor (int i = 0; i < N; i++) {\n\t\t\tT[i] += S[i][0];\n\t\t\tfor (int j = 0; j < S[i].size() - 1; j++) {\n\t\t\t\tchar c = S[i][j];\n\t\t\t\tif (c != 'a' && c != 'i' && c != 'u' && c != 'e' && c != 'o') continue;\n\t\t\t\tT[i] += S[i][j + 1];\n\t\t\t}\n\t\t}\n\n\t\t// Step 3. Brute Force\n\t\tint Answer = (1 << 30);\n\t\tfor (int i = 1; i <= 100; i++) {\n\t\t\tvector<string> V;\n\t\t\tfor (int j = 0; j < N; j++) {\n\t\t\t\tV.push_back(T[j].substr(0, min((int)T[j].size(), i)));\n\t\t\t}\n\t\t\tsort(V.begin(), V.end());\n\t\t\tV.erase(unique(V.begin(), V.end()), V.end());\n\t\t\tif (V.size() == N) Answer = min(Answer, i);\n\t\t}\n\n\t\t// Step 4. Output\n\t\tif (Answer == (1 << 30)) cout << \"-1\" << endl;\n\t\telse cout << Answer << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 19736, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_2700_8002559", "code_snippet": "#include <algorithm>\n#include <cmath>\n#include <iomanip>\n#include <iostream>\n#include <string>\n#include <vector>\n\nusing namespace std;\n\nint main() {\n while (true) {\n int n;\n cin >> n;\n if (n == 0) {\n break;\n }\n vector<string> s(n);\n for (int i = 0; i < n; i++) {\n cin >> s[i];\n }\n int ans = 51;\n for (int i = 1; i <= 50; i++) {\n bool pos = true;\n vector<string> ss(0);\n for (int j = 0; j < n; j++) {\n string sss = \"\";\n for (int k = 0; k < s[j].size(); k++) {\n if (sss.size() == i) {\n break;\n } else if (k == 0) {\n sss += s[j][k];\n } else if (s[j][k - 1] == 'a' || s[j][k - 1] == 'i' ||\n s[j][k - 1] == 'u' || s[j][k - 1] == 'e' ||\n s[j][k - 1] == 'o') {\n sss += s[j][k];\n }\n }\n ss.push_back(sss);\n }\n if (!pos) {\n continue;\n }\n /*for (int j = 0; j < ss.size(); j++) {\n cout << ss[j] << \" \";\n }\n cout << endl;*/\n sort(ss.begin(), ss.end());\n for (int j = 0; j < ss.size() - 1; j++) {\n if (ss[j] == ss[j + 1]) {\n pos = false;\n }\n }\n if (pos) {\n ans = min(ans, i);\n }\n }\n if (ans == 51) {\n cout << -1 << endl;\n } else {\n cout << ans << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3404, "score_of_the_acc": -0.0147, "final_rank": 5 }, { "submission_id": "aoj_2700_7949545", "code_snippet": "#line 2 \"src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\n\n#line 2 \"src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr {\n T i, d;\n constexpr itr(const T i) noexcept : i(i), d(1) {}\n constexpr itr(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept {\n return d > 0 ? i < x.i : i > x.i;\n }\n};\n\ntemplate < class T > struct rep {\n const itr< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end() const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end() const noexcept { return t; }\n};\n#line 2 \"src/utility/io.hpp\"\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator vector< T >() {\n vector< T > v(n);\n for(T& x : v) cin >> x;\n return v;\n }\n };\n struct mat {\n int h,w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator vector< vector< T > >() {\n vector m(h, vector< T >(w));\n for(vector< T >& v : m) for(T& x : v) cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n } su;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) {\n cout << fixed << setprecision(d);\n }\n void flush() {\n cout.flush();\n }\n}\nint print() { cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n cout << h; if(sizeof...(tail)) cout << ' ';\n return print(forward<tail>(t)...);\n}\ntemplate < class T > int print(vector< T > a, char sep = ' ') {\n int n = a.size();\n for(int i : rep(n)) cout << a[i] << (i != n - 1 ? sep : '\\n');\n return 0;\n}\ntemplate < class T > int print(vector< vector< T > > a) {\n if(a.empty()) return 0;\n int h = a.size(), w = a[0].size();\n for(int i : rep(h)) for(int j : rep(w)) cout << a[i][j] << (j != w - 1 ? ' ' : '\\n');\n return 0;\n}\n#line 2 \"src/utility/key_val.hpp\"\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n};\n#line 2 \"src/utility/vec_op.hpp\"\ntemplate < class T >\nkey_val< int, T > max_of(const vector< T >& a) {\n int i = max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\n\ntemplate < class T >\nkey_val< int, T > min_of(const vector< T >& a) {\n int i = min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\n\ntemplate < class T >\nT sum_of(const vector< T >& a) {\n T sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\n\ntemplate < class T >\nvector<ll> freq_of(const vector< T >& a, T L, T R) {\n vector<ll> res(R - L);\n for(const T x : a) res[x - L]++;\n return res;\n}\n\ntemplate < class T >\nvector<ll> freq_of(const vector< T >& a, T R) {\n return freq_of(a, T(0), R);\n}\n\ntemplate < class T >\nstruct prefix_sum {\n vector< T > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), T(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n T sum(int L, int R) {\n return s[R] - s[L];\n }\n};\n#line 2 \"A.cpp\"\n\nint main() {\n while(true) {\n int n = in(); if(n == 0) break;\n vector<string> s = in(n);\n auto f = [&](char c) {\n if(set<char>{'a', 'i', 'u', 'e', 'o'}.count(c)) return 1;\n return 0;\n };\n for(int i : rep(n)) {\n string t = \"\";\n for(int j : rep(s[i].size())) {\n if(j == 0) t += s[i][j];\n else if(f(s[i][j - 1])) t += s[i][j];\n }\n s[i] = t;\n }\n\n const int MAX_K = 50;\n int ans = MAX_K + 1;\n for(int k = 0; k <= MAX_K; k++) {\n set<string> st;\n for(int i : rep(n)) {\n if(s[i].size() < k) {\n st.insert(s[i]);\n } else {\n st.insert(s[i].substr(0, k));\n }\n }\n\n if(st.size() == n) chmin(ans, k);\n }\n print(ans == MAX_K + 1 ? -1 : ans);\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3484, "score_of_the_acc": -0.0195, "final_rank": 8 }, { "submission_id": "aoj_2700_7923690", "code_snippet": "# include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing pll = pair<ll, ll>;\nusing ld = long double;\nconst ll INF = (1LL << 60);\n# define ov3(_1, _2, _3, name, ...) name\n# define rep1(n) rep2(_,n)\n# define rep2(i,n) rep3(i,0,n)\n# define rep3(i,a,b) for(ll i = a; i < ll(b); i++)\n# define rep(...) ov3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)\n# define all(v) std::begin(v), std::end(v)\n# define first fs\n# define second sc\n# define vec(a, T) using v##a = vector<T>; using vv##a = vector<v##a>; using vvv##a = vector<vv##a>\nvec(ll, ll);\nvec(ld, ld);\nvec(pll, pll);\nvec(b, bool);\n\ntemplate <class T> bool chmin(T& a, T b) { return a > b && (a = b, true); }\ntemplate <class T> bool chmax(T& a, T b) { return a < b && (a = b, true); }\n\nint main() {\n while (true) {\n int n;\n cin >> n;\n if (!n) break;\n vector<string> s(n);\n rep (i, n) cin >> s[i];\n\n string aiueo = \"aiueo\";\n\n vector<string> t(n);\n rep (i, n) {\n int j = 0;\n t[i].push_back(s[i][j]);\n const int m = s[i].size();\n while (j < m) {\n if (aiueo.find(s[i][j]) != string::npos) {\n if (j + 1 < m) {\n t[i].push_back(s[i][j + 1]);\n }\n }\n j++;\n }\n }\n\n ll ans = INF;\n rep (k, 100) {\n set<string> st;\n rep (i, n) {\n if ((int)t[i].size() < k) {\n st.insert(t[i]);\n }\n else {\n st.insert(t[i].substr(0, k));\n }\n }\n if ((int)st.size() == n) {\n chmin(ans, k);\n }\n }\n\n if (ans == INF) cout << \"-1\" << endl;\n else cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3420, "score_of_the_acc": -0.0157, "final_rank": 6 }, { "submission_id": "aoj_2700_7835418", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nstring trim(string s,int k){\n string res = \"\";\n bool use = true;\n set<char> b;\n b.insert('a');\n b.insert('i');\n b.insert('u');\n b.insert('e');\n b.insert('o');\n for(auto i:s){\n if(use){\n res += i;\n use = false;\n }\n if(b.count(i)){\n use = true;\n }\n }\n return res.substr(0,k);\n}\n\nint func(int n){\n vector<string> line(n);\n for(auto &i:line)cin >> i;\n\n for(int i=0;i<100;++i){\n set<string> ss;\n for(auto j:line)ss.insert(trim(j,i));\n if(ss.size()==n)return i;\n }\n return -1;\n}\n\nint main(){\n int n;\n while(cin >> n && n){\n cout << func(n) << endl;\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3352, "score_of_the_acc": -0.0905, "final_rank": 17 }, { "submission_id": "aoj_2700_7744765", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class T> ostream &operator<<(ostream &os, vector<T> &v) {\n os << \"[ \";\n for (auto &vi : v) os << vi << \" \";\n return os << \"]\";\n}\n#define show(x) cerr << #x << \" = \" << x << endl;\n// #define show(x) true\n\nvoid solve(int N) {\n vector<string> S(N);\n REP(i, N) cin >> S[i];\n for (int k = 1; k < 100; k++) {\n auto f = [](string s, int k) -> string {\n int len = (int)s.size();\n string t;\n string v = \"aiueo\";\n for (int i = 0; i < len; i++) {\n if (i == 0) {\n t += s[i];\n } else {\n int find = 0;\n REP(j, 5) if (s[i - 1] == v[j]) find = 1;\n if (find) {\n t += s[i];\n }\n }\n }\n return t.substr(0, k);\n };\n set<string> st;\n for (auto &si : S) st.insert(f(si, k));\n if (st.size() == S.size()) {\n cout << k << endl;\n return;\n }\n }\n cout << -1 << endl;\n}\n\nint main() {\n int N;\n while (cin >> N, !(N == 0)) solve(N);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3236, "score_of_the_acc": -0.0309, "final_rank": 12 }, { "submission_id": "aoj_2700_7744674", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class T> ostream &operator<<(ostream &os, vector<T> &v) {\n os << \"[ \";\n for (auto &vi : v) os << vi << \" \";\n return os << \"]\";\n}\n#define show(x) cerr << #x << \" = \" << x << endl;\n// #define show(x) true\n\nvoid solve(int N) {\n vector<string> S(N);\n REP(i, N) cin >> S[i];\n for (int k = 1; k < 100; k++) {\n auto f = [](string s, int k) -> string {\n int len = (int)s.size();\n string t;\n string v = \"aiueo\";\n for (int i = 0; i < len; i++) {\n if (i == 0) {\n t += s[i];\n } else {\n int find = 0;\n REP(j, 5) if (s[i - 1] == v[j]) find = 1;\n if (find) {\n t += s[i];\n }\n }\n }\n return t.substr(0, k);\n };\n set<string> st;\n for (auto &si : S) st.insert(f(si, k));\n if (st.size() == S.size()) {\n cout << k << endl;\n return;\n }\n }\n cout << -1 << endl;\n}\n\nint main() {\n int N;\n while (cin >> N, !(N == 0)) solve(N);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3160, "score_of_the_acc": -0.0263, "final_rank": 11 }, { "submission_id": "aoj_2700_7743113", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\nint ini() {\n int n;\n cin >> n;\n return n;\n}\n\n\nvoid solve(int n) {\n vector<string> s(n);\n vector<string> t(n);\n int ml = 0;\n for (int i = 0; i < n; i++) {\n cin >> s[i];\n for (int j = 0; j < (int)s[i].size(); j++) {\n if (j == 0 || s[i][j-1] == 'a' || s[i][j-1] == 'i' || s[i][j-1] == 'u' || s[i][j-1] == 'e' || s[i][j-1] == 'o') {\n t[i].push_back(s[i][j]);\n }\n }\n ml = max(ml, (int)t[i].size());\n }\n for (int k = 1; k <= ml; k++) {\n bool ok = true;\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n if (i == j) {\n continue;\n }\n bool same = true;\n for (int l = 0; l < k; l++) {\n same &= (l < t[i].size() ? t[i][l] : 0) == (l < t[j].size() ? t[j][l] : 0);\n }\n if (same) {\n ok = false;\n }\n }\n }\n if (ok) {\n cout << k << endl;\n return;\n }\n }\n cout << \"-1\" << endl;\n}\n\nint main(){\n while(true){\n int n = ini();\n if(n == 0){\n break;\n }\n solve(n);\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3408, "score_of_the_acc": -0.0413, "final_rank": 15 }, { "submission_id": "aoj_2700_6615245", "code_snippet": "#include<bits/stdc++.h>\n\n#define INF 1e9\n#define rep(i,n)for(int i=0;(i)<(int)(n);i++)\n#define REP(i,a,b)for(int i=(int)(a);(i)<=(int)(b);i++)\n#define ALL(a) (a).begin(),(a).end()\n#define chmax(a, b) a = max(a, b)\n#define chmin(a, b) a = min(a, b)\n#define pb push_back\n#define fi first\n#define se second\n#define sz(x) ((int)x.size())\n\nusing namespace std;\nusing ld = long double;\nusing ll = long long;\nusing P = pair<ll, ll>;\nusing Graph = vector<vector<int>>;\n\nconst ll ZER = 0;\nconst ll MOD = 998244353;\n\nint main() {\n int n;\n while(cin >> n){\n if(n == 0)break;\n vector<string> s;\n rep(i, n){\n string ss;\n cin >> ss;\n string ps = \"\";\n ps.pb(ss[0]);\n REP(i, 0, sz(ss)-1){\n char c = ss[i];\n if(c == 'a' || c == 'i' || c == 'u' || c == 'e' || c == 'o'){\n if(i+1 < sz(ss))ps.pb(ss[i+1]);\n }\n }\n s.pb(ps);\n }\n // for(auto si : s)cout << si << \", \";cout << endl;\n // kを求める\n int k = 1;\n bool f = true;\n int maxsz = -1;\n rep(i, n)chmax(maxsz, sz(s[i]));\n // cout << \"maxsz = \" << maxsz << endl;\n while(f && k <= maxsz){\n f = false;\n rep(i, n){\n REP(j, i+1, n-1){\n string si, sj;\n if(sz(s[i]) > k)si = s[i].substr(0, k);\n else si = s[i];\n if(sz(s[j]) > k)sj = s[j].substr(0, k);\n else sj = s[j];\n\n if(si == sj)f = true;\n // cout << si << \" \" << sj << endl;\n }\n }\n // 同じものがあった\n if(f){\n k++;\n }\n else {\n break;\n }\n }\n if(maxsz < k)k = -1;\n cout << k << endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3368, "score_of_the_acc": -0.0125, "final_rank": 4 }, { "submission_id": "aoj_2700_5984069", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define INF ((1LL<<62)-(1LL<<31))\n#define all(a) (a).begin(),(a).end()\n#define rall(a) (a).rbegin(),(a).rend()\ntypedef long long ll;\ntypedef pair<ll,ll> pl;\n\nchar c[5]={'a','i','u','e','o'};\n\nint main() {\n while(true) {\n int n;\n cin >> n;\n if(n==0) break;\n vector<string> s(n);\n rep(i,n) cin >> s[i];\n vector<string> code;\n int x=0;\n rep(i,n) {\n string str;\n str+=s[i][0];\n rep(j,(int)s[i].size()) {\n rep(k,5) if(s[i][j]==c[k]) {\n if(j<(int)s[i].size()-1) str+=s[i][j+1];\n } \n }\n code.push_back(str);\n x=max(x,(int)str.size());\n }\n int ans=100;\n for(int i=1;i<=x;i++) {\n map<string,int> m;\n bool flag=true;\n rep(j,n) {\n if(m[code[j].substr(0,i)]!=0) flag=false;\n m[code[j].substr(0,i)]++;\n }\n if(flag) ans=min(ans,i);\n }\n if(ans==100) ans=-1;\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3192, "score_of_the_acc": -0.0019, "final_rank": 1 }, { "submission_id": "aoj_2700_5739720", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i,n) for(int i=0;i<(n);i++)\n#define ALL(v) v.begin(),v.end()\n\nint f(int n){\n vector<string> s(n);\n REP(i,n)cin>>s[i];\n set<char>L{'a','i','u','o','e'};\n for(int k=1;k<=50;k++){\n set<string> se;\n REP(i,n){\n string t;\n t+=s[i][0];\n REP(j,s[i].size()-1)if(L.count(s[i][j]))t+=s[i][j+1];\n t=t.substr(0,k);\n se.insert(t);\n }\n //cout<<\"K:\"<<k<<endl;\n //for(string p:se)cout<<p<<\" \";cout<<endl;\n if(se.size()==n)return k;\n }\n return -1;\n}\n\nint main(){\n int n;\n while(cin>>n,n)cout<<f(n)<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3396, "score_of_the_acc": -0.0406, "final_rank": 14 }, { "submission_id": "aoj_2700_5632821", "code_snippet": "#ifdef LOCAL\n#define _GLIBCXX_DEBUG\n#endif\n \n#include <bits/stdc++.h>\nusing namespace std;\n#if __has_include(<atcoder/all>)\n#include <atcoder/all>\nusing namespace atcoder;\n#endif\n \n#pragma region Macros\n// rep macro\n#define foa(v, a) for(auto &v : a)\n#define REPname(a, b, c, d, e, ...) e\n#define REP(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int i = 0; i < (x); ++i)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n#define REPSname(a, b, c, ...) c\n#define REPS(...) REPSname(__VA_ARGS__, REPS1, REPS0)(__VA_ARGS__)\n#define REPS0(x) for(int i = 1; i <= (x); ++i)\n#define REPS1(i, x) for(int i = 1; i <= (x); ++i)\n#define RREPname(a, b, c, d, e, ...) e\n#define RREP(...) RREPname(__VA_ARGS__, RREP3, RREP2, RREP1, RREP0)(__VA_ARGS__)\n#define RREP0(x) for(int i = (x)-1; i >= 0; --i)\n#define RREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define RREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define RREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n#define RREPSname(a, b, c, ...) c\n#define RREPS(...) RREPSname(__VA_ARGS__, RREPS1, RREPS0)(__VA_ARGS__)\n#define RREPS0(x) for(int i = (x); i >= 1; --i)\n#define RREPS1(i, x) for(int i = (x); i >= 1; --i)\n \n// name macro\n#define fi first\n#define se second\n#define pb push_back\n#define eb emplace_back\n#define SZ(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define popcnt(x) __builtin_popcountll(x)\ntemplate <class T = int>\nusing V = std::vector<T>;\ntemplate <class T = int>\nusing VV = std::vector<std::vector<T>>;\ntemplate <class T = int>\nusing VVV = std::vector<std::vector<std::vector<T>>>;\ntemplate <class T>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\nusing ll = long long;\nusing ld = long double;\nusing int128 = __int128_t;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\nusing Tp = tuple<ll,ll,ll>;\n \n// input macro\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n\tfor(T &i : v) is >> i;\n\treturn is;\n}\nstd::istream &operator>>(std::istream &is, __int128_t &a) {\n\tstd::string s;\n\tis >> s;\n\t__int128_t ret = 0;\n\tfor(int i = 0; i < s.length(); i++)\n\t\tif('0' <= s[i] and s[i] <= '9')\n\t\t\tret = 10 * ret + s[i] - '0';\n\ta = ret * (s[0] == '-' ? -1 : 1);\n\treturn is;\n}\nnamespace scanner {\nvoid scan(int &a) { std::cin >> a; }\nvoid scan(long long &a) { std::cin >> a; }\nvoid scan(std::string &a) { std::cin >> a; }\nvoid scan(char &a) { std::cin >> a; }\nvoid scan(char a[]) { std::scanf(\"%s\", a); }\nvoid scan(double &a) { std::cin >> a; }\nvoid scan(long double &a) { std::cin >> a; }\ntemplate <class T, class U>\nvoid scan(std::pair<T, U> &p) { std::cin >> p; }\ntemplate <class T>\nvoid scan(std::vector<T> &a) { std::cin >> a; }\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n#define VEC(type, name, size) \\\n\tstd::vector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tstd::vector<std::vector<type>> name(h, std::vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstd::string __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHAR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DOUBLE(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n \n// output-macro\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &a) {\n\tfor(int i = 0; i < int(a.size()); ++i) {\n\t\tif(i) os << \" \";\n\t\tos << a[i];\n\t}\n\treturn os;\n}\nstd::ostream &operator<<(std::ostream &dest, __int128_t &value) {\n\tstd::ostream::sentry s(dest);\n\tif(s) {\n\t\t__uint128_t tmp = value < 0 ? -value : value;\n\t\tchar buffer[128];\n\t\tchar *d = std::end(buffer);\n\t\tdo {\n\t\t\t--d;\n\t\t\t*d = \"0123456789\"[tmp % 10];\n\t\t\ttmp /= 10;\n\t\t} while(tmp != 0);\n\t\tif(value < 0) {\n\t\t\t--d;\n\t\t\t*d = '-';\n\t\t}\n\t\tint len = std::end(buffer) - d;\n\t\tif(dest.rdbuf()->sputn(d, len) != len) {\n\t\t\tdest.setstate(std::ios_base::badbit);\n\t\t}\n\t}\n\treturn dest;\n}\ntemplate <class T>\nvoid print(const T a) { std::cout << a << '\\n'; }\ntemplate <class Head, class... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << ' ';\n\tprint(T...);\n}\ntemplate <class T>\nvoid printel(const T a) { std::cout << a << '\\n'; }\ntemplate <class T>\nvoid printel(const std::vector<T> &a) {\n\tfor(const auto &v : a)\n\t\tstd::cout << v << '\\n';\n}\ntemplate <class Head, class... Tail>\nvoid printel(Head H, Tail... T) {\n\tstd::cout << H << '\\n';\n\tprintel(T...);\n}\nvoid Yes(const bool b = true) { std::cout << (b ? \"Yes\\n\" : \"No\\n\"); }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(const bool b = true) { std::cout << (b ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO() { std::cout << \"No\\n\"; }\nvoid err(const bool b = true) {\n\tif(b) {\n\t\tstd::cout << \"-1\\n\", exit(0);\n\t}\n}\n \n//debug macro\nnamespace debugger {\ntemplate <class T>\nvoid view(const std::vector<T> &a) {\n\tstd::cerr << \"{ \";\n\tfor(const auto &v : a) {\n\t\tstd::cerr << v << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\ntemplate <class T>\nvoid view(const std::vector<std::vector<T>> &a) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : a) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\ntemplate <class T, class U>\nvoid view(const std::vector<std::pair<T, U>> &a) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &p : a) std::cerr << \"\\t(\" << p.first << \", \" << p.second << \")\\n\";\n\tstd::cerr << \"}\";\n}\ntemplate <class T, class U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &p : m) std::cerr << \"\\t[\" << p.first << \"] : \" << p.second << \"\\n\";\n\tstd::cerr << \"}\";\n}\ntemplate <class T, class U>\nvoid view(const std::pair<T, U> &p) { std::cerr << \"(\" << p.first << \", \" << p.second << \")\"; }\ntemplate <class T>\nvoid view(const std::set<T> &s) {\n\tstd::cerr << \"{ \";\n\tfor(auto &v : s) {\n\t\tview(v);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n \ntemplate <class T>\nvoid view(const T &e) { std::cerr << e; }\n} // namespace debugger\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tdebugger::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(false)\n#else\n#define debug(...) (void(0))\n#endif\n \n// vector macro\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))); }\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))); }\ntemplate <class T>\nvoid UNIQUE(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<T> press(std::vector<T> &a) {\n\tauto res = a;\n\tUNIQUE(res);\n\tfor(auto &v : a)\n\t\tv = lb(res, v);\n\treturn res;\n}\n#define SORTname(a, b, c, ...) c\n#define SORT(...) SORTname(__VA_ARGS__, SORT1, SORT0, ...)(__VA_ARGS__)\n#define SORT0(a) std::sort((a).begin(), (a).end())\n#define SORT1(a, c) std::sort((a).begin(), (a).end(), [](const auto x, const auto y) { return x c y; })\ntemplate <class T>\nvoid ADD(std::vector<T> &a, const T x) {\n\tfor(auto &v : a) v += x;\n}\ntemplate <class T>\nvoid SUB(std::vector<T> &a, const T x = 1) {\n\tfor(auto &v : a) v -= x;\n}\ntemplate <class T>\nvoid MUL(std::vector<T> &a, const T x) {\n\tfor(auto &v : a) v *= x;\n}\ntemplate <class T>\nvoid DIV(std::vector<T> &a, const T x) {\n\tfor(auto &v : a) v /= x;\n}\n \n// math macro\ntemplate <class T, class U>\ninline bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }\ntemplate <class T, class U>\ninline bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }\ntemplate <class T>\nT divup(T x, T y) { return (x + y - 1) / y; }\ntemplate <class T>\nT POW(T a, long long n) {\n\tT ret = 1;\n\twhile(n) {\n\t\tif(n & 1) ret *= a;\n\t\ta *= a;\n\t\tn >>= 1;\n\t}\n\treturn ret;\n}\n\ntemplate<typename T>\nT ADD(T a, T b){\n\tT res;\n\treturn __builtin_add_overflow(a, b, &res) ? numeric_limits<T>::max() : res;\n}\n\ntemplate<typename T>\nT MUL(T a, T b){\n\tT res;\n\treturn __builtin_mul_overflow(a, b, &res) ? numeric_limits<T>::max() : res;\n}\n\n// modpow\nlong long POW(long long a, long long n, const int mod) {\n\tlong long ret = 1;\n\twhile(n) {\n\t\tif(n & 1) (ret *= a) %= mod;\n\t\t(a *= a) %= mod;\n\t\tn >>= 1;\n\t}\n\treturn ret;\n}\n \n// others\nstruct fast_io {\n\tfast_io() {\n\t\tios::sync_with_stdio(false);\n\t\tcin.tie(nullptr);\n\t\tcout << fixed << setprecision(15);\n\t}\n} fast_io_;\n\n#pragma endregion\n\nusing R = long double;\nconstexpr R EPS=1E-11;\n\n// r の(誤差付きの)符号に従って, -1, 0, 1 を返す.\nint sgn(const R& r){ return (r > EPS) - (r < -EPS); }\n// a, b の(誤差付きの)大小比較の結果に従って, -1, 0, 1 を返す.\nint sgn(const R& a, const R &b){ return sgn(a-b); }\n// a > 0 は sgn(a) > 0\n// a < b は sgn(a, b) < 0\n// a >= b は sgn(a, b) >= 0\n// のように書く.\n// return s * 10^n\n\n//https://atcoder.jp/contests/abc191/submissions/20028529\nlong long x10(const string& s, size_t n) {\n if (s.front() == '-') return -x10(s.substr(1), n);\n auto pos = s.find('.');\n if (pos == string::npos) return stoll(s + string(n, '0'));\n return stoll(s.substr(0, pos) + s.substr(pos + 1) + string(n + pos + 1 - s.size(), '0'));\n}\n \nlong long ceildiv(long long a, long long b) {\n if (b < 0) a = -a, b = -b;\n if (a >= 0) return (a + b - 1) / b;\n else return a / b;\n}\n \nlong long floordiv(long long a, long long b) {\n if (b < 0) a = -a, b = -b;\n if (a >= 0) return a / b;\n else return (a - b + 1) / b;\n}\n \nlong long floorsqrt(long long x) {\n assert(x >= 0);\n long long ok = 0;\n long long ng = 1;\n while (ng * ng <= x) ng <<= 1;\n while (ng - ok > 1) {\n long long mid = (ng + ok) >> 1;\n if (mid * mid <= x) ok = mid;\n else ng = mid;\n }\n return ok;\n}\n\ninline int topbit(unsigned long long x){\n\treturn x?63-__builtin_clzll(x):-1;\n}\n\ninline int popcount(unsigned long long x){\n\treturn __builtin_popcountll(x);\n}\n\ninline int parity(unsigned long long x){//popcount%2\n\treturn __builtin_parity(x);\n}\n\nconst int inf = 1e9;\nconst ll INF = 1e18;\n\nvoid main_() {\n ll n;\n cin >> n;\n string u = \"aiueo\";\n while(n != 0){\n VEC(string,s,n);\n ll ans = INF;\n for(ll k = 1;k <= 50;k++){\n set<string> cnt;\n REP(i,n){\n ll m = s[i].length();\n string t = \"\";\n t += s[i][0];\n REP(j,m-1){\n if(t.length() == k)break;\n bool ex = false;\n REP(p,5){\n if(s[i][j] == u[p])ex = true;\n }\n if(ex)t += s[i][j+1];\n \n }\n cnt.insert(t);\n }\n if(cnt.size() == n){\n ans = min(ans,k);\n break;\n }\n }\n if(ans == INF) cout << -1 << endl;\n else cout << ans << endl;\n cin >> n;\n }\n \n}\n \nint main() {\n\tint t = 1;\n\t//cin >> t;\n\twhile(t--) main_();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3496, "score_of_the_acc": -0.0203, "final_rank": 9 } ]
aoj_2695_cpp
Problem I Midpoint One day, you found $L + M + N$ points on a 2D plane, which you named $A_1, ..., A_L, B_1, ...,B_M, C_1,...,C_N$. Note that two or more points of them can be at the same coordinate. These were named after the following properties: the points $A_1,...,A_L$ were located on a single straight line, the points $B_1,...,B_M$ were located on a single straight line, and the points $C_1,...,C_N$ were located on a single straight line. Now, you are interested in a triplet $(i, j, k)$ such that $C_k$ is the midpoint between $A_i$ and $B_j$. Your task is counting such triplets. Input The first line contains three space-separated positive integers $L$, $M$, and $N$ $(1 \leq L, M, N \leq 10^5)$. The next $L$ lines describe $A$. The $i$-th of them contains two space-separated integers representing the $x$-coordinate and the $y$-coordinate of $A_i$. The next $M$ lines describe $B$. The $j$-th of them contains two space-separated integers representing the $x$-coordinate and the $y$-coordinate of $B_j$. The next $N$ lines describe $C$. The $k$-th of them contains two space-separated integers representing the $x$-coordinate and the $y$-coordinate of $C_k$. It is guaranteed that the absolute values of all the coordinates do not exceed $10^5$. Output Print the number of the triplets which fulfill the constraint. Sample Input 1 2 2 3 0 0 2 0 0 0 0 2 0 0 1 1 1 1 Output for the Sample Input 1 3 Sample Input 2 4 4 4 3 5 0 4 6 6 9 7 8 2 11 3 2 0 5 1 4 3 7 4 10 5 1 2 Output for the Sample Input 2 8 Sample Input 3 4 4 4 0 0 3 2 6 4 9 6 7 14 9 10 10 8 13 2 4 2 5 4 6 6 8 10 Output for the Sample Input 3 3
[ { "submission_id": "aoj_2695_10850559", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define ll long long\n#define nn 65536*8\nstruct point{\n\tll x,y;\n\tpoint (ll xx=0,ll yy=0){\n\t\tx=xx,y=yy;\n\t}\n};\npoint operator-(point a,point b){\n\treturn point(a.x-b.x,a.y-b.y);\n}\npoint operator+(point a,point b){\n\treturn point(a.x+b.x,a.y+b.y);\n}\npoint operator*(point a,ll b){\n\treturn point(a.x*b,a.y*b);\n}\nint operator==(point a,point b){\n\treturn (a.x==b.x and a.y==b.y);\n}\n\n\nbool operator<(point a,point b){\n\tif(a.x!=b.x) return a.x<b.x;\n\treturn a.y<b.y;\n}\n\nint bf=0;\npoint getin(int n,point pn[],ll has[]){\n\tfor(int i=1;i<=n;i++) scanf(\"%lld%lld\",&pn[i].x,&pn[i].y);\n\tsort(pn+1,pn+n+1);\n\tpoint p=pn[n]-pn[1];if(pn[n]==pn[1]){\n\t\tbf=1;\n\t\treturn p;\n\t}\n\tint d=__gcd(p.x,p.y);\n\tif(d) p.x/=d,p.y/=d;\n\tif(p.x<0) p.x*=-1,p.y*=-1;\n\t\n\tfor(int i=1;i<=n;i++){\n\t\tpoint dif=pn[i]-pn[1];\n\t\tif(p.x==0) {\n\t\t\tif(dif.y/p.y>=0)\n\t\t\thas[dif.y/p.y]++;\n\t\t}\n\t\telse \n\t\t{\n\t\t\tif(dif.x/p.x>=0)\n\t\t\thas[dif.x/p.x]++;\n\t\t}\n\t}\n\treturn p;\n}\nint l,n,m;point pl[nn],pn[nn],pm[nn];\npoint vl,vn,vm;ll hasl[nn],hasn[nn],hasm[nn];\n\nll ans=0;\n\tmap<point,int> ump;\nnamespace pack1{\n\t#define mod 998244353\n\tll qpow(ll x,ll y){\n\t\twhile(y<0) y+=mod-1;\n\t\tll res=1;\n\t\twhile(y){\n\t\t\tif(y&1) res=res*x%mod;\n\t\t\tx=x*x%mod;y=y/2;\n\t\t}\n\t\treturn res;\n\t}\n\tint pos[nn];\n\tvoid getpos(){\n\t\tfor(int i=0;i<nn;i++)\n\t\t\tpos[i]=(pos[i>>1]>>1)|((i&1)<<16+3-1);\n\t}\n\tvoid ntt(ll a[],ll ctrl){\n\t\tfor(int i=0;i<nn;i++) if(pos[i]>i) swap(a[pos[i]],a[i]);\n\t\tfor(int p=1;p<nn;p<<=1){\n\t\t\tint m=p+p;ll w=qpow(3,(mod-1)*ctrl/m);\n\t\t\tfor(int i=0;i<nn;i+=m){\n\t\t\t\tfor(ll wx=1,j=i;j<i+p;j++,wx=wx*w%mod){\n\t\t\t\t\tll e=a[j],f=a[j+p]*wx%mod;\n\t\t\t\t\ta[j]=(e+f)%mod,a[j+p]=(e-f)%mod;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\tll div=qpow(nn,mod-2);\n\t\tif(ctrl==-1) for(int i=0;i<nn;i++) a[i]=a[i]*div%mod;\n\t}\n\t\n\tvoid solve(){\n\t\tgetpos();\n\t\tntt(hasl,1);ntt(hasn,1);\n\t\tfor(int i=0;i<nn;i++) hasn[i]=hasn[i]*hasl[i]%mod;\n\t\tntt(hasn,-1);\n\t\t\n\t\tfor(int i=1;i<=m;i++) ump[pm[i]*2]++;\n\t\t\n\t\tfor(int i=0;i<nn;i++) {\n\t\t\tpoint o=pn[1]+pl[1]+(vl*i);\n\t\t\tans+=ump[o]*((hasn[i]+mod)%mod);\n\t\t}\n\t\t\n\t}\n\t#undef mod \n};\n#define lf double\nnamespace pack2{\n\tll solve(lf a,lf b,lf c,lf d,lf e,lf f){\n\t\tlf x=0,y=0;\n\t\tif(fabs(a)<1e-9){\n\t\t\ty=c/b;\n\t\t}\n\t\telse{\n\t\t\tf-=d/a*c,e-=d/a*b;\n\t\t\td-=d/a*a;\n\t\t\ty=f/e;\n\t\t}\n\t\treturn y;\n\t}\n\tvoid solve(){\n\t\tfor(int i=1;i<=l;i++){\n\t\t\tump[pl[i]]++;\n\t\t}\n\t\tfor(int i=1;i<=m;i++){\n\t\t\tpoint o=pm[i]*2-pl[1]-pn[1];\n\t\t\tll sol=solve(vl.x,vn.x,o.x,vl.y,vn.y,o.y);\n\t\t\tif(sol<0 or sol>=nn) continue;\n\t\t\tpoint ask=pm[i]*2-(pn[1]+vn*sol);\n\t\t\tans+=ump[ask]*hasn[sol];\n\t\t\tsol--;\n\t\t\t\n\t\t\task=pm[i]*2-(pn[1]+vn*sol);\n\t\t\tif(sol>=0)ans+=ump[ask]*hasn[sol];\n\t\t\t\n\t\t\tsol++;sol++;\n\t\t\task=pm[i]*2-(pn[1]+vn*sol);\n\t\t\tans+=ump[ask]*hasn[sol];\n\t\t}\n\t}\n};\nnamespace pack3{\n\tmap<point,ll> ml,mn,mm;\n\tvoid solve(){\n\t\tfor(int i=1;i<=l;i++) ml[pl[i]]++;\n\t\tfor(int i=1;i<=n;i++) mn[pn[i]]++;\n\t\tfor(int i=1;i<=m;i++) mm[pm[i]*2]++;\n\t\tif(mm.size()>1){\n\t\t\tassert(1ll*mn.size()*ml.size()<=1e6);\n\t\t\tfor(map<point,ll>::iterator x=ml.begin();x!=ml.end();x++){\n\t\t\t\tfor(map<point,ll>::iterator y=mn.begin();y!=mn.end();y++){\n\t\t\t\t\tans+=x->second*y->second*mm[y->first+x->first];\t\n\t\t\t\t}\n\t\t\t}\n\t\t}\t\n\t\telse {\n\t\t\tif(ml.size()>1) swap(mn,ml);\n\t\t\tassert(1ll*ml.size()*mm.size()<=1e6);\n\t\t\tfor(map<point,ll>::iterator x=ml.begin();x!=ml.end();x++){\n\t\t\t\tfor(map<point,ll>::iterator y=mm.begin();y!=mm.end();y++){\n\t\t\t\t\tans+=x->second*y->second*mn[y->first-x->first];\t\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t} \n}\nint main(){\n\tscanf(\"%d%d%d\",&l,&n,&m);\n\tvl=getin(l,pl,hasl);vn=getin(n,pn,hasn);vm=getin(m,pm,hasm);\n\tif(bf)\n\t\tpack3::solve();\n\telse if(vl==vn)\n\t\tpack1::solve();\n\telse \n\t\tpack2::solve();\n\t\n\tprintf(\"%lld\\n\",ans);\n\t\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 79436, "score_of_the_acc": -0.8992, "final_rank": 5 }, { "submission_id": "aoj_2695_10319019", "code_snippet": "// AOJ #2695 Midpoint\n// 2025.3.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nconst double PI = acos(-1.0);\n\nstruct cmp {\n double x, y;\n cmp operator+(const cmp &u) const { return {x + u.x, y + u.y}; }\n cmp operator-(const cmp &u) const { return {x - u.x, y - u.y}; }\n cmp operator*(const cmp &u) const { return {x * u.x - y * u.y, x * u.y + y * u.x}; }\n cmp operator/(double u) const { return {x / u, y / u}; }\n};\n\ncmp FT_A[800010], FT_B[800010];\nint REV[800010];\n\nvoid getRev(int l, int cnt) {\n for (int i = 1; i < l; i++)\n REV[i] = (REV[i >> 1] >> 1) | ((i & 1) << (cnt - 1));\n}\n\nvoid fft(cmp t[], int l, int f) {\n for (int i = 0; i < l; i++) {\n if (i < REV[i]) swap(t[i], t[REV[i]]);\n }\n for (int d = 2; d <= l; d <<= 1) {\n cmp w0 = { cos(2.0 * PI / d), -f * sin(2.0 * PI / d) };\n for (int i = 0; i < l; i += d) {\n cmp cur = { 1.0, 0.0 };\n for (int j = 0; j < d / 2; j++, cur = cur * w0) {\n cmp ta = t[i + j], tb = t[i + j + d / 2] * cur;\n t[i + j] = ta + tb;\n t[i + j + d / 2] = ta - tb;\n }\n }\n }\n if (f == -1) for (int i = 0; i < l; i++) t[i] = t[i] / (double)l;\n}\n\npair<int,int> a[100010], b[100010], c[100010];\nll ans, val[100010];\nmap<pair<int,int>, int> mpNum;\nmap<ll, int> mpIdA, mpIdB;\nvector<pair<int,int> > totA[100010], totB[100010];\nint cntA, cntB;\nint la, lb, lc;\n\nvector<ll> mult(const vector<int> &F, const vector<int> &G) {\n int n = 1; while(n < (int)F.size() + (int)G.size()) n <<= 1;\n vector<cmp> P(n), Q(n);\n for (int i = 0; i < (int)F.size(); i++) P[i] = { (double)F[i], 0.0 };\n for (int i = 0; i < (int)G.size(); i++) Q[i] = { (double)G[i], 0.0 };\n fft(&P[0], n, 1); fft(&Q[0], n, 1);\n for (int i = 0; i < n; i++) P[i] = P[i] * Q[i];\n fft(&P[0], n, -1);\n vector<ll> R(F.size() + G.size() - 1);\n for (int i = 0; i < (int)R.size(); i++) R[i] = (ll)(P[i].x + 0.5);\n return R;\n}\n\nint main(){\n la = Cin(), lb = Cin(), lc = Cin();\n for (int i = 1; i <= la; i++) a[i].first = Cin(), a[i].second = Cin();\n for (int i = 1; i <= lb; i++) b[i].first = Cin(), b[i].second = Cin();\n for (int i = 1; i <= lc; i++) c[i].first = Cin(), c[i].second = Cin();\n\n sort(a + 1, a + la + 1);\n sort(b + 1, b + lb + 1);\n sort(c + 1, c + lc + 1);\n if(c[1] == c[lc]) {\n for (int i = 1; i <= la; i++) mpNum[a[i]]++;\n for (int i = 1; i <= lb; i++) {\n pair<int,int> tmp = { c[1].first * 2 - b[i].first, c[1].second * 2 - b[i].second };\n ans += mpNum[tmp];\n }\n ans *= lc;\n Cout(ans);\n return 0;\n }\n for (int i = 1; i <= lc; i++) mpNum[{ c[i].first * 2, c[i].second * 2 }]++;\n for (int i = 1; i <= la; i++) {\n ll v = 1LL * (c[1].first - a[i].first) * (c[lc].second - a[i].second)\n - 1LL * (c[1].second - a[i].second) * (c[lc].first - a[i].first);\n if(mpIdA.find(v) == mpIdA.end()) {\n mpIdA[v] = ++cntA;\n val[cntA] = v;\n }\n totA[ mpIdA[v] ].push_back(a[i]);\n }\n for (int i = 1; i <= lb; i++) {\n ll v = 1LL * (c[1].first - b[i].first) * (c[lc].second - b[i].second)\n - 1LL * (c[1].second - b[i].second) * (c[lc].first - b[i].first);\n if(mpIdB.find(v) == mpIdB.end()) mpIdB[v] = ++cntB;\n totB[ mpIdB[v] ].push_back(b[i]);\n }\n int L = 1, cnt = 0;\n while(L < 400001) { L <<= 1; cnt++; }\n getRev(L, cnt);\n for (int i = 1; i <= cntA; i++) {\n int t = mpIdB[-val[i]];\n if (!t) continue;\n int s1 = totA[i].size(), s2 = totB[t].size();\n if(totA[i][0] == totA[i][s1 - 1]) {\n for (int j = 0; j < s2; j++)\n ans += 1LL * s1 * mpNum[{ totA[i][0].first + totB[t][j].first,\n totA[i][0].second + totB[t][j].second }];\n }\n else if(totB[t][0] == totB[t][s2 - 1]) {\n for (int j = 0; j < s1; j++)\n ans += 1LL * s2 * mpNum[{ totA[i][j].first + totB[t][0].first,\n totA[i][j].second + totB[t][0].second }];\n }\n else {\n for (int j = 0; j < s1; j++) {\n if(c[1].first != c[lc].first)\n FT_A[ totA[i][j].first + 100000 ].x += 1.0;\n else\n FT_A[ totA[i][j].second + 100000 ].x += 1.0;\n }\n for (int j = 0; j < s2; j++) {\n if(c[1].first != c[lc].first)\n FT_B[ totB[t][j].first + 100000 ].x += 1.0;\n else\n FT_B[ totB[t][j].second + 100000 ].x += 1.0;\n }\n fft(FT_A, L, 1);\n fft(FT_B, L, 1);\n for (int j = 0; j < L; j++) FT_A[j] = FT_A[j] * FT_B[j];\n fft(FT_A, L, -1);\n for (int j = 1; j <= lc; j++) {\n if(c[1].first != c[lc].first) ans += (ll)(FT_A[c[j].first * 2 + 200000].x + 0.5);\n else ans += (ll)(FT_A[c[j].second * 2 + 200000].x + 0.5);\n }\n }\n }\n Cout(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 41760, "score_of_the_acc": -0.345, "final_rank": 1 }, { "submission_id": "aoj_2695_7136941", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=300005,INF=1<<30;\n\n//modint+畳み込み+逆元テーブル\n\n// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9\n// (based on AtCoder STL)\n\n#include <algorithm>\n#include <array>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n \n namespace internal {\n \n int ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n }\n \n int bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n }\n \n } // namespace internal\n \n} // namespace atcoder\n\n\n\n#include <utility>\n\nnamespace atcoder {\n \n namespace internal {\n \n constexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n }\n \n struct barrett {\n unsigned int _m;\n unsigned long long im;\n \n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n \n unsigned int umod() const { return _m; }\n \n unsigned int mul(unsigned int a, unsigned int b) const {\n \n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n };\n \n constexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n }\n \n constexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n for (long long a : {2, 7, 61}) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n }\n template <int n> constexpr bool is_prime = is_prime_constexpr(n);\n \n constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n \n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n \n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n \n \n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n }\n \n constexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n }\n template <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n \n } // namespace internal\n \n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n \n namespace internal {\n \n#ifndef _MSC_VER\n template <class T>\n using is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n \n template <class T>\n using is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n \n#else\n \n template <class T> using is_integral = typename std::is_integral<T>;\n \n template <class T>\n using is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n \n#endif\n \n template <class T>\n using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n \n template <class T>\n using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n \n template <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n \n } // namespace internal\n \n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n \n namespace internal {\n \n struct modint_base {};\n struct static_modint_base : modint_base {};\n \n template <class T> using is_modint = std::is_base_of<modint_base, T>;\n template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n \n } // namespace internal\n \n template <int m, std::enable_if_t<(1 <= m)>* = nullptr>\n struct static_modint : internal::static_modint_base {\n using mint = static_modint;\n \n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n \n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n \n unsigned int val() const { return _v; }\n \n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n \n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n \n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n \n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n \n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n \n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n };\n \n template <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n \n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n \n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n \n unsigned int val() const { return _v; }\n \n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n \n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n \n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n \n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n \n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n \n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n };\n template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n \n using modint998244353 = static_modint<998244353>;\n using modint1000000007 = static_modint<1000000007>;\n using modint = dynamic_modint<-1>;\n \n namespace internal {\n \n template <class T>\n using is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n \n template <class T>\n using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n \n template <class> struct is_dynamic_modint : public std::false_type {};\n template <int id>\n struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n \n template <class T>\n using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n \n } // namespace internal\n \n} // namespace atcoder\n\n#include <cassert>\n#include <type_traits>\n#include <vector>\n\nnamespace atcoder {\n \n namespace internal {\n \n template <class mint, internal::is_static_modint_t<mint>* = nullptr>\n void butterfly(std::vector<mint>& a) {\n static constexpr int g = internal::primitive_root<mint::mod()>;\n int n = int(a.size());\n int h = internal::ceil_pow2(n);\n \n static bool first = true;\n static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]\n if (first) {\n first = false;\n mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1\n int cnt2 = bsf(mint::mod() - 1);\n mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();\n for (int i = cnt2; i >= 2; i--) {\n es[i - 2] = e;\n ies[i - 2] = ie;\n e *= e;\n ie *= ie;\n }\n mint now = 1;\n for (int i = 0; i < cnt2 - 2; i++) {\n sum_e[i] = es[i] * now;\n now *= ies[i];\n }\n }\n for (int ph = 1; ph <= h; ph++) {\n int w = 1 << (ph - 1), p = 1 << (h - ph);\n mint now = 1;\n for (int s = 0; s < w; s++) {\n int offset = s << (h - ph + 1);\n for (int i = 0; i < p; i++) {\n auto l = a[i + offset];\n auto r = a[i + offset + p] * now;\n a[i + offset] = l + r;\n a[i + offset + p] = l - r;\n }\n now *= sum_e[bsf(~(unsigned int)(s))];\n }\n }\n }\n \n template <class mint, internal::is_static_modint_t<mint>* = nullptr>\n void butterfly_inv(std::vector<mint>& a) {\n static constexpr int g = internal::primitive_root<mint::mod()>;\n int n = int(a.size());\n int h = internal::ceil_pow2(n);\n \n static bool first = true;\n static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]\n if (first) {\n first = false;\n mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1\n int cnt2 = bsf(mint::mod() - 1);\n mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();\n for (int i = cnt2; i >= 2; i--) {\n es[i - 2] = e;\n ies[i - 2] = ie;\n e *= e;\n ie *= ie;\n }\n mint now = 1;\n for (int i = 0; i < cnt2 - 2; i++) {\n sum_ie[i] = ies[i] * now;\n now *= es[i];\n }\n }\n \n for (int ph = h; ph >= 1; ph--) {\n int w = 1 << (ph - 1), p = 1 << (h - ph);\n mint inow = 1;\n for (int s = 0; s < w; s++) {\n int offset = s << (h - ph + 1);\n for (int i = 0; i < p; i++) {\n auto l = a[i + offset];\n auto r = a[i + offset + p];\n a[i + offset] = l + r;\n a[i + offset + p] =\n (unsigned long long)(mint::mod() + l.val() - r.val()) *\n inow.val();\n }\n inow *= sum_ie[bsf(~(unsigned int)(s))];\n }\n }\n }\n \n } // namespace internal\n \n template <class mint, internal::is_static_modint_t<mint>* = nullptr>\n std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n if (std::min(n, m) <= 60) {\n if (n < m) {\n std::swap(n, m);\n std::swap(a, b);\n }\n std::vector<mint> ans(n + m - 1);\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < m; j++) {\n ans[i + j] += a[i] * b[j];\n }\n }\n return ans;\n }\n int z = 1 << internal::ceil_pow2(n + m - 1);\n a.resize(z);\n internal::butterfly(a);\n b.resize(z);\n internal::butterfly(b);\n for (int i = 0; i < z; i++) {\n a[i] *= b[i];\n }\n internal::butterfly_inv(a);\n a.resize(n + m - 1);\n mint iz = mint(z).inv();\n for (int i = 0; i < n + m - 1; i++) a[i] *= iz;\n return a;\n }\n \n template <unsigned int mod = 998244353,\n class T,\n std::enable_if_t<internal::is_integral<T>::value>* = nullptr>\n std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n \n using mint = static_modint<mod>;\n std::vector<mint> a2(n), b2(m);\n for (int i = 0; i < n; i++) {\n a2[i] = mint(a[i]);\n }\n for (int i = 0; i < m; i++) {\n b2[i] = mint(b[i]);\n }\n auto c2 = convolution(move(a2), move(b2));\n std::vector<T> c(n + m - 1);\n for (int i = 0; i < n + m - 1; i++) {\n c[i] = c2[i].val();\n }\n return c;\n }\n \n std::vector<long long> convolution_ll(const std::vector<long long>& a,\n const std::vector<long long>& b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n \n static constexpr unsigned long long MOD1 = 754974721; // 2^24\n static constexpr unsigned long long MOD2 = 167772161; // 2^25\n static constexpr unsigned long long MOD3 = 469762049; // 2^26\n static constexpr unsigned long long M2M3 = MOD2 * MOD3;\n static constexpr unsigned long long M1M3 = MOD1 * MOD3;\n static constexpr unsigned long long M1M2 = MOD1 * MOD2;\n static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;\n \n static constexpr unsigned long long i1 =\n internal::inv_gcd(MOD2 * MOD3, MOD1).second;\n static constexpr unsigned long long i2 =\n internal::inv_gcd(MOD1 * MOD3, MOD2).second;\n static constexpr unsigned long long i3 =\n internal::inv_gcd(MOD1 * MOD2, MOD3).second;\n \n auto c1 = convolution<MOD1>(a, b);\n auto c2 = convolution<MOD2>(a, b);\n auto c3 = convolution<MOD3>(a, b);\n \n std::vector<long long> c(n + m - 1);\n for (int i = 0; i < n + m - 1; i++) {\n unsigned long long x = 0;\n x += (c1[i] * i1) % MOD1 * M2M3;\n x += (c2[i] * i2) % MOD2 * M1M3;\n x += (c3[i] * i3) % MOD3 * M1M2;\n long long diff =\n c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));\n if (diff < 0) diff += MOD1;\n static constexpr unsigned long long offset[5] = {\n 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};\n x -= offset[diff % 5];\n c[i] = x;\n }\n \n return c;\n }\n \n} // namespace atcoder\n\n//幾何ライブラリ\n// define double ll をするときは Point の < と == も書き換えよう!\n\nconst double eps=1e-8;\nconst double pi=acos((double)-1.0L);\n#define equals(a,b) (fabs((a)-(b))<eps)\n\ndouble torad(double deg) {return (double)(deg)*pi/180.0;}\ndouble todeg(double ang) {return ang*180.0/pi;}\n\nclass Point{\npublic:\n double x,y;\n \n Point(double x=0,double y=0):x(x),y(y){}\n \n Point operator + (Point p){return Point(x+p.x,y+p.y);}\n Point operator - (Point p){return Point(x-p.x,y-p.y);}\n Point operator * (double a){return Point(a*x,a*y);}\n Point operator / (double a){return Point(x/a,y/a);}\n \n double abs(){return sqrt(norm());}\n double norm(){return x*x+y*y;}\n \n bool operator < (const Point &p)const{\n return x+eps<p.x||(equals(x,p.x)&&y+eps<p.y);\n //return x<p.x||(x==p.x&&y<p.y);\n }\n \n bool operator == (const Point &p)const{\n return fabs(x-p.x)<eps/100000&&fabs(y-p.y)<eps/100000;\n //return x==p.x&&y==p.y;\n }\n};\n\ntypedef Point Vector;\n\ndouble norm(Vector a){\n return a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n return sqrt(norm(a));\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x+a.y*b.y;\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\nstruct Segment{\n Point p1,p2;\n};\n\nbool isOrthogonal(Vector a,Vector b){\n return equals(dot(a,b),0.0);\n}\n\nbool isOrthogonal(Point a1,Point a2,Point b1,Point b2){\n return isOrthogonal(a1-a2,b1-b2);\n}\n\nbool isOrthogonal(Segment s1,Segment s2){\n return equals(dot(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Point a1,Point a2,Point b1,Point b2){\n return isParallel(a1-a2,b1-b2);\n}\n\nbool isParallel(Segment s1,Segment s2){\n return equals(cross(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nPoint project(Segment s,Point p){\n Vector base=s.p2-s.p1;\n double r=dot(p-s.p1,base)/norm(base);\n return s.p1+base*r;\n}\n\nPoint reflect(Segment s,Point p){\n return p+(project(s,p)-p)*2.0;\n}\n\nPoint turn(Point p,Point c,double pi){\n double q=atan2(p.y-c.y,p.x-c.x);\n q+=pi;\n p=c+Point{cos(q)*abs(p-c),sin(q)*abs(p-c)};\n \n return p;\n}\n//pをcを中心としてpi回転させる(1周で2π)\n//p=cのときnan\n\n//p0,p1,p2の順に見たときどうなるか?\n\nstatic const int counter_clockwise=1;\nstatic const int clockwise=-1;\nstatic const int online_back=2;\nstatic const int online_front=-2;\nstatic const int on_segment=0;\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n \n if(cross(a,b)>eps) return counter_clockwise;\n if(cross(a,b)<-eps) return clockwise;\n if(dot(a,b)<-eps) return online_back;\n if(a.norm()<b.norm()) return online_front;\n \n return on_segment;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return(ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0&&ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\ntypedef Segment Line;\n\nPoint getCrossPointL(Line l1,Line l2){\n //if(ccw(s1.p1,s1.p2,s2.p1)==0&&ccw(s1.p1,s1.p2,s2.p2)==0) return s1.p1;\n \n Vector v1=l1.p2-l1.p1,v2=l2.p2-l2.p1;\n \n return l1.p1+v1*cross(v2,l2.p1-l1.p1)/cross(v2,v1);\n}\n\nconst int D=100000;\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int AA,BB,CC;cin>>AA>>BB>>CC;\n map<Point,ll> A,B,C;\n for(int i=0;i<AA;i++){\n Point p;cin>>p.x>>p.y;\n //p=p*2;\n A[p]++;\n }\n for(int i=0;i<BB;i++){\n Point p;cin>>p.x>>p.y;\n //p=p*2;\n B[p]++;\n }\n for(int i=0;i<CC;i++){\n Point p;cin>>p.x>>p.y;\n //p=p*2;\n C[p]++;\n }\n \n if(si(A)==1||si(B)==1){\n ll ans=0;\n for(auto a:A){\n for(auto b:B){\n Point aa=a.fi,bb=b.fi;\n Point p=aa+bb;\n p=p/2;\n if(C.count(p)) ans+=a.se*b.se*C[p];\n }\n }\n cout<<ans<<\"\\n\";\n return 0;\n }\n if(si(C)==1){\n ll ans=0;\n for(auto a:A){\n for(auto c:C){\n Point aa=a.fi,cc=c.fi;\n Point p=cc+cc-aa;\n if(B.count(p)) ans+=a.se*c.se*B[p];\n }\n }\n cout<<ans<<\"\\n\";\n return 0;\n }\n \n Line al={(*A.begin()).fi,(*A.rbegin()).fi};\n Line bl={(*B.begin()).fi,(*B.rbegin()).fi};\n Line cl={(*C.begin()).fi,(*C.rbegin()).fi};\n \n ll ans=0;\n \n if(isParallel(al,bl)){\n if(al.p1.x==al.p2.x){\n vector<ll> X(2*D+1),Y(2*D+1);\n for(auto a:A){\n X[(int)(a.fi.y)+D]+=a.se;\n }\n for(auto a:B){\n Y[(int)(a.fi.y)+D]+=a.se;\n }\n auto Z=atcoder::convolution_ll(X,Y);\n for(int i=0;i<si(Z);i++){\n ll y=i-D-D;\n Point p={(al.p1.x+bl.p1.x)/2,(double)(y)/2};\n if(C.count(p)){\n ans+=Z[i]*C[p];\n }\n }\n }else{\n vector<ll> X(2*D+1),Y(2*D+1);\n for(auto a:A){\n X[(int)(a.fi.x)+D]+=a.se;\n }\n for(auto a:B){\n Y[(int)(a.fi.x)+D]+=a.se;\n }\n double kata=(al.p2.y-al.p1.y)/(al.p2.x-al.p1.x);\n double sep1=al.p1.y-kata*al.p1.x;\n double sep2=bl.p1.y-kata*bl.p1.x;\n //cout<<kata<<\" \"<<sep<<endl;\n auto Z=atcoder::convolution_ll(X,Y);\n for(int i=0;i<si(Z);i++){\n double x=(double)(i-D-D)/2,y=kata*x+(sep1+sep2)/2.0;\n Point p={x,y};\n if(C.count(p)){\n ans+=Z[i]*C[p];\n }\n }\n }\n }else{\n for(auto c:C){\n Point cc=c.fi;\n Line L={{cc+cc-al.p1},{cc+cc-al.p2}};\n Point b=getCrossPointL(L,bl);\n if(B.count(b)){\n Point a=cc+cc-b;\n if(A.count(a)){\n ans+=A[a]*B[b]*c.se;\n }\n }\n }\n }\n \n cout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 40116, "score_of_the_acc": -0.6419, "final_rank": 4 }, { "submission_id": "aoj_2695_7136940", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=300005,INF=1<<30;\n\n//modint+畳み込み+逆元テーブル\n\n// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9\n// (based on AtCoder STL)\n\n#include <algorithm>\n#include <array>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n \n namespace internal {\n \n int ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n }\n \n int bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n }\n \n } // namespace internal\n \n} // namespace atcoder\n\n\n\n#include <utility>\n\nnamespace atcoder {\n \n namespace internal {\n \n constexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n }\n \n struct barrett {\n unsigned int _m;\n unsigned long long im;\n \n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n \n unsigned int umod() const { return _m; }\n \n unsigned int mul(unsigned int a, unsigned int b) const {\n \n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n };\n \n constexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n }\n \n constexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n for (long long a : {2, 7, 61}) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n }\n template <int n> constexpr bool is_prime = is_prime_constexpr(n);\n \n constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n \n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n \n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n \n \n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n }\n \n constexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n }\n template <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n \n } // namespace internal\n \n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n \n namespace internal {\n \n#ifndef _MSC_VER\n template <class T>\n using is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n \n template <class T>\n using is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n \n#else\n \n template <class T> using is_integral = typename std::is_integral<T>;\n \n template <class T>\n using is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n \n template <class T>\n using to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n \n#endif\n \n template <class T>\n using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n \n template <class T>\n using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n \n template <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n \n } // namespace internal\n \n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n \n namespace internal {\n \n struct modint_base {};\n struct static_modint_base : modint_base {};\n \n template <class T> using is_modint = std::is_base_of<modint_base, T>;\n template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n \n } // namespace internal\n \n template <int m, std::enable_if_t<(1 <= m)>* = nullptr>\n struct static_modint : internal::static_modint_base {\n using mint = static_modint;\n \n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n \n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n \n unsigned int val() const { return _v; }\n \n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n \n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n \n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n \n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n \n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n \n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n };\n \n template <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n \n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n \n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n \n unsigned int val() const { return _v; }\n \n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n \n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n \n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n \n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n \n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n \n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n };\n template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n \n using modint998244353 = static_modint<998244353>;\n using modint1000000007 = static_modint<1000000007>;\n using modint = dynamic_modint<-1>;\n \n namespace internal {\n \n template <class T>\n using is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n \n template <class T>\n using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n \n template <class> struct is_dynamic_modint : public std::false_type {};\n template <int id>\n struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n \n template <class T>\n using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n \n } // namespace internal\n \n} // namespace atcoder\n\n#include <cassert>\n#include <type_traits>\n#include <vector>\n\nnamespace atcoder {\n \n namespace internal {\n \n template <class mint, internal::is_static_modint_t<mint>* = nullptr>\n void butterfly(std::vector<mint>& a) {\n static constexpr int g = internal::primitive_root<mint::mod()>;\n int n = int(a.size());\n int h = internal::ceil_pow2(n);\n \n static bool first = true;\n static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]\n if (first) {\n first = false;\n mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1\n int cnt2 = bsf(mint::mod() - 1);\n mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();\n for (int i = cnt2; i >= 2; i--) {\n es[i - 2] = e;\n ies[i - 2] = ie;\n e *= e;\n ie *= ie;\n }\n mint now = 1;\n for (int i = 0; i < cnt2 - 2; i++) {\n sum_e[i] = es[i] * now;\n now *= ies[i];\n }\n }\n for (int ph = 1; ph <= h; ph++) {\n int w = 1 << (ph - 1), p = 1 << (h - ph);\n mint now = 1;\n for (int s = 0; s < w; s++) {\n int offset = s << (h - ph + 1);\n for (int i = 0; i < p; i++) {\n auto l = a[i + offset];\n auto r = a[i + offset + p] * now;\n a[i + offset] = l + r;\n a[i + offset + p] = l - r;\n }\n now *= sum_e[bsf(~(unsigned int)(s))];\n }\n }\n }\n \n template <class mint, internal::is_static_modint_t<mint>* = nullptr>\n void butterfly_inv(std::vector<mint>& a) {\n static constexpr int g = internal::primitive_root<mint::mod()>;\n int n = int(a.size());\n int h = internal::ceil_pow2(n);\n \n static bool first = true;\n static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]\n if (first) {\n first = false;\n mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1\n int cnt2 = bsf(mint::mod() - 1);\n mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();\n for (int i = cnt2; i >= 2; i--) {\n es[i - 2] = e;\n ies[i - 2] = ie;\n e *= e;\n ie *= ie;\n }\n mint now = 1;\n for (int i = 0; i < cnt2 - 2; i++) {\n sum_ie[i] = ies[i] * now;\n now *= es[i];\n }\n }\n \n for (int ph = h; ph >= 1; ph--) {\n int w = 1 << (ph - 1), p = 1 << (h - ph);\n mint inow = 1;\n for (int s = 0; s < w; s++) {\n int offset = s << (h - ph + 1);\n for (int i = 0; i < p; i++) {\n auto l = a[i + offset];\n auto r = a[i + offset + p];\n a[i + offset] = l + r;\n a[i + offset + p] =\n (unsigned long long)(mint::mod() + l.val() - r.val()) *\n inow.val();\n }\n inow *= sum_ie[bsf(~(unsigned int)(s))];\n }\n }\n }\n \n } // namespace internal\n \n template <class mint, internal::is_static_modint_t<mint>* = nullptr>\n std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n if (std::min(n, m) <= 60) {\n if (n < m) {\n std::swap(n, m);\n std::swap(a, b);\n }\n std::vector<mint> ans(n + m - 1);\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < m; j++) {\n ans[i + j] += a[i] * b[j];\n }\n }\n return ans;\n }\n int z = 1 << internal::ceil_pow2(n + m - 1);\n a.resize(z);\n internal::butterfly(a);\n b.resize(z);\n internal::butterfly(b);\n for (int i = 0; i < z; i++) {\n a[i] *= b[i];\n }\n internal::butterfly_inv(a);\n a.resize(n + m - 1);\n mint iz = mint(z).inv();\n for (int i = 0; i < n + m - 1; i++) a[i] *= iz;\n return a;\n }\n \n template <unsigned int mod = 998244353,\n class T,\n std::enable_if_t<internal::is_integral<T>::value>* = nullptr>\n std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n \n using mint = static_modint<mod>;\n std::vector<mint> a2(n), b2(m);\n for (int i = 0; i < n; i++) {\n a2[i] = mint(a[i]);\n }\n for (int i = 0; i < m; i++) {\n b2[i] = mint(b[i]);\n }\n auto c2 = convolution(move(a2), move(b2));\n std::vector<T> c(n + m - 1);\n for (int i = 0; i < n + m - 1; i++) {\n c[i] = c2[i].val();\n }\n return c;\n }\n \n std::vector<long long> convolution_ll(const std::vector<long long>& a,\n const std::vector<long long>& b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n \n static constexpr unsigned long long MOD1 = 754974721; // 2^24\n static constexpr unsigned long long MOD2 = 167772161; // 2^25\n static constexpr unsigned long long MOD3 = 469762049; // 2^26\n static constexpr unsigned long long M2M3 = MOD2 * MOD3;\n static constexpr unsigned long long M1M3 = MOD1 * MOD3;\n static constexpr unsigned long long M1M2 = MOD1 * MOD2;\n static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;\n \n static constexpr unsigned long long i1 =\n internal::inv_gcd(MOD2 * MOD3, MOD1).second;\n static constexpr unsigned long long i2 =\n internal::inv_gcd(MOD1 * MOD3, MOD2).second;\n static constexpr unsigned long long i3 =\n internal::inv_gcd(MOD1 * MOD2, MOD3).second;\n \n auto c1 = convolution<MOD1>(a, b);\n auto c2 = convolution<MOD2>(a, b);\n auto c3 = convolution<MOD3>(a, b);\n \n std::vector<long long> c(n + m - 1);\n for (int i = 0; i < n + m - 1; i++) {\n unsigned long long x = 0;\n x += (c1[i] * i1) % MOD1 * M2M3;\n x += (c2[i] * i2) % MOD2 * M1M3;\n x += (c3[i] * i3) % MOD3 * M1M2;\n long long diff =\n c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));\n if (diff < 0) diff += MOD1;\n static constexpr unsigned long long offset[5] = {\n 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};\n x -= offset[diff % 5];\n c[i] = x;\n }\n \n return c;\n }\n \n} // namespace atcoder\n\n//幾何ライブラリ\n// define double ll をするときは Point の < と == も書き換えよう!\n\nconst double eps=1e-8;\nconst double pi=acos((double)-1.0L);\n#define equals(a,b) (fabs((a)-(b))<eps)\n\ndouble torad(double deg) {return (double)(deg)*pi/180.0;}\ndouble todeg(double ang) {return ang*180.0/pi;}\n\nclass Point{\npublic:\n double x,y;\n \n Point(double x=0,double y=0):x(x),y(y){}\n \n Point operator + (Point p){return Point(x+p.x,y+p.y);}\n Point operator - (Point p){return Point(x-p.x,y-p.y);}\n Point operator * (double a){return Point(a*x,a*y);}\n Point operator / (double a){return Point(x/a,y/a);}\n \n double abs(){return sqrt(norm());}\n double norm(){return x*x+y*y;}\n \n bool operator < (const Point &p)const{\n return x+eps<p.x||(equals(x,p.x)&&y+eps<p.y);\n //return x<p.x||(x==p.x&&y<p.y);\n }\n \n bool operator == (const Point &p)const{\n return fabs(x-p.x)<eps/100000&&fabs(y-p.y)<eps/100000;\n //return x==p.x&&y==p.y;\n }\n};\n\ntypedef Point Vector;\n\ndouble norm(Vector a){\n return a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n return sqrt(norm(a));\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x+a.y*b.y;\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\nstruct Segment{\n Point p1,p2;\n};\n\nbool isOrthogonal(Vector a,Vector b){\n return equals(dot(a,b),0.0);\n}\n\nbool isOrthogonal(Point a1,Point a2,Point b1,Point b2){\n return isOrthogonal(a1-a2,b1-b2);\n}\n\nbool isOrthogonal(Segment s1,Segment s2){\n return equals(dot(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Point a1,Point a2,Point b1,Point b2){\n return isParallel(a1-a2,b1-b2);\n}\n\nbool isParallel(Segment s1,Segment s2){\n return equals(cross(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nPoint project(Segment s,Point p){\n Vector base=s.p2-s.p1;\n double r=dot(p-s.p1,base)/norm(base);\n return s.p1+base*r;\n}\n\nPoint reflect(Segment s,Point p){\n return p+(project(s,p)-p)*2.0;\n}\n\nPoint turn(Point p,Point c,double pi){\n double q=atan2(p.y-c.y,p.x-c.x);\n q+=pi;\n p=c+Point{cos(q)*abs(p-c),sin(q)*abs(p-c)};\n \n return p;\n}\n//pをcを中心としてpi回転させる(1周で2π)\n//p=cのときnan\n\n//p0,p1,p2の順に見たときどうなるか?\n\nstatic const int counter_clockwise=1;\nstatic const int clockwise=-1;\nstatic const int online_back=2;\nstatic const int online_front=-2;\nstatic const int on_segment=0;\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n \n if(cross(a,b)>eps) return counter_clockwise;\n if(cross(a,b)<-eps) return clockwise;\n if(dot(a,b)<-eps) return online_back;\n if(a.norm()<b.norm()) return online_front;\n \n return on_segment;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return(ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0&&ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\ntypedef Segment Line;\n\nPoint getCrossPointL(Line l1,Line l2){\n //if(ccw(s1.p1,s1.p2,s2.p1)==0&&ccw(s1.p1,s1.p2,s2.p2)==0) return s1.p1;\n \n Vector v1=l1.p2-l1.p1,v2=l2.p2-l2.p1;\n \n return l1.p1+v1*cross(v2,l2.p1-l1.p1)/cross(v2,v1);\n}\n\nconst int D=100000;\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int AA,BB,CC;cin>>AA>>BB>>CC;\n map<Point,ll> A,B,C;\n for(int i=0;i<AA;i++){\n Point p;cin>>p.x>>p.y;\n //p=p*2;\n A[p]++;\n }\n for(int i=0;i<BB;i++){\n Point p;cin>>p.x>>p.y;\n //p=p*2;\n B[p]++;\n }\n for(int i=0;i<CC;i++){\n Point p;cin>>p.x>>p.y;\n //p=p*2;\n C[p]++;\n }\n \n if(si(A)==1||si(B)==1){\n ll ans=0;\n for(auto a:A){\n for(auto b:B){\n Point aa=a.fi,bb=b.fi;\n Point p=aa+bb;\n p=p/2;\n if(C.count(p)) ans+=a.se*b.se*C[p];\n }\n }\n cout<<ans<<\"\\n\";\n return 0;\n }\n if(si(C)==1){\n ll ans=0;\n for(auto a:A){\n for(auto c:C){\n Point aa=a.fi,cc=c.fi;\n Point p=cc+cc-aa;\n if(B.count(p)) ans+=a.se*c.se*B[p];\n }\n }\n cout<<ans<<\"\\n\";\n return 0;\n }\n \n Line al={(*A.begin()).fi,(*A.rbegin()).fi};\n Line bl={(*B.begin()).fi,(*B.rbegin()).fi};\n Line cl={(*C.begin()).fi,(*C.rbegin()).fi};\n \n ll ans=0;\n \n if(isParallel(al,bl)){\n if(al.p1.x==al.p2.x){\n vector<ll> X(2*D+1),Y(2*D+1);\n for(auto a:A){\n X[(int)(a.fi.y)+D]+=a.se;\n }\n for(auto a:B){\n Y[(int)(a.fi.y)+D]+=a.se;\n }\n auto Z=atcoder::convolution_ll(X,Y);\n for(int i=0;i<si(Z);i++){\n ll y=i-D-D;\n Point p={0.0,(double)(y)/2};\n if(C.count(p)){\n ans+=Z[i]*C[p];\n }\n }\n }else{\n vector<ll> X(2*D+1),Y(2*D+1);\n for(auto a:A){\n X[(int)(a.fi.x)+D]+=a.se;\n }\n for(auto a:B){\n Y[(int)(a.fi.x)+D]+=a.se;\n }\n double kata=(al.p2.y-al.p1.y)/(al.p2.x-al.p1.x);\n double sep1=al.p1.y-kata*al.p1.x;\n double sep2=bl.p1.y-kata*bl.p1.x;\n //cout<<kata<<\" \"<<sep<<endl;\n auto Z=atcoder::convolution_ll(X,Y);\n for(int i=0;i<si(Z);i++){\n double x=(double)(i-D-D)/2,y=kata*x+(sep1+sep2)/2.0;\n Point p={x,y};\n if(C.count(p)){\n ans+=Z[i]*C[p];\n }\n }\n }\n }else{\n for(auto c:C){\n Point cc=c.fi;\n Line L={{cc+cc-al.p1},{cc+cc-al.p2}};\n Point b=getCrossPointL(L,bl);\n if(B.count(b)){\n Point a=cc+cc-b;\n if(A.count(a)){\n ans+=A[a]*B[b]*c.se;\n }\n }\n }\n }\n \n cout<<ans<<\"\\n\";\n}", "accuracy": 0.3728813559322034, "time_ms": 130, "memory_kb": 21404, "score_of_the_acc": -0.1605, "final_rank": 13 }, { "submission_id": "aoj_2695_4799492", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 200005\n#define MAX 30\n\ntypedef complex<double> COMPLEX;\n\n\nstruct LOC{\n\n\tll x,y;\n};\n\nstruct Info{\n\tInfo(int arg_left,int arg_right){\n\t\tleft = arg_left;\n\t\tright = arg_right;\n\t}\n\tint left,right;\n};\n\nstruct Info2{\n\n\tbool operator<(const struct Info2 &arg) const{\n\n\t\treturn value < arg.value;\n\t}\n\n\tdouble value;\n\tll num;\n};\n\nstruct Data{\n\tvoid set(ll arg_denominator,ll arg_numerator){\n denominator = arg_denominator; //分母\n numerator = arg_numerator;\n \t}\n\tll denominator,numerator;\n};\n\nstruct Pos{\n\n\n\tData slope,add;\n};\n\n\nint LR_rev[2000005];\nvector<Info> info;\nvector<COMPLEX> conv_V[SIZE];\nint POW[SIZE];\n\nvoid calc_swap_pair(int N,int num_pow){\n\n\tLR_rev[0] = 0;\n\n\tfor(int i = 1; i < N; i++){\n\n\t\tif(i%2 == 1){\n\n\t\t\tLR_rev[i] = LR_rev[i-1]+POW[num_pow-1]; //1を足す代わりにPOW[num_pow-1]を足す\n\n\t\t}else{\n\n\t\t\tLR_rev[i] = LR_rev[i/2]/2; //半分のインデックスの値に、2を掛ける代わりに2で割る\n\t\t}\n\n\t\tif(i < LR_rev[i]){\n\t\t\tinfo.push_back(Info(i,LR_rev[i]));\n\t\t}\n\t}\n}\n\nvoid calc_COMPLEX(int N){\n\n\tfor(int LEN = 2,num_pow = 0; LEN <= N; LEN *= 2,num_pow++){\n\n\t\tconv_V[num_pow].resize(LEN/2);\n\n\t\tconv_V[num_pow][0] = COMPLEX(cos(0),sin(0));\n\n\t\tCOMPLEX mult = COMPLEX(cos((2*M_PI)/LEN),sin((2*M_PI)/LEN));\n\n\t\tfor(int i = 1; i < LEN/2; i++){\n\n\t\t\tif(i%2 == 1){\n\t\t\t\tconv_V[num_pow][i] = conv_V[num_pow][i-1]*mult;\n\t\t\t}else{\n\t\t\t\tconv_V[num_pow][i] = conv_V[num_pow-1][i/2];\n\t\t\t}\n\t\t}\n\t}\n}\n\n//離散フーリエ変換\nvector<COMPLEX> DFT(vector<COMPLEX> A) {\n\n\tint N = A.size();\n\n\t/*偶数項を左に、奇数項を右に仕分けるルールで要素数1まで仕分けした場合の、\n\t * 最終結果を先に作っておく(ビットが左右反転したものがその位置に来る)*/\n\tfor(int i = 0; i < info.size(); i++){\n\n\t\tswap(A[info[i].left],A[info[i].right]);\n\t}\n\n\tCOMPLEX a,add;\n\n\tfor(int LEN = 2,num_pow = 0; LEN <= N; LEN *= 2,num_pow++){\n\n\t\tfor(int start = 0; start < N; start += LEN){\n\t\t\tfor(int i = 0; i < LEN/2; i++){\n\t\t\t\t//マージソートの容量で、配列を更新していく\n\t\t\t\ta = A[start+i];\n\t\t\t\tadd = conv_V[num_pow][i]*A[start+LEN/2+i];\n\n\t\t\t\tA[start+i] = a+add;\n\t\t\t\tA[start+LEN/2+i] = a-add;\n\t\t\t}\n\t\t}\n\t}\n\treturn A;\n}\n\n\n\n\n//離散逆フーリエ変換\nvector<COMPLEX> inverseDFT(vector<COMPLEX> A){\n\n\tint N = A.size();\n\n\tvector<COMPLEX> TMP = DFT(A);\n\n\t//係数を入れ替える&サイズNで各要素を割る\n\tvector<COMPLEX> RET(N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tRET[i] = TMP[(N-i)%N];\n\t\tRET[i] = RET[i]/COMPLEX(N,0);\n\t}\n\n\treturn RET;\n}\n\nvector<COMPLEX> convolution(vector<COMPLEX> A,vector<COMPLEX> B){\n\n\tint degree = (A.size()-1)+(B.size()-1)+1;\n\n\tint N = 1,num_pow = 0;\n\twhile(N < degree){\n\t\tN *= 2;\n\t\tnum_pow++;\n\t}\n\n\tinfo.clear();\n\tcalc_swap_pair(N,num_pow);\n\tcalc_COMPLEX(N);\n\n\tA.resize(N);\n\tB.resize(N);\n\n\tA = DFT(A);\n\tB = DFT(B);\n\n\tvector<COMPLEX> RET(N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tRET[i] = A[i]*B[i];\n\t}\n\n\treturn inverseDFT(RET);\n}\n\n//最大公約数\nll gcd(ll x,ll y){\n\n\tx = abs(x);\n\ty = abs(y);\n\n\tif(x < y){\n\t\tswap(x,y);\n\t}\n\tif(y == 0){\n\t\treturn x;\n\t}else{\n\t\treturn gcd(y,x%y);\n\t}\n}\n\n//最小公倍数\nll lcm(ll x,ll y){\n\n\treturn (x*y)/gcd(x,y);\n}\n\n\n//傾きと切片を分数で計算して返却する関数\nPos calc_pos(LOC a,LOC b){\n\n\tPos ret;\n\n\tif(a.x == b.x){ //垂直\n\n\t\tret.slope.denominator = 1;\n\t\tret.slope.numerator = BIG_NUM;\n\n\t}else if(a.y == b.y){ //水平\n\n\t\tret.slope.denominator = 1;\n\t\tret.slope.numerator = 0;\n\t\tret.add.denominator = 1;\n\t\tret.add.numerator = a.y;\n\n\t}else{\n\n\t\t//★符号に注意★\n\t\tll diff_x = abs(a.x-b.x);\n\t\tll diff_y = abs(a.y-b.y);\n\t\tll common = gcd(diff_x,diff_y);\n\t\tdiff_x /= common;\n\t\tdiff_y /= common;\n\n\t\tret.slope.denominator = diff_x;\n\t\tret.slope.numerator = diff_y;\n\n\t\tif(((a.x-b.x) > 0 && (a.y-b.y) < 0) || ((a.x-b.x) < 0 && (a.y-b.y) > 0)){\n\n\t\t\tret.slope.numerator *= -1;\n\t\t\tdiff_y *= -1; //マイナスは分子につける\n\t\t}\n\n\t\tll tmp = a.y*diff_x-(diff_y*a.x);\n\t\tcommon = gcd(tmp,diff_x);\n\n\t\tdiff_x /= common;\n\t\ttmp /= common;\n\n\t\tret.add.denominator = diff_x;\n\t\tret.add.numerator = tmp;\n\t}\n\n\treturn ret;\n}\n\nbool is_Parallel(Pos a,Pos b){\n\n\treturn a.slope.denominator == b.slope.denominator && a.slope.numerator == b.slope.numerator;\n}\n\n\nll num[3];\nll num_point[3];\nvector<int> V[3];\nmap<pair<ll,ll>,int> MAP[3]; //初出の座標のindexを保持するマップ\nll COUNT[3][SIZE];\nll add_X = 100000,add_Y = 100000;\nint A=0,B=1,C=2;\nLOC loc[3][SIZE];\n\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tfor(int i = 0; i < 3; i++){\n\t\t//座標の個数\n\t\tnum_point[i] = 0;\n\t}\n\tfor(int i = 0; i < 3; i++){\n\t\tfor(int k = 0; k < SIZE; k++){\n\t\t\tCOUNT[i][k] = 0; //同一の点をまとめる\n\t\t}\n\t}\n\n\tscanf(\"%lld %lld %lld\",&num[A],&num[B],&num[C]);\n\n\tfor(int loop = 0; loop < 3; loop++){\n\t\tfor(int i = 0; i < num[loop]; i++){\n\n\t\t\tscanf(\"%lld %lld\",&loc[loop][i].x,&loc[loop][i].y);\n\t\t\tloc[loop][i].x += add_X;\n\t\t\tloc[loop][i].y += add_Y;\n\n\t\t\tauto at = MAP[loop].find(make_pair(loc[loop][i].x,loc[loop][i].y));\n\n\t\t\tif(at == MAP[loop].end()){ //初めて出た座標\n\n\t\t\t\tMAP[loop][make_pair(loc[loop][i].x,loc[loop][i].y)] = i; //インデックスを記録\n\n\t\t\t\tV[loop].push_back(i);\n\t\t\t\tnum_point[loop]++;\n\t\t\t\tCOUNT[loop][i] = 1;\n\n\t\t\t}else{\n\n\t\t\t\tCOUNT[loop][at->second]++;\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans;\n\tll a_x,a_y,b_x,b_y,c_x,c_y;\n\n\tif((num_point[A] == 1)||(num_point[B] == 1)){ //AがBが1点の場合\n\n\t\t//printf(\"片方が1点\\n\");\n\n\t\tans = 0;\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\ta_x = loc[A][V[A][i]].x;\n\t\t\ta_y = loc[A][V[A][i]].y;\n\n\t\t\tfor(int k = 0; k < V[B].size(); k++){\n\n\t\t\t\tb_x = loc[B][V[B][k]].x;\n\t\t\t\tb_y = loc[B][V[B][k]].y;\n\n\t\t\t\tif((a_x+b_x)%2 == 1 || (a_y+b_y)%2 == 1)continue;\n\n\t\t\t\tc_x = (a_x+b_x)/2;\n\t\t\t\tc_y = (a_y+b_y)/2;\n\n\t\t\t\tauto at = MAP[C].find(make_pair(c_x,c_y));\n\t\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\t\tans += COUNT[A][V[A][i]]*COUNT[B][V[B][k]]*COUNT[C][at->second];\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t\treturn 0;\n\t}\n\n\t//AとBの傾きを計算\n\tPos pos[3];\n\n\tpos[A] = calc_pos(loc[A][V[A][0]],loc[A][V[A][1]]);\n\tpos[B] = calc_pos(loc[B][V[B][0]],loc[B][V[B][1]]);\n\n\tdouble slope_A = (double)pos[A].slope.numerator/(double)pos[A].slope.denominator;\n\tdouble add_A = (double)pos[A].add.numerator/(double)pos[A].add.denominator;\n\n\tdouble slope_B = (double)pos[B].slope.numerator/(double)pos[B].slope.denominator;\n\tdouble add_B = (double)pos[B].add.numerator/(double)pos[B].add.denominator;\n\n\tdouble d_x_a,d_x_b,d_x_c,d_y_a,d_y_c;\n\n\tif(!is_Parallel(pos[A],pos[B])){ //AとBが平行でない場合\n\n\t\tif(pos[B].slope.numerator == BIG_NUM){ //Bが垂直\n\n\t\t\tswap(A,B); //Aを垂直にする\n\t\t\tswap(slope_A,slope_B);\n\t\t\tswap(add_A,add_B);\n\t\t}\n\n\t\t//整数のまま演算すると桁あふれするので実数でやる\n\t\tvector<Info2> info_A,info_B;\n\t\tvector<double> v_A,v_B;\n\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\t\t\tInfo2 tmp_info;\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\ttmp_info.value = loc[A][V[A][i]].y; //垂直ならy座標\n\n\t\t\t}else{\n\n\t\t\t\ttmp_info.value = loc[A][V[A][i]].x; //垂直でないならx座標\n\t\t\t}\n\t\t\tv_A.push_back(tmp_info.value);\n\t\t\ttmp_info.num = COUNT[A][V[A][i]]; //重み\n\t\t\tinfo_A.push_back(tmp_info);\n\t\t}\n\t\tsort(info_A.begin(),info_A.end());\n\t\tsort(v_A.begin(),v_A.end());\n\n\t\tfor(int i = 0; i < V[B].size(); i++){\n\t\t\tInfo2 tmp_info;\n\t\t\ttmp_info.value = loc[B][V[B][i]].x; //座標\n\t\t\ttmp_info.num = COUNT[B][V[B][i]]; //重み\n\t\t\tv_B.push_back(tmp_info.value);\n\t\t\tinfo_B.push_back(tmp_info);\n\t\t}\n\t\tsort(info_B.begin(),info_B.end());\n\t\tsort(v_B.begin(),v_B.end());\n\n\t\tans = 0;\n\n\t\t//Cの座標からA,Bの座標を計算する\n\t\tfor(int i = 0; i < V[C].size(); i++){\n\n\t\t\td_x_c = loc[C][V[C][i]].x;\n\t\t\td_y_c = loc[C][V[C][i]].y;\n\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\td_x_a = loc[A][V[A][0]].x;\n\t\t\t\td_x_b = 2*d_x_c-d_x_a;\n\t\t\t\td_y_a = 2*d_y_c-(slope_B*d_x_b+add_B);\n\n\t\t\t}else{ //Aが垂直ではない\n\n\t\t\t\td_x_a = (2*d_y_c-(add_A+2*slope_B*d_x_c+add_B))/(slope_A-slope_B);\n\t\t\t\td_x_b = 2*d_x_c-(d_x_a);\n\t\t\t}\n\n\t\t\tint at_a;\n\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\tat_a = lower_bound(v_A.begin(),v_A.end(),d_y_a-EPS)-v_A.begin();\n\t\t\t\tif(at_a == v_A.size() || fabs(d_y_a-info_A[at_a].value) >= EPS)continue;\n\n\t\t\t}else{\n\n\t\t\t\tat_a = lower_bound(v_A.begin(),v_A.end(),d_x_a-EPS)-v_A.begin();\n\t\t\t\tif(at_a == v_A.size() || fabs(d_x_a-info_A[at_a].value) >= EPS)continue;\n\t\t\t}\n\n\t\t\tint at_b = lower_bound(v_B.begin(),v_B.end(),d_x_b-EPS)-v_B.begin();\n\t\t\tif(at_b == v_B.size() || fabs(d_x_b-info_B[at_b].value) >= EPS)continue;\n\n\t\t\tans += info_A[at_a].num*info_B[at_b].num*COUNT[C][V[C][i]];\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t\treturn 0;\n\t}\n\n\t//AとBが平行である場合\n\n\tif(pos[A].slope.numerator == BIG_NUM && pos[B].slope.numerator == BIG_NUM){ //両方垂直\n\n\t\tif((loc[A][V[A][0]].x+loc[B][V[B][0]].x)%2 == 1){\n\n\t\t\tprintf(\"0\\n\");\n\t\t\treturn 0;\n\t\t}\n\n\t\tll X = (loc[A][V[A][0]].x+loc[B][V[B][0]].x)/2;\n\n\t\tif(num_point[C] == 1){ //Cが1点だけ\n\n\t\t\tif(loc[C][V[C][0]].x != X){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\tpos[C].slope.denominator = 1;\n\t\t\tpos[C].slope.numerator = BIG_NUM;\n\n\t\t}else{ //Cが2点以上\n\n\t\t\tpos[C] = calc_pos(loc[C][V[C][0]],loc[C][V[C][1]]);\n\t\t}\n\n\t\tif(pos[C].slope.numerator == BIG_NUM){ //Cも垂直\n\n\t\t\tif(loc[C][V[C][0]].x != X){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\t\tconv_A[loc[A][V[A][i]].y] += COUNT[A][V[A][i]];\n\t\t\t}\n\t\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\t\tconv_B[loc[B][V[B][i]].y] += COUNT[B][V[B][i]];\n\t\t\t}\n\n\t\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\t\tans = 0;\n\t\t\tfor(int i = 0; i < V[C].size(); i++){ //★★y_a+y_b == 2*y_c★★\n\n\t\t\t\tans += COUNT[C][V[C][i]]*(ll)round(ret[2*loc[C][V[C][i]].y].real());\n\t\t\t}\n\n\t\t\tprintf(\"%lld\\n\",ans);\n\n\t\t}else{ //交点は高々1つなので、探す\n\n\t\t\tvector<int> vec;\n\n\t\t\tfor(ll y = 0; y <= 200000; y++){\n\n\t\t\t\tauto at = MAP[C].find(make_pair(X,y));\n\t\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\t\tvec.push_back(at->second);\n\t\t\t}\n\n\t\t\tif(vec.size() == 0){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\t\tconv_A[loc[A][V[A][i]].y] += COUNT[A][V[A][i]];\n\t\t\t}\n\t\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\t\tconv_B[loc[B][V[B][i]].y] += COUNT[B][V[B][i]];\n\t\t\t}\n\n\t\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\t\tans = 0;\n\t\t\tfor(int i = 0; i < vec.size(); i++){ //★★x_a+x_b == 2*x_c★★\n\t\t\t\tans += COUNT[C][vec[i]]*(ll)round(ret[2*loc[C][vec[i]].y].real());\n\t\t\t}\n\n\t\t\tprintf(\"%lld\\n\",ans);\n\t\t}\n\n\t}else{\n\n\t\t//printf(\"垂直でない平行\\n\");\n\n\t\t//AとBの中点を結んでできる直線のposを求める\n\t\tpos[C].slope = pos[A].slope;\n\t\tll tmp_add_bunbo = 2*pos[A].add.denominator*pos[B].add.denominator;\n\t\tll tmp_add_bunshi = pos[A].add.numerator*pos[B].add.denominator + pos[B].add.numerator*pos[A].add.denominator;\n\n\n\t\tll work_1 = gcd(tmp_add_bunbo,tmp_add_bunshi);\n\t\ttmp_add_bunbo /= work_1;\n\t\ttmp_add_bunshi /= work_1;\n\n\t\tpos[C].add.denominator = tmp_add_bunbo;\n\t\tpos[C].add.numerator = tmp_add_bunshi;\n\n\t\t/*pos[A].debug();\n\t\tpos[B].debug();\n\t\tpos[C].debug();*/\n\n\t\tvector<int> vec;\n\n\t\t//中点をむすんで出来た直線の点を全探索\n\t\tfor(ll x = 0; x <= 200000; x++){\n\n\t\t\tll bunshi = pos[C].slope.numerator*pos[C].add.denominator*x + pos[C].slope.denominator*pos[C].add.numerator;\n\t\t\tll bunbo = pos[C].slope.denominator*pos[C].add.denominator;\n\n\t\t\tif(bunshi%bunbo != 0)continue;\n\n\t\t\tll tmp_y = bunshi/bunbo;\n\n\t\t\tauto at = MAP[C].find(make_pair(x,tmp_y));\n\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\tvec.push_back(at->second);\n\t\t}\n\n\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\tconv_A[loc[A][V[A][i]].x] += COUNT[A][V[A][i]];\n\t\t}\n\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\tconv_B[loc[B][V[B][i]].x] += COUNT[B][V[B][i]];\n\t\t}\n\n\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\tans = 0;\n\t\tfor(int i = 0; i < vec.size(); i++){ //★★x_a+x_b == 2*x_c★★\n\n\t\t\tans += COUNT[C][vec[i]]*(ll)round(ret[2*loc[C][vec[i]].x].real());\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 173024, "score_of_the_acc": -1.9732, "final_rank": 6 }, { "submission_id": "aoj_2695_4799482", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 200005\n#define MAX 30\n\ntypedef complex<double> COMPLEX;\n\n\n\nstruct LOC{\n\n\tll x,y;\n};\n\nstruct Info{\n\tInfo(int arg_left,int arg_right){\n\t\tleft = arg_left;\n\t\tright = arg_right;\n\t}\n\tint left,right;\n};\n\nstruct Info2{\n\n\tbool operator<(const struct Info2 &arg) const{\n\n\t\treturn value < arg.value;\n\t}\n\n\tdouble value;\n\tll num;\n};\n\nstruct Data{\n\tvoid set(ll arg_denominator,ll arg_numerator){\n denominator = arg_denominator; //分母\n numerator = arg_numerator;\n \t}\n\tll denominator,numerator;\n};\n\nstruct Pos{\n\n\n\tvoid debug(){\n\n\t\tprintf(\"slope (%lld)/(%lld) add (%lld)/(%lld)\\n\",slope.numerator,slope.denominator,add.numerator,add.denominator);\n\t}\n\n\tData slope,add;\n};\n\n\nint LR_rev[2000005];\nvector<Info> info;\nvector<COMPLEX> conv_V[SIZE];\nint POW[SIZE];\n\nvoid calc_swap_pair(int N,int num_pow){\n\n\tLR_rev[0] = 0;\n\n\tfor(int i = 1; i < N; i++){\n\n\t\tif(i%2 == 1){\n\n\t\t\tLR_rev[i] = LR_rev[i-1]+POW[num_pow-1]; //1を足す代わりにPOW[num_pow-1]を足す\n\n\t\t}else{\n\n\t\t\tLR_rev[i] = LR_rev[i/2]/2; //半分のインデックスの値に、2を掛ける代わりに2で割る\n\t\t}\n\n\t\tif(i < LR_rev[i]){\n\t\t\tinfo.push_back(Info(i,LR_rev[i]));\n\t\t}\n\t}\n}\n\nvoid calc_COMPLEX(int N){\n\n\tfor(int LEN = 2,num_pow = 0; LEN <= N; LEN *= 2,num_pow++){\n\n\t\tconv_V[num_pow].resize(LEN/2);\n\n\t\tconv_V[num_pow][0] = COMPLEX(cos(0),sin(0));\n\n\t\tCOMPLEX mult = COMPLEX(cos((2*M_PI)/LEN),sin((2*M_PI)/LEN));\n\n\t\tfor(int i = 1; i < LEN/2; i++){\n\n\t\t\tif(i%2 == 1){\n\t\t\t\tconv_V[num_pow][i] = conv_V[num_pow][i-1]*mult;\n\t\t\t}else{\n\t\t\t\tconv_V[num_pow][i] = conv_V[num_pow-1][i/2];\n\t\t\t}\n\t\t}\n\t}\n}\n\n//離散フーリエ変換\nvector<COMPLEX> DFT(vector<COMPLEX> A) {\n\n\tint N = A.size();\n\n\t/*偶数項を左に、奇数項を右に仕分けるルールで要素数1まで仕分けした場合の、\n\t * 最終結果を先に作っておく(ビットが左右反転したものがその位置に来る)*/\n\tfor(int i = 0; i < info.size(); i++){\n\n\t\tswap(A[info[i].left],A[info[i].right]);\n\t}\n\n\tCOMPLEX a,add;\n\n\tfor(int LEN = 2,num_pow = 0; LEN <= N; LEN *= 2,num_pow++){\n\n\t\tfor(int start = 0; start < N; start += LEN){\n\t\t\tfor(int i = 0; i < LEN/2; i++){\n\t\t\t\t//マージソートの容量で、配列を更新していく\n\t\t\t\ta = A[start+i];\n\t\t\t\tadd = conv_V[num_pow][i]*A[start+LEN/2+i];\n\n\t\t\t\tA[start+i] = a+add;\n\t\t\t\tA[start+LEN/2+i] = a-add;\n\t\t\t}\n\t\t}\n\t}\n\treturn A;\n}\n\n\n\n\n//離散逆フーリエ変換\nvector<COMPLEX> inverseDFT(vector<COMPLEX> A){\n\n\tint N = A.size();\n\n\tvector<COMPLEX> TMP = DFT(A);\n\n\t//係数を入れ替える&サイズNで各要素を割る\n\tvector<COMPLEX> RET(N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tRET[i] = TMP[(N-i)%N];\n\t\tRET[i] = RET[i]/COMPLEX(N,0);\n\t}\n\n\treturn RET;\n}\n\nvector<COMPLEX> convolution(vector<COMPLEX> A,vector<COMPLEX> B){\n\n\tint degree = (A.size()-1)+(B.size()-1)+1;\n\n\tint N = 1,num_pow = 0;\n\twhile(N < degree){\n\t\tN *= 2;\n\t\tnum_pow++;\n\t}\n\n\tinfo.clear();\n\tcalc_swap_pair(N,num_pow);\n\tcalc_COMPLEX(N);\n\n\tA.resize(N);\n\tB.resize(N);\n\n\tA = DFT(A);\n\tB = DFT(B);\n\n\tvector<COMPLEX> RET(N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tRET[i] = A[i]*B[i];\n\t}\n\n\treturn inverseDFT(RET);\n}\n\n//最大公約数\nll gcd(ll x,ll y){\n\n\tx = abs(x);\n\ty = abs(y);\n\n\tif(x < y){\n\t\tswap(x,y);\n\t}\n\tif(y == 0){\n\t\treturn x;\n\t}else{\n\t\treturn gcd(y,x%y);\n\t}\n}\n\n//最小公倍数\nll lcm(ll x,ll y){\n\n\treturn (x*y)/gcd(x,y);\n}\n\n\n//傾きと切片を分数で計算して返却する関数\nPos calc_pos(LOC a,LOC b){\n\n\tPos ret;\n\n\tif(a.x == b.x){ //垂直\n\n\t\tret.slope.denominator = 1;\n\t\tret.slope.numerator = BIG_NUM;\n\n\t}else if(a.y == b.y){ //水平\n\n\t\tret.slope.denominator = 1;\n\t\tret.slope.numerator = 0;\n\t\tret.add.denominator = 1;\n\t\tret.add.numerator = a.y;\n\n\t}else{\n\n\t\t//★符号に注意★\n\t\tll diff_x = abs(a.x-b.x);\n\t\tll diff_y = abs(a.y-b.y);\n\t\tll common = gcd(diff_x,diff_y);\n\t\tdiff_x /= common;\n\t\tdiff_y /= common;\n\n\t\tret.slope.denominator = diff_x;\n\t\tret.slope.numerator = diff_y;\n\n\t\tif(((a.x-b.x) > 0 && (a.y-b.y) < 0) || ((a.x-b.x) < 0 && (a.y-b.y) > 0)){\n\n\t\t\tret.slope.numerator *= -1;\n\t\t\tdiff_y *= -1; //マイナスは分子につける\n\t\t}\n\n\t\t//printf(\"a:(%lld,%lld)\\n\",a.x,a.y);\n\t\t//printf(\"diff_x:%lld diff_y:%lld\\n\",diff_x,diff_y);\n\n\t\tll tmp = a.y*diff_x-(diff_y*a.x);\n\t\tcommon = gcd(tmp,diff_x);\n\n\t\tdiff_x /= common;\n\t\ttmp /= common;\n\n\t\tret.add.denominator = diff_x;\n\t\tret.add.numerator = tmp;\n\t}\n\n\treturn ret;\n}\n\nbool is_Parallel(Pos a,Pos b){\n\n\treturn a.slope.denominator == b.slope.denominator && a.slope.numerator == b.slope.numerator;\n}\n\n\nll num[3];\nll num_point[3];\nvector<int> V[3];\nmap<pair<ll,ll>,int> MAP[3]; //初出の座標のindexを保持するマップ\nll COUNT[3][SIZE];\nll add_X = 100000,add_Y = 100000;\nint A=0,B=1,C=2;\nLOC loc[3][SIZE];\n\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tfor(int i = 0; i < 3; i++){\n\t\t//座標の個数\n\t\tnum_point[i] = 0;\n\t}\n\tfor(int i = 0; i < 3; i++){\n\t\tfor(int k = 0; k < SIZE; k++){\n\t\t\tCOUNT[i][k] = 0; //同一の点をまとめる\n\t\t}\n\t}\n\n\tscanf(\"%lld %lld %lld\",&num[A],&num[B],&num[C]);\n\n\tfor(int loop = 0; loop < 3; loop++){\n\t\tfor(int i = 0; i < num[loop]; i++){\n\n\t\t\tscanf(\"%lld %lld\",&loc[loop][i].x,&loc[loop][i].y);\n\t\t\tloc[loop][i].x += add_X;\n\t\t\tloc[loop][i].y += add_Y;\n\n\t\t\tauto at = MAP[loop].find(make_pair(loc[loop][i].x,loc[loop][i].y));\n\n\t\t\tif(at == MAP[loop].end()){ //初めて出た座標\n\n\t\t\t\tMAP[loop][make_pair(loc[loop][i].x,loc[loop][i].y)] = i; //インデックスを記録\n\n\t\t\t\tV[loop].push_back(i);\n\t\t\t\tnum_point[loop]++;\n\t\t\t\tCOUNT[loop][i] = 1;\n\n\t\t\t}else{\n\n\t\t\t\tCOUNT[loop][at->second]++;\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans;\n\tll a_x,a_y,b_x,b_y,c_x,c_y;\n\n\tif((num_point[A] == 1)||(num_point[B] == 1)){ //AがBが1点の場合\n\n\t\t//printf(\"片方が1点\\n\");\n\n\t\tans = 0;\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\ta_x = loc[A][V[A][i]].x;\n\t\t\ta_y = loc[A][V[A][i]].y;\n\n\t\t\tfor(int k = 0; k < V[B].size(); k++){\n\n\t\t\t\tb_x = loc[B][V[B][k]].x;\n\t\t\t\tb_y = loc[B][V[B][k]].y;\n\n\t\t\t\tif((a_x+b_x)%2 == 1 || (a_y+b_y)%2 == 1)continue;\n\n\t\t\t\tc_x = (a_x+b_x)/2;\n\t\t\t\tc_y = (a_y+b_y)/2;\n\n\t\t\t\tauto at = MAP[C].find(make_pair(c_x,c_y));\n\t\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\t\tans += COUNT[A][V[A][i]]*COUNT[B][V[B][k]]*COUNT[C][at->second];\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t\treturn 0;\n\t}\n\n\t//AとBの傾きを計算\n\tPos pos[3];\n\n\tpos[A] = calc_pos(loc[A][V[A][0]],loc[A][V[A][1]]);\n\tpos[B] = calc_pos(loc[B][V[B][0]],loc[B][V[B][1]]);\n\n\t//return 0;\n\n\tdouble slope_A = (double)pos[A].slope.numerator/(double)pos[A].slope.denominator;\n\tdouble add_A = (double)pos[A].add.numerator/(double)pos[A].add.denominator;\n\n\tdouble slope_B = (double)pos[B].slope.numerator/(double)pos[B].slope.denominator;\n\tdouble add_B = (double)pos[B].add.numerator/(double)pos[B].add.denominator;\n\n\tdouble d_x_a,d_x_b,d_x_c,d_y_a,d_y_c;\n\n\tif(!is_Parallel(pos[A],pos[B])){ //AとBが平行でない場合\n\n\t\t//printf(\"AとBが平行でない\\n\");\n\n\t\tif(pos[B].slope.numerator == BIG_NUM){ //Bが垂直\n\n\t\t\tswap(A,B); //Aを垂直にする\n\t\t\tswap(slope_A,slope_B);\n\t\t\tswap(add_A,add_B);\n\t\t}\n\n\t\t//整数のまま演算すると桁あふれするので実数でやる\n\t\tvector<Info2> info_A,info_B;\n\t\tvector<double> v_A,v_B;\n\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\t\t\tInfo2 tmp_info;\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\ttmp_info.value = loc[A][V[A][i]].y; //垂直ならy座標\n\n\t\t\t}else{\n\n\t\t\t\ttmp_info.value = loc[A][V[A][i]].x; //垂直でないならx座標\n\t\t\t}\n\t\t\tv_A.push_back(tmp_info.value);\n\t\t\ttmp_info.num = COUNT[A][V[A][i]]; //重み\n\t\t\tinfo_A.push_back(tmp_info);\n\t\t}\n\t\tsort(info_A.begin(),info_A.end());\n\t\tsort(v_A.begin(),v_A.end());\n\n\t\tfor(int i = 0; i < V[B].size(); i++){\n\t\t\tInfo2 tmp_info;\n\t\t\ttmp_info.value = loc[B][V[B][i]].x; //座標\n\t\t\ttmp_info.num = COUNT[B][V[B][i]]; //重み\n\t\t\tv_B.push_back(tmp_info.value);\n\t\t\tinfo_B.push_back(tmp_info);\n\t\t}\n\t\tsort(info_B.begin(),info_B.end());\n\t\tsort(v_B.begin(),v_B.end());\n\n\t\tans = 0;\n\n\t\t//Cの座標からA,Bの座標を計算する\n\t\tfor(int i = 0; i < V[C].size(); i++){\n\n\t\t\td_x_c = loc[C][V[C][i]].x;\n\t\t\td_y_c = loc[C][V[C][i]].y;\n\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\td_x_a = loc[A][V[A][0]].x;\n\t\t\t\td_x_b = 2*d_x_c-d_x_a;\n\t\t\t\td_y_a = 2*d_y_c-(slope_B*d_x_b+add_B);\n\n\t\t\t}else{ //Aが垂直ではない\n\n\t\t\t\td_x_a = (2*d_y_c-(add_A+2*slope_B*d_x_c+add_B))/(slope_A-slope_B);\n\t\t\t\td_x_b = 2*d_x_c-(d_x_a);\n\t\t\t}\n\n\t\t\tint at_a;\n\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\tat_a = lower_bound(v_A.begin(),v_A.end(),d_y_a-EPS)-v_A.begin();\n\t\t\t\tif(at_a == v_A.size() || fabs(d_y_a-info_A[at_a].value) >= EPS)continue;\n\n\t\t\t}else{\n\n\t\t\t\tat_a = lower_bound(v_A.begin(),v_A.end(),d_x_a-EPS)-v_A.begin();\n\t\t\t\tif(at_a == v_A.size() || fabs(d_x_a-info_A[at_a].value) >= EPS)continue;\n\t\t\t}\n\n\t\t\tint at_b = lower_bound(v_B.begin(),v_B.end(),d_x_b-EPS)-v_B.begin();\n\t\t\tif(at_b == v_B.size() || fabs(d_x_b-info_B[at_b].value) >= EPS)continue;\n\n\t\t\tans += info_A[at_a].num*info_B[at_b].num*COUNT[C][V[C][i]];\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t\treturn 0;\n\t}\n\n\t//AとBが平行である場合\n\t//Cが(AとBの中点を結んだ直線上)にあるか否かで場合分け\n\t//printf(\"AとBが平行\\n\");\n\n\tif(pos[A].slope.numerator == BIG_NUM && pos[B].slope.numerator == BIG_NUM){ //両方垂直\n\n\t\tif((loc[A][V[A][0]].x+loc[B][V[B][0]].x)%2 == 1){\n\n\t\t\tprintf(\"0\\n\");\n\t\t\treturn 0;\n\t\t}\n\n\t\tll X = (loc[A][V[A][0]].x+loc[B][V[B][0]].x)/2;\n\n\t\tif(num_point[C] == 1){ //Cが1点だけ\n\n\t\t\tif(loc[C][V[C][0]].x != X){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\tpos[C].slope.denominator = 1;\n\t\t\tpos[C].slope.numerator = BIG_NUM;\n\n\t\t}else{ //Cが2点以上\n\n\t\t\tpos[C] = calc_pos(loc[C][V[C][0]],loc[C][V[C][1]]);\n\t\t}\n\n\t\tif(pos[C].slope.numerator == BIG_NUM){ //Cも垂直\n\n\t\t\tif(loc[C][V[C][0]].x != X){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\t//printf(\"Cも垂直\\n\");\n\n\t\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\t\tconv_A[loc[A][V[A][i]].y] += COUNT[A][V[A][i]];\n\t\t\t}\n\t\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\t\tconv_B[loc[B][V[B][i]].y] += COUNT[B][V[B][i]];\n\t\t\t}\n\n\t\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\t\tans = 0;\n\t\t\tfor(int i = 0; i < V[C].size(); i++){\n\n\t\t\t\tans += COUNT[C][V[C][i]]*(ll)round(ret[2*loc[C][V[C][i]].y].real());\n\t\t\t}\n\n\t\t\tprintf(\"%lld\\n\",ans);\n\n\t\t}else{ //交点は高々1つなので、探す\n\n\t\t\t//printf(\"交点は高々1つ\\n\");\n\n\t\t\tvector<int> vec;\n\n\t\t\tfor(ll y = 0; y <= 200000; y++){\n\n\t\t\t\tauto at = MAP[C].find(make_pair(X,y));\n\t\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\t\tvec.push_back(at->second);\n\t\t\t\t//break;\n\t\t\t}\n\n\t\t\tif(vec.size() == 0){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\t\tconv_A[loc[A][V[A][i]].y] += COUNT[A][V[A][i]];\n\t\t\t}\n\t\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\t\tconv_B[loc[B][V[B][i]].y] += COUNT[B][V[B][i]];\n\t\t\t}\n\n\t\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\t\tans = 0;\n\t\t\tfor(int i = 0; i < vec.size(); i++){ //★★x_a+x_b == 2*x_c★★\n\t\t\t\tans += COUNT[C][vec[i]]*(ll)round(ret[2*loc[C][vec[i]].y].real());\n\t\t\t}\n\n\t\t\tprintf(\"%lld\\n\",ans);\n\t\t}\n\n\t}else{\n\n\t\t//printf(\"垂直でない平行\\n\");\n\n\t\t//AとBの中点を結んでできる直線のposを求める\n\t\tpos[C].slope = pos[A].slope;\n\t\tll tmp_add_bunbo = 2*pos[A].add.denominator*pos[B].add.denominator;\n\t\tll tmp_add_bunshi = pos[A].add.numerator*pos[B].add.denominator + pos[B].add.numerator*pos[A].add.denominator;\n\n\n\t\tll work_1 = gcd(tmp_add_bunbo,tmp_add_bunshi);\n\t\ttmp_add_bunbo /= work_1;\n\t\ttmp_add_bunshi /= work_1;\n\n\t\tpos[C].add.denominator = tmp_add_bunbo;\n\t\tpos[C].add.numerator = tmp_add_bunshi;\n\n\t\t/*pos[A].debug();\n\t\tpos[B].debug();\n\t\tpos[C].debug();*/\n\n\t\tvector<int> vec;\n\n\t\t//中点をむすんで出来た直線の点を全探索\n\t\tfor(ll x = 0; x <= 200000; x++){\n\n\t\t\tll bunshi = pos[C].slope.numerator*pos[C].add.denominator*x + pos[C].slope.denominator*pos[C].add.numerator;\n\t\t\tll bunbo = pos[C].slope.denominator*pos[C].add.denominator;\n\n\t\t\tif(bunshi%bunbo != 0)continue;\n\n\t\t\tll tmp_y = bunshi/bunbo;\n\n\t\t\tauto at = MAP[C].find(make_pair(x,tmp_y));\n\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\tvec.push_back(at->second);\n\t\t}\n\n\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\tconv_A[loc[A][V[A][i]].x] += COUNT[A][V[A][i]];\n\t\t}\n\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\tconv_B[loc[B][V[B][i]].x] += COUNT[B][V[B][i]];\n\t\t}\n\n\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\tans = 0;\n\t\tfor(int i = 0; i < vec.size(); i++){\n\n\t\t\tans += COUNT[C][vec[i]]*(ll)round(ret[2*loc[C][vec[i]].x].real());\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 460, "memory_kb": 173196, "score_of_the_acc": -2, "final_rank": 7 }, { "submission_id": "aoj_2695_4799469", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 200005\n#define MAX 30\n\ntypedef complex<double> COMPLEX;\n\n\n\nstruct LOC{\n\n\tll x,y;\n};\n\nstruct Info{\n\tInfo(int arg_left,int arg_right){\n\t\tleft = arg_left;\n\t\tright = arg_right;\n\t}\n\tint left,right;\n};\n\nstruct Info2{\n\n\tbool operator<(const struct Info2 &arg) const{\n\n\t\treturn value < arg.value;\n\t}\n\n\tdouble value;\n\tll num;\n};\n\nstruct Data{\n\tvoid set(ll arg_denominator,ll arg_numerator){\n denominator = arg_denominator; //分母\n numerator = arg_numerator;\n \t}\n\tll denominator,numerator;\n};\n\nstruct Pos{\n\n\n\tvoid debug(){\n\n\t\tprintf(\"slope (%lld)/(%lld) add (%lld)/(%lld)\\n\",slope.numerator,slope.denominator,add.numerator,add.denominator);\n\t}\n\n\tData slope,add;\n};\n\n\nint LR_rev[2000005];\nvector<Info> info;\nvector<COMPLEX> conv_V[SIZE];\nint POW[SIZE];\n\nvoid calc_swap_pair(int N,int num_pow){\n\n\tLR_rev[0] = 0;\n\n\tfor(int i = 1; i < N; i++){\n\n\t\tif(i%2 == 1){\n\n\t\t\tLR_rev[i] = LR_rev[i-1]+POW[num_pow-1]; //1を足す代わりにPOW[num_pow-1]を足す\n\n\t\t}else{\n\n\t\t\tLR_rev[i] = LR_rev[i/2]/2; //半分のインデックスの値に、2を掛ける代わりに2で割る\n\t\t}\n\n\t\tif(i < LR_rev[i]){\n\t\t\tinfo.push_back(Info(i,LR_rev[i]));\n\t\t}\n\t}\n}\n\nvoid calc_COMPLEX(int N){\n\n\tfor(int LEN = 2,num_pow = 0; LEN <= N; LEN *= 2,num_pow++){\n\n\t\tconv_V[num_pow].resize(LEN/2);\n\n\t\tconv_V[num_pow][0] = COMPLEX(cos(0),sin(0));\n\n\t\tCOMPLEX mult = COMPLEX(cos((2*M_PI)/LEN),sin((2*M_PI)/LEN));\n\n\t\tfor(int i = 1; i < LEN/2; i++){\n\n\t\t\tif(i%2 == 1){\n\t\t\t\tconv_V[num_pow][i] = conv_V[num_pow][i-1]*mult;\n\t\t\t}else{\n\t\t\t\tconv_V[num_pow][i] = conv_V[num_pow-1][i/2];\n\t\t\t}\n\t\t}\n\t}\n}\n\n//離散フーリエ変換\nvector<COMPLEX> DFT(vector<COMPLEX> A) {\n\n\tint N = A.size();\n\n\t/*偶数項を左に、奇数項を右に仕分けるルールで要素数1まで仕分けした場合の、\n\t * 最終結果を先に作っておく(ビットが左右反転したものがその位置に来る)*/\n\tfor(int i = 0; i < info.size(); i++){\n\n\t\tswap(A[info[i].left],A[info[i].right]);\n\t}\n\n\tCOMPLEX a,add;\n\n\tfor(int LEN = 2,num_pow = 0; LEN <= N; LEN *= 2,num_pow++){\n\n\t\tfor(int start = 0; start < N; start += LEN){\n\t\t\tfor(int i = 0; i < LEN/2; i++){\n\t\t\t\t//マージソートの容量で、配列を更新していく\n\t\t\t\ta = A[start+i];\n\t\t\t\tadd = conv_V[num_pow][i]*A[start+LEN/2+i];\n\n\t\t\t\tA[start+i] = a+add;\n\t\t\t\tA[start+LEN/2+i] = a-add;\n\t\t\t}\n\t\t}\n\t}\n\treturn A;\n}\n\n\n\n\n//離散逆フーリエ変換\nvector<COMPLEX> inverseDFT(vector<COMPLEX> A){\n\n\tint N = A.size();\n\n\tvector<COMPLEX> TMP = DFT(A);\n\n\t//係数を入れ替える&サイズNで各要素を割る\n\tvector<COMPLEX> RET(N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tRET[i] = TMP[(N-i)%N];\n\t\tRET[i] = RET[i]/COMPLEX(N,0);\n\t}\n\n\treturn RET;\n}\n\nvector<COMPLEX> convolution(vector<COMPLEX> A,vector<COMPLEX> B){\n\n\tint degree = (A.size()-1)+(B.size()-1)+1;\n\n\tint N = 1,num_pow = 0;\n\twhile(N < degree){\n\t\tN *= 2;\n\t\tnum_pow++;\n\t}\n\n\tinfo.clear();\n\tcalc_swap_pair(N,num_pow);\n\tcalc_COMPLEX(N);\n\n\tA.resize(N);\n\tB.resize(N);\n\n\tA = DFT(A);\n\tB = DFT(B);\n\n\tvector<COMPLEX> RET(N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tRET[i] = A[i]*B[i];\n\t}\n\n\treturn inverseDFT(RET);\n}\n\n//最大公約数\nll gcd(ll x,ll y){\n\n\tx = abs(x);\n\ty = abs(y);\n\n\tif(x < y){\n\t\tswap(x,y);\n\t}\n\tif(y == 0){\n\t\treturn x;\n\t}else{\n\t\treturn gcd(y,x%y);\n\t}\n}\n\n//最小公倍数\nll lcm(ll x,ll y){\n\n\treturn (x*y)/gcd(x,y);\n}\n\n\n//傾きと切片を分数で計算して返却する関数\nPos calc_pos(LOC a,LOC b){\n\n\tPos ret;\n\n\tif(a.x == b.x){ //垂直\n\n\t\tret.slope.denominator = 1;\n\t\tret.slope.numerator = BIG_NUM;\n\n\t}else if(a.y == b.y){ //水平\n\n\t\tret.slope.denominator = 1;\n\t\tret.slope.numerator = 0;\n\t\tret.add.denominator = 1;\n\t\tret.add.numerator = a.y;\n\n\t}else{\n\n\t\t//★符号に注意★\n\t\tll diff_x = abs(a.x-b.x);\n\t\tll diff_y = abs(a.y-b.y);\n\t\tll common = gcd(diff_x,diff_y);\n\t\tdiff_x /= common;\n\t\tdiff_y /= common;\n\n\t\tret.slope.denominator = diff_x;\n\t\tret.slope.numerator = diff_y;\n\n\t\tif(((a.x-b.x) > 0 && (a.y-b.y) < 0) || ((a.x-b.x) < 0 && (a.y-b.y) > 0)){\n\n\t\t\tret.slope.numerator *= -1;\n\t\t\tdiff_y *= -1; //マイナスは分子につける\n\t\t}\n\n\t\t//printf(\"a:(%lld,%lld)\\n\",a.x,a.y);\n\t\t//printf(\"diff_x:%lld diff_y:%lld\\n\",diff_x,diff_y);\n\n\t\tll tmp = a.y*diff_x-(diff_y*a.x);\n\t\tcommon = gcd(tmp,diff_x);\n\n\t\tdiff_x /= common;\n\t\ttmp /= common;\n\n\t\tret.add.denominator = diff_x;\n\t\tret.add.numerator = tmp;\n\t}\n\n\treturn ret;\n}\n\nbool is_Parallel(Pos a,Pos b){\n\n\treturn a.slope.denominator == b.slope.denominator && a.slope.numerator == b.slope.numerator;\n}\n\n\nll num[3];\nll num_point[3];\nvector<int> V[3];\nmap<pair<ll,ll>,int> MAP[3]; //初出の座標のindexを保持するマップ\nll COUNT[3][SIZE];\nll add_X = 100000,add_Y = 100000;\nint A=0,B=1,C=2;\nLOC loc[3][SIZE];\n\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tfor(int i = 0; i < 3; i++){\n\t\t//座標の個数\n\t\tnum_point[i] = 0;\n\t}\n\tfor(int i = 0; i < 3; i++){\n\t\tfor(int k = 0; k < SIZE; k++){\n\t\t\tCOUNT[i][k] = 0; //同一の点をまとめる\n\t\t}\n\t}\n\n\tscanf(\"%lld %lld %lld\",&num[A],&num[B],&num[C]);\n\n\tfor(int loop = 0; loop < 3; loop++){\n\t\tfor(int i = 0; i < num[loop]; i++){\n\n\t\t\tscanf(\"%lld %lld\",&loc[loop][i].x,&loc[loop][i].y);\n\t\t\tloc[loop][i].x += add_X;\n\t\t\tloc[loop][i].y += add_Y;\n\n\t\t\tauto at = MAP[loop].find(make_pair(loc[loop][i].x,loc[loop][i].y));\n\n\t\t\tif(at == MAP[loop].end()){ //初めて出た座標\n\n\t\t\t\tMAP[loop][make_pair(loc[loop][i].x,loc[loop][i].y)] = i; //インデックスを記録\n\n\t\t\t\tV[loop].push_back(i);\n\t\t\t\tnum_point[loop]++;\n\t\t\t\tCOUNT[loop][i] = 1;\n\n\t\t\t}else{\n\n\t\t\t\tCOUNT[loop][at->second]++;\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans;\n\tll a_x,a_y,b_x,b_y,c_x,c_y;\n\n\tif((num_point[A] == 1)||(num_point[B] == 1)){ //AがBが1点の場合\n\n\t\t//printf(\"片方が1点\\n\");\n\n\t\tans = 0;\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\ta_x = loc[A][V[A][i]].x;\n\t\t\ta_y = loc[A][V[A][i]].y;\n\n\t\t\tfor(int k = 0; k < V[B].size(); k++){\n\n\t\t\t\tb_x = loc[B][V[B][k]].x;\n\t\t\t\tb_y = loc[B][V[B][k]].y;\n\n\t\t\t\tif((a_x+b_x)%2 == 1 || (a_y+b_y)%2 == 1)continue;\n\n\t\t\t\tc_x = (a_x+b_x)/2;\n\t\t\t\tc_y = (a_y+b_y)/2;\n\n\t\t\t\tauto at = MAP[C].find(make_pair(c_x,c_y));\n\t\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\t\tans += COUNT[A][V[A][i]]*COUNT[B][V[B][k]]*COUNT[C][at->second];\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t\treturn 0;\n\t}\n\n\t//AとBの傾きを計算\n\tPos pos[3];\n\n\tpos[A] = calc_pos(loc[A][V[A][0]],loc[A][V[A][1]]);\n\tpos[B] = calc_pos(loc[B][V[B][0]],loc[B][V[B][1]]);\n\n\t//return 0;\n\n\tdouble slope_A = (double)pos[A].slope.numerator/(double)pos[A].slope.denominator;\n\tdouble add_A = (double)pos[A].add.numerator/(double)pos[A].add.denominator;\n\n\tdouble slope_B = (double)pos[B].slope.numerator/(double)pos[B].slope.denominator;\n\tdouble add_B = (double)pos[B].add.numerator/(double)pos[B].add.denominator;\n\n\tdouble d_x_a,d_x_b,d_x_c,d_y_a,d_y_c;\n\n\tif(!is_Parallel(pos[A],pos[B])){ //AとBが平行でない場合\n\n\t\t//printf(\"AとBが平行でない\\n\");\n\n\t\tif(pos[B].slope.numerator == BIG_NUM){ //Bが垂直\n\n\t\t\tswap(A,B); //Aを垂直にする\n\t\t\tswap(slope_A,slope_B);\n\t\t\tswap(add_A,add_B);\n\t\t}\n\n\t\t//整数のまま演算すると桁あふれするので実数でやる\n\t\tvector<Info2> info_A,info_B;\n\t\tvector<double> v_A,v_B;\n\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\t\t\tInfo2 tmp_info;\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\ttmp_info.value = loc[A][V[A][i]].y; //垂直ならy座標\n\n\t\t\t}else{\n\n\t\t\t\ttmp_info.value = loc[A][V[A][i]].x; //垂直でないならx座標\n\t\t\t}\n\t\t\tv_A.push_back(tmp_info.value);\n\t\t\ttmp_info.num = COUNT[A][V[A][i]]; //重み\n\t\t\tinfo_A.push_back(tmp_info);\n\t\t}\n\t\tsort(info_A.begin(),info_A.end());\n\t\tsort(v_A.begin(),v_A.end());\n\n\t\tfor(int i = 0; i < V[B].size(); i++){\n\t\t\tInfo2 tmp_info;\n\t\t\ttmp_info.value = loc[B][V[B][i]].x; //座標\n\t\t\ttmp_info.num = COUNT[B][V[B][i]]; //重み\n\t\t\tv_B.push_back(tmp_info.value);\n\t\t\tinfo_B.push_back(tmp_info);\n\t\t}\n\t\tsort(info_B.begin(),info_B.end());\n\t\tsort(v_B.begin(),v_B.end());\n\n\t\tans = 0;\n\n\t\t//Cの座標からA,Bの座標を計算する\n\t\tfor(int i = 0; i < V[C].size(); i++){\n\n\t\t\td_x_c = loc[C][V[C][i]].x;\n\t\t\td_y_c = loc[C][V[C][i]].y;\n\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\td_x_a = loc[A][V[A][0]].x;\n\t\t\t\td_x_b = 2*d_x_c-d_x_a;\n\t\t\t\td_y_a = 2*d_y_c-(slope_B*d_x_b+add_B);\n\n\t\t\t}else{ //Aが垂直ではない\n\n\t\t\t\td_x_a = (2*d_y_c-(add_A+2*slope_B*d_x_c+add_B))/(slope_A-slope_B);\n\t\t\t\td_x_b = 2*d_x_c-(d_x_a);\n\t\t\t}\n\n\t\t\tint at_a;\n\n\t\t\tif(pos[A].slope.numerator == BIG_NUM){ //Aが垂直\n\n\t\t\t\tat_a = lower_bound(v_A.begin(),v_A.end(),d_y_a-EPS)-v_A.begin();\n\t\t\t\tif(at_a == v_A.size() || fabs(d_y_a-info_A[at_a].value) >= EPS)continue;\n\n\t\t\t}else{\n\n\t\t\t\tat_a = lower_bound(v_A.begin(),v_A.end(),d_x_a-EPS)-v_A.begin();\n\t\t\t\tif(at_a == v_A.size() || fabs(d_x_a-info_A[at_a].value) >= EPS)continue;\n\t\t\t}\n\n\t\t\tint at_b = lower_bound(v_B.begin(),v_B.end(),d_x_b-EPS)-v_B.begin();\n\t\t\tif(at_b == v_B.size() || fabs(d_x_b-info_B[at_b].value) >= EPS)continue;\n\n\t\t\tans += info_A[at_a].num*info_B[at_b].num*COUNT[C][V[C][i]];\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t\treturn 0;\n\t}\n\n\t//AとBが平行である場合\n\t//Cが(AとBの中点を結んだ直線上)にあるか否かで場合分け\n\t//printf(\"AとBが平行\\n\");\n\n\tif(pos[A].slope.numerator == BIG_NUM && pos[B].slope.numerator == BIG_NUM){ //両方垂直\n\n\t\tif((loc[A][V[A][0]].x+loc[B][V[B][0]].x)%2 == 1){\n\n\t\t\tprintf(\"0\\n\");\n\t\t\treturn 0;\n\t\t}\n\n\t\tll X = (loc[A][V[A][0]].x+loc[B][V[B][0]].x)/2;\n\n\t\tif(num_point[C] == 1){ //Cが1点だけ\n\n\t\t\tif(loc[C][V[C][0]].x != X){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\tpos[C].slope.denominator = 1;\n\t\t\tpos[C].slope.numerator = BIG_NUM;\n\n\t\t}else{ //Cが2点以上\n\n\t\t\tpos[C] = calc_pos(loc[C][V[C][0]],loc[C][V[C][1]]);\n\t\t}\n\n\t\tif(pos[C].slope.numerator == BIG_NUM){ //Cも垂直\n\n\t\t\tif(loc[C][V[C][0]].x != X){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\t//printf(\"Cも垂直\\n\");\n\n\t\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\t\tconv_A[loc[A][V[A][i]].y] += COUNT[A][V[A][i]];\n\t\t\t}\n\t\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\t\tconv_B[loc[B][V[B][i]].y] += COUNT[B][V[B][i]];\n\t\t\t}\n\n\t\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\t\tans = 0;\n\t\t\tfor(int i = 0; i < V[C].size(); i++){\n\n\t\t\t\tans += COUNT[C][V[C][i]]*(ll)round(ret[loc[C][V[C][i]].y].real());\n\t\t\t}\n\n\t\t\tprintf(\"%lld\\n\",ans);\n\n\t\t}else{ //交点は高々1つなので、探す\n\n\t\t\t//printf(\"交点は高々1つ\\n\");\n\n\t\t\tvector<int> vec;\n\n\t\t\tfor(ll y = 0; y <= 200000; y++){\n\n\t\t\t\tauto at = MAP[C].find(make_pair(X,y));\n\t\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\t\tvec.push_back(at->second);\n\t\t\t\t//break;\n\t\t\t}\n\n\t\t\tif(vec.size() == 0){\n\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\n\t\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\t\tconv_A[loc[A][V[A][i]].y] += COUNT[A][V[A][i]];\n\t\t\t}\n\t\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\t\tconv_B[loc[B][V[B][i]].y] += COUNT[B][V[B][i]];\n\t\t\t}\n\n\t\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\t\tans = 0;\n\t\t\tfor(int i = 0; i < vec.size(); i++){ //★★x_a+x_b == 2*x_c★★\n\t\t\t\tans += COUNT[C][vec[i]]*(ll)round(ret[2*loc[C][vec[i]].y].real());\n\t\t\t}\n\n\t\t\tprintf(\"%lld\\n\",ans);\n\t\t}\n\n\t}else{\n\n\t\t//printf(\"垂直でない平行\\n\");\n\n\t\t//AとBの中点を結んでできる直線のposを求める\n\t\tpos[C].slope = pos[A].slope;\n\t\tll tmp_add_bunbo = 2*pos[A].add.denominator*pos[B].add.denominator;\n\t\tll tmp_add_bunshi = pos[A].add.numerator*pos[B].add.denominator + pos[B].add.numerator*pos[A].add.denominator;\n\n\n\t\tll work_1 = gcd(tmp_add_bunbo,tmp_add_bunshi);\n\t\ttmp_add_bunbo /= work_1;\n\t\ttmp_add_bunshi /= work_1;\n\n\t\tpos[C].add.denominator = tmp_add_bunbo;\n\t\tpos[C].add.numerator = tmp_add_bunshi;\n\n\t\t/*pos[A].debug();\n\t\tpos[B].debug();\n\t\tpos[C].debug();*/\n\n\t\tvector<int> vec;\n\n\t\t//中点をむすんで出来た直線の点を全探索\n\t\tfor(ll x = 0; x <= 200000; x++){\n\n\t\t\tll bunshi = pos[C].slope.numerator*pos[C].add.denominator*x + pos[C].slope.denominator*pos[C].add.numerator;\n\t\t\tll bunbo = pos[C].slope.denominator*pos[C].add.denominator;\n\n\t\t\tif(bunshi%bunbo != 0)continue;\n\n\t\t\tll tmp_y = bunshi/bunbo;\n\n\t\t\tauto at = MAP[C].find(make_pair(x,tmp_y));\n\t\t\tif(at == MAP[C].end())continue;\n\n\t\t\tvec.push_back(at->second);\n\t\t}\n\n\t\tvector<COMPLEX> conv_A(2*SIZE),conv_B(2*SIZE);\n\n\t\tfor(int i = 0; i < V[A].size(); i++){\n\n\t\t\tconv_A[loc[A][V[A][i]].x] += COUNT[A][V[A][i]];\n\t\t}\n\t\tfor(int i = 0; i < V[B].size(); i++){\n\n\t\t\tconv_B[loc[B][V[B][i]].x] += COUNT[B][V[B][i]];\n\t\t}\n\n\t\tvector<COMPLEX> ret = convolution(conv_A,conv_B);\n\n\t\tans = 0;\n\t\tfor(int i = 0; i < vec.size(); i++){\n\n\t\t\tans += COUNT[C][vec[i]]*(ll)round(ret[2*loc[C][vec[i]].x].real());\n\t\t}\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.3728813559322034, "time_ms": 280, "memory_kb": 148144, "score_of_the_acc": -1.3745, "final_rank": 15 }, { "submission_id": "aoj_2695_3842679", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lld = int64_t;\nusing I128 = __int128;\ntypedef long long ll;\nusing pII = pair<I128,I128>;\nusing pll = pair<ll,ll>;\ntypedef pair<int,int> pii;\ntypedef pair<double,double> pdd;\ntypedef complex<double> cplex;\nconst double pi=acos(-1);\nconst int INF = 500000;\nconst int N = 100000 + 5;\n\nint l, m, n;\n\npair< int, int > a[ N ], b[ N ], c[ N ];\n\nvoid init() {\n\tcin >> l >> m >> n;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcin >> a[ i ].first >> a[ i ].second;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcin >> b[ i ].first >> b[ i ].second;\n\tfor ( int i = 0 ; i < n ; ++ i )\n\t\tcin >> c[ i ].first >> c[ i ].second;\n}\n\nvoid solve_brute() {\n\tmap< pair< int, int >, lld > cntA, cntB;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcntA[ a[ i ] ] ++;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcntB[ b[ i ] ] ++;\n\n\tlld ans = 0;\n\n\tlld a0x = a[ 0 ].first, a0y = a[ 0 ].second;\n\tlld b0x = b[ 0 ].first, b0y = b[ 0 ].second;\n\tlld dax = a[ 1 ].first - a[ 0 ].first;\n\tlld day = a[ 1 ].second - a[ 0 ].second;\n\tlld dbx = b[ 1 ].first - b[ 0 ].first;\n\tlld dby = b[ 1 ].second - b[ 0 ].second;\n\n\tfor ( int i = 0 ; i < n ; ++ i ) {\n\t\tlld cx = 2 * c[ i ].first, cy = 2 * c[ i ].second;\n\t\tcx -= a0x + b0x;\n\t\tcy -= a0y + b0y;\n\n\t\tlld det = dax * dby - dbx * day;\n\t\tlld ma = cx * dby - cy * dbx;\n\t\tlld mb = cy * dax - cx * day; \n\n\t\t// cout << \"MA = \" << ma << '\\n';\n\t\t// cout << \"MB = \" << mb << '\\n';\n\t\t// cout << \"DAX = \" << dax <<'\\n';\n\t\t// cout << \"DAY = \" << day << '\\n';\n\t\t// cout << \"DBX = \" << dbx << '\\n';\n\t\t// cout << \"DBY = \" << dby << '\\n';\n\t\t// cout << \"DET = \" << det << '\\n';\n\n\t\tif ( ( ma * dax ) % det != 0 ) continue;\n\t\tif ( ( ma * day ) % det != 0 ) continue;\n\t\tif ( ( mb * dbx ) % det != 0 ) continue;\n\t\tif ( ( mb * dby ) % det != 0 ) continue;\n\n\t\t// cout << \"JIZZ\\n\";\n\n\t\tlld ax = a0x + ma * dax / det, ay = a0y + ma * day / det;\n\t\tlld bx = b0x + mb * dbx / det, by = b0y + mb * dby / det;\n\n\t\tans += cntA[ { ax, ay } ] * cntB[ { bx, by } ];\n\t}\n\tcout << ans << '\\n';\n}\n\nmap<pair<int,int>,int> adic,bdic,cdic;\ninline ll cross(pll o,pll a,pll b){\n\treturn (a.first-o.first)*(b.second-o.second)-(a.second-o.second)*(b.first-o.first);\n}\ninline ll cross(pll v1,pll v2,pll v3,pll v4){\n\treturn (v2.first-v1.first)*(v4.second-v3.second)-(v2.second-v1.second)*(v4.first-v3.first);\n}\n\nusing wtf = pair< pII, pII >;\n\ninline wtf get_point(pll v1,pll v2,pll v3,pll v4){\n\tll a1=cross(v3,v1,v4),a2=cross(v3,v4,v2);\n\t// cout<<\"a1=\"<<a1<<\",a2=\"<<a2<<'\\n';\n\t// double x=(double)(v1.first*a2+v2.first*a1)/(a1+a2);\n\t// double y=(double)(v1.second*a2+v2.second*a1)/(a1+a2);\n\treturn wtf( {(v1.first*a2+v2.first*a1), (a1+a2)}, {(v1.second*a2+v2.second*a1),(a1+a2)} );\n}\ninline double dist(pii v1,pii v2){\n\treturn sqrt((ll)(v1.first-v2.first)*(v1.first-v2.first)+(ll)(v1.second-v2.second)*(v1.second-v2.second));\n}\ninline int rev_bit(int bit,int len){\n\tint rev=0;\n\tfor(int i=0;(1<<i)<len;i++){\n\t\trev<<=1;\n\t\tif((1<<i)&bit) rev|=1;\n\t}\n\treturn rev;\n}\nbool fin[1200040];\nvoid exec_fft(cplex* f,int len,int o){\n\tfor(int i=0;i<len;i++) fin[i]=false;\n\tfor(int i=0;i<len;i++){\n\t\tif(!fin[i]){\n\t\t\tint rev=rev_bit(i,len);\n\t\t\tfin[rev]=fin[i]=true;\n\t\t\tswap(f[rev],f[i]);\n\t\t}\n\t}\n\tfor(int s=2;s<=len;s<<=1){\n\t\tcplex mul=cplex(cos(2*pi*o/s),sin(2*pi*o/s));\n\t\tfor(int j=0;j<len;j+=s){\n\t\t\tcplex e=cplex(1,0);\n\t\t\tfor(int k=0;k<(s>>1);k++){\n\t\t\t\tcplex t=f[j+k+(s>>1)]*e;\n\t\t\t\tcplex u=f[j+k];\n\t\t\t\tf[j+k]=u+t;\n\t\t\t\tf[j+k+(s>>1)]=u-t;\n\t\t\t\te*=mul;\n\t\t\t}\n\t\t}\n\t}\n\tif(o==-1){\n\t\tfor(int i=0;i<len;i++)\n\t\t\tf[i]/=(double)len;\n\t}\n}\ncplex f[1200040],g[1200040];\nll solve_pp(){\n\n\tif(cross(a[0],a[1],c[0],c[1])==0){\n\t\t// cout<<\"WTFFF\\n\";\n\t\tdouble d1=abs(cross(a[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tdouble d2=abs(cross(b[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tif(abs(d1-d2)<1e-10){\n\t\t\t// cout << \"JIZZ\\n\";\n\n\t\t\tif ( a[ 0 ].first != a[ 1 ].first ) {\n\n\t\t\t\tfor(int i=0;i<l;i++)\n\t\t\t\t\tf[a[i].first+100000]=cplex(f[a[i].first+100000].real()+1,0);\n\t\t\t\tfor(int i=0;i<m;i++)\n\t\t\t\t\tg[b[i].first+100000]=cplex(g[b[i].first+100000].real()+1,0);\n\t\t\t\tint sz=1;\n\t\t\t\twhile(sz<=(400005)) sz<<=1;\n\t\t\t\texec_fft(f,sz,1);\n\t\t\t\texec_fft(g,sz,1);\n\t\t\t\tfor(int i=0;i<sz;i++)\n\t\t\t\t\tf[i]*=g[i];\n\t\t\t\texec_fft(f,sz,-1);\n\t\t\t\tll ret=0;\n\n\t\t\t\t// for ( int i = 0 ; i < sz ; ++ i ) {\n\t\t\t\t// \tif ( static_cast< int >( floor(f[i].real()+0.3) ) ) {\n\t\t\t\t// \t\tcout << i << \" meow\\n\";\n\t\t\t\t// \t}\n\t\t\t\t// }\n\n\t\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\t\tret+=floor(f[c[i].first*2+200000].real()+0.3);\n\t\t\t\t}\n\t\t\t\treturn ret;\n\t\t\t} else {\n\t\t\t\tfor(int i=0;i<l;i++)\n\t\t\t\t\tf[a[i].second+100000]=cplex(f[a[i].second+100000].real()+1,0);\n\t\t\t\tfor(int i=0;i<m;i++)\n\t\t\t\t\tg[b[i].second+100000]=cplex(g[b[i].second+100000].real()+1,0);\n\t\t\t\tint sz=1;\n\t\t\t\twhile(sz<=(400005)) sz<<=1;\n\t\t\t\texec_fft(f,sz,1);\n\t\t\t\texec_fft(g,sz,1);\n\t\t\t\tfor(int i=0;i<sz;i++)\n\t\t\t\t\tf[i]*=g[i];\n\t\t\t\texec_fft(f,sz,-1);\n\t\t\t\tll ret=0;\n\n\t\t\t\t// for ( int i = 0 ; i < sz ; ++ i ) {\n\t\t\t\t// \tif ( static_cast< int >( floor(f[i].real()+0.3) ) ) {\n\t\t\t\t// \t\tcout << i << \" meow\\n\";\n\t\t\t\t// \t}\n\t\t\t\t// }\n\n\t\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\t\tret+=floor(f[c[i].second*2+200000].real()+0.3);\n\t\t\t\t}\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}else{\n\t\t\treturn 0;\n\t\t}\n\t}else{\n\t\t// cout << \"Obov\\n\";\n\t\twtf x=get_point(a[0],a[1],c[0],c[1]);\n\t\twtf y=get_point(b[0],b[1],c[0],c[1]);\n\n\t\t// cout << \"(\"<<x.first.first<<\"/\"<<x.first.second<<\",\"<<x.second.first<<\"/\"<<x.second.second<<\")\\n\";\n\t\t// cout << \"(\"<<y.first.first<<\"/\"<<y.first.second<<\",\"<<y.second.first<<\"/\"<<y.second.second<<\")\\n\";\n\n\t\twtf z = wtf(\n\t\t{\n\t\t\tx.first.first*y.first.second+y.first.first*x.first.second,\n\t\t\tx.first.second*y.first.second\n\t\t},\n\t\t{\n\t\t\tx.second.first*y.second.second+x.second.second*y.second.first,\n\t\t\tx.second.second*y.second.second\n\t\t} );\n\n\t\t// pdd z=pdd((x.first+y.first),(x.second+y.second));\n\t\tfor(int i=0;i<l;i++)\n\t\t\tadic[a[i]]++;\n\t\tfor(int i=0;i<m;i++)\n\t\t\tbdic[b[i]]++;\n\t\tfor(int i=0;i<n;i++)\n\t\t\tcdic[c[i]]++;\n\t\tll ret=0;\n\t\tfor(auto it=adic.begin();it!=adic.end();it++) {\n\n\t\t\tif ( ( z.first.first - it->first.first * z.first.second ) % z.first.second )\n\t\t\t\tcontinue;\n\t\t\tif ( ( z.second.first - it->first.second * z.second.second ) % z.second.second )\n\t\t\t\tcontinue;\n\n\t\t\tret+=(ll)it->second*bdic[{ static_cast<lld>( z.first.first - it->first.first * z.first.second ) / z.first.second, static_cast<lld>( z.second.first - it->first.second * z.second.second ) / z.second.second }];\n\t\t}\n\t\treturn ret;\n\t}\n}\n\nvoid solve_pin() {\n\t// cout << \"MEOW\\n\";\n\tcout << solve_pp() << '\\n';\n}\n\nvoid solve() {\n\n\tsort( a, a + l );\n\tsort( b, b + m );\n\tsort( c, c + m );\n\n\tif ( a[ l - 1 ] == a[ 0 ] and b[ m - 1 ] == b[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < n ; ++ i )\n\t\t\tcnt[ c[ i ] ]++;\n\t\tint dx = ( a[ 0 ].first + b[ 0 ].first );\n\t\tint dy = ( a[ 0 ].second + b[ 0 ].second );\n\t\tif ( ( dx & 1 ) or ( dy & 1 ) ) {\n\t\t\tcout << 0 << '\\n';\n\t\t} else {\n\t\t\tdx >>= 1, dy >>= 1;\n\t\t\tcout << static_cast< lld >( cnt[ { dx, dy } ] ) * l * m << '\\n';\n\t\t}\n\t\treturn;\n\t} else if ( b[ m - 1 ] == b[ 0 ] and c[ n - 1 ] == c[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < l ; ++ i )\n\t\t\tcnt[ a[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - b[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - b[ 0 ].second;\n\t\tcout << static_cast< int >( cnt[ { dx, dy } ] ) * m * n << '\\n';\n\t\treturn;\n\t} else if ( c[ n - 1 ] == c[ 0 ] and a[ l - 1 ] == a[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < m ; ++ i )\n\t\t\tcnt[ b[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - a[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - a[ 0 ].second;\n\t\tcout << static_cast< int >( cnt[ { dx, dy } ] ) * n * l << '\\n';\n\t\treturn;\n\t}\n\n\tif ( a[ l - 1 ] == a[ 0 ] ) {\n\t\ta[ l ++ ] = { INF, INF };\n\t} else if ( b[ m - 1 ] == b[ 0 ] ) {\n\t\tb[ m ++ ] = { INF, INF };\n\t} else if ( c[ n - 1 ] == c[ 0 ] ) {\n\t\tc[ n ++ ] = { INF, INF };\n\t}\n\n\tswap( a[ 1 ], a[ l - 1 ] );\n\tswap( b[ 1 ], b[ m - 1 ] );\n\tswap( c[ 1 ], c[ n - 1 ] );\n\n\n\tconst lld ax = ( a[ 0 ].first - a[ 1 ].first );\n\tconst lld ay = ( a[ 0 ].second - a[ 1 ].second );\n\n\tconst lld bx = ( b[ 0 ].first - b[ 1 ].first );\n\tconst lld by = ( b[ 0 ].second - b[ 1 ].second );\n\n\tif ( ax * by - bx * ay == 0 ) {\n\t\tsolve_pin();\n\t} else {\n\t\tsolve_brute();\n\t}\n}\n\nint main() {\n\tios_base::sync_with_stdio( false );\n\tcin.tie( nullptr );\n\tinit(); solve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 22816, "score_of_the_acc": -0.3748, "final_rank": 2 }, { "submission_id": "aoj_2695_3842675", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lld = int64_t;\ntypedef long long ll;\nusing pll = pair<ll,ll>;\ntypedef pair<int,int> pii;\ntypedef pair<double,double> pdd;\ntypedef complex<double> cplex;\nconst double pi=acos(-1);\nconst int INF = 500000;\nconst int N = 100000 + 5;\n\nint l, m, n;\n\npair< int, int > a[ N ], b[ N ], c[ N ];\n\nvoid init() {\n\tcin >> l >> m >> n;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcin >> a[ i ].first >> a[ i ].second;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcin >> b[ i ].first >> b[ i ].second;\n\tfor ( int i = 0 ; i < n ; ++ i )\n\t\tcin >> c[ i ].first >> c[ i ].second;\n}\n\nvoid solve_brute() {\n\tmap< pair< int, int >, lld > cntA, cntB;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcntA[ a[ i ] ] ++;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcntB[ b[ i ] ] ++;\n\n\tlld ans = 0;\n\n\tlld a0x = a[ 0 ].first, a0y = a[ 0 ].second;\n\tlld b0x = b[ 0 ].first, b0y = b[ 0 ].second;\n\tlld dax = a[ 1 ].first - a[ 0 ].first;\n\tlld day = a[ 1 ].second - a[ 0 ].second;\n\tlld dbx = b[ 1 ].first - b[ 0 ].first;\n\tlld dby = b[ 1 ].second - b[ 0 ].second;\n\n\tfor ( int i = 0 ; i < n ; ++ i ) {\n\t\tlld cx = 2 * c[ i ].first, cy = 2 * c[ i ].second;\n\t\tcx -= a0x + b0x;\n\t\tcy -= a0y + b0y;\n\n\t\tlld det = dax * dby - dbx * day;\n\t\tlld ma = cx * dby - cy * dbx;\n\t\tlld mb = cy * dax - cx * day; \n\n\t\t// cout << \"MA = \" << ma << '\\n';\n\t\t// cout << \"MB = \" << mb << '\\n';\n\t\t// cout << \"DAX = \" << dax <<'\\n';\n\t\t// cout << \"DAY = \" << day << '\\n';\n\t\t// cout << \"DBX = \" << dbx << '\\n';\n\t\t// cout << \"DBY = \" << dby << '\\n';\n\t\t// cout << \"DET = \" << det << '\\n';\n\n\t\tif ( ( ma * dax ) % det != 0 ) continue;\n\t\tif ( ( ma * day ) % det != 0 ) continue;\n\t\tif ( ( mb * dbx ) % det != 0 ) continue;\n\t\tif ( ( mb * dby ) % det != 0 ) continue;\n\n\t\t// cout << \"JIZZ\\n\";\n\n\t\tlld ax = a0x + ma * dax / det, ay = a0y + ma * day / det;\n\t\tlld bx = b0x + mb * dbx / det, by = b0y + mb * dby / det;\n\n\t\tans += cntA[ { ax, ay } ] * cntB[ { bx, by } ];\n\t}\n\tcout << ans << '\\n';\n}\n\nmap<pair<int,int>,int> adic,bdic,cdic;\ninline ll cross(pll o,pll a,pll b){\n\treturn (a.first-o.first)*(b.second-o.second)-(a.second-o.second)*(b.first-o.first);\n}\ninline ll cross(pll v1,pll v2,pll v3,pll v4){\n\treturn (v2.first-v1.first)*(v4.second-v3.second)-(v2.second-v1.second)*(v4.first-v3.first);\n}\n\nusing wtf = pair< pll, pll >;\n\ninline wtf get_point(pll v1,pll v2,pll v3,pll v4){\n\tll a1=cross(v3,v1,v4),a2=cross(v3,v4,v2);\n\t// cout<<\"a1=\"<<a1<<\",a2=\"<<a2<<'\\n';\n\t// double x=(double)(v1.first*a2+v2.first*a1)/(a1+a2);\n\t// double y=(double)(v1.second*a2+v2.second*a1)/(a1+a2);\n\treturn wtf( {(v1.first*a2+v2.first*a1), (a1+a2)}, {(v1.second*a2+v2.second*a1),(a1+a2)} );\n}\ninline double dist(pii v1,pii v2){\n\treturn sqrt((ll)(v1.first-v2.first)*(v1.first-v2.first)+(ll)(v1.second-v2.second)*(v1.second-v2.second));\n}\ninline int rev_bit(int bit,int len){\n\tint rev=0;\n\tfor(int i=0;(1<<i)<len;i++){\n\t\trev<<=1;\n\t\tif((1<<i)&bit) rev|=1;\n\t}\n\treturn rev;\n}\nbool fin[1200040];\nvoid exec_fft(cplex* f,int len,int o){\n\tfor(int i=0;i<len;i++) fin[i]=false;\n\tfor(int i=0;i<len;i++){\n\t\tif(!fin[i]){\n\t\t\tint rev=rev_bit(i,len);\n\t\t\tfin[rev]=fin[i]=true;\n\t\t\tswap(f[rev],f[i]);\n\t\t}\n\t}\n\tfor(int s=2;s<=len;s<<=1){\n\t\tcplex mul=cplex(cos(2*pi*o/s),sin(2*pi*o/s));\n\t\tfor(int j=0;j<len;j+=s){\n\t\t\tcplex e=cplex(1,0);\n\t\t\tfor(int k=0;k<(s>>1);k++){\n\t\t\t\tcplex t=f[j+k+(s>>1)]*e;\n\t\t\t\tcplex u=f[j+k];\n\t\t\t\tf[j+k]=u+t;\n\t\t\t\tf[j+k+(s>>1)]=u-t;\n\t\t\t\te*=mul;\n\t\t\t}\n\t\t}\n\t}\n\tif(o==-1){\n\t\tfor(int i=0;i<len;i++)\n\t\t\tf[i]/=(double)len;\n\t}\n}\ncplex f[1200040],g[1200040];\nll solve_pp(){\n\n\tif(cross(a[0],a[1],c[0],c[1])==0){\n\t\t// cout<<\"WTFFF\\n\";\n\t\tdouble d1=abs(cross(a[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tdouble d2=abs(cross(b[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tif(abs(d1-d2)<1e-10){\n\t\t\t// cout << \"JIZZ\\n\";\n\n\t\t\tif ( a[ 0 ].first != a[ 1 ].first ) {\n\n\t\t\t\tfor(int i=0;i<l;i++)\n\t\t\t\t\tf[a[i].first+100000]=cplex(f[a[i].first+100000].real()+1,0);\n\t\t\t\tfor(int i=0;i<m;i++)\n\t\t\t\t\tg[b[i].first+100000]=cplex(g[b[i].first+100000].real()+1,0);\n\t\t\t\tint sz=1;\n\t\t\t\twhile(sz<=(400005)) sz<<=1;\n\t\t\t\texec_fft(f,sz,1);\n\t\t\t\texec_fft(g,sz,1);\n\t\t\t\tfor(int i=0;i<sz;i++)\n\t\t\t\t\tf[i]*=g[i];\n\t\t\t\texec_fft(f,sz,-1);\n\t\t\t\tll ret=0;\n\n\t\t\t\t// for ( int i = 0 ; i < sz ; ++ i ) {\n\t\t\t\t// \tif ( static_cast< int >( floor(f[i].real()+0.3) ) ) {\n\t\t\t\t// \t\tcout << i << \" meow\\n\";\n\t\t\t\t// \t}\n\t\t\t\t// }\n\n\t\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\t\tret+=floor(f[c[i].first*2+200000].real()+0.3);\n\t\t\t\t}\n\t\t\t\treturn ret;\n\t\t\t} else {\n\t\t\t\tfor(int i=0;i<l;i++)\n\t\t\t\t\tf[a[i].second+100000]=cplex(f[a[i].second+100000].real()+1,0);\n\t\t\t\tfor(int i=0;i<m;i++)\n\t\t\t\t\tg[b[i].second+100000]=cplex(g[b[i].second+100000].real()+1,0);\n\t\t\t\tint sz=1;\n\t\t\t\twhile(sz<=(400005)) sz<<=1;\n\t\t\t\texec_fft(f,sz,1);\n\t\t\t\texec_fft(g,sz,1);\n\t\t\t\tfor(int i=0;i<sz;i++)\n\t\t\t\t\tf[i]*=g[i];\n\t\t\t\texec_fft(f,sz,-1);\n\t\t\t\tll ret=0;\n\n\t\t\t\t// for ( int i = 0 ; i < sz ; ++ i ) {\n\t\t\t\t// \tif ( static_cast< int >( floor(f[i].real()+0.3) ) ) {\n\t\t\t\t// \t\tcout << i << \" meow\\n\";\n\t\t\t\t// \t}\n\t\t\t\t// }\n\n\t\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\t\tret+=floor(f[c[i].second*2+200000].real()+0.3);\n\t\t\t\t}\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}else{\n\t\t\treturn 0;\n\t\t}\n\t}else{\n\t\tcout << \"Obov\\n\";\n\t\twtf x=get_point(a[0],a[1],c[0],c[1]);\n\t\twtf y=get_point(b[0],b[1],c[0],c[1]);\n\n\t\t// cout << \"(\"<<x.first.first<<\"/\"<<x.first.second<<\",\"<<x.second.first<<\"/\"<<x.second.second<<\")\\n\";\n\t\t// cout << \"(\"<<y.first.first<<\"/\"<<y.first.second<<\",\"<<y.second.first<<\"/\"<<y.second.second<<\")\\n\";\n\n\t\twtf z = wtf(\n\t\t{\n\t\t\tx.first.first*y.first.second+y.first.first*x.first.second,\n\t\t\tx.first.second*y.first.second\n\t\t},\n\t\t{\n\t\t\tx.second.first*y.second.second+x.second.second*y.second.first,\n\t\t\tx.second.second*y.second.second\n\t\t} );\n\n\t\t// pdd z=pdd((x.first+y.first),(x.second+y.second));\n\t\tfor(int i=0;i<l;i++)\n\t\t\tadic[a[i]]++;\n\t\tfor(int i=0;i<m;i++)\n\t\t\tbdic[b[i]]++;\n\t\tfor(int i=0;i<n;i++)\n\t\t\tcdic[c[i]]++;\n\t\tll ret=0;\n\t\tfor(auto it=adic.begin();it!=adic.end();it++) {\n\n\t\t\tif ( ( z.first.first - it->first.first * z.first.second ) % z.first.second )\n\t\t\t\tcontinue;\n\t\t\tif ( ( z.second.first - it->first.second * z.second.second ) % z.second.second )\n\t\t\t\tcontinue;\n\n\t\t\tret+=(ll)it->second*bdic[{ ( z.first.first - it->first.first * z.first.second ) / z.first.second, ( z.second.first - it->first.second * z.second.second ) / z.second.second }];\n\t\t}\n\t\treturn ret;\n\t}\n}\n\nvoid solve_pin() {\n\t// cout << \"MEOW\\n\";\n\tcout << solve_pp() << '\\n';\n}\n\nvoid solve() {\n\n\tsort( a, a + l );\n\tsort( b, b + m );\n\tsort( c, c + m );\n\n\tif ( a[ l - 1 ] == a[ 0 ] and b[ m - 1 ] == b[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < n ; ++ i )\n\t\t\tcnt[ c[ i ] ]++;\n\t\tint dx = ( a[ 0 ].first + b[ 0 ].first );\n\t\tint dy = ( a[ 0 ].second + b[ 0 ].second );\n\t\tif ( ( dx & 1 ) or ( dy & 1 ) ) {\n\t\t\tcout << 0 << '\\n';\n\t\t} else {\n\t\t\tdx >>= 1, dy >>= 1;\n\t\t\tcout << static_cast< lld >( cnt[ { dx, dy } ] ) * l * m << '\\n';\n\t\t}\n\t\treturn;\n\t} else if ( b[ m - 1 ] == b[ 0 ] and c[ n - 1 ] == c[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < l ; ++ i )\n\t\t\tcnt[ a[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - b[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - b[ 0 ].second;\n\t\tcout << static_cast< int >( cnt[ { dx, dy } ] ) * m * n << '\\n';\n\t\treturn;\n\t} else if ( c[ n - 1 ] == c[ 0 ] and a[ l - 1 ] == a[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < m ; ++ i )\n\t\t\tcnt[ b[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - a[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - a[ 0 ].second;\n\t\tcout << static_cast< int >( cnt[ { dx, dy } ] ) * n * l << '\\n';\n\t\treturn;\n\t}\n\n\tif ( a[ l - 1 ] == a[ 0 ] ) {\n\t\ta[ l ++ ] = { INF, INF };\n\t} else if ( b[ m - 1 ] == b[ 0 ] ) {\n\t\tb[ m ++ ] = { INF, INF };\n\t} else if ( c[ n - 1 ] == c[ 0 ] ) {\n\t\tc[ n ++ ] = { INF, INF };\n\t}\n\n\tswap( a[ 1 ], a[ l - 1 ] );\n\tswap( b[ 1 ], b[ m - 1 ] );\n\tswap( c[ 1 ], c[ n - 1 ] );\n\n\n\tconst lld ax = ( a[ 0 ].first - a[ 1 ].first );\n\tconst lld ay = ( a[ 0 ].second - a[ 1 ].second );\n\n\tconst lld bx = ( b[ 0 ].first - b[ 1 ].first );\n\tconst lld by = ( b[ 0 ].second - b[ 1 ].second );\n\n\tif ( ax * by - bx * ay == 0 ) {\n\t\tsolve_pin();\n\t} else {\n\t\tsolve_brute();\n\t}\n}\n\nint main() {\n\tios_base::sync_with_stdio( false );\n\tcin.tie( nullptr );\n\tinit(); solve();\n\treturn 0;\n}", "accuracy": 0.9661016949152542, "time_ms": 200, "memory_kb": 22844, "score_of_the_acc": -0.3494, "final_rank": 8 }, { "submission_id": "aoj_2695_3842672", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lld = int64_t;\ntypedef long long ll;\nusing pll = pair<ll,ll>;\ntypedef pair<int,int> pii;\ntypedef pair<double,double> pdd;\ntypedef complex<double> cplex;\nconst double pi=acos(-1);\nconst int INF = 500000;\nconst int N = 100000 + 5;\n\nint l, m, n;\n\npair< int, int > a[ N ], b[ N ], c[ N ];\n\nvoid init() {\n\tcin >> l >> m >> n;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcin >> a[ i ].first >> a[ i ].second;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcin >> b[ i ].first >> b[ i ].second;\n\tfor ( int i = 0 ; i < n ; ++ i )\n\t\tcin >> c[ i ].first >> c[ i ].second;\n}\n\nvoid solve_brute() {\n\tmap< pair< int, int >, lld > cntA, cntB;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcntA[ a[ i ] ] ++;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcntB[ b[ i ] ] ++;\n\n\tlld ans = 0;\n\n\tlld a0x = a[ 0 ].first, a0y = a[ 0 ].second;\n\tlld b0x = b[ 0 ].first, b0y = b[ 0 ].second;\n\tlld dax = a[ 1 ].first - a[ 0 ].first;\n\tlld day = a[ 1 ].second - a[ 0 ].second;\n\tlld dbx = b[ 1 ].first - b[ 0 ].first;\n\tlld dby = b[ 1 ].second - b[ 0 ].second;\n\n\tfor ( int i = 0 ; i < n ; ++ i ) {\n\t\tlld cx = 2 * c[ i ].first, cy = 2 * c[ i ].second;\n\t\tcx -= a0x + b0x;\n\t\tcy -= a0y + b0y;\n\n\t\tlld det = dax * dby - dbx * day;\n\t\tlld ma = cx * dby - cy * dbx;\n\t\tlld mb = cy * dax - cx * day; \n\n\t\t// cout << \"MA = \" << ma << '\\n';\n\t\t// cout << \"MB = \" << mb << '\\n';\n\t\t// cout << \"DAX = \" << dax <<'\\n';\n\t\t// cout << \"DAY = \" << day << '\\n';\n\t\t// cout << \"DBX = \" << dbx << '\\n';\n\t\t// cout << \"DBY = \" << dby << '\\n';\n\t\t// cout << \"DET = \" << det << '\\n';\n\n\t\tif ( ( ma * dax ) % det != 0 ) continue;\n\t\tif ( ( ma * day ) % det != 0 ) continue;\n\t\tif ( ( mb * dbx ) % det != 0 ) continue;\n\t\tif ( ( mb * dby ) % det != 0 ) continue;\n\n\t\t// cout << \"JIZZ\\n\";\n\n\t\tlld ax = a0x + ma * dax / det, ay = a0y + ma * day / det;\n\t\tlld bx = b0x + mb * dbx / det, by = b0y + mb * dby / det;\n\n\t\tans += cntA[ { ax, ay } ] * cntB[ { bx, by } ];\n\t}\n\tcout << ans << '\\n';\n}\n\nmap<pair<int,int>,int> adic,bdic,cdic;\ninline ll cross(pll o,pll a,pll b){\n\treturn (a.first-o.first)*(b.second-o.second)-(a.second-o.second)*(b.first-o.first);\n}\ninline ll cross(pll v1,pll v2,pll v3,pll v4){\n\treturn (v2.first-v1.first)*(v4.second-v3.second)-(v2.second-v1.second)*(v4.first-v3.first);\n}\n\nusing wtf = pair< pll, pll >;\n\ninline wtf get_point(pll v1,pll v2,pll v3,pll v4){\n\tll a1=cross(v3,v1,v4),a2=cross(v3,v4,v2);\n\t// cout<<\"a1=\"<<a1<<\",a2=\"<<a2<<'\\n';\n\t// double x=(double)(v1.first*a2+v2.first*a1)/(a1+a2);\n\t// double y=(double)(v1.second*a2+v2.second*a1)/(a1+a2);\n\treturn wtf( {(v1.first*a2+v2.first*a1), (a1+a2)}, {(v1.second*a2+v2.second*a1),(a1+a2)} );\n}\ninline double dist(pii v1,pii v2){\n\treturn sqrt((ll)(v1.first-v2.first)*(v1.first-v2.first)+(ll)(v1.second-v2.second)*(v1.second-v2.second));\n}\ninline int rev_bit(int bit,int len){\n\tint rev=0;\n\tfor(int i=0;(1<<i)<len;i++){\n\t\trev<<=1;\n\t\tif((1<<i)&bit) rev|=1;\n\t}\n\treturn rev;\n}\nbool fin[1200040];\nvoid exec_fft(cplex* f,int len,int o){\n\tfor(int i=0;i<len;i++) fin[i]=false;\n\tfor(int i=0;i<len;i++){\n\t\tif(!fin[i]){\n\t\t\tint rev=rev_bit(i,len);\n\t\t\tfin[rev]=fin[i]=true;\n\t\t\tswap(f[rev],f[i]);\n\t\t}\n\t}\n\tfor(int s=2;s<=len;s<<=1){\n\t\tcplex mul=cplex(cos(2*pi*o/s),sin(2*pi*o/s));\n\t\tfor(int j=0;j<len;j+=s){\n\t\t\tcplex e=cplex(1,0);\n\t\t\tfor(int k=0;k<(s>>1);k++){\n\t\t\t\tcplex t=f[j+k+(s>>1)]*e;\n\t\t\t\tcplex u=f[j+k];\n\t\t\t\tf[j+k]=u+t;\n\t\t\t\tf[j+k+(s>>1)]=u-t;\n\t\t\t\te*=mul;\n\t\t\t}\n\t\t}\n\t}\n\tif(o==-1){\n\t\tfor(int i=0;i<len;i++)\n\t\t\tf[i]/=(double)len;\n\t}\n}\ncplex f[1200040],g[1200040];\nll solve_pp(){\n\n\tif(cross(a[0],a[1],c[0],c[1])==0){\n\t\tdouble d1=abs(cross(a[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tdouble d2=abs(cross(b[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tif(abs(d1-d2)<1e-10){\n\t\t\t// cout << \"JIZZ\\n\";\n\t\t\tfor(int i=0;i<l;i++)\n\t\t\t\tf[a[i].first+100000]=cplex(f[a[i].first+100000].real()+1,0);\n\t\t\tfor(int i=0;i<m;i++)\n\t\t\t\tg[b[i].first+100000]=cplex(g[b[i].first+100000].real()+1,0);\n\t\t\tint sz=1;\n\t\t\twhile(sz<=(400000)) sz<<=1;\n\t\t\texec_fft(f,sz,1);\n\t\t\texec_fft(g,sz,1);\n\t\t\tfor(int i=0;i<sz;i++)\n\t\t\t\tf[i]*=g[i];\n\t\t\texec_fft(f,sz,-1);\n\t\t\tll ret=0;\n\n\t\t\t// for ( int i = 0 ; i < sz ; ++ i ) {\n\t\t\t// \tif ( static_cast< int >( floor(f[i].real()+0.3) ) ) {\n\t\t\t// \t\tcout << i << \" meow\\n\";\n\t\t\t// \t}\n\t\t\t// }\n\n\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\tret+=floor(f[c[i].first*2+200000].real()+0.3);\n\t\t\t}\n\t\t\treturn ret;\n\t\t}else{\n\t\t\treturn 0;\n\t\t}\n\t}else{\n\t\t// cout << \"Obov\\n\";\n\t\twtf x=get_point(a[0],a[1],c[0],c[1]);\n\t\twtf y=get_point(b[0],b[1],c[0],c[1]);\n\n\t\t// cout << \"(\"<<x.first.first<<\"/\"<<x.first.second<<\",\"<<x.second.first<<\"/\"<<x.second.second<<\")\\n\";\n\t\t// cout << \"(\"<<y.first.first<<\"/\"<<y.first.second<<\",\"<<y.second.first<<\"/\"<<y.second.second<<\")\\n\";\n\n\t\twtf z = wtf(\n\t\t{\n\t\t\tx.first.first*y.first.second+y.first.first*x.first.second,\n\t\t\tx.first.second*y.first.second\n\t\t},\n\t\t{\n\t\t\tx.second.first*y.second.second+x.second.second*y.second.first,\n\t\t\tx.second.second*y.second.second\n\t\t} );\n\n\t\t// pdd z=pdd((x.first+y.first),(x.second+y.second));\n\t\tfor(int i=0;i<l;i++)\n\t\t\tadic[a[i]]++;\n\t\tfor(int i=0;i<m;i++)\n\t\t\tbdic[b[i]]++;\n\t\tfor(int i=0;i<n;i++)\n\t\t\tcdic[c[i]]++;\n\t\tll ret=0;\n\t\tfor(auto it=adic.begin();it!=adic.end();it++) {\n\n\t\t\tif ( ( z.first.first - it->first.first * z.first.second ) % z.first.second )\n\t\t\t\tcontinue;\n\t\t\tif ( ( z.second.first - it->first.second * z.second.second ) % z.second.second )\n\t\t\t\tcontinue;\n\n\t\t\tret+=(ll)it->second*bdic[{ ( z.first.first - it->first.first * z.first.second ) / z.first.second, ( z.second.first - it->first.second * z.second.second ) / z.second.second }];\n\t\t}\n\t\treturn ret;\n\t}\n}\n\nvoid solve_pin() {\n\t// cout << \"MEOW\\n\";\n\tcout << solve_pp() << '\\n';\n}\n\nvoid solve() {\n\n\tsort( a, a + l );\n\tsort( b, b + m );\n\tsort( c, c + m );\n\n\tif ( a[ l - 1 ] == a[ 0 ] and b[ m - 1 ] == b[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < n ; ++ i )\n\t\t\tcnt[ c[ i ] ]++;\n\t\tint dx = ( a[ 0 ].first + b[ 0 ].first );\n\t\tint dy = ( a[ 0 ].second + b[ 0 ].second );\n\t\tif ( ( dx & 1 ) or ( dy & 1 ) ) {\n\t\t\tcout << 0 << '\\n';\n\t\t} else {\n\t\t\tdx >>= 1, dy >>= 1;\n\t\t\tcout << static_cast< lld >( cnt[ { dx, dy } ] ) * l * m << '\\n';\n\t\t}\n\t\treturn;\n\t} else if ( b[ m - 1 ] == b[ 0 ] and c[ n - 1 ] == c[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < l ; ++ i )\n\t\t\tcnt[ a[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - b[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - b[ 0 ].second;\n\t\tcout << static_cast< int >( cnt[ { dx, dy } ] ) * m * n << '\\n';\n\t\treturn;\n\t} else if ( c[ n - 1 ] == c[ 0 ] and a[ l - 1 ] == a[ 0 ] ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < m ; ++ i )\n\t\t\tcnt[ b[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - a[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - a[ 0 ].second;\n\t\tcout << static_cast< int >( cnt[ { dx, dy } ] ) * n * l << '\\n';\n\t\treturn;\n\t}\n\n\tif ( a[ l - 1 ] == a[ 0 ] ) {\n\t\ta[ l ++ ] = { INF, INF };\n\t} else if ( b[ m - 1 ] == b[ 0 ] ) {\n\t\tb[ m ++ ] = { INF, INF };\n\t} else if ( c[ n - 1 ] == c[ 0 ] ) {\n\t\tc[ n ++ ] = { INF, INF };\n\t}\n\n\tswap( a[ 1 ], a[ l - 1 ] );\n\tswap( b[ 1 ], b[ m - 1 ] );\n\tswap( c[ 1 ], c[ n - 1 ] );\n\n\n\tconst lld ax = ( a[ 0 ].first - a[ 1 ].first );\n\tconst lld ay = ( a[ 0 ].second - a[ 1 ].second );\n\n\tconst lld bx = ( b[ 0 ].first - b[ 1 ].first );\n\tconst lld by = ( b[ 0 ].second - b[ 1 ].second );\n\n\tif ( ax * by - bx * ay == 0 ) {\n\t\tsolve_pin();\n\t} else {\n\t\tsolve_brute();\n\t}\n}\n\nint main() {\n\tios_base::sync_with_stdio( false );\n\tcin.tie( nullptr );\n\tinit(); solve();\n\treturn 0;\n}", "accuracy": 0.3728813559322034, "time_ms": 140, "memory_kb": 20508, "score_of_the_acc": -0.1802, "final_rank": 14 }, { "submission_id": "aoj_2695_3842635", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lld = int64_t;\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef pair<double,double> pdd;\ntypedef complex<double> cplex;\nconst double pi=acos(-1);\nconst int INF = 500000;\nconst int N = 100000 + 5;\n\nint l, m, n;\n\npair< int, int > a[ N ], b[ N ], c[ N ];\n\nvoid init() {\n\tcin >> l >> m >> n;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcin >> a[ i ].first >> a[ i ].second;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcin >> b[ i ].first >> b[ i ].second;\n\tfor ( int i = 0 ; i < n ; ++ i )\n\t\tcin >> c[ i ].first >> c[ i ].second;\n}\n\nvoid solve_brute() {\n\tmap< pair< int, int >, lld > cntA, cntB;\n\tfor ( int i = 0 ; i < l ; ++ i )\n\t\tcntA[ a[ i ] ] ++;\n\tfor ( int i = 0 ; i < m ; ++ i )\n\t\tcntB[ b[ i ] ] ++;\n\n\tlld ans = 0;\n\n\tlld a0x = a[ 0 ].first, a0y = a[ 0 ].second;\n\tlld b0x = b[ 0 ].first, b0y = b[ 0 ].second;\n\tlld dax = a[ 1 ].first - a[ 0 ].first;\n\tlld day = a[ 1 ].second - a[ 0 ].second;\n\tlld dbx = b[ 1 ].first - b[ 0 ].first;\n\tlld dby = b[ 1 ].second - b[ 0 ].second;\n\n\tfor ( int i = 0 ; i < n ; ++ i ) {\n\t\tlld cx = 2 * c[ i ].first, cy = 2 * c[ i ].second;\n\t\tcx -= a0x + b0x;\n\t\tcy -= a0y + b0y;\n\n\t\tlld det = dax * dby - dbx * day;\n\t\tlld ma = cx * dby - cy * dbx;\n\t\tlld mb = cy * dax - cx * day; \n\n\t\t// cout << \"MA = \" << ma << '\\n';\n\t\t// cout << \"MB = \" << mb << '\\n';\n\t\t// cout << \"DAX = \" << dax <<'\\n';\n\t\t// cout << \"DAY = \" << day << '\\n';\n\t\t// cout << \"DBX = \" << dbx << '\\n';\n\t\t// cout << \"DBY = \" << dby << '\\n';\n\t\t// cout << \"DET = \" << det << '\\n';\n\n\t\tif ( ( ma * dax ) % det != 0 ) continue;\n\t\tif ( ( ma * day ) % det != 0 ) continue;\n\t\tif ( ( mb * dbx ) % det != 0 ) continue;\n\t\tif ( ( mb * dby ) % det != 0 ) continue;\n\n\t\t// cout << \"JIZZ\\n\";\n\n\t\tlld ax = a0x + ma * dax / det, ay = a0y + ma * day / det;\n\t\tlld bx = b0x + mb * dbx / det, by = b0y + mb * dby / det;\n\n\t\tans += cntA[ { ax, ay } ] * cntB[ { bx, by } ];\n\t}\n\tcout << ans << '\\n';\n}\n\nmap<pdd,int> adic,bdic,cdic;\ninline ll cross(pii o,pii a,pii b){\n\treturn (a.first-o.first)*(b.second-o.second)-(a.second-o.second)*(b.first-o.first);\n}\ninline ll cross(pii v1,pii v2,pii v3,pii v4){\n\treturn (v2.first-v1.first)*(v4.second-v3.second)-(v2.second-v1.second)*(v4.first-v3.first);\n}\ninline pdd get_point(pii v1,pii v2,pii v3,pii v4){\n\tll a1=cross(v3,v1,v4),a2=cross(v3,v4,v2);\n\tdouble x=(double)(v1.first*a2+v2.first*a1)/(a1+a2);\n\tdouble y=(double)(v1.second*a2+v2.second*a1)/(a1+a2);\n\treturn pdd(x,y);\n}\ninline double dist(pii v1,pii v2){\n\treturn sqrt((ll)(v1.first-v2.first)*(v1.first-v2.first)+(ll)(v1.second-v2.second)*(v1.second-v2.second));\n}\ninline int rev_bit(int bit,int len){\n\tint rev=0;\n\tfor(int i=0;(1<<i)<len;i++){\n\t\trev<<=1;\n\t\tif((1<<i)&bit) rev|=1;\n\t}\n\treturn rev;\n}\nbool fin[1200040];\nvoid exec_fft(cplex* f,int len,int o){\n\tfor(int i=0;i<len;i++) fin[i]=false;\n\tfor(int i=0;i<len;i++){\n\t\tif(!fin[i]){\n\t\t\tint rev=rev_bit(i,len);\n\t\t\tfin[rev]=fin[i]=true;\n\t\t\tswap(f[rev],f[i]);\n\t\t}\n\t}\n\tfor(int s=2;s<=len;s<<=1){\n\t\tcplex mul=cplex(cos(2*pi*o/s),sin(2*pi*o/s));\n\t\tfor(int j=0;j<len;j+=s){\n\t\t\tcplex e=cplex(1,0);\n\t\t\tfor(int k=0;k<(s>>1);k++){\n\t\t\t\tcplex t=f[j+k+(s>>1)]*e;\n\t\t\t\tcplex u=f[j+k];\n\t\t\t\tf[j+k]=u+t;\n\t\t\t\tf[j+k+(s>>1)]=u-t;\n\t\t\t\te*=mul;\n\t\t\t}\n\t\t}\n\t}\n\tif(o==-1){\n\t\tfor(int i=0;i<len;i++)\n\t\t\tf[i]/=(double)len;\n\t}\n}\ncplex f[1200040],g[1200040];\nll solve_pp(){\n\tif(cross(a[0],a[1],c[0],c[1])==0){\n\t\tdouble d1=abs(cross(a[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tdouble d2=abs(cross(b[0],c[0],c[1]))/dist(c[0],c[1]);\n\t\tif(abs(d1-d2)<1e-10){\n\t\t\t// cout << \"JIZZ\\n\";\n\t\t\tfor(int i=0;i<l;i++)\n\t\t\t\tf[a[i].first+100000]=cplex(f[a[i].first+100000].real()+1,0);\n\t\t\tfor(int i=0;i<m;i++)\n\t\t\t\tg[b[i].first+100000]=cplex(g[b[i].first+100000].real()+1,0);\n\t\t\tint sz=1;\n\t\t\twhile(sz<=(400000)) sz<<=1;\n\t\t\texec_fft(f,sz,1);\n\t\t\texec_fft(g,sz,1);\n\t\t\tfor(int i=0;i<sz;i++)\n\t\t\t\tf[i]*=g[i];\n\t\t\texec_fft(f,sz,-1);\n\t\t\tll ret=0;\n\n\t\t\t// for ( int i = 0 ; i < sz ; ++ i ) {\n\t\t\t// \tif ( static_cast< int >( floor(f[i].real()+0.3) ) ) {\n\t\t\t// \t\tcout << i << \" meow\\n\";\n\t\t\t// \t}\n\t\t\t// }\n\n\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\tret+=floor(f[c[i].first*2+200000].real()+0.3);\n\t\t\t}\n\t\t\treturn ret;\n\t\t}else{\n\t\t\treturn 0;\n\t\t}\n\t}else{\n\t\tpdd x=get_point(a[0],a[1],c[0],c[1]);\n\t\tpdd y=get_point(b[0],b[1],c[0],c[1]);\n\t\tpdd z=pdd((x.first+y.first)/2,(x.second+y.second)/2);\n\t\tfor(int i=0;i<l;i++)\n\t\t\tadic[a[i]]++;\n\t\tfor(int i=0;i<m;i++)\n\t\t\tbdic[b[i]]++;\n\t\tfor(int i=0;i<n;i++)\n\t\t\tcdic[c[i]]++;\n\t\tll ret=0;\n\t\tfor(auto it=adic.begin();it!=adic.end();it++)\n\t\t\tret+=(ll)it->second*bdic[pdd(z.first*2-it->first.first,z.second*2-it->first.second)];\n\t\treturn ret;\n\t}\n}\n\nvoid solve_pin() {\n\tcout << solve_pp() << '\\n';\n}\n\nvoid solve() {\n\tif ( l == 1 and m == 1 ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < n ; ++ i )\n\t\t\tcnt[ c[ i ] ]++;\n\t\tint dx = ( a[ 0 ].first + b[ 0 ].first );\n\t\tint dy = ( a[ 0 ].second + b[ 0 ].second );\n\t\tif ( ( dx & 1 ) or ( dy & 1 ) ) {\n\t\t\tcout << 0 << '\\n';\n\t\t} else {\n\t\t\tdx >>= 1, dy >>= 1;\n\t\t\tcout << cnt[ { dx, dy } ] << '\\n';\n\t\t}\n\t\treturn;\n\t} else if ( m == 1 and n == 1 ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < l ; ++ i )\n\t\t\tcnt[ a[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - b[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - b[ 0 ].second;\n\t\tcout << cnt[ { dx, dy } ] << '\\n';\n\t\treturn;\n\t} else if ( n == 1 and l == 1 ) {\n\t\tmap< pair< int, int >, int > cnt;\n\t\tfor ( int i = 0 ; i < m ; ++ i )\n\t\t\tcnt[ b[ i ] ]++;\n\t\tint dx = 2 * c[ 0 ].first - a[ 0 ].first;\n\t\tint dy = 2 * c[ 0 ].second - a[ 0 ].second;\n\t\tcout << cnt[ { dx, dy } ] << '\\n';\n\t\treturn;\n\t}\n\tif ( l == 1 ) {\n\t\ta[ l ++ ] = { INF, INF };\n\t} else if ( m == 1 ) {\n\t\tb[ m ++ ] = { INF, INF };\n\t} else if ( n == 1 ) {\n\t\tc[ n ++ ] = { INF, INF };\n\t}\n\n\tconst lld ax = ( a[ 0 ].first - a[ 1 ].first );\n\tconst lld ay = ( a[ 0 ].second - a[ 1 ].second );\n\tconst lld bx = ( b[ 0 ].first - b[ 1 ].first );\n\tconst lld by = ( b[ 0 ].second - b[ 1 ].second );\n\n\tif ( ax * by - bx * ay == 0 ) {\n\t\tsolve_pin();\n\t} else {\n\t\tsolve_brute();\n\t}\n}\n\nint main() {\n\tios_base::sync_with_stdio( false );\n\tcin.tie( nullptr );\n\tinit(); solve();\n\treturn 0;\n}", "accuracy": 0.2033898305084746, "time_ms": 150, "memory_kb": 20392, "score_of_the_acc": -0.2051, "final_rank": 18 }, { "submission_id": "aoj_2695_3833625", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(temp.F>=N||temp.S>=N)return 0;\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,long long int> ma,mb,mc;\n\tmap<pair<int,int>,long long int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=0;i<b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=0;i<a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=0;i<a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa==0){\n\t\t\tif(Ab==0){\n\t\t\t\tif(Ac==0){\n\t\t\t\t\tif(Cc*Bb*Ba*2==Ca*Bb*Bc+Cb*Ba*Bc)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Ac==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ba==0){\n\t\t\tif(Bb==0){\n\t\t\t\tif(Bc==0){\n\t\t\t\t\tif(Cc*Aa*Ab*2==Ca*Ab*Ac+Cb*Aa*Ac)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Bc==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ab==0){\n\t\t\tif(Ac==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Bb==0){\n\t\t\tif(Bc==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac){\n\t\t\t\tif(Cc*Ab*Aa*2==Ca*Ab*Ac+Cb*Aa*Ac)ans=allsame(va,vb,vc);\n\t\t\t\telse ans=0;\n\t\t\t}\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 41996, "score_of_the_acc": -0.4491, "final_rank": 3 }, { "submission_id": "aoj_2695_3833620", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,long long int> ma,mb,mc;\n\tmap<pair<int,int>,long long int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=0;i<b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=0;i<a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=0;i<a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa==0){\n\t\t\tif(Ab==0){\n\t\t\t\tif(Ac==0){\n\t\t\t\t\tif(Cc*Bb*Ba*2==Ca*Bb*Bc+Cb*Ba*Bc)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Ac==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ba==0){\n\t\t\tif(Bb==0){\n\t\t\t\tif(Bc==0){\n\t\t\t\t\tif(Cc*Aa*Ab*2==Ca*Ab*Ac+Cb*Aa*Ac)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Bc==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ab==0){\n\t\t\tif(Ac==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Bb==0){\n\t\t\tif(Bc==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac){\n\t\t\t\tif(Cc*Ab*Aa*2==Ca*Ab*Ac+Cb*Aa*Ac)ans=allsame(va,vb,vc);\n\t\t\t\telse ans=0;\n\t\t\t}\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.5932203389830508, "time_ms": 190, "memory_kb": 37908, "score_of_the_acc": -0.4223, "final_rank": 12 }, { "submission_id": "aoj_2695_3833611", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {(int)x,(int)y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,long long int> ma,mb,mc;\n\tmap<pair<int,int>,long long int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=1;i<=b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=1;i<=a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=1;i<=a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa==0){\n\t\t\tif(Ab==0){\n\t\t\t\tif(Ac==0){\n\t\t\t\t\tCa/=Ba;\n\t\t\t\t\tCb/=Bb;\n\t\t\t\t\tCc/=Bc;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Ac==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tif(temp.F<N&&temp.S<N)ans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ba==0){\n\t\t\tif(Bb==0){\n\t\t\t\tif(Bc==0){\n\t\t\t\t\tCa/=Aa;\n\t\t\t\t\tCb/=Ab;\n\t\t\t\t\tCc/=Ac;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Bc==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tif(temp.F<N&&temp.S<N)ans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ab==0){\n\t\t\tif(Ac==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tif(temp.F<N&&temp.S<N)ans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Bb==0){\n\t\t\tif(Bc==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tif(temp.F<N&&temp.S<N)ans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac){\n\t\t\t\tif(Cc*Ab*Aa*2==Ca*Ab*Ac+Cb*Aa*Ac)ans=allsame(va,vb,vc);\n\t\t\t\telse ans=0;\n\t\t\t}\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tif(temp.F<N&&temp.S<N)ans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.5932203389830508, "time_ms": 190, "memory_kb": 37896, "score_of_the_acc": -0.4222, "final_rank": 10 }, { "submission_id": "aoj_2695_3833610", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,long long int> ma,mb,mc;\n\tmap<pair<int,int>,long long int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=1;i<=b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=1;i<=a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=1;i<=a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa==0){\n\t\t\tif(Ab==0){\n\t\t\t\tif(Ac==0){\n\t\t\t\t\tCa/=Ba;\n\t\t\t\t\tCb/=Bb;\n\t\t\t\t\tCc/=Bc;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Ac==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ba==0){\n\t\t\tif(Bb==0){\n\t\t\t\tif(Bc==0){\n\t\t\t\t\tCa/=Aa;\n\t\t\t\t\tCb/=Ab;\n\t\t\t\t\tCc/=Ac;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Bc==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ab==0){\n\t\t\tif(Ac==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Bb==0){\n\t\t\tif(Bc==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac){\n\t\t\t\tif(Cc*Ab*Aa*2==Ca*Ab*Ac+Cb*Aa*Ac)ans=allsame(va,vb,vc);\n\t\t\t\telse ans=0;\n\t\t\t}\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.5932203389830508, "time_ms": 180, "memory_kb": 37924, "score_of_the_acc": -0.3968, "final_rank": 9 }, { "submission_id": "aoj_2695_3833607", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,long long int> ma,mb,mc;\n\tmap<pair<int,int>,long long int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=1;i<=b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=1;i<=a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=1;i<=a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa==0){\n\t\t\tif(Ab==0){\n\t\t\t\tif(Ac==0){\n\t\t\t\t\tCa/=Ba;\n\t\t\t\t\tCb/=Bb;\n\t\t\t\t\tCc/=Bc;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Ac==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ba==0){\n\t\t\tif(Bb==0){\n\t\t\t\tif(Bc==0){\n\t\t\t\t\tCa/=Aa;\n\t\t\t\t\tCb/=Ab;\n\t\t\t\t\tCc/=Ac;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Bc==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ab==0){\n\t\t\tif(Ac==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Bb==0){\n\t\t\tif(Bc==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac){\n\t\t\t\tif(Cc*Ac*2==Ca*Aa+Cb*Ab)ans=allsame(va,vb,vc);\n\t\t\t\telse ans=0;\n\t\t\t}\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.3220338983050847, "time_ms": 130, "memory_kb": 20832, "score_of_the_acc": -0.1567, "final_rank": 17 }, { "submission_id": "aoj_2695_3833606", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,int> ma,mb,mc;\n\tmap<pair<int,int>,int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=1;i<=b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=1;i<=a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=1;i<=a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa==0){\n\t\t\tif(Ab==0){\n\t\t\t\tif(Ac==0){\n\t\t\t\t\tCa/=Ba;\n\t\t\t\t\tCb/=Bb;\n\t\t\t\t\tCc/=Bc;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Ac==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ba==0){\n\t\t\tif(Bb==0){\n\t\t\t\tif(Bc==0){\n\t\t\t\t\tCa/=Aa;\n\t\t\t\t\tCb/=Ab;\n\t\t\t\t\tCc/=Ac;\n\t\t\t\t\tif(Cc*2==Ca+Cb)ans=allsame(va,vb,vc);\n\t\t\t\t\telse ans=0;\n\t\t\t\t}\n\t\t\t\telse ans=ABsame(va,vb,vc);\n\t\t\t}\n\t\t\telse if(Bc==0)ans=ACsame(va,vb,vc);\n\t\t\telse if(Ab*Bc==Bb*Ac)ans=ACsame(vb,va,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Ab==0){\n\t\t\tif(Ac==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse {\n\t\t\t\tfor(pair<pair<int,int>,int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Bb==0){\n\t\t\tif(Bc==0)ans=ACsame(vb,va,vc);\n\t\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\t\telse{\n\t\t\t\tfor(pair<pair<int,int>,int> i:mb){\n\t\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac){\n\t\t\t\tif(Cc*Ac*2==Ca*Aa+Cb*Ab)ans=allsame(va,vb,vc);\n\t\t\t\telse ans=0;\n\t\t\t}\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.1864406779661017, "time_ms": 70, "memory_kb": 20812, "score_of_the_acc": -0.0027, "final_rank": 19 }, { "submission_id": "aoj_2695_3833605", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,long long int> ma,mb,mc;\n\tmap<pair<int,int>,long long int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=1;i<=b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=1;i<=a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=1;i<=a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac){\n\t\t\t if(Ca+Cb==Cc*2)ans=allsame(va,vb,vc);\n\t\t\t else ans=0;\n\t\t\t}\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.3220338983050847, "time_ms": 120, "memory_kb": 20892, "score_of_the_acc": -0.1315, "final_rank": 16 }, { "submission_id": "aoj_2695_3833604", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,long long int> ma,mb,mc;\n\tmap<pair<int,int>,long long int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=1;i<=b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=1;i<=a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=1;i<=a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac)ans=allsame(va,vb,vc);\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,long long int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.5932203389830508, "time_ms": 190, "memory_kb": 37904, "score_of_the_acc": -0.4223, "final_rank": 11 }, { "submission_id": "aoj_2695_3833601", "code_snippet": "bool debug=false;\n#include <algorithm>\n#include <stdio.h>\n#include <vector>\n#include <utility>\n#include <map>\n#include <math.h>\nusing namespace std;\n#define PB push_back\n#define F first\n#define S second\nconst int INF=1e9+10;\nconst int N=1e5+10;\nconst double pi=acos(-1);\npair<int,int> getmid(pair<int,int> a,pair<int,int> b){\n\tif(((a.F+b.F)&1)||((a.S+b.S)&1))return {INF,INF};\n\treturn {(a.F+b.F)>>1,(a.S+b.S)>>1};\n}\npair<int,int> getnxt(pair<int,int> a,pair<int,int> c){\n\treturn {(c.F-a.F)*2+a.F,(c.S-a.S)*2+a.S};\n}\n__int128 myabs(__int128 x){return x>0?x:-x;}\npair<int,int> intersect(__int128 Aa,__int128 Ba,__int128 Ca,__int128 Ab,__int128 Bb,__int128 Cb){\n\t__int128 x=Ba*Cb-Bb*Ca,y=Ca*Ab-Cb*Aa,det=Ba*Ab-Aa*Bb;\n\tif(x%det!=0)return {INF,INF};\n\tif(y%det!=0)return {INF,INF};\n\tx/=det;\n\ty/=det;\n\tif(myabs(x)>N)return {INF,INF};\n\tif(myabs(y)>N)return {INF,INF};\n\treturn {x,y};\n}\npair<double,double> mul(pair<double,double> a,pair<double,double> b){\n\treturn {a.F*b.F-a.S*b.S,a.F*b.S+a.S*b.F};\n}\nvoid fft(vector<pair<double,double>>& v,int size,bool on){\n pair<double,double> wn,u,t,w,inv;\n\tfor(int i=1,j=size>>1,k;i<(size-1);i++){\n if(i<j)swap(v[i],v[j]);\n k=size>>1;\n while(j&k){\n j^=k;\n k>>=1;\n }\n j|=k;\n }\n for(int i=2;i<=size;i<<=1){\n wn={cos(2*pi/i),sin(2*pi/i)};\n\t\tif(on)wn.S=-wn.S;\n for(int j=0;j<size;j+=i){\n w={1,0};\n for(int k=j;k<j+(i>>1);k++){\n u=v[k];\n t=mul(w,v[k+(i>>1)]);\n v[k]={u.F+t.F,u.S+t.S};\n v[k+(i>>1)]={u.F-t.F,u.S-t.S};\n w=mul(wn,w);\n }\n }\n }\n if(on){\n inv={1.0/size,0};\n for(int i=0;i<size;i++)v[i]=mul(v[i],inv);\n }\n return ;\n}\nlong long int allsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tvector<long long int> c;\n\tlong long int ans=0;\n\tint n=N<<2,sz=1;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t}\n\tif(debug){\n\t\tprintf(\"a::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"b::\\n\");for(int i=0;i<sz;i++)if(b[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,b[i].F,b[i].S);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tif(debug){\n\t\tprintf(\"after::\\n\");for(int i=0;i<sz;i++)if(a[i].F>0)printf(\"%d::(%.2lf,%.2lf)\\n\",i,a[i].F,a[i].S);\n\t\tprintf(\"c::\\n\");for(int i=0;i<(sz>>1);i++)if(c[i]>0)printf(\"%d::%d\\n\",i,c[i]);\n\t}\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nlong long int ABsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>> a,b;\n\tint n=N<<2,sz=1;\n\tpair<int,int> temp;\n\tlong long int Aa,Ba,Ca,Cb,Ac,Bc,Cc;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.S+N].F+=1;\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vb)b[i.F+N].F+=1;\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<a.size();i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCb=Aa*vb[0].F+Ba*vb[0].S;\n\tAc=vc[0].S-vc.back().S,Bc=vc.back().F-vc[0].F;\n\tCc=Ac*vc[0].F+Bc*vc[0].S;\n\ttemp=intersect(Aa*2,Ba*2,Ca+Cb,Ac,Bc,Cc);\n\tif(va[0].F==va.back().F)return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n\telse return ((long long int)(a[(temp.S+N)<<1].F+0.5))*(upper_bound(vc.begin(),vc.end(),temp)-lower_bound(vc.begin(),vc.end(),temp));\n}\nlong long int ACsame(vector<pair<int,int>>&va,vector<pair<int,int>>&vb,vector<pair<int,int>>&vc){\n\tvector<pair<double,double>>a,b;\n\tvector<long long int> c;\n\tint n=N<<2,sz=1;\n\tlong long int ans=0,Aa,Ba,Ca,Ab,Bb,Cb,Cc;\n\tpair<int,int> temp;\n\twhile(sz<n)sz<<=1;\n\ta.resize(sz,{0,0});\n\tb.resize(sz,{0,0});\n\tc.resize(sz>>1,0);\n\tAa=va[0].S-va.back().S,Ba=va.back().F-va[0].F;\n\tCa=Aa*va[0].F+Ba*va[0].S;\n\tCc=Aa*vc[0].F+Ba*vc[0].S;\n\tAb=vb[0].S-vb.back().S,Bb=vb.back().F-vb[0].F;\n\tCb=Ab*vb[0].F+Bb*vb[0].S;\n\ttemp=intersect(Aa,Ba,Cc*2-Ca,Ab,Bb,Cb);\n\tif(va[0].F==va.back().F){\n\t\tfor(pair<int,int> i:va)a[i.S+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.S+N]++;\n\t\tb[temp.S+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\telse{\n\t\tfor(pair<int,int> i:va)a[i.F+N].F+=1;\n\t\tfor(pair<int,int> i:vc)c[i.F+N]++;\n\t\tb[temp.F+N].F=upper_bound(vb.begin(),vb.end(),temp)-lower_bound(vb.begin(),vb.end(),temp);\n\t}\n\tfft(a,sz,0);\n\tfft(b,sz,0);\n\tfor(int i=0;i<sz;i++)a[i]=mul(a[i],b[i]);\n\tfft(a,sz,1);\n\tfor(int i=0;i<(sz>>1);i++)ans+=c[i]*((long long int)(a[i<<1].F+0.5));\n\treturn ans;\n}\nint main(){\n\tint a,b,c;\n\t__int128 Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc;\n\tlong long int ans=0;\n\tmap<pair<int,int>,int> ma,mb,mc;\n\tmap<pair<int,int>,int>::iterator u,t;\n\tpair<int,int> temp;\n\tvector<pair<int,int>> va,vb,vc;\n\tscanf(\"%d%d%d\",&a,&b,&c);\n\tfor(int i=1;i<=a;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tva.PB(temp);\n\t\tma[temp]++;\n\t}\n\tfor(int i=1;i<=b;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvb.PB(temp);\n\t\tmb[temp]++;\n\t}\n\tfor(int i=1;i<=c;i++){\n\t\tscanf(\"%d%d\",&temp.F,&temp.S);\n\t\tvc.PB(temp);\n\t\tmc[temp]++;\n\t}\n\tif(ma.size()==1)for(int i=1;i<=b;i++)ans+=mc[getmid(va[0],vb[i])]*a;\n\telse if(mb.size()==1)for(int i=1;i<=a;i++)ans+=mc[getmid(va[i],vb[0])]*b;\n\telse if(mc.size()==1)for(int i=1;i<=a;i++)ans+=mb[getnxt(va[i],vc[0])]*c;\n\telse{\n\t\tu=ma.begin(),t=ma.end();\n\t\tt--;\n\t\tAa=u->F.S-t->F.S,Ba=t->F.F-u->F.F;\n\t\tCa=Aa*(u->F.F)+Ba*(u->F.S);\n\t\tu=mb.begin(),t=mb.end();\n\t\tt--;\n\t\tAb=u->F.S-t->F.S,Bb=t->F.F-u->F.F;\n\t\tCb=Ab*(u->F.F)+Bb*(u->F.S);\n\t\tu=mc.begin(),t=mc.end();\n\t\tt--;\n\t\tAc=u->F.S-t->F.S,Bc=t->F.F-u->F.F;\n\t\tCc=Ac*(u->F.F)+Bc*(u->F.S);\n\t\tif(Aa*Bb==Ab*Ba){\n\t\t\tif(Ab*Bc==Bb*Ac)ans=allsame(va,vb,vc);\n\t\t\telse ans=ABsame(va,vb,vc);\n\t\t}\n\t\telse if(Bb*Ac==Bc*Ab)ans=ACsame(vb,va,vc);\n\t\telse if(Aa*Bc==Ac*Ba)ans=ACsame(va,vb,vc);\n\t\telse{\n\t\t\tfor(pair<pair<int,int>,int> i:mb){\n\t\t\t\ttemp=intersect(Aa,Ba,Ca,Ac,Bc,Cc*2-Ac*i.F.F-Bc*i.F.S);\n\t\t\t\tans+=ma[temp]*mc[getmid(temp,i.F)]*i.S;\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 0.1864406779661017, "time_ms": 70, "memory_kb": 20888, "score_of_the_acc": -0.0032, "final_rank": 20 } ]
aoj_2701_cpp
Falling Block Puzzle ブロック落とし あなたはある落ち物パズルで遊んでいる. このパズルのフィールドは,下図のように各段に立方体のセルが2マス×2マスに並び,段が上に無限に並んでいる形をしている. それぞれのセルは,セルにぴったり収まるブロックが1つ存在するか,何もないかのどちらかである. このパズルは以下のように進行する. 初期状態としていくつかのブロックが設置されている. 2マス×2マス×2マスに収まるブロックの塊を上から落とす.ただし,落とす前に,ブロックがフィールドからはみ出さないようにして塊を水平方向に平行移動することができる. 落としたブロックのうち,ある1つの下面が,すでに置かれているブロックまたはフィールドの底に着いた時点で,すべてのブロックの落下が止まり停止する. それぞれの段について,4マス全てが埋まっていればその段のブロックは消滅し,その上にあるブロックが1段ずつ落下する.落下後のそれぞれのブロックの下のセルにブロックがなかったとしても,それ以上落下することはない. 2に戻る. 初期状態で置かれているブロックと,落とす塊がいくつか与えられるので,与えられる順に全ての塊を落とすことで,最大いくつの段を消すことができるかを求めるプログラムを作れ. Input 入力は100個以下のデータセットからなる.各データセットは以下の形をしている. (初期状態のブロックの高さ H ) (落とす塊の数 N ) (初期状態の1段目) ... (初期状態の H 段目) (1個目の落とす塊) ... ( N 個目の落とす塊) 各データセットの1行目には初期状態のブロックの高さ H (1 ≤ H ≤ 10)と落とす塊の数 N (1 ≤ N ≤ 3)が指定されている. 続いて初期状態のそれぞれ段の情報が以下の形式で与えられる. c 11 c 12 c 21 c 22 c ij はそれぞれのセルの情報を表し,' # 'はブロックが存在することを,' . 'はブロックがないことを表す.1段目から H 段目までのそれぞれの段について,全てのセルにブロックが存在したり,全てのセルにブロックがなかったりすることはないと仮定して良い. 続いてそれぞれの落とす塊の情報が以下の形式で与えられる. b 111 b 112 b 121 b 122 b 211 b 212 b 221 b 222 初期状態の形式と同様に' # 'はブロックが存在することを,' . 'はブロックがないことを表す.それぞれの塊には少なくとも1つのブロックが含まれる.塊に含まれるブロックは角や辺のみで接していることがあり,面で繋がっているとは限らない. 初期状態・ブロックの塊の入力の添え字の対応は以下の図を参照すること. 入力の終わりは,2つのゼロからなる1行で示される. なお,下図は,後に示す Sample Input 中の最初のデータセットを表している.このデータセットでは,ブロックの塊を斜めに平行移動した後に落下させることで1つの段を消すことができる. Output 各データセットに対して,最大でいくつの段を消すことができるかを1行に出力せよ. Sample Input 1 1 ## #. .. .. #. .. 1 1 .# #. #. .. .. .# 2 2 ## #. ## #. .. .# ## #. #. .. #. .. 1 3 #. .. ## ## ## ## ## ## ## ## ## ## ## ## 10 3 ## #. ## #. ## .# ## .# #. ## #. ## .# ## .# ## .# #. .# #. #. .# #. .# #. .. #. .. #. .. #. .. 10 3 ## .# ## .. ## #. .# .. ## .# .# ## .# ## #. ## ## .# .. .# #. #. .# #. #. #. #. .. .. .. .. .# 0 0 Output for Sample Input 1 0 3 6 6 0
[ { "submission_id": "aoj_2701_9359705", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++)\n#define all(A) A.begin(),A.end()\n\nvoid chmax(ll& p, ll q) { p = max(p, q); };\nvoid chmin(ll& p, ll q) { p = min(p, q); };\n\nvoid solve(ll H, ll N) {\n vvvll BB(H + 2 * N + 5, vvll(2, vll(2, 0)));\n rep(h, 2)rep(i, 2)rep(j, 2)BB[h][i][j] = 6;\n ll an = 0;\n rep(h, H)rep(i, 2) {\n string S;\n cin >> S;\n rep(j, 2)if (S[j] == '#')BB[h + 2][i][j] = 1;\n }\n vector<vvvll> G(N, vvvll(2, vvll(2, vll(2, 0))));\n rep(n, N)rep(h, 2)rep(i, 2) {\n string S;\n cin >> S;\n rep(j, 2)if (S[j] == '#')G[n][h][i][j] = 1;\n }\n rep(bit, 9 * 9 * 9) {\n ll res = 0;\n bool PUT = 1;\n ll nbit = bit;\n auto B = BB;\n rep(n, N) {\n ll dx = nbit % 3 - 1;\n nbit /= 3;\n ll dy = nbit % 3 - 1;\n nbit /= 3;\n vvvll C(2, vvll(2, vll(2, 0)));\n rep(h, 2)rep(i, 2)rep(j, 2) {\n if (i + dx >= 0 && j + dy >= 0 && i + dx < 2 && j + dy < 2)C[h][i][j] = G[n][h][i + dx][j + dy];\n }\n rep(h, 2) {\n ll cnt = 0;\n rep(i, 2)rep(j, 2)cnt += G[n][h][i][j] - C[h][i][j];\n if (cnt != 0)PUT = 0;\n }\n if (!PUT)break;\n\n ll pt = -1;\n for (ll K = H + N * 2 + 1; K >= 0; K--) {\n bool OK = 1;\n rep(h, 2)rep(i, 2)rep(j, 2) {\n if (min(C[h][i][j], B[K + h][i][j]) >= 1)OK = 0;\n }\n if (!OK) {\n pt = K + 1;\n break;\n }\n }\n rep(h, 2)rep(i, 2)rep(j, 2) {\n B[pt + h][i][j] += C[h][i][j];\n }\n ll cnt = 0;\n rep(i, 2)rep(j, 2)cnt += B[pt + 1][i][j];\n if (cnt == 4) {\n res++;\n rep(i, 2)rep(j, 2)B[pt + 1][i][j] = 0;\n }\n cnt = 0;\n rep(i, 2)rep(j, 2)cnt += B[pt][i][j];\n if (cnt == 4) {\n res++;\n rep(i, 2)rep(j, 2) {\n B[pt][i][j] = B[pt + 1][i][j];\n }\n }\n }\n chmax(an, res);\n }\n\n cout << an << endl;\n}\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll H, N;\n while (cin >> H >> N) {\n if (H + N == 0)return 0;\n solve(H, N);\n }\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3372, "score_of_the_acc": -0.3346, "final_rank": 15 }, { "submission_id": "aoj_2701_9247448", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nbool is_end = false;\n\nusing ARR = array<array<char, 2>, 2>;\nconst ARR EMPTY = {array<char, 2>{'.', '.'}, array<char, 2>{'.', '.'}};\nconst array<ARR, 2> EMPTYCUBE = {EMPTY, EMPTY};\n\nvoid solve() {\n int H, N;\n cin >> H >> N;\n\n if(H == 0 && N == 0) {\n is_end = true;\n return;\n }\n\n vector<ARR> field_init;\n for(int i = 0; i < H; i++) {\n ARR c;\n string s;\n cin >> s;\n c[0][0] = s[0], c[0][1] = s[1];\n cin >> s;\n c[1][0] = s[0], c[1][1] = s[1];\n field_init.push_back(c);\n }\n\n vector<array<ARR, 2>> b(3, EMPTYCUBE);\n for(int i = 0; i < N; i++) {\n string s;\n cin >> s;\n b[i][0][0][0] = s[0], b[i][0][0][1] = s[1];\n cin >> s;\n b[i][0][1][0] = s[0], b[i][0][1][1] = s[1];\n cin >> s;\n b[i][1][0][0] = s[0], b[i][1][0][1] = s[1];\n cin >> s;\n b[i][1][1][0] = s[0], b[i][1][1][1] = s[1];\n if(b[i][0] == EMPTY) swap(b[i][0], b[i][1]);\n }\n\n int ans = 0;\n for(int ax : {-1, 0, 1}) for(int ay : {-1, 0, 1}) {\n for(int bx : {-1, 0, 1}) for(int by : {-1, 0, 1}) {\n for(int cx : {-1, 0, 1}) for(int cy : {-1, 0, 1}) {\n\n int cnt_del = 0;\n bool valid = true;\n vector<ARR> field = field_init;\n\n auto is_adj = [&](int pos, array<ARR, 2> block) -> bool {\n for(int j = 0; j < 1 << 2; j++) {\n int j0 = (j >> 0) & 1;\n int j1 = (j >> 1) & 1;\n if(block[0][j0][j1] == '#') {\n if(field[pos][j0][j1] == '#') return true;\n }else if(block[1][j0][j1] == '#') {\n if(field[pos + 1][j0][j1] == '#') return true;\n }\n }\n return false;\n };\n\n auto stopper = [&](array<ARR, 2> block) -> int {\n field.push_back(EMPTY);\n field.push_back(EMPTY);\n for(int i = int(field.size()) - 3; i >= 0; i--) {\n if(is_adj(i, block)) {\n return i + 1;\n }\n }\n return 0;\n };\n\n auto place = [&](array<ARR, 2> block) -> void {\n int stp = stopper(block);\n if(stp >= int(field.size())) {\n field.push_back(block[0]);\n }else {\n if(block[0][0][0] == '#') field[stp][0][0] = block[0][0][0];\n if(block[0][0][1] == '#') field[stp][0][1] = block[0][0][1];\n if(block[0][1][0] == '#') field[stp][1][0] = block[0][1][0];\n if(block[0][1][1] == '#') field[stp][1][1] = block[0][1][1];\n }\n stp++;\n if(stp >= int(field.size())) {\n field.push_back(block[1]);\n }else {\n if(block[1][0][0] == '#') field[stp][0][0] = block[1][0][0];\n if(block[1][0][1] == '#') field[stp][0][1] = block[1][0][1];\n if(block[1][1][0] == '#') field[stp][1][0] = block[1][1][0];\n if(block[1][1][1] == '#') field[stp][1][1] = block[1][1][1];\n }\n vector<ARR> field_new;\n for(int i = 0; i < int(field.size()); i++) {\n if(field[i][0][0] == '.') { field_new.push_back(field[i]); continue; }\n if(field[i][0][1] == '.') { field_new.push_back(field[i]); continue; }\n if(field[i][1][0] == '.') { field_new.push_back(field[i]); continue; }\n if(field[i][1][1] == '.') { field_new.push_back(field[i]); continue; }\n cnt_del++;\n }\n swap(field, field_new);\n };\n\n auto moved = [&](array<ARR, 2> block, int dx, int dy) -> array<ARR, 2> {\n array<ARR, 2> ret = EMPTYCUBE;\n for(int j = 0; j < 1 << 3; j++) {\n int j0 = (j >> 0) & 1;\n int j1 = (j >> 1) & 1;\n int j2 = (j >> 2) & 1;\n if(block[j0][j1][j2] == '.') continue;\n if(j1 + dx < 0 || j1 + dx > 1) { valid = false; continue; }\n if(j2 + dy < 0 || j2 + dy > 1) { valid = false; continue; }\n ret[j0][j1 + dx][j2 + dy] = block[j0][j1][j2];\n };\n return ret;\n };\n\n place(moved(b[0], ax, ay));\n // if(ax == 0 && ay == 0 && bx == 1 && by == 1 && cx == 0 && cy == 0) {\n // for(auto fi : field) {\n // cout << fi[0][0] << fi[0][1] << endl;\n // cout << fi[1][0] << fi[1][1] << endl;\n // cout << endl;\n // }\n // }\n\n place(moved(b[1], bx, by));\n place(moved(b[2], cx, cy));\n if(valid) ans = max(ans, cnt_del);\n }\n }\n }\n cout << ans << endl;\n}\n\nint main() {\n while(!is_end) { solve(); }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3340, "score_of_the_acc": -0.302, "final_rank": 10 }, { "submission_id": "aoj_2701_8029245", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nusing ll=long long;\n\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n while(1){\n int h, n;\n cin >> h >> n;\n if(h==0 and n==0)break;\n h = h + 10;\n vector st(4, vector<int>(h));\n for (int x = 0; x < h - 10; ++x) {\n for (int i = 0; i < 2; ++i) {\n string s;\n cin >> s;\n for (int j = 0; j < 2; ++j) {\n if (s[j] == '#')st[i * 2 + j][x] = 1;\n else st[i * 2 + j][x] = 0;\n }\n }\n }\n auto ch = [&](int H) {\n int cnt = 0;\n if(H>=st[0].size())return false;\n if(H<0)return false;\n for (int pos = 0; pos < 4; ++pos) {\n cnt += st[pos][H];\n }\n if (cnt == 4)return true;\n return false;\n };\n vector dx = {1, -1, 0, 0};\n vector dy = {0, 0, 1, -1};\n vector block(n, vector(2, vector<int>(4)));\n for (int x = 0; x < n; ++x) {\n for (int k = 0; k < 2; ++k) {\n for (int i = 0; i < 2; ++i) {\n string s;\n cin >> s;\n for (int j = 0; j < 2; ++j) {\n if (s[j] == '#')block[x][k][2 * i + j] = 1;\n }\n }\n }\n }\n auto drop_h = [&](int pos, vector<int> bl_st) {\n int H = -1;\n if(*std::max_element(bl_st.begin(), bl_st.end())==0)return H;\n int sz=st[0].size();\n for (int i = sz- 1; i >= 0; i--) {\n if (st[pos][i] == 1) {\n H = i;\n break;\n }\n }\n if (bl_st[0] == 0)return H;\n return H + 1;\n };\n auto is_ingrid=[&](int pos,int Dx,int Dy){\n int x=pos/2,y=pos%2;\n int nx=x+Dx,ny=y+Dy;\n if(nx<0 or nx>=2 or ny<0 or ny>=2)return false;\n return true;\n };\n auto drop_block = [&](int idx, int bit) -> int {\n int Dx = 0, Dy = 0;\n int ret = 0;\n for (int i = 0; i < 4; ++i) {\n if (bit >> i & 1) {\n Dx += dx[i];\n Dy += dy[i];\n }\n }\n int mx_h = -1;\n for (int pos = 0; pos < 4; ++pos) {\n auto pos2 = pos + Dx * 2 + Dy;\n vector<int> bl_st = {block[idx][0][pos], block[idx][1][pos]};\n for (int i = 0; i < 2; ++i) {\n if (block[idx][i][pos]==1) {\n if(!is_ingrid(pos,Dx,Dy))return -1LL;\n }\n }\n if(pos2<0 or pos2>=4)continue;\n mx_h = max(mx_h, drop_h(pos2, bl_st));\n }\n for (int pos = 0; pos < 4; ++pos) {\n auto pos2 = pos + Dx * 2 + Dy;\n if(!is_ingrid(pos,Dx,Dy))continue;\n vector<int> bl_st = {block[idx][0][pos], block[idx][1][pos]};\n for (int i = 0; i < 2; ++i) {\n if(mx_h+i>=0 and mx_h+i<st[0].size())st[pos2][mx_h + i] |= bl_st[i];\n }\n }\n int sz=st[0].size();\n for (int i = sz-1; i>=0;--i) {\n if(ch(i)){\n for (int pos = 0; pos < 4; ++pos) {\n st[pos].erase(st[pos].begin() + i);\n }\n ret++;\n }\n }\n return ret;\n };\n int N = n * 4;\n auto cop_st = st;\n ll ans = 0;\n for (int bit = 0; bit < (1 << N); ++bit) {\n st = cop_st;\n ll now = 0;\n for (int i = 0; i < n; ++i) {\n int s = 4 * i;\n int now_bit = 0;\n for (int j = 0; j < 4; ++j) {\n if (bit >> (j + s)&1) {\n now_bit |= (1 << j);\n }\n }\n auto val = drop_block(i, now_bit);\n if (val == -1)now = -100;\n now += val;\n }\n ans = max(ans, now);\n }\n cout << ans << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3400, "score_of_the_acc": -0.3383, "final_rank": 16 }, { "submission_id": "aoj_2701_7835665", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nauto move(vector<vector<vector<int>>> block, int dir) {\n int dy[] = {-1, -1, 0, 1, 1, 1, 0, -1};\n int dx[] = {0, 1, 1, 1, 0, -1, -1, -1};\n\n vector new_block(2, vector(2, vector(2, 0)));\n\n auto out_range = [&](int x) {\n return x < 0 || x >= 2;\n };\n\n for (int i = 0; i < 2; i++) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n if (block[i][j][k] == 1 and (out_range(j + dy[dir]) or out_range(k + dx[dir]))) \n return block;\n else if (!out_range(j + dy[dir]) && !out_range(k + dx[dir]))\n new_block[i][j + dy[dir]][k + dx[dir]] = block[i][j][k];\n }\n }\n }\n return new_block;\n}\n\nvoid fall(vector<vector<vector<int>>> &field, vector<vector<vector<int>>> block) {\n int i = 14;\n auto intersect = [&](int i) {\n if (i == 0) return true;\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n if ((field[i - 1][j][k] and block[0][j][k])\n or (field[i][j][k] and block[1][j][k])) \n return true;\n }\n }\n return false;\n };\n\n while (!intersect(i)) i--;\n\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n if (block[0][j][k]) field[i][j][k] = block[0][j][k];\n if (block[1][j][k]) field[i + 1][j][k] = block[1][j][k];\n }\n }\n}\n\nbool delete_4(vector<vector<vector<int>>> &field, int i) {\n auto full = [&]() {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n if (!field[i][j][k]) return false;\n }\n }\n return true;\n };\n\n if (full()) {\n for (; i < 15; i++) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n field[i][j][k] = field[i + 1][j][k];\n }\n }\n }\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n field[15][j][k] = 0;\n }\n }\n return true;\n }\n else {\n return false;\n }\n}\n\nint main() {\n int h, n;\n while (cin >> h >> n, h > 0) {\n vector org_field(16, vector(2, vector(2, 0)));\n vector org_blocks(3, vector(2, vector(2, vector(2, 0))));\n\n for (int i = 0; i < h; i++) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n char ch;\n cin >> ch;\n if (ch == '#')\n org_field[i][j][k] = 1;\n }\n }\n }\n\n for (int n_ = 0; n_ < n; n_++) {\n for (int i = 0; i < 2; i++) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n char ch;\n cin >> ch;\n if (ch == '#')\n org_blocks[n_][i][j][k] = 1;\n }\n }\n }\n }\n\n auto empty_first = [&](int n_) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n if (org_blocks[n_][0][j][k] == 1) return false;\n }\n }\n return true;\n };\n for (int n_ = 0; n_ < n; n_++) {\n if (empty_first(n_)) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n org_blocks[n_][0][j][k] = org_blocks[n_][1][j][k];\n org_blocks[n_][1][j][k] = 0;\n }\n }\n }\n }\n\n int ans = 0;\n for (int d1 = 0; d1 < 8; d1++) {\n for (int d2 = 0; d2 < 8; d2++) {\n for (int d3 = 0; d3 < 8; d3++) {\n auto field = org_field;\n auto blocks = org_blocks;\n blocks[0] = move(blocks[0], d1);\n blocks[1] = move(blocks[1], d2);\n blocks[2] = move(blocks[2], d3);\n\n auto print_field = [&]() {\n cout << \"--field--\" << endl;\n for (int i = 0; i < 16; i++) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n cout << field[i][j][k];\n }\n cout << endl;\n }\n cout << endl;\n }\n cout << \"--field--\" << endl;\n };\n\n auto print_blocks = [&]() {\n cout << \"--blocks--\" << endl;\n for (int n_ = 0; n_ < 3; n_++) {\n for (int i = 0; i < 2; i++) {\n for (int j = 0; j < 2; j++) {\n for (int k = 0; k < 2; k++) {\n cout << blocks[n_][i][j][k];\n }\n cout << endl;\n }\n }\n cout << endl;\n }\n cout << \"--blocks--\" << endl;\n };\n\n // print_blocks();\n\n int tmp = 0;\n for (int k = 0; k < 3; k++) {\n fall(field, blocks[k]);\n\n // print_field();\n for (int i = 0; i < 16; i++) {\n if (delete_4(field, i)) {\n tmp++;\n i--;\n }\n }\n // print_field();\n }\n\n ans = max(ans, tmp);\n }\n }\n }\n\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3364, "score_of_the_acc": -0.3761, "final_rank": 18 }, { "submission_id": "aoj_2701_6646520", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <deque>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <set>\n#include <unordered_set>\n#include <map>\n#include <unordered_map>\n#include <utility>\n#include <stack>\n#include <random>\n#include <stdio.h>\n#include <stdlib.h>\n#include <time.h>\n#include <math.h>\n#include <assert.h>\n#if __has_include(<atcoder/all>)\n#include <atcoder/all>\nusing namespace atcoder;\n#endif\nusing namespace std;\nusing ll=long long;\n#define read(x) cin>>(x);\n#define readll(x) ll (x);cin>>(x);\n#define readS(x) string (x);cin>>(x);\n#define readvll(x,N) vector<ll> (x)((N));for(int i=0;i<(N);i++){cin>>(x)[i];}\n#define rep(i,N) for(ll (i)=0;(i)<(N);(i)++)\n#define rep2d(i,j,H,W) for(ll (i)=0;(i)<(H);(i)++)for(ll (j)=0;(j)<(W);j++)\n#define yn {cout<<\"Yes\"<<endl;}else{cout<<\"No\"<<endl;}\n\n#define is_in(x,y) (0<=(x) && (x)<2 && 0<=(y) && (y)<2)\n\nlong long powll(long long x,long long n){\n long long res=1;\n while(n>0){\n if(n&1){\n res*=x;\n }\n x*=x;\n n>>=1;\n }\n return res;\n}\n\ninline bool is_in3d(const vector<vector<vector<ll>>>& b,ll dx,ll dy){\n for(ll i=0;i<2;i++){\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n if(b[i][x][y]==1 && !is_in(x+dx,y+dy)){\n return false;\n }\n }\n }\n }\n return true;\n}\n\ninline vector<vector<vector<ll>>> moved(const vector<vector<vector<ll>>>& b,ll dx,ll dy){\n vector<vector<vector<ll>>> res(2,vector<vector<ll>>(2,vector<ll>(2)));\n for(ll i=0;i<2;i++){\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n if(b[i][x][y]==1){\n res[i][x+dx][y+dy]=1;\n }\n }\n }\n }\n return res;\n}\n\nvoid solve(ll H,ll N){\n //cerr<<H<<\" \"<<N<<endl;\n ll S=H+2*N+2;\n //cerr<<\"S: \"<<S<<endl;\n vector<vector<vector<ll>>> d(S,vector<vector<ll>>(2,vector<ll>(2)));\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n d[0][x][y]=1;\n }\n }\n const vector<pair<ll,ll>> ar={{0,0},{0,1},{0,-1},{1,0},{-1,0},{1,1},{-1,1},{1,-1},{-1,-1}};\n for(ll i=1;i<H+1;i++){\n for(ll x=0;x<2;x++){\n string c;\n cin>>c;\n for(ll y=0;y<2;y++){\n if(c[y]=='#'){\n d[i][x][y]=1;\n }\n }\n }\n }\n // for(ll i=S-1;i>=0;i--){\n // for(ll x=0;x<2;x++){\n // for(ll y=0;y<2;y++){\n // cerr<<d[i][x][y]<<\" \";\n // }\n // }\n // cerr<<endl;\n // }\n // cerr<<endl;\n //cerr<<\"c input\"<<endl;\n ll ans=0;\n vector<vector<vector<vector<ll>>>> inputs(N,vector<vector<vector<ll>>>(2,vector<vector<ll>>(2,vector<ll>(2))));\n for(ll i=0;i<N;i++){\n for(ll j=0;j<2;j++){\n for(ll x=0;x<2;x++){\n string b;\n cin>>b;\n for(ll y=0;y<2;y++){\n if(b[y]=='#'){\n inputs[i][j][x][y]=1;\n }\n }\n }\n }\n }\n ll u=ar.size();\n //cerr<<\"input end\"<<endl;\n ll M=powll(u,N);\n for(ll i=0;i<M;i++){\n ll cnt=0;\n ll direct=i;\n ll flag=1;\n vector<vector<vector<ll>>> D=d;\n for(ll j=0;j<N;j++){\n ll dx=ar[direct%u].first,dy=ar[direct%u].second;\n //cerr<<\"j: \"<<j<<\" ,direct: \"<<direct<<\" ,dx: \"<<dx<<\" ,dy: \"<<dy<<endl;\n if(!is_in3d(inputs[j],dx,dy)){\n flag=0;\n //cerr<<\"break\"<<endl;\n break;\n }\n vector<vector<vector<ll>>> changed=moved(inputs[j],dx,dy);\n // for(ll l=1;l>=0;l--){\n // for(ll x=0;x<2;x++){\n // for(ll y=0;y<2;y++){\n // cerr<<changed[l][x][y]<<\" \";\n // }\n // }\n // cerr<<endl;\n // }\n ll index=0;\n for(ll k=S-2;k>=0;k--){\n ll f2=1;\n for(ll l=0;l<2;l++){\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n if(D[k+l][x][y]==1 && changed[l][x][y]==1){\n f2=0;\n //cerr<<\"goto!\"<<endl;\n goto point1;\n }\n }\n }\n }\n point1:;\n if(f2==0){\n //cerr<<\"break: k: \"<<k<<endl;\n index=k+1;\n break;\n }\n }\n //cerr<<\"j:\"<<j<<\" ,dx: \"<<dx<<\" ,dy:\"<<dy<<endl;\n //cerr<<\"index: \"<<index<<endl;\n for(ll l=0;l<2;l++){\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n D[index+l][x][y]+=changed[l][x][y];\n assert(D[index+l][x][y]<=1);\n }\n }\n }\n for(ll l=0;l<2;l++){\n for(ll k=1;k<S;k++){\n ll f3=1;\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n if(D[k][x][y]==0){\n f3=0;\n goto point2;\n }\n }\n }\n point2:;\n if(f3==0){\n continue;\n }\n cnt++;\n for(ll m=k+1;m<S;m++){\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n D[m-1][x][y]=D[m][x][y];\n }\n }\n }\n for(ll x=0;x<2;x++){\n for(ll y=0;y<2;y++){\n D[S-1][x][y]=0;\n }\n }\n break;\n }\n }\n direct/=u;\n }\n if(flag==1){\n //cerr<<\"cnt: \"<<cnt<<endl;\n ans=max(ans,cnt);\n }\n }\n cout<<ans<<endl;\n return;\n}\n\nint main(){\n ll H,N;\n while(1){\n cin>>H>>N;\n if(H==0){\n break;\n }\n solve(H,N);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3376, "score_of_the_acc": -0.3068, "final_rank": 12 }, { "submission_id": "aoj_2701_4968986", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef long long int LL;\ntypedef long long int ll;\ntypedef pair<long long int, long long int> pii;\ntypedef pair<double, double> pdd;\n\n#define SORT(c) sort((c).begin(),(c).end())\n#define BACKSORT(c) sort((c).begin(),(c).end(),std::greater<LL>())\n#define FOR(i,a,b) for(LL i=(a);i<(b);++i)\n#define REP(i,n) FOR(i,0,n)\n#define SP << \" \" <<\n\ntypedef vector<vector<vector<int>>> STG;\n\nLL mod = 1000000007;\n\nstruct status{\n int stage_i;\n int num;\n int score;\n};\n\nvoid copy(STG& src, STG& dist){\n REP(i,2){\n REP(j,2){\n REP(k,20){\n dist[i][j][k] = src[i][j][k];\n }\n }\n }\n}\n\n\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n while(true){\n LL H, N;\n cin >> H >> N;\n \n if(H==0){\n break;\n }\n\n STG vec(2, vector<vector<int>>(2, vector<int>(20, 0)));\n \n REP(i,2){\n REP(j,2){\n vec[i][j][0] = 99;\n }\n }\n \n REP(i,H){\n REP(j,2){\n string s;\n cin>>s;\n REP(k,2){\n if(s[k]=='#'){\n vec[j][k][i + 1] = 1;\n }\n }\n }\n }\n\n //3個目が多い方が上\n vector<STG> blocks(N,STG(2, vector<vector<int>>(2, vector<int>(2, 0))));\n \n REP(kaisu,N){\n REP(i,2){\n REP(j,2){\n string s;\n cin>>s;\n REP(k,2){\n if(s[k]=='#'){\n blocks[kaisu][j][k][i] = 2;\n }\n }\n }\n }\n \n {\n bool flag = true;\n\n REP(i,2){\n REP(j,2){\n if(blocks[kaisu][0][i][j]==0){\n }else{\n flag = false;\n }\n }\n }\n \n if (flag) {\n REP(i, 2) {\n REP(j, 2) {\n blocks[kaisu][0][i][j] = blocks[kaisu][1][i][j];\n blocks[kaisu][1][i][j] = 0;\n }\n }\n }\n }\n \n {\n bool flag = true;\n\n REP(i,2){\n REP(j,2){\n if(blocks[kaisu][i][0][j]==0){\n }else{\n flag = false;\n }\n }\n }\n \n if (flag) {\n REP(i, 2)\n {\n REP(j, 2) {\n blocks[kaisu][i][0][j] = blocks[kaisu][i][1][j];\n blocks[kaisu][i][1][j] = 0;\n }\n }\n }\n }\n }\n\n queue<status> q;\n\n STG s(2, vector<vector<int>>(2, vector<int>(20, 0)));\n\n q.push({0, 0, 0});\n \n int maxscore = 0;\n\n vector<STG> stgs(10000,STG(2, vector<vector<int>>(2, vector<int>(20, 0))));\n copy(vec, stgs[0]);\n\n int cnt = 0;\n\n while(!q.empty()){\n status nowstatus = q.front();\n q.pop();\n\n // cout << nowstatus.num SP nowstatus.score << endl;\n\n if(nowstatus.num == N){\n maxscore = max(maxscore, nowstatus.score);\n continue;\n }\n\n bool xflag = true;\n\n REP(i,2){\n REP(j,2){\n if(blocks[nowstatus.num][1][i][j]==0){\n \n }else{\n xflag = false;\n }\n }\n }\n \n bool yflag = true;\n\n REP(i,2){\n REP(j,2){\n if(blocks[nowstatus.num][i][1][j]==0){\n \n }else{\n yflag = false;\n }\n }\n }\n\n LL xcnt = xflag ? 2 : 1;\n LL ycnt = yflag ? 2 : 1;\n\n // cout << \"cnt\" SP xcnt SP ycnt << endl;\n\n REP(x,xcnt){\n REP(y,ycnt){\n int scorex = nowstatus.score;\n cnt++;\n copy(stgs[nowstatus.stage_i],stgs[cnt]);\n \n REP(i,2-x){\n REP(j,2-y){\n REP(k,2){\n stgs[cnt][i + x][j + y][k + 18] = blocks[nowstatus.num][i][j][k];\n }\n }\n }\n\n\n //otosu\n while(true){\n bool flag = true;\n REP(i, 2)\n {\n REP(j,2){\n REP(k,19){\n if(stgs[cnt][i][j][k]==1||stgs[cnt][i][j][k]==99){\n // cout << i SP j SP k << endl;\n if(stgs[cnt][i][j][k+1]==2){\n flag = false;\n }\n }\n }\n }\n }\n if(!flag){\n break;\n }\n \n //otoseru\n REP(i, 2)\n {\n REP(j,2){\n REP(k,19){\n if(stgs[cnt][i][j][k+1]==2){\n if(stgs[cnt][i][j][k]==0){\n // cout << i SP j SP k << endl;\n stgs[cnt][i][j][k] = stgs[cnt][i][j][k + 1];\n stgs[cnt][i][j][k + 1] = 0;\n }\n }\n }\n }\n }\n }\n\n // cout << \"hoge\" << endl;\n\n //naosu\n REP(k,20){\n REP(i,2){\n REP(j,2){\n if(stgs[cnt][i][j][k]==2){\n stgs[cnt][i][j][k] = 1;\n }\n }\n }\n }\n \n //kesu\n for (int k = 19; k >= 0; --k){\n bool flag = true;\n REP(i,2){\n REP(j,2){\n if(stgs[cnt][i][j][k]==1){\n \n }else{\n flag = false;\n }\n }\n }\n if(!flag){\n continue;\n }\n \n //keseru\n scorex++;\n FOR(kk,k,19){\n REP(i,2){\n REP(j,2){\n stgs[cnt][i][j][kk] = stgs[cnt][i][j][kk + 1];\n stgs[cnt][i][j][kk + 1] = 0;\n }\n }\n }\n \n // k--;\n }\n\n // cout << nowstatus.stage_i SP cnt SP xcnt SP ycnt SP x SP y SP nowstatus.num + 1 SP nowstatus.score << endl;\n\n q.push({cnt, nowstatus.num + 1, scorex});\n }\n }\n }\n\n cout << maxscore << endl;\n }\n}", "accuracy": 1, "time_ms": 360, "memory_kb": 8724, "score_of_the_acc": -1.2482, "final_rank": 19 }, { "submission_id": "aoj_2701_4898578", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\nconstexpr long long int MOD = 1000000007;\n//constexpr int MOD = 1000000007;\n//constexpr int MOD = 998244353;\n//constexpr long long int MOD = 998244353;\nconstexpr double EPS = 1e-9;\n\n//int N, M, K, T, H, W, L, R;\nlong long int N, M, K, T, H, W, L, R;\n\nint func(vector<vector<string>>s, vector<vector<vector<string>>>v, int x, int y) {\n\tint ret = 0;\n\tvector<int>dx(N);\n\tvector<int>dy(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tdx[i] = x % 3 - 1;\n\t\tdy[i] = y % 3 - 1;\n\t\tx /= 3, y /= 3;\n\t\tfor (int z = 0; z < 2; z++) {\n\t\t\tfor (int h = 0; h < 2; h++) {\n\t\t\t\tfor (int w = 0; w < 2; w++) {\n\t\t\t\t\tif (v[i][z][h][w] == '#') {\n\t\t\t\t\t\tif (dx[i] + w < 0)return 0;\n\t\t\t\t\t\tif (dx[i] + w >= 2)return 0;\n\t\t\t\t\t\tif (dy[i] + h < 0)return 0;\n\t\t\t\t\t\tif (dy[i] + h >= 2)return 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<string>>nx(2, vector<string>(2, string(2,',')));\n\t\tfor (int z = 0; z < 2; z++) {\n\t\t\tfor (int h = 0; h < 2; h++) {\n\t\t\t\tfor (int w = 0; w < 2; w++) {\n\t\t\t\t\tif (h + dy[i] < 0)continue;\n\t\t\t\t\tif (h + dy[i] >= 2)continue;\n\t\t\t\t\tif (w + dx[i] < 0)continue;\n\t\t\t\t\tif (w + dx[i] >= 2)continue;\n\t\t\t\t\tnx[z][h + dy[i]][w + dx[i]] = v[i][z][h][w];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<int>>height(2, vector<int>(2,-1));\n\t\tfor (int i = 0; i < s.size(); i++) {\n\t\t\tfor (int j = 0; j < 2; j++) {\n\t\t\t\tfor (int k = 0; k < 2; k++) {\n\t\t\t\t\tif (s[i][j][k] == '#') {\n\t\t\t\t\t\theight[j][k] = i;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint add = -1;\n\t\tfor (int z = 0; z < 2; z++) {\n\t\t\tfor (int h = 0; h < 2; h++) {\n\t\t\t\tfor (int w = 0; w < 2; w++) {\n\t\t\t\t\tif (nx[z][h][w] == '#') {\n\t\t\t\t\t\tadd = max(add, height[h][w] + 1 - z);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor (int z = 0; z < 2; z++) {\n\t\t\tfor (int h = 0; h < 2; h++) {\n\t\t\t\tfor (int w = 0; w < 2; w++) {\n\t\t\t\t\tif (nx[z][h][w] == '#') {\n\t\t\t\t\t\ts[z + add][h][w] = '#';\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t//\tcout << dy[i] << \" \" << dx[i] << endl;\n\t//\tfor (auto j : s)for(auto k:j)cout << k << endl;\n\t//\tcout << endl;\n\t\tfor (int j = s.size() - 2; j >= 0; j--) {\n\t\t\tif (s[j][0] == \"##\"&&s[j][1] == \"##\") {\n\t\t\t\tret++;\n\t\t\t\tfor (int k = j; k < s.size() - 1; k++) {\n\t\t\t\t\ts[k] = s[k + 1];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn ret;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\twhile (cin >> H >> N, H) {\n\t\tvector<vector<string>>s(H, vector<string>(2));\n\t\tfor (auto &i : s) {\n\t\t\tfor (auto &j : i)cin >> j;\n\t\t}\n\t\tfor (int i = 0; i < 7; i++) {\n\t\t\ts.push_back(vector<string>(2, \"..\"));\n\t\t}\n\t\tvector<vector<vector<string>>>v(N, vector<vector<string>>(2, vector<string>(2)));\n\t\tfor (auto &i : v)for (auto &j : i)for (auto &k : j)cin >> k;\n\t\tint ans = 0;\n\t\tfor (int i = 0; i < pow(3, N); i++) {\n\t\t\tfor (int j = 0; j < pow(3, N); j++) {\n\t\t\t\tans = max(ans, func(s, v, i, j));\n\t\t\t}\n\t\t}\n\t\tcout << ans << endl;\n\t}\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3396, "score_of_the_acc": -0.3236, "final_rank": 14 }, { "submission_id": "aoj_2701_4372668", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate<class T>\nbool chmax(T& a, const T& b) {\n if (a < b) { a = b; return true; }\n return false;\n}\ntemplate<class T>\nbool chmin(T& a, const T& b) {\n if (b < a) { a = b; return true; }\n return false;\n}\n\n// std::vector Declaration\ntemplate<typename T>\nvector<T> make_v(size_t a) { return vector<T>(a); }\ntemplate<typename T, typename... Ts>\nauto make_v(size_t a, Ts... ts) {\n return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));\n}\n\n// std::vector Declaration and Initialization\ntemplate<typename T>\nvector<T> make_vector(size_t a, T x) { return vector<T>(a, x); }\ntemplate<typename T, typename U, typename... Ts>\nauto make_vector(size_t a, U b, Ts... ts) {\n return vector<decltype(make_vector<T>(b,ts...))>(a, make_vector<T>(b, ts...));\n}\n\n// std::vector Input\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& v) {\n for (auto &e : v) is >> e;\n return is;\n}\n\n// std::vector Debug\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n bool a = 1;\n for (auto e : v) {\n os << (a ? \"\" : \" \");\n os << e;\n a = 0;\n }\n os << \"]\";\n return os;\n}\n\n// std::array Debug\ntemplate<typename T, size_t n>\nostream& operator<<(ostream& os, const array<T, n>& v) {\n os << \"[\";\n bool a = 1;\n for (auto e : v) {\n os << (a ? \"\" : \" \");\n os << e;\n a = 0;\n }\n os << \"]\";\n return os;\n}\n\n// std::deque Debug\ntemplate<typename T>\nostream& operator<<(ostream& os, const deque<T>& d) {\n os << \"[\";\n bool a = 1;\n for (auto e : d) {\n os << (a ? \"\" : \" \");\n os << e;\n a = 0;\n }\n os << \"]\";\n return os;\n}\n\n// std::pair Debug\ntemplate<typename T, typename U>\nostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << \"(\" << p.first << \" \" << p.second << \")\";\n return os;\n}\n\n// std::set Debug\ntemplate<typename T>\nostream& operator<<(ostream& os, const set<T>& st) {\n os << \"{\";\n bool a = 1;\n for (auto e : st) {\n os << (a ? \"\" : \" \");\n os << e;\n a = 0;\n }\n os << \"}\";\n return os;\n}\n\n// std::multiset Debug\ntemplate<typename T>\nostream& operator<<(ostream& os, const multiset<T>& st) {\n os << \"{\";\n bool a = 1;\n for (auto e : st) {\n os << (a ? \"\" : \" \");\n os << e;\n a = 0;\n }\n os << \"}\";\n return os;\n}\n\n// std::map Debug\ntemplate<typename T, typename U>\nostream& operator<<(ostream& os, const map<T, U>& mp) {\n os << \"{\";\n bool a = 1;\n for (auto e : mp) {\n os << (a ? \"\" : \" \");\n os << e.first << \":\" << e.second;\n a = 0;\n }\n os << \"}\";\n return os;\n}\n\n// std::tuple Debug\ntemplate<int N, class Tuple>\nvoid out(ostream& os, const Tuple& t){}\ntemplate<int N, class Tuple, class H, class ...Ts>\nvoid out(ostream& os, const Tuple& t) {\n if (N) os << \" \";\n os << get<N>(t);\n out<N+1,Tuple,Ts...>(os, t);\n}\ntemplate<class ...Ts>\nostream& operator<<(ostream& os, const tuple<Ts...>& t) {\n os << \"(\";\n out<0,tuple<Ts...>,Ts...>(os, t);\n os << \")\";\n return os;\n}\n\n// Debug\n#define DUMP(x) cerr<<#x<<\" = \"<<(x)<<endl\n\n// Weighted edge\ntemplate<typename T>\nstruct edge {\n int src, to;\n T cost;\n\n edge() {}\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n friend ostream& operator<<(ostream& os, const edge& e) {\n return os << \"(\" << e.src << \"->\" << e.to << \":\" << e.cost << \")\";\n }\n};\n\nusing LL = int64_t;\n\n#define fs first\n#define sc second\n\nconst int64_t MOD = 1e9+7;\nint dy[] = {0, 0, 1, 0,-1, 1, 1,-1,-1},\n dx[] = {0, 1, 0,-1, 0, 1,-1, 1,-1};\n\nstruct Block {\n vector<vector<vector<char>>> data;\n Block() : data(make_vector<char>(2,2,2,'.')) {}\n\n friend ostream& operator<<(ostream& os, const Block& b) {\n os << endl;\n for (int k = 0; k < 2; ++k) {\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n os << b.data[k][i][j];\n }\n os << endl;\n }\n os << endl;\n }\n return os;\n }\n\n pair<Block, bool> shift(int dir) const {\n bool valid = true;\n Block ret;\n for (int k = 0; k < 2; ++k) {\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n int y = i + dy[dir], x = j + dx[dir];\n if (y < 0 or 2 <= y or x < 0 or 2 <= x) {\n if (data[k][i][j] == '#') {\n valid = false;\n }\n } else {\n ret.data[k][y][x] = data[k][i][j];\n }\n }\n }\n }\n return { ret, valid };\n }\n};\n\nstruct Board {\n vector<vector<vector<char>>> data;\n Board() {}\n Board(int k) : data(k, make_vector<char>(2,2,'.')) {}\n\n friend ostream& operator<<(ostream& os, const Board& b) {\n os << endl;\n for (int k = 0; k < b.data.size(); ++k) {\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n os << b.data[k][i][j];\n }\n os << endl;\n }\n os << endl;\n }\n return os;\n }\n\n pair<Board,int> clear() const {\n Board ret = Board(data.size());\n int height = 0, count = 0;\n for (int k = 0; k < data.size(); ++k) {\n if (data[k][0][0] == '#' and data[k][0][1] == '#' and\n data[k][1][0] == '#' and data[k][1][1] == '#') {\n ++count;\n continue;\n }\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n ret.data[height][i][j] = data[k][i][j];\n }\n }\n ++height;\n }\n return { ret, count };\n }\n\n Board drop(const Block& block) const {\n Board ret = *this;\n auto height = make_v<int>(2, 2);\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n for (int k = 0; k < data.size(); ++k) {\n if (data[k][i][j] == '#') {\n chmax(height[i][j], k+1);\n }\n }\n }\n }\n\n int floor = -1;\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n if (block.data[0][i][j] == '#') {\n chmax(floor, height[i][j]);\n } else if (block.data[1][i][j] == '#') {\n chmax(floor, height[i][j] - 1);\n }\n }\n }\n\n for (int k = 0; k < 2; ++k) {\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n if (block.data[k][i][j] == '#') {\n ret.data[k + floor][i][j] = '#';\n }\n }\n }\n }\n\n return ret;\n }\n};\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n while (true) {\n int H, N; cin >> H >> N;\n if (H == 0) break;\n Board board(H + 2*N);\n for (int k = 0; k < H; ++k) {\n for (int i = 0; i < 2; ++i) {\n string s; cin >> s;\n for (int j = 0; j < 2; ++j) {\n board.data[k][i][j] = s[j];\n }\n }\n }\n\n vector<Block> blocks(N);\n for (int t = 0; t < N; ++t) {\n for (int k = 0; k < 2; ++k) {\n for (int i = 0; i < 2; ++i) {\n string s; cin >> s;\n for (int j = 0; j < 2; ++j) {\n blocks[t].data[k][i][j] = s[j];\n }\n }\n }\n }\n\n vector<int> a(N+1);\n int ans = 0;\n while (!a[N]) {\n Board tmp = board;\n bool valid = true;\n int count = 0;\n for (int t = 0; t < N; ++t) {\n bool ok; Block block;\n tie(block, ok) = blocks[t].shift(a[t]);\n if (!ok) {\n valid = false;\n break;\n }\n tmp = tmp.drop(block);\n int cnt;\n tie(tmp, cnt) = tmp.clear();\n count += cnt;\n }\n if (valid) chmax(ans, count);\n for (int i = 0; ++a[i] == 9; ++i) a[i] = 0;\n }\n cout << ans << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3092, "score_of_the_acc": -0.3189, "final_rank": 13 }, { "submission_id": "aoj_2701_4180521", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n//INSERT ABOVE HERE\nconst int MAX = 101;\nint C[2][2][MAX];\nint B[2][2][2][3];\n\nint D[2][2][MAX];\nint E[2][2][MAX];\nsigned main(){\n int h,n;\n while(cin>>h>>n,h){\n memset(C,0,sizeof(C));\n for(int i=0;i<h;i++){\n string s[2];\n cin>>s[0]>>s[1];\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n C[j][k][i]=s[j][k]=='#';\n }\n\n for(int t=0;t<n;t++){\n for(int i=0;i<2;i++){\n string s[2];\n cin>>s[0]>>s[1];\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n B[j][k][i][t]=s[j][k]=='#';\n }\n }\n\n int ans=0;\n int sz=1;\n for(int i=0;i<n;i++) sz*=9;\n for(int bit=0;bit<sz;bit++){\n vector<int> dj(n),dk(n);\n int tmp=bit;\n // cout<<tmp<<endl;\n for(int t=0;t<n;t++){\n dj[t]=(tmp%3)-1;\n tmp/=3;\n dk[t]=(tmp%3)-1;\n tmp/=3;\n }\n auto in=[&](int j,int k){return 0<=j&&j<2&&0<=k&&k<2;};\n\n for(int i=0;i<MAX;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n D[j][k][i]=C[j][k][i];\n\n int flg=0;\n int res=0;\n for(int t=0;t<n;t++){\n int nx[2][2][2]={};\n for(int i=0;i<2;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n if(B[j][k][i][t]&&!in(j+dj[t],k+dk[t])) flg=1;\n\n //cout<<dj[0]<<\" \"<<dk[0]<<\":\"<<flg<<endl;\n if(flg) break;\n\n for(int i=0;i<2;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n if(B[j][k][i][t])\n nx[j+dj[t]][k+dk[t]][i]=1;\n {\n int sm=0;\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n sm+=nx[j][k][0];\n if(sm==0)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n swap(nx[j][k][0],nx[j][k][1]);\n }\n\n int y=MAX-10;\n for(;y>=0;y--){\n int mx=0;\n for(int i=0;i<2;i++){\n for(int j=0;j<2;j++){\n for(int k=0;k<2;k++){\n D[j][k][y+i]+=nx[j][k][i];\n chmax(mx,D[j][k][y+i]);\n }\n }\n }\n\n for(int i=0;i<2;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n D[j][k][y+i]-=nx[j][k][i];\n\n if(mx==2){\n y++;\n break;\n }\n if(y==0) break;\n }\n // cout<<t<<\":\"<<dj[t]<<\" \"<<dk[t]<<\":\"<<y<<endl;\n\n for(int i=0;i<2;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n D[j][k][y+i]+=nx[j][k][i];\n\n for(int i=0;i<MAX;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n E[j][k][i]=0;\n\n for(int i=0,p=0;i<MAX;i++){\n int sum=0;\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n sum+=D[j][k][i];\n if(sum==4){\n res++;\n continue;\n }\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n E[j][k][p]=D[j][k][i];\n p++;\n }\n\n for(int i=0;i<MAX;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n D[j][k][i]=E[j][k][i];\n }\n if(flg) continue;\n chmax(ans,res);\n }\n cout<<ans<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3140, "score_of_the_acc": -0.2614, "final_rank": 3 }, { "submission_id": "aoj_2701_3726638", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <deque>\n#include <exception>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <ios>\n#include <iosfwd>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <limits>\n#include <list>\n#include <locale>\n#include <map>\n#include <memory>\n#include <new>\n#include <numeric>\n#include <ostream>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <stack>\n#include <stdexcept>\n#include <streambuf>\n#include <string>\n#include <typeinfo>\n#include <utility>\n#include <valarray>\n#include <vector>\n#include <climits>\n#include <cstring>\n\n#define rep(i, m, n) for(int i=int(m);i<int(n);i++)\n#define all(c) begin(c),end(c)\n\ntemplate<typename T1, typename T2>\ninline void chmin(T1 &a, T2 b) { if (a > b) a = b; }\n\ntemplate<typename T1, typename T2>\ninline void chmax(T1 &a, T2 b) { if (a < b) a = b; }\n\n//改造\ntypedef long long int ll;\nusing namespace std;\n#define INF (1 << 30) - 1\n#define INFl (ll)5e15\n#define DEBUG 0 //デバッグする時1にしてね\n#define dump(x) cerr << #x << \" = \" << (x) << endl\n#define MOD 1000000007\n\n\n//ここから編集する\nclass Solve {\npublic:\n int H, N;\n vector<vector<vector<char>>> init;\n\n// vector<vector<int>> drop;\n vector<vector<vector<vector<char>>>> drop;\n\n int run(vector<vector<vector<vector<char>>>> &block) {\n auto state = init;\n int ret = 0;\n\n for (int i = 0; i < block.size(); ++i) {\n {\n bool flag = true;\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n if (block[i][0][l][c] == '#') flag = false;\n }\n }\n if (flag) {\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n if (block[i][1][l][c] == '#') {\n block[i][0][l][c] = '#';\n block[i][1][l][c] = '.';\n }\n }\n }\n }\n }\n\n //設置\n int sh = H + 2 * i;\n for (int dh = 0; dh < 2; ++dh) {\n for (int x = 0; x < 2; ++x) {\n for (int y = 0; y < 2; ++y) {\n state[sh + dh][x][y] = block[i][dh][x][y];\n }\n }\n }\n\n //落とす\n int h = sh;\n // state[h]が空ならhを+1する しません\n\n auto down = [&]() {\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n if (block[i][0][l][c] == '#') {\n state[h - 1][l][c] = state[h][l][c];\n state[h][l][c] = '.';\n }\n }\n }\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n if (block[i][1][l][c] == '#') {\n state[h][l][c] = state[h + 1][l][c];\n state[h + 1][l][c] = '.';\n }\n }\n }\n h--;\n };\n while (true) {\n if (h == 0) break;\n //hのしたにブロックがあるなら終了\n bool blockflag = false;\n// for (int l = 0; l < 2; ++l) {\n// for (int c = 0; c < 2; ++c) {\n// if (state[h][l][c] == '#' && state[h - 1][l][c] == '#') blockflag = true;\n// }\n// }\n for (int dh = 0; dh < 2; ++dh) {\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n if (dh == 0) {\n if (block[i][dh][l][c] == '#' && state[h + dh - 1][l][c] == '#') {\n blockflag = true;\n }\n } else {\n if (block[i][dh][l][c] == '#' &&\n block[i][dh - 1][l][c] != '#' &&\n state[h + dh - 1][l][c] == '#') {\n blockflag = true;\n }\n }\n }\n }\n }\n\n\n if (blockflag) break;\n down();\n }\n\n //消せるやつがあるなら消す\n\n auto deletable = [&]() {\n for (int hh = 0; hh < state.size(); ++hh) {\n bool flag = true;\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n if (state[hh][l][c] == '.') flag = false;\n }\n }\n if (flag) return hh;\n }\n return -1;\n };\n\n while (true) {\n int hh = deletable();\n if (hh == -1) break;\n ret++;\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n state[hh][l][c] = '.';\n }\n }\n\n for (; hh + 1 < state.size(); ++hh) {\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n state[hh][l][c] = state[hh + 1][l][c];\n state[hh + 1][l][c] = '.';\n }\n }\n }\n }\n }\n return ret;\n }\n\n int getketa(int val, int p, int d = 3) {\n val /= (int) round(pow(d, p));\n return val % d;\n }\n\n bool solve() {\n cin >> H >> N;\n if (H == 0) return false;\n init.resize(H + 6, vector<vector<char>>(2, vector<char>(2, '.')));\n// drop.resize(N, vector<int>(2, 0));\n drop.resize(N, vector<vector<vector<char>>>(2, vector<vector<char>>(2, vector<char>(2, '.'))));\n\n for (int i = 0; i < H; ++i) {\n for (int j = 0; j < 2; ++j) {\n for (int k = 0; k < 2; ++k) {\n cin >> init[i][j][k];\n }\n }\n }\n\n for (int i = 0; i < N; ++i) {\n for (int k = 0; k < 2; ++k) {\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n cin >> drop[i][k][l][c];\n }\n }\n }\n }\n\n int ans = 0;\n vector<vector<vector<vector<char>>>>\n block(N, vector<vector<vector<char>>>(2, vector<vector<char>>(2, vector<char>(2, '.'))));\n\n\n// for (int dl = -1; dl <= 1; ++dl) {\n// for (int dc = -1; dc <= 1; ++dc) {\n//\n// }\n// }\n for (int bit = 0; bit < (int) round(pow(3, 2 * N)); ++bit) {\n// vector<vector<vector<int>>> dlc(N, vector<vector<int>>(2, vector<int>(2, 0)));\n// vector<vector<int>> dl(N, vector<int>(2, 0));\n// vector<vector<int>> dc(N, vector<int>(2, 0));\n vector<int> dl(N);\n vector<int> dc(N);\n\n for (int i = 0; i < N; ++i) {\n// for (int l = 0; l < 2; ++l) {\n//// for (int c = 0; c < 2; ++c) {\n//// dlc[i][l][c] = getketa(bit, 4 * i + 2 * h + lc) - 1;\n//// }\n// int keta = 4 * i + l;\n// dl[i][l] = getketa(bit, keta);\n// }\n// for (int c = 0; c < 2; ++c) {\n// int keta = 4 * i + c + 2;\n// dc[i][c] = getketa(bit, keta);\n// }\n dl[i] = getketa(bit, 2 * i) - 1;\n dc[i] = getketa(bit, 2 * i + 1) - 1;\n }\n\n //ずらす\n if (dl[0] == 0 && dl[1] == 1 && dc[0] == 0 && dc[1] == 1) {\n int tapi = 79;\n }\n bool flag = true;\n block.assign(N, vector<vector<vector<char>>>(2, vector<vector<char>>(2, vector<char>(2, '.'))));\n\n for (int i = 0; i < N; ++i) {\n for (int h = 0; h < 2; ++h) {\n for (int l = 0; l < 2; ++l) {\n for (int c = 0; c < 2; ++c) {\n int nl = l + dl[i];\n int nc = c + dc[i];\n if ((nl < 0 || nl >= 2) && drop[i][h][l][c] == '#') {\n flag = false;\n continue;\n }\n if ((nc < 0 || nc >= 2) && drop[i][h][l][c] == '#') {\n flag = false;\n continue;\n }\n if (drop[i][h][l][c] == '#')\n block[i][h][nl][nc] = drop[i][h][l][c];\n }\n }\n }\n }\n\n\n// for (int i = 0; i < N; ++i) {\n// for (int j = 0; j < 2; ++j) {\n// for (int h = 0; h < 2; ++h) {\n// for (int w = 0; w < 2; ++w) {\n// int pt = i * 8 + j * 4 + h * 2 + w;\n// if (bit >> pt & 1) {\n// block[i][j][h][w] = '#';\n// } else {\n// block[i][j][h][w] = '.';\n// }\n// }\n// }\n// }\n// }\n\n// bool check = true;\n// for (int i = 0; i < N; ++i) {\n// for (int j = 0; j < 2; ++j) {\n// int cnt = 0;\n// for (int h = 0; h < 2; ++h) {\n// for (int w = 0; w < 2; ++w) {\n// if (block[i][j][h][w] == '#') cnt++;\n// }\n// }\n// if (drop[i][j] != cnt) check = false;\n// }\n// }\n\n\n if (flag) {\n int tmp = run(block);\n chmax(ans, tmp);\n }\n }\n\n cout << ans << endl;\n return true;\n\n }\n};\n\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n while (Solve().solve());\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3344, "score_of_the_acc": -0.2955, "final_rank": 9 }, { "submission_id": "aoj_2701_3724346", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define INF 1001000100010001000\n#define MOD 1000000007\n#define EPS 1e-10\n#define int long long\n#define rep(i, N) for (int i = 0; i < N; i++)\n#define Rep(i, N) for (int i = 1; i < N; i++)\n#define For(i, a, b) for (int i = (a); i < (b); i++)\n#define pb push_back\n#define eb emplace_back\n#define mp make_pair\n#define pii pair<int, int>\n#define vi vector<int>\n#define vvi vector<vi >\n#define vb vector<bool>\n#define vvb vector<vb >\n#define vp vector< pii >\n#define all(a) (a).begin(), (a).end()\n#define Int(x) int x; cin >> x;\n#define int2(x, y) Int(x); Int(y);\n#define int3(x, y, z) Int(x); int2(y, z);\n#define in(x, a, b) ((a) <= (x) && (x) < (b))\n#define fir first\n#define sec second\n#define ffir first.first\n#define fsec first.second\n#define sfir second.first\n#define ssec second.second\n#define Decimal fixed << setprecision(10)\n\n//int dxy[5] = {0, 1, 0, -1, 0};\n// cmd\n\nint H = 2, W = 2;\n\nint dx[9] = {-1, -1, -1, 0, 0, 0, 1, 1, 1};\nint dy[9] = {-1, 0, 1, -1, 0, 1, -1, 0, 1};\n\nbool _moveable(int x, int y, int dir)\n{\n //cout << \"call _move : \" << x << \" \" << y << \" \" << dir;\n int nx = x + dx[dir], ny = y + dy[dir];\n //cout << \" -> (\" << nx << \", \" << ny << \")\";\n //cout << \" : \" << (in(nx, 0, H) && in(ny, 0, W)) << endl;\n return (in(nx, 0, H) && in(ny, 0, W));\n}\n\nbool movable(vector<vvi> &block, int dir)\n{\n bool state = true;\n rep(i, block.size()) rep(j, block[i].size()) rep(k, block[i][j].size()) {\n if (block[i][j][k]) state &= _moveable(j, k, dir);\n }\n return state;\n}\n\nvector<vvi> put(vector<vvi> table, const vector<vvi> &cube, int dir)\n{\n auto ret = table;\n rep(i, cube.size()) rep(j, cube[i].size()) rep(k, cube[i][j].size()) {\n if (cube[i][j][k]) {\n ret[i][j+dx[dir]][k+dy[dir]] = 1;\n }\n }\n return ret;\n}\n\nvector<vvi> drop(vector<vvi> &table, vector<vvi> &cube, int dir)\n{\n vector<vvi> nc(cube.size(), vvi(cube[0].size(), vi(cube[0][0].size(), 0)));\n rep(i, cube.size()) rep(j, cube[i].size()) rep(k, cube[i][j].size()) {\n if (cube[i][j][k]) {\n nc[i][j+dx[dir]][k+dy[dir]] = 1;\n }\n }\n {\n bool fl = true;\n rep(j, nc[1].size()) rep(k, nc[1][j].size()) {\n fl &= !nc[1][j][k];\n }\n if (fl) {\n rep(j, nc[0].size()) rep(k, nc[0][j].size()) {\n nc[1][j][k] = nc[0][j][k];\n nc[0][j][k] = 0;\n }\n }\n }\n\n auto ret = table;\n int droph = 1;\n Rep(hi, table.size()-2) {\n bool fl = true;\n rep(i, nc.size()) rep(j, nc[i].size()) rep(k, nc[i][j].size()) {\n fl &= (!table[i+hi+1][j][k] || !nc[i][j][k]);\n }\n if (fl) {\n droph = hi;\n } else {\n break;\n }\n }\n\n rep(i, nc.size()) rep(j, nc[i].size()) rep(k, nc[i][j].size()) {\n ret[i+droph+1][j][k] += nc[i][j][k];\n }\n return ret;\n}\n\nvoid slide(vector<vvi> &table)\n{\n for (int i = table.size()-2; i >= 0; i--) {\n bool can = true, ari = false;\n rep(j, table[i].size()) rep(k, table[i][j].size()) {\n can &= !(table[i+1][j][k]);\n ari |= table[i][j][k];\n }\n if (can && ari) {\n for (; i >= 0; i--) {\n rep(j, table[i].size()) rep(k, table[i][j].size()) {\n table[i+1][j][k] = table[i][j][k];\n table[i][j][k] = 0;\n }\n }\n i = table.size()-1;\n }\n }\n}\n\nint clear(vector<vvi> &table)\n{\n int ret = 0;\n rep(i, table.size()) {\n int fl = true;\n rep(j, table[i].size()) rep(k, table[i][j].size()) {\n fl &= table[i][j][k];\n }\n if (fl) {\n rep(j, table[i].size()) rep(k, table[i][j].size()) {\n table[i][j][k] = 0;\n }\n slide(table);\n ret += 4;\n i--;\n }\n }\n return ret;\n}\n\nvoid print(vector<vvi> &table)\n{\n rep(i, table.size()) {\n cout << \"====== \" << i << \" ======\" << endl;\n rep(j, table[i].size()) {\n rep(k, table[i][j].size()) {\n cout << table[i][j][k];\n }\n cout << endl;\n }\n }\n}\n\n\nint solve(vector<vector<vvi>> &cube, vector<vvi> &table, int cnum)\n{\n auto edit = table;\n //cout << \"call solve : \" << cnum << endl;\n if (cnum == cube.size()) {\n return 0;\n }\n int ret = 0;\n for (int i = 0; i < 9; i++) {\n //cout << \"move : \" << i << \" \" << movable(cube[cnum], i) << endl;\n if (movable(cube[cnum], i)) {\n //edit = put(table, cube[cnum], i);\n edit = drop(table, cube[cnum], i);\n int tmp = clear(edit);\n //print(edit);\n ret = max(ret, tmp + solve(cube, edit, cnum+1));\n }\n }\n return ret;\n}\nsigned main()\n{\n std::ios::sync_with_stdio(false);\n std::cin.tie(0);\n\n int h, n;\n while (cin >> h >> n, n) {\n vector<vvi> table(50, vvi(2, vi(2, 0)));\n vector<vector<vvi>> cube(n, vector<vvi>(2, vvi(2, vi(2, 0))));\n rep(i, h) {\n rep(j, 2) {\n string tmp;\n cin >> tmp;\n rep(k, 2) {\n table[table.size()-1-i][j][k] = (tmp[k] == '#');\n }\n }\n }\n\n rep(cnum, n) {\n for (int i = 1; i >= 0; i--) rep(j, 2) {\n string tmp;\n cin >> tmp;\n rep(k, 2) {\n cube[cnum][i][j][k] = (tmp[k] == '#');\n }\n }\n }\n\n /*\n rep(cnum, n) {\n cout << \"====== \" << cnum << \" ======\" << endl;\n rep(i, cube[cnum].size()) {\n rep(j, cube[cnum][i].size()) {\n rep(k, cube[cnum][i][j].size()) {\n cout << cube[cnum][i][j][k];\n }\n cout << endl;\n }\n }\n }\n */\n\n cout << solve(cube, table, 0) / 4 << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3168, "score_of_the_acc": -0.2651, "final_rank": 4 }, { "submission_id": "aoj_2701_3700455", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint ans=0;\nint n;\nint blk[3][2][2][2];\nint cnt=0;\n\n\nint check(vector<vector<vector<int>>> s,int b,int h,int x,int y){\n if(h<=-1){\n return 0;\n }\n bool f=true;\n for(int i=0;i<2;i++){\n for(int j=0;j<2;j++){\n for(int k=0;k<2;k++) {\n if (s[h + i][y + j][x + k]==1 && blk[b][i][j][k]==1){\n f=false;\n }\n }\n }\n }\n if(f){\n return check(s,b,h-1,x,y);\n }\n else return h+1;\n}\n\nvector<vector<vector<int>>> delblk(vector<vector<vector<int>>> t){\n for(int i=1;i<t.size();i++){\n bool f=true;\n for(int j=0;j<t[i].size();j++){\n for(int k=0;k<t[i][j].size();k++){\n if(t[i][j][k]!=1)f=false;\n }\n }\n if(f){\n cnt++;\n for(int j=i;j<15;j++){\n for(int k=1;k<3;k++){\n for(int l=1;l<3;l++){\n t[j][k][l]=t[j+1][k][l];\n }\n }\n }\n i--;\n }\n }\n return t;\n}\n\nvoid dfs(int b,vector<vector<vector<int>>> s,int ma){\n if(b>=n){\n ans=max(ans,ma);\n return ;\n }\n for(int i=0;i<3;i++){\n for(int j=0;j<3;j++){\n vector<vector<vector<int>>> t(s);\n int dpth=check(s,b,15,j,i);\n if(dpth==16)continue;\n //cout << b << \" \" << i << \" \" << j << \" \" << dpth << endl;\n for(int k=0;k<2;k++) {\n for (int l = 0; l < 2; l++) {\n for (int m = 0; m < 2; m++) {\n if (blk[b][k][l][m] == 1) {\n t[dpth + k][i + l][j + m] = 1;\n }\n }\n }\n }\n cnt=0;\n t=delblk(t);\n dfs(b+1,t,ma+cnt);\n // if(b==0){\n // for(int i=3;i>=0;i--){\n // for(int j=3;j>=0;j--){\n // for(int k=0;k<4;k++){\n // cout << t[i][j][k] << \" \";\n // }cout << endl;\n // }cout << endl;\n // }\n // }\n }\n }\n \n}\n\nint main(){\n while(1){\n int h;\n cin >> h >> n;\n if(n==0)break;\n vector<vector<vector<int>>> s(17,vector<vector<int>>(4,vector<int>(4,0)));\n for(int i=0;i<4;i++){\n for(int j=0;j<4;j++){\n s[0][i][j]=1;\n }\n }\n ans=0;\n for(int i=1;i<=h;i++){\n string tt;\n cin >> tt;\n for(int j=0;j<2;j++){\n if(tt[j]=='#'){\n s[i][1][j+1]=1;\n }\n }\n cin >> tt;\n for(int j=0;j<2;j++){\n if(tt[j]=='#'){\n s[i][2][j+1]=1;\n }\n }\n }\n for(int i=1;i<=16;i++){\n for(int j=0;j<4;j++){\n if(j==0||j==3){\n for(int k=0;k<4;k++){\n s[i][j][k]=1; \n }\n }else{\n s[i][j][0]=1;\n s[i][j][3]=1;\n }\n }\n }\n for(int i=0;i<n;i++){\n string tt[4];\n for(int j=0;j<4;j++){\n cin >> tt[j];\n }\n for(int j=0;j<4;j++){\n if(tt[j][0]=='#'){\n blk[i][j/2][j%2][0]=1;\n }else{\n blk[i][j/2][j%2][0]=0;\n }\n }\n for(int j=0;j<4;j++){\n if(tt[j][1]=='#'){\n blk[i][j/2][j%2][1]=1;\n }else{\n blk[i][j/2][j%2][1]=0;\n }\n }\n }\n // for(int i=0;i<10;i++){\n // for(int j=0;j<4;j++){\n // for(int k=0;k<4;k++){\n // cout << s[i][j][k] << \" \";\n // }cout << endl;\n // }cout << endl;\n // }\n // for(int i=1;i>=0;i--){\n // for(int j=1;j>=0;j--){\n // for(int k=0;k<2;k++){\n // cout << blk[0][i][j][k] << \" \";\n // }cout << endl;\n // }cout << endl;\n // }\n dfs(0,s,0);\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3252, "score_of_the_acc": -0.2833, "final_rank": 8 }, { "submission_id": "aoj_2701_3635318", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n// #define int ll\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n\ntemplate<typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }\ntemplate<typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }\ntemplate<typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; }\ntemplate<typename T> T ceil(T a, T b) { return a/b + !!(a%b); }\n\ntemplate<typename T> vector<T> make_v(size_t a) { return vector<T>(a); }\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts) {\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value==0>::type\nfill_v(T &t, const V &v) { t=v; }\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type\nfill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); }\n\ntemplate<class S,class T>\nostream &operator <<(ostream& out,const pair<S,T>& a) {\n out<<'('<<a.first<<','<<a.second<<')'; return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out,const vector<T>& a){\n out<<'[';\n for(const T &i: a) out<<i<<',';\n out<<']';\n return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out, const set<T>& a) {\n out<<'{';\n for(const T &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\ntemplate<class T, class S>\nostream &operator <<(ostream& out, const map<T,S>& a) {\n out<<'{';\n for(auto &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\n\nint dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; // DRUL\nconst int INF = 1<<30;\nconst ll LLINF = 1LL<<60;\nconst ll MOD = 1000000007;\n\nsigned main(void)\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll test = 0;\n while(1) {\n ll h, n;\n cin >> h >> n;\n if(!h) break;\n vector<string> vv(h+2*n, string(4, '.'));\n REP(i, h) {\n string s, t;\n cin >> s >> t;\n vv[i] = s + t;\n }\n using P = pair<string, string>;\n vector<P> a(n);\n REP(i, n) {\n string s1, s2;\n cin >> s1 >> s2;\n a[i].second = s1 + s2;\n cin >> s1 >> s2;\n a[i].first = s1 + s2;\n }\n\n // cout << \"init\" << endl;\n // REP(i, h) cout << vv[i] << endl;\n // cout << endl;\n\n ll m = 1, ret = 0;\n REP(i, n) m *= 9;\n REP(mask, m) {\n // cout << \"mask:\" << mask << endl;\n vector<P> b(a);\n ll t = mask;\n bool muri = false;\n REP(i, n) {\n ll rot = t%9;\n t /= 9;\n\n if(rot == 0) {\n\n }\n // 右に寄せる\n else if(rot == 1) {\n if(a[i].first[1]=='#'||a[i].first[3]=='#'||a[i].second[1]=='#'||a[i].second[3]=='#') muri = true;\n b[i].first[0] = b[i].first[2] = b[i].second[0] = b[i].second[2] = '.';\n b[i].first[1] = a[i].first[0];\n b[i].first[3] = a[i].first[2];\n b[i].second[1] = a[i].second[0];\n b[i].second[3] = a[i].second[2];\n }\n // 左に寄せる\n else if(rot == 2) {\n if(a[i].first[0]=='#'||a[i].first[2]=='#'||a[i].second[0]=='#'||a[i].second[2]=='#') muri = true;\n b[i].first[1] = b[i].first[3] = b[i].second[1] = b[i].second[3] = '.';\n b[i].first[0] = a[i].first[1];\n b[i].first[2] = a[i].first[3];\n b[i].second[0] = a[i].second[1];\n b[i].second[2] = a[i].second[3];\n }\n // 上に寄せる\n else if(rot == 3) {\n if(a[i].first[0]=='#'||a[i].first[1]=='#'||a[i].second[0]=='#'||a[i].second[1]=='#') muri = true;\n b[i].first[2] = b[i].first[3] = b[i].second[2] = b[i].second[3] = '.';\n b[i].first[0] = a[i].first[2];\n b[i].first[1] = a[i].first[3];\n b[i].second[0] = a[i].second[2];\n b[i].second[1] = a[i].second[3];\n }\n // 下に寄せる\n else if(rot == 4) {\n if(a[i].first[2]=='#'||a[i].first[3]=='#'||a[i].second[2]=='#'||a[i].second[3]=='#') muri = true;\n b[i].first[1] = b[i].first[0] = b[i].second[1] = b[i].second[0] = '.';\n b[i].first[2] = a[i].first[0];\n b[i].first[3] = a[i].first[1];\n b[i].second[2] = a[i].second[0];\n b[i].second[3] = a[i].second[1];\n }\n // 左上に寄せる\n else if(rot == 5) {\n if(a[i].first[1]=='#'||a[i].first[2]=='#'||a[i].first[0]=='#'||a[i].second[1]=='#'||a[i].second[2]=='#'||a[i].second[0]=='#') muri = true;\n b[i].first[3] = b[i].second[3] = '.';\n b[i].first[0] = a[i].first[3];\n b[i].second[0] = a[i].second[3];\n }\n // 右上に寄せる\n else if(rot == 6) {\n if(a[i].first[1]=='#'||a[i].first[0]=='#'||a[i].first[3]=='#'||a[i].second[1]=='#'||a[i].second[0]=='#'||a[i].second[3]=='#') muri = true;\n b[i].first[2] = b[i].second[2] = '.';\n b[i].first[1] = a[i].first[2];\n b[i].second[1] = a[i].second[2];\n }\n // 左下に寄せる\n else if(rot == 7) {\n if(a[i].first[0]=='#'||a[i].first[2]=='#'||a[i].first[3]=='#'||a[i].second[0]=='#'||a[i].second[2]=='#'||a[i].second[3]=='#') muri = true;\n b[i].first[1] = b[i].second[1] = '.';\n b[i].first[2] = a[i].first[1];\n b[i].second[2] = a[i].second[1];\n }\n // 右下に寄せる\n else if(rot == 8) {\n if(a[i].first[1]=='#'||a[i].first[2]=='#'||a[i].first[3]=='#'||a[i].second[1]=='#'||a[i].second[2]=='#'||a[i].second[3]=='#') muri = true;\n b[i].first[0] = b[i].second[0] = '.';\n b[i].first[3] = a[i].first[0];\n b[i].second[3] = a[i].second[0];\n }\n }\n if(muri) continue;\n\n // REP(i, n) cout << b[i] << endl;\n\n ll cnt = 0;\n auto v(vv);\n REP(i, n) {\n bool flag1 = false, flag2 = false, stop = false;\n REP(j, 4) {\n if(b[i].second[j]=='#') flag1 = true;\n if(b[i].first[j]=='#') flag2 = false;\n }\n // 高さjにブロックの下の段が来るパターン\n for(ll j=h+2*n-1; j>=0; --j) {\n if((j==0&&flag1) || (j&&v[j-1][0]=='#'&&v[j-1][0]==b[i].second[0]) || (j&&v[j-1][1]=='#'&&v[j-1][1]==b[i].second[1]) || (j&&v[j-1][2]=='#'&&v[j-1][2]==b[i].second[2]) || (j&&v[j-1][3]=='#'&&v[j-1][3]==b[i].second[3])) {\n // cout << \"hit second \" << j << endl;\n REP(k, 4) {\n if(b[i].second[k]=='#') v[j][k] = '#';\n if(b[i].first[k]=='#') v[j+1][k] = '#';\n }\n stop = true;\n break;\n }\n if((v[j][0]=='#'&&v[j][0]==b[i].first[0]) || (v[j][1]=='#'&&v[j][1]==b[i].first[1]) || (v[j][2]=='#'&&v[j][2]==b[i].first[2]) || (v[j][3]=='#'&&v[j][3]==b[i].first[3])) {\n // cout << \"hit first \" << j << endl;\n REP(k, 4) {\n if(b[i].second[k]=='#') v[j][k] = '#';\n if(b[i].first[k]=='#') v[j+1][k] = '#';\n }\n stop = true;\n break;\n }\n }\n if(!stop) {\n // cout << \"hit first last \" << endl;\n REP(k, 4) {\n if(b[i].first[k]=='#') v[0][k] = '#';\n }\n }\n // REP(j, h+2*n) cout << \"height=\" << j << \" \" << v[j] << endl;\n // 消える段があったら消す\n REP(j, h+2*n) {\n if(v[j][0]=='#'&&v[j][1]=='#'&&v[j][2]=='#'&&v[j][3]=='#') {\n v[j][0] = v[j][1] = v[j][2] = v[j][3] = '.';\n FOR(k, j, h+2*n-1) {\n v[k][0] = v[k+1][0];\n v[k][1] = v[k+1][1];\n v[k][2] = v[k+1][2];\n v[k][3] = v[k+1][3];\n }\n j--;\n cnt++;\n }\n }\n }\n chmax(ret, cnt);\n }\n\n cout << ret << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3240, "score_of_the_acc": -0.2746, "final_rank": 6 }, { "submission_id": "aoj_2701_2951882", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <cmath>\n#include <set>\nusing namespace std;\n\nconstexpr int LIM = 32;\n\nvector<vector<int>> box[LIM];\n\n\nbool valid(vector<vector<int>> a0,vector<vector<int>> a1,vector<vector<int>> b0,vector<vector<int>> b1){\n for(int x=0;x<4;x++){\n for(int y=0;y<4;y++){\n if(a0[x][y] and b0[x][y]) return false;\n }\n }\n for(int x=0;x<4;x++){\n for(int y=0;y<4;y++){\n if(a1[x][y] and b1[x][y]) return false;\n }\n }\n return true;\n}\n\nvoid solve(int H,int N){\n for(int i=0;i<H;i++){\n string s[2]; cin >> s[0] >> s[1];\n for(int x=0;x<2;x++) for(int y=0;y<2;y++){\n if(s[x][y] == '#'){\n box[i][x+1][y+1] = 1;\n }\n }\n }\n\n int ans = 0;\n\n vector<vector<vector<vector<int>>>> boxes_t(N,vector<vector<vector<int>>>(4,vector<vector<int>>(4,vector<int>(4,0))));\n for(int i=0;i<N;i++){// i - th\n for(int j=0;j<2;j++){ // high\n string s[2]; cin >> s[0] >> s[1];\n //cerr << s[0] << \" \" << s[1] << endl;\n for(int x=0;x<2;x++){\n for(int y=0;y<2;y++){\n if(s[x][y] == '#'){\n //cerr << \"NG \" << i <<\" \" << j <<\" \" << x << \" \" << y << endl;\n boxes_t[i][j][x+1][y+1] = 1;\n }\n }\n }\n }\n }\n\n for(int mask=0;mask<(1<<(4*N));mask++){\n //cerr << \"mask \" << mask << endl;\n int ans_cnt = 0;\n vector<vector<int>> tmp[LIM];\n for(int k=0;k<LIM;k++) tmp[k] = box[k];\n\n auto boxes = boxes_t;\n\n for(int idx=0;idx<N;idx++){\n int i = ((mask >> (idx*4)) % (1<<4)) / 4-1;\n int j = ((mask >> (idx*4)) % (1<<4)) % 4-1;\n if(i<-1 or i>1 or j<-1 or j>1) break;\n\n for(int h=0;h<2;h++){\n for(int x=0;x<4;x++){\n for(int y=0;y<4;y++){\n if(x+i>=0 and y+j>=0 and x+i<4 and y+j < 4) boxes[idx][h][x][y] = boxes_t[idx][h][x+i][y+j];\n else boxes[idx][h][x][y] = 0;\n }\n }\n }\n\n //for(int x=0;x<4;x++){\n // for(int y=0;y<4;y++){\n // cerr << boxes[0][1][x][y];\n // }\n // cerr << endl;\n //}\n\n bool oktable = true;\n for(int h=0;h<2;h++){\n for(int x=0;x<4;x++){\n for(int y=0;y<4;y++){\n if((x == 0 or x == 3 or y == 0 or y == 3) and boxes[idx][h][x][y]){\n oktable = false;\n break;\n }\n }\n }\n }\n\n if(!oktable) break;\n // OK\n\n int okh;\n int limit = 0;\n int po = 0;\n for(int x=0;x<4;x++) for(int y=0;y<4;y++) if(boxes[idx][0][x][y]) po++;\n if(po == 0) limit = -1;\n ////cerr << \"limit \" << limit << endl;\n for(okh = LIM-2; okh>=0; okh--){\n if(!valid(tmp[okh],tmp[okh+1],boxes[idx][0],boxes[idx][1])){\n break;\n }\n }\n okh++;\n\n //if (okh == 0) {\n // cout << idx << \" \" << i << \" \" << j << endl;\n //}\n\n if(okh == 0 and limit == -1){\n bool ok = true;\n for(int x=0;x<4;x++){\n for(int y=0;y<4;y++){\n if(tmp[0][x][y] and boxes[idx][1][x][y]){\n ok = false;\n break;\n }\n }\n }\n if(ok){\n okh = -1;\n }\n }\n\n for(int h=0;h<2;h++){\n for(int x=0;x<4;x++){\n for(int y=0;y<4;y++){\n if(okh+h>=0) tmp[okh+h][x][y] |= boxes[idx][h][x][y];\n }\n }\n }\n\n set<int> del;\n for(int i=0;i<LIM;i++){\n int cnt = 0;\n for(int x=0;x<4;x++){\n for(int y=0;y<4;y++){\n if(tmp[i][x][y]){\n cnt++;\n }\n }\n }\n if(cnt == 4){\n del.insert(i);\n }\n }\n\n ans_cnt += del.size();\n\n if(del.size() == 1){\n int d = *del.begin();\n for(int i=0;i<LIM;i++){\n if(i>=d){\n if(i+1<LIM)tmp[i] = tmp[i+1];\n else{\n for(int x=0;x<4;x++) for(int y=0;y<4;y++) tmp[i][x][y]=0;\n }\n }\n }\n }else if(del.size() == 2){\n int d = *del.begin();\n for(int i=0;i<LIM;i++){\n if(i>=d){\n if(i+2<LIM) tmp[i] = tmp[i+2];\n else{\n for(int x=0;x<4;x++) for(int y=0;y<4;y++) tmp[i][x][y]=0;\n }\n }\n }\n }\n\n // for(int h=0;h<2;h++){\n // for(int x=0;x<4;x++){\n // for(int y=0;y<4;y++){\n // cerr << tmp[h][x][y];\n // }\n // cerr << endl;\n // }\n // cerr << endl;\n // }\n\n }\n\n ans = max(ans,ans_cnt);\n }\n cout << ans << endl;\n}\n\n\nint main(){\n for(int i=0;i<LIM;i++){\n box[i] = vector<vector<int>>(4,vector<int>(4,0));\n }\n\n while(1){\n int h,n;\n cin >> h >> n;\n if(h == 0 and n == 0) break;\n for(int i=0;i<4;i++) for(int j=0;j<4;j++) for(int k=0;k<LIM;k++) box[k][i][j] = 0;\n solve(h,n);\n }\n}", "accuracy": 1, "time_ms": 1420, "memory_kb": 3260, "score_of_the_acc": -1.2772, "final_rank": 20 }, { "submission_id": "aoj_2701_2821374", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n#define REP(i, n) for(int (i)=0; (i)<(n); (i)++)\n#define NIREP(i, n) for((i)=0; (i)<(n); (i)++) //non-initialized rep\nconst int limit = 20;\nint dx[9] = {1, 1, 1, 0, 0, 0,-1,-1,-1};\nint dy[9] = {1, 0,-1, 1, 0,-1, 1, 0,-1};\ntypedef vector<vector<bool> > vec2D;\nvec2D defplane(2, vector<bool>(2, false));\nbool canmove(int n, vec2D &a){\n REP(x,2) REP(y,2){\n int nx = x+dx[n];\n int ny = y+dy[n];\n if(a[x][y] && (nx<0 || 1<nx || ny<0 || 1<ny)){\n return false;\n }\n }\n return true;\n}\nbool canmove(int n, vector<vec2D> &a){\n REP(i, (int)a.size()){\n if(!canmove(n, a[i])) return false;\n }\n return true;\n}\nvector<vec2D> convert(int n, vector<vec2D> &a){\n vector<vec2D> ret(2, defplane);\n REP(x,2) REP(y,2) {\n int nx = x+dx[n];\n int ny = y+dy[n];\n if(0<=nx && nx<=1 && 0<=ny && ny<=1){\n REP(i,2) ret[i][nx][ny] = a[i][x][y];\n }\n }\n return ret;\n}\nbool isoverlap(vec2D &a, vec2D &b){\n REP(x,2) REP(y,2){\n if(a[x][y] && b[x][y]) return true;\n }\n return false;\n}\n\nint main(){\n while(1){\n int h,n;\n cin >> h >> n;\n if(h==0) break;\n \n vector<vec2D> c(limit, defplane);\n vector<vector<vec2D> > b(3, vector<vec2D>(2, defplane));\n REP(r,h) REP(i,2) REP(j,2){\n char in;\n cin >> in;\n if(in == '#') c[r][i][j] = true;\n }\n REP(k,n) REP(r,2) REP(i,2) REP(j,2){\n char in;\n cin >> in;\n if(in == '#') b[k][r][i][j] = true;\n }\n\n \n int ans = 0;\n int var[3];\n NIREP(var[0], 9) NIREP(var[1], 9) NIREP(var[2], 9){\n if(!canmove(var[0], b[0]) || !canmove(var[1], b[1]) || !canmove(var[2], b[2])){\n continue;\n }\n int count = 0;\n vector<vec2D> field = c;\n REP(i,3){\n //make block (moved)\n vector<vec2D> block = convert(var[i], b[i]);\n if(block[0] == defplane) swap(block[0], block[1]);\n //height of falling block\n int s=limit-2;\n while(s>0 && !isoverlap(block[0], field[s-1]) && !isoverlap(block[1], field[s])){\n s--;\n }\n //put\n REP(r,2) REP(x,2) REP(y,2){\n if(block[r][x][y]){\n field[s+r][x][y] = true;\n }\n }\n //delete and count\n for(int i=limit-1; i>=0; i--){\n bool full = true;\n REP(x,2) REP(y,2){\n if(!field[i][x][y]) full = false;\n }\n if(full){\n count++;\n field.erase(field.begin()+i);\n field.push_back(defplane);\n }\n }\n }\n ans = max(ans, count);\n }\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3104, "score_of_the_acc": -0.2566, "final_rank": 2 }, { "submission_id": "aoj_2701_2818379", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <tuple>\nusing namespace std;\nusing Board = vector< vector< vector<int> > >;\n\nint H, N;\n\nint dx[] = {0, 1, -1, 0, 1, -1, 0, 1, -1};\nint dy[] = {0, 0, 0, 1, 1, 1, -1, -1, -1};\n\n// 全て埋まっている: 1, なにも埋まっていない: 2, それ以外: 0\nint comp(Board board, int z) {\n bool complete = true, none = true;\n for(int x=0; x<2; x++) {\n for(int y=0; y<2; y++) {\n if(board[z][x][y] == 1) {\n none = false;\n }\n else {\n complete = false;\n }\n }\n }\n if(complete) return 1;\n if(none) return 2;\n return 0;\n}\n\nvoid boardfall(Board &board) {\n for(int z = 20; z > 0; z--) {\n int top = z - 1;\n if(comp(board, top) == 2) {\n swap(board[z], board[top]);\n }\n }\n}\n\nvoid print_board(Board board) {\n for(int z=0; z<20; z++) {\n if(comp(board, z) == 2) continue;\n printf(\"board (z = %d):\\n\", z);\n for(auto x : board[z][0]) cout << x;\n cout << endl;\n for(auto x : board[z][1]) cout << x;\n cout << endl << endl;\n }\n}\n\npair<Board, int> modify_board(Board board, Board block) {\n int z;\n // block の下の段に何もなければ swap\n if(comp(block, 0) == 2) swap(block[0], block[1]);\n\n for(z = 20; z > 0; z--) {\n // block の底面が z に位置する\n // 下に行けるかどうかのチェック\n int top = z - 1;\n bool ok = true;\n for(int dz=0; dz<2; dz++) {\n for(int x=0; x<2; x++) {\n for(int y=0; y<2; y++) {\n if(board[top+dz][x][y] && block[dz][x][y]) ok = false;\n }\n }\n }\n\n if(!ok) break;\n }\n\n // printf(\"! z = %d\\n\", z);\n\n for(int dz=0; dz<2; dz++) {\n for(int x=0; x<2; x++) {\n for(int y=0; y<2; y++) {\n board[z+dz][x][y] |= block[dz][x][y];\n }\n }\n }\n\n int get_combo = 0;\n for(int z=0; z<20; z++) {\n // 全て埋まっている\n if(comp(board, z) == 1) {\n for(int x=0; x<2; x++) {\n for(int y=0; y<2; y++) {\n board[z][x][y] = 0;\n }\n }\n get_combo++;\n }\n }\n\n boardfall(board);\n return make_pair(board, get_combo);\n}\n\nint dfs(const Board board, const vector<Board> &blocks, int idx=0, int combo=0) {\n // printf(\"step: %d\\n\", idx+1);\n // print_board(board);\n\n if(idx == N) return combo;\n int ret = 0;\n\n // ブロックの水平移動\n for(int k=0; k<9; k++) {\n bool ok = true;\n Board block = blocks[idx];\n Board n_block = Board(2, vector< vector<int> >(2, vector<int>(2)));\n for(int z=0; z<2; z++) {\n for(int x=0; x<2; x++) {\n for(int y=0; y<2; y++) {\n int nx = x + dx[k], ny = y + dy[k];\n if((nx < 0 || nx >= 2 || ny < 0 || ny >= 2) && block[z][x][y]) {\n ok = false;\n continue;\n }\n else {\n if(nx < 0 || nx >= 2 || ny < 0 || ny >= 2) continue;\n n_block[z][nx][ny] = block[z][x][y];\n }\n }\n }\n }\n\n if(ok) {\n Board n_board;\n int get_combo;\n tie(n_board, get_combo) = modify_board(board, n_block);\n ret = max(ret, dfs(n_board, blocks, idx+1, combo+get_combo));\n }\n }\n return ret;\n}\n\nint main() {\n while(cin >> H >> N, H || N) {\n Board board(30, vector< vector<int> >(2, vector<int>(2)));\n for(int i=0; i<H; i++) {\n for(int x=0; x<2; x++) {\n for(int y=0; y<2; y++) {\n char c; cin >> c;\n board[i][x][y] = (c == '#');\n }\n }\n }\n\n vector<Board> blocks(N, Board(2, vector< vector<int> >(2, vector<int>(2))));\n for(int i=0; i<N; i++) {\n for(int z=0; z<2; z++) {\n for(int x=0; x<2; x++) {\n for(int y=0; y<2; y++) {\n char c; cin >> c;\n blocks[i][z][x][y] = (c == '#');\n }\n }\n }\n }\n\n int ans = dfs(board, blocks, 0);\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3212, "score_of_the_acc": -0.3064, "final_rank": 11 }, { "submission_id": "aoj_2701_2661826", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main()\n{\n\tint H, N;\n\twhile (cin >> H >> N, H | N) {\n\t\tvector<vector<string>> c(H + 10, vector<string>(2, string(2, '.')));\n\t\tvector<vector<vector<string>>> b(N, vector<vector<string>>(2, vector<string>(2)));\n\t\tfor (int i = 0; i < 2; i++) {\n\t\t\tfor (int j = 0; j < 2; j++) {\n\t\t\t\tc[0][i][j] = '#';\n\t\t\t}\n\t\t}\n\t\tfor (int i = 0; i < H; i++) {\n\t\t\tcin >> c[i + 1][0] >> c[i + 1][1];\n\t\t}\n\t\tfor (int i = 0; i < N; i++) {\n\t\t\tfor (int j = 0; j < 2; j++) {\n\t\t\t\tfor (int k = 0; k < 2; k++) {\n\t\t\t\t\tcin >> b[i][j][k];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint res = 0;\n\t\tint S = 1;\n\t\tfor (int i = 0; i < N; i++) S *= 9;\n\t\tfor (int s = 0; s < S; s++) {\n\t\t\tbool ok = true;\n\t\t\tint del = 0;\n\t\t\tint tmp = s;\n\t\t\tauto state = c;\n\t\t\tfor (int i = 0; i < N; i++) {\n\t\t\t\tint dx = tmp % 3 - 1, dy = tmp / 3 % 3 - 1;\n\t\t\t\tfor (int d = 0; d < 2; d++) {\n\t\t\t\t\tfor (int x = 0; x < 2; x++) {\n\t\t\t\t\t\tfor (int y = 0; y < 2; y++) {\n\t\t\t\t\t\t\tint tx = x + dx, ty = y + dy;\n\t\t\t\t\t\t\tif (b[i][d][x][y] == '#' && (tx < 0 || 2 <= tx || ty < 0 || 2 <= ty)) {\n\t\t\t\t\t\t\t\tok = false;\n\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif (!ok) break;\n\t\t\t\tint h = H + 8;\n\t\t\t\tbool f = true;\n\t\t\t\tdo {\n\t\t\t\t\th--;\n\t\t\t\t\tfor (int d = 0; d < 2; d++) {\n\t\t\t\t\t\tfor (int x = 0; x < 2; x++) {\n\t\t\t\t\t\t\tfor (int y = 0; y < 2; y++) {\n\t\t\t\t\t\t\t\tint tx = x + dx, ty = y + dy;\n\t\t\t\t\t\t\t\tif (b[i][d][x][y] == '#' && state[h + d][tx][ty] == '#') {\n\t\t\t\t\t\t\t\t\tf = false;\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t} while (f);\n\t\t\t\th++;\n\t\t\t\tfor (int d = 0; d < 2; d++) {\n\t\t\t\t\tfor (int x = 0; x < 2; x++) {\n\t\t\t\t\t\tfor (int y = 0; y < 2; y++) {\n\t\t\t\t\t\t\tint tx = x + dx, ty = y + dy;\n\t\t\t\t\t\t\tif (b[i][d][x][y] == '#') {\n\t\t\t\t\t\t\t\tstate[h + d][tx][ty] = '#';\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tfor (int d = 1, td = 1; d < H + 10; d++) {\n\t\t\t\t\tbool filled = true;\n\t\t\t\t\tfor (int x = 0; x < 2; x++) {\n\t\t\t\t\t\tfor (int y = 0; y < 2; y++) {\n\t\t\t\t\t\t\tif (state[d][x][y] != '#') {\n\t\t\t\t\t\t\t\tfilled = false;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\tif (filled) {\n\t\t\t\t\t\tfor (int x = 0; x < 2; x++) {\n\t\t\t\t\t\t\tfor (int y = 0; y < 2; y++) {\n\t\t\t\t\t\t\t\tstate[d][x][y] = '.';\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t\tdel++;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tif (d != td) swap(state[d], state[td]);\n\t\t\t\t\t\ttd++;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\ttmp /= 9;\n\t\t\t}\n\t\t\tif (ok) res = max(res, del);\n\t\t}\n\t\tcout << res << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3176, "score_of_the_acc": -0.2803, "final_rank": 7 }, { "submission_id": "aoj_2701_2430421", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i,x,y) for(int i=(x); i < (y); i++)\n#define debug(x) #x << \"=\" << (x)\n\n#ifdef DEBUG\n#define _GLIBCXX_DEBUG\n#define print(x) std::cerr << debug(x) << \" L:\" << __LINE__ << \")\" << std::endl;\n#else\n#define print(x)\n#endif\n\nconst int inf=1e9;\nconst int64_t inf64=1e18;\nconst double eps=1e-9;\n\nusing i64=int64_t;\n\n/*\nvector<vector<vector<char>>> move_right(vector<vector<vector<char>>> v){\n\tvector<vector<vector<char>>> res(2,vector<vector<char>>(2,vector<char>(2,'.')));\n\tif(v.empty()){\n\t\tres.clear();\n\t\treturn res;\n\t}\n\n\trep(h,0,2) rep(y,0,2) if(v[h][1][y]=='#'){\n\t\tres.clear();\n\t\treturn res;\n\t}\n\n\trep(h,0,2) rep(y,0,2) res[h][1][y]=v[h][0][y];\n\treturn res;\n}\n\nvector<vector<vector<char>>> move_up(vector<vector<vector<char>>> v){\n\tvector<vector<vector<char>>> res(2,vector<vector<char>>(2,vector<char>(2,'.')));\n\tif(v.empty()){\n\t\tres.clear();\n\t\treturn res;\n\t}\n\n\trep(h,0,2) rep(x,0,2) if(v[h][x][1]=='#'){\n\t\tres.clear();\n\t\treturn res;\n\t}\n\n\trep(h,0,2) rep(x,0,2) res[h][x][1]=v[h][x][0];\n\treturn res;\n}\n*/\n\nvector<vector<vector<char>>> move(vector<vector<vector<char>>> v,int dx,int dy){\n\tvector<vector<vector<char>>> res(2,vector<vector<char>>(2,vector<char>(2,'.')));\n\tif(v.empty()){\n\t\tres.clear();\n\t\treturn res;\n\t}\n\n\trep(h,0,2){\n\t\trep(x,0,2){\n\t\t\trep(y,0,2){\n\t\t\t\tint x1=x+dx,y1=y+dy;\n\t\t\t\tif(x1<0 or 2<=x1 or y1<0 or 2<=y1){\n\t\t\t\t\tif(v[h][x][y]=='#'){\n\t\t\t\t\t\tres.clear();\n\t\t\t\t\t\treturn res;\n\t\t\t\t\t} \n\t\t\t\t}else res[h][x1][y1]=v[h][x][y];\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\n\nbool ok(vector<vector<vector<char>>>& c,vector<vector<vector<char>>>& v,int h){\n\tif(h<=-2) return false;\n\trep(hd,0,2) rep(x,0,2) rep(y,0,2){\n\t\tif(v[hd][x][y]=='.') continue;\n\t\tif(h+hd<0) return false;\n\t\telse if(c[h+hd][x][y]=='#') return false;\n\t}\n\treturn true;\n}\n\nvector<vector<vector<char>>> merge(vector<vector<vector<char>>>& c,vector<vector<vector<char>>>& v,int h){\n\tvector<vector<vector<char>>> nc=c;\n\trep(hd,0,2) rep(x,0,2) rep(y,0,2){\n\t\t//assert(nc[h+hd][x][y]=='.' or v[hd][x][y]=='.');\n\t\tif(v[hd][x][y]=='#') nc[h+hd][x][y]='#';\n\t}\n\treturn nc;\n}\n\nvoid shift(vector<vector<vector<char>>> &c,int h){\n\trep(i,h,63){\n\t\trep(x,0,2){\n\t\t\trep(y,0,2){\n\t\t\t\tc[i][x][y]=c[i+1][x][y];\n\t\t\t}\n\t\t}\n\t}\n\trep(x,0,2) rep(y,0,2) c[63][x][y]='.';\n}\n\npair<int,vector<vector<vector<char>>>> erase(vector<vector<vector<char>>> &c){\n\tint cnt=0;\n\tauto nc=c;\n\tint top=-1;\n\tfor(int h=63; h>=0; --h) rep(x,0,2) rep(y,0,2) if(nc[h][x][y]=='#'){\n\t\ttop=h;\n\t\tgoto A;\n\t}\n\tA:\n\tprint(top);\n\tfor(int h=top; h>=0; --h){\n\t\tbool f=true;\n\t\trep(x,0,2) rep(y,0,2) if(nc[h][x][y]=='.'){\n\t\t\tf=false;\n\t\t\tbreak;\n\t\t}\n\t\tif(f){\n\t\t\tshift(nc,h);\n\t\t\t++cnt;\n\t\t}\n\t}\n\treturn make_pair(cnt,nc);\n}\n\nvoid solve(int H,int N){\n\tvector<vector<vector<char>>> c(64,vector<vector<char>>(2,vector<char>(2,'.')));\n\trep(h,0,H) rep(x,0,2) rep(y,0,2) cin >> c[h][x][y];\n\tvector<vector<vector<vector<char>>>> b(N,vector<vector<vector<char>>>(2,vector<vector<char>>(2,vector<char>(2,'.'))));\n\trep(i,0,N){\n\t\trep(h,0,2) rep(x,0,2) rep(y,0,2) cin >> b[i][h][x][y];\n\t}\n\n\tfunction<int(vector<vector<vector<char>>>&,int)> dfs=[&](vector<vector<vector<char>>>& c,int i){\n\t\tif(i==N) return 0;\n\t\tint res=0;\n\t\trep(dx,-1,2){\n\t\t\trep(dy,-1,2){\n\t\t\t\tauto nb=move(b[i],dx,dy);\n\t\t\t\tif(!nb.empty()){\n\t\t\t\t\tprint(dx);\n\t\t\t\t\tprint(dy);\n\t\t\t\t\tint h=32;\n\t\t\t\t\tassert(ok(c,nb,h));\n\t\t\t\t\twhile(ok(c,nb,h)) --h;\n\t\t\t\t\tprint(h);\n\t\t\t\t\t++h;\n\t\t\t\t\tassert(ok(c,nb,h));\n\t\t\t\t\tauto nc=merge(c,nb,h);\n\t\t\t\t\t/*\n\t\t\t\t\trep(i,0,4){\n\t\t\t\t\t\trep(x,0,2){\n\t\t\t\t\t\t\trep(y,0,2){\n\t\t\t\t\t\t\t\tcerr << nc[i][x][y];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tcerr << endl;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tcerr << endl;\n\t\t\t\t\t}\n\t\t\t\t\t*/\n\t\t\t\t\tauto p=erase(nc);\n\t\t\t\t\tprint(p.first);\t\n\t\t\t\t\t/*\n\t\t\t\t\trep(i,0,4){\n\t\t\t\t\t\trep(x,0,2){\n\t\t\t\t\t\t\trep(y,0,2){\n\t\t\t\t\t\t\t\tcerr << p.second[i][x][y];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tcerr << endl;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tcerr << endl;\n\t\t\t\t\t}\n\t\t\t\t\t*/\n\t\t\t\t\tres=max(res,p.first+dfs(p.second,i+1));\n\t\t\t\t}\t\t\t\n\t\t\t}\n\t\t}\n\t\t/*\n\t\t{\n\t\t\tauto nb=b[i];\n\t\t\tif(!nb.empty()){\n\t\t\t\tint h=32;\n\t\t\t\twhile(ok(c,nb,h)) --h;\n\t\t\t\t++h;\n\t\t\t\tauto nc=merge(c,nb,h);\n\t\t\t\tauto p=erase(nc);\n\t\t\t\tres=max(res,p.first+dfs(p.second,i+1));\n\t\t\t}\t\n\t\t}\n\t\t{\n\t\t\tauto nb=move_right(b[i]);\n\t\t\tif(!nb.empty()){\n\t\t\t\tint h=32;\n\t\t\t\twhile(ok(c,nb,h)) --h;\n\t\t\t\t++h;\n\t\t\t\tauto nc=merge(c,nb,h);\n\t\t\t\tauto p=erase(nc);\n\t\t\t\tres=max(res,p.first+dfs(p.second,i+1));\n\t\t\t}\n\t\t}\n\t\t{\n\t\t\tauto nb=move_up(b[i]);\n\t\t\tif(!nb.empty()){\n\t\t\t\tint h=32;\n\t\t\t\twhile(ok(c,nb,h)) --h;\n\t\t\t\t++h;\n\t\t\t\tauto nc=merge(c,nb,h);\n\t\t\t\tauto p=erase(nc);\n\t\t\t\tres=max(res,p.first+dfs(p.second,i+1));\n\t\t\t}\n\t\t}\n\t\t{\n\t\t\tauto nb=move_up(move_right(b[i]));\n\t\t\tif(!nb.empty()){\n\t\t\t\tint h=32;\n\t\t\t\twhile(ok(c,nb,h)) --h;\n\t\t\t\t++h;\n\t\t\t\tauto nc=merge(c,nb,h);\n\t\t\t\tauto p=erase(nc);\n\t\t\t\tres=max(res,p.first+dfs(p.second,i+1));\n\t\t\t}\n\t\t}\n\t\t*/\n\t\treturn res;\n\t};\n\n\tcout << dfs(c,0) << endl;\n}\n\nint main() {\n\tstd::cin.tie(0);\n\tstd::ios::sync_with_stdio(false);\n\tcout.setf(ios::fixed);\n\tcout.precision(16);\n\tfor(;;){\n\t\tint H,N;\n\t\tcin >> H >> N;\n\t\tif(H==0 and N==0) break;\n\t\tsolve(H,N);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3196, "score_of_the_acc": -0.2688, "final_rank": 5 }, { "submission_id": "aoj_2701_1864332", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld = long double;\ntemplate<class T>\nusing Table = vector<vector<T>>;\nconst ld eps=1e-9;\n\n//// < \"D:\\D_Download\\Visual Studio 2015\\Projects\\programing_contest_c++\\Debug\\a.txt\" > \"D:\\D_Download\\Visual Studio 2015\\Projects\\programing_contest_c++\\Debug\\b.answer\"\nint dx[] = { 0,0,0,1,1,1,-1,-1,-1 };\nint dy[] = { -1,0,1,-1,0,1,-1,0,1 };\n//50~\nint main() {\n\twhile (1) {\n\t\tint H, N; cin >> H >> N;\n\t\tif (!H)break;\n\t\tvector<vector<vector<int>>>field(30, vector<vector<int>>(2, vector<int>(2)));\n\t\tvector<vector<vector<vector<int>>>>blocks(N, vector<vector<vector<int>>>(2, vector<vector<int>>(2, vector<int>(2))));\n\t\tmap<char, int>mp;\n\t\tmp['#'] = 1;\n\t\tmp['.'] = 0;\n\t\tfor (int z = 0; z< H; ++z) {\n\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\tstring st; cin >> st;\n\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\tfield[z][y][x] = mp[st[x]];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor (int i = 0; i < N; ++i) {\n\t\t\tfor (int z = 0; z < 2; ++z) {\n\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\tstring st; cin >> st;\n\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\tblocks[i][z][y][x] = mp[st[x]];\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tbool flag = true;\n\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\tif (blocks[i][0][y][x])flag = false;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (flag) {\n\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\tblocks[i][0][y][x] = blocks[i][1][y][x];\n\t\t\t\t\t\tblocks[i][1][y][x] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint amax = 1;\n\t\tfor (int l = 0; l < N; ++l)amax *= 9;\n\t\tint ans = 0;\n\t\tfor (int i = 0; i < amax; ++i) {\n\t\t\tbool ok = true;\n\t\t\tvector<vector<vector<int>>>nfield(field);\n\t\t\tint num(i);\n\t\t\tvector<int>a(3);\n\t\t\tint erase_num = 0;\n\t\t\tfor (int j = 0; j < N; ++j) {\n\t\t\t\tconst int way = num % 9;\n\t\t\t\tnum /= 9;\n\t\t\t\tvector<vector<vector<int>>>nblock(2, vector<vector<int>>(2, vector<int>(2)));\n\t\t\t\tfor (int z = 0; z < 2; ++z) {\n\t\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\t\tif (blocks[j][z][y][x]) {\n\t\t\t\t\t\t\t\tconst int nz(z);\n\t\t\t\t\t\t\t\tconst int ny(y + dy[way]);\n\t\t\t\t\t\t\t\tconst int nx(x + dx[way]);\n\t\t\t\t\t\t\t\tif (ny < 0 || ny >= 2 || nx < 0 || nx >= 2) {\n\t\t\t\t\t\t\t\t\tok = false;\n\t\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t\tnblock[nz][ny][nx] = true;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif (!ok)break;\n\t\t\t\tint fallh = 0;\n\t\t\t\tfor (int h = 20; h > 0; h--) {\n\t\t\t\t\tfor (int z = 0; z < 2; ++z) {\n\t\t\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\t\t\tif (nblock[z][y][x]) {\n\t\t\t\t\t\t\t\t\tif (nfield[z + h - 1][y][x]) {\n\t\t\t\t\t\t\t\t\t\tfallh = h;\n\t\t\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\tif (fallh)break;\n\t\t\t\t}\n\t\t\t\tfor (int z = 0; z < 2; ++z) {\n\t\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\t\tif (nblock[z][y][x]&&nfield[z + fallh][y][x])assert(false);\n\t\t\t\t\t\t\tnfield[z + fallh][y][x] ^= nblock[z][y][x];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t//?¶????\n\t\t\t\t{\n\t\t\t\t\tfor (int z = 0; z < 30; ++z) {\n\t\t\t\t\t\tbool flag = true;\n\t\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\t\t\t\tif (!nfield[z][y][x]) {\n\t\t\t\t\t\t\t\t\tflag = false;\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t\tif (flag) {\n\t\t\t\t\t\t\terase_num++;\n\t\t\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\t\t\t\t\tnfield[z][y][x] = 0;\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tfor (int k = 0; k < 30; ++k) {\n\t\t\t\t\tfor (int z = 0; z < 29; ++z) {\n\t\t\t\t\t\tbool flag = true;\n\t\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\t\t\t\tif (nfield[z][y][x]) {\n\t\t\t\t\t\t\t\t\tflag = false;\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t\tif (flag) {\n\t\t\t\t\t\t\tfor (int x = 0; x < 2; ++x) {\n\t\t\t\t\t\t\t\tfor (int y = 0; y < 2; ++y) {\n\t\t\t\t\t\t\t\t\tnfield[z][y][x] = nfield[z + 1][y][x];\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\t\t\t\n\t\t\tif (ok) {\n\t\t\t\tans = max(ans, erase_num);\n\t\t\t}\n\t\t}\n\t\tcout << ans << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3160, "score_of_the_acc": -0.342, "final_rank": 17 }, { "submission_id": "aoj_2701_1856084", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint H,N,ans;\nchar t[4][4][30];\nchar u[4][4][30];\nchar v[4][4][30];\nchar p[3][2][2][2];\n\nvoid init(){\n for(int i=0;i<4;i++)\n for(int j=0;j<4;j++)\n for(int k=0;k<30;k++){\n t[i][j][k]='.';\n if(i==0||j==0||k==29)t[i][j][k]='#';\n if(i==3||j==3)t[i][j][k]='#';\n }\n}\n\nbool check(int id,int x,int y,int z){\n if(z==29)return false;\n for(int i=0;i<2;i++){\n for(int j=0;j<2;j++){\n for(int k=0;k<2;k++){\n if(p[id][i][j][k]=='#'&&\n t[x+i][y+j][z+k]=='#')return false;\n }\n }\n }\n return true;\n}\n\nint dx[3],dy[3];\n\nvoid solve(){\n for(int i=0;i<4;i++)\n for(int j=0;j<4;j++)\n for(int k=0;k<30;k++)\n t[i][j][k]=v[i][j][k];\n \n int cnt=0;\n for(int T=0;T<N;T++){\n if(!check(T,dx[T],dy[T],0))return;\n int H=0;\n while( check(T,dx[T],dy[T],H+1) )H++;\n \n for(int i=0;i<2;i++)\n for(int j=0;j<2;j++)\n for(int k=0;k<2;k++)\n if(p[T][i][j][k]=='#'){\n assert(t[dx[T]+i][dy[T]+j][H+k]=='.');\n t[dx[T]+i][dy[T]+j][H+k]=p[T][i][j][k];\n }\n \n for(int i=0;i<4;i++)\n for(int j=0;j<4;j++)\n for(int k=0;k<30;k++)\n u[i][j][k]=t[i][j][k];\n\n init();\n \n int C=28;\n for(int k=28;k>=0;k--){\n int count=0;\n for(int i=1;i<=2;i++)\n for(int j=1;j<=2;j++)\n if(u[i][j][k]=='#')count++;\n if(count==4){\n cnt++;\n continue;\n }\n for(int i=1;i<=2;i++)\n for(int j=1;j<=2;j++)\n t[i][j][C]=u[i][j][k];\n C--;\n }\n }\n\n ans=max(ans,cnt);\n\n}\n\nvoid dfs(int cnt){\n if(cnt==N){\n solve();\n }else{\n for(int i=0;i<3;i++){\n for(int j=0;j<3;j++){\n dx[cnt]=i;\n dy[cnt]=j;\n dfs(cnt+1);\n }\n }\n }\n}\n\nint main(){\n while(1){\n cin>>H>>N;\n if(H==0&&N==0)break;\n init();\n for(int k=28;k>28-H;k--)\n for(int i=1;i<=2;i++)\n for(int j=1;j<=2;j++)\n cin>>t[i][j][k];\n\n for(int a=0;a<N;a++){\n for(int k=0;k<2;k++)\n for(int i=0;i<2;i++)\n for(int j=0;j<2;j++)\n cin>>p[a][i][j][1-k];\n }\n for(int i=0;i<4;i++)\n for(int j=0;j<4;j++)\n for(int k=0;k<30;k++)\n v[i][j][k]=t[i][j][k];\n ans=0;\n dfs(0);\n cout<<ans<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 1164, "score_of_the_acc": -0.0142, "final_rank": 1 } ]
aoj_2702_cpp
Alternate Escape アリスハウス AliceとBobはボードゲームで遊んでいる. このボードゲームは, H 行 W 列のマス目が書かれた盤面と1つのコマを使って遊ぶ. このゲームでは,盤面の左上のマスを1行1列目として,下方向に行を,右方向に列を数える. マス同士が隣接する辺と,マスが盤面の外側と接する辺には壁を置けるようになっていて,ゲームの開始時にはそれぞれの辺について壁の有無が指定されている.また,ゲームの開始時には,コマが盤面のマスのいずれか1箇所に置かれている. AliceとBobは交互に手番をこなすことでゲームを進める. ゲームはAliceの手番から始まる. Aliceの目的は,コマを盤面の外まで動かして,迷路から脱出させることである. Aliceが1手でできる行動は,コマを今ある位置のマスから,上下左右に隣接するマスのうち,間の辺に壁がない方向のいずれかに移動させることである. コマの今あるマスが盤面の外側に接していて,間の辺に壁がない場合,そこからコマを脱出させることができる. 一方,Bobの目的は,コマの脱出を妨害することである. Bobの手番では,壁の有無を反転させるか,何もせずに手番を終えるかを選ぶことができる. 壁の有無を反転させることを選んだ場合,盤面のすべてのマスの辺について,壁の有無が反転する. 盤面の初期状態と,コマの初期位置が与えられるので,AliceとBobの両者が最適な行動をとったときに,Aliceがコマを盤面から脱出させられるか判定せよ. ただし,Aliceの手番においてコマが4方向とも壁で囲まれてしまった場合は脱出できないとみなす. Input 入力は40個以下のデータセットからなる. それぞれのデータセットは次の形式で与えられる. H W R C Horz 1,1 Horz 1,2 ... Horz 1, W Vert 1,1 Vert 1,2 ... Vert 1, W +1 ... Vert H ,1 Vert H ,2 ... Vert H , W +1 Horz H +1,1 Horz H +1,2 ... Horz H +1, W 1行目には4つの整数 H , W (1 ≤ H , W ≤ 500), R , C (1 ≤ R ≤ H , 1 ≤ C ≤ W ) が与えられる. これらは盤面が H 行 W 列のマス目からなり,コマの初期位置が R 行 C 列目であることを表す. 続く 2 H + 1 行には盤面の初期状態が与えられる. 2 i 行目 (1 ≤ i ≤ H + 1) は, W 個の整数 Horz i ,1 , Horz i ,2 , ..., Horz i , W を含む. Horz i , j は, i 行 j 列目のマスの上側の辺に壁が有るとき1で,無いとき0である. ただし, Horz H +1, j は, H 行 j 列目のマスの下側の辺における壁の有無を表す. 2 i + 1 行目 (1 ≤ i ≤ H ) は, W + 1 個の整数 Vert i ,1 , Vert i ,2 , ..., Vert i , W +1 を含む. Vert i , j は, i 行 j 列目のマスの左側の辺に壁が有るとき1で,無いとき0である. ただし, Vert i , W +1 は, i 行 W 列目のマスの右側の辺における壁の有無を表す. 入力の終わりは,4つのゼロからなる1行で示される. Output それぞれのデータセットについて,Aliceがコマを盤面から脱出させられる場合は" Yes ",できない場合は" No "と1行に出力せよ. Sample Input 3 3 2 2 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 3 3 2 2 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 3 1 1 1 1 1 1 0 0 1 1 0 1 2 2 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Output for Sample Input Yes No Yes No Hint 1つ目のデータセットではAliceは次のように動くことでコマを脱出させられる。 初期状態 Aliceがコマを左に動かす Bobは脱出を阻止するために壁を反転させる Aliceがコマを上に動かす Bobが次の手番で壁の有無を反転させてもさせなくても、 Aliceは次の手番でコマを脱出させられる。
[ { "submission_id": "aoj_2702_10946050", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <vector>\n#include <iostream>\n\nusing namespace std;\n\nint n, m, row, col;\n\nconst int N = 600;\n\nint ver[N][N];\nint hor[N][N];\nint visit[N][N][2][2];\nint deg[N][N][2][2];\n\nstruct Node {\n\tint r, c, who, rev;\n\tNode(int r, int c, int who, int rev) : r(r), c(c), who(who), rev(rev) {}\n\tNode() {}\n};\n\nvector<Node> q;\n\t\t\nvoid push(Node t) {\n\tif (t.r < 0 || t.r >= n || t.c < 0 || t.c >= m) return ;\n\tif (visit[t.r][t.c][t.who][t.rev]) return ;\n\tvisit[t.r][t.c][t.who][t.rev] = 1;\n\tq.push_back(t);\n}\n\nint main() {\n\twhile (scanf(\"%d %d %d %d\", &n, &m, &row, &col) == 4 && (n || m || row || col)) {\n\t\tfor (int i = 0; i < n * 2 + 1; i++) {\n\t\t\tif (i % 2 == 0) {\n\t\t\t\tfor (int j = 0; j < m; j++) scanf(\"%d\", &ver[i >> 1][j]), ver[i >> 1][j] ^= 1;\n\t\t\t} else {\n\t\t\t\tfor (int j = 0; j < m + 1; j++) scanf(\"%d\", &hor[i >> 1][j]), hor[i >> 1][j] ^= 1;\n\t\t\t}\n\t\t}\n\t\trow--; col--;\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tfor (int j = 0; j < m; j++) {\n\t\t\t\tfor (int who = 0; who < 2; who++) {\n\t\t\t\t\tfor (int rev = 0; rev < 2; rev++) {\n\t\t\t\t\t\tvisit[i][j][who][rev] = deg[i][j][who][rev] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tq.clear();\n\t\tfor (int r = 0; r < n; r++) {\n\t\t\tfor (int c = 0; c < m; c++) {\n\t\t\t\tfor (int rev = 0; rev < 2; rev++) {\n\t\t\t\t\tbool up = ver[r][c] ^ rev;\n\t\t\t\t\tbool down = ver[r + 1][c] ^ rev;\n\t\t\t\t\tbool left = hor[r][c] ^ rev;\n\t\t\t\t\tbool right = hor[r][c + 1] ^ rev;\n\t\t\t\t\tif (\n\t\t\t\t\t(r == 0 && up)\n\t\t\t\t\t|| (r == n - 1 && down)\n\t\t\t\t\t|| (c == 0 && left)\n\t\t\t\t\t|| (c == m - 1 && right)) {\n\t\t\t\t\t\tq.push_back(Node(r, c, 0, rev));\n\t\t\t\t\t\tvisit[r][c][0][rev] = 1;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\tbool flag = false;\n\t\tfor (int head = 0; head < q.size(); head++) {\n\t\t\tNode t = q[head];\n\t\t\t//printf(\"r = %d c = %d who = %d rev = %d\\n\", t.r, t.c, t.who, t.rev);\n\t\t\tif (t.r == row && t.c == col && t.who == 0 && t.rev == 0) {\n\t\t\t\tputs(\"Yes\");\n\t\t\t\tflag = true;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tif (t.who == 0) {\n\t\t\t\tt.who = 1;\n\t\t\t\tfor (t.rev = 0; t.rev < 2; t.rev++) {\n\t\t\t\t\tif (++deg[t.r][t.c][t.who][t.rev] == 2) {\n\t\t\t\t\t\tq.push_back(t);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\tbool up = ver[t.r][t.c] ^ t.rev;\n\t\t\t\tbool down = ver[t.r + 1][t.c] ^ t.rev;\n\t\t\t\tbool left = hor[t.r][t.c] ^ t.rev;\n\t\t\t\tbool right = hor[t.r][t.c + 1] ^ t.rev;\n\t\t\t\tif (up) push(Node(t.r - 1, t.c, 0, t.rev));\n\t\t\t\tif (down) push(Node(t.r + 1, t.c, 0, t.rev));\n\t\t\t\tif (left) push(Node(t.r, t.c - 1, 0, t.rev));\n\t\t\t\tif (right) push(Node(t.r, t.c + 1, 0, t.rev));\n\t\t\t}\n\t\t}\n\t\t\n\t\tif (!flag) puts(\"No\");\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 34924, "score_of_the_acc": -0.4302, "final_rank": 16 }, { "submission_id": "aoj_2702_10665615", "code_snippet": "// (⁠◕⁠ᴗ⁠◕⁠✿⁠)\n\n// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define rep(i, n) for (ll i = 0; i < (n); i++)\n#define srep(i, s, n) for (ll i = s; i < (n); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\nusing namespace std;\ntemplate<typename T> using vc = vector<T>;\ntemplate<typename T> using vv = vc<vc<T>>;\ntemplate<typename T> using vvv = vv<vc<T>>;\nusing vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;\nusing ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;\nusing ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nconst ld pi = 3.141592653589793;\nconst int inf = 0x3f3f3f3f;\nconst ll INF = 0x3f3f3f3f3f3f3f3f;\n// const ll mod = 1000000007;\nconst ll mod = 998244353;\ninline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }\n\n#define debug(var) do { cout << #var << \" :\\n\"; view(var); } while(0)\ntemplate<typename T>void view(const T& e) {cout << e;}\ntemplate<typename T1, typename T2>void view(const pair<T1, T2>& p) {cout << \"{\" << p.first << \", \" << p.second << \"}\";}\ntemplate<typename T>void view(const vc<T>& v) {for (const auto& e : v) {view(e);cout << \" \";} cout << endl;}\ntemplate<typename T>void view(const vv<T>& vv) {for (const auto& v : vv) {view(v);cout << \" \";} cout << endl;}\ntemplate<typename T>void view(const set<T>& s) {for (const auto& e : s) {view(e);cout << \" \";} cout << endl;}\ntemplate<typename T>void view(const unordered_set<T>& s) {for (const auto& e : s) {view(e);cout << \" \";} cout << endl;}\ntemplate<typename T1, typename T2>void view(const map<T1, T2>& mp){for (const auto& e : mp) {view(e);cout << \" \";} cout << endl;}\n\nint H, W, r, c;\n\nint dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\n\nvoid solve(){\n vvi horz(H + 1, vi(W));\n vvi vert(H, vi(W + 1));\n rep(i, H){\n rep(j, W) cin >> horz[i][j];\n rep(j, W + 1) cin >> vert[i][j];\n }\n rep(j, W) cin >> horz[H][j];\n\n vvi A(H + 2, vi(W + 2, 0));\n rep(i, H + 2){\n A[i][0] = 1;\n A[i][W + 1] = 1;\n }\n rep(j, W + 2){\n A[0][j] = 1;\n A[H + 1][j] = 1;\n }\n auto ok = [&](int i, int j){\n bool a = false, b = false;\n if (!horz[i - 1][j - 1] && A[i - 1][j]) a = true;\n if (!horz[i][j - 1] && A[i + 1][j]) a = true;\n if (!vert[i - 1][j - 1] && A[i][j - 1]) a = true;\n if (!vert[i - 1][j] && A[i][j + 1]) a = true;\n\n if (horz[i - 1][j - 1] && A[i - 1][j]) b = true;\n if (horz[i][j - 1] && A[i + 1][j]) b = true;\n if (vert[i - 1][j - 1] && A[i][j - 1]) b = true;\n if (vert[i - 1][j] && A[i][j + 1]) b = true;\n return a && b;\n };\n auto ok_ = [&](int i, int j){\n bool a = false;\n if (!horz[i - 1][j - 1] && A[i - 1][j]) a = true;\n if (!horz[i][j - 1] && A[i + 1][j]) a = true;\n if (!vert[i - 1][j - 1] && A[i][j - 1]) a = true;\n if (!vert[i - 1][j] && A[i][j + 1]) a = true;\n return a;\n };\n deque<pair<int, int>> q;\n for (auto i : {1, H}) srep(j, 1, W + 1) if (!A[i][j] && ok(i, j)){\n q.push_back({i, j});\n A[i][j] = 1;\n }\n srep(i, 1, H + 1) for (auto j : {1, W}) if (!A[i][j] && ok(i, j)){\n q.push_back({i, j});\n A[i][j] = 1;\n }\n while (!q.empty()){\n auto [i, j] = q.front(); q.pop_front();\n rep(k, 4){\n int ni = i + dx[k], nj = j + dy[k];\n if (!A[ni][nj] && ok(ni, nj)){\n A[ni][nj] = 1;\n q.push_back({ni, nj});\n }\n }\n }\n cout << (ok_(r, c) ? \"Yes\" : \"No\") << endl;\n}\n\nint main(){\n while (true){\n cin >> H >> W >> r >> c;\n if (H == 0) break;\n solve();\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 6412, "score_of_the_acc": -0.0511, "final_rank": 4 }, { "submission_id": "aoj_2702_10636766", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\n#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)\n#define rrep(i,start,end) for (ll i = start;i >= (ll)(end);i--)\n#define repn(i,end) for(ll i = 0; i <= (ll)(end); i++)\n#define reps(i,start,end) for(ll i = start; i < (ll)(end); i++)\n#define repsn(i,start,end) for(ll i = start; i <= (ll)(end); i++)\n#define each(p,a) for(auto &p:a)\ntypedef vector<ll> vll;\ntypedef vector<pair<ll ,ll>> vpll;\ntypedef vector<vector<ll>> vvll;\ntypedef set<ll> sll;\ntypedef map<ll , ll> mpll;\ntypedef pair<ll ,ll> pll;\ntypedef tuple<ll , ll , ll> tpl3;\n#define LL(...) ll __VA_ARGS__; input(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__; input(__VA_ARGS__)\n#define Str(...) string __VA_ARGS__; input(__VA_ARGS__)\n#define Ch(...) char __VA_ARGS__; input(__VA_ARGS__)\n#define all(a) (a).begin(),(a).end()\n#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );\n#define sz(x) (ll)x.size()\n// << std::fixed << std::setprecision(10)\nconst ll INF = 1LL << 60;\nconst ld EPS = 1e-9;\n \nll lceil(ll a,ll b){if(a%b==0){return a/b;}if(a>=0){return (a/b)+1;}else{return -((-a)/b);}}\nll lfloor(ll a,ll b){if(a%b==0){return a/b;}if(a>=0){return (a/b);}else{return -((-a)/b)-1;}}\ninline ll positive_mod(ll a,ll m){return (a % m + m)%m;}\ninline ll popcnt(ull a){ return __builtin_popcountll(a);}\n//0indexed\ninline ll topbit(ll a){assert(a != 0);return 63 - __builtin_clzll(a);}\ninline ll smlbit(ll a){assert(a != 0);return __builtin_ctzll(a);}\ntemplate<class T> bool chmin(T& a, T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T> bool chmax(T& a, T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> std::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T> std::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\ntemplate<typename T1, typename T2>std::ostream &operator<< (std::ostream &os, std::pair<T1,T2> p){os << \"{\" << p.first << \",\" << p.second << \"}\";return os;}\ntemplate<class... T>void input(T&... a){(cin >> ... >> a);}\nvoid print(){cout << endl;}\ntemplate<class T, class... Ts>void print(const T& a, const Ts&... b){cout << a;((cout << ' ' << b), ...);cout << endl;}\ntemplate<class T> void pspace(const T& a){ cout << a << ' ';}\nvoid perr(){cerr << endl;}\ntemplate<class T, class... Ts>void perr(const T& a, const Ts&... b){cerr << a;((cerr << ' ' << b), ...);cerr << endl;}\nvoid yes(bool i = true){ return print(i?\"yes\":\"no\"); }\nvoid Yes(bool i = true){ return print(i?\"Yes\":\"No\"); }\nvoid YES(bool i = true){ return print(i?\"YES\":\"NO\"); }\ntemplate <class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v) e++;return v;}\ntemplate <class T> vector<T> operator++(vector<T> &v, signed) {auto res = v;for(auto &e : v) e++;return res;}\ntemplate <class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v) e--;return v;}\ntemplate <class T> vector<T> operator--(vector<T> &v, signed) {auto res = v;for(auto &e : v) e--;return res;}\n//grid探索用\nbool isin(ll now_i,ll now_j,ll h,ll w){return (0<=now_i && now_i < h && 0 <= now_j && now_j < w);}\n\nll lpow(ll x,ll n){ll ans = 1;while(n >0){if(n & 1)ans *= x;x *= x;n >>= 1;}return ans;}\nll Modlpow(ll x,ll n,ll m){ll ans = 1;ll a = x%m;while(n >0){if(n & 1){ans *= a;ans%= m;}a *= a;a %= m;n >>= 1;}return ans;} \nconst ll MOD9 = 998244353LL;\nconst ll MOD10 = 1000000007LL;\n\nvector<ll> _ta = {0,1,0,-1,1,1,-1,-1};\nvector<ll> _yo = {1,0,-1,0,1,-1,1,-1};\n\n\n// for AOJ or ICPC or etc..\ntemplate<class Tp>\nbool zero (const Tp &x) {\n return x == 0;\n}\n\ntemplate<class Tp, class... Args>\nbool zero (const Tp &x, const Args& ...args) {\n return zero(x) and zero(args...);\n}\n\n\nvoid solve(ll h,ll w,ll r,ll c){\n r--;c--;\n vector<vvll> g(h,vvll(w,vll(4)));\n {\n vll yoko(w);\n cin >> yoko;\n rep(j,w){\n g[0][j][3] = yoko[j];\n }\n }\n rep(i,h){\n vll tate(w+1);\n cin>> tate;\n vll yoko(w);\n cin >> yoko;\n rep(j,w){\n g[i][j][2] = tate[j];\n g[i][j][0] = tate[j+1];\n g[i][j][1] = yoko[j];\n if(i < h-1){\n g[i+1][j][3] = yoko[j];\n }\n }\n }\n vvll find(h,vll(w,INF));\n queue<pll> que;\n rep(i,h)rep(j,w){\n vll bi;\n rep(k,4){\n ll nny = i + _ta[k];\n ll nnx = j + _yo[k];\n if(!isin(nny,nnx,h,w) or find[nny][nnx] < INF){\n bi.push_back(g[i][j][k]);\n }\n }\n if(!bi.empty() && *min_element(all(bi)) == 0 && *max_element(all(bi)) == 1){\n find[i][j] = 0;\n que.push({i,j});\n }\n }\n while(!que.empty()){\n auto[nowy,nowx] = que.front();\n que.pop();\n rep(p,4){\n ll ny = nowy + _ta[p];\n ll nx = nowx + _yo[p];\n if(isin(ny,nx,h,w) && find[ny][nx] == INF){\n vll bi;\n rep(k,4){\n ll nny = ny + _ta[k];\n ll nnx = nx + _yo[k];\n if(!isin(nny,nnx,h,w) or find[nny][nnx] < INF){\n bi.push_back(g[ny][nx][k]);\n }\n }\n if(*min_element(all(bi)) == 0 && *max_element(all(bi)) == 1){\n find[ny][nx] = find[nowy][nowx] + 1;\n que.push({ny,nx});\n }\n }\n }\n }\n //そもそも1手で出れる\n if(r== 0 && g[r][c][3] == 0){\n print(\"Yes\");return ;\n }\n if(r==h-1&&g[r][c][1]==0){\n print(\"Yes\");return ;\n }\n if(c==0&&g[r][c][2]==0){\n print(\"Yes\");return ;\n }\n if(c==w-1&&g[r][c][0]==0){\n print(\"Yes\");return ;\n }\n Yes(find[r][c] < INF);\n}\n\nint main(){\n ios::sync_with_stdio(false);cin.tie(nullptr);\n while(true){\n LL(h,w,r,c);\n if(zero(h,w,r,c))break;\n solve(h,w,r,c);\n }\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 23108, "score_of_the_acc": -0.2722, "final_rank": 13 }, { "submission_id": "aoj_2702_10571095", "code_snippet": "#ifndef ONLINE_JUDGE\n#define _GLIBCXX_DEBUG\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\n#include <atcoder/all>\nusing namespace atcoder;\n// #include <boost/rational.hpp>\n// using namespace boost;\n// using rat = rational<long long int>;\nusing mint = modint998244353;\n// using mint = modint1000000007;\n// using mint = mint;\nusing ll = long long;\nusing ld = long double;\nusing ull = uint64_t;\nusing pll = pair<ll, ll>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vpll = vector<pll>;\nusing vvpll = vector<vpll>;\nusing vm = vector<mint>;\nusing vvm = vector<vm>;\nusing vvvm = vector<vvm>;\nusing vstr = vector<string>;\n#define v(T) vector<T>\n#define vv(T) vector<vector<T>>\n#define vvv(T) vector<vector<vector<T>>>\n#define vvvv(T) vector<vector<vector<vector<T>>>>\n\nistream &operator>>(istream &is, mint &a){ll tmp; is >> tmp; a = tmp; return is;}\nostream &operator<<(ostream &os, const mint &a){ os << a.val(); return os; }\nstring to_string(const __int128_t &a) { if (a == 0) return \"0\"; string s = \"\"; __int128_t num = a; bool is_negative = false; if (num < 0) { is_negative = true; num = -num; } while (num > 0) { s += '0' + (num % 10); num /= 10; } if (is_negative) s += '-'; reverse(s.begin(), s.end()); return s; }\nistream &operator>>(istream &is, __int128_t &a){ string s; is >> s; a = 0; for(char c : s) { if(isdigit(c)) {a = a*10 + (c - '0'); } } if(s[0]=='-'){ a *= -1; } return is; }\nostream &operator<<(ostream &os, const __int128_t &a){ os << to_string(a); return os; }\ntemplate<class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<class T> istream &operator>>(istream &is, vector<T> &vec){ for(T &e : vec){is >> e;} return is; }\ntemplate<class T> ostream &operator<<(ostream &os, const vector<T> &vec) { for(int i = 0; i < (int)vec.size(); i++) { os << vec[i] << (i + 1 != (int)vec.size() ? \" \" : \"\"); } return os; }\n\ntemplate <class... T> constexpr auto min (T... a) { return min(initializer_list<common_type_t<T...>>{a...}); }\ntemplate <class... T> constexpr auto max (T... a) { return max(initializer_list<common_type_t<T...>>{a...}); }\ntemplate<class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> T opmin(T x, T y) { return min(x, y); }\ntemplate<class T> T einf() { return numeric_limits<T>::max(); }\ntemplate<class T> T opmax(T x, T y) { return max(x, y); }\ntemplate<class T> T eminf() { return numeric_limits<T>::min(); }\ntemplate<class T> T opsum(T x, T y) { return x + y; }\ntemplate<class T> T ezero() { return (T)0; }\n// #define maxseg(T) segtree<T, [](T x, T y){return max(x, y);}, [](){return (T)(-(1LL << 60));}>\n// #define minseg(T) segtree<T, [](T x, T y){return min(x, y);}, [](){return (T)((1LL << 60));}>\n// #define sumseg(T) segtree<T, [](T x, T y){return x + y;}, [](){return (T)(0);}>\ntemplate<class T> using minseg = segtree<T, opmin<T>, einf<T>>;\ntemplate<class T> using maxseg = segtree<T, opmax<T>, eminf<T>>;\ntemplate<class T> using sumseg = segtree<T, opsum<T>, ezero<T>>;\n// template<class T> struct v : vector<T> { using vector<T> :: vector; };\n// template<class T> struct vv : vector<v<T>> { using vector<v<T>> :: vector; };\n// template<class T> struct vvv : vector<vv<T>> { using vector<vv<T>> :: vector; };\ntemplate<class T> inline bool chmin(T& a, T b) {if(a > b){a = b; return true;} else {return false;}};\ntemplate<class T> inline bool chmax(T& a, T b) {if(a < b){a = b; return true;} else {return false;}};\n#define rep(i,n) for(ll i = 0; i < (ll)(n); i++)\n#define repr(i,n) for(ll i = (ll)(n) - 1; i >= 0; i--)\n#define REP(i, l, r) for(ll i = (ll)l; i <= (ll)(r); i++)\n#define REPR(i, l, r) for(ll i = (ll)r; i >= (ll)(l); i--)\nconst ll inf = (1 << 30);\nconst ll INF = (1LL << 60);\nconst vector<pair<ll, ll>> DIJ = {{1, 0}, {0, -1}, {-1, 0}, {0, 1}};\nvoid out(){cout<<'\\n';}\ntemplate<class T, class... Ts> void out(const T& a, const Ts&... b){ cout<<a; (cout<<... << (cout << ' ', b)); cout << '\\n';}\nvoid outf(){cout<<endl;}\ntemplate<class T, class... Ts> void outf(const T& a, const Ts&... b){ cout<<a; (cout<<... << (cout << ' ', b)); cout << endl;}\ntemplate<class T, class U> void outp(pair<T, U> a){ out((a).first, (a).second); }\ntemplate<class T, class U> void outpf(pair<T, U> a){ outf((a).first, (a).second); }\ntemplate<class T> void outv(T a){rep(i, (a).size()){ cout << (a)[i] << \" \"; } cout << endl;}\ntemplate<class T> void outvL(T a){rep(i, (a).size()){out((a)[i]);} cout << flush; }\n// template<class T> void outvv(T a){rep(i, a.size()){ rep(j, a.at(i).size()){cout << a.at(i).at(j) << \" \"; } cout << endl; }}\n// template<class T> void outvp(T a){rep(i, a.size()){ out2(a.at(i).first, a.at(i).second); }}\nvoid setpre(int a){cout << fixed << setprecision(a);}\n#define outN out(\"No\")\n#define outY out(\"Yes\")\n#define outYN(flag) out(flag ? \"Yes\" : \"No\")\n#define dame(...) {outf(__VA_ARGS__);return 0;}\n\ntemplate<class T> void read(vector<T>& vec){ for(int i = 0; i < (int)vec.size(); i++) { cin >> vec[i]; } }\ntemplate<class... T> void read(T&... a){(cin >> ... >> a);}\n#define readll(...) ll __VA_ARGS__; read(__VA_ARGS__)\n#define readvll(a, n) vector<ll> a(n); read(a)\n#define readvt(type, a, n) vector<type> a(n); read(a)\n#define readvll2(a, b, n) vector<ll> a(n), b(n); for(int lopi = 0; lopi < (int)(n); lopi++) cin >> (a)[lopi] >> (b)[lopi]\n#define readvll3(a, b, c, n) vector<ll> a(n), b(n), c(n); for(int lopi = 0; lopi < (int)(n); lopi++) cin >> (a)[lopi] >> (b)[lopi] >> (c)[lopi]\n#define readstr(...) string __VA_ARGS__; read(__VA_ARGS__)\n#define readundirG(G, N, M) G = vvll(N); rep(lopi, M) {ll a, b; cin >> a >> b; G[a-1].push_back(b-1); G[b-1].push_back(a-1);}\n#define readdirG(G, N, M) G = vvll(N); rep(lopi, M) {ll a, b; cin >> a >> b; G[a-1].push_back(b-1);}\n#define readundirwghG(G, N, M) G = vv(pll)(N); rep(lopi, M) {ll a, b, c; cin >> a >> b >> c; G[a-1].emplace_back(b-1,c); G[b-1].emplace_back(a-1, c);}\n#define readdirwghG (G, N, M) G = vv(pll)(N); rep(lopi, M) {ll a, b, c; cin >> a >> b >> c; G[a-1].emplace_back(b-1, c);}\n\n#define All(a) (a).begin(), (a).end()\ntemplate<class T> inline void sortr(T& a){ sort((a).rbegin(), (a).rend()); }\ntemplate<class T> inline vector<int> argsort(T V, bool rev = false){vector<int> res(V.size()); iota(res.begin(), res.end(), 0); sort(res.begin(), res.end(), [&](int x, int y){if(!rev){return V[x] < V[y];}else{return V[x] > V[y];}}); return res;}\ntemplate<class T, class U> inline void sort_by_idx(T& V, vector<U>& I){assert(V.size() == I.size()); T tmpv = V; for(int loopi = 0; loopi < (int)I.size(); loopi++){V[loopi] = tmpv[I.at(loopi)];}}\ntemplate<class T, class U> inline void sortp(vector<T>& v1, vector<U>& v2, bool rev1 = false, int rev2 = false){assert(v1.size() == v2.size()); vector<int> I(v1.size()); iota(I.begin(), I.end(), 0); sort(I.begin(), I.end(), [&](const int x, const int y){if(v1[x] != v1[y]){return (bool)(rev1 ^ (v1[x] < v1[y]));}else{if(v2[x]==v2[y]){return false;} return (bool)(rev2 ^ (v2[x] < v2[y]));}}); sort_by_idx(v1, I); sort_by_idx(v2, I);}\ntemplate<class T> T POW(T x, ll n) {T ret = 1; while(n > 0){if(n & 1) ret *= x; x *= x; n >>= 1;} return ret;}\nll powll(ll x, ll n){ll ret = 1; while(n > 0){if(n & 1) ret *= x; x *= x; n >>= 1;} return ret;}\ninline ll divceil(ll x, ll y) { if(x >= 0) {return(x / y + (ll)(x % y != 0)); } else { return -((-x) / y); } }\ninline ll divfloor(ll x, ll y) { if(x >= 0) { return x/y; } else { return -((-x)/y + (ll)((-x) % y != 0)); } }\ninline bool inLR(ll x, ll L, ll R){ return (L <= x && x < R); }\ninline bool inRect(ll pos_x, ll pos_y, ll rect_H, ll rect_W, ll rect_h = 0, ll rect_w = 0){ return (rect_h <= pos_x && pos_x < rect_H && rect_w <= pos_y && pos_y < rect_W); }\n\ntemplate<class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v){e++;} return v;}\ntemplate<class T> vector<T> operator++(vector<T> &v, signed) {auto res=v; for(auto &e : v){e++;} return res;}\ntemplate<class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v){e--;} return v;}\ntemplate<class T> vector<T> operator--(vector<T> &v, signed) {auto res=v; for(auto &e : v){e--;} return res;}\ntemplate<class T> vector<T> operator+(const vector<T> &x, const vector<T> &y) { assert(x.size() == y.size()); vector<T> ret(x.size()); for(int i = 0; i < (int)x.size(); i++) {ret[i] = x[i] + y[i];} return ret; }\ntemplate<class T> vector<T> operator-(const vector<T> &x, const vector<T> &y) { assert(x.size() == y.size()); vector<T> ret(x.size()); for(int i = 0; i < (int)x.size(); i++) {ret[i] = x[i] - y[i];} return ret; } \n\ntemplate<class T, class U> pair<T, U> operator+(const pair<T, U> &x, const pair<T, U> &y) { return make_pair(x.first + y.first, x.second + y.second); }\ntemplate<class T, class U> pair<T, U> operator-(const pair<T, U> &x, const pair<T, U> &y) { return make_pair(x.first - y.first, x.second - y.second); }\ntemplate<class T, class U> void operator+=(pair<T, U> &x, pair<T, U> &y) { x = x + y; }\ntemplate<class T, class U> void operator-=(pair<T, U> &x, pair<T, U> &y) { x = x - y; }\n\ntemplate<class T> size_t HashCombine(const size_t seed,const T &v){ return seed^(std::hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); }\ntemplate<class T,class S> struct std::hash<std::pair<T,S>>{ size_t operator()(const std::pair<T,S> &keyval) const noexcept { return HashCombine(std::hash<T>()(keyval.first), keyval.second); } };\ntemplate<class T> struct std::hash<std::vector<T>>{ size_t operator()(const std::vector<T> &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } };\ntemplate<int N> struct HashTupleCore{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore<N-1>()(keyval); return HashCombine(s,std::get<N-1>(keyval)); } };\ntemplate <> struct HashTupleCore<0>{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; } };\ntemplate<class... Args> struct std::hash<std::tuple<Args...>>{ size_t operator()(const tuple<Args...> &keyval) const noexcept { return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval); } };\n\nint main()\n{\n std::cin.tie(nullptr), std::ios_base::sync_with_stdio(false);\n while(true)\n {\n readll(H, W, R, C);\n if(!H) break;\n R--; C--;\n vvll G0(H*W + 1), G1(H*W + 1);\n rep(i, 2*H + 1)\n {\n if(i % 2 == 0)\n {\n readvll(X, W);\n rep(j, W)\n {\n ll a, b;\n if(i == 0)\n {\n a = j;\n b = H*W;\n }\n else if(i == 2*H)\n {\n a = (H - 1)*W + j;\n b = H*W;\n }\n else\n {\n a = (i/2 - 1)*W + j;\n b = (i/2)*W + j;\n }\n if(!X[j])\n {\n G0[a].emplace_back(b);\n G0[b].emplace_back(a);\n }\n else\n {\n G1[a].emplace_back(b);\n G1[b].emplace_back(a);\n }\n }\n }\n else\n {\n readvll(X, W + 1);\n rep(j, W + 1)\n {\n ll a, b;\n if(j == 0)\n {\n a = H*W;\n b = ((i-1)/2)*W + j;\n }\n else if(j == W)\n {\n a = ((i-1)/2)*W + j - 1;\n b = H*W;\n }\n else\n {\n a = ((i-1)/2)*W + j - 1;\n b = ((i-1)/2)*W + j;\n }\n if(!X[j])\n {\n G0[a].emplace_back(b);\n G0[b].emplace_back(a);\n }\n else\n {\n G1[a].emplace_back(b);\n G1[b].emplace_back(a);\n }\n }\n }\n }\n rep(i, H*W + 1)\n {\n sort(All(G0[i]));\n G0[i].erase(unique(All(G0[i])), G0[i].end());\n }\n rep(i, H*W + 1)\n {\n sort(All(G1[i]));\n G1[i].erase(unique(All(G1[i])), G1[i].end());\n }\n queue<ll> q;\n q.emplace(H*W);\n v(bool) is_win(H*W + 1, false);\n is_win[H*W] = true;\n while(!q.empty())\n {\n auto now = q.front(); q.pop();\n vll cand;\n for(auto e : G0[now]) if(!is_win[e]) cand.emplace_back(e);\n for(auto e : G1[now]) if(!is_win[e]) cand.emplace_back(e);\n sort(All(cand));\n cand.erase(unique(All(cand)), cand.end());\n for(auto nxt : cand)\n {\n bool ok0 = false, ok1 = false;\n for(auto e : G0[nxt])\n {\n if(is_win[e])\n {\n ok0 = true;\n break;\n }\n }\n if(!ok0) continue;\n for(auto e : G1[nxt])\n {\n if(is_win[e])\n {\n ok1 = true;\n break;\n }\n }\n if(!ok1) continue;\n is_win[nxt] = true;\n q.emplace(nxt);\n }\n }\n bool ok = is_win[R*W + C];\n for(auto e : G0[R*W + C])\n {\n if(is_win[e]) ok = true;\n }\n outYN(ok);\n }\n}", "accuracy": 1, "time_ms": 2640, "memory_kb": 48272, "score_of_the_acc": -1.5863, "final_rank": 20 }, { "submission_id": "aoj_2702_10568119", "code_snippet": "# include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nconst double pi = acos(-1);\ntemplate<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }\ntemplate<class T>constexpr T hinf() { return inf<T>() / 2; }\ntemplate <typename T_char>T_char TL(T_char cX) { return tolower(cX); }\ntemplate <typename T_char>T_char TU(T_char cX) { return toupper(cX); }\ntemplate<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }\ntemplate<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }\nint popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }\nint d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }\nint d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }\nll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };\nll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };\nll MOD(ll x, ll m){return (x%m+m)%m; }\nll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }\ntemplate<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;\n# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()\n# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())\n# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)\n# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)\n# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)\n# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)\n# define len(x) ((ll)(x).size())\n# define bit(n) (1LL << (n))\n# define pb push_back\n# define eb emplace_back\n# define exists(c, e) ((c).find(e) != (c).end())\n\nstruct INIT{\n\tINIT(){\n\t\tstd::ios::sync_with_stdio(false);\n\t\tstd::cin.tie(0);\n\t\tcout << fixed << setprecision(20);\n\t}\n}INIT;\n\nnamespace mmrz {\n\tvoid solve();\n}\n\nint main(){\n\tmmrz::solve();\n}\n#define debug(...) (static_cast<void>(0))\n\nusing namespace mmrz;\n\nusing vll=vector<ll>;\nusing vvll = vector<vector<ll>>;\nusing ull = unsigned long long;\nusing lll = __int128;\n#define per(i,n) for(ll i=n-1;i>=0;--i)\n#define rep2(i,a,n) for (ll i=a;i<n;++i)\n#define per2(i,a,n) for (ll i=a;i>=n;--i)\n\n// [BEGIN] template の include\n\nvll dx={1,0,-1,0},dy={0,-1,0,1};\nint SOLVE(){\n\tll H,W,si,sj;cin>>H>>W>>si>>sj;\n\tsi--,sj--;\n\tif(H==0&&W==0) return 1;\n\tvector<vvll> can(H,vvll(W,vll(4)));\n\trep(s,2*H+1){\n\t\tif(s%2==0&&s<2*H){\n\t\t\tll i=s/2;\n\t\t\trep(j,W){\n\t\t\t\tll f;cin>>f;\n\t\t\t\tif(f){\n\t\t\t\t\tcan[i][j][2]=1;\n\t\t\t\t\tif(i>0) can[i-1][j][0]=1;\t\n\t\t\t\t}\n\t\t\t}\n\t\t}else if(s%2==1){\n\t\t\tll i=s/2;\n\t\t\tvll A(W+1);rep(i,W+1) cin>>A[i];\n\t\t\trep(j,W){\n\t\t\t\tif(A[j]==1) can[i][j][1]=1;\n\t\t\t\tif(A[j+1]==1) can[i][j][3]=1;\n\t\t\t}\n\t\t}else{\n\t\t\trep(j,W){\n\t\t\t\tll f;cin>>f;\n\t\t\t\tif(f) can[H-1][j][0]=1;\n\t\t\t}\n\t\t}\n\t}\n\n\n\n\tvector<vll> dp0(H,vll(W));\n\tvvll dp1=dp0;\n\trep(i,H) rep(j,W){ \n\t\tif(i==si&&sj==j) continue;\n\t\tll a1=0,a2=0;\n\t\trep(k,4){\n\t\t\tull toi=i+dx[k],toj=j+dy[k];\n\t\t\tif(!(toi<H&&toj<W)){\n\t\t\t\tif(can[i][j][k]==0) dp0[i][j]=1;\n\t\t\t\telse dp1[i][j]=1;\n\t\t\t}\n\t\t}\n\t}\n\tqueue<pair<ll,ll>>q;\n\trep(i,H) rep(j,W) if(dp1[i][j]==1&&dp0[i][j]) q.push({i,j});\n\twhile(q.size()){\n\t\tauto [nowi,nowj]=q.front();q.pop();\n\t\tif(dp1[nowi][nowj]==1&&dp0[nowi][nowj]==1){\n\t\t\trep(k,4){\n\t\t\t\tull toi=nowi+dx[k],toj=nowj+dy[k];\n\t\t\t\tif(!(toi<H&&toj<W)) continue;\n\t\t\t\tll do2=0;\n\t\t\t\tif(can[nowi][nowj][k]==0) do2=!dp0[toi][toj], dp0[toi][toj]=1;\n\t\t\t\telse do2=!dp1[toi][toj],dp1[toi][toj]=1;\n\t\t\t\tif(do2&&dp0[toi][toj]==1&&dp1[toi][toj]==1) q.push({toi,toj});\n\t\t\t}\n\t\t}\n\t}\n\tbool ans=0;\n\trep(k,4){\n\t\tull toi=si+dx[k],toj=sj+dy[k];\n\t\tif(!(toi<H&&toj<W)){if(can[si][sj][k]==0)ans=1;continue;}\n\t\tif(can[si][sj][k]==0&&(dp0[toi][toj]==1&&dp1[toi][toj]==1)) ans=1;\n\t}\n\tcout<<(ans?\"Yes\":\"No\")<<endl;\n\treturn 0;\n\n\t\n}\n\nvoid mmrz::solve(){\n\twhile(!SOLVE());\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 24824, "score_of_the_acc": -0.3033, "final_rank": 15 }, { "submission_id": "aoj_2702_10567277", "code_snippet": "# include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nconst double pi = acos(-1);\ntemplate<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }\ntemplate<class T>constexpr T hinf() { return inf<T>() / 2; }\ntemplate <typename T_char>T_char TL(T_char cX) { return tolower(cX); }\ntemplate <typename T_char>T_char TU(T_char cX) { return toupper(cX); }\ntemplate<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }\ntemplate<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }\nint popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }\nint d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }\nint d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }\nll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };\nll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };\nll MOD(ll x, ll m){return (x%m+m)%m; }\nll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }\ntemplate<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;\n# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()\n# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())\n# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)\n# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)\n# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)\n# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)\n# define len(x) ((ll)(x).size())\n# define bit(n) (1LL << (n))\n# define pb push_back\n# define eb emplace_back\n# define exists(c, e) ((c).find(e) != (c).end())\n\nstruct INIT{\n\tINIT(){\n\t\tstd::ios::sync_with_stdio(false);\n\t\tstd::cin.tie(0);\n\t\tcout << fixed << setprecision(20);\n\t}\n}INIT;\n\nnamespace mmrz {\n\tvoid solve();\n}\n\nint main(){\n\tmmrz::solve();\n}\n#define debug(...) (static_cast<void>(0))\n\nusing namespace mmrz;\n\nusing vll=vector<ll>;\nusing vvll = vector<vector<ll>>;\nusing ull = unsigned long long;\nusing lll = __int128;\n#define per(i,n) for(ll i=n-1;i>=0;--i)\n#define rep2(i,a,n) for (ll i=a;i<n;++i)\n#define per2(i,a,n) for (ll i=a;i>=n;--i)\n\n// [BEGIN] template の include\n\nvll dx={1,0,-1,0},dy={0,-1,0,1};\nint SOLVE(){\n\tll H,W,si,sj;cin>>H>>W>>si>>sj;\n\tsi--,sj--;\n\tif(H==0&&W==0) return 1;\n\tvector<vvll> can(H,vvll(W,vll(4)));\n\trep(s,2*H+1){\n\t\tif(s%2==0&&s<2*H){\n\t\t\tll i=s/2;\n\t\t\trep(j,W){\n\t\t\t\tll f;cin>>f;\n\t\t\t\tif(f){\n\t\t\t\t\tcan[i][j][2]=1;\n\t\t\t\t\tif(i>0) can[i-1][j][0]=1;\t\n\t\t\t\t}\n\t\t\t}\n\t\t}else if(s%2==1){\n\t\t\tll i=s/2;\n\t\t\tvll A(W+1);rep(i,W+1) cin>>A[i];\n\t\t\trep(j,W){\n\t\t\t\tif(A[j]==1) can[i][j][1]=1;\n\t\t\t\tif(A[j+1]==1) can[i][j][3]=1;\n\t\t\t}\n\t\t}else{\n\t\t\trep(j,W){\n\t\t\t\tll f;cin>>f;\n\t\t\t\tif(f) can[H-1][j][0]=1;\n\t\t\t}\n\t\t}\n\t}\n\n\n\n\tvector<vll> dp0(H,vll(W));\n\tvvll dp1=dp0;\n\trep(i,H) rep(j,W){ \n\t\tif(i==si&&sj==j) continue;\n\t\tll a1=0,a2=0;\n\t\trep(k,4){\n\t\t\tull toi=i+dx[k],toj=j+dy[k];\n\t\t\tif(!(toi<H&&toj<W)){\n\t\t\t\tif(can[i][j][k]==0) dp0[i][j]=1;\n\t\t\t\telse dp1[i][j]=1;\n\t\t\t}\n\t\t}\n\t}\n\tqueue<pair<ll,ll>>q;\n\trep(i,H) rep(j,W) if(dp1[i][j]==1&&dp0[i][j]) q.push({i,j});\n\twhile(q.size()){\n\t\tauto [nowi,nowj]=q.front();q.pop();\n\t\tif(dp1[nowi][nowj]==1&&dp0[nowi][nowj]==1){\n\t\t\trep(k,4){\n\t\t\t\tull toi=nowi+dx[k],toj=nowj+dy[k];\n\t\t\t\tif(!(toi<H&&toj<W)) continue;\n\t\t\t\tll do2=0;\n\t\t\t\tif(can[nowi][nowj][k]==0) do2=!dp0[toi][toj], dp0[toi][toj]=1;\n\t\t\t\telse do2=!dp1[toi][toj],dp1[toi][toj]=1;\n\t\t\t\tif(do2&&dp0[toi][toj]==1&&dp1[toi][toj]==1) q.push({toi,toj});\n\t\t\t}\n\t\t}\n\t}\n\tbool ans=0;\n\trep(k,4){\n\t\tull toi=si+dx[k],toj=sj+dy[k];\n\t\tif(!(toi<H&&toj<W)){if(can[si][sj][k]==0)ans=1;continue;}\n\t\tif(can[si][sj][k]==0&&(dp0[toi][toj]==1&&dp1[toi][toj]==1)) ans=1;\n\t}\n\tcout<<(ans?\"Yes\":\"No\")<<endl;\n\treturn 0;\n\n\t\n}\n\nvoid mmrz::solve(){\n\twhile(!SOLVE());\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 25040, "score_of_the_acc": -0.291, "final_rank": 14 }, { "submission_id": "aoj_2702_10491502", "code_snippet": "// AOJ 2702 Alternate Escape\n// 2025.5.16\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint c, n = 0;\n do c = gc(); while (c < '0');\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Couts(string s) {\n for (auto c: s) pc(c);\n pc('\\n');\n}\n\nint main(){\n while (true) {\n int H = Cin(), W = Cin(), R = Cin(), C = Cin();\n if (H==0) break;\n\n vector horz(H+2, vector(W+2, array<int,2>{}));\n vector vert(H+2, vector(W+2, array<int,2>{}));\n\n for (int i = 1; i <= H+1; i++) {\n for (int j = 1; j <= W; j++) {\n horz[i][j][0] = Cin();\n }\n if (i == H+1) break;\n for (int j = 1; j <= W+1; j++) {\n vert[i][j][0] = Cin();\n }\n }\n for (int i = 1; i <= H+1; i++) {\n for (int j = 1; j <= W; j++) horz[i][j][1] = 1 - horz[i][j][0];\n }\n for (int i = 1; i <= H; i++) {\n for (int j = 1; j <= W+1; j++) vert[i][j][1] = 1 - vert[i][j][0];\n }\n\n int N = H * W * 2;\n vector<char> inA_A(N, 0), inA_B(N, 0);\n vector<int> cnt_B(N, 2);\n\n auto encode = [&](int r, int c, int f){\n return (((r-1)*W + (c-1))<<1) | f;\n };\n\n deque<pair<int,int>> q;\n\n for (int f = 0; f < 2; f++) {\n for (int i = 1; i <= H; i++) {\n for (int j = 1; j <= W; j++) {\n bool canExit = false;\n if (i==1 && horz[1][j][f] ==0) canExit = true;\n if (i==H && horz[H+1][j][f]==0) canExit = true;\n if (j==1 && vert[i][1][f] ==0) canExit = true;\n if (j==W && vert[i][W+1][f]==0) canExit = true;\n if (canExit) {\n int id = encode(i,j,f);\n if (!inA_A[id]) {\n inA_A[id] = 1;\n q.emplace_back(id, 0);\n }\n }\n }\n }\n }\n\n int dr[4] = {-1,1,0,0}, dc[4] = {0,0,-1,1};\n\n while (!q.empty()) {\n auto [u, turn] = q.front(); q.pop_front();\n if (turn == 0) {\n if (--cnt_B[u] == 0 && !inA_B[u]) {\n inA_B[u] = 1;\n q.emplace_back(u, 1);\n }\n int v = u ^ 1;\n if (--cnt_B[v] == 0 && !inA_B[v]) {\n inA_B[v] = 1;\n q.emplace_back(v, 1);\n }\n } else {\n int id = u;\n int f = id & 1;\n int idx = id >> 1;\n int r = idx / W + 1;\n int c = idx % W + 1;\n\n for (int d = 0; d < 4; d++) {\n int pr = r + dr[d], pc = c + dc[d];\n if (pr < 1 || pr > H || pc < 1 || pc > W) continue;\n bool ok = false;\n if (d==0 && horz[r][c][f] ==0) ok = true;\n if (d==1 && horz[r+1][c][f]==0) ok = true;\n if (d==2 && vert[r][c][f] ==0) ok = true;\n if (d==3 && vert[r][c+1][f]==0) ok = true;\n if (!ok) continue;\n int pid = encode(pr,pc,f);\n if (!inA_A[pid]) {\n inA_A[pid] = 1;\n q.emplace_back(pid, 0);\n }\n }\n }\n }\n int start = encode(R, C, 0);\n Couts(inA_A[start] ? \"Yes\" : \"No\");\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 10408, "score_of_the_acc": -0.0675, "final_rank": 10 }, { "submission_id": "aoj_2702_10426564", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(a) (a).begin(), (a).end()\n#define rep(i, n) for (int i = 0; i < (int)(n); ++i)\n#define rrep(i, n) for (int i = (int)(n) - 1; 0 <= i; --i)\ntemplate <typename T> bool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T> bool chmin(T& a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\nvoid solve();\nint H,W,R,C;\nbool horz[1<<10][1<<10],vert[1<<10][1<<10];\nint main(){\n cin.tie(nullptr)->sync_with_stdio(false);\n cout << fixed << setprecision(20);\n int t = 1<<30;\n //cin >> t;\n while (t--) {\n rep(i,1<<10)rep(j,1<<10){\n horz[i][j]=vert[i][j]=0;\n }\n cin>>H>>W>>R>>C;\n if(H==0)break;\n for(int i=1;i<=H+1;++i){\n for(int j=1;j<=W;++j)cin>>horz[i][j];\n if(i!=H+1){\n for(int j=1;j<=W+1;++j)cin>>vert[i][j];\n }\n }\n solve();\n }\n}\nbool in(int x,int y){\n return 0<=x&&x<=H+1&&0<=y&&y<=W+1;\n}\nvoid solve() {\n vector flag(H+2,vector<bool>(W+2,1));\n vector vis(H+2,vector<bool>(W+2));\n queue<pair<int,int>>que;\n for(int i=1;i<=H;++i)for(int j=1;j<=W;++j)flag[i][j]=0;\n rep(i,H+2)rep(j,W+2){\n if(flag[i][j]){\n vis[i][j]=1;\n que.push({i,j});\n }\n }\n while(!que.empty()){\n auto[cx,cy]=que.front();\n que.pop();\n int dx[]={1,0,-1,0},dy[]={0,1,0,-1};\n rep(dir,4){\n int x=cx+dx[dir],y=cy+dy[dir];\n if(!in(x,y))continue;\n if(vis[x][y])continue;\n vector<int>cnt(2);\n if(in(x-1,y)&&flag[x-1][y]){ // ^\n ++cnt[horz[x][y]];\n }\n if(in(x+1,y)&&flag[x+1][y]){ // v\n ++cnt[horz[x+1][y]];\n }\n if(in(x,y-1)&&flag[x][y-1]){ // <\n ++cnt[vert[x][y]];\n }\n if(in(x,y+1)&&flag[x][y+1]){ // >\n ++cnt[vert[x][y+1]];\n }\n if(1<=cnt[0]&&1<=cnt[1]){\n flag[x][y]=1;\n vis[x][y]=1;\n que.push({x,y});\n }\n }\n }\n bool ans=0;\n if(in(R-1,C)&&!horz[R][C]&&flag[R-1][C]){ // ^\n ans=1;\n }else if(in(R+1,C)&&!horz[R+1][C]&&flag[R+1][C]){ // v\n ans=1;\n }else if(in(R,C-1)&&!vert[R][C]&&flag[R][C-1]){ // <\n ans=1;\n }else if(in(R,C+1)&&!vert[R][C+1]&&flag[R][C+1]){ // >\n ans=1;\n }\n cout<<(ans?\"Yes\":\"No\")<<'\\n';\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 5632, "score_of_the_acc": -0.0174, "final_rank": 1 }, { "submission_id": "aoj_2702_10426005", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(a) (a).begin(), (a).end()\n#define rep(i, n) for (int i = 0; i < (int)(n); ++i)\n#define rrep(i, n) for (int i = (int)(n) - 1; 0 <= i; --i)\ntemplate <typename T> bool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T> bool chmin(T& a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\nbool solve();\nint H,W,R,C;\nbool horz[1<<10][1<<10],vert[1<<10][1<<10];\nint main(){\n cin.tie(nullptr)->sync_with_stdio(false);\n cout << fixed << setprecision(20);\n int t = 1;\n //cin >> t;\n while (1) {\n cin>>H>>W>>R>>C;\n if(H==0){\n break;\n }\n rep(i,1<<10)rep(j,1<<10)horz[i][j]=vert[i][j]=0;\n for(int i=1;i<=H+1;++i){\n for(int j=1;j<=W;++j)cin>>horz[i][j];\n if(i!=H+1){\n for(int j=1;j<=W+1;++j)cin>>vert[i][j];\n }\n }\n cout<<(solve()?\"Yes\":\"No\")<<'\\n';\n }\n}\nbool solve() {\n vector<vector<bool>>flag(H+2,vector<bool>(W+2));\n vector<vector<bool>>vis(H+2,vector<bool>(W+2));\n\n queue<pair<int,int>>que;\n\n for(int i=0;i<W+2;++i){\n flag[0][i]=flag[H+1][i]=1;\n vis[0][i]=vis[H+1][i]=1;\n que.push({0,i});\n que.push({H+1,i});\n }\n for(int i=0;i<H+2;++i){\n flag[i][0]=flag[i][W+1]=1;\n vis[i][0]=vis[i][W+1]=1;\n que.push({i,0});\n que.push({i,W+1});\n }\n int dx[]={1,0,-1,0},dy[]={0,1,0,-1};\n while(!que.empty()){\n auto[wx,wy]=que.front();\n que.pop();\n rep(dir,4){\n int dx[]={1,0,-1,0},dy[]={0,1,0,-1};\n vector<int>cnt(2);\n int x=wx+dx[dir],y=wy+dy[dir];\n if(!(0<=x&&x<=H+1&&0<=y&&y<=W+1))continue;\n if(vis[x][y])continue;\n // U\n {\n int xx=x-1,yy=y;\n if(0<=xx&&xx<=H+1&&0<=yy&&yy<=W+1){\n if(flag[xx][yy])++cnt[horz[x][y]];\n }\n }\n // D\n {\n int xx=x+1,yy=y;\n if(0<=xx&&xx<=H+1&&0<=yy&&yy<=W+1){\n if(flag[xx][yy])++cnt[horz[x+1][y]];\n }\n }\n // L\n {\n int xx=x,yy=y-1;\n if(0<=xx&&xx<=H+1&&0<=yy&&yy<=W+1){\n if(flag[xx][yy])++cnt[vert[x][y]];\n }\n }\n // R\n {\n int xx=x,yy=y+1;\n if(0<=xx&&xx<=H+1&&0<=yy&&yy<=W+1){\n if(flag[xx][yy])++cnt[vert[x][y+1]];\n }\n }\n if(1<=cnt[0]&&1<=cnt[1]){\n que.push({x,y});\n vis[x][y]=1;\n flag[x][y]=1;\n }\n }\n }\n /*\n cout<<H<<','<<W<<'\\n';\n rep(i,H+2){\n rep(j,W+2)cout<<flag[i][j];\n cout<<'\\n';\n }\n */\n if(!horz[R][C]&&flag[R-1][C]){ // U\n return 1;\n }else if(!horz[R+1][C]&&flag[R+1][C]){ // D\n return 1;\n }else if(!vert[R][C]&&flag[R][C-1]){ // L\n return 1;\n }else if(!vert[R][C+1]&&flag[R][C+1]){ // R\n return 1;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 5632, "score_of_the_acc": -0.0174, "final_rank": 1 }, { "submission_id": "aoj_2702_9532500", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nint main() {\nwhile(1) {\n int H, W, R, C;\n cin >> H >> W >> R >> C;\n if (H == 0 && W == 0) return 0;\n R--, C--;\n vector<vector<int>> A(H+1,vector<int>(W));\n vector<vector<int>> B(H,vector<int>(W+1));\n rep(i,0,H) {\n rep(j,0,W) cin >> A[i][j];\n rep(j,0,W+1) cin >> B[i][j];\n }\n rep(j,0,W) cin >> A[H][j];\n int S = R * W + C;\n int N = H * W + 1;\n vector<vector<pair<int,int>>> G(N);\n rep(j,0,W) {\n G[N-1].push_back({j,A[0][j]});\n G[j].push_back({N-1,A[0][j]});\n rep(i,1,H) {\n G[(i-1)*W+j].push_back({i*W+j,A[i][j]});\n G[i*W+j].push_back({(i-1)*W+j,A[i][j]});\n }\n G[N-1].push_back({(H-1)*W+j,A[H][j]});\n G[(H-1)*W+j].push_back({N-1,A[H][j]});\n }\n rep(i,0,H) {\n G[N-1].push_back({i*W,B[i][0]});\n G[i*W].push_back({N-1,B[i][0]});\n rep(j,1,W) {\n G[i*W+j-1].push_back({i*W+j,B[i][j]});\n G[i*W+j].push_back({i*W+j-1,B[i][j]});\n }\n G[N-1].push_back({i*W+W-1,B[i][W]});\n G[i*W+W-1].push_back({N-1,B[i][W]});\n }\n vector<vector<bool>> DP(N,vector<bool>(2,false));\n queue<int> Q;\n DP[N-1][0] = DP[N-1][1] = true;\n Q.push(N-1);\n while(!Q.empty()) {\n int P = Q.front();\n Q.pop();\n for (pair<int,int> NP : G[P]) {\n if (!DP[NP.first][NP.second]) {\n DP[NP.first][NP.second] = true;\n if (DP[NP.first][0] && DP[NP.first][1]) Q.push(NP.first);\n }\n }\n }\n cout << (DP[S][0] ? \"Yes\" : \"No\") << endl;\n}\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 40796, "score_of_the_acc": -0.5988, "final_rank": 18 }, { "submission_id": "aoj_2702_9379303", "code_snippet": "#if 1\n// clang-format off\n#include <bits/stdc++.h>\n\nusing namespace std;\nusing uint = unsigned int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing lf = long double;\nusing pll = pair<ll, ll>;\n#define vec vector\ntemplate <class T> using v = vector<T>;\ntemplate <class T> using vv = v<v<T>>;\ntemplate <class T> using vvv = v<vv<T>>;\nusing vl = v<ll>;\nusing vvl = vv<ll>;\nusing vvvl = vvv<ll>;\nusing vpl = v<pll>;\nusing vs = v<string>;\nusing vb = v<bool>;\nusing vvb = v<vb>;\nusing vvvb = v<vvb>;\ntemplate<class T> using PQ = priority_queue<T, v<T>, greater<T>>;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\n\n#define FOR(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)\n#define rep(i, N) for (ll i = 0; i < (ll)(N); i++)\n#define rep1(i, N) for (ll i = 1; i <= (ll)(N); i++)\n#define rrep(i, N) for (ll i = N - 1; i >= 0; i--)\n#define rrep1(i, N) for (ll i = N; i > 0; i--)\n#define fore(i, a) for (auto &i : a)\n#define fs first\n#define sc second\n#define eb emplace_back\n#define pb push_back\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define UNIQUE(x) (x).erase(unique((x).begin(), (x).end()), (x).end());\n#define YES(x) cout << ((x) ? \"YES\\n\" : \"NO\\n\");\n#define Yes(x) cout << ((x) ? \"Yes\\n\" : \"No\\n\");\n#define yes(x) cout << ((x) ? \"yes\\n\" : \"no\\n\");\ntemplate <class T, class U> void chmin(T &t, const U &u) { if (t > u) t = u; }\ntemplate <class T, class U> void chmax(T &t, const U &u) { if (t < u) t = u; }\ntemplate <class T> T min(const v<T> &lis) { return *min_element(all(lis)); }\ntemplate <class T> T max(v<T> &lis) { return *max_element(all(lis)); }\nconst int inf = (1 << 30);\nconst ll infl = (1LL << 60);\nconst ll mod93 = 998244353;\nconst ll mod17 = 1000000007;\nint popcnt(uint x) { return __builtin_popcount(x); }\nint popcnt(ull x) { return __builtin_popcountll(x); }\n// 桁数\nint bsr(uint x) { return 31 - __builtin_clz(x); }\nint bsr(ull x) { return 63 - __builtin_clzll(x); }\n// 2で割れる回数\nint bsf(uint x) { return __builtin_ctz(x); }\nint bsf(ull x) { return __builtin_ctzll(x); }\n\ntemplate <class T, class S> istream &operator>>(istream &is, pair<T, S> &x) { return is >> x.first >> x.second; }\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &x) { return os << x.first << \" \" << x.second; }\ntemplate <class T> istream &operator>>(istream &is, vector<T> &x) { for (auto &y : x) is >> y; return is; }\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &x) {\n for (size_t i = 0, size = x.size(); i < size; i++)\n os << x[i] << (i == size - 1 ? \"\" : \" \");\n return os;\n}\n\nll rand_int(ll l, ll r) { // [l, r]\n static random_device rd;\n static mt19937 gen(rd());\n return uniform_int_distribution<ll>(l, r)(gen);\n}\n\n// #include <boost/multiprecision/cpp_int.hpp>\n// using cpp_int = boost::multiprecision::cpp_int;\n\n// clang-format on\n#endif\n\n// #define _GLIBCXX_DEBUG\n\nstruct Solver {\n ll h, w;\n vvl orz, ert;\n vl dx = {-1, 0, 1, 0};\n vl dy = {0, -1, 0, 1};\n Solver(ll h, ll w) : h(h), w(w){};\n void solve(ll r, ll c) {\n r--, c--;\n orz = vvl(h + 1, vl(w));\n ert = vvl(h, vl(w + 1));\n rep(i, h) cin >> orz[i] >> ert[i];\n cin >> orz[h];\n\n vvl dp(h, vl(w));\n vvb used(h, vb(w));\n queue<pll> q;\n\n rep(i, h) {\n rep(b, 2) {\n if (check(i, 0, b, 1)) dp[i][0] |= 1 << b;\n if (check(i, w - 1, b, 3)) dp[i][w - 1] |= 1 << b;\n }\n }\n rep(i, w) {\n rep(b, 2) {\n if (check(0, i, b, 0)) dp[0][i] |= 1 << b;\n if (check(h - 1, i, b, 2)) dp[h - 1][i] |= 1 << b;\n }\n if (dp[0][i] == 3) q.push({0, i});\n if (dp[h - 1][i] == 3) q.push({h - 1, i});\n }\n\n while(q.size()) {\n auto [x, y] = q.front();\n q.pop();\n if (used[x][y]) continue;\n used[x][y] = true;\n\n rep(d, 4) {\n ll nx = x + dx[d];\n ll ny = y + dy[d];\n if (nx < 0 || h <= nx || ny < 0 || w <= ny)\n continue;\n if (dp[nx][ny] == 3) continue;\n rep(b, 2) {\n if (check(x, y, b, d))\n dp[nx][ny] |= 1 << b;\n }\n if (dp[nx][ny] == 3) q.push({nx, ny});\n }\n }\n\n Yes(dp[r][c] & 1);\n }\n bool check(ll x, ll y, ll b, ll d) {\n if (d == 0) {\n return orz[x][y] == b;\n } else if (d == 1) {\n return ert[x][y] == b;\n } else if (d == 2) {\n return orz[x + 1][y] == b;\n } else if (d == 3) {\n return ert[x][y + 1] == b;\n }\n cerr << \"Solver.check: Error d is \" << d << endl;\n exit(0);\n }\n};\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n\n ll t = 1;\n // cin >> t;\n while (t) {\n ll h, w, r, c;\n cin >> h >> w >> r >> c;\n if (h == 0 && w == 0) break;\n Solver solver(h, w);\n solver.solve(r, c);\n }\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 9388, "score_of_the_acc": -0.0689, "final_rank": 11 }, { "submission_id": "aoj_2702_9374220", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\n\n\nvll dx = { 1,0,-1,0 };\nvll dy = { 0,-1,0,1 };\n\nvoid solve(ll H, ll W, ll R, ll C) {\n vector<vll> G(H + 2, vll(W + 2, 0));\n rep(i, 2 * H + 1) {\n if (i % 2 == 0) {\n rep(w, W) {\n ll a;\n cin >> a;\n if (a == 0) {\n G[i / 2][w + 1] += 8;\n G[i / 2 + 1][w + 1] += 2;\n }\n }\n }\n else {\n rep(w, W + 1) {\n ll a;\n cin >> a;\n if (a == 0) {\n G[i / 2 + 1][w] += 1;\n G[i / 2 + 1][w + 1] += 4;\n }\n }\n }\n }\n queue<pair<ll, ll>> Q;\n vector<vector<bool>> seen(H + 2, vector<bool>(W + 2, 0));\n rep(h, H + 2) {\n Q.push({ h,0 });\n Q.push({ h,W + 1 });\n seen[h][0] = seen[h][W + 1] = 1;\n }\n rep(w, W + 2) {\n Q.push({ 0,w });\n Q.push({ H + 1,w });\n seen[0][w] = seen[H+1][w] = 1;\n }\n while (!Q.empty()) {\n ll y = Q.front().first;\n ll x = Q.front().second;\n Q.pop();\n rep(d, 4) {\n ll ny = y + dy[d];\n ll nx = x + dx[d];\n if (ny < 0 || nx < 0 || ny >= H+2 || nx >= W+2)continue;\n if (seen[ny][nx])continue;\n ll cn = 0;\n rep(e, 4) {\n ll py = ny + dy[e];\n ll px = nx + dx[e];\n if (py < 0 || px < 0 || py >= H+2 || px >= W+2)continue;\n if (!seen[py][px])continue;\n if (G[ny][nx] & (1 << e))cn |= 1;\n else cn |= 2;\n }\n if (cn == 3) {\n Q.push({ ny,nx });\n seen[ny][nx] = 1;\n }\n }\n }\n rep(d, 4) {\n ll y = R + dy[d];\n ll x = C + dx[d];\n if (seen[y][x] && (G[R][C] & (1 << d)) > 0) {\n cout << \"Yes\" << endl;\n return;\n }\n }\n cout << \"No\" << endl;\n\n}\n\nint main() {\n\n ll H, W, R, C;\n while (cin >> H >> W >> R >> C) {\n if (H == 0)return 0;\n solve(H, W, R, C);\n }\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 5484, "score_of_the_acc": -0.0537, "final_rank": 5 }, { "submission_id": "aoj_2702_9303494", "code_snippet": "#ifdef RELEASE\n#pragma GCC target(\"arch=x86-64-v3\")\n#pragma GCC optimize(\"Ofast\")\n#endif\n\n#include <bits/stdc++.h>\n\n//#include <atcoder/all>\n\n\nusing namespace std;\n\nusing ll = long long;\nusing i64 = long long;\nusing pll = pair<ll,ll>;\nusing plll = pair<pll,ll>;\n\nconstexpr ll mod = 998244353;\n\nint dx[4]={1,0,-1,0};\nint dy[4]={0,1,0,-1};\n\n\n\nint is_ok(int x,int y,int f, vector<vector<vector<int>>>& F,vector<vector<vector<int>>>& dp){\n int H=F.size(), W=F[0].size();\n\n int ret=0;\n\n if (x==0 && f*(1-F[x][y][2])+(1-f)*F[x][y][2]==0)ret=1;\n if (x==H-1 && f*(1-F[x][y][0])+(1-f)*F[x][y][0]==0)ret=1;\n if (y==0 && f*(1-F[x][y][3])+(1-f)*F[x][y][3]==0)ret=1;\n if (y==W-1 && f*(1-F[x][y][1])+(1-f)*F[x][y][1]==0)ret=1;\n\n for (int d=0; d<4; d++){\n int nx=x+dx[d],ny=y+dy[d];\n if (f*(1-F[x][y][d])+(1-f)*F[x][y][d]==1)continue; //道が空いていないとき\n if (nx<0 || nx>=H || ny<0 || ny>=W)continue; //場外は上で処理した\n\n if (dp[nx][ny][0]==1 && dp[nx][ny][1]==1) {\n ret=1;\n\n }\n }\n dp[x][y][f]=ret;\n return ret;\n}\n\n\nint main(){\n while (true){\n int H,W,R,C;\n cin>>H>>W>>R>>C;\n R--;\n C--;\n if (H==0)break;\n vector<vector<vector<int>>> F(H,vector<vector<int>>(W,vector<int>(4)));\n for (int i=0; i<=2*H; i++){\n if (i%2==0){\n if (i==0){\n for (int j=0; j<W; j++){\n cin>>F[i/2][j][2];\n }\n }\n else if (i==2*H){\n for (int j=0; j<W; j++){\n cin>>F[(i/2)-1][j][0];\n }\n\n }\n else{\n for (int j=0; j<W; j++){\n cin>>F[i/2][j][2];\n F[(i/2)-1][j][0]=F[i/2][j][2];\n }\n }\n }\n else{\n for (int j=0; j<W+1; j++){\n if (j==0){\n cin>>F[(i/2)][j][3];\n }\n else if (j==W){\n cin>>F[(i/2)][j-1][1];\n }\n else{\n cin>>F[(i/2)][j][3];\n F[(i/2)][j-1][1]=F[(i/2)][j][3];\n }\n }\n\n\n }\n }\n vector<vector<vector<int>>> dp(H,vector<vector<int>>(W,vector<int>(2)));\n\n vector<tuple<int,int,int>> que;\n for (int i=0; i<H; i++){\n que.emplace_back(i,0,0);\n que.emplace_back(i,0,1);\n que.emplace_back(i,W-1,0);\n que.emplace_back(i,W-1,1);\n }\n for (int j=1; j<W-1; j++){\n que.emplace_back(0,j,0);\n que.emplace_back(0,j,1);\n que.emplace_back(H-1,j,0);\n que.emplace_back(H-1,j,1);\n\n }\n\n int ind=0;\n while (que.size()>ind){\n auto [x, y, f] = que[ind];\n\n\n if (dp[x][y][f]==1){\n ind++;\n continue;\n }\n\n if (is_ok(x,y,f,F,dp)==1){\n for (int d=0; d<4; d++){\n int nx=x+dx[d],ny=y+dy[d];\n if (nx<0 || nx>=H || ny<0 || ny>=W){\n continue;\n }\n if (dp[nx][ny][0]==0) que.emplace_back(nx,ny,0);\n if (dp[nx][ny][1]==0) que.emplace_back(nx,ny,1);\n }\n }\n\n ind++;\n }\n\n\n string ans;\n if (dp[R][C][0]==1)ans=\"Yes\";\n else ans=\"No\";\n\n cout<<ans<<endl;\n\n\n\n\n\n }\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 78468, "score_of_the_acc": -1.1034, "final_rank": 19 }, { "submission_id": "aoj_2702_9248177", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nint H,W,R,C;\nint Hor[505][505],Ver[505][505];\nbool alice[505][505];\nbool solve()\n{\n cin>>H>>W>>R>>C;\n if(H==0&&W==0&&R==0&&C==0)return 0;\n for(int j=1;j<=W;j++)cin>>Hor[0][j];\n for(int i=1;i<=H;i++)\n {\n for(int j=0;j<=W;j++)cin>>Ver[i][j];\n for(int j=1;j<=W;j++)cin>>Hor[i][j];\n }\n for(int i=0;i<=H+1;i++)for(int j=0;j<=W+1;j++)alice[i][j]=0;\n queue<pair<int,int>>q;\n for(int i=0;i<=H+1;i++)alice[i][0]=alice[i][W+1]=1;\n for(int j=0;j<=W+1;j++)alice[0][j]=alice[H+1][j]=1;\n for(int i=1;i<=H;i++)q.push(make_pair(i,1)),q.push(make_pair(i,W));\n for(int j=1;j<=W;j++)q.push(make_pair(1,j)),q.push(make_pair(H,j));\n while(!q.empty())\n {\n auto[r,c]=q.front();\n q.pop();\n if(alice[r][c])continue;\n assert(1<=r&&r<=H&&1<=c&&c<=W);\n int tr=0;\n if(alice[r-1][c])tr|=1<<Hor[r-1][c];\n if(alice[r][c-1])tr|=1<<Ver[r][c-1];\n if(alice[r+1][c])tr|=1<<Hor[r][c];\n if(alice[r][c+1])tr|=1<<Ver[r][c];\n if(tr==3)\n {\n alice[r][c]=1;\n q.push(make_pair(r-1,c));\n q.push(make_pair(r,c-1));\n q.push(make_pair(r+1,c));\n q.push(make_pair(r,c+1));\n }\n }\n cout<<(\n (alice[R-1][C]&&!Hor[R-1][C])||\n (alice[R][C-1]&&!Ver[R][C-1])||\n (alice[R+1][C]&&!Hor[R][C])||\n (alice[R][C+1]&&!Ver[R][C])\n ?\"Yes\":\"No\")<<'\\n';\n return 1;\n}\nint main(){while(solve()){}}", "accuracy": 1, "time_ms": 170, "memory_kb": 5564, "score_of_the_acc": -0.0548, "final_rank": 8 }, { "submission_id": "aoj_2702_9092194", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\ntemplate < class T > vector< T >& operator++(vector< T >& a) { for(T& x : a) x++; return a; }\ntemplate < class T > vector< T >& operator--(vector< T >& a) { for(T& x : a) x--; return a; }\ntemplate < class T > vector< T > operator++(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x++; return res; }\ntemplate < class T > vector< T > operator--(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x--; return res; }\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nbool solve(int H, int W, int R, int C) {\n R--, C--;\n vector Horz(H + 1, vector(W, int(-1)));\n vector Vert(H, vector(W + 1, int(-1)));\n for(int i : rep(H)) {\n Horz[i] = in(W);\n Vert[i] = in(W + 1);\n }\n Horz[H] = in(W);\n\n vector can(H, vector(W, false));\n queue<pair<int,int>> q;\n for(int i : rep(H)) for(int j : rep(W)) {\n int cnt = 0;\n for(auto [di, dj] : dir4) {\n int ni = i + di, nj = j + dj;\n if(not(0 <= ni and ni < H and 0 <= nj and nj < W)) cnt++;\n }\n if(cnt >= 2) q.push({i, j});\n }\n\n while(not q.empty()) {\n auto [i, j] = q.front(); q.pop();\n if(can[i][j]) continue;\n int cnt[2] = {};\n if(not(0 <= i - 1) or can[i - 1][j]) cnt[Horz[i][j]]++;\n if(not(i + 1 < H) or can[i + 1][j]) cnt[Horz[i + 1][j]]++;\n if(not(0 <= j - 1) or can[i][j - 1]) cnt[Vert[i][j]]++;\n if(not(j + 1 < W) or can[i][j + 1]) cnt[Vert[i][j + 1]]++;\n if(1 <= cnt[0] and 1 <= cnt[1]) {\n can[i][j] = true;\n if(0 <= i - 1 and not can[i - 1][j]) q.push({i - 1, j});\n if(i + 1 < H and not can[i + 1][j]) q.push({i + 1, j});\n if(0 <= j - 1 and not can[i][j - 1]) q.push({i, j - 1});\n if(j + 1 < W and not can[i][j + 1]) q.push({i, j + 1});\n }\n }\n\n bool win = [&] {\n auto [i, j] = make_pair(R, C);\n if(can[i][j]) return true;\n if((not(0 <= i - 1) or can[i - 1][j]) and Horz[i][j] == 0) return true;\n if((not(i + 1 < H) or can[i + 1][j]) and Horz[i + 1][j] == 0) return true;\n if((not(0 <= j - 1) or can[i][j - 1]) and Vert[i][j] == 0) return true;\n if((not(j + 1 < W) or can[i][j + 1]) and Vert[i][j + 1] == 0) return true;\n return false;\n }();\n\n return win;\n}\n\nint main() {\n while(true) {\n int H = in(), W = in(), R = in(), C = in();\n if(make_tuple(H, W, R, C) == make_tuple(0, 0, 0, 0)) return 0;\n print(solve(H, W, R, C) ? \"Yes\" : \"No\");\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5480, "score_of_the_acc": -0.0192, "final_rank": 3 }, { "submission_id": "aoj_2702_9088741", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(a) a.begin(),a.end()\n#define reps(i, a, n) for (int i = (a); i < (int)(n); i++)\n#define rep(i, n) reps(i, 0, n)\n#define rreps(i, a, n) for (int i = (a); i > (int)(n); i--)\nconst long long mod = 1000000007;\nconst long long INF = 1e18;\n\nvoid solve(int h, int w, int r, int c) {\n vector<vector<int>> g (h,vector<int> (w,0));\n vector<vector<int>> wall (2*h+1,vector<int> (w+1));\n\n rep(i,2*h+1) {\n if (i%2 == 0) {\n rep(j,w) {\n cin >> wall[i][j];\n }\n } \n else {\n rep(j,w+1) {\n cin >> wall[i][j];\n }\n }\n }\n\n if (r-1 == 0 && !wall[0][c-1]) {\n cout << \"Yes\" << endl;\n return;\n }\n if (r-1 == h-1 && !wall[2*h][c-1]) {\n cout << \"Yes\" << endl;\n return;\n }\n if (c-1 == 0 && !wall[2*r-1][0]) {\n cout << \"Yes\" << endl;\n return;\n }\n if (c-1 == w-1 && !wall[2*r-1][w]) {\n cout << \"Yes\" << endl;\n return;\n }\n\n queue<pair<int,int>> que;\n\n que.push({0,0});\n que.push({0,w-1});\n que.push({h-1,0});\n que.push({h-1,w-1});\n\n if (h == 1) {\n rep(i,w) {\n que.push({0,i});\n }\n }\n else if (w == 1) {\n rep(i,h) {\n que.push({i,0});\n }\n }\n\n while (!que.empty()) {\n pair<int,int> p = que.front();\n que.pop();\n bool open = false, close = false;\n if (p.first == 0 || g[max(0,p.first-1)][p.second]) {\n if (wall[2*p.first][p.second]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (p.first == h-1 || g[min(h-1,p.first+1)][p.second]) {\n if (wall[2*p.first+2][p.second]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (p.second == 0 || g[p.first][max(p.second-1,0)]) {\n if (wall[2*p.first+1][p.second]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (p.second == w-1 || g[p.first][min(w-1,p.second+1)]) {\n if (wall[2*p.first+1][p.second+1]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (open && close) {\n g[p.first][p.second] = 1;\n if (p.first == r-1 && p.second == c-1) {\n cout << \"Yes\" << endl;\n return;\n }\n /*if (p.first == r-2 && p.second == c-1 && wall[2*p.first+2][p.second] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first == r && p.second == c-1 && wall[2*p.first][p.second] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first == r-1 && p.second == c-2 && wall[2*p.first+1][p.second+1] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first == r-1 && p.second == c && wall[2*p.first+1][p.second] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n */\n if (p.first != 0) {\n if (!g[p.first-1][p.second]) {\n que.push({p.first-1,p.second});\n }\n }\n if (p.first != h-1) {\n if (!g[p.first+1][p.second]) {\n que.push({p.first+1,p.second});\n }\n }\n if (p.second != 0) {\n if (!g[p.first][p.second-1]) {\n que.push({p.first,p.second-1});\n }\n }\n if (p.second != w-1) {\n if (!g[p.first][p.second+1]) {\n que.push({p.first,p.second+1});\n }\n }\n }\n }\n cout << \"No\" << endl;\n return;\n}\n\n\nint main() {\n int h,w,r,c;\n while (true) {\n cin >> h >> w >> r >> c;\n if (!h) {\n return 0;\n }\n solve(h,w,r,c);\n }\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 5884, "score_of_the_acc": -0.0553, "final_rank": 9 }, { "submission_id": "aoj_2702_9088731", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(a) a.begin(),a.end()\n#define reps(i, a, n) for (int i = (a); i < (int)(n); i++)\n#define rep(i, n) reps(i, 0, n)\n#define rreps(i, a, n) for (int i = (a); i > (int)(n); i--)\nconst long long mod = 1000000007;\nconst long long INF = 1e18;\n\nvoid solve(int h, int w, int r, int c) {\n vector<vector<int>> g (h,vector<int> (w,0));\n vector<vector<int>> wall (2*h+1,vector<int> (w+1));\n\n rep(i,2*h+1) {\n if (i%2 == 0) {\n rep(j,w) {\n cin >> wall[i][j];\n }\n } \n else {\n rep(j,w+1) {\n cin >> wall[i][j];\n }\n }\n }\n\n if (r-1 == 0 && !wall[0][c-1]) {\n cout << \"Yes\" << endl;\n return;\n }\n if (r-1 == h-1 && !wall[2*h][c-1]) {\n cout << \"Yes\" << endl;\n return;\n }\n if (c-1 == 0 && !wall[2*r-1][0]) {\n cout << \"Yes\" << endl;\n return;\n }\n if (c-1 == w-1 && !wall[2*r-1][w]) {\n cout << \"Yes\" << endl;\n return;\n }\n\n queue<pair<int,int>> que;\n\n que.push({0,0});\n que.push({0,w-1});\n que.push({h-1,0});\n que.push({h-1,w-1});\n\n if (h == 1) {\n rep(i,w) {\n que.push({0,i});\n }\n }\n else if (w == 1) {\n rep(i,h) {\n que.push({i,0});\n }\n }\n\n while (!que.empty()) {\n pair<int,int> p = que.front();\n que.pop();\n bool open = false, close = false;\n if (p.first == 0 || g[max(0,p.first-1)][p.second]) {\n if (wall[2*p.first][p.second]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (p.first == h-1 || g[min(h-1,p.first+1)][p.second]) {\n if (wall[2*p.first+2][p.second]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (p.second == 0 || g[p.first][max(p.second-1,0)]) {\n if (wall[2*p.first+1][p.second]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (p.second == w-1 || g[p.first][min(w-1,p.second+1)]) {\n if (wall[2*p.first+1][p.second+1]) {\n close = true;\n }\n else {\n open = true;\n }\n }\n if (open && close) {\n g[p.first][p.second] = 1;\n if (p.first == r-1 && p.second == c-1) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first == r-2 && p.second == c-1 && wall[2*p.first+2][p.second] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first == r && p.second == c-1 && wall[2*p.first][p.second] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first == r-1 && p.second == c-2 && wall[2*p.first+1][p.second+1] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first == r-1 && p.second == c && wall[2*p.first+1][p.second] == 0) {\n cout << \"Yes\" << endl;\n return;\n }\n if (p.first != 0) {\n if (!g[p.first-1][p.second]) {\n que.push({p.first-1,p.second});\n }\n }\n if (p.first != h-1) {\n if (!g[p.first+1][p.second]) {\n que.push({p.first+1,p.second});\n }\n }\n if (p.second != 0) {\n if (!g[p.first][p.second-1]) {\n que.push({p.first,p.second-1});\n }\n }\n if (p.second != w-1) {\n if (!g[p.first][p.second+1]) {\n que.push({p.first,p.second+1});\n }\n }\n }\n }\n cout << \"No\" << endl;\n return;\n}\n\n\nint main() {\n int h,w,r,c;\n while (true) {\n cin >> h >> w >> r >> c;\n if (!h) {\n return 0;\n }\n solve(h,w,r,c);\n }\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 5804, "score_of_the_acc": -0.0542, "final_rank": 6 }, { "submission_id": "aoj_2702_9064622", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\n\npair<vector<vector<ll>>, vector<vector<ll>>> rot(vector<vector<ll>> Ho, vector<vector<ll>> Ve) {\n ll H = (ll)Ho.size() - 2;\n ll W = (ll)Ho[0].size() - 1;\n vector<vector<ll>> newHo(W+2, vector<ll>(H+1, 0));\n vector<vector<ll>> newVe(W+1, vector<ll>(H+2, 0));\n rep(i,1,W+2){\n rep(j,1,H+1){\n newHo[i][j] = Ve[j][W+2 - i];\n }\n }\n rep(i,1,W+1){\n rep(j,1,H+2){\n newVe[i][j] = Ho[j][W+1 - i];\n }\n }\n\n return make_pair(newHo, newVe);\n}\n\nvoid solve(ll H, ll W, ll R, ll C) {\n vector<vector<ll>> Ho(H+2, vector<ll>(W+1, 0));\n vector<vector<ll>> Ve(H+1, vector<ll>(W+2, 0));\n rep(i,1,H+2) {\n if (i == H + 1){\n rep(j,1,W+1){\n cin>>Ho[i][j];\n }\n } else {\n rep(j,1,W+1){\n cin>>Ho[i][j];\n }\n rep(j,1,W+2){\n cin>>Ve[i][j];\n }\n }\n }\n\n // ///// rot test\n\n // cerr << \"\\n\";\n // rep(i,1,H+2){\n // rep(j,1,W+1){\n // cerr << Ho[i][j] << \" \";\n // }\n // cerr << \"\\n\";\n // }\n // cerr << \"\\n\";\n // rep(i,1,H+1) {\n // rep(j,1,W+2){\n // cerr << Ve[i][j] << \" \";\n // }\n // cerr << \"\\n\";\n // }\n // cerr << \"\\n\";\n\n // pair<vector<vector<ll>>, vector<vector<ll>>> p = rot(Ho, Ve);\n // Ho = p.first;\n // Ve = p.second;\n\n // cerr << \"\\n\";\n // rep(i,1,H+2){\n // rep(j,1,W+1){\n // cerr << Ho[i][j] << \" \";\n // }\n // cerr << \"\\n\";\n // }\n // cerr << \"\\n\";\n // rep(i,1,H+1) {\n // rep(j,1,W+2){\n // cerr << Ve[i][j] << \" \";\n // }\n // cerr << \"\\n\";\n // }\n // cerr << \"\\n\";\n\n // p = rot(Ho, Ve);\n // Ho = p.first;\n // Ve = p.second;\n\n // cerr << \"\\n\";\n // rep(i,1,H+2){\n // rep(j,1,W+1){\n // cerr << Ho[i][j] << \" \";\n // }\n // cerr << \"\\n\";\n // }\n // cerr << \"\\n\";\n // rep(i,1,H+1) {\n // rep(j,1,W+2){\n // cerr << Ve[i][j] << \" \";\n // }\n // cerr << \"\\n\";\n // }\n // cerr << \"\\n\";\n \n if (R == 1 && Ho[1][C] == 0) {\n cout << \"Yes\" << \"\\n\";\n return;\n }\n if (R == H && Ho[H+1][C] == 0) {\n cout << \"Yes\" << \"\\n\";\n return;\n }\n if (C == 1 && Ve[R][1] == 0) {\n cout << \"Yes\" << \"\\n\";\n return;\n }\n if (C == W && Ve[R][W+1] == 0) {\n cout << \"Yes\" << \"\\n\";\n return;\n }\n\n rep(r_, 0, 4) {\n pair<vector<vector<ll>>, vector<vector<ll>>> p = rot(Ho, Ve);\n ll newW = H;\n ll newH = W;\n ll newR = W+1-C;\n ll newC = R;\n\n H = newH;\n W = newW;\n R = newR;\n C = newC;\n\n Ho = p.first;\n Ve = p.second;\n\n // if (Ho[1][1] == Ve[1][1])continue;\n\n vector<vector<ll>> dp(H+2, vector<ll>(W+2, -1));\n rep(i,0,H+2){\n dp[i][0] = 0;\n dp[i][W+1] = 0;\n }\n rep(j,0,W+2){\n dp[0][j] = 0;\n dp[H+1][j] = 0;\n }\n queue<pair<ll, ll>> que;\n // dp[1][1] = 0;\n // que.push(make_pair(0, 1));\n // que.push(make_pair(1, 0));\n // que.push(make_pair(1, 2));\n // que.push(make_pair(2, 1));\n\n rep(i,1,H+1){\n que.push(make_pair(i, 1));\n que.push(make_pair(i, W));\n }\n rep(j,1,W+1){\n que.push(make_pair(1, j));\n que.push(make_pair(H, j));\n }\n\n while(!que.empty()) {\n pair<ll,ll> p = que.front();que.pop();\n ll x = p.first;\n ll y = p.second;\n\n // cerr << \"x:\" << x<< \" y:\" << y << endl;\n\n if (dp[x][y] == 0)continue;\n\n vector<ll> dx = {-1, 0, 1, 0};\n vector<ll> dy = {0, -1, 0, 1};\n set<ll> st;\n rep(k,0,4){\n ll nx = x + dx[k];\n ll ny = y + dy[k];\n if(dp[nx][ny] == 0) {\n ll kabe;\n if (k == 0) {\n kabe = Ho[x][y];\n } else if (k == 1) {\n kabe = Ve[x][y];\n } else if (k == 2) {\n kabe = Ho[x + 1][y];\n } else {\n kabe = Ve[x][y + 1];\n }\n st.insert(kabe);\n // cerr << x << ' ' << y << ' ' << nx << ' ' << ny << ' ' << kabe << \"\\n\";\n }\n }\n // cerr << \"====\" << endl;\n // cerr << x << ' ' << y << ' ' << st.size() << endl;\n\n if(st.size() >= 2) {\n dp[x][y] = 0;\n rep(k,0,4){\n ll nx = x + dx[k];\n ll ny = y + dy[k];\n if(dp[nx][ny] == -1){\n que.push(make_pair(nx, ny));\n }\n }\n }\n }\n // cerr << \"----\" << endl;\n // rep(i,1,H+1){\n // rep(j,1,W+1){\n // cerr << dp[i][j] << ' ';\n // }\n // cerr << endl;\n // }\n // cerr << \"----\" << endl;\n if (dp[R][C] == 0) {\n cout << \"Yes\" << \"\\n\";\n return;\n }\n }\n cout << \"No\" << \"\\n\";\n return;\n}\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n while(true){\n ll H, W, R, C;cin>>H>>W>>R>>C;\n if(H == 0)break;\n solve(H, W, R, C);\n }\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 18900, "score_of_the_acc": -0.2298, "final_rank": 12 }, { "submission_id": "aoj_2702_8428065", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\nint H, W, sx, sy;\nint dp[509][509][2];\nint Hori[509][509];\nint Vert[509][509];\nvector<pair<int, int>> G[2][509][509];\nqueue<pair<int, int>> Q;\n\nvoid Initialize() {\n for (int i = 0; i < 2; i++) {\n for (int j = 0; j < 509; j++) {\n for (int k = 0; k < 509; k++) G[i][j][k].clear();\n for (int k = 0; k < 509; k++) dp[j][k][i] = 0;\n for (int k = 0; k < 509; k++) Hori[j][k] = 0;\n for (int k = 0; k < 509; k++) Vert[j][k] = 0;\n }\n }\n while (!Q.empty()) Q.pop();\n}\n\nvoid AddQue(int px, int py) {\n for (int i = 0; i < 4; i++) {\n int sx = px + dx[i];\n int sy = py + dy[i];\n if (sx <= 0 || sx > H || sy <= 0 || sy > W) continue;\n if (dp[sx][sy][0] == 1 && dp[sx][sy][1] == 1) continue;\n Q.push(make_pair(sx, sy));\n }\n}\n\nstring Solve() {\n // Step 2. Make Graph (Part 1)\n for (int i = 1; i <= H + 1; i++) {\n for (int j = 1; j <= W + 0; j++) {\n if (Hori[i][j] == 0) {\n G[0][i][j].push_back(make_pair(i - 1, j));\n G[0][i - 1][j].push_back(make_pair(i, j));\n }\n if (Hori[i][j] == 1) {\n G[1][i][j].push_back(make_pair(i - 1, j));\n G[1][i - 1][j].push_back(make_pair(i, j));\n }\n }\n }\n\n // Step 3. Make Graph (Part 2)\n for (int i = 1; i <= H + 0; i++) {\n for (int j = 1; j <= W + 1; j++) {\n if (Vert[i][j] == 0) {\n G[0][i][j].push_back(make_pair(i, j - 1));\n G[0][i][j - 1].push_back(make_pair(i, j));\n }\n if (Vert[i][j] == 1) {\n G[1][i][j].push_back(make_pair(i, j - 1));\n G[1][i][j - 1].push_back(make_pair(i, j));\n }\n }\n }\n\n // Step 4. Starting Position\n for (int i = 1; i <= H; i++) {\n for (int j = 1; j <= W; j++) {\n for (int k = 0; k < 2; k++) {\n bool flag = false;\n for (pair<int, int> l : G[k][i][j]) {\n if (l.first == 0 || l.second == 0 || l.first == H + 1 || l.second == W + 1) flag = true;\n }\n if (flag == false) continue;\n dp[i][j][k] = 1;\n AddQue(i, j);\n }\n }\n }\n\n // Step 5. BFS\n while (!Q.empty()) {\n int px = Q.front().first;\n int py = Q.front().second; Q.pop();\n for (int i = 0; i < 2; i++) {\n if (dp[px][py][i] == 1) continue;\n bool flag = false;\n for (pair<int, int> l : G[i][px][py]) {\n if (dp[l.first][l.second][0] == 1 && dp[l.first][l.second][1] == 1) flag = true;\n }\n if (flag == true) {\n dp[px][py][i] = 1;\n AddQue(px, py);\n }\n }\n }\n\n // Step 6. Return\n if (dp[sx][sy][0] == 1) return \"Yes\";\n return \"No\";\n}\n\nint main() {\n while (true) {\n Initialize();\n \n // Step 1. Input\n cin >> H >> W >> sx >> sy; if (H + W + sx + sy == 0) break;\n for (int i = 1; i <= H + 1; i++) {\n for (int j = 1; j <= W + 0; j++) cin >> Hori[i][j];\n if (i == H + 1) break;\n for (int j = 1; j <= W + 1; j++) cin >> Vert[i][j];\n }\n\n // Step 2. Output\n cout << Solve() << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 41716, "score_of_the_acc": -0.5961, "final_rank": 17 }, { "submission_id": "aoj_2702_8003866", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <climits>\n#include <cmath>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <vector>\n\nusing namespace std;\nusing uint = unsigned int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing lint = ll;\nusing ulint = ull;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\ntemplate <class T>\nusing V = vector<T>;\ntemplate <class T>\nusing VV = V<V<T>>;\n#define For(i, a, b) for (int i = int(a); i < int(b); ++i)\n#define rep(i, n) For(i, 0, n)\ntemplate <class T, class U>\nbool chmin(T &a, U &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T, class U>\nbool chmax(T &a, U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const V<T> &v) {\n os << \"[\";\n for (auto d : v) os << d << \", \";\n return os << \"]\";\n}\n\nconstexpr int dx[4] = {0, 1, 0, -1};\nconstexpr int dy[4] = {1, 0, -1, 0};\n\nint main() {\n while (true) {\n int h, w, r, c;\n cin >> h >> w >> r >> c;\n if (h == 0) break;\n\n vector<vector<int>> hor(h + 1, vector<int>(w));\n vector<vector<int>> ver(h, vector<int>(w + 1));\n rep(i, h) {\n rep(j, w) cin >> hor[i][j];\n rep(j, w + 1) cin >> ver[i][j];\n }\n rep(j, w) cin >> hor[h][j];\n\n vector<vector<bool>> isa(h + 2, vector<bool>(w + 2, false));\n queue<pii> que;\n rep(j, w + 2) {\n que.emplace(0, j);\n que.emplace(h + 1, j);\n }\n rep(i, h + 2) {\n que.emplace(i, 0);\n que.emplace(i, w + 1);\n }\n while (!que.empty()) {\n auto [x, y] = que.front();\n que.pop();\n if (isa[x][y]) continue;\n\n if (x == 0 || x == h + 1 || y == 0 || y == w + 1) {\n isa[x][y] = true;\n } else {\n vector<int> cnt(2, 0);\n if (isa[x - 1][y]) {\n ++cnt[hor[x - 1][y - 1]];\n }\n if (isa[x + 1][y]) {\n ++cnt[hor[x][y - 1]];\n }\n if (isa[x][y - 1]) {\n ++cnt[ver[x - 1][y - 1]];\n }\n if (isa[x][y + 1]) {\n ++cnt[ver[x - 1][y]];\n }\n\n if (cnt[0] >= 1 && cnt[1] >= 1) {\n isa[x][y] = true;\n }\n }\n\n if (!isa[x][y]) continue;\n rep(i, 4) {\n int nx = x + dx[i], ny = y + dy[i];\n if (nx < 1 || nx > h || ny < 1 || ny > w) continue;\n que.emplace(nx, ny);\n }\n }\n\n int x = r, y = c;\n vector<int> cnt(2, 0);\n if (isa[x - 1][y]) {\n ++cnt[hor[x - 1][y - 1]];\n }\n if (isa[x + 1][y]) {\n ++cnt[hor[x][y - 1]];\n }\n if (isa[x][y - 1]) {\n ++cnt[ver[x - 1][y - 1]];\n }\n if (isa[x][y + 1]) {\n ++cnt[ver[x - 1][y]];\n }\n puts(cnt[0] ? \"Yes\" : \"No\");\n }\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 5552, "score_of_the_acc": -0.0546, "final_rank": 7 } ]
aoj_2705_cpp
Kuru Kuru Door くるくるドア ACM (Automatic Cleaning Machine) 社が2011年に開発した全自動円形掃除機 ICPC (Intelligent Circular Perfect Cleaner) は, 日中に自動で動き出し,自分が通り過ぎた場所のゴミを掃除する機能を備えている. 加えて,この ICPC は,バッテリー残量が低下した場合に自動的に電源の位置まで戻る機能も備えている. この度,JAG (Japan Alumni Group) と名乗る謎の組織から, ACM 社に対し大量の ICPC の発注があった. しかし,その発注には条件が付いていた. それは,彼らが本拠地としているビルの内部にある「くるくるドア」に ICPC を対応させることである. くるくるドアは,以下に述べるように平面上の物体としてモデル化されている. くるくるドアは,原点で接続された長さ R の 2 n (≥ 4) 枚のドアの組として表される. これらのドアは,角度 π/ n おきに並んでいる. くるくるドアは手動であり,ドアのどこに触れても触れた方向( ICPC との重なりが解消される方向)へ原点中心に一斉に回転させることができるが, 平行移動させることはできない. 初期状態では,ドアのちょうど2枚が y 軸に平行である. また,原点を中心とする半径 R の円のうち, y 座標の絶対値が R sin(π/(2 n )) 以上である部分および, y 軸上で y 座標の絶対値が R 以上の部分は壁になっている. これらの壁は押すことができない. 平面上で ICPC は半径 r の円として表される. ICPC の電源は点 T = ( x t , y t ) にあり, ICPC はその中心座標が電源の位置に重なっている時バッテリーを充電することができる. はじめに ICPC の中心座標が点 S = ( x s , y s ) となる位置にあるとき, 電源の位置まで ICPC が最短経路を通って戻れるようにすることが, JAG から出された ICPC 発注の条件である. なお, ICPC がくるくるドアに対して正確な挙動を行うことを確かめるために, ICPC の初期位置と電源の位置は,くるくるドアを挟んで反対側となるように与えられる. ACM 社は,凄腕プログラマーのあなたに,くるくるドアの寸法, ICPC の中心座標 S と半径,電源の位置 T が与えられたとき,ICPCが電源の位置へ到達できるかを判定し,到達可能な場合は ICPC の中心座標が移動する最短経路の長さを求めるプログラムの作成を依頼した. Input 入力は,複数のデータセットから構成され,1つの入力に含まれるデータセットの数は60個以下である. 各データセットの形式は次の通りである. n r R x s y s x t y t n はくるくるドアを構成するドアの枚数の半分を表す整数であり,2 ≤ n ≤ 10 と仮定して良い. r , R はそれぞれ ICPC の半径,くるくるドアの一枚あたりの長さを表す整数であり,1以上10以下と仮定して良い. ( x s , y s ) は ICPC の初期位置の中心座標,( x t , y t ) は電源の位置を表す. x s , y s , x t , y t はそれぞれ整数であり,-1,000 ≤ x s ≤ - r - 1, -1,000 ≤ y s ≤ 1,000, r + 1 ≤ x t ≤ 1,000, -1,000 ≤ y t ≤ 1,000 を満たすと仮定して良い. 加えて,点 ( x s , y s ), ( x t , y t ) はそれぞれ原点から距離 R + r + 10 -6 以上離れていると仮定して良い. すなわち, ICPC と電源は初期状態でいずれもくるくるドアの外側にあり,互いにくるくるドアを挟んで反対側に位置している. また, r および R が 10 -6 だけ変化しても, ICPC の電源位置への到達可能性は変わらないと仮定して良い. 入力の終わりは1つのゼロだけからなる行で示される. 下図は後に示す Sample Input 中の最初のデータセットにおける, ICPC の初期位置 S ,電源位置 T ,くるくるドアおよび壁の配置を表している. Output 各データセットについて, ICPC が電源の位置に到達できる場合は,電源の位置までの移動距離の最小値を1行に出力せよ. この場合,出力の絶対誤差は 10 -6 以内でなくてはならない. 到達できない場合は,-1 を1行に出力せよ. Sample Input 3 1 4 -5 5 5 -5 10 1 10 -10 5 5 -10 5 3 5 -20 0 20 0 8 1 9 -14 58 6 24 2 2 8 -57 -113 42 -31 4 1 4 -4 -5 4 5 0 Output for Sample Input 17.5032106371 41.3850388846 -1 102.0656847372 178.1399151364 19.5548716821
[ { "submission_id": "aoj_2705_6022652", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2021.11.01 22:38:19 */\n\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region macros\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define popcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\n#pragma endregion\n\n#pragma region aliases\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nconst int inf = 1e9;\nconst long long INF = 1e18;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nconst char sp = ' ';\nint dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nint dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n\nconst int mod_1000000007 = 1000000007;\nconst int mod_998244353 = 998244353;\n\n#pragma endregion\n\n#pragma region basic_operation\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { std::cout << (f ? \"Yes\" : \"No\") << '\\n'; }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(bool f = 1) { std::cout << (f ? \"YES\" : \"NO\") << '\\n'; }\nvoid NO() { std::cout << \"NO\\n\"; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\nvoid err(bool flag = true) {\n\tif(!flag) return;\n\tstd::cout << -1 << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(T x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T val) {\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\treturn (a + b - 1) / b;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(std::vector<T> &a) {\n\tauto vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\nnamespace viewer {\nvoid view(const long long e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tstd::cerr << \", \";\n\t\tview(c.second);\n\t\tstd::cerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n} // namespace viewer\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tviewer::view(x); \\\n\t\tstd::cerr << '\\n'; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\n#pragma region geometry_light\n\nusing Real = long double;\nusing R = Real;\nusing Point = std::complex<Real>;\nusing Vec = Point;\nconst Real EPS = 1e-10, PI = acos(-1);\n\ninline bool eq(const Real &a, const Real &b) { return fabs(b - a) < EPS; }\ninline bool eq(const Point &a, const Point &b) { return fabs(b - a) < EPS; }\n/*\n\t-1: a < b\n\t0 : a == b\n\t1 : a > b\n*/\ninline int compare(const Real &a, const Real &b) { return eq(a, b) ? 0 : a < b ? -1 : 1; }\ninline int sign(const Real &a) { return fabs(a) < EPS ? 0 : a < 0 ? -1 : 1; }\n\nnamespace std {\nconst Point operator*(const Point &p, const Real &d) { return Point(real(p) * d, imag(p) * d); }\n} // namespace std\n\nstd::istream &operator>>(std::istream &is, Point &p) {\n\tReal a, b;\n\tis >> a >> b;\n\tp = Point(a, b);\n\treturn is;\n}\nstd::ostream &operator<<(std::ostream &os, Point &p) { return os << std::fixed << std::setprecision(10) << p.real() << \" \" << p.imag(); }\n\n// rotate point 'p' for counter clockwise direction\nconst Point rotate(const Real &theta, const Point &p) {\n\treturn Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag());\n}\n\nconst Real radian_to_degree(const Real &r) { return (r * 180.0 / PI); }\n\nconst Real degree_to_radian(const Real &d) { return (d * PI / 180.0); }\n\n// get angle a-b-c (<pi)\nconst Real get_angle(const Point &a, const Point &b, const Point &c) {\n\tconst Point v(a - b), w(c - b);\n\tReal theta = fabs(atan2(w.imag(), w.real()) - atan2(v.imag(), v.real()));\n\treturn std::min(theta, 2 * PI - theta);\n}\n\nnamespace std {\nbool operator<(const Point &a, const Point &b) { return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag(); }\n} // namespace std\n\nstruct Line {\n\tPoint a, b;\n\n\tLine() = default;\n\n\tLine(Point a, Point b) : a(a), b(b) {}\n\n\tLine(Real A, Real B, Real C) // Ax + By = C\n\t{\n\t\tif(eq(A, 0))\n\t\t\ta = Point(0, C / B), b = Point(1, C / B);\n\t\telse if(eq(B, 0))\n\t\t\tb = Point(C / A, 0), b = Point(C / A, 1);\n\t\telse\n\t\t\ta = Point(0, C / B), b = Point(C / A, 0);\n\t}\n\n\tfriend std::ostream &operator<<(std::ostream &os, Line &p) { return os << p.a << \" -- \" << p.b; }\n\n\tfriend std::istream &operator>>(std::istream &is, Line &a) { return is >> a.a >> a.b; }\n};\n\nstruct Segment : Line {\n\tSegment() = default;\n\n\tSegment(Point a, Point b) : Line(a, b) {}\n};\n\nstruct Circle {\n\tPoint p;\n\tReal r;\n\n\tCircle() = default;\n\n\tCircle(Point p, Real r) : p(p), r(r) {}\n};\n\nusing Points = std::vector<Point>;\nusing Polygon = std::vector<Point>;\nusing Segments = std::vector<Segment>;\nusing Lines = std::vector<Line>;\nusing Circles = std::vector<Circle>;\n\nconst Real cross(const Point &a, const Point &b) { return real(a) * imag(b) - imag(a) * real(b); }\nconst Real dot(const Point &a, const Point &b) { return real(a) * real(b) + imag(a) * imag(b); }\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C\nconst int ccw(const Point &a, Point b, Point c) {\n\tb = b - a, c = c - a;\n\tif(cross(b, c) > EPS) return +1;\t\t// \"COUNTER_CLOCKWISE\"\n\tif(cross(b, c) < -EPS) return -1;\t\t// \"CLOCKWISE\"\n\tif(dot(b, c) < -EPS) return +2;\t\t\t// \"ONLINE_BACK\"\n\tif(norm(b) + EPS < norm(c)) return -2;\t// \"ONLINE_FRONT\"\n\treturn 0;\t\t\t\t\t\t\t\t// \"ON_SEGMENT\"\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\nbool parallel(const Line &a, const Line &b) { return eq(cross(a.b - a.a, b.b - b.a), 0.0); }\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\nbool orthogonal(const Line &a, const Line &b) { return eq(dot(a.a - a.b, b.a - b.b), 0.0); }\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A\nPoint projection(const Line &l, const Point &p) {\n\tdouble t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n\treturn l.a + (l.a - l.b) * t;\n}\n\nPoint projection(const Segment &l, const Point &p) {\n\tdouble t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n\treturn l.a + (l.a - l.b) * t;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B\nPoint reflection(const Line &l, const Point &p) { return projection(l, p) * 2.0 - p; }\n\nint intersect(const Line &l, const Point &p) { return int(abs(ccw(l.a, l.b, p)) != 1); }\n\nint intersect(const Line &l, const Line &m) {\n\tif(intersect(l, m.a) && intersect(l, m.b)) return -1;\n\treturn int(abs(cross(l.b - l.a, m.b - m.a)) > EPS);\n}\n\nint intersect(const Segment &s, const Point &p) { return int(ccw(s.a, s.b, p) == 0); }\n\nint intersect(const Line &l, const Segment &s) {\n\tif(intersect(l, s.a) && intersect(l, s.b)) return -1;\n\treturn cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS;\n}\n\nReal distance(const Line &l, const Point &p);\n\nint intersect(const Circle &c, const Line &l) {\n\tReal d = c.r - distance(l, c.p);\n\treturn fabs(d) < EPS ? 1 : d > 0. ? 2 : 0;\n}\n\nint intersect(const Circle &c, const Point &p) { return int(abs(abs(p - c.p) - c.r) < EPS); }\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B\nint intersect(const Segment &s, const Segment &t) {\n\tif(eq(s.a, s.b)) return intersect(t, s.a);\n\tif(intersect(Line(s), t.a) && intersect(Line(s), t.b) &&\n\t std::max(std::min(s.a, s.b), std::min(t.a, t.b)) < std::min(std::max(s.a, s.b), std::max(t.a, t.b)))\n\t\treturn -1;\n\treturn int(ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0);\n}\n\nint intersect(const Circle &c, const Segment &l) {\n\tconst Point h = projection(l, c.p);\n\tif(norm(h - c.p) - c.r * c.r > EPS) return 0;\n\tauto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b);\n\tif(compare(d1, c.r) == -1 && compare(d2, c.r) == -1) return 0;\n\tif(d1 < c.r - EPS && d2 > c.r - EPS || d1 > c.r - EPS && d2 < c.r - EPS) return 1;\n\treturn dot(l.a - h, l.b - h) < 0 ? 2 : 0;\n}\n\nReal distance(const Point &a, const Point &b);\n\nint number_of_common_tangents(const Circle &c1, const Circle &c2) {\n\tReal r1 = std::min(c1.r, c2.r), r2 = std::max(c1.r, c2.r), d = distance(c1.p, c2.p);\n\tint com = compare(r1 + r2, d);\n\treturn com == 1 ? compare(d + r1, r2) + 1 : 3 - com;\n\t// if(c1.r < c2.r) swap(c1, c2);\n\t// Real d = abs(c1.p - c2.p);\n\t// if(compare(c1.r + c2.r, d) == -1) return 4;\n\t// if(eq(c1.r + c2.r, d)) return 3;\n\t// if(compare(c1.r - c2.r, d) == -1) return 2;\n\t// return int(eq(c1.r - c2.r, d));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A&lang=jp\nint intersect(const Circle &c1, const Circle &c2) { return 2 - abs(2 - number_of_common_tangents(c1, c2)); }\n\nReal distance(const Point &a, const Point &b) { return abs(a - b); }\n\nReal distance(const Line &l, const Point &p) { return abs(p - projection(l, p)); }\n\nReal distance(const Line &l, const Line &m) { return intersect(l, m) ? 0 : distance(l, m.a); }\n\nReal distance(const Segment &s, const Point &p) {\n\tPoint r = projection(s, p);\n\treturn intersect(s, r) ? distance(r, p) : std::min(abs(s.a - p), abs(s.b - p));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D\nReal distance(const Segment &a, const Segment &b) {\n\tif(intersect(a, b)) return 0;\n\treturn std::min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)});\n}\n\nReal distance(const Line &l, const Segment &s) {\n\tif(intersect(l, s)) return 0;\n\treturn std::min(distance(l, s.a), distance(l, s.b));\n}\n\nPoint crosspoint(const Line &l, const Line &m) {\n\tReal A = cross(l.b - l.a, m.b - m.a);\n\tReal B = cross(l.b - l.a, l.b - m.a);\n\tif(eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a;\n\treturn m.a + (m.b - m.a) * B / A;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C\nPoint crosspoint(const Segment &l, const Segment &m) { return crosspoint(Line(l), Line(m)); }\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D\nstd::pair<Point, Point> crosspoint(const Circle &c, const Line l) {\n\tPoint pr = projection(l, c.p);\n\tif(eq(distance(l, c.p), c.r)) return {pr, pr};\n\tVec v = (l.b - l.a) / abs(l.b - l.a) * sqrt(c.r * c.r - norm(pr - c.p));\n\treturn make_pair(pr - v, pr + v);\n\t// Vec e = (l.b - l.a) / abs(l.b - l.a);\n\t// double base = sqrt(c.r * c.r - norm(pr - c.p));\n\t// return {pr - e * base, pr + e * base};\n}\n\nstd::pair<Point, Point> crosspoint(const Circle &c, const Segment &l) {\n\tif(intersect(c, l) == 2) return crosspoint(c, Line(l.a, l.b));\n\tauto ret = crosspoint(c, Line(l.a, l.b));\n\tif(dot(l.a - ret.first, l.b - ret.first) < EPS)\n\t\tret.second = ret.first;\n\telse\n\t\tret.first = ret.second;\n\treturn ret;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E\nstd::pair<Point, Point> crosspoint(const Circle &c1, const Circle &c2) {\n\tReal d = abs(c1.p - c2.p);\n\tReal a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d)); // cosine theorem\n\tReal t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());\n\tPoint p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);\n\tPoint p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);\n\treturn make_pair(p1, p2);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F\n// \"点 p を通る円 c の接線\"の接点2つ\nstd::pair<Point, Point> tangent(const Circle &c1, const Point &p2) {\n\treturn crosspoint(c1, Circle(p2, sqrt(norm(c1.p - p2) - c1.r * c1.r)));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G\n// 円 c1, c2 の共通接線\nLines tangent(Circle c1, Circle c2) {\n\tLines ret;\n\tif(c1.r < c2.r) std::swap(c1, c2);\n\tReal g = norm(c1.p - c2.p);\n\tif(eq(g, 0)) return ret;\n\tVec u = (c2.p - c1.p) / Real(sqrt(g));\n\tVec v = rotate(PI * 0.5, u);\n\tfor(int s : {-1, 1}) {\n\t\tReal h = (c1.r + s * c2.r) / sqrt(g);\n\t\tif(eq(1 - h * h, 0)) {\n\t\t\tret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r);\n\t\t} else if(1 - h * h > 0) {\n\t\t\tPoint uu = u * h, vv = v * sqrt(1 - h * h);\n\t\t\tret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s);\n\t\t\tret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s);\n\t\t}\n\t}\n\treturn ret;\n}\n\n#pragma endregion\n\nstd::vector<double> dijkstra(int n, vector<tuple<int, int, double>> es, int s) {\n\tvector<vector<pair<int, double>>> g(n);\n\tfor(auto [u, v, c] : es) {\n\t\tg[u].emplace_back(v, c);\n\t\tg[v].emplace_back(u, c);\n\t}\n\tconst double INF = 1e18;\n\tstd::vector<double> dist(g.size(), INF);\n\tusing P = std::pair<double, int>;\n\tstd::priority_queue<P, std::vector<P>, std::greater<P>> que;\n\tdist[s] = 0;\n\tque.push(pll(0, s));\n\twhile(!que.empty()) {\n\t\tP p = que.top();\n\t\tque.pop();\n\t\tint v = p.second;\n\t\tif(dist[v] < p.first) continue;\n\t\tfor(auto [to, cost] : g[v]) {\n\t\t\tif(dist[to] > dist[v] + cost) {\n\t\t\t\tdist[to] = dist[v] + cost;\n\t\t\t\tque.push(P(dist[to], to));\n\t\t\t}\n\t\t}\n\t}\n\treturn dist;\n}\n\nld solve(int n) {\n\tR cleaner_radius, door_len;\n\tcin >> cleaner_radius >> door_len;\n\tPoint s, t;\n\tstd::cin >> s >> t;\n\tPoints pts = {s, t};\n\tdebug(n, cleaner_radius, door_len, s, t);\n\tR center_radius = cleaner_radius / (sin(pi / (2. * n)));\n\tR radius_large_circle = door_len + cleaner_radius;\n\tR radius_small_circle = door_len - cleaner_radius;\n\tif(radius_small_circle < center_radius) return -10;\n\n\tPoint edge = polar(door_len, pi / (2. * n));\n\tif(distance(edge, Point(edge.real(), -edge.imag())) < 2 * cleaner_radius) return -10;\n\tPoints edges;\n\tedges.emplace_back(-edge.real(), edge.imag());\n\tedges.emplace_back(-edge.real(), -edge.imag());\n\tedges.emplace_back(edge.real(), edge.imag());\n\tedges.emplace_back(edge.real(), -edge.imag());\n\n\tCircles cs;\n\t{\n\t\tPoint O(0, 0);\n\t\tcs.emplace_back(O, radius_large_circle);\n\t\tcs.emplace_back(O, radius_small_circle);\n\t\tcs.emplace_back(O, center_radius);\n\t\tfoa(p, edges) cs.emplace_back(p, cleaner_radius);\n\t}\n\tconst int cssize = cs.size();\n\n\tauto arg_is_ok = [&](R ar) {\n\t\treturn !(in_range(ar, -pi + pi / (2. * n), 0 - pi / (2. * n)) || in_range(ar, pi / (2. * n), pi - pi / (2. * n)));\n\t};\n\n\tconst Line wall = Line(Point(0, 1), Point(0, -1));\n\n\tauto seg_is_valid = [&](const Segment &seg) {\n\t\tif(intersect(wall, seg)) {\n\t\t\tif(abs(crosspoint(wall, seg).imag()) > door_len) return false;\n\t\t}\n\t\trep(csid, cssize) {\n\t\t\tconst Circle &c = cs[csid];\n\t\t\tif(intersect(c, seg)) {\n\t\t\t\tif(intersect(c, Line(seg)) <= 1) continue;\n\t\t\t\tpair<Point, Point> crs = crosspoint(c, seg);\n\t\t\t\tif(eq(crs.first, crs.second) && (eq(crs.first, seg.a) || eq(crs.first, seg.b))) continue;\n\t\t\t\tif(csid < 2) {\n\t\t\t\t\tauto ok = [&seg, &arg_is_ok](Point p) { return arg_is_ok(arg(p)) || eq(p, seg.a) || eq(p, seg.b); };\n\t\t\t\t\tif(ok(crs.first) && ok(crs.second)) continue;\n\t\t\t\t}\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t\tdebug(seg.a, seg.b);\n\t\treturn true;\n\t};\n\n\tV<tuple<int, int, double>> path;\n\n\tif(seg_is_valid(Segment(s, t))) return distance(s, t);\n\n\t// rep(i, cssize) rep(j, i + 1, cssize) {\n\trep(i, 2, cssize) rep(j, i + 1, cssize) {\n\t\tauto ts = tangent(cs[i], cs[j]);\n\t\tfoa(ln, ts) {\n\t\t\t// Point a = crosspoint(cs[i], ln).first, b = crosspoint(cs[j], ln).first;\n\t\t\t// if(eq(a, b)) continue;\n\t\t\t// Segment seg(a, b);\n\t\t\tSegment seg(ln.a, ln.b);\n\t\t\tif(seg_is_valid(seg)) {\n\t\t\t\tif(i == 0) {\n\t\t\t\t\tdebug(j);\n\t\t\t\t\tdebug(cs[i].p, cs[i].r);\n\t\t\t\t\tdebug(cs[j].p, cs[j].r);\n\t\t\t\t\tdebug(seg.a, seg.b);\n\t\t\t\t}\n\t\t\t\tpath.emplace_back(pts.size(), pts.size() + 1, distance(seg.a, seg.b));\n\t\t\t\tpts.push_back(seg.a);\n\t\t\t\tpts.push_back(seg.b);\n\t\t\t}\n\t\t}\n\t}\n\n\trep(ptid, 2) {\n\t\tPoint p = pts[ptid];\n\t\trep(i, cssize) {\n\t\t\tauto tts = tangent(cs[i], p);\n\t\t\tV<Point> ts = {tts.first, tts.second};\n\t\t\tfoa(pt, ts) {\n\t\t\t\tSegment seg(p, pt);\n\t\t\t\tif(seg_is_valid(seg)) {\n\t\t\t\t\tpath.emplace_back(ptid, pts.size(), distance(seg.a, seg.b));\n\t\t\t\t\tpts.push_back(seg.b);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tedge = polar(radius_small_circle, pi / (2. * n));\n\tpts.emplace_back(-edge.real(), edge.imag());\n\tpts.emplace_back(-edge.real(), -edge.imag());\n\tpts.emplace_back(edge.real(), edge.imag());\n\tpts.emplace_back(edge.real(), -edge.imag());\n\tedge = polar(radius_large_circle, pi / (2. * n));\n\tpts.emplace_back(-edge.real(), edge.imag());\n\tpts.emplace_back(-edge.real(), -edge.imag());\n\tpts.emplace_back(edge.real(), edge.imag());\n\tpts.emplace_back(edge.real(), -edge.imag());\n\tconst int ps = pts.size();\n\n\trep(i, ps) rep(j, i + 1, ps) {\n\t\tPoint g = pts[i], h = pts[j];\n\t\trep(csid, cssize) {\n\t\t\tauto c = cs[csid];\n\t\t\tif(intersect(c, g) && intersect(c, h)) {\n\t\t\t\tif(csid == 0) {\t // large\n\t\t\t\t\tif(h.real() * g.real() < 0 || h.imag() * g.imag() < 0) continue;\n\t\t\t\t} else if(csid == 1) {\t// small\n\t\t\t\t\tif(g.imag() * h.imag() < 0) continue;\n\t\t\t\t}\n\t\t\t\tR a = arg(g - c.p), b = arg(h - c.p);\n\t\t\t\ta -= b;\n\t\t\t\twhile(a < 0) a += pi * 2;\n\t\t\t\tif(a > pi) a = pi * 2 - a;\n\t\t\t\tpath.emplace_back(i, j, a * c.r);\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t}\n\t}\n\n\treturn dijkstra(ps, path, 0)[1];\n}\n\nint main() {\n\tstd::ios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tstd::cout << std::fixed << std::setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tint n;\n\t// cin >> n;\n\twhile(cin >> n && n) {\n\t\tld res = solve(n);\n\t\tif(res < 0 || res > INF / 1000)\n\t\t\tprint(-1);\n\t\telse\n\t\t\tcout << res << dl;\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4000, "score_of_the_acc": -1, "final_rank": 1 }, { "submission_id": "aoj_2705_2710790", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <complex>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <array>\nusing namespace std;\n\nconst double EPS = 1e-8;\nconst double INF = 1e12;\nconst double PI = acos(-1);\n#define EQ(n,m) (abs((n)-(m)) < EPS)\n#define X real()\n#define Y imag()\n\ntypedef complex<double> P;\ntypedef vector<P> VP;\nstruct L : array<P, 2>{\n L(const P& a, const P& b){ at(0)=a; at(1)=b; }\n L(){}\n};\nstruct C{\n P p;\n double r;\n C(const P& p, const double& r) : p(p), r(r) {}\n C(){}\n};\n\nnamespace std{\n bool operator < (const P& a, const P& b){\n return (a.X!=b.X) ? a.X<b.X : a.Y<b.Y;\n }\n bool operator == (const P& a, const P& b){\n return abs(a-b) < EPS;\n }\n}\n\ndouble dot(P a, P b){\n return (conj(a)*b).X;\n}\ndouble cross(P a, P b){\n return (conj(a)*b).Y;\n}\nint ccw(P a, P b, P c){\n b -= a;\n c -= a;\n if(cross(b,c) > EPS) return +1; //ccw\n if(cross(b,c) < -EPS) return -1; //cw\n if(dot(b,c) < -EPS) return +2; //c-a-b\n if(abs(c)-abs(b) > EPS) return -2; //a-b-c\n return 0; //a-c-b\n}\nP unit(const P &p){\n return p/abs(p);\n}\nP rotate(const P &p, double rad){\n return p *P(cos(rad), sin(rad));\n}\n\nbool intersectSS(const L& a, const L& b){\n return ( ccw(a[0],a[1],b[0]) *ccw(a[0],a[1],b[1]) <= 0 ) &&\n ( ccw(b[0],b[1],a[0]) *ccw(b[0],b[1],a[1]) <= 0 );\n}\nbool intersectSP(const L& s, const P &p){\n return abs(cross(s[0]-p, s[1]-p))<EPS && dot(s[0]-p, s[1]-p)<EPS;\n}\n\nP projection(const L& l, const P& p) {\n double t = dot(p-l[0], l[0]-l[1]) / norm(l[0]-l[1]);\n return l[0] + t*(l[0]-l[1]);\n}\ndouble distanceLP(const L &l, const P &p) {\n return abs(p - projection(l, p));\n}\n\nP crosspointLL(const L &l, const L &m) {\n double A = cross(l[1]-l[0], m[1]-m[0]);\n double B = cross(l[1]-l[0], l[1]-m[0]);\n return m[0] + B/A *(m[1]-m[0]);\n}\nVP crosspointCL(const C &c, const L &l){\n VP ret;\n P mid = projection(l, c.p);\n double d = distanceLP(l, c.p);\n if(EQ(d, c.r)){\n ret.push_back(mid);\n }else if(d < c.r){\n double len = sqrt(c.r*c.r -d*d);\n ret.push_back(mid +len*unit(l[1]-l[0]));\n ret.push_back(mid -len*unit(l[1]-l[0]));\n }\n return ret;\n}\nVP crosspointCS(const C &c, const L &s){\n VP ret;\n VP cp = crosspointCL(c,s);\n for(int i=0; i<(int)cp.size(); i++){\n if(intersectSP(s, cp[i])){\n ret.push_back(cp[i]);\n }\n }\n return ret;\n}\n\nbool isParallel(const P &a, const P &b){\n return abs(cross(a,b)) < EPS;\n}\nbool isParallel(const L &a, const L &b){\n return isParallel(a[1]-a[0], b[1]-b[0]);\n}\n\nvector<L> getTangentLine(const C &c, const P &p){\n vector<L> ret;\n P dir = p -c.p;\n if(c.r < abs(dir) +EPS){\n P a = c.p + c.r*unit(dir);\n VP cp = crosspointCL(C(c.p, abs(dir)), L(a, a+dir*P(0,1)));\n for(int i=0; i<(int)cp.size(); i++){\n ret.push_back(L(p, c.p +c.r*unit(cp[i]-c.p)));\n }\n }\n return ret;\n}\n\nvector<L> getCommonTangentLine(C a, C b){\n vector<L> ret;\n if(a.p==b.p && EQ(a.r, b.r)) return ret;\n if(a.r < b.r) swap(a,b);\n P ab = b.p -a.p;\n double d = abs(ab);\n if(d+EPS > a.r+b.r){\n ret = getTangentLine(a, a.p +a.r/(a.r+b.r)*ab);\n }\n if(d+EPS > a.r-b.r){\n if(EQ(a.r, b.r)){\n P normal = unit(ab)*P(0,1)*a.r;\n ret.push_back(L(a.p +normal, b.p +normal));\n ret.push_back(L(a.p -normal, b.p -normal));\n }else{\n vector<L> tmp = getTangentLine(a, a.p +a.r/(a.r-b.r)*ab);\n copy(tmp.begin(), tmp.end(), back_inserter(ret));\n }\n }\n return ret;\n}\n\ndouble getAngle(P a, P b, P c){\n b -= a;\n c -= a;\n return abs(arg(b/c));\n}\n\nvoid generate_object(int n, double r, double rr, vector<L> &l, vector<C> &c){\n double theta = PI/(2*n);\n double dr = r / sin(theta);\n l.resize(4);\n c.push_back(C(P(0, 0), dr));\n l[0] = L(rotate(P(rr, 0), theta), rotate(P(-rr, 0), theta));\n l[1] = L(conj(l[0][0]), conj(l[0][1]));\n l[2] = L(P(r, INF), P(r, -INF));\n l[3] = L(-l[2][0], -l[2][1]);\n for(int i=0; i<2; i++){\n for(int j=0; j<2; j++){\n c.push_back(C(l[i][j], r));\n }\n }\n c.push_back(C(P(0, 0), rr +r));\n c.push_back(C(P(0, 0), rr -r));\n}\n\nbool in_object(P p, vector<L> &l, vector<C> &c){\n for(int i=0; i<5; i++){\n if(abs(p -c[i].p) +EPS < c[i].r){\n return true;\n }\n }\n if((abs(p.X) +EPS < c[1].r) && (abs(p -c[5].p) +EPS > c[5].r)){\n return true;\n }\n if(abs(p) +EPS < c[5].r && abs(p) > c[6].r +EPS &&\n ccw(l[0][0], l[0][1], p)*ccw(l[1][0], l[1][1], p) == 1){\n return true;\n }\n return false;\n}\n\nbool isVisible(L ray, vector<L> &l, vector<C> &c){\n VP cp;\n cp.push_back(ray[0]);\n cp.push_back(ray[1]);\n for(int i=2; i<4; i++){\n if(!isParallel(ray, l[i]) && intersectSS(ray, l[i])){\n cp.push_back(crosspointLL(ray, l[i]));\n }\n }\n for(int i=0; i<7; i++){\n VP tmp = crosspointCS(c[i], ray);\n for(int j=0; j<(int)tmp.size(); j++){\n cp.push_back(tmp[j]);\n }\n }\n sort(cp.begin(), cp.end());\n cp.erase(unique(cp.begin(), cp.end()), cp.end());\n for(int i=0; i<(int)cp.size()-1; i++){\n if(in_object((cp[i+1] +cp[i])/2.0, l, c)){\n return false;\n }\n }\n return true;\n}\n\nVP listup(vector<L> &l, vector<C> &c, VP &sg){\n VP ret;\n for(int i=0; i<5; i++){\n for(int j=i+1; j<5; j++){\n vector<L> cl = getCommonTangentLine(c[i], c[j]);\n for(int k=0; k<(int)cl.size(); k++){\n L ray(projection(cl[k], c[i].p), projection(cl[k], c[j].p));\n if(!isVisible(ray, l, c)) continue;\n ret.push_back(ray[0]);\n ret.push_back(ray[1]);\n }\n }\n }\n for(int i=0; i<2; i++){\n for(int j=0; j<6; j++){\n vector<L> tl = getTangentLine(c[j], sg[i]);\n for(int k=0; k<(int)tl.size(); k++){\n L ray(sg[i], projection(tl[k], c[j].p));\n if(!isVisible(ray, l, c)) continue;\n ret.push_back(ray[1]);\n }\n }\n }\n for(int i=0; i<2; i++){\n VP cp = crosspointCL(c[5], l[i]);\n ret.push_back(cp[0]);\n ret.push_back(cp[1]);\n }\n sort(ret.begin(), ret.end());\n ret.erase(unique(ret.begin(), ret.end()), ret.end());\n ret.insert(ret.begin(), sg.begin(), sg.end());\n return ret;\n}\n\nvector<vector<double> > make_graph(vector<L> &l, vector<C> &c, VP plist){\n int n = plist.size();\n vector<vector<double> > adj(n, vector<double>(n, INF));\n for(int i=0; i<n; i++){\n if(in_object(plist[i], l, c)) continue;\n for(int j=i+1; j<n; j++){\n if(in_object(plist[j], l, c)) continue;\n if(isVisible(L(plist[i], plist[j]), l, c)){\n adj[i][j] = adj[j][i] = min(adj[j][i], abs(plist[j] -plist[i]));\n }\n for(int k=0; k<6; k++){\n if(EQ(abs(plist[i]-c[k].p), c[k].r) && EQ(abs(plist[j]-c[k].p), c[k].r)){\n if(k!=5 || plist[i].X *plist[j].X > 0){\n double theta = getAngle(c[k].p, plist[i], plist[j]);\n adj[i][j] = adj[j][i] = min(adj[i][j], theta *c[k].r);\n }\n }\n }\n }\n } \n return adj;\n}\n\nvoid warshall(vector<vector<double> > &adj){\n int n = adj.size();\n for(int k=0; k<n; k++){\n for(int i=0; i<n; i++){\n for(int j=0; j<n; j++){\n adj[i][j] = min(adj[i][j], adj[i][k] +adj[k][j]);\n }\n }\n }\n}\n\nint main(){\n cout << fixed;\n cout << setprecision(10);\n while(1){\n int n;\n cin >> n;\n if(n==0) break;\n \n double r,rr;\n cin >> r >> rr;\n VP sg(2);\n for(int i=0; i<2; i++){\n double x,y;\n cin >> x >> y;\n sg[i] = P(x, y);\n }\n if(r/sin(PI/(2*n)) > rr-r +EPS){\n cout << -1 << endl;\n continue;\n }\n\n vector<L> line;\n vector<C> circle;\n generate_object(n, r, rr, line, circle); \n VP plist = listup(line, circle, sg);\n vector<vector<double> > adj = make_graph(line, circle, plist);\n warshall(adj);\n cout << adj[0][1] << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3552, "score_of_the_acc": -1, "final_rank": 1 }, { "submission_id": "aoj_2705_2710789", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <complex>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <array>\nusing namespace std;\n\nconst double EPS = 1e-8;\nconst double INF = 1e12;\nconst double PI = acos(-1);\n#define EQ(n,m) (abs((n)-(m)) < EPS)\n#define X real()\n#define Y imag()\n\ntypedef complex<double> P;\ntypedef vector<P> VP;\nstruct L : array<P, 2>{\n L(const P& a, const P& b){ at(0)=a; at(1)=b; }\n L(){}\n};\nstruct C{\n P p;\n double r;\n C(const P& p, const double& r) : p(p), r(r) {}\n C(){}\n};\n\nnamespace std{\n bool operator < (const P& a, const P& b){\n return (a.X!=b.X) ? a.X<b.X : a.Y<b.Y;\n }\n bool operator == (const P& a, const P& b){\n return abs(a-b) < EPS;\n }\n}\n\ndouble dot(P a, P b){\n return (conj(a)*b).X;\n}\ndouble cross(P a, P b){\n return (conj(a)*b).Y;\n}\nint ccw(P a, P b, P c){\n b -= a;\n c -= a;\n if(cross(b,c) > EPS) return +1; //ccw\n if(cross(b,c) < -EPS) return -1; //cw\n if(dot(b,c) < -EPS) return +2; //c-a-b\n if(abs(c)-abs(b) > EPS) return -2; //a-b-c\n return 0; //a-c-b\n}\nP unit(const P &p){\n return p/abs(p);\n}\nP rotate(const P &p, double rad){\n return p *P(cos(rad), sin(rad));\n}\n\nbool intersectSS(const L& a, const L& b){\n return ( ccw(a[0],a[1],b[0]) *ccw(a[0],a[1],b[1]) <= 0 ) &&\n ( ccw(b[0],b[1],a[0]) *ccw(b[0],b[1],a[1]) <= 0 );\n}\nbool intersectSP(const L& s, const P &p){\n return abs(cross(s[0]-p, s[1]-p))<EPS && dot(s[0]-p, s[1]-p)<EPS;\n}\n\nP projection(const L& l, const P& p) {\n double t = dot(p-l[0], l[0]-l[1]) / norm(l[0]-l[1]);\n return l[0] + t*(l[0]-l[1]);\n}\ndouble distanceLP(const L &l, const P &p) {\n return abs(p - projection(l, p));\n}\n\nP crosspointLL(const L &l, const L &m) {\n double A = cross(l[1]-l[0], m[1]-m[0]);\n double B = cross(l[1]-l[0], l[1]-m[0]);\n return m[0] + B/A *(m[1]-m[0]);\n}\nVP crosspointCL(const C &c, const L &l){\n VP ret;\n P mid = projection(l, c.p);\n double d = distanceLP(l, c.p);\n if(EQ(d, c.r)){\n ret.push_back(mid);\n }else if(d < c.r){\n double len = sqrt(c.r*c.r -d*d);\n ret.push_back(mid +len*unit(l[1]-l[0]));\n ret.push_back(mid -len*unit(l[1]-l[0]));\n }\n return ret;\n}\nVP crosspointCS(const C &c, const L &s){\n VP ret;\n VP cp = crosspointCL(c,s);\n for(int i=0; i<(int)cp.size(); i++){\n if(intersectSP(s, cp[i])){\n ret.push_back(cp[i]);\n }\n }\n return ret;\n}\n\nbool isParallel(const P &a, const P &b){\n return abs(cross(a,b)) < EPS;\n}\nbool isParallel(const L &a, const L &b){\n return isParallel(a[1]-a[0], b[1]-b[0]);\n}\n\nvector<L> getTangentLine(const C &c, const P &p){\n vector<L> ret;\n P dir = p -c.p;\n if(c.r < abs(dir) +EPS){\n P a = c.p + c.r*unit(dir);\n VP cp = crosspointCL(C(c.p, abs(dir)), L(a, a+dir*P(0,1)));\n for(int i=0; i<(int)cp.size(); i++){\n ret.push_back(L(p, c.p +c.r*unit(cp[i]-c.p)));\n }\n }\n return ret;\n}\n\nvector<L> getCommonTangentLine(C a, C b){\n vector<L> ret;\n if(a.p==b.p && EQ(a.r, b.r)) return ret;\n if(a.r < b.r) swap(a,b);\n P ab = b.p -a.p;\n double d = abs(ab);\n if(d+EPS > a.r+b.r){\n ret = getTangentLine(a, a.p +a.r/(a.r+b.r)*ab);\n }\n if(d+EPS > a.r-b.r){\n if(EQ(a.r, b.r)){\n P normal = unit(ab)*P(0,1)*a.r;\n ret.push_back(L(a.p +normal, b.p +normal));\n ret.push_back(L(a.p -normal, b.p -normal));\n }else{\n vector<L> tmp = getTangentLine(a, a.p +a.r/(a.r-b.r)*ab);\n copy(tmp.begin(), tmp.end(), back_inserter(ret));\n }\n }\n return ret;\n}\n\ndouble getAngle(P a, P b, P c){\n b -= a;\n c -= a;\n return abs(arg(b/c));\n}\n\n//問題なし\nvoid generate_object(int n, double r, double rr, vector<L> &l, vector<C> &c){\n double theta = PI/(2*n);\n double dr = r / sin(theta);\n l.resize(4);\n //中心の円 [0]\n c.push_back(C(P(0, 0), dr));\n //切れ目の境界\n l[0] = L(rotate(P(rr, 0), theta), rotate(P(-rr, 0), theta));\n l[1] = L(conj(l[0][0]), conj(l[0][1]));\n //左右境界の縦線\n l[2] = L(P(r, INF), P(r, -INF));\n l[3] = L(-l[2][0], -l[2][1]);\n //切れ目の4円\n for(int i=0; i<2; i++){\n for(int j=0; j<2; j++){\n c.push_back(C(l[i][j], r));\n }\n }\n //外側 [5]\n c.push_back(C(P(0, 0), rr +r));\n //内側 [6]\n c.push_back(C(P(0, 0), rr -r));\n}\n\n//おそらく問題なし\nbool in_object(P p, vector<L> &l, vector<C> &c){\n //中心及び4円の中にある\n for(int i=0; i<5; i++){\n if(abs(p -c[i].p) +EPS < c[i].r){\n return true;\n }\n }\n //円の外側かつ棒の中(左右の境界に触れる)\n if((abs(p.X) +EPS < c[1].r) && (abs(p -c[5].p) +EPS > c[5].r)){\n return true;\n }\n //外側の円の中かつ内側の円の外かつ上側もしくは下側\n if(abs(p) +EPS < c[5].r && abs(p) > c[6].r +EPS &&\n ccw(l[0][0], l[0][1], p)*ccw(l[1][0], l[1][1], p) == 1){\n return true;\n }\n return false;\n}\n\nbool isVisible(L ray, vector<L> &l, vector<C> &c){\n VP cp;\n cp.push_back(ray[0]);\n cp.push_back(ray[1]);\n //ray(線分)と線、円の交点を列挙\n for(int i=2; i<4; i++){\n if(!isParallel(ray, l[i]) && intersectSS(ray, l[i])){\n cp.push_back(crosspointLL(ray, l[i]));\n }\n }\n for(int i=0; i<7; i++){\n VP tmp = crosspointCS(c[i], ray);\n for(int j=0; j<(int)tmp.size(); j++){\n cp.push_back(tmp[j]);\n }\n }\n //ソートして重複を削除\n sort(cp.begin(), cp.end());\n cp.erase(unique(cp.begin(), cp.end()), cp.end());\n //いずれかの中点がオブジェクトの内部にあればfalseを返す\n for(int i=0; i<(int)cp.size()-1; i++){\n if(in_object((cp[i+1] +cp[i])/2.0, l, c)){\n return false;\n }\n }\n return true;\n}\n\nVP listup(vector<L> &l, vector<C> &c, VP &sg){\n VP ret;\n //中5円の共通接線\n for(int i=0; i<5; i++){\n for(int j=i+1; j<5; j++){\n vector<L> cl = getCommonTangentLine(c[i], c[j]);\n for(int k=0; k<(int)cl.size(); k++){\n //接点を追加(通行可能のみ)\n L ray(projection(cl[k], c[i].p), projection(cl[k], c[j].p));\n if(!isVisible(ray, l, c)) continue;\n ret.push_back(ray[0]);\n ret.push_back(ray[1]);\n }\n }\n }\n //スタート、ゴールから引いた接線(外側含む)\n for(int i=0; i<2; i++){\n for(int j=0; j<6; j++){\n vector<L> tl = getTangentLine(c[j], sg[i]);\n for(int k=0; k<(int)tl.size(); k++){\n //接点を追加(通行可能のみ)\n L ray(sg[i], projection(tl[k], c[j].p));\n if(!isVisible(ray, l, c)) continue;\n ret.push_back(ray[1]);\n }\n }\n }\n //上記では障害物内にある点は列挙されない\n //外側の円と4円の境目\n for(int i=0; i<2; i++){\n VP cp = crosspointCL(c[5], l[i]);\n ret.push_back(cp[0]);\n ret.push_back(cp[1]);\n }\n //重複削除\n sort(ret.begin(), ret.end());\n ret.erase(unique(ret.begin(), ret.end()), ret.end());\n ret.insert(ret.begin(), sg.begin(), sg.end());\n return ret;\n}\n\nvector<vector<double> > make_graph(vector<L> &l, vector<C> &c, VP plist){\n int n = plist.size();\n vector<vector<double> > adj(n, vector<double>(n, INF));\n //全ての点の組み合わせについて\n for(int i=0; i<n; i++){\n if(in_object(plist[i], l, c)) continue;\n for(int j=i+1; j<n; j++){\n if(in_object(plist[j], l, c)) continue;\n //直線的に行けるなら結ぶ\n if(isVisible(L(plist[i], plist[j]), l, c)){\n adj[i][j] = adj[j][i] = min(adj[j][i], abs(plist[j] -plist[i]));\n }\n //同じ円上に乗っていてるなら\n for(int k=0; k<6; k++){\n if(EQ(abs(plist[i]-c[k].p), c[k].r) && EQ(abs(plist[j]-c[k].p), c[k].r)){\n //外側の円については左右の境界をまたがないなら\n if(k!=5 || plist[i].X *plist[j].X > 0){\n //円上を移動する(短い方)\n double theta = getAngle(c[k].p, plist[i], plist[j]);\n adj[i][j] = adj[j][i] = min(adj[i][j], theta *c[k].r);\n }\n }\n }\n }\n } \n return adj;\n}\n\nvoid warshall(vector<vector<double> > &adj){\n int n = adj.size();\n for(int k=0; k<n; k++){\n for(int i=0; i<n; i++){\n for(int j=0; j<n; j++){\n adj[i][j] = min(adj[i][j], adj[i][k] +adj[k][j]);\n }\n }\n }\n}\n\nint main(){\n cout << fixed;\n cout << setprecision(10);\n while(1){\n int n;\n cin >> n;\n if(n==0) break;\n \n double r,rr;\n cin >> r >> rr;\n VP sg(2);\n for(int i=0; i<2; i++){\n double x,y;\n cin >> x >> y;\n sg[i] = P(x, y);\n }\n if(r/sin(PI/(2*n)) > rr-r +EPS){\n cout << -1 << endl;\n continue;\n }\n\n vector<L> line;\n vector<C> circle;\n generate_object(n, r, rr, line, circle);\n \n VP plist = listup(line, circle, sg);\n vector<vector<double> > adj = make_graph(line, circle, plist);\n warshall(adj);\n\n /*\n cerr << plist.size() << endl;\n for(int i=0; i<(int)plist.size(); i++){\n cout << plist[i] << endl;\n }\n */\n \n \n cout << adj[0][1] << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3744, "score_of_the_acc": -1.4286, "final_rank": 5 }, { "submission_id": "aoj_2705_2391306", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 5000\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-6)\n#define mod 1000000007\n#define pi acos(-1)\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\n \nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n \n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return (x!=p.x ? x<p.x : y<p.y);}\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n \n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n \nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n \nclass Circle{\npublic:\n Point c;\n double r;\n Circle(Point c=Point(),double r=0.0):c(c),r(r){}\n};\n \ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\ndouble arg(Vector p){ \n double res=atan2(p.y,p.x);\n if(res<0.0)res+=2*pi;\n return res;\n}\n \nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n \ndouble getDistanceLP(Line l,Point p){\n return abs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n \ndouble getDistanceSP(Segment s,Point p){\n if(dot(s.p2-s.p1,p-s.p1)<0.0)return abs(p-s.p1);\n if(dot(s.p1-s.p2,p-s.p2)<0.0)return abs(p-s.p2);\n return getDistanceLP(s,p);\n}\n \nbool intersect(Circle c,Segment s){\n if(getDistanceSP(s,c.c)-c.r<-eps)return true;\n return false;\n}\n \nbool intersect(Line L,Segment s){\n return cross(L.p2-L.p1,s.p1-L.p1)*cross(L.p2-L.p1,s.p2-L.p1)<eps;\n}\n \nbool on(Circle c,Point p){ return equals(abs(c.c-p),c.r); }\n \nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n \npair<Point,Point> getCrossPoints(Circle c,Line l){\n Vector pr=project(l,c.c);\n Vector e=(l.p2-l.p1)/abs(l.p2-l.p1);\n double base=sqrt(c.r*c.r-norm(pr-c.c));\n return mp(pr+e*base,pr-e*base);\n}\n \nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n \nPoint rotate(Point base,Point a,double r){\n Point b=a-base;\n a.x=b.x*cos((r/180)*M_PI)-b.y*sin((r/180)*M_PI);\n a.y=b.x*sin((r/180)*M_PI)+b.y*cos((r/180)*M_PI);\n a=a+base;\n return a;\n}\n \npair<Point,Point> getTangent(Circle c,Point p){\n Vector v=p-c.c;\n double r=acos(c.r/abs(v))*360/(2*pi);\n v=v*c.r/abs(v);\n Point p1=rotate(c.c,c.c+v,r);\n Point p2=rotate(c.c,c.c+v,360-r);\n return mp(p1,p2);\n}\n \nint intersect(Circle a,Circle b){\n double dis=abs(a.c-b.c),sumr=a.r+b.r,minr=min(a.r,b.r),maxr=max(a.r,b.r);\n if((sumr-dis)<-eps)return 4;\n if(equals(sumr,dis))return 3;\n if((maxr-(dis+minr))<-eps)return 2;\n if(equals(dis+minr,maxr))return 1;\n return 0;\n}\n \nvector<Line> getCommonTangent(Circle a,Circle b){\n vector<Line> vp;\n int intersection=intersect(a,b);\n if(intersection==0)return vp;\n if(intersection==1){\n Vector v=b.c-a.c;\n if(b.r<a.r)v=(v*a.r)/abs(v);\n else v=(v*a.r*(-1))/abs(v);\n vp.push_back(Line(a.c+v,a.c+v));\n return vp;\n }\n if(intersection==3){\n Vector v=b.c-a.c;\n v=v*a.r/abs(v);\n vp.push_back(Line(a.c+v,a.c+v));\n }\n double d=abs(b.c-a.c),c,s;\n Vector v=(b.c-a.c)/d,v1=v*a.r,v2=v*b.r;\n Point p1,p2;\n \n c=sqrt(d*d-(a.r-b.r)*(a.r-b.r));\n s=(180*asin(c/d))/pi;\n \n if(a.r<b.r){\n vp.push_back(Line(rotate(a.c,a.c+v1,180-s),rotate(b.c,b.c-v2,360-s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,180+s),rotate(b.c,b.c-v2,s)));\n }\n else {\n vp.push_back(Line(rotate(a.c,a.c+v1,s),rotate(b.c,b.c-v2,180+s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,360-s),rotate(b.c,b.c-v2,180-s)));\n }\n if(intersection==2 || intersection==3)return vp;\n \n c=sqrt(d*d-(a.r+b.r)*(a.r+b.r));\n s=(180*asin(c/d))/pi;\n \n vp.push_back(Line(rotate(a.c,a.c+v1,s),rotate(b.c,b.c-v2,s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,360-s),rotate(b.c,b.c-v2,360-s)));\n \n return vp;\n}\n \ndouble getAngle(Vector a,Vector b){\n double tmp=dot(a,b)/(abs(a)*abs(b));\n if(tmp<-1.0)tmp=-1.0;\n if(1.0<tmp)tmp=1.0;\n double r=acos(tmp)*180.0/pi;\n return r;\n}\n \nint n,r,R;\nPoint s,g;\nvector<Point> vp;\nvector<pid> e[MAX];\nvector<Circle> vc;\nCircle small,big,big2;\nLine L(Point(0,0),Point(0,1));\n \nvoid init(){\n vp.clear();\n vc.clear();\n FOR(i,0,MAX)e[i].clear();\n}\n \nvoid add_edge(int from,int to,double cost){\n e[from].pb(mp(to,cost));\n e[to].pb(mp(from,cost));\n}\n \ndouble dijkstra(){\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[0]=0;\n pq.push(mp(0,0));\n \n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n \n if(d[u.s]-u.f<-eps)continue;\n if(u.s==1)return d[u.s];\n \n FOR(i,0,e[u.s].size()){\n int next=e[u.s][i].f;\n double cost=d[u.s]+e[u.s][i].s;\n if(cost-d[next]<-eps){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return -1;\n}\n \nbool in(double targ){\n if(arg(vc[0].c)-targ<-eps && targ-arg(vc[1].c)<-eps)return false;\n if(arg(vc[2].c)-targ<-eps && targ-arg(vc[3].c)<-eps)return false;\n return true;\n}\n \nbool check(Segment s){\n if(intersect(L,s)){\n Point m=getCrossPointLL(L,s);\n if(R-r<abs(m))return false;\n }\n if(on(small,s.p1) && on(small,s.p2))return true;\n if(on(big,s.p1) && on(big,s.p2))return true;\n FOR(i,0,vc.size()){\n if(on(vc[i],s.p1) && on(vc[i],s.p2))return true;\n if(intersect(vc[i],s))return false;\n if(on(vc[i],s.p1) && !in(arg(s.p1)))return false;\n if(on(vc[i],s.p2) && !in(arg(s.p2)))return false;\n }\n if(intersect(small,s))return false;\n if(intersect(big,s)){\n pair<Point,Point> pp=getCrossPoints(big,s);\n if(ccw(s.p1,s.p2,pp.f)==0 && !in(arg(pp.f)))return false;\n if(ccw(s.p1,s.p2,pp.s)==0 && !in(arg(pp.s)))return false;\n }\n if(intersect(big2,s)){\n pair<Point,Point> pp=getCrossPoints(big2,s);\n if(ccw(s.p1,s.p2,pp.f)==0 && !in(arg(pp.f)))return false;\n if(ccw(s.p1,s.p2,pp.s)==0 && !in(arg(pp.s)))return false;\n }\n return true;\n}\n \ndouble getdis(Segment s){\n FOR(i,0,vc.size()){\n if(on(vc[i],s.p1) && on(vc[i],s.p2)){\n double ang=getAngle(vc[i].c-s.p1,vc[i].c-s.p2);\n return 2*pi*vc[i].r*ang/360.0;\n }\n }\n if(on(small,s.p1) && on(small,s.p2)){\n double ang=getAngle(small.c-s.p1,small.c-s.p2);\n return 2*pi*small.r*ang/360.0;\n }\n if(on(big,s.p1) && on(big,s.p2)){\n if(ccw(L.p2,L.p1,s.p1)*ccw(L.p2,L.p1,s.p2)<=0)return inf;\n double ang=getAngle(big.c-s.p1,big.c-s.p2);\n return 2*pi*big.r*ang/360.0;\n }\n \n return abs(s.p1-s.p2);\n}\n \nbool comp(Circle a,Circle b){\n return arg(a.c)<arg(b.c);\n}\n \ndouble solve(){\n double r1 = r/sin(pi/(2*n));\n if(R<r1+r)return -1;\n double y=R*sin(pi/(2*n)),x=sqrt(R*R-y*y);\n small=Circle(Point(0,0),r1);\n big=Circle(Point(0,0),r+R);\n big2=Circle(Point(0,0),R-r);\n \n vc.pb(Circle(Point(x,y),r));\n vc.pb(Circle(Point(-x,y),r));\n vc.pb(Circle(Point(x,-y),r));\n vc.pb(Circle(Point(-x,-y),r));\n sort(all(vc),comp);\n vc.pb(small);\n vc.pb(big);\n vp.pb(s);\n vp.pb(g);\n \n FOR(i,0,vc.size()){\n FOR(j,i+1,vc.size()){\n vector<Line> vl=getCommonTangent(vc[i],vc[j]);\n FOR(k,0,vl.size()){\n vp.pb(vl[k].p1);\n vp.pb(vl[k].p2);\n }\n }\n }\n \n FOR(i,0,vc.size()){\n pair<Point,Point> pp = getTangent(vc[i],s);\n vp.pb(pp.f);vp.pb(pp.s);\n pp = getTangent(vc[i],g);\n vp.pb(pp.f);vp.pb(pp.s);\n }\n \n vc.pop_back();vc.pop_back();\n \n FOR(i,0,vp.size()){\n FOR(j,i+1,vp.size()){\n Segment s(vp[i],vp[j]);\n if(check(s))add_edge(i,j,getdis(s));\n }\n }\n return dijkstra();\n}\n \nint main()\n{\n while(cin>>n && n){\n init();\n cin>>r>>R;\n cin>>s.x>>s.y>>g.x>>g.y;\n pd(solve());\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3932, "score_of_the_acc": -1.3482, "final_rank": 4 }, { "submission_id": "aoj_2705_2124772", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 5000\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-6)\n#define mod 1000000007\n#define pi acos(-1)\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return (x!=p.x ? x<p.x : y<p.y);}\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\nclass Circle{\npublic:\n Point c;\n double r;\n Circle(Point c=Point(),double r=0.0):c(c),r(r){}\n};\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\ndouble arg(Vector p){ \n double res=atan2(p.y,p.x);\n if(res<0.0)res+=2*pi;\n return res;\n}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\ndouble getDistanceLP(Line l,Point p){\n return abs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n\ndouble getDistanceSP(Segment s,Point p){\n if(dot(s.p2-s.p1,p-s.p1)<0.0)return abs(p-s.p1);\n if(dot(s.p1-s.p2,p-s.p2)<0.0)return abs(p-s.p2);\n return getDistanceLP(s,p);\n}\n\nbool intersect(Circle c,Segment s){\n if(getDistanceSP(s,c.c)-c.r<-eps)return true;\n return false;\n}\n\nbool intersect(Line L,Segment s){\n return cross(L.p2-L.p1,s.p1-L.p1)*cross(L.p2-L.p1,s.p2-L.p1)<eps;\n}\n\nbool on(Circle c,Point p){ return equals(abs(c.c-p),c.r); }\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\npair<Point,Point> getCrossPoints(Circle c,Line l){\n Vector pr=project(l,c.c);\n Vector e=(l.p2-l.p1)/abs(l.p2-l.p1);\n double base=sqrt(c.r*c.r-norm(pr-c.c));\n return mp(pr+e*base,pr-e*base);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nPoint rotate(Point base,Point a,double r){\n Point b=a-base;\n a.x=b.x*cos((r/180)*M_PI)-b.y*sin((r/180)*M_PI);\n a.y=b.x*sin((r/180)*M_PI)+b.y*cos((r/180)*M_PI);\n a=a+base;\n return a;\n}\n\npair<Point,Point> getTangent(Circle c,Point p){\n Vector v=p-c.c;\n double r=acos(c.r/abs(v))*360/(2*pi);\n v=v*c.r/abs(v);\n Point p1=rotate(c.c,c.c+v,r);\n Point p2=rotate(c.c,c.c+v,360-r);\n return mp(p1,p2);\n}\n\nint intersect(Circle a,Circle b){\n double dis=abs(a.c-b.c),sumr=a.r+b.r,minr=min(a.r,b.r),maxr=max(a.r,b.r);\n if((sumr-dis)<-eps)return 4;\n if(equals(sumr,dis))return 3;\n if((maxr-(dis+minr))<-eps)return 2;\n if(equals(dis+minr,maxr))return 1;\n return 0;\n}\n\nvector<Line> getCommonTangent(Circle a,Circle b){\n vector<Line> vp;\n int intersection=intersect(a,b);\n if(intersection==0)return vp;\n if(intersection==1){\n Vector v=b.c-a.c;\n if(b.r<a.r)v=(v*a.r)/abs(v);\n else v=(v*a.r*(-1))/abs(v);\n vp.push_back(Line(a.c+v,a.c+v));\n return vp;\n }\n if(intersection==3){\n Vector v=b.c-a.c;\n v=v*a.r/abs(v);\n vp.push_back(Line(a.c+v,a.c+v));\n }\n double d=abs(b.c-a.c),c,s;\n Vector v=(b.c-a.c)/d,v1=v*a.r,v2=v*b.r;\n Point p1,p2;\n\n c=sqrt(d*d-(a.r-b.r)*(a.r-b.r));\n s=(180*asin(c/d))/pi;\n\n if(a.r<b.r){\n vp.push_back(Line(rotate(a.c,a.c+v1,180-s),rotate(b.c,b.c-v2,360-s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,180+s),rotate(b.c,b.c-v2,s)));\n }\n else {\n vp.push_back(Line(rotate(a.c,a.c+v1,s),rotate(b.c,b.c-v2,180+s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,360-s),rotate(b.c,b.c-v2,180-s)));\n }\n if(intersection==2 || intersection==3)return vp;\n \n c=sqrt(d*d-(a.r+b.r)*(a.r+b.r));\n s=(180*asin(c/d))/pi;\n \n vp.push_back(Line(rotate(a.c,a.c+v1,s),rotate(b.c,b.c-v2,s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,360-s),rotate(b.c,b.c-v2,360-s)));\n \n return vp;\n}\n\ndouble getAngle(Vector a,Vector b){\n double tmp=dot(a,b)/(abs(a)*abs(b));\n if(tmp<-1.0)tmp=-1.0;\n if(1.0<tmp)tmp=1.0;\n double r=acos(tmp)*180.0/pi;\n return r;\n}\n\nint n,r,R;\nPoint s,g;\nvector<Point> vp;\nvector<pid> e[MAX];\nvector<Circle> vc;\nCircle small,big,big2;\nLine L(Point(0,0),Point(0,1));\n\nvoid init(){\n vp.clear();\n vc.clear();\n FOR(i,0,MAX)e[i].clear();\n}\n\nvoid add_edge(int from,int to,double cost){\n e[from].pb(mp(to,cost));\n e[to].pb(mp(from,cost));\n}\n\ndouble dijkstra(){\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[0]=0;\n pq.push(mp(0,0));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]-u.f<-eps)continue;\n if(u.s==1)return d[u.s];\n\n FOR(i,0,e[u.s].size()){\n int next=e[u.s][i].f;\n double cost=d[u.s]+e[u.s][i].s;\n if(cost-d[next]<-eps){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return -1;\n}\n\nbool in(double targ){\n if(arg(vc[0].c)-targ<-eps && targ-arg(vc[1].c)<-eps)return false;\n if(arg(vc[2].c)-targ<-eps && targ-arg(vc[3].c)<-eps)return false;\n return true;\n}\n\nbool check(Segment s){\n if(intersect(L,s)){\n Point m=getCrossPointLL(L,s);\n if(R-r<abs(m))return false;\n }\n if(on(small,s.p1) && on(small,s.p2))return true;\n if(on(big,s.p1) && on(big,s.p2))return true;\n FOR(i,0,vc.size()){\n if(on(vc[i],s.p1) && on(vc[i],s.p2))return true;\n if(intersect(vc[i],s))return false;\n if(on(vc[i],s.p1) && !in(arg(s.p1)))return false;\n if(on(vc[i],s.p2) && !in(arg(s.p2)))return false;\n }\n if(intersect(small,s))return false;\n if(intersect(big,s)){\n pair<Point,Point> pp=getCrossPoints(big,s);\n if(ccw(s.p1,s.p2,pp.f)==0 && !in(arg(pp.f)))return false;\n if(ccw(s.p1,s.p2,pp.s)==0 && !in(arg(pp.s)))return false;\n }\n if(intersect(big2,s)){\n pair<Point,Point> pp=getCrossPoints(big2,s);\n if(ccw(s.p1,s.p2,pp.f)==0 && !in(arg(pp.f)))return false;\n if(ccw(s.p1,s.p2,pp.s)==0 && !in(arg(pp.s)))return false;\n }\n return true;\n}\n\ndouble getdis(Segment s){\n FOR(i,0,vc.size()){\n if(on(vc[i],s.p1) && on(vc[i],s.p2)){\n double ang=getAngle(vc[i].c-s.p1,vc[i].c-s.p2);\n return 2*pi*vc[i].r*ang/360.0;\n }\n }\n if(on(small,s.p1) && on(small,s.p2)){\n double ang=getAngle(small.c-s.p1,small.c-s.p2);\n return 2*pi*small.r*ang/360.0;\n }\n if(on(big,s.p1) && on(big,s.p2)){\n if(ccw(L.p2,L.p1,s.p1)*ccw(L.p2,L.p1,s.p2)<=0)return inf;\n double ang=getAngle(big.c-s.p1,big.c-s.p2);\n return 2*pi*big.r*ang/360.0;\n }\n \n return abs(s.p1-s.p2);\n}\n\nbool comp(Circle a,Circle b){\n return arg(a.c)<arg(b.c);\n}\n\ndouble solve(){\n double r1 = r/sin(pi/(2*n));\n if(R<r1+r)return -1;\n double y=R*sin(pi/(2*n)),x=sqrt(R*R-y*y);\n small=Circle(Point(0,0),r1);\n big=Circle(Point(0,0),r+R);\n big2=Circle(Point(0,0),R-r);\n\n vc.pb(Circle(Point(x,y),r));\n vc.pb(Circle(Point(-x,y),r));\n vc.pb(Circle(Point(x,-y),r));\n vc.pb(Circle(Point(-x,-y),r));\n sort(all(vc),comp);\n vc.pb(small);\n vc.pb(big);\n vp.pb(s);\n vp.pb(g);\n\n FOR(i,0,vc.size()){\n FOR(j,i+1,vc.size()){\n vector<Line> vl=getCommonTangent(vc[i],vc[j]);\n FOR(k,0,vl.size()){\n vp.pb(vl[k].p1);\n vp.pb(vl[k].p2);\n }\n }\n }\n\n FOR(i,0,vc.size()){\n pair<Point,Point> pp = getTangent(vc[i],s);\n vp.pb(pp.f);vp.pb(pp.s);\n pp = getTangent(vc[i],g);\n vp.pb(pp.f);vp.pb(pp.s);\n }\n\n vc.pop_back();vc.pop_back();\n\n FOR(i,0,vp.size()){\n FOR(j,i+1,vp.size()){\n Segment s(vp[i],vp[j]);\n if(check(s))add_edge(i,j,getdis(s));\n }\n }\n return dijkstra();\n}\n\nint main()\n{\n while(cin>>n && n){\n init();\n cin>>r>>R;\n cin>>s.x>>s.y>>g.x>>g.y;\n pd(solve());\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3908, "score_of_the_acc": -1.2946, "final_rank": 3 }, { "submission_id": "aoj_2705_2124764", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 5000\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-6)\n#define mod 1000000007\n#define pi acos(-1)\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return (x!=p.x ? x<p.x : y<p.y);}\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\nclass Circle{\npublic:\n Point c;\n double r;\n Circle(Point c=Point(),double r=0.0):c(c),r(r){}\n};\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\ndouble arg(Vector p){ \n double res=atan2(p.y,p.x);\n if(res<0.0)res+=2*pi;\n return res;\n}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\ndouble getDistanceLP(Line l,Point p){\n return abs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n\ndouble getDistanceSP(Segment s,Point p){\n if(dot(s.p2-s.p1,p-s.p1)<0.0)return abs(p-s.p1);\n if(dot(s.p1-s.p2,p-s.p2)<0.0)return abs(p-s.p2);\n return getDistanceLP(s,p);\n}\n\nbool intersect(Circle c,Segment s){\n if(getDistanceSP(s,c.c)-c.r<-eps)return true;\n return false;\n}\n\nbool intersect(Line L,Segment s){\n return cross(L.p2-L.p1,s.p1-L.p1)*cross(L.p2-L.p1,s.p2-L.p1)<eps;\n}\n\nbool on(Circle c,Point p){ return equals(abs(c.c-p),c.r); }\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\npair<Point,Point> getCrossPoints(Circle c,Line l){\n Vector pr=project(l,c.c);\n Vector e=(l.p2-l.p1)/abs(l.p2-l.p1);\n double base=sqrt(c.r*c.r-norm(pr-c.c));\n return mp(pr+e*base,pr-e*base);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nPoint rotate(Point base,Point a,double r){\n Point b=a-base;\n a.x=b.x*cos((r/180)*M_PI)-b.y*sin((r/180)*M_PI);\n a.y=b.x*sin((r/180)*M_PI)+b.y*cos((r/180)*M_PI);\n a=a+base;\n return a;\n}\n\npair<Point,Point> getTangent(Circle c,Point p){\n Vector v=p-c.c;\n double r=acos(c.r/abs(v))*360/(2*pi);\n v=v*c.r/abs(v);\n Point p1=rotate(c.c,c.c+v,r);\n Point p2=rotate(c.c,c.c+v,360-r);\n return mp(p1,p2);\n}\n\nint intersect(Circle a,Circle b){\n double dis=abs(a.c-b.c),sumr=a.r+b.r,minr=min(a.r,b.r),maxr=max(a.r,b.r);\n if((sumr-dis)<-eps)return 4;\n if(equals(sumr,dis))return 3;\n if((maxr-(dis+minr))<-eps)return 2;\n if(equals(dis+minr,maxr))return 1;\n return 0;\n}\n\nvector<Line> getCommonTangent(Circle a,Circle b){\n vector<Line> vp;\n int intersection=intersect(a,b);\n if(intersection==0)return vp;\n if(intersection==1){\n Vector v=b.c-a.c;\n if(b.r<a.r)v=(v*a.r)/abs(v);\n else v=(v*a.r*(-1))/abs(v);\n vp.push_back(Line(a.c+v,a.c+v));\n return vp;\n }\n if(intersection==3){\n Vector v=b.c-a.c;\n v=v*a.r/abs(v);\n vp.push_back(Line(a.c+v,a.c+v));\n }\n double d=abs(b.c-a.c),c,s;\n Vector v=(b.c-a.c)/d,v1=v*a.r,v2=v*b.r;\n Point p1,p2;\n\n c=sqrt(d*d-(a.r-b.r)*(a.r-b.r));\n s=(180*asin(c/d))/pi;\n\n if(a.r<b.r){\n vp.push_back(Line(rotate(a.c,a.c+v1,180-s),rotate(b.c,b.c-v2,360-s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,180+s),rotate(b.c,b.c-v2,s)));\n }\n else {\n vp.push_back(Line(rotate(a.c,a.c+v1,s),rotate(b.c,b.c-v2,180+s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,360-s),rotate(b.c,b.c-v2,180-s)));\n }\n if(intersection==2 || intersection==3)return vp;\n \n c=sqrt(d*d-(a.r+b.r)*(a.r+b.r));\n s=(180*asin(c/d))/pi;\n \n vp.push_back(Line(rotate(a.c,a.c+v1,s),rotate(b.c,b.c-v2,s)));\n vp.push_back(Line(rotate(a.c,a.c+v1,360-s),rotate(b.c,b.c-v2,360-s)));\n \n return vp;\n}\n\ndouble getAngle(Vector a,Vector b){\n double tmp=dot(a,b)/(abs(a)*abs(b));\n if(tmp<-1.0)tmp=-1.0;\n if(1.0<tmp)tmp=1.0;\n double r=acos(tmp)*180.0/pi;\n return r;\n}\n\nint n,r,R;\nPoint s,g;\nvector<Point> vp;\nvector<pid> e[MAX];\nvector<Circle> vc;\nCircle small,big,big2;\nLine L(Point(0,0),Point(0,1));\n\nvoid init(){\n vp.clear();\n vc.clear();\n FOR(i,0,MAX)e[i].clear();\n}\n\nvoid add_edge(int from,int to,double cost){\n e[from].pb(mp(to,cost));\n e[to].pb(mp(from,cost));\n}\n\ndouble dijkstra(){\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[0]=0;\n pq.push(mp(0,0));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]-u.f<-eps)continue;\n if(u.s==1)return d[u.s];\n\n FOR(i,0,e[u.s].size()){\n int next=e[u.s][i].f;\n double cost=d[u.s]+e[u.s][i].s;\n if(cost-d[next]<-eps){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return -1;\n}\n\nbool in(double targ){\n if(arg(vc[0].c)-targ<-eps && targ-arg(vc[1].c)<-eps)return false;\n if(arg(vc[2].c)-targ<-eps && targ-arg(vc[3].c)<-eps)return false;\n return true;\n}\n\nbool check(Segment s){\n if(intersect(L,s)){\n Point m=getCrossPointLL(L,s);\n if(R-r<abs(m))return false;\n }\n if(on(small,s.p1) && on(small,s.p2))return true;\n if(on(big,s.p1) && on(big,s.p2))return true;\n FOR(i,0,vc.size()){\n if(on(vc[i],s.p1) && on(vc[i],s.p2))return true;\n if(intersect(vc[i],s))return false;\n if(on(vc[i],s.p1)){\n double targ=arg(s.p1);\n if(!in(targ))return false;\n }\n if(on(vc[i],s.p2)){\n double targ=arg(s.p2);\n if(!in(targ))return false;\n }\n }\n if(intersect(small,s))return false;\n if(intersect(big,s)){\n pair<Point,Point> pp=getCrossPoints(big,s);\n if(ccw(s.p1,s.p2,pp.f)==0){\n double targ=arg(pp.f);\n if(!in(targ))return false;\n }\n if(ccw(s.p1,s.p2,pp.s)==0){\n double targ=arg(pp.s);\n if(!in(targ))return false;\n }\n }\n if(intersect(big2,s)){\n pair<Point,Point> pp=getCrossPoints(big2,s);\n if(ccw(s.p1,s.p2,pp.f)==0){\n double targ=arg(pp.f);\n if(!in(targ))return false;\n }\n if(ccw(s.p1,s.p2,pp.s)==0){\n double targ=arg(pp.s);\n if(!in(targ))return false;\n }\n }\n return true;\n}\n\ndouble getdis(Segment s){\n FOR(i,0,vc.size()){\n if(on(vc[i],s.p1) && on(vc[i],s.p2)){\n /*double ang=getAngle(vc[i].c-s.p1,vc[i].c-s.p2);\n Point m=rotate(vc[i].c,s.p1,ang/2.0);\n double targ=arg(m);\n if(in(targ))return 2*pi*vc[i].r*ang/360.0;\n\n ang=getAngle(vc[i].c-s.p2,vc[i].c-s.p1);\n m=rotate(vc[i].c,s.p2,ang/2.0);\n targ=arg(m);\n if(in(targ))return 2*pi*vc[i].r*ang/360.0;*/\n if(!in(arg(s.p1)))return inf;\n if(!in(arg(s.p2)))return inf;\n double ang=min(getAngle(vc[i].c-s.p1,vc[i].c-s.p2),\n getAngle(vc[i].c-s.p2,vc[i].c-s.p1));\n return 2*pi*vc[i].r*ang/360.0;\n }\n }\n if(on(small,s.p1) && on(small,s.p2)){\n double ang=min(getAngle(small.c-s.p1,small.c-s.p2),\n getAngle(small.c-s.p2,small.c-s.p1));\n return 2*pi*small.r*ang/360.0;\n }\n if(on(big,s.p1) && on(big,s.p2)){\n if(ccw(L.p2,L.p1,s.p1)*ccw(L.p2,L.p1,s.p2)<=0)return inf;\n double ang=getAngle(big.c-s.p1,big.c-s.p2);\n return 2*pi*big.r*ang/360.0;\n }\n \n return abs(s.p1-s.p2);\n}\n\nbool comp(Circle a,Circle b){\n return arg(a.c)<arg(b.c);\n}\n\ndouble solve(){\n double r1 = r/sin(pi/(2*n));\n if(R<r1+r)return -1;\n double y=R*sin(pi/(2*n)),x=sqrt(R*R-y*y);\n small=Circle(Point(0,0),r1);\n big=Circle(Point(0,0),r+R);\n big2=Circle(Point(0,0),R-r);\n\n vc.pb(Circle(Point(x,y),r));\n vc.pb(Circle(Point(-x,y),r));\n vc.pb(Circle(Point(x,-y),r));\n vc.pb(Circle(Point(-x,-y),r));\n sort(all(vc),comp);\n vc.pb(small);\n vc.pb(big);\n vp.pb(s);\n vp.pb(g);\n\n FOR(i,0,vc.size()){\n FOR(j,i+1,vc.size()){\n vector<Line> vl=getCommonTangent(vc[i],vc[j]);\n FOR(k,0,vl.size()){\n vp.pb(vl[k].p1);\n vp.pb(vl[k].p2);\n }\n }\n }\n\n FOR(i,0,vc.size()){\n pair<Point,Point> pp = getTangent(vc[i],s);\n vp.pb(pp.f);vp.pb(pp.s);\n pp = getTangent(vc[i],g);\n vp.pb(pp.f);vp.pb(pp.s);\n }\n\n vc.pop_back();vc.pop_back();\n\n FOR(i,0,vp.size()){\n FOR(j,i+1,vp.size()){\n Segment s(vp[i],vp[j]);\n if(check(s))add_edge(i,j,getdis(s));\n }\n }\n return dijkstra();\n}\n\nint main()\n{\n while(cin>>n && n){\n init();\n cin>>r>>R;\n cin>>s.x>>s.y>>g.x>>g.y;\n pd(solve());\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3940, "score_of_the_acc": -1.6161, "final_rank": 6 } ]
aoj_2703_cpp
Dice Stamp サイコロスタンプ あなたは地元の縁日で,今までに見たことがないゲームの出店を発見した. N 個の6面サイコロを,ボード上に落として転がすゲームだ. より正確には, N 個のボタンが N 個のサイコロに1対1に紐付いており,ボタンを押すことで対応したサイコロがボードに落ちる. ボタンを好きなように N 回押し,サイコロを N 回落として転がすことで得点を得るゲームである. ゲームのより詳細なルールを説明しよう. ゲームで使用する N 個のサイコロはすべて各辺の長さが1の立方体であり,ボードは長さが1の正方形のマスに区切られた十分に広い平面である. ゲーム開始前,ボードの各マスにはすべて0が書かれている. 各サイコロの各面には整数が書かれている.これは1から6までとは限らないし,サイコロごとに違う数が書かれていることもある. ゲームで用いる筐体には N 個のボタンが付いており, N 個のサイコロと1対1に紐付いている. いずれかのボタンを押すと,対応したサイコロが機械から排出されてボードに落ち,何度か回転する. 回転の途中,サイコロの下面は必ずボードのいずれかのマスにぴったりと重なる. 下面がマスに触れる度,そのマスに書かれていた数が,サイコロの下面に書かれた数で上書きされる. これは落下により初めてボードに触れたときも含む. 回転が止まった後,サイコロはボードから取り除かれ,元の排出装置へと戻される. ボタンを N 回押した後,ボードに書かれた数の和が最終得点となる. 同じボタンを複数回押すことはできるが,1つ前に排出したサイコロの回転が終わり,排出装置に戻るまで次のボタンを押すことはできない. さて,出店のおっちゃんはサイコロの排出の仕方はランダムだと主張しているが,注意深いあなたは,他の客が遊ぶ様子を観察することで,同じボタンを押した時の挙動がそれまでのボタンの押し方に依らず完全に同一であることに気付いた. より具体的には, i 番目のボタンを押したときの挙動は以下のように決定的である. i 番目のサイコロが排出される. このサイコロは内部で決められたマスに決められた向きで落下する.この向きは必ず,マスの正方形と下面の正方形とがぴったりと重なる向きである. サイコロは前後左右4方向いずれかに回転することを繰り返す.回転回数やそれぞれの回転の方向も,内部で決められている. 決められた回転が終了すると,サイコロはボードから取り除かれ,排出装置に戻される. ここで,便宜上3次元空間を考え,マスの辺に平行な向きにそれぞれ x 軸と y 軸をとり,サイコロ上面が向く方向を z 軸正方向とする. この時,サイコロの回転は x , y 軸の正,負方向の4通りであり,それぞれ下図のようになる.ただし,図中の記号は後述の入力形式に対応している. 決定的に動くとはなんて詐欺だ,と憤りを感じたものの,あなたは N 回のボタンの押し方によって最終得点を変えられることに気が付いた. あなたは入念な観察により各サイコロの各面に書かれた数や落とされる初期位置・向き・その後の回転の仕方に至るまで完全な情報を揃えた. 集めた情報に基づいて,最善のボタンの押し方で得られるこのゲームの最高得点を求めよ. Input 入力は40個以下のデータセットからなる.各データセットは以下の形式で表される. N 1番目のサイコロの情報 ... N 番目のサイコロの情報 入力の最初の行は,サイコロの個数を表す1つの整数 N からなる.1 ≤ N ≤ 15 と仮定してよい. 以降, N 個のサイコロの情報が続く. それぞれのサイコロの情報は,以下の形式で表される. x y l r f b d u rot 1行目は2つの整数 x , y からなり,排出されたときにサイコロが落とされるマスの中心の座標 ( x , y ) を表す.-1,000 ≤ x , y ≤ 1,000 と仮定してよい. 2行目は6つの整数 l , r , f , b , d , u からなり,各面に書かれた数を表す. l , r , f , b , d , u はそれぞれ,落とされたときに x 軸負方向, x 軸正方向, y 軸負方向, y 軸正方向, z 軸負方向, z 軸正方向を向いている面に書かれた数である.1 ≤ l , r , f , b , d , u ≤ 100 と仮定してよい. 3行目は回転の仕方を表す文字列 rot からなる. rot は ' L ', ' R ', ' F ', ' B ' のみからなる文字列であり,1文字以上,30文字以下である. rot の j 番目の文字は j 回目の回転の方向を表しており,文字が ' L ', ' R ', ' F ', ' B ' のときそれぞれ, x 軸負方向, x 軸正方向, y 軸負方向, y 軸正方向に回転することを示す. 入力の終わりは,1つのゼロを含む1行で示される. Output 各データセットについて, N 回のボタンの押し方を工夫することで得られる最高得点を1行で出力せよ. 各出力行はこの数値以外の文字を含んではならない. Sample Input 1 0 0 1 2 3 4 5 6 RRRRBBBBLLLLFFFF 2 0 0 1 1 1 1 1 1 RRR 2 2 100 100 100 100 100 100 FFF 1 1000 -1000 1 2 3 4 5 6 LFRB 4 -3 -4 1 2 3 4 5 6 BBBBBBBB 4 -3 11 12 13 14 15 16 LLLLLLLL 3 4 21 22 23 24 25 26 FFFFFFFF -4 3 31 32 33 34 35 36 RRRRRRRR 3 -2 -2 9 3 1 1 1 1 RRRRBLLLBRRBLB 0 -3 2 5 2 5 2 1 BBLBBRBB 3 0 10 7 2 10 1 5 LLFLLBLL 0 Output for Sample Input 64 403 10 647 96
[ { "submission_id": "aoj_2703_10853814", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<vector>\n#include<cstring>\n#include<algorithm>\nusing namespace std;\nint dx[4] = {1, 0, 0, -1};\nint dy[4] = {0, 1, -1, 0};\n//l r f b d u\n//0 1 2 3 4 5\nint go[4][6] = {\n {5, 4, 2, 3, 0, 1},\n {0, 1, 5, 4, 2, 3},\n {0, 1, 4, 5, 3, 2},\n {4, 5, 2, 3, 1, 0}\n};\nconst int N(65555);\nconst int LOG(16);\nint x[LOG], y[LOG];\nchar st[555];\nint a[6], b[6], tp[555], lg2[N];\nvector<pair<pair<int, int>,int> > vec[LOG];\nint cnf[LOG][LOG], totcnf[N][LOG], ic[N][LOG], ans[N];\nint main() {\n tp['R'] = 0;\n tp['B'] = 1;\n tp['F'] = 2;\n tp['L'] = 3;\n int n;\n for(;;) {\n scanf(\"%d\", &n);\n if(!n) {\n break;\n }\n for(int i(0); i < n; i++) {\n scanf(\"%d%d\", &x[i], &y[i]);\n for(int j(0); j < 6; j++) {\n scanf(\"%d\", &a[j]);\n }\n scanf(\"%s\", st);\n int len(strlen(st));\n vec[i].clear();\n for(int j(0); j <= len; j++) {\n //printf(\"%d %d %d %d\\n\", i, x[i], y[i], a[4]);\n vec[i].push_back(make_pair(make_pair(x[i], y[i]), a[4]));\n if(j != len) {\n for(int k(0); k < 6; k++) {\n b[go[tp[st[j]]][k]] = a[k];\n }\n memcpy(a, b, sizeof(b));\n x[i] += dx[tp[st[j]]];\n y[i] += dy[tp[st[j]]];\n }\n }\n for(int j(0); j + 1 < (int)vec[i].size(); j++) {\n bool flag(false);\n for(int k(j + 1); k < (int)vec[i].size(); k++) {\n if(vec[i][j].first == vec[i][k].first) {\n flag = true;\n break;\n }\n }\n if(flag) {\n vec[i].erase(vec[i].begin() + j);\n j--;\n }\n }\n for(int j(0); j < i; j++) {\n cnf[j][i] = 0;\n cnf[i][j] = 0;\n for(int k(0); k < (int)vec[i].size(); k++) {\n for(int l(0); l < (int)vec[j].size(); l++) {\n if(vec[i][k].first == vec[j][l].first) {\n cnf[j][i] |= 1 << k;\n cnf[i][j] |= 1 << l;\n }\n }\n }\n //printf(\"cnf[%d][%d] = %d\\n\", i, j, cnf[i][j]);\n }\n }\n for(int i(0); i < n; i++) {\n lg2[1 << i] = i;\n }\n for(int msk(0); msk < (1 << n); msk++) {\n for(int i(0); i < n; i++) {\n if((msk & (1 << i)) == 0) {\n ic[msk][i] = 0;\n totcnf[msk][i] = msk == 0 ? 0 : totcnf[msk - (msk & -msk)][i] | cnf[lg2[msk & -msk]][i];\n for(int j(0); j < (int)vec[i].size(); j++) {\n ic[msk][i] += (totcnf[msk][i] & (1 << j)) ? 0 : vec[i][j].second;\n }\n //printf(\"ic[%d][%d] = %d\\n\", msk, i, ic[msk][i]);\n }\n }\n }\n memset(ans, 0, sizeof(ans));\n for(int msk(0); msk < (1 << n); msk++) {\n for(int i(0); i < n; i++) {\n if((msk & (1 << i)) == 0) {\n ans[msk | (1 << i)] = max(ans[msk | (1 << i)], ans[msk] + ic[msk][i]);\n }\n }\n }\n printf(\"%d\\n\", ans[(1 << n) - 1]);\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 11776, "score_of_the_acc": -0.0374, "final_rank": 4 }, { "submission_id": "aoj_2703_10673465", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG // 配列外参照のエラー\n// #endif\n\n// スタンダードライブラリ\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型関連\nusing ll = long long;\nusing lint = long long;\nusing pll = pair<ll, ll>;\nusing plll = tuple<ll, ll, ll>;\nusing pii = pair<int, int>;\nusing piii = tuple<ll, ll, ll>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vvvvi = vector<vector<vector<vector<int>>>>;\nusing vl = vector<ll>;\nusing vvl = vector<vector<ll>>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvvvl = vector<vector<vector<vector<ll>>>>;\n\ntemplate <class T> using prique = priority_queue<T>;\ntemplate <class T> void chmin(T &a, T b) {\n if (a > b)\n a = b;\n}\ntemplate <class T> void chmax(T &a, T b) {\n if (a < b)\n a = b;\n}\n\n#define all(v) v.begin(), v.end()\n\n// 型定数\nconstexpr ll mod = 998244353;\nconstexpr ll MOD = 1000000007;\nint INF32 = 2e9;\nll INF64 = 9e18;\n#define endl '\\n';\n\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\n\n/////////////////////////// print関連\ntemplate <typename T> void print(vector<T> A);\nvoid print();\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail);\nvoid print(string S);\ntemplate <typename T> void print(vector<vector<T>> &F);\n\ninline void Yes(bool f);\n\n/*\nU: 上面\nF: 正面(前側面)\nR: 右側面\nB: 後ろ側面\nL: 左側面\nD: 下面\n\nダイスの各面が持つ何かしらの値で初期化を行う。\n*/\ntemplate <typename T> struct Dice {\n T U, F, R, B, L, D;\n int x, y;\n Dice(T U, T F, T R, T B, T L, T D, int x = 0, int y = 0)\n : U(U), F(F), R(R), B(B), L(L), D(D), x(x), y(y) {}\n\n /*\nd: 倒れる方向\n0: 前に倒れる(Fが下になる) \n1: 右に倒れる(Rが下になる) \n2: 後ろに倒れる(Bが下になる) \n3: 左に倒れる(Lが下になる) \nx,yの方向は問題によって変えてください\n*/\n void Rotation(int d) {\n T nU = U, nF = F, nR = R, nB = B, nL = L, nD = D, nx = x, ny = y;\n if (d == 0) {\n nF = U, nD = F, nB = D, nU = B, ny--;\n } else if (d == 1) {\n nR = U, nD = R, nL = D, nU = L, nx++;\n } else if (d == 2) {\n nF = D, nU = F, nB = U, nD = B, ny++;\n } else {\n nL = U, nD = L, nR = D, nU = R, nx--;\n }\n U = nU, F = nF, R = nR, B = nB, L = nL, D = nD, x = nx, y = ny;\n }\n\n void Rotation(char d) {\n switch (d) {\n case 'L':\n Rotation(3);\n break;\n case 'R':\n Rotation(1);\n break;\n case 'F':\n Rotation(0);\n break;\n case 'B':\n Rotation(2);\n break;\n }\n }\n};\n\n///////////////////ここから//////////////////////\n\n\ntemplate<class T> size_t HashCombine(const size_t seed,const T &v){\n return seed^(std::hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2));\n}\n/* pair用 */\ntemplate<class T,class S> struct std::hash<std::pair<T,S>>{\n size_t operator()(const std::pair<T,S> &keyval) const noexcept {\n return HashCombine(std::hash<T>()(keyval.first), keyval.second);\n }\n};\n\n\nunordered_map<pii, int> Dice_map() {\n int x, y;\n cin >> x >> y;\n int l, r, f, b, d, u;\n cin >> l >> r >> f >> b >> d >> u;\n Dice<int> D(u, f, r, b, l, d, x, y);\n string S;\n cin >> S;\n\n unordered_map<pii, int> ret;\n ret[{x,y}] = d;\n for (int i = 0; i < S.size(); i++) {\n D.Rotation(S[i]);\n ret[{D.x, D.y}] = D.D;\n //print(D.x,D.y);\n }\n return ret;\n}\n\nbool solve() {\n int N;\n cin >> N;\n if (N == 0) {\n return false;\n }\n vector<unordered_map<pii, int>> VM;\n for (int i = 0; i < N; i++) {\n VM.push_back(Dice_map());\n }\n vector<unordered_map<pii, int>> stamped(1 << N); //集合Sによってスタンプされた座標を持つ\n vector<int> dp(1<<N); //集合Sでスタンプされたときの最大値\n for (int S = 0; S < (1 << N); S++) {\n for (int v = 0; v < N; v++) {\n if (S & (1 << v)) {\n continue;\n }\n unordered_map<pii, int> nex_map = stamped[S];\n int w=dp[S];\n for (auto [key, val] : VM[v]) {\n if (nex_map.count(key)) {\n continue;\n }\n nex_map[key] = val;\n w+=val;\n }\n chmax(dp[S + (1 << v)], w);\n swap(stamped[S+(1<<v)],nex_map);\n }\n }\n print(dp[(1<<N)-1]);\n\n return true;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n while (solve())\n ;\n}\n\n////////////////////print/////////////////////////\n// 1次元ベクトルを出力する\ntemplate <typename T> void print(vector<T> A) {\n if (A.size() == 0) {\n return;\n }\n for (size_t i = 0; i < A.size() - 1; i++) {\n cout << A[i] << ' ';\n }\n cout << A[A.size() - 1] << endl;\n return;\n}\n\n// 2次元ベクトルを出力する\ntemplate <typename T> void print(vector<vector<T>> &F) {\n for (size_t i = 0; i < F.size(); i++) {\n for (size_t j = 0; j < F[i].size(); j++) {\n cout << F[i][j];\n if (j < F[i].size() - 1) {\n cout << ' ';\n }\n }\n cout << endl;\n }\n}\n\n// 空白行を出力するprint\nvoid print() { cout << endl; }\n\n// 数値・文字列を空白区切りで出力する. print(a,b)など\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n cout << head;\n if (sizeof...(tail) != 0)\n cout << \" \";\n print(forward<Tail>(tail)...);\n}\n\nvoid print(string S) { cout << S << endl; }\n\n//////////////出力関連\n\ninline void Yes(bool f) {\n if (f) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 7200, "memory_kb": 215464, "score_of_the_acc": -1.828, "final_rank": 18 }, { "submission_id": "aoj_2703_10575970", "code_snippet": "#ifndef ONLINE_JUDGE\n#define _GLIBCXX_DEBUG\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\n#include <atcoder/all>\nusing namespace atcoder;\n// #include <boost/rational.hpp>\n// using namespace boost;\n// using rat = rational<long long int>;\nusing mint = modint998244353;\n// using mint = modint1000000007;\n// using mint = mint;\nusing ll = long long;\nusing ld = long double;\nusing ull = uint64_t;\nusing pll = pair<ll, ll>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vpll = vector<pll>;\nusing vvpll = vector<vpll>;\nusing vm = vector<mint>;\nusing vvm = vector<vm>;\nusing vvvm = vector<vvm>;\nusing vstr = vector<string>;\n#define v(T) vector<T>\n#define vv(T) vector<vector<T>>\n#define vvv(T) vector<vector<vector<T>>>\n#define vvvv(T) vector<vector<vector<vector<T>>>>\n\nistream &operator>>(istream &is, mint &a){ll tmp; is >> tmp; a = tmp; return is;}\nostream &operator<<(ostream &os, const mint &a){ os << a.val(); return os; }\nstring to_string(const __int128_t &a) { if (a == 0) return \"0\"; string s = \"\"; __int128_t num = a; bool is_negative = false; if (num < 0) { is_negative = true; num = -num; } while (num > 0) { s += '0' + (num % 10); num /= 10; } if (is_negative) s += '-'; reverse(s.begin(), s.end()); return s; }\nistream &operator>>(istream &is, __int128_t &a){ string s; is >> s; a = 0; for(char c : s) { if(isdigit(c)) {a = a*10 + (c - '0'); } } if(s[0]=='-'){ a *= -1; } return is; }\nostream &operator<<(ostream &os, const __int128_t &a){ os << to_string(a); return os; }\ntemplate<class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<class T> istream &operator>>(istream &is, vector<T> &vec){ for(T &e : vec){is >> e;} return is; }\ntemplate<class T> ostream &operator<<(ostream &os, const vector<T> &vec) { for(int i = 0; i < (int)vec.size(); i++) { os << vec[i] << (i + 1 != (int)vec.size() ? \" \" : \"\"); } return os; }\n\ntemplate <class... T> constexpr auto min (T... a) { return min(initializer_list<common_type_t<T...>>{a...}); }\ntemplate <class... T> constexpr auto max (T... a) { return max(initializer_list<common_type_t<T...>>{a...}); }\ntemplate<class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> T opmin(T x, T y) { return min(x, y); }\ntemplate<class T> T einf() { return numeric_limits<T>::max(); }\ntemplate<class T> T opmax(T x, T y) { return max(x, y); }\ntemplate<class T> T eminf() { return numeric_limits<T>::min(); }\ntemplate<class T> T opsum(T x, T y) { return x + y; }\ntemplate<class T> T ezero() { return (T)0; }\n// #define maxseg(T) segtree<T, [](T x, T y){return max(x, y);}, [](){return (T)(-(1LL << 60));}>\n// #define minseg(T) segtree<T, [](T x, T y){return min(x, y);}, [](){return (T)((1LL << 60));}>\n// #define sumseg(T) segtree<T, [](T x, T y){return x + y;}, [](){return (T)(0);}>\ntemplate<class T> using minseg = segtree<T, opmin<T>, einf<T>>;\ntemplate<class T> using maxseg = segtree<T, opmax<T>, eminf<T>>;\ntemplate<class T> using sumseg = segtree<T, opsum<T>, ezero<T>>;\n// template<class T> struct v : vector<T> { using vector<T> :: vector; };\n// template<class T> struct vv : vector<v<T>> { using vector<v<T>> :: vector; };\n// template<class T> struct vvv : vector<vv<T>> { using vector<vv<T>> :: vector; };\ntemplate<class T> inline bool chmin(T& a, T b) {if(a > b){a = b; return true;} else {return false;}};\ntemplate<class T> inline bool chmax(T& a, T b) {if(a < b){a = b; return true;} else {return false;}};\n#define rep(i,n) for(ll i = 0; i < (ll)(n); i++)\n#define repr(i,n) for(ll i = (ll)(n) - 1; i >= 0; i--)\n#define REP(i, l, r) for(ll i = (ll)l; i <= (ll)(r); i++)\n#define REPR(i, l, r) for(ll i = (ll)r; i >= (ll)(l); i--)\nconst ll inf = (1 << 30);\nconst ll INF = (1LL << 60);\nconst vector<pair<ll, ll>> DIJ = {{1, 0}, {0, -1}, {-1, 0}, {0, 1}};\nvoid out(){cout<<'\\n';}\ntemplate<class T, class... Ts> void out(const T& a, const Ts&... b){ cout<<a; (cout<<... << (cout << ' ', b)); cout << '\\n';}\nvoid outf(){cout<<endl;}\ntemplate<class T, class... Ts> void outf(const T& a, const Ts&... b){ cout<<a; (cout<<... << (cout << ' ', b)); cout << endl;}\ntemplate<class T, class U> void outp(pair<T, U> a){ out((a).first, (a).second); }\ntemplate<class T, class U> void outpf(pair<T, U> a){ outf((a).first, (a).second); }\ntemplate<class T> void outv(T a){rep(i, (a).size()){ cout << (a)[i] << \" \"; } cout << endl;}\ntemplate<class T> void outvL(T a){rep(i, (a).size()){out((a)[i]);} cout << flush; }\n// template<class T> void outvv(T a){rep(i, a.size()){ rep(j, a.at(i).size()){cout << a.at(i).at(j) << \" \"; } cout << endl; }}\n// template<class T> void outvp(T a){rep(i, a.size()){ out2(a.at(i).first, a.at(i).second); }}\nvoid setpre(int a){cout << fixed << setprecision(a);}\n#define outN out(\"No\")\n#define outY out(\"Yes\")\n#define outYN(flag) out(flag ? \"Yes\" : \"No\")\n#define dame(...) {outf(__VA_ARGS__);return 0;}\n\ntemplate<class T> void read(vector<T>& vec){ for(int i = 0; i < (int)vec.size(); i++) { cin >> vec[i]; } }\ntemplate<class... T> void read(T&... a){(cin >> ... >> a);}\n#define readll(...) ll __VA_ARGS__; read(__VA_ARGS__)\n#define readvll(a, n) vector<ll> a(n); read(a)\n#define readvt(type, a, n) vector<type> a(n); read(a)\n#define readvll2(a, b, n) vector<ll> a(n), b(n); for(int lopi = 0; lopi < (int)(n); lopi++) cin >> (a)[lopi] >> (b)[lopi]\n#define readvll3(a, b, c, n) vector<ll> a(n), b(n), c(n); for(int lopi = 0; lopi < (int)(n); lopi++) cin >> (a)[lopi] >> (b)[lopi] >> (c)[lopi]\n#define readstr(...) string __VA_ARGS__; read(__VA_ARGS__)\n#define readundirG(G, N, M) G = vvll(N); rep(lopi, M) {ll a, b; cin >> a >> b; G[a-1].push_back(b-1); G[b-1].push_back(a-1);}\n#define readdirG(G, N, M) G = vvll(N); rep(lopi, M) {ll a, b; cin >> a >> b; G[a-1].push_back(b-1);}\n#define readundirwghG(G, N, M) G = vv(pll)(N); rep(lopi, M) {ll a, b, c; cin >> a >> b >> c; G[a-1].emplace_back(b-1,c); G[b-1].emplace_back(a-1, c);}\n#define readdirwghG (G, N, M) G = vv(pll)(N); rep(lopi, M) {ll a, b, c; cin >> a >> b >> c; G[a-1].emplace_back(b-1, c);}\n\n#define All(a) (a).begin(), (a).end()\ntemplate<class T> inline void sortr(T& a){ sort((a).rbegin(), (a).rend()); }\ntemplate<class T> inline vector<int> argsort(T V, bool rev = false){vector<int> res(V.size()); iota(res.begin(), res.end(), 0); sort(res.begin(), res.end(), [&](int x, int y){if(!rev){return V[x] < V[y];}else{return V[x] > V[y];}}); return res;}\ntemplate<class T, class U> inline void sort_by_idx(T& V, vector<U>& I){assert(V.size() == I.size()); T tmpv = V; for(int loopi = 0; loopi < (int)I.size(); loopi++){V[loopi] = tmpv[I.at(loopi)];}}\ntemplate<class T, class U> inline void sortp(vector<T>& v1, vector<U>& v2, bool rev1 = false, int rev2 = false){assert(v1.size() == v2.size()); vector<int> I(v1.size()); iota(I.begin(), I.end(), 0); sort(I.begin(), I.end(), [&](const int x, const int y){if(v1[x] != v1[y]){return (bool)(rev1 ^ (v1[x] < v1[y]));}else{if(v2[x]==v2[y]){return false;} return (bool)(rev2 ^ (v2[x] < v2[y]));}}); sort_by_idx(v1, I); sort_by_idx(v2, I);}\ntemplate<class T> T POW(T x, ll n) {T ret = 1; while(n > 0){if(n & 1) ret *= x; x *= x; n >>= 1;} return ret;}\nll powll(ll x, ll n){ll ret = 1; while(n > 0){if(n & 1) ret *= x; x *= x; n >>= 1;} return ret;}\ninline ll divceil(ll x, ll y) { if(x >= 0) {return(x / y + (ll)(x % y != 0)); } else { return -((-x) / y); } }\ninline ll divfloor(ll x, ll y) { if(x >= 0) { return x/y; } else { return -((-x)/y + (ll)((-x) % y != 0)); } }\ninline bool inLR(ll x, ll L, ll R){ return (L <= x && x < R); }\ninline bool inRect(ll pos_x, ll pos_y, ll rect_H, ll rect_W, ll rect_h = 0, ll rect_w = 0){ return (rect_h <= pos_x && pos_x < rect_H && rect_w <= pos_y && pos_y < rect_W); }\n\ntemplate<class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v){e++;} return v;}\ntemplate<class T> vector<T> operator++(vector<T> &v, signed) {auto res=v; for(auto &e : v){e++;} return res;}\ntemplate<class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v){e--;} return v;}\ntemplate<class T> vector<T> operator--(vector<T> &v, signed) {auto res=v; for(auto &e : v){e--;} return res;}\ntemplate<class T> vector<T> operator+(const vector<T> &x, const vector<T> &y) { assert(x.size() == y.size()); vector<T> ret(x.size()); for(int i = 0; i < (int)x.size(); i++) {ret[i] = x[i] + y[i];} return ret; }\ntemplate<class T> vector<T> operator-(const vector<T> &x, const vector<T> &y) { assert(x.size() == y.size()); vector<T> ret(x.size()); for(int i = 0; i < (int)x.size(); i++) {ret[i] = x[i] - y[i];} return ret; } \n\ntemplate<class T, class U> pair<T, U> operator+(const pair<T, U> &x, const pair<T, U> &y) { return make_pair(x.first + y.first, x.second + y.second); }\ntemplate<class T, class U> pair<T, U> operator-(const pair<T, U> &x, const pair<T, U> &y) { return make_pair(x.first - y.first, x.second - y.second); }\ntemplate<class T, class U> void operator+=(pair<T, U> &x, pair<T, U> &y) { x = x + y; }\ntemplate<class T, class U> void operator-=(pair<T, U> &x, pair<T, U> &y) { x = x - y; }\n\ntemplate<class T> size_t HashCombine(const size_t seed,const T &v){ return seed^(std::hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); }\ntemplate<class T,class S> struct std::hash<std::pair<T,S>>{ size_t operator()(const std::pair<T,S> &keyval) const noexcept { return HashCombine(std::hash<T>()(keyval.first), keyval.second); } };\ntemplate<class T> struct std::hash<std::vector<T>>{ size_t operator()(const std::vector<T> &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } };\ntemplate<int N> struct HashTupleCore{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore<N-1>()(keyval); return HashCombine(s,std::get<N-1>(keyval)); } };\ntemplate <> struct HashTupleCore<0>{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; } };\ntemplate<class... Args> struct std::hash<std::tuple<Args...>>{ size_t operator()(const tuple<Args...> &keyval) const noexcept { return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval); } };\n\nstruct dice\n{\n ll x, y;\n ll l, r, f, b, d, u;\n string rot;\n map<pll, ll> pos;\n void read()\n {\n cin >> x >> y >> l >> r >> f >> b >> d >> u;\n cin >> rot;\n }\n\n // x--\n void rotl()\n {\n ll tmp = d;\n d = l;\n l = u;\n u = r;\n r = tmp;\n x--;\n }\n\n // x++\n void rotr()\n {\n ll tmp = d;\n d = r;\n r = u;\n u = l;\n l = tmp;\n x++;\n }\n\n // y--;\n void rotf()\n {\n ll tmp = d;\n d = f;\n f = u;\n u = b;\n b = tmp;\n y--;\n }\n\n // y++\n void rotb()\n {\n ll tmp = d;\n d = b;\n b = u;\n u = f;\n f = tmp;\n y++;\n }\n\n void calc_pos()\n {\n pos[{x, y}] = d;\n for(auto c : rot)\n {\n if(c == 'L')\n {\n rotl();\n }\n else if(c == 'R')\n {\n rotr();\n }\n else if(c == 'F')\n {\n rotf();\n }\n else\n {\n rotb();\n }\n pos[{x, y}] = d;\n }\n }\n};\n\nint main()\n{\n std::cin.tie(nullptr), std::ios_base::sync_with_stdio(false);\n while(true)\n {\n readll(N);\n if(!N) break;\n vector<dice> D(N);\n rep(i, N) D[i].read();\n rep(i, N) D[i].calc_pos();\n vll dp(1LL << N, 0);\n rep(bit, 1LL << N)\n {\n vll cand;\n set<pll> used;\n rep(i, N)\n {\n if((bit >> i) & 1)\n {\n for(auto [xy, d] : D[i].pos)\n {\n used.insert(xy);\n }\n }\n else cand.emplace_back(i);\n }\n for(auto i : cand)\n {\n ll nxt = dp[bit];\n for(auto [xy, d] : D[i].pos)\n {\n if(used.count(xy)) continue;\n nxt += d;\n }\n chmax(dp[bit | (1LL << i)], nxt);\n }\n }\n outf(dp[(1LL << N) - 1]);\n }\n}", "accuracy": 1, "time_ms": 4110, "memory_kb": 4036, "score_of_the_acc": -0.5224, "final_rank": 15 }, { "submission_id": "aoj_2703_10567077", "code_snippet": "# include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nconst double pi = acos(-1);\ntemplate<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }\ntemplate<class T>constexpr T hinf() { return inf<T>() / 2; }\ntemplate <typename T_char>T_char TL(T_char cX) { return tolower(cX); }\ntemplate <typename T_char>T_char TU(T_char cX) { return toupper(cX); }\ntemplate<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }\ntemplate<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }\nint popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }\nint d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }\nint d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }\nll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };\nll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };\nll MOD(ll x, ll m){return (x%m+m)%m; }\nll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }\ntemplate<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;\n# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()\n# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())\n# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)\n# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)\n# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)\n# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)\n# define len(x) ((ll)(x).size())\n# define bit(n) (1LL << (n))\n# define pb push_back\n# define eb emplace_back\n# define exists(c, e) ((c).find(e) != (c).end())\n\nstruct INIT{\n\tINIT(){\n\t\tstd::ios::sync_with_stdio(false);\n\t\tstd::cin.tie(0);\n\t\tcout << fixed << setprecision(20);\n\t}\n}INIT;\n\nnamespace mmrz {\n\tvoid solve();\n}\n\nint main(){\n\tmmrz::solve();\n}\n#define debug(...) (static_cast<void>(0))\n\nusing namespace mmrz;\n\nusing vll=vector<ll>;\nusing vvll = vector<vector<ll>>;\nusing ull = unsigned long long;\nusing lll = __int128;\n#define per(i,n) for(ll i=n-1;i>=0;--i)\n#define rep2(i,a,n) for (ll i=a;i<n;++i)\n#define per2(i,a,n) for (ll i=a;i>=n;--i)\n\n// [BEGIN] template の include\n\nint SOLVE(){\n\tint n; cin >> n;\n\tif(n==0) return 1;\n\tmap<pair<int,int>, int> dice_idx;\n\tvector<map<pair<int,int>, ll>> write_numbers(n);\n\tint x, y;\n\tvector<int> dice(6);\n\tstring route;\n\n\trep(i,n) {\n\t\tcin >> x >> y;\n\t\trep(j,6) cin >> dice[j];\n\t\tcin >> route;\n\t\t// tyakuti\n\t\tdice_idx[{x,y}] = dice_idx[{x,y}] | (1<<i);\n\t\twrite_numbers[i][{x,y}] = dice[4];\n\t\tfor(char c: route) {\n\t\t\tvector nxt = dice;\n\t\t\tif(c=='L') {\n\t\t\t\tx -= 1;\n\t\t\t\tnxt[0] = dice[5];\n\t\t\t\tnxt[1] = dice[4];\n\t\t\t\tnxt[4] = dice[0];\n\t\t\t\tnxt[5] = dice[1];\n\t\t\t} else if(c=='R') {\n\t\t\t\tx += 1;\n\t\t\t\tnxt[0] = dice[4];\n\t\t\t\tnxt[1] = dice[5];\n\t\t\t\tnxt[4] = dice[1];\n\t\t\t\tnxt[5] = dice[0];\n\t\t\t} else if(c=='F') {\n\t\t\t\ty -= 1;\n\t\t\t\tnxt[2] = dice[5];\n\t\t\t\tnxt[3] = dice[4];\n\t\t\t\tnxt[4] = dice[2];\n\t\t\t\tnxt[5] = dice[3];\n\t\t\t} else {\n\t\t\t\ty += 1;\n\t\t\t\tnxt[2] = dice[4];\n\t\t\t\tnxt[3] = dice[5];\n\t\t\t\tnxt[4] = dice[3];\n\t\t\t\tnxt[5] = dice[2];\n\t\t\t}\n\t\t\tdice = nxt;\n\t\t\tdice_idx[{x,y}] = dice_idx[{x,y}] | (1<<i);\n\t\t\twrite_numbers[i][{x,y}] = dice[4];\n\t\t}\n\t}\n\n\tvll dp(1<<n, -1);\n\tdp[0] = 0;\n\trep(i, 1<<n) {\n\t\trep(j,n) {\n\t\t\tif(((i>>j)&1)==1) continue;\n\t\t\tint nxt = i | (1<<j);\n\t\t\tll adr = 0;\n\t\t\tfor(auto [xy, val]: write_numbers[j]) {\n\t\t\t\tauto [xx,yy] = xy;\n\t\t\t\tif((dice_idx[{xx,yy}] & nxt) == dice_idx[{xx,yy}]) adr += val;\n\t\t\t}\n\t\t\tchmax(dp[nxt], dp[i] + adr);\n\t\t}\n\t}\n\tcout << dp[(1<<n)-1] << '\\n';\n\treturn 0;\n}\n\nvoid mmrz::solve(){\n\twhile(!SOLVE());\n}", "accuracy": 1, "time_ms": 590, "memory_kb": 3848, "score_of_the_acc": -0.0744, "final_rank": 6 }, { "submission_id": "aoj_2703_10531056", "code_snippet": "//#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h>\nusing namespace std;\n#define ll long long\n#define rep(i,n) for (ll i=0;i<(ll)n;i++)\n#define rrep(i,n) for (ll i=n-1;i>=(ll)0;i--)\n#define loop(i,m,n) for(ll i=m;i<=(ll)n;i++)\n#define rloop(i,m,n) for(ll i=m;i>=(ll)n;i--)\n#define vl vector<long long>\n#define vvl vector<vector<long long>>\n#define vdbg(a) rep(ii,a.size()){cout<<a[ii]<<\" \";}cout<<endl;\n#define vvdbg(a) rep(ii,a.size()){rep(jj,a[ii].size()){cout<<a[ii][jj]<<\" \";}cout<<endl;}\n#define setdbg(a) for(const auto & ii:a){cout<<ii<<\" \";}cout<<endl;\n#define YES cout<<\"Yes\"<<endl;return 0;\n#define NO cout<<\"No\"<<endl;return 0;\n#define inf 4000000000000000000LL\n#define mod 998244353LL\n//#define mod 1000000007LL\nrandom_device rnd;// 非決定的な乱数生成器\nmt19937 mt(rnd());// メルセンヌ・ツイスタの32ビット版、引数は初期シード\n\n\n//#include<boost/multiprecision/cpp_int.hpp>\n//#define bbi boost::multiprecision::cpp_int\n\n//#include<atcoder/lazysegtree>\n\n//√の値が整数かを調べる\nbool isSqrt(ll n) {\n\tif (n < 0) return false;\n\tll sqrtN = static_cast<ll>(sqrt(n));\n\treturn sqrtN * sqrtN == n;\n}\n\n//整数同士の累乗の計算をする。\nll power(ll A, ll B) {\n\tll result = 1;\n\tfor (ll i=0;i<B;i++){\n\t\tresult *= A;\n\t}\n\treturn result;\n}\n\n//素因数分解\nvector<ll> makePrime(ll n){\n\tvector<ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors.push_back(2);\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors.push_back(i);\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors.push_back(n);\n\t}\n\treturn factors;\n}\n\n//map形式で、nを素因数分解した値を返す\nmap<ll,ll> makeMapPrime(ll n){\n\tmap<ll,ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors[2]++;\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors[n]++;\n\t}\n\treturn factors;\n}\n\n// nのk乗をmodで割った余りを計算\nll power_mod(ll n, ll k){\n\tlong long result = 1;\n\twhile (k > 0){\n\t\tif ((k&1) ==1)result=(result*n)%mod;\n\t\tn=n*n%mod;\n\t\tk >>= 1;\n\t}\n\treturn result;\n}\n\n//mod mにおけるaの逆元を計算\nll modinv(ll a, ll m) {\n\tll b = m, u = 1, v = 0;\n\twhile (b) {\n\t\tll t = a / b;\n\t\ta -= t * b; swap(a, b);\n\t\tu -= t * v; swap(u, v);\n\t}\n\tu %= m; \n\tif (u < 0) u += m;\n\treturn u;\n}\n\n//場合の数 nCr を求める\nll ncr(ll n,ll r) {\n\tif(n<r)return 0;\n\tvvl dp(n+1,vl(r+1));\n\trep (i,n+1)dp[i][0] = 1;\n\trep (i,r+1)dp[i][i] = 1;\n\tloop (i,1,n){\n\t\tloop (j,1,min((ll)i-1,r)) {\n\t\t\t//nCr= n-1Cr-1 + n-1Cr\n\t\t\tdp[i][j] = dp[i-1][j-1] + dp[i-1][j];\n\t\t}\n\t}\n\treturn dp[n][r];\n}\n\n//受け取った文字列を、第2引数が0なら全て小文字に、1なら大文字に変換する関数\nstring cnvString(const string &str, int mode) {\n\tstring result = str;\n\tif (mode == 0) {\n\t\t// 小文字に変換\n\t\tfor (char &c : result) {\n\t\t\tc = tolower(c);\n\t\t}\n\t} else if (mode == 1) {\n\t\t// 大文字に変換\n\t\tfor (char &c : result) {\n\t\t\tc = toupper(c);\n\t\t}\n\t}\n\treturn result;\n}\n\n//第一引数で受け取った数を、第二引数で受け取った数の進数と見做して、第三引数の進数へ変換する。\nstring cnvBase(const string &str, ll from_base, ll to_base) {\n\tll num = 0;\n\t//小文字があったら大文字に変換\n\tstring num_str=cnvString(str,1);\n\t// 数値を10進数に変換\n\tfor (char digit : num_str) {\n\t\tnum = num * from_base + (isdigit(digit) ? digit - '0' : digit - 'A' + 10);\n\t}\n\tstring result;\n\t// 数値を目的の基数に変換\n\twhile (num > 0) {\n\t\tll remainder = num % to_base;\n\t\tresult.push_back(remainder < 10 ? remainder + '0' : remainder - 10 + 'A');\n\t\tnum /= to_base;\n\t}\n\t// 結果を逆順にして返す\n\treverse(result.begin(), result.end());\n\treturn result.empty() ? \"0\" : result;\n}\n\n//底がaの対数xを計算。ただし小数点は繰り上げ。\nll logax(ll a, ll x){\n\tif(x<=1)return 0;\n\tll result = 1;\n\tll power = 1;\n\twhile (power < (x+a-1) / a){\n\t\tpower *= a;\n\t\tresult++;\n\t}\n\treturn result;\n}\n\n//第一引数を第二引数で割った余りを計算、割る数はint範囲\nll bigmd(const string &num, int md) {\n\tll ans = 0;\n\tll SIZ = 9; //9桁のチャンク\n\tll base = 1000000000;//SIZ個の0\n\trep(i,(num.size()-1)/SIZ+1){\n\t\tll chunk = 0;\n\t\tll l = i*SIZ;\n\t\tll r = min((ll)num.size(),l+SIZ);\n\t\tif(r!=num.size()){\n\t\t\tans = (ans*base+stoll(num.substr(l,r-l)))%md;\n\t\t}else{\n\t\t\trep(i,r-l)ans*=10;\n\t\t\tans=(ans+stoll(num.substr(l,r-l)))%md;\n\t\t}\n\t}\n\treturn ans;\n}\n\n//受け取った2次元文字の外側に、文字pをコーティングする。\nvector<string> pad(vector<string> &s,char p){\n\tll h=s.size();\n\tll w=s[0].size();\n\tvector<string> res(h+2,string(w+2,p));\n\trep(i,h)rep(j,w)res[i+1][j+1]=s[i][j];\n\treturn res;\n}\n\n//ax+by=cの整数解を得る ただし、cはgcd(a,b)の倍数でない場合、0,0になる\npair<ll,ll> ex_euclid(ll a,ll b,ll c){\n\tif(a<0||b<0||c<0){\n\t\tpair<ll,ll>ans=ex_euclid(abs(a),abs(b),abs(c));\n\t\tif(a<0)ans.first*=-1;\n\t\tif(b<0)ans.second*=-1;\n\t\tif(c<0)ans.first*=-1,ans.second*=-1;\n\t\treturn ans;\n\t}\n\tif(c!=1){\n\t\tll d=gcd(a,b);\n\t\tif(c%d!=0)return make_pair(0,0);\n\t\tpair<ll,ll>ans = ex_euclid(a/d,b/d,1);\n\t\tans.first*=c/d;\n\t\tans.second*=c/d;\n\t\treturn ans;\n\t}\n\tif(a<b){\n\t\tpair<ll,ll>ans=ex_euclid(b,a,c);\n\t\tswap(ans.first,ans.second);\n\t\treturn ans;\n\t}\n\tif(a==1&&b==0)return make_pair(1,0);\n\telse if(b==0) return make_pair(0,0);\n\tll x,y;\n\ttie(x,y)=ex_euclid(b,a%b,c);\n\tpair<ll,ll> ans=make_pair(y,x-(a/b)*y);\n\treturn ans;\n}\n\n//オイラーのトーシェント関数。N以下のNと互いに素な物の数を返す。\nll euler(ll n){\n\tunordered_map<ll,ll> factors;\n\tll tmp=n;\n\twhile (tmp % 2 == 0) {\n\t\tfactors[2]++;\n\t\ttmp /= 2;\n\t}\n\tfor (ll i=3; i*i<=tmp;i+=2) {\n\t\twhile (tmp%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\ttmp/= i;\n\t\t}\n\t}\n\tif (tmp > 2)factors[tmp]++;\n\tll ans=1;\n\tfor(const auto & val:factors){\n\t\tans*=power(val.first,val.second-1)*(val.first-1);\n\t}\n\treturn ans;\n}\n\n// Union-Find\nstruct UnionFind {\n\tvector<int> par, siz;\n\tUnionFind(int n) : par(n, -1) , siz(n, 1) { }\n\t// 根を求める\n\tint root(int x) {\n\t\tif (par[x] == -1) return x;\n\t\telse return par[x] = root(par[x]);\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(int x, int y) {\n\t\treturn root(x) == root(y);\n\t}\n\t// x を含むグループと y を含むグループとを併合する\n\tbool unite(int x, int y) {\n\t\tx = root(x), y = root(y);\n\t\tif (x == y) return false;\n\t\tif (siz[x] < siz[y]) swap(x, y);\n\t\tpar[y] = x;\n\t\tsiz[x] += siz[y];\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズ\n\tint size(int x) {\n\t\treturn siz[root(x)];\n\t}\n};\n\n//重み付きUF\nstruct PotentialUnionFind {\n\tll n;\n\tvl par, siz, pot;\n\tPotentialUnionFind(ll N) : par(N,-1) , siz(N,1) , pot(N,0){n=N;}\n\t// 根を求める\n\tll root(ll x) {\n\t\tif (par[x] == -1) return x;\n\t\tll tmp = root(par[x]);\n\t\tpot[x] += pot[par[x]];\n\t\tpar[x] = tmp;\n\t\treturn par[x];\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(ll x, ll y) {\n\t\treturn root(x) == root(y);\n\t}\n\t//x よりいくつ大きい所に y があるか。根が一致しない場合は\"0\"\n\tll potential(ll x,ll y){\n\t\tif(root(x) != root(y)) return 0;\n\t\telse return pot[y]-pot[x];\n\t}\n\t//x より w だけ大きい状態として y を併合。\n\tbool unite(ll x, ll y, ll w) {\n\t\tll rx = root(x),ry = root(y);\n\t\tif (rx == ry) return false;\n\t\tw += pot[x]-pot[y];\n\t\tif (siz[rx] < siz[ry]) swap(rx, ry),w*=-1;\n\t\tpar[ry] = rx;\n\t\tsiz[rx] += siz[ry];\n\t\tsiz[ry] = 0;\n\t\tpot[ry] = w;\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズ\n\tll size(ll x) {\n\t\treturn siz[root(x)];\n\t}\n\t//小さい順にUnionFindグラフを調整、O(n log n)\n\tvoid regulation(){\n\t\tvvl r(n);\n\t\trep(i,n)r[root(i)].push_back(i);\n\t\trep(i,n){\n\t\t\tif(r[i].size()==0)continue;\n\t\t\tll mn = i;\n\t\t\trep(j,r[i].size())if(pot[mn]>pot[r[i][j]])mn=r[i][j];\n\t\t\tsiz[mn]=siz[i];\n\t\t\tsiz[i]=0;\n\t\t\tll tmp = pot[mn];\n\t\t\trep(j,r[i].size()){\n\t\t\t\tpot[r[i][j]]-=tmp;\n\t\t\t\tpar[r[i][j]] = mn;\n\t\t\t}\n\t\t\tpar[mn]=-1;\n\t\t}\n\t}\n\tvoid debug(){\n\t\trep(i,n)cout<<setw(4)<<left<<par[i]<<\" \";\n\t\tcout<<endl;\n\t\trep(i,n)cout<<setw(4)<<left<<pot[i]<<\" \";\n\t\tcout<<endl;\n\t}\n};\n\n//分離可能UnionFind、経路圧縮をしない。\nstruct CuttingFind{\n\tvector<int> par, siz;\n\tCuttingFind(int n) : par(n, -1) , siz(n, 1) { }\n\t// 根を求める\n\tint root(int x) {\n\t\tif (par[x] == -1) return x;\n\t\telse return root(par[x]);\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(int x, int y) {\n\t\treturn root(x) == root(y);\n\t}\n\t//根x と 根y のグループを併合する(お互い根ではない時、falseで何もしない)\n\tbool unite(int x, int y) {\n\t\tif (issame(x,y) || par[x] != -1 || par[y] != -1) {\n\t\t\tcout<<\"error\"<<endl;\n\t\t\treturn false;\n\t\t}\n\t\tif (siz[x] < siz[y]) swap(x, y);\n\t\tpar[y] = x;\n\t\tsiz[x] += siz[y];\n\t\treturn true;\n\t}\n\t//根の側から、その直系の子供を分離する。片方が根でもう片方が直系の子でなければならない。\n\tbool separate(int x,int y){\n\t\tif(par[y]==-1)swap(x,y);\n\t\tif(par[y]!=x||par[x]!=-1){\n\t\t\tcout<<\"error2\"<<endl;\n\t\t\treturn false;\n\t\t}\n\t\tsiz[x] -= siz[y];\n\t\tpar[y]=-1;\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズを求める\n\tint size(int x) {\n\t\treturn siz[root(x)];\n\t}\n};\n//セグ木,乗せる値の型が必要\ntemplate<typename T>\nstruct SegTree{\n\tll size;\n\tll tall;\n\tvector<T> data;\n\tfunction<T(T,T)> p;\n\t//セグ木に乗せる値の初期値をa配列にし、putの関数をセグ木に乗せる、dをデフォルト値に。\n\tSegTree(vector<T> a,function<T(T,T)> put,T d) : data(power(2,logax(2,a.size())+1)) {\n\t\tsize = data.size()/2;\n\t\ttall=logax(2,size)+1;\n\t\tp=put;\n\t\tll tmp=size;\n\t\tdata = vector<T>(size*2,d);\n\t\twhile(tmp!=0){\n\t\t\tif(tmp==size)rep(i,a.size())data[tmp+i]=a[i];\n\t\t\telse rep(i,tmp) data[tmp+i]=p(data[2*(tmp+i)],data[2*(tmp+i)+1]);\n\t\t\ttmp/=2;\n\t\t}\n\t}\n\t//更新、t番目の値をxにする。\n\tvoid update(ll t,T x){\n\t\tt+=size;\n\t\twhile(t!=0){\n\t\t\tif(t>=size)data[t]=x;\n\t\t\telse data[t]=p(data[2*t],data[2*t+1]);\n\t\t\tt/=2;\n\t\t}\n\t}\n\t//取得、l~r区間内の評価値を取得する。\n\tT get(ll l,ll r){\n\t\t//lとrが範囲外なら範囲内に正す\n\t\tl=max(0LL,l);\n\t\tr=min(r,size-1);\n\t\tr++;\n\t\tT ans=data[0];\n\t\tll pos=l+size;\n\t\tll wid=1;\n\t\t//出来る限り上に上げきる。\n\t\twhile(l+(wid*2)<=r){\n\t\t\twhile(l%(wid*2)==0&&l+(wid*2)<=r)pos/=2,wid*=2;\n\t\t\tans=p(ans,data[pos]);\n\t\t\tpos++;\n\t\t\tl+=wid;\n\t\t}\n\t\t//上げ終わったので今度は下げる\n\t\twhile(l!=r){\n\t\t\twhile(l+wid>r)pos*=2,wid/=2;\n\t\t\tans=p(ans,data[pos]);\n\t\t\tpos++;\n\t\t\tl+=wid;\n\t\t}\n\t\treturn ans;\n\t}\n\t//セグ木デバッグ用、丸ごと出力\n\tvoid print(){\n\t\trep(i,size)cout<<setw(7)<<left<<i;\n\t\tcout<<endl;\n\t\tll pos=size;\n\t\trep(i,tall){\n\t\t\trep(j,size){\n\t\t\t\tif(j%power(2,i)==0)cout<<setw(7)<<left<<data[pos],pos++;\n\t\t\t\telse cout<<\" \";\n\t\t\t}\n\t\t\tpos/=4;\n\t\t\tcout<<endl;\n\t\t}\n\t}\n};\n\n//グリッド問題等用\nvl dx={1,0,-1,0};\nvl dy={0,1,0,-1};\n\nll solve(){\n\tll n;\n\tcin>>n;\n\tif(n==0){return 1;}\n\n\tmap<pair<ll,ll>,ll> bit;\n\tvector<map<pair<ll,ll>,ll>> g(n);\n\t\n\trep(i,n){\n\t\tll x,y;\n\t\tvl dice(6);\n\t\tcin>>x>>y;\n\t\trep(j,6)cin>>dice[j];\n\t\tstring rot;\n\t\tcin>>rot;\n\n\t\tmap<pair<ll,ll>,ll> tmp;\n\t\ttmp[{x,y}]=dice[4];\n\t\trep(j,rot.size()){\n\t\t\tif(rot[j]=='L'){\n\t\t\t\tvl aft(6);\n\t\t\t\tvl move={4,5,2,3,1,0};\n\t\t\t\trep(k,6)aft[move[k]]=dice[k];\n\t\t\t\tdice=aft;\n\t\t\t\tx--;\n\t\t\t}\n\t\t\tif(rot[j]=='R'){\n\t\t\t\tvl aft(6);\n\t\t\t\tvl move={5,4,2,3,0,1};\n\t\t\t\trep(k,6)aft[move[k]]=dice[k];\n\t\t\t\tdice=aft;\n\t\t\t\tx++;\n\t\t\t}\n\t\t\tif(rot[j]=='F'){\n\t\t\t\tvl aft(6);\n\t\t\t\tvl move={0,1,4,5,3,2};\n\t\t\t\trep(k,6)aft[move[k]]=dice[k];\n\t\t\t\tdice=aft;\n\t\t\t\ty--;\n\t\t\t}\n\t\t\tif(rot[j]=='B'){\n\t\t\t\tvl aft(6);\n\t\t\t\tvl move={0,1,5,4,2,3};\n\t\t\t\trep(k,6)aft[move[k]]=dice[k];\n\t\t\t\tdice=aft;\n\t\t\t\ty++;\n\t\t\t}\n\t\t\ttmp[{x,y}]=dice[4];\n\t\t}\n\t\tfor(const auto &val:tmp){\n\t\t\tbit[val.first]+=(1LL<<i);\n\t\t}\n\t\tg[i]=tmp;\n\t}\n\n\tvl dp((1LL<<n),0);\n\trep(b,(1LL<<n)){\n\t\trep(i,n){\n\t\t\tif(b&(1LL<<i))continue;\n\t\t\tll next=b+(1LL<<i);\n\t\t\tll plus=0;\n\t\t\tfor(const auto & val:g[i]){\n\t\t\t\tif((bit[val.first]&next)==bit[val.first]){\n\t\t\t\t\tplus+=val.second;\n\t\t\t\t}\n\t\t\t}\n\t\t\tdp[next]=max(dp[next],dp[b]+plus);\n\t\t}\n\t}\n\tcout<<dp[(1LL<<n)-1]<<endl;\n\treturn 0;\n}\n\n//メイン\nint main(){\n\twhile(solve()==0);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 560, "memory_kb": 3960, "score_of_the_acc": -0.071, "final_rank": 5 }, { "submission_id": "aoj_2703_10426042", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(a) (a).begin(), (a).end()\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define rrep(i, n) for (int i = (int)(n); i >= 0; i--)\n#define range(i, l, r) for (int i = (int)(l); i < (int)(r); i++)\nusing ll = long long;\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n for (int i = 0; i < v.size(); i++) {\n os << v[i] << (i == (v.size() - 1) ? \"\" : \", \");\n }\n os << \"]\";\n return os;\n}\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const set<T>& s) {\n os << \"{\";\n for (auto v : s) {\n os << v << \", \";\n }\n os << \"}\";\n return os;\n}\n\ntemplate <typename T1, typename T2>\nostream& operator<<(ostream& os, const pair<T1, T2> p) {\n os << \"{\" << p.first << \", \" << p.second << \"}\";\n return os;\n}\n\nstruct Dice {\n vector<int> num;\n};\nusing pii = pair<int, int>;\n\nvoid move(Dice* d, char dir) {\n if (dir == 'B') {\n int tmp = d->num[0];\n d->num[0] = d->num[3];\n d->num[3] = d->num[5];\n d->num[5] = d->num[2];\n d->num[2] = tmp;\n } else if (dir == 'F') {\n int tmp = d->num[0];\n d->num[0] = d->num[2];\n d->num[2] = d->num[5];\n d->num[5] = d->num[3];\n d->num[3] = tmp;\n } else if (dir == 'R') {\n int tmp = d->num[1];\n d->num[1] = d->num[2];\n d->num[2] = d->num[4];\n d->num[4] = d->num[3];\n d->num[3] = tmp;\n } else {\n int tmp = d->num[1];\n d->num[1] = d->num[3];\n d->num[3] = d->num[4];\n d->num[4] = d->num[2];\n d->num[2] = tmp;\n }\n}\n\nint movex(int x, char dir) {\n if (dir == 'R') {\n x++;\n } else if (dir == 'L') {\n x--;\n }\n return x;\n}\n\nint movey(int y, char dir) {\n if (dir == 'B') {\n y++;\n } else if (dir == 'F') {\n y--;\n }\n return y;\n}\n\nint main() {\n while (true) {\n int n;\n cin >> n;\n if (n == 0) break;\n vector<Dice> dice(n);\n vector<map<pii, int>> pos(n);\n\n rep(i, n) {\n int x, y;\n cin >> x >> y;\n int l, r, f, b, d, u;\n cin >> l >> r >> f >> b >> d >> u;\n Dice di;\n di.num = {f, r, u, d, l, b};\n pos[i][{x, y}] = di.num[3];\n\n string rot;\n cin >> rot;\n for (auto c : rot) {\n move(&di, c);\n x = movex(x, c);\n y = movey(y, c);\n pos[i][{x, y}] = di.num[3];\n }\n }\n\n vector<set<pii>> ng(1 << n);\n rep(i, 1 << n) {\n rep(j, n) if ((1 << j) & i) {\n for (auto k : pos[j]) {\n ng[i].insert(k.first);\n }\n }\n }\n\n vector<int> dp(1 << n);\n rep(i, 1 << n) {\n rep(j, n) {\n if (i & (1 << j)) continue;\n int tmp = dp[i];\n for (auto [k, v] : pos[j]) {\n if (ng[i].find(k) == ng[i].end()) {\n tmp += v;\n }\n }\n dp[i | (1 << j)] = max(dp[i | (1 << j)], tmp);\n }\n }\n\n cout << dp[(1 << n) - 1] << endl;\n }\n}", "accuracy": 1, "time_ms": 3230, "memory_kb": 234988, "score_of_the_acc": -1.4079, "final_rank": 17 }, { "submission_id": "aoj_2703_10211883", "code_snippet": "// AOJ #2703\n// Dice Stamp 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nvoid cycleFour(int &first, int &second, int &third, int &fourth) {\n int t = first;\n first = second, second = third, third = fourth, fourth = t;\n}\n\nint main() {\n std::ios::sync_with_stdio(0);\n cin.tie(0);\n\n while (true) {\n int N;\n cin >> N;\n if (N == 0) break;\n\n vector< map< pair<int,int>, int > > dmap(N);\n vector< pair<int,int> > coor;\n\n for (int i = 0; i < N; ++i) {\n int posX, posY;\n cin >> posX >> posY;\n int left, right, front, back, bottom, top;\n cin >> left >> right >> front >> back >> bottom >> top;\n string seq;\n cin >> seq;\n\n dmap[i].clear();\n dmap[i][make_pair(posX, posY)] = bottom;\n coor.push_back(make_pair(posX, posY));\n\n for (char move : seq) {\n if (move == 'L') {\n posX--;\n cycleFour(top, right, bottom, left);\n } else if (move == 'R') {\n posX++;\n cycleFour(top, left, bottom, right);\n } else if (move == 'F') {\n posY--;\n cycleFour(top, back, bottom, front);\n } else if (move == 'B') {\n posY++;\n cycleFour(top, front, bottom, back);\n }\n dmap[i][make_pair(posX, posY)] = bottom;\n coor.push_back(make_pair(posX, posY));\n }\n }\n\n sort(coor.begin(), coor.end());\n coor.erase(unique(coor.begin(), coor.end()), coor.end());\n\n vector<int> cellDiceMask(coor.size(), 0);\n vector< vector< pair<int,int> > > clist(N);\n for (int i = 0; i < N; ++i) {\n clist[i].clear();\n for (const auto &entry : dmap[i]) {\n pair<int,int> coordinate = entry.first;\n int stampValue = entry.second;\n int j = lower_bound(coor.begin(), coor.end(), coordinate) - coor.begin();\n clist[i].push_back(make_pair(j, stampValue));\n cellDiceMask[j] |= (1 << i);\n }\n }\n\n int tot = 1 << N;\n vector<int> dp(tot, 0);\n dp[tot - 1] = 0;\n\n for (int k = tot - 1; k >= 0; --k) {\n int bestScoreForCurrentMask = 0;\n for (int i = 0; i < N; ++i) {\n if ((k & (1 << i)) == 0) {\n int nextMask = k | (1 << i);\n int scoreIfUsingThisDice = dp[nextMask];\n for (const auto &stampInfo : clist[i]) {\n int j = stampInfo.first;\n int stampValue = stampInfo.second;\n if ((cellDiceMask[j] & k) == 0)\n scoreIfUsingThisDice += stampValue;\n }\n if (scoreIfUsingThisDice > bestScoreForCurrentMask)\n bestScoreForCurrentMask = scoreIfUsingThisDice;\n }\n }\n dp[k] = bestScoreForCurrentMask;\n }\n cout << dp[0] << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3560, "score_of_the_acc": -0.0007, "final_rank": 1 }, { "submission_id": "aoj_2703_10211877", "code_snippet": "// AOJ #2703\n// Dice Stamp 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nvoid cycleFour(int &first, int &second, int &third, int &fourth) {\n int temp = first;\n first = second;\n second = third;\n third = fourth;\n fourth = temp;\n}\n\nint main() {\n std::ios::sync_with_stdio(0);\n cin.tie(0);\n\n while (true) {\n int N;\n cin >> N;\n if (N == 0) break;\n\n vector< map< pair<int,int>, int > > dmap(N);\n vector< pair<int,int> > coor;\n\n for (int i = 0; i < N; ++i) {\n int posX, posY;\n cin >> posX >> posY;\n int leftFace, rightFace, frontFace, backFace, bottomFace, topFace;\n cin >> leftFace >> rightFace >> frontFace >> backFace >> bottomFace >> topFace;\n string moveSequence;\n cin >> moveSequence;\n\n dmap[i].clear();\n dmap[i][make_pair(posX, posY)] = bottomFace;\n coor.push_back(make_pair(posX, posY));\n\n for (char move : moveSequence) {\n if (move == 'L') {\n posX -= 1;\n cycleFour(topFace, rightFace, bottomFace, leftFace);\n } else if (move == 'R') {\n posX += 1;\n cycleFour(topFace, leftFace, bottomFace, rightFace);\n } else if (move == 'F') {\n posY -= 1;\n cycleFour(topFace, backFace, bottomFace, frontFace);\n } else if (move == 'B') {\n posY += 1;\n cycleFour(topFace, frontFace, bottomFace, backFace);\n }\n dmap[i][make_pair(posX, posY)] = bottomFace;\n coor.push_back(make_pair(posX, posY));\n }\n }\n\n sort(coor.begin(), coor.end());\n coor.erase(unique(coor.begin(), coor.end()), coor.end());\n\n vector<int> cellDiceMask(coor.size(), 0);\n vector< vector< pair<int,int> > > clist(N);\n for (int i = 0; i < N; ++i) {\n clist[i].clear();\n for (const auto &entry : dmap[i]) {\n pair<int,int> coordinate = entry.first;\n int stampValue = entry.second;\n int j = lower_bound(coor.begin(), coor.end(), coordinate) - coor.begin();\n clist[i].push_back(make_pair(j, stampValue));\n cellDiceMask[j] |= (1 << i);\n }\n }\n\n int tot = 1 << N;\n vector<int> dp(tot, 0);\n dp[tot - 1] = 0;\n\n for (int k = tot - 1; k >= 0; --k) {\n int bestScoreForCurrentMask = 0;\n for (int i = 0; i < N; ++i) {\n if ((k & (1 << i)) == 0) {\n int nextMask = k | (1 << i);\n int scoreIfUsingThisDice = dp[nextMask];\n for (const auto &stampInfo : clist[i]) {\n int j = stampInfo.first;\n int stampValue = stampInfo.second;\n if ((cellDiceMask[j] & k) == 0)\n scoreIfUsingThisDice += stampValue;\n }\n if (scoreIfUsingThisDice > bestScoreForCurrentMask)\n bestScoreForCurrentMask = scoreIfUsingThisDice;\n }\n }\n dp[k] = bestScoreForCurrentMask;\n }\n cout << dp[0] << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3564, "score_of_the_acc": -0.0007, "final_rank": 2 }, { "submission_id": "aoj_2703_10211858", "code_snippet": "// AOJ #2703\n// Dice Stamp 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nstruct DieState {\n int top, bottom, left, right, front, back;\n};\n \nDieState rollLeft(const DieState &s) {\n DieState ns;\n ns.top = s.right;\n ns.bottom = s.left;\n ns.left = s.top;\n ns.right = s.bottom;\n ns.front = s.front;\n ns.back = s.back;\n return ns;\n}\n \nDieState rollRight(const DieState &s) {\n DieState ns;\n ns.top = s.left;\n ns.bottom = s.right;\n ns.left = s.bottom;\n ns.right = s.top;\n ns.front = s.front;\n ns.back = s.back;\n return ns;\n}\n \nDieState rollForward(const DieState &s) {\n DieState ns;\n ns.top = s.back;\n ns.bottom = s.front;\n ns.front = s.top;\n ns.back = s.bottom;\n ns.left = s.left;\n ns.right = s.right;\n return ns;\n}\n \nDieState rollBackward(const DieState &s) {\n DieState ns;\n ns.top = s.front;\n ns.bottom = s.back;\n ns.front = s.bottom;\n ns.back = s.top;\n ns.left = s.left;\n ns.right = s.right;\n return ns;\n}\n \nstruct PairHash {\n size_t operator()(const pair<int,int>& p) const {\n return ((size_t)p.first * 13131ULL) ^ ((size_t)p.second);\n }\n};\n \n \nstruct State {\n vector<int> config;\n int sum;\n};\n \nbool dominates(const State &A, const State &B) {\n int n = A.config.size();\n for (int i = 0; i < n; i++) {\n if(A.config[i] < B.config[i])\n return false;\n }\n return true;\n}\n \nint main() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n while(true){\n int N;\n cin >> N;\n if(N == 0) break;\n \n vector<unordered_map<pair<int,int>, int, PairHash>> dieStamps(N);\n \n for (int i = 0; i < N; i++){\n int startX, startY;\n cin >> startX >> startY;\n int l, r, f, b, d, u;\n cin >> l >> r >> f >> b >> d >> u;\n string rot;\n cin >> rot;\n \n DieState state;\n state.top = u;\n state.bottom = d;\n state.left = l;\n state.right = r;\n state.front = f;\n state.back = b;\n \n int curX = startX, curY = startY;\n \n unordered_map<pair<int,int>, int, PairHash> stamps;\n stamps[{curX, curY}] = state.bottom;\n \n for (char c : rot) {\n if (c == 'L'){\n curX -= 1;\n state = rollLeft(state);\n } else if (c == 'R'){\n curX += 1;\n state = rollRight(state);\n } else if (c == 'F'){\n curY -= 1;\n state = rollForward(state);\n } else if (c == 'B'){\n curY += 1;\n state = rollBackward(state);\n }\n stamps[{curX, curY}] = state.bottom;\n }\n \n dieStamps[i] = move(stamps);\n }\n \n unordered_map<pair<int,int>, int, PairHash> cellIndex;\n vector<pair<int,int>> cells;\n for (int i = 0; i < N; i++){\n for (auto &entry : dieStamps[i]){\n pair<int,int> cell = entry.first;\n if(cellIndex.find(cell) == cellIndex.end()){\n int idx = cells.size();\n cells.push_back(cell);\n cellIndex[cell] = idx;\n }\n }\n }\n int M = cells.size();\n \n vector<vector<int>> dieVal(N, vector<int>(M, 0));\n for (int i = 0; i < N; i++){\n for (auto &entry : dieStamps[i]){\n pair<int,int> cell = entry.first;\n int j = cellIndex[cell];\n dieVal[i][j] = entry.second;\n }\n }\n \n \n int totStates = 1 << N;\n vector< vector<State> > dp(totStates);\n \n State init;\n init.config.assign(M, 0);\n init.sum = 0;\n dp[0].push_back(init);\n \n for (int mask = 0; mask < totStates; mask++){\n if(dp[mask].empty()) continue;\n \n for (int i = 0; i < N; i++){\n if(mask & (1 << i)) continue;\n int nmask = mask | (1 << i);\n \n for (auto &st : dp[mask]) {\n State ns;\n ns.config = st.config;\n int add = 0;\n for (int j = 0; j < M; j++){\n int newVal = (dieVal[i][j] > 0 ? dieVal[i][j] : ns.config[j]);\n add += (newVal - ns.config[j]);\n ns.config[j] = newVal;\n }\n ns.sum = st.sum + add;\n \n bool dominated = false;\n vector<int> toRemove;\n for (int k = 0; k < dp[nmask].size(); k++){\n if (dominates(dp[nmask][k], ns)) { \n dominated = true; \n break;\n }\n if (dominates(ns, dp[nmask][k])) {\n toRemove.push_back(k);\n }\n }\n if(dominated) continue;\n for (int idx = toRemove.size()-1; idx >= 0; idx--){\n int rem = toRemove[idx];\n dp[nmask].erase(dp[nmask].begin() + rem);\n }\n dp[nmask].push_back(ns);\n }\n }\n }\n int ans = 0;\n for (int mask = 0; mask < totStates; mask++){\n for (auto &st : dp[mask]) ans = max(ans, st.sum);\n }\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 44616, "score_of_the_acc": -0.2529, "final_rank": 12 }, { "submission_id": "aoj_2703_9447329", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\ntemplate <unsigned mod = 1000000007> struct fp {\n unsigned v;\n static constexpr int get_mod() {\n return mod;\n }\n constexpr unsigned inv() const {\n assert(v != 0);\n int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0;\n while (y > 0) {\n t = x / y;\n x -= t * y, p -= t * q;\n tmp = x, x = y, y = tmp;\n tmp = p, p = q, q = tmp;\n }\n if (p < 0)\n p += mod;\n return p;\n }\n constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {}\n fp operator-() const {\n return fp() - *this;\n }\n fp pow(ull t) {\n fp res = 1, b = *this;\n while (t) {\n if (t & 1)\n res *= b;\n b *= b;\n t >>= 1;\n }\n return res;\n }\n fp &operator+=(const fp &x) {\n if ((v += x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator-=(const fp &x) {\n if ((v += mod - x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator*=(const fp &x) {\n v = ull(v) * x.v % mod;\n return *this;\n }\n fp &operator/=(const fp &x) {\n v = ull(v) * x.inv() % mod;\n return *this;\n }\n fp operator+(const fp &x) const {\n return fp(*this) += x;\n }\n fp operator-(const fp &x) const {\n return fp(*this) -= x;\n }\n fp operator*(const fp &x) const {\n return fp(*this) *= x;\n }\n fp operator/(const fp &x) const {\n return fp(*this) /= x;\n }\n bool operator==(const fp &x) const {\n return v == x.v;\n }\n bool operator!=(const fp &x) const {\n return v != x.v;\n }\n friend istream &operator>>(istream &is, fp &x) {\n return is >> x.v;\n }\n friend ostream &operator<<(ostream &os, const fp &x) {\n return os << x.v;\n }\n};\n\ntemplate <unsigned mod> void rd(fp<mod> &x) {\n fastio::rd(x.v);\n}\ntemplate <unsigned mod> void wt(fp<mod> x) {\n fastio::wt(x.v);\n}\n\ntemplate <typename T> T Inv(ll n) {\n static const int md = T::get_mod();\n static vector<T> buf({0, 1});\n assert(n > 0);\n n %= md;\n while (SZ(buf) <= n) {\n int k = SZ(buf), q = (md + k - 1) / k;\n buf.push_back(buf[k * q - md] * q);\n }\n return buf[n];\n}\n\ntemplate <typename T> T Fact(ll n, bool inv = 0) {\n static const int md = T::get_mod();\n static vector<T> buf({1, 1}), ibuf({1, 1});\n assert(n >= 0 and n < md);\n while (SZ(buf) <= n) {\n buf.push_back(buf.back() * SZ(buf));\n ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf)));\n }\n return inv ? ibuf[n] : buf[n];\n}\n\ntemplate <typename T> T nPr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nCr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nHr(int n, int r, bool inv = 0) {\n return nCr<T>(n + r - 1, r, inv);\n}\n\n/**\n * @brief Modint\n */\n\nstruct Dice {\n int l, r, f, b, d, u;\n int x, y;\n Dice(int _l, int _r, int _f, int _b, int _d, int _u, int _x = 30, int _y = 30) {\n l = _l, r = _r, f = _f, b = _b, d = _d, u = _u, x = _x, y = _y;\n }\n};\n\nDice L(Dice D) {\n Dice ND = D;\n ND.x--;\n ND.l = D.u, ND.u = D.r, ND.r = D.d, ND.d = D.l;\n return ND;\n}\n\nDice R(Dice D) {\n Dice ND = D;\n ND.x++;\n ND.r = D.u, ND.u = D.l, ND.l = D.d, ND.d = D.r;\n return ND;\n}\n\nDice F(Dice D) {\n Dice ND = D;\n ND.y--;\n ND.f = D.u, ND.u = D.b, ND.b = D.d, ND.d = D.f;\n return ND;\n}\n\nDice B(Dice D) {\n Dice ND = D;\n ND.y++;\n ND.b = D.u, ND.u = D.f, ND.f = D.d, ND.d = D.b;\n return ND;\n}\n\nint main() {\nwhile(1) {\n int N;\n cin >> N;\n if (N == 0) return 0;\n vector<vector<pair<pair<int,int>,int>>> V(N);\n map<pair<int,int>,int> mp;\n rep(i,0,N) {\n vector<vector<int>> Grid(61,vector<int>(61,-1));\n int _x, _y, _l, _r, _f, _b, _d, _u;\n cin >> _x >> _y >> _l >> _r >> _f >> _b >> _d >> _u;\n Dice D(_l, _r, _f, _b, _d, _u);\n Grid[D.x][D.y] = D.d;\n string S;\n cin >> S;\n for (char C : S) {\n if (C == 'L') D = L(D);\n if (C == 'R') D = R(D);\n if (C == 'F') D = F(D);\n if (C == 'B') D = B(D);\n Grid[D.x][D.y] = D.d;\n }\n rep(j,0,61) {\n rep(k,0,61) {\n if (Grid[j][k] > 0) {\n int nx = j - 30 + _x, ny = k - 30 + _y;\n V[i].push_back({{nx,ny},Grid[j][k]});\n mp[{nx,ny}] |= (1<<i);\n }\n }\n }\n }\n vector<int> DP(1<<N, -inf);\n DP[0] = 0;\n rep(i,0,1<<N) {\n rep(j,0,N) {\n if ((i & (1<<j)) == 0) {\n int Cur = DP[i];\n for (pair<pair<int,int>,int> P : V[j]) {\n if ((mp[P.first] & i) == 0) Cur += P.second;\n }\n chmax(DP[i | (1<<j)], Cur);\n }\n }\n }\n cout << DP[(1<<N)-1] << endl;\n}\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 3424, "score_of_the_acc": -0.0242, "final_rank": 3 }, { "submission_id": "aoj_2703_9346631", "code_snippet": "#line 1 \"main.cpp\"\n#include<bits/stdc++.h>\nusing namespace std;\n\n#line 1 \"/mnt/c/Users/hope_/ComPro/Libraries/Library/other/Dice.hpp\"\n// 面と変数の対応付けは Dice Stamp (https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2703) における\n// (l, r, f, b, d, u) から (xn, xp, yn, yp, zn, zp) に置き換えたものとする。\n// 面の値(Label)のみを保持。一致判定などにおいて向きは非考慮。\n// Verified Link1: Dice Stamp (https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2703)\n\nstruct Dice{\n static constexpr int arr[7][7] = {\n {0,0,0,0,0,0,0},\n {0,0,4,2,5,3,0},\n {0,3,0,6,1,0,4},\n {0,5,1,0,0,6,2},\n {0,2,6,0,0,1,5},\n {0,4,0,1,6,0,3},\n {0,0,3,5,2,4,0}\n };\n int xnL, xpL, ynL, ypL, znL, zpL; // labels\n int xco, yco, zco; // x, y, z coordinate (for rolling the dice)\n\n Dice() : xnL(2), xpL(5), ynL(3), ypL(4), znL(6), zpL(1), xco(0), yco(0), zco(0) {}\n \n Dice(int xn, int xp, int yn, int yp, int zn, int zp, int xco = 0, int yco = 0, int zco = 0) :\n xnL(xn), xpL(xp), ynL(yn), ypL(yp), znL(zn), zpL(zp), xco(xco), yco(yco), zco(zco) {}\n\n // after initialization, make normal dice (set -1 to unknown label)\n void makeNormalDice(int xn, int xp, int yn, int yp, int zn, int zp){\n if(xn == -1 && xp != -1){ xn = 7 - xp; }\n if(xp == -1 && xn != -1){ xp = 7 - xn; }\n if(yn == -1 && yp != -1){ yn = 7 - yp; }\n if(yp == -1 && yn != -1){ yp = 7 - yn; }\n if(zn == -1 && zp != -1){ zn = 7 - zp; }\n if(zp == -1 && zn != -1){ zp = 7 - zn; }\n if(xn == -1){\n assert(xp == -1 && yn != -1 && zn != -1);\n xn = arr[zp][yp];\n xp = arr[zp][yn];\n }\n if(yn == -1){\n assert(yp == -1 && xn != -1 && zn != -1);\n yn = arr[zp][xn];\n yp = arr[zp][xp];\n }\n if(zn == -1){\n assert(zp == -1 && xn != -1 && yn != -1);\n zn = arr[yp][xp];\n zp = arr[yp][xn];\n }\n xnL = xn, xpL = xp;\n ynL = yn, ypL = yp;\n znL = zn, zpL = zp;\n }\n\n // shift 4 params to left.\n // (a, b, c, d) -> (b, c, d, a)\n void shift(int& a, int& b, int& c, int& d){\n int tmp = a;\n a = b, b = c, c = d, d = tmp;\n }\n\n void rotXY(bool clockwise = false){\n if(clockwise) shift(xpL, ypL, xnL, ynL);\n else shift(xpL, ynL, xnL, ypL);\n }\n void rotYZ(bool clockwise = false){\n if(clockwise) shift(ypL, zpL, ynL, znL);\n else shift(ypL, znL, ynL, zpL);\n }\n void rotXZ(bool clockwise = false){\n if(clockwise) shift(xpL, zpL, xnL, znL);\n else shift(xpL, znL, xnL, zpL);\n }\n\n // roll dice\n void rotB(){ rotYZ(true); yco++; }\n void rotF(){ rotYZ(false); yco--; }\n void rotR(){ rotXZ(true); xco++; }\n void rotL(){ rotXZ(false); xco--; }\n\n friend ostream& operator<<(ostream& os, const Dice& dice){\n os << \"(xnL, xpL, ynL, ypL, znL, zpL) = (\";\n os << dice.xnL << \", \" << dice.xpL << \", \";\n os << dice.ynL << \", \" << dice.ypL << \", \";\n os << dice.znL << \", \" << dice.zpL << \")\\n\"; \n os << \"(x, y, z) = (\" << dice.xco << \", \" << dice.yco << \", \" << dice.zco << \")\\n\"; \n return os;\n }\n};\n#line 5 \"main.cpp\"\n\nint main(){\n while(1){\n int N; cin >> N;\n if(N == 0) break;\n vector<Dice> dices(N);\n vector<string> mov(N);\n\n const int MAX_N = 2070;\n const int OFFSET = 1035;\n for(int i = 0; i < N; i++){\n int x, y; cin >> x >> y;\n int l, r, f, b, d, u; cin >> l >> r >> f >> b >> d >> u;\n cin >> mov[i];\n x += OFFSET, y += OFFSET;\n dices[i] = Dice(l, r, f, b, d, u, x, y);\n }\n\n int M = (1 << N);\n const int INF = 1e9;\n vector<int> dp(M, -INF);\n dp[0] = 0;\n vector<vector<bool>> used(MAX_N, vector<bool>(MAX_N));\n vector<vector<int>> vals(MAX_N, vector<int>(MAX_N));\n\n for(int u = 0; u < M - 1; u++){\n // set \"used\"\n for(int j = 0; j < N; j++){\n if(u & (1 << j)){\n Dice di = dices[j];\n used[di.yco][di.xco] = true;\n for(char c : mov[j]){\n if(c == 'B') di.rotB();\n if(c == 'F') di.rotF();\n if(c == 'R') di.rotR();\n if(c == 'L') di.rotL();\n used[di.yco][di.xco] = true;\n }\n }\n }\n // calc score\n for(int j = 0; j < N; j++){\n if(!(u & (1 << j))){\n int val = 0;\n Dice di = dices[j];\n if(!used[di.yco][di.xco]) vals[di.yco][di.xco] = di.znL;\n for(char c : mov[j]){\n if(c == 'B') di.rotB();\n if(c == 'F') di.rotF();\n if(c == 'R') di.rotR();\n if(c == 'L') di.rotL();\n if(!used[di.yco][di.xco]) vals[di.yco][di.xco] = di.znL;\n // if(N == 1) cout << di.znL << \" \";\n }\n // cout << endl;\n di = dices[j];\n\n val += vals[di.yco][di.xco];\n vals[di.yco][di.xco] = 0;\n for(char c : mov[j]){\n if(c == 'B') di.rotB();\n if(c == 'F') di.rotF();\n if(c == 'R') di.rotR();\n if(c == 'L') di.rotL();\n val += vals[di.yco][di.xco];\n // if(N == 1) cout << vals[di.yco][di.xco] << \" \";\n vals[di.yco][di.xco] = 0;\n }\n // cerr << \"!\" << val << endl;\n dp[u | (1 << j)] = max(dp[u | (1 << j)], dp[u] + val);\n }\n }\n // init \"used\"\n for(int j = 0; j < N; j++){\n if(u & (1 << j)){\n Dice di = dices[j];\n used[di.yco][di.xco] = false;\n for(char c : mov[j]){\n if(c == 'B') di.rotB();\n if(c == 'F') di.rotF();\n if(c == 'R') di.rotR();\n if(c == 'L') di.rotL();\n used[di.yco][di.xco] = false;\n }\n }\n }\n }\n\n cout << dp[M - 1] << endl;\n }\n}", "accuracy": 1, "time_ms": 460, "memory_kb": 20572, "score_of_the_acc": -0.1301, "final_rank": 7 }, { "submission_id": "aoj_2703_9316862", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vd = vector<double>;\nusing vvd = vector<vd>;\nusing vvvd = vector<vvd>;\n#define all(A) A.begin(),A.end()\n#define ALL(A) A.begin(),A.end()\n#define rep(i, n) for (int i = 0; i < (int) (n); i++)\ntemplate<class T>\nbool chmax(T& p, T q) {\n if (p < q) {\n p = q; return 1;\n }\n return 0;\n};\ntemplate<class T>\nbool chmin(T& p, T q) {\n if (p > q) {\n p = q; return 1;\n }\n return 0;\n};\n\nstruct dice{\n ll l,r,f,b,d,u;\n\n void input(){\n cin>>l>>r>>f>>b>>d>>u;\n }\n\n void roll(char C){\n if(C=='R'){\n ll p=u;\n u=l;\n l=d;\n d=r;\n r=p;\n }\n if(C=='L')rep(i,3)roll('R');\n if(C=='F'){\n ll p=u;\n u=b;\n b=d;\n d=f;\n f=p;\n }\n if(C=='B')rep(i,3)roll('F');\n }\n};\nvoid mov(ll &x,ll &y,char C){\n if(C=='R')x++;\n if(C=='L')x--;\n if(C=='F')y--;\n if(C=='B')y++;\n}\n\nvoid solve(ll N) {\n vector<dice> D(N);\n vll X(N),Y(N);\n vector<string> S(N);\n rep(i,N){\n cin>>X[i]>>Y[i];\n D[i].input();\n cin>>S[i];\n }\n vector<ll> DP(1<<N,-1e18);\n DP[0]=0;\n rep(bit,1<<N){\n set<pair<ll,ll>> SS;\n rep(i,N){\n if(bit&(1<<i)){\n ll x=X[i];\n ll y=Y[i];\n SS.insert({x,y});\n for(auto s:S[i]){\n mov(x,y,s);\n SS.insert({x,y});\n }\n }\n }\n rep(i,N){\n if(bit&(1<<i))continue;\n dice ND=D[i];\n ll x=X[i];\n ll y=Y[i];\n map<pair<ll,ll>,ll> MP;\n MP[{x,y}]=ND.d;\n for(auto s:S[i]){\n mov(x,y,s);\n ND.roll(s);\n MP[{x,y}]=ND.d;\n }\n ll res=0;\n for(auto m:MP){\n if(!SS.count(m.first))res+=m.second;\n }\n chmax(DP[bit+(1<<i)],DP[bit]+res);\n }\n }\n cout<<DP[(1<<N)-1]<<endl;\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N;\n while (cin >> N) {\n if (N == 0)return 0;\n solve(N);\n }\n\n}", "accuracy": 1, "time_ms": 4920, "memory_kb": 3684, "score_of_the_acc": -0.6238, "final_rank": 16 }, { "submission_id": "aoj_2703_9248905", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nstruct dice {\n int x_neg, x_pos, y_neg, y_pos, z_neg, z_pos;\n dice() : dice(0, 0, 0, 0, 0, 0) {}\n dice(int x1, int x2, int y1, int y2, int z1, int z2) : \n x_neg(x1), x_pos(x2), y_neg(y1), y_pos(y2), z_neg(z1), z_pos(z2) {}\n void rotate(char C) {\n if (C == 'L') {\n int tmp = x_pos;\n x_pos = z_neg;\n z_neg = x_neg;\n x_neg = z_pos;\n z_pos = tmp;\n }\n if (C == 'R') {\n int tmp = x_pos;\n x_pos = z_pos;\n z_pos = x_neg;\n x_neg = z_neg;\n z_neg = tmp;\n }\n if (C == 'F') {\n int tmp = y_pos;\n y_pos = z_neg;\n z_neg = y_neg;\n y_neg = z_pos;\n z_pos = tmp;\n }\n if (C == 'B') {\n int tmp = y_pos;\n y_pos = z_pos;\n z_pos = y_neg;\n y_neg = z_neg;\n z_neg = tmp;\n }\n }\n};\nint X[15],Y[15],dp[1<<15];\ndice D[15];\nstring rot[15];\nunordered_set<int>used[1 << 15];\nint add(int S, int p) {\n int x = X[p], y = Y[p];\n unordered_map<int, int> memo;\n dice d = D[p];\n int res = 0;\n for (char c : rot[p]) {\n res -= memo[x * 4000 + y];\n if (used[S].find(x * 4000 + y) == used[S].end()) {\n res += memo[x * 4000 + y] = d.z_neg;\n }\n d.rotate(c);\n if (c == 'L') x--;\n if (c == 'R') x++;\n if (c == 'F') y--;\n if (c == 'B') y++;\n }\n for (auto[key, val] : memo) used[S | (1 << p)].insert(key);\n return res;\n}\nbool solve() {\n int N;\n cin >> N;\n if (N == 0) return 0;\n for (int i = 0; i < N; i++) {\n cin >> X[i] >> Y[i];\n X[i] += 2000, Y[i] += 2000;\n int x1, x2, y1, y2, z1, z2;\n cin >> x1 >> x2 >> y1 >> y2 >> z1 >> z2;\n D[i] = dice(x1, x2, y1, y2, z1, z2);\n cin >> rot[i];\n rot[i].push_back('$');\n }\n for (int i = 0; i < (1 << N); i++) {\n dp[i] = 0;\n used[i].clear();\n }\n for (int i = 0; i < (1 << N); i++) {\n for (int j = 0; j < N; j++) {\n if (i >> j & 1) continue;\n int k = i | (1 << j);\n for (int xy : used[i]) used[k].insert(xy);\n dp[k] = max(dp[k], dp[i] + add(i, j));\n }\n }\n cout << dp[(1 << N) -1] << endl;\n return 1;\n}\nint main() {\n while (solve()) {}\n}", "accuracy": 1, "time_ms": 7240, "memory_kb": 216940, "score_of_the_acc": -1.8395, "final_rank": 19 }, { "submission_id": "aoj_2703_9247453", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nbool solve(){\n int N, x, y;\n cin >> N;\n if(N==0) return 0;\n vector<int> dp(1<<N, 0);\n vector<vector<int>> dice_num(N, vector<int>(6));\n vector<string> dice_ord(N);\n vector<pair<int, int>> place(N);\n vector<unordered_set<int>> used(1<<N);\n for(int i=0;i<N;i++){\n cin >> x >> y;\n x += 1050;\n y += 1050;\n place[i] = make_pair(x, y);\n for(int j=0;j<6;j++){\n cin >> dice_num[i][j];\n }\n cin >> dice_ord[i];\n dice_ord[i].push_back('S');\n }\n\n auto score = [&](int S, int d) -> int{\n int ret = 0;\n auto [x, y] = place[d];\n vector<int> dice(6);\n for(int i=0;i<6;i++){\n dice[i] = dice_num[d][i];\n }\n unordered_map<int, int> count;\n for(char s: dice_ord[d]){\n ret -= count[x*3000+y];\n if(used[S].count(x*3000+y)==0){\n ret += dice[4];\n count[x*3000+y] = dice[4];\n }\n used[S|(1<<d)].insert(x*3000+y);\n if(s=='R'){\n dice = {dice[4], dice[5], dice[2], dice[3], dice[1], dice[0]};\n x++;\n }else if(s=='L'){\n dice = {dice[5], dice[4], dice[2], dice[3], dice[0], dice[1]};\n x--;\n }else if(s=='B'){\n dice = {dice[0], dice[1], dice[4], dice[5], dice[3], dice[2]};\n y++;\n }else{\n dice = {dice[0], dice[1], dice[5], dice[4], dice[2], dice[3]};\n y--;\n }\n }\n return ret;\n };\n\n for(int i=0;i<(1<<N);i++){\n for(int j=0;j<N;j++){\n if(!(i&(1<<j))){\n for(auto x: used[i]){\n used[i|(1<<j)].insert(x);\n }\n dp[i|(1<<j)] = max(dp[i|(1<<j)], dp[i]+score(i, j));\n }\n }\n }\n cout << dp[(1<<N)-1] << endl;\n return 1;\n}\n\nint main(){\n while(solve());\n}", "accuracy": 1, "time_ms": 7890, "memory_kb": 215368, "score_of_the_acc": -1.9153, "final_rank": 20 }, { "submission_id": "aoj_2703_9207058", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace lib {\nusing namespace std;\n\ntemplate <typename T = int>\nclass Dice {\nprivate:\n array<T, 6> data;\n int id_;\npublic:\n Dice(int id_ = 0) : id_(id_) {\n iota(data.begin(), data.end(), 1);\n }\n Dice(const array<T, 6>& data, int id_ = 0) : data(data), id_(id_) {}\n\n void rotate_north() {\n T temp = data[5];\n data[5] = data[4];\n data[4] = data[0];\n data[0] = data[1];\n data[1] = temp;\n }\n void rotate_east() {\n T temp = data[5];\n data[5] = data[2];\n data[2] = data[0];\n data[0] = data[3];\n data[3] = temp;\n }\n void rotate_south() {\n T temp = data[5];\n data[5] = data[1];\n data[1] = data[0];\n data[0] = data[4];\n data[4] = temp;\n }\n void rotate_west() {\n T temp = data[5];\n data[5] = data[3];\n data[3] = data[0];\n data[0] = data[2];\n data[2] = temp;\n }\n\n T top() const {\n return data[0];\n }\n T front() const {\n return data[1];\n }\n T right() const {\n return data[2];\n }\n T left() const {\n return data[3];\n }\n T back() const {\n return data[4];\n }\n T bottom() const {\n return data[5];\n }\n int id( ) const {\n return id_;\n }\n\n void rotate(const char c) {\n if (c == 'N') {\n rotate_north();\n }\n else if (c == 'E') {\n rotate_east();\n }\n else if (c == 'S') {\n rotate_south();\n }\n else if (c == 'W') {\n rotate_west();\n }\n else {\n assert(false);\n }\n }\n\n Dice match(T top_value, T front_value) {\n Dice temp = Dice(*this);\n for (int i = 0 ; i < 6 ; i++) {\n for (int j = 0 ; j < 4 ; j++) {\n if (temp.top() == top_value && temp.front() == front_value) {\n return temp;\n }\n temp.rotate_east();\n }\n if (i & 1) {\n temp.rotate_east();\n }\n else {\n temp.rotate_west();\n }\n temp.rotate_south();\n }\n assert(false);\n return temp;\n }\n};\n\ntemplate <typename T>\nbool operator==(const Dice<T>& lhs, const Dice<T>& rhs) {\n Dice temp = Dice(lhs);\n for (int i = 0 ; i < 6 ; i++) {\n for (int j = 0 ; j < 4 ; j++) {\n if (temp.top() == rhs.top && temp.bottom() == rhs.bottom() &&\n temp.front() == rhs.front() && temp.back() == rhs.back() && \n temp.right() == rhs.right() && temp.left() == rhs.left()) {\n return true;\n }\n temp.rotate_east();\n }\n if (i & 1) {\n temp.rotate_east();\n }\n else {\n temp.rotate_west();\n }\n temp.rotate_south();\n }\n return false;\n}\n\n} // namespace lib\n\nbool solve() {\n int N;\n std::cin >> N;\n if (N == 0) return false;\n using data = std::vector<std::pair<std::pair<int, int>, int>>;\n std::vector<data> D(N);\n for (int i{} ; i < N ; i++) {\n int x, y, l, r, f, b, d, u;\n std::string rot;\n std::cin >> x >> y;\n std::cin >> l >> r >> f >> b >> d >> u;\n std::cin >> rot;\n // std::replace(rot.begin(), rot.end(), 'L', 'E');\n // std::replace(rot.begin(), rot.end(), 'R', 'W');\n // std::replace(rot.begin(), rot.end(), 'F', 'S');\n // std::replace(rot.begin(), rot.end(), 'B', 'N');\n lib::Dice<int> dice{std::array<int, 6>{ u, f, r, l, b, d }};\n data cur;\n // std::cout << x << ' ' << y << ' ' << dice.bottom() << std::endl;\n cur.push_back(std::make_pair(std::make_pair(x, y), dice.bottom()));\n for (auto c : rot) {\n if (c == 'L') {\n x--;\n dice.rotate_west();\n }\n else if (c == 'R') {\n x++;\n dice.rotate_east();\n }\n else if (c == 'F') {\n y--;\n dice.rotate_south();\n }\n else if (c == 'B') {\n y++;\n dice.rotate_north();\n }\n // std::cout << x << ' ' << y << ' ' << dice.bottom() << std::endl;\n cur.push_back(std::make_pair(std::make_pair(x, y), dice.bottom()));\n }\n std::reverse(cur.begin(), cur.end());\n for (int j{} ; j < (int)cur.size() ; j++) {\n bool fn{};\n for (int k{} ; k < j ; k++) {\n fn |= cur[j].first == cur[k].first;\n }\n if (fn) continue;\n D[i].push_back(cur[j]);\n }\n // exit(0);\n }\n std::vector<int> dp((1 << N), -1);\n dp[0] = 0;\n for (int bit{} ; bit < (1 << N) ; bit++) {\n std::set<std::pair<int, int>> set;\n for (int i{} ; i < N ; i++) if (bit & (1 << i)) {\n for (const auto& [p, _] : D[i]) {\n set.insert(p);\n }\n }\n for (int i{} ; i < N ; i++) if (!(bit & (1 << i))) {\n int add{};\n for (const auto& [p, v] : D[i]) {\n if (set.find(p) != set.end()) continue;\n add += v;\n }\n dp[bit | (1 << i)] = std::max(dp[bit | (1 << i)], dp[bit] + add);\n }\n }\n std::cout << dp[(1 << N) - 1] << '\\n';\n return true;\n}\n\n\nint main() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n while (solve()) ;\n}", "accuracy": 1, "time_ms": 1920, "memory_kb": 3568, "score_of_the_acc": -0.2421, "final_rank": 11 }, { "submission_id": "aoj_2703_9064668", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\n#define roll_swap(x, a, b, c, d) swap(x.a, x.b), swap(x.b, x.c), swap(x.c, x.d);\nstruct Dice {\n int top, front, right, left, back, bottom;\n Dice(int to = 1, int fr = 2, int ri = 3, int le = 4, int ba = 5, int bo = 6)\n : top(to), front(fr), right(ri), left(le), back(ba), bottom(bo) {}\n void roll_right() {\n roll_swap((*this), top, left, bottom, right);\n }\n void roll_left() {\n roll_swap((*this), top, right, bottom, left);\n }\n void roll_front() {\n roll_swap((*this), top, back, bottom, front);\n }\n void roll_back() {\n roll_swap((*this), top, front, bottom, back);\n }\n void roll(char dir) {\n if(dir == 'F') (*this).roll_front();\n if(dir == 'B') (*this).roll_back();\n if(dir == 'R') (*this).roll_right();\n if(dir == 'L') (*this).roll_left();\n }\n};\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n while(1) {\n int n;\n cin >> n;\n if(n == 0) break;\n vector<pair<int, int>> p(n);\n vector<Dice> dice(n);\n vector<string> rot(n);\n rep(i, 0, n) {\n cin >> p[i].first >> p[i].second;\n p[i].first += 1100;\n p[i].second += 1100;\n int l, r, f, b, d, u;\n cin >> l >> r >> f >> b >> d >> u;\n dice[i] = Dice(u, f, r, l, b, d);\n cin >> rot[i];\n }\n vector<int> dp(1 << n, -1);\n vector<vector<int>> flag(2200, vector<int>(2200, 0));\n auto dfs = [&](auto& dfs, int mask) -> int {\n if(dp[mask] != -1) return dp[mask];\n if(mask == 0) return 0;\n int res = 0;\n rep(i, 0, n) {\n if(mask & (1 << i)) {\n int cnt = 0;\n {\n Dice d = dice[i];\n int x = p[i].first, y = p[i].second;\n map<pair<int, int>, int> mp;\n if(!flag[x][y]) mp[{x, y}] = d.bottom;\n rep(j, 0, (int)rot[i].size()) {\n d.roll(rot[i][j]);\n if(rot[i][j] == 'F') y--;\n if(rot[i][j] == 'B') y++;\n if(rot[i][j] == 'R') x++;\n if(rot[i][j] == 'L') x--;\n if(!flag[x][y]) mp[{x, y}] = d.bottom;\n }\n for(const auto& it : mp) {\n cnt += it.second;\n }\n }\n {\n Dice d = dice[i];\n int x = p[i].first, y = p[i].second;\n flag[x][y]++;\n rep(j, 0, (int)rot[i].size()) {\n d.roll(rot[i][j]);\n if(rot[i][j] == 'F') y--;\n if(rot[i][j] == 'B') y++;\n if(rot[i][j] == 'R') x++;\n if(rot[i][j] == 'L') x--;\n flag[x][y]++;\n }\n }\n res = max(res, cnt + dfs(dfs, mask - (1 << i)));\n {\n Dice d = dice[i];\n int x = p[i].first, y = p[i].second;\n flag[x][y]--;\n rep(j, 0, (int)rot[i].size()) {\n d.roll(rot[i][j]);\n if(rot[i][j] == 'F') y--;\n if(rot[i][j] == 'B') y++;\n if(rot[i][j] == 'R') x++;\n if(rot[i][j] == 'L') x--;\n flag[x][y]--;\n }\n }\n }\n }\n return dp[mask] = res;\n };\n cout << dfs(dfs, (1 << n) - 1) << '\\n';\n }\n}", "accuracy": 1, "time_ms": 1280, "memory_kb": 22152, "score_of_the_acc": -0.2411, "final_rank": 10 }, { "submission_id": "aoj_2703_9026169", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nint solve(int N) {\n vector<map<pair<int,int>, int>> A(N);\n for(auto &mp : A) {\n int x = in(), y = in();\n int l = in(), r = in(), f = in(), b = in(), d = in(), u = in();\n string rot = in();\n\n mp[{x, y}] = d;\n for(char op : rot) {\n if(op == 'L') {\n tie(x, y) = make_pair(x - 1, y);\n tie(l, r, f, b, d, u) = make_tuple(u, d, f, b, l, r);\n }\n\n if(op == 'R') {\n tie(x, y) = make_pair(x + 1, y);\n tie(l, r, f, b, d, u) = make_tuple(d, u, f, b, r, l);\n }\n\n if(op == 'F') {\n tie(x, y) = make_pair(x, y - 1);\n tie(l, r, f, b, d, u) = make_tuple(l, r, u, d, f, b);\n }\n\n if(op == 'B') {\n tie(x, y) = make_pair(x, y + 1);\n tie(l, r, f, b, d, u) = make_tuple(l, r, d, u, b, f);\n }\n\n mp[{x, y}] = d;\n }\n }\n\n vector<int> dp(1 << N, 0);\n for(int S : rep(1 << N)) {\n set<pair<int,int>> st;\n for(int i : rep(N)) if(S & (1 << i)) {\n for(auto [point, value] : A[i]) st.insert(point);\n }\n for(int i : rep(N)) if(!(S & (1 << i))) {\n int sum = 0;\n for(auto [point, value] : A[i]) if(!st.count(point)) sum += value;\n chmax(dp[S | (1 << i)], dp[S] + sum);\n }\n }\n\n return max_of(dp).val;\n}\n\nint main() {\n while(true) {\n int N = in();\n if(N == 0) return 0;\n print(solve(N));\n }\n}", "accuracy": 1, "time_ms": 2190, "memory_kb": 3464, "score_of_the_acc": -0.276, "final_rank": 13 }, { "submission_id": "aoj_2703_8003867", "code_snippet": "#include <algorithm>\n#include <climits>\n#include <cmath>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <vector>\n\nusing namespace std;\nusing uint = unsigned int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing lint = ll;\nusing ulint = ull;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\ntemplate <class T>\nusing V = vector<T>;\ntemplate <class T>\nusing VV = V<V<T>>;\n#define For(i, a, b) for (int i = int(a); i < int(b); ++i)\n#define rep(i, n) For(i, 0, n)\ntemplate <class T, class U>\nbool chmin(T &a, U &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T, class U>\nbool chmax(T &a, U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const V<T> &v) {\n os << \"[\";\n for (auto d : v) os << d << \", \";\n return os << \"]\";\n}\n\n#include <array>\ntemplate <class T>\nstruct Dice {\n array<T, 6> face;\n\n Dice(array<T, 6> arr) : face(arr) {}\n\n static int opposite(int f) {\n if (f <= 1) return f ^ 1;\n return f ^ 6;\n }\n\n Dice roll_right() {\n array<T, 6> res = face;\n res[0] = face[5];\n res[1] = face[3];\n res[3] = face[0];\n res[5] = face[1];\n return {res};\n }\n Dice roll_left() {\n array<T, 6> res = face;\n res[0] = face[3];\n res[1] = face[5];\n res[3] = face[1];\n res[5] = face[0];\n return {res};\n }\n\n Dice roll_front() {\n array<T, 6> res = face;\n res[0] = face[4];\n res[1] = face[2];\n res[2] = face[0];\n res[4] = face[1];\n return {res};\n }\n Dice roll_back() {\n array<T, 6> res = face;\n res[0] = face[2];\n res[1] = face[4];\n res[2] = face[1];\n res[4] = face[0];\n return {res};\n }\n};\ntemplate <class T>\nostream &operator<<(ostream &os, Dice<T> d) {\n os << \" \" << d.face[0] << endl;\n os << d.face[5] << \" \";\n For(i, 2, 5) os << d.face[i] << \" \";\n return os << endl << \" \" << d.face[1];\n}\n\nint main() {\n while (true) {\n int n;\n cin >> n;\n if (n == 0) break;\n vector<int> x(n), y(n);\n vector<string> s(n);\n vector<Dice<int>> ds;\n rep(i, n) {\n cin >> x[i] >> y[i];\n array<int, 6> a;\n cin >> a[5] >> a[3] >> a[2] >> a[4] >> a[1] >> a[0];\n Dice d(a);\n ds.push_back(d);\n cin >> s[i];\n }\n\n map<pii, int> mp;\n rep(i, n) {\n int tx = x[i], ty = y[i];\n mp[{tx, ty}] |= 1 << i;\n for (auto c : s[i]) {\n if (c == 'L') {\n --tx;\n } else if (c == 'R') {\n ++tx;\n } else if (c == 'B') {\n ++ty;\n } else {\n --ty;\n }\n mp[{tx, ty}] |= 1 << i;\n }\n }\n\n auto check = [&](int S, int i, int tx, int ty) {\n return (mp[{tx, ty}] & S) == 0;\n };\n\n vector<int> dp(1 << n, -1);\n dp[0] = 0;\n rep(S, 1 << n) {\n rep(i, n) {\n if (S >> i & 1) continue;\n\n auto d = ds[i];\n map<pii, int> tmap;\n\n int tx = x[i], ty = y[i];\n tmap[{tx, ty}] = d.face[1];\n for (auto c : s[i]) {\n if (c == 'L') {\n --tx;\n d = d.roll_left();\n } else if (c == 'R') {\n ++tx;\n d = d.roll_right();\n } else if (c == 'B') {\n ++ty;\n d = d.roll_back();\n } else {\n --ty;\n d = d.roll_front();\n }\n tmap[{tx, ty}] = d.face[1];\n // cout << d << endl;\n }\n int tmp = 0;\n for (auto [key, val] : tmap) {\n auto [tx, ty] = key;\n if (check(S, i, tx, ty)) {\n // cout << tx << \" \" << ty << \" \" << val << endl;\n tmp += val;\n }\n }\n\n int T = (S | (1 << i));\n dp[T] = max(dp[T], dp[S] + tmp);\n }\n }\n cout << dp[(1 << n) - 1] << endl;\n }\n}", "accuracy": 1, "time_ms": 1430, "memory_kb": 3400, "score_of_the_acc": -0.1792, "final_rank": 8 }, { "submission_id": "aoj_2703_8002340", "code_snippet": "#include <algorithm>\n#include <climits>\n#include <cmath>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <vector>\n\nusing namespace std;\nusing uint = unsigned int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing lint = ll;\nusing ulint = ull;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\ntemplate <class T>\nusing V = vector<T>;\ntemplate <class T>\nusing VV = V<V<T>>;\n#define For(i, a, b) for (int i = int(a); i < int(b); ++i)\n#define rep(i, n) For(i, 0, n)\ntemplate <class T, class U>\nbool chmin(T &a, U &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T, class U>\nbool chmax(T &a, U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const V<T> &v) {\n os << \"[\";\n for (auto d : v) os << d << \", \";\n return os << \"]\";\n}\n\n#include <array>\ntemplate <class T>\nstruct Dice {\n array<T, 6> face;\n\n Dice(array<T, 6> arr) : face(arr) {}\n\n static int opposite(int f) {\n if (f <= 1) return f ^ 1;\n return f ^ 6;\n }\n\n Dice roll_right() {\n array<T, 6> res = face;\n res[0] = face[5];\n res[1] = face[3];\n res[3] = face[0];\n res[5] = face[1];\n return {res};\n }\n Dice roll_left() {\n array<T, 6> res = face;\n res[0] = face[3];\n res[1] = face[5];\n res[3] = face[1];\n res[5] = face[0];\n return {res};\n }\n\n Dice roll_front() {\n array<T, 6> res = face;\n res[0] = face[4];\n res[1] = face[2];\n res[2] = face[0];\n res[4] = face[1];\n return {res};\n }\n Dice roll_back() {\n array<T, 6> res = face;\n res[0] = face[2];\n res[1] = face[4];\n res[2] = face[1];\n res[4] = face[0];\n return {res};\n }\n};\ntemplate <class T>\nostream &operator<<(ostream &os, Dice<T> d) {\n os << \" \" << d.face[0] << endl;\n os << d.face[5] << \" \";\n For(i, 2, 5) os << d.face[i] << \" \";\n return os << endl << \" \" << d.face[1];\n}\n\nint main() {\n while (true) {\n int n;\n cin >> n;\n if (n == 0) break;\n vector<int> x(n), y(n);\n vector<string> s(n);\n vector<Dice<int>> ds;\n rep(i, n) {\n cin >> x[i] >> y[i];\n array<int, 6> a;\n cin >> a[5] >> a[3] >> a[2] >> a[4] >> a[1] >> a[0];\n Dice d(a);\n ds.push_back(d);\n cin >> s[i];\n }\n\n map<pii, int> mp;\n rep(i, n) {\n int tx = x[i], ty = y[i];\n mp[{tx, ty}] |= 1 << i;\n for (auto c : s[i]) {\n if (c == 'L') {\n --tx;\n } else if (c == 'R') {\n ++tx;\n } else if (c == 'B') {\n ++ty;\n } else {\n --ty;\n }\n mp[{tx, ty}] |= 1 << i;\n }\n }\n\n auto check = [&](int S, int i, int tx, int ty) {\n return (mp[{tx, ty}] & S) == 0;\n };\n\n vector<int> dp(1 << n, -1);\n dp[0] = 0;\n rep(S, 1 << n) {\n rep(i, n) {\n if (S >> i & 1) continue;\n\n auto d = ds[i];\n map<pii, int> tmap;\n\n int tx = x[i], ty = y[i];\n tmap[{tx, ty}] = d.face[1];\n for (auto c : s[i]) {\n if (c == 'L') {\n --tx;\n d = d.roll_left();\n } else if (c == 'R') {\n ++tx;\n d = d.roll_right();\n } else if (c == 'B') {\n ++ty;\n d = d.roll_back();\n } else {\n --ty;\n d = d.roll_front();\n }\n tmap[{tx, ty}] = d.face[1];\n // cout << d << endl;\n }\n int tmp = 0;\n for (auto [key, val] : tmap) {\n auto [tx, ty] = key;\n if (check(S, i, tx, ty)) {\n // cout << tx << \" \" << ty << \" \" << val << endl;\n tmp += val;\n }\n }\n\n int T = (S | (1 << i));\n dp[T] = max(dp[T], dp[S] + tmp);\n }\n }\n cout << dp[(1 << n) - 1] << endl;\n }\n}", "accuracy": 1, "time_ms": 1430, "memory_kb": 3524, "score_of_the_acc": -0.1797, "final_rank": 9 }, { "submission_id": "aoj_2703_7928495", "code_snippet": "# include <bits/stdc++.h>\n# define rep(i, n) for (int i = 0; i < int(n); i++)\nusing namespace std;\nusing ll = long long;\nusing pll = pair<ll, ll>;\ntemplate <class T> bool chmax(T& a, T b) { return a < b && (a = b, true); }\n\ntemplate <class T>\nstruct Dice {\n static const int Up = 0;\n static const int Down = 1;\n static const int Right = 2;\n static const int Left = 3;\n static const int Fwd = 4;\n static const int Back = 5;\n\n int x, y;\n array<T, 6> f;\n\n Dice() = default;\n\n // 上下右左前後\n Dice(int x, int y, array<T, 6> udrlfb) : x(x), y(y), f(udrlfb) {}\n\n // <summary>\n // id で指定してください。\n //\n // L : 左側に倒す。x 軸負方向\n // R : 右側に倒す。x 軸正方向\n // F : 前側に倒す。y 軸負方向\n // B : 後ろ側に倒す。y 軸正方向\n // </summary>\n // <returns>\n // 倒した結果、底面に書いてあるもの\n // </returns>\n T rotate(int id) {\n switch (id) {\n case Left:\n swap(Up, Right);\n swap(Right, Down);\n swap(Down, Left);\n x--;\n break;\n case Right:\n // swap に関しては、\n // 'L' を 3 回するということにしても良い\n swap(Up, Left);\n swap(Left, Down);\n swap(Down, Right);\n x++;\n break;\n case Fwd:\n swap(Up, Back);\n swap(Back, Down);\n swap(Down,Fwd);\n y--;\n break;\n case Back:\n // swap に関しては、\n // 'F' を 3 回するということにしても良い\n swap(Up, Fwd);\n swap(Fwd, Down);\n swap(Down, Back);\n y++;\n break;\n }\n return f[Down];\n }\n\n // <summary>\n // id1 の面が tar1 であり、id2 の面が tar2 であるようなサイコロの向きにします。\n //\n // なお、そのような置き方は一意に定まります。\n // </summary>\n void arange(int id1, const T& tar1, int id2, const T& tar2) {\n assert(count(f.begin(), f.end(), tar1) > 0);\n assert(count(f.begin(), f.end(), tar2) > 0);\n while (f[id1] == tar1 && f[id2] == tar2) {\n rotate(rand() % 2 == 0 ? Right : Fwd);\n }\n }\n\n // <summary>\n // 方向を表す id を指定すると、その面にかかれてあるものを返します。\n //\n // ```\n // dice.get(Dice<int>::Up);\n // dice.get(Dice<int>::Id('U'));\n // ```\n // </summary>\n int get(int id) {\n return f[id];\n }\n\n // <returns>\n // c が表す方向の id\n // </returns>\n static int Id(char c) {\n switch (c) {\n case 'U': return Up;\n case 'D': return Down;\n case 'R': return Right;\n case 'L': return Left;\n case 'F': return Fwd;\n case 'B': return Back;\n }\n assert(false);\n }\n\n // <returns>\n // c の面の反対\n // </returns>\n static char Rev(char c) {\n switch (c) {\n case 'U': return 'D';\n case 'D': return 'U';\n case 'R': return 'L';\n case 'L': return 'R';\n case 'F': return 'B';\n case 'B': return 'F';\n }\n assert(false);\n }\n\n void swap(int i, int j) {\n std::swap(f[i], f[j]);\n }\n};\n\nbool stand(int S, int i) {\n return bool(S & (1 << i));\n}\n\nint main() {\n while (true) {\n int n;\n cin >> n;\n if (!n) break;\n\n vector<map<pll, int>> points;\n rep (i, n) {\n int x, y, l, r, f, b, d, u;\n cin >> x >> y;\n cin >> l >> r >> f >> b >> d >> u;\n Dice dice(x, y, array<int, 6>{u, d, r, l, f, b});\n\n string ops;\n cin >> ops;\n\n map<pll, int> tmp;\n tmp[{x, y}] = dice.get(Dice<int>::Down);\n for (char op : ops) {\n dice.rotate(Dice<int>::Id(op));\n tmp[{dice.x, dice.y}] = dice.get(Dice<int>::Down);\n }\n\n points.push_back(tmp);\n }\n\n vector<ll> dp(1 << n, 0);\n rep (S, 1 << n) {\n set<pll> st;\n rep (i, n) {\n if (stand(S, i)) {\n for (auto [xy, _] : points[i]) {\n st.insert(xy);\n }\n }\n }\n\n rep (i, n) {\n if (stand(S, i)) continue;\n ll sum = 0;\n for (auto [xy, p] : points[i]) {\n if (not st.count(xy)) {\n sum += p;\n }\n }\n assert(S != (S | (1 << i)));\n chmax(dp[S | (1 << i)], dp[S] + sum);\n }\n }\n\n ll ans = dp[(1 << n) - 1];\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 2200, "memory_kb": 3600, "score_of_the_acc": -0.2779, "final_rank": 14 } ]
aoj_2704_cpp
Stamp Rally スタンプラリー 日本アミューズメントグループ (Japan Amusement Group, JAG) では,島国を模したテーマパークでのイベントを企画している. このイベントでは,参加者は橋を渡るたびに橋ごとに決められたスタンプをスタンプ帳に順番に押していく. 用意されたスタンプは以下の7種類のどれかである. a ( ) [ ] + * スタートからゴールまで橋を渡り歩いて,押されたスタンプの列が正しい数式になればクリアである. ただし橋を渡る向きは決まっていて,逆向きに渡ることはできない. 同じ橋を何度も渡ってよく,最終的にゴール地点に到着するのであれば一度ゴール地点に着いた後に引き続きスタンプを集めてもよい. 正しい数式とは以下の BNF で定義される <expression> である. <expression> ::= <term> | <expression> "+" <term> <term> ::= <factor> | <term> "*" <factor> <factor> ::= "a" | "(" <expression> ")" | "[" <expression> "]" スタート・ゴールと橋ごとのスタンプを決めたので,関係者で試しにやってみたがなかなかクリアする人が現れない. もしかしたら,この設定ではクリアすることができないのかもしれない. スタート・ゴールと橋の情報が与えられるので,クリア可能かどうかを判定するプログラムを書きなさい. Input 入力は50個以下のデータセットからなる.各データセットは以下の形式で表される. n m s t a 1 b 1 c 1 ... a m b m c m データセットの最初の行は,空白文字1個で区切られた4個の整数 n , m , s , t からなる. n は島の数であり, 1 ≤ n ≤ 200 と仮定してよい. それぞれの島には 1 から n までの番号が付けられている. m は橋の数であり, 1 ≤ m ≤ 100,000 と仮定してよい. s はスタートの島の番号, t はゴールの島の番号である.スタートとゴールが同じ島であることもある. 続く m 行のそれぞれは,空白文字1個で区切られた2個の整数と1個の文字からなる. a i , b i は i 番目の橋によって島 a i から島 b i へ渡れることを表し, c i は i 番目の橋で押すスタンプを表す.ある2つの島の間に複数の橋がかかっていたり,1つの島の中で橋がかかっていたりすることもある. 入力の終わりは,4つのゼロからなる1行で示される. Output 各データセットに対して,クリアできるならば" Yes "を,できないならば" No "を1行に出力せよ. Sample Input 4 5 1 4 1 2 ( 1 3 a 2 4 a 3 4 ) 3 2 + 4 4 1 2 1 3 ( 3 4 a 4 1 + 3 2 a 3 4 1 1 1 2 a 2 2 + 2 3 a 3 1 a 5 8 1 5 1 1 [ 1 2 ( 2 1 * 2 2 a 2 3 a 3 3 ) 3 4 ] 4 5 ) 2 14 1 1 1 2 a 1 2 ( 1 2 ) 1 2 [ 1 2 ] 1 2 + 1 2 * 2 1 a 2 1 ( 2 1 ) 2 1 [ 2 1 ] 2 1 + 2 1 * 0 0 0 0 Output for Sample Input Yes No No Yes No
[ { "submission_id": "aoj_2704_10848353", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int N = 205;\nint id(char c) {\n\tif (c == 'a') return 0;\n\tif (c == '+') return 1;\n\tif (c == '*') return 2;\n\tif (c == '(') return 3;\n\tif (c == ')') return 4;\n\tif (c == '[') return 5;\n\treturn 6;\n}\n//vector<int> G[N][7];\nbool vis[N][N][5], can[N][N][5], bridge[N][N][7];\nint n;\nbool dfs(int s, int t, int type) {\n\tbool &ans = can[s][t][type], &flag = vis[s][t][type];\n\t//printf(\"%d %d %d\\n\", s, t, type);\n\tif (flag) return ans;\n\tflag = 1;\n\tans = 0;\n\tif (type == 0) {\n\t\tfor (int i = 1; i <= n && !ans; ++ i) if (bridge[s][i][3]) ans |= dfs(i, t, 3);\n\t\tfor (int i = 1; i <= n && !ans; ++ i) if (bridge[s][i][5]) ans |= dfs(i, t, 4);\n\t\tfor (int i = 1; i <= n && !ans; ++ i) if (dfs(s, i, 0)) ans |= dfs(i, t, 1) || dfs(i, t, 2);\n\t}\n\telse if (type == 1) {\n\t\tfor (int i = 1; i <= n && !ans; ++ i) if (bridge[s][i][1]) ans |= dfs(i, t, 0);\n\t}\n\telse if (type == 2) {\n\t\tfor (int i = 1; i <= n && !ans; ++ i) if (bridge[s][i][2]) ans |= dfs(i, t, 0);\n\t}\n\telse if (type == 3) {\n\t\tfor (int i = 1; i <= n && !ans; ++ i) if (bridge[i][t][4]) ans |= dfs(s, i, 0);\n\t}\n\telse if (type == 4) {\n\t\tfor (int i = 1; i <= n && !ans; ++ i) if (bridge[i][t][6]) ans |= dfs(s, i, 0);\n\t}\n\treturn ans;\n}\nint main() {\n\twhile (true) {\n\t\tint m, s, t;\n\t\tscanf(\"%d%d%d%d\", &n, &m, &s, &t);\n\t\tif (n + m + s + t == 0) break;\n\t\t//for (int i = 1; i <= n; ++ i) G[i].clear();\n\t\tmemset(vis, 0, sizeof(vis));\n\t\tmemset(bridge, 0, sizeof(bridge));\n\t\tfor (int i = 0; i < m; ++ i) {\n\t\t\tstatic char s[5];\n\t\t\tstatic int u, v;\n\t\t\tscanf(\"%d%d%s\", &u, &v, s);\n\t\t\tbridge[u][v][id(s[0])] = 1;\n\t\t\t//G[id(s[0])][u].push_back(v);\n\t\t\tif (s[0] == 'a') {\n\t\t\t\tvis[u][v][0] = 1;\n\t\t\t\tcan[u][v][0] = 1;\n\t\t\t}\n\t\t}\n\t\t//int t1, t2, t3;\n\t\t//t1 = 2, t2 = 2, t3 = 0;\n\t\t//printf(\"%d %d %d : %s\\n\", t1, t2, t3, dfs(t1, t2, t3) ? \"Yes\" : \"No\");\n\t\tputs(dfs(s, t, 0) ? \"Yes\" : \"No\");\n\t}\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 5460, "score_of_the_acc": -0.0165, "final_rank": 1 }, { "submission_id": "aoj_2704_10590141", "code_snippet": "// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG\n// #endif\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#include <atcoder/all>\nusing namespace atcoder;\n// #include <boost/rational.hpp>\n// using namespace boost;\n// using rat = rational<long long int>;\nusing mint = modint998244353;\n// using mint = modint1000000007;\n// using mint = mint;\nusing ll = long long;\nusing ld = long double;\nusing ull = uint64_t;\nusing pll = pair<ll, ll>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vpll = vector<pll>;\nusing vvpll = vector<vpll>;\nusing vm = vector<mint>;\nusing vvm = vector<vm>;\nusing vvvm = vector<vvm>;\nusing vstr = vector<string>;\n#define v(T) vector<T>\n#define vv(T) vector<vector<T>>\n#define vvv(T) vector<vector<vector<T>>>\n#define vvvv(T) vector<vector<vector<vector<T>>>>\n\nistream &operator>>(istream &is, mint &a){ll tmp; is >> tmp; a = tmp; return is;}\nostream &operator<<(ostream &os, const mint &a){ os << a.val(); return os; }\nstring to_string(const __int128_t &a) { if (a == 0) return \"0\"; string s = \"\"; __int128_t num = a; bool is_negative = false; if (num < 0) { is_negative = true; num = -num; } while (num > 0) { s += '0' + (num % 10); num /= 10; } if (is_negative) s += '-'; reverse(s.begin(), s.end()); return s; }\nistream &operator>>(istream &is, __int128_t &a){ string s; is >> s; a = 0; for(char c : s) { if(isdigit(c)) {a = a*10 + (c - '0'); } } if(s[0]=='-'){ a *= -1; } return is; }\nostream &operator<<(ostream &os, const __int128_t &a){ os << to_string(a); return os; }\ntemplate<class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<class T> istream &operator>>(istream &is, vector<T> &vec){ for(T &e : vec){is >> e;} return is; }\ntemplate<class T> ostream &operator<<(ostream &os, const vector<T> &vec) { for(int i = 0; i < (int)vec.size(); i++) { os << vec[i] << (i + 1 != (int)vec.size() ? \" \" : \"\"); } return os; }\n\ntemplate <class... T> constexpr auto min (T... a) { return min(initializer_list<common_type_t<T...>>{a...}); }\ntemplate <class... T> constexpr auto max (T... a) { return max(initializer_list<common_type_t<T...>>{a...}); }\ntemplate<class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> T opmin(T x, T y) { return min(x, y); }\ntemplate<class T> T einf() { return numeric_limits<T>::max(); }\ntemplate<class T> T opmax(T x, T y) { return max(x, y); }\ntemplate<class T> T eminf() { return numeric_limits<T>::min(); }\ntemplate<class T> T opsum(T x, T y) { return x + y; }\ntemplate<class T> T ezero() { return (T)0; }\n// #define maxseg(T) segtree<T, [](T x, T y){return max(x, y);}, [](){return (T)(-(1LL << 60));}>\n// #define minseg(T) segtree<T, [](T x, T y){return min(x, y);}, [](){return (T)((1LL << 60));}>\n// #define sumseg(T) segtree<T, [](T x, T y){return x + y;}, [](){return (T)(0);}>\ntemplate<class T> using minseg = segtree<T, opmin<T>, einf<T>>;\ntemplate<class T> using maxseg = segtree<T, opmax<T>, eminf<T>>;\ntemplate<class T> using sumseg = segtree<T, opsum<T>, ezero<T>>;\n// template<class T> struct v : vector<T> { using vector<T> :: vector; };\n// template<class T> struct vv : vector<v<T>> { using vector<v<T>> :: vector; };\n// template<class T> struct vvv : vector<vv<T>> { using vector<vv<T>> :: vector; };\ntemplate<class T> inline bool chmin(T& a, T b) {if(a > b){a = b; return true;} else {return false;}};\ntemplate<class T> inline bool chmax(T& a, T b) {if(a < b){a = b; return true;} else {return false;}};\n#define rep(i,n) for(ll i = 0; i < (ll)(n); i++)\n#define repr(i,n) for(ll i = (ll)(n) - 1; i >= 0; i--)\n#define REP(i, l, r) for(ll i = (ll)l; i <= (ll)(r); i++)\n#define REPR(i, l, r) for(ll i = (ll)r; i >= (ll)(l); i--)\nconst ll inf = (1 << 30);\nconst ll INF = (1LL << 60);\nconst vector<pair<ll, ll>> DIJ = {{1, 0}, {0, -1}, {-1, 0}, {0, 1}};\nvoid out(){cout<<'\\n';}\ntemplate<class T, class... Ts> void out(const T& a, const Ts&... b){ cout<<a; (cout<<... << (cout << ' ', b)); cout << '\\n';}\nvoid outf(){cout<<endl;}\ntemplate<class T, class... Ts> void outf(const T& a, const Ts&... b){ cout<<a; (cout<<... << (cout << ' ', b)); cout << endl;}\ntemplate<class T, class U> void outp(pair<T, U> a){ out((a).first, (a).second); }\ntemplate<class T, class U> void outpf(pair<T, U> a){ outf((a).first, (a).second); }\ntemplate<class T> void outv(T a){rep(i, (a).size()){ cout << (a)[i] << \" \"; } cout << endl;}\ntemplate<class T> void outvL(T a){rep(i, (a).size()){out((a)[i]);} cout << flush; }\n// template<class T> void outvv(T a){rep(i, a.size()){ rep(j, a.at(i).size()){cout << a.at(i).at(j) << \" \"; } cout << endl; }}\n// template<class T> void outvp(T a){rep(i, a.size()){ out2(a.at(i).first, a.at(i).second); }}\nvoid setpre(int a){cout << fixed << setprecision(a);}\n#define outN out(\"No\")\n#define outY out(\"Yes\")\n#define outYN(flag) out(flag ? \"Yes\" : \"No\")\n#define dame(...) {outf(__VA_ARGS__);return 0;}\n\ntemplate<class T> void read(vector<T>& vec){ for(int i = 0; i < (int)vec.size(); i++) { cin >> vec[i]; } }\ntemplate<class... T> void read(T&... a){(cin >> ... >> a);}\n#define readll(...) ll __VA_ARGS__; read(__VA_ARGS__)\n#define readvll(a, n) vector<ll> a(n); read(a)\n#define readvt(type, a, n) vector<type> a(n); read(a)\n#define readvll2(a, b, n) vector<ll> a(n), b(n); for(int lopi = 0; lopi < (int)(n); lopi++) cin >> (a)[lopi] >> (b)[lopi]\n#define readvll3(a, b, c, n) vector<ll> a(n), b(n), c(n); for(int lopi = 0; lopi < (int)(n); lopi++) cin >> (a)[lopi] >> (b)[lopi] >> (c)[lopi]\n#define readstr(...) string __VA_ARGS__; read(__VA_ARGS__)\n#define readundirG(G, N, M) G = vvll(N); rep(lopi, M) {ll a, b; cin >> a >> b; G[a-1].push_back(b-1); G[b-1].push_back(a-1);}\n#define readdirG(G, N, M) G = vvll(N); rep(lopi, M) {ll a, b; cin >> a >> b; G[a-1].push_back(b-1);}\n#define readundirwghG(G, N, M) G = vv(pll)(N); rep(lopi, M) {ll a, b, c; cin >> a >> b >> c; G[a-1].emplace_back(b-1,c); G[b-1].emplace_back(a-1, c);}\n#define readdirwghG (G, N, M) G = vv(pll)(N); rep(lopi, M) {ll a, b, c; cin >> a >> b >> c; G[a-1].emplace_back(b-1, c);}\n\n#define All(a) (a).begin(), (a).end()\ntemplate<class T> inline void sortr(T& a){ sort((a).rbegin(), (a).rend()); }\ntemplate<class T> inline vector<int> argsort(T V, bool rev = false){vector<int> res(V.size()); iota(res.begin(), res.end(), 0); sort(res.begin(), res.end(), [&](int x, int y){if(!rev){return V[x] < V[y];}else{return V[x] > V[y];}}); return res;}\ntemplate<class T, class U> inline void sort_by_idx(T& V, vector<U>& I){assert(V.size() == I.size()); T tmpv = V; for(int loopi = 0; loopi < (int)I.size(); loopi++){V[loopi] = tmpv[I.at(loopi)];}}\ntemplate<class T, class U> inline void sortp(vector<T>& v1, vector<U>& v2, bool rev1 = false, int rev2 = false){assert(v1.size() == v2.size()); vector<int> I(v1.size()); iota(I.begin(), I.end(), 0); sort(I.begin(), I.end(), [&](const int x, const int y){if(v1[x] != v1[y]){return (bool)(rev1 ^ (v1[x] < v1[y]));}else{if(v2[x]==v2[y]){return false;} return (bool)(rev2 ^ (v2[x] < v2[y]));}}); sort_by_idx(v1, I); sort_by_idx(v2, I);}\ntemplate<class T> T POW(T x, ll n) {T ret = 1; while(n > 0){if(n & 1) ret *= x; x *= x; n >>= 1;} return ret;}\nll powll(ll x, ll n){ll ret = 1; while(n > 0){if(n & 1) ret *= x; x *= x; n >>= 1;} return ret;}\ninline ll divceil(ll x, ll y) { if(x >= 0) {return(x / y + (ll)(x % y != 0)); } else { return -((-x) / y); } }\ninline ll divfloor(ll x, ll y) { if(x >= 0) { return x/y; } else { return -((-x)/y + (ll)((-x) % y != 0)); } }\ninline bool inLR(ll x, ll L, ll R){ return (L <= x && x < R); }\ninline bool inRect(ll pos_x, ll pos_y, ll rect_H, ll rect_W, ll rect_h = 0, ll rect_w = 0){ return (rect_h <= pos_x && pos_x < rect_H && rect_w <= pos_y && pos_y < rect_W); }\n\ntemplate<class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v){e++;} return v;}\ntemplate<class T> vector<T> operator++(vector<T> &v, signed) {auto res=v; for(auto &e : v){e++;} return res;}\ntemplate<class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v){e--;} return v;}\ntemplate<class T> vector<T> operator--(vector<T> &v, signed) {auto res=v; for(auto &e : v){e--;} return res;}\ntemplate<class T> vector<T> operator+(const vector<T> &x, const vector<T> &y) { assert(x.size() == y.size()); vector<T> ret(x.size()); for(int i = 0; i < (int)x.size(); i++) {ret[i] = x[i] + y[i];} return ret; }\ntemplate<class T> vector<T> operator-(const vector<T> &x, const vector<T> &y) { assert(x.size() == y.size()); vector<T> ret(x.size()); for(int i = 0; i < (int)x.size(); i++) {ret[i] = x[i] - y[i];} return ret; } \n\ntemplate<class T, class U> pair<T, U> operator+(const pair<T, U> &x, const pair<T, U> &y) { return make_pair(x.first + y.first, x.second + y.second); }\ntemplate<class T, class U> pair<T, U> operator-(const pair<T, U> &x, const pair<T, U> &y) { return make_pair(x.first - y.first, x.second - y.second); }\ntemplate<class T, class U> void operator+=(pair<T, U> &x, pair<T, U> &y) { x = x + y; }\ntemplate<class T, class U> void operator-=(pair<T, U> &x, pair<T, U> &y) { x = x - y; }\n\ntemplate<class T> size_t HashCombine(const size_t seed,const T &v){ return seed^(std::hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); }\ntemplate<class T,class S> struct std::hash<std::pair<T,S>>{ size_t operator()(const std::pair<T,S> &keyval) const noexcept { return HashCombine(std::hash<T>()(keyval.first), keyval.second); } };\ntemplate<class T> struct std::hash<std::vector<T>>{ size_t operator()(const std::vector<T> &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } };\ntemplate<int N> struct HashTupleCore{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore<N-1>()(keyval); return HashCombine(s,std::get<N-1>(keyval)); } };\ntemplate <> struct HashTupleCore<0>{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; } };\ntemplate<class... Args> struct std::hash<std::tuple<Args...>>{ size_t operator()(const tuple<Args...> &keyval) const noexcept { return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval); } };\n\nint main()\n{\n std::cin.tie(nullptr), std::ios_base::sync_with_stdio(false);\n while(true)\n {\n readll(N, M, s, t);\n if(!N) break;\n s--; t--;\n vv(bool) dpe(N, v(bool)(N, 0)), dpt(N, v(bool)(N, 0)), dpf(N, v(bool)(N, 0));\n vvvll G(N, vvll(7)), rG(N, vvll(7));\n // unordered_map<char, int> mp = {{'a', 0}, {'(', 1}, {')', 2}, {'[', 3}, {']', 4}, {'+', 5}, {'*', 6}};\n queue<pll> qe, qt, qf;\n vvll Dt(N), De(N), rDt(N), rDe(N);\n rep(i, M)\n {\n readll(a, b);\n char c; read(c);\n a--; b--;\n ll id = c == 'a' ? 0 : (c == '(' ? 1 : (c == ')' ? 2 : (c == '[' ? 3 : (c == ']' ? 4 : (c == '+' ? 5 : 6)))));\n G[a][id].emplace_back(b);\n rG[b][id].emplace_back(a);\n if(id == 0 && !dpf[a][b])\n {\n dpf[a][b] = true;\n qf.emplace(a, b);\n }\n }\n rep(i, N)\n {\n rep(j, 7)\n {\n sort(All(G[i][j]));\n G[i][j].erase(unique(All(G[i][j])), G[i][j].end());\n }\n }\n while(!qf.empty() && !dpe[s][t])\n {\n while(!qf.empty())\n {\n auto [a, b] = qf.front(); qf.pop();\n // out(1, a, b);\n if(!dpt[a][b])\n {\n dpt[a][b] = true;\n qt.emplace(a, b);\n Dt[a].emplace_back(b);\n rDt[b].emplace_back(a);\n }\n for(auto c : rG[a][6])\n {\n for(auto d : rDt[c])\n {\n if(dpt[d][b]) continue;\n if(dpt[d][c])\n {\n dpt[d][b] = true;\n qt.emplace(d, b);\n Dt[d].emplace_back(b);\n rDt[b].emplace_back(d);\n }\n }\n }\n for(auto c : G[b][6])\n {\n for(auto d : Dt[c])\n {\n if(dpt[a][d]) continue;\n if(dpt[c][d])\n {\n dpt[a][d] = true;\n qt.emplace(a, d);\n Dt[a].emplace_back(d);\n rDt[d].emplace_back(a);\n }\n }\n }\n }\n while(!qt.empty() && !dpe[s][t])\n {\n auto [a, b] = qt.front(); qt.pop();\n // out(2, a, b);\n if(!dpe[a][b])\n {\n dpe[a][b] = true;\n qe.emplace(a, b);\n De[a].emplace_back(b);\n rDe[b].emplace_back(a);\n }\n for(auto c : rG[a][6])\n {\n for(auto d : rDt[c])\n {\n if(dpt[d][b]) continue;\n if(dpt[d][c])\n {\n dpt[d][b] = true;\n qt.emplace(d, b);\n Dt[d].emplace_back(b);\n rDt[b].emplace_back(d);\n }\n }\n }\n for(auto c : G[b][6])\n {\n for(auto d : Dt[c])\n {\n if(dpt[a][d]) continue;\n if(dpt[c][d])\n {\n dpt[a][d] = true;\n qt.emplace(a, d);\n Dt[a].emplace_back(d);\n rDt[d].emplace_back(a);\n }\n }\n }\n for(auto c : rG[a][5])\n {\n for(auto d : rDe[c])\n {\n if(dpe[d][b]) continue;\n if(dpe[d][c])\n {\n dpe[d][b] = true;\n qe.emplace(d, b);\n De[d].emplace_back(b);\n rDe[b].emplace_back(d);\n }\n }\n }\n for(auto c : G[b][5])\n {\n for(auto d : De[c])\n {\n if(dpe[a][d]) continue;\n if(dpe[c][d])\n {\n dpe[a][d] = true;\n qe.emplace(a, d);\n De[a].emplace_back(d);\n rDe[d].emplace_back(a);\n }\n }\n }\n }\n while(!qe.empty())\n {\n auto [a, b] = qe.front(); qe.pop();\n // out(3, a, b);\n if(rG[a][1].size() && G[b][2].size())\n {\n for(auto c : rG[a][1]) for(auto d : G[b][2])\n {\n if(!dpf[c][d])\n {\n dpf[c][d] = true;\n qf.emplace(c, d);\n }\n } \n }\n for(auto c : rG[a][5])\n {\n for(auto d : rDe[c])\n {\n if(dpe[d][b]) continue;\n if(dpe[d][c])\n {\n dpe[d][b] = true;\n qe.emplace(d, b);\n De[d].emplace_back(b);\n rDe[b].emplace_back(d);\n }\n }\n }\n for(auto c : G[b][5])\n {\n for(auto d : De[c])\n {\n if(dpe[a][d]) continue;\n if(dpe[c][d])\n {\n dpe[a][d] = true;\n qe.emplace(a, d);\n De[a].emplace_back(d);\n rDe[d].emplace_back(a);\n }\n }\n }\n if(rG[a][3].size() && G[b][4].size())\n {\n for(auto c : rG[a][3]) for(auto d : G[b][4])\n {\n if(!dpf[c][d])\n {\n dpf[c][d] = true;\n qf.emplace(c, d);\n }\n } \n }\n }\n }\n outYN(dpe[s][t]);\n // outvL(dpe);\n // out();\n // outvL(dpt);\n // out();\n // outvL(dpf);\n // cout << flush;\n }\n}", "accuracy": 1, "time_ms": 6200, "memory_kb": 9004, "score_of_the_acc": -1.0481, "final_rank": 19 }, { "submission_id": "aoj_2704_10259125", "code_snippet": "// AOJ #2704 Stamp Rally\n// 2025.3.2\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nconst int NTN = 13;\n\nstruct TerminalRule {\n int A;\n char terminal;\n};\nconst vector<TerminalRule> terminalRules = {\n {2, 'a'},\n {3, '('},\n {4, ')'},\n {5, '['},\n {6, ']'},\n {11, '+'},\n {12, '*'}\n};\n\nstruct UnitRule { int A, B; };\nconst vector<UnitRule> unitRules = {\n {0, 1},\n {1, 2}\n};\n\nstruct BinaryRule { int A, B, C; };\nconst vector<BinaryRule> binaryRules = {\n {0, 0, 9},\n {1, 1, 10},\n {2, 3, 7},\n {7, 0, 4},\n {2, 5, 8},\n {8, 0, 6},\n {9, 11, 1},\n {10, 12, 2}\n};\n\nstruct Edge {\n int u, v;\n char label;\n};\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n while(true){\n int n, m, s, t;\n cin >> n >> m >> s >> t;\n if(n==0) break;\n s--; t--;\n\n vector<Edge> edges(m);\n for (int i = 0; i < m; i++){\n int u, v;\n char c;\n cin >> u >> v >> c;\n edges[i] = {u-1, v-1, c};\n }\n\n vector<vector<vector<bool>>> dp(NTN, vector<vector<bool>>(n, vector<bool>(n, false)));\n queue<tuple<int,int,int>> Q;\n\n auto add = [&](int A, int i, int j) -> void {\n if(!dp[A][i][j]){\n dp[A][i][j] = true;\n Q.push({A, i, j});\n }\n };\n\n for (auto &e : edges) {\n for (auto &tr : terminalRules) {\n if(e.label == tr.terminal){\n add(tr.A, e.u, e.v);\n }\n }\n }\n\n while(!Q.empty()){\n auto [X, i, j] = Q.front();\n Q.pop();\n for (auto &ur : unitRules) {\n if(ur.B == X) add(ur.A, i, j);\n }\n for (auto &br : binaryRules) {\n if(br.B == X){\n for (int k = 0; k < n; k++){\n if(dp[br.C][j][k]) add(br.A, i, k);\n }\n }\n }\n for (auto &br : binaryRules) {\n if(br.C == X){\n for (int k = 0; k < n; k++){\n if(dp[br.B][k][i]) add(br.A, k, j);\n }\n }\n }\n }\n cout << (dp[0][s][t] ? \"Yes\" : \"No\") << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 540, "memory_kb": 6316, "score_of_the_acc": -0.0861, "final_rank": 8 }, { "submission_id": "aoj_2704_9475216", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nbool DP[200][200][4];\n\nstruct Edge {\n int To;\n char C;\n};\n\nstruct Query {\n int L, R;\n int Type;\n};\n\nint main() {\nwhile(1) {\n int N, M, S, T;\n cin >> N >> M >> S >> T;\n if (N == 0) return 0;\n S--, T--;\n rep(i,0,N) {\n rep(j,0,N) {\n rep(k,0,4) DP[i][j][k] = false;\n }\n }\n vector<vector<Edge>> A(N), B(N);\n rep(i,0,M) {\n int a,b;\n char c;\n cin >> a >> b >> c;\n a--, b--;\n A[b].push_back({a,c});\n B[a].push_back({b,c});\n }\n queue<Query> Q;\n rep(i,0,N) {\n for (Edge E : B[i]) {\n if (E.C == 'a') {\n if (!DP[i][E.To][0]) {\n DP[i][E.To][0] = true;\n Q.push({i,E.To,0});\n }\n }\n }\n }\n while(!Q.empty()) {\n Query X = Q.front();\n Q.pop();\n int From = X.L, To = X.R, Type = X.Type;\n if (Type == 0) {\n rep(i,0,N) {\n if (DP[To][i][1]) {\n if (!DP[From][i][0]) {\n DP[From][i][0] = true;\n Q.push({From,i,0});\n }\n }\n }\n for (Edge E : A[From]) {\n if (E.C == '+' || E.C == '*') {\n if (!DP[E.To][To][1]) {\n DP[E.To][To][1] = true;\n Q.push({E.To,To,1});\n }\n }\n }\n for (Edge E : B[To]) {\n if (E.C == ')') {\n if (!DP[From][E.To][2]) {\n DP[From][E.To][2] = true;\n Q.push({From,E.To,2});\n }\n }\n if (E.C == ']') {\n if (!DP[From][E.To][3]) {\n DP[From][E.To][3] = true;\n Q.push({From,E.To,3});\n }\n }\n }\n }\n if (Type == 1) {\n rep(i,0,N) {\n if (DP[i][From][0]) {\n if (!DP[i][To][0]) {\n DP[i][To][0] = true;\n Q.push({i,To,0});\n }\n }\n }\n }\n if (Type == 2) {\n for (Edge E : A[From]) {\n if (E.C == '(') {\n if (!DP[E.To][To][0]) {\n DP[E.To][To][0] = true;\n Q.push({E.To,To,0});\n }\n }\n }\n }\n if (Type == 3) {\n for (Edge E : A[From]) {\n if (E.C == '[') {\n if (!DP[E.To][To][0]) {\n DP[E.To][To][0] = true;\n Q.push({E.To,To,0});\n }\n }\n }\n }\n }\n cout << (DP[S][T][0] ? \"Yes\" : \"No\") << endl;\n}\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 7312, "score_of_the_acc": -0.086, "final_rank": 7 }, { "submission_id": "aoj_2704_9379148", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\ntemplate < class T > vector< T >& operator++(vector< T >& a) { for(T& x : a) x++; return a; }\ntemplate < class T > vector< T >& operator--(vector< T >& a) { for(T& x : a) x--; return a; }\ntemplate < class T > vector< T > operator++(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x++; return res; }\ntemplate < class T > vector< T > operator--(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x--; return res; }\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nbool solve(int n, int m, int s, int t) {\n s--, t--;\n vector edge(n, vector(n, map<char,bool>{}));\n vector dp(4, vector(n, vector(n, -1)));\n enum { expr, op_expr, expr_a, expr_b };\n queue<tuple<int,int,int>> q;\n for(int _ : rep(m)) {\n int a = in(), b = in(); char c = in(); a--, b--;\n edge[a][b][c] = true;\n if(c == 'a') q.push({expr, a, b});\n }\n\n while(not q.empty()) {\n auto [i, u, v] = q.front(); q.pop();\n if(dp[i][u][v] != -1) continue;\n dp[i][u][v] = 1;\n if(i == expr) {\n // expr -> expr op_expr\n // expr_a -> expr )\n // expr_b -> expr ]\n for(int w : rep(n)) {\n if(dp[op_expr][v][w] == 1 and dp[expr][u][w] == -1) q.push({expr, u, w});\n if(edge[v][w][')'] and dp[expr_a][u][w] == -1) q.push({expr_a, u, w});\n if(edge[v][w][']'] and dp[expr_b][u][w] == -1) q.push({expr_b, u, w});\n }\n // op_expr -> op expr\n for(int t : rep(n)) {\n if(edge[t][u]['+'] and dp[op_expr][t][v] == -1) q.push({op_expr, t, v});\n if(edge[t][u]['*'] and dp[op_expr][t][v] == -1) q.push({op_expr, t, v});\n }\n }\n if(i == op_expr) {\n // expr -> expr op_expr\n for(int t : rep(n)) {\n if(dp[expr][t][u] == 1 and dp[expr][t][v] == -1) q.push({expr, t, v});\n }\n }\n if(i == expr_a) {\n // expr -> ( expr_a\n for(int t : rep(n)) {\n if(edge[t][u]['('] and dp[expr][t][v] == -1) q.push({expr, t, v});\n }\n }\n if(i == expr_b) {\n // expr -> [ expr_b\n for(int t : rep(n)) {\n if(edge[t][u]['['] and dp[expr][t][v] == -1) q.push({expr, t, v});\n }\n }\n }\n return dp[expr][s][t] == 1;\n}\n\nint main() {\n while(true) {\n int n = in(), m = in(), s = in(), t = in();\n if(make_tuple(n, m, s, t) == make_tuple(0, 0, 0, 0)) return 0;\n print(solve(n, m, s, t) ? \"Yes\" : \"No\");\n }\n}", "accuracy": 1, "time_ms": 2590, "memory_kb": 105776, "score_of_the_acc": -1.4033, "final_rank": 20 }, { "submission_id": "aoj_2704_9375114", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\n\n/*\n exp= 0\n op= 1\n ( = 2\n [ = 3\n ) = 4\n ] = 5\n op exp = 6\n ( exp = 7\n [ exp = 8\n*/\n\n// d e をつなげると?\nvoid init(vector<vector<pair<ll,ll>>> &F,vector<vector<pair<ll,ll>>> &IF){\n F.resize(9);\n IF.resize(9);\n rep(i,3){\n F[i+1].push_back({0,i+6});\n IF[0].push_back({i+1,i+6});\n }\n rep(i,2){\n F[i+7].push_back({i+4,0});\n IF[i+4].push_back({i+7,0});\n }\n F[0].push_back({6,0});\n IF[6].push_back({0,0});\n}\nvoid solve(ll N,ll M,ll S,ll T) {\n\n vector<vector<vector<bool>>> seen(N,vector<vector<bool>>(N,vector<bool>(10,0)));\n queue<pair<pair<ll,ll>,ll>>Q;\n vector<vector<pair<ll,ll>>> F,IF;\n init(F,IF);\n string ST=\"a+([)]\";\n rep(i,M){\n ll a,b;\n char c;\n cin>>a>>b>>c;\n if(c=='*')c='+';\n a--;b--;\n rep(j,6)if(c==ST[j]&&!seen[a][b][j]){\n Q.push({{a,b},j});\n seen[a][b][j]=1;\n }\n }\n \n while (!Q.empty()) {\n ll a = Q.front().first.first;\n ll b = Q.front().first.second;\n ll c = Q.front().second;\n Q.pop();\n for(auto [d,nc]:F[c])rep(nb,N){\n if(!seen[b][nb][d]||seen[a][nb][nc])continue;\n seen[a][nb][nc]=1;\n Q.push({{a,nb},nc}); \n }\n for(auto [d,nc]:IF[c])rep(na,N){\n if(!seen[na][a][d]||seen[na][b][nc])continue;\n seen[na][b][nc]=1;\n Q.push({{na,b},nc});\n }\n }\n cout<<(seen[S][T][0]?\"Yes\":\"No\")<<endl;\n}\n\nint main() {\n ll N,M,S,T;\n while(cin>>N>>M>>S>>T,N!=0)solve(N,M,S-1,T-1);\n}", "accuracy": 1, "time_ms": 890, "memory_kb": 11284, "score_of_the_acc": -0.1928, "final_rank": 14 }, { "submission_id": "aoj_2704_9375109", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\n\n/*\n exp= 0\n op= 1\n ( = 2\n [ = 3\n ) = 4\n ] = 5\n op exp = 6\n ( exp = 7\n [ exp = 8\n*/\n\n// d e をつなげると?\nvoid init(vector<vector<pair<ll,ll>>> &F,vector<vector<pair<ll,ll>>> &IF){\n F.resize(9);\n IF.resize(9);\n rep(i,3){\n F[i+1].push_back({0,i+6});\n IF[0].push_back({i+1,i+6});\n }\n rep(i,2){\n F[i+7].push_back({i+4,0});\n IF[i+4].push_back({i+7,0});\n }\n F[0].push_back({6,0});\n IF[6].push_back({0,0});\n}\nvoid solve(ll N,ll M,ll S,ll T) {\n\n vector<vector<vector<bool>>> seen(N,vector<vector<bool>>(N,vector<bool>(10,0)));\n queue<pair<pair<ll,ll>,ll>>Q;\n vector<vector<pair<ll,ll>>> F,IF;\n init(F,IF);\n string ST=\"a+([)]\";\n rep(i,M){\n ll a,b;\n char c;\n cin>>a>>b>>c;\n if(c=='*')c='+';\n a--;b--;\n rep(j,6)if(c==ST[j]&&!seen[a][b][j]){\n Q.push({{a,b},j});\n seen[a][b][j]=1;\n }\n }\n \n while (!Q.empty()) {\n ll a = Q.front().first.first;\n ll b = Q.front().first.second;\n ll c = Q.front().second;\n Q.pop();\n for(auto [d,nc]:F[c])rep(nb,N){\n if(!seen[b][nb][d])continue;\n if(seen[a][nb][nc])continue;\n seen[a][nb][nc]=1;\n Q.push({{a,nb},nc}); \n }\n for(auto [d,nc]:IF[c])rep(na,N){\n if(!seen[na][a][d])continue;\n if(seen[na][b][nc])continue;\n seen[na][b][nc]=1;\n Q.push({{na,b},nc});\n }\n }\n cout<<(seen[S][T][0]?\"Yes\":\"No\")<<endl;\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n ll N,M,S,T;\n while(cin>>N>>M>>S>>T,N!=0){\n // clock_t start=clock();\n solve(N,M,S-1,T-1);\n // clock_t end=clock();\n // cout<<fixed<<setprecision(15)<<double(end-start)/CLOCKS_PER_SEC<<endl;\n }\n}", "accuracy": 1, "time_ms": 770, "memory_kb": 11300, "score_of_the_acc": -0.1731, "final_rank": 13 }, { "submission_id": "aoj_2704_9339997", "code_snippet": "#include <bits/stdc++.h>\n\nconstexpr int N = 205;\n\nint solve() {\n int n, m, s, t;\n std::cin >> n >> m >> s >> t;\n if (n == 0) return 1;\n s--; t--;\n using Bitset = std::bitset<N>;\n std::vector<Bitset> state(n);\n int mapping[256] = {};\n const int W = 7;\n const char set[] = {'a', '(', ')', '[', ']', '+', '*'};\n for (int i = 0; i < W; i++) mapping[set[i]] = i;\n\n std::vector graph(n, std::vector(W, std::vector<int>()));\n for (int i = 0; i < m; i++) {\n int u, v;\n char c;\n std::cin >> u >> v >> c;\n u--; v--;\n if (c == '(' || c == '[') {\n graph[v][mapping[c]].push_back(u);\n } else {\n graph[u][mapping[c]].push_back(v);\n }\n }\n\n for (int i = 0; i < n; i++) {\n for (auto v: graph[i][mapping['a']]) {\n state[i].set(v);\n }\n }\n\n std::vector<int> prev(n);\n for (int i = 0; i < n; i++) {\n prev[i] = state[i].count();\n }\n while (true) {\n if (state[s][t]) break;\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n if (!state[i][j]) continue;\n for (auto c: {'+', '*'}) {\n for (int k: graph[j][mapping[c]]) {\n state[i] |= state[k];\n }\n }\n }\n }\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n if (!state[i][j]) continue;\n for (int k: graph[i][mapping['(']]) {\n for (int l: graph[j][mapping[')']]) {\n state[k].set(l);\n }\n }\n for (int k: graph[i][mapping['[']]) {\n for (int l: graph[j][mapping[']']]) {\n state[k].set(l);\n }\n }\n }\n }\n bool ok = false;\n for (int i = 0; i < n; i++) {\n int v = state[i].count();\n ok |= v != prev[i];\n prev[i] = v;\n }\n if (!ok) break;\n }\n std::cout << (state[s][t] ? \"Yes\" : \"No\") << std::endl;\n return 0;\n}\n\nint main() {\n while (!solve());\n}", "accuracy": 1, "time_ms": 670, "memory_kb": 4116, "score_of_the_acc": -0.086, "final_rank": 6 }, { "submission_id": "aoj_2704_9303469", "code_snippet": "#ifdef RELEASE\n#pragma GCC target(\"arch=x86-64-v3\")\n#pragma GCC optimize(\"Ofast\")\n#endif\n\n#include <bits/stdc++.h>\n\n//#include <atcoder/all>\n\n\nusing namespace std;\n\nusing ll = long long;\nusing i64 = long long;\nusing pll = pair<ll,ll>;\nusing plll = pair<pll,ll>;\n\nconstexpr ll mod = 998244353;\n\n\nint main(){\n while (true){\n int n, m, s, t;\n cin >> n >> m >> s >> t;\n if(n == 0)break;\n --s, --t ;\n vector<vector<int>> edges_Bopen(n);\n vector<vector<int>> edges_Bclose(n);\n vector<vector<int>> edges_Copen(n);\n vector<vector<int>> edges_Cclose(n);\n vector<vector<int>> edges_D(n);\n queue<tuple<int,int,int>> que;\n vector<vector<vector<int>>> dp(n, vector<vector<int>>(n, vector<int>(4, 0)));\n auto add = [&](int l, int r, int ty){\n if(!dp[l][r][ty]){\n// cout << 1 + l << \" \" << 1 + r << \" \" << ty << endl;\n dp[l][r][ty] = true;\n que.emplace(l, r, ty);\n }\n };\n for(int i = 0; i < m; ++i){\n int u, v;\n char c;\n cin >> u >> v >> c;\n --u, --v;\n if(c == 'a'){\n add(u, v, 0);\n }\n if(c == '['){\n edges_Copen[v].emplace_back(u);\n }\n if(c == '('){\n edges_Bopen[v].emplace_back(u);\n }\n if(c == ']'){\n edges_Cclose[u].emplace_back(v);\n }\n if(c == ')'){\n edges_Bclose[u].emplace_back(v);\n }\n if(c == '+' || c == '*'){\n edges_D[u].emplace_back(v);\n }\n }\n\n while(!que.empty()){\n auto [l, r, typ] = que.front();\n que.pop();\n if(typ == 0){\n for(auto w : edges_Bclose[r]){\n add(l, w, 1);\n }\n for(auto w : edges_Cclose[r]){\n add(l, w, 2);\n }\n for(auto w : edges_D[r]){\n add(l, w, 3);\n }\n for(int w = 0; w < n; ++w){\n if(dp[w][l][3]){\n add(w, r, 0);\n }\n }\n }\n if(typ == 1){\n for(auto w : edges_Bopen[l]){\n add(w, r, 0);\n }\n }\n if(typ == 2){\n for(auto w : edges_Copen[l]){\n add(w, r, 0);\n }\n }\n if(typ == 3){\n for(int w = 0; w < n; ++w){\n if(dp[r][w][0]){\n add(l, w, 0);\n }\n }\n }\n }\n cout << (dp[s][t][0] ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 7896, "score_of_the_acc": -0.0702, "final_rank": 4 }, { "submission_id": "aoj_2704_7744993", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> ostream &operator<<(ostream &os, vector<T> &v) {\n os << \"[ \";\n for (auto &vi : v) os << vi << \" \";\n return os << \"]\";\n}\n#define show(x) cerr << __LINE__ << \" : \" << #x << \" = \" << x << endl;\n//#define show(x) true\ntemplate <class T, class U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\n\nvoid solve(int N, int M, int S, int T) {\n // {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }\n // {expr, term, fact, (, ), [, ], +, *, expr+, term*, (expr, [expr}\n vector dp(13, vector(N, vector<int>(N))), seen(13, vector(N, vector<int>(N)));\n vector<int> A(M), B(M);\n vector<char> C(M);\n queue<tuple<int, int, int>> que;\n string stamp = \"a()[]+*\";\n REP(i, M) {\n cin >> A[i] >> B[i] >> C[i];\n A[i]--, B[i]--;\n REP(j, 7) {\n if (C[i] == stamp[j]) {\n dp[j + 2][A[i]][B[i]] = 1;\n que.push({j + 2, A[i], B[i]});\n }\n }\n }\n \n while(!que.empty()) {\n auto [i, a, b] = que.front();\n que.pop();\n if (seen[i][a][b]) continue;\n seen[i][a][b] = 1;\n auto f = [&](int l, int m, int r, int t1, int t2, int t3) {\n if (dp[t1][l][m] and dp[t2][m][r] and chmax(dp[t3][l][r], 1)) que.push({t3, l, r});\n };\n if (i == 0) { // expr\n REP(x, N) f(a, b, x, i, 7, 9); // expr+\n REP(x, N) f(x, a, b, 3, i, 11); // (expr\n REP(x, N) f(x, a, b, 5, i, 12); // [expr\n }\n if (i == 1) { // term\n if (chmax(dp[0][a][b], 1)) que.push({0, a, b}); // expr\n REP(x, N) f(a, b, x, i, 8, 10); // term*\n REP(x, N) f(x, a, b, 9, i, 0); // expr = expr+ term\n }\n if (i == 2) { // fact\n if (chmax(dp[1][a][b], 1)) que.push({1, a, b}); // term\n REP(x, N) f(x, a, b, 10, i, 1); // term = term* fact\n }\n if (i == 9) { // expr+\n REP(x, N) f(a, b, x, i, 1, 0); // expr = expr+ term\n }\n if (i == 10) { // term*\n REP(x, N) f(a, b, x, i, 2, 1); // term = term* fact\n }\n if (i == 11) { // (expr\n REP(x, N) f(a, b, x, i, 4, 2); // factor = (expr )\n }\n if (i == 12) { // [expr\n REP(x, N) f(a, b, x, i, 6, 2); // factor = [expr ]\n }\n }\n S--, T--;\n cout << (dp[0][S][T] ? \"Yes\": \"No\") << endl;\n}\n\nint main() {\n int N, M, S, T;\n while (cin >> N >> M >> S >> T, !(N == 0 and M == 0 and S == 0 and T == 0)) solve(N, M, S, T);\n return 0;\n}", "accuracy": 1, "time_ms": 710, "memory_kb": 10572, "score_of_the_acc": -0.1561, "final_rank": 12 }, { "submission_id": "aoj_2704_7744890", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> ostream &operator<<(ostream &os, vector<T> &v) {\n os << \"[ \";\n for (auto &vi : v) os << vi << \" \";\n return os << \"]\";\n}\n#define show(x) cerr << __LINE__ << \" : \" << #x << \" = \" << x << endl;\n//#define show(x) true\ntemplate <class T, class U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\n\nvoid solve(int N, int M, int S, int T) {\n // {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }\n // {expr, term, fact, (, ), [, ], +, *, expr+, term*, (expr, [expr}\n vector dp(13, vector(N, vector<int>(N))), seen(13, vector(N, vector<int>(N)));\n vector<int> A(M), B(M);\n vector<char> C(M);\n queue<tuple<int, int, int>> que;\n string stamp = \"a()[]+*\";\n REP(i, M) {\n cin >> A[i] >> B[i] >> C[i];\n A[i]--, B[i]--;\n REP(j, 7) {\n if (C[i] == stamp[j]) {\n dp[j + 2][A[i]][B[i]] = 1;\n que.push({j + 2, A[i], B[i]});\n }\n }\n }\n while(!que.empty()) {\n auto [i, a, b] = que.front();\n que.pop();\n if (seen[i][a][b]) continue;\n seen[i][a][b] = 1;\n if (i == 0) {\n // expr\n REP(x, N) {\n // expr+\n if (dp[7][b][x] and chmax(dp[9][a][x], 1)) que.push({9, a, x});\n // (expr\n if (dp[3][x][a] and chmax(dp[11][x][b], 1)) que.push({11, x, b});\n // [expr\n if (dp[5][x][a] and chmax(dp[12][x][b], 1)) que.push({12, x, b});\n }\n }\n if (i == 1) {\n // term\n // expr\n if (chmax(dp[0][a][b], 1)) que.push({0, a, b});\n REP(x, N) {\n // term*\n if (dp[8][b][x] and chmax(dp[10][a][x], 1)) que.push({10, a, x});\n // expr = expr+ term\n if (dp[9][x][a] and chmax(dp[0][x][b], 1)) que.push({0, x, b});\n }\n }\n if (i == 2) {\n // fact\n // term\n if (chmax(dp[1][a][b], 1)) que.push({1, a, b});\n REP(x, N) {\n // term = term* fact\n if (dp[10][x][a] and chmax(dp[1][x][b], 1)) que.push({1, x, b});\n }\n }\n if (i == 9) {\n // expr+\n REP(x, N) {\n // expr = expr+ term\n if (dp[1][b][x] and chmax(dp[0][a][x], 1)) que.push({0, a, x});\n }\n }\n if (i == 10) {\n // term*\n REP(x, N) {\n // term = term* fact\n if (dp[2][b][x] and chmax(dp[1][a][x], 1)) que.push({1, a, x});\n }\n }\n if (i == 11) {\n // (expr\n REP(x, N) {\n // factor = (expr )\n if (dp[4][b][x] and chmax(dp[2][a][x], 1)) que.push({2, a, x});\n }\n }\n if (i == 12) {\n // [expr\n REP(x, N) {\n // factor = [expr ]\n if (dp[6][b][x] and chmax(dp[2][a][x], 1)) que.push({2, a, x});\n }\n }\n }\n S--, T--;\n cout << (dp[0][S][T] ? \"Yes\": \"No\") << endl;\n}\n\nint main() {\n int N, M, S, T;\n while (cin >> N >> M >> S >> T, !(N == 0 and M == 0 and S == 0 and T == 0)) solve(N, M, S, T);\n return 0;\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 10488, "score_of_the_acc": -0.147, "final_rank": 10 }, { "submission_id": "aoj_2704_7744872", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> ostream &operator<<(ostream &os, vector<T> &v) {\n os << \"[ \";\n for (auto &vi : v) os << vi << \" \";\n return os << \"]\";\n}\n#define show(x) cerr << __LINE__ << \" : \" << #x << \" = \" << x << endl;\n//#define show(x) true\ntemplate <class T, class U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\n\nvoid solve(int N, int M, int S, int T) {\n // {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }\n // {expression, term, factor, (, ), [, ], +, *, expr+, term*, (expr, [expr}\n vector dp(13, vector(N, vector<int>(N))), seen(13, vector(N, vector<int>(N)));\n vector<int> A(M), B(M);\n vector<char> C(M);\n queue<tuple<int, int, int>> que;\n string stamp = \"a()[]+*\";\n REP(i, M) {\n cin >> A[i] >> B[i] >> C[i];\n A[i]--, B[i]--;\n REP(j, 7) {\n if (C[i] == stamp[j]) {\n dp[j + 2][A[i]][B[i]] = 1;\n que.push({j + 2, A[i], B[i]});\n }\n }\n }\n while(!que.empty()) {\n auto [i, a, b] = que.front();\n que.pop();\n if (seen[i][a][b]) continue;\n seen[i][a][b] = 1;\n if (i == 0) {\n // expression\n REP(x, N) {\n if (dp[7][b][x] and chmax(dp[9][a][x], 1)) que.push({9, a, x});\n if (dp[3][x][a] and chmax(dp[11][x][b], 1)) que.push({11, x, b});\n if (dp[5][x][a] and chmax(dp[12][x][b], 1)) que.push({12, x, b});\n }\n }\n if (i == 1) {\n // term\n if (chmax(dp[0][a][b], 1)) que.push({0, a, b});\n REP(x, N) {\n if (dp[8][b][x] and chmax(dp[10][a][x], 1)) que.push({10, a, x});\n if (dp[9][x][a] and chmax(dp[0][x][b], 1)) que.push({0, x, b});\n }\n }\n if (i == 2) {\n // factor\n if (chmax(dp[1][a][b], 1)) que.push({1, a, b});\n REP(x, N) {\n if (dp[10][x][a] and chmax(dp[1][x][b], 1)) que.push({1, x, b});\n }\n }\n if (i == 9) {\n // expr+\n REP(x, N) {\n if (dp[1][b][x] and chmax(dp[0][a][x], 1)) que.push({0, a, x});\n }\n }\n if (i == 10) {\n // term*\n REP(x, N) {\n if (dp[2][b][x] and chmax(dp[1][a][x], 1)) que.push({1, a, x});\n }\n }\n if (i == 11) {\n // (expr\n REP(x, N) {\n if (dp[4][b][x] and chmax(dp[2][a][x], 1)) que.push({2, a, x});\n }\n }\n if (i == 12) {\n // [expr\n REP(x, N) {\n if (dp[6][b][x] and chmax(dp[2][a][x], 1)) que.push({2, a, x});\n }\n }\n }\n S--, T--;\n cout << (dp[0][S][T] ? \"Yes\": \"No\") << endl;\n}\n\nint main() {\n int N, M, S, T;\n while (cin >> N >> M >> S >> T, !(N == 0 and M == 0 and S == 0 and T == 0)) solve(N, M, S, T);\n return 0;\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 10620, "score_of_the_acc": -0.1483, "final_rank": 11 }, { "submission_id": "aoj_2704_7743436", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int, int>;\nusing pic = pair<int, char>;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\n\nint ini() {\n int n;\n cin >> n;\n return n;\n}\n\nconst int inf = 1000000;\nbool solve(){\n int n = ini();\n if (n == 0) {\n return true;\n }\n int m = ini();\n int s = ini() - 1;\n int t = ini() - 1;\n vvi edgesPl(n);\n vvi edgesPr(n);\n vvi edgesQl(n);\n vvi edgesQr(n);\n vvi edgesO(n);\n vvi t0(n, vi(n, 0));\n vvi t1(n, vi(n, 0));\n vvi t2(n, vi(n, 0));\n vvi t3(n, vi(n, 0));\n vector<set<int>> t0s(n);\n vector<set<int>> t1s(n);\n vector<set<int>> t2s(n);\n vector<set<int>> t3s(n);\n deque<pii> deq;\n for (int i = 0; i < m; i++) {\n int a = ini() - 1;\n int b = ini() - 1;\n string c;\n cin >> c;\n if (c[0] == 'a') {\n t0[a][b] = 1;\n deq.emplace_back(a, b);\n t0s[b].emplace(a);\n } else if (c[0] == '+' || c[0] == '*') {\n edgesO[b].push_back(a);\n } else if (c[0] == '(') {\n edgesPl[b].push_back(a);\n } else if (c[0] == ')') {\n edgesPr[a].push_back(b);\n } else if (c[0] == '[') {\n edgesQl[b].push_back(a);\n } else if (c[0] == ']') {\n edgesQr[a].push_back(b);\n }\n }\n for (int i = 0; i < n; i++) {\n edgesPl[i].erase(unique(edgesPl[i].begin(), edgesPl[i].end()), edgesPl[i].end());\n edgesPr[i].erase(unique(edgesPr[i].begin(), edgesPr[i].end()), edgesPr[i].end());\n edgesQl[i].erase(unique(edgesQl[i].begin(), edgesQl[i].end()), edgesQl[i].end());\n edgesQr[i].erase(unique(edgesQr[i].begin(), edgesQr[i].end()), edgesQr[i].end());\n edgesO[i].erase(unique(edgesO[i].begin(), edgesO[i].end()), edgesO[i].end());\n }\n while (!deq.empty()) {\n pii p = deq.front();\n deq.pop_front();\n if (p.second < n) {\n for (int i : edgesPl[p.first]) {\n if (t2[i][p.second] == 0) {\n t2[i][p.second] = 1;\n deq.emplace_back(i, p.second+n*2);\n t2s[p.second].emplace(i);\n }\n }\n for (int i : edgesQl[p.first]) {\n if (t3[i][p.second] == 0) {\n t3[i][p.second] = 1;\n deq.emplace_back(i, p.second+n*3);\n t3s[p.second].emplace(i);\n }\n }\n for (int i : edgesO[p.first]) {\n if (t1[i][p.second] == 0) {\n t1[i][p.second] = 1;\n deq.emplace_back(i, p.second+n);\n t1s[i].emplace(p.second);\n }\n }\n // cout << \"!\" << p.first << endl;\n // for (int i = 0; i < t1s[p.first].size(); i++) cout << t1s[p.first][i] << \" \\n\"[i+1==t1s[p.first].size()];\n for (int i : t1s[p.second]) {\n if (t0[p.first][i] == 0) {\n t0[p.first][i] = 1;\n deq.emplace_back(p.first, i);\n t0s[i].emplace(p.first);\n }\n }\n } else if (p.second < n * 2) {\n int sec = p.second - n;\n // cout << \"?\" << endl;\n // for (int i = 0; i < t0s[p.first].size(); i++) cout << t0s[p.first][i] << \" \\n\"[i+1==t0s[p.first].size()];\n for (int i : t0s[p.first]) {\n if (t0[i][sec] == 0) {\n t0[i][sec] = 1;\n deq.emplace_back(i, sec);\n t0s[sec].emplace(i);\n }\n }\n } else if (p.second < n * 3) {\n int sec = p.second - n*2;\n for (int j : edgesPr[sec]) {\n if (t0[p.first][j] == 0) {\n t0[p.first][j] = 1;\n deq.emplace_back(p.first, j);\n t0s[j].emplace(p.first);\n }\n }\n } else {\n int sec = p.second - n*3;\n for (int j : edgesQr[sec]) {\n if (t0[p.first][j] == 0) {\n t0[p.first][j] = 1;\n deq.emplace_back(p.first, j);\n t0s[j].emplace(p.first);\n }\n }\n }\n }\n // for (int i = 0; i < n; i++) {\n // for (int j = 0; j < n; j++) {\n // cout << t0[i][j] << \" \";\n // }\n // cout << endl;\n // }\n // cout << endl;\n // for (int i = 0; i < n; i++) {\n // for (int j = 0; j < n; j++) {\n // cout << t1[i][j] << \" \";\n // }\n // cout << endl;\n // }\n cout << (t0[s][t] == 1 ? \"Yes\" : \"No\") << endl;\n return false;\n}\n\nint main(){\n while(!solve());\n}", "accuracy": 1, "time_ms": 970, "memory_kb": 13016, "score_of_the_acc": -0.2231, "final_rank": 15 }, { "submission_id": "aoj_2704_6798423", "code_snippet": "#pragma region Macros\n#if defined(noimi) && defined(_GLIBCXX_DEBUG) && defined(_GLIBCXX_DEBUG_PEDANTIC)\n// #pragma comment(linker, \"/stack:200000000\")\n#include <stdc++.h>\n#pragma GCC optimize(\"O3\")\n#else\n#pragma GCC optimize(\"Ofast\")\n// #pragma GCC optimize(\"unroll-loops\")\n// #pragma GCC target(\"popcnt\")\n// #pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,fma,abm,mmx,avx,avx2,tune=native\")\n// #pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,fma,abm,mmx,avx,avx2\")\n// #pragma GCC target(\"avx2\")\n#include <bits/stdc++.h>\n#endif\n\n#ifdef noimi\n#define oj_local(a, b) b\n#else\n#define oj_local(a, b) a\n#endif\n\n#define LOCAL if(oj_local(0, 1))\n#define OJ if(oj_local(1, 0))\n\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long int;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing ld = long double;\ntemplate <typename T> using vc = vector<T>;\ntemplate <typename T> using vvc = vector<vc<T>>;\ntemplate <typename T> using vvvc = vector<vvc<T>>;\nusing vi = vc<int>;\nusing vl = vc<ll>;\nusing vpi = vc<pii>;\nusing vpl = vc<pll>;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T> int si(const T &x) { return x.size(); }\ntemplate <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }\ntemplate <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }\nvi iota(int n) {\n vi a(n);\n return iota(a.begin(), a.end(), 0), a;\n}\ntemplate <typename T> vi iota(const vector<T> &a, bool greater = false) {\n vi res(a.size());\n iota(res.begin(), res.end(), 0);\n sort(res.begin(), res.end(), [&](int i, int j) {\n if(greater) return a[i] > a[j];\n return a[i] < a[j];\n });\n return res;\n}\n\n// macros\n#define overload5(a, b, c, d, e, name, ...) name\n#define overload4(a, b, c, d, name, ...) name\n#define endl '\\n'\n#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)\n#define REP1(i, n) for(ll i = 0; i < (n); ++i)\n#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)\n#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)\n#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)\n#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)\n#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))\n#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)\n#define fore0(a) rep(a.size())\n#define fore1(i, a) for(auto &&i : a)\n#define fore2(a, b, v) for(auto &&[a, b] : v)\n#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)\n#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)\n#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)\n#define fi first\n#define se second\n#define pb push_back\n#define ppb pop_back\n#define ppf pop_front\n#define eb emplace_back\n#define drop(s) cout << #s << endl, exit(0)\n#define si(c) (int)(c).size()\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\n#define rng(v, l, r) v.begin() + l, v.begin() + r\n#define all(c) begin(c), end(c)\n#define rall(c) rbegin(c), rend(c)\n#define SORT(v) sort(all(v))\n#define REV(v) reverse(all(v))\n#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())\ntemplate <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }\n#define MIN(v) *min_element(all(v))\n#define MAX(v) *max_element(all(v))\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\nconstexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};\nconstexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};\n\nnamespace yesno_impl {\nconst string YESNO[2] = {\"NO\", \"YES\"};\nconst string YesNo[2] = {\"No\", \"Yes\"};\nconst string yesno[2] = {\"no\", \"yes\"};\nconst string firstsecond[2] = {\"second\", \"first\"};\nconst string FirstSecond[2] = {\"Second\", \"First\"};\nconst string possiblestr[2] = {\"impossible\", \"possible\"};\nvoid YES(bool t = 1) { cout << YESNO[t] << endl; }\nvoid NO(bool t = 1) { YES(!t); }\nvoid Yes(bool t = 1) { cout << YesNo[t] << endl; }\nvoid No(bool t = 1) { Yes(!t); }\nvoid yes(bool t = 1) { cout << yesno[t] << endl; }\nvoid no(bool t = 1) { yes(!t); }\nvoid first(bool t = 1) { cout << firstsecond[t] << endl; }\nvoid First(bool t = 1) { cout << FirstSecond[t] << endl; }\nvoid possible(bool t = 1) { cout << possiblestr[t] << endl; }\n}; // namespace yesno_impl\nusing namespace yesno_impl;\n\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define VEC2(type, name1, name2, size) \\\n vector<type> name1(size), name2(size); \\\n for(int i = 0; i < size; i++) IN(name1[i], name2[i])\n#define VEC3(type, name1, name2, name3, size) \\\n vector<type> name1(size), name2(size), name3(size); \\\n for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])\n#define VEC4(type, name1, name2, name3, name4, size) \\\n vector<type> name1(size), name2(size), name3(size), name4(size); \\\n for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &...tail) {\n scan(head);\n IN(tail...);\n}\n\ntemplate <typename T, typename S> T ceil(T x, S y) {\n assert(y);\n return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));\n}\n\ntemplate <typename T, typename S> T floor(T x, S y) {\n assert(y);\n return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));\n}\ntemplate <class T> T POW(T x, int n) {\n T res = 1;\n for(; n; n >>= 1, x *= x)\n if(n & 1) res *= x;\n return res;\n}\ntemplate <class T, class S> T POW(T x, S n, const ll &mod) {\n T res = 1;\n x %= mod;\n for(; n; n >>= 1, x = x * x % mod)\n if(n & 1) res = res * x % mod;\n return res;\n}\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n UNIQUE(y);\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\ntemplate <class S> void fold_in(vector<S> &v) {}\ntemplate <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {\n for(auto e : a) v.emplace_back(e);\n fold_in(v, tail...);\n}\ntemplate <class S> void renumber(vector<S> &v) {}\ntemplate <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {\n for(auto &&e : a) e = lb(v, e);\n renumber(v, tail...);\n}\ntemplate <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {\n vector<S> v;\n fold_in(v, head, args...);\n sort(all(v)), v.erase(unique(all(v)), v.end());\n renumber(v, head, args...);\n return v;\n}\ntemplate <typename T> vector<T> RUI(const vector<T> &v) {\n vector<T> res(v.size() + 1);\n for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];\n return res;\n}\n// 反時計周りに 90 度回転\ntemplate <typename T> void rot(vector<vector<T>> &v) {\n if(empty(v)) return;\n int n = v.size(), m = v[0].size();\n vector res(m, vector<T>(n));\n rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];\n v.swap(res);\n}\n// x in [l, r)\ntemplate <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }\n\n// 便利関数\nconstexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }\nconstexpr ll tri(ll n) { return n * (n + 1) / 2; }\n// l + ... + r\nconstexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }\nll max(int x, ll y) { return max((ll)x, y); }\nll max(ll x, int y) { return max(x, (ll)y); }\nint min(int x, ll y) { return min((ll)x, y); }\nint min(ll x, int y) { return min(x, (ll)y); }\n// bit 演算系\nll pow2(int i) { return 1LL << i; }\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }\n// int allbit(int n) { return (1 << n) - 1; }\nconstexpr ll mask(int n) { return (1LL << n) - 1; }\n// int popcount(signed t) { return __builtin_popcount(t); }\n// int popcount(ll t) { return __builtin_popcountll(t); }\nint popcount(uint64_t t) { return __builtin_popcountll(t); }\nstatic inline uint64_t popcount64(uint64_t x) {\n uint64_t m1 = 0x5555555555555555ll;\n uint64_t m2 = 0x3333333333333333ll;\n uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;\n uint64_t h01 = 0x0101010101010101ll;\n\n x -= (x >> 1) & m1;\n x = (x & m2) + ((x >> 2) & m2);\n x = (x + (x >> 4)) & m4;\n\n return (x * h01) >> 56;\n}\nbool ispow2(int i) { return i && (i & -i) == i; }\n\n// ll rnd(ll l, ll r) { //[l, r)\n// #ifdef noimi\n// static mt19937_64 gen;\n// #else\n// static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n// #endif\n// return uniform_int_distribution<ll>(l, r - 1)(gen);\n// }\n// ll rnd(ll n) { return rnd(0, n); }\n\n// template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }\n\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }\ntemplate <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }\ntemplate <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }\ntemplate <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }\ntemplate <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }\ntemplate <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }\ntemplate <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n friend ostream operator<<(ostream &os, edge &e) { return os << e.to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return res;\n}\nGraph getTreeFromPar(int n, int margin = 1) {\n Graph res(n);\n for(int i = 1; i < n; i++) {\n int a;\n cin >> a;\n res[a - margin].emplace_back(i);\n }\n return res;\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n scan(a), scan(b), scan(c);\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return res;\n}\nvoid add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }\ntemplate <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }\n\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\n\nistream &operator>>(istream &is, i128 &v) {\n string s;\n is >> s;\n v = 0;\n for(int i = 0; i < (int)s.size(); i++) {\n if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if(s[0] == '-') { v *= -1; }\n return is;\n}\n\nostream &operator<<(ostream &os, const i128 &v) {\n if(v == 0) { return (os << \"0\"); }\n i128 num = v;\n if(v < 0) {\n os << '-';\n num = -num;\n }\n string s;\n for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }\n reverse(s.begin(), s.end());\n return (os << s);\n}\nnamespace aux {\ntemplate <typename T, unsigned N, unsigned L> struct tp {\n static void output(std::ostream &os, const T &v) {\n os << std::get<N>(v) << (&os == &cerr ? \", \" : \" \");\n tp<T, N + 1, L>::output(os, v);\n }\n};\ntemplate <typename T, unsigned N> struct tp<T, N, N> {\n static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }\n};\n} // namespace aux\ntemplate <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {\n if(&os == &cerr) { os << '('; }\n aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);\n if(&os == &cerr) { os << ')'; }\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n if(&os == &cerr) { return os << \"(\" << p.first << \", \" << p.second << \")\"; }\n return os << p.first << \" \" << p.second;\n}\ntemplate <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {\n bool f = true;\n if(&os == &cerr) os << \"[\";\n for(auto &y : x) {\n if(&os == &cerr)\n os << (f ? \"\" : \", \") << y;\n else\n os << (f ? \"\" : \" \") << y;\n f = false;\n }\n if(&os == &cerr) os << \"]\";\n return os;\n}\n\n#ifdef noimi\n#undef endl\nvoid debug() { cerr << endl; }\nvoid debug(bool) { cerr << endl; }\ntemplate <class Head, class... Tail> void debug(bool is_front, Head head, Tail... tail) {\n if(!is_front) cerr << \", \";\n cerr << head;\n debug(false, tail...);\n}\n\n#define dump(args...) \\\n { \\\n vector<string> _debug = _split(#args, ','); \\\n err(true, begin(_debug), args); \\\n }\n\nvector<string> _split(const string &s, char c) {\n vector<string> v;\n stringstream ss(s);\n string x;\n while(getline(ss, x, c)) {\n if(empty(v))\n v.eb(x);\n else {\n bool flag = false;\n for(auto [c, d] : {pair('(', ')'), pair('[', ']'), pair('{', '}')}) {\n if(count(all(v.back()), c) != count(all(v.back()), d)) flag = true;\n }\n if(flag)\n v.back() += \",\" + x;\n else\n v.eb(x);\n }\n }\n return move(v);\n}\n\nvoid err(bool, vector<string>::iterator) { cerr << endl; }\ntemplate <typename T, typename... Args> void err(bool is_front, vector<string>::iterator it, T a, Args... args) {\n if(!is_front) cerr << \", \";\n cerr << it->substr((*it)[0] == ' ', (*it).size()) << \" = \" << a, err(false, ++it, args...);\n}\n\n// #define dump(...) cerr << #__VA_ARGS__ << \" : \", debug(true, __VA_ARGS__)\n#else\n#define dump(...) static_cast<void>(0)\n#define dbg(...) static_cast<void>(0)\n#endif\nvoid OUT() { cout << endl; }\ntemplate <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {\n cout << head;\n if(sizeof...(tail)) cout << ' ';\n OUT(tail...);\n}\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\ntemplate <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};\n\ntemplate <class F> struct REC {\n F f;\n REC(F &&f_) : f(std::forward<F>(f_)) {}\n template <class... Args> auto operator()(Args &&...args) const { return f(*this, std::forward<Args>(args)...); }\n};\n\ntemplate <class S> vector<pair<S, int>> runLength(const vector<S> &v) {\n vector<pair<S, int>> res;\n for(auto &e : v) {\n if(res.empty() or res.back().fi != e)\n res.eb(e, 1);\n else\n res.back().se++;\n }\n return res;\n}\nvector<pair<char, int>> runLength(const string &v) {\n vector<pair<char, int>> res;\n for(auto &e : v) {\n if(res.empty() or res.back().fi != e)\n res.eb(e, 1);\n else\n res.back().se++;\n }\n return res;\n}\n\nint toint(const char &c, const char start = 'a') { return c - start; }\nint toint(const char &c, const string &chars) { return find(all(chars), c) - begin(chars); }\nint alphabets_to_int(const char &c) { return (islower(c) ? c - 'a' : c - 'A' + 26); }\ntemplate <typename T> auto toint(const T &v, const char &start = 'a') {\n vector<decltype(toint(v[0]))> ret;\n ret.reserve(v.size());\n for(auto &&e : v) ret.emplace_back(toint(e, start));\n return ret;\n}\ntemplate <typename T> auto toint(const T &v, const string &start) {\n vector<decltype(toint(v[0]))> ret;\n ret.reserve(v.size());\n for(auto &&e : v) ret.emplace_back(toint(e, start));\n return ret;\n}\n// a -> 0, A -> 26\ntemplate <typename T> auto alphabets_to_int(const T &s) {\n vector<decltype(alphabets_to_int(s[0]))> res;\n res.reserve(s.size());\n for(auto &&e : s) { res.emplace_back(alphabets_to_int(e)); }\n return res;\n}\n\ntemplate <class T, class F> T bin_search(T ok, T ng, const F &f) {\n while(abs(ok - ng) > 1) {\n T mid = ok + ng >> 1;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\ntemplate <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {\n while(iter--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(11);\n }\n} setup_io;\n\n#pragma endregion\n\nint main() {\n while(true) {\n INT(n, m, s, t);\n if(!n) exit(0);\n s--, t--;\n using B = bitset<200>;\n\n vv(int, d, n, n);\n vector<B> D(n);\n queue<pii> q;\n vector<B> x(n);\n vector<B> y(n);\n Wgraph<char> g(n), rg(n);\n rep(i, m) {\n INT(u, v);\n u--, v--;\n CHR(c);\n if(c == 'a' and !d[u][v]) {\n d[u][v] = D[v][u] = 1, q.emplace(u, v);\n g[u].eb(v, c);\n } else if(c == '(')\n x[v][u] = 1;\n else if(c == '[')\n y[v][u] = 1;\n else\n g[u].eb(v, c);\n if(c == '+' or c == '*') rg[v].eb(u, c);\n }\n while(!empty(q)) {\n auto [u, v] = q.front();\n q.pop();\n // dump(u, v);\n fore(e, g[v]) {\n if(e.cost == '+' or e.cost == '*') {\n rep(s, n) {\n if(d[e][s] and !d[u][s]) d[u][s] = D[s][u] = true, q.emplace(u, s);\n }\n } else if(e.cost == ')') {\n auto b = ~D[e] & x[u];\n // dump(b);\n for(int i = b._Find_first(); i < si(b); i = b._Find_next(i)) {\n // dump(i);\n d[i][e] = D[e][i] = true, q.emplace(i, e);\n }\n } else if(e.cost == ']') {\n auto b = ~D[e] & y[u];\n for(int i = b._Find_first(); i < si(b); i = b._Find_next(i)) { d[i][e] = D[e][i] = true, q.emplace(i, e); }\n }\n }\n\n fore(e, rg[u]) {\n if(e.cost == '+' or e.cost == '*') {\n // dump(e.to, u, v);\n rep(s, n) {\n if(d[s][e] and !d[s][v]) d[s][v] = D[v][s] = true, q.emplace(s, v);\n }\n }\n }\n }\n Yes(d[s][t]);\n }\n}", "accuracy": 1, "time_ms": 6070, "memory_kb": 6180, "score_of_the_acc": -0.9988, "final_rank": 18 }, { "submission_id": "aoj_2704_6794156", "code_snippet": "#pragma GCC optimize(\"Ofast,no-stack-protector,unroll-loops,fast-math\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define pb(...) emplace_back(__VA_ARGS__)\n#define mp(a, b) make_pair(a, b)\n#define all(x) x.begin(), x.end()\n#define rall(x) x.rbegin(), x.rend()\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define rep2(i, n) for (int i = (int)n - 1; i >= 0; i--)\n#define REP(i, l, r) for (int i = l; i < (r); i++)\n#define REP2(i, l, r) for (int i = (int)r - 1; i >= (l); i--)\n#define siz(x) (ll) x.size()\ntemplate <class T>\nusing rque = priority_queue<T, vector<T>, greater<T>>;\n\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (b < a) {\n a = b;\n return 1;\n }\n return 0;\n}\n\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (b > a) {\n a = b;\n return 1;\n }\n return 0;\n}\n\ntemplate <class T>\nvoid print(vector<T> a) {\n if (a.empty())\n cout << '\\n';\n else {\n for (int i = 0; i < a.size(); i++)\n cout << a[i] << (i + 1 == a.size() ? '\\n' : ' ');\n }\n}\n\n// __int128_t gcd(__int128_t a, __int128_t b) {\n// if (a == 0)\n// return b;\n// if (b == 0)\n// return a;\n// __int128_t cnt = a % b;\n// while (cnt != 0) {\n// a = b;\n// b = cnt;\n// cnt = a % b;\n// }\n// return b;\n// }\n\nlong long extGCD(long long a, long long b, long long &x, long long &y) {\n if (b == 0) {\n x = 1;\n y = 0;\n return a;\n }\n long long d = extGCD(b, a % b, y, x);\n y -= a / b * x;\n return d;\n}\n\nstruct UnionFind {\n vector<int> data;\n int num;\n\n UnionFind(int sz) {\n data.assign(sz, -1);\n num = sz;\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if (x == y)\n return (false);\n if (data[x] > data[y])\n swap(x, y);\n data[x] += data[y];\n data[y] = x;\n num--;\n return (true);\n }\n\n int find(int k) {\n if (data[k] < 0)\n return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n\n bool same(int x, int y) {\n return find(x) == find(y);\n }\n\n int operator[](int k) {\n return find(k);\n }\n};\n\ntemplate <int mod>\nstruct Mod_Int {\n int x;\n\n Mod_Int() : x(0) {\n }\n\n Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {\n }\n\n static int get_mod() {\n return mod;\n }\n\n Mod_Int &operator+=(const Mod_Int &p) {\n if ((x += p.x) >= mod)\n x -= mod;\n return *this;\n }\n\n Mod_Int &operator-=(const Mod_Int &p) {\n if ((x += mod - p.x) >= mod)\n x -= mod;\n return *this;\n }\n\n Mod_Int &operator*=(const Mod_Int &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n\n Mod_Int &operator/=(const Mod_Int &p) {\n *this *= p.inverse();\n return *this;\n }\n\n Mod_Int &operator++() {\n return *this += Mod_Int(1);\n }\n\n Mod_Int operator++(int) {\n Mod_Int tmp = *this;\n ++*this;\n return tmp;\n }\n\n Mod_Int &operator--() {\n return *this -= Mod_Int(1);\n }\n\n Mod_Int operator--(int) {\n Mod_Int tmp = *this;\n --*this;\n return tmp;\n }\n\n Mod_Int operator-() const {\n return Mod_Int(-x);\n }\n\n Mod_Int operator+(const Mod_Int &p) const {\n return Mod_Int(*this) += p;\n }\n\n Mod_Int operator-(const Mod_Int &p) const {\n return Mod_Int(*this) -= p;\n }\n\n Mod_Int operator*(const Mod_Int &p) const {\n return Mod_Int(*this) *= p;\n }\n\n Mod_Int operator/(const Mod_Int &p) const {\n return Mod_Int(*this) /= p;\n }\n\n bool operator==(const Mod_Int &p) const {\n return x == p.x;\n }\n\n bool operator!=(const Mod_Int &p) const {\n return x != p.x;\n }\n\n Mod_Int inverse() const {\n assert(*this != Mod_Int(0));\n return pow(mod - 2);\n }\n\n Mod_Int pow(long long k) const {\n Mod_Int now = *this, ret = 1;\n for (; k > 0; k >>= 1, now *= now) {\n if (k & 1)\n ret *= now;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const Mod_Int &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, Mod_Int &p) {\n long long a;\n is >> a;\n p = Mod_Int<mod>(a);\n return is;\n }\n};\n\nll mpow2(ll x, ll n, ll mod) {\n ll ans = 1;\n x %= mod;\n while (n != 0) {\n if (n & 1)\n ans = ans * x % mod;\n x = x * x % mod;\n n = n >> 1;\n }\n ans %= mod;\n return ans;\n}\n\nll modinv2(ll a, ll mod) {\n ll b = mod, u = 1, v = 0;\n while (b) {\n ll t = a / b;\n a -= t * b;\n swap(a, b);\n u -= t * v;\n swap(u, v);\n }\n u %= mod;\n if (u < 0)\n u += mod;\n return u;\n}\n\nll divide_int(ll a, ll b) {\n return (a >= 0 ? a / b : (a - b + 1) / b);\n}\n\nconstexpr int mod = 1000000007;\n// constexpr int mod = 998244353;\n// constexpr int mod = 31607;\nusing mint = Mod_Int<mod>;\n\nmint mpow(mint x, ll n) {\n bool rev = n < 0;\n n = abs(n);\n mint ans = 1;\n while (n != 0) {\n if (n & 1)\n ans *= x;\n x *= x;\n n = n >> 1;\n }\n return (rev ? ans.inverse() : ans);\n}\n\n// ----- library -------\n// ----- library -------\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n while (1) {\n int n, m, s, t;\n cin >> n >> m >> s >> t;\n if (!n)\n break;\n s--, t--;\n vector<vector<pair<pair<int, char>, int>>> li(n), ri(n);\n int a, b;\n char c;\n rep(i, m) cin >> a >> b >> c, a--, b--, li[a].pb(mp(b, c), i), ri[b].pb(mp(a, c), i);\n vector f(n, vector(n, vector(3, vector(5, 0))));\n vector<set<int>> lsp(n), rsp(n), lsc(n), rsc(n);\n queue<pair<pair<int, int>, pair<int, int>>> que;\n rep(i, n) {\n for (auto [info, id] : li[i]) {\n auto [dst, nc] = info;\n if (nc == 'a')\n que.push({{i, dst}, {0, 0}}), f[i][dst][0][0] = 1;\n }\n }\n while (!que.empty()) {\n auto [nij, nkl] = que.front();\n que.pop();\n auto [ni, nj] = nij;\n auto [nk, nl] = nkl;\n if (nk < 2) {\n if(!f[ni][nj][nk + 1][nl])\n que.push({{ni, nj}, {nk + 1, nl}}), f[ni][nj][nk + 1][nl] = 1;\n }\n if (!nl) {\n if (nk == 0) {\n for (auto e : rsc[ni]) {\n if(!f[e][nj][1][0])\n que.push({{e, nj}, {1, 0}}), f[e][nj][1][0] = 1;\n }\n for (auto [info, id] : ri[ni]) {\n auto [dst, nc] = info;\n if (nc == '*')\n lsc[dst].insert(nj);\n }\n }\n if (nk == 1) {\n for (auto e : lsc[nj]) {\n if(!f[ni][e][1][0])\n que.push({{ni, e}, {1, 0}}), f[ni][e][1][0] = 1;\n }\n for (auto [info, id] : li[nj]) {\n auto [dst, nc] = info;\n if (nc == '*')\n rsc[dst].insert(ni);\n }\n for (auto e : rsp[ni]) {\n if(!f[e][nj][2][0])\n que.push({{e, nj}, {2, 0}}), f[e][nj][2][0] = 1;\n }\n for (auto [info, id] : ri[ni]) {\n auto [dst, nc] = info;\n if (nc == '+')\n lsp[dst].insert(nj);\n }\n }\n if (nk == 2) {\n for (auto e : lsp[nj]) {\n if(!f[ni][e][2][0])\n que.push({{ni, e}, {2, 0}}), f[ni][e][2][0] = 1;\n }\n for (auto [info, id] : li[nj]) {\n auto [dst, nc] = info;\n if (nc == '+')\n rsp[dst].insert(ni);\n }\n }\n }\n if (nl < 3 && !(nl & 1)) {\n int nel = nl | 1;\n if (nel == 3)\n nel = 0;\n for (auto [info, id] : ri[ni]) {\n auto [dst, nc] = info;\n if (nc == '(') {\n if(!f[dst][nj][0][nel])\n que.push({{dst, nj}, {0, nel}}), f[dst][nj][0][nel] = 1;\n }\n }\n }\n if (nl < 3 && !(nl & 2)) {\n int nel = nl | 2;\n if (nel == 3)\n nel = 0;\n for (auto [info, id] : li[nj]) {\n auto [dst, nc] = info;\n if (nc == ')') {\n if(!f[ni][dst][0][nel])\n que.push({{ni, dst}, {0, nel}}), f[ni][dst][0][nel] = 1;\n }\n }\n }\n if (!nl || nl >= 3) {\n int nel = nl;\n if (nl)\n nel -= 2;\n if (!(nel & 1)) {\n nel |= 1;\n if (nel == 3)\n nel = 0;\n else\n nel += 2;\n for (auto [info, id] : ri[ni]) {\n auto [dst, nc] = info;\n if (nc == '[') {\n if(!f[dst][nj][0][nel])\n que.push({{dst, nj}, {0, nel}}), f[dst][nj][0][nel] = 1;\n }\n }\n }\n if (!(nel & 2)) {\n nel |= 2;\n if (nel == 3)\n nel = 0;\n else\n nel += 2;\n for (auto [info, id] : li[nj]) {\n auto [dst, nc] = info;\n if (nc == ']') {\n if(!f[ni][dst][0][nel])\n que.push({{ni, dst}, {0, nel}}), f[ni][dst][0][nel] = 1;\n }\n }\n }\n }\n }\n cout << (f[s][t][2][0] ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 4500, "memory_kb": 23988, "score_of_the_acc": -0.9145, "final_rank": 16 }, { "submission_id": "aoj_2704_6793742", "code_snippet": "#pragma region template\n#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\n#ifdef __LOCAL\n #include <debug>\n#else\n #define debug(...) void(0)\n#endif\n\n#define REP(i,n) for(int i=0;i<(n);i++)\n#define ALL(v) v.begin(),v.end()\n\ntemplate<typename T>\nistream& operator>>(istream&is,vector<T>&v){\n for(T&p:v)is>>p;\n return is;\n}\ntemplate<typename T>\nostream& operator<<(ostream&os,const vector<T>&v){\n if(&os==&cerr)os<<\"[\";\n for(int i=0;i<v.size();i++){\n os<<v[i];\n if(i+1<v.size())os<<(&os==&cerr?\",\":\" \");\n }\n if(&os==&cerr)os<<\"]\";\n return os;\n}\n#pragma endregion template\n\ntemplate<typename T,typename ...Args>\nauto make_vector(T x,int arg,Args ...args){\n if constexpr(sizeof...(args)==0)return vector<T>(arg,x);\n else return vector(arg,make_vector<T>(x,args...));\n}\n\nqueue<tuple<int,int,int>> que;\nbool check[200][200][3];\nbool used[200][200][2];\n\nvoid D(int u,int v,int id){\n if(check[u][v][id])return;\n debug(u,v,id);\n check[u][v][id]=true;\n que.emplace(u,v,id);\n}\n\nunordered_map<char,int> id1{ {'a',0}, {'+',1}, {'*',2}, {')',3}, {']',4} };\nunordered_map<char,int> id2{ {'a',0}, {'+',1}, {'*',2}, {'(',3}, {'[',4} };\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int n,m,s,t;\n while(cin>>n>>m>>s>>t,n){\n s--;t--;\n\n auto g=make_vector< vector<int> >({},n,5);// a + * ) ]\n auto r=make_vector< vector<int> >({},n,5);// a + * ( [\n\n REP(_,m){\n int u,v;cin>>u>>v;u--;v--;\n char c;cin>>c;\n if(c!='(' and c!='[')g[u][id1[c]].push_back(v);\n if(c!=')' and c!=']')r[v][id2[c]].push_back(u);\n }\n \n memset(check,false,sizeof(check));\n memset(used,false,sizeof(used));\n\n REP(u,n)for(int v:g[u][0])D(u,v,2);\n\n while(que.size()){\n auto[u,v,id]=que.front();que.pop();\n if(id>=0 and !used[u][v][0]){\n used[u][v][0]=check[u][v][0]=true;\n for(int to:g[v][1])REP(i,n)if(check[to][i][1])D(u,i,0);\n for(int to:g[v][3])for(int to2:r[u][3])D(to2,to,2);\n for(int to:g[v][4])for(int to2:r[u][4])D(to2,to,2);\n }\n if(id>=1 and !used[u][v][1]){\n used[u][v][1]=check[u][v][1]=true;\n for(int to:g[v][2])REP(i,n)if(check[to][i][2])D(u,i,1);\n for(int to:r[u][1])REP(i,n)if(check[i][to][0])D(i,v,1);\n }\n if(id==2)\n for(int to:r[u][2])REP(i,n)if(check[i][to][1])D(i,v,1);\n if(check[s][t][0])while(que.size())que.pop();\n }\n\n if(check[s][t][0])cout<<\"Yes\\n\";\n else cout<<\"No\\n\";\n }\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 5524, "score_of_the_acc": -0.0981, "final_rank": 9 }, { "submission_id": "aoj_2704_6793597", "code_snippet": "#pragma region Macros\n#if defined(noimi) && defined(_GLIBCXX_DEBUG) && defined(_GLIBCXX_DEBUG_PEDANTIC)\n// #pragma comment(linker, \"/stack:200000000\")\n#include <stdc++.h>\n#pragma GCC optimize(\"O3\")\n#else\n#pragma GCC optimize(\"Ofast\")\n// #pragma GCC optimize(\"unroll-loops\")\n// #pragma GCC target(\"popcnt\")\n// #pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,fma,abm,mmx,avx,avx2,tune=native\")\n// #pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,fma,abm,mmx,avx,avx2\")\n// #pragma GCC target(\"avx2\")\n#include <bits/stdc++.h>\n#endif\n\n#ifdef noimi\n#define oj_local(a, b) b\n#else\n#define oj_local(a, b) a\n#endif\n\n#define LOCAL if(oj_local(0, 1))\n#define OJ if(oj_local(1, 0))\n\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long int;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing ld = long double;\ntemplate <typename T> using vc = vector<T>;\ntemplate <typename T> using vvc = vector<vc<T>>;\ntemplate <typename T> using vvvc = vector<vvc<T>>;\nusing vi = vc<int>;\nusing vl = vc<ll>;\nusing vpi = vc<pii>;\nusing vpl = vc<pll>;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T> int si(const T &x) { return x.size(); }\ntemplate <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }\ntemplate <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }\nvi iota(int n) {\n vi a(n);\n return iota(a.begin(), a.end(), 0), a;\n}\ntemplate <typename T> vi iota(const vector<T> &a, bool greater = false) {\n vi res(a.size());\n iota(res.begin(), res.end(), 0);\n sort(res.begin(), res.end(), [&](int i, int j) {\n if(greater) return a[i] > a[j];\n return a[i] < a[j];\n });\n return res;\n}\n\n// macros\n#define overload5(a, b, c, d, e, name, ...) name\n#define overload4(a, b, c, d, name, ...) name\n#define endl '\\n'\n#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)\n#define REP1(i, n) for(ll i = 0; i < (n); ++i)\n#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)\n#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)\n#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)\n#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)\n#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))\n#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)\n#define fore0(a) rep(a.size())\n#define fore1(i, a) for(auto &&i : a)\n#define fore2(a, b, v) for(auto &&[a, b] : v)\n#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)\n#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)\n#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)\n#define fi first\n#define se second\n#define pb push_back\n#define ppb pop_back\n#define ppf pop_front\n#define eb emplace_back\n#define drop(s) cout << #s << endl, exit(0)\n#define si(c) (int)(c).size()\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\n#define rng(v, l, r) v.begin() + l, v.begin() + r\n#define all(c) begin(c), end(c)\n#define rall(c) rbegin(c), rend(c)\n#define SORT(v) sort(all(v))\n#define REV(v) reverse(all(v))\n#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())\ntemplate <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }\n#define MIN(v) *min_element(all(v))\n#define MAX(v) *max_element(all(v))\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\nconstexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};\nconstexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};\n\nnamespace yesno_impl {\nconst string YESNO[2] = {\"NO\", \"YES\"};\nconst string YesNo[2] = {\"No\", \"Yes\"};\nconst string yesno[2] = {\"no\", \"yes\"};\nconst string firstsecond[2] = {\"second\", \"first\"};\nconst string FirstSecond[2] = {\"Second\", \"First\"};\nconst string possiblestr[2] = {\"impossible\", \"possible\"};\nvoid YES(bool t = 1) { cout << YESNO[t] << endl; }\nvoid NO(bool t = 1) { YES(!t); }\nvoid Yes(bool t = 1) { cout << YesNo[t] << endl; }\nvoid No(bool t = 1) { Yes(!t); }\nvoid yes(bool t = 1) { cout << yesno[t] << endl; }\nvoid no(bool t = 1) { yes(!t); }\nvoid first(bool t = 1) { cout << firstsecond[t] << endl; }\nvoid First(bool t = 1) { cout << FirstSecond[t] << endl; }\nvoid possible(bool t = 1) { cout << possiblestr[t] << endl; }\n}; // namespace yesno_impl\nusing namespace yesno_impl;\n\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define VEC2(type, name1, name2, size) \\\n vector<type> name1(size), name2(size); \\\n for(int i = 0; i < size; i++) IN(name1[i], name2[i])\n#define VEC3(type, name1, name2, name3, size) \\\n vector<type> name1(size), name2(size), name3(size); \\\n for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])\n#define VEC4(type, name1, name2, name3, name4, size) \\\n vector<type> name1(size), name2(size), name3(size), name4(size); \\\n for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &...tail) {\n scan(head);\n IN(tail...);\n}\n\ntemplate <typename T, typename S> T ceil(T x, S y) {\n assert(y);\n return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));\n}\n\ntemplate <typename T, typename S> T floor(T x, S y) {\n assert(y);\n return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));\n}\ntemplate <class T> T POW(T x, int n) {\n T res = 1;\n for(; n; n >>= 1, x *= x)\n if(n & 1) res *= x;\n return res;\n}\ntemplate <class T, class S> T POW(T x, S n, const ll &mod) {\n T res = 1;\n x %= mod;\n for(; n; n >>= 1, x = x * x % mod)\n if(n & 1) res = res * x % mod;\n return res;\n}\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n UNIQUE(y);\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\ntemplate <class S> void fold_in(vector<S> &v) {}\ntemplate <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {\n for(auto e : a) v.emplace_back(e);\n fold_in(v, tail...);\n}\ntemplate <class S> void renumber(vector<S> &v) {}\ntemplate <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {\n for(auto &&e : a) e = lb(v, e);\n renumber(v, tail...);\n}\ntemplate <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {\n vector<S> v;\n fold_in(v, head, args...);\n sort(all(v)), v.erase(unique(all(v)), v.end());\n renumber(v, head, args...);\n return v;\n}\ntemplate <typename T> vector<T> RUI(const vector<T> &v) {\n vector<T> res(v.size() + 1);\n for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];\n return res;\n}\n// 反時計周りに 90 度回転\ntemplate <typename T> void rot(vector<vector<T>> &v) {\n if(empty(v)) return;\n int n = v.size(), m = v[0].size();\n vector res(m, vector<T>(n));\n rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];\n v.swap(res);\n}\n// x in [l, r)\ntemplate <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }\n\n// 便利関数\nconstexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }\nconstexpr ll tri(ll n) { return n * (n + 1) / 2; }\n// l + ... + r\nconstexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }\nll max(int x, ll y) { return max((ll)x, y); }\nll max(ll x, int y) { return max(x, (ll)y); }\nint min(int x, ll y) { return min((ll)x, y); }\nint min(ll x, int y) { return min(x, (ll)y); }\n// bit 演算系\nll pow2(int i) { return 1LL << i; }\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }\n// int allbit(int n) { return (1 << n) - 1; }\nconstexpr ll mask(int n) { return (1LL << n) - 1; }\n// int popcount(signed t) { return __builtin_popcount(t); }\n// int popcount(ll t) { return __builtin_popcountll(t); }\nint popcount(uint64_t t) { return __builtin_popcountll(t); }\nstatic inline uint64_t popcount64(uint64_t x) {\n uint64_t m1 = 0x5555555555555555ll;\n uint64_t m2 = 0x3333333333333333ll;\n uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;\n uint64_t h01 = 0x0101010101010101ll;\n\n x -= (x >> 1) & m1;\n x = (x & m2) + ((x >> 2) & m2);\n x = (x + (x >> 4)) & m4;\n\n return (x * h01) >> 56;\n}\nbool ispow2(int i) { return i && (i & -i) == i; }\n\n// ll rnd(ll l, ll r) { //[l, r)\n// #ifdef noimi\n// static mt19937_64 gen;\n// #else\n// static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n// #endif\n// return uniform_int_distribution<ll>(l, r - 1)(gen);\n// }\n// ll rnd(ll n) { return rnd(0, n); }\n\n// template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }\n\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }\ntemplate <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }\ntemplate <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }\ntemplate <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }\ntemplate <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }\ntemplate <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }\ntemplate <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n friend ostream operator<<(ostream &os, edge &e) { return os << e.to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return res;\n}\nGraph getTreeFromPar(int n, int margin = 1) {\n Graph res(n);\n for(int i = 1; i < n; i++) {\n int a;\n cin >> a;\n res[a - margin].emplace_back(i);\n }\n return res;\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n scan(a), scan(b), scan(c);\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return res;\n}\nvoid add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }\ntemplate <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }\n\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\n\nistream &operator>>(istream &is, i128 &v) {\n string s;\n is >> s;\n v = 0;\n for(int i = 0; i < (int)s.size(); i++) {\n if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if(s[0] == '-') { v *= -1; }\n return is;\n}\n\nostream &operator<<(ostream &os, const i128 &v) {\n if(v == 0) { return (os << \"0\"); }\n i128 num = v;\n if(v < 0) {\n os << '-';\n num = -num;\n }\n string s;\n for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }\n reverse(s.begin(), s.end());\n return (os << s);\n}\nnamespace aux {\ntemplate <typename T, unsigned N, unsigned L> struct tp {\n static void output(std::ostream &os, const T &v) {\n os << std::get<N>(v) << (&os == &cerr ? \", \" : \" \");\n tp<T, N + 1, L>::output(os, v);\n }\n};\ntemplate <typename T, unsigned N> struct tp<T, N, N> {\n static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }\n};\n} // namespace aux\ntemplate <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {\n if(&os == &cerr) { os << '('; }\n aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);\n if(&os == &cerr) { os << ')'; }\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n if(&os == &cerr) { return os << \"(\" << p.first << \", \" << p.second << \")\"; }\n return os << p.first << \" \" << p.second;\n}\ntemplate <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {\n bool f = true;\n if(&os == &cerr) os << \"[\";\n for(auto &y : x) {\n if(&os == &cerr)\n os << (f ? \"\" : \", \") << y;\n else\n os << (f ? \"\" : \" \") << y;\n f = false;\n }\n if(&os == &cerr) os << \"]\";\n return os;\n}\n\n#ifdef noimi\n#undef endl\nvoid debug() { cerr << endl; }\nvoid debug(bool) { cerr << endl; }\ntemplate <class Head, class... Tail> void debug(bool is_front, Head head, Tail... tail) {\n if(!is_front) cerr << \", \";\n cerr << head;\n debug(false, tail...);\n}\n\n#define dump(args...) \\\n { \\\n vector<string> _debug = _split(#args, ','); \\\n err(true, begin(_debug), args); \\\n }\n\nvector<string> _split(const string &s, char c) {\n vector<string> v;\n stringstream ss(s);\n string x;\n while(getline(ss, x, c)) {\n if(empty(v))\n v.eb(x);\n else {\n bool flag = false;\n for(auto [c, d] : {pair('(', ')'), pair('[', ']'), pair('{', '}')}) {\n if(count(all(v.back()), c) != count(all(v.back()), d)) flag = true;\n }\n if(flag)\n v.back() += \",\" + x;\n else\n v.eb(x);\n }\n }\n return move(v);\n}\n\nvoid err(bool, vector<string>::iterator) { cerr << endl; }\ntemplate <typename T, typename... Args> void err(bool is_front, vector<string>::iterator it, T a, Args... args) {\n if(!is_front) cerr << \", \";\n cerr << it->substr((*it)[0] == ' ', (*it).size()) << \" = \" << a, err(false, ++it, args...);\n}\n\n// #define dump(...) cerr << #__VA_ARGS__ << \" : \", debug(true, __VA_ARGS__)\n#else\n#define dump(...) static_cast<void>(0)\n#define dbg(...) static_cast<void>(0)\n#endif\nvoid OUT() { cout << endl; }\ntemplate <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {\n cout << head;\n if(sizeof...(tail)) cout << ' ';\n OUT(tail...);\n}\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\ntemplate <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};\n\ntemplate <class F> struct REC {\n F f;\n REC(F &&f_) : f(std::forward<F>(f_)) {}\n template <class... Args> auto operator()(Args &&...args) const { return f(*this, std::forward<Args>(args)...); }\n};\n\ntemplate <class S> vector<pair<S, int>> runLength(const vector<S> &v) {\n vector<pair<S, int>> res;\n for(auto &e : v) {\n if(res.empty() or res.back().fi != e)\n res.eb(e, 1);\n else\n res.back().se++;\n }\n return res;\n}\nvector<pair<char, int>> runLength(const string &v) {\n vector<pair<char, int>> res;\n for(auto &e : v) {\n if(res.empty() or res.back().fi != e)\n res.eb(e, 1);\n else\n res.back().se++;\n }\n return res;\n}\n\nint toint(const char &c, const char start = 'a') { return c - start; }\nint toint(const char &c, const string &chars) { return find(all(chars), c) - begin(chars); }\nint alphabets_to_int(const char &c) { return (islower(c) ? c - 'a' : c - 'A' + 26); }\ntemplate <typename T> auto toint(const T &v, const char &start = 'a') {\n vector<decltype(toint(v[0]))> ret;\n ret.reserve(v.size());\n for(auto &&e : v) ret.emplace_back(toint(e, start));\n return ret;\n}\ntemplate <typename T> auto toint(const T &v, const string &start) {\n vector<decltype(toint(v[0]))> ret;\n ret.reserve(v.size());\n for(auto &&e : v) ret.emplace_back(toint(e, start));\n return ret;\n}\n// a -> 0, A -> 26\ntemplate <typename T> auto alphabets_to_int(const T &s) {\n vector<decltype(alphabets_to_int(s[0]))> res;\n res.reserve(s.size());\n for(auto &&e : s) { res.emplace_back(alphabets_to_int(e)); }\n return res;\n}\n\ntemplate <class T, class F> T bin_search(T ok, T ng, const F &f) {\n while(abs(ok - ng) > 1) {\n T mid = ok + ng >> 1;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\ntemplate <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {\n while(iter--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(11);\n }\n} setup_io;\n\n#pragma endregion\n\nint main() {\n while(true) {\n INT(n, m, s, t);\n if(!n) exit(0);\n s--, t--;\n using B = bitset<200>;\n\n vv(int, d, n, n);\n vector<B> D(n);\n queue<pii> q;\n vector<B> x(n);\n vector<B> y(n);\n Wgraph<char> g(n), rg(n);\n rep(i, m) {\n INT(u, v);\n u--, v--;\n CHR(c);\n if(c == 'a' and !d[u][v]) {\n d[u][v] = D[v][u] = 1, q.emplace(u, v);\n g[u].eb(v, c);\n } else if(c == '(')\n x[v][u] = 1;\n else if(c == '[')\n y[v][u] = 1;\n else\n g[u].eb(v, c);\n if(c == '+' or c == '*') rg[v].eb(u, c);\n }\n while(!empty(q)) {\n auto [u, v] = q.front();\n q.pop();\n // dump(u, v);\n fore(e, g[v]) {\n if(e.cost == '+' or e.cost == '*') {\n rep(s, n) {\n if(d[e][s] and !d[u][s]) d[u][s] = D[s][u] = true, q.emplace(u, s);\n }\n } else if(e.cost == ')') {\n auto b = ~D[e] & x[u];\n // dump(b);\n for(int i = b._Find_first(); i < si(b); i = b._Find_next(i)) {\n // dump(i);\n d[i][e] = D[e][i] = true, q.emplace(i, e);\n }\n } else if(e.cost == ']') {\n auto b = ~D[e] & y[u];\n for(int i = b._Find_first(); i < si(b); i = b._Find_next(i)) { d[i][e] = D[e][i] = true, q.emplace(i, e); }\n }\n }\n\n fore(e, rg[u]) {\n if(e.cost == '+' or e.cost == '*') {\n // dump(e.to, u, v);\n rep(s, n) {\n if(d[s][e] and !d[s][v]) d[s][v] = D[v][s] = true, q.emplace(s, v);\n }\n }\n }\n }\n Yes(d[s][t]);\n }\n}", "accuracy": 1, "time_ms": 6020, "memory_kb": 6144, "score_of_the_acc": -0.9902, "final_rank": 17 }, { "submission_id": "aoj_2704_6157540", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 10007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-4;\nconst ld pi = acosl(-1.0);\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tif (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 10;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n\n//expr\n//+term\n//term\n//*factor\n//factor\n//expr)\n//expr]\n\nstruct ste {\n\tint i, j, t;\n};\nqueue<ste> q;\nbool added[200][200][7];\nbool exi[200][200][7];\nvoid add(int i, int j, int t) {\n\tif (added[i][j][t])return;\n\tadded[i][j][t] = true;\n\tq.push({ i,j,t });\n}\nstring ord = \"()[]+*\";\n//()[]+*\nvector<int> G[200][6];\n\nint n, m, s, g;\nvoid solve() {\n\ts--; g--;\n\trep(i, n)rep(j, n)rep(k, 7) {\n\t\tadded[i][j][k] = false;\n\t\texi[i][j][k] = false;\n\t}\n\trep(i, n)rep(t, 6)G[i][t].clear();\n\twhile (!q.empty())q.pop();\n\trep(i, m) {\n\t\tint a, b;char c; cin >> a >> b >> c; a--; b--;\n\t\tif (c == 'a')add(a, b, 4);\n\t\telse {\n\t\t\tint loc = ord.find(c);\n\t\t\tif (loc != 1 && loc != 3)swap(a, b);\n\t\t\tG[a][loc].push_back(b);\n\t\t}\n\t}\n\twhile (!q.empty()) {\n\t\t//cout << q.size() << \"\\n\";\n\t\tste cur = q.front(); q.pop();\n\t\tint i = cur.i, j = cur.j, t = cur.t;\n\t\texi[i][j][t] = true;\n\t\tif (i == s && j == g && t == 0) {\n\t\t\tcout << \"Yes\\n\"; return;\n\t\t}\n\t\tif (t == 0) {\n\t\t\t//expr\n\t\t\tfor (int to : G[j][1]) {\n\t\t\t\tadd(i, to, 5);\n\t\t\t}\n\t\t\tfor (int to : G[j][3]) {\n\t\t\t\tadd(i, to, 6);\n\t\t\t}\n\t\t\trep(to, n) {\n\t\t\t\tif (exi[j][to][1]) {\n\t\t\t\t\tadd(i, to, 0);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if (t == 1) {\n\t\t\t//+term\n\t\t\trep(to, n) {\n\t\t\t\tif (exi[to][i][0]) {\n\t\t\t\t\tadd(to, j, 0);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if (t == 2) {\n\t\t\t//term\n\t\t\tfor (int to : G[i][4]) {\n\t\t\t\tadd(to, j, 1);\n\t\t\t}\n\t\t\trep(to, n) {\n\t\t\t\tif (exi[j][to][3]) {\n\t\t\t\t\tadd(i, to, 2);\n\t\t\t\t}\n\t\t\t}\n\t\t\tadd(i, j, 0);\n\t\t}\n\t\telse if (t == 3) {\n\t\t\t//*factor\n\t\t\trep(to, n) {\n\t\t\t\tif (exi[to][i][2]) {\n\t\t\t\t\tadd(to, j, 2);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if (t == 4) {\n\t\t\t//factor\n\t\t\tfor (int to : G[i][5]) {\n\t\t\t\tadd(to, j, 3);\n\t\t\t}\n\t\t\tadd(i, j, 2);\n\t\t}\n\t\telse if (t == 5) {\n\t\t\t//expr)\n\t\t\tfor (int to : G[i][0]) {\n\t\t\t\tadd(to, j, 4);\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\t//expr]\n\t\t\tfor (int to : G[i][2]) {\n\t\t\t\tadd(to, j, 4);\n\t\t\t}\n\t\t}\n\t}\n\tcout << \"No\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(8);\n\tinit_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\twhile(cin>>n>>m>>s>>g,n)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 6508, "score_of_the_acc": -0.0235, "final_rank": 2 }, { "submission_id": "aoj_2704_6026950", "code_snippet": "//Let's join Kaede Takagaki Fan Club !!\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <cstdio>\n#include <cstring>\n#include <cstdlib>\n#include <cmath>\n#include <ctime>\n#include <cassert>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n#include <cassert>\n#include <iomanip>\n#include <chrono>\n#include <random>\n#include <bitset>\n#include <complex>\n#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace std;\n#define int long long\n//#define L __int128\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define eb emplace_back\n#define mp make_pair\n#define eps 1e-7\n#define INF 1000000000\n#define a first\n#define b second\n#define fi first\n#define sc second\n#define rng(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\n#define all(x) x.begin(),x.end()\n#define si(x) int(x.size())\n \n#ifdef LOCAL\n#define dmp(x) cerr<<__LINE__<<\" \"<<#x<<\" \"<<x<<endl\n#else\n#define dmp(x) void(0)\n#endif\n \ntemplate<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;}\ntemplate<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;}\n \ntemplate<class t> using vc=vector<t>;\n \ntemplate<class t,class u>\nostream& operator<<(ostream& os,const pair<t,u>& p){\n\treturn os<<\"{\"<<p.fi<<\",\"<<p.sc<<\"}\";\n}\n \ntemplate<class t> ostream& operator<<(ostream& os,const vc<t>& v){\n\tos<<\"{\";\n\tfor(auto e:v)os<<e<<\",\";\n\treturn os<<\"}\";\n}\n \ntemplate<class T>\nvoid g(T &a){\n\tcin >> a;\n}\ntemplate<class T>\nvoid o(const T &a,bool space=false){\n\tcout << a << (space?' ':'\\n');\n}\n//ios::sync_with_stdio(false);\n//const ll mod = 998244353;\nconst ll mod = 1000000007;\nmt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());\ntemplate<class T>\nvoid add(T&a,T b){\n\ta+=b;\n\tif(a >= mod) a-=mod;\n}\nll modpow(ll x,ll n){\n\tll res=1;\n\twhile(n>0){\n\t\tif(n&1) res=res*x%mod;\n\t\tx=x*x%mod;\n\t\tn>>=1;\n\t}\n\treturn res;\n}\n#define _sz 1\nll F[_sz],R[_sz];\nvoid make(){\n\tF[0] = 1;\n\tfor(int i=1;i<_sz;i++) F[i] = F[i-1]*i%mod;\n\tR[_sz-1] = modpow(F[_sz-1], mod-2);\n\tfor(int i=_sz-2;i>=0;i--) R[i] = R[i+1] * (i+1) % mod;\n}\nll C(int a,int b){\n\tif(b < 0 || a < b) return 0;\n\treturn F[a]*R[b]%mod*R[a-b]%mod;\n}\n\n//複数テストケースなので積み上げる変数はローカルに!\n//置けないなら必ず初期化!\nint n, m, s, t;\nbool ex[205][205][8];\nbool dp[205][205][5];\nvoid solve(){\n\t//最初の入力は済んでいる\n\tmemset(ex, 0, sizeof(ex));\n\tmemset(dp, 0, sizeof(dp));\n\tqueue<int>que;\n\trep(i, m){\n\t\tint a, b; string _c; cin >> a >> b >> _c;\n\t\ta --; b --;\n\t\tchar c = _c[0];\n\t\tint num;\n\t\tif(c == 'a') num = 0;\n\t\telse if(c == '+' or c == '*') num = 1;\n\t\telse if(c == '(') num = 2;\n\t\telse if(c == '[') num = 3;\n\t\telse if(c == ')') num = 6;\n\t\telse num = 7;\n\t\tex[a][b][num] = 1;\n\t\tif(num == 0 and !dp[a][b][0]){\n\t\t\tdp[a][b][0] = 1;\n\t\t\tque.push(a * 1000000 + b * 1000 + 0);\n\t\t}\n\t}\n\twhile(!que.empty()){\n\t\tauto qq = que.front(); que.pop();\n\t\tint s = qq / 1000000; qq %= 1000000;\n\t\tint t = qq / 1000; qq %= 1000;\n\t\tint u = qq;\n\t\tif(u == 0){\n\t\t\t//0 -> 1, 2, 3, 4\n\t\t\trep(pre, n) if(ex[pre][s][1] and !dp[pre][t][1]){\n\t\t\t\tdp[pre][t][1] = 1;\n\t\t\t\tque.push(pre * 1000000 + t * 1000 + 1);\n\t\t\t}\n\t\t\trep(nxt, n){\n\t\t\t\tif(ex[t][nxt][6] and !dp[s][nxt][2]){\n\t\t\t\t\tdp[s][nxt][2] = 1;\n\t\t\t\t\tque.push(s * 1000000 + nxt * 1000 + 2);\n\t\t\t\t}\n\t\t\t\tif(ex[t][nxt][7] and !dp[s][nxt][3]){\n\t\t\t\t\tdp[s][nxt][3] = 1;\n\t\t\t\t\tque.push(s * 1000000 + nxt * 1000 + 3);\n\t\t\t\t}\n\t\t\t\tif(ex[t][nxt][1] and !dp[s][nxt][4]){\n\t\t\t\t\tdp[s][nxt][4] = 1;\n\t\t\t\t\tque.push(s * 1000000 + nxt * 1000 + 4);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse if(u == 1){\n\t\t\trep(pre, n) if(dp[pre][s][0] and !dp[pre][t][0]){\n\t\t\t\tdp[pre][t][0] = 1;\n\t\t\t\tque.push(pre * 1000000 + t * 1000 + 0);\n\t\t\t}\n\t\t}\n\t\telse if(u == 4){\n\t\t\trep(nxt, n) if(dp[t][nxt][0] and !dp[s][nxt][0]){\n\t\t\t\tdp[s][nxt][0] = 1;\n\t\t\t\tque.push(s * 1000000 + nxt * 1000 + 0);\n\t\t\t}\n\t\t}\n\t\telse{\n\t\t\trep(pre, n) if(ex[pre][s][u] and !dp[pre][t][0]){\n\t\t\t\tdp[pre][t][0] = 1;\n\t\t\t\tque.push(pre * 1000000 + t * 1000 + 0);\n\t\t\t}\n\t\t}\n\t}\n\to(dp[s][t][0]?\"Yes\":\"No\");\n}\nsigned main(){\n\t//cin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\twhile(true){\n\t\tcin>>n>>m>>s>>t;\n\t\ts--;t--;\n\t\t//終了条件\n\t\tif(!n) return 0;\n\t\tsolve();\n\t}\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 5144, "score_of_the_acc": -0.0597, "final_rank": 3 }, { "submission_id": "aoj_2704_5998389", "code_snippet": "/**\n * author: otera\n * created: 25.10.2021 17:54:41 \n**/\n#include<bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\n#define repa(i, n) for(int i = 0; i < n; ++ i)\n#define repb(i, a, b) for(int i = a; i < b; ++ i)\n#define repc(i, a, b, c) for(int i = a; i < b; i += c)\n#define overload4(a, b, c, d, e, ...) e\n#define rep(...) overload4(__VA_ARGS__, repc, repb, repa)(__VA_ARGS__)\n#define rep1a(i, n) for(int i = 0; i <= n; ++ i)\n#define rep1b(i, a, b) for(int i = a; i <= b; ++ i)\n#define rep1c(i, a, b, c) for(int i = a; i <= b; i += c)\n#define rep1(...) overload4(__VA_ARGS__, rep1c, rep1b, rep1a)(__VA_ARGS__)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define per1(i,n) for(int i=n;i>=1;i--)\ntypedef pair<ll, ll> LP;\n#define pb push_back\n#define eb emplace_back\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define si(c) (int)(c).size()\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\n#define tpow(n) (1LL<<(n))\n#define unless(A) if(!(A))\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll intpow(ll a, ll b, ll m) {ll ans = 1; while(b){ if(b & 1) (ans *= a) %= m; (a *= a) %= m; b /= 2; } return ans; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate <class T> using vc = vector<T>;\ntemplate <class T> using vvc = vector<vc<T>>;\ntemplate <class T> using vvvc = vector<vvc<T>>;\ntemplate <class T> using vvvvc = vector<vvvc<T>>;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> void scan(T& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ cout << ' '; }\ntemplate<class T> void print(const T& a){ cout << a; }\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout << ' '; print(*i); } }\nint out(){ cout << '\\n'; return 0; }\ntemplate<class T> int out(const T& t){ print(t); cout << '\\n'; return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); cout << ' '; out(tail...); return 0; }\n#define CHOOSE(a) CHOOSE2 a\n#define CHOOSE2(a0,a1,a2,a3,a4,x,...) x\n#define debug_1(x1) cout<<#x1<<\": \"<<x1<<endl\n#define debug_2(x1,x2) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<endl\n#define debug_3(x1,x2,x3) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<endl\n#define debug_4(x1,x2,x3,x4) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<endl\n#define debug_5(x1,x2,x3,x4,x5) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<\", \"#x5<<\": \"<<x5<<endl\n#ifdef DEBUG\n#define debug(...) CHOOSE((__VA_ARGS__,debug_5,debug_4,debug_3,debug_2,debug_1,~))(__VA_ARGS__)\n#define dump(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...)\n#define dump(...)\n#endif\n\n#define int long long\n\ntypedef pair<int, char> P;\n\n// expression -> aに置き換えてok\n\n// a 0\n// ( a 1\n// [ a 2\n// a + 3\n// + a 4\nbool dp[250][250][5];\n// a 0\n// + or * 1\n// ( 2\n// ) 3\n// [ 4\n// ] 5\nbool e[250][250][6];\nqueue<pair<int, int>> que[5], nque[5];\n\nvoid solve() {\n int n, m, s, t;\n while(cin >> n >> m >> s >> t) {\n if(n == 0 and m == 0 and s == 0 and t == 0) break;\n -- s, -- t;\n // clear\n rep(i, n) {\n rep(j, n) {\n rep(k, 5) {\n dp[i][j][k] = 0;\n }\n }\n }\n rep(i, n) {\n rep(j, n) {\n rep(k, 6) {\n e[i][j][k] = 0;\n }\n }\n }\n rep(k, 5) {\n while(que[k].size()) que[k].pop();\n while(nque[k].size()) nque[k].pop();\n }\n // calc\n vvc<P> g(n);\n rep(i, m) {\n INT(a, b); -- a, -- b;\n CHR(c);\n // debug(a, b, c);\n if(c == '*') c = '+';\n g[a].eb(b, c);\n // g[b].eb(a, c);\n if(c == 'a') {\n dp[a][b][0] = 1;\n e[a][b][0] = 1;\n // e[b][a][0] = 1;\n // debug(a, b);\n que[0].push({a, b});\n // que[0].push({b, a});\n } else if(c == '+') e[a][b][1] = 1;\n else if(c == '(') e[a][b][2] = 1;\n else if(c == ')') e[a][b][3] = 1;\n else if(c == '[') e[a][b][4] = 1;\n else if(c == ']') e[a][b][5] = 1;\n }\n while(que[0].size() or que[1].size() or que[2].size() or que[3].size() or que[4].size()) {\n // rep(k, 4) {\n // while(que[k].size()) {\n // auto [a, b] = que[k].front(); que[k].pop();\n // rep(c, n) {\n // // calc\n // }\n // }\n // }\n // a\n while(que[0].size()) {\n auto [a, b] = que[0].front();\n que[0].pop();\n debug(a, b);\n rep(c, n) {\n // c - a == '('\n if(e[c][a][2]) {\n unless(dp[c][b][1]) {\n dp[c][b][1] = 1;\n nque[1].push({c, b});\n }\n }\n // c - a == '['\n if(e[c][a][4]) {\n unless(dp[c][b][2]) {\n dp[c][b][2] = 1;\n nque[2].push({c, b});\n }\n }\n // b - c == '+'\n if(e[b][c][1]) {\n unless(dp[a][c][3]) {\n dp[a][c][3] = 1;\n nque[3].push({a, c});\n }\n }\n // c - a == '+'\n if(e[c][a][1]) {\n unless(dp[c][b][4]) {\n dp[c][b][4] = 1;\n nque[4].push({c, b});\n }\n }\n }\n }\n // ( a\n while(que[1].size()) {\n auto [a, b] = que[1].front(); que[1].pop();\n rep(c, n) {\n // b - c == ')'\n if(e[b][c][3]) {\n unless(dp[a][c][0]) {\n dp[a][c][0] = 1;\n nque[0].push({a, c});\n }\n }\n }\n }\n // [ a\n while(que[2].size()) {\n auto [a, b] = que[2].front(); que[2].pop();\n rep(c, n) {\n // b - c == ']'\n if(e[b][c][5]) {\n unless(dp[a][c][0]) {\n dp[a][c][0] = 1;\n nque[0].push({a, c});\n }\n }\n }\n }\n // a +\n while(que[3].size()) {\n auto [a, b] = que[3].front(); que[3].pop();\n rep(c, n) {\n // b - c == 'a' == expression\n if(dp[b][c][0]) {\n unless(dp[a][c][0]) {\n dp[a][c][0] = 1;\n nque[0].push({a, c});\n }\n }\n }\n }\n // + a\n while(que[4].size()) {\n auto [a, b] = que[4].front(); que[4].pop();\n rep(c, n) {\n // c - a == 'a' == expression\n if(dp[c][a][0]) {\n unless(dp[c][b][0]) {\n dp[c][b][0] = 1;\n nque[0].push({c, b});\n }\n }\n }\n }\n rep(k, 5) {\n swap(que[k], nque[k]);\n }\n }\n out(dp[s][t][0] ? \"Yes\" : \"No\");\n }\n}\n\nsigned main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n // cout << fixed << setprecision(20);\n // INT(t); rep(i, t)solve();\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 8864, "score_of_the_acc": -0.0831, "final_rank": 5 } ]
aoj_2707_cpp
監獄 無限人の囚人たちがいる。はじめ、囚人たちは 0, 1, 2, ... と番号が振られている。 次の操作を N 回行う。 0 番目の囚人を釈放し、 k, 2k, 3k, ... 番目の囚人たちを処刑する。 その後、残った囚人たちに番号を振り直す。このとき、元の番号が小さい囚人から順に 0, 1, 2, ... と番号を振る。 N 回目の操作で釈放される囚人がはじめに振られていた番号を求めよ。 Constraints 1 ≤ N ≤ 10^5 2 ≤ k ≤ 10^5 答えは 10^{18} 以下である。 Input Format 入力は以下の形式で標準入力から与えられる。 N k Output Format 答えを一行に出力せよ。 Sample Input 1 4 2 Sample Output 1 7 Sample Input 2 1 3 Sample Output 2 0 Sample Input 3 100000 100000 Sample Output 3 99999
[ { "submission_id": "aoj_2707_10865966", "code_snippet": "//#define __USE_MINGW_ANSI_STDIO 0\n#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<ll> VL;\ntypedef vector<VL> VVL;\ntypedef pair<int, int> PII;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n#define MP make_pair\n#define PB push_back\n#define MOD 1000000007\n#define INF (1LL<<30)\n#define LLINF (1LL<<60)\n#define PI 3.14159265359\n#define EPS 1e-12\n//#define int ll\n\nsigned main(void)\n{\n\tint n, k;\n\tcin >> n >> k;\n\t\n\tll low = 0, high = 1e18;\n\twhile(high-low>1) {\n\t\tll mid = (high+low)/2, tmp = mid;\n\t\t//cout << high << \" \" << mid << \" \" << low << endl;\n\t\tbool flag = false;\n\t\tREP(i, n-1) {\n\t\t\ttmp -= (tmp-1)/k+1;\n\t\t\tif(tmp <= 0) flag = true;\n\t\t}\n\t\tif(flag) low = mid;\n\t\telse high = mid;\n\t}\n\tcout << low << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3452, "score_of_the_acc": -1.3444, "final_rank": 8 }, { "submission_id": "aoj_2707_7965362", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ll = long long;\n\nint main() {\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint N, K;\n\tcin >> N >> K;\n\tll ok = 0;\n\tll ng = 1e18 + 100;\n\tauto isOk = [&](ll X) -> bool {\n\t\tll cur = X;\n\t\tfor(int _ = 0; _ < N - 1; _++) {\n\t\t\tcur--;\n\t\t\tcur -= cur / K;\n\t\t}\n\t\treturn cur <= 0;\n\t};\n\twhile(ng - ok > 1) {\n\t\tll mid = (ng + ok) / 2;\n\t\tif(isOk(mid))\n\t\t\tok = mid;\n\t\telse\n\t\t\tng = mid;\n\t}\n\tcout << ok << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3456, "score_of_the_acc": -1.3556, "final_rank": 9 }, { "submission_id": "aoj_2707_7956631", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint ok(ll mid, ll &N, ll &K){\n for (int i = 0; i < N - 2; i++){\n mid -= (mid / K) + 1;\n if (mid <= 0) return 1;\n }\n return 0;\n}\n\nint main(){\n ll N, K; cin >> N >> K;\n ll top = 1001001001001001001, bottom = -1;\n while (top - bottom > 1){\n ll mid = (top + bottom) / 2;\n if (ok(mid, N, K)) bottom = mid;\n else top = mid;\n }\n cout << top << endl;\n}", "accuracy": 0.0784313725490196, "time_ms": 50, "memory_kb": 3440, "score_of_the_acc": -1.3111, "final_rank": 20 }, { "submission_id": "aoj_2707_7864763", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nlong long updiv(long long a, long long b) {\n assert(b > 0);\n return (a + b - 1) / b;\n}\n\nint main() {\n int N, K; cin >> N >> K;\n\n auto get = [&](long long v) -> long long { // get i satisfy i become v\n\n auto f = [&](long long p) -> bool {\n return p - updiv(p, K) <= v;\n };\n\n long long l = 0LL, r = 1e18 + 100;\n while (r - l > 1) {\n long long mid = l + (r - l) / 2;\n (f(mid) ? l : r) = mid;\n }\n\n return l;\n };\n\n long long ans = 0LL;\n for (int i = 0 ; i < N - 1 ; i++) {\n ans = get(ans);\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3440, "score_of_the_acc": -1.4111, "final_rank": 13 }, { "submission_id": "aoj_2707_7329756", "code_snippet": "#include <iostream>\nusing namespace std;\nusing ll = long long;\n\nint main(){\n ll n, k; cin >> n >> k;\n \n ll ac = 1LL << 60, wa = -1;\n auto f = [&](ll x){\n for(int i = 0; i < n-1; i++){\n x -= (x/k)+1;\n }\n return x >= 0;\n };\n while(ac-wa > 1){\n ll wj = (ac+wa)/2;\n if(f(wj)) ac = wj;\n else wa = wj;\n }\n cout << ac << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3440, "score_of_the_acc": -1.3111, "final_rank": 6 }, { "submission_id": "aoj_2707_6935921", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <algorithm>\n#include <set>\n#include <stack>\n#include <queue>\n#include <cmath>\n#include <iomanip>\n#include <numeric>\n#include <string>\n#include <bitset>\n#include <assert.h>\n\n#define _GLIBCXX_DEBUG\n#define _LIBCPP_DEBUG 0\n#define rep(i, n) for (int i = 0; i < (int)(n); ++i)\n#define popcnt(x) __builtin_popcountll(x)\n\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\ntemplate<class T> inline bool chmax(T& a, T b){ if (a < b){ a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b){ if (a > b){ a = b; return true; } return false; }\nint dx[] = {0, -1, 0, 1};\nint dy[] = {-1, 0, 1, 0};\n\n\nint main() {\n int n, k; cin >> n >> k;\n\n ll l = -1, r = 2e18;\n while(r - l > 1) {\n ll m = (l + r) / 2;\n ll total = m + 1;\n bool ok = true;\n rep(i, n) {\n if (total <= 0) ok = false;\n ll d = (total + k - 1) / k;\n total -= d;\n }\n if (ok) r = m;\n else l = m;\n }\n cout << r << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3440, "score_of_the_acc": -1.4111, "final_rank": 13 }, { "submission_id": "aoj_2707_6907020", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <numeric>\n#include <queue>\n#include <vector>\nusing namespace std;\nusing ll = long long;\n#define rep(i, j, n) for (int i = j; i < (n); ++i)\n#define rrep(i, j, n) for (int i = (n)-1; j <= i; --i)\n#define all(a) a.begin(), a.end()\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, std::vector<T> &a) {\n for (size_t i = 0; i < a.size(); ++i) os << (i > 0 ? \" \" : \"\") << a[i];\n return os << '\\n';\n}\ntemplate <typename T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &a) {\n for (T &x : a) { is >> x; }\n return is;\n}\n\n[[maybe_unused]] static constexpr long long MOD = 998244353;\n[[maybe_unused]] static constexpr int INF = 0x3f3f3f3f;\n[[maybe_unused]] static constexpr long long INFL = 0x3f3f3f3f3f3f3f3fLL;\n\nll n, k;\nll a(ll x) {\n // n回目でx番目だったら、 n-1回では?\n // kの倍数でないもののうち、x番目\n ll l = 0, r = INFL;\n while (r - l > 1) {\n ll m = (l + r) / 2;\n ll km = m / k + 1; // include 0\n\n if (m - km >= x)\n r = m;\n else\n l = m;\n }\n return r;\n}\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n cin >> n >> k;\n ll ans = 0;\n rep(i, 0, n - 1) ans = a(ans);\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3440, "score_of_the_acc": -1.4111, "final_rank": 13 }, { "submission_id": "aoj_2707_6661850", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int,int>;\nusing ll = long long;\n\ntemplate<class t=ll>\nt in(){\n\tt res;\n\tcin >> res;\n\treturn res;\n}\n\nll func(){\n\tll n = in();\n\tll k = in();\n\tll res = 0;\n\tfor(int i=0;i<n-1;++i){\n\t\tll lp = 1;\n\t\tll rp = 2e18;\n\t\twhile(lp < rp){\n\t\t\tll mid = (lp + rp) / 2;\n\t\t\tif((res + mid -1) / k + 1 < mid){\n\t\t\t\trp = mid;\n\t\t\t}else{\n\t\t\t\tlp = mid + 1;\n\t\t\t}\n\n\t\t}\n\t\tfor(ll add=max(1LL,lp-2);add<rp+3;++add){\n\t\t\tif((res+add-1)/k+1==add and (res+add)%k!=0){\n\t\t\t\tres += add;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\n\nint main(){\n\tcout << func() << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3424, "score_of_the_acc": -1.1667, "final_rank": 3 }, { "submission_id": "aoj_2707_6661512", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int,int>;\nusing ll = long long;\n\ntemplate<class t=ll>\nt in(){\n\tt res;\n\tcin >> res;\n\treturn res;\n}\n\nll func(){\n\tll n = in();\n\tll k = in();\n\tll res = 0;\n\tfor(int i=0;i<n-1;++i){\n\t\tll lp = 1;\n\t\tll rp = 2e18;\n\t\twhile(lp < rp){\n\t\t\tll mid = (lp + rp) / 2;\n\t\t\tif((res + mid -1) / k + 1 < mid){\n\t\t\t\trp = mid;\n\t\t\t}else{\n\t\t\t\tlp = mid + 1;\n\t\t\t}\n\n\t\t}\n\t\tfor(ll add=max(1LL,lp-2);add<rp+3;++add){\n\t\t\tif((res+add-1)/k+1==add and (res+add)%k!=0){\n\t\t\t\tres += add;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\n\nint main(){\n\tcout << func() << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3420, "score_of_the_acc": -1.1556, "final_rank": 2 }, { "submission_id": "aoj_2707_6435368", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/atcoder/github/atcoder-lib/lib/template/atcoder.hpp\"\n#pragma GCC target(\"avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#line 2 \"/home/kuhaku/atcoder/github/atcoder-lib/lib/template/template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T, class U>\nbool chmax(T &a, const U &b) {\n return a < b ? a = b, true : false;\n}\ntemplate <class T, class U>\nbool chmin(T &a, const U &b) {\n return b < a ? a = b, true : false;\n}\nconstexpr int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr int MOD = 1000000007;\nconstexpr int MOD_N = 998244353;\nconstexpr double EPS = 1e-7;\nconst double PI = acos(-1.0);\n#line 6 \"/home/kuhaku/atcoder/github/atcoder-lib/lib/template/atcoder.hpp\"\nusing ll = int64_t;\nusing ld = long double;\n#define FOR(i, m, n) for(int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for(int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for(int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR(i, 0, n)\n#define repn(i, n) FOR(i, 1, n+1)\n#define repr(i, n) FORR(i, n, 0)\n#define repnr(i, n) FORR(i, n+1, 1)\n#define all(s) (s).begin(), (s).end()\ntemplate<class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is>>i; return is; }\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os<<'('<<p.first<< ','<<p.second<<')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it=v.begin(); it!=v.end(); ++it) { os<<(it==v.begin()?\"\":\" \")<<*it; } return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head&& head, Tail&&... tail) {\n if constexpr(sizeof...(tail)==0) std::cout<<head<<'\\n'; else std::cout<<head<<' ',co(forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head&& head, Tail&&... tail) {\n if constexpr(sizeof...(tail)==0) std::cerr<<head<<'\\n'; else std::cerr<<head<<' ',ce(forward<Tail>(tail)...);\n}\ntemplate<typename T, typename... Args>\nauto make_vector(T x, int arg, Args ...args) {\n if constexpr(sizeof...(args)==0) return std::vector<T>(arg,x); else return std::vector(arg,make_vector<T>(x,args...));\n}\nvoid sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); }\nvoid setp(const int n) { std::cout<<std::fixed<<std::setprecision(n); }\nvoid Yes(bool is_correct) { std::cout<<(is_correct?\"Yes\":\"No\")<<std::endl; }\nvoid YES(bool is_correct) { std::cout<<(is_correct?\"YES\":\"NO\")<<std::endl; }\n#line 3 \"a.cpp\"\n\nint main(void) {\n sonic();\n int n, k;\n cin >> n >> k;\n\n ll l = 0, r = INF;\n while (r - l > 1) {\n ll mid = (l + r) >> 1;\n ll m = mid;\n rep(i, n - 1) {\n m -= (m - 1) / k + 1;\n }\n if (m > 0)\n r = mid;\n else\n l = mid;\n }\n co(l);\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3448, "score_of_the_acc": -1.3333, "final_rank": 7 }, { "submission_id": "aoj_2707_6040101", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i = 0; i < (n); i++)\nusing namespace std;\ntypedef long long ll;\n\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\t\n\tll N,K; cin >> N >> K;\n\n\tauto f = [&](ll x) {\n\t\tfor(int i = 0; i < N - 1; i++) {\n\t\t\tif(x % K == 0) x++;\n\t\t\tx -= x / K + 1;\n\t\t}\n\t\treturn x > 0;\n\t};\n\n\tll hi = 2e18, lo = 0;\n\twhile(hi - lo > 1) {\n\t\tll mid = (lo + hi) / 2;\n\t\t(f(mid) ? hi : lo) = mid;\n\t}\n\tcout << lo << endl;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 3460, "score_of_the_acc": -1.9667, "final_rank": 17 }, { "submission_id": "aoj_2707_5986522", "code_snippet": "// #include \"atcoder/all\"\n#include <iostream> // cout, endl, cin\n#include <string> // string, to_string, stoi\n#include <vector> // vector\n#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound\n#include <utility> // pair, make_pair\n#include <tuple> // tuple, make_tuple\n#include <cstdint> // int64_t, int*_t\n#include <cstdio> // printf\n#include <map> // map\n#include <queue> // queue, priority_queue\n#include <set> // set\n#include <stack> // stack\n#include <deque> // deque\n#include <unordered_map> // unordered_map\n#include <unordered_set> // unordered_set\n#include <bitset> // bitset\n#include <cctype> // isupper, islower, isdigit, toupper, tolower\n#include <iomanip> // setprecision\n#include <complex> // complex\n#include <math.h>\n#include <functional>\n#include <cassert>\nusing namespace std;\n// using namespace atcoder;\nusing ll = long long;\nusing P = pair<ll,ll>;\nconstexpr ll INF = 1e15;\nconstexpr ll LLMAX = 9223372036854775807;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\n// constexpr ll mod = 998244353;\n// 右下左上\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n#define eol \"\\n\"\n// ---------------------------------------------------------------------------\n\n\n\nbool solve(){\n ll N,K;\n cin >> N >> K;\n ll ng=-1,ok=1e18;\n while(ok-ng>1){\n ll m = (ok+ng)/2;\n ll rem = 0;\n bool can = true;\n for(int i=0; i<N-1; i++){\n if(m < rem) can = false; \n rem += (m-rem)/K + 1;\n }\n if(m < rem) can = false;\n if(can){\n ok = m;\n }else{\n ng = m;\n }\n }\n cout << ok << endl;\n return true;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n // while(solve());\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3448, "score_of_the_acc": -1.4333, "final_rank": 16 }, { "submission_id": "aoj_2707_5887198", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nvoid solve(int N, int K){\n int64_t ok = 2e18;\n int64_t ng = -1;\n while(ok - ng > 1){\n int64_t mid = (ok+ng)/2;\n int64_t M = mid+1;\n for(int i=0; i<N-1; i++){\n M -= 1;\n M -= M/K;\n }\n if(M <= 0){\n ng = mid;\n }\n else{\n ok = mid;\n }\n }\n cout << ok << endl;\n}\n\nint main(){\n while(true){\n int N, K;\n cin >> N >> K;\n solve(N,K);\n break;\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3420, "score_of_the_acc": -1.2556, "final_rank": 4 }, { "submission_id": "aoj_2707_5877451", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define FOR(i, a, b) for(int i = (a); i < int(b); i++)\n#define REP(i, n) FOR(i, 0, n)\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\nvoid Case(int i) { cout << \"Case #\" << i << \": \"; }\nint popcount(int x) { return __builtin_popcount(x); }\nll popcount(ll x) { return __builtin_popcountll(x); }\n#pragma endregion Macros\n\nint main() {\n int N, K;\n cin >> N >> K;\n\n auto check = [&](ll x) -> bool {\n ll now = x;\n REP(i, N-1){\n now -= now / K + 1;\n if(now < 0) return false;\n }\n return (now >= 0);\n };\n\n ll ok = 1000000000000000000LL + 1, ng = -1;\n while(ok - ng > 1) {\n ll mid = (ok + ng) / 2;\n (check(mid) ? ok : ng) = mid;\n }\n cout << ok << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3472, "score_of_the_acc": -1.4, "final_rank": 12 }, { "submission_id": "aoj_2707_5635999", "code_snippet": "#include <cmath>\n#include <deque>\n#include <algorithm>\n#include <iterator>\n#include <list>\n#include <tuple>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <set>\n#include <unordered_set>\n#include <stack>\n#include <string>\n#include <vector>\n#include <fstream>\n#include <iostream>\n#include <functional>\n#include <numeric>\n#include <iomanip> \n#include <stdio.h>\n#include <assert.h>\n//eolibraries\n#define lnf 3999999999999999999\n#define inf 999999999\n#define fi first\n#define se second\n#define pb push_back\n#define ll long long\n#define ld long double\n#define all(c) (c).begin(),(c).end()\n#define sz(c) (int)(c).size()\n#define make_unique(a) sort(all(a)),a.erase(unique(all(a)),a.end())\n#define pii pair <int,int>\n#define rep(i,n) for(int i = 0 ; i < n ; i++) \n#define drep(i,n) for(int i = n-1 ; i >= 0 ; i--)\n#define crep(i,x,n) for(int i = x ; i < n ; i++)\n#define vi vector <int> \n#define vec(...) vector<__VA_ARGS__>\n#define fcin ios_base::sync_with_stdio(false),cin.tie(0),cout.tie(0);\n//eodefine\nusing namespace std;\n\nconst int max_n = 103002;\n\nint main(){\nfcin;\n\tll n,k;\n\tcin>>n>>k;\n\tll x=1;\n\trep(i,n-1){\n\t\t// int ad=0;\n\t\t// while((x+ad)/k>ad){\n\t\t// \tad++;\n\t\t// }\n\t\tll l=0,r=lnf,c=0;\n\t\twhile(l<=r){\n\t\t\tll m=(l+r)/2;\n\t\t\tll ad=m;\n\t\t\tif((x+ad)/k>ad){\n\t\t\t\tl=m+1;\n\t\t\t}else{\n\t\t\t\tc=m;\n\t\t\t\tr=m-1;\n\t\t\t}\n\t\t}\n\t\t// cout<<c<<\"\\n\";\n\t\tx+=c;\n\t\tx++;\n\t}\n\tcout<<x-1<<\"\\n\";\n/*\n*/\n return 0; \n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3456, "score_of_the_acc": -1.2556, "final_rank": 4 }, { "submission_id": "aoj_2707_5635997", "code_snippet": "#include <cmath>\n#include <deque>\n#include <algorithm>\n#include <iterator>\n#include <list>\n#include <tuple>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <set>\n#include <unordered_set>\n#include <stack>\n#include <string>\n#include <vector>\n#include <fstream>\n#include <iostream>\n#include <functional>\n#include <numeric>\n#include <iomanip> \n#include <stdio.h>\n#include <assert.h>\n//eolibraries\n#define lnf 3999999999999999999\n#define inf 999999999\n#define fi first\n#define se second\n#define pb push_back\n#define ll long long\n#define ld long double\n#define all(c) (c).begin(),(c).end()\n#define sz(c) (int)(c).size()\n#define make_unique(a) sort(all(a)),a.erase(unique(all(a)),a.end())\n#define pii pair <int,int>\n#define rep(i,n) for(int i = 0 ; i < n ; i++) \n#define drep(i,n) for(int i = n-1 ; i >= 0 ; i--)\n#define crep(i,x,n) for(int i = x ; i < n ; i++)\n#define vi vector <int> \n#define vec(...) vector<__VA_ARGS__>\n#define fcin ios_base::sync_with_stdio(false),cin.tie(0),cout.tie(0);\n//eodefine\nusing namespace std;\n\nconst int max_n = 103002;\n\nint main(){\nfcin;\n\tll n,k;\n\tcin>>n>>k;\n\tll x=1;\n\trep(i,n-1){\n\t\t// int ad=0;\n\t\t// while((x+ad)/k>ad){\n\t\t// \tad++;\n\t\t// }\n\t\tll l=0,r=inf,c=0;\n\t\twhile(l<=r){\n\t\t\tll m=(l+r)/2;\n\t\t\tll ad=m;\n\t\t\tif((x+ad)/k>ad){\n\t\t\t\tl=m+1;\n\t\t\t}else{\n\t\t\t\tc=m;\n\t\t\t\tr=m-1;\n\t\t\t}\n\t\t}\n\t\t// cout<<c<<\"\\n\";\n\t\tx+=c;\n\t\tx++;\n\t}\n\tcout<<x-1<<\"\\n\";\n/*\n*/\n return 0; \n}", "accuracy": 0.1568627450980392, "time_ms": 10, "memory_kb": 3452, "score_of_the_acc": -0.9444, "final_rank": 19 }, { "submission_id": "aoj_2707_5179878", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(int i = 0; i < n; i++)\n#define rep2(i, x, n) for(int i = x; i <= n; i++)\n#define rep3(i, x, n) for(int i = x; i >= n; i--)\n#define each(e, v) for(auto &e: v)\n#define pb push_back\n#define eb emplace_back\n#define all(x) x.begin(), x.end()\n#define rall(x) x.rbegin(), x.rend()\n#define sz(x) (int)x.size()\nusing ll = long long;\nusing pii = pair<int, int>;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing pll = pair<ll, ll>;\nconst int MOD = 1000000007;\n//const int MOD = 998244353;\nconst int inf = (1<<30)-1;\nconst ll INF = (1LL<<60)-1;\ntemplate<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};\ntemplate<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};\n\nstruct io_setup{\n io_setup(){\n ios_base::sync_with_stdio(false);\n cin.tie(NULL);\n cout << fixed << setprecision(15);\n }\n} io_setup;\n\nint main(){\n ll N, K; cin >> N >> K;\n\n ll l = 0, r = INF; //[l,r)\n while(r-l > 1){\n ll m = (l+r)/2;\n ll now = m;\n rep(i, N-1){\n now -= (now+K-1)/K;\n }\n (now == 0? l : r) = m;\n }\n\n cout << l << '\\n';\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3456, "score_of_the_acc": -1.3556, "final_rank": 9 }, { "submission_id": "aoj_2707_5035571", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n\treturn vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n\tfor(auto &e:u) fill_v<T>(e,v...);\n}\n\ntemplate <typename F>\nclass\nFixPoint : private F\n{\npublic:\n explicit constexpr FixPoint(F&& f) noexcept\n : F{std::forward<F>(f)}\n {}\n\n template <typename... Args>\n constexpr decltype(auto)\n operator()(Args&&... args) const\n {\n return F::operator()(*this, std::forward<Args>(args)...);\n }\n}; // class FixPoint\n\n\nnamespace\n{\n template <typename F>\n inline constexpr decltype(auto)\n makeFixPoint(F&& f) noexcept\n {\n return FixPoint<F>{std::forward<F>(f)};\n }\n} // namespace\n\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int64 N, k;\n cin >> N >> k;\n int64 l = -1, r = 2*INF_LL, m;\n\n auto ok = [&](int64 x) {\n int64 sum = 0, inix = x;\n// cout << x << endl;\n REP(i, N-1) {\n sum += x / k + 1;\n x = x - (x / k + 1);\n// cout << \" \" << i << \": \" << sum << \" \" << x << \" \" << endl;\n }\n// cout << endl;\n return sum < inix + 1;\n };\n\n while (r - l > 1) {\n m = (l + r) / 2;\n\n if (ok(m)) {\n r = m;\n } else {\n l = m;\n }\n }\n cout << r << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3456, "score_of_the_acc": -1.3556, "final_rank": 9 }, { "submission_id": "aoj_2707_4962300", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\nconstexpr Int inf = 1e18;\ntemplate<class F, class T>\nauto minimize(T imin,T imax,F &f){\n while(imax - imin > 1){\n T mid = imin + (imax - imin)/2;\n if(f(mid)) imax = mid;\n else imin = mid;\n }\n return imax;\n}\n\nbool solve(){\n Int N,K; cin >> N >> K;\n Int ans = 0;\n if(N == 1){\n cout << 0 << endl; return false;\n }\n auto f = [&](Int mid){\n return mid - (mid / K + 1) >= ans;\n };\n for(int i = 0; i < N - 1; ++i){\n Int add = minimize(-1LL,inf,f);\n assert(add - (add / K + 1) == ans);\n ans = add;\n }\n cout << ans << endl;\n return false;\n}\nint main(){\n while(solve());\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3112, "score_of_the_acc": -0.7, "final_rank": 1 }, { "submission_id": "aoj_2707_4962297", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\nconstexpr Int inf = 1e18;\ntemplate<class F, class T>\nauto minimize(T imin,T imax,F &f){\n while(imax - imin > 1){\n T mid = imin + (imax - imin)/2;\n if(f(mid)) imax = mid;\n else imin = mid;\n }\n return imax;\n}\n\nbool solve(){\n Int N,K; cin >> N >> K;\n Int ans = 0;\n if(N == 1){\n cout << 0 << endl; return false;\n }\n auto f = [&](Int mid){\n return mid - (mid / K + 1) >= ans;\n };\n for(int i = 0; i < N - 1; ++i){\n int add = minimize(-1LL,inf,f);\n assert(add - (add / K + 1) == ans);\n ans = add;\n }\n cout << ans << endl;\n return false;\n}\nint main(){\n while(solve());\n}", "accuracy": 0.1568627450980392, "time_ms": 70, "memory_kb": 3112, "score_of_the_acc": -0.6, "final_rank": 18 } ]
aoj_2706_cpp
幾何問題を解こう A君は今日も幾何の問題を解いている。 幾何の問題を解く時は浮動小数点誤差に気をつけることが大事である。 浮動小数点誤差とは、2進法の有限小数で数を表す際におこる丸めによって起きる誤差である。 例えば、10進法での 0.1 は2進法では 0.00011001100110011 ... という無限小数になるが、 これを有限の桁で丸める際に誤差が発生してしまう。 正の整数 p , q が10進法で与えられる。 有理数 p / q を有限桁数の小数で表現することができるような b 進法( b は2以上の整数)を求めよ。 複数ある場合は最も小さいものを出力せよ。 Constraints 0 < p < q < 10^9 Input Format 入力は以下の形式で標準入力から与えられる。 p q Output Format 答えを一行に出力せよ。 Sample Input 1 1 2 Sample Output 1 2 1/2 は 2 進法で 0.1 です Sample Input 2 21 30 Sample Output 2 10 21/30 は 10 進法で 0.7 です
[ { "submission_id": "aoj_2706_5768373", "code_snippet": "#include <bits/stdc++.h>\n\n#define lol long long\n#define gcd(x, y) __gcd(x, y)\n#define mt make_tuple\n#define mp make_pair\n#define fi first\n#define se second\n#define fixed(x) fixed << setprecision(x)\n#define all(x) x.begin(),x.end()\nusing namespace std;\nusing pii = pair<int, int>;\ntemplate <class A, class B>\ninline bool chmax(A& a, const B& b) {\n return b > a && (a = b, true);\n}\ntemplate <class A, class B>\ninline bool chmin(A& a, const B& b) {\n return b < a && (a = b, true);\n}\ntemplate <class A>\ninline A abs(A& a) {\n return (a < 0 ? -a : a);\n}\nbool inLine(int x, int y, int mx, int my) {\n return (x >= 0 && y >= 0 && x < mx && y < my);\n}\ntemplate<class T> using max_heap=priority_queue<T>;\ntemplate<class T> using min_heap=priority_queue<T,vector<T>,greater<T>>;\ntemplate<class T> using uset=unordered_set<T>;\ntemplate<class A,class B> using umap=unordered_map<A,B>;\nconst lol inf = (1LL << 62);\nconst int MOD = (1e9) + 7;\nconst int mod = 998244353;\nconst int dx[] = {1, 0, -1, 0, 1, 1, -1, -1, -2, -2, -2, -2,\n -2, -1, -1, 1, 1, 0, 0, 2, 2, 2, 2, 2};\nconst int dy[] = {0, 1, 0, -1, 1, -1, 1, -1, -2, -1, 0, 1,\n 2, -2, 2, -2, 2, -2, 2, -2, -1, 0, 1, 2};\n\nsigned main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int p,q;\n cin >>p>>q;\n int tmp = q/gcd(p,q);\n for(int i=2;i<tmp;i++){\n lol t = i;\n while(t < tmp){\n t *= i;\n }\n if(t == tmp){\n cout <<i<<'\\n';\n return(0);\n }\n }\n cout <<tmp<<'\\n';\n return (0);\n}", "accuracy": 0.19718309859154928, "time_ms": 490, "memory_kb": 3384, "score_of_the_acc": -0.3771, "final_rank": 14 }, { "submission_id": "aoj_2706_5738261", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i,n) for(int i=0;i<(n);i++)\n#define ALL(v) v.begin(),v.end()\n\nusing ll=long long;\n\nint main(){\n ll p,q;cin>>p>>q;\n ll g=__gcd(p,q);\n p/=g;q/=g;\n for(ll i=2;;i++){\n ll j=i;\n while(j<q)j*=i;\n if(j==q){\n cout<<i<<endl;\n return 0;\n }\n }\n}", "accuracy": 0.19718309859154928, "time_ms": 420, "memory_kb": 3456, "score_of_the_acc": -0.3229, "final_rank": 13 }, { "submission_id": "aoj_2706_5738260", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i,n) for(int i=0;i<(n);i++)\n#define ALL(v) v.begin(),v.end()\n\nusing ll=long long;\n\nint main(){\n int p,q;cin>>p>>q;\n int g=__gcd(p,q);\n p/=g;q/=g;\n for(ll i=2;;i++){\n ll j=i;\n while(j<q)j*=i;\n if(j==q){\n cout<<i<<endl;\n return 0;\n }\n }\n}", "accuracy": 0.19718309859154928, "time_ms": 420, "memory_kb": 3440, "score_of_the_acc": -0.3228, "final_rank": 12 }, { "submission_id": "aoj_2706_4953490", "code_snippet": "#define MOD_TYPE 1\n\n#pragma region Macros\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#if 0\n#include <boost/multiprecision/cpp_int.hpp>\n#include <boost/multiprecision/cpp_dec_float.hpp>\nusing Int = boost::multiprecision::cpp_int;\nusing lld = boost::multiprecision::cpp_dec_float_100;\n#endif\n#if 0\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\nusing ll = long long int;\nusing ld = long double;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pld = pair<ld, ld>;\ntemplate <typename Q_type>\nusing smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;\n\nconstexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);\n//constexpr ll MOD = ;\nconstexpr int INF = (int)1e9 + 10;\nconstexpr ll LINF = (ll)4e18;\nconstexpr double PI = acos(-1.0);\nconstexpr double EPS = 1e-10;\nconstexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};\nconstexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};\n\n#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)\n#define rep(i, n) REP(i, 0, n)\n#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)\n#define repi(i, n) REPI(i, 0, n)\n#define MP make_pair\n#define MT make_tuple\n#define YES(n) cout << ((n) ? \"YES\" : \"NO\") << \"\\n\"\n#define Yes(n) cout << ((n) ? \"Yes\" : \"No\") << \"\\n\"\n#define possible(n) cout << ((n) ? \"possible\" : \"impossible\") << \"\\n\"\n#define Possible(n) cout << ((n) ? \"Possible\" : \"Impossible\") << \"\\n\"\n#define Yay(n) cout << ((n) ? \"Yay!\" : \":(\") << \"\\n\"\n#define all(v) v.begin(), v.end()\n#define NP(v) next_permutation(all(v))\n#define dbg(x) cerr << #x << \":\" << x << \"\\n\";\n\nstruct io_init\n{\n io_init()\n {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << setprecision(30) << setiosflags(ios::fixed);\n };\n} io_init;\ntemplate <typename T>\ninline bool chmin(T &a, T b)\n{\n if (a > b)\n {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T>\ninline bool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return true;\n }\n return false;\n}\ninline ll CEIL(ll a, ll b)\n{\n return (a + b - 1) / b;\n}\ntemplate <typename A, size_t N, typename T>\ninline void Fill(A (&array)[N], const T &val)\n{\n fill((T *)array, (T *)(array + N), val);\n}\ntemplate <typename T, typename U>\nconstexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept\n{\n is >> p.first >> p.second;\n return is;\n}\ntemplate <typename T, typename U>\nconstexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept\n{\n os << p.first << \" \" << p.second;\n return os;\n}\n#pragma endregion\n\nconst int MAX_N = 2e7;\nll can_div[MAX_N] = {};\n\nvoid init_prime()\n{\n can_div[1] = -1;\n for (ll i = 2; i < MAX_N; i++)\n {\n if (can_div[i] != 0)\n continue;\n for (ll j = i + i; j < MAX_N; j += i)\n can_div[j] = i;\n }\n}\n\ninline bool is_prime(ll n)\n{\n if (n <= 1)\n return false;\n return !can_div[n];\n}\n\nvoid solve()\n{\n init_prime();\n ll p, q;\n cin >> p >> q;\n q /= gcd(p, q);\n ll ans = 1;\n for (ll i = 2; i * i <= q; i++)\n {\n if (!is_prime(i))\n continue;\n if (q % i == 0)\n {\n ans *= i;\n while (q % i == 0)\n q /= i;\n }\n }\n if (q > 1)\n ans *= q;\n cout << ans << \"\\n\";\n}\n\nint main()\n{\n solve();\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 159708, "score_of_the_acc": -1.2344, "final_rank": 7 }, { "submission_id": "aoj_2706_4953489", "code_snippet": "#define MOD_TYPE 1\n\n#pragma region Macros\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#if 0\n#include <boost/multiprecision/cpp_int.hpp>\n#include <boost/multiprecision/cpp_dec_float.hpp>\nusing Int = boost::multiprecision::cpp_int;\nusing lld = boost::multiprecision::cpp_dec_float_100;\n#endif\n#if 0\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\nusing ll = long long int;\nusing ld = long double;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pld = pair<ld, ld>;\ntemplate <typename Q_type>\nusing smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;\n\nconstexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);\n//constexpr ll MOD = ;\nconstexpr int INF = (int)1e9 + 10;\nconstexpr ll LINF = (ll)4e18;\nconstexpr double PI = acos(-1.0);\nconstexpr double EPS = 1e-10;\nconstexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};\nconstexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};\n\n#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)\n#define rep(i, n) REP(i, 0, n)\n#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)\n#define repi(i, n) REPI(i, 0, n)\n#define MP make_pair\n#define MT make_tuple\n#define YES(n) cout << ((n) ? \"YES\" : \"NO\") << \"\\n\"\n#define Yes(n) cout << ((n) ? \"Yes\" : \"No\") << \"\\n\"\n#define possible(n) cout << ((n) ? \"possible\" : \"impossible\") << \"\\n\"\n#define Possible(n) cout << ((n) ? \"Possible\" : \"Impossible\") << \"\\n\"\n#define Yay(n) cout << ((n) ? \"Yay!\" : \":(\") << \"\\n\"\n#define all(v) v.begin(), v.end()\n#define NP(v) next_permutation(all(v))\n#define dbg(x) cerr << #x << \":\" << x << \"\\n\";\n\nstruct io_init\n{\n io_init()\n {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << setprecision(30) << setiosflags(ios::fixed);\n };\n} io_init;\ntemplate <typename T>\ninline bool chmin(T &a, T b)\n{\n if (a > b)\n {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T>\ninline bool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return true;\n }\n return false;\n}\ninline ll CEIL(ll a, ll b)\n{\n return (a + b - 1) / b;\n}\ntemplate <typename A, size_t N, typename T>\ninline void Fill(A (&array)[N], const T &val)\n{\n fill((T *)array, (T *)(array + N), val);\n}\ntemplate <typename T, typename U>\nconstexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept\n{\n is >> p.first >> p.second;\n return is;\n}\ntemplate <typename T, typename U>\nconstexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept\n{\n os << p.first << \" \" << p.second;\n return os;\n}\n#pragma endregion\n\nconst int MAX_N = 2e7;\nll can_div[MAX_N] = {};\n\nvoid init_prime()\n{\n can_div[1] = -1;\n for (ll i = 2; i < MAX_N; i++)\n {\n if (can_div[i] != 0)\n continue;\n for (ll j = i + i; j < MAX_N; j += i)\n can_div[j] = i;\n }\n}\n\ninline bool is_prime(ll n)\n{\n if (n <= 1)\n return false;\n return !can_div[n];\n}\n\nvoid factorization(int n, unordered_map<ll, int> &res)\n{\n if (n <= 1)\n return;\n if (!can_div[n])\n {\n ++res[n];\n return;\n }\n ++res[can_div[n]];\n factorization(n / can_div[n], res);\n}\n\nvoid solve()\n{\n init_prime();\n ll p, q;\n cin >> p >> q;\n q /= gcd(p, q);\n unordered_map<ll, int> mp;\n factorization(q, mp);\n ll ans = 1;\n for (auto [pi, e] : mp)\n ans *= pi;\n cout << ans << \"\\n\";\n}\n\nint main()\n{\n solve();\n}", "accuracy": 0.028169014084507043, "time_ms": 300, "memory_kb": 159704, "score_of_the_acc": -1.2265, "final_rank": 20 }, { "submission_id": "aoj_2706_3751838", "code_snippet": "#include <iostream>\n#include <vector>\n#include <math.h>\nusing namespace std;\n\nint gcd(int a, int b){\n\tint temp1 = a, temp2 = b;\n\tif (temp1 < temp2){\n\t\tint temp;\n\t\ttemp = temp1;\n\t\ttemp1 = temp2;\n\t\ttemp2 = temp;\n\t}\n\tif(temp2 == 0) return temp1;\n\treturn gcd(temp2, temp1%temp2);\n}\n\nint main(){\n\tint p, q, m;\n\tcin >> p >> q;\n\tm = q/gcd(p,q);\n\tif(m == 1){\n\t\tcout << 1 << endl;\n\t\treturn 0;\n\t}\n\tint temp = m, ans = 1;\n\tif(temp%2 == 0){\n\t\tans *= 2;\n\t\twhile(temp % 2 == 0){\n\t\t\ttemp = temp/2;\n\t\t\tif(temp == 1) break;\n\t\t}\n\t}\n\tfor(int i = 3;i<=m; i+=2){\n\t\tif(temp%i == 0){\n\t\t\tans *= i;\n\t\t\twhile(temp % i == 0){\n\t\t\t\ttemp = temp/i;\n\t\t\t\tif(temp == 1) break;\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1290, "memory_kb": 3112, "score_of_the_acc": -1.0004, "final_rank": 6 }, { "submission_id": "aoj_2706_3733537", "code_snippet": "#include \"bits/stdc++.h\"\n\n#define REP(i, n, N) for(ll i=(n); i<(N); i++)\n#define RREP(i, n, N) for(ll i=(N-1); i>=(n); i--)\n#define LREP(lst,itr) for(auto itr = lst.begin(); itr != lst.end(); ++itr)\n#define CK(n, a, b) ((a)<=(n)&&(n)<(b))\n#define ALL(v) (v).begin(),(v).end()\n#define MCP(a, b) memcpy(b,a,sizeof(b))\n#define P(s) cout<<(s)<<endl\n#define P2(a, b) cout<<(a)<<\" \"<<(b)<<endl\n#define V2(T) vector<vector<T>>\ntypedef long long ll;\nusing namespace std;\nconst ll MOD = 1e9 + 7;\nconst ll INF = 1e18;\n\nll gcd(ll a, ll b){\n if(b==0) return a;\n return gcd(b,a%b);\n}\n\nint main(){\n ll p,q,ans;\n cin >> p >> q;\n \n ans=q/gcd(q,p);\n REP(i,2,ans+1){\n for(ll j=i;j<=ans;j*=i){\n if(ans==j){\n ans=i;\n goto A;\n }\n }\n }\n A:\n P(ans);\n}", "accuracy": 0.19718309859154928, "time_ms": 790, "memory_kb": 3124, "score_of_the_acc": -0.6098, "final_rank": 16 }, { "submission_id": "aoj_2706_3732277", "code_snippet": "#include \"bits/stdc++.h\"\n\n#define REP(i, n, N) for(ll i=(n); i<(N); i++)\n#define RREP(i, n, N) for(ll i=(N-1); i>=(n); i--)\n#define LREP(lst,itr) for(auto itr = lst.begin(); itr != lst.end(); ++itr)\n#define CK(n, a, b) ((a)<=(n)&&(n)<(b))\n#define ALL(v) (v).begin(),(v).end()\n#define MCP(a, b) memcpy(b,a,sizeof(b))\n#define P(s) cout<<(s)<<endl\n#define P2(a, b) cout<<(a)<<\" \"<<(b)<<endl\n#define V2(T) vector<vector<T>>\ntypedef long long ll;\nusing namespace std;\nconst ll MOD = 1e9 + 7;\nconst ll INF = 1e18;\n\nll gcd(ll a, ll b){\n if(b==0) return a;\n return gcd(b,a%b);\n}\n\nint main(){\n ll p,q,g;\n cin >> p >> q;\n g=gcd(q,p);\n\n ll ans=q/g;\n REP(i,2,ans+1){\n for(ll j=i;j<=ans;j*=i){\n if(ans==j){\n ans=i;\n goto A;\n }\n }\n }\n A:\n P(ans);\n}", "accuracy": 0.19718309859154928, "time_ms": 720, "memory_kb": 3120, "score_of_the_acc": -0.5551, "final_rank": 15 }, { "submission_id": "aoj_2706_3732249", "code_snippet": "#include \"bits/stdc++.h\"\n\n#define REP(i, n, N) for(ll i=(n); i<(N); i++)\n#define RREP(i, n, N) for(ll i=(N-1); i>=(n); i--)\n#define LREP(lst,itr) for(auto itr = lst.begin(); itr != lst.end(); ++itr)\n#define CK(n, a, b) ((a)<=(n)&&(n)<(b))\n#define ALL(v) (v).begin(),(v).end()\n#define MCP(a, b) memcpy(b,a,sizeof(b))\n#define P(s) cout<<(s)<<endl\n#define P2(a, b) cout<<(a)<<\" \"<<(b)<<endl\n#define V2(T) vector<vector<T>>\ntypedef long long ll;\nusing namespace std;\nconst ll MOD = 1e9 + 7;\nconst ll INF = 1e18;\n\nll gcd(ll a, ll b){\n if(b==0) return a;\n return gcd(b,a%b);\n}\n\nint main(){\n ll p,q,g;\n cin >> p >> q;\n g=gcd(q,p);\n\n ll ans=q/g;\n REP(i,2,ans/2+1){\n for(ll j=i;j<=ans;j*=i){\n if(ans==j){\n ans=i;\n goto A;\n }\n }\n }\n A:\n P(ans);\n}", "accuracy": 0.19718309859154928, "time_ms": 320, "memory_kb": 3116, "score_of_the_acc": -0.2426, "final_rank": 11 }, { "submission_id": "aoj_2706_3632885", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repp(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perr(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n\ntypedef long long LL;\ntypedef long double LD;\n\nLL gcd(LL x, LL y){\n while(x%y){\n LL tmp = x%y;\n x=y;\n y=tmp;\n }\n return y;\n}\n\nint main(){\n LL p,q;\n cin >> p >> q;\n p%=q;\n q/=gcd(p,q);\n perr(i,2,31){\n repp(j,2,100000){\n LL tmp=1;\n rep(k,i){\n if(tmp==q){\n cout << j << endl;\n return 0;\n }\n if(tmp>(double)q/j+1){\n break;\n }\n tmp*=j;\n }\n }\n }\n cout << q << endl;\n return 0;\n}", "accuracy": 0.19718309859154928, "time_ms": 10, "memory_kb": 3064, "score_of_the_acc": -0.0001, "final_rank": 8 }, { "submission_id": "aoj_2706_3632874", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repp(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perr(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n\ntypedef long long LL;\ntypedef long double LD;\n\nLL gcd(LL x, LL y){\n while(x%y){\n LL tmp = x%y;\n x=y;\n y=tmp;\n }\n return y;\n}\n\nint main(){\n LL p,q;\n cin >> p >> q;\n p%=q;\n q/=gcd(p,q);\n perr(i,2,30){\n repp(j,2,100000){\n LL tmp=1;\n rep(k,i){\n if(tmp==q){\n cout << j << endl;\n return 0;\n }\n if(tmp>(double)q/j){\n break;\n }\n tmp*=j;\n }\n }\n }\n cout << q << endl;\n return 0;\n}", "accuracy": 0.09859154929577464, "time_ms": 10, "memory_kb": 3056, "score_of_the_acc": 0, "final_rank": 18 }, { "submission_id": "aoj_2706_3617969", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n long long p, q;\n cin >> p >> q;\n q = q / __gcd(p, q);\n int q_q = q;\n int ans = 1;\n for (int i = 2; i <= q / 2; i++) {\n if (q_q % i == 0) {\n q_q /= i;\n ans *= i;\n while (q_q % i == 0) {\n q_q /= i;\n }\n }\n }\n if (ans == 1) {\n ans = q;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 1220, "memory_kb": 3220, "score_of_the_acc": -0.9464, "final_rank": 5 }, { "submission_id": "aoj_2706_3578473", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint Prime[100000]={};\n\nvoid pr(){\n Prime[0]=2;\n int tmp=1,num=1;\n while(num<100000){\n num+=2;\n int flag=0;\n for(int i=3;i<=sqrt(num);i+=2)\n if(num%i==0) flag++;\n if(flag==0) Prime[tmp++]=num;\n }\n}\n\nint gcd(int x,int y){\n return y?gcd(y,x%y):x;\n}\n\nint main(){\n pr();\n int p,q; cin>>p>>q;\n int a=q/gcd(p,q);\n //while(sqrt(a)*sqrt(a)==a) a=sqrt(a);\n for(int i=0;a/Prime[i]>=Prime[i];++i){\n int tmp=a;\n while(a%Prime[i]==0) a=a/Prime[i];\n if(tmp!=a) a*=Prime[i];\n }\n cout << a << endl;\n\n \n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3144, "score_of_the_acc": -0.0006, "final_rank": 1 }, { "submission_id": "aoj_2706_3578467", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint Prime[100000]={};\n\nvoid pr(){\n Prime[0]=2;\n int tmp=1,num=1;\n while(num<100000){\n num+=2;\n int flag=0;\n for(int i=3;i<=sqrt(num);i+=2)\n if(num%i==0) flag++;\n if(flag==0) Prime[tmp++]=num;\n }\n}\n\nint gcd(int x,int y){\n return y?gcd(y,x%y):x;\n}\n\nint main(){\n pr();\n int p,q; cin>>p>>q;\n int a=q/gcd(p,q);\n while(sqrt(a)*sqrt(a)==a) a=sqrt(a);\n for(int i=0;a/Prime[i]>=Prime[i];++i){\n int tmp=a;\n while(a%Prime[i]==0) a=a/Prime[i];\n if(tmp!=a) a*=Prime[i];\n }\n cout << a << endl;\n\n \n return 0;\n}", "accuracy": 0.16901408450704225, "time_ms": 10, "memory_kb": 3144, "score_of_the_acc": -0.0006, "final_rank": 17 }, { "submission_id": "aoj_2706_3578221", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint Prime[100000]={};\n\nvoid pr(){\n Prime[0]=2;\n int tmp=1,num=1;\n while(num<100000){\n num+=2;\n int flag=0;\n for(int i=3;i<=sqrt(num);i+=2)\n if(num%i==0) flag++;\n if(flag==0) Prime[tmp++]=num;\n }\n}\n\nint gcd(int x,int y){\n return y?gcd(y,x%y):x;\n}\n\nint main(){\n pr();\n int p,q; cin >> p >> q;\n int a=q/gcd(p,q);\n while((int)sqrt(a)*(int)sqrt(a) == a) a=sqrt(a);\n for(int i=0;a/Prime[i]>=Prime[i];++i){\n if(a%(Prime[i]*Prime[i])==0) {a/=(Prime[i]*Prime[i]); i--;}\n }\n cout << a << endl;\n \n return 0;\n}", "accuracy": 0.19718309859154928, "time_ms": 10, "memory_kb": 3132, "score_of_the_acc": -0.0005, "final_rank": 9 }, { "submission_id": "aoj_2706_3568591", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <iomanip>\n#include <map>\n#include <set>\n#include <queue>\n#include <stack>\n#include <numeric>\n#include <bitset>\n#include <cmath>\n\nstatic const int MOD = 1000000007;\nusing ll = long long;\nusing u32 = uint32_t;\nusing namespace std;\n\ntemplate<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208;\n\nvector<int> get_prime(int n) {\n if(n <= 1) return vector<int>{};\n vector<bool> is_composite(n+1);\n vector<int> prime;\n for (int i = 2; i <= n; ++i) {\n if(!is_composite[i]) prime.push_back(i);\n for (auto &&j : prime) {\n if((ll)i*j > n) continue;\n is_composite[i*j] = true;\n if(i % j == 0) break;\n }\n }\n return prime;\n}\nconst auto primes = get_prime(65535);\n\ntemplate<class T>\nvector<T> prime_factor(T n){\n vector<T> res;\n for (auto &&i : primes) {\n while (n % i == 0){\n res.emplace_back(i);\n n /= i;\n }\n }\n if(n != 1) res.emplace_back(n);\n return res;\n}\n\nint main() {\n int p, q;\n cin >> p >> q;\n int g = __gcd(p, q);\n p /= g, q /= g;\n auto v = prime_factor(q);\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n int ans = 1;\n for (auto &&i : v) {\n ans *= i;\n }\n cout << ans << \"\\n\";\n return 0;\n\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3236, "score_of_the_acc": -0.0715, "final_rank": 2 }, { "submission_id": "aoj_2706_3245560", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint p, q;\nint gcd(int x, int y){\n\tif(x % y == 0) return y;\n\treturn gcd(y, x % y);\n}\nbool prime(int x){\n\tbool f = true;\n\tfor(int i=2; i*i<=x; ++i)\n\t\tif(x % i == 0)\n\t\t\tf = false;\n\treturn f;\n}\n\nint main(){\n//\tcin.tie(0);\n//\tios::sync_with_stdio(false);\n\tcin >> p >> q;\n\tint g = gcd(p, q);\n\tq /= g;\n//\tcout << p / g << \" \" << q << \"\\n\";\n\tvector<int> a;\n\tif(prime(q)){\n\t\tcout << q << \"\\n\";\n\t\treturn 0;\n\t}\n\tfor(int i=2; i<=q; ++i){\n\t\tif(q % i == 0){\n\t\t\tint t = 1;\n\t\t\tq /= i;\n\t\t\twhile(q % i == 0){\n\t\t\t\t++t;\n\t\t\t\tq /= i;\n\t\t\t}\n\t\t\ta.push_back(i);\n\t\t}\n\t}\n\tint ans = 1;\n\tfor(int i=0; i<a.size(); ++i)\n\t\tans *= a[i];\n\tcout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 3164, "score_of_the_acc": -0.2819, "final_rank": 3 }, { "submission_id": "aoj_2706_3245546", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint p, q;\nint gcd(int x, int y){\n\tif(x % y == 0) return y;\n\treturn gcd(y, x % y);\n}\nbool prime(int x){\n\tbool f = true;\n\tfor(int i=2; i*i<=x; ++i)\n\t\tif(x % i == 0)\n\t\t\tf = false;\n\treturn f;\n}\n\nint main(){\n//\tcin.tie(0);\n//\tios::sync_with_stdio(false);\n\tcin >> p >> q;\n\tint g = gcd(p, q);\n\tq /= g;\n\tvector<int> a, b;\n\tint pma = -1, pmi = 1e9;\n\tif(prime(q)){\n\t\tcout << q << \"\\n\";\n\t\treturn 0;\n\t}\n\tfor(int i=2; i<=q; ++i){\n\t\tif(q % i == 0){\n\t\t\tint t = 1;\n\t\t\tq /= i;\n\t\t\twhile(q % i == 0){\n\t\t\t\t++t;\n\t\t\t\tq /= i;\n\t\t\t}\n\t\t\ta.push_back(i);\n\t\t\tb.push_back(t);\n\t\t\tpmi = min(pmi, t);\n\t\t\tpma = max(pma, t);\n\t\t}\n\t}\n\tint ans = 1;\n\tif(pmi == pma){\n\t\tfor(int i=0; i<a.size(); ++i)\n\t\t\tans *= a[i];\n\t}else{\n\t\tfor(int i=0; i<a.size(); ++i)\n\t\t\tfor(int j=0; j<a[i]; ++j)\n\t\t\t\tans *= a[i];\n\t}\n\tcout << ans << \"\\n\";\n}", "accuracy": 0.19718309859154928, "time_ms": 120, "memory_kb": 3164, "score_of_the_acc": -0.0866, "final_rank": 10 }, { "submission_id": "aoj_2706_2914188", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define N 1000000000\ntypedef long long int ll;\nll gcd(ll a,ll b){\nif(b==0)return a;\nelse return gcd(b,a%b);\n\n}\nqueue<ll> q;\nvector<bool> prime(N+1,true);\nvoid make(ll M){\n\tprime[0]=prime[1]=false;\n\tll i;\n\tfor( i=2;i*i<=M+1;i++){\n\tif(prime[i]){\n\t\tll j=2;\n\t\tq.push(i);\n\twhile(i*j<M+1){\n\tprime[i*j]=false;\n\tj++;\n\t\t}\n\n\t}\n\n\t}\n/*\tfor(;i<=M;i++){\n\t\tif(prime[i])q.push(i);\n\t}*/\nreturn;\n\n}\nint main(){\nll a,b;\n//cout<<\"ok\"<<endl;\n\ncin>>a>>b;\n//make(max(a,b));\n//cout<<\"ok\"<<endl;\n//cout<<b/gcd(a,b)<<endl;\nll c=b/gcd(a,b);\n//cout<<c<<endl;\nll ans = 1;\nll ma = c;\nfor(ll i=2;i*i<=ma;i++){\n\tif(c%i==0){\n\tans*=i;\n\twhile(c%i==0)c/=i;\n\t}\n}\n/*while(!q.empty()){\n\tll d = q.front();\n//\tcout<<d<<endl;\nif(c%d==0){\n\twhile(c%d==0)c/=d;\n\tans*=d;\n}\nq.pop();\n}*/\n\n//cout<<ans<<' '<<c<<endl;\nans*=c;\ncout<<ans<<endl;\nreturn 0;\n\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 124608, "score_of_the_acc": -0.8072, "final_rank": 4 }, { "submission_id": "aoj_2706_2914182", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define N 1000000000\ntypedef long long int ll;\nll gcd(ll a,ll b){\nif(b==0)return a;\nelse return gcd(b,a%b);\n\n}\nqueue<ll> q;\nvector<bool> prime(N+1,true);\nvoid make(ll M){\n\tprime[0]=prime[1]=false;\n\tll i;\n\tfor( i=2;i*i<=M+1;i++){\n\tif(prime[i]){\n\t\tll j=2;\n\t\tq.push(i);\n\twhile(i*j<M+1){\n\tprime[i*j]=false;\n\tj++;\n\t\t}\n\n\t}\n\n\t}\n/*\tfor(;i<=M;i++){\n\t\tif(prime[i])q.push(i);\n\t}*/\nreturn;\n\n}\nint main(){\nll a,b;\n//cout<<\"ok\"<<endl;\n\ncin>>a>>b;\n//make(max(a,b));\n//cout<<\"ok\"<<endl;\n//cout<<b/gcd(a,b)<<endl;\nll c=b/gcd(a,b);\n//cout<<c<<endl;\nll ans = 1;\nll ma = c;\nfor(int i=2;i*i<ma;i++){\n\tif(c%i==0){\n\tans*=i;\n\twhile(c%i==0)c/=i;\n\t}\n}\n/*while(!q.empty()){\n\tll d = q.front();\n//\tcout<<d<<endl;\nif(c%d==0){\n\twhile(c%d==0)c/=d;\n\tans*=d;\n}\nq.pop();\n}*/\n/*for(ll i=2;i<=c;i++){\nif(c%i==0){\n\t\n\tans*=i;\n\t//cout<<i<<endl;\n\twhile(c%i==0)c/=i;\n\t//cout<<i<<' '<<c<<' '<<ma<<endl;\n}\n\n}*/\n//cout<<c<<endl;\nans*=c;\ncout<<ans<<endl;\nreturn 0;\n\n}", "accuracy": 0.07042253521126761, "time_ms": 40, "memory_kb": 124568, "score_of_the_acc": -0.7991, "final_rank": 19 } ]
aoj_2708_cpp
ABC Gene 文字列 ABC で表される遺伝子配列がある。あなたは次の操作を何回か行い、この遺伝子配列を書き換えていくことができる。 文字 A , B , C のうち 1 つを選ぶ。これを x とおく。遺伝子配列に含まれるすべての x をそれぞれ ABC へ同時に置き換える。 A , B , C だけからなる文字列 S が与えられる。遺伝子配列を S に一致させられるか判定せよ。 Constraints 1 ≤ |S| ≤ 5,000 S は A , B , C だけからなる。 Input Format 入力は以下の形式で標準入力から与えられる。 S Output Format 遺伝子配列を S に一致させられるならば Yes を、一致させられないならば No を一行に出力せよ。 Sample Input 1 ABC Sample Output 1 Yes 遺伝子配列ははじめから ABC である。 Sample Input 2 AABCC Sample Output 2 Yes B を選んで操作を行うと ABC → AABCC となる。 Sample Input 3 AABCABC Sample Output 3 No 例えば、 C を選んで操作を行っても AABCC → AABCABC とはならない。すべての C をそれぞれ ABC へ同時に置き換えるので、実際は AABCC → AABABCABC となる。
[ { "submission_id": "aoj_2708_10848475", "code_snippet": "//#define __USE_MINGW_ANSI_STDIO 0\n#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<ll> VL;\ntypedef vector<VL> VVL;\ntypedef pair<int, int> PII;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n#define MP make_pair\n#define PB push_back\n#define MOD 1000000007\n#define INF (1LL << 30)\n#define LLINF (1LL << 60)\n#define PI 3.14159265359\n#define EPS 1e-12\n//#define int ll\n\nsigned main(void) {\n\tstring s;\n\tcin >> s;\n\twhile (true) {\n\t\tif(s.size() <= 3) break;\n\t\t//cout << s << endl;\n\t\tint f = 1;\n\t\tif(s.substr(0, 3) == \"ABC\") f = 0;\n\t\telse if(s.substr(s.size()-3, 3) == \"ABC\") f = 2;\n\t\tint sz = s.size();\n\t\tbool up = false;\n\t\tREP(i, sz-2) {\n\t\t\t//cout << i << \" \" << s << \" \" << s.substr(i, 3) << endl;\n\t\t\tif(i >= s.size()) break;\n\t\t\tif(f == 0 && s[i] == 'A' && s.substr(i, 3) != \"ABC\") {cout << \"No\" << endl; return 0;} \n\t\t\tif(f == 1 && s[i] == 'B' && i > 0 && s.substr(i-1, 3) != \"ABC\") {cout << \"No\" << endl; return 0;} \n\t\t\tif(f == 2 && s[i] == 'C' && i > 1 && s.substr(i-2, 3) != \"ABC\") {cout << \"No\" << endl; return 0;} \n\t\t\tif(s.substr(i, 3) == \"ABC\") {\n\t\t\t\tif(f == 0) s = s.substr(0, i) + \"A\" + s.substr(i+3);\n\t\t\t\telse if(f == 1) s = s.substr(0, i) + \"B\" + s.substr(i+3);\n\t\t\t\telse if(f == 2) s = s.substr(0, i) + \"C\" + s.substr(i+3);\n\t\t\t\tup = true;\n\t\t\t}\n\t\t}\n\t\tif(!up) break;\n\t}\n\t//cout << s << endl;\n\tif(s == \"ABC\") cout << \"Yes\" << endl;\n\telse cout << \"No\" << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3552, "score_of_the_acc": -0.3089, "final_rank": 7 }, { "submission_id": "aoj_2708_10678559", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG // 配列外参照のエラー\n// #endif\n\n// スタンダードライブラリ\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型関連\nusing ll = long long;\nusing lint = long long;\nusing pll = pair<ll, ll>;\nusing plll = tuple<ll, ll, ll>;\nusing pii = pair<int, int>;\nusing piii = tuple<ll, ll, ll>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vvvvi = vector<vector<vector<vector<int>>>>;\nusing vl = vector<ll>;\nusing vvl = vector<vector<ll>>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvvvl = vector<vector<vector<vector<ll>>>>;\n\ntemplate <class T> using prique = priority_queue<T>;\ntemplate<class T> void chmin(T& a, T b){ if(a > b) a = b; }\ntemplate<class T> void chmax(T& a, T b){ if(a < b) a = b; }\n\n\n#define all(v) v.begin(), v.end()\n\n// 型定数\nconstexpr ll mod = 998244353;\nconstexpr ll MOD = 1000000007;\nint INF32 = 2e9;\nll INF64 = 9e18;\n#define endl '\\n';\n\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\n\n/////////////////////////// print関連\ntemplate <typename T> void print(vector<T> A);\nvoid print();\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail);\nvoid print(string S);\ntemplate <typename T> void print(vector<vector<T>> &F);\n\ninline void Yes(bool f);\n\n\n///////////////////ここから//////////////////////\nbool solve(string S) {\n if (S == \"ABC\")\n return true;\n bool exist = false;\n set<char> se;\n for (int i = 0; i < S.size(); i++) {\n if (i + 2 < S.size() && S.substr(i, 3) == \"ABC\") {\n i += 2;\n exist = true;\n continue;\n }\n se.insert(S[i]);\n }\n if (se.size() != 2)\n return false;\n if (!exist)\n return false;\n char c = 'A';\n while (se.count(c))\n c++;\n string nS=\"\";\n for (int i = 0; i < S.size(); i++) {\n if (i + 2 < S.size() && S.substr(i, 3) == \"ABC\") {\n i += 2;\n nS += c;\n continue;\n }\n nS+=S[i];\n }\n return solve(nS);\n}\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n string S;\n cin >> S;\n Yes(solve(S));\n \n}\n\n////////////////////print/////////////////////////\n// 1次元ベクトルを出力する\ntemplate <typename T> void print(vector<T> A) {\n if (A.size() == 0) {\n return;\n }\n for (size_t i = 0; i < A.size() - 1; i++) {\n cout << A[i] << ' ';\n }\n cout << A[A.size() - 1] << endl;\n return;\n}\n\n// 2次元ベクトルを出力する\ntemplate <typename T> void print(vector<vector<T>> &F) {\n for (size_t i = 0; i < F.size(); i++) {\n for (size_t j = 0; j < F[i].size(); j++) {\n cout << F[i][j];\n if (j < F[i].size() - 1) {\n cout << ' ';\n }\n }\n cout << endl;\n }\n}\n\n// 空白行を出力するprint\nvoid print() { cout << endl; }\n\n// 数値・文字列を空白区切りで出力する. print(a,b)など\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n cout << head;\n if (sizeof...(tail) != 0)\n cout << \" \";\n print(forward<Tail>(tail)...);\n}\n\nvoid print(string S) { cout << S << endl; }\n\n//////////////出力関連\n\ninline void Yes(bool f) {\n if (f) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 19584, "score_of_the_acc": -1.6, "final_rank": 10 }, { "submission_id": "aoj_2708_9725468", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\n\nint main() {\n string s;\n cin >> s;\n\n vector<ll> a(s.size());\n for (ll i = 0; i < s.size(); i++) {\n a[i] = s[i] - 'A';\n }\n while (a.size() > 3) {\n vector<ll> b;\n vector<bool> used(3);\n bool q = false;\n for (ll i = 0; i < a.size();) {\n if (i + 2 < a.size() && a[i] == 0 && a[i + 1] == 1 && a[i + 2] == 2) {\n b.push_back(-1);\n q = true;\n i += 3;\n } else {\n b.push_back(a[i]);\n used[a[i]] = true;\n i++;\n }\n }\n ll cnt = used[0] + used[1] + used[2];\n if (!q || cnt != 2) {\n break;\n }\n ll x;\n for (ll i = 0; i < 3; i++) {\n if (!used[i]) {\n x = i;\n }\n }\n for (ll i = 0; i < b.size(); i++) {\n if (b[i] == -1) {\n b[i] = x;\n }\n }\n a = b;\n }\n if (a == vector<ll>{0, 1, 2}) {\n cout << \"Yes\\n\";\n } else {\n cout << \"No\\n\";\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3556, "score_of_the_acc": -0.0091, "final_rank": 2 }, { "submission_id": "aoj_2708_9725407", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\n\nint main() {\n#ifdef DEBUG_Q\n freopen(\"input.txt\", \"r\", stdin);\n freopen(\"output.txt\", \"w\", stdout);\n#endif\n string s;\n cin >> s;\n\n vector<ll> a(s.size());\n for (ll i = 0; i < s.size(); i++) {\n a[i] = s[i] - 'A';\n }\n while (a.size() > 3) {\n vector<ll> b;\n vector<bool> used(3);\n bool q = false;\n for (ll i = 0; i < a.size();) {\n if (i + 2 < a.size() && a[i] == 0 && a[i + 1] == 1 && a[i + 2] == 2) {\n b.push_back(-1);\n q = true;\n i += 3;\n } else {\n b.push_back(a[i]);\n used[a[i]] = true;\n i++;\n }\n }\n ll cnt = used[0] + used[1] + used[2];\n if (!q || cnt != 2) {\n break;\n }\n ll x;\n for (ll i = 0; i < 3; i++) {\n if (!used[i]) {\n x = i;\n }\n }\n for (ll i = 0; i < b.size(); i++) {\n if (b[i] == -1) {\n b[i] = x;\n }\n }\n a = b;\n }\n if (a == vector<ll>{0, 1, 2}) {\n cout << \"Yes\\n\";\n } else {\n cout << \"No\\n\";\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3592, "score_of_the_acc": -0.0114, "final_rank": 3 }, { "submission_id": "aoj_2708_9609893", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nbool Solve(string S) {\n if (S == \"ABC\") return true;\n if (S.size() <= 3) return false;\n string T = \"\";\n int ID = 0;\n int B[3] = {};\n while(ID < S.size()) {\n if (ID + 3 <= S.size() && S.substr(ID,3) == \"ABC\") {\n T += 'D';\n ID += 3;\n }\n else {\n T += S[ID];\n B[S[ID] - 'A'] = 1;\n ID++;\n }\n }\n if (B[0] + B[1] + B[2] != 2) return false;\n int C = 3;\n if (B[1] == 1) C--;\n if (B[2] == 1) C-=2;\n rep(i,0,T.size()) {\n if (T[i] == 'D') T[i] = 'A' + C;\n }\n return Solve(T);\n}\n\nint main() {\n string S;\n cin >> S;\n cout << (Solve(S) ? \"Yes\" : \"No\") << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 19136, "score_of_the_acc": -1.2723, "final_rank": 9 }, { "submission_id": "aoj_2708_9508360", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nint main(void)\n{\n string s;\n cin >> s;\n while (s != \"ABC\")\n {\n if (s.size() <= 3)\n {\n No();\n return 0;\n }\n string t;\n int p = 0;\n if (s.substr(0, 3) == \"ABC\")\n {\n while (p < s.size())\n {\n if (s.substr(p, 3) == \"ABC\")\n {\n t += 'A';\n p += 3;\n }\n else\n {\n if (s[p] == 'A')\n {\n No();\n return 0;\n }\n t += s[p];\n ++p;\n }\n }\n }\n else if (s.substr(s.size() - 3) == \"ABC\")\n {\n while (p < s.size())\n {\n if (s.substr(p, 3) == \"ABC\")\n {\n t += 'C';\n p += 3;\n }\n else\n {\n if (s[p] == 'C')\n {\n No();\n return 0;\n }\n t += s[p];\n ++p;\n }\n }\n }\n else\n {\n while (p < s.size())\n {\n if (s.substr(p, 3) == \"ABC\")\n {\n t += 'B';\n p += 3;\n }\n else\n {\n if (s[p] == 'B')\n {\n No();\n return 0;\n }\n t += s[p];\n ++p;\n }\n }\n if (s.size() == t.size())\n {\n No();\n return 0;\n }\n }\n s = t;\n }\n Yes();\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3524, "score_of_the_acc": -0.2072, "final_rank": 5 }, { "submission_id": "aoj_2708_9060679", "code_snippet": "// (⁠◕⁠ᴗ⁠◕⁠✿⁠)\n\n// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define rep(i, n) for (ll i = 0; i < (n); i++)\n#define srep(i, s, n) for (ll i = s; i < (n); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\nusing namespace std;\ntemplate<typename T> using vc = vector<T>;\ntemplate<typename T> using vv = vc<vc<T>>;\ntemplate<typename T> using vvv = vv<vc<T>>;\nusing vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;\nusing ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;\nusing ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nconst ld pi = 3.141592653589793;\nconst int inf = 0x3f3f3f3f;\nconst ll INF = 0x3f3f3f3f3f3f3f3f;\n// const ll mod = 1000000007;\nconst ll mod = 998244353;\ninline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }\n\n#define debug(var) do{std::cout << #var << \" : \\n\";view(var);}while(0)\ntemplate<typename T> void view(T e){cout << e << endl;}\ntemplate<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << \" \"; } cout << endl;}\ntemplate<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } }\n\nint main(){\n string S;cin >> S;\n while (true){\n string nw = \"\", X = \"\";\n for (int i = 0; i < len(S); i++){\n if (len(S) - i >= 3){\n if (len(X) && S.substr(i, 3) == X){\n nw += 'x';\n i += 2;\n continue;\n }\n if (!len(X)){\n string A = \"ABC\";\n int cnt = 0, cntx = 0;\n rep(j, 3){\n if (A[j] != S[i + j]) cnt++;\n if (S[i + j] == 'x') cntx++;\n }\n if (cnt == cntx && cnt <= 1){\n X = S.substr(i, 3);\n nw += 'x';\n i += 2;\n continue;\n }\n }\n }\n nw += S[i];\n }\n if (nw == S) break;\n swap(nw, S);\n }\n if (S != \"x\") cout << \"No\" << endl;\n else cout << \"Yes\" << endl;\n}", "accuracy": 0.3103448275862069, "time_ms": 50, "memory_kb": 3448, "score_of_the_acc": -0.2025, "final_rank": 16 }, { "submission_id": "aoj_2708_9060673", "code_snippet": "// (⁠◕⁠ᴗ⁠◕⁠✿⁠)\n\n// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define rep(i, n) for (ll i = 0; i < (n); i++)\n#define srep(i, s, n) for (ll i = s; i < (n); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\nusing namespace std;\ntemplate<typename T> using vc = vector<T>;\ntemplate<typename T> using vv = vc<vc<T>>;\ntemplate<typename T> using vvv = vv<vc<T>>;\nusing vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;\nusing ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;\nusing ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nconst ld pi = 3.141592653589793;\nconst int inf = 0x3f3f3f3f;\nconst ll INF = 0x3f3f3f3f3f3f3f3f;\n// const ll mod = 1000000007;\nconst ll mod = 998244353;\ninline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }\n\n#define debug(var) do{std::cout << #var << \" : \\n\";view(var);}while(0)\ntemplate<typename T> void view(T e){cout << e << endl;}\ntemplate<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << \" \"; } cout << endl;}\ntemplate<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } }\n\nint main(){\n string S;cin >> S;\n while (true){\n string nw = \"\", X = \"\";\n for (int i = 0; i < len(S); i++){\n if (len(S) - i >= 3){\n if (len(X) && S.substr(i, 3) == X){\n nw += 'x';\n i += 2;\n continue;\n }\n if (!len(X)){\n string A = \"ABC\";\n int cnt = 0;\n rep(j, 3) if (A[j] != S[i + j]) cnt++;\n if (cnt <= 1){\n X = S.substr(i, 3);\n nw += 'x';\n i += 2;\n continue;\n }\n }\n }\n nw += S[i];\n }\n if (nw == S) break;\n swap(nw, S);\n }\n if (S != \"x\") cout << \"No\" << endl;\n else cout << \"Yes\" << endl;\n}", "accuracy": 0.29310344827586204, "time_ms": 50, "memory_kb": 3432, "score_of_the_acc": -0.2015, "final_rank": 19 }, { "submission_id": "aoj_2708_8997496", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nstruct SetupIO {\n SetupIO() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n cout << fixed << setprecision(30);\n }\n} setup_io;\nint main(void) {\n string s;\n cin >> s;\n if((int)s.size() < 3) {\n cout << \"No\" << '\\n';\n return 0;\n }\n while((int)s.size() >= 3) {\n int n = s.size();\n string nex = \"\";\n if(s.substr(0, 3) == \"ABC\") {\n rep(i, 0, n) {\n if(i <= n - 3 and s.substr(i, 3) == \"ABC\") {\n nex += \"A\";\n i += 2;\n } else {\n if(s[i] == 'A') {\n cout << \"No\" << '\\n';\n return 0;\n }\n nex += s[i];\n }\n }\n } else if(s.substr(n - 3) == \"ABC\") {\n rep(i, 0, n) {\n if(i <= n - 3 and s.substr(i, 3) == \"ABC\") {\n nex += \"C\";\n i += 2;\n } else {\n if(s[i] == 'C') {\n cout << \"No\" << '\\n';\n return 0;\n }\n nex += s[i];\n }\n }\n } else {\n rep(i, 0, n) {\n if(i <= n - 3 and s.substr(i, 3) == \"ABC\") {\n nex += \"B\";\n i += 2;\n } else {\n if(s[i] == 'B') {\n cout << \"No\" << '\\n';\n return 0;\n }\n nex += s[i];\n }\n }\n }\n if(s == nex) break;\n s = nex;\n }\n if(s == \"A\") {\n cout << \"Yes\" << '\\n';\n } else {\n cout << \"No\" << '\\n';\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3496, "score_of_the_acc": -0.2554, "final_rank": 6 }, { "submission_id": "aoj_2708_8997486", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nstruct SetupIO {\n SetupIO() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n cout << fixed << setprecision(30);\n }\n} setup_io;\nint main(void) {\n string s;\n cin >> s;\n if((int)s.size() < 3) {\n cout << \"No\" << '\\n';\n return 0;\n }\n while((int)s.size() >= 3) {\n int n = s.size();\n string nex = \"\";\n if(s.substr(0, 3) == \"ABC\") {\n rep(i, 0, n) {\n if(i <= n - 3 and s.substr(i, 3) == \"ABC\") {\n nex += \"A\";\n i += 2;\n } else {\n nex += s[i];\n }\n }\n } else if(s.substr(n - 3) == \"ABC\") {\n rep(i, 0, n) {\n if(i <= n - 3 and s.substr(i, 3) == \"ABC\") {\n nex += \"C\";\n i += 2;\n } else {\n nex += s[i];\n }\n }\n } else {\n rep(i, 0, n) {\n if(i <= n - 3 and s.substr(i, 3) == \"ABC\") {\n nex += \"B\";\n i += 2;\n } else {\n nex += s[i];\n }\n }\n }\n if(s == nex) break;\n s = nex;\n }\n if(s == \"A\") {\n cout << \"Yes\" << '\\n';\n } else {\n cout << \"No\" << '\\n';\n }\n}", "accuracy": 0.9137931034482759, "time_ms": 70, "memory_kb": 3456, "score_of_the_acc": -0.303, "final_rank": 15 }, { "submission_id": "aoj_2708_8427865", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstring Simulation(string S) {\n // First\n vector<bool> Digit(S.size(), false);\n vector<bool> Check(3, false);\n int cur = 0;\n while (cur < S.size()) {\n if (cur + 2 < S.size() && S[cur] == 'A' && S[cur + 1] == 'B' && S[cur + 2] == 'C') {\n Digit[cur + 0] = true;\n Digit[cur + 1] = true;\n Digit[cur + 2] = true;\n cur += 3;\n }\n else { Check[S[cur] - 'A'] = true; cur += 1; }\n }\n\n // Second\n int idx = -1;\n for (int i = 0; i < 3; i++) {\n if (Check[i] == false) { idx = i; break; }\n }\n if (idx == -1) return S;\n\n // Third\n string str = \"\";\n int cx = 0;\n while (cx < S.size()) {\n if (Digit[cx] == true) { str += ('A' + idx); cx += 3; }\n else { str += S[cx]; cx += 1; }\n }\n return str;\n}\n\nint main() {\n // Step 1. Input\n string S; cin >> S;\n\n // Step 2. Simulation\n while (S != \"ABC\") {\n string T = Simulation(S);\n if (T == S) break;\n S = T;\n }\n\n // Step 3. Output\n if (S == \"ABC\") cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3440, "score_of_the_acc": -0.052, "final_rank": 4 }, { "submission_id": "aoj_2708_8029243", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nbool solve() {\n string s;\n cin >> s;\n while (s.size() > 3) {\n vector<int> cnt(3), id;\n for (int i = 0; i < s.size(); i++) {\n if (i >= 2 && s[i - 2] == 'A' && s[i - 1] == 'B' && s[i] == 'C') {\n id.push_back(i - 2);\n cnt[0]--;\n cnt[1]--;\n } else {\n cnt[2 - ('C' - s[i])]++;\n }\n }\n if (*min_element(cnt.begin(), cnt.end()) != 0) break;\n int i = 0;\n char c = 'A' + (min_element(cnt.begin(), cnt.end()) - cnt.begin());\n string t;\n for (int x : id) {\n for (;i < x; i++) {\n t.push_back(s[i]);\n }\n t.push_back(c);\n i = x + 3;\n }\n for (; i < s.size(); i++) {\n t.push_back(s[i]);\n }\n if (s == t) break;\n s = t;\n }\n cout << (s == \"ABC\" ? \"Yes\" : \"No\") << endl;\n return false;\n}\n\nint main() {\n while (solve());\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3468, "score_of_the_acc": -0.0037, "final_rank": 1 }, { "submission_id": "aoj_2708_8029203", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nbool solve() {\n string s;\n cin >> s;\n while (s.size() > 3) {\n vector<int> cnt(3), id;\n for (int i = 0; i < s.size(); i++) {\n if (i >= 2 && s[i - 2] == 'A' && s[i - 1] == 'B' && s[i] == 'C') {\n id.push_back(i - 2);\n cnt[0]--;\n cnt[1]--;\n } else {\n cnt[2 - ('C' - s[i])]++;\n }\n }\n int i = 0;\n char c = 'A' + (min_element(cnt.begin(), cnt.end()) - cnt.begin());\n string t;\n for (int x : id) {\n for (;i < x; i++) {\n t.push_back(s[i]);\n }\n t.push_back(c);\n i = x + 3;\n }\n for (; i < s.size(); i++) {\n t.push_back(s[i]);\n }\n if (s == t) break;\n s = t;\n }\n cout << (s == \"ABC\" ? \"Yes\" : \"No\") << endl;\n return false;\n}\n\nint main() {\n while (solve());\n}", "accuracy": 0.9310344827586207, "time_ms": 10, "memory_kb": 3464, "score_of_the_acc": -0.0035, "final_rank": 12 }, { "submission_id": "aoj_2708_8021665", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n string S;\n cin>>S;\n while(S.size()>3){\n int N=S.size();\n set<char>s;\n for(int i=0;i<N;i++){\n if(S.substr(i,3)==\"ABC\"){\n i+=2;\n }else{\n s.insert(S[i]);\n }\n }\n if(s.size()!=2){\n cout<<\"No\\n\";\n return 0;\n }\n char c='/';\n if(s.find('A')==s.end())c='A';\n if(s.find('B')==s.end())c='B';\n if(s.find('C')==s.end())c='C';\n string T=\"\";\n for(int i=0;i<N;i++){\n if(S.substr(i,3)==\"ABC\"){\n T+=c;\n i+=2;\n }else{\n T+=S[i];\n }\n }\n S=T;\n }\n cout<<(S==\"ABC\"?\"Yes\\n\":\"No\\n\");\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3484, "score_of_the_acc": -0.6547, "final_rank": 8 }, { "submission_id": "aoj_2708_8021648", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n string S;\n cin>>S;\n while(S.size()>3){\n char c1='/',c2='/';\n for(int i=0;i<S.size()-2;i++){\n if(S.substr(i,3)==\"ABC\"){\n if(i==0){\n c1='A';\n break;\n }\n if(i+3==S.size()){\n c2='C';\n break;\n }\n if(i>0){\n c1=(S[i-1]-'A'+1)%3+'A';\n }\n if(i+3<S.size()){\n c2=(S[i+3]-'A'+2)%3+'A';\n }\n break;\n }\n }\n if(c1=='/'&&c2=='/'){\n cout<<\"No\\n\";\n return 0;\n }\n if(c1!='/'&&c2!='/'&&c1!=c2){\n cout<<\"No\\n\";\n return 0;\n }\n char c='/';\n if(c1!='/')c=c1;\n if(c2!='/')c=c2;\n string T=\"\";\n for(int i=0;i<S.size();i++){\n if(S.substr(i,3)==\"ABC\"){\n T+=c;\n i+=2;\n }else{\n T+=S[i];\n if(S[i]==c){\n cout<<\"No\\n\";\n return 0;\n }\n }\n }\n S=T;\n }\n cout<<(S==\"ABC\"?\"Yes\\n\":\"No\\n\");\n}", "accuracy": 0.3103448275862069, "time_ms": 120, "memory_kb": 3408, "score_of_the_acc": -0.55, "final_rank": 17 }, { "submission_id": "aoj_2708_8021614", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n string S;\n cin>>S;\n while(S.size()>3){\n char c1='/',c2='/';\n for(int i=0;i<S.size()-3;i++){\n if(S.substr(i,3)==\"ABC\"){\n if(i==0){\n c1='A';\n break;\n }\n if(i+3==S.size()){\n c2='C';\n break;\n }\n if(i>0){\n c1=(S[i-1]-'A'+1)%3+'A';\n }\n if(i+3<S.size()){\n c2=(S[i+3]-'A'+2)%3+'A';\n }\n break;\n }\n }\n if(c1=='/'&&c2=='/'){\n cout<<\"No\\n\";\n return 0;\n }\n if(c1!='/'&&c2!='/'&&c1!=c2){\n cout<<\"No\\n\";\n return 0;\n }\n char c='/';\n if(c1!='/')c=c1;\n if(c2!='/')c=c2;\n string T=\"\";\n for(int i=0;i<S.size();i++){\n if(S.substr(i,3)==\"ABC\"){\n T+=c;\n i+=2;\n }else{\n T+=S[i];\n if(S[i]==c){\n cout<<\"No\\n\";\n return 0;\n }\n }\n }\n S=T;\n }\n cout<<(S==\"ABC\"?\"Yes\\n\":\"No\\n\");\n}", "accuracy": 0.29310344827586204, "time_ms": 90, "memory_kb": 3508, "score_of_the_acc": -0.4062, "final_rank": 20 }, { "submission_id": "aoj_2708_7993989", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < n; ++i)\ntypedef long long ll;\nusing namespace std;\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n\n string S;\n cin >> S;\n\n auto dfs = [&](auto &&self, string s, char t) -> void {\n int n = s.size();\n if (s == \"ABC\") {\n cout << \"Yes\\n\";\n exit(0);\n }\n if (n <= 3) return;\n\n bool update = false;\n string res = \"\";\n vector<bool> used(3);\n rep(i, n) {\n if (s.substr(i, 3) == \"ABC\") {\n res += t;\n i += 2;\n update = true;\n } else {\n res += s[i];\n used[s[i] - 'A'] = true;\n }\n }\n\n if (used[t - 'A']) return;\n\n if (update) {\n self(self, res, 'A');\n self(self, res, 'B');\n self(self, res, 'C');\n }\n return;\n };\n\n dfs(dfs, S, 'A');\n dfs(dfs, S, 'B');\n dfs(dfs, S, 'C');\n\n cout << \"No\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 19228, "score_of_the_acc": -1.978, "final_rank": 11 }, { "submission_id": "aoj_2708_7993978", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < n; ++i)\ntypedef long long ll;\nusing namespace std;\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n\n string S;\n cin >> S;\n\n auto dfs = [&](auto &&self, string s, char t) -> void {\n int n = s.size();\n if (s == \"ABC\") {\n cout << \"Yes\\n\";\n exit(0);\n }\n if (n <= 3) return;\n\n bool update = false;\n string res = \"\";\n vector<bool> used(3);\n rep(i, n) {\n if (s.substr(i, 3) == \"ABC\") {\n res += t;\n i += 2;\n update = true;\n } else {\n used[s[i] - 'A'] = true;\n res += s[i];\n }\n }\n\n if (update) {\n rep(i, 3) {\n if (used[i]) continue;\n self(self, res, 'A' + i);\n }\n }\n };\n\n dfs(dfs, S, 'A');\n dfs(dfs, S, 'B');\n dfs(dfs, S, 'C');\n\n cout << \"No\\n\";\n\n return 0;\n}", "accuracy": 0.3103448275862069, "time_ms": 70, "memory_kb": 19336, "score_of_the_acc": -1.2847, "final_rank": 18 }, { "submission_id": "aoj_2708_7861431", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n string S{}; cin >> S;\n\n auto sed = [](string S, char c) -> string {\n string res{};\n for (size_t i = 0 ; i < S.size() ; i++) {\n if (i + 2 < S.size() and S[i] == 'A' and S[i + 1] == 'B' and S[i + 2] == 'C') {\n res += c;\n i += 2;\n }\n else {\n res += S[i];\n }\n }\n return res;\n };\n \n while (S.size() > 3) {\n if (S.front() != 'A' or S.back() != 'C') {\n cout << \"No\" << endl;\n return 0;\n }\n if (S.substr(0, 3) == \"ABC\" and S.substr(S.size() - 3, 3) == \"ABC\") {\n cout << \"No\" << endl;\n return 0;\n }\n string nxt{};\n if (S.substr(0, 3) == \"ABC\") \n nxt = sed(S, 'A');\n else if (S.substr(S.size() - 3, 3) == \"ABC\")\n nxt = sed(S, 'C');\n else \n nxt = sed(S, 'B');\n\n if (S == nxt) {\n cout << \"No\" << endl;\n return 0;\n }\n\n S = move(nxt);\n }\n\n if (S == \"ABC\") {\n cout << \"Yes\" << endl;\n }\n else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 0.9137931034482759, "time_ms": 10, "memory_kb": 3456, "score_of_the_acc": -0.003, "final_rank": 13 }, { "submission_id": "aoj_2708_7861415", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n string S{}; cin >> S;\n\n auto sed = [](string S, char c) -> string {\n string res{};\n for (size_t i = 0 ; i < S.size() ; i++) {\n if (i + 2 < S.size() and S[i] == 'A' and S[i + 1] == 'B' and S[i + 2] == 'C') {\n res += c;\n i += 2;\n }\n else {\n res += S[i];\n }\n }\n return res;\n };\n \n while (S.size() > 3) {\n string nxt{};\n if (S.substr(0, 3) == \"ABC\") \n nxt = sed(S, 'A');\n else if (S.substr(S.size() - 3, 3) == \"ABC\")\n nxt = sed(S, 'C');\n else \n nxt = sed(S, 'B');\n\n if (S == nxt) {\n cout << \"No\" << endl;\n return 0;\n }\n\n S = move(nxt);\n }\n\n if (S == \"ABC\") {\n cout << \"Yes\" << endl;\n }\n else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 0.9137931034482759, "time_ms": 10, "memory_kb": 3488, "score_of_the_acc": -0.0049, "final_rank": 14 } ]
aoj_2710_cpp
坑道数式 ある日廃坑を探検していたあなたは、坑道に長い数式 S が書かれているのを発見した。大きな数が好きなあなたは、チョークを取り出し、数式を計算した結果ができるだけ大きくなるように ( または ) を書き加えることにした。書き加えた後も数式になっていなければならないとすると、最大でいくつにできるか。 文字と文字の間は十分広く空いていて、 ( または ) であればいくつでも書き加えることができる。最終的に数式になっていれば、最初のかっこの対応が崩れるように ( または ) を書いてもよい(Sample 2参照)。 また、ここでは以下のBNFで定義される<expr>を数式と呼ぶ。数式中の数は全て一桁である。 <expr> ::= "(" <expr> ")" | <term> "+" <term> | <term> "-" <term> <term> ::= <digit> | <expr> <digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" Constraints 3 ≤ |S| ≤ 200 S は数式を表す。 Input Format 入力は以下の形式で標準入力から与えられる。 S Output Format 答えを整数で出力せよ。 Sample Input 1 1-(2+3-4+5) Sample Output 1 5 1-(2+3-(4+5))が最大となる。 Sample Input 2 1-(2+3+4) Sample Output 2 0 (1-(2+3)+4)が最大となる。 Sample Input 3 1-(2+3) Sample Output 3 -4 1-(2)+(3)はここでいう数式ではないことに注意。
[ { "submission_id": "aoj_2710_10849109", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n\nusing P = pair<int, int>;\n\nconstexpr int INF = 1e9;\n\nP memo[201][201];\n\nP rec(int l, int r, string const& s) {\n P& res = memo[l][r];\n if(res != make_pair(-INF, INF)) {\n return res;\n }\n if(l == r) {\n int v = s[l] - '0';\n return make_pair(v, v);\n }\n if(s[r] == ')' && r-l >= 3) {\n P p = rec(l, r-1, s);\n res.first = max(res.first, p.first);\n res.second = min(res.second, p.second);\n }\n if(s[l] == '(' && r-l >= 3) {\n P p = rec(l+1, r, s);\n res.first = max(res.first, p.first);\n res.second = min(res.second, p.second);\n }\n for(int i=l+1; i<r; ++i) {\n char op = s[i];\n if(op == '+' || op == '-') {\n P rl = rec(l, i-1, s);\n P rr = rec(i+1, r, s);\n if(op == '+') {\n res.first = max(res.first, rl.first + rr.first);\n res.second = min(res.second, rl.second + rr.second);\n } else {\n res.first = max(res.first, rl.first - rr.second);\n res.second = min(res.second, rl.second - rr.first);\n }\n }\n }\n return res;\n}\n\nint main() {\n string s;\n cin >> s;\n for(int i=0; i<s.size(); ++i) {\n for(int j=0; j<s.size(); ++j) {\n memo[i][j] = make_pair(-INF, INF);\n }\n }\n cout << rec(0, s.size()-1, s).first << endl;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 3692, "score_of_the_acc": -0.6045, "final_rank": 12 }, { "submission_id": "aoj_2710_8428016", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstring S;\nstring T;\nint dp_max[209][209][409];\nint dp_min[209][209][409];\nint kakko[209];\nbool used[209][209][409];\n\npair<int, int> dfs(int cl, int cr, int kakko1, int kakko2) {\n int idx = kakko1;\n if (kakko1 == 1) idx = T.size() + kakko2;\n\n // Case 1\n if (cl == cr) {\n if (kakko1 == 1 && kakko[cl + 0] >= 1) return make_pair((1 << 29), -(1 << 29));\n if (kakko2 == 1 && kakko[cl + 1] >= 1) return make_pair((1 << 29), -(1 << 29));\n dp_max[cl][cr][idx] = (T[cl] - '0');\n dp_min[cl][cr][idx] = (T[cl] - '0');\n return make_pair(dp_min[cl][cr][idx], dp_max[cl][cr][idx]);\n }\n if (used[cl][cr][idx] == true) return make_pair(dp_min[cl][cr][idx], dp_max[cl][cr][idx]);\n used[cl][cr][idx] = true;\n\n // Case 2\n vector<int> cand;\n for (int i = cl; i <= cr; i++) {\n int offset = 0;\n if (T[i] == '+') offset = +1;\n if (T[i] == '-') offset = -1;\n if (offset == 0) continue;\n pair<int, int> Z1 = dfs(cl, i - 1, min(2, kakko1 + 1), 1);\n pair<int, int> Z2 = dfs(i + 1, cr, 1, min(2, kakko2 + 1));\n if (Z1 == make_pair((1 << 29), -(1 << 29))) continue;\n if (Z2 == make_pair((1 << 29), -(1 << 29))) continue;\n dp_min[cl][cr][idx] = min(dp_min[cl][cr][idx], Z1.first + offset * Z2.first );\n dp_max[cl][cr][idx] = max(dp_max[cl][cr][idx], Z1.first + offset * Z2.first );\n dp_min[cl][cr][idx] = min(dp_min[cl][cr][idx], Z1.first + offset * Z2.second);\n dp_max[cl][cr][idx] = max(dp_max[cl][cr][idx], Z1.first + offset * Z2.second);\n dp_min[cl][cr][idx] = min(dp_min[cl][cr][idx], Z1.second + offset * Z2.first );\n dp_max[cl][cr][idx] = max(dp_max[cl][cr][idx], Z1.second + offset * Z2.first );\n dp_min[cl][cr][idx] = min(dp_min[cl][cr][idx], Z1.second + offset * Z2.second);\n dp_max[cl][cr][idx] = max(dp_max[cl][cr][idx], Z1.second + offset * Z2.second);\n }\n\n // Return\n // cout << cl << \" \" << cr << \" \" << kakko1 << \" \" << kakko2 << \" \" << dp_min[cl][cr][idx] << \" \" << dp_max[cl][cr][idx] << endl;\n return make_pair(dp_min[cl][cr][idx], dp_max[cl][cr][idx]);\n}\n\nint main() {\n // Step 1. Input\n cin >> S;\n for (int i = 0; i < S.size(); i++) {\n if (S[i] == '(') kakko[T.size()] += 1;\n else if (S[i] == ')') kakko[T.size()] += 1;\n else T += S[i];\n }\n /*cout << T << endl;\n for (int i = 0; i <= T.size(); i++) cout << kakko[i] << \" \"; cout << endl;*/\n\n // Step 2. Initialize\n for (int i = 0; i < (int)T.size(); i++) {\n for (int j = 0; j < (int)T.size(); j++) {\n for (int k = 0; k <= (int)2 * T.size(); k++) dp_min[i][j][k] = +(1 << 29);\n for (int k = 0; k <= (int)2 * T.size(); k++) dp_max[i][j][k] = -(1 << 29);\n }\n }\n\n // Step 3. DFS\n pair<int, int> Answer = dfs(0, T.size() - 1, 1, 1);\n cout << Answer.second << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 155872, "score_of_the_acc": -1.0182, "final_rank": 20 }, { "submission_id": "aoj_2710_7095180", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<bits/stdc++.h>\n// #include<atcoder/scc>\nusing namespace std;\n// using namespace atcoder;\nconst int inf = 1 << 30;\n\nvoid solve(){ \n\tstring S;\n\tcin >> S;\n\n\tmap<string, pair<int, int>> memo;\n\tauto dfs=[& memo](auto self, string S) -> pair<int, int> {\n\t\twhile(S[0] == '('){\n\t\t\tS = S.substr(1, S.size() - 1);\n\t\t}\n\t\twhile(S[S.size() - 1] == ')'){\n\t\t\tS = S.substr(0, S.size() - 1);\n\t\t}\n\t\tif(S.size() == 1) return {stoi(S), stoi(S)};\n\t\telse if(memo.count(S)) return memo[S];\n\t\tpair<int, int> res = {inf, -inf};\n\t\tint le = S.size();\n\t\tfor(int i = 0; i < le; i++){\n\t\t\tif((i >= 2 && S[i - 2] == '(') || (i + 2 < le && S[i + 2] == ')')){\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif(S[i] == '+'){\n\t\t\t\tauto res1 = self(self, S.substr(0, i));\n\t\t\t\tauto res2 = self(self, S.substr(i + 1, le - i - 1));\n\t\t\t\tres.first = min(res.first, res1.first + res2.first);\n\t\t\t\tres.second = max(res.second, res1.second + res2.second);\n\t\t\t}\n\t\t\telse if(S[i] == '-'){\n\t\t\t\tauto res1 = self(self, S.substr(0, i));\n\t\t\t\tauto res2 = self(self, S.substr(i + 1, le - i - 1));\n\t\t\t\tres.first = min(res.first, res1.first - res2.second);\n\t\t\t\tres.second = max(res.second, res1.second - res2.first);\n\t\t\t}\n\t\t}\n\t\t// cout << S << \" \" << res.first << \" \" << res.second << endl;\n\t\tmemo[S] = res;\n\t\treturn res;\n\t};\n\n\tint ans = dfs(dfs, S).second;\n\tcout << ans << \"\\n\";\n\n}\n\nint main(){\n\tcin.tie(0)->sync_with_stdio(0);\n\tint t;\n\tt = 1;\n\t// cin >> t;\n\twhile(t--) solve();\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4264, "score_of_the_acc": -0.0992, "final_rank": 5 }, { "submission_id": "aoj_2710_6805987", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MOD 1000000007\n//#define MOD 998244353\n#define INF 1e18 + 10\n#define EPS 1e-9\n#define F first\n#define S second\n\n#define debug(x) cout<<x<<endl;\n#define repi(i,x,n) for(int i=x;i<n;i++)\n#define rep(i,n) repi(i,0,n)\n#define lp(i,n) repi(i,0,n)\n#define repn(i,n) for(int i=n;i>=0;i--)\n#define int long long\n#define endl \"\\n\"\n\ntypedef pair<int,int> PII;\ntypedef pair<int,string> PIS;\ntypedef pair<string,int> PSI;\n\ntemplate <typename T>\nbool chmax(T &a, const T& b) {\n if (a < b) {\n a = b; \n return true;\n }\n return false;\n}\n\ntemplate <typename T>\nbool chmin(T &a, const T& b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\n\nsigned main(){\n cin.tie(0);\t\n ios::sync_with_stdio(false);\n string s;\n cin>>s;\n int dpmx[110][110]={};\n int dpmn[110][110]={};\n rep(i,110){\n rep(j,110){\n dpmx[i][j]=-INF;\n dpmn[i][j]=INF;\n }\n }\n int nex=0;\n vector<int> plmy,l,r;\n rep(i,s.size() ){\n if(isdigit(s[i]) ){\n dpmx[nex][nex]=s[i]-'0';\n dpmn[nex][nex]=s[i]-'0';\n nex++;\n\n if(i!=0 && s[i-1]=='(') l.push_back(1);\n else l.push_back(0);\n if(i!=s.size()-1 && s[i+1]==')') r.push_back(1);\n else r.push_back(0);\n\n \n }\n if(s[i]=='+') plmy.push_back(1);\n if(s[i]=='-') plmy.push_back(0);\n\n }\n\n repi(siz,1,nex){\n rep(p,nex){\n rep(L,nex){\n int R=L+siz;\n if(R < nex){\n\t\n\tint mx=-INF,mn=INF;\n\trepi(mid,L,R){\n\t \n\t \n\t \n\t if(r[L]!=1 && l[R]!=1 && dpmx[L][mid]!=-INF && dpmn[mid+1][R]!=INF){\n\t if(plmy[mid]==1){\n\t chmax(mx,dpmx[L][mid]+dpmx[mid+1][R]);\n\t chmin(mn,dpmn[L][mid]+dpmn[mid+1][R]);\n\t }else{\n\t chmax(mx,dpmx[L][mid]-dpmn[mid+1][R]);\n\t chmin(mn,dpmn[L][mid]-dpmx[mid+1][R]);\n\t }\n\n\t \n\t }\n\t}\n\tdpmx[L][R]=mx;\n\tdpmn[L][R]=mn;\n\t}\n }\n }\n }\n /*rep(i,5){\n rep(j,5){\n cout<<'('<<dpmx[i][j]<<\" \"<<dpmn[i][j]<<')';\n }\n cout<<endl;\n }*/\n cout<<dpmx[0][nex-1]<<endl;\n \n \n \n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3652, "score_of_the_acc": -0.0406, "final_rank": 3 }, { "submission_id": "aoj_2710_6714458", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MOD 1000000007\n//#define MOD 998244353\n#define INF 1e18 + 10\n#define EPS 1e-9\n#define F first\n#define S second\n\n#define debug(x) cout<<x<<endl;\n#define repi(i,x,n) for(int i=x;i<n;i++)\n#define rep(i,n) repi(i,0,n)\n#define lp(i,n) repi(i,0,n)\n#define repn(i,n) for(int i=n;i>=0;i--)\n#define int long long\n#define endl \"\\n\"\n\ntypedef pair<int,int> PII;\ntypedef pair<int,string> PIS;\ntypedef pair<string,int> PSI;\n\ntemplate <typename T>\nbool chmax(T &a, const T& b) {\n if (a < b) {\n a = b; \n return true;\n }\n return false;\n}\n\ntemplate <typename T>\nbool chmin(T &a, const T& b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\n\nsigned main(){\n cin.tie(0);\t\n ios::sync_with_stdio(false);\n string s;\n cin>>s;\n int dpmx[110][110]={};\n int dpmn[110][110]={};\n rep(i,110){\n rep(j,110){\n dpmx[i][j]=-INF;\n dpmn[i][j]=INF;\n }\n }\n int nex=0;\n vector<int> plmy,l,r;\n rep(i,s.size() ){\n if(isdigit(s[i]) ){\n dpmx[nex][nex]=s[i]-'0';\n dpmn[nex][nex]=s[i]-'0';\n nex++;\n\n if(i!=0 && s[i-1]=='(') l.push_back(1);\n else l.push_back(0);\n if(i!=s.size()-1 && s[i+1]==')') r.push_back(1);\n else r.push_back(0);\n\n \n }\n if(s[i]=='+') plmy.push_back(1);\n if(s[i]=='-') plmy.push_back(0);\n\n }\n\n repi(siz,1,nex){\n rep(p,nex){\n rep(L,nex){\n int R=L+siz;\n if(R < nex){\n\t\n\tint mx=-INF,mn=INF;\n\trepi(mid,L,R){\n\t \n\t \n\t \n\t if(r[L]!=1 && l[R]!=1 && dpmx[L][mid]!=-INF && dpmn[mid+1][R]!=INF){\n\t if(plmy[mid]==1){\n\t chmax(mx,dpmx[L][mid]+dpmx[mid+1][R]);\n\t chmin(mn,dpmn[L][mid]+dpmn[mid+1][R]);\n\t }else{\n\t chmax(mx,dpmx[L][mid]-dpmn[mid+1][R]);\n\t chmin(mn,dpmn[L][mid]-dpmx[mid+1][R]);\n\t }\n\n\t \n\t }\n\t}\n\tdpmx[L][R]=mx;\n\tdpmn[L][R]=mn;\n\t}\n }\n }\n }\n /*rep(i,5){\n rep(j,5){\n cout<<'('<<dpmx[i][j]<<\" \"<<dpmn[i][j]<<')';\n }\n cout<<endl;\n }*/\n cout<<dpmx[0][nex-1]<<endl;\n \n \n \n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3632, "score_of_the_acc": -0.0405, "final_rank": 2 }, { "submission_id": "aoj_2710_5287970", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\n\nusing namespace std;\n\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n\ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n\n\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n\n#define MOD 1000000007\n\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-6, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nusing modint = ModInt< 1000000007 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n\n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n\n inline T fact(int k) const { return _fact[k]; }\n\n inline T rfact(int k) const { return _rfact[k]; }\n\n inline T inv(int k) const { return _inv[k]; }\n\n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n\n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n\n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n\nint modpow(ll x, ll n, int mod) {\n ll res = 1;\n while(n) {\n if(n&1) res = res*x % mod;\n x = x*x%mod;\n n >>= 1;\n }\n return res;\n}\nstring s; \npair<ll, ll> dp[210][210];\npair<ll, ll> rec(int l, int r) {\n\n if(l+1==r) {\n return make_pair(s[l]-'0', s[l]-'0');\n }\n if(dp[l][r].first != INT_MIN) return dp[l][r];\n\n if(s[l] == '(' && r-l>3) return dp[l][r] = rec(l+1,r);\n if(s[r-1] == ')' && r-l>3) return dp[l][r] = rec(l, r-1);\n\n pair<ll, ll> res = make_pair(INT_MIN, INT_MAX);\n for(int k=l+1; k<r; k++) {\n if(s[k] == '+' || s[k] == '-') {\n auto lt = rec(l, k);\n auto rt = rec(k+1, r);\n\n if(s[k] == '+') {\n res.first = max(res.first, lt.first + rt.first);\n res.second = min(res.second, lt.second + rt.second);\n }else{\n res.first = max(res.first, lt.first - rt.second);\n res.second = min(res.second, lt.second - rt.first);\n }\n }\n }\n return dp[l][r] = res;\n}\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(7);\n \n cin >> s;\n REP(i,210) REP(j,210) dp[i][j] = make_pair(INT_MIN, INT_MAX);\n auto res = rec(0, s.size());\n\n cout << res.first << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3920, "score_of_the_acc": -0.2424, "final_rank": 8 }, { "submission_id": "aoj_2710_4927543", "code_snippet": "//#pragma GCC target(\"avx2\")\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n\n#include <random>\n#include \"bits/stdc++.h\"\n//#include <atcoder/all>\n\nusing namespace std;\n// using namespace atcoder;\n\nusing ll = long long;\nusing ld = long double;\nusing P = pair<ll, ll>;\nconstexpr ld eps = 1e-12;\nconstexpr int inf = numeric_limits<int>::max() / 2;\nconstexpr ll mod = 1e9 + 7;\nmt19937_64 rnd{random_device()()};\n\ntemplate <typename T>\nvoid printv(const vector<T> &v) {\n int sz = v.size();\n for (int i = 0; i < sz; i++) {\n cout << v[i] << \" \\n\"[i == sz - 1];\n }\n}\n\nstring s;\nconst int MAX_N = 210;\n// (min, max)\nvector<vector<P>> dp(MAX_N, vector<P>(MAX_N, {inf, -inf}));\n\nP rec(int l, int r) {\n if (dp[l][r] != P(inf, -inf)) {\n return dp[l][r];\n }\n if (l == r) {\n int num = s[l] - '0';\n return dp[l][r] = P(num, num);\n }\n if (s[l] == '(' && r - l >= 3) {\n auto p = rec(l + 1, r);\n dp[l][r].first = min(dp[l][r].first, p.first);\n dp[l][r].second = max(dp[l][r].second, p.second);\n }\n if (s[r] == ')' && r - l >= 3) {\n auto p = rec(l, r - 1);\n dp[l][r].first = min(dp[l][r].first, p.first);\n dp[l][r].second = max(dp[l][r].second, p.second);\n }\n for (int pos = l + 1; pos <= r - 1; pos++) {\n if (s[pos] == '+' || s[pos] == '-') {\n auto p1 = rec(l, pos - 1);\n auto p2 = rec(pos + 1, r);\n if (s[pos] == '+') {\n dp[l][r].first = min(dp[l][r].first, p1.first + p2.first);\n dp[l][r].second = max(dp[l][r].second, p1.second + p2.second);\n } else {\n dp[l][r].first = min(dp[l][r].first, p1.first - p2.second);\n dp[l][r].second = max(dp[l][r].second, p1.second - p2.first);\n }\n }\n }\n return dp[l][r];\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n cin >> s;\n int n = s.size();\n cout << rec(0, n - 1).second << endl;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 4172, "score_of_the_acc": -0.4986, "final_rank": 10 }, { "submission_id": "aoj_2710_3264886", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = (ll)1000000007 * 1000000007;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\ntypedef complex<ld> Point;\nconst ld eps = 1e-4;\nconst ld pi = acos(-1.0);\ntypedef pair<ll, ll> LP;\ntypedef pair<ld, ld> LDP;\nstring s; int n;\nint m;\nint num[200];bool ord[200][2];\nchar oper[200];\nbool valid;\nint calc(int le, int ri) {\n\tvalid = true; int res = num[le];\n\tRep1(i, le+1, ri) {\n\t\tif (oper[i - 1] == '+') {\n\t\t\tres += num[i];\n\t\t}\n\t\telse {\n\t\t\tres -= num[i];\n\t\t}\n\t}\n\tRep1(i, le + 1, ri - 1) {\n\t\tif (ord[i][0] || ord[i][1])valid = false;\n\t}\n\tif (ri-le>0&&(ord[le][1] || ord[ri][0]))valid = false;\n\treturn res;\n}\nbool chk[200][200];\nP ans[200][200];\nP dfs(int le, int ri) {\n\tif (chk[le][ri])return ans[le][ri];\n\tchk[le][ri] = true;\n\tif (le > ri)return ans[le][ri] = { 0,0 };\n\tP res = { mod,-mod };\n\tint t = calc(le, ri);\n\tif (valid)res = { t,t };\n\tif (ri - le > 0 && (ord[le][1] || ord[ri][0]))return ans[le][ri]=res;\n\tRep1(i, le+1,ri) {\n\t\tif (ord[i][1])continue;\n\t\tRep1(j, i + 1, ri-1) {\n\t\t\tif (ord[j][0])continue;\n\t\t\t//if (i == le && j == ri)continue;\n\t\t\tP s1 = dfs(le, i - 1),s2=dfs(i,j),s3=dfs(j+1,ri);\n\t\t\tif (s1.first == mod || s2.first == mod || s3.first == mod)continue;\n\t\t\tint mi = s1.first, ma = s1.second;\n\t\t\tif (oper[i - 1] == '+') {\n\t\t\t\tmi += s2.first; ma += s2.second;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tmi -= s2.second; ma -= s2.first;\n\t\t\t}\n\t\t\tif (oper[j] == '+') {\n\t\t\t\tmi += s3.first; ma += s3.second;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tmi -= s3.second; ma -= s3.first;\n\t\t\t}\n\t\t\tres.first = min(res.first, mi);\n\t\t\tres.second = max(res.second, ma);\n\t\t}\n\t}\n\tRep1(i, le + 1, ri - 1) {\n\t\tif (ord[i][0])continue;\n\t\tP s1 = dfs(le, i), s2 = dfs(i + 1, ri);\n\t\tif (s1.first == mod || s2.first == mod)continue;\n\t\tint mi = s1.first, ma = s1.second;\n\t\tif (oper[i] == '+') {\n\t\t\tmi += s2.first; ma += s2.second;\n\t\t}\n\t\telse {\n\t\t\tmi -= s2.second; ma -= s2.first;\n\t\t}\n\t\tres.first = min(res.first, mi);\n\t\tres.second = max(res.second, ma);\n\t}\n\tRep1(i, le + 1, ri - 1) {\n\t\tif (ord[i][1])continue;\n\t\tP s1 = dfs(le, i - 1), s2 = dfs(i, ri);\n\t\tif (s1.first == mod || s2.first == mod)continue;\n\t\tint mi = s1.first, ma = s1.second;\n\t\tif (oper[i - 1] == '+') {\n\t\t\tmi += s2.first; ma += s2.second;\n\t\t}\n\t\telse {\n\t\t\tmi -= s2.second; ma -= s2.first;\n\t\t}\n\t\tres.first = min(res.first, mi);\n\t\tres.second = max(res.second, ma);\n\t}\n\treturn ans[le][ri]=res;\n}\nint main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tcin >> s; n = s.length();\n\tfor (int i = 0; i < n; i += 2) {\n\t\twhile (s[i] == '(') {\n\t\t\tord[m][0] = true; i++;\n\t\t}\n\t\tnum[m] = s[i] - '0';\n\t\twhile (i + 1 < n&&s[i + 1] == ')') {\n\t\t\tord[m][1] = true; i++;\n\t\t}\n\t\tif (i + 1 < n) {\n\t\t\toper[m] = s[i + 1];\n\t\t}\n\t\tm++;\n\t}\n\tcout << dfs(0, m - 1).second << endl;\n\t/*rep(i,m) {\n\t\tRep(j, i, m) {\n\t\t\tcout << i << \" \" << j << endl;\n\t\t\tcout << ans[i][j].first << \" \" << ans[i][j].second << endl;\n\n\t\t}\n\t}\n\trep(i, m) {\n\t\tcout << num[i] << endl;\n\t}*/\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3372, "score_of_the_acc": -0.057, "final_rank": 4 }, { "submission_id": "aoj_2710_3230741", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <cassert>\n#include <cctype>\n#include <string>\n#include <vector>\n#include <algorithm>\n\nusing MinMax = std::pair<int, int>;\n\nconstexpr int INF=1<<29;\nconstexpr MinMax INIT(INF, -INF);\n\nstd::vector<std::vector<MinMax>> memo;\n\nMinMax rec(const std::string& s, size_t left, size_t right) {\n MinMax& res=memo[left][right];\n if (res != INIT) return res;\n\n if (right == left+1) {\n int v=s[left]-'0';\n return (res = {v, v});\n }\n if (s[left] == '(' && right-left > 3) {\n MinMax p=rec(s, left+1, right);\n res.first = std::min(res.first, p.first);\n res.second = std::max(res.second, p.second);\n }\n if (s[right-1] == ')' && right-left > 3) {\n MinMax p=rec(s, left, right-1);\n res.first = std::min(res.first, p.first);\n res.second = std::max(res.second, p.second);\n }\n for (size_t i=left+1; i+1<right; ++i) {\n char op=s[i];\n if (op == '+' || op == '-') {\n MinMax pl=rec(s, left, i);\n MinMax pr=rec(s, i+1, right);\n if (op == '+') {\n res.first = std::min(res.first, pl.first+pr.first);\n res.second = std::max(res.second, pl.second+pr.second);\n } else {\n res.first = std::min(res.first, pl.first-pr.second);\n res.second = std::max(res.second, pl.second-pr.first);\n }\n }\n }\n return res;\n}\n\nint main() {\n char buf[256];\n scanf(\"%s\", buf);\n std::string S=buf;\n\n size_t n=S.length();\n memo.assign(n+1, std::vector<MinMax>(n+1, INIT));\n \n printf(\"%d\\n\", rec(S, 0, n).second);\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 3000, "score_of_the_acc": -0.5636, "final_rank": 11 }, { "submission_id": "aoj_2710_3197118", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nusing P = pair<int, int>;\nconst int INF = 1e9;\n\nstring s;\nvector<vector<P> > dp;\n\nP dfs(int l, int r) {\n if ( dp[l][r] != P(-INF, INF) ) {\n return dp[l][r]; \n }\n if ( l == r ) {\n return P(s[l]-'0', s[l]-'0'); \n }\n\n P ret = {-INF, INF};\n if ( s[l] == '(' && r-l >= 3 ) {\n P res = dfs(l+1, r);\n ret.first = max(ret.first, res.first);\n ret.second = min(ret.second, res.second); \n }\n \n if ( s[r] == ')' && r-l >= 3 ) {\n P res = dfs(l, r-1);\n ret.first = max(ret.first, res.first);\n ret.second = min(ret.second, res.second); \n }\n \n for ( int i = l+1; i < r; i++ ) {\n if ( s[i] == '+' ) {\n P res1 = dfs(l, i-1);\n P res2 = dfs(i+1, r); \n ret.first = max(ret.first, res1.first+res2.first);\n ret.second = min(ret.second, res1.second+res2.second); \n }\n if ( s[i] == '-' ) {\n P res1 = dfs(l, i-1);\n P res2 = dfs(i+1, r); \n ret.first = max(ret.first, res1.first-res2.second);\n ret.second = min(ret.second, res1.second-res2.first); \n }\n }\n\n return dp[l][r] = ret; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin >> s;\n\n int n = s.size();\n dp = vector<vector<P> >(n+1, vector<P>(n+1, P(-INF, INF)));\n\n cout << dfs(0, n-1).first << endl; \n \n return 0;\n}", "accuracy": 1, "time_ms": 460, "memory_kb": 3676, "score_of_the_acc": -0.8226, "final_rank": 16 }, { "submission_id": "aoj_2710_3022371", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\nusing namespace std;\n\ntypedef pair<int,int> P;\ntypedef pair<P,int> P1;\n\nmap<P1,int> memo;\nstring s;\n\nint dfs(int l, int r, int flag){\n \n if( memo.count(P1(P(l,r),flag)) ) return memo[P1(P(l,r),flag)];\n \n int L = l, R = r;\n \n int cnt = 0;\n \n for(int i=L;i<=R;i++){\n if( '0' <= s[i] && s[i] <= '9' ) cnt++;\n }\n \n if( cnt == 1 ){\n if( R - L + 1 == 1 ) return memo[P1(P(L,R),flag)] = s[L] - '0';\n else return memo[P1(P(L,R),flag)] = flag == 0 ? -1e9 : 1e9;\n }\n \n while( s[L] == '(' ) L++;\n \n while( s[R] == ')' ) R--;\n \n int res = flag == 0 ? -1e9 : 1e9;\n \n for(int i=L;i<=R;i++){\n \n if( s[i] == '+' ){\n int A = dfs( L, i - 1, flag );\n int B = dfs( i + 1, R, flag );\n if( flag == 0 ) res = max( res, A + B );\n else res = min( res, A + B );\n }\n \n if( s[i] == '-' ){\n int A = dfs( L, i - 1, flag );\n int B = dfs( i + 1, R, !flag );\n if( flag == 0 ) res = max( res, A - B );\n else res = min( res, A - B );\n }\n \n }\n \n return memo[P1(P(l,r),flag)] = res;\n}\n\nsigned main(){\n \n cin>>s;\n \n cout<<dfs(0,(int)s.size()-1,0)<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3936, "score_of_the_acc": -0.1152, "final_rank": 6 }, { "submission_id": "aoj_2710_2995395", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int>P;\n#define F first\n#define S second\nint INF=1e9;\nstring s;\nP init=P(INF,-INF);\nvector<vector<P> >dp(200,vector<P>(200,init));\n\nP dfs(int l,int r){\n\tif(l==r)return P(s[l]-'0',s[l]-'0');\n\tif(dp[l][r]!=init)return dp[l][r];\n\tP res=init;\n\tif(s[l]=='('&&r-l>2) res=dfs(l+1,r);\n\tif(s[r]==')'&&r-l>2) res=dfs(l,r-1);\n\tfor(int i=l+1;i<r;i++){\n\t\tif(!(s[i]=='-'||s[i]=='+'))continue;\n\t\tP a=dfs(l,i-1);\n\t\tP b=dfs(i+1,r);\n\t\tif(s[i]=='-'){\n\t\t\tres.F=min(res.F,a.F-b.S);\n\t\t\tres.S=max(res.S,a.S-b.F);\n\t\t}\n\t\tif(s[i]=='+'){\n\t\t\tres.F=min(res.F,a.F+b.F);\n\t\t\tres.S=max(res.S,a.S+b.S);\n\t\t}\n\t}\n\treturn dp[l][r]=res;\n}\n\nmain(){\n\tcin>>s;\n\tcout<<dfs(0,s.size()-1).S<<endl;\n}", "accuracy": 1, "time_ms": 490, "memory_kb": 3352, "score_of_the_acc": -0.875, "final_rank": 18 }, { "submission_id": "aoj_2710_2995369", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int>P;\n#define F first\n#define S second\nint INF=1e9;\nstring s;\nP dp[222][222],init=P(INF,-INF);\n\nP dfs(int l,int r){\n\tif(l==r)return P(s[l]-'0',s[l]-'0');\n\tif(dp[l][r]!=init)return dp[l][r];\n\tP res=init;\n\tif(s[l]=='('&&r-l>2) res=dfs(l+1,r);\n\tif(s[r]==')'&&r-l>2) res=dfs(l,r-1);\n\tfor(int i=l+1;i<r;i++){\n\t\tif(!(s[i]=='-'||s[i]=='+'))continue;\n\t\tP a=dfs(l,i-1);\n\t\tP b=dfs(i+1,r);\n\t\tif(s[i]=='-'){\n\t\t\tres.F=min(res.F,a.F-b.S);\n\t\t\tres.S=max(res.S,a.S-b.F);\n\t\t}\n\t\tif(s[i]=='+'){\n\t\t\tres.F=min(res.F,a.F+b.F);\n\t\t\tres.S=max(res.S,a.S+b.S);\n\t\t}\n\t}\n\treturn dp[l][r]=res;\n}\n\nint main(){\n\tcin>>s;\n\tfor(int i=0;i<222;i++)\n\t\tfor(int j=0;j<222;j++)dp[i][j]=init;\n\tcout<<dfs(0,s.size()-1).S<<endl;\n}", "accuracy": 1, "time_ms": 470, "memory_kb": 3612, "score_of_the_acc": -0.8404, "final_rank": 17 }, { "submission_id": "aoj_2710_2745307", "code_snippet": "#define __USE_MINGW_ANSI_STDIO 0\n#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n#define int ll\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing PII = pair<int, int>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n#define PB push_back\n\nconst ll LLINF = (1LL<<60);\nconst int INF = (1LL<<30);\nconst int MOD = 1000000007;\n\ntemplate <typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }\ntemplate <typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }\ntemplate <typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; }\ntemplate<typename T> T ceil(T a, T b) { return a/b + !!(a%b); }\ntemplate<class S,class T>\nostream &operator <<(ostream& out,const pair<S,T>& a){\n out<<'('<<a.first<<','<<a.second<<')';\n return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out,const vector<T>& a){\n out<<'[';\n REP(i, a.size()) {out<<a[i];if(i!=a.size()-1)out<<',';}\n out<<']';\n return out;\n}\n\nint dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};\n\nPII dp[205][205];\nsigned main(void)\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n string s;\n cin >> s;\n\n // [l,r]\n function<PII(int,int)> dfs = [&](int l, int r) -> PII {\n if(dp[l][r] != PII{-INF, INF}) return dp[l][r];\n if(l==r) return dp[l][r] = {s[l]-'0', s[l]-'0'};\n if(s[l]=='(' && r-l>=3) {\n PII p = dfs(l+1, r);\n chmax(dp[l][r].first, p.first);\n chmin(dp[l][r].second, p.second);\n }\n if(s[r]==')' && r-l>=3) {\n PII p = dfs(l, r-1);\n chmax(dp[l][r].first, p.first);\n chmin(dp[l][r].second, p.second);\n }\n FOR(i, l+1, r) {\n if(s[i]=='+' || s[i]=='-') {\n PII vl = dfs(l, i-1);\n PII vr = dfs(i+1, r);\n if(s[i]=='+') {\n chmax(dp[l][r].first, vl.first+vr.first);\n chmin(dp[l][r].second, vl.second+vr.second);\n } else {\n chmax(dp[l][r].first, vl.first-vr.second);\n chmin(dp[l][r].second, vl.second-vr.first);\n }\n }\n }\n return dp[l][r];\n };\n\n REP(i, s.size()) REP(j, s.size()) dp[i][j] = PII{-INF, INF};\n cout << dfs(0, s.size()-1).first << endl;\n\n // REP(i, s.size()) {\n // FOR(j, i, s.size()) cout << dp[i][j] << \" \";\n // cout << endl;\n // }\n\n return 0;\n}", "accuracy": 1, "time_ms": 560, "memory_kb": 3792, "score_of_the_acc": -1.0052, "final_rank": 19 }, { "submission_id": "aoj_2710_2710537", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <algorithm>\n#include <utility>\nusing namespace std;\ntypedef pair<int, int> pii;\ninline void chmax(int &a, const int &b) {a = max(a, b);}\ninline void chmin(int &a, const int &b) {a = min(a, b);}\nconst int INF = 1 << 28;\nstring s;\nint N;\npii dp[210][210], INIT;\n\npii solve(int l, int r) {\n pii &res = dp[l][r];\n if(dp[l][r] != INIT) return res;\n // 数字\n if(r - l == 1) {\n int val = s[l] - '0';\n return res = make_pair(val, val);\n }\n // 括弧をとっぱらって再帰的に\n // このとき、括弧含め幅が 3 以下 (つまり実質 2 以下) だと\n // 数式になりえないので飛ばす\n if(s[l] == '(' && r-l > 3) {\n pii tmp = solve(l+1, r);\n res.first = max(res.first, tmp.first);\n res.second = min(res.second, tmp.second);\n }\n if(s[r-1] == ')' && r-l > 3) {\n pii tmp = solve(l, r-1);\n res.first = max(res.first, tmp.first);\n res.second = min(res.second, tmp.second);\n }\n for(int k=l; k<r; k++) {\n if(s[k] != '+' && s[k] != '-') continue;\n pii v1 = solve(l, k), v2 = solve(k+1, r);\n if(s[k] == '+') {\n res.first = max(res.first, v1.first + v2.first);\n res.second = min(res.second, v1.second + v2.second);\n }\n else {\n res.first = max(res.first, v1.first - v2.second);\n res.second = min(res.second, v1.second - v2.first);\n }\n }\n return res;\n}\n\nint main() {\n cin >> s;\n N = s.length();\n INIT = make_pair(-INF, INF);\n for(int i=0; i<N; i++) {\n fill(dp[i], dp[i] + N + 1, INIT);\n }\n\n cout << solve(0, N).first << endl;\n /*\n for(int i=0; i<N; i++) {\n for(int j=i+1; j<=N; j++) {\n if(dp_max[i][j] == -INF) continue;\n printf(\"%s\\n\", s.c_str());\n for(int k=0; k<N; k++) {\n if(i <= k && k < j) printf(\"=\");\n else printf(\" \");\n }\n printf(\" -> %d\\n\", dp_max[i][j]);\n }\n }\n */\n return 0;\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 3524, "score_of_the_acc": -0.8034, "final_rank": 15 }, { "submission_id": "aoj_2710_2636771", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define REP(i,n) for(int i=0;i<(int)(n);i++)\n#define ALL(a) (a).begin(),(a).end()\n\nconstexpr int INF = 1000000000;\n\nenum CYK_TABLE {\n DIGIT,\n LPAR,\n RPAR,\n PLUS,\n MINUS,\n TERM,\n RPEXPR,\n RMEXPR,\n LEXPR,\n EXPR\n};\n\nint main(){\n int N = 10;\n string s;\n cin>>s;\n int n = s.size();\n vector<vector<vector<bool>>> cyk(n, vector<vector<bool>>(n+1, vector<bool>(N, false)));\n vector<vector<vector<int>>> mn(n, vector<vector<int>>(n+1, vector<int>(N, INF)));\n vector<vector<vector<int>>> mx(n, vector<vector<int>>(n+1, vector<int>(N, -INF)));\n REP(i,n) {\n if (isdigit(s[i])) {\n cyk[i][1][DIGIT] = true;\n mn[i][1][DIGIT] = s[i] - '0';\n mx[i][1][DIGIT] = s[i] - '0';\n } else {\n switch (s[i]) {\n case '(':\n cyk[i][1][LPAR] = true;\n break;\n case ')':\n cyk[i][1][RPAR] = true;\n break;\n case '+':\n cyk[i][1][PLUS] = true;\n break;\n case '-':\n cyk[i][1][MINUS] = true;\n break;\n }\n }\n }\n vector<pair<int, int>> m = {\n {DIGIT, TERM},\n {EXPR, TERM},\n {EXPR, LEXPR},\n {LEXPR, EXPR}\n };\n map<pair<int,int>, int> m2 = {\n {{PLUS, TERM}, RPEXPR},\n {{TERM, RPEXPR}, EXPR},\n {{MINUS, TERM}, RMEXPR},\n {{TERM, RMEXPR}, EXPR},\n {{LPAR, EXPR}, LEXPR},\n {{LEXPR, RPAR}, EXPR}\n };\n for (int l = 1; l <= n; ++l) {\n REP(i,n) {\n if (i+l > n) continue;\n REP(k,l) {\n if (k == 0) continue;\n for (auto p : m2) {\n int left, right, res;\n pair<int,int> tmp;\n tie(tmp, res) = p;\n tie(left, right) = tmp;\n if (cyk[i][k][left] && cyk[i+k][l-k][right]) {\n cyk[i][l][res] = true;\n if (right == RPEXPR) {\n mn[i][l][res] = min(mn[i][l][res],\n mn[i][k][left] + mn[i+k][l-k][right]);\n mx[i][l][res] = max(mx[i][l][res],\n mx[i][k][left] + mx[i+k][l-k][right]);\n } else if (right == RMEXPR) {\n mn[i][l][res] = min(mn[i][l][res],\n mn[i][k][left] - mx[i+k][l-k][right]);\n mx[i][l][res] = max(mx[i][l][res],\n mx[i][k][left] - mn[i+k][l-k][right]);\n } else if (right == EXPR || right == TERM) {\n mn[i][l][res] = min(mn[i][l][res], mn[i+k][l-k][right]);\n mx[i][l][res] = max(mx[i][l][res], mx[i+k][l-k][right]);\n } else if (left == LEXPR) {\n mn[i][l][res] = min(mn[i][l][res], mn[i][k][left]);\n mx[i][l][res] = max(mx[i][l][res], mx[i][k][left]);\n }\n }\n }\n }\n while (true) {\n bool update = false;\n for (auto p : m) {\n int src, res;\n tie(src, res) = p;\n if (cyk[i][l][src]) {\n if (!cyk[i][l][res]) update = true;\n cyk[i][l][res] = true;\n mn[i][l][res] = min(mn[i][l][res], mn[i][l][src]);\n mx[i][l][res] = max(mx[i][l][res], mx[i][l][src]);\n }\n }\n if (!update) break;\n }\n }\n }\n cout << mx[0][n][EXPR] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 11608, "score_of_the_acc": -0.129, "final_rank": 7 }, { "submission_id": "aoj_2710_2514277", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2710&lang=jp\n// reference : http://suikaba.hatenablog.com/entry/2017/05/24/231631\ntypedef pair<int, int> pii;\n#define INF 1<<25\n\npii rec(int l, int r, const string& S,vector<vector<pii>>& dp) {\n\tpii& ret = dp[l][r];\n\t/* Updated */\n\tif (ret != pii{ -INF, INF }) return ret;\n\n\tif (l == r) {\n\t\treturn ret = { S[l] - '0',S[l] - '0' };\n\t}\n\n\tif (S[l] == '(' && r - l >= 3) {\n\t\tpii x = rec(l + 1, r, S, dp);\n\t\tret.first = max(ret.first, x.first);\n\t\tret.second = min(ret.second, x.second);\n\t}\n\tif (S[r] == ')' && r - l >= 3) {\n\t\tpii x = rec(l, r - 1, S, dp);\n\t\tret.first = max(ret.first, x.first);\n\t\tret.second = min(ret.second, x.second);\n\t}\n\tfor (int m = l + 1; m < r; m++) {\n\t\tif (S[m] == '+' || S[m] == '-') {\n\t\t\tpii x1 = rec(l, m - 1, S, dp);\n\t\t\tpii x2 = rec(m + 1, r, S, dp);\n\t\t\tif (S[m] == '+') {\n\t\t\t\tret.first = max(ret.first, x1.first + x2.first);\n\t\t\t\tret.second = min(ret.second, x1.second + x2.second);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tret.first = max(ret.first, x1.first - x2.second);\n\t\t\t\tret.second = min(ret.second, x1.second - x2.first);\n\t\t\t}\n\t\t}\n\t}\n\treturn ret;\n}\n\nint main(void) {\n\tcin.tie(0); ios::sync_with_stdio(false);\n\tstring S; cin >> S;\n\t/* dp[l][r] := { maximum value of the interval(l-r) , minimum value of ~ }*/\n\tvector<vector<pii>> dp(S.length(), vector<pii>(S.length(), { -INF,INF }));\n\tcout << rec(0, S.length() - 1, S, dp).first << endl;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 3320, "score_of_the_acc": -0.6203, "final_rank": 13 }, { "submission_id": "aoj_2710_2424391", "code_snippet": "#include <iostream>\n#include <cmath>\n#define REP(i, a, n) for(int i = ((int) a); i < ((int) n); i++)\n#define INF 100000000\nusing namespace std;\ntypedef long long ll;\n\nstring S;\nll dp[300][300][2];\n\nll number(int l, int r) {\n ll ret = 0;\n REP(i, l, r) {\n if('0' <= S[i] && S[i] <= '9') ret = ret * 10 + (S[i] - '0');\n else return -1;\n }\n return ret;\n}\n\nll dfs(int l, int r, int mode, int depth) {\n\n if(dp[l][r][mode] > -INF * 2) return dp[l][r][mode];\n\n ll n = number(l, r);\n if(n >= 0) return n;\n\n ll ret = mode == 0 ? -INF : INF;\n REP(i, l, r) if(S[i] == '+' || S[i] == '-') {\n int nl = l, nr = r;\n while(1) {\n ll n1 = dfs(nl, i, mode, depth + 1);\n ll n2 = dfs(i + 1, nr, S[i] == '-' ? 1 - mode : mode, depth + 1);\n if(abs(n1) != INF && abs(n2) != INF) {\n if(mode == 0) {\n if(S[i] == '+') ret = max(ret, n1 + n2);\n if(S[i] == '-') ret = max(ret, n1 - n2);\n } else {\n if(S[i] == '+') ret = min(ret, n1 + n2);\n if(S[i] == '-') ret = min(ret, n1 - n2);\n }\n }\n if(S[nl] != '(' && S[nr - 1] != ')') break;\n if(S[nl] == '(') nl++;\n if(S[nr - 1] == ')') nr--;\n }\n }\n return dp[l][r][mode] = ret;\n}\n\nint main(void) {\n cin >> S;\n\n REP(i, 0, 201) REP(j, 0, 201) REP(k, 0, 2) dp[i][j][k] = -INF * 2;\n cout << dfs(0, S.size(), 0, 0) << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4108, "score_of_the_acc": -0.0072, "final_rank": 1 }, { "submission_id": "aoj_2710_2336200", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing P = pair<int, int>;\n\nconstexpr int INF = 1e9;\n\nP memo[201][201];\n\nP rec(int l, int r, string const& s) {\n P& res = memo[l][r];\n if(res != P{-INF, INF}) {\n return res;\n }\n if(l == r) {\n int v = s[l] - '0';\n return res = make_pair(v, v);\n }\n if(s[l] == '(' && r-l >= 3) {\n P p = rec(l+1, r, s);\n res.first = max(res.first, p.first);\n res.second = min(res.second, p.second);\n }\n if(s[r] == ')' && r-l >= 3) {\n P p = rec(l, r-1, s);\n res.first = max(res.first, p.first);\n res.second = min(res.second, p.second);\n }\n for(int i=l+1; i<r; ++i) {\n char op = s[i];\n if(op == '+' || op == '-') {\n P rl = rec(l, i-1, s);\n P rr = rec(i+1, r, s);\n if(op == '+') {\n res.first = max(res.first, rl.first + rr.first);\n res.second = min(res.second, rl.second + rr.second);\n } else {\n res.first = max(res.first, rl.first - rr.second);\n res.second = min(res.second, rl.second - rr.first);\n }\n }\n }\n return res;\n}\n\nint main() {\n string s;\n cin >> s;\n for(int i=0; i<s.size(); ++i) {\n for(int j=0; j<s.size(); ++j) {\n memo[i][j] = make_pair(-INF, INF);\n }\n }\n cout << rec(0, s.size()-1, s).first << endl;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 3504, "score_of_the_acc": -0.6578, "final_rank": 14 }, { "submission_id": "aoj_2710_2141643", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint calc(string &s,int &i){\n int res=0;\n while(1){\n if(isdigit(s[i]))res=s[i++]-'0';\n else if(s[i]=='('){res=calc(s,++i),i++;}\n else if(s[i]=='+')res+=calc(s,++i);\n else if(s[i]=='-')res-=calc(s,++i);\n else break;\n }\n return res;\n}\n\nunordered_map<string,int> mem[2];\nint dfs(string s,int f){\n if(mem[f].count(s))return mem[f][s];\n\n int j=0,res=calc(s,j),n=s.size(),d=-1;\n for(int i=0;i<n;i++) d+=(s[i]=='+'||s[i]=='-');\n \n for(int i=0,c=0,cnt=0;i<n;i++,cnt++,d--){\n while(1){\n while(s[i]=='('||s[i]==')')c+=(s[i]=='(')-(s[i]==')'),i++;\n if(i>=n||s[i]=='+'||s[i]=='-') break;\n i++;\n }\n if(i>=n||(cnt&&s[i-2]=='(')||(d&&s[i+2]==')'))continue;\n string a=s.substr(0,i),b=s.substr(i+1,n-i-1);\n int t=c,ch=s[i];\n while(t--)a+=')',b='('+b;\n int mxa=dfs(a,0),mna=dfs(a,1);\n int mxb=dfs(b,0),mnb=dfs(b,1);\n if(f==0&&ch=='+') res=max(res, mxa+mxb);\n if(f==0&&ch=='-') res=max(res, mxa-mnb);\n if(f==1&&ch=='+') res=min(res, mna+mnb);\n if(f==1&&ch=='-') res=min(res, mna-mxb);\n }\n return mem[f][s]=res;\n}\n\nint main(){\n string S;\n cin>>S;\n cout <<dfs(S,0)<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 4444, "score_of_the_acc": -0.2822, "final_rank": 9 } ]
aoj_2709_cpp
真っ暗な部屋 目を覚ますと、A君は真っ暗な部屋の中にいた。 どうやらA君は N 個の部屋から構成されたダンジョンに迷い込んでしまったようだ。 あなたはA君がどの部屋に迷い込んだのかを知ることはできなかったが、幸いにもダンジョンのマップを手に入れることができた。 A君の進むべき道を示し明るい部屋に導こう。 N 個の部屋のうち M 個の部屋が真っ暗な部屋であり、それぞれ D_1 , D_2 , ..., D_M 番目の部屋が真っ暗な部屋であることが分かっている。 また、全ての部屋からちょうど K 本の一方通行の道が順に並んでおり、 i 番目の部屋から出る道はそれぞれ v_{i,1} , v_{i,2} , ..., v_{i,K} 番目の部屋に繋がっている。 あなたは、A君に対し今いる部屋から a_1 , a_2 , ..., a_l 番目の道を順に進ませることができる。 ただし、A君は明るい部屋に到達したらそれ以降の指示は無視する。 あなたは、指示の前後においてA君が今いる部屋の情報を知ることはできないため、A君がどの部屋にいたとしても明るい部屋に辿り着けるような指示列を伝えなければならない。 そのような指示のうち、最も短いものの長さを答えよ。 Constraints 2 ≤ N ≤ 100 1 ≤ M ≤ min(16, N − 1) 1 ≤ K ≤ N 1 ≤ D_i ≤ N D_i は全て異なる 1 ≤ v_{i, j} ≤ N 全ての暗い部屋は少なくとも1つの明るい部屋に到達可能である Input Format 入力は以下の形式で標準入力から与えられる。 N M K D_1 D_2 ... D_M v_{1,1} v_{1,2} ... v_{1,K} v_{2,1} v_{2,2} ... v_{2,K} ... v_{N,1} v_{N,2} ... v_{N,K} Output Format 答えを一行に出力せよ。 Sample Input 1 4 2 2 1 2 2 4 3 1 4 2 1 3 Sample Output 1 2 1, 1 という指示を出すと A君の初期位置が部屋1である場合、2つ目の移動で部屋3に到達する A君の初期位置が部屋2である場合、1つ目の移動で部屋3に到達する Sample Input 2 3 2 2 1 2 2 3 1 2 2 1 Sample Output 2 3 2, 1, 2 という指示を出すと A君の初期位置が部屋1である場合、1つ目の移動で部屋3に到達する A君の初期位置が部屋2である場合、3つ目の移動で部屋3に到達する Sample Input 3 6 3 3 1 2 3 4 1 1 2 5 2 3 3 6 4 4 4 5 5 5 6 6 6 Sample Output 3 3 非連結であるケースや、自己辺、多重辺があるケースに気をつけよう
[ { "submission_id": "aoj_2709_10889003", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/all>\n// #include<boost/multiprecision/cpp_int.hpp>\n\nusing namespace std;\n// using namespace atcoder;\n// using bint = boost::multiprecision::cpp_int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing vi = vector<ll>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing ve = vector<vector<int>>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\n#define rep(i,s,n) for(ll i = (ll)s;i < (ll)n;i++)\n#define rrep(i,l,r) for(ll i = r-1;i >= l;i--)\n#define ALL(x) (x).begin(),(x).end()\n#define sz(c) ((ll)(c).size())\n#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())\n#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())\n// #define MOD 1000000007\n#define MOD 998244353\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}\nld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}\n\n\nint main(){\n \n ios_base::sync_with_stdio(0), cin.tie(0);\n int n,m,K;cin >> n >> m >> K;\n vi D(m);cin >> D;\n vi inv(n,-1);\n rep(i,0,m)inv[--D[i]] = i;\n vvi v(n,vi(K));cin >> v;\n rep(i,0,n)rep(j,0,K)v[i][j]--;\n vvi V(1 << m,vi(K));\n rep(i,0,1 << m)rep(k,0,K){\n int msk = 0;\n rep(j,0,m)if(i >> j & 1){\n if(inv[v[D[j]][k]] == -1)continue;\n msk |= (1 << inv[v[D[j]][k]]);\n }\n V[i][k] = msk;\n }\n vi d(1 << m,-1);\n d[(1 << m)-1] = 0;\n queue<int> que;\n que.push((1 << m)-1);\n while(sz(que)){\n auto ov = que.front();que.pop();\n for(auto nv : V[ov]){\n if(d[nv] != -1)continue;\n d[nv] = d[ov] + 1;\n que.push(nv);\n }\n }\n cout << d[0] << endl;\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 57748, "score_of_the_acc": -0.7227, "final_rank": 13 }, { "submission_id": "aoj_2709_10848634", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main()\n{\n\tint N, M, K;\n\tcin >> N >> M >> K;\n\tvector<vector<int>> G(N, vector<int>(K));\n\tvector<int> is(N);\n\tvector<int> D(M);\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> D[i]; D[i]--;\n\t\tis[D[i]] = 1;\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < K; j++) {\n\t\t\tcin >> G[i][j]; G[i][j]--;\n\t\t}\n\t}\n\tvector<int> res(1 << M, 10000);\n\tint s = (1 << M) - 1; res[s] = 0;\n\tqueue<int> q; q.push(s);\n\twhile (!q.empty()) {\n\t\tint p = q.front(); q.pop();\n\t\tfor (int i = 0; i < K; i++) {\n\t\t\tint t = 0;\n\t\t\tfor (int j = 0; j < M; j++) {\n\t\t\t\tif (p & (1 << j)) {\n\t\t\t\t\tif (is[G[D[j]][i]]) {\n\t\t\t\t\t\tint id = 0;\n\t\t\t\t\t\tfor (int k = 0; k < M; k++) {\n\t\t\t\t\t\t\tif (D[k] == G[D[j]][i]) {\n\t\t\t\t\t\t\t\tid = k;\n\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t\tt |= 1 << id;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (res[t] == 10000) {\n\t\t\t\tres[t] = res[p] + 1;\n\t\t\t\tq.push(t);\n\t\t\t}\n\t\t}\n\t}\n\tcout << res[0] << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 3644, "score_of_the_acc": -0.3797, "final_rank": 7 }, { "submission_id": "aoj_2709_9659459", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint main() {\n int N, M, K;\n cin >> N >> M >> K;\n vector<int> A(N,-1);\n vector<int> D(M);\n rep(i,0,M) {\n cin >> D[i];\n D[i]--;\n A[D[i]] = i;\n }\n vector<vector<int>> G(N, vector<int>(K));\n rep(i,0,N) rep(j,0,K) cin >> G[i][j], G[i][j]--;\n vector<int> Dist(1<<M,inf);\n queue<int> Q;\n Dist[(1<<M)-1] = 0;\n Q.push((1<<M)-1);\n while(!Q.empty()) {\n int P = Q.front();\n Q.pop();\n rep(i,0,K) {\n int NP = 0;\n rep(j,0,M) {\n if (P & (1<<j)) {\n if (A[G[D[j]][i]] >= 0) NP |= (1<<A[G[D[j]][i]]);\n }\n }\n if (chmin(Dist[NP],Dist[P]+1)) {\n Q.push(NP);\n }\n }\n }\n cout << Dist[0] << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3632, "score_of_the_acc": -0.0435, "final_rank": 3 }, { "submission_id": "aoj_2709_9417151", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nstruct SetupIO {\n SetupIO() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n cout << fixed << setprecision(30);\n }\n} setup_io;\nint main(void) {\n int n, m, k;\n cin >> n >> m >> k;\n vector<int> d(m);\n vector<int> id(n, -1);\n rep(i, 0, m) {\n cin >> d[i];\n d[i]--;\n id[d[i]] = i;\n }\n vector<vector<int>> room(n, vector<int>(k));\n rep(i, 0, n) {\n rep(j, 0, k) {\n cin >> room[i][j];\n room[i][j]--;\n }\n }\n vector<vector<int>> g(1 << m);\n rep(mask, 0, 1 << m) {\n rep(i, 0, k) {\n int mask_to = 0;\n rep(j, 0, m) {\n if(mask & (1 << j)) {\n int to = room[d[j]][i];\n if(id[to] == -1) continue;\n mask_to |= (1 << id[to]);\n }\n }\n g[mask].push_back(mask_to);\n }\n }\n vector<int> dist(1 << m, 1e9);\n queue<int> que;\n dist[(1 << m) - 1] = 0;\n que.push((1 << m) - 1);\n while(!que.empty()) {\n int cur = que.front();\n que.pop();\n rep(i, 0, (int)g[cur].size()) {\n int to = g[cur][i];\n if(dist[to] == 1e9) {\n dist[to] = dist[cur] + 1;\n que.push(to);\n }\n }\n }\n cout << dist[0] << '\\n';\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 38984, "score_of_the_acc": -0.531, "final_rank": 8 }, { "submission_id": "aoj_2709_9006231", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n\nint main() {\n\n int N,M,K;\n cin>>N>>M>>K;\n vector<int> D(M);\n unordered_map<int,int> MP;\n int cnt=0;\n for(auto &d:D){\n cin>>d;\n d--;\n MP[d]=cnt;\n cnt++;\n }\n vector<vector<int>> P(N,vector<int> (K));\n for(auto &V:P)for(auto &v:V){\n cin>>v;\n v--;\n }\n vector<int> DP(1<<M,1e9);\n vector<bool> seen(1<<M,0);\n DP[(1<<M)-1]=0;\n queue<int> Q;\n Q.push((1<<M)-1);\n while(!Q.empty()){\n int p=Q.front();\n Q.pop();\n if(seen[p])continue;\n seen[p]=1;\n for(int k=0;k<K;k++){\n int np=0;\n for(int m=0;m<M;m++){\n if(p&(1<<m)){\n if(MP.count(P[D[m]][k])){\n int nm=MP[P[D[m]][k]];\n np|=(1<<nm);\n }\n }\n }\n if(seen[np])continue;\n if(DP[np]<=DP[p]+1)continue;\n DP[np]=DP[p]+1;\n Q.push(np);\n }\n }\n cout<<DP[0]<<endl;\n}", "accuracy": 1, "time_ms": 1260, "memory_kb": 3628, "score_of_the_acc": -1.0024, "final_rank": 14 }, { "submission_id": "aoj_2709_9006230", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n\nint main() {\n\n int N,M,K;\n cin>>N>>M>>K;\n vector<int> D(M);\n map<int,int> MP;\n int cnt=0;\n for(auto &d:D){\n cin>>d;\n d--;\n MP[d]=cnt;\n cnt++;\n }\n vector<vector<int>> P(N,vector<int> (K));\n for(auto &V:P)for(auto &v:V){\n cin>>v;\n v--;\n }\n vector<int> DP(1<<M,1e9);\n vector<bool> seen(1<<M,0);\n DP[(1<<M)-1]=0;\n queue<int> Q;\n Q.push((1<<M)-1);\n while(!Q.empty()){\n int p=Q.front();\n Q.pop();\n if(seen[p])continue;\n seen[p]=1;\n for(int k=0;k<K;k++){\n int np=0;\n for(int m=0;m<M;m++){\n if(p&(1<<m)){\n if(MP.count(P[D[m]][k])){\n int nm=MP[P[D[m]][k]];\n np|=(1<<nm);\n }\n }\n }\n if(seen[np])continue;\n if(DP[np]<=DP[p]+1)continue;\n DP[np]=DP[p]+1;\n Q.push(np);\n }\n }\n cout<<DP[0]<<endl;\n}", "accuracy": 1, "time_ms": 860, "memory_kb": 3660, "score_of_the_acc": -0.675, "final_rank": 11 }, { "submission_id": "aoj_2709_8016685", "code_snippet": "//#define _GLIBCXX_DEBUG /* これをするとvectorの配列外参照などがチェックされる */\n#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef long long ll;\n\nconst bool DEBUG = true;\n#define debug(x) \\\n if (DEBUG) cerr << __FILE__ << ':' << __LINE__ << \") \" << #x << \" : \" << (x) << endl;\n\n// dp(S \\in {0, 1}^M)\n// := S_i が true なら,暗い部屋iに人がいる\n// S_i が false なら,暗い部屋iに人がいない\n// この状態から,すべての人を明るい部屋へ動かす最小手数\n// k = 1, 2, ..., K のそれぞれについて,\n// - 全部 false からはじめて,\n// - S_i が true で v_{i, k} が暗いとき,\n// - S_{v_{i, k}(厳密には添字違う)} <- true\n// 上でできた状態 S' として, chmin(S, dp(S') + 1)\n\nll n, m, k;\nvector<ll> id;\n\nvector<ll> is_dark;\n\nvector<vector<ll> > v;\n\nint main() {\n cin >> n >> m >> k;\n id.resize(m);\n is_dark.resize(n + 1, 0);\n\n for (int i = 0; i < m; i++) cin >> id[i];\n for (int i = 0; i < m; i++) is_dark[id[i]] = i + 1;\n v.resize(n);\n for (vector<ll> &x : v) {\n x.resize(k);\n for (int i = 0; i < k; i++) {\n cin >> x[i];\n }\n }\n\n vector<vector<ll> > G((1ll << m));\n\n for (int S = 0; S < (1ll << m); S++) {\n for (int e_id = 0; e_id < k; e_id++) {\n int nx_S = 0;\n for (int b = 0; b < m; b++) {\n if (S & (1 << b)) {\n if (is_dark[v[id[b] - 1][e_id]]) {\n nx_S |= (1 << (is_dark[v[id[b] - 1][e_id]] - 1));\n }\n }\n }\n if (S != nx_S) G[nx_S].push_back(S);\n }\n }\n\n ll initil = 1e18;\n vector<ll> dist(1 << m, initil);\n dist[0] = 0;\n queue<ll> q;\n q.push(0);\n\n while (!q.empty()) {\n int now = q.front();\n q.pop();\n for (ll nx : G[now]) {\n if (dist[nx] == initil) {\n dist[nx] = dist[now] + 1;\n q.push(nx);\n }\n }\n }\n\n cout << dist[(1 << m) - 1] << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 81872, "score_of_the_acc": -1.0956, "final_rank": 15 }, { "submission_id": "aoj_2709_8016682", "code_snippet": "#define _GLIBCXX_DEBUG /* これをするとvectorの配列外参照などがチェックされる */\n#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef long long ll;\n\nconst bool DEBUG = true;\n#define debug(x) \\\n if (DEBUG) cerr << __FILE__ << ':' << __LINE__ << \") \" << #x << \" : \" << (x) << endl;\n\n// dp(S \\in {0, 1}^M)\n// := S_i が true なら,暗い部屋iに人がいる\n// S_i が false なら,暗い部屋iに人がいない\n// この状態から,すべての人を明るい部屋へ動かす最小手数\n// k = 1, 2, ..., K のそれぞれについて,\n// - 全部 false からはじめて,\n// - S_i が true で v_{i, k} が暗いとき,\n// - S_{v_{i, k}(厳密には添字違う)} <- true\n// 上でできた状態 S' として, chmin(S, dp(S') + 1)\n\nll n, m, k;\nvector<ll> id;\n\nvector<ll> is_dark;\n\nvector<vector<ll> > v;\n\nint main() {\n cin >> n >> m >> k;\n id.resize(m);\n is_dark.resize(n + 1, 0);\n\n for (int i = 0; i < m; i++) cin >> id[i];\n for (int i = 0; i < m; i++) is_dark[id[i]] = i + 1;\n v.resize(n);\n for (vector<ll> &x : v) {\n x.resize(k);\n for (int i = 0; i < k; i++) {\n cin >> x[i];\n }\n }\n\n vector<vector<ll> > G((1ll << m));\n\n for (int S = 0; S < (1ll << m); S++) {\n for (int e_id = 0; e_id < k; e_id++) {\n int nx_S = 0;\n for (int b = 0; b < m; b++) {\n if (S & (1 << b)) {\n if (is_dark[v[id[b] - 1][e_id]]) {\n nx_S |= (1 << (is_dark[v[id[b] - 1][e_id]] - 1));\n }\n }\n }\n if (S != nx_S) G[nx_S].push_back(S);\n }\n }\n\n ll initil = 1e18;\n vector<ll> dist(1 << m, initil);\n dist[0] = 0;\n queue<ll> q;\n q.push(0);\n\n while (!q.empty()) {\n int now = q.front();\n q.pop();\n for (ll nx : G[now]) {\n if (dist[nx] == initil) {\n dist[nx] = dist[now] + 1;\n q.push(nx);\n }\n }\n }\n\n cout << dist[(1 << m) - 1] << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 84080, "score_of_the_acc": -1.2541, "final_rank": 16 }, { "submission_id": "aoj_2709_7961821", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N, M, K; cin >> N >> M >> K;\n vector<int> D(M);\n for (auto& d : D) cin >> d;\n for (auto& d : D) d--;\n vector<vector<int>> G(N, vector<int>(K));\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < K ; j++) {\n cin >> G[i][j];\n G[i][j]--;\n }\n }\n\n map<int, int> mp;\n for (int i = 0 ; i < M ; i++) mp[D[i]] = i;\n\n const int inf = (int)1e9;\n vector dp((1 << M), inf);\n queue<int> que;\n que.push((1 << M) - 1);\n dp[(1 << M) - 1] = 0;\n while (que.size()) {\n int bit = que.front();\n que.pop();\n for (int op = 0 ; op < K ; op++) {\n int nxt = 0;\n for (int j = 0 ; j < M ; j++) if ((bit & (1 << j))) {\n int x = G[D[j]][op];\n if (not mp.count(x)) continue;\n nxt |= (1 << mp[x]);\n }\n if (dp[nxt] > dp[bit] + 1) {\n dp[nxt] = dp[bit] + 1;\n que.push(nxt);\n }\n }\n }\n\n // for (auto d : dp) cout << d << ' ';\n // cout << endl;\n\n cout << dp[0] << endl;\n}", "accuracy": 1, "time_ms": 880, "memory_kb": 3652, "score_of_the_acc": -0.6913, "final_rank": 12 }, { "submission_id": "aoj_2709_7961814", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N, M, K; cin >> N >> M >> K;\n vector<int> D(M);\n for (auto& d : D) cin >> d;\n for (auto& d : D) d--;\n vector<vector<int>> G(N, vector<int>(K));\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < K ; j++) {\n cin >> G[i][j];\n G[i][j]--;\n }\n }\n\n map<int, int> mp;\n for (int i = 0 ; i < M ; i++) mp[D[i]] = i;\n\n const int inf = (int)1e9;\n vector dp((1 << M), inf);\n dp[(1 << M) - 1] = 0;\n for (int bit = (1 << M) - 1 ; bit >= 0 ; bit--) {\n if (dp[bit] == inf) continue;\n for (int op = 0 ; op < K ; op++) {\n int nxt = 0;\n for (int j = 0 ; j < M ; j++) if ((bit & (1 << j))) {\n int x = G[D[j]][op];\n if (not mp.count(x)) continue;\n nxt |= (1 << mp[x]);\n }\n // cout << bit << ' ' << op << ' ' << nxt << endl;\n dp[nxt] = min(dp[nxt], dp[bit] + 1);\n }\n }\n\n // for (auto d : dp) cout << d << ' ';\n // cout << endl;\n\n cout << dp[0] << endl;\n}", "accuracy": 0.08, "time_ms": 390, "memory_kb": 3444, "score_of_the_acc": -0.287, "final_rank": 18 }, { "submission_id": "aoj_2709_7961808", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N, M, K; cin >> N >> M >> K;\n vector<int> D(M);\n for (auto& d : D) cin >> d;\n for (auto& d : D) d--;\n vector<vector<int>> G(N, vector<int>(K));\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < K ; j++) {\n cin >> G[i][j];\n G[i][j]--;\n }\n }\n\n map<int, int> mp;\n for (int i = 0 ; i < M ; i++) mp[D[i]] = i;\n\n const int inf = (int)1e9;\n vector dp((1 << M), inf);\n dp[(1 << M) - 1] = 0;\n for (int bit = (1 << M) - 1 ; bit >= 0 ; bit--) {\n for (int op = 0 ; op < K ; op++) {\n int nxt = 0;\n for (int j = 0 ; j < M ; j++) if ((bit & (1 << j))) {\n int x = G[D[j]][op];\n if (not mp.count(x)) continue;\n nxt |= (1 << mp[x]);\n }\n // cout << bit << ' ' << op << ' ' << nxt << endl;\n dp[nxt] = min(dp[nxt], dp[bit] + 1);\n }\n }\n\n // for (auto d : dp) cout << d << ' ';\n // cout << endl;\n\n cout << dp[0] << endl;\n}", "accuracy": 0.08, "time_ms": 380, "memory_kb": 3444, "score_of_the_acc": -0.2788, "final_rank": 17 }, { "submission_id": "aoj_2709_7324277", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint n, m, k;\nvector<int> d;\nvector<int> dnum;\nvector<vector<int>> v;\n\nvector<int> dp;\n\nint f(int mask){\n if(dp[mask] != -1) return dp[mask];\n\n dp[mask] = 1 << 30;\n for(int nex = 0; nex < k; nex++){\n int nmask = 0;\n for(int i = 0; i < m; i++){\n if((mask >> i) & 1){\n if(dnum[v[d[i]][nex]] != -1) nmask |= 1 << dnum[v[d[i]][nex]];\n }\n }\n dp[mask] = min(dp[mask], f(nmask)+1);\n }\n return dp[mask];\n}\n\nint main(){\n cin >> n >> m >> k;\n d = vector<int>(m);\n for(auto &it: d){\n cin >> it;\n it--;\n }\n v = vector<vector<int>>(n, vector<int>(k));\n for(auto &vec: v){\n for(auto &it: vec){\n cin >> it;\n it--;\n }\n }\n\n dnum = vector<int>(n, -1);\n for(int i = 0; i < m; i++){\n dnum[d[i]] = i;\n }\n dp = vector<int>(1 << m, -1);\n dp[0] = 0;\n\n cout << f((1 << m)-1) << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4404, "score_of_the_acc": -0.094, "final_rank": 6 }, { "submission_id": "aoj_2709_6825806", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\n//#pragma GCC optimize (\"-Ofast\")\n//#pragma GCC optimize (\"unroll-loops\")\n#define int long long\n#define endl '\\n'\n//#define double __float80\nusing namespace std;\n#define fi first\n#define se second\n#define rep(i, n) for(int i=0, i##_len=(n); i<i##_len; i++)\n#define rep2(i, a, b) for (int i = (int)(a), i##_len=(b); i < i##_len; i++)\n#define rep3(i, a, b) for (int i = (int)(a), i##_len=(b); i >= i##_len; i--)\n#define rfor(i, a) for (auto &i: a)\n#define all(obj) begin(obj), end(obj)\n#define _max(x) *max_element(all(x))\n#define _min(x) *min_element(all(x))\n#define _sum(x) accumulate(all(x), 0LL)\n\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int INF = 1e18;\n// const int INF = 1e13 + 7;\n// const int INF = LLONG_MAX; // 9.2e18\nconst double EPS = 1e-20;\nconst double PI = 3.14159265358979;\ntemplate <class T> using V = vector<T>;\ntemplate <class T> using VV = vector<vector<T>>;\ntemplate <class T> using VVV = vector<vector<vector<T>>>;\ntemplate <class T, class S> using P = pair<T, S>;\ntemplate<class T> bool chmax(T &a, const T &b) {if (a < b) {a = b;return true;}return false;}\ntemplate<class T> bool chmin(T &a, const T &b) {if (b < a) {a = b;return true;}return false;}\nint _ceil(int a, int b) { return (a >= 0 ? (a + (b - 1)) / b : (a - (b - 1)) / b); }\ntemplate<class T> T chmod(T &a, T mod=MOD) {a = a >= 0 ? a % mod : a - (mod * _ceil(a, mod)); return a;};\nint _mod(int a, int mod=MOD) {return a >= 0 ? a % mod : a - (mod * _ceil(a, mod));}\ndouble _mod(double a, int mod = MOD) { return fmod(a, mod) >= 0 ? fmod(a, mod) : fmod(a, mod) + mod; }\nint _pow(int a, int b, int mod=MOD) {int res = 1;for (a %= mod; b; a = a * a % mod, b >>= 1)if (b & 1) res = res * a % mod;return res;}\nvector<int> iota(int n){vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret;}\nstruct mint {long long x;mint(long long x = 0): x((x % MOD + MOD) % MOD) {}mint operator-() const { return mint(-x); }mint &operator+=(const mint a) {if ((x += a.x) >= MOD) x -= MOD;return *this;}mint &operator-=(const mint a) {if ((x += MOD - a.x) >= MOD) x -= MOD;return *this;}mint &operator*=(const mint a) {(x *= a.x) %= MOD;return *this;}mint operator+(const mint a) const { return mint(*this) += a; }mint operator-(const mint a) const { return mint(*this) -= a; }mint operator*(const mint a) const { return mint(*this) *= a; }mint pow(long long n) const {mint ret(1), mul(x);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}mint inv() const {int a = x, b = MOD, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return mint(u);}mint &operator/=(const mint a) { return *this *= a.inv(); }mint operator/(const mint a) const { return mint(*this) /= a; }bool operator==(const mint a) const { return x == a.x; }bool operator!=(const mint a) const { return x != a.x; }friend istream &operator>>(istream &is, mint &a) { return is >> a.x; }friend ostream &operator<<(ostream &os, const mint &a) { return os << a.x; }};\n// clang-format on\n\nsigned main() {\n cin.tie(nullptr);\n cout.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n int N, M, K;\n cin >> N >> M >> K;\n V<int> D(M);\n rep(i, M) cin >> D[i];\n rep(i, M) D[i]--;\n map<int, int> D_check;\n rep(i, M) D_check[D[i]] = i;\n VV<int> v(N, V<int>(K));\n rep(i, N) rep(j, K) cin >> v[i][j];\n rep(i, N) rep(j, K) v[i][j]--;\n V<int> dp((1 << M), INF);\n dp[(1 << M) - 1] = 0;\n deque<int> to_do = {(1 << M) - 1};\n while (to_do.size()) {\n int i = to_do[0];\n to_do.pop_front();\n rep(j, K) {\n int next = 0;\n rep(k, M) {\n if ((i >> k) & 1 and D_check.count(v[D[k]][j])) {\n int to = D_check[v[D[k]][j]];\n next |= (1 << to);\n }\n }\n if (dp[next] > dp[i] + 1) {\n dp[next] = dp[i] + 1;\n to_do.emplace_back(next);\n }\n }\n }\n cout << dp[0] << endl;\n}", "accuracy": 1, "time_ms": 840, "memory_kb": 4104, "score_of_the_acc": -0.6641, "final_rank": 10 }, { "submission_id": "aoj_2709_6825791", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\n//#pragma GCC optimize (\"-Ofast\")\n//#pragma GCC optimize (\"unroll-loops\")\n#define int long long\n#define endl '\\n'\n//#define double __float80\nusing namespace std;\n#define fi first\n#define se second\n#define rep(i, n) for(int i=0, i##_len=(n); i<i##_len; i++)\n#define rep2(i, a, b) for (int i = (int)(a), i##_len=(b); i < i##_len; i++)\n#define rep3(i, a, b) for (int i = (int)(a), i##_len=(b); i >= i##_len; i--)\n#define rfor(i, a) for (auto &i: a)\n#define all(obj) begin(obj), end(obj)\n#define _max(x) *max_element(all(x))\n#define _min(x) *min_element(all(x))\n#define _sum(x) accumulate(all(x), 0LL)\n\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int INF = 1e18;\n// const int INF = 1e13 + 7;\n// const int INF = LLONG_MAX; // 9.2e18\nconst double EPS = 1e-20;\nconst double PI = 3.14159265358979;\ntemplate <class T> using V = vector<T>;\ntemplate <class T> using VV = vector<vector<T>>;\ntemplate <class T> using VVV = vector<vector<vector<T>>>;\ntemplate <class T, class S> using P = pair<T, S>;\ntemplate<class T> bool chmax(T &a, const T &b) {if (a < b) {a = b;return true;}return false;}\ntemplate<class T> bool chmin(T &a, const T &b) {if (b < a) {a = b;return true;}return false;}\nint _ceil(int a, int b) { return (a >= 0 ? (a + (b - 1)) / b : (a - (b - 1)) / b); }\ntemplate<class T> T chmod(T &a, T mod=MOD) {a = a >= 0 ? a % mod : a - (mod * _ceil(a, mod)); return a;};\nint _mod(int a, int mod=MOD) {return a >= 0 ? a % mod : a - (mod * _ceil(a, mod));}\ndouble _mod(double a, int mod = MOD) { return fmod(a, mod) >= 0 ? fmod(a, mod) : fmod(a, mod) + mod; }\nint _pow(int a, int b, int mod=MOD) {int res = 1;for (a %= mod; b; a = a * a % mod, b >>= 1)if (b & 1) res = res * a % mod;return res;}\nvector<int> iota(int n){vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret;}\nstruct mint {long long x;mint(long long x = 0): x((x % MOD + MOD) % MOD) {}mint operator-() const { return mint(-x); }mint &operator+=(const mint a) {if ((x += a.x) >= MOD) x -= MOD;return *this;}mint &operator-=(const mint a) {if ((x += MOD - a.x) >= MOD) x -= MOD;return *this;}mint &operator*=(const mint a) {(x *= a.x) %= MOD;return *this;}mint operator+(const mint a) const { return mint(*this) += a; }mint operator-(const mint a) const { return mint(*this) -= a; }mint operator*(const mint a) const { return mint(*this) *= a; }mint pow(long long n) const {mint ret(1), mul(x);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}mint inv() const {int a = x, b = MOD, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return mint(u);}mint &operator/=(const mint a) { return *this *= a.inv(); }mint operator/(const mint a) const { return mint(*this) /= a; }bool operator==(const mint a) const { return x == a.x; }bool operator!=(const mint a) const { return x != a.x; }friend istream &operator>>(istream &is, mint &a) { return is >> a.x; }friend ostream &operator<<(ostream &os, const mint &a) { return os << a.x; }};\n// clang-format on\n\nsigned main() {\n cin.tie(nullptr);\n cout.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n int N, M, K;\n cin >> N >> M >> K;\n V<int> D(M);\n rep(i, M) cin >> D[i];\n rep(i, M) D[i]--;\n map<int, int> D_check;\n rep(i, M) D_check[D[i]] = i;\n VV<int> v(N, V<int>(K));\n rep(i, N) rep(j, K) cin >> v[i][j];\n rep(i, N) rep(j, K) v[i][j]--;\n V<int> dp((1 << M), INF);\n dp[(1 << M) - 1] = 0;\n rep3(i, (1 << M) - 1, 1) {\n rep(j, K) {\n int next = 0;\n rep(k, M) {\n if ((i >> k) & 1 and D_check.count(v[D[k]][j])) {\n int to = D_check[v[D[k]][j]];\n next |= (1 << to);\n }\n }\n chmin(dp[next], dp[i] + 1);\n }\n }\n cout << dp[0] << endl;\n}", "accuracy": 0.08, "time_ms": 410, "memory_kb": 3552, "score_of_the_acc": -0.3048, "final_rank": 19 }, { "submission_id": "aoj_2709_6740622", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N, M, K, bi = 0;\n cin >> N >> M >> K;\n vector<int> D(M);\n vector<int> L(N, -1);\n for(auto &&v:D){\n cin >> v;\n L[--v] = bi++;\n }\n vector<vector<int>> A(N, vector<int>(K));\n for(int i = 0; i < N; i++){\n for(int j = 0; j < K; j++){\n cin >> A[i][j];\n A[i][j]--;\n }\n }\n queue<int> nxt;\n vector<int> dp(1 << M, 1 << 29);\n dp.back() = 0;\n nxt.push(dp.size() - 1);\n auto f = [&](int S, int k){\n int T = 0;\n for(int i = 0; i < M; i++){\n if(~S >> i & 1)continue;\n int from = D[i];\n int to = A[from][k];\n if(L[to] != -1)T |= 1 << L[to];\n }\n return T;\n };\n while(!nxt.empty()){\n int S = nxt.front();\n nxt.pop();\n if(S == 0){\n cout << dp[0] << '\\n';\n return 0;\n }\n for(int i = 0; i < K; i++){\n int T = f(S, i);\n if(dp[S] + 1 >= dp[T])continue;\n dp[T] = dp[S] + 1;\n nxt.push(T);\n }\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3668, "score_of_the_acc": -0.0767, "final_rank": 5 }, { "submission_id": "aoj_2709_6739834", "code_snippet": "#line 2 \"library/KowerKoint/base.hpp\"\n\n#ifdef DEBUG\n#define _GLIBCXX_DEBUG\n#endif\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i, n) for(int i = 0; i < (int)(n); i++)\n#define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++)\n#define ALL(a) (a).begin(),(a).end()\n#define END(...) { print(__VA_ARGS__); return; }\n\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VVVI = vector<VVI>;\nusing ll = long long;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VVVL = vector<VVL>;\nusing VD = vector<double>;\nusing VVD = vector<VD>;\nusing VVVD = vector<VVD>;\nusing VS = vector<string>;\nusing VVS = vector<VS>;\nusing VVVS = vector<VVS>;\nusing VC = vector<char>;\nusing VVC = vector<VC>;\nusing VVVC = vector<VVC>;\nusing P = pair<int, int>;\nusing VP = vector<P>;\nusing VVP = vector<VP>;\nusing VVVP = vector<VVP>;\nusing LP = pair<ll, ll>;\nusing VLP = vector<LP>;\nusing VVLP = vector<VLP>;\nusing VVVLP = vector<VVLP>;\n\ntemplate <typename T>\nusing PQ = priority_queue<T>;\ntemplate <typename T>\nusing GPQ = priority_queue<T, vector<T>, greater<T>>;\n\nconstexpr int INF = 1001001001;\nconstexpr ll LINF = 1001001001001001001ll;\nconstexpr int DX[] = {1, 0, -1, 0};\nconstexpr int DY[] = {0, 1, 0, -1};\n\nvoid print() { cout << '\\n'; }\ntemplate<typename T>\nvoid print(const T &t) { cout << t << '\\n'; }\ntemplate<typename Head, typename... Tail>\nvoid print(const Head &head, const Tail &... tail) {\n cout << head << ' ';\n print(tail...);\n}\n\n#ifdef DEBUG\nvoid dbg() { cerr << '\\n'; }\ntemplate<typename T>\nvoid dbg(const T &t) { cerr << t << '\\n'; }\ntemplate<typename Head, typename... Tail>\nvoid dbg(const Head &head, const Tail &... tail) {\n cerr << head << ' ';\n dbg(tail...);\n}\n#else\ntemplate<typename... Args>\nvoid dbg(const Args &... args) {}\n#endif\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 >& p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != (int) v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate<typename T>\nvector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) {\n vector<vector<T>> res;\n vector<T> cur;\n for(auto it = begin; it != end; it++) {\n if(*it == val) {\n res.push_back(cur);\n cur.clear();\n } else cur.push_back(*it);\n }\n res.push_back(cur);\n return res;\n}\n\nvector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) {\n vector<string> res;\n string cur = \"\";\n for(auto it = begin; it != end; it++) {\n if(*it == val) {\n res.push_back(cur);\n cur.clear();\n } else cur.push_back(*it);\n }\n res.push_back(cur);\n return res;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate <typename T>\npair<VI, vector<T>> compress(const vector<T> &a) {\n int n = a.size();\n vector<T> x;\n REP(i, n) x.push_back(a[i]);\n sort(ALL(x)); x.erase(unique(ALL(x)), x.end());\n VI res(n);\n REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin();\n return make_pair(res, x);\n}\n\ntemplate <typename It>\nauto rle(It begin, It end) {\n vector<pair<typename It::value_type, int>> res;\n if(begin == end) return res;\n auto pre = *begin;\n int num = 1;\n for(auto it = begin + 1; it != end; it++) {\n if(pre != *it) {\n res.emplace_back(pre, num);\n pre = *it;\n num = 1;\n } else num++;\n }\n res.emplace_back(pre, num);\n return res;\n}\n\ntemplate <typename It>\nvector<pair<typename It::value_type, int>> rle_sort(It begin, It end) {\n vector<typename It::value_type> cloned(begin, end);\n sort(ALL(cloned));\n auto e = rle(ALL(cloned));\n sort(ALL(e), [](const auto& l, const auto& r) { return l.second < r.second; });\n return e;\n}\n\ntemplate <typename T>\npair<vector<T>, vector<T>> factorial(int n) {\n vector<T> res(n+1), rev(n+1);\n res[0] = 1;\n REP(i, n) res[i+1] = res[i] * (i+1);\n rev[n] = 1 / res[n];\n for(int i = n; i > 0; i--) {\n rev[i-1] = rev[i] * i;\n }\n return make_pair(res, rev);\n}\n#line 3 \"library/KowerKoint/internal_operator.hpp\"\n\nnamespace internal_operator {\n template <typename T>\n T default_add(T a, T b) { return a + b; }\n template <typename T>\n T default_sub(T a, T b) { return a - b; }\n template <typename T>\n T zero() { return T(0); }\n template <typename T>\n T default_div(T a, T b) { return a / b; }\n template <typename T>\n T default_mult(T a, T b) { return a * b; }\n template <typename T>\n T one() { return T(1); }\n template <typename T>\n T default_xor(T a, T b) { return a ^ b; }\n template <typename T>\n T default_and(T a, T b) { return a & b; }\n template <typename T>\n T default_or(T a, T b) { return a | b; }\n ll mod3() { return 998244353LL; }\n ll mod7() { return 1000000007LL; }\n ll mod9() { return 1000000009LL; }\n template <typename T>\n T default_max(T a, T b) { return max(a, b); }\n template <typename T>\n T default_min(T a, T b) { return min(a, b); }\n}\n\n#line 3 \"library/KowerKoint/integer.hpp\"\n\nll kth_root(ll x, ll k) {\n if(k == 1) return x;\n ll res = 0;\n for(int i = 31; i >= 0; i--) {\n bool over = false;\n ll tmp = 1;\n ll nxt = res | 1LL << i;\n REP(i, k) {\n if(tmp > x / nxt) {\n over = true;\n break;\n }\n tmp *= nxt;\n }\n if(!over) res = nxt;\n }\n return res;\n}\n\nll sqrt(ll x) {\n return kth_root(x, 2);\n}\n\nstruct Prime {\n VI sieved;\n VL primes;\n\n Prime() {}\n Prime(ll n) {\n expand(n);\n }\n\n void expand(ll n) {\n ll sz = (ll)sieved.size() - 1;\n if(n <= sz) return;\n sieved.resize(n+1);\n sieved[0] = sieved[1] = 1;\n primes.clear();\n primes.push_back(2);\n for(ll d = 4; d <= n; d += 2) sieved[d] = 1;\n FOR(d, 3, n+1) {\n if(!sieved[d]) {\n primes.push_back(d);\n for(ll i = d*d; i <= n; i += d*2) sieved[i] = 1;\n }\n }\n }\n\n bool is_prime(ll n) {\n assert(n > 0);\n if(n <= (ll)sieved.size() - 1) return !sieved[n];\n for(ll d = 2; d*d <= n; d++) {\n if(n % d == 0) return false;\n }\n return true;\n }\n\n VL least_prime_factors(ll n) {\n assert(n > 0);\n VL lpfs(n+1, -1), primes;\n FOR(d, 2, n+1) {\n if(lpfs[d] == -1) {\n lpfs[d] = d;\n primes.push_back(d);\n }\n for(ll p : primes) {\n if(p * d > n || p > lpfs[d]) break;\n lpfs[p*d] = p;\n }\n }\n return lpfs;\n }\n\n VL prime_list(ll n) {\n assert(n > 0);\n expand(n);\n return VL(primes.begin(), upper_bound(ALL(primes), n));\n }\n\n vector<pair<ll, int>> prime_factor(ll n) {\n assert(n > 0);\n vector<pair<ll, int>> factor;\n expand(sqrt(n));\n for(ll prime : primes) {\n if(prime * prime > n) break;\n int cnt = 0;\n while(n % prime == 0) {\n n /= prime;\n cnt++;\n }\n if(cnt) factor.emplace_back(prime, cnt);\n }\n if(n > 1) factor.emplace_back(n, 1);\n return factor;\n }\n\n\n VL divisor(ll n) {\n assert(n > 0);\n auto factor = prime_factor(n);\n VL res = {1};\n for(auto [prime, cnt] : factor) {\n int sz = res.size();\n res.resize(sz * (cnt+1));\n REP(i, sz*cnt) res[sz+i] = res[i] * prime;\n REP(i, cnt) inplace_merge(res.begin(), res.begin() + sz*(i+1), res.begin() + sz*(i+2));\n }\n return res;\n }\n};\n\nll extgcd(ll a, ll b, ll& x, ll& y) {\n x = 1, y = 0;\n ll nx = 0, ny = 1;\n while(b) {\n ll q = a / b;\n tie(a, b) = LP(b, a % b);\n tie(x, nx) = LP(nx, x - nx*q);\n tie(y, ny) = LP(ny, y - ny*q);\n }\n return a;\n}\n\nll inv_mod(ll n, ll m) {\n ll x, y;\n assert(extgcd(n, m, x, y) == 1);\n x %= m;\n if(x < 0) x += m;\n return x;\n}\n\nll pow_mod(ll a, ll n, ll m) {\n if(n == 0) return 1LL;\n if(n < 0) return inv_mod(pow_mod(a, -n, m), m);\n ll res = 1;\n while(n) {\n if(n & 1) {\n res *= a;\n res %= m;\n }\n n >>= 1;\n a *= a;\n a %= m;\n }\n return res;\n}\n\n#line 5 \"library/KowerKoint/modint.hpp\"\n\ntemplate <ll (*mod)()>\nstruct Modint {\n ll val;\n \n Modint(): val(0) {}\n\n Modint(ll x): val(x) {\n val %= mod();\n if(val < 0) val += mod();\n }\n\n Modint& operator+=(const Modint& r) {\n val += r.val;\n if(val >= mod()) val -= mod();\n return *this;\n }\n friend Modint operator+(const Modint& l, const Modint& r) {\n return Modint(l) += r;\n }\n\n Modint& operator-=(const Modint& r) {\n val -= r.val;\n if(val < 0) val += mod();\n return *this;\n }\n friend Modint operator-(const Modint& l, const Modint& r) {\n return Modint(l) -= r;\n }\n\n Modint& operator*=(const Modint& r) {\n val *= r.val;\n val %= mod();\n return *this;\n }\n Modint operator*(const Modint& r) {\n return (Modint(*this) *= r);\n }\n friend Modint operator*(const Modint& l, const Modint& r) {\n return Modint(l) *= r;\n }\n\n Modint pow(ll n) const {\n return Modint(pow_mod(val, n, mod()));\n }\n\n Modint inv() const {\n return Modint(inv_mod(val, mod()));\n }\n\n Modint& operator/=(const Modint& r) {\n return (*this *= r.inv());\n }\n friend Modint operator/(const Modint& l, const Modint& r) {\n return Modint(l) /= r;\n }\n\n Modint& operator^=(const ll n) {\n val = pow_mod(val, n, mod());\n return *this;\n }\n Modint operator^(const ll n) {\n return this->pow(n);\n }\n\n Modint operator+() const { return *this; }\n Modint operator-() const { return Modint() - *this; }\n\n Modint& operator++() {\n val++;\n if(val == mod()) val = 0LL;\n return *this;\n }\n Modint& operator++(int) {\n Modint res(*this);\n ++*this;\n return res;\n }\n\n Modint& operator--() {\n if(val == 0LL) val = mod();\n val--;\n return *this;\n }\n Modint& operator--(int) {\n Modint res(*this);\n --*this;\n return res;\n }\n\n friend bool operator==(const Modint& l, const Modint& r) {\n return l.val == r.val;\n }\n friend bool operator!=(const Modint& l, const Modint& r) {\n return l.val != r.val;\n }\n\n static pair<vector<Modint>, vector<Modint>> factorial(int n) {\n vector<Modint> fact(n+1), rfact(n+1);\n fact[0] = 1;\n REP(i, n) fact[i+1] = fact[i] * (i+1);\n rfact[n] = 1 / fact[n];\n for(int i = n-1; i >= 0; i--) rfact[i] = rfact[i+1] * (i+1);\n return {fact, rfact};\n }\n\n friend istream& operator>>(istream& is, Modint& mi) {\n is >> mi.val;\n return is;\n }\n\n friend ostream& operator<<(ostream& os, const Modint& mi) {\n os << mi.val;\n return os;\n }\n};\n\nusing MI3 = Modint<internal_operator::mod3>;\nusing V3 = vector<MI3>;\nusing VV3 = vector<V3>;\nusing VVV3 = vector<VV3>;\nusing MI7 = Modint<internal_operator::mod7>;\nusing V7 = vector<MI7>;\nusing VV7 = vector<V7>;\nusing VVV7 = vector<VV7>;\nusing MI9 = Modint<internal_operator::mod9>;\nusing V9 = vector<MI9>;\nusing VV9 = vector<V9>;\nusing VVV9 = vector<VV9>;\n#line 3 \"library/KowerKoint/counting.hpp\"\n\ntemplate <typename T>\nstruct Counting {\n vector<T> fact, ifact;\n\n Counting() {}\n Counting(ll n) {\n expand(n);\n }\n\n void expand(ll n) {\n ll sz = (ll)fact.size();\n if(sz > n) return;\n fact.resize(n+1);\n ifact.resize(n+1);\n fact[0] = 1;\n FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i;\n ifact[n] = 1 / fact[n];\n for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1);\n }\n\n T permutation(ll n, ll r) {\n assert(n >= r);\n assert(r >= 0);\n expand(n);\n return fact[n] * ifact[n-r];\n }\n\n T combination(ll n, ll r) {\n assert(n >= r);\n assert(r >= 0);\n expand(n);\n return fact[n] * ifact[r] * ifact[n-r];\n }\n\n T stirling(ll n, ll k) {\n assert(n >= k);\n assert(k >= 0);\n if(n == 0) return 1;\n T res = 0;\n int sign = k%2? -1 : 1;\n expand(k);\n REP(i, k+1) {\n res += sign * ifact[i] * ifact[k-i] * T(i).pow(n);\n sign *= -1;\n }\n return res;\n }\n\n vector<vector<T>> stirling_table(ll n, ll k) {\n assert(n >= 0 && k >= 0);\n vector<vector<T>> res(n+1, vector<T>(k+1));\n res[0][0] = 1;\n FOR(i, 1, n+1) FOR(j, 1, k+1) {\n res[i][j] = res[i-1][j-1] + j * res[i-1][j];\n }\n return res;\n }\n\n T bell(ll n, ll k) {\n assert(n >= 0 && k >= 0);\n expand(k);\n vector<T> tmp(k+1);\n int sign = 1;\n tmp[0] = 1;\n FOR(i, 1, k+1) {\n sign *= -1;\n tmp[i] = tmp[i-1] + sign * ifact[i];\n }\n T res = 0;\n REP(i, k+1) {\n res += T(i).pow(n) * ifact[i] * tmp[k-i];\n }\n return res;\n }\n\n vector<vector<T>> partition_table(ll n) {\n assert(n >= 0);\n vector<vector<T>> res(n+1, vector<T>(n+1));\n REP(i, n+1) res[0][i] = 1;\n FOR(i, 1, n+1) FOR(j, 1, n+1) {\n res[i][j] = res[i][j-1] + (i<j? 0 : res[i-j][j]);\n }\n return res;\n }\n};\n#line 2 \"library/KowerKoint/segtree.hpp\"\n\ntemplate <typename T, T (*func)(const T, const T), T (*e)()>\nstruct SegTree {\n int n, sz;\n vector<T> state;\n\n SegTree(int n_): n(n_) {\n sz = 1;\n while(sz < n) sz <<= 1;\n state = vector<T>(sz*2, e());\n }\n SegTree(vector<T> v): n(v.size()) {\n sz = 1;\n while(sz < n) sz <<= 1;\n state = vector<T>(sz*2, e());\n REP(i, v.size()) state[sz+i] = v[i];\n for(int i = sz-1; i > 0; i--) state[i] = func(state[i*2], state[i*2+1]);\n }\n\n T operator[](int i) const {\n assert(0 <= i && i < n);\n return state[sz+i];\n }\n T get(int i) const {\n assert(0 <= i && i < n);\n return state[sz+i];\n }\n\n void set(int i, const T &x) {\n assert(0 <= i && i < n);\n i += sz;\n state[i] = x;\n while(i >>= 1) {\n state[i] = func(state[i*2], state[i*2+1]);\n }\n }\n void apply(int i, const T &x) {\n set(i, x);\n }\n\n T prod(int l, int r) const {\n assert(0 <= l && l <= r && r <= n);\n T left_prod = e(), right_prod = e();\n l += sz, r += sz;\n while(l < r) {\n if(l & 1) left_prod = func(left_prod, state[l++]);\n if(r & 1) right_prod = func(state[--r], right_prod);\n l >>= 1;\n r >>= 1;\n }\n return func(left_prod, right_prod);\n }\n \n T all_prod() const {\n return state[1];\n }\n\n template <typename F>\n int max_right(int l, F f) {\n assert(0 <= l && l <= n);\n assert(f(e()));\n if(l == n) return n;\n l += sz;\n while(l % 2 == 0) l >>= 1;\n T sum = e();\n while(f(func(sum, state[l]))) {\n if(__builtin_clz(l) != __builtin_clz(l+1)) return n;\n sum = func(sum, state[l]);\n l++;\n while(l % 2 == 0) l >>= 1;\n }\n while(l < sz) {\n if(!f(func(sum, state[l*2]))) l *= 2;\n else {\n sum = func(sum, state[l*2]);\n l = l*2 + 1;\n }\n }\n return min(n, l - sz);\n }\n};\n\ntemplate <typename T>\nusing RMaxQ = SegTree<T, internal_operator::default_max<T>, numeric_limits<T>::min>;\ntemplate <typename T>\nusing RMinQ = SegTree<T, internal_operator::default_min<T>, numeric_limits<T>::max>;\ntemplate <typename T>\nusing RSumQ = SegTree<T, internal_operator::default_add<T>, internal_operator::zero<T>>;\n#line 3 \"Contests/Dummy/main.cpp\"\n\n/* #include <atcoder/all> */\n/* using namespace atcoder; */\n/* #include \"KowerKoint/expansion/ac-library/all.hpp\" */\n\nvoid solve(){\n int n, m, k; cin >> n >> m >> k;\n VI d(m); cin >> d;\n REP(i, m) d[i]--;\n sort(ALL(d));\n VVI v(n, VI(k)); cin >> v;\n REP(i, n) REP(j, k) v[i][j]--;\n VI dist(1 << m, INF);\n dist[(1<<m)-1] = 0;\n queue<int> que;\n que.push((1<<m) - 1);\n while(!que.empty()) {\n int from = que.front(); que.pop();\n REP(i, k) {\n int nxt = 0;\n REP(j, m) {\n if(from >> j & 1) {\n int to = v[d[j]][i];\n auto it = lower_bound(ALL(d), to);\n if(it != d.end() && *it == to) {\n nxt |= 1 << (it - d.begin());\n }\n }\n }\n if(chmin(dist[nxt], dist[from] + 1)) que.push(nxt);\n }\n }\n print(dist[0]);\n}\n\n// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)\nint main() {\n // Fasterize input/output script\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(100);\n // scanf/printf user should delete this fasterize input/output script\n\n int t = 1;\n //cin >> t; // comment out if solving multi testcase\n for(int testCase = 1;testCase <= t;++testCase){\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 710, "memory_kb": 3680, "score_of_the_acc": -0.5523, "final_rank": 9 }, { "submission_id": "aoj_2709_6724216", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < n; ++i)\ntypedef long long ll;\nusing namespace std;\nconst int INF = 1e9;\n\nint main() {\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n int N, M, K;\n cin >> N >> M >> K;\n vector<int> D(M);\n rep(i, M) cin >> D[i], D[i]--;\n vector V(N, vector<int>(K));\n rep(i, N) rep(j, K) cin >> V[i][j], V[i][j]--;\n\n // 暗い部屋なら何番目\n // 明るい部屋なら-1\n vector<int> dark_id(N, -1);\n rep(i, M) dark_id[D[i]] = i;\n\n // i番目から 道jを選んだときに行く場所\n vector G(M, vector<int>(K));\n rep(j, K) {\n rep(i, M) G[i][j] = dark_id[V[D[i]][j]];\n }\n\n queue<int> que;\n que.push((1 << M) - 1);\n vector<int> d(1 << M, INF);\n d[(1 << M) - 1] = 0;\n while (!que.empty()) {\n int state = que.front();\n que.pop();\n\n rep(k, K) {\n int next = 0;\n rep(i, M) {\n if (state & (1 << i)) {\n // 明るい部屋に行った\n if (G[i][k] == -1) continue;\n next |= (1 << G[i][k]);\n }\n }\n\n if (d[next] == INF) {\n que.push(next);\n d[next] = d[state] + 1;\n }\n }\n }\n cout << d[0] << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3628, "score_of_the_acc": -0.0352, "final_rank": 2 }, { "submission_id": "aoj_2709_6661979", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nvoid solve() {\n int n, m, k;\n cin >> n >> m >> k;\n\n vector< int > ds(m);\n vector< int > rev_ds(n, -1);\n for (auto &d: ds) {\n cin >> d;\n d--;\n }\n for (int i = 0; i < m; i++) {\n rev_ds[ds[i]] = 1 << i;\n }\n\n vector< vector< int > > vss(n, vector<int>(k));\n for (auto &vs: vss) {\n for (auto &v: vs) {\n cin >> v;\n v--;\n }\n }\n\n constexpr int inf = 1001001001;\n vector< int > dists(1 << m, inf);\n queue< int > que;\n\n dists[(1 << m) - 1] = 0;\n que.emplace((1 << m) - 1);\n\n while (not que.empty()) {\n int bit = que.front();\n que.pop();\n\n for (int i = 0; i < k; i++) {\n int nbit = 0;\n for (int v = 0; v < m; v++) {\n if (not ((1 << v) & bit)) continue;\n int u = vss[ds[v]][i];\n if (rev_ds[u] == -1) continue;\n nbit |= rev_ds[u];\n }\n\n if (dists[nbit] > dists[bit] + 1) {\n dists[nbit] = dists[bit] + 1;\n que.emplace(nbit);\n }\n }\n }\n\n cout << dists[0] << endl;\n}\n\nint main() {\n solve();\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3632, "score_of_the_acc": -0.0271, "final_rank": 1 }, { "submission_id": "aoj_2709_6661515", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nvoid solve() {\n int n, m, k;\n cin >> n >> m >> k;\n\n vector< int > ds(m);\n vector< int > rev_ds(n, -1);\n for (auto &d: ds) {\n cin >> d;\n d--;\n }\n for (int i = 0; i < m; i++) {\n rev_ds[ds[i]] = 1 << i;\n }\n\n vector< vector< int > > vss(n, vector<int>(k));\n for (auto &vs: vss) {\n for (auto &v: vs) {\n cin >> v;\n v--;\n }\n }\n\n constexpr int inf = 1001001001;\n vector< int > dists(1 << m, inf);\n queue< int > que;\n\n dists[(1 << m) - 1] = 0;\n que.emplace((1 << m) - 1);\n\n while (not que.empty()) {\n int bit = que.front();\n que.pop();\n\n for (int i = 0; i < k; i++) {\n int nbit = 0;\n for (int v = 0; v < m; v++) {\n if (not ((1 << v) & bit)) continue;\n int u = vss[v][i];\n if (rev_ds[u] == -1) continue;\n nbit |= rev_ds[u];\n }\n\n if (dists[nbit] > dists[bit] + 1) {\n dists[nbit] = dists[bit] + 1;\n que.emplace(nbit);\n }\n }\n }\n\n cout << dists[0] << endl;\n}\n\nint main() {\n solve();\n}", "accuracy": 0.06, "time_ms": 40, "memory_kb": 3432, "score_of_the_acc": 0, "final_rank": 20 }, { "submission_id": "aoj_2709_6454645", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < n; ++i)\ntypedef long long ll;\nusing namespace std;\nconst int INF = 1e9;\n\nint main() {\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n int N, M, K;\n cin >> N >> M >> K;\n vector<int> D(M);\n rep(i, M) cin >> D[i], D[i]--;\n vector G(N, vector<int>(K));\n rep(i, N) rep(j, K) {\n int v;\n cin >> v;\n v--;\n G[i][j] = v;\n }\n vector<int> rd(N, -1);\n rep(i, M) rd[D[i]] = i;\n\n vector<int> dist(1 << M, -1);\n dist[(1 << M) - 1] = 0;\n queue<int> q;\n q.push((1 << M) - 1);\n while (!q.empty()) {\n int bit = q.front();\n q.pop();\n\n rep(i, K) {\n int next = 0;\n\n rep(j, M) {\n if (~bit & (1 << j)) continue;\n\n int v = G[D[j]][i];\n if (rd[v] == -1) continue;\n\n next |= 1 << rd[v];\n }\n\n if (dist[next] == -1) {\n dist[next] = dist[bit] + 1;\n q.push(next);\n }\n }\n }\n cout << dist[0] << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3716, "score_of_the_acc": -0.0691, "final_rank": 4 } ]
aoj_2719_cpp
Problem C: Kuru Kuru Sushi Zephir is an owner of the kuru kuru sushi restaurants. In these restaurants, sushis are placed on a rotating circular belt conveyor and delivered to customers. Zephir owns $n$ restaurants numbered from $0$ to $n - 1$. Due to his passion for rotation, these restaurants are placed on the circumference of a circle, and have huge belt conveyors under the ground between adjacent restaurants. One day, the ingredients of sushis were short in some restaurants. Therefore, he decided to transport some ingredient foods between restaurants by using these belt conveyors. The $i$-th ($0 \leq i \leq n - 2$) belt conveyor connects the restaurants $i$ and $i+1$. The ($n - 1$)-th belt conveyor connects the restaurants $n - 1$ and $0$. The length of the $i$-th belt conveyor is $w_i$. He wants to transport $q$ foods from some restaurants to other restaurants. The $i$-th food should be transported from restaurant $s_i$ to $t_i$. Zephir wants to minimize the total cost of transportation. The transportation cost of each food can be changed by the settings of the direction of the belt conveyors. Each belt conveyor can transport foods in only a single direction, which can be set by Zephir. Moreover, the settings cannot be changed while transporting all $q$ foods. The transportation cost of the $i$-th food is the sum of the length of the belt conveyors in the shortest path from restaurant $s_i$ to $t_i$. He should set the direction of belt conveyors to transport all foods. Write a program to calculate the minimum value of the total cost, which is the sum of the transportation costs of all the $q$ foods. Input Each input is formatted as follows: $n$ $q$ $w_0$ $w_1$ ... $w_{n-1}$ $s_0$ $t_0$ ... $s_{q-1}$ $t_{q-1}$ The first line contains two integers $n$ and $q$. $n$ ($3 \leq n \leq 10^5$) denotes the number of the restaurants, and $q$ ($1 \leq q \leq 10^5$) denotes the number of the foods to transport. The next line contains $n$ integers. $w_i$ ($1 \leq w_i \leq 10^5$) denotes the length of the $i$-th belt conveyor. Each of the following $q$ lines contains two integers $s_i$ ($0 \leq s_i \leq n - 1$) and $t_i$ ($0 \leq t_i \leq n - 1$). Each denotes the $i$-th food should be transported from restaurant $s_i$ to $t_i$. You may assume $s_i \ne t_i$ for any $0 \leq i \leq q - 1$, and $s_i \ne s_j$ or $t_i \ne t_j$ if $i \ne j$ for any $0 \leq i, j \leq q - 1$. Output Print the minimum total cost of the foods transportation. If it is impossible to transport all foods to each destination, print -1. Sample Input 4 4 1 1 1 1 0 1 0 3 2 3 3 0 Output for the Sample Input 6 Sample Input 5 3 4 5 6 7 8 0 1 0 3 4 2 Output for the Sample Input 32
[ { "submission_id": "aoj_2719_10323024", "code_snippet": "// AOJ #2719 Kuru Kuru Sushi\n// 2025.3.25\n\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\ntypedef pair<int,int> pii;\ntypedef pair<pii,int> ppi;\nconst int NMAX = 100005;\nconst int INF = 1001001001;\n\nint n, q;\nint w[NMAX];\nll s[NMAX];\npii p[NMAX];\nint im[NMAX];\n\nll segSum(int l, int r) { return s[r] - s[l]; }\n\nll solve() {\n ll res = 0;\n for (int i = 0; i < n; i++) s[i+1] = s[i] + w[i];\n ll cur = 0;\n for (int i = 0; i < q; i++) {\n if (p[i].first < p[i].second) {\n cur += segSum(0, p[i].first);\n cur += segSum(p[i].second, n);\n } else cur += segSum(p[i].second, p[i].first);\n }\n res = cur;\n cur = 0;\n\n vector<pii> segs;\n for (int i = 0; i <= n; i++) im[i] = 0;\n for (int i = 0; i < q; i++) {\n if (p[i].first < p[i].second) segs.push_back(p[i]);\n else {\n int L = p[i].second, R = p[i].first;\n cur += segSum(L, R);\n im[L+1]++;\n im[R+1]--;\n }\n }\n for (int i = 0; i < n; i++) im[i+1] += im[i];\n for (int i = 0; i < n; i++) im[i] = (im[i] != 0);\n for (int i = 0; i < n; i++) im[i+1] += im[i];\n\n int sz = segs.size();\n vector<pii> Ls, Rs;\n for (int i = 0; i < sz; i++) {\n Ls.push_back({segs[i].first, i});\n Rs.push_back({segs[i].second, i});\n }\n sort(Ls.begin(), Ls.end());\n sort(Rs.begin(), Rs.end());\n reverse(Rs.begin(), Rs.end());\n\n queue<int> que;\n vector<int> used(sz, 0);\n for (int i = 0; i < sz; i++) {\n int L = segs[i].first, R = segs[i].second;\n if (im[R] - im[L]) que.push(i);\n }\n int li = 0, ri = 0;\n while (!que.empty()) {\n int i = que.front();\n que.pop();\n if (used[i]) continue;\n used[i] = 1;\n cur += segSum(0, segs[i].first);\n cur += segSum(segs[i].second, n);\n while (li < sz) {\n int ni = Ls[li].second;\n if (segs[ni].first >= segs[i].first) break;\n que.push(ni);\n li++;\n }\n while (ri < sz) {\n int ni = Rs[ri].second;\n if (segs[ni].second <= segs[i].second) break;\n que.push(ni);\n ri++;\n }\n }\n\n vector<ll> ac(sz, 0);\n vector<ppi> ev;\n ll best = 0;\n for (int i = 0; i < sz; i++) {\n if (used[i]) continue;\n ll cx = segSum(0, segs[i].first) + segSum(segs[i].second, n);\n ll cy = segSum(segs[i].first, segs[i].second);\n cur += cy;\n ac[i] = cx - cy;\n ev.push_back({{segs[i].first, -segs[i].second}, i});\n }\n vector<int> eds;\n for (int i = 0; i < (int)ev.size(); i++) eds.push_back(ev[i].first.second);\n sort(eds.begin(), eds.end());\n sort(ev.begin(), ev.end());\n ll nst = 0;\n for (int i = 0; i < (int)ev.size(); i++) {\n int idx = ev[i].second;\n if (ev[i].first.second != eds[i]) break;\n nst += ac[idx];\n best = min(best, nst);\n }\n cur += best;\n res = min(res, cur);\n return res;\n}\n\nint main(){\n n = Cin(), q = Cin();\n for (int i = 0; i < n; i++) w[i] = Cin();\n\n for (int i = 0; i < q; i++) {\n int s = Cin(), t = Cin();\n p[i] = {s, t};\n }\n ll ans = solve();\n for (int i = n-1; i >= 0; i--) w[i+1] = w[i];\n w[0] = w[n];\n for (int i = 0; i < q; i++) {\n p[i].first = (p[i].first + 1) % n;\n p[i].second = (p[i].second + 1) % n;\n }\n reverse(w, w + n);\n for (int i = 0; i < q; i++) {\n p[i].first = (n - p[i].first) % n;\n p[i].second = (n - p[i].second) % n;\n }\n ans = min(ans, solve());\n Cout(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 11108, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2719_5976436", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing uint = unsigned int;\nusing ull = unsigned long long;\n#define rep(i,n) for(int i=0;i<int(n);i++)\n#define rep1(i,n) for(int i=1;i<=int(n);i++)\n#define per(i,n) for(int i=int(n)-1;i>=0;i--)\n#define per1(i,n) for(int i=int(n);i>0;i--)\n#define all(c) c.begin(),c.end()\n#define si(x) int(x.size())\n#define pb push_back\n#define eb emplace_back\n#define fs first\n#define sc second\ntemplate<class T> using V = vector<T>;\ntemplate<class T> using VV = vector<vector<T>>;\ntemplate<class T,class U> bool chmax(T& x, U y){\n\tif(x<y){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T,class U> bool chmin(T& x, U y){\n\tif(y<x){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}\ntemplate<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}\ntemplate<class T>\nV<T> Vec(size_t a) {\n return V<T>(a);\n}\ntemplate<class T, class... Ts>\nauto Vec(size_t a, Ts... ts) {\n return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));\n}\ntemplate<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){\n\treturn o<<\"(\"<<p.fs<<\",\"<<p.sc<<\")\";\n}\ntemplate<class T> ostream& operator<<(ostream& o,const vector<T> &vc){\n\to<<\"{\";\n\tfor(const T& v:vc) o<<v<<\",\";\n\to<<\"}\";\n\treturn o;\n}\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }\n\n#ifdef LOCAL\n#define show(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\nvoid dmpr(ostream& os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" ~ \";\n\tdmpr(os,args...);\n}\n#define shows(...) cerr << \"LINE\" << __LINE__ << \" : \";dmpr(cerr,##__VA_ARGS__)\n#define dump(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = {\"; \\\n\tfor(auto v: x) cerr << v << \",\"; cerr << \"}\" << endl;\n#else\n#define show(x) void(0)\n#define dump(x) void(0)\n#define shows(...) void(0)\n#endif\n\ntemplate<class D> D divFloor(D a, D b){\n\treturn a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);\n}\ntemplate<class D> D divCeil(D a, D b) {\n\treturn a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);\n}\ntemplate<class D>\nstruct lazyseg{\n\tusing S = typename D::Monoid;\n\tusing F = typename D::Action;\n\tint N;\n\tvector<S> val;\n\tvector<F> act;\n\tlazyseg(){}\n\tlazyseg(int n){\n\t\tN=1;\n\t\twhile(N<n) N*=2;\n\t\tval.assign(N*2,D::e());\n\t\tact.assign(N*2,D::id());\n\t}\n\ttemplate<class Slike>\n\tlazyseg(const vector<Slike>& val_){\n\t\tint n = val_.size();\n\t\tN=1;\n\t\twhile(N<n) N*=2;\n\t\tval .assign(N*2,D::e());\n\t\trep(i,n) val[i+N] = S(val_[i]);\n\t\tfor(int i=N-1;i>0;i--) val[i] = D::op(val[i*2],val[i*2+1]);\n\t\tact.assign(N*2,D::id());\n\t}\n\n\tS query(int a,int b){\n\t\treturn query(a,b,0,N,1);\n\t}\n\tvoid apply(int i, F f){\n\t\tapply(i,i+1,f);\n\t}\n\tvoid apply(int a,int b, F f){\n\t\tapply(a,b,f,0,N,1);\n\t}\n\tvoid assign(int i, S x){\n\t\tassign(i,i+1,x,0,N,1);\n\t}\n\n\tprivate:\n\tS query(int a,int b,int l,int r,int k){\n\t\tif(b<=l || r<=a) return D::e();\n\t\tif(a<=l && r<=b) return val[k];\n\t\tpropagate(l,r,k);\n\t\treturn D::op(query(a,b,l,(l+r)/2,k*2) , query(a,b,(l+r)/2,r,k*2+1));\n\t}\n\tvoid apply(int a,int b,const F& f,int l,int r,int k){\n\t\tif(b<=l || r<=a) return;\n\t\tif(a<=l && r<=b){\n\t\t\taddlazy(k,f);\n\t\t\treturn;\n\t\t}\n\t\tpropagate(l,r,k);\n\t\tapply(a,b,f,l,(l+r)/2,k*2);\n\t\tapply(a,b,f,(l+r)/2,r,k*2+1);\n\t\tval[k] = D::op(val[k*2] , val[k*2+1]);\n\t}\n\tvoid assign(int a,int b,const S& x, int l,int r,int k){\n\t\tif(b<=l || r<=a) return;\n\t\tif(a<=l && r<=b){\n\t\t\t// l = i, r = i+1\n\t\t\tval[k] = x;\n\t\t\tact[k] = D::id();\n\t\t\treturn;\n\t\t}\n\t\tpropagate(l,r,k);\n\t\tassign(a,b,x,l,(l+r)/2,k*2);\n\t\tassign(a,b,x,(l+r)/2,r,k*2+1);\n\t\tval[k] = D::op(val[k*2] , val[k*2+1]);\n\t}\n\tvoid addlazy(int k, const F& f){\n\t\tact[k] = D::composite(f,act[k]);\t\t// 上の階層の lazy ( = f) のほうがよりあと\n\t\tval[k] = D::act(f,val[k]);\t\t\t\t// val は常に正しく\n\t}\n\n\tvoid propagate(int l,int r,int k){\n\t\taddlazy(k*2 , act[k]);\n\t\taddlazy(k*2+1, act[k]);\n\t\tact[k] = D::id();\n\t}\n};\nstruct D{\n\tstruct Monoid{\n\t\tll ab,a,b,n;\n\t\tMonoid():ab(0),a(0),b(0),n(0){}\n\t\tMonoid(int n_):ab(0),a(0),b(0),n(n_){}\n\t};\n\tstruct Action{\n\t\tll a,b;\n\t\tAction(){}\n\t\tAction(ll a_, ll b_):a(a_),b(b_){}\n\t};\n\tconst static Monoid e(){\n\t\treturn Monoid();\n\t}\n\tconst static Monoid op(const Monoid& x, const Monoid& y){\n\t\tMonoid z;\n\t\tz.ab = x.ab+y.ab;\n\t\tz.a = x.a+y.a;\n\t\tz.b = x.b+y.b;\n\t\tz.n = x.n+y.n;\n\t\treturn z;\n\t}\n\n\tconst static Action id(){\n\t\treturn Action(0,0);\n\t}\n\tconst static Action composite(const Action& f, const Action& g){\n\t\t// f \\times g\n\t\tAction h;\n\t\th.a = f.a+g.a;\n\t\th.b = f.b+g.b;\n\t\treturn h;\n\t}\n\n\tconst static Monoid act(const Action& f, const Monoid& x){\n\t\tMonoid z;\n\t\tz.ab = x.ab + x.a*f.b + x.b*f.a + f.a*f.b*x.n;\n\t\tz.a = x.a + f.a*x.n;\n\t\tz.b = x.b + f.b*x.n;\n\t\tz.n = x.n;\n\t\treturn z;\n\t}\n};\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\t\t//DON'T USE scanf/printf/puts !!\n\tcout << fixed << setprecision(20);\n\n\tint N,Q; cin >> N >> Q;\n\tV<ll> w(N); rep(i,N) cin >> w[i];\n\tV<ll> wa(N+1); rep(i,N) wa[i+1] = wa[i] + w[i];\n\tVV<int> s2t(N),t2s(N);\n\trep(i,Q){\n\t\tint s,t; cin >> s >> t;\n\t\ts2t[s].pb(t);\n\t\tt2s[t].pb(s);\n\t}\n\tauto len = [&](int s,int t){\n\t\tif(s < t) return wa[t] - wa[s];\n\t\treturn wa[t] - wa[s] + wa[N];\n\t};\n\tconst ll inf = TEN(18);\n\tll ans = inf;\n\trep(d,2){\n\t\tll sum = 0;\n\t\trep(s,N) for(int t: s2t[s]){\n\t\t\tsum += (d == 0 ? len(s,t) : len(t,s));\n\t\t}\n\t\tchmin(ans,sum);\n\t}\n\tstruct Waf{\n\t\tint x,y,sgn;\n\t};\n\tVV<Waf> start(N),end(N);\n\trep(s,N) for(int t: s2t[s]){\n\t\tstart[(s+1)%N].pb({t,s,-1});\n\t\tend[t].pb({t,s,-1});\n\t\tstart[(t+1)%N].pb({s,t,1});\n\t\tend[s].pb({s,t,1});\n\t}\n\n\tusing S = D::Monoid;\n\tusing F = D::Action;\n\tlazyseg<D> seg(V<int>(N,1));\n\tmultiset<int> red,blue;\n\tll cost = 0;\n\n\tauto Addpos = [&](int x,int y,int v){\n\t\tcost += len(x,y) * v;\n\t\tF f(v,0);\n\t\tif(x < y){\n\t\t\tseg.apply(x,y,f);\n\t\t}else{\n\t\t\tseg.apply(x,N,f);\n\t\t\tseg.apply(0,y,f);\n\t\t}\n\t\tif(v == 1) red.insert(y);\n\t\telse{\n\t\t\tauto it = red.lower_bound(y);\n\t\t\tassert(*it == y);\n\t\t\tred.erase(it);\n\t\t}\n\t};\n\tauto Addneg = [&](int x,int y,int v){\n\t\tcost += len(x,y) * v;\n\t\tF f(0,v);\n\t\tif(x < y){\n\t\t\tseg.apply(x,y,f);\n\t\t}else{\n\t\t\tseg.apply(x,N,f);\n\t\t\tseg.apply(0,y,f);\n\t\t}\n\t\tif(v == 1) blue.insert(x);\n\t\telse{\n\t\t\tauto it = blue.lower_bound(x);\n\t\t\tassert(*it == x);\n\t\t\tblue.erase(it);\n\t\t}\n\t};\n\trep(x,N){\n\t\tif(x == 0){\n\t\t\trep(s,N) for(int t: s2t[s]){\n\t\t\t\tif(s != 0 && t != 0){\n\t\t\t\t\tif(s < t){\n\t\t\t\t\t\tAddpos(s,t,1);\n\t\t\t\t\t}else{\n\t\t\t\t\t\tAddneg(t,s,1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}else{\n\t\t\tfor(auto w: start[x]){\n\t\t\t\tif(w.sgn == 1) Addpos(w.x,w.y,1);\n\t\t\t\telse Addneg(w.x,w.y,1);\n\t\t\t}\n\t\t\tfor(auto w: end[x]){\n\t\t\t\tif(w.sgn == 1) Addpos(w.x,w.y,-1);\n\t\t\t\telse Addneg(w.x,w.y,-1);\n\t\t\t}\n\t\t}\n\t\tif(!t2s[x].empty()) continue;\n\t\tif(seg.query(0,N).ab != 0) continue;\n\t\tint R = -1;\n\t\tif(!red.empty()){\n\t\t\tauto it = red.lower_bound(x);\n\t\t\tif(it == red.begin()){\n\t\t\t\tR = *red.rbegin();\n\t\t\t}else{\n\t\t\t\tit--;\n\t\t\t\tR = *it;\n\t\t\t}\n\t\t}\n\t\tint B = -1;\n\t\tif(!blue.empty()){\n\t\t\tauto it = blue.lower_bound(x);\n\t\t\tif(it == blue.end()){\n\t\t\t\tB = *blue.begin();\n\t\t\t}else{\n\t\t\t\tB = *it;\n\t\t\t}\n\t\t}\n\t\tll tmp = cost;\n\t\tauto between = [&](int l, int x, int r){\n\t\t\tif(l < r) return l<=x && x<=r;\n\t\t\treturn l<=x || x<=r;\n\t\t};\n\t\tfor(int t: s2t[x]){\n\t\t\tll c = inf;\n\t\t\tif(R == -1 or between(R,t,x)) chmin(c,len(t,x));\n\t\t\tif(B == -1 or between(x,t,B)) chmin(c,len(x,t));\n\t\t\tif(c == inf) tmp = inf;\n\t\t\telse tmp += c;\n\t\t}\n\t\tchmin(ans,tmp);\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 43136, "score_of_the_acc": -2, "final_rank": 2 }, { "submission_id": "aoj_2719_5976377", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing uint = unsigned int;\nusing ull = unsigned long long;\n#define rep(i,n) for(int i=0;i<int(n);i++)\n#define rep1(i,n) for(int i=1;i<=int(n);i++)\n#define per(i,n) for(int i=int(n)-1;i>=0;i--)\n#define per1(i,n) for(int i=int(n);i>0;i--)\n#define all(c) c.begin(),c.end()\n#define si(x) int(x.size())\n#define pb push_back\n#define eb emplace_back\n#define fs first\n#define sc second\ntemplate<class T> using V = vector<T>;\ntemplate<class T> using VV = vector<vector<T>>;\ntemplate<class T,class U> bool chmax(T& x, U y){\n\tif(x<y){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T,class U> bool chmin(T& x, U y){\n\tif(y<x){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}\ntemplate<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}\ntemplate<class T>\nV<T> Vec(size_t a) {\n return V<T>(a);\n}\ntemplate<class T, class... Ts>\nauto Vec(size_t a, Ts... ts) {\n return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));\n}\ntemplate<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){\n\treturn o<<\"(\"<<p.fs<<\",\"<<p.sc<<\")\";\n}\ntemplate<class T> ostream& operator<<(ostream& o,const vector<T> &vc){\n\to<<\"{\";\n\tfor(const T& v:vc) o<<v<<\",\";\n\to<<\"}\";\n\treturn o;\n}\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }\n\n#ifdef LOCAL\n#define show(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\nvoid dmpr(ostream& os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" ~ \";\n\tdmpr(os,args...);\n}\n#define shows(...) cerr << \"LINE\" << __LINE__ << \" : \";dmpr(cerr,##__VA_ARGS__)\n#define dump(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = {\"; \\\n\tfor(auto v: x) cerr << v << \",\"; cerr << \"}\" << endl;\n#else\n#define show(x) void(0)\n#define dump(x) void(0)\n#define shows(...) void(0)\n#endif\n\ntemplate<class D> D divFloor(D a, D b){\n\treturn a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);\n}\ntemplate<class D> D divCeil(D a, D b) {\n\treturn a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);\n}\ntemplate<class D>\nstruct lazyseg{\n\tusing S = typename D::Monoid;\n\tusing F = typename D::Action;\n\tint N;\n\tvector<S> val;\n\tvector<F> act;\n\tlazyseg(){}\n\tlazyseg(int n){\n\t\tN=1;\n\t\twhile(N<n) N*=2;\n\t\tval.assign(N*2,D::e());\n\t\tact.assign(N*2,D::id());\n\t}\n\ttemplate<class Slike>\n\tlazyseg(const vector<Slike>& val_){\n\t\tint n = val_.size();\n\t\tN=1;\n\t\twhile(N<n) N*=2;\n\t\tval .assign(N*2,D::e());\n\t\trep(i,n) val[i+N] = S(val_[i]);\n\t\tfor(int i=N-1;i>0;i--) val[i] = D::op(val[i*2],val[i*2+1]);\n\t\tact.assign(N*2,D::id());\n\t}\n\n\tS query(int a,int b){\n\t\treturn query(a,b,0,N,1);\n\t}\n\tvoid apply(int i, F f){\n\t\tapply(i,i+1,f);\n\t}\n\tvoid apply(int a,int b, F f){\n\t\tapply(a,b,f,0,N,1);\n\t}\n\tvoid assign(int i, S x){\n\t\tassign(i,i+1,x,0,N,1);\n\t}\n\n\tprivate:\n\tS query(int a,int b,int l,int r,int k){\n\t\tif(b<=l || r<=a) return D::e();\n\t\tif(a<=l && r<=b) return val[k];\n\t\tpropagate(l,r,k);\n\t\treturn D::op(query(a,b,l,(l+r)/2,k*2) , query(a,b,(l+r)/2,r,k*2+1));\n\t}\n\tvoid apply(int a,int b,const F& f,int l,int r,int k){\n\t\tif(b<=l || r<=a) return;\n\t\tif(a<=l && r<=b){\n\t\t\taddlazy(k,f);\n\t\t\treturn;\n\t\t}\n\t\tpropagate(l,r,k);\n\t\tapply(a,b,f,l,(l+r)/2,k*2);\n\t\tapply(a,b,f,(l+r)/2,r,k*2+1);\n\t\tval[k] = D::op(val[k*2] , val[k*2+1]);\n\t}\n\tvoid assign(int a,int b,const S& x, int l,int r,int k){\n\t\tif(b<=l || r<=a) return;\n\t\tif(a<=l && r<=b){\n\t\t\t// l = i, r = i+1\n\t\t\tval[k] = x;\n\t\t\tact[k] = D::id();\n\t\t\treturn;\n\t\t}\n\t\tpropagate(l,r,k);\n\t\tassign(a,b,x,l,(l+r)/2,k*2);\n\t\tassign(a,b,x,(l+r)/2,r,k*2+1);\n\t\tval[k] = D::op(val[k*2] , val[k*2+1]);\n\t}\n\tvoid addlazy(int k, const F& f){\n\t\tact[k] = D::composite(f,act[k]);\t\t// 上の階層の lazy ( = f) のほうがよりあと\n\t\tval[k] = D::act(f,val[k]);\t\t\t\t// val は常に正しく\n\t}\n\n\tvoid propagate(int l,int r,int k){\n\t\taddlazy(k*2 , act[k]);\n\t\taddlazy(k*2+1, act[k]);\n\t\tact[k] = D::id();\n\t}\n};\nstruct D{\n\tstruct Monoid{\n\t\tll ab,a,b,n;\n\t\tMonoid():ab(0),a(0),b(0),n(0){}\n\t\tMonoid(int n_):ab(0),a(0),b(0),n(n_){}\n\t};\n\tstruct Action{\n\t\tll a,b;\n\t\tAction(){}\n\t\tAction(ll a_, ll b_):a(a_),b(b_){}\n\t};\n\tconst static Monoid e(){\n\t\treturn Monoid();\n\t}\n\tconst static Monoid op(const Monoid& x, const Monoid& y){\n\t\tMonoid z;\n\t\tz.ab = x.ab+y.ab;\n\t\tz.a = x.a+y.a;\n\t\tz.b = x.b+y.b;\n\t\tz.n = x.n+y.n;\n\t\treturn z;\n\t}\n\n\tconst static Action id(){\n\t\treturn Action(0,0);\n\t}\n\tconst static Action composite(const Action& f, const Action& g){\n\t\t// f \\times g\n\t\tAction h;\n\t\th.a = f.a+g.a;\n\t\th.b = f.b+g.b;\n\t\treturn h;\n\t}\n\n\tconst static Monoid act(const Action& f, const Monoid& x){\n\t\tMonoid z;\n\t\tz.ab = x.ab + x.a*f.b + x.b*f.a + f.a*f.b*x.n;\n\t\tz.a = x.a + f.a*x.n;\n\t\tz.b = x.b + f.b*x.n;\n\t\tz.n = x.n;\n\t\treturn z;\n\t}\n};\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\t\t//DON'T USE scanf/printf/puts !!\n\tcout << fixed << setprecision(20);\n\n\tint N,Q; cin >> N >> Q;\n\tV<ll> w(N); rep(i,N) cin >> w[i];\n\tV<ll> wa(N+1); rep(i,N) wa[i+1] = wa[i] + w[i];\n\tVV<int> s2t(N),t2s(N);\n\trep(i,Q){\n\t\tint s,t; cin >> s >> t;\n\t\ts2t[s].pb(t);\n\t\tt2s[t].pb(s);\n\t}\n\tauto len = [&](int s,int t){\n\t\tif(s < t) return wa[t] - wa[s];\n\t\treturn wa[t] - wa[s] + wa[N];\n\t};\n\tconst ll inf = TEN(18);\n\tll ans = inf;\n\trep(d,2){\n\t\tll sum = 0;\n\t\trep(s,N) for(int t: s2t[s]){\n\t\t\tsum += (d == 0 ? len(s,t) : len(t,s));\n\t\t}\n\t\tchmin(ans,sum);\n\t}\n\tstruct Waf{\n\t\tint x,y,sgn;\n\t};\n\tVV<Waf> start(N),end(N);\n\trep(s,N) for(int t: s2t[s]){\n\t\tstart[(s+1)%N].pb({t,s,-1});\n\t\tend[t].pb({t,s,-1});\n\t\tstart[(t+1)%N].pb({s,t,1});\n\t\tend[s].pb({s,t,1});\n\t}\n\n\tusing S = D::Monoid;\n\tusing F = D::Action;\n\tlazyseg<D> seg(V<int>(N,1));\n\tmultiset<int> red,blue;\n\tll cost = 0;\n\n\tauto Addpos = [&](int x,int y,int v){\n\t\tcost += len(x,y) * v;\n\t\tF f(v,0);\n\t\tif(x < y){\n\t\t\tseg.apply(x,y,f);\n\t\t}else{\n\t\t\tseg.apply(x,N,f);\n\t\t\tseg.apply(0,y,f);\n\t\t}\n\t\tif(v == 1) red.insert(y);\n\t\telse{\n\t\t\tauto it = red.lower_bound(y);\n\t\t\tassert(*it == y);\n\t\t\tred.erase(it);\n\t\t}\n\t};\n\tauto Addneg = [&](int x,int y,int v){\n\t\tcost += len(x,y) * v;\n\t\tF f(0,v);\n\t\tif(x < y){\n\t\t\tseg.apply(x,y,f);\n\t\t}else{\n\t\t\tseg.apply(x,N,f);\n\t\t\tseg.apply(0,y,f);\n\t\t}\n\t\tif(v == 1) blue.insert(x);\n\t\telse{\n\t\t\tauto it = blue.lower_bound(x);\n\t\t\tassert(*it == x);\n\t\t\tblue.erase(it);\n\t\t}\n\t};\n\trep(x,N){\n\t\tif(x == 0){\n\t\t\trep(s,N) for(int t: s2t[s]){\n\t\t\t\tif(s != 0 && t != 0){\n\t\t\t\t\tif(s < t){\n\t\t\t\t\t\tAddpos(s,t,1);\n\t\t\t\t\t}else{\n\t\t\t\t\t\tAddneg(t,s,1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}else{\n\t\t\tfor(auto w: start[x]){\n\t\t\t\tif(w.sgn == 1) Addpos(w.x,w.y,1);\n\t\t\t\telse Addneg(w.x,w.y,1);\n\t\t\t}\n\t\t\tfor(auto w: end[x]){\n\t\t\t\tif(w.sgn == 1) Addpos(w.x,w.y,-1);\n\t\t\t\telse Addneg(w.x,w.y,-1);\n\t\t\t}\n\t\t}\n\t\tif(!t2s[x].empty()) continue;\n\t\tif(seg.query(0,N).ab != 0) continue;\n\t\tint R = -1;\n\t\tif(!red.empty()){\n\t\t\tauto it = red.lower_bound(x);\n\t\t\tif(it == red.begin()){\n\t\t\t\tR = *red.rend();\n\t\t\t}else{\n\t\t\t\tit--;\n\t\t\t\tR = *it;\n\t\t\t}\n\t\t}\n\t\tint B = -1;\n\t\tif(!blue.empty()){\n\t\t\tauto it = blue.lower_bound(x);\n\t\t\tif(it == blue.end()){\n\t\t\t\tB = *blue.begin();\n\t\t\t}else{\n\t\t\t\tB = *it;\n\t\t\t}\n\t\t}\n\t\tll tmp = cost;\n\t\tauto between = [&](int l, int x, int r){\n\t\t\tif(l < r) return l<=x && x<=r;\n\t\t\treturn l<=x || x<=r;\n\t\t};\n\t\tfor(int t: s2t[x]){\n\t\t\tll c = inf;\n\t\t\tif(R == -1 or between(R,t,x)) chmin(c,len(t,x));\n\t\t\tif(B == -1 or between(x,t,B)) chmin(c,len(x,t));\n\t\t\tif(c == inf) tmp = inf;\n\t\t\telse tmp += c;\n\t\t}\n\t\tchmin(ans,tmp);\n\t}\n\tcout << ans << endl;\n}", "accuracy": 0.6120689655172413, "time_ms": 390, "memory_kb": 41624, "score_of_the_acc": -1.9528, "final_rank": 3 }, { "submission_id": "aoj_2719_5976235", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing uint = unsigned int;\nusing ull = unsigned long long;\n#define rep(i,n) for(int i=0;i<int(n);i++)\n#define rep1(i,n) for(int i=1;i<=int(n);i++)\n#define per(i,n) for(int i=int(n)-1;i>=0;i--)\n#define per1(i,n) for(int i=int(n);i>0;i--)\n#define all(c) c.begin(),c.end()\n#define si(x) int(x.size())\n#define pb push_back\n#define eb emplace_back\n#define fs first\n#define sc second\ntemplate<class T> using V = vector<T>;\ntemplate<class T> using VV = vector<vector<T>>;\ntemplate<class T,class U> bool chmax(T& x, U y){\n\tif(x<y){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T,class U> bool chmin(T& x, U y){\n\tif(y<x){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}\ntemplate<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}\ntemplate<class T>\nV<T> Vec(size_t a) {\n return V<T>(a);\n}\ntemplate<class T, class... Ts>\nauto Vec(size_t a, Ts... ts) {\n return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));\n}\ntemplate<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){\n\treturn o<<\"(\"<<p.fs<<\",\"<<p.sc<<\")\";\n}\ntemplate<class T> ostream& operator<<(ostream& o,const vector<T> &vc){\n\to<<\"{\";\n\tfor(const T& v:vc) o<<v<<\",\";\n\to<<\"}\";\n\treturn o;\n}\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }\n\n#ifdef LOCAL\n#define show(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\nvoid dmpr(ostream& os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" ~ \";\n\tdmpr(os,args...);\n}\n#define shows(...) cerr << \"LINE\" << __LINE__ << \" : \";dmpr(cerr,##__VA_ARGS__)\n#define dump(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = {\"; \\\n\tfor(auto v: x) cerr << v << \",\"; cerr << \"}\" << endl;\n#else\n#define show(x) void(0)\n#define dump(x) void(0)\n#define shows(...) void(0)\n#endif\n\ntemplate<class D> D divFloor(D a, D b){\n\treturn a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);\n}\ntemplate<class D> D divCeil(D a, D b) {\n\treturn a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);\n}\ntemplate<class D>\nstruct lazyseg{\n\tusing S = typename D::Monoid;\n\tusing F = typename D::Action;\n\tint N;\n\tvector<S> val;\n\tvector<F> act;\n\tlazyseg(){}\n\tlazyseg(int n){\n\t\tN=1;\n\t\twhile(N<n) N*=2;\n\t\tval.assign(N*2,D::e());\n\t\tact.assign(N*2,D::id());\n\t}\n\ttemplate<class Slike>\n\tlazyseg(const vector<Slike>& val_){\n\t\tint n = val_.size();\n\t\tN=1;\n\t\twhile(N<n) N*=2;\n\t\tval .assign(N*2,D::e());\n\t\trep(i,n) val[i+N] = S(val_[i]);\n\t\tfor(int i=N-1;i>0;i--) val[i] = D::op(val[i*2],val[i*2+1]);\n\t\tact.assign(N*2,D::id());\n\t}\n\n\tS query(int a,int b){\n\t\treturn query(a,b,0,N,1);\n\t}\n\tvoid apply(int i, F f){\n\t\tapply(i,i+1,f);\n\t}\n\tvoid apply(int a,int b, F f){\n\t\tapply(a,b,f,0,N,1);\n\t}\n\tvoid assign(int i, S x){\n\t\tassign(i,i+1,x,0,N,1);\n\t}\n\n\tprivate:\n\tS query(int a,int b,int l,int r,int k){\n\t\tif(b<=l || r<=a) return D::e();\n\t\tif(a<=l && r<=b) return val[k];\n\t\tpropagate(l,r,k);\n\t\treturn D::op(query(a,b,l,(l+r)/2,k*2) , query(a,b,(l+r)/2,r,k*2+1));\n\t}\n\tvoid apply(int a,int b,const F& f,int l,int r,int k){\n\t\tif(b<=l || r<=a) return;\n\t\tif(a<=l && r<=b){\n\t\t\taddlazy(k,f);\n\t\t\treturn;\n\t\t}\n\t\tpropagate(l,r,k);\n\t\tapply(a,b,f,l,(l+r)/2,k*2);\n\t\tapply(a,b,f,(l+r)/2,r,k*2+1);\n\t\tval[k] = D::op(val[k*2] , val[k*2+1]);\n\t}\n\tvoid assign(int a,int b,const S& x, int l,int r,int k){\n\t\tif(b<=l || r<=a) return;\n\t\tif(a<=l && r<=b){\n\t\t\t// l = i, r = i+1\n\t\t\tval[k] = x;\n\t\t\tact[k] = D::id();\n\t\t\treturn;\n\t\t}\n\t\tpropagate(l,r,k);\n\t\tassign(a,b,x,l,(l+r)/2,k*2);\n\t\tassign(a,b,x,(l+r)/2,r,k*2+1);\n\t\tval[k] = D::op(val[k*2] , val[k*2+1]);\n\t}\n\tvoid addlazy(int k, const F& f){\n\t\tact[k] = D::composite(f,act[k]);\t\t// 上の階層の lazy ( = f) のほうがよりあと\n\t\tval[k] = D::act(f,val[k]);\t\t\t\t// val は常に正しく\n\t}\n\n\tvoid propagate(int l,int r,int k){\n\t\taddlazy(k*2 , act[k]);\n\t\taddlazy(k*2+1, act[k]);\n\t\tact[k] = D::id();\n\t}\n};\nstruct D{\n\tstruct Monoid{\n\t\tll ab,a,b,n;\n\t\tMonoid():ab(0),a(0),b(0),n(0){}\n\t\tMonoid(int n_):ab(0),a(0),b(0),n(n_){}\n\t};\n\tstruct Action{\n\t\tll a,b;\n\t\tAction(){}\n\t\tAction(ll a_, ll b_):a(a_),b(b_){}\n\t};\n\tconst static Monoid e(){\n\t\treturn Monoid();\n\t}\n\tconst static Monoid op(const Monoid& x, const Monoid& y){\n\t\tMonoid z;\n\t\tz.ab = x.ab+y.ab;\n\t\tz.a = x.a+y.a;\n\t\tz.b = x.b+y.b;\n\t\tz.n = x.n+y.n;\n\t\treturn z;\n\t}\n\n\tconst static Action id(){\n\t\treturn Action(0,0);\n\t}\n\tconst static Action composite(const Action& f, const Action& g){\n\t\t// f \\times g\n\t\tAction h;\n\t\th.a = f.a+g.a;\n\t\th.b = f.b+g.b;\n\t\treturn h;\n\t}\n\n\tconst static Monoid act(const Action& f, const Monoid& x){\n\t\tMonoid z;\n\t\tz.ab = x.ab + x.a*f.b + x.b*f.a + f.a*f.b*x.n;\n\t\tz.a = x.a + f.a;\n\t\tz.b = x.b + f.b;\n\t\tz.n = x.n;\n\t\treturn z;\n\t}\n};\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\t\t//DON'T USE scanf/printf/puts !!\n\tcout << fixed << setprecision(20);\n\n\tint N,Q; cin >> N >> Q;\n\tV<ll> w(N); rep(i,N) cin >> w[i];\n\tV<ll> wa(N+1); rep(i,N) wa[i+1] = wa[i] + w[i];\n\tVV<int> s2t(N),t2s(N);\n\trep(i,Q){\n\t\tint s,t; cin >> s >> t;\n\t\ts2t[s].pb(t);\n\t\tt2s[t].pb(s);\n\t}\n\tauto len = [&](int s,int t){\n\t\tif(s < t) return wa[t] - wa[s];\n\t\treturn wa[t] - wa[s] + wa[N];\n\t};\n\tconst ll inf = TEN(18);\n\tll ans = inf;\n\trep(d,2){\n\t\tll sum = 0;\n\t\trep(s,N) for(int t: s2t[s]){\n\t\t\tsum += (d == 0 ? len(s,t) : len(t,s));\n\t\t}\n\t\tchmin(ans,sum);\n\t}\n\tstruct Waf{\n\t\tint x,y,sgn;\n\t};\n\tVV<Waf> start(N),end(N);\n\trep(s,N) for(int t: s2t[s]){\n\t\tstart[(s+1)%N].pb({t,s,-1});\n\t\tend[t].pb({t,s,-1});\n\t\tstart[(t+1)%N].pb({s,t,1});\n\t\tend[s].pb({s,t,1});\n\t}\n\n\tusing S = D::Monoid;\n\tusing F = D::Action;\n\tlazyseg<D> seg(V<int>(N,1));\n\tmultiset<int> red,blue;\n\tll cost = 0;\n\n\tauto Addpos = [&](int x,int y,int v){\n\t\tcost += len(x,y) * v;\n\t\tF f(v,0);\n\t\tif(x < y){\n\t\t\tseg.apply(x,y,f);\n\t\t}else{\n\t\t\tseg.apply(x,N,f);\n\t\t\tseg.apply(0,y,f);\n\t\t}\n\t\tif(v == 1) red.insert(y);\n\t\telse{\n\t\t\tauto it = red.lower_bound(y);\n\t\t\tassert(*it == y);\n\t\t\tred.erase(it);\n\t\t}\n\t};\n\tauto Addneg = [&](int x,int y,int v){\n\t\tcost += len(x,y) * v;\n\t\tF f(0,v);\n\t\tif(x < y){\n\t\t\tseg.apply(x,y,f);\n\t\t}else{\n\t\t\tseg.apply(x,N,f);\n\t\t\tseg.apply(0,y,f);\n\t\t}\n\t\tif(v == 1) blue.insert(x);\n\t\telse{\n\t\t\tauto it = blue.lower_bound(x);\n\t\t\tassert(*it == x);\n\t\t\tblue.erase(it);\n\t\t}\n\t};\n\trep(x,N){\n\t\tif(x == 0){\n\t\t\trep(s,N) for(int t: s2t[s]){\n\t\t\t\tif(s != 0 && t != 0){\n\t\t\t\t\tif(s < t){\n\t\t\t\t\t\tAddpos(s,t,1);\n\t\t\t\t\t}else{\n\t\t\t\t\t\tAddneg(t,s,1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}else{\n\t\t\tfor(auto w: start[x]){\n\t\t\t\tif(w.sgn == 1) Addpos(w.x,w.y,1);\n\t\t\t\telse Addneg(w.x,w.y,1);\n\t\t\t}\n\t\t\tfor(auto w: end[x]){\n\t\t\t\tif(w.sgn == 1) Addpos(w.x,w.y,-1);\n\t\t\t\telse Addneg(w.x,w.y,-1);\n\t\t\t}\n\t\t}\n\t\tif(!t2s[x].empty()) continue;\n\t\tif(seg.query(0,N).ab != 0) continue;\n\t\tint R = -1;\n\t\tif(!red.empty()){\n\t\t\tauto it = red.lower_bound(x);\n\t\t\tif(it == red.begin()){\n\t\t\t\tR = *red.rend();\n\t\t\t}else{\n\t\t\t\tit--;\n\t\t\t\tR = *it;\n\t\t\t}\n\t\t}\n\t\tint B = -1;\n\t\tif(!blue.empty()){\n\t\t\tauto it = blue.lower_bound(x);\n\t\t\tif(it == blue.end()){\n\t\t\t\tB = *blue.begin();\n\t\t\t}else{\n\t\t\t\tB = *it;\n\t\t\t}\n\t\t}\n\t\tll tmp = cost;\n\t\tauto between = [&](int l, int x, int r){\n\t\t\tif(l < r) return l<=x && x<=r;\n\t\t\treturn l<=x || x<=r;\n\t\t};\n\t\tfor(int t: s2t[x]){\n\t\t\tll c = inf;\n\t\t\tif(R == -1 or between(R,t,x)) chmin(c,len(t,x));\n\t\t\tif(B == -1 or between(x,t,B)) chmin(c,len(x,t));\n\t\t\tif(c == inf) tmp = inf;\n\t\t\telse tmp += c;\n\t\t}\n\t\tchmin(ans,tmp);\n\t}\n\tcout << ans << endl;\n}", "accuracy": 0.017241379310344827, "time_ms": 220, "memory_kb": 37360, "score_of_the_acc": -1.3602, "final_rank": 4 } ]
aoj_2712_cpp
Escape 頂点に正の値を持つ無向グラフが与えられる。 頂点には 1 から N の番号がついており、 i 番目の頂点は w_i の値を持っている。 1 番目の頂点からスタートし、直前に通った辺を通ることができないという制約のもとでグラフ上を移動することができる。 各頂点では,初めて訪れた時に限りその頂点が持つ値の点数を得られる。 取得できる点数の総和の最大値を求めよ。 Constraints 1 ≤ N ≤ 100000 N − 1 ≤ M ≤ 100000 1 ≤ w_i ≤ 1000 1 ≤ u_i, v_i ≤ N 多重辺・自己辺は存在しない グラフは連結である Input Format 入力は以下の形式で標準入力から与えられる。 N M w_1 w_2 ... w_N u_1 v_1 u_2 v_2 ... u_M v_M 1 行目には グラフ の頂点数 N と辺の数を表す整数 M が入力される。 2 行目には各頂点が持つ値 w_i が入力される。 さらに続けて M 行に、各辺により繋がれる 2 頂点の番号が入力される。 Output Format 答えを1行に出力せよ。 Sample Input 1 6 6 1 2 3 4 5 6 1 2 2 3 3 4 1 4 4 5 5 6 Sample Output 1 21 頂点 1→2→3→4→5→6 と進むことで全ての頂点の点数を集めることができます。 Sample Input 2 7 8 1 3 3 5 2 2 3 1 2 2 3 3 1 1 4 1 7 1 5 1 6 5 6 Sample Output 2 16 頂点 1→2→3→1→5→6→1→4 と進むことで16点を集めることができます。
[ { "submission_id": "aoj_2712_10858280", "code_snippet": "#include<iostream>\n#include<vector>\n#include<utility>\n\nusing namespace std;\n\ntypedef pair<int, int> Pii;\n\nvector<int> graph[100001];\nvector<int> dim(100001, 0);\nvector<Pii> nodes(100001);\nvector<bool> used(100001, false);\n\nint dfs(int node, int prev){\n used[node] = true;\n int max_cost = 0, not_zero = 0, cost;\n nodes[node].second = 0;\n for(int nxt: graph[node]){\n if(nxt == prev || used[nxt]) continue;\n cost = dfs(nxt, node);\n if(cost){\n not_zero++;\n dim[node]--;\n }\n max_cost = max(max_cost, cost);\n }\n nodes[node].second = max_cost;\n\n if(dim[node] == 1 && node != 0){\n int total = nodes[node].first + nodes[node].second;\n nodes[node].first = 0;\n return total;\n }\n return 0;\n}\n\nint main(){\n int n,m;\n cin >> n >> m;\n for(int i=0;i<n;i++) cin >>nodes[i].first;\n\n int a,b;\n for(int i=0;i<m;i++){\n cin >> a >> b;\n a--; b--;\n graph[a].push_back(b);\n graph[b].push_back(a);\n dim[a]++;\n dim[b]++;\n }\n\n dfs(0, -1);\n\n int ans = 0, max_second = 0;\n for(int i=0;i<n;i++){\n ans += nodes[i].first;\n if(nodes[i].first != 0) max_second = max(max_second, nodes[i].second);\n }\n ans += max_second;\n cout << ans << endl;\n\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 19216, "score_of_the_acc": -0.9405, "final_rank": 6 }, { "submission_id": "aoj_2712_10851584", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\nstruct Bridge{\n vector<vpi> G;\n vb used, isbridge;\n vi ord, low;\n int cnt;\n int n, m;\n void init( int size ){\n n = size;\n m = 0;\n G.assign( n , vpi(0) );\n }\n void add_edge( int a, int b ){\n G[a].pb( b, m );\n G[b].pb( a, m );\n m++;\n }\n void dfs( int x , int p ){\n used[x] = true;\n ord[x] = low[x] = cnt++;\n YYS( w , G[x] ){\n if( !used[w.fi] ){\n\tdfs( w.fi , x );\n\tchmin( low[x] , low[w.fi] );\n } else if( w.fi != p ){\n\tchmin( low[x] , ord[w.fi] );\n }\n }\n }\n vb bridge(){\n used = vb( n , false );\n isbridge = vb( m , false );\n ord = low = vi( n , 0 );\n cnt = 0;\n REP( i , n ){\n if( !used[i] ){\n\tdfs( i , -1 );\n }\n }\n REP( i , n ){\n YYS( w , G[i] ){\n\tif( ord[i] > ord[w.fi] ){\n continue;\n }\n\tif( ord[i] < low[w.fi] ){\n isbridge[w.se] = true;\n }\n }\n }\n return isbridge;\n }\n};\n\nBridge bridge;\n\nint n, m;\n\nint a[100010];\n\nvpi G[100010];\n\nvb br;\n\nint ans, ma;\n\nbool used[100010];\n\nint cnt;\nvoid dfs2( int x , vi &nex , int &cur ){\n cnt++;\n used[x] = true;\n cur += a[x];\n YYS( w , G[x] ){\n if( used[w.fi] ){\n continue;\n }\n if( br[w.se] ){\n nex.pb( w.fi );\n } else {\n dfs2( w.fi , nex , cur );\n }\n }\n}\n\npair<bool,int> dfs( int x ){\n vi nex(0);\n cnt = 0;\n int cur = 0;\n dfs2( x , nex , cur );\n bool f = ( x == 0 );\n if( cnt > 1 ){\n f = true;\n }\n vector<pair<bool,int> > res(0);\n YYS( w , nex ){\n res.pb( dfs( w ) );\n }\n YYS( w , res ){\n if( w.fi ){\n f = true;\n }\n }\n int cma = 0;\n YYS( w , res ){\n chmax( cma , w.se );\n }\n if( f ){\n ans += cur;\n cur = 0;\n chmax( ma , cma );\n } else {\n cur += cma;\n }\n return make_pair( f , cur );\n}\n\nint main(){\n\n n = in();\n m = in();\n bridge.init( n );\n REP( i , n ){\n a[i] = in();\n }\n REP( i , m ){\n int x = in() - 1;\n int y = in() - 1;\n G[x].pb( y , i );\n G[y].pb( x , i );\n bridge.add_edge( x , y );\n }\n\n br = bridge.bridge();\n\n dfs( 0 );\n\n printf( \"%d\\n\" , ans + ma );\n \n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 29296, "score_of_the_acc": -1.0601, "final_rank": 8 }, { "submission_id": "aoj_2712_10689836", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\n\nstruct Bridge{\n vector<vpi> G;\n vb used, isbridge;\n vi ord, low;\n int cnt;\n int n, m;\n void init( int size ){\n n = size;\n m = 0;\n G.assign( n , vpi(0) );\n }\n void add_edge( int a, int b ){\n G[a].pb( b, m );\n G[b].pb( a, m );\n m++;\n }\n void dfs( int x , int p ){\n used[x] = true;\n ord[x] = low[x] = cnt++;\n YYS( w , G[x] ){\n if( !used[w.fi] ){\n\tdfs( w.fi , x );\n\tchmin( low[x] , low[w.fi] );\n } else if( w.fi != p ){\n\tchmin( low[x] , ord[w.fi] );\n }\n }\n }\n vb bridge(){\n used = vb( n , false );\n isbridge = vb( m , false );\n ord = low = vi( n , 0 );\n cnt = 0;\n REP( i , n ){\n if( !used[i] ){\n\tdfs( i , -1 );\n }\n }\n REP( i , n ){\n YYS( w , G[i] ){\n\tif( ord[i] > ord[w.fi] ){\n continue;\n }\n\tif( ord[i] < low[w.fi] ){\n isbridge[w.se] = true;\n }\n }\n }\n return isbridge;\n }\n};\n\nBridge bridge;\n\nint n, m;\n\nint a[100010];\n\nvpi G[100010];\n\nvb br;\n\nint ans;\n\nbool used[100010];\n\nvoid dfs2( int x , vi &nex , int &cur ){\n used[x] = true;\n cur += a[x];\n YYS( w , G[x] ){\n if( used[w.fi] ){\n continue;\n }\n if( br[w.se] ){\n nex.pb( w.fi );\n } else {\n dfs2( w.fi , nex , cur );\n }\n }\n}\n\nvoid dfs( int x , int cur ){\n vi nex(0);\n dfs2( x , nex , cur );\n chmax( ans , cur );\n YYS( w , nex ){\n dfs( w , cur );\n }\n}\n\nint main(){\n\n n = in();\n m = in();\n bridge.init( n );\n REP( i , n ){\n a[i] = in();\n }\n REP( i , m ){\n int x = in() - 1;\n int y = in() - 1;\n G[x].pb( y , i );\n G[y].pb( x , i );\n bridge.add_edge( x , y );\n }\n\n br = bridge.bridge();\n\n dfs( 0 , 0 );\n\n printf( \"%d\\n\" , ans );\n \n return 0;\n}", "accuracy": 0.5238095238095238, "time_ms": 30, "memory_kb": 26216, "score_of_the_acc": -0.806, "final_rank": 11 }, { "submission_id": "aoj_2712_10689831", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\nstruct Bridge{\n vector<vpi> G;\n vb used, isbridge;\n vi ord, low;\n int cnt;\n int n, m;\n void init( int size ){\n n = size;\n m = 0;\n G.assign( n , vpi(0) );\n }\n void add_edge( int a, int b ){\n G[a].pb( b, m );\n G[b].pb( a, m );\n m++;\n }\n void dfs( int x , int p ){\n used[x] = true;\n ord[x] = low[x] = cnt++;\n YYS( w , G[x] ){\n if( !used[w.fi] ){\n\tdfs( w.fi , x );\n\tchmin( low[x] , low[w.fi] );\n } else if( w.fi != p ){\n\tchmin( low[x] , ord[w.fi] );\n }\n }\n }\n vb bridge(){\n used = isbridge = vb( n , false );\n ord = low = vi( n , 0 );\n cnt = 0;\n REP( i , n ){\n if( !used[i] ){\n\tdfs( i , -1 );\n }\n }\n REP( i , n ){\n YYS( w , G[i] ){\n\tif( ord[i] > ord[w.fi] ) continue;\n\tif( ord[i] < low[w.fi] ) isbridge[w.se] = true;\n }\n }\n return isbridge;\n }\n};\n\nBridge bridge;\n\nint n, m;\n\nint a[100010];\n\nvpi G[100010];\n\nvb br;\n\nint ans;\n\nbool used[100010];\n\nvoid dfs2( int x , vi &nex , int &cur ){\n used[x] = true;\n cur += a[x];\n YYS( w , G[x] ){\n if( used[w.fi] ){\n continue;\n }\n if( br[w.se] ){\n nex.pb( w.fi );\n } else {\n dfs2( w.fi , nex , cur );\n }\n }\n}\n\nvoid dfs( int x , int cur ){\n vi nex(0);\n dfs2( x , nex , cur );\n chmax( ans , cur );\n YYS( w , nex ){\n dfs( w , cur );\n }\n}\n\nint main(){\n\n n = in();\n m = in();\n bridge.init( n );\n REP( i , n ){\n a[i] = in();\n }\n REP( i , m ){\n int x = in() - 1;\n int y = in() - 1;\n G[x].pb( y , i );\n G[y].pb( x , i );\n bridge.add_edge( x , y );\n }\n\n br = bridge.bridge();\n\n dfs( 0 , 0 );\n\n printf( \"%d\\n\" , ans );\n \n return 0;\n}", "accuracy": 0.047619047619047616, "time_ms": 10, "memory_kb": 9572, "score_of_the_acc": 0, "final_rank": 20 }, { "submission_id": "aoj_2712_10210735", "code_snippet": "// AOJ #2712\n// Escape 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nconst int MAX_N = 100001;\ntypedef pair<int,int> P;\nvector<int> adj[MAX_N];\nvector<int> cycleNodes;\nbool used[MAX_N];\n \nbool dfs(int x, int parent) {\n if(used[x]) return true;\n used[x] = true;\n bool foundCycle = false;\n for (int nxt : adj[x]) {\n if(nxt == parent) continue;\n foundCycle |= dfs(nxt, x);\n }\n if(foundCycle) cycleNodes.push_back(x);\n return foundCycle;\n}\n \nint main() {\n int n = Cin(), m = Cin();\n vector<int> weight(n);\n for (int i = 0; i < n; i++) weight[i] = Cin();\n\n for (int i = 0; i < m; i++){\n int u = Cin()-1, v = Cin()-1;\n adj[u].push_back(v);\n adj[v].push_back(u);\n }\n dfs(0, -1);\n \n vector<int> d(n, -1);\n int cycleSum = 0;\n int additionalMax = 0;\n priority_queue<P, vector<P>, greater<P>> pq;\n \n for (int v : cycleNodes) {\n if(d[v] == -1){\n d[v] = 0;\n pq.push({0, v});\n cycleSum += weight[v];\n }\n }\n if(pq.empty()){\n d[0] = weight[0];\n pq.push({weight[0], 0});\n }\n \n while(!pq.empty()){\n P cur = pq.top();\n pq.pop();\n int curScore = cur.first;\n int curVertex = cur.second;\n if(d[curVertex] != curScore) continue;\n for (int nxt : adj[curVertex]){\n if(d[nxt] == -1){\n d[nxt] = curScore + weight[nxt];\n pq.push({d[nxt], nxt});\n }\n }\n }\n for (int i = 0; i < n; i++)\n additionalMax = max(additionalMax, d[i]);\n Cout(cycleSum + additionalMax);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 16968, "score_of_the_acc": -0.3767, "final_rank": 2 }, { "submission_id": "aoj_2712_10210712", "code_snippet": "// AOJ #2712\n// Escape 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll NEG_INF = -1000000000000000LL;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct Edge { int u, v; };\n \nint main() {\n int n = Cin(), m = Cin();\n vector<int> w(n);\n for (int i = 0; i < n; i++) w[i] = Cin();\n \n vector<vector<pair<int,int>>> graph(n);\n vector<Edge> edges;\n edges.reserve(m);\n for (int i = 0; i < m; i++){\n int u = Cin()-1, v = Cin()-1;\n edges.push_back({u, v});\n graph[u].push_back({v, i});\n graph[v].push_back({u, i});\n }\n \n vector<int> tin(n, -1), low(n, -1);\n vector<bool> isBridge(m, false);\n int timer = 0;\n function<void(int, int)> dfsBridge = [&](int v, int parentEdge) {\n tin[v] = low[v] = timer++;\n for (auto &p : graph[v]){\n int to = p.first, id = p.second;\n if(id == parentEdge) continue;\n if(tin[to] == -1){\n dfsBridge(to, id);\n low[v] = min(low[v], low[to]);\n if(low[to] > tin[v]) isBridge[id] = true;\n } else low[v] = min(low[v], tin[to]);\n }\n };\n for (int i = 0; i < n; i++){\n if(tin[i] == -1) dfsBridge(i, -1);\n }\n \n vector<int> comp(n, -1);\n int compCount = 0;\n vector<ll> compWeight; \n vector<int> compSize;\n compWeight.resize(n, 0);\n compSize.resize(n, 0);\n function<void(int,int)> dfsComp = [&](int v, int cid) {\n comp[v] = cid;\n compWeight[cid] += w[v];\n compSize[cid]++;\n for(auto &p : graph[v]){\n int to = p.first, id = p.second;\n if(isBridge[id]) continue;\n if(comp[to] == -1) dfsComp(to, cid);\n }\n };\n for (int i = 0; i < n; i++){\n if(comp[i] == -1){\n dfsComp(i, compCount);\n compCount++;\n }\n }\n compWeight.resize(compCount);\n compSize.resize(compCount);\n \n vector<bool> compSafe(compCount, false);\n for (int i = 0; i < compCount; i++)\n compSafe[i] = (compSize[i] >= 2);\n \n vector<vector<int>> tree(compCount);\n for (int i = 0; i < m; i++){\n if(!isBridge[i]) continue;\n int u = edges[i].u, v = edges[i].v;\n int cu = comp[u], cv = comp[v];\n tree[cu].push_back(cv);\n tree[cv].push_back(cu);\n }\n \n vector<pair<ll,ll>> dp(compCount, {0,0});\n int root = comp[0];\n vector<bool> visited(compCount, false);\n function<void(int,int)> dfsTree = [&](int v, int parent) {\n visited[v] = true;\n for (int u : tree[v]){\n if(u == parent) continue;\n dfsTree(u, v);\n }\n bool isRoot = (v == root);\n bool safe = (isRoot || compSafe[v]);\n \n if(safe){\n ll closed_sum = 0;\n ll extraCandidate = 0;\n for (int u : tree[v]){\n if(u == parent) continue;\n if(compSafe[u]){\n ll branch_closed = compWeight[u] + dp[u].first;\n if(branch_closed < 0) branch_closed = 0;\n closed_sum += branch_closed;\n ll branch_open = compWeight[u] + dp[u].second;\n extraCandidate = max(extraCandidate, branch_open - branch_closed);\n } else {\n ll branch_open = compWeight[u] + dp[u].second;\n extraCandidate = max(extraCandidate, branch_open);\n }\n }\n dp[v].first = closed_sum;\n dp[v].second = closed_sum + extraCandidate;\n } else {\n ll bestOpen = 0;\n for (int u : tree[v]){\n if(u == parent) continue;\n ll branch_open = compWeight[u] + dp[u].second;\n bestOpen = max(bestOpen, branch_open);\n }\n dp[v].first = NEG_INF;\n dp[v].second = bestOpen;\n }\n };\n \n dfsTree(root, -1);\n ll ans = compWeight[root] + dp[root].second;\n Cout(ans);\n return 0;\n}", "accuracy": 0.5238095238095238, "time_ms": 20, "memory_kb": 29900, "score_of_the_acc": -0.7439, "final_rank": 10 }, { "submission_id": "aoj_2712_9999565", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nvoid chmin(int &a, int b) { a = min(a, b); }\nstruct LowLink {\n public:\n vector<vector<int>> g;\n vector<int> ord, low;\n vector<int> articulation;\n vector<bool> visited;\n vector<pair<int, int>> bridge;\n\n void dfs(int cur, int pre, int& k) {\n visited[cur] = true;\n ord[cur] = low[cur] = k++;\n bool isArticulation = false;\n int cnt = 0;\n for(auto to : g[cur]) {\n if(!visited[to]) {\n cnt++;\n dfs(to, cur, k);\n chmin(low[cur], low[to]);\n if(pre != -1 && ord[cur] <= low[to]) isArticulation = true;\n if(ord[cur] < low[to]) bridge.emplace_back(min(cur, to), max(cur, to));\n } else if(to != pre) chmin(low[cur], ord[to]);\n }\n if(pre == -1 && cnt > 1) isArticulation = true;\n if(isArticulation) articulation.push_back(cur);\n }\n\n void build(const vector<vector<int>>& g) {\n int n = g.size();\n this->g = g;\n ord.assign(n, -1);\n low.assign(n, -1);\n visited.assign(n, false);\n int k = 0;\n for(int i = 0; i < n; i++)\n if(!visited[i]) dfs(i, -1, k);\n }\n LowLink(const vector<vector<int>>& g) { build(g); }\n\n vector<int>& getArticulations() { return articulation; }\n vector<pair<int, int>>& getBridges() { return bridge; }\n vector<int>& getOrd() { return ord; }\n vector<int>& getLowlink() { return low; }\n};\n\nstruct UnionFind {\n vector<int> par;\n UnionFind(int n) :par(n, -1) { }\n void init(int n) { par.assign(n, -1); }\n int root(int x) {\n if (par[x] < 0) return x;\n else return par[x] = root(par[x]);\n }\n bool connect(int x, int y) {\n x = root(x); y = root(y);\n if (x == y) return false;\n if (par[x] > par[y]) swap(x, y);\n par[x] += par[y];\n par[y] = x;\n return true;\n }\n int size(int x) {\n return -par[root(x)];\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n, m;\n cin >> n >> m;\n vector<ll> w(n);\n rep(i, n) cin >> w[i];\n UnionFind uf(n);\n vector<vector<int>> v(n);\n vector<pair<int, int>> edges;\n rep(i, m) {\n int a, b;\n cin >> a >> b;\n a --; b --;\n if(a > b) swap(a, b);\n edges.push_back({a, b});\n v[a].pb(b);\n v[b].pb(a);\n }\n LowLink link(v);\n auto bs = link.getBridges();\n set<pair<int, int>> st;\n for(auto [x, y] : bs) {\n st.insert({min(x, y), max(x, y)});\n }\n foa(e, edges) if(!st.count(e)) uf.connect(e.first, e.second);\n \n\n vector<ll> c(n, 0);\n vector<vector<int>> g(n);\n foa(e, edges) if(st.count(e)) {\n int x = uf.root(e.first);\n int y = uf.root(e.second);\n g[x].pb(y);\n g[y].pb(x);\n }\n int r = uf.root(0);\n vector<int> cnt(n, 0);\n rep(i, n) c[uf.root(i)] += w[i];\n rep(i, n) cnt[uf.root(i)] ++;\n cnt[r] ++;\n\n ll ans = 0;\n auto dfs = [&](auto dfs, int now, int p) -> pair<ll, bool> { \n bool f = cnt[now] >= 2;\n ll sum1 = c[now], sum2 = c[now];\n foa(e, g[now]) {\n if(e == p) continue;\n auto [r1, r2] = dfs(dfs, e, now);\n f |= r2;\n if(r2) {\n sum1 += r1;\n } else {\n sum2 = max(c[now] + r1, sum2);\n }\n }\n if(!f) ans = max(ans, sum2);\n if(f) return {sum1, true};\n return {sum2, false};\n };\n cout << dfs(dfs, r, -1).first + ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 42568, "score_of_the_acc": -1.937, "final_rank": 9 }, { "submission_id": "aoj_2712_9995707", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nvoid chmin(int &a, int b) { a = min(a, b); }\nstruct LowLink {\n public:\n vector<vector<int>> g;\n vector<int> ord, low;\n vector<int> articulation;\n vector<bool> visited;\n vector<pair<int, int>> bridge;\n\n void dfs(int cur, int pre, int& k) {\n visited[cur] = true;\n ord[cur] = low[cur] = k++;\n bool isArticulation = false;\n int cnt = 0;\n for(auto to : g[cur]) {\n if(!visited[to]) {\n cnt++;\n dfs(to, cur, k);\n chmin(low[cur], low[to]);\n if(pre != -1 && ord[cur] <= low[to]) isArticulation = true;\n if(ord[cur] < low[to]) bridge.emplace_back(min(cur, to), max(cur, to));\n } else if(to != pre) chmin(low[cur], ord[to]);\n }\n if(pre == -1 && cnt > 1) isArticulation = true;\n if(isArticulation) articulation.push_back(cur);\n }\n\n void build(const vector<vector<int>>& g) {\n int n = g.size();\n this->g = g;\n ord.assign(n, -1);\n low.assign(n, -1);\n visited.assign(n, false);\n int k = 0;\n for(int i = 0; i < n; i++)\n if(!visited[i]) dfs(i, -1, k);\n }\n LowLink(const vector<vector<int>>& g) { build(g); }\n\n vector<int>& getArticulations() { return articulation; }\n vector<pair<int, int>>& getBridges() { return bridge; }\n vector<int>& getOrd() { return ord; }\n vector<int>& getLowlink() { return low; }\n};\n\nstruct UnionFind {\n vector<int> par;\n UnionFind(int n) :par(n, -1) { }\n void init(int n) { par.assign(n, -1); }\n int root(int x) {\n if (par[x] < 0) return x;\n else return par[x] = root(par[x]);\n }\n bool connect(int x, int y) {\n x = root(x); y = root(y);\n if (x == y) return false;\n if (par[x] > par[y]) swap(x, y);\n par[x] += par[y];\n par[y] = x;\n return true;\n }\n int size(int x) {\n return -par[root(x)];\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n, m;\n cin >> n >> m;\n vector<ll> w(n);\n rep(i, n) cin >> w[i];\n UnionFind uf(n);\n vector<vector<int>> v(n);\n vector<pair<int, int>> edges;\n rep(i, m) {\n int a, b;\n cin >> a >> b;\n a --; b --;\n if(a > b) swap(a, b);\n edges.push_back({a, b});\n v[a].pb(b);\n v[b].pb(a);\n }\n LowLink link(v);\n auto bs = link.getBridges();\n set<pair<int, int>> st;\n for(auto [x, y] : bs) {\n st.insert({min(x, y), max(x, y)});\n }\n foa(e, edges) if(!st.count(e)) uf.connect(e.first, e.second);\n \n\n vector<ll> c(n, 0);\n vector<vector<int>> g(n);\n foa(e, edges) if(st.count(e)) {\n int x = uf.root(e.first);\n int y = uf.root(e.second);\n g[x].pb(y);\n g[y].pb(x);\n }\n int r = uf.root(0);\n rep(i, n) c[uf.root(i)] += w[i];\n auto dfs = [&](auto dfs, int now, int p) -> ll {\n ll ret = 0;\n foa(e, g[now]) {\n if(e == p) continue;\n // cout << now << \" \" << e << endl;\n ret = max(ret, dfs(dfs, e, now));\n }\n ret += c[now];\n return ret;\n };\n cout << dfs(dfs, r, -1) << endl;\n return 0;\n}", "accuracy": 0.5238095238095238, "time_ms": 60, "memory_kb": 39112, "score_of_the_acc": -1.6722, "final_rank": 14 }, { "submission_id": "aoj_2712_9995611", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nvoid chmin(int &a, int b) { a = min(a, b); }\nstruct LowLink {\n public:\n vector<vector<int>> g;\n vector<int> ord, low;\n vector<int> articulation;\n vector<bool> visited;\n vector<pair<int, int>> bridge;\n\n void dfs(int cur, int pre, int& k) {\n visited[cur] = true;\n ord[cur] = low[cur] = k++;\n bool isArticulation = false;\n int cnt = 0;\n for(auto to : g[cur]) {\n if(!visited[to]) {\n cnt++;\n dfs(to, cur, k);\n chmin(low[cur], low[to]);\n if(pre != -1 && ord[cur] <= low[to]) isArticulation = true;\n if(ord[cur] < low[to]) bridge.emplace_back(min(cur, to), max(cur, to));\n } else if(to != pre) chmin(low[cur], ord[to]);\n }\n if(pre == -1 && cnt > 1) isArticulation = true;\n if(isArticulation) articulation.push_back(cur);\n }\n\n void build(const vector<vector<int>>& g) {\n int n = g.size();\n this->g = g;\n ord.assign(n, -1);\n low.assign(n, -1);\n visited.assign(n, false);\n int k = 0;\n for(int i = 0; i < n; i++)\n if(!visited[i]) dfs(i, -1, k);\n }\n LowLink(const vector<vector<int>>& g) { build(g); }\n\n vector<int>& getArticulations() { return articulation; }\n vector<pair<int, int>>& getBridges() { return bridge; }\n vector<int>& getOrd() { return ord; }\n vector<int>& getLowlink() { return low; }\n};\n\nstruct UnionFind {\n vector<int> par;\n UnionFind(int n) :par(n, -1) { }\n void init(int n) { par.assign(n, -1); }\n int root(int x) {\n if (par[x] < 0) return x;\n else return par[x] = root(par[x]);\n }\n bool connect(int x, int y) {\n x = root(x); y = root(y);\n if (x == y) return false;\n if (par[x] > par[y]) swap(x, y);\n par[x] += par[y];\n par[y] = x;\n return true;\n }\n int size(int x) {\n return -par[root(x)];\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n, m;\n cin >> n >> m;\n vector<ll> w(n);\n rep(i, n) cin >> w[i];\n UnionFind uf(n);\n vector<vector<int>> v(n);\n vector<pair<int, int>> edges;\n rep(i, m) {\n int a, b;\n cin >> a >> b;\n a --; b --;\n if(a > b) swap(a, b);\n edges.push_back({a, b});\n v[a].pb(b);\n v[b].pb(a);\n }\n LowLink link(v);\n auto bs = link.getBridges();\n set<pair<int, int>> st;\n for(auto [x, y] : bs) {\n st.insert({x, y});\n }\n foa(e, edges) if(!st.count(e)) uf.connect(e.first, e.second);\n \n\n vector<ll> c(n, 0);\n vector<vector<int>> g(n);\n foa(e, edges) if(st.count(e)) {\n int x = uf.root(e.first);\n int y = uf.root(e.second);\n g[x].pb(y);\n g[y].pb(x);\n }\n int r = uf.root(0);\n rep(i, n) c[uf.root(i)] += w[i];\n auto dfs = [&](auto dfs, int now, int p) -> ll {\n ll ret = 0;\n foa(e, g[now]) {\n if(e == p) continue;\n // cout << now << \" \" << e << endl;\n ret = max(ret, dfs(dfs, e, now));\n }\n ret += c[now];\n return ret;\n };\n cout << dfs(dfs, r, -1) << endl;\n return 0;\n}", "accuracy": 0.5238095238095238, "time_ms": 60, "memory_kb": 38992, "score_of_the_acc": -1.6687, "final_rank": 13 }, { "submission_id": "aoj_2712_9740672", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<int> A(N);\n rep(i,0,N) cin >> A[i];\n vector<vector<int>> G(N);\n rep(i,0,M) {\n int U, V;\n cin >> U >> V;\n U--, V--;\n G[U].push_back(V);\n G[V].push_back(U);\n }\n vector<int> Deg(N);\n rep(i,0,N) Deg[i] = G[i].size();\n vector<bool> used(N,false);\n queue<int> Q;\n rep(i,0,N) {\n if (Deg[i] == 1 && i != 0) Q.push(i);\n }\n while(!Q.empty()) {\n int P = Q.front();\n Q.pop();\n used[P] = true;\n for (int NP : G[P]) {\n if (used[NP]) continue;\n Deg[NP]--;\n if (Deg[NP] == 1 && NP != 0) Q.push(NP);\n }\n }\n vector<ll> DP(N,INF);\n ll ANS = 0;\n rep(i,0,N) {\n if (!used[i]) {\n DP[i] = 0;\n Q.push(i);\n ANS += A[i];\n }\n }\n while(!Q.empty()) {\n int P = Q.front();\n Q.pop();\n for (int NP : G[P]) {\n if (chmin(DP[NP],DP[P]+A[NP])) {\n Q.push(NP);\n }\n }\n }\n ll MAX = 0;\n rep(i,0,N) chmax(MAX,DP[i]);\n cout << ANS + MAX << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 10788, "score_of_the_acc": -0.7012, "final_rank": 3 }, { "submission_id": "aoj_2712_8998789", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nint main() {\n int n = in(), m = in();\n vector<int> w = in(n);\n vector<vector<int>> g(n);\n vector<int> deg(n, 0);\n for(int i : rep(m)) {\n int u = in(), v = in(); u--, v--;\n g[u].push_back(v);\n g[v].push_back(u);\n deg[u]++, deg[v]++;\n }\n\n queue<int> q;\n for(int v : rep(n)) if(deg[v] == 1) q.push(v);\n\n vector<int> vis(n, 0);\n vector<vector<int>> forest(n);\n while(not q.empty()) {\n int v = q.front(); q.pop();\n vis[v] = true;\n for(int to : g[v]) {\n if(--deg[to] == 1) q.push(to);\n }\n }\n\n vector<int> is_r(n, 0), roots;\n for(int u : rep(n)) if(vis[u]) {\n bool is_root = false;\n for(int v : g[u]) {\n if(vis[v]) {\n forest[u].push_back(v);\n } else {\n is_root = true;\n }\n }\n if(is_root) {\n is_r[u] = is_root;\n roots.push_back(u);\n }\n }\n\n auto dfs = [&](auto self, int v, int p) -> int {\n int max = 0;\n for(int to : forest[v]) {\n if(to != p) {\n chmax(max, self(self, to, v));\n }\n }\n return max + w[v];\n };\n\n bool is_tree = [&] {\n for(int v : rep(n)) if(not vis[v]) return false;\n return true;\n }();\n if(is_tree) return print(dfs(dfs, 0, -1));\n\n bool start_tree = vis[0];\n int prev = 0;\n\n if(start_tree) {\n vector<int> path;\n auto get_path = [&](auto self, int v, int p) -> bool {\n path.push_back(v);\n if(is_r[v]) {\n for(int x : path) {\n prev += w[x];\n w[x] = 0;\n }\n return true;\n }\n for(int to : forest[v]) if(to != p) {\n if(self(self, to, v)) return true;\n }\n return false;\n };\n get_path(get_path, 0, -1);\n }\n\n int path_max = 0;\n for(int r : roots) chmax(path_max, dfs(dfs, r, -1));\n int sum = 0;\n for(int v : rep(n)) if(not vis[v]) sum += w[v];\n print(prev + sum + path_max);\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 24988, "score_of_the_acc": -0.7711, "final_rank": 4 }, { "submission_id": "aoj_2712_8947086", "code_snippet": "#include <bits/stdc++.h>\n\n\n\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n\n\nnamespace zawa {\n\nvoid SetFastIO() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n}\n\nvoid SetPrecision(u32 dig) {\n std::cout << std::fixed << std::setprecision(dig);\n}\n\n} // namespace zawa\n\n\n\nnamespace zawa {\n\nclass Lowlink {\nprivate:\n static constexpr u32 INVALID{static_cast<u32>(-1)};\n usize n_{}, m_{};\n std::vector<std::vector<std::pair<u32, u32>>> g_;\n std::vector<std::pair<u32, u32>> e_;\n std::vector<u32> in_, low_;\n std::vector<u32> articulation_;\n std::vector<bool> bridge_;\n\n void dfs(u32 v, u32 p, u32& t) {\n low_[v] = in_[v] = t++;\n u32 deg{}; \n for (const auto& [x, i] : g_[v]) {\n if (in_[x] == INVALID) {\n deg++;\n dfs(x, v, t);\n low_[v] = std::min(low_[v], low_[x]);\n if (p != INVALID and low_[x] >= in_[v]) {\n articulation_[v]++;\n }\n if (low_[x] > in_[v]) {\n bridge_[i] = true;\n }\n }\n else if (x != p) {\n low_[v] = std::min(low_[v], in_[x]);\n }\n }\n if (p == INVALID) {\n articulation_[v] = deg;\n }\n }\n\npublic:\n constexpr usize size() const noexcept {\n return n_;\n }\n constexpr usize edgeSize() const noexcept {\n return m_;\n }\n\n Lowlink() = default;\n Lowlink(usize n) \n : n_{n}, m_{}, g_(n), in_(n, INVALID), low_(n), articulation_(n, u32{1}), bridge_{} {\n g_.shrink_to_fit();\n in_.shrink_to_fit();\n low_.shrink_to_fit();\n articulation_.shrink_to_fit();\n }\n \n usize addEdge(u32 u, u32 v) {\n usize res{m_++};\n e_.emplace_back(u, v);\n g_[u].emplace_back(v, res);\n g_[v].emplace_back(u, res);\n return res;\n }\n\n const std::vector<std::pair<u32, u32>>& operator[](u32 v) const noexcept {\n assert(v < size());\n return g_[v];\n }\n const std::pair<u32, u32>& edge(u32 i) const noexcept {\n assert(i < edgeSize());\n return e_[i];\n }\n\n void build() {\n bridge_.resize(edgeSize());\n u32 t{};\n for (u32 v{} ; v < size() ; v++) if (in_[v] == INVALID) {\n dfs(v, INVALID, t);\n }\n }\n\n bool articular(u32 v) const noexcept {\n assert(v < size());\n return articulation_[v] > 1u;\n }\n u32 cut(u32 v) const noexcept {\n assert(v < size());\n return articulation_[v];\n }\n bool bridge(u32 i) const noexcept {\n assert(i < edgeSize());\n return bridge_[i];\n }\n};\n\n} // namespace zawa\nusing namespace zawa;\n\nint main() {\n SetFastIO();\n\n int n, m; std::cin >> n >> m;\n std::vector<int> w(n);\n for (auto& x : w) std::cin >> x;\n Lowlink g(n);\n for (int i{} ; i < m ; i++) {\n int a, b; std::cin >> a >> b;\n a--; b--;\n g.addEdge(a, b);\n }\n g.build();\n std::vector<int> col(n, -1);\n int c{};\n auto dfs{[&](auto dfs, int v) -> void {\n assert(col[v] == -1);\n col[v] = c;\n for (auto [x, i] : g[v]) {\n if (col[x] != -1) continue;\n if (g.bridge(i)) continue;\n dfs(dfs, x);\n }\n }};\n for (int i{} ; i < n ; i++) if (col[i] == -1) {\n dfs(dfs, i);\n c++;\n }\n std::vector<std::vector<int>> tree(c);\n for (int i{} ; i < m ; i++) if (g.bridge(i)) {\n auto [u, v]{g.edge(i)};\n assert(col[u] != -1);\n assert(col[v] != -1);\n u = col[u];\n v = col[v];\n assert(u != v);\n tree[u].emplace_back(v);\n tree[v].emplace_back(u);\n }\n std::vector<int> cnt(c), sum(c);\n for (int i{} ; i < n ; i++) {\n cnt[col[i]]++;\n sum[col[i]] += w[i];\n }\n using tuple = std::tuple<int, int, bool>;\n auto rec{[&](auto rec, int v, int p) -> tuple {\n tuple res{0, 0, false}; \n for (auto x : tree[v]) if (x != p) {\n auto [a, b, ok]{rec(rec, x, v)};\n // std::cout << x << ' ' << a << ' ' << b << ' ' << ok << std::endl;\n std::get<0>(res) += a;\n std::get<1>(res) = std::max(std::get<1>(res), b);\n std::get<2>(res) |= ok;\n }\n if (cnt[v] > 1) std::get<2>(res) = true;\n if (std::get<2>(res)) {\n std::get<0>(res) += sum[v];\n }\n else {\n std::get<1>(res) += sum[v];\n }\n return res;\n }};\n auto [a, b, _]{rec(rec, col[0], -1)};\n int ans{a + b};\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 29880, "score_of_the_acc": -0.91, "final_rank": 5 }, { "submission_id": "aoj_2712_7102793", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<bits/stdc++.h>\n// #include<atcoder/mincostflow>\nusing namespace std;\n// using namespace atcoder;\n\nvoid solve(){\n\tint n, m;\n\tcin >> n >> m;\n\tvector<int> W(n);\n\tint ans = 0;\n\tfor(int i = 0; i < n; i++){\n\t\tcin >> W[i];\n\t\tans += W[i];\n\t}\n\n\tvector<vector<int>> edges(n, vector<int>());\n\tvector<int> deg(n, 0);\n\tint u, v;\n\tfor(int i = 0; i < m; i++){\n\t\tcin >> u >> v;\n\t\tu--; v--;\n\t\tdeg[u]++;\n\t\tdeg[v]++;\n\t\tedges[u].push_back(v);\n\t\tedges[v].push_back(u);\n\t}\n\tstack<int> st;\n\tfor(int i = 1; i < n; i++){\n\t\tif(deg[i] == 1){\n\t\t\tst.push(i);\n\t\t}\n\t}\n\tvector<int> minus(n, 0);\n\twhile(!st.empty()){\n\t\tint pos = st.top();\n\t\tst.pop();\n\t\tans -= W[pos];\n\t\tfor(auto npos:edges[pos]){\n\t\t\tif(deg[npos] == 1) minus[pos] = max(minus[pos], minus[npos]);\n\t\t\telse{\n\t\t\t\tdeg[npos]--;\n\t\t\t\tif(deg[npos] == 1 && npos != 0) st.push(npos);\n\t\t\t}\n\t\t}\n\t\tminus[pos] += W[pos];\n\t}\n\tint ma = 0;\n\tfor(auto w:minus) ma = max(ma, w);\n\tans += ma;\n\tcout << ans << \"\\n\";\n}\n\nint main(){\n\tcin.tie(0)->sync_with_stdio(0);\n\tint t;\n\tt = 1;\n\t// cin >> t;\n\twhile(t--) solve();\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 10376, "score_of_the_acc": -0.1895, "final_rank": 1 }, { "submission_id": "aoj_2712_7102789", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<bits/stdc++.h>\n// #include<atcoder/mincostflow>\nusing namespace std;\n// using namespace atcoder;\n\nvoid solve(){\n\tint n, m;\n\tcin >> n >> m;\n\tvector<int> W(n);\n\tint ans = 0;\n\tfor(int i = 0; i < n; i++){\n\t\tcin >> W[i];\n\t\tans += W[i];\n\t}\n\n\tvector<vector<int>> edges(n, vector<int>());\n\tvector<int> deg(n, 0);\n\tint u, v;\n\tfor(int i = 0; i < m; i++){\n\t\tcin >> u >> v;\n\t\tu--; v--;\n\t\tdeg[u]++;\n\t\tdeg[v]++;\n\t\tedges[u].push_back(v);\n\t\tedges[v].push_back(u);\n\t}\n\tstack<int> st;\n\tfor(int i = 1; i < n; i++){\n\t\tif(deg[i] == 1){\n\t\t\tst.push(i);\n\t\t}\n\t}\n\tvector<int> minus(n, 0);\n\twhile(!st.empty()){\n\t\tint pos = st.top();\n\t\tst.pop();\n\t\tans -= W[pos];\n\t\tfor(auto npos:edges[pos]){\n\t\t\tif(deg[npos] == 1) minus[pos] = max(minus[pos], minus[npos]);\n\t\t\telse{\n\t\t\t\tdeg[npos]--;\n\t\t\t\tif(deg[npos] == 1 && pos != 0) st.push(npos);\n\t\t\t}\n\t\t}\n\t\tminus[pos] += W[pos];\n\t}\n\tint ma = 0;\n\tfor(auto w:minus) ma = max(ma, w);\n\tans += ma;\n\tcout << ans << \"\\n\";\n}\n\nint main(){\n\tcin.tie(0)->sync_with_stdio(0);\n\tint t;\n\tt = 1;\n\t// cin >> t;\n\twhile(t--) solve();\n}", "accuracy": 0.19047619047619047, "time_ms": 20, "memory_kb": 9712, "score_of_the_acc": -0.1706, "final_rank": 15 }, { "submission_id": "aoj_2712_7102781", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<bits/stdc++.h>\n// #include<atcoder/mincostflow>\nusing namespace std;\n// using namespace atcoder;\n\nvoid solve(){\n\tint n, m;\n\tcin >> n >> m;\n\tvector<int> W(n);\n\tint ans = 0;\n\tfor(int i = 0; i < n; i++){\n\t\tcin >> W[i];\n\t\tans += W[i];\n\t}\n\n\tvector<vector<int>> edges(n, vector<int>());\n\tvector<int> deg(n, 0);\n\tint u, v;\n\tfor(int i = 0; i < m; i++){\n\t\tcin >> u >> v;\n\t\tu--; v--;\n\t\tdeg[u]++;\n\t\tdeg[v]++;\n\t\tedges[u].push_back(v);\n\t\tedges[v].push_back(u);\n\t}\n\tstack<int> st;\n\tfor(int i = 1; i < n; i++){\n\t\tif(deg[i] == 1) st.push(i);\n\t}\n\tvector<int> minus(n, 0);\n\twhile(!st.empty()){\n\t\tint pos = st.top();\n\t\tst.pop();\n\t\tans -= W[pos];\n\t\tminus[pos] += W[pos];\n\t\tfor(auto npos:edges[pos]){\n\t\t\tif(deg[npos] == 0) minus[pos] += minus[npos];\n\t\t\telse{\n\t\t\t\tdeg[npos]--;\n\t\t\t\tif(deg[npos] == 0 && pos != 0) st.push(npos);\n\t\t\t}\n\t\t}\n\t}\n\tint ma = 0;\n\tfor(auto w:minus) ma = max(ma, w);\n\tans += ma;\n\tcout << ans << \"\\n\";\n}\n\nint main(){\n\tcin.tie(0)->sync_with_stdio(0);\n\tint t;\n\tt = 1;\n\t// cin >> t;\n\twhile(t--) solve();\n}", "accuracy": 0.19047619047619047, "time_ms": 20, "memory_kb": 9896, "score_of_the_acc": -0.1759, "final_rank": 16 }, { "submission_id": "aoj_2712_6743556", "code_snippet": "#include <bits/extc++.h>\n\nusing namespace std;\n\n#define rep(i,n) for(int i=0;i<(n);++i)\n#define reps(i,s,n) for(int i=(s);i<=(n);++i)\n#define all(x) begin(x), end(x)\n#define Fixed fixed << setprecision(12)\n#define updiv(a,b) (((a) + (b) - 1) / (b))\nconstexpr int32_t INF = 0x3f3f3f3f;\nconstexpr int64_t LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr int mod = 1e9+7;\n// constexpr int mod = 998244353;\n\ntemplate <class Func>\nclass FixPoint : Func {\npublic:\n explicit constexpr FixPoint(Func&& f) noexcept : Func(forward<Func>(f)) {}\n\n template <class... Args>\n constexpr decltype(auto) operator()(Args&&... args) const {\n return Func::operator()(*this, std::forward<Args>(args)...);\n }\n};\n\ntemplate <class Func>\nstatic inline constexpr decltype(auto) makeFixPoint(Func&& f) noexcept {\n return FixPoint<Func>{forward<Func>(f)};\n}\n\ntemplate <class A, class B> inline bool chmax(A &a, const B &b) { return b > a && (a = b, true); }\ntemplate <class A, class B> inline bool chmin(A &a, const B &b) { return b < a && (a = b, true); }\n\ntemplate <class T> using max_heap = priority_queue<T>;\ntemplate <class T> using min_heap = priority_queue<T,vector<T>,greater<T> >;\ntemplate <class A, class B> using umap = unordered_map<A,B>;\ntemplate <class A, class B> using uset = unordered_set<A,B>;\n\ntemplate <class T> using Set = __gnu_pbds::tree<T, __gnu_pbds::null_type, less<T>, __gnu_pbds::rb_tree_tag, __gnu_pbds::tree_order_statistics_node_update>;\n\ntemplate <class T> inline void bye(T x) { cout << x << '\\n'; exit(0); }\n\nconstexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};\nconstexpr int dy[] = {0, -1, 0, 1, 1, -1, -1, 1};\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n\n inline vector< Edge< T > > &operator[](const int &k) {\n return g[k];\n }\n\n inline const vector< Edge< T > > &operator[](const int &k) const {\n return g[k];\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\ntemplate< typename T = int >\nstruct LowLink : Graph< T > {\npublic:\n using Graph< T >::Graph;\n vector< int > ord, low, articulation;\n vector< Edge< T > > bridge;\n using Graph< T >::g;\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < (int) g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n\n explicit LowLink(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false, beet = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) {\n continue;\n }\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= par >= 0 && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(to);\n } else {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n};\n\ntemplate< typename T = int >\nstruct TwoEdgeConnectedComponents : LowLink< T > {\npublic:\n using LowLink< T >::LowLink;\n using LowLink< T >::g;\n using LowLink< T >::ord;\n using LowLink< T >::low;\n using LowLink< T >::bridge;\n\n vector< int > comp;\n Graph< T > tree;\n vector< vector< int > > group;\n\n int operator[](const int &k) const {\n return comp[k];\n }\n\n void build() override {\n LowLink< T >::build();\n comp.assign(g.size(), -1);\n int k = 0;\n for(int i = 0; i < (int) comp.size(); i++) {\n if(comp[i] == -1) dfs(i, -1, k);\n }\n group.resize(k);\n for(int i = 0; i < (int) g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n tree = Graph< T >(k);\n for(auto &e : bridge) {\n tree.add_edge(comp[e.from], comp[e.to], e.cost);\n }\n }\n\n explicit TwoEdgeConnectedComponents(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n void dfs(int idx, int par, int &k) {\n if(par >= 0 && ord[par] >= low[idx]) comp[idx] = comp[par];\n else comp[idx] = k++;\n for(auto &to : g[idx]) {\n if(comp[to] == -1) dfs(to, idx, k);\n }\n }\n};\n\nsigned main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n int n, m;\n cin >> n >> m;\n\n vector<int> w(n);\n\n for (int i = 0; i < n; ++i) {\n cin >> w[i];\n }\n\n TwoEdgeConnectedComponents<> g(n);\n\n for (int i = 0; i < m; ++i) {\n int u, v;\n cin >> u >> v;\n --u, --v;\n g.add_edge(u, v);\n }\n\n g.build();\n\n auto &tree = g.tree;\n auto &comp = g.comp;\n auto &group = g.group;\n\n int sz = tree.size();\n\n vector<int> weight(sz);\n\n for (int i = 0; i < n; ++i) {\n weight[comp[i]] += w[i];\n }\n\n vector dp(sz, vector(2, 0));\n auto res = makeFixPoint([&](auto rec, int cur, int pre) -> pair<int, int> {\n int maxv = 0, bsum = 0;\n for (auto e : tree[cur]) {\n if (e == pre) continue;\n auto [a, b] = rec(e, cur);\n chmax(maxv, a + weight[e]);\n bsum += b;\n }\n dp[cur][0] = maxv;\n dp[cur][1] = bsum + (group[cur].size() != 1 || bsum != 0 ? weight[cur] : 0);\n return (make_pair(dp[cur][0], dp[cur][1]));\n }) (comp[0], -1);\n\n cout << max(res.first + (group[comp[0]].size() != 1 ? weight[comp[0]] : 0), res.second) << '\\n';\n\n // for (int i = 0; i < n; ++i) {\n // cout << i + 1 << \" : \" << dp[comp[i]][0] << ' ' << dp[comp[i]][1] << '\\n';\n // }\n\n return(0);\n}", "accuracy": 0.14285714285714285, "time_ms": 40, "memory_kb": 44788, "score_of_the_acc": -1.5, "final_rank": 19 }, { "submission_id": "aoj_2712_6743444", "code_snippet": "#include <bits/extc++.h>\n\nusing namespace std;\n\n#define rep(i,n) for(int i=0;i<(n);++i)\n#define reps(i,s,n) for(int i=(s);i<=(n);++i)\n#define all(x) begin(x), end(x)\n#define Fixed fixed << setprecision(12)\n#define updiv(a,b) (((a) + (b) - 1) / (b))\nconstexpr int32_t INF = 0x3f3f3f3f;\nconstexpr int64_t LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr int mod = 1e9+7;\n// constexpr int mod = 998244353;\n\ntemplate <class Func>\nclass FixPoint : Func {\npublic:\n explicit constexpr FixPoint(Func&& f) noexcept : Func(forward<Func>(f)) {}\n\n template <class... Args>\n constexpr decltype(auto) operator()(Args&&... args) const {\n return Func::operator()(*this, std::forward<Args>(args)...);\n }\n};\n\ntemplate <class Func>\nstatic inline constexpr decltype(auto) makeFixPoint(Func&& f) noexcept {\n return FixPoint<Func>{forward<Func>(f)};\n}\n\ntemplate <class A, class B> inline bool chmax(A &a, const B &b) { return b > a && (a = b, true); }\ntemplate <class A, class B> inline bool chmin(A &a, const B &b) { return b < a && (a = b, true); }\n\ntemplate <class T> using max_heap = priority_queue<T>;\ntemplate <class T> using min_heap = priority_queue<T,vector<T>,greater<T> >;\ntemplate <class A, class B> using umap = unordered_map<A,B>;\ntemplate <class A, class B> using uset = unordered_set<A,B>;\n\ntemplate <class T> using Set = __gnu_pbds::tree<T, __gnu_pbds::null_type, less<T>, __gnu_pbds::rb_tree_tag, __gnu_pbds::tree_order_statistics_node_update>;\n\ntemplate <class T> inline void bye(T x) { cout << x << '\\n'; exit(0); }\n\nconstexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};\nconstexpr int dy[] = {0, -1, 0, 1, 1, -1, -1, 1};\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n\n inline vector< Edge< T > > &operator[](const int &k) {\n return g[k];\n }\n\n inline const vector< Edge< T > > &operator[](const int &k) const {\n return g[k];\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\ntemplate< typename T = int >\nstruct LowLink : Graph< T > {\npublic:\n using Graph< T >::Graph;\n vector< int > ord, low, articulation;\n vector< Edge< T > > bridge;\n using Graph< T >::g;\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < (int) g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n\n explicit LowLink(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false, beet = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) {\n continue;\n }\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= par >= 0 && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(to);\n } else {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n};\n\ntemplate< typename T = int >\nstruct TwoEdgeConnectedComponents : LowLink< T > {\npublic:\n using LowLink< T >::LowLink;\n using LowLink< T >::g;\n using LowLink< T >::ord;\n using LowLink< T >::low;\n using LowLink< T >::bridge;\n\n vector< int > comp;\n Graph< T > tree;\n vector< vector< int > > group;\n\n int operator[](const int &k) const {\n return comp[k];\n }\n\n void build() override {\n LowLink< T >::build();\n comp.assign(g.size(), -1);\n int k = 0;\n for(int i = 0; i < (int) comp.size(); i++) {\n if(comp[i] == -1) dfs(i, -1, k);\n }\n group.resize(k);\n for(int i = 0; i < (int) g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n tree = Graph< T >(k);\n for(auto &e : bridge) {\n tree.add_edge(comp[e.from], comp[e.to], e.cost);\n }\n }\n\n explicit TwoEdgeConnectedComponents(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n void dfs(int idx, int par, int &k) {\n if(par >= 0 && ord[par] >= low[idx]) comp[idx] = comp[par];\n else comp[idx] = k++;\n for(auto &to : g[idx]) {\n if(comp[to] == -1) dfs(to, idx, k);\n }\n }\n};\n\nsigned main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n int n, m;\n cin >> n >> m;\n\n vector<int> w(n);\n\n for (int i = 0; i < n; ++i) {\n cin >> w[i];\n }\n\n TwoEdgeConnectedComponents<> g(n);\n\n for (int i = 0; i < m; ++i) {\n int u, v;\n cin >> u >> v;\n --u, --v;\n g.add_edge(u, v);\n }\n\n g.build();\n\n auto &tree = g.tree;\n auto &comp = g.comp;\n auto &group = g.group;\n\n int sz = tree.size();\n\n vector<int> weight(sz);\n\n for (int i = 0; i < n; ++i) {\n weight[comp[i]] += w[i];\n }\n\n int res = 0;\n auto dfs = makeFixPoint([&](auto rec, int cur, int pre, int sum) -> void {\n chmax(res, sum);\n for (auto e : tree[cur]) {\n if (e == pre) continue;\n rec(e, cur, sum + weight[e]);\n }\n });\n\n dfs(comp[0], -1, weight[comp[0]] - (group[comp[0]].size() == 1 ? w[0] : 0));\n\n cout << res << '\\n';\n\n return(0);\n}", "accuracy": 0.14285714285714285, "time_ms": 30, "memory_kb": 36216, "score_of_the_acc": -1.0899, "final_rank": 18 }, { "submission_id": "aoj_2712_6743375", "code_snippet": "#include <bits/extc++.h>\n\nusing namespace std;\n\n#define rep(i,n) for(int i=0;i<(n);++i)\n#define reps(i,s,n) for(int i=(s);i<=(n);++i)\n#define all(x) begin(x), end(x)\n#define Fixed fixed << setprecision(12)\n#define updiv(a,b) (((a) + (b) - 1) / (b))\nconstexpr int32_t INF = 0x3f3f3f3f;\nconstexpr int64_t LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr int mod = 1e9+7;\n// constexpr int mod = 998244353;\n\ntemplate <class Func>\nclass FixPoint : Func {\npublic:\n explicit constexpr FixPoint(Func&& f) noexcept : Func(forward<Func>(f)) {}\n\n template <class... Args>\n constexpr decltype(auto) operator()(Args&&... args) const {\n return Func::operator()(*this, std::forward<Args>(args)...);\n }\n};\n\ntemplate <class Func>\nstatic inline constexpr decltype(auto) makeFixPoint(Func&& f) noexcept {\n return FixPoint<Func>{forward<Func>(f)};\n}\n\ntemplate <class A, class B> inline bool chmax(A &a, const B &b) { return b > a && (a = b, true); }\ntemplate <class A, class B> inline bool chmin(A &a, const B &b) { return b < a && (a = b, true); }\n\ntemplate <class T> using max_heap = priority_queue<T>;\ntemplate <class T> using min_heap = priority_queue<T,vector<T>,greater<T> >;\ntemplate <class A, class B> using umap = unordered_map<A,B>;\ntemplate <class A, class B> using uset = unordered_set<A,B>;\n\ntemplate <class T> using Set = __gnu_pbds::tree<T, __gnu_pbds::null_type, less<T>, __gnu_pbds::rb_tree_tag, __gnu_pbds::tree_order_statistics_node_update>;\n\ntemplate <class T> inline void bye(T x) { cout << x << '\\n'; exit(0); }\n\nconstexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};\nconstexpr int dy[] = {0, -1, 0, 1, 1, -1, -1, 1};\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n\n inline vector< Edge< T > > &operator[](const int &k) {\n return g[k];\n }\n\n inline const vector< Edge< T > > &operator[](const int &k) const {\n return g[k];\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\ntemplate< typename T = int >\nstruct LowLink : Graph< T > {\npublic:\n using Graph< T >::Graph;\n vector< int > ord, low, articulation;\n vector< Edge< T > > bridge;\n using Graph< T >::g;\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < (int) g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n\n explicit LowLink(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false, beet = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) {\n continue;\n }\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= par >= 0 && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(to);\n } else {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n};\n\ntemplate< typename T = int >\nstruct TwoEdgeConnectedComponents : LowLink< T > {\npublic:\n using LowLink< T >::LowLink;\n using LowLink< T >::g;\n using LowLink< T >::ord;\n using LowLink< T >::low;\n using LowLink< T >::bridge;\n\n vector< int > comp;\n Graph< T > tree;\n vector< vector< int > > group;\n\n int operator[](const int &k) const {\n return comp[k];\n }\n\n void build() override {\n LowLink< T >::build();\n comp.assign(g.size(), -1);\n int k = 0;\n for(int i = 0; i < (int) comp.size(); i++) {\n if(comp[i] == -1) dfs(i, -1, k);\n }\n group.resize(k);\n for(int i = 0; i < (int) g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n tree = Graph< T >(k);\n for(auto &e : bridge) {\n tree.add_edge(comp[e.from], comp[e.to], e.cost);\n }\n }\n\n explicit TwoEdgeConnectedComponents(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n void dfs(int idx, int par, int &k) {\n if(par >= 0 && ord[par] >= low[idx]) comp[idx] = comp[par];\n else comp[idx] = k++;\n for(auto &to : g[idx]) {\n if(comp[to] == -1) dfs(to, idx, k);\n }\n }\n};\n\nsigned main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n int n, m;\n cin >> n >> m;\n\n vector<int> w(n);\n\n for (int i = 0; i < n; ++i) {\n cin >> w[i];\n }\n\n TwoEdgeConnectedComponents<> g(n);\n\n for (int i = 0; i < m; ++i) {\n int u, v;\n cin >> u >> v;\n --u, --v;\n g.add_edge(u, v);\n }\n\n g.build();\n\n auto &tree = g.tree;\n auto &comp = g.comp;\n auto &group = g.group;\n\n int sz = tree.size();\n\n vector<int> weight(sz);\n\n for (int i = 0; i < n; ++i) {\n weight[comp[i]] += w[i];\n }\n\n int res = 0;\n auto dfs = makeFixPoint([&](auto rec, int cur, int pre, int sum) -> void {\n chmax(res, sum);\n for (auto e : tree[cur]) {\n if (e == pre) continue;\n rec(e, cur, sum + weight[e]);\n }\n });\n\n dfs(comp[0], -1, weight[comp[0]]);\n\n cout << res << '\\n';\n\n return(0);\n}", "accuracy": 0.5238095238095238, "time_ms": 40, "memory_kb": 36212, "score_of_the_acc": -1.2565, "final_rank": 12 }, { "submission_id": "aoj_2712_6743350", "code_snippet": "#include <bits/extc++.h>\n\nusing namespace std;\n\n#define rep(i,n) for(int i=0;i<(n);++i)\n#define reps(i,s,n) for(int i=(s);i<=(n);++i)\n#define all(x) begin(x), end(x)\n#define Fixed fixed << setprecision(12)\n#define updiv(a,b) (((a) + (b) - 1) / (b))\nconstexpr int32_t INF = 0x3f3f3f3f;\nconstexpr int64_t LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr int mod = 1e9+7;\n// constexpr int mod = 998244353;\n\ntemplate <class Func>\nclass FixPoint : Func {\npublic:\n explicit constexpr FixPoint(Func&& f) noexcept : Func(forward<Func>(f)) {}\n\n template <class... Args>\n constexpr decltype(auto) operator()(Args&&... args) const {\n return Func::operator()(*this, std::forward<Args>(args)...);\n }\n};\n\ntemplate <class Func>\nstatic inline constexpr decltype(auto) makeFixPoint(Func&& f) noexcept {\n return FixPoint<Func>{forward<Func>(f)};\n}\n\ntemplate <class A, class B> inline bool chmax(A &a, const B &b) { return b > a && (a = b, true); }\ntemplate <class A, class B> inline bool chmin(A &a, const B &b) { return b < a && (a = b, true); }\n\ntemplate <class T> using max_heap = priority_queue<T>;\ntemplate <class T> using min_heap = priority_queue<T,vector<T>,greater<T> >;\ntemplate <class A, class B> using umap = unordered_map<A,B>;\ntemplate <class A, class B> using uset = unordered_set<A,B>;\n\ntemplate <class T> using Set = __gnu_pbds::tree<T, __gnu_pbds::null_type, less<T>, __gnu_pbds::rb_tree_tag, __gnu_pbds::tree_order_statistics_node_update>;\n\ntemplate <class T> inline void bye(T x) { cout << x << '\\n'; exit(0); }\n\nconstexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};\nconstexpr int dy[] = {0, -1, 0, 1, 1, -1, -1, 1};\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n\n inline vector< Edge< T > > &operator[](const int &k) {\n return g[k];\n }\n\n inline const vector< Edge< T > > &operator[](const int &k) const {\n return g[k];\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\ntemplate< typename T = int >\nstruct LowLink : Graph< T > {\npublic:\n using Graph< T >::Graph;\n vector< int > ord, low, articulation;\n vector< Edge< T > > bridge;\n using Graph< T >::g;\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < (int) g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n\n explicit LowLink(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false, beet = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) {\n continue;\n }\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= par >= 0 && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(to);\n } else {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n};\n\ntemplate< typename T = int >\nstruct TwoEdgeConnectedComponents : LowLink< T > {\npublic:\n using LowLink< T >::LowLink;\n using LowLink< T >::g;\n using LowLink< T >::ord;\n using LowLink< T >::low;\n using LowLink< T >::bridge;\n\n vector< int > comp;\n Graph< T > tree;\n vector< vector< int > > group;\n\n int operator[](const int &k) const {\n return comp[k];\n }\n\n void build() override {\n LowLink< T >::build();\n comp.assign(g.size(), -1);\n int k = 0;\n for(int i = 0; i < (int) comp.size(); i++) {\n if(comp[i] == -1) dfs(i, -1, k);\n }\n group.resize(k);\n for(int i = 0; i < (int) g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n tree = Graph< T >(k);\n for(auto &e : bridge) {\n tree.add_edge(comp[e.from], comp[e.to], e.cost);\n }\n }\n\n explicit TwoEdgeConnectedComponents(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n void dfs(int idx, int par, int &k) {\n if(par >= 0 && ord[par] >= low[idx]) comp[idx] = comp[par];\n else comp[idx] = k++;\n for(auto &to : g[idx]) {\n if(comp[to] == -1) dfs(to, idx, k);\n }\n }\n};\n\nsigned main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n int n, m;\n cin >> n >> m;\n\n vector<int> w(n);\n\n for (int i = 0; i < n; ++i) {\n cin >> w[i];\n }\n\n TwoEdgeConnectedComponents<> g(n);\n\n for (int i = 0; i < m; ++i) {\n int u, v;\n cin >> u >> v;\n --u, --v;\n g.add_edge(u, v);\n }\n\n g.build();\n\n auto &tree = g.tree;\n auto &comp = g.comp;\n auto &group = g.group;\n\n int sz = tree.size();\n\n vector<int> weight(sz);\n\n for (int i = 0; i < n; ++i) {\n weight[comp[i]] += w[i];\n }\n\n int maxv = 0, maxn = 0;\n auto dfs = makeFixPoint([&](auto rec, int cur, int pre, int sum) -> void {\n if (chmax(maxv, sum)) maxn = cur;\n for (auto e : tree[cur]) {\n if (e == pre) continue;\n rec(e, cur, sum + weight[e]);\n }\n });\n\n dfs(0, -1, weight[0]);\n dfs(maxn, 0, weight[maxn]);\n\n cout << maxv << '\\n';\n\n return(0);\n}", "accuracy": 0.19047619047619047, "time_ms": 40, "memory_kb": 36180, "score_of_the_acc": -1.2556, "final_rank": 17 }, { "submission_id": "aoj_2712_6743349", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\ntemplate< typename G >\nstruct LowLink {\n const G &g;\n vector< int > used, ord, low;\n vector< int > articulation;\n vector< pair< int, int > > bridge;\n \n LowLink(const G &g) : g(g) {}\n \n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= ~par && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(minmax(idx, (int) to));\n } else if(to != par) {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n \n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n};\n\nusing UnWeightedGraph = vvector<int>;\n\ntemplate< typename G >\nstruct TwoEdgeConnectedComponents : LowLink< G > {\n using LL = LowLink< G >;\n vector< int > comp;\n \n TwoEdgeConnectedComponents(const G &g) : LL(g) {}\n \n int operator[](const int &k) {\n return comp[k];\n }\n \n void dfs(int idx, int par, int &k) {\n if(~par && this->ord[par] >= this->low[idx]) comp[idx] = comp[par];\n else comp[idx] = k++;\n for(auto &to : this->g[idx]) {\n if(comp[to] == -1) dfs(to, idx, k);\n }\n }\n \n void build(UnWeightedGraph &t) {\n LL::build();\n comp.assign(this->g.size(), -1);\n int k = 0;\n for(int i = 0; i < comp.size(); i++) {\n if(comp[i] == -1) dfs(i, -1, k);\n }\n t.resize(k);\n for(auto &e : this->bridge) {\n int x = comp[e.first], y = comp[e.second];\n t[x].push_back(y);\n t[y].push_back(x);\n }\n }\n};\n\nll func(){\n int n = in();\n int m = in();\n vvector<int> edges(n);\n vector<ll> line(n);\n foreach(i,line)i=in();\n rep(_,m){\n int a = in()-1;\n int b = in()-1;\n edges[a].emplace_back(b);\n edges[b].emplace_back(a);\n }\n TwoEdgeConnectedComponents<vvector<int>> G(edges);\n vvector<int> ps;\n G.build(ps);\n vector<int> points(n,0);\n vector<int> has(n,0);\n rep(i,n){\n points[G.comp[i]] += line[i];\n ++has[G.comp[i]];\n }\n vvector<int> dp(2,vector<int>(n,-INF));\n vector<int> child_dp(n,-1);\n method(has_ok,bool,int p,int last){\n if(has[p] >= 2)return true;\n int &it = child_dp[p];\n if(it >= 0)return it;\n it = false;\n foreach(e,ps[p]){\n if(e==last)continue;\n it = it or has_ok(e,p);\n }\n return it;\n };\n method(rec,int,int p,bool back,int last){\n int &it = dp[back][p];\n if(it != -INF)return it;\n if(back){\n it = points[p];\n foreach(e,ps[p]){\n if(e==last)continue;\n if(not has_ok(e,p))continue;\n it += rec(e,true,p);\n }\n }else{\n int sum = points[p];\n it = points[p];\n foreach(e,ps[p]){\n if(e==last)continue;\n if(not has_ok(e,p))continue;\n sum += rec(e,true,p);\n }\n foreach(e,ps[p]){\n if(e==last)continue;\n if(has_ok(e,p)){\n chmax(it,sum+rec(e,false,p)-rec(e,true,p));\n }else{\n chmax(it,sum+rec(e,false,p));\n }\n }\n }\n return it;\n };\n return rec(G.comp[0],false,-1);\n}\n\nint main(){\n println(func());\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 34888, "score_of_the_acc": -1.0522, "final_rank": 7 } ]
aoj_2713_cpp
H - Bit Operation Game N 頂点の根付き木が与えられる。 頂点には 0 から N − 1 の番号がついており、 0 番目の頂点が根を表す。 根には T = 0 が、それ以外の頂点には T=T&X T=T&Y T=T|X T=T|Y T=T^X T=T^Y のいずれかの操作が書かれている。 ここでの演算子 &, |, ^ はそれぞれビット演算子 and, or, xor, を意味する。 A君とB君はこの木を使って以下のゲームを M 回行った。 二人は根からスタートし、子頂点を選び進むという操作を、A君から始め葉に到達するまで交互に行う。 通ったノードに書かれている操作を、通った順に適用した時の、最終的な T の値がスコアになる。 B君はできるだけスコアを小さくしたいと考えており、またA君は大きくしたいと考えている。 M回のゲームの X , Y の値が与えられるので、二人が最適な選択をした時の各ゲームのスコアを出力せよ。 Constraints 1 ≤ N ≤ 100000 1 ≤ M ≤ 100000 0 ≤ X, Y < 2^{16} Input Format 入力は以下の形式で標準入力から与えられる。 N M o_1 o_2 ... o_{N−1} u_1 v_1 u_2 v_2 ... u_{N−1} v_{N−1} X_1 Y_1 X_2 Y_2 ... X_M Y_M 1 行目には木の頂点数 N と、行われるゲーム数を表す整数 M が入力される。 2 行目から N 行目にかけて、 1 ... N−1 番目の頂点に書かれている操作が入力される。 さらに続けて N−1 行に、各辺により繋がれる 2 頂点の番号が入力される。 最後に M 回のゲームにおける X , Y の値が M 行に渡り入力される。 Output Format 各ゲームでの最終的な T の値をそれぞれ M 行に出力せよ。 Sample Input 1 6 3 T=T|X T=T|Y T=T|Y T=T^Y T=T&X 0 1 0 2 1 3 1 4 2 5 5 6 3 5 0 0 Sample Output 1 4 6 0 X = 5, Y = 6 の場合、頂点 0 -> 2 -> 5 と進み、T = 5 & 6 = 4 になります X = 3, Y = 5 の場合、頂点 0 -> 1 -> 4 と進み、T = 3 ^ 5 = 6 になります X = 0, Y = 0 の場合、どこを通っても T は 0 から変化しません
[ { "submission_id": "aoj_2713_10853981", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nmap<vector<int>, int> memo;\nvector<int> op;\n\nusing graph = vector<vector<int>>;\n\nint proc(int state, int op) {\n if(state == 0) {\n if(op == 0 || op == 1) {\n return 0;\n } else if(op == 2 || op == 4) {\n return 1;\n } else if(op == 3 || op == 5) {\n return 2;\n }\n } else if(state == 1) {\n if(op == 0 || op == 2) {\n return 1;\n } else if(op == 1) {\n return 4;\n } else if(op == 3) {\n return 3;\n } else if(op == 4) {\n return 0;\n } else if(op == 5) {\n return 5;\n }\n } else if(state == 2) {\n if(op == 0) {\n return 4;\n } else if(op == 1 || op == 3) {\n return 2;\n } else if(op == 2) {\n return 3;\n } else if(op == 4) {\n return 5;\n } else {\n return 0;\n }\n } else if(state == 3) {\n if(op == 0) {\n return 1;\n } else if(op == 1) {\n return 2;\n } else if(op == 2 || op == 3) {\n return 3;\n } else if(op == 4) {\n return 7;\n } else {\n return 6;\n }\n } else if(state == 4) {\n if(op == 0 || op == 1) {\n return 4;\n } else if(op == 2) {\n return 1;\n } else if(op == 3) {\n return 2;\n } else if(op == 4) {\n return 6;\n } else {\n return 7;\n }\n } else if(state == 5) {\n if(op == 0) {\n return 6;\n } else if(op == 1) {\n return 7;\n } else if(op == 2 || op == 3) {\n return 3;\n } else if(op == 4) {\n return 2;\n } else {\n return 1;\n }\n } else if(state == 6) {\n if(op == 0) {\n return 6;\n } else if(op == 1) {\n return 0;\n } else if(op == 2) {\n return 1;\n } else if(op == 3) {\n return 3;\n } else if(op == 4) {\n return 4;\n } else {\n return 3;\n }\n } else {\n if(op == 0) {\n return 0;\n } else if(op == 1) {\n return 7;\n } else if(op == 2) {\n return 3;\n } else if(op == 3) {\n return 2;\n } else if(op == 4) {\n return 3;\n } else {\n return 4;\n }\n }\n}\n\nint dfs(int v, graph& g, int prev, int state, int turn, vector<int> const& ord) {\n if(g.size() == 1) {\n return 0;\n }\n if(g[v].size() == 1 && prev != -1) {\n return state;\n }\n int res = -1;\n for(auto to : g[v]) {\n if(to == prev) {\n continue;\n }\n int t = dfs(to, g, v, proc(state, op[to]), turn^1, ord);\n if(turn == 0) {\n if(res == -1 || ord[res] < ord[t]) {\n res = t;\n }\n } else {\n if(res == -1 || ord[t] < ord[res]) {\n res = t;\n }\n }\n }\n return res;\n}\n\nint main() {\n int N, M;\n cin >> N >> M;\n op.resize(N);\n for(int i=1; i<N; ++i) {\n string o;\n cin >> o;\n char c1 = o[3], c2 = o[4];\n if(c1 == '&') {\n op[i] = o[4] - 'X';\n } else if(c1 == '|') {\n op[i] = 2 + o[4] - 'X';\n } else {\n op[i] = 4 + o[4] - 'X';\n }\n }\n vector<vector<int>> g(N);\n for(int i=0; i<N-1; ++i) {\n int u, v;\n cin >> u >> v;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n for(int i=0; i<M; ++i) {\n int x, y;\n cin >> x >> y;\n vector<pair<int, int>> v(8);\n vector<int> v2(8);\n v[0] = make_pair(0, 0);\n v[1] = make_pair(x, 1);\n v[2] = make_pair(y, 2);\n v[3] = make_pair(x|y, 3);\n v[4] = make_pair(x&y, 4);\n v[5] = make_pair(x^y, 5);\n v[6] = make_pair(x^(x&y), 6);\n v[7] = make_pair(y^(x&y), 7);\n auto v3 = v;\n sort(v.begin(), v.end());\n for(int i=0; i<8; ++i) {\n v2[v[i].second] = i;\n }\n if(memo.count(v2) == 0) {\n memo[v2] = dfs(0, g, -1, 0, 0, v2);\n }\n cout << v3[memo[v2]].first << endl;\n }\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 18348, "score_of_the_acc": -0.1122, "final_rank": 4 }, { "submission_id": "aoj_2713_10502640", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n, q; cin >> n >> q;\n vector<string> s(n);\n for(int i = 1; i < n; i ++) cin >> s[i];\n vector<vector<int>> v(n);\n\n rep(i, n - 1) {\n int a, b; cin >> a >> b;\n v[a].pb(b);\n v[b].pb(a);\n }\n int ans[64][2][2];\n memset(ans, -1, sizeof(ans));\n\n auto solve = [&](int x, int y, int ordbit) -> void {\n vector<int> nx(n, -1);\n\n auto eval = [&](int T, int X, int Y, string t) -> int {\n if(t == \"T=T|X\") return (T|X);\n if(t == \"T=T|Y\") return (T|Y);\n if(t == \"T=T&X\") return (T&X);\n if(t == \"T=T&Y\") return (T&Y);\n if(t == \"T=T^X\") return (T^X);\n return (T^Y);\n };\n auto dfs = [&](auto dfs, int now, int p, int sum, bool f) -> int {\n int m = (f ? (1 << 20) : -1);\n foa(e, v[now]) {\n if(e == p) continue;\n int ret = dfs(dfs, e, now, eval(sum, x, y, s[e]), f ^ 1);\n if(f) {\n if(m > ret) {\n m = ret;\n nx[now] = e;\n }\n } else {\n if(m < ret) {\n m = ret;\n nx[now] = e;\n }\n }\n } \n return (m == (1 << 20) or m == -1 ? sum : m);\n };\n dfs(dfs, 0, -1, 0, 0);\n x = 12, y = 10;\n \n int now = 0, sum = 0;\n while(nx[now] != -1) {\n now = nx[now];\n sum = eval(sum, x, y, s[now]);\n }\n rep(i, 4) ans[ordbit][x >> i & 1][y >> i & 1] = sum >> i & 1;\n return;\n };\n\n rep(i, q) {\n int x, y;\n cin >> x >> y;\n int cnt = 0, f01 = 0, f10 = 0, f11 = 0, ordbit = 0;\n for(int j = 15; j >= 0; j --) {\n if(x >> j & 1) {\n if(y >> j & 1) {\n if(!f11) {\n ordbit |= 3 << cnt;\n cnt += 2;\n f11 = 1;\n }\n } else {\n if(!f10) {\n ordbit |= 2 << cnt;\n cnt += 2;\n f10 = 1;\n }\n }\n } else {\n if(y >> j & 1) {\n if(!f01) {\n ordbit |= 1 << cnt;\n cnt += 2;\n f01 = 1;\n }\n }\n }\n }\n if(ans[ordbit][1][1] == -1) {\n solve(x, y, ordbit);\n }\n int res = 0;\n rep(j, 16) {\n res |= (1 << j) * ans[ordbit][x >> j & 1][y >> j & 1];\n }\n cout << res << endl;\n }\n \n \n\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 30804, "score_of_the_acc": -0.2095, "final_rank": 8 }, { "submission_id": "aoj_2713_10303037", "code_snippet": "// AOJ #2713 Bit Operation Game\n// 2025.3.16\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nchar temp[100];\nstring Cins() {\n char *s = temp;\n\tdo *s = gc();\n\twhile (*s++ > ' ');\n\t*(s-1) = 0;\n string input(temp);\n return input;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\ntypedef pair<int, int> Pair;\n\nconst int MAX_N = 100000;\n\nint N, M;\nint queryX, queryY;\nvector<string> ops(MAX_N);\nvector<vector<int>> graph(MAX_N);\n\nmap<vector<int>, int> memo;\n\nint applyOp(const string &op, int v) {\n int t = queryX;\n if (op[4] == 'Y') t = queryY;\n if (op[3] == '&') return v & t;\n if (op[3] == '|') return v | t;\n return v ^ t;\n }\n\nint dfs(int pos, int par, int dep, int val) {\n if (par != -1) {\n val = applyOp(ops[pos], val);\n if (graph[pos].size() == 1) return val;\n }\n\n bool isMin = (dep & 1);\n int ans = isMin ? (queryX | queryY) : 0;\n\n for (int next : graph[pos]) {\n if (next == par) continue;\n int can = dfs(next, pos, dep + 1, val);\n if (isMin) ans = min(ans, can);\n else ans = max(ans, can);\n }\n return ans;\n}\n\nint solve() {\n if (N == 1) return 0;\n vector<Pair> candidates;\n candidates.push_back({queryX, 0});\n candidates.push_back({queryY, 1});\n candidates.push_back({queryX | queryY, 2});\n candidates.push_back({queryX & queryY, 3});\n candidates.push_back({(queryX | queryY) - queryX, 4});\n candidates.push_back({(queryX | queryY) - queryY, 5});\n candidates.push_back({(queryX | queryY) - (queryX & queryY), 6});\n candidates.push_back({0, 7});\n\n sort(candidates.begin(), candidates.end());\n vector<int> cacheKey;\n for (int i = 0; i < 8; i++) {\n cacheKey.push_back(candidates[i].second);\n }\n\n if (memo.count(cacheKey)) {\n int cachedId = memo[cacheKey];\n for (int i = 0; i < 8; i++) {\n if (candidates[i].second == cachedId)\n return candidates[i].first;\n }\n }\n\n int ans = dfs(0, -1, 0, 0);\n for (int i = 0; i < 8; i++) {\n if (ans == candidates[i].first) {\n memo[cacheKey] = candidates[i].second;\n break;\n }\n }\n return ans;\n}\n\nint main(){\n N = Cin(), M = Cin();\n for (int i = 1; i < N; i++) ops[i] = Cins();\n graph.assign(N, vector<int>());\n for (int i = 1; i < N; i++) {\n int u = Cin(), v = Cin();\n graph[u].push_back(v);\n graph[v].push_back(u);\n }\n while (M--) {\n queryX = Cin(), queryY = Cin();\n Cout(solve());\n }\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 19248, "score_of_the_acc": -0.0493, "final_rank": 1 }, { "submission_id": "aoj_2713_9575140", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nint Op(string S, int T, int X, int Y) {\n if (S == \"T=0\") return 0;\n if (S == \"T=T|X\") return T|X;\n if (S == \"T=T^X\") return T^X;\n if (S == \"T=T&X\") return T&X;\n if (S == \"T=T|Y\") return T|Y;\n if (S == \"T=T^Y\") return T^Y;\n if (S == \"T=T&Y\") return T&Y;\n return -1;\n}\n\nint N;\nvector<string> S;\nvector<vector<int>> G;\n\nvoid ch(int& A, int B, int turn) {\n if (turn == 0) chmax(A,B);\n else chmin(A,B);\n}\n\nint DFS(int P, int T, int turn, int X, int Y) {\n int NT = Op(S[P],T,X,Y);\n if (G[P].empty()) return NT;\n int Ret;\n if (turn == 0) Ret = -inf;\n else Ret = inf;\n for (int NP : G[P]) {\n ch(Ret,DFS(NP,NT,1-turn,X,Y),turn);\n }\n return Ret;\n}\n\nint main() {\n int Q;\n cin >> N >> Q;\n S.resize(N);\n S[0] = \"T=0\";\n rep(i,1,N) cin >> S[i];\n G.resize(N);\n rep(i,0,N-1) {\n int a, b;\n cin >> a >> b;\n G[a].push_back(b), G[b].push_back(a);\n }\n queue<int> QQ;\n vector<bool> used(N,false);\n used[0] = true;\n QQ.push(0);\n while(!QQ.empty()) {\n int P = QQ.front();\n QQ.pop();\n rep(i,0,G[P].size()) {\n if (used[G[P][i]]) {\n swap(G[P][i], G[P].back());\n G[P].pop_back();\n break;\n }\n }\n rep(i,0,G[P].size()) used[G[P][i]] = true, QQ.push(G[P][i]);\n }\n vector<int> A = {0,1,2};\n vector<int> ANS(27);\n do {\n int X = 0, Y = 0;\n Y += 1<<(2-A[0]);\n X += 1<<(2-A[1]);\n X += 1<<(2-A[2]);\n Y += 1<<(2-A[2]);\n ANS[A[0]*9+A[1]*3+A[2]] = DFS(0,0,0,X,Y);\n int D = DFS(0,0,0,X,Y);\n } while(next_permutation(A.begin(), A.end()));\n rep(i,0,Q) {\n int x, y;\n cin >> x >> y;\n vector<int> X(16), Y(16);\n rrep(j,0,16) {\n X[j] = x % 2;\n x /= 2;\n Y[j] = y % 2;\n y /= 2;\n }\n vector<int> Z(3,-1);\n int Cur = 0;\n rep(j,0,16) {\n if (X[j] == 0 && Y[j] == 0) continue;\n int x = X[j] * 2 + Y[j] - 1;\n if (Z[x] == -1) {\n Z[x] = Cur;\n Cur++;\n }\n }\n rep(j,0,3) {\n if (Z[j] == -1) {\n Z[j] = Cur;\n Cur++;\n }\n }\n int Ret = ANS[Z[0]*9+Z[1]*3+Z[2]];\n int V[4];\n V[0] = 0;\n rep(j,0,3) {\n V[j+1] = (Ret >> (2-Z[j])) & 1;\n }\n int SUM = 0;\n rep(j,0,16) {\n SUM += (1<<(15-j)) * V[X[j]*2+Y[j]];\n }\n cout << SUM << endl;\n }\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 22608, "score_of_the_acc": -0.1646, "final_rank": 7 }, { "submission_id": "aoj_2713_9380138", "code_snippet": "#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<map>\n#include<string>\n#include<numeric>\nusing namespace std;\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n,m;\n cin>>n>>m;\n vector<string>o(n);\n for(int i=1;i<n;i++)cin>>o[i];\n vector<vector<int>>to(n);\n for(int i=0;i<n-1;i++){\n int u,v;\n cin>>u>>v;\n to[u].push_back(v);\n to[v].push_back(u);\n }\n vector<int>ord(8);\n auto dfs=[&](auto self,int x,int p,int now,int dep)->int {\n if(to[x].size()==1&&to[x][0]==p)return now;\n int ret=-1;\n for(auto i:to[x])if(i!=p){\n\tint op=o[i][4]=='X'?3:6;\n\tint nx=now;\n\tif(o[i][3]=='&')nx&=op;\n\telse if(o[i][3]=='|')nx|=op;\n\telse if(o[i][3]=='^')nx^=op;\n\telse exit(1);\n\tint nv=self(self,i,x,nx,dep^1);\n\tif(ret==-1)ret=nv;\n\telse if(dep==0){\n\t if(ord[ret]<ord[nv])ret=nv;\n\t}\n\telse if(dep==1){\n\t if(ord[ret]>ord[nv])ret=nv;\n\t}\n }\n return ret;\n };\n map<vector<int>,int>mp;\n for(int i=0;i<m;i++){\n int x,y;\n cin>>x>>y;\n vector<int>a{x&(~y),x&y,(~x)&y};\n vector<int>b(8,0);\n for(int j=0;j<8;j++){\n for(int k=0;k<3;k++)if(j>>k&1)b[j]|=a[k];\n }\n vector<int>id(8);\n iota(id.begin(),id.end(),0);\n sort(id.begin(),id.end(),[&](int l,int r){return b[l]<b[r];});\n for(int j=0;j<8;j++)ord[id[j]]=j;\n if(mp.find(ord)==mp.end())mp[ord]=dfs(dfs,0,-1,0,0);\n int s=mp[ord];\n int ans=0;\n for(int j=0;j<3;j++)if(s>>j&1)ans|=a[j];\n cout<<ans<<endl;\n }\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 22568, "score_of_the_acc": -0.0959, "final_rank": 2 }, { "submission_id": "aoj_2713_9380062", "code_snippet": "#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<map>\n#include<string>\n#include<numeric>\nusing namespace std;\nint main(){\n int n,m;\n cin>>n>>m;\n vector<string>o(n);\n for(int i=1;i<n;i++)cin>>o[i];\n vector<vector<int>>to(n);\n for(int i=0;i<n-1;i++){\n int u,v;\n cin>>u>>v;\n to[u].push_back(v);\n to[v].push_back(u);\n }\n vector<int>ord(8);\n auto dfs=[&](auto self,int x,int p,int now,int dep)->int {\n if(to[x].size()==1&&to[x][0]==p)return now;\n int ret=-1;\n for(auto i:to[x])if(i!=p){\n\tint op=o[i][4]=='X'?3:6;\n\tint nx=now;\n\tif(o[i][3]=='&')nx&=op;\n\telse if(o[i][3]=='|')nx|=op;\n\telse if(o[i][3]=='^')nx^=op;\n\telse exit(1);\n\tint nv=self(self,i,x,nx,dep^1);\n\tif(ret==-1)ret=nv;\n\telse if(dep==0){\n\t if(ord[ret]<ord[nx])ret=nv;\n\t}\n\telse if(dep==1){\n\t if(ord[ret]>ord[nx])ret=nv;\n\t}\n }\n return ret;\n };\n map<vector<int>,int>mp;\n for(int i=0;i<m;i++){\n int x,y;\n cin>>x>>y;\n vector<int>a{x&~y,x&y,~x&y};\n vector<int>b(8,0);\n for(int j=0;j<8;j++){\n for(int k=0;k<3;k++)if(j>>k&1)b[j]|=a[k];\n }\n vector<int>id(8);\n iota(id.begin(),id.end(),0);\n sort(id.begin(),id.end(),[&](int l,int r){return b[l]<b[r];});\n for(int j=0;j<8;j++)ord[id[j]]=j;\n if(mp.find(ord)==mp.end())mp[ord]=dfs(dfs,0,-1,0,0);\n int s=mp[ord];\n int ans=0;\n for(int j=0;j<3;j++)if(s>>j&1)ans|=a[j];\n cout<<ans<<endl;\n }\n}", "accuracy": 0.0196078431372549, "time_ms": 160, "memory_kb": 11548, "score_of_the_acc": -0.0496, "final_rank": 17 }, { "submission_id": "aoj_2713_9380020", "code_snippet": "#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<map>\n#include<string>\n#include<numeric>\nusing namespace std;\nint main(){\n int n,m;\n cin>>n>>m;\n vector<string>o(n);\n for(int i=1;i<n;i++)cin>>o[i];\n vector<vector<int>>to(n);\n for(int i=0;i<n-1;i++){\n int u,v;\n cin>>u>>v;\n to[u].push_back(v);\n to[v].push_back(u);\n }\n vector<int>ord(8);\n auto dfs=[&](auto self,int x,int p,int now,int dep)->int {\n if(to[x].size()==1&&to[x][0]==p)return now;\n int ret=-1;\n for(auto i:to[x])if(i!=p){\n\tint op=o[i][4]=='X'?3:6;\n\tint nx=now;\n\tif(o[i][3]=='&')nx&=op;\n\telse if(o[i][3]=='|')nx|=op;\n\telse nx^=op;\n\tint nv=self(self,i,x,nx,dep^1);\n\tif(ret==-1)ret=nv;\n\telse if(dep==0){\n\t if(ord[ret]<ord[nx])ret=nv;\n\t}\n\telse if(dep==1){\n\t if(ord[ret]>ord[nx])ret=nv;\n\t}\n }\n return ret;\n };\n map<vector<int>,int>mp;\n for(int i=0;i<m;i++){\n int x,y;\n cin>>x>>y;\n vector<int>a{x&~y,x&y,~x&y};\n vector<int>b(8);\n for(int j=0;j<8;j++){\n for(int k=0;k<3;k++)if(j>>k&1)b[j]|=a[k];\n }\n vector<int>id(8);\n iota(id.begin(),id.end(),0);\n sort(id.begin(),id.end(),[&](int l,int r){return b[l]<b[r];});\n for(int j=0;j<8;j++)ord[id[j]]=j;\n if(mp.find(ord)==mp.end())mp[ord]=dfs(dfs,0,-1,0,0);\n int s=mp[ord];\n int ans=0;\n for(int j=0;j<3;j++)if(s>>j&1)ans|=a[j];\n cout<<ans<<endl;\n }\n}", "accuracy": 0.0196078431372549, "time_ms": 160, "memory_kb": 11620, "score_of_the_acc": -0.05, "final_rank": 18 }, { "submission_id": "aoj_2713_8428161", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint N, U[1 << 19], V[1 << 19], Type[1 << 19], Level[1 << 19]; string S[1 << 19];\nint Q, X[1 << 19], Y[1 << 19];\nbool Win1[256][1 << 17];\nbool Win2[256][1 << 17];\nvector<int> G[1 << 19];\nvector<int> H[1 << 19];\n\nvoid solve(int mask, int pos) {\n if (H[pos].size() == 0) {\n if ((mask & (1 << Level[pos])) != 0) {\n Win1[mask][pos] = true;\n Win2[mask][pos] = false;\n }\n else {\n Win1[mask][pos] = false;\n Win2[mask][pos] = true;\n }\n return;\n }\n for (int to : H[pos]) {\n solve(mask, to);\n if (Win2[mask][to] == false) Win1[mask][pos] = true;\n if (Win1[mask][to] == false) Win2[mask][pos] = true;\n }\n}\n\nvoid dfs(int pos, int pre, int cur) {\n if (cur == 0) Level[pos] = 0;\n if (cur == 24) Level[pos] = 1;\n if (cur == 96) Level[pos] = 2;\n if (cur == 120) Level[pos] = 3;\n if (cur == 773) Level[pos] = 4;\n if (cur == 797) Level[pos] = 5;\n if (cur == 869) Level[pos] = 6;\n if (cur == 893) Level[pos] = 7;\n\n // DFS\n for (int to : G[pos]) {\n if (to == pre) continue;\n int nex = 0;\n if (Type[to] == 1) nex = (cur & 869);\n if (Type[to] == 2) nex = (cur & 120);\n if (Type[to] == 3) nex = (cur | 869);\n if (Type[to] == 4) nex = (cur | 120);\n if (Type[to] == 5) nex = (cur ^ 869);\n if (Type[to] == 6) nex = (cur ^ 120);\n dfs(to, pos, nex);\n H[pos].push_back(to);\n }\n}\n\nint main() {\n // Step 1. Input\n cin >> N >> Q;\n for (int i = 1; i <= N - 1; i++) cin >> S[i];\n for (int i = 1; i <= N - 1; i++) cin >> U[i] >> V[i];\n for (int i = 1; i <= Q; i++) cin >> X[i] >> Y[i];\n\n // Step 2. Get Type\n for (int i = 1; i <= N - 1; i++) {\n if (S[i] == \"T=T&X\") Type[i] = 1;\n if (S[i] == \"T=T&Y\") Type[i] = 2;\n if (S[i] == \"T=T|X\") Type[i] = 3;\n if (S[i] == \"T=T|Y\") Type[i] = 4;\n if (S[i] == \"T=T^X\") Type[i] = 5;\n if (S[i] == \"T=T^Y\") Type[i] = 6;\n }\n\n // Step 3. Get Graph\n for (int i = 1; i <= N - 1; i++) {\n G[U[i]].push_back(V[i]);\n G[V[i]].push_back(U[i]);\n }\n dfs(0, -1, 0);\n\n // Step 4. Zentansaku\n for (int i = 0; i < 256; i++) {\n solve(i, 0);\n }\n\n // Step 5. Get Query\n for (int i = 1; i <= Q; i++) {\n vector<pair<int, int>> Vec;\n Vec.push_back(make_pair(0 & X[i], 0));\n Vec.push_back(make_pair(((0 | X[i]) & Y[i]) ^ Y[i], 1));\n Vec.push_back(make_pair(((0 | X[i]) & Y[i]), 2));\n Vec.push_back(make_pair(0 | Y[i], 3));\n Vec.push_back(make_pair(((0 | X[i]) & Y[i]) ^ X[i], 4));\n Vec.push_back(make_pair(((0 | X[i]) ^ Y[i]), 5));\n Vec.push_back(make_pair(0 | X[i], 6));\n Vec.push_back(make_pair(((0 | X[i]) | Y[i]), 7));\n sort(Vec.begin(), Vec.end());\n int mask = 255, ans = Vec[0].first;\n for (int j = 0; j < (int)Vec.size() - 1; j++) {\n mask -= (1 << (Vec[j].second));\n if (Win1[mask][0] == true) ans = Vec[j + 1].first;\n }\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 600, "memory_kb": 137820, "score_of_the_acc": -1.0535, "final_rank": 12 }, { "submission_id": "aoj_2713_8428148", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint N, U[1 << 19], V[1 << 19], Type[1 << 19], Level[1 << 19]; string S[1 << 19];\nint Q, X[1 << 19], Y[1 << 19];\nbool Win[256][1 << 17];\nvector<int> G[1 << 19];\nvector<int> H[1 << 19];\n\nvoid solve(int mask, int pos) {\n if (H[pos].size() == 0) {\n if ((mask & (1 << Level[pos])) != 0) Win[mask][pos] = true;\n else Win[mask][pos] = false;\n return;\n }\n for (int to : H[pos]) {\n solve(mask, to);\n if (Win[mask][to] == false) Win[mask][pos] = true;\n }\n}\n\nvoid dfs(int pos, int pre, int cur) {\n if (cur == 0) Level[pos] = 0;\n if (cur == 24) Level[pos] = 1;\n if (cur == 96) Level[pos] = 2;\n if (cur == 120) Level[pos] = 3;\n if (cur == 773) Level[pos] = 4;\n if (cur == 797) Level[pos] = 5;\n if (cur == 869) Level[pos] = 6;\n if (cur == 893) Level[pos] = 7;\n\n // DFS\n for (int to : G[pos]) {\n if (to == pre) continue;\n int nex = 0;\n if (Type[to] == 1) nex = (cur & 869);\n if (Type[to] == 2) nex = (cur & 120);\n if (Type[to] == 3) nex = (cur | 869);\n if (Type[to] == 4) nex = (cur | 120);\n if (Type[to] == 5) nex = (cur ^ 869);\n if (Type[to] == 6) nex = (cur ^ 120);\n dfs(to, pos, nex);\n H[pos].push_back(to);\n }\n}\n\nint main() {\n // Step 1. Input\n cin >> N >> Q;\n for (int i = 1; i <= N - 1; i++) cin >> S[i];\n for (int i = 1; i <= N - 1; i++) cin >> U[i] >> V[i];\n for (int i = 1; i <= Q; i++) cin >> X[i] >> Y[i];\n\n // Step 2. Get Type\n for (int i = 1; i <= N - 1; i++) {\n if (S[i] == \"T=T&X\") Type[i] = 1;\n if (S[i] == \"T=T&Y\") Type[i] = 2;\n if (S[i] == \"T=T|X\") Type[i] = 3;\n if (S[i] == \"T=T|Y\") Type[i] = 4;\n if (S[i] == \"T=T^X\") Type[i] = 5;\n if (S[i] == \"T=T^Y\") Type[i] = 6;\n }\n\n // Step 3. Get Graph\n for (int i = 1; i <= N - 1; i++) {\n G[U[i]].push_back(V[i]);\n G[V[i]].push_back(U[i]);\n }\n dfs(0, -1, 0);\n\n // Step 4. Zentansaku\n for (int i = 0; i < 256; i++) {\n solve(i, 0);\n }\n\n // Step 5. Get Query\n for (int i = 1; i <= Q; i++) {\n vector<pair<int, int>> Vec;\n Vec.push_back(make_pair(0 & X[i], 0));\n Vec.push_back(make_pair(((0 | X[i]) & Y[i]) ^ Y[i], 1));\n Vec.push_back(make_pair(((0 | X[i]) & Y[i]), 2));\n Vec.push_back(make_pair(0 | Y[i], 3));\n Vec.push_back(make_pair(((0 | X[i]) & Y[i]) ^ X[i], 4));\n Vec.push_back(make_pair(((0 | X[i]) ^ Y[i]), 5));\n Vec.push_back(make_pair(0 | X[i], 6));\n Vec.push_back(make_pair(((0 | X[i]) | Y[i]), 7));\n sort(Vec.begin(), Vec.end());\n int mask = 255, ans = Vec[0].first;\n for (int j = 0; j < (int)Vec.size() - 1; j++) {\n mask -= (1 << (Vec[j].second));\n if (Win[mask][0] == true) ans = Vec[j + 1].first;\n }\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 0.0196078431372549, "time_ms": 310, "memory_kb": 94000, "score_of_the_acc": -0.6329, "final_rank": 20 }, { "submission_id": "aoj_2713_8297360", "code_snippet": "#include <string>\n#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nvector<int> get_perm(int x, int y) {\n\tvector<int> appear(4, -1);\n\tfor (int i = 0; i < 16; i++) {\n\t\tint z = ((x >> i) & 1) + ((y >> i) & 1) * 2;\n\t\tappear[z] = i;\n\t}\n\tvector<int> perm = { 0, 1, 2, 3 };\n\tsort(perm.begin(), perm.end(), [&](int va, int vb) {\n\t\treturn appear[va] != appear[vb] ? appear[va] < appear[vb] : va < vb;\n\t});\n\treturn perm;\n}\n\nint main() {\n\t// step #1. input\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N, M;\n\tcin >> N >> M;\n\tvector<int> OP(N, -1);\n\tfor (int i = 1; i < N; i++) {\n\t\tstring str;\n\t\tcin >> str;\n\t\tif (str == \"T=T&X\") OP[i] = 0;\n\t\tif (str == \"T=T&Y\") OP[i] = 1;\n\t\tif (str == \"T=T|X\") OP[i] = 2;\n\t\tif (str == \"T=T|Y\") OP[i] = 3;\n\t\tif (str == \"T=T^X\") OP[i] = 4;\n\t\tif (str == \"T=T^Y\") OP[i] = 5;\n\t}\n\tvector<vector<int> > G(N);\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tint a, b;\n\t\tcin >> a >> b;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<int> X(M), Y(M);\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> X[i] >> Y[i];\n\t}\n\n\t// step #2. dynamic programming\n\tvector<int> baseperm = { 0, 1, 2, 3 };\n\tvector<vector<int> > perms;\n\tdo {\n\t\tperms.push_back(baseperm);\n\t} while (next_permutation(baseperm.begin(), baseperm.end()));\n\tvector<int> permx(24), permy(24);\n\tfor (int i = 0; i < 24; i++) {\n\t\tfor (int j = 0; j < 4; j++) {\n\t\t\tpermx[i] |= ((perms[i][j] >> 0) & 1) << j;\n\t\t\tpermy[i] |= ((perms[i][j] >> 1) & 1) << j;\n\t\t}\n\t}\n\tvector<vector<int> > dp(N);\n\tauto calc = [&](auto& self, int pos, int pre, int turn) -> void {\n\t\tdp[pos] = vector<int>(384, turn == 0 ? 0 : 15);\n\t\tbool leaf = true;\n\t\tfor (int i : G[pos]) {\n\t\t\tif (i != pre) {\n\t\t\t\tleaf = false;\n\t\t\t\tself(self, i, pos, turn ^ 1);\n\t\t\t\tfor (int j = 0; j < 24; j++) {\n\t\t\t\t\tfor (int k = 0; k < 16; k++) {\n\t\t\t\t\t\tint res;\n\t\t\t\t\t\tswitch (OP[i]) {\n\t\t\t\t\t\t\tcase 0: res = dp[i][j * 16 + (k & permx[j])]; break;\n\t\t\t\t\t\t\tcase 1: res = dp[i][j * 16 + (k & permy[j])]; break;\n\t\t\t\t\t\t\tcase 2: res = dp[i][j * 16 + (k | permx[j])]; break;\n\t\t\t\t\t\t\tcase 3: res = dp[i][j * 16 + (k | permy[j])]; break;\n\t\t\t\t\t\t\tcase 4: res = dp[i][j * 16 + (k ^ permx[j])]; break;\n\t\t\t\t\t\t\tcase 5: res = dp[i][j * 16 + (k ^ permy[j])]; break;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tif (turn == 0) {\n\t\t\t\t\t\t\tdp[pos][j * 16 + k] = max(dp[pos][j * 16 + k], res);\n\t\t\t\t\t\t}\n\t\t\t\t\t\telse {\n\t\t\t\t\t\t\tdp[pos][j * 16 + k] = min(dp[pos][j * 16 + k], res);\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (leaf) {\n\t\t\tfor (int i = 0; i < 384; i++) {\n\t\t\t\tdp[pos][i] = i % 16;\n\t\t\t}\n\t\t}\n\t};\n\tcalc(calc, 0, -1, 0);\n\n\t// step #3. answer queries\n\tfor (int i = 0; i < M; i++) {\n\t\tvector<int> p = get_perm(X[i], Y[i]);\n\t\tint idx = find(perms.begin(), perms.end(), p) - perms.begin();\n\t\tint res = dp[0][idx * 16 + 0];\n\t\tint answer = 0;\n\t\tfor (int j = 0; j < 16; j++) {\n\t\t\tint code = ((X[i] >> j) & 1) + ((Y[i] >> j) & 1) * 2;\n\t\t\tint pos = find(perms[idx].begin(), perms[idx].end(), code) - perms[idx].begin();\n\t\t\tanswer += ((res >> pos) & 1) << j;\n\t\t}\n\t\tcout << answer << '\\n';\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 174672, "score_of_the_acc": -1.0737, "final_rank": 14 }, { "submission_id": "aoj_2713_6670839", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,m; cin >> n >> m;\n vector<int> state(n);\n for(int i=1;i<n;i++){\n string s; cin >> s;\n if(s == \"T=T&X\") state[i] = 0;\n else if(s == \"T=T&Y\") state[i] = 1;\n else if(s == \"T=T|X\") state[i] = 2;\n else if(s == \"T=T|Y\") state[i] = 3;\n else if(s == \"T=T^X\") state[i] = 4;\n else if(s == \"T=T^Y\") state[i] = 5;\n }\n vector<vector<int>> g(n);\n for(int i=1;i<n;i++){\n int x,y; cin >> x >> y;\n g[x].push_back(y);\n g[y].push_back(x);\n }\n vector<int> res(m);\n map<vector<int>,vector<int>> mp;\n vector<int> X(m),Y(m);\n for(int i=0;i<m;i++){\n cin >> X[i] >> Y[i];\n array<int, 4> cnt;\n vector<int> v;\n cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;\n for(int j=15;j>=0;j--){\n int bit = ((X[i]>>j)&1)*2 + ((Y[i]>>j)&1);\n if(cnt[bit] == 0){\n v.push_back(bit);\n cnt[bit]++;\n }\n }\n // ここは適当で良い\n for(int i=0;i<4;i++){\n if(cnt[i] == 0){\n v.push_back(i);\n }\n }\n mp[v].push_back(i);\n }\n vector<int> p = {0,1,2,3};\n do{\n if(mp.find(p) == mp.end()) continue;\n vector<int> dp(n);\n auto dfs=[&](auto dfs,int s,int pr,int f,int cur)->void{\n int res = cur;\n if(s){\n for(int i=3;i>=0;i--){\n int x = (p[3-i]>>1)&1, y = (p[3-i])&1;\n if(state[s] == 0){\n if(x == 0 and res&(1<<i)) res ^= (1<<i);\n }\n else if(state[s] == 1){\n if(y == 0 and res&(1<<i)) res ^= (1<<i);\n }\n else if(state[s] == 2){\n if(x) res |= (1<<i);\n }\n else if(state[s] == 3){\n if(y) res |= (1<<i);\n }\n else if(state[s] == 4){\n if(x) res ^= (1<<i);\n }\n else{\n if(y) res ^= (1<<i);\n }\n }\n }\n cur = res;\n bool ff = false;\n // cout << s << \" \" << cur << endl;\n for(int t:g[s]){\n if(t == pr) continue;\n if(!ff) res = -1, ff = true;\n dfs(dfs,t,s,f^1,cur);\n if(res == -1) res = dp[t];\n if(f == 0){\n res = max(res, dp[t]);\n }\n else{\n res = min(res, dp[t]);\n }\n }\n dp[s] = res;\n };\n dfs(dfs,0,-1,0,0);\n // for(int i=0;i<4;i++){\n // cout << p[i] << \" \";\n // }\n // cout << endl;\n // for(int i=0;i<n;i++){\n // cout << dp[i] << endl;\n // }\n array<int, 4> tr;\n for(int i=0;i<4;i++){\n tr[p[i]] = 3-i; // のbitを見れば良い\n }\n for(int idx:mp[p]){\n int x = X[idx], y = Y[idx];\n for(int i=0;i<=15;i++){\n int bit = ((x>>i)&1)*2 + ((y>>i)&1);\n if(dp[0]&(1<<tr[bit]))res[idx] |= (1<<i);\n }\n }\n }while(next_permutation(p.begin(), p.end()));\n for(int i=0;i<m;i++){\n cout << res[i] << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 25292, "score_of_the_acc": -0.1231, "final_rank": 6 }, { "submission_id": "aoj_2713_6670783", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,m; cin >> n >> m;\n vector<int> state(n);\n for(int i=1;i<n;i++){\n string s; cin >> s;\n if(s == \"T=T&X\") state[i] = 0;\n else if(s == \"T=T&Y\") state[i] = 1;\n else if(s == \"T=T|X\") state[i] = 2;\n else if(s == \"T=T|Y\") state[i] = 3;\n else if(s == \"T=T^X\") state[i] = 4;\n else if(s == \"T=T^Y\") state[i] = 5;\n }\n vector<vector<int>> g(n);\n for(int i=1;i<n;i++){\n int x,y; cin >> x >> y;\n g[x].push_back(y);\n g[y].push_back(x);\n }\n vector<int> res(m);\n map<vector<int>,vector<int>> mp;\n vector<int> X(m),Y(m);\n for(int i=0;i<m;i++){\n cin >> X[i] >> Y[i];\n array<int, 4> cnt;\n vector<int> v;\n cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;\n for(int j=15;j>=0;j--){\n int bit = ((X[i]>>j)&1)*2 + ((Y[i]>>j)&1);\n if(cnt[bit] == 0){\n v.push_back(bit);\n cnt[bit]++;\n }\n }\n // ここは適当で良い\n for(int i=0;i<4;i++){\n if(cnt[i] == 0){\n v.push_back(i);\n }\n }\n mp[v].push_back(i);\n }\n vector<int> p = {0,1,2,3};\n do{\n if(mp.find(p) == mp.end()) continue;\n vector<int> dp(n);\n auto dfs=[&](auto dfs,int s,int pr,int f,int cur)->void{\n int res = cur;\n if(s){\n for(int i=3;i>=0;i--){\n int x = (p[3-i]>>1)&1, y = (p[3-i])&1;\n if(state[s] == 0){\n if(x == 0 and res&(1<<i)) res ^= (1<<i);\n }\n else if(state[s] == 1){\n if(y == 0 and res&(1<<i)) res ^= (1<<i);\n }\n else if(state[s] == 2){\n if(x) res |= (1<<i);\n }\n else if(state[s] == 3){\n if(y) res |= (1<<i);\n }\n else if(state[s] == 4){\n if(x) res ^= (1<<i);\n }\n else{\n if(y) res ^= (1<<i);\n }\n }\n }\n cur = res;\n bool ff = false;\n // cout << s << \" \" << cur << endl;\n for(int t:g[s]){\n if(t == pr) continue;\n if(!ff) res = -1, ff = true;\n dfs(dfs,t,s,f^1,cur);\n if(res == -1) res = dp[t];\n if(f == 0){\n res = max(res, dp[t]);\n }\n else{\n res = min(res, dp[t]);\n }\n }\n dp[s] = res;\n };\n dfs(dfs,0,-1,0,0);\n // for(int i=0;i<4;i++){\n // cout << p[i] << \" \";\n // }\n // cout << endl;\n // for(int i=0;i<n;i++){\n // cout << dp[i] << endl;\n // }\n array<int, 4> tr;\n for(int i=0;i<4;i++){\n tr[p[i]] = 3-i; // のbitを見れば良い\n }\n for(int idx:mp[p]){\n int x = X[idx], y = Y[idx];\n for(int i=0;i<15;i++){\n int bit = ((x>>i)&1)*2 + ((y>>i)&1);\n if(dp[0]&(1<<tr[bit]))res[idx] |= (1<<i);\n }\n }\n }while(next_permutation(p.begin(), p.end()));\n for(int i=0;i<m;i++){\n cout << res[i] << \"\\n\";\n }\n}", "accuracy": 0.0196078431372549, "time_ms": 90, "memory_kb": 11188, "score_of_the_acc": -0.0105, "final_rank": 15 }, { "submission_id": "aoj_2713_6032122", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N, M;\n cin >> N >> M;\n vector<string> o(N);\n rep(i,1,N) cin >> o[i];\n vector<vector<int>> G(N);\n rep(i,0,N-1) {\n int u, v;\n cin >> u >> v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n vector<int> xx = {0, 0, 1, 1};\n vector<int> yy = {0, 1, 0, 1};\n vector<int> perm = {0, 1, 2, 3};\n map<pair<int, int>, int> mp;\n\n auto dfs = [&](auto& dfs, int v, int p, int d, int x, int y, int val) -> int {\n if (v == 0) val = 0;\n else {\n int z;\n if (o[v][4] == 'X') z = x;\n else z = y;\n if (o[v][3] == '&') val &= z;\n else if (o[v][3] == '|') val |= z;\n else val ^= z;\n }\n int ma = -1, mi = 1e9;\n for (int c : G[v]) {\n if (c == p) continue;\n auto a = dfs(dfs, c, v, d + 1, x, y, val);\n ma = max(ma, a);\n mi = min(mi, a);\n }\n if (ma == -1) return val;\n return d & 1 ? mi : ma;\n };\n\n do {\n int x = 0, y = 0;\n rep(i,0,4) x |= xx[perm[i]]<<i, y |= yy[perm[i]]<<i;\n mp[{x,y}] = dfs(dfs, 0, -1, 0, x, y, 0);\n } while (next_permutation(perm.begin(), perm.end()));\n\n while (M--) {\n int x, y;\n cin >> x >> y;\n set<pair<int, int>> st;\n int u = 0, v = 0;\n for (int i = 15; i >= 0; --i) {\n auto a = x>>i&1;\n auto b = y>>i&1;\n if (st.count({a,b})) continue;\n u |= a<<(3-st.size());\n v |= b<<(3-st.size());\n st.insert({a,b});\n }\n rep(i,0,2) rep(j,0,2) {\n if (!st.count({i,j})) {\n u |= i<<(3-st.size());\n v |= j<<(3-st.size());\n st.insert({u,v});\n }\n }\n\n auto z = mp[{u,v}];\n int ans = 0;\n rep(i,0,16) {\n rep(j,0,4) {\n if ((x>>i&1)==(u>>j&1) && (y>>i&1)==(v>>j&1)) {\n ans |= (z>>j&1)<<i;\n }\n }\n }\n cout << ans << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 22480, "score_of_the_acc": -0.1006, "final_rank": 3 }, { "submission_id": "aoj_2713_6032084", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N, M;\n cin >> N >> M;\n vector<string> o(N);\n rep(i,1,N) cin >> o[i];\n vector<vector<int>> G(N);\n rep(i,0,N-1) {\n int u, v;\n cin >> u >> v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n vector<int> xx = {0, 0, 1, 1};\n vector<int> yy = {0, 1, 0, 1};\n vector<int> perm = {0, 1, 2, 3};\n map<pair<int, int>, int> mp;\n\n auto dfs = [&](auto& dfs, int v, int p, int d, int x, int y, int val) -> int {\n if (v == 0) val = 0;\n else {\n int z;\n if (o[v][4] == 'X') z = x;\n else z = y;\n if (o[v][3] == '&') val &= z;\n else if (o[v][3] == '|') val |= z;\n else val ^= z;\n }\n int ma = -1, mi = 1e9;\n for (int c : G[v]) {\n if (c == p) continue;\n auto a = dfs(dfs, c, v, d + 1, x, y, val);\n ma = max(ma, a);\n mi = min(mi, a);\n }\n if (ma == -1) return val;\n return d & 1 ? mi : ma;\n };\n\n do {\n int x = 0, y = 0;\n rep(i,0,4) x |= xx[perm[i]]<<i, y |= yy[perm[i]]<<i;\n mp[{x,y}] = dfs(dfs, 0, -1, 0, x, y, 0);\n } while (next_permutation(perm.begin(), perm.end()));\n\n while (M--) {\n int x, y;\n cin >> x >> y;\n set<pair<int, int>> st;\n int u = 0, v = 0;\n rep(i,0,16) {\n auto a = x>>i&1;\n auto b = y>>i&1;\n if (st.count({a,b})) continue;\n u |= a<<st.size();\n v |= b<<st.size();\n st.insert({a,b});\n }\n rep(i,0,2) rep(j,0,2) {\n if (!st.count({i,j})) {\n u |= i<<st.size();\n v |= j<<st.size();\n st.insert({u,v});\n }\n }\n\n auto z = mp[{u,v}];\n int ans = 0;\n rep(i,0,16) {\n rep(j,0,4) {\n if ((x>>i&1)==(u>>j&1) && (y>>i&1)==(v>>j&1)) {\n ans |= (z>>j&1)<<i;\n }\n }\n }\n cout << ans << \"\\n\";\n }\n}", "accuracy": 0.0196078431372549, "time_ms": 100, "memory_kb": 11732, "score_of_the_acc": -0.0191, "final_rank": 16 }, { "submission_id": "aoj_2713_6011145", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n#define POPCOUNT(x) __builtin_popcount(x)\ntemplate <typename T> void chmin(T &a, const T &b) { a = min(a, b); }\ntemplate <typename T> void chmax(T &a, const T &b) { a = max(a, b); }\n\nconst ll INF = 1LL << 60;\n\nstruct FastIO {\n FastIO() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n} fastiofastio;\n\nconst ll MOD = 1e9 + 7;\n\n// BEGIN CUT\nll modpow(ll x, ll y, ll m) {\n ll a = 1, p = x;\n while (y > 0) {\n if (y % 2 == 0) {\n p = (p * p) % m;\n y /= 2;\n } else {\n a = (a * p) % m;\n y--;\n }\n }\n return a;\n}\n// END CUT\n\nll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }\nll lcm(ll a, ll b) { return a / gcd(a, b) * b; }\n\nint op[100000];\n// 0: None\n// 1: T=T&X\n// 2: T=T&Y\n// 3: T=T|X\n// 4: T=T|Y\n// 5: T=T^X\n// 6: T=T^Y\nint memo[8][8];\nvector<int> G[100000];\n\nint solve(int v, int par, int now, int X, int Y, int d) {\n int mi = 1 << 30, ma = -(1 << 30);\n int cnt = 0;\n for (int to : G[v]) {\n if (to == par)\n continue;\n int nxt = now;\n if (op[to] == 1)\n nxt &= X;\n else if (op[to] == 2)\n nxt &= Y;\n else if (op[to] == 3)\n nxt |= X;\n else if (op[to] == 4)\n nxt |= Y;\n else if (op[to] == 5)\n nxt ^= X;\n else\n nxt ^= Y;\n int ret = solve(to, v, nxt, X, Y, d + 1);\n if (d % 2 == 0)\n ma = max(ma, ret);\n else\n mi = min(mi, ret);\n cnt++;\n }\n if (cnt == 0)\n return now;\n if (d % 2 == 0)\n return ma;\n return mi;\n}\n\nint main() {\n int N, M;\n cin >> N >> M;\n for (int i = 1; i < N; i++) {\n string s;\n cin >> s;\n if (s == \"T=T&X\")\n op[i] = 1;\n else if (s == \"T=T&Y\")\n op[i] = 2;\n else if (s == \"T=T|X\")\n op[i] = 3;\n else if (s == \"T=T|Y\")\n op[i] = 4;\n else if (s == \"T=T^X\")\n op[i] = 5;\n else\n op[i] = 6;\n }\n for (int i = 0; i < N - 1; i++) {\n int u, v;\n cin >> u >> v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n for (int i = 0; i < 8; i++) {\n for (int j = 0; j < 8; j++) {\n memo[i][j] = solve(0, -1, 0, i, j, 0);\n }\n }\n for (int i = 0; i < M; i++) {\n int X, Y;\n cin >> X >> Y;\n int sum[2][2] = {};\n bool used[2][2] = {};\n int x = 0, y = 0;\n for (int j = 15; j >= 0; j--) {\n int a = (X >> j) & 1;\n int b = (Y >> j) & 1;\n if (a == 0 && b == 0)\n continue;\n if (!used[a][b]) {\n used[a][b] = 1;\n x <<= 1;\n y <<= 1;\n x |= a;\n y |= b;\n }\n sum[a][b] += (1 << j);\n }\n int ret = 0;\n for (int j = 0; j < 3; j++) {\n int a = (x >> j) & 1;\n int b = (y >> j) & 1;\n if ((memo[x][y] >> j) & 1) {\n ret += sum[a][b];\n }\n }\n cout << ret << '\\n';\n }\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 18620, "score_of_the_acc": -0.1139, "final_rank": 5 }, { "submission_id": "aoj_2713_5990110", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nint main(){\n int n,m; cin >> n >> m;\n vs s(n); rep(i,n-1) cin >> s[i+1];\n vvl G(n);\n rep(i,n-1){\n int u,v; cin >> u >> v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n vl nxt(4); rep(i,4) nxt[i] = i;\n int now = 0;\n vvl memo(24);\n do{\n memo[now] = nxt;\n now++;\n }while(next_permutation(all(nxt)));\n auto get_score = [&](int bit, int id){\n int res = 0;\n rep(i,4){\n if(bit>>memo[id][i]&1) res += 1<<i;\n }\n return res;\n };\n vvl b(n,vl(24,0));\n auto dfs = [&](auto &&dfs, int u, int p, int d, vl vec) -> void {\n bool leaf = true;\n if(u > 0){\n int t = s[u][4]=='X'?1:2;\n if(s[u][3] == '|'){\n vec[3] = 1; vec[t] = 1;\n }\n if(s[u][3] == '&'){\n vec[0] = 0; vec[3-t] = 0;\n }\n if(s[u][3] == '^'){\n vec[3] = 1-vec[3]; vec[t] = 1-vec[t];\n }\n }\n vector<int> score(24,(d&1)?15:0);\n for(auto v : G[u]){\n if(v == p) continue;\n leaf = false;\n dfs(dfs,v,u,1-d,vec);\n if(d == 0){\n rep(i,24){\n if(chmax(score[i],get_score(b[v][i],i))){\n b[u][i] = b[v][i];\n }\n }\n }else{\n rep(i,24){\n if(chmin(score[i],get_score(b[v][i],i))){\n b[u][i] = b[v][i];\n }\n }\n }\n }\n if(leaf){\n int bit = 0;\n rep(i,4) if(vec[i]) bit += 1<<i;\n rep(i,24) b[u][i] = bit;\n }\n };\n vl ini(4,0);\n dfs(dfs,0,-1,0,ini);\n while(m--){\n int x,y; cin >> x >> y;\n vl a(4,0);\n rep(i,16){\n a[(y>>i&1)*2+(x>>i&1)] += 1<<i;\n }\n int id = 0;\n rep(i,24){\n bool f = true;\n rep(j,3){\n if(a[memo[i][j]] > a[memo[i][j+1]]) f = false;\n }\n if(f){\n id = i;\n break;\n }\n }\n int ans = 0;\n rep(i,4) if(b[0][id]>>i&1) ans += a[i];\n cout << ans << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 65580, "score_of_the_acc": -0.3906, "final_rank": 10 }, { "submission_id": "aoj_2713_5989986", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nint main(){\n int n,m; cin >> n >> m;\n vs s(n); rep(i,n-1) cin >> s[i+1];\n vvl G(n);\n rep(i,n-1){\n int u,v; cin >> u >> v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n vvl b(n,vl(16,0));\n auto dfs = [&](auto &&dfs, int u, int p, int d, vl vec) -> void {\n if(d & 1) rep(j,16) b[u][j] = 1;\n bool leaf = true;\n if(u > 0){\n int t = s[u][4]=='X'?1:2;\n if(s[u][3] == '|'){\n vec[3] = 1; vec[t] = 1;\n }\n if(s[u][3] == '&'){\n vec[0] = 0; vec[3-t] = 0;\n }\n if(s[u][3] == '^'){\n vec[3] = 1-vec[3]; vec[t] = 1-vec[t];\n }\n }\n for(auto v : G[u]){\n if(v == p) continue;\n leaf = false;\n dfs(dfs,v,u,1-d,vec);\n if(d == 0){\n rep(i,16) b[u][i] |= b[v][i];\n }else{\n rep(i,16) b[u][i] &= b[v][i];\n }\n }\n if(leaf){\n rep(bit,1<<4){\n b[u][bit] = 1;\n rep(i,4){\n if(bit>>i&1) b[u][bit] &= vec[i];\n }\n }\n }\n };\n vl ini(4,0);\n dfs(dfs,0,-1,0,ini);\n while(m--){\n int x,y; cin >> x >> y;\n vl a(4,0);\n rep(i,16){\n a[(y>>i&1)*2+(x>>i&1)] += 1<<i;\n }\n int ans = 0;\n rep(bit,1<<4){\n if(!b[0][bit]) continue;\n int s = 0;\n rep(i,4) if(bit>>i&1) s += a[i];\n chmax(ans,s);\n }\n cout << ans << \"\\n\";\n }\n}", "accuracy": 0.0196078431372549, "time_ms": 160, "memory_kb": 28732, "score_of_the_acc": -0.1547, "final_rank": 19 }, { "submission_id": "aoj_2713_5981557", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\n//constexpr long long MOD = 1000000007;\nconstexpr long long MOD = 998244353;\nconstexpr double EPS = 1e-8;\n\n//int N, M, K, T, H, W, L, R;\nlong long int N, M, K, T, H, W, L, R;\n\nint func(vector<vector<int>>& edge, vector<int>& s, vector<int>& p, int idx, int depth = 0, int node = 0, int parent = -1) {\n\tint ret = 0;\n\tif (depth)ret = 7;\n\telse ret = 0;\n\tbool leaf = true;\n\tfor (auto i : edge[node]) {\n\t\tif (i == parent)continue;\n\t\tleaf = false;\n\t\tint nx = idx;\n\t\tif (s[i] == 1) {\n\t\t\tnx &= 3;\n\t\t}\n\t\telse if (s[i] == 2) {\n\t\t\tnx &= 5;\n\t\t}\n\t\telse if (s[i] == 3) {\n\t\t\tnx |= 3;\n\t\t}\n\t\telse if (s[i] == 4) {\n\t\t\tnx |= 5;\n\t\t}\n\t\telse if (s[i] == 5) {\n\t\t\tnx ^= 3;\n\t\t}\n\t\telse if (s[i] == 6) {\n\t\t\tnx ^= 5;\n\t\t}\n\t\tauto box = func(edge, s, p, nx, depth ^ 1, i, node);\n\t\tif (depth & 1) {\n\t\t\tif (p[ret] > p[box]) {\n\t\t\t\tret = box;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (p[ret] < p[box]) {\n\t\t\t\tret = box;\n\t\t\t}\n\t\t}\n\t}\n\tif (leaf) {\n\t\tret = idx;\n\t}\n\treturn ret;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\t// 0 a&b (a&b)^a a (a|b)^a b a^b a|b\n\tvector<int>p(8);\n\tmap<vector<int>, int>mp;\n\tfor (int i = 0; i < p.size(); i++) {\n\t\tp[i] = i;\n\t}\n\tcin >> N >> K;\n\tvector<int>s(N, 0);\n\tfor (int i = 1; i < N; i++) {\n\t\tstring t;\n\t\tcin >> t;\n\t\tif (t == \"T=T&X\") {\n\t\t\ts[i] = 1;\n\t\t}\n\t\telse if (t == \"T=T&Y\") {\n\t\t\ts[i] = 2;\n\t\t}\n\t\telse if (t == \"T=T|X\") {\n\t\t\ts[i] = 3;\n\t\t}\n\t\telse if (t == \"T=T|Y\") {\n\t\t\ts[i] = 4;\n\t\t}\n\t\telse if (t == \"T=T^X\") {\n\t\t\ts[i] = 5;\n\t\t}\n\t\telse if (t == \"T=T^Y\") {\n\t\t\ts[i] = 6;\n\t\t}\n\t}\n\tvector<vector<int>>edge(N);\n\tfor (int i = 1; i < N; i++) {\n\t\tcin >> L >> R;\n\t\tedge[L].push_back(R);\n\t\tedge[R].push_back(L);\n\t}\n\tdo {\n\t\tif (p.front())break;\n\t\tif (p.back() != 7)continue;\n\t\tif (p[1] == 6)continue;\n\t\tif (p[2] == 6)continue;\n\t\tif (p[4] == 6)continue;\n\t\tmp[p] = func(edge, s, p, 0);\n\t} while (next_permutation(p.begin(), p.end()));\n\twhile (K--) {\n\t\tcin >> L >> R;\n\t\tvector<pair<int, int>>q;\n\t\tq.push_back({ 0,0 });\n\t\tq.push_back({ L & R,1 });\n\t\tq.push_back({ (L & R) ^ L , 2 });\n\t\tq.push_back({ L, 3 });\n\t\tq.push_back({ (L | R) ^ L,4 });\n\t\tq.push_back({ R,5 });\n\t\tq.push_back({ L ^ R,6 });\n\t\tq.push_back({ L | R,7 });\n\t\tsort(q.begin(), q.end());\n\t\tvector<int>r(8);\n\t\tfor (int i = 0; i < 8; i++) {\n\t\t\tr[q[i].second] = i;\n\t\t}\n\t\tauto box = mp[r];\n\t\tif (box == 0) {\n\t\t\tcout << 0 << \"\\n\";\n\t\t}\n\t\telse if (box == 1) {\n\t\t\tcout << (L & R) << \"\\n\";\n\t\t}\n\t\telse if (box == 2) {\n\t\t\tcout << ((L & R) ^ L) << \"\\n\";\n\t\t}\n\t\telse if (box == 3) {\n\t\t\tcout << L << \"\\n\";\n\t\t}\n\t\telse if (box == 4) {\n\t\t\tcout << ((L | R) ^ L) << \"\\n\";\n\t\t}\n\t\telse if (box == 5) {\n\t\t\tcout << R << \"\\n\";\n\t\t}\n\t\telse if (box == 6) {\n\t\t\tcout << (L ^ R) << \"\\n\";\n\t\t}\n\t\telse if (box == 7) {\n\t\t\tcout << (L | R) << \"\\n\";\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 1020, "memory_kb": 19984, "score_of_the_acc": -0.5538, "final_rank": 11 }, { "submission_id": "aoj_2713_5981525", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\n//constexpr long long MOD = 1000000007;\nconstexpr long long MOD = 998244353;\nconstexpr double EPS = 1e-8;\n\n//int N, M, K, T, H, W, L, R;\nlong long int N, M, K, T, H, W, L, R;\n\nint func(vector<vector<int>>& edge, vector<int>& s, vector<int>& p, int idx, int depth = 0, int node = 0, int parent = -1) {\n\tint ret = 0;\n\tif (depth & 1)ret = 7;\n\telse ret = 0;\n\tbool leaf = true;\n\tfor (auto i : edge[node]) {\n\t\tif (i == parent)continue;\n\t\tleaf = false;\n\t\tint nx = idx;\n\t\tif (s[i] == 1) {\n\t\t\tnx &= 3;\n\t\t}\n\t\tif (s[i] == 2) {\n\t\t\tnx &= 5;\n\t\t}\n\t\tif (s[i] == 3) {\n\t\t\tnx |= 3;\n\t\t}\n\t\tif (s[i] == 4) {\n\t\t\tnx |= 5;\n\t\t}\n\t\tif (s[i] == 5) {\n\t\t\tnx ^= 3;\n\t\t}\n\t\tif (s[i] == 6) {\n\t\t\tnx ^= 5;\n\t\t}\n\t\tauto box = func(edge, s, p, nx, depth+1,i, node);\n\t\tif (depth & 1) {\n\t\t\tif (p[ret] > p[box]) {\n\t\t\t\tret = box;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (p[ret] < p[box]) {\n\t\t\t\tret = box;\n\t\t\t}\n\t\t}\n\t}\n\tif (leaf) {\n\t\tret = idx;\n\t}\n//\tcout << ret << endl;\n\treturn ret;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\t// 0 a&b (a&b)^a a (a|b)^a b a^b a|b\n\tvector<int>p(8);\n\tmap<vector<int>, int>mp;\n\tfor (int i = 0; i < p.size(); i++) {\n\t\tp[i] = i;\n\t}\n\tcin >> N >> K;\n\tvector<int>s(N, 0);\n\tfor (int i = 1; i < N; i++) {\n\t\tstring t;\n\t\tcin >> t;\n\t\tif (t == \"T=T&X\") {\n\t\t\ts[i] = 1;\n\t\t}\n\t\tif (t == \"T=T&Y\") {\n\t\t\ts[i] = 2;\n\t\t}\n\t\tif (t == \"T=T|X\") {\n\t\t\ts[i] = 3;\n\t\t}\n\t\tif (t == \"T=T|Y\") {\n\t\t\ts[i] = 4;\n\t\t}\n\t\tif (t == \"T=T^X\") {\n\t\t\ts[i] = 5;\n\t\t}\n\t\tif (t == \"T=T^Y\") {\n\t\t\ts[i] = 6;\n\t\t}\n\t}\n\tvector<vector<int>>edge(N);\n\tfor (int i = 1; i < N; i++) {\n\t\tcin >> L >> R;\n\t\tedge[L].push_back(R);\n\t\tedge[R].push_back(L);\n\t}\n\tdo {\n\t\tif (p.front())break;\n\t\tif (p.back() != 7)continue;\n\t\tmp[p] = func(edge, s, p, 0);\n\t//\tfor (auto i : p)cout << i << \" \";\n\t//\tcout << endl;\n\t//\tcout << mp[p] << endl;\n\t} while (next_permutation(p.begin(), p.end()));\n\twhile (K--) {\n\t\tcin >> L >> R;\n\t\tvector<pair<int, int>>q;\n\t\tq.push_back({ 0,0 });\n\t\tq.push_back({ L & R,1 });\n\t\tq.push_back({ (L & R) ^ L , 2 });\n\t\tq.push_back({ L, 3 });\n\t\tq.push_back({ (L | R) ^ L,4 });\n\t\tq.push_back({ R,5 });\n\t\tq.push_back({ L ^ R,6 });\n\t\tq.push_back({ L | R,7 });\n\t\tsort(q.begin(), q.end());\n\t\tvector<int>r(8);\n\t\tfor (int i = 0; i < 8; i++) {\n\t\t\tr[q[i].second] = i;\n\t\t}\n\t\tauto box = mp[r];\n\t\tif (box == 0) {\n\t\t\tcout << 0 << \"\\n\";\n\t\t}\n\t\telse if (box == 1) {\n\t\t\tcout << (L & R) << \"\\n\";\n\t\t}\n\t\telse if (box == 2) {\n\t\t\tcout << ((L & R) ^ L) << \"\\n\";\n\t\t}\n\t\telse if (box == 3) {\n\t\t\tcout << L << \"\\n\";\n\t\t}\n\t\telse if (box == 4) {\n\t\t\tcout << ((L | R) ^ L) << \"\\n\";\n\t\t}\n\t\telse if (box == 5) {\n\t\t\tcout << R << \"\\n\";\n\t\t}\n\t\telse if (box == 6) {\n\t\t\tcout << (L ^ R) << \"\\n\";\n\t\t}\n\t\telse if (box == 7) {\n\t\t\tcout << (L | R) << \"\\n\";\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 1970, "memory_kb": 19976, "score_of_the_acc": -1.0538, "final_rank": 13 }, { "submission_id": "aoj_2713_5791385", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2021.08.16 12:53:59 */\n\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region macros\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define popcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\n#pragma endregion\n\n#pragma region aliases\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nconst int inf = 1e9;\nconst long long INF = 1e18;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nconst char sp = ' ';\nint dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nint dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n\nconst int mod_1000000007 = 1000000007;\nconst int mod_998244353 = 998244353;\n\n#pragma endregion\n\n#pragma region basic_operation\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { std::cout << (f ? \"Yes\" : \"No\") << '\\n'; }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(bool f = 1) { std::cout << (f ? \"YES\" : \"NO\") << '\\n'; }\nvoid NO() { std::cout << \"NO\\n\"; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\nvoid err(bool flag = true) {\n\tif(!flag) return;\n\tstd::cout << -1 << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(T x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T val) {\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\treturn (a + b - 1) / b;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) { // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(std::vector<T> &a) {\n\tauto vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\nnamespace viewer {\nvoid view(const long long e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tstd::cerr << \", \";\n\t\tview(c.second);\n\t\tstd::cerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n} // namespace viewer\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tviewer::view(x); \\\n\t\tstd::cerr << '\\n'; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\n#pragma region graph\n\nstruct Edge {\n\tint to;\n\tlong long cost;\n\tEdge() = default;\n\tEdge(int to_, long long cost_) : to(to_), cost(cost_) {}\n\tbool operator<(const Edge &a) const { return cost < a.cost; }\n\tbool operator>(const Edge &a) const { return cost > a.cost; }\n\tfriend std::ostream &operator<<(std::ostream &s, Edge &a) {\n\t\ts << \"to: \" << a.to << \", cost: \" << a.cost;\n\t\treturn s;\n\t}\n};\n\nclass Graph {\n\tstd::vector<std::vector<Edge>> edges;\n\npublic:\n\tinline const std::vector<Edge> &operator[](int k) const { return edges[k]; }\n\tinline std::vector<Edge> &operator[](int k) { return edges[k]; }\n\n\tint size() const { return edges.size(); }\n\tvoid resize(const int n) { edges.resize(n); }\n\n\tGraph() = default;\n\tGraph(int n) : edges(n) {}\n\tGraph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); }\n\tconst long long INF = 3e18;\n\n\tvoid input(int e = -1, bool weight = 0, bool directed = false, int idx = 1) {\n\t\tif(e == -1) e = size() - 1;\n\t\twhile(e--) {\n\t\t\tint u, v;\n\t\t\tlong long cost = 1;\n\t\t\tstd::cin >> u >> v;\n\t\t\tif(weight) std::cin >> cost;\n\t\t\tu -= idx, v -= idx;\n\t\t\tedges[u].emplace_back(v, cost);\n\t\t\tif(!directed) edges[v].emplace_back(u, cost);\n\t\t}\n\t}\n\n\tvoid add_edge(int u, int v, long long cost = 1, bool directed = false, int idx = 0) {\n\t\tu -= idx, v -= idx;\n\t\tedges[u].emplace_back(v, cost);\n\t\tif(!directed) edges[v].emplace_back(u, cost);\n\t}\n\n\t// Ο(V+E)\n\tstd::vector<long long> bfs(int s) {\n\t\tstd::vector<long long> dist(size(), INF);\n\t\tstd::queue<int> que;\n\t\tdist[s] = 0;\n\t\tque.push(s);\n\t\twhile(!que.empty()) {\n\t\t\tint v = que.front();\n\t\t\tque.pop();\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] != INF) continue;\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tque.push(e.to);\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(V+E)\n\t// constraint: cost of each edge is zero or one\n\tstd::vector<long long> zero_one_bfs(int s) {\n\t\tstd::vector<long long> dist(size(), INF);\n\t\tstd::deque<int> deq;\n\t\tdist[s] = 0;\n\t\tdeq.push_back(s);\n\t\twhile(!deq.empty()) {\n\t\t\tint v = deq.front();\n\t\t\tdeq.pop_front();\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tassert(0LL <= e.cost and e.cost < 2LL);\n\t\t\t\tif(e.cost and dist[e.to] > dist[v] + 1) {\n\t\t\t\t\tdist[e.to] = dist[v] + 1;\n\t\t\t\t\tdeq.push_back(e.to);\n\t\t\t\t} else if(!e.cost and dist[e.to] > dist[v]) {\n\t\t\t\t\tdist[e.to] = dist[v];\n\t\t\t\t\tdeq.push_front(e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο((E+V)logV)\n\t// cannot reach: INF\n\tstd::vector<long long> dijkstra(int s) { // verified\n\t\tstd::vector<long long> dist(size(), INF);\n\t\tconst auto compare = [](const std::pair<long long, int> &a, const std::pair<long long, int> &b) { return a.first > b.first; };\n\t\tstd::priority_queue<std::pair<long long, int>, std::vector<std::pair<long long, int>>, decltype(compare)> que{compare};\n\t\tdist[s] = 0;\n\t\tque.emplace(0, s);\n\t\twhile(!que.empty()) {\n\t\t\tstd::pair<long long, int> p = que.top();\n\t\t\tque.pop();\n\t\t\tint v = p.second;\n\t\t\tif(dist[v] < p.first) continue;\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] > dist[v] + e.cost) {\n\t\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\t\tque.emplace(dist[e.to], e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(VE)\n\t// cannot reach: INF\n\t// negative cycle: -INF\n\tstd::vector<long long> bellman_ford(int s) { // verified\n\t\tint n = size();\n\t\tstd::vector<long long> res(n, INF);\n\t\tres[s] = 0;\n\t\tfor(int loop = 0; loop < n - 1; loop++) {\n\t\t\tfor(int v = 0; v < n; v++) {\n\t\t\t\tif(res[v] == INF) continue;\n\t\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\t\tres[e.to] = std::min(res[e.to], res[v] + e.cost);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tstd::queue<int> que;\n\t\tstd::vector<int> chk(n);\n\t\tfor(int v = 0; v < n; v++) {\n\t\t\tif(res[v] == INF) continue;\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(res[e.to] > res[v] + e.cost and !chk[e.to]) {\n\t\t\t\t\tque.push(e.to);\n\t\t\t\t\tchk[e.to] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\twhile(!que.empty()) {\n\t\t\tint now = que.front();\n\t\t\tque.pop();\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(!chk[e.to]) {\n\t\t\t\t\tchk[e.to] = 1;\n\t\t\t\t\tque.push(e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tif(chk[i]) res[i] = -INF;\n\t\treturn res;\n\t}\n\n\t// Ο(V^3)\n\tstd::vector<std::vector<long long>> warshall_floyd() { // verified\n\t\tint n = size();\n\t\tstd::vector<std::vector<long long>> dist(n, std::vector<long long>(n, INF));\n\t\tfor(int i = 0; i < n; i++) dist[i][i] = 0;\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tfor(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost);\n\t\tfor(int k = 0; k < n; k++)\n\t\t\tfor(int i = 0; i < n; i++) {\n\t\t\t\tif(dist[i][k] == INF) continue;\n\t\t\t\tfor(int j = 0; j < n; j++) {\n\t\t\t\t\tif(dist[k][j] == INF) continue;\n\t\t\t\t\tdist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);\n\t\t\t\t}\n\t\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(V) (using DFS)\n\t// if a directed cycle exists, return {}\n\tstd::vector<int> topological_sort() { // verified\n\t\tstd::vector<int> res;\n\t\tint n = size();\n\t\tstd::vector<int> used(n, 0);\n\t\tbool not_DAG = false;\n\t\tauto dfs = [&](auto self, int k) -> void {\n\t\t\tif(not_DAG) return;\n\t\t\tif(used[k]) {\n\t\t\t\tif(used[k] == 1) not_DAG = true;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\tused[k] = 1;\n\t\t\tfor(auto &e : edges[k]) self(self, e.to);\n\t\t\tused[k] = 2;\n\t\t\tres.push_back(k);\n\t\t};\n\t\tfor(int i = 0; i < n; i++) dfs(dfs, i);\n\t\tif(not_DAG) return std::vector<int>{};\n\t\tstd::reverse(res.begin(), res.end());\n\t\treturn res;\n\t}\n\n\tbool is_DAG() { return !topological_sort().empty(); } // verified\n\n\t// Ο(V)\n\t// array of the distance from each vertex to the most distant vertex\n\tstd::vector<long long> height() { // verified\n\t\tauto vec1 = bfs(0);\n\t\tint v1 = -1, v2 = -1;\n\t\tlong long dia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec1[i]) dia = vec1[i], v1 = i;\n\t\tvec1 = bfs(v1);\n\t\tdia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec1[i]) dia = vec1[i], v2 = i;\n\t\tauto vec2 = bfs(v2);\n\t\tfor(int i = 0; i < int(size()); i++) {\n\t\t\tif(vec1[i] < vec2[i]) vec1[i] = vec2[i];\n\t\t}\n\t\treturn vec1;\n\t}\n\n\t// O(V+E)\n\t// vector<(int)(0 or 1)>\n\t// if it is not bipartite, return {}\n\tstd::vector<int> bipartite_grouping() {\n\t\tstd::vector<int> colors(size(), -1);\n\t\tauto dfs = [&](auto self, int now, int col) -> bool {\n\t\t\tcolors[now] = col;\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(col == colors[e.to]) return false;\n\t\t\t\tif(colors[e.to] == -1 and !self(self, e.to, !col)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t};\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(!colors[i] and !dfs(dfs, i, 0)) return std::vector<int>{};\n\t\treturn colors;\n\t}\n\n\tbool is_bipartite() { return !bipartite_grouping().empty(); }\n\n\t// Ο(V+E)\n\t// ((v1, v2), diameter)\n\tstd::pair<std::pair<int, int>, long long> diameter() { // verified\n\t\tauto vec = bfs(0);\n\t\tint v1 = -1, v2 = -1;\n\t\tlong long dia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec[i]) dia = vec[i], v1 = i;\n\t\tvec = bfs(v1);\n\t\tdia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec[i]) dia = vec[i], v2 = i;\n\t\tstd::pair<std::pair<int, int>, long long> res = {{v1, v2}, dia};\n\t\treturn res;\n\t}\n\n\t// Ο(ElogV)\n\tlong long prim() { // verified\n\t\tlong long res = 0;\n\t\tstd::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> que;\n\t\tfor(auto &e : edges[0]) que.push(e);\n\t\tstd::vector<int> chk(size());\n\t\tchk[0] = 1;\n\t\tint cnt = 1;\n\t\twhile(cnt < size()) {\n\t\t\tauto e = que.top();\n\t\t\tque.pop();\n\t\t\tif(chk[e.to]) continue;\n\t\t\tcnt++;\n\t\t\tres += e.cost;\n\t\t\tchk[e.to] = 1;\n\t\t\tfor(auto &e2 : edges[e.to]) que.push(e2);\n\t\t}\n\t\treturn res;\n\t}\n\n\t// Ο(ElogE)\n\tlong long kruskal() { // verified\n\t\tstd::vector<std::tuple<int, int, long long>> Edges;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tfor(auto &e : edges[i]) Edges.emplace_back(i, e.to, e.cost);\n\t\tstd::sort(Edges.begin(), Edges.end(), [](const std::tuple<int, int, long long> &a, const std::tuple<int, int, long long> &b) {\n\t\t\treturn std::get<2>(a) < std::get<2>(b);\n\t\t});\n\t\tstd::vector<int> uf_data(size(), -1);\n\t\tauto root = [&uf_data](auto self, int x) -> int {\n\t\t\tif(uf_data[x] < 0) return x;\n\t\t\treturn uf_data[x] = self(self, uf_data[x]);\n\t\t};\n\t\tauto unite = [&uf_data, &root](int u, int v) -> bool {\n\t\t\tu = root(root, u), v = root(root, v);\n\t\t\tif(u == v) return false;\n\t\t\tif(uf_data[u] > uf_data[v]) std::swap(u, v);\n\t\t\tuf_data[u] += uf_data[v];\n\t\t\tuf_data[v] = u;\n\t\t\treturn true;\n\t\t};\n\t\tlong long ret = 0;\n\t\tfor(auto &e : Edges)\n\t\t\tif(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e);\n\t\treturn ret;\n\t}\n\n\t// O(V)\n\tstd::vector<int> centroid() {\n\t\tint n = size();\n\t\tstd::vector<int> centroid, sz(n);\n\t\tauto dfs = [&](auto self, int now, int per) -> void {\n\t\t\tsz[now] = 1;\n\t\t\tbool is_centroid = true;\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(e.to != per) {\n\t\t\t\t\tself(self, e.to, now);\n\t\t\t\t\tsz[now] += sz[e.to];\n\t\t\t\t\tif(sz[e.to] > n / 2) is_centroid = false;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(n - sz[now] > n / 2) is_centroid = false;\n\t\t\tif(is_centroid) centroid.push_back(now);\n\t\t};\n\t\tdfs(dfs, 0, -1);\n\t\treturn centroid;\n\t}\n\n\t// Ο(V+E)\n\t// directed graph from root to leaf\n\tGraph root_to_leaf(int root = 0) {\n\t\tGraph res(size());\n\t\tstd::vector<int> chk(size(), 0);\n\t\tchk[root] = 1;\n\t\tauto dfs = [&](auto self, int now) -> void {\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(chk[e.to] == 1) continue;\n\t\t\t\tchk[e.to] = 1;\n\t\t\t\tres.add_edge(now, e.to, e.cost, 1, 0);\n\t\t\t\tself(self, e.to);\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn res;\n\t}\n\n\t// Ο(V+E)\n\t// directed graph from leaf to root\n\tGraph leaf_to_root(int root = 0) {\n\t\tGraph res(size());\n\t\tstd::vector<int> chk(size(), 0);\n\t\tchk[root] = 1;\n\t\tauto dfs = [&](auto self, int now) -> void {\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(chk[e.to] == 1) continue;\n\t\t\t\tchk[e.to] = 1;\n\t\t\t\tres.add_edge(e.to, now, e.cost, 1, 0);\n\t\t\t\tself(self, e.to);\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn res;\n\t}\n\n\t// long long Chu_Liu_Edmonds(int root = 0) {}\n};\n\nstruct tree_doubling {\nprivate:\n\tstd::vector<std::vector<int>> parent;\n\tstd::vector<int> depth;\n\tstd::vector<long long> dist;\n\tint max_jump = 1;\n\n\tvoid build() {\n\t\tfor(int i = 0; i < max_jump - 1; i++) {\n\t\t\tfor(int v = 0; v < (int)dist.size(); v++) {\n\t\t\t\tif(parent[i][v] == -1)\n\t\t\t\t\tparent[i + 1][v] = -1;\n\t\t\t\telse\n\t\t\t\t\tparent[i + 1][v] = parent[i][parent[i][v]];\n\t\t\t}\n\t\t}\n\t}\n\npublic:\n\ttree_doubling() = default;\n\ttree_doubling(const Graph &g, const int root = 0) : dist(g.size()), depth(g.size()) {\n\t\tint n = g.size();\n\t\twhile((1 << max_jump) < n) max_jump++;\n\t\tparent.assign(max_jump, std::vector<int>(n, -1));\n\t\tauto dfs = [&](auto self, int now, int per, int d, long long cost) -> void {\n\t\t\tparent[0][now] = per;\n\t\t\tdepth[now] = d;\n\t\t\tdist[now] = cost;\n\t\t\tfor(auto &e : g[now])\n\t\t\t\tif(e.to != per) self(self, e.to, now, d + 1, cost + e.cost);\n\t\t};\n\t\tdfs(dfs, root, -1, 0, 0LL);\n\t\tbuild();\n\t}\n\n\tint lowest_common_ancestor(int u, int v) {\n\t\tif(depth[u] < depth[v]) std::swap(u, v);\n\t\tint k = parent.size();\n\t\tfor(int i = 0; i < k; i++)\n\t\t\tif((depth[u] - depth[v]) >> i & 1) u = parent[i][u];\n\t\tif(u == v) return u;\n\t\tfor(int i = k - 1; i >= 0; i--)\n\t\t\tif(parent[i][u] != parent[i][v]) u = parent[i][u], v = parent[i][v];\n\t\treturn parent[0][u];\n\t}\n\n\tlong long length_of_path(const int u, const int v) { return dist[u] + dist[v] - dist[lowest_common_ancestor(u, v)] * 2; }\n\n\tint level_ancestor(int v, int level) {\n\t\tassert(level >= 0);\n\t\tfor(int jump = 0; jump < max_jump and level; jump++) {\n\t\t\tif(level & 1) v = parent[jump][v];\n\t\t\tlevel >>= 1;\n\t\t}\n\t\treturn v;\n\t}\n};\n\nstruct strongly_connected_components {\nprivate:\n\tenum { CHECKED = -1,\n\t\t UNCHECKED = -2 };\n\tconst Graph &graph_given;\n\tGraph graph_reversed;\n\tstd::vector<int> order, group_number; /* at the beginning of the building, 'group_number' is used as 'checked' */\n\n\tvoid dfs(int now) {\n\t\tif(group_number[now] != UNCHECKED) return;\n\t\tgroup_number[now] = CHECKED;\n\t\tfor(auto &e : graph_given[now]) dfs(e.to);\n\t\torder.push_back(now);\n\t}\n\n\tvoid rdfs(int now, int group_count) {\n\t\tif(group_number[now] != UNCHECKED) return;\n\t\tgroup_number[now] = group_count;\n\t\tfor(auto &e : graph_reversed[now]) rdfs(e.to, group_count);\n\t}\n\n\tvoid build(bool create_compressed_graph) {\n\t\tfor(int i = 0; i < (int)graph_given.size(); i++) dfs(i);\n\t\treverse(order.begin(), order.end());\n\t\tgroup_number.assign(graph_given.size(), UNCHECKED);\n\t\tint group = 0;\n\t\tfor(auto &i : order)\n\t\t\tif(group_number[i] == UNCHECKED) rdfs(i, group), group++;\n\t\tgraph_compressed.resize(group);\n\t\tgroups.resize(group);\n\t\tfor(int i = 0; i < (int)graph_given.size(); i++) groups[group_number[i]].push_back(i);\n\t\tif(create_compressed_graph) {\n\t\t\tstd::vector<int> edges(group, -1);\n\t\t\tfor(int i = 0; i < group; i++)\n\t\t\t\tfor(auto &vertex : groups[i])\n\t\t\t\t\tfor(auto &e : graph_given[vertex])\n\t\t\t\t\t\tif(group_number[e.to] != i and edges[group_number[e.to]] != i) {\n\t\t\t\t\t\t\tedges[group_number[e.to]] = i;\n\t\t\t\t\t\t\tgraph_compressed[i].emplace_back(group_number[e.to], 1);\n\t\t\t\t\t\t}\n\t\t}\n\t\treturn;\n\t}\n\npublic:\n\tstd::vector<std::vector<int>> groups;\n\tGraph graph_compressed;\n\n\tstrongly_connected_components(const Graph &g_, bool create_compressed_graph = false)\n\t : graph_given(g_), graph_reversed(g_.size()), group_number(g_.size(), UNCHECKED) {\n\t\tfor(size_t i = 0; i < g_.size(); i++)\n\t\t\tfor(auto &e : graph_given[i]) graph_reversed[e.to].emplace_back(i, 1);\n\t\tbuild(create_compressed_graph);\n\t}\n\n\tconst int &operator[](const int k) { return group_number[k]; }\n};\n\nstruct low_link {\nprivate:\n\tconst Graph &graph_given;\n\tint order_next;\n\n\tvoid build() {\n\t\tint n = graph_given.size();\n\t\torder.resize(n, -1);\n\t\tlow.resize(n);\n\t\torder_next = 0;\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tif(order[i] == -1) dfs(i);\n\t}\n\n\tvoid dfs(int now, int par = -1) {\n\t\tlow[now] = order[now] = order_next++;\n\t\tbool is_articulation = false;\n\t\tint cnt = 0, cnt_par = 0;\n\t\tfor(const auto &ed : graph_given[now]) {\n\t\t\tconst int &nxt = ed.to;\n\t\t\tif(order[nxt] == -1) {\n\t\t\t\tcnt++;\n\t\t\t\tdfs(nxt, now);\n\t\t\t\tif(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt));\n\t\t\t\tif(order[now] <= low[nxt]) is_articulation = true;\n\t\t\t\tlow[now] = std::min(low[now], low[nxt]);\n\t\t\t} else if(nxt != par or cnt_par++ == 1) {\n\t\t\t\tlow[now] = std::min(low[now], order[nxt]);\n\t\t\t}\n\t\t}\n\t\tif(par == -1 and cnt < 2) is_articulation = false;\n\t\tif(is_articulation) articulation.push_back(now);\n\t\treturn;\n\t}\n\npublic:\n\tstd::vector<int> order, low, articulation;\n\tstd::vector<std::pair<int, int>> bridge;\n\tlow_link() = default;\n\tlow_link(const Graph &g_) : graph_given(g_) { build(); }\n};\n\nstruct twoedge_connected_components {\nprivate:\n\tconst Graph &graph_given;\n\tint group_next;\n\tlow_link li;\n\tstd::vector<int> group_number;\n\n\tvoid build(bool create_compressed_graph) {\n\t\tint n = graph_given.size();\n\t\tgroup_number.resize(n, -1);\n\t\tgroup_next = 0;\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tif(group_number[i] == -1) dfs(i);\n\t\tgroups.resize(group_next);\n\t\tfor(int i = 0; i < graph_given.size(); i++) groups[group_number[i]].push_back(i);\n\n\t\tif(create_compressed_graph) {\n\t\t\tgraph_compressed.resize(group_next);\n\t\t\tfor(const auto &[u, v] : li.bridge) {\n\t\t\t\tint x = group_number[u], y = group_number[v];\n\t\t\t\tgraph_compressed.add_edge(x, y);\n\t\t\t}\n\t\t}\n\t}\n\n\tvoid dfs(int now, int par = -1) {\n\t\tif(par != -1 and li.order[par] >= li.low[now])\n\t\t\tgroup_number[now] = group_number[par];\n\t\telse\n\t\t\tgroup_number[now] = group_next++;\n\t\tfor(const auto &e : graph_given[now])\n\t\t\tif(group_number[e.to] == -1) dfs(e.to, now);\n\t}\n\npublic:\n\tGraph graph_compressed;\n\tstd::vector<std::vector<int>> groups;\n\ttwoedge_connected_components(const Graph &g_, bool create_compressed_graph = false) : graph_given(g_), li(g_) {\n\t\tbuild(create_compressed_graph);\n\t}\n\n\tconst int &operator[](const int k) { return group_number[k]; }\n};\n\n#pragma endregion\n\nint main() {\n\tstd::ios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tstd::cout << std::fixed << std::setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tint n, m;\n\tcin >> n >> m;\n\n\tVEC(string, s, n - 1);\n\n\tGraph G(n);\n\n\trep(n - 1) {\n\t\tINT(a, b);\n\t\tG.add_edge(a, b);\n\t}\n\n\tauto g = G.root_to_leaf(0);\n\n\tconst int x = 3;\n\tconst int y = 5;\n\n\tconst int root = 0;\n\tvi val(n);\n\n\tauto calc_val = [&](auto dfs, int now, int res_par = 0) -> void {\n\t\tint ret = res_par;\n\t\tif(now) {\n\t\t\tauto &t = s[now - 1];\n\t\t\tint op = (t[4] == 'X' ? x : y);\n\t\t\tif(t[3] == '&') {\n\t\t\t\tret &= op;\n\t\t\t} else if(t[3] == '|') {\n\t\t\t\tret |= op;\n\t\t\t} else if(t[3] == '^') {\n\t\t\t\tret ^= op;\n\t\t\t}\n\t\t}\n\t\tval[now] = ret;\n\t\tfoa(e, g[now]) {\n\t\t\tdfs(dfs, e.to, ret);\n\t\t}\n\t\treturn;\n\t};\n\tcalc_val(calc_val, 0, 0);\n\tdebug(val);\n\n\tvi updn(8);\n\tauto dfs = [&](auto dfs, int now = 0, int senteban = true) -> int {\n\t\tif(g[now].size() == 0) return updn[val[now]];\n\t\tint ret = senteban ? -2 : 2;\n\t\tfoa(e, g[now]) {\n\t\t\tint res = dfs(dfs, e.to, !senteban);\n\t\t\tif(senteban) chmax(ret, res);\n\t\t\tif(!senteban) chmin(ret, res);\n\t\t}\n\t\tassert(abs(ret) < 2);\n\t\treturn ret;\n\t};\n\n\tmap<vector<int>, int> res;\n\n\tauto chk = [&](vi w) {\n\t\tif(find(w.begin(), w.end(), 0) == w.end()) return false;\n\t\trep(i, 8) rep(j, 8) if(i == (j & i) and w[j] < w[i]) if(w[j] < w[i]) return false;\n\t\treturn true;\n\t};\n\n\tauto f = [&](auto f, int i) -> void {\n\t\tif(i == 8) {\n\t\t\tif(chk(updn)) res[updn] = int(dfs(dfs) >= 0);\n\t\t\treturn;\n\t\t}\n\t\trep(nxt, -1, 2) {\n\t\t\tupdn[i] = nxt;\n\t\t\tf(f, i + 1);\n\t\t}\n\t\treturn;\n\t};\n\tf(f, 0);\n\n\tvi ans;\n\trep(m) {\n\t\tint u, v;\n\t\tcin >> u >> v;\n\t\tarray<int, 8> arr;\n\t\tarr[0] = 0;\n\t\tarr[1] = u & v;\n\t\tarr[2] = u & (u ^ v);\n\t\tarr[3] = u;\n\t\tarr[4] = v & (u ^ v);\n\t\tarr[5] = v;\n\t\tarr[6] = u ^ v;\n\t\tarr[7] = u | v;\n\n\t\tint tmp = -inf;\n\t\trep(det, 8) {\n\t\t\trep(i, 8) { updn[i] = arr[i] < arr[det] ? -1 : arr[i] == arr[det] ? 0 : 1; }\n\t\t\tassert(res.count(updn));\n\t\t\tdebug(res[updn]);\n\t\t\tif(res[updn]) {\n\t\t\t\tchmax(tmp, arr[det]);\n\t\t\t}\n\t\t}\n\t\tans.push_back(tmp);\n\t}\n\tassert(ans.size() == m);\n\tvout(ans, 1);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 29528, "score_of_the_acc": -0.2385, "final_rank": 9 } ]
aoj_2711_cpp
ほぼ周期文字列 文字列 S が与えられる。この文字列 S に対し、 Q 個のクエリに答えよ。 i 番目のクエリでは、 S[l_i,\ r_i] から1文字まで変えてよいとき、 S[l_i,\ r_i] を周期 t_i の文字列にできるかどうかを判定せよ。 S[l,\ r] は文字列 S の l 文字目から r 文字目までの部分文字列を表す。 文字列 W が周期 t の文字列であるとは、 i\ =\ 1,\2,\... ,\ |W| − t に対し、 W_{i} = W_{i+t} となることとする。 Constraints 1 ≤ |S| ≤ 10^5 1 ≤ Q ≤ 10^5 1 ≤ l_i ≤ r_i ≤ |S| 1 ≤ t_i ≤ r_i − l_i+1 S はアルファベットの小文字のみからなる Input Format 入力は以下の形式で標準入力から与えられる。 S Q l_1 r_1 t_1 ... l_Q r_Q t_Q Output Format Q 行にわたって出力せよ。 i 行目には、 i 番目のクエリの答えを Yes または No で出力せよ。 Sample Input 1 abcabcaxcabc 4 1 9 3 8 12 3 1 4 2 2 3 2 Sample Output 1 Yes Yes No Yes Sample Input 2 isuruu 4 3 6 1 3 6 2 3 6 3 2 4 1 Sample Output 2 Yes Yes Yes No
[ { "submission_id": "aoj_2711_9799895", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nnamespace Random {\nmt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count());\nusing u64 = unsigned long long;\nu64 get() {\n return randgen();\n}\ntemplate <typename T> T get(T L) { // [0,L]\n\n return get() % (L + 1);\n}\ntemplate <typename T> T get(T L, T R) { // [L,R]\n\n return get(R - L) + L;\n}\n}; // namespace Random\n\n/**\n * @brief Random\n */\n\nstruct RollingHash {\n using ull = unsigned long long;\n const ull MOD = 0x1fffffffffffffff;\n const ull base;\n vector<ull> hashed, power;\n\n static constexpr ull mask(ll a) { return (1ULL << a) - 1; }\n\n inline ull mul(ull a, ull b) const {\n __uint128_t ans = __uint128_t(a) * b;\n ans = (ans >> 61) + (ans & MOD);\n if (ans >= MOD)\n ans -= MOD;\n return ans;\n }\n\n static inline ull genbase() { return Random::get(ull(0x1fffffffffffffff)); }\n RollingHash() = default;\n\n RollingHash(const string &s, ull base) : base(base) {\n ll n = s.size();\n hashed.assign(n + 1, 0);\n power.assign(n + 1, 0);\n power[0] = 1;\n for (ll i = 0; i < n; i++) {\n power[i + 1] = mul(power[i], base);\n hashed[i + 1] = mul(hashed[i], base) + s[i];\n if (hashed[i + 1] >= MOD)\n hashed[i + 1] -= MOD;\n }\n }\n\n ull get(ll l, ll r) const {\n ull ret = hashed[r] + MOD - mul(hashed[l], power[r - l]);\n if (ret >= MOD)\n ret -= MOD;\n return ret;\n }\n\n ull connect(ull h1, ull h2, ll h2len) const {\n ull ret = mul(h1, power[h2len]) + h2;\n if (ret >= MOD)\n ret -= MOD;\n return ret;\n }\n\n void connect(const string &s) {\n ll n = hashed.size() - 1, m = s.size();\n hashed.resize(n + m + 1);\n power.resize(n + m + 1);\n for (ll i = n; i < n + m; i++) {\n power[i + 1] = mul(power[i], base);\n hashed[i + 1] = mul(hashed[i], base) + s[i - n];\n if (hashed[i + 1] >= MOD)\n hashed[i + 1] -= MOD;\n }\n }\n\n ll LCP(const RollingHash &b, ll l1, ll r1, ll l2, ll r2) {\n ll len = min(r1 - l1, r2 - l2);\n ll low = -1, high = len + 1;\n while (high - low > 1) {\n ll mid = (low + high) / 2;\n if (get(l1, l1 + mid) == b.get(l2, l2 + mid))\n low = mid;\n else\n high = mid;\n }\n return low;\n }\n};\n\n/**\n * @brief Rolling Hash\n */\n\nint main() {\n string S;\n cin >> S;\n ull base = RollingHash::genbase();\n RollingHash H(S,1000);\n int Q;\n cin >> Q;\n while(Q--) {\n int L, R, T;\n cin >> L >> R >> T;\n L--;\n if (H.get(L,R-T) == H.get(L+T,R)) {\n cout << \"Yes\" << endl;\n continue;\n }\n int X = H.LCP(H,L,R-T,L+T,R);\n int Left = L+X, Right = L+X+T;\n auto getChangedHash = [&](int l, int r, int from, int to) -> ull {\n ull Cur = H.get(l,r);\n if (l <= from && from < r) {\n Cur += H.MOD - H.mul((ull)S[from],H.power[r-1-from]);\n if (Cur >= H.MOD) Cur -= H.MOD;\n Cur += H.mul((ull)S[to],H.power[r-1-from]);\n if (Cur >= H.MOD) Cur -= H.MOD;\n }\n return Cur;\n };\n bool check = false;\n if (getChangedHash(L,R-T,Left,Right) == getChangedHash(L+T,R,Left,Right)) check = true;\n if (getChangedHash(L,R-T,Right,Left) == getChangedHash(L+T,R,Right,Left)) check = true;\n cout << (check ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 5008, "score_of_the_acc": -0.1013, "final_rank": 2 }, { "submission_id": "aoj_2711_7242397", "code_snippet": "#include <iostream>\n#include <string>\n#include <algorithm>\nusing namespace std;\n\nstruct Data {\n\tpair<long long, long long> key;\n\tpair<int, int> val;\n};\n\nbool operator<(const Data &a1, const Data &a2) {\n\tif (a1.key < a2.key) return true;\n\tif (a1.key > a2.key) return false;\n\tif (a1.val < a2.val) return true;\n\treturn false;\n}\n\nbool operator==(const Data &a1, const Data &a2) {\n\tif (a1.key == a2.key && a1.val == a2.val) return true;\n\treturn false;\n}\n\nconst long long mod1 = 2000000011;\nconst long long mod2 = 2147483647;\nconst long long BASE = 233;\nstring S;\nlong long N, Q, L[100009], R[100009], T[100009];\nlong long Hash1[100009], Pow1[100009];\nlong long Hash2[100009], Pow2[100009];\nData Map[5200009]; int DataCount = 0;\n\nlong long modpow(long long a, long long b, long long m) {\n\tlong long p = 1, q = a;\n\tfor (int i = 0; i < 60; i++) {\n\t\tif ((b / (1LL << i)) % 2LL == 1) { p *= q; p %= m; }\n\t\tq *= q; q %= m;\n\t}\n\treturn p;\n}\n\nlong long Division(long long a, long long b, long long m) {\n\treturn (1LL * a * modpow(b, m - 2, m)) % m;\n}\n\nvoid Initialize() {\n\tPow1[0] = 1; Pow2[0] = 1;\n\tfor (int i = 1; i <= N; i++) Pow1[i] = (1LL * BASE * Pow1[i - 1]) % mod1;\n\tfor (int i = 1; i <= N; i++) Pow2[i] = (1LL * BASE * Pow2[i - 1]) % mod2;\n\tfor (int i = 1; i <= N; i++) {\n\t\tlong long val = (long long)(S[i - 1] - 'a') + 1;\n\t\tHash1[i] = (1LL * BASE * Hash1[i - 1] + val) % mod1;\n\t\tHash2[i] = (1LL * BASE * Hash2[i - 1] + val) % mod2;\n\t}\n}\n\npair<long long, long long> GetHash(int cl, int cr) {\n\tlong long val1 = Hash1[cr] - Pow1[cr - cl + 1] * Hash1[cl - 1];\n\tlong long val2 = Hash2[cr] - Pow2[cr - cl + 1] * Hash2[cl - 1];\n\tval1 = (val1 + mod1 * mod1) % mod1;\n\tval2 = (val2 + mod2 * mod2) % mod2;\n\treturn make_pair(val1, val2);\n}\n\npair<int, int> Search(pair<long long, long long> Diff) {\n\tData tmp; tmp.key = Diff; tmp.val = make_pair(-1000, -1000);\n\tint pos1 = lower_bound(Map, Map + DataCount, tmp) - Map;\n\tif (pos1 < DataCount && Map[pos1].key == Diff) return Map[pos1].val;\n\treturn make_pair(-1, -1);\n}\n\nint main() {\n\t// Input\n\tcin >> S; N = S.size();\n\tcin >> Q;\n\tfor (int i = 1; i <= Q; i++) cin >> L[i] >> R[i] >> T[i];\n\t\n\t// Get Hash Value\n\tInitialize();\n\tfor (int i = 0; i <= N; i++) {\n\t\tfor (int j = -25; j <= 25; j++) {\n\t\t\tif (j == 0) continue;\n\t\t\tlong long val1 = (1LL * j * Pow1[i] + mod1 * mod1) % mod1;\n\t\t\tlong long val2 = (1LL * j * Pow2[i] + mod2 * mod2) % mod2;\n\t\t\tMap[DataCount].key = make_pair(val1, val2);\n\t\t\tMap[DataCount].val = make_pair(i, j);\n\t\t\tDataCount += 1;\n\t\t}\n\t}\n\tsort(Map, Map + DataCount);\n\t\n\t// Answer Query\n\tfor (int i = 1; i <= Q; i++) {\n\t\tpair<long long, long long> Value1 = GetHash(L[i], R[i] - T[i]);\n\t\tpair<long long, long long> Value2 = GetHash(L[i] + T[i], R[i]);\n\t\tpair<long long, long long> Diff;\n\t\tDiff.first = (Value1.first - Value2.first + mod1) % mod1;\n\t\tDiff.second = (Value1.second - Value2.second + mod2) % mod2;\n\t\tif (Diff == make_pair(0LL, 0LL)) {\n\t\t\tcout << \"Yes\" << endl;\n\t\t\tcontinue;\n\t\t}\n\t\t\n\t\t// First Chance\n\t\tint cl = T[i], cr = (R[i] - L[i]) - 2 * T[i];\n\t\tpair<int, int> val1 = Search(Diff);\n\t\tif (val1.first != -1 && (val1.first < cl || cr < val1.first)) {\n\t\t\tcout << \"Yes\" << endl;\n\t\t\tcontinue;\n\t\t}\n\t\t\n\t\t// Second Chance\n\t\tlong long keisuu1 = (Pow1[T[i]] + mod1 - 1LL) % mod1;\n\t\tlong long keisuu2 = (Pow2[T[i]] + mod2 - 1LL) % mod2;\n\t\tDiff.first = Division(Diff.first, keisuu1, mod1);\n\t\tDiff.second = Division(Diff.second, keisuu2, mod2);\n\t\tpair<int, int> val2 = Search(Diff);\n\t\tif (val2.first != -1 && val2.first <= cr) {\n\t\t\tcout << \"Yes\" << endl;\n\t\t\tcontinue;\n\t\t}\n\t\t\n\t\t// Case of :(\n\t\tcout << \"No\" << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 710, "memory_kb": 128872, "score_of_the_acc": -1.5707, "final_rank": 13 }, { "submission_id": "aoj_2711_6052124", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define eps 1e-9\n#define INF 2000000000 // 2e9\n#define LLINF 2000000000000000000ll // 2e18 (llmax:9e18)\n#define all(x) (x).begin(), (x).end()\n#define sq(x) ((x) * (x))\n\n#define rep(i, x) for (int i = 0; i < (int)(x); i++)\n#define drep(i, x) for (int i = ((int)(x)-1); i >= 0; i--)\n\n#define popcount __builtin_popcount\n#define next __next\n#define prev __prev\n\n#ifndef LOCAL\n#define dmp(...) ;\n#else\n#define dmp(...) \\\n cerr << \"[ \" << #__VA_ARGS__ << \" ] : \" << dump_str(__VA_ARGS__) << endl\n#endif\n\n// ---------------- Utility ------------------\n\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a <= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a >= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T>\nusing MaxHeap = priority_queue<T>;\n\ntemplate <class T>\nusing MinHeap = priority_queue<T, vector<T>, greater<T>>;\n\ntemplate <class T>\nvector<T> vect(int len, T elem) {\n return vector<T>(len, elem);\n}\n\n// ----------------- Input -------------------\n\ntemplate <class T, class U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class T>\nistream &operator>>(istream &is, vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) is >> vec[i];\n return is;\n}\n\n// ----------------- Output ------------------\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ',' << p.second;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n for (const T &e : v) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const deque<T> &d) {\n for (const T &e : d) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const set<T> &s) {\n os << \"{ \";\n for (const T &e : s) os << e << \" \";\n return os << \"}\";\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const map<T, U> &m) {\n os << \"{ \";\n for (const auto &[key, val] : m) os << \"( \" << key << \" -> \" << val << \" ) \";\n return os << \"}\";\n}\n\ntemplate <class TupleTy, size_t... I>\nvoid dump_tuple(ostream &os, const TupleTy t, std::index_sequence<I...>) {\n (..., (os << (I == 0 ? \"\" : \",\") << std::get<I>(t)));\n}\n\ntemplate <class... Args>\nostream &operator<<(ostream &os, const tuple<Args...> &t) {\n os << \"(\";\n dump_tuple(os, t, std::make_index_sequence<sizeof...(Args)>());\n return os << \")\";\n}\n\nvoid dump_str_rec(ostringstream &) {}\n\ntemplate <class Head, class... Tail>\nvoid dump_str_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << \", \" << head;\n dump_str_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate <class T, class... U>\nstring dump_str(T &&arg, U &&... args) {\n ostringstream oss;\n oss << arg;\n dump_str_rec(oss, forward<U>(args)...);\n return oss.str();\n}\n\n// --------------- Fast I/O ------------------\n\nvoid fastio() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n}\n\n// ------------------ ACL --------------------\n\n// #include <atcoder/modint>\n// constexpr int MOD = 998244353;\n// constexpr int MOD = 1000000007;\n// using mint = atcoder::static_modint<MOD>;\n// ostream &operator<<(ostream &os, const mint &v) {\n// return os << v.val();\n// }\n\n// ------------ End of template --------------\n\n#define endl \"\\n\"\nusing ll = long long;\nusing pii = pair<int, int>;\n\nconst bool multitest = false;\n\nstruct SuffixArray {\n string s;\n vector<int> sa;\n vector<int> rank;\n vector<int> lcp;\n explicit SuffixArray(string s) : s(s) {\n int n = s.size();\n sa.resize(n + 1);\n rank.resize(n + 1);\n vector<int> tmp(n + 1);\n for (int i = 0; i <= n; i++) {\n rank[i] = (i < n) ? s[i] : -1;\n sa[i] = i;\n }\n for (int k = 1; k <= n; k *= 2) {\n auto compare_sa = [&](const int &i, const int &j) {\n if (rank[i] != rank[j])\n return rank[i] < rank[j];\n else {\n int ri = (i + k <= s.size()) ? rank[i + k] : -1;\n int rj = (j + k <= s.size()) ? rank[j + k] : -1;\n return ri < rj;\n }\n };\n sort(sa.begin(), sa.end(), compare_sa);\n tmp[sa[0]] = 0;\n for (int i = 1; i <= n; i++)\n tmp[sa[i]] = tmp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0);\n for (int i = 0; i <= n; i++) rank[i] = tmp[i];\n }\n }\n size_t size() const { return s.size(); }\n int operator[](int id) const { return sa[id]; }\n bool contain(string t) {\n int l = 0, r = s.size() + 1;\n while (r - l > 1) {\n int mid = (l + r) / 2;\n if (s.compare(sa[mid], t.size(), t) < 0) {\n l = mid;\n } else {\n r = mid;\n }\n }\n return s.compare(sa[r], t.size(), t) == 0;\n }\n};\n\nstruct LongestCommonPrefix {\n const SuffixArray &sa;\n vector<int> lcp, rank;\n explicit LongestCommonPrefix(const SuffixArray &sa) : sa(sa) {\n int n = sa.size();\n lcp.resize(sa.size() + 1);\n rank.resize(sa.size() + 1);\n for (int i = 0; i <= sa.size(); i++) { rank[sa[i]] = i; }\n int h = 0;\n lcp[0] = 0;\n for (int i = 0; i < sa.size(); i++) {\n int j = sa[rank[i] - 1];\n if (h > 0) h--;\n for (; i + h < n && j + h < n; h++)\n if (sa.s[i + h] != sa.s[j + h]) break;\n lcp[rank[i] - 1] = h;\n }\n }\n int operator[](int id) const {\n assert(id >= 0 && id < lcp.size());\n return lcp[id];\n }\n};\n\ntemplate <class D>\nstruct SegmentTree {\n using DMerger = function<D(D, D)>;\n int length;\n vector<D> seg;\n const DMerger dm;\n const D d_unit;\n\n SegmentTree() {}\n SegmentTree(int n, const DMerger dm, const D &d_unit)\n : dm(dm), d_unit(d_unit) {\n length = 1;\n while (length < n) length <<= 1;\n seg.assign(2 * length, d_unit);\n }\n SegmentTree(vector<D> vec, const DMerger dm, const D &d_unit)\n : dm(dm), d_unit(d_unit) {\n length = 1;\n while (length < vec.size()) length <<= 1;\n seg.assign(2 * length, d_unit);\n for (int i = 0; i < vec.size(); i++) seg[length - 1 + i] = vec[i];\n for (int i = length - 2; i >= 0; i--)\n seg[i] = dm(seg[i * 2 + 1], seg[i * 2 + 2]);\n }\n\n void update(int k, D x) {\n k += length - 1;\n seg[k] = x;\n while (k) {\n k = (k - 1) / 2;\n seg[k] = dm(seg[k * 2 + 1], seg[k * 2 + 2]);\n }\n }\n\n D query(int a, int b, int k, int l, int r) const {\n if (r <= a || b <= l) {\n return d_unit;\n } else if (a <= l && r <= b) {\n return seg[k];\n } else {\n D lch = query(a, b, k * 2 + 1, l, (l + r) / 2);\n D rch = query(a, b, k * 2 + 2, (l + r) / 2, r);\n return dm(lch, rch);\n }\n }\n D query(int a, int b) const { return query(a, b, 0, 0, length); }\n D get_point(int x) { return seg[length - 1 + x]; }\n};\n\nstruct RMQFromLCP {\n const LongestCommonPrefix &lcp;\n SegmentTree<int> seg;\n explicit RMQFromLCP(const LongestCommonPrefix &lcp)\n : lcp(lcp), seg(\n lcp.lcp, [](int a, int b) { return std::min(a, b); },\n std::numeric_limits<int>::max()) {}\n int getLongestCommonStringFrom(int s, int t) const {\n int L = std::min(lcp.rank[s], lcp.rank[t]);\n int R = std::max(lcp.rank[s], lcp.rank[t]);\n return seg.query(L, R);\n }\n};\n\nvoid solve() {\n string S;\n cin >> S;\n SuffixArray sa(S);\n LongestCommonPrefix lcp(sa);\n RMQFromLCP rmq(lcp);\n\n int Q;\n cin >> Q;\n for (int i = 0; i < Q; i++) {\n int l, r, t;\n cin >> l >> r >> t;\n if (t == r - l + 1) {\n cout << \"Yes\" << endl;\n continue;\n }\n\n l--;\n\n int common_len = rmq.getLongestCommonStringFrom(l, l + t);\n dmp(common_len);\n if (common_len >= r - l - t) {\n cout << \"Yes\" << endl;\n continue;\n }\n\n vector<int> fix_cand;\n fix_cand.push_back(l + common_len);\n fix_cand.push_back(l + t + common_len);\n dmp(fix_cand);\n\n bool found = false;\n for (int cand : fix_cand) {\n if (cand < l + t) {\n if (rmq.getLongestCommonStringFrom(cand + 1, cand + 1 + t) >=\n r - l - t - common_len - 1) {\n found = true;\n break;\n }\n }\n if (cand >= r - t) {\n if (rmq.getLongestCommonStringFrom(cand + 1, cand + 1 - t) >=\n r - l - t - common_len - 1) {\n found = true;\n break;\n }\n }\n if (l + t <= cand && cand < r - t) {\n if (S[cand - t] == S[cand + t]) {\n int common_len_middle =\n rmq.getLongestCommonStringFrom(cand - t + 1, cand + 1);\n if (common_len_middle >= t - 1) {\n if (rmq.getLongestCommonStringFrom(cand + 1, cand + 1 + t) >=\n r - l - t - common_len - 2 - common_len_middle) {\n found = true;\n break;\n }\n }\n }\n }\n }\n\n if (found)\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n return;\n}\n\nint main() {\n fastio();\n if (!multitest) {\n solve();\n } else {\n cerr << \"[Warning] Multi testcase mode on\" << endl;\n int t;\n cin >> t;\n while (t--) solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 6440, "score_of_the_acc": -0.1219, "final_rank": 7 }, { "submission_id": "aoj_2711_6052105", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define eps 1e-9\n#define INF 2000000000 // 2e9\n#define LLINF 2000000000000000000ll // 2e18 (llmax:9e18)\n#define all(x) (x).begin(), (x).end()\n#define sq(x) ((x) * (x))\n\n#define rep(i, x) for (int i = 0; i < (int)(x); i++)\n#define drep(i, x) for (int i = ((int)(x)-1); i >= 0; i--)\n\n#define popcount __builtin_popcount\n#define next __next\n#define prev __prev\n\n#ifndef LOCAL\n#define dmp(...) ;\n#else\n#define dmp(...) \\\n cerr << \"[ \" << #__VA_ARGS__ << \" ] : \" << dump_str(__VA_ARGS__) << endl\n#endif\n\n// ---------------- Utility ------------------\n\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a <= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a >= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T>\nusing MaxHeap = priority_queue<T>;\n\ntemplate <class T>\nusing MinHeap = priority_queue<T, vector<T>, greater<T>>;\n\ntemplate <class T>\nvector<T> vect(int len, T elem) {\n return vector<T>(len, elem);\n}\n\n// ----------------- Input -------------------\n\ntemplate <class T, class U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class T>\nistream &operator>>(istream &is, vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) is >> vec[i];\n return is;\n}\n\n// ----------------- Output ------------------\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ',' << p.second;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n for (const T &e : v) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const deque<T> &d) {\n for (const T &e : d) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const set<T> &s) {\n os << \"{ \";\n for (const T &e : s) os << e << \" \";\n return os << \"}\";\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const map<T, U> &m) {\n os << \"{ \";\n for (const auto &[key, val] : m) os << \"( \" << key << \" -> \" << val << \" ) \";\n return os << \"}\";\n}\n\ntemplate <class TupleTy, size_t... I>\nvoid dump_tuple(ostream &os, const TupleTy t, std::index_sequence<I...>) {\n (..., (os << (I == 0 ? \"\" : \",\") << std::get<I>(t)));\n}\n\ntemplate <class... Args>\nostream &operator<<(ostream &os, const tuple<Args...> &t) {\n os << \"(\";\n dump_tuple(os, t, std::make_index_sequence<sizeof...(Args)>());\n return os << \")\";\n}\n\nvoid dump_str_rec(ostringstream &) {}\n\ntemplate <class Head, class... Tail>\nvoid dump_str_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << \", \" << head;\n dump_str_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate <class T, class... U>\nstring dump_str(T &&arg, U &&... args) {\n ostringstream oss;\n oss << arg;\n dump_str_rec(oss, forward<U>(args)...);\n return oss.str();\n}\n\n// --------------- Fast I/O ------------------\n\nvoid fastio() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n}\n\n// ------------------ ACL --------------------\n\n// #include <atcoder/modint>\n// constexpr int MOD = 998244353;\n// constexpr int MOD = 1000000007;\n// using mint = atcoder::static_modint<MOD>;\n// ostream &operator<<(ostream &os, const mint &v) {\n// return os << v.val();\n// }\n\n// ------------ End of template --------------\n\n#define endl \"\\n\"\nusing ll = long long;\nusing pii = pair<int, int>;\n\nconst bool multitest = false;\n\nstruct SuffixArray {\n string s;\n vector<int> sa;\n vector<int> rank;\n vector<int> lcp;\n explicit SuffixArray(string s) : s(s) {\n int n = s.size();\n sa.resize(n + 1);\n rank.resize(n + 1);\n vector<int> tmp(n + 1);\n for (int i = 0; i <= n; i++) {\n rank[i] = (i < n) ? s[i] : -1;\n sa[i] = i;\n }\n for (int k = 1; k <= n; k *= 2) {\n auto compare_sa = [&](const int &i, const int &j) {\n if (rank[i] != rank[j])\n return rank[i] < rank[j];\n else {\n int ri = (i + k <= s.size()) ? rank[i + k] : -1;\n int rj = (j + k <= s.size()) ? rank[j + k] : -1;\n return ri < rj;\n }\n };\n sort(sa.begin(), sa.end(), compare_sa);\n tmp[sa[0]] = 0;\n for (int i = 1; i <= n; i++)\n tmp[sa[i]] = tmp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0);\n for (int i = 0; i <= n; i++) rank[i] = tmp[i];\n }\n }\n size_t size() const { return s.size(); }\n int operator[](int id) const { return sa[id]; }\n bool contain(string t) {\n int l = 0, r = s.size() + 1;\n while (r - l > 1) {\n int mid = (l + r) / 2;\n if (s.compare(sa[mid], t.size(), t) < 0) {\n l = mid;\n } else {\n r = mid;\n }\n }\n return s.compare(sa[r], t.size(), t) == 0;\n }\n};\n\ntemplate <class D>\nstruct SegmentTree {\n using DMerger = function<D(D, D)>;\n int length;\n vector<D> seg;\n const DMerger dm;\n const D d_unit;\n\n SegmentTree() {}\n SegmentTree(int n, const DMerger dm, const D &d_unit)\n : dm(dm), d_unit(d_unit) {\n length = 1;\n while (length < n) length <<= 1;\n seg.assign(2 * length, d_unit);\n }\n SegmentTree(vector<D> vec, const DMerger dm, const D &d_unit)\n : dm(dm), d_unit(d_unit) {\n length = 1;\n while (length < vec.size()) length <<= 1;\n seg.assign(2 * length, d_unit);\n for (int i = 0; i < vec.size(); i++) seg[length - 1 + i] = vec[i];\n for (int i = length - 2; i >= 0; i--)\n seg[i] = dm(seg[i * 2 + 1], seg[i * 2 + 2]);\n }\n\n void update(int k, D x) {\n k += length - 1;\n seg[k] = x;\n while (k) {\n k = (k - 1) / 2;\n seg[k] = dm(seg[k * 2 + 1], seg[k * 2 + 2]);\n }\n }\n\n D query(int a, int b, int k, int l, int r) {\n if (r <= a || b <= l) {\n return d_unit;\n } else if (a <= l && r <= b) {\n return seg[k];\n } else {\n D lch = query(a, b, k * 2 + 1, l, (l + r) / 2);\n D rch = query(a, b, k * 2 + 2, (l + r) / 2, r);\n return dm(lch, rch);\n }\n }\n D query(int a, int b) { return query(a, b, 0, 0, length); }\n D get_point(int x) { return seg[length - 1 + x]; }\n};\n\ntemplate <class T>\nSegmentTree<T> getRMQ(const vector<T> &vec) {\n return SegmentTree<T>(\n vec, [](T a, T b) { return min(a, b); }, std::numeric_limits<T>::max());\n}\n\nstruct LongestCommonPrefix {\n const SuffixArray &sa;\n vector<int> lcp, rank;\n explicit LongestCommonPrefix(const SuffixArray &sa) : sa(sa) {\n int n = sa.size();\n lcp.resize(sa.size() + 1);\n rank.resize(sa.size() + 1);\n for (int i = 0; i <= sa.size(); i++) { rank[sa[i]] = i; }\n int h = 0;\n lcp[0] = 0;\n for (int i = 0; i < sa.size(); i++) {\n int j = sa[rank[i] - 1];\n if (h > 0) h--;\n for (; i + h < n && j + h < n; h++)\n if (sa.s[i + h] != sa.s[j + h]) break;\n lcp[rank[i] - 1] = h;\n }\n }\n int operator[](int id) const {\n assert(id >= 0 && id < lcp.size());\n return lcp[id];\n }\n};\n\nvoid solve() {\n string S;\n cin >> S;\n SuffixArray sa(S);\n LongestCommonPrefix lcp(sa);\n\n auto seg = getRMQ(lcp.lcp);\n for (int i = 0; i <= S.size(); i++) {\n dmp(i, sa[i], lcp[i], S.substr(sa[i]));\n }\n\n auto getLongestCommonStringFrom = [&](int a, int b) {\n int L = min(lcp.rank[a], lcp.rank[b]);\n int R = max(lcp.rank[a], lcp.rank[b]);\n return seg.query(L, R);\n };\n\n int Q;\n cin >> Q;\n for (int i = 0; i < Q; i++) {\n int l, r, t;\n cin >> l >> r >> t;\n if (t == r - l + 1) {\n cout << \"Yes\" << endl;\n continue;\n }\n\n l--;\n\n int common_len = getLongestCommonStringFrom(l, l + t);\n dmp(common_len);\n if (common_len >= r - l - t) {\n cout << \"Yes\" << endl;\n continue;\n }\n\n vector<int> fix_cand;\n fix_cand.push_back(l + common_len);\n fix_cand.push_back(l + t + common_len);\n dmp(fix_cand);\n\n bool found = false;\n for (int cand : fix_cand) {\n if (cand < l + t) {\n if (getLongestCommonStringFrom(cand + 1, cand + 1 + t) >=\n r - l - t - common_len - 1) {\n found = true;\n break;\n }\n }\n if (cand >= r - t) {\n if (getLongestCommonStringFrom(cand + 1, cand + 1 - t) >=\n r - l - t - common_len - 1) {\n found = true;\n break;\n }\n }\n if (l + t <= cand && cand < r - t) {\n if (S[cand - t] == S[cand + t]) {\n int common_len_middle =\n getLongestCommonStringFrom(cand - t + 1, cand + 1);\n if (common_len_middle >= t - 1) {\n if (getLongestCommonStringFrom(cand + 1, cand + 1 + t) >=\n r - l - t - common_len - 2 - common_len_middle) {\n found = true;\n break;\n }\n }\n }\n }\n }\n\n if (found)\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n return;\n}\n\nint main() {\n fastio();\n if (!multitest) {\n solve();\n } else {\n cerr << \"[Warning] Multi testcase mode on\" << endl;\n int t;\n cin >> t;\n while (t--) solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 6496, "score_of_the_acc": -0.1223, "final_rank": 8 }, { "submission_id": "aoj_2711_6026879", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\n// 最初にbaseをgenBase()でランダムに生成すること!!!!!!!!!\n// RollingHash(s, base) := 文字列sのハッシュテーブルを計算する\n// get(l, r) := [l, r)のハッシュ値を求める\n// connect(h1, h2, h2len) := ハッシュ値h1と, 長さh2lenのハッシュ値h2を結合する。\n// LCP(b, l1, r1, l2, r2) := 区間[l1, r1)と、ハッシュテーブルがbである区間[l2,\n// r2)の文字列の 最長共通接頭辞の長さを求める。\nstruct RollingHash {\n using ull = unsigned long long;\n using ui128 = __uint128_t;\n static const ull mod = (1ULL << 61) - 1;\n const ull base;\n vector<ull> hashed, power;\n\n inline ull add(ull a, ull b) {\n if((a += b) >= mod) { a -= mod; }\n return a;\n }\n inline ull mul(ull a, ull b) {\n ui128 t = (ui128)a * b;\n ull na = t >> 61;\n ull nb = t & mod;\n if((na += nb) >= mod) { na -= mod; }\n return na;\n }\n static inline ull genBase() {\n random_device seed_gen;\n mt19937_64 engine(seed_gen());\n uniform_int_distribution<ull> rand(2, mod - 2);\n return rand(engine);\n }\n RollingHash() = default;\n RollingHash(const string &s, ull base) : base(base) {\n int n = (int)s.size();\n hashed.assign(n + 1, 0);\n power.assign(n + 1, 0);\n power[0] = 1;\n for(int i = 0; i < n; i++) {\n power[i + 1] = mul(power[i], base);\n hashed[i + 1] = add(mul(hashed[i], base), s[i]);\n }\n }\n ull get(int l, int r) {\n return add(hashed[r], mod - mul(hashed[l], power[r - l]));\n }\n ull connect(ull h1, ull h2, int h2len) {\n return add(mul(h1, power[h2len]), h2);\n }\n int LCP(RollingHash &b, int l1, int r1, int l2, int r2) {\n assert(mod == b.mod);\n int len = min(r1 - l1, r2 - l2);\n int low = -1, high = len + 1;\n while(high - low > 1) {\n int mid = (low + high) >> 1;\n if(get(l1, l1 + mid) == b.get(l2, l2 + mid)) {\n low = mid;\n } else {\n high = mid;\n }\n }\n return low;\n }\n};\n\nint main(){\n\tstring s; cin >> s;\n\tauto base = RollingHash::genBase();\n\tRollingHash rh(s,base);\n\tint q; cin >> q;\n\twhile(q--){\n\t\tint l,r,t; cin >> l >> r >> t; l--;\n\t\tif(r-l <= t){\n\t\t\tcout << \"Yes\\n\";\n\t\t\tcontinue;\n\t\t}\n\t\tint lcp = rh.LCP(rh,l,r,l+t,r);\n\t\tif(r-l <= 2*t){\n\t\t\tif(lcp >= r-l-t-1 || rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == r-l-t-lcp-1) cout << \"Yes\\n\";\n\t\t\telse cout << \"No\\n\";\n\t\t}else{\n\t\t\tbool yes = false;\n\t\t\tif(lcp < t){\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == r-l-t-lcp-1) yes = true;\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == t-1){\n\t\t\t\t\tif(l+t*2+lcp >= r){\n\t\t\t\t\t\tyes = true;\n\t\t\t\t\t}else if(rh.LCP(rh,l+lcp+t+1,r,l+t*2+lcp+1,r) == r-l-t*2-lcp-1 && s[l+lcp] == s[l+t*2+lcp]){\n\t\t\t\t\t\tyes = true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}else{\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == min(t-1,r-l-t-lcp-1)){\n\t\t\t\t\tif(l+t*2+lcp+1 >= r){\n\t\t\t\t\t\tyes = true;\n\t\t\t\t\t}else if(rh.LCP(rh,l+lcp+t+1,r,l+t*2+lcp+1,r) == r-l-t*2-lcp-1 && s[l+lcp] == s[l+t*2+lcp]){\n\t\t\t\t\t\tyes = true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(yes) cout << \"Yes\\n\";\n\t\t\telse cout << \"No\\n\";\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 4964, "score_of_the_acc": -0.1229, "final_rank": 9 }, { "submission_id": "aoj_2711_6026861", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\n// 最初にbaseをgenBase()でランダムに生成すること!!!!!!!!!\n// RollingHash(s, base) := 文字列sのハッシュテーブルを計算する\n// get(l, r) := [l, r)のハッシュ値を求める\n// connect(h1, h2, h2len) := ハッシュ値h1と, 長さh2lenのハッシュ値h2を結合する。\n// LCP(b, l1, r1, l2, r2) := 区間[l1, r1)と、ハッシュテーブルがbである区間[l2,\n// r2)の文字列の 最長共通接頭辞の長さを求める。\nstruct RollingHash {\n using ull = unsigned long long;\n using ui128 = __uint128_t;\n static const ull mod = (1ULL << 61) - 1;\n const ull base;\n vector<ull> hashed, power;\n\n inline ull add(ull a, ull b) {\n if((a += b) >= mod) { a -= mod; }\n return a;\n }\n inline ull mul(ull a, ull b) {\n ui128 t = (ui128)a * b;\n ull na = t >> 61;\n ull nb = t & mod;\n if((na += nb) >= mod) { na -= mod; }\n return na;\n }\n static inline ull genBase() {\n random_device seed_gen;\n mt19937_64 engine(seed_gen());\n uniform_int_distribution<ull> rand(2, mod - 2);\n return rand(engine);\n }\n RollingHash() = default;\n RollingHash(const string &s, ull base) : base(base) {\n int n = (int)s.size();\n hashed.assign(n + 1, 0);\n power.assign(n + 1, 0);\n power[0] = 1;\n for(int i = 0; i < n; i++) {\n power[i + 1] = mul(power[i], base);\n hashed[i + 1] = add(mul(hashed[i], base), s[i]);\n }\n }\n ull get(int l, int r) {\n return add(hashed[r], mod - mul(hashed[l], power[r - l]));\n }\n ull connect(ull h1, ull h2, int h2len) {\n return add(mul(h1, power[h2len]), h2);\n }\n int LCP(RollingHash &b, int l1, int r1, int l2, int r2) {\n assert(mod == b.mod);\n int len = min(r1 - l1, r2 - l2);\n int low = -1, high = len + 1;\n while(high - low > 1) {\n int mid = (low + high) >> 1;\n if(get(l1, l1 + mid) == b.get(l2, l2 + mid)) {\n low = mid;\n } else {\n high = mid;\n }\n }\n return low;\n }\n};\n\nint main(){\n\tstring s; cin >> s;\n\tauto base = RollingHash::genBase();\n\tRollingHash rh(s,base);\n\tint q; cin >> q;\n\twhile(q--){\n\t\tint l,r,t; cin >> l >> r >> t; l--;\n\t\tif(r-l <= t){\n\t\t\tcout << \"Yes\\n\";\n\t\t\tcontinue;\n\t\t}\n\t\tint lcp = rh.LCP(rh,l,r,l+t,r);\n\t\tif(r-l <= 2*t){\n\t\t\tif(lcp >= r-l-t-1 || rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == r-l-t-lcp-1) cout << \"Yes\\n\";\n\t\t\telse cout << \"No\\n\";\n\t\t}else{\n\t\t\tbool yes = false;\n\t\t\tif(lcp < t){\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == r-l-t-lcp-1) yes = true;\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == min(t-1,r-l-t-lcp-1) && \n\t\t\t\t\t(l+t*2+lcp+1 >= r || rh.LCP(rh,l+lcp+t+1,r,l+t*2+lcp+1,r)) == r-l-t*2-lcp-1 && s[l+lcp] == s[l+t*2+lcp]){\n\t\t\t\t\tyes = true;\n\t\t\t\t}\n\t\t\t}else{\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == min(t-1,r-l-t-lcp-1) && \n\t\t\t\t\t(l+t*2+lcp+1 >= r || rh.LCP(rh,l+lcp+t+1,r,l+t*2+lcp+1,r) == r-l-t*2-lcp-1 && s[l+lcp] == s[l+t*2+lcp])){\n\t\t\t\t\tyes = true;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(yes) cout << \"Yes\\n\";\n\t\t\telse cout << \"No\\n\";\n\t\t}\n\t}\n}", "accuracy": 0.05128205128205128, "time_ms": 130, "memory_kb": 4928, "score_of_the_acc": -0.1007, "final_rank": 18 }, { "submission_id": "aoj_2711_6026857", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\n// 最初にbaseをgenBase()でランダムに生成すること!!!!!!!!!\n// RollingHash(s, base) := 文字列sのハッシュテーブルを計算する\n// get(l, r) := [l, r)のハッシュ値を求める\n// connect(h1, h2, h2len) := ハッシュ値h1と, 長さh2lenのハッシュ値h2を結合する。\n// LCP(b, l1, r1, l2, r2) := 区間[l1, r1)と、ハッシュテーブルがbである区間[l2,\n// r2)の文字列の 最長共通接頭辞の長さを求める。\nstruct RollingHash {\n using ull = unsigned long long;\n using ui128 = __uint128_t;\n static const ull mod = (1ULL << 61) - 1;\n const ull base;\n vector<ull> hashed, power;\n\n inline ull add(ull a, ull b) {\n if((a += b) >= mod) { a -= mod; }\n return a;\n }\n inline ull mul(ull a, ull b) {\n ui128 t = (ui128)a * b;\n ull na = t >> 61;\n ull nb = t & mod;\n if((na += nb) >= mod) { na -= mod; }\n return na;\n }\n static inline ull genBase() {\n random_device seed_gen;\n mt19937_64 engine(seed_gen());\n uniform_int_distribution<ull> rand(2, mod - 2);\n return rand(engine);\n }\n RollingHash() = default;\n RollingHash(const string &s, ull base) : base(base) {\n int n = (int)s.size();\n hashed.assign(n + 1, 0);\n power.assign(n + 1, 0);\n power[0] = 1;\n for(int i = 0; i < n; i++) {\n power[i + 1] = mul(power[i], base);\n hashed[i + 1] = add(mul(hashed[i], base), s[i]);\n }\n }\n ull get(int l, int r) {\n return add(hashed[r], mod - mul(hashed[l], power[r - l]));\n }\n ull connect(ull h1, ull h2, int h2len) {\n return add(mul(h1, power[h2len]), h2);\n }\n int LCP(RollingHash &b, int l1, int r1, int l2, int r2) {\n assert(mod == b.mod);\n int len = min(r1 - l1, r2 - l2);\n int low = -1, high = len + 1;\n while(high - low > 1) {\n int mid = (low + high) >> 1;\n if(get(l1, l1 + mid) == b.get(l2, l2 + mid)) {\n low = mid;\n } else {\n high = mid;\n }\n }\n return low;\n }\n};\n\nint main(){\n\tstring s; cin >> s;\n\tauto base = RollingHash::genBase();\n\tRollingHash rh(s,base);\n\tint q; cin >> q;\n\twhile(q--){\n\t\tint l,r,t; cin >> l >> r >> t; l--;\n\t\tif(r-l <= t){\n\t\t\tcout << \"Yes\\n\";\n\t\t\tcontinue;\n\t\t}\n\t\tint lcp = rh.LCP(rh,l,r,l+t,r);\n\t\tif(r-l <= 2*t){\n\t\t\tif(lcp >= r-l-t-1 || rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r)) cout << \"Yes\\n\";\n\t\t\telse cout << \"No\\n\";\n\t\t}else{\n\t\t\tbool yes = false;\n\t\t\tif(lcp < t){\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == r-l-t-lcp-1) yes = true;\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == min(t-1,r-l-t-lcp-1) && \n\t\t\t\t\t(l+t*2+lcp+1 >= r || rh.LCP(rh,l+lcp+t+1,r,l+t*2+lcp+1,r)) == r-l-t*2-lcp-1 && s[l+lcp] == s[l+t*2+lcp]){\n\t\t\t\t\tyes = true;\n\t\t\t\t}\n\t\t\t}else{\n\t\t\t\tif(rh.LCP(rh,l+lcp+1,r,l+t+lcp+1,r) == min(t-1,r-l-t-lcp-1) && \n\t\t\t\t\t(l+t*2+lcp+1 >= r || rh.LCP(rh,l+lcp+t+1,r,l+t*2+lcp+1,r) == r-l-t*2-lcp-1 && s[l+lcp] == s[l+t*2+lcp])){\n\t\t\t\t\tyes = true;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(yes) cout << \"Yes\\n\";\n\t\t\telse cout << \"No\\n\";\n\t\t}\n\t}\n}", "accuracy": 0.05128205128205128, "time_ms": 130, "memory_kb": 4928, "score_of_the_acc": -0.1007, "final_rank": 18 }, { "submission_id": "aoj_2711_6012033", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct RollingHash {\n int Mod, Base;\n vector<int> pow;\n vector<vector<int>> hash;\n // mod : 1e9 + 9,base : 1007\n RollingHash(const int len = 3000000, const int mod = (int)(1e9 + 7),\n const int base = 1009) {\n Mod = mod;\n Base = base;\n pow.assign(len + 1, 0);\n pow[0] = 1;\n for (int i = 1; i <= len; ++i) pow[i] = 1LL * pow[i - 1] * Base % Mod;\n }\n template <class T>\n int add(const T &s) {\n int id = hash.size();\n hash.push_back(vector<int>());\n sethash(id, s);\n return id;\n }\n template <class T>\n void sethash(const int id, const T &s) {\n assert(id < (int)hash.size());\n int len = s.size();\n hash[id].resize(len + 1, 0);\n for (int i = 0; i < len; ++i) {\n hash[id][i + 1] = 1LL * hash[id][i] * Base % Mod;\n if ((hash[id][i + 1] += s[i] + 1) >= Mod) hash[id][i + 1] -= Mod;\n }\n }\n // [l,r),0-indexed\n inline int calchash(const int &id, const int &l, const int &r) const {\n assert(r >= l);\n int res = hash[id][r];\n res += Mod - 1LL * hash[id][l] * pow[r - l] % Mod;\n if (res >= Mod) res -= Mod;\n return res;\n }\n inline bool issame(const int &idl, const int &ll, const int &lr,\n const int &idr, const int &rl, const int &rr) const {\n return calchash(idl, ll, lr) == calchash(idr, rl, rr);\n }\n};\n\nint n, q, l, r, t;\nstring s;\nRollingHash rh;\nvector<int> memo;\n\nint solve(int sl, int sr);\nvoid prepair(int hash);\nint calc_hash(int len, int id, int sl, int st);\n\nint main() {\n cin >> s >> q;\n n = s.size();\n rh.add(s);\n reverse(s.begin(), s.end());\n rh.add(s);\n while (q--) {\n cin >> l >> r >> t, --l;\n if (solve(l, l + t) || solve(r - t, r))\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n return 0;\n}\n\nint solve(int sl, int sr) {\n vector<int> memo(2), st(2);\n if (sl == l) {\n memo[0] = rh.calchash(0, sl, sr), st[0] = sl;\n swap(sl, sr);\n sl = n - sl, sr = n - sr;\n swap(l, r);\n l = n - l, r = n - r;\n int rem = t - (r - l) % t, now = rh.calchash(1, sl + rem, sr);\n now = 1LL * now * rh.pow[rem] % rh.Mod;\n (now += rh.calchash(1, sl, sl + rem)) %= rh.Mod;\n memo[1] = now, st[1] = sl + rem;\n swap(sl, sr);\n sl = n - sl, sr = n - sr;\n swap(l, r);\n l = n - l, r = n - r;\n } else {\n swap(sl, sr);\n sl = n - sl, sr = n - sr;\n swap(l, r);\n l = n - l, r = n - r;\n memo[1] = rh.calchash(1, sl, sr), st[1] = sl;\n swap(sl, sr);\n sl = n - sl, sr = n - sr;\n swap(l, r);\n l = n - l, r = n - r;\n int rem = t - (r - l) % t, now = rh.calchash(0, sl + rem, sr);\n now = 1LL * now * rh.pow[rem] % rh.Mod;\n (now += rh.calchash(0, sl, sl + rem)) %= rh.Mod;\n memo[0] = now, st[0] = sl + rem;\n }\n int res = 0;\n for (int times = 0; times < 2; ++times) {\n prepair(memo[times]);\n if (calc_hash(r - l, times, sl, st[times]) == rh.calchash(times, l, r))\n return 1;\n int lef = 0, righ = r - l;\n while (righ - lef > 1) {\n int mid = (lef + righ) >> 1;\n if (calc_hash(mid, times, sl, st[times]) ==\n rh.calchash(times, l, l + mid))\n lef = mid;\n else\n righ = mid;\n }\n res += righ;\n swap(sl, sr);\n sl = n - sl, sr = n - sr;\n swap(l, r);\n l = n - l, r = n - r;\n }\n return res == r - l + 1;\n}\n\nvoid prepair(int hash) {\n int len = t;\n memo.assign(1, hash);\n while (len < r - l) {\n int now = 1LL * memo.back() * rh.pow[len] % rh.Mod;\n (now += memo.back()) %= rh.Mod;\n memo.push_back(now);\n len <<= 1;\n }\n}\n\nint calc_hash(int len, int id, int sl, int st) {\n int cnt = len / t, m = memo.size(), res = 0;\n len %= t;\n for (int i = 0; i < m; ++i)\n if (cnt >> i & 1) {\n res = 1LL * res * rh.pow[t * (1 << i)] % rh.Mod;\n (res += memo[i]) %= rh.Mod;\n }\n int now = min(sl + t - st, len);\n res = 1LL * res * rh.pow[now] % rh.Mod;\n (res += rh.calchash(id, st, st + now)) %= rh.Mod;\n len -= now;\n res = 1LL * res * rh.pow[len] % rh.Mod;\n (res += rh.calchash(id, sl, sl + len)) %= rh.Mod;\n return res;\n}", "accuracy": 1, "time_ms": 720, "memory_kb": 15944, "score_of_the_acc": -0.8231, "final_rank": 10 }, { "submission_id": "aoj_2711_6011852", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct RollingHash {\n int Mod, Base;\n vector<int> pow;\n vector<vector<int>> hash;\n // mod : 1e9 + 9,base : 1007\n RollingHash(const int len = 3000000, const int mod = (int)(1e9 + 7),\n const int base = 1009) {\n Mod = mod;\n Base = base;\n pow.assign(len + 1, 0);\n pow[0] = 1;\n for (int i = 1; i <= len; ++i) pow[i] = 1LL * pow[i - 1] * Base % Mod;\n }\n template <class T>\n int add(const T &s) {\n int id = hash.size();\n hash.push_back(vector<int>());\n sethash(id, s);\n return id;\n }\n template <class T>\n void sethash(const int id, const T &s) {\n assert(id < (int)hash.size());\n int len = s.size();\n hash[id].resize(len + 1, 0);\n for (int i = 0; i < len; ++i) {\n hash[id][i + 1] = 1LL * hash[id][i] * Base % Mod;\n if ((hash[id][i + 1] += s[i] + 1) >= Mod) hash[id][i + 1] -= Mod;\n }\n }\n // [l,r),0-indexed\n inline int calchash(const int &id, const int &l, const int &r) const {\n assert(r >= l);\n int res = hash[id][r];\n res += Mod - 1LL * hash[id][l] * pow[r - l] % Mod;\n if (res >= Mod) res -= Mod;\n return res;\n }\n inline bool issame(const int &idl, const int &ll, const int &lr,\n const int &idr, const int &rl, const int &rr) const {\n return calchash(idl, ll, lr) == calchash(idr, rl, rr);\n }\n};\n\nint n, q, l, r, t;\nstring s;\nRollingHash rh;\nvector<int> memo;\n\nint solve(int sl, int sr);\nvoid prepair(int hash);\nint calc_hash(int len, int id, int st);\n\nint main() {\n cin >> s >> q;\n n = s.size();\n rh.add(s);\n reverse(s.begin(), s.end());\n rh.add(s);\n while (q--) {\n cin >> l >> r >> t, --l;\n if (solve(l, l + t) || solve(r - t, r))\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n return 0;\n}\n\nint solve(int sl, int sr) {\n int res = 0;\n for (int times = 0; times < 2; ++times) {\n prepair(rh.calchash(times, sl, sr));\n if (calc_hash(r - l, times, sl) == rh.calchash(times, l, r)) return 1;\n int lef = 0, righ = r - l;\n while (righ - lef > 1) {\n int mid = (lef + righ) >> 1;\n if (calc_hash(mid, times, sl) == rh.calchash(times, l, l + mid))\n lef = mid;\n else\n righ = mid;\n }\n res += righ;\n swap(sl, sr);\n sl = n - sl, sr = n - sr;\n swap(l, r);\n l = n - l, r = n - r;\n }\n return res == r - l + 1;\n}\n\nvoid prepair(int hash) {\n int len = t;\n memo.assign(1, hash);\n while (len < r - l) {\n int now = 1LL * memo.back() * rh.pow[len] % rh.Mod;\n (now += memo.back()) %= rh.Mod;\n memo.push_back(now);\n len <<= 1;\n }\n}\n\nint calc_hash(int len, int id, int st) {\n int cnt = len / t, m = memo.size(), res = 0;\n len %= t;\n for (int i = 0; i < m; ++i)\n if (cnt >> i & 1) {\n res = 1LL * res * rh.pow[t * (1 << i)] % rh.Mod;\n (res += memo[i]) %= rh.Mod;\n }\n res = 1LL * res * rh.pow[len] % rh.Mod;\n (res += rh.calchash(id, st, st + len)) %= rh.Mod;\n return res;\n}", "accuracy": 0.05128205128205128, "time_ms": 330, "memory_kb": 15972, "score_of_the_acc": -0.3947, "final_rank": 20 }, { "submission_id": "aoj_2711_5974986", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<cstring>\n#include<string>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<map>\n#include<queue>\n#include<deque>\n#include<iomanip>\n#include<tuple>\n#include<cassert>\n#include<set>\n#include<complex>\n#include<numeric>\n#include<functional>\n#include<unordered_map>\n#include<unordered_set>\nusing namespace std;\ntypedef long long int LL;\ntypedef pair<int,int> P;\ntypedef pair<LL,LL> LP;\nconst int INF=1<<30;\nconst LL MAX=1e9+7;\n\nvoid array_show(int *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%d%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(LL *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%lld%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(vector<int> &vec_s,int vec_n=-1,char middle=' '){\n if(vec_n==-1)vec_n=vec_s.size();\n for(int i=0;i<vec_n;i++)printf(\"%d%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\nvoid array_show(vector<LL> &vec_s,int vec_n=-1,char middle=' '){\n if(vec_n==-1)vec_n=vec_s.size();\n for(int i=0;i<vec_n;i++)printf(\"%lld%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\ntemplate<typename T> ostream& operator<<(ostream& os,const vector<T>& v1){\n int n=v1.size();\n for(int i=0;i<n;i++){\n if(i)os<<\" \";\n os<<v1[i];\n }\n return os;\n}\ntemplate<typename T1,typename T2> ostream& operator<<(ostream& os,const pair<T1,T2>& p){\n os<<p.first<<\" \"<<p.second;\n return os;\n}\ntemplate<typename T> istream& operator>>(istream& is,vector<T>& v1){\n int n=v1.size();\n for(int i=0;i<n;i++)is>>v1[i];\n return is;\n}\ntemplate<typename T1,typename T2> istream& operator>>(istream& is,pair<T1,T2>& p){\n is>>p.first>>p.second;\n return is;\n}\n\ntemplate <typename T> class seg_tree{\n //monoid\nprivate:\n function<T(T,T)> func;\n T e;\n int N,n=-1;\n vector<T> seg;\n\n void init(){\n assert(n>=0);\n int i;\n for(i=0;(1<<i)<n;i++);\n N=(1<<i)-1;\n seg.assign(2*(N+1),e);\n }\n\n void init_reload(){\n for(int i=N-1;i>=0;i--){\n seg[i]=func(seg[2*i+1],seg[2*i+2]);\n }\n }\n \n void update(int pos){\n T a=func(seg[pos*2+1],seg[pos*2+2]);\n if(seg[pos]==a)return;\n seg[pos]=a;\n if(pos==0)return;\n update((pos-1)/2);\n }\n\npublic:\n seg_tree(function<T(T,T)> _func,T _e,int _n):func(_func),e(_e),n(_n){\n init();\n }\n seg_tree(function<T(T,T)> _func,T _e,vector<T> vec):func(_func),e(_e){\n n=vec.size();\n init();\n for(int i=0;i<n;i++){\n seg[N+i]=vec[i];\n }\n init_reload();\n }\n seg_tree(function<T(T,T)> _func,T _e,int _n,T a):func(_func),e(_e),n(_n){\n init(e);\n for(int i=0;i<n;i++){\n seg[N+i]=a;\n }\n init_reload();\n }\n\n int size()const{\n return n;\n }\n\n void set(int pos,T a){\n assert(pos>=0 && pos<=N);\n pos+=N;\n seg[pos]=a;\n update((pos-1)/2);\n }\n\n T get(const int pos)const{\n return seg[N+pos];\n }\n\n T search(int a,int b,int l,int r,int x){//[a,b) search\n if(a<=l && r<=b)return seg[x];\n int m=(l+r)/2;\n if(b<=m)return search(a,b,l,m,2*x+1);\n if(m<=a)return search(a,b,m,r,2*x+2);\n return func(search(a,m,l,m,2*x+1),search(m,b,m,r,2*x+2));\n }\n T search(int a,int b){\n assert(a<b);\n assert(0<=a && b<=size());\n return search(a,b,0,N+1,0);\n }\n T search(){\n return search(0,size());\n }\n\n int max_right(function<bool(T)>& g,int pos,int l,int r,int x,T& y){\n //suppose that S is return value, g(func(pos,..,S-1))=true,g(func(pos,..,S))=false\n if(pos<=l && g(func(y,seg[x]))){\n y=func(y,seg[x]);\n return r;\n }\n if(l+1==r)return l;\n int m=(l+r)/2;\n if(pos<m){\n int s=max_right(g,pos,l,m,2*x+1,y);\n if(s<m)return s;\n }\n return max_right(g,pos,m,r,2*x+2,y);\n }\n int max_right(function<bool(T)> g,int pos){\n T y=e;\n int s=max_right(g,pos,0,N+1,0,y);\n return min(s,n);\n }\n\n int min_left(function<bool(T)>& g,int pos,int l,int r,int x,T& y){\n //suppose that S is return value, g(func(S,..,pos-1))=true,g(func(S-1,..,pos-1))=false\n int s;\n if(r<=pos && g(func(seg[x],y))){\n y=func(seg[x],y);\n return l;\n }\n if(l+1==r)return r;\n int m=(l+r)/2;\n if(m<pos){\n s=min_left(g,pos,m,r,2*x+2,y);\n if(m<s)return s;\n }\n return min_left(g,pos,l,m,2*x+1,y);\n }\n int min_left(function<bool(T)> g,int pos){\n assert(pos>=0);\n if(pos==0)return 0;\n T y=e;\n return min_left(g,pos,0,N+1,0,y);\n }\n};\n\nnamespace sol{\n const LL A=29,N=1e9+7,AN=1e5+7;\n LL Apow[AN];\n\n void solve(){\n int n,m;\n int i,j,k;\n LL a,b,c;\n LL s1,s2;\n string sa;\n Apow[0]=1;\n for(i=1;i<AN;i++){\n Apow[i]=Apow[i-1]*A%N;\n }\n cin>>sa;\n n=sa.size();\n cin>>m;\n seg_tree<LP> seg([&](LP a,LP b)->LP{\n LL c=a.first*Apow[b.second]+b.first;\n return {c%N,a.second+b.second};\n },{0,0},n);\n for(i=0;i<n;i++){\n a=sa[i]-'a';\n seg.set(i,{a,1});\n }\n for(i=0;i<m;i++){\n cin>>a>>b>>c;\n a--;\n LL z[3]={0,b-a-c+1};\n while(z[1]-z[0]>1){\n z[2]=(z[0]+z[1])/2;\n if(seg.search(a,a+z[2])==seg.search(a+c,a+c+z[2]))z[0]=z[2];\n else z[1]=z[2];\n }\n s1=z[0];\n z[0]=0,z[1]=b-a-c+1;\n while(z[1]-z[0]>1){\n z[2]=(z[0]+z[1])/2;\n if(seg.search(b-z[2],b)==seg.search(b-c-z[2],b-c))z[0]=z[2];\n else z[1]=z[2];\n }\n s2=z[0];\n if(b-a-c-1<=s1+s2){\n cout<<\"Yes\"<<endl;\n continue;\n }\n seg.set(a+s1+c,{sa[a+s1]-'a',1});\n if(seg.search(a,b-c)==seg.search(a+c,b))cout<<\"Yes\"<<endl;\n else cout<<\"No\"<<endl;\n seg.set(a+s1+c,{sa[a+s1+c]-'a',1});\n }\n }\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n sol::solve();\n}", "accuracy": 1, "time_ms": 950, "memory_kb": 8308, "score_of_the_acc": -1.0245, "final_rank": 11 }, { "submission_id": "aoj_2711_5903340", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct RollingHash {\nprivate:\n using i128 = __int128_t;\n using ull = unsigned long long;\n string str;\n vector<ull> hashed, power;\n const ull mod = (1uL << 61) - 1;\n const ull base = 1e9 + 7;\n const ull mask30 = (1ul << 30) - 1;\n const ull mask31 = (1ul << 31) - 1;\n ull mul(i128 a, i128 b) const {\n i128 t = a * b;\n t = (t >> 61) + (t & mod);\n if (t >= mod)\n return (ull)(t - mod);\n return (ull)t;\n }\n\npublic:\n void set(const string& _str) {\n str = _str;\n hashed.resize(str.size() + 1, 0);\n power.resize(str.size() + 1, 1);\n for (int i = 0; i < (int)str.size(); i++) {\n hashed[i + 1] = mul(hashed[i], base) + str[i] + 1;\n power[i + 1] = mul(power[i], base);\n if (hashed[i + 1] >= mod)\n hashed[i + 1] -= mod;\n }\n }\n RollingHash() : str(){};\n RollingHash(const string& str) : str() {\n set(str);\n };\n ull hash() const { return hashed.back(); }\n ull hash(int l, int r) const {\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n return ret < mod ? ret : ret - mod;\n }\n ull hashchg(int l, int r, int pos, char c) const {\n if (pos < l || r <= pos)\n return hash(l, r);\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n ret = ret < mod ? ret : ret - mod;\n ret += mod + mul(power[r - pos - 1], c) - mul(power[r - pos - 1], str[pos]);\n for (int i = 0; i < 2; i++) {\n ret = ret < mod ? ret : ret - mod;\n }\n return ret;\n }\n int size() const { return (int)str.size(); }\n};\n\n\nint main() {\n string S;\n int Q;\n cin >> S >> Q;\n RollingHash hash(S);\n\n while (Q--) {\n int l, r, t;\n cin >> l >> r >> t;\n l--;\n int l1 = l, l2 = l + t;\n int r1 = r - t, r2 = r;\n int ok = 0;\n int ng = r - l + 1 - t;\n while (abs(ok - ng) > 1) {\n int mid = (ok + ng) / 2;\n if (hash.hash(l1, l1 + mid) == hash.hash(l2, l2 + mid)) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n int pos1 = l1 + ok, pos2 = l2 + ok;\n bool ans;\n if (pos2 == r) {\n ans = true;\n } else {\n char c1 = S[pos1], c2 = S[pos2];\n if (hash.hashchg(l1, r1, pos1, c2) == hash.hashchg(l2, r2, pos1, c2) || hash.hashchg(l1, r1, pos2, c1) == hash.hashchg(l2, r2, pos2, c1))\n ans = true;\n else\n ans = false;\n }\n cout << (ans ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4924, "score_of_the_acc": -0.1117, "final_rank": 3 }, { "submission_id": "aoj_2711_5903336", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ull = unsigned long long;\n\nstruct RollingHash {\nprivate:\n using i128 = __int128_t;\n string str;\n vector<ull> hashed, power;\n const ull mod = (1uL << 61) - 1;\n const ull base = 1e9 + 7;\n const ull mask30 = (1ul << 30) - 1;\n const ull mask31 = (1ul << 31) - 1;\n ull mul(i128 a, i128 b) const {\n i128 t = a * b;\n t = (t >> 61) + (t & mod);\n if (t >= mod)\n return (ull)(t - mod);\n return (ull)t;\n }\n\npublic:\n void set(const string& _str) {\n str = _str;\n hashed.resize(str.size() + 1, 0);\n power.resize(str.size() + 1, 1);\n for (int i = 0; i < str.size(); i++) {\n hashed[i + 1] = mul(hashed[i], base) + str[i] + 1;\n power[i + 1] = mul(power[i], base);\n if (hashed[i + 1] >= mod)\n hashed[i + 1] -= mod;\n }\n }\n RollingHash() : str(){};\n RollingHash(const string& str) : str() {\n set(str);\n };\n ull hash() const { return hashed.back(); }\n ull hash(int l, int r) const {\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n return ret < mod ? ret : ret - mod;\n }\n ull hash(int l, int r, int pos, char c) const {\n if (pos < l || r <= pos)\n return hash(l, r);\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n /* ret = ret < mod ? ret : ret - mod; */\n ret += mod + mul(power[r - pos - 1], c) - mul(power[r - pos - 1], str[pos]);\n for (int i = 0; i < 3; i++) {\n ret = ret < mod ? ret : ret - mod;\n }\n return ret;\n }\n int size() const { return str.size(); }\n};\n\n\nint main() {\n string S;\n int Q;\n cin >> S >> Q;\n RollingHash hash(S);\n\n while (Q--) {\n int l, r, t;\n cin >> l >> r >> t;\n l--;\n int l1 = l, l2 = l + t;\n int r1 = r - t, r2 = r;\n int ok = 0;\n int ng = r - l + 1 - t;\n while (abs(ok - ng) > 1) {\n int mid = (ok + ng) / 2;\n if (hash.hash(l1, l1 + mid) == hash.hash(l2, l2 + mid)) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n int pos1 = l1 + ok, pos2 = l2 + ok;\n bool ans;\n if (pos2 == r) {\n ans = true;\n } else {\n char c1 = S[pos1], c2 = S[pos2];\n if (hash.hash(l1, r1, pos1, c2) == hash.hash(l2, r2, pos1, c2) || hash.hash(l1, r1, pos2, c1) == hash.hash(l2, r2, pos2, c1))\n ans = true;\n else\n ans = false;\n }\n cout << (ans ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4956, "score_of_the_acc": -0.1119, "final_rank": 6 }, { "submission_id": "aoj_2711_5903335", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ull = unsigned long long;\n\nstruct RollingHash {\nprivate:\n using i128 = __int128_t;\n string str;\n vector<ull> hashed, power;\n const ull mod = (1uL << 61) - 1;\n const ull base = 1e9 + 7;\n const ull mask30 = (1ul << 30) - 1;\n const ull mask31 = (1ul << 31) - 1;\n ull mul(i128 a, i128 b) const {\n i128 t = a * b;\n t = (t >> 61) + (t & mod);\n if (t >= mod)\n return (ull)(t - mod);\n return (ull)t;\n }\n\npublic:\n void set(const string& _str) {\n str = _str;\n hashed.resize(str.size() + 1, 0);\n power.resize(str.size() + 1, 1);\n for (int i = 0; i < str.size(); i++) {\n hashed[i + 1] = mul(hashed[i], base) + str[i] + 1;\n power[i + 1] = mul(power[i], base);\n if (hashed[i + 1] >= mod)\n hashed[i + 1] -= mod;\n }\n }\n RollingHash() : str(){};\n RollingHash(const string& str) : str() {\n set(str);\n };\n ull hash() const { return hashed.back(); }\n ull hash(int l, int r) const {\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n return ret < mod ? ret : ret - mod;\n }\n ull hash(int l, int r, int pos, char c) const {\n if (pos < l || r <= pos)\n return hash(l, r);\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n ret = ret < mod ? ret : ret - mod;\n ret += mod + mul(power[r - pos - 1], c) - mul(power[r - pos - 1], str[pos]);\n for (int i = 0; i < 2; i++) {\n ret = ret < mod ? ret : ret - mod;\n }\n return ret;\n }\n int size() const { return str.size(); }\n};\n\n\nint main() {\n string S;\n int Q;\n cin >> S >> Q;\n RollingHash hash(S);\n\n while (Q--) {\n int l, r, t;\n cin >> l >> r >> t;\n l--;\n int l1 = l, l2 = l + t;\n int r1 = r - t, r2 = r;\n int ok = 0;\n int ng = r - l + 1 - t;\n while (abs(ok - ng) > 1) {\n int mid = (ok + ng) / 2;\n if (hash.hash(l1, l1 + mid) == hash.hash(l2, l2 + mid)) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n int pos1 = l1 + ok, pos2 = l2 + ok;\n bool ans;\n if (pos2 == r) {\n ans = true;\n } else {\n char c1 = S[pos1], c2 = S[pos2];\n if (hash.hash(l1, r1, pos1, c2) == hash.hash(l2, r2, pos1, c2) || hash.hash(l1, r1, pos2, c1) == hash.hash(l2, r2, pos2, c1))\n ans = true;\n else\n ans = false;\n }\n cout << (ans ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4948, "score_of_the_acc": -0.1119, "final_rank": 4 }, { "submission_id": "aoj_2711_5903334", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ull = unsigned long long;\n\nstruct RollingHash {\nprivate:\n using i128 = __int128_t;\n string str;\n vector<ull> hashed, power;\n const ull mod = (1uL << 61) - 1;\n const ull base = 1e9 + 9;\n const ull mask30 = (1ul << 30) - 1;\n const ull mask31 = (1ul << 31) - 1;\n ull mul(i128 a, i128 b) const {\n i128 t = a * b;\n t = (t >> 61) + (t & mod);\n if (t >= mod)\n return (ull)(t - mod);\n return (ull)t;\n }\n\npublic:\n void set(const string& _str) {\n str = _str;\n hashed.resize(str.size() + 1, 0);\n power.resize(str.size() + 1, 1);\n for (int i = 0; i < str.size(); i++) {\n hashed[i + 1] = mul(hashed[i], base) + str[i] + 1;\n power[i + 1] = mul(power[i], base);\n if (hashed[i + 1] >= mod)\n hashed[i + 1] -= mod;\n }\n }\n RollingHash() : str(){};\n RollingHash(const string& str) : str() {\n set(str);\n };\n ull hash() const { return hashed.back(); }\n ull hash(int l, int r) const {\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n return ret < mod ? ret : ret - mod;\n }\n ull hash(int l, int r, int pos, char c) const {\n if (pos < l || r <= pos)\n return hash(l, r);\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n ret = ret < mod ? ret : ret - mod;\n ret += mod + mul(power[r - pos - 1], c) - mul(power[r - pos - 1], str[pos]);\n for (int i = 0; i < 2; i++) {\n ret = ret < mod ? ret : ret - mod;\n }\n return ret;\n }\n int size() const { return str.size(); }\n};\n\n\nint main() {\n string S;\n int Q;\n cin >> S >> Q;\n RollingHash hash(S);\n\n while (Q--) {\n int l, r, t;\n cin >> l >> r >> t;\n l--;\n int l1 = l, l2 = l + t;\n int r1 = r - t, r2 = r;\n int ok = 0;\n int ng = r - l + 1 - t;\n while (abs(ok - ng) > 1) {\n int mid = (ok + ng) / 2;\n if (hash.hash(l1, l1 + mid) == hash.hash(l2, l2 + mid)) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n int pos1 = l1 + ok, pos2 = l2 + ok;\n bool ans;\n if (pos2 == r) {\n ans = true;\n } else {\n char c1 = S[pos1], c2 = S[pos2];\n if (hash.hash(l1, r1, pos1, c2) == hash.hash(l2, r2, pos1, c2) || hash.hash(l1, r1, pos2, c1) == hash.hash(l2, r2, pos2, c1))\n ans = true;\n else\n ans = false;\n }\n cout << (ans ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4952, "score_of_the_acc": -0.1119, "final_rank": 5 }, { "submission_id": "aoj_2711_5903320", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ull = unsigned long long;\n\nstruct RollingHash {\nprivate:\n using i128 = __int128_t;\n string str;\n vector<ull> hashed, power;\n const ull mod = (1uL << 61) - 1;\n const ull base = 1e9 + 7;\n const ull mask30 = (1ul << 30) - 1;\n const ull mask31 = (1ul << 31) - 1;\n ull mul(i128 a, i128 b) const {\n i128 t = a * b;\n t = (t >> 61) + (t & mod);\n if (t >= mod)\n return (ull)(t - mod);\n return (ull)t;\n }\n\npublic:\n void set(const string& _str) {\n str = _str;\n hashed.resize(str.size() + 1, 0);\n power.resize(str.size() + 1, 1);\n for (int i = 0; i < str.size(); i++) {\n hashed[i + 1] = mul(hashed[i], base) + str[i] + 1;\n power[i + 1] = mul(power[i], base);\n if (hashed[i + 1] >= mod)\n hashed[i + 1] -= mod;\n }\n }\n RollingHash() : str(){};\n RollingHash(const string& str) : str() {\n set(str);\n };\n ull hash() const { return hashed.back(); }\n ull hash(int l, int r) const {\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n return ret < mod ? ret : ret - mod;\n }\n ull hash(int l, int r, int pos, char c) const {\n if (pos < l || r <= pos)\n return hash(l, r);\n ull ret = mod + hashed[r] - mul(hashed[l], power[r - l]);\n ret += mod + mul(power[r - pos - 1], c) - mul(power[r - pos - 1], str[pos]);\n for (int i = 0; i < 2; i++) {\n ret = ret < mod ? ret : ret - mod;\n }\n return ret;\n }\n int size() const { return str.size(); }\n};\n\n\nint main() {\n string S;\n int Q;\n cin >> S >> Q;\n RollingHash hash(S);\n\n while (Q--) {\n int l, r, t;\n cin >> l >> r >> t;\n l--;\n int l1 = l, l2 = l + t;\n int r1 = r - t, r2 = r;\n int ok = 0;\n int ng = r - l + 1 - t;\n while (abs(ok - ng) > 1) {\n int mid = (ok + ng) / 2;\n if (hash.hash(l1, l1 + mid) == hash.hash(l2, l2 + mid)) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n int pos1 = l1 + ok, pos2 = l2 + ok;\n bool ans;\n if (pos2 == r) {\n ans = true;\n } else {\n char c1 = S[pos1], c2 = S[pos2];\n if (hash.hash(l1, r1, pos1, c2) == hash.hash(l2, r2, pos1, c2) || hash.hash(l1, r1, pos2, c1) == hash.hash(l2, r2, pos2, c1))\n ans = true;\n else\n ans = false;\n }\n cout << (ans ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 0.05128205128205128, "time_ms": 130, "memory_kb": 4776, "score_of_the_acc": -0.0997, "final_rank": 17 }, { "submission_id": "aoj_2711_5802608", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=100005,INF=1<<29;\nconst int mod1=1000000007,mod2=1000000009;\nconst int M=400;\n\nstruct Rollinghash{\n string S;\n int n;\n int base1;\n int base2;\n vector<ll> h1,h2,ru1,ru2;\n \n void make(string &T,int ba1,int ba2){\n S=T;\n n=S.size();\n h1.assign(n+1,0);\n h2.assign(n+1,0);\n ru1.assign(n+1,0);\n ru2.assign(n+1,0);\n base1=ba1;\n base2=ba2;\n \n ru1[0]=1;\n ru2[0]=1;\n \n for(int i=1;i<=n;i++){\n h1[i]=h1[i-1]*base1+ll(S[i-1]-'A');\n h1[i]%=mod1;\n \n h2[i]=h2[i-1]*base2+ll(S[i-1]-'A');\n h2[i]%=mod2;\n \n ru1[i]=ru1[i-1]*base1%mod1;\n ru2[i]=ru2[i-1]*base2%mod2;\n }\n }\n \n pair<ll,ll> ha(int l,int r){\n pair<ll,ll> res;\n res.fi=(h1[r]-h1[l]*ru1[r-l]%mod1+mod1)%mod1;\n res.se=(h2[r]-h2[l]*ru2[r-l]%mod2+mod2)%mod2;\n \n return res;\n }//開区間\n};\n\nvector<int> ng[M+1];\n\nRollinghash ro;\n\nint cnt(int l,int r,int len){\n if(ro.ha(l,l+len)==ro.ha(r,r+len)) return 0;\n int left=0,right=len;\n while(right-left>1){\n int mid=(left+right)/2;\n auto al=ro.ha(l+left,l+mid),ar=ro.ha(l+mid,l+right);\n auto bl=ro.ha(r+left,r+mid),br=ro.ha(r+mid,r+right);\n if(al!=bl&&ar!=br) return 2;\n if(al!=bl) right=mid;\n else left=mid;\n }\n return 1;\n}\n\nint solve(int l,int r,int t,int len){\n map<pair<ll,ll>,int> MA;\n for(int i=l;i<r;i+=t) MA[ro.ha(i,i+len)]++;\n if(si(MA)>=3) return 2;\n else if(si(MA)==1) return 0;\n else{\n int cc=0;\n for(auto a:MA) if(a.se>=2) cc++;\n if(cc==2) return 2;\n else{\n auto a=(*MA.begin()).fi;\n int sl=-1,sr=-1;\n for(int i=l;i<r;i+=t){\n if(ro.ha(i,i+len)==a) sl=i;\n else sr=i;\n }\n return cnt(sl,sr,len);\n }\n }\n}\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n string S;cin>>S;\n int Q;cin>>Q;\n ro.make(S,137,199);\n int N=si(S);\n for(int t=1;t<=M;t++){\n for(int i=0;i+t<N;i++){\n if(S[i]!=S[i+t]) ng[t].push_back(i);\n }\n }\n \n while(Q--){\n int l,r,t;cin>>l>>r>>t;\n l--;\n if(t<=M){\n auto a=lower_bound(all(ng[t]),l),b=lower_bound(all(ng[t]),r-t);\n if(a==b) cout<<\"Yes\\n\";\n else{\n if(b-a>=3) cout<<\"No\\n\";\n else if(b-a==2){\n int x=*a;\n a++;\n int y=*a;\n if(y-x==t&&S[x]==S[y+t]) cout<<\"Yes\\n\";\n else cout<<\"No\\n\";\n }else{\n int x=*a;\n if(x<l+t||x+t>=r-t) cout<<\"Yes\\n\";\n else cout<<\"No\\n\";\n }\n }\n }else{\n if(r-l==t){\n cout<<\"Yes\\n\";\n }else if(r-l<=2*t){\n int len=r-l-t;\n int x=cnt(l,l+t,len);\n if(x<=1) cout<<\"Yes\\n\";\n else cout<<\"No\\n\";\n }else{\n if(solve(l,r,t,(r-l)%t)+solve(l+(r-l)%t,r,t,t-(r-l)%t)<=1) cout<<\"Yes\\n\";\n else cout<<\"No\\n\";\n }\n }\n }\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 153524, "score_of_the_acc": -1.1648, "final_rank": 12 }, { "submission_id": "aoj_2711_5791285", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2021.08.16 12:53:59 */\n\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region macros\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define popcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\n#pragma endregion\n\n#pragma region aliases\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nconst int inf = 1e9;\nconst long long INF = 1e18;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nconst char sp = ' ';\nint dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nint dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n\nconst int mod_1000000007 = 1000000007;\nconst int mod_998244353 = 998244353;\n\n#pragma endregion\n\n#pragma region basic_operation\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { std::cout << (f ? \"Yes\" : \"No\") << '\\n'; }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(bool f = 1) { std::cout << (f ? \"YES\" : \"NO\") << '\\n'; }\nvoid NO() { std::cout << \"NO\\n\"; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\nvoid err(bool flag = true) {\n\tif(!flag) return;\n\tstd::cout << -1 << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(T x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T val) {\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\treturn (a + b - 1) / b;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(std::vector<T> &a) {\n\tauto vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\nnamespace viewer {\nvoid view(const long long e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tstd::cerr << \", \";\n\t\tview(c.second);\n\t\tstd::cerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n} // namespace viewer\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tviewer::view(x); \\\n\t\tstd::cerr << '\\n'; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nclass RollingHash_Mersenne {\n\t// safety rollinghash (mod : 1UL << 61 - 1, base : 10007 or random)\n\t// https://atcoder.jp/contests/agc047/submissions/16500504\n\tconst unsigned long long MASK30 = (1ULL << 30) - 1;\n\tconst unsigned long long MASK31 = (1ULL << 31) - 1;\n\tconst unsigned long long MASK61 = (1ULL << 61) - 1;\n\tconst unsigned long long MOD = MASK61;\n\tconst unsigned long long base = 10007;\t// 値が小さすぎると衝突しやすい\n\tconst unsigned long long POSITIVIZER = MOD << 2;\n\tvector<unsigned long long> hash, power;\n\n\t// a * b と mod が等しい数を返す\n\t// 結果は (1UL << 63) + 3 - (1UL << 31) * 3 以下\n\tunsigned long long Mul(unsigned long long a, unsigned long long b) const {\n\t\tunsigned long long au = a >> 31;\n\t\tunsigned long long ad = a & MASK31;\n\t\tunsigned long long bu = b >> 31;\n\t\tunsigned long long bd = b & MASK31;\n\t\tunsigned long long mid = ad * bu + au * bd;\n\t\tunsigned long long midu = mid >> 30;\n\t\tunsigned long long midd = mid & MASK30;\n\t\treturn au * bu * 2 + midu + (midd << 31) + ad * bd;\n\t}\n\n\t// mod 2^61-1を計算する\n\tunsigned long long CalcMod(unsigned long long x) const {\n\t\tunsigned long long xu = x >> 61;\n\t\tunsigned long long xd = x & MASK61;\n\t\tunsigned long long res = xu + xd;\n\t\tif(res >= MOD) res -= MOD;\n\t\treturn res;\n\t}\n\n public:\n\tRollingHash_Mersenne() = default;\n\tRollingHash_Mersenne(const string &s, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)s.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + s[i]);\n\t\t}\n\t}\n\n\ttemplate <class T>\n\tRollingHash_Mersenne(const vector<T> &v, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)v.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + v[i]);\n\t\t}\n\t}\n\n\tunsigned long long get(int l, int r) const { return CalcMod(hash[r] + POSITIVIZER - Mul(hash[l], power[r - l])); }\n\n\tunsigned long long connect(unsigned long long h1, unsigned long long h2, unsigned long long h2len) const {\n\t\treturn CalcMod(Mul(h1, power[h2len]) + h2);\n\t}\n\n\t// Longest Common Prefix (using Binary Search)\n\tint LCP(int l_this, int r_this, RollingHash_Mersenne &other, int l_other, int r_other) {\n\t\tint len = min(r_this - l_this, r_other - l_other);\n\t\tint low = 0, high = len + 1;\n\t\twhile(high - low > 1) {\n\t\t\tint mid = (low + high) / 2;\n\t\t\tif(get(l_this, l_this + mid) == other.get(l_other, l_other + mid))\n\t\t\t\tlow = mid;\n\t\t\telse\n\t\t\t\thigh = mid;\n\t\t}\n\t\treturn low;\n\t}\n};\n\nint main() {\n\tstd::ios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tstd::cout << std::fixed << std::setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tSTR(s);\n\tRollingHash_Mersenne rh(s);\n\n\tauto judge = [&](int l, int r, int t) {\n\t\tif(t >= r - l) return true;\n\t\tint lcp = rh.LCP(l, r, rh, l + t, r);\n\t\tif(lcp >= r - l - t - 1) return true;\n\n\t\tint diff = l + lcp;\n\t\tint e = diff + t;\n\t\tint f = diff + t + t;\n\n\t\tassert(s[diff] != s[e]);\n\n\t\tif(f < r) {\n\t\t\tif(s[diff] == s[f]) {\n\t\t\t\tif(rh.LCP(diff + 1, e, rh, e + 1, f) < f - e - 1) return false;\n\t\t\t\tif(rh.LCP(e + 1, r, rh, f + 1, r) < r - f - 1) return false;\n\t\t\t\treturn true;\n\t\t\t} else if(s[e] == s[f]) {\n\t\t\t\tif(diff >= t + l) return false;\n\t\t\t\tif(rh.LCP(diff + 1, r, rh, e + 1, r) < r - e - 1) return false;\n\t\t\t\treturn true;\n\t\t\t} else {\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\n\t\tif(rh.LCP(l + lcp + 1, r, rh, l + t + lcp + 1, r) == r - lcp - 1 - t - l) return true;\n\t\treturn false;\n\t};\n\n\tint q;\n\tcin >> q;\n\trep(q) {\n\t\tint l, r;\n\t\tint t;\n\t\tcin >> l >> r >> t;\n\t\tl--;\n\t\tYes(judge(l, r, t));\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4860, "score_of_the_acc": -0.0124, "final_rank": 1 }, { "submission_id": "aoj_2711_5791263", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2021.08.16 12:53:59 */\n\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region macros\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define popcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\n#pragma endregion\n\n#pragma region aliases\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nconst int inf = 1e9;\nconst long long INF = 1e18;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nconst char sp = ' ';\nint dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nint dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n\nconst int mod_1000000007 = 1000000007;\nconst int mod_998244353 = 998244353;\n\n#pragma endregion\n\n#pragma region basic_operation\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { std::cout << (f ? \"Yes\" : \"No\") << '\\n'; }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(bool f = 1) { std::cout << (f ? \"YES\" : \"NO\") << '\\n'; }\nvoid NO() { std::cout << \"NO\\n\"; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\nvoid err(bool flag = true) {\n\tif(!flag) return;\n\tstd::cout << -1 << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(T x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T val) {\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\treturn (a + b - 1) / b;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(std::vector<T> &a) {\n\tauto vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\nnamespace viewer {\nvoid view(const long long e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tstd::cerr << \", \";\n\t\tview(c.second);\n\t\tstd::cerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n} // namespace viewer\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tviewer::view(x); \\\n\t\tstd::cerr << '\\n'; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nclass RollingHash_Mersenne {\n\t// safety rollinghash (mod : 1UL << 61 - 1, base : 10007 or random)\n\t// https://atcoder.jp/contests/agc047/submissions/16500504\n\tconst unsigned long long MASK30 = (1ULL << 30) - 1;\n\tconst unsigned long long MASK31 = (1ULL << 31) - 1;\n\tconst unsigned long long MASK61 = (1ULL << 61) - 1;\n\tconst unsigned long long MOD = MASK61;\n\tconst unsigned long long base = 10007;\t// 値が小さすぎると衝突しやすい\n\tconst unsigned long long POSITIVIZER = MOD << 2;\n\tvector<unsigned long long> hash, power;\n\n\t// a * b と mod が等しい数を返す\n\t// 結果は (1UL << 63) + 3 - (1UL << 31) * 3 以下\n\tunsigned long long Mul(unsigned long long a, unsigned long long b) const {\n\t\tunsigned long long au = a >> 31;\n\t\tunsigned long long ad = a & MASK31;\n\t\tunsigned long long bu = b >> 31;\n\t\tunsigned long long bd = b & MASK31;\n\t\tunsigned long long mid = ad * bu + au * bd;\n\t\tunsigned long long midu = mid >> 30;\n\t\tunsigned long long midd = mid & MASK30;\n\t\treturn au * bu * 2 + midu + (midd << 31) + ad * bd;\n\t}\n\n\t// mod 2^61-1を計算する\n\tunsigned long long CalcMod(unsigned long long x) const {\n\t\tunsigned long long xu = x >> 61;\n\t\tunsigned long long xd = x & MASK61;\n\t\tunsigned long long res = xu + xd;\n\t\tif(res >= MOD) res -= MOD;\n\t\treturn res;\n\t}\n\n public:\n\tRollingHash_Mersenne() = default;\n\tRollingHash_Mersenne(const string &s, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)s.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + s[i]);\n\t\t}\n\t}\n\n\ttemplate <class T>\n\tRollingHash_Mersenne(const vector<T> &v, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)v.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + v[i]);\n\t\t}\n\t}\n\n\tunsigned long long get(int l, int r) const { return CalcMod(hash[r] + POSITIVIZER - Mul(hash[l], power[r - l])); }\n\n\tunsigned long long connect(unsigned long long h1, unsigned long long h2, unsigned long long h2len) const {\n\t\treturn CalcMod(Mul(h1, power[h2len]) + h2);\n\t}\n\n\t// Longest Common Prefix (using Binary Search)\n\tint LCP(int l_this, int r_this, RollingHash_Mersenne &other, int l_other, int r_other) {\n\t\tint len = min(r_this - l_this, r_other - l_other);\n\t\tint low = 0, high = len + 1;\n\t\twhile(high - low > 1) {\n\t\t\tint mid = (low + high) / 2;\n\t\t\tif(get(l_this, l_this + mid) == other.get(l_other, l_other + mid))\n\t\t\t\tlow = mid;\n\t\t\telse\n\t\t\t\thigh = mid;\n\t\t}\n\t\treturn low;\n\t}\n};\n\nint main() {\n\tstd::ios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tstd::cout << std::fixed << std::setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tSTR(s);\n\tRollingHash_Mersenne rh(s);\n\n\tauto judge = [&](int l, int r, int t) {\n\t\tif(t >= r - l) return true;\n\t\tint lcp = rh.LCP(l, r, rh, l + t, r);\n\t\tif(lcp >= r - l - t - 1) return true;\n\n\t\tint diff = l + lcp;\n\t\tint e = diff + t;\n\t\tint f = diff + t + t;\n\n\t\tassert(s[diff] != s[e]);\n\n\t\tif(f < r) {\n\t\t\tif(s[diff] == s[f]) {\n\t\t\t\tif(rh.LCP(diff + 1, e, rh, e + 1, f) < f - e - 1) return false;\n\t\t\t\tif(rh.LCP(e + 1, r, rh, f + 1, r) < r - f - 1) return false;\n\t\t\t\treturn true;\n\t\t\t} else if(s[e] == s[f]) {\n\t\t\t\tif(diff >= t) return false;\n\t\t\t} else {\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\n\t\tif(rh.LCP(l + lcp + 1, r, rh, l + t + lcp + 1, r) == r - lcp - 1 - t - l) return true;\n\t\treturn false;\n\t};\n\n\tint q;\n\tcin >> q;\n\trep(q) {\n\t\tint l, r;\n\t\tint t;\n\t\tcin >> l >> r >> t;\n\t\tl--;\n\t\tYes(judge(l, r, t));\n\t}\n\n\treturn 0;\n}", "accuracy": 0.05128205128205128, "time_ms": 40, "memory_kb": 4872, "score_of_the_acc": -0.0015, "final_rank": 16 }, { "submission_id": "aoj_2711_5791260", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2021.08.16 12:53:59 */\n\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region macros\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define popcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\n#pragma endregion\n\n#pragma region aliases\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nconst int inf = 1e9;\nconst long long INF = 1e18;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nconst char sp = ' ';\nint dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nint dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n\nconst int mod_1000000007 = 1000000007;\nconst int mod_998244353 = 998244353;\n\n#pragma endregion\n\n#pragma region basic_operation\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { std::cout << (f ? \"Yes\" : \"No\") << '\\n'; }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(bool f = 1) { std::cout << (f ? \"YES\" : \"NO\") << '\\n'; }\nvoid NO() { std::cout << \"NO\\n\"; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\nvoid err(bool flag = true) {\n\tif(!flag) return;\n\tstd::cout << -1 << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(T x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T val) {\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\treturn (a + b - 1) / b;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(std::vector<T> &a) {\n\tauto vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\nnamespace viewer {\nvoid view(const long long e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tstd::cerr << \", \";\n\t\tview(c.second);\n\t\tstd::cerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n} // namespace viewer\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tviewer::view(x); \\\n\t\tstd::cerr << '\\n'; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nclass RollingHash_Mersenne {\n\t// safety rollinghash (mod : 1UL << 61 - 1, base : 10007 or random)\n\t// https://atcoder.jp/contests/agc047/submissions/16500504\n\tconst unsigned long long MASK30 = (1ULL << 30) - 1;\n\tconst unsigned long long MASK31 = (1ULL << 31) - 1;\n\tconst unsigned long long MASK61 = (1ULL << 61) - 1;\n\tconst unsigned long long MOD = MASK61;\n\tconst unsigned long long base = 10007;\t// 値が小さすぎると衝突しやすい\n\tconst unsigned long long POSITIVIZER = MOD << 2;\n\tvector<unsigned long long> hash, power;\n\n\t// a * b と mod が等しい数を返す\n\t// 結果は (1UL << 63) + 3 - (1UL << 31) * 3 以下\n\tunsigned long long Mul(unsigned long long a, unsigned long long b) const {\n\t\tunsigned long long au = a >> 31;\n\t\tunsigned long long ad = a & MASK31;\n\t\tunsigned long long bu = b >> 31;\n\t\tunsigned long long bd = b & MASK31;\n\t\tunsigned long long mid = ad * bu + au * bd;\n\t\tunsigned long long midu = mid >> 30;\n\t\tunsigned long long midd = mid & MASK30;\n\t\treturn au * bu * 2 + midu + (midd << 31) + ad * bd;\n\t}\n\n\t// mod 2^61-1を計算する\n\tunsigned long long CalcMod(unsigned long long x) const {\n\t\tunsigned long long xu = x >> 61;\n\t\tunsigned long long xd = x & MASK61;\n\t\tunsigned long long res = xu + xd;\n\t\tif(res >= MOD) res -= MOD;\n\t\treturn res;\n\t}\n\n public:\n\tRollingHash_Mersenne() = default;\n\tRollingHash_Mersenne(const string &s, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)s.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + s[i]);\n\t\t}\n\t}\n\n\ttemplate <class T>\n\tRollingHash_Mersenne(const vector<T> &v, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)v.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + v[i]);\n\t\t}\n\t}\n\n\tunsigned long long get(int l, int r) const { return CalcMod(hash[r] + POSITIVIZER - Mul(hash[l], power[r - l])); }\n\n\tunsigned long long connect(unsigned long long h1, unsigned long long h2, unsigned long long h2len) const {\n\t\treturn CalcMod(Mul(h1, power[h2len]) + h2);\n\t}\n\n\t// Longest Common Prefix (using Binary Search)\n\tint LCP(int l_this, int r_this, RollingHash_Mersenne &other, int l_other, int r_other) {\n\t\tint len = min(r_this - l_this, r_other - l_other);\n\t\tint low = 0, high = len + 1;\n\t\twhile(high - low > 1) {\n\t\t\tint mid = (low + high) / 2;\n\t\t\tif(get(l_this, l_this + mid) == other.get(l_other, l_other + mid))\n\t\t\t\tlow = mid;\n\t\t\telse\n\t\t\t\thigh = mid;\n\t\t}\n\t\treturn low;\n\t}\n};\n\nint main() {\n\tstd::ios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tstd::cout << std::fixed << std::setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tSTR(s);\n\tint n = s.size();\n\tRollingHash_Mersenne rh(s);\n\n\tauto judge = [&](int l, int r, int t) {\n\t\tif(t >= r - l) return true;\n\t\tint lcp = rh.LCP(l, r, rh, l + t, r);\n\t\tif(lcp >= r - l - t - 1) return true;\n\n\t\tint diff = l + lcp;\n\t\tint e = diff + t;\n\t\tint f = diff + t + t;\n\n\t\tassert(s[diff] != s[e]);\n\n\t\tif(f < r) {\n\t\t\tif(s[diff] == s[f]) {\n\t\t\t\tif(rh.LCP(diff + 1, e, rh, e + 1, f) < f - e - 1) return false;\n\t\t\t\tif(rh.LCP(e + 1, r, rh, f + 1, r) < r - f - 1) return false;\n\t\t\t\treturn true;\n\t\t\t} else if(s[e] == s[f]) {\n\t\t\t\tif(diff >= t) return false;\n\t\t\t}else{\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\n\t\tif(rh.LCP(l + lcp + 1, r, rh, l + t + lcp + 1, r) == r - lcp - 1 - t - l) return true;\n\t\treturn false;\n\t};\n\n\tint q;\n\tcin >> q;\n\trep(q) {\n\t\tint l, r;\n\t\tint t;\n\t\tcin >> l >> r >> t;\n\t\tl--;\n\t\tYes(judge(l, r, t));\n\t}\n\n\treturn 0;\n}", "accuracy": 0.05128205128205128, "time_ms": 40, "memory_kb": 4728, "score_of_the_acc": -0.0005, "final_rank": 15 }, { "submission_id": "aoj_2711_5791215", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2021.08.16 12:53:59 */\n\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region macros\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define popcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\n#pragma endregion\n\n#pragma region aliases\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nconst int inf = 1e9;\nconst long long INF = 1e18;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nconst char sp = ' ';\nint dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nint dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n\nconst int mod_1000000007 = 1000000007;\nconst int mod_998244353 = 998244353;\n\n#pragma endregion\n\n#pragma region basic_operation\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { std::cout << (f ? \"Yes\" : \"No\") << '\\n'; }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(bool f = 1) { std::cout << (f ? \"YES\" : \"NO\") << '\\n'; }\nvoid NO() { std::cout << \"NO\\n\"; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\nvoid err(bool flag = true) {\n\tif(!flag) return;\n\tstd::cout << -1 << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(T x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T val) {\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\treturn (a + b - 1) / b;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(std::vector<T> &a) {\n\tauto vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\nnamespace viewer {\nvoid view(const long long e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tstd::cerr << \", \";\n\t\tview(c.second);\n\t\tstd::cerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n} // namespace viewer\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tviewer::view(x); \\\n\t\tstd::cerr << '\\n'; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nclass RollingHash_Mersenne {\n\t// safety rollinghash (mod : 1UL << 61 - 1, base : 10007 or random)\n\t// https://atcoder.jp/contests/agc047/submissions/16500504\n\tconst unsigned long long MASK30 = (1ULL << 30) - 1;\n\tconst unsigned long long MASK31 = (1ULL << 31) - 1;\n\tconst unsigned long long MASK61 = (1ULL << 61) - 1;\n\tconst unsigned long long MOD = MASK61;\n\tconst unsigned long long base = 10007;\t// 値が小さすぎると衝突しやすい\n\tconst unsigned long long POSITIVIZER = MOD << 2;\n\tvector<unsigned long long> hash, power;\n\n\t// a * b と mod が等しい数を返す\n\t// 結果は (1UL << 63) + 3 - (1UL << 31) * 3 以下\n\tunsigned long long Mul(unsigned long long a, unsigned long long b) const {\n\t\tunsigned long long au = a >> 31;\n\t\tunsigned long long ad = a & MASK31;\n\t\tunsigned long long bu = b >> 31;\n\t\tunsigned long long bd = b & MASK31;\n\t\tunsigned long long mid = ad * bu + au * bd;\n\t\tunsigned long long midu = mid >> 30;\n\t\tunsigned long long midd = mid & MASK30;\n\t\treturn au * bu * 2 + midu + (midd << 31) + ad * bd;\n\t}\n\n\t// mod 2^61-1を計算する\n\tunsigned long long CalcMod(unsigned long long x) const {\n\t\tunsigned long long xu = x >> 61;\n\t\tunsigned long long xd = x & MASK61;\n\t\tunsigned long long res = xu + xd;\n\t\tif(res >= MOD) res -= MOD;\n\t\treturn res;\n\t}\n\n public:\n\tRollingHash_Mersenne() = default;\n\tRollingHash_Mersenne(const string &s, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)s.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + s[i]);\n\t\t}\n\t}\n\n\ttemplate <class T>\n\tRollingHash_Mersenne(const vector<T> &v, unsigned long long _base = 10007) : base(_base) {\n\t\tint sz = (int)v.size();\n\t\thash.assign(sz + 1, 0);\n\t\tpower.assign(sz + 1, 0);\n\t\tpower[0] = 1;\n\t\tfor(int i = 0; i < sz; i++) {\n\t\t\tpower[i + 1] = CalcMod(Mul(power[i], base));\n\t\t\thash[i + 1] = CalcMod(Mul(hash[i], base) + v[i]);\n\t\t}\n\t}\n\n\tunsigned long long get(int l, int r) const { return CalcMod(hash[r] + POSITIVIZER - Mul(hash[l], power[r - l])); }\n\n\tunsigned long long connect(unsigned long long h1, unsigned long long h2, unsigned long long h2len) const {\n\t\treturn CalcMod(Mul(h1, power[h2len]) + h2);\n\t}\n\n\t// Longest Common Prefix (using Binary Search)\n\tint LCP(int l_this, int r_this, RollingHash_Mersenne &other, int l_other, int r_other) {\n\t\tint len = min(r_this - l_this, r_other - l_other);\n\t\tint low = 0, high = len + 1;\n\t\twhile(high - low > 1) {\n\t\t\tint mid = (low + high) / 2;\n\t\t\tif(get(l_this, l_this + mid) == other.get(l_other, l_other + mid))\n\t\t\t\tlow = mid;\n\t\t\telse\n\t\t\t\thigh = mid;\n\t\t}\n\t\treturn low;\n\t}\n};\n\nint main() {\n\tstd::ios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tstd::cout << std::fixed << std::setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tSTR(s);\n\tint n = s.size();\n\tRollingHash_Mersenne rh(s);\n\n\tauto judge = [&](int l, int r, int t) {\n\t\tif(t >= r - l) return true;\n\n\t\tint lcp = rh.LCP(l, r, rh, l + t, r);\n\t\tif(lcp >= r - l - t - 1) return true;\n\t\tdebug(l, r, t, lcp);\n\t\tint diff = l + lcp;\n\t\tint e = diff + t;\n\t\tint f = diff + t + t;\n\t\tif(f < n) {\n\t\t\t// if(s[e] != s[f] && s[diff] != s[f]) return false;\n\t\t\tif(s[diff] == s[f]) {\n\t\t\t\t// change e;\n\t\t\t\tif(rh.LCP(diff + 1, e, rh, e + 1, f) < f - e - 1) return false;\n\t\t\t\tif(rh.LCP(e + 1, r, rh, f + 1, r) < r - f - 1) return false;\n\t\t\t\treturn true;\n\t\t\t} else if(s[e] == s[f]) {\n\t\t\t\tif(diff >= t) return false;\n\t\t\t}\n\t\t}\n\n\t\tif(rh.LCP(l + lcp + 1, r, rh, l + t + lcp + 1, r) == r - lcp - 1 - t - l) return true;\n\n\t\t// if(lcp < t) {\n\t\t// \tif(l + lcp + t * 2 < n && s [l + lcp + t * 2] != s[l + lcp]) return false;\n\t\t// \tif()\n\t\t// }\n\t\treturn false;\n\t};\n\n\tint q;\n\tcin >> q;\n\trep(q) {\n\t\tint l, r;\n\t\tint t;\n\t\tcin >> l >> r >> t;\n\t\tl--;\n\t\tYes(judge(l, r, t));\n\t}\n\n\treturn 0;\n}", "accuracy": 0.05128205128205128, "time_ms": 40, "memory_kb": 4656, "score_of_the_acc": 0, "final_rank": 14 } ]
aoj_2716_cpp
Leapfrog Problem Statement N 個のマスが円状に並んでいる。マスは時計回りに 1,\ 2,\ ... ,\ N と番号が振られている。各 i ( 1 ≤ i ≤ N−1 ) について、 i 番目のマスと i+1 番目のマスは隣り合う。また、 N 番目のマスと 1 番目のマスは隣り合う。 これらのうち M 個のマスには、互いに区別できない駒が 1 個ずつ置かれている。はじめ、 x_1,\ x_2,\ ... ,\ x_M 番目のマスに駒が置かれている。次の操作を何回か行い、 y_1,\ y_2,\ ... ,\ y_M 番目のマスに駒が置かれているようにしたい。 時計回りまたは反時計回りに連続する 3 個のマスを選び、順に A,\ B,\ C とおく。 A と B にそれぞれ駒があり C に駒がないならば、 A の駒を C へ移動する。 y_1,\ y_2,\ ... ,\ y_M 番目のマスに駒が置かれているようにできるか判定せよ。できるならば、必要な操作の回数の最小値を求めよ。 Constraints 3 ≤ N ≤ 3,000 1 ≤ M ≤ N 1 ≤ x_1<x_2< ... <x_M ≤ N 1 ≤ y_1<y_2< ... <y_M ≤ N Input Format 入力は以下の形式で標準入力から与えられる。 N M x_1 x_2 ... x_M y_1 y_2 ... y_M Output Format y_1,\ y_2,\ ... ,\ y_M 番目のマスに駒が置かれているようにできるならば、必要な操作の回数の最小値を一行に出力せよ。できないならば、代わりに -1 を一行に出力せよ。 Sample Input 1 7 2 1 2 5 6 Sample Output 1 3 次のように 3 回の操作を行えばよい。 2 番目のマスの駒を 7 番目のマスへ移動する。 1 番目のマスの駒を 6 番目のマスへ移動する。 7 番目のマスの駒を 5 番目のマスへ移動する。 Sample Input 2 3 1 1 2 Sample Output 2 -1 Sample Input 3 2999 3 1 2 3 2 3 4 Sample Output 3 4491004
[ { "submission_id": "aoj_2716_10853361", "code_snippet": "#include <string>\n#include <vector>\n#include<iostream>\n#include<cstdio>\n#include<cstdlib>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<list>\n#include<deque>\n#include<bitset>\n#include<set>\n#include<map>\n#include<unordered_map>\n#include<cstring>\n#include<sstream>\n#include<complex>\n#include<iomanip>\n#include<numeric>\n#define X first\n#define Y second\n#define pb push_back\n#define rep(X,Y) for (int (X) = 0;(X) < (Y);++(X))\n#define rrep(X,Y) for (int (X) = (Y)-1;(X) >=0;--(X))\n#define repe(X,Y) for ((X) = 0;(X) < (Y);++(X))\n#define peat(X,Y) for (;(X) < (Y);++(X))\n#define all(X) (X).begin(),(X).end()\n#define rall(X) (X).rbegin(),(X).rend()\n#define eb emplace_back\n#define UNIQUE(X) (X).erase(unique(all(X)),(X).end())\n \nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\ntemplate<class T> using vv=vector<vector<T>>;\ntemplate<class T> ostream& operator<<(ostream &os, const vector<T> &t) {\nos<<\"{\"; rep(i,t.size()) {os<<t[i]<<\",\";} os<<\"}\"<<endl; return os;}\ntemplate<class S, class T> ostream& operator<<(ostream &os, const pair<S,T> &t) { return os<<\"(\"<<t.first<<\",\"<<t.second<<\")\";}\nconst ll MOD=1e9+7;\nconst ll INF=1e16;\n \nbool movable(vector<int> &v){\n int n=v.size();\n rep(i,n)\n if( !v[(i+1)%n] && v[i]+v[(i+2)%n]==1 ) return 1;\n return 0;\n}\n \nvoid solve(pii a,pii b,int n){\n cout<<a<<b<<n<<endl;\n int x,y;\n ll re=INF;\n x=abs(a.X-b.X); y=abs(a.Y-b.Y);\n if(x%2==y%2){\n cout<<\"<<\"<<endl;\n if(x%2){ x=n-x; y=n-y;}\n re=min<ll>(re,(x+y)/2);\n }\n x=abs(a.X-b.Y); y=abs(a.Y-b.X);\n if(x%2==0 && y%2==1){\n cout<<\"<>\"<<endl;\n x=n-x;\n re=min<ll>(re,(x+y)/2);\n }\n cout<<(re==INF?-1:re)<<endl;\n}\n \nint main(){\n ios_base::sync_with_stdio(false);\n cout<<fixed<<setprecision(0);\n int n,m,x;\n cin>>n>>m;\n vector<int> xs(n,1),ys(n,1);\n rep(i,m){\n cin>>x; --x;\n xs[x]=0;\n }\n rep(i,m){\n cin>>x; --x;\n ys[x]=0;\n }\n if(!movable(xs)){\n cout<<(xs==ys?0:-1)<<endl;\n return 0;\n }\n vector<int> a,b;\n rep(j,3)\n rep(i,n) if(xs[i]) a.pb(i);\n rep(j,3)\n rep(i,n) if(ys[i]) b.pb(i);\n ll ans=INF;\n //cout<<a<<b;\n m=n-m;\n //cout<<m<<endl;\n rep(t,4)rep(i,m+1){\n int f=1;\n ll re=0;\n rep(j,m){\n int d=a[i+j]-b[j]+(t-2)*n;\n if(i+j>=m) d=n+d;\n d=abs(d);\n //cout<<d<<\",\";\n if(d%2){\n\tf=0; break;\n }else{\n\tre+=d/2;\n }\n }\n //cout<<i<<\";\"<<1<<endl;\n if(f)ans=min(re,ans);\n }\n /*rep(i,m+1){\n int f=1;\n ll re=0;\n rep(j,m){\n\tint d=abs(a[i+j]-b[j]);\n\tif(i+j>=m) d=n-d;\n\tcout<<d<<\",\";\n\tif(d%2){\n\t f=0; break;\n\t}else{\n\t re+=d/2;\n\t}\n }\n cout<<i<<\";\"<<1<<endl;\n if(f)ans=min(re,ans);\n }\n rep(i,m+1){\n int f=1;\n ll re=0;\n rep(j,m){\n\tint d=abs(a[i+j]-b[j]);\n\tif(i+j>=m) d=n+n-d;\n\telse d=n-d;\n\tcout<<d<<\",\";\n\tif(d%2){\n\t f=0; break;\n\t}else{\n\t re+=d/2;\n\t}\n }\n cout<<i<<\":\"<<2<<endl;\n if(f)ans=min(re,ans);\n }\n /*rep(i,m+1){\n int f=1;\n ll re=0;\n rep(j,m){\n\tint d=abs(a[j]-b[i+j]);\n\tif(i+j>=m) d=n-d;\n\tcout<<d<<\",\";\n\tif(i==1)cout<<d<<\",\";\n\tif(d%2){\n\t f=0; break;\n\t}else{\n\t re+=d/2;\n\t}\n }\n if(f)ans=min(re,ans);\n if(re==1501&&f)cout<<i<<\":\"<<3<<endl;\n }\n rep(i,m+1){\n int f=1;\n ll re=0;\n rep(j,m){\n\tint d=abs(a[j]-b[i+j]);\n\tif(i+j>=m) d=n+d;\n\tcout<<d<<\",\";\n\tif(d%2){\n\t f=0; break;\n\t}else{\n\t re+=d/2;\n\t}\n }\n if(f)ans=min(re,ans);\n if(re==1501&&f)cout<<i<<\":\"<<4<<endl;\n }*/\n cout<<(ans==INF?-1:ans)<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3588, "score_of_the_acc": -0.0219, "final_rank": 1 }, { "submission_id": "aoj_2716_10323000", "code_snippet": "// AOJ #2716 Leapfrog\n// 2025.3.25\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nconst int NMAX = 3005;\nconst int INF = 1001001001;\n\nint a[NMAX], b[NMAX];\n\nint main(){\n int n = Cin(), m = Cin();\n if(n == m){\n Cout(0);\n return 0;\n }\n\n for (int i = 0; i < m; i++){\n int p = Cin()-1;\n a[p] = 1;\n }\n\n for (int i = 0; i < m; i++){\n int p = Cin()-1;\n b[p] = 1;\n }\n\n vector<int> x, y;\n for (int i = 0; i < n; i++){\n if(a[i] == 0) x.push_back(i);\n if(b[i] == 0) y.push_back(i + n * 2);\n }\n\n bool gap = ((y[0] + n) - y.back() > 2);\n for (size_t i = 0; i + 1 < y.size(); i++)\n if(y[i + 1] - y[i] > 2) gap = true;\n\n int ans = INF;\n int sz = x.size();\n for (int t = 0; t < sz * 4; t++){\n int cost = 0, odd = 0;\n for (int i = 0; i < sz; i++){\n int d = abs(x[i] - y[i]);\n if(d & 1) odd++;\n else cost += d >> 1;\n }\n if(odd == 0 && (gap || cost == 0)) ans = min(ans, cost);\n int first = x.front();\n x.erase(x.begin());\n x.push_back(first + n);\n }\n if(ans == INF) ans = -1;\n Cout(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3532, "score_of_the_acc": -0.0922, "final_rank": 2 }, { "submission_id": "aoj_2716_6404920", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nint calc2(string s, string t) {\n\t//cout << s << \" \" << t << \"\\n\";\n\tqueue<int> qs, qt;\n\tint n = s.size();\n\trep(i, n - 1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')qs.push(i);\n\t\tif (t[i] == '1' && t[i + 1] == '1')qt.push(i);\n\t}\n\tvector<int> rs(n + 1), rt(n + 1);\n\trep(i, n) {\n\t\trs[i + 1] = rs[i] + (s[i] == '0');\n\t\trt[i + 1] = rt[i] + (t[i] == '0');\n\t}\n\tvector<bool> us(n), ut(n);\n\tint cs = 0, ct = 0;\n\tint res = 0;\n\tint pre = 0;\n\twhile (true) {\n\t\twhile (cs < n && us[cs])cs++;\n\t\twhile (ct < n && ut[ct])ct++;\n\t\tif (cs == n)break;\n\t\tif (s[cs] == t[ct]) {\n\t\t\tus[cs] = ut[ct] = true;\n\t\t\tif (s[cs] == '0') {\n\t\t\t\tpre++;\n\t\t\t}\n\t\t\tcs++; ct++;\n\t\t\t\n\t\t}\n\t\telse {\n\t\t\tif (s[cs] == '1') {\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (us[cs])cs++;\n\t\t\t\tif (s[cs] == '0')return mod;\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qt.empty())return mod;\n\t\t\t\t\tint loc = qt.front(); qt.pop();\n\t\t\t\t\tif (ut[loc] || ut[loc + 1])continue;\n\t\t\t\t\tut[loc] = ut[loc + 1] = true;\n\t\t\t\t\tres += rt[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (ut[ct])ct++;\n\t\t\t\tif (t[ct] == '0')return mod;\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qs.empty())return mod;\n\t\t\t\t\tint loc = qs.front(); qs.pop();\n\t\t\t\t\tif (us[loc] || us[loc + 1])continue;\n\t\t\t\t\tus[loc] = us[loc + 1] = true;\n\t\t\t\t\tres += rs[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nint calc(string s, string t,int m,int chkt) {\n\tint n = s.size();\n\tif (chkt < 0) {\n\t\tif (s == t)return 0;\n\t\treturn mod;\n\t}\n\tint chks = -1;\n\trep(i, n) {\n\t\tint loc = chkt - i; if (loc < 0)loc += n;\n\t\tint nloc = (loc + 1) % n;\n\t\tif (s[loc] == '1' && s[nloc] == '1') {\n\t\t\tchks = loc; break;\n\t\t}\n\t}\n\tif (chks < 0)return mod;\n\tint ad = 0;\n\twhile (chks != chkt) {\n\t\tint loc = (chks + 2) % n;\n\t\tif (s[loc] == '0')ad++;\n\t\tswap(s[chks], s[loc]);\n\t\tchks = (chks + 1) % n;\n\t}\n\tstring cs, ct;\n\trep(i, n - 2) {\n\t\tint loc = (chks + i + 2) % n;\n\t\tcs.push_back(s[loc]);\n\t\tct.push_back(t[loc]);\n\t}\n\tint res = mod;\n\trep(_, n) {\n\t\t//cs,ct\n\t\tint val = calc2(cs, ct);\n\t\tchmin(res, val+ad);\n\n\t\tad += n - m;\n\t\trep(j, 2) {\n\t\t\tcs.push_back(cs[0]);\n\t\t\tif (cs[0] == '0')ad++;\n\t\t\tcs.erase(cs.begin());\n\t\t}\n\t}\n\treturn res;\n}\nint calcal(string s, string t) {\n\t//if (s == t)return 0;\n\tset<string> st;\n\tqueue<string> qs;\n\tqs.push(s); st.insert(s);\n\tint tmp = 0;\n\tint n = s.size();\n\twhile (!qs.empty()) {\n\t\tint len = qs.size();\n\t\trep(_, len) {\n\t\t\tstring cur = qs.front(); qs.pop();\n\t\t\tif (cur == t)return tmp;\n\t\t\trep(i, n) {\n\t\t\t\tint ni = (i + 1) % n;\n\t\t\t\tif (cur[i] == '1' && cur[ni] == '1') {\n\t\t\t\t\tstring nex = cur;\n\t\t\t\t\tint loc = i - 1; if (loc < 0)loc += n;\n\t\t\t\t\tswap(nex[loc], nex[ni]);\n\t\t\t\t\tif (!st.count(nex)) {\n\t\t\t\t\t\tst.insert(nex); qs.push(nex);\n\t\t\t\t\t}\n\t\t\t\t\tnex = cur;\n\t\t\t\t\tloc = (i + 2) % n;\n\t\t\t\t\tswap(nex[loc], nex[i]);\n\t\t\t\t\tif (!st.count(nex)) {\n\t\t\t\t\t\tst.insert(nex); qs.push(nex);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\ttmp++;\n\t}\n\treturn mod;\n}\nint calcsub(vector<int> vl, vector<int> vr, int n) {\n\tint ad = n;\n\tif (n % 2)ad = 2 * n;\n\trep(i, (int)vl.size() - 1) {\n\t\tif (vl[i] > vl[i + 1]) {\n\t\t\tRep(j, i + 1, vl.size()) {\n\t\t\t\tvl[j] += ad;\n\t\t\t}\n\t\t}\n\t}\n\tif (vl[0] > vr[0])vr[0] += n;\n\t/*if (n % 2) {\n\t\tint dif = vr[0] - vl[0]; if (dif < 0)dif += n;\n\t\tif (dif % 2) {\n\t\t\trep(i, vr.size())vr[i] += n;\n\t\t}\n\t}*/\n\t//cout << \"!!\\n\";\n\t//coutarray(vl);\n\t//coutarray(vr);\n\tint res = 0;\n\t//vl -> vr\n\tint cur = -1;\n\trep(i, vl.size()) {\n\t\tint obj = vr[i];\n\t\twhile (obj <= cur) {\n\t\t\tobj += n;\n\t\t}\n\t\tif (abs(obj - vl[i]) % 2)obj += n;\n\t\tres += abs(obj - vl[i]) / 2;\n\t\tcur = obj;\n\t}\n\treturn res;\n}\nint calcsolve(string s, string t) {\n\tint chk = -1;\n\trep(i, s.size()) {\n\t\tif (s[i] == '0') {\n\t\t\tchk = i; break;\n\t\t}\n\t}\n\tif (chk < 0) {\n\t\treturn 0;\n\t}\n\tint n = s.size();\n\tint m = 0; rep(i, n)if (s[i] == '1')m++;\n\trep(i, chk) {\n\t\ts.push_back(s[i]);\n\t\tt.push_back(t[i]);\n\t}\n\ts.erase(s.begin(), s.begin() + chk);\n\tt.erase(t.begin(), t.begin() + chk);\n\tstring sl;\n\tvector<int> vl;\n\tint tmp = 0;\n\trep(i, n) {\n\t\tif (s[i] == '0') {\n\t\t\tsl.push_back('0'); tmp++;\n\t\t\tvl.push_back(i);\n\t\t}\n\t\telse {\n\t\t\tif (i + 1 < n && s[i + 1] == '1') {\n\t\t\t\t//vl.push_back(tmp); \n\t\t\t\ttmp++;i++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tsl.push_back('1');\n\t\t\t}\n\t\t}\n\t}\n\tbool exi2 = false;\n\trep(i, n-1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')exi2 = true;\n\t}\n\t//cout << \"? \" << s << \" \" << t << \"\\n\";\n\tint ans = mod;\n\trep(i, n) {\n\t\tint loc = 2 * i % n;\n\t\tif (t[loc] == '0') {\n\t\t\tstring sr;\n\t\t\tvector<int> vr;\n\t\t\tint tmp = 0;\n\t\t\trep(j, n) {\n\t\t\t\tint id = (loc + j) % n;\n\t\t\t\tif (t[id] == '0') {\n\t\t\t\t\tsr.push_back('0'); tmp++;\n\t\t\t\t\tvr.push_back(id);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (j + 1 < n && t[(id + 1) % n] == '1') {\n\t\t\t\t\t\t//vr.push_back(tmp); \n\t\t\t\t\t\ttmp++; j++;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tsr.push_back('1');\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (sl == sr) {\n\t\t\t\tint cost = min(calcsub(vl, vr,n), calcsub(vr, vl,n));\n\t\t\t\tif (!exi2) {\n\t\t\t\t\tif (i == 0)cost = 0;\n\t\t\t\t\telse cost = mod;\n\t\t\t\t}\n\t\t\t\tchmin(ans, cost);\n\t\t\t}\n\t\t}\n\t}\n\treturn ans;\n}\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tvector<int>x(m), y(m);\n\trep(i, m)cin >> x[i];\n\trep(i, m)cin >> y[i];\n\tstring s, t;\n\ts.resize(n, '0');\n\tt.resize(n, '0');\n\trep(i, m) {\n\t\ts[x[i] - 1] = '1';\n\t\tt[y[i] - 1] = '1';\n\t}\n\tint ans = calcsolve(s, t);\n\tif (ans == mod)ans = -1;\n\tcout << ans << \"\\n\";\n}\nint calc3(string s, string t) {\n\tint res = 0;\n\twhile (s.size()) {\n\t\tif (s.back() == t.back()) {\n\t\t\ts.pop_back(); t.pop_back();\n\t\t\tcontinue;\n\t\t}\n\t\tif (s.back() == '1') {\n\t\t\tfor (int i = (int)s.size() - 3;; i -= 2) {\n\t\t\t\tif (s[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (s[i] == '0') {\n\t\t\t\t\tswap(s[i], s.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tfor (int i = (int)t.size() - 3;; i -= 2) {\n\t\t\t\tif (t[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (t[i] == '0') {\n\t\t\t\t\tswap(t[i], t.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\ts.pop_back(); t.pop_back();\n\t}\n\treturn res;\n}\nvoid expr() {\n\tint n = 5;\n\trep(i, (1 << n))rep(j, (1 << n)) {\n\t\tint ci = 0, cj = 0;\n\t\tstring s, t;\n\t\ts.resize(n, '0');\n\t\tt.resize(n, '0');\n\t\trep(x, n)if (i & (1 << x))s[x]='1',ci++;\n\t\trep(x, n)if (j & (1 << x))t[x]='1',cj++;\n\t\tif (ci == cj) {\n\t\t\tif (calcsolve(s, t) != calcal(s, t)) {\n\t\t\t\tcout << \"? \" << s << \" \" << t << \" \" << calcsolve(s, t) << \" \" << calcal(s, t) << \"\\n\";\n\t\t\t}\n\t\t}\n\t}\n\tcout << \"fin\\n\";\n}\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 11792, "score_of_the_acc": -1.1538, "final_rank": 7 }, { "submission_id": "aoj_2716_6404890", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nint calc2(string s, string t) {\n\t//cout << s << \" \" << t << \"\\n\";\n\tqueue<int> qs, qt;\n\tint n = s.size();\n\trep(i, n - 1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')qs.push(i);\n\t\tif (t[i] == '1' && t[i + 1] == '1')qt.push(i);\n\t}\n\tvector<int> rs(n + 1), rt(n + 1);\n\trep(i, n) {\n\t\trs[i + 1] = rs[i] + (s[i] == '0');\n\t\trt[i + 1] = rt[i] + (t[i] == '0');\n\t}\n\tvector<bool> us(n), ut(n);\n\tint cs = 0, ct = 0;\n\tint res = 0;\n\tint pre = 0;\n\twhile (true) {\n\t\twhile (cs < n && us[cs])cs++;\n\t\twhile (ct < n && ut[ct])ct++;\n\t\tif (cs == n)break;\n\t\tif (s[cs] == t[ct]) {\n\t\t\tus[cs] = ut[ct] = true;\n\t\t\tif (s[cs] == '0') {\n\t\t\t\tpre++;\n\t\t\t}\n\t\t\tcs++; ct++;\n\t\t\t\n\t\t}\n\t\telse {\n\t\t\tif (s[cs] == '1') {\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (us[cs])cs++;\n\t\t\t\tif (s[cs] == '0')return mod;\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qt.empty())return mod;\n\t\t\t\t\tint loc = qt.front(); qt.pop();\n\t\t\t\t\tif (ut[loc] || ut[loc + 1])continue;\n\t\t\t\t\tut[loc] = ut[loc + 1] = true;\n\t\t\t\t\tres += rt[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (ut[ct])ct++;\n\t\t\t\tif (t[ct] == '0')return mod;\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qs.empty())return mod;\n\t\t\t\t\tint loc = qs.front(); qs.pop();\n\t\t\t\t\tif (us[loc] || us[loc + 1])continue;\n\t\t\t\t\tus[loc] = us[loc + 1] = true;\n\t\t\t\t\tres += rs[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nint calc(string s, string t,int m,int chkt) {\n\tint n = s.size();\n\tif (chkt < 0) {\n\t\tif (s == t)return 0;\n\t\treturn mod;\n\t}\n\tint chks = -1;\n\trep(i, n) {\n\t\tint loc = chkt - i; if (loc < 0)loc += n;\n\t\tint nloc = (loc + 1) % n;\n\t\tif (s[loc] == '1' && s[nloc] == '1') {\n\t\t\tchks = loc; break;\n\t\t}\n\t}\n\tif (chks < 0)return mod;\n\tint ad = 0;\n\twhile (chks != chkt) {\n\t\tint loc = (chks + 2) % n;\n\t\tif (s[loc] == '0')ad++;\n\t\tswap(s[chks], s[loc]);\n\t\tchks = (chks + 1) % n;\n\t}\n\tstring cs, ct;\n\trep(i, n - 2) {\n\t\tint loc = (chks + i + 2) % n;\n\t\tcs.push_back(s[loc]);\n\t\tct.push_back(t[loc]);\n\t}\n\tint res = mod;\n\trep(_, n) {\n\t\t//cs,ct\n\t\tint val = calc2(cs, ct);\n\t\tchmin(res, val+ad);\n\n\t\tad += n - m;\n\t\trep(j, 2) {\n\t\t\tcs.push_back(cs[0]);\n\t\t\tif (cs[0] == '0')ad++;\n\t\t\tcs.erase(cs.begin());\n\t\t}\n\t}\n\treturn res;\n}\nint calcal(string s, string t) {\n\t//if (s == t)return 0;\n\tset<string> st;\n\tqueue<string> qs;\n\tqs.push(s); st.insert(s);\n\tint tmp = 0;\n\tint n = s.size();\n\twhile (!qs.empty()) {\n\t\tint len = qs.size();\n\t\trep(_, len) {\n\t\t\tstring cur = qs.front(); qs.pop();\n\t\t\tif (cur == t)return tmp;\n\t\t\trep(i, n) {\n\t\t\t\tint ni = (i + 1) % n;\n\t\t\t\tif (cur[i] == '1' && cur[ni] == '1') {\n\t\t\t\t\tstring nex = cur;\n\t\t\t\t\tint loc = i - 1; if (loc < 0)loc += n;\n\t\t\t\t\tswap(nex[loc], nex[ni]);\n\t\t\t\t\tif (!st.count(nex)) {\n\t\t\t\t\t\tst.insert(nex); qs.push(nex);\n\t\t\t\t\t}\n\t\t\t\t\tnex = cur;\n\t\t\t\t\tloc = (i + 2) % n;\n\t\t\t\t\tswap(nex[loc], nex[i]);\n\t\t\t\t\tif (!st.count(nex)) {\n\t\t\t\t\t\tst.insert(nex); qs.push(nex);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\ttmp++;\n\t}\n\treturn mod;\n}\nint calcsub(vector<int> vl, vector<int> vr, int n) {\n\tint ad = n;\n\tif (n % 2)ad = 2 * n;\n\trep(i, (int)vl.size() - 1) {\n\t\tif (vl[i] > vl[i + 1]) {\n\t\t\tRep(j, i + 1, vl.size()) {\n\t\t\t\tvl[j] += ad;\n\t\t\t}\n\t\t}\n\t}\n\tif (vl[0] > vr[0])vr[0] += ad;\n\t//cout << \"!!\\n\";\n\t//coutarray(vl);\n\t//coutarray(vr);\n\tint res = 0;\n\t//vl -> vr\n\tint cur = -1;\n\trep(i, vl.size()) {\n\t\tint obj = vr[i];\n\t\twhile (obj <= cur) {\n\t\t\tobj += n;\n\t\t}\n\t\tres += abs(obj - vl[i]) / 2;\n\t\tcur = obj;\n\t}\n\treturn res;\n}\nint calcsolve(string s, string t) {\n\tint chk = -1;\n\trep(i, s.size()) {\n\t\tif (s[i] == '0') {\n\t\t\tchk = i; break;\n\t\t}\n\t}\n\tif (chk < 0) {\n\t\treturn 0;\n\t}\n\tint n = s.size();\n\tint m = 0; rep(i, n)if (s[i] == '1')m++;\n\trep(i, chk) {\n\t\ts.push_back(s[i]);\n\t\tt.push_back(t[i]);\n\t}\n\ts.erase(s.begin(), s.begin() + chk);\n\tt.erase(t.begin(), t.begin() + chk);\n\tstring sl;\n\tvector<int> vl;\n\tint tmp = 0;\n\trep(i, n) {\n\t\tif (s[i] == '0') {\n\t\t\tsl.push_back('0'); tmp++;\n\t\t\tvl.push_back(i);\n\t\t}\n\t\telse {\n\t\t\tif (i + 1 < n && s[i + 1] == '1') {\n\t\t\t\t//vl.push_back(tmp); \n\t\t\t\ttmp++;i++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tsl.push_back('1');\n\t\t\t}\n\t\t}\n\t}\n\tbool exi2 = false;\n\trep(i, n-1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')exi2 = true;\n\t}\n\t//cout << \"? \" << s << \" \" << t << \"\\n\";\n\tint ans = mod;\n\trep(i, n) {\n\t\tint loc = 2 * i % n;\n\t\tif (t[loc] == '0') {\n\t\t\tstring sr;\n\t\t\tvector<int> vr;\n\t\t\tint tmp = 0;\n\t\t\trep(j, n) {\n\t\t\t\tint id = (loc + j) % n;\n\t\t\t\tif (t[id] == '0') {\n\t\t\t\t\tsr.push_back('0'); tmp++;\n\t\t\t\t\tvr.push_back(id);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (j + 1 < n && t[(id + 1) % n] == '1') {\n\t\t\t\t\t\t//vr.push_back(tmp); \n\t\t\t\t\t\ttmp++; j++;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tsr.push_back('1');\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (sl == sr) {\n\t\t\t\tint cost = min(calcsub(vl, vr,n), calcsub(vr, vl,n));\n\t\t\t\tif (!exi2) {\n\t\t\t\t\tif (i == 0)cost = 0;\n\t\t\t\t\telse cost = mod;\n\t\t\t\t}\n\t\t\t\tchmin(ans, cost);\n\t\t\t}\n\t\t}\n\t}\n\treturn ans;\n}\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tvector<int>x(m), y(m);\n\trep(i, m)cin >> x[i];\n\trep(i, m)cin >> y[i];\n\tstring s, t;\n\ts.resize(n, '0');\n\tt.resize(n, '0');\n\trep(i, m) {\n\t\ts[x[i] - 1] = '1';\n\t\tt[y[i] - 1] = '1';\n\t}\n\tint ans = calcsolve(s, t);\n\tif (ans == mod)ans = -1;\n\tcout << ans << \"\\n\";\n}\nint calc3(string s, string t) {\n\tint res = 0;\n\twhile (s.size()) {\n\t\tif (s.back() == t.back()) {\n\t\t\ts.pop_back(); t.pop_back();\n\t\t\tcontinue;\n\t\t}\n\t\tif (s.back() == '1') {\n\t\t\tfor (int i = (int)s.size() - 3;; i -= 2) {\n\t\t\t\tif (s[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (s[i] == '0') {\n\t\t\t\t\tswap(s[i], s.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tfor (int i = (int)t.size() - 3;; i -= 2) {\n\t\t\t\tif (t[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (t[i] == '0') {\n\t\t\t\t\tswap(t[i], t.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\ts.pop_back(); t.pop_back();\n\t}\n\treturn res;\n}\nvoid expr() {\n\tint n = 10;\n\trep(i, (1 << n))rep(j, (1 << n)) {\n\t\tint ci = 0, cj = 0;\n\t\tstring s, t;\n\t\ts.resize(n, '0');\n\t\tt.resize(n, '0');\n\t\trep(x, n)if (i & (1 << x))s[x]='1',ci++;\n\t\trep(x, n)if (j & (1 << x))t[x]='1',cj++;\n\t\tif (ci == cj) {\n\t\t\tif (calcsolve(s, t) != calcal(s, t)) {\n\t\t\t\tcout << \"? \" << s << \" \" << t << \" \" << calcsolve(s, t) << \" \" << calcal(s, t) << \"\\n\";\n\t\t\t}\n\t\t}\n\t}\n\tcout << \"fin\\n\";\n}\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.037037037037037035, "time_ms": 30, "memory_kb": 11648, "score_of_the_acc": -1.0598, "final_rank": 20 }, { "submission_id": "aoj_2716_6404654", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nint calc2(string s, string t) {\n\t//cout << s << \" \" << t << \"\\n\";\n\tqueue<int> qs, qt;\n\tint n = s.size();\n\trep(i, n - 1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')qs.push(i);\n\t\tif (t[i] == '1' && t[i + 1] == '1')qt.push(i);\n\t}\n\tvector<int> rs(n + 1), rt(n + 1);\n\trep(i, n) {\n\t\trs[i + 1] = rs[i] + (s[i] == '0');\n\t\trt[i + 1] = rt[i] + (t[i] == '0');\n\t}\n\tvector<bool> us(n), ut(n);\n\tint cs = 0, ct = 0;\n\tint res = 0;\n\tint pre = 0;\n\twhile (true) {\n\t\twhile (cs < n && us[cs])cs++;\n\t\twhile (ct < n && ut[ct])ct++;\n\t\tif (cs == n)break;\n\t\tif (s[cs] == t[ct]) {\n\t\t\tus[cs] = ut[ct] = true;\n\t\t\tif (s[cs] == '0') {\n\t\t\t\tpre++;\n\t\t\t}\n\t\t\tcs++; ct++;\n\t\t\t\n\t\t}\n\t\telse {\n\t\t\tif (s[cs] == '1') {\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (us[cs])cs++;\n\t\t\t\tif (s[cs] == '0')return mod;\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qt.empty())return mod;\n\t\t\t\t\tint loc = qt.front(); qt.pop();\n\t\t\t\t\tif (ut[loc] || ut[loc + 1])continue;\n\t\t\t\t\tut[loc] = ut[loc + 1] = true;\n\t\t\t\t\tres += rt[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (ut[ct])ct++;\n\t\t\t\tif (t[ct] == '0')return mod;\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qs.empty())return mod;\n\t\t\t\t\tint loc = qs.front(); qs.pop();\n\t\t\t\t\tif (us[loc] || us[loc + 1])continue;\n\t\t\t\t\tus[loc] = us[loc + 1] = true;\n\t\t\t\t\tres += rs[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nint calc(string s, string t,int m,int chkt) {\n\tint n = s.size();\n\tif (chkt < 0) {\n\t\tif (s == t)return 0;\n\t\treturn mod;\n\t}\n\tint chks = -1;\n\trep(i, n) {\n\t\tint loc = chkt - i; if (loc < 0)loc += n;\n\t\tint nloc = (loc + 1) % n;\n\t\tif (s[loc] == '1' && s[nloc] == '1') {\n\t\t\tchks = loc; break;\n\t\t}\n\t}\n\tif (chks < 0)return mod;\n\tint ad = 0;\n\twhile (chks != chkt) {\n\t\tint loc = (chks + 2) % n;\n\t\tif (s[loc] == '0')ad++;\n\t\tswap(s[chks], s[loc]);\n\t\tchks = (chks + 1) % n;\n\t}\n\tstring cs, ct;\n\trep(i, n - 2) {\n\t\tint loc = (chks + i + 2) % n;\n\t\tcs.push_back(s[loc]);\n\t\tct.push_back(t[loc]);\n\t}\n\tint res = mod;\n\trep(_, n) {\n\t\t//cs,ct\n\t\tint val = calc2(cs, ct);\n\t\tchmin(res, val+ad);\n\n\t\tad += n - m;\n\t\trep(j, 2) {\n\t\t\tcs.push_back(cs[0]);\n\t\t\tif (cs[0] == '0')ad++;\n\t\t\tcs.erase(cs.begin());\n\t\t}\n\t}\n\treturn res;\n}\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tvector<int>x(m), y(m);\n\trep(i, m)cin >> x[i];\n\trep(i, m)cin >> y[i];\n\tstring s, t;\n\ts.resize(n, '0');\n\tt.resize(n, '0');\n\trep(i, m) {\n\t\ts[x[i] - 1] = '1';\n\t\tt[y[i] - 1] = '1';\n\t}\n\tint chkt = -1;\n\trep(i, n) {\n\t\tint ni = (i + 1) % n;\n\t\tif (t[i] == '1' && t[ni] == '1') {\n\t\t\tchkt = i; break;\n\t\t}\n\t}\n\tint ans1 = calc(s, t, m,chkt);\n\treverse(all(s));\n\treverse(all(t));\n\tchkt++;\n\tchkt %= n;\n\tchkt = n - 1 - chkt;\n\tint ans2 = calc(s, t, m,chkt);\n\tint ans = min(ans1, ans2);\n\tif (ans == mod)ans = -1;\n\tcout << ans << \"\\n\";\n}\nint calc3(string s, string t) {\n\tint res = 0;\n\twhile (s.size()) {\n\t\tif (s.back() == t.back()) {\n\t\t\ts.pop_back(); t.pop_back();\n\t\t\tcontinue;\n\t\t}\n\t\tif (s.back() == '1') {\n\t\t\tfor (int i = (int)s.size() - 3;; i -= 2) {\n\t\t\t\tif (s[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (s[i] == '0') {\n\t\t\t\t\tswap(s[i], s.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tfor (int i = (int)t.size() - 3;; i -= 2) {\n\t\t\t\tif (t[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (t[i] == '0') {\n\t\t\t\t\tswap(t[i], t.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\ts.pop_back(); t.pop_back();\n\t}\n\treturn res;\n}\nvoid expr() {\n\tint n = 10;\n\trep(i, (1 << n))rep(j, (1 << n)) {\n\t\tint ci = 0, cj = 0;\n\t\tstring s, t;\n\t\ts.resize(n, '0');\n\t\tt.resize(n, '0');\n\t\trep(x, n)if (i & (1 << x))s[x]='1',ci++;\n\t\trep(x, n)if (j & (1 << x))t[x]='1',cj++;\n\t\tif (ci == cj) {\n\t\t\tif (calc2(s, t) != calc3(s, t)) {\n\t\t\t\tcout << \"? \" << s << \" \" << t << \" \" << calc2(s, t) << \" \" << calc3(s, t) << \"\\n\";\n\t\t\t}\n\t\t}\n\t}\n\tcout << \"fin\\n\";\n}\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.2962962962962963, "time_ms": 120, "memory_kb": 11728, "score_of_the_acc": -1.4154, "final_rank": 12 }, { "submission_id": "aoj_2716_6404652", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nint calc2(string s, string t) {\n\t//cout << s << \" \" << t << \"\\n\";\n\tqueue<int> qs, qt;\n\tint n = s.size();\n\trep(i, n - 1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')qs.push(i);\n\t\tif (t[i] == '1' && t[i + 1] == '1')qt.push(i);\n\t}\n\tvector<int> rs(n + 1), rt(n + 1);\n\trep(i, n) {\n\t\trs[i + 1] = rs[i] + (s[i] == '0');\n\t\trt[i + 1] = rt[i] + (t[i] == '0');\n\t}\n\tvector<bool> us(n), ut(n);\n\tint cs = 0, ct = 0;\n\tint res = 0;\n\tint pre = 0;\n\twhile (true) {\n\t\twhile (cs < n && us[cs])cs++;\n\t\twhile (ct < n && ut[ct])ct++;\n\t\tif (cs == n)break;\n\t\tif (s[cs] == t[ct]) {\n\t\t\tus[cs] = ut[ct] = true;\n\t\t\tif (s[cs] == '0') {\n\t\t\t\tpre++;\n\t\t\t}\n\t\t\tcs++; ct++;\n\t\t\t\n\t\t}\n\t\telse {\n\t\t\tif (s[cs] == '1') {\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (us[cs])cs++;\n\t\t\t\tif (s[cs] == '0')return mod;\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qt.empty())return mod;\n\t\t\t\t\tint loc = qt.front(); qt.pop();\n\t\t\t\t\tif (ut[loc] || ut[loc + 1])continue;\n\t\t\t\t\tut[loc] = ut[loc + 1] = true;\n\t\t\t\t\tres += rt[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (ut[ct])ct++;\n\t\t\t\tif (t[ct] == '0')return mod;\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qs.empty())return mod;\n\t\t\t\t\tint loc = qs.front(); qs.pop();\n\t\t\t\t\tif (us[loc] || us[loc + 1])continue;\n\t\t\t\t\tus[loc] = us[loc + 1] = true;\n\t\t\t\t\tres += rs[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nint calc(string s, string t,int m,int chkt) {\n\tint n = s.size();\n\tif (chkt < 0) {\n\t\tif (s == t)return 0;\n\t\treturn mod;\n\t}\n\tint chks = -1;\n\trep(i, n) {\n\t\tint loc = chkt - i; if (loc < 0)loc += n;\n\t\tint nloc = (loc + 1) % n;\n\t\tif (s[loc] == '1' && s[nloc] == '1') {\n\t\t\tchks = loc; break;\n\t\t}\n\t}\n\tif (chks < 0)return mod;\n\tint ad = 0;\n\twhile (chks != chkt) {\n\t\tint loc = (chks + 2) % n;\n\t\tif (s[loc] == '0')ad++;\n\t\tswap(s[chks], s[loc]);\n\t\tchks = (chks + 1) % n;\n\t}\n\tstring cs, ct;\n\trep(i, n - 2) {\n\t\tint loc = (chks + i + 2) % n;\n\t\tcs.push_back(s[loc]);\n\t\tct.push_back(t[loc]);\n\t}\n\tint res = mod;\n\trep(_, n) {\n\t\t//cs,ct\n\t\tint val = calc2(cs, ct);\n\t\tchmin(res, val+ad);\n\n\t\tad += n - m;\n\t\trep(j, 2) {\n\t\t\tcs.push_back(cs[0]);\n\t\t\tif (cs[0] == '0')ad++;\n\t\t\tcs.erase(cs.begin());\n\t\t}\n\t}\n\treturn res;\n}\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tvector<int>x(m), y(m);\n\trep(i, m)cin >> x[i];\n\trep(i, m)cin >> y[i];\n\tstring s, t;\n\ts.resize(n, '0');\n\tt.resize(n, '0');\n\trep(i, m) {\n\t\ts[x[i] - 1] = '1';\n\t\tt[y[i] - 1] = '1';\n\t}\n\tint chkt = -1;\n\trep(i, n) {\n\t\tint ni = (i + 1) % n;\n\t\tif (t[i] == '1' && t[ni] == '1') {\n\t\t\tchkt = i;\n\t\t}\n\t}\n\tint ans1 = calc(s, t, m,chkt);\n\treverse(all(s));\n\treverse(all(t));\n\tchkt++;\n\tchkt %= n;\n\tchkt = n - 1 - chkt;\n\tint ans2 = calc(s, t, m,chkt);\n\tint ans = min(ans1, ans2);\n\tif (ans == mod)ans = -1;\n\tcout << ans << \"\\n\";\n}\nint calc3(string s, string t) {\n\tint res = 0;\n\twhile (s.size()) {\n\t\tif (s.back() == t.back()) {\n\t\t\ts.pop_back(); t.pop_back();\n\t\t\tcontinue;\n\t\t}\n\t\tif (s.back() == '1') {\n\t\t\tfor (int i = (int)s.size() - 3;; i -= 2) {\n\t\t\t\tif (s[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (s[i] == '0') {\n\t\t\t\t\tswap(s[i], s.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tfor (int i = (int)t.size() - 3;; i -= 2) {\n\t\t\t\tif (t[i + 1] == '0')return mod;\n\t\t\t\tres++;\n\t\t\t\tif (t[i] == '0') {\n\t\t\t\t\tswap(t[i], t.back());\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\ts.pop_back(); t.pop_back();\n\t}\n\treturn res;\n}\nvoid expr() {\n\tint n = 6;\n\trep(i, (1 << n))rep(j, (1 << n)) {\n\t\tint ci = 0, cj = 0;\n\t\tstring s, t;\n\t\ts.resize(n, '0');\n\t\tt.resize(n, '0');\n\t\trep(x, n)if (i & (1 << x))s[x]='1',ci++;\n\t\trep(x, n)if (j & (1 << x))t[x]='1',cj++;\n\t\tif (ci == cj) {\n\t\t\tif (calc2(s, t) != calc3(s, t)) {\n\t\t\t\tcout << \"? \" << s << \" \" << t << \" \" << calc2(s, t) << \" \" << calc3(s, t) << \"\\n\";\n\t\t\t}\n\t\t}\n\t}\n}\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.2777777777777778, "time_ms": 120, "memory_kb": 11724, "score_of_the_acc": -1.415, "final_rank": 13 }, { "submission_id": "aoj_2716_6404647", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nint calc2(string s, string t) {\n\t//cout << s << \" \" << t << \"\\n\";\n\tqueue<int> qs, qt;\n\tint n = s.size();\n\trep(i, n - 1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')qs.push(i);\n\t\tif (t[i] == '1' && t[i + 1] == '1')qt.push(i);\n\t}\n\tvector<int> rs(n + 1), rt(n + 1);\n\trep(i, n) {\n\t\trs[i + 1] = rs[i] + (s[i] == '0');\n\t\trt[i + 1] = rt[i] + (t[i] == '0');\n\t}\n\tvector<bool> us(n), ut(n);\n\tint cs = 0, ct = 0;\n\tint res = 0;\n\tint pre = 0;\n\twhile (true) {\n\t\twhile (cs < n && us[cs])cs++;\n\t\twhile (ct < n && ut[ct])ct++;\n\t\tif (cs == n)break;\n\t\tif (s[cs] == t[ct]) {\n\t\t\tus[cs] = ut[ct] = true;\n\t\t\tcs++; ct++;\n\t\t\tif (s[cs] == '0') {\n\t\t\t\tpre++;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (s[cs] == '1') {\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (us[cs])cs++;\n\t\t\t\tif (s[cs] == '0')return mod;\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qt.empty())return mod;\n\t\t\t\t\tint loc = qt.front(); qt.pop();\n\t\t\t\t\tif (ut[loc] || ut[loc + 1])continue;\n\t\t\t\t\tut[loc] = ut[loc + 1] = true;\n\t\t\t\t\tres += rt[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (ut[ct])ct++;\n\t\t\t\tif (t[ct] == '0')return mod;\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qs.empty())return mod;\n\t\t\t\t\tint loc = qs.front(); qs.pop();\n\t\t\t\t\tif (us[loc] || us[loc + 1])continue;\n\t\t\t\t\tus[loc] = us[loc + 1] = true;\n\t\t\t\t\tres += rs[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nint calc(string s, string t,int m,int chkt) {\n\tint n = s.size();\n\tif (chkt < 0) {\n\t\tif (s == t)return 0;\n\t\treturn mod;\n\t}\n\tint chks = -1;\n\trep(i, n) {\n\t\tint loc = chkt - i; if (loc < 0)loc += n;\n\t\tint nloc = (loc + 1) % n;\n\t\tif (s[loc] == '1' && s[nloc] == '1') {\n\t\t\tchks = loc; break;\n\t\t}\n\t}\n\tif (chks < 0)return mod;\n\tint ad = 0;\n\twhile (chks != chkt) {\n\t\tint loc = (chks + 2) % n;\n\t\tif (s[loc] == '0')ad++;\n\t\tswap(s[chks], s[loc]);\n\t\tchks = (chks + 1) % n;\n\t}\n\tstring cs, ct;\n\trep(i, n - 2) {\n\t\tint loc = (chks + i + 2) % n;\n\t\tcs.push_back(s[loc]);\n\t\tct.push_back(t[loc]);\n\t}\n\tint res = mod;\n\trep(_, n) {\n\t\t//cs,ct\n\t\tint val = calc2(cs, ct);\n\t\tchmin(res, val+ad);\n\n\t\tad += n - m;\n\t\trep(j, 2) {\n\t\t\tcs.push_back(cs[0]);\n\t\t\tif (cs[0] == '0')ad++;\n\t\t\tcs.erase(cs.begin());\n\t\t}\n\t}\n\treturn res;\n}\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tvector<int>x(m), y(m);\n\trep(i, m)cin >> x[i];\n\trep(i, m)cin >> y[i];\n\tstring s, t;\n\ts.resize(n, '0');\n\tt.resize(n, '0');\n\trep(i, m) {\n\t\ts[x[i] - 1] = '1';\n\t\tt[y[i] - 1] = '1';\n\t}\n\tint chkt = -1;\n\trep(i, n) {\n\t\tint ni = (i + 1) % n;\n\t\tif (t[i] == '1' && t[ni] == '1') {\n\t\t\tchkt = i;\n\t\t}\n\t}\n\tint ans1 = calc(s, t, m,chkt);\n\treverse(all(s));\n\treverse(all(t));\n\tchkt++;\n\tchkt %= n;\n\tchkt = n - 1 - chkt;\n\tint ans2 = calc(s, t, m,chkt);\n\tint ans = min(ans1, ans2);\n\tif (ans == mod)ans = -1;\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.2777777777777778, "time_ms": 120, "memory_kb": 11772, "score_of_the_acc": -1.4207, "final_rank": 14 }, { "submission_id": "aoj_2716_6404646", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nint calc2(string s, string t) {\n\t//cout << s << \" \" << t << \"\\n\";\n\tqueue<int> qs, qt;\n\tint n = s.size();\n\trep(i, n - 1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')qs.push(i);\n\t\tif (t[i] == '1' && t[i + 1] == '1')qt.push(i);\n\t}\n\tvector<int> rs(n + 1), rt(n + 1);\n\trep(i, n) {\n\t\trs[i + 1] = rs[i] + (s[i] == '0');\n\t\trt[i + 1] = rt[i] + (t[i] == '0');\n\t}\n\tvector<bool> us(n), ut(n);\n\tint cs = 0, ct = 0;\n\tint res = 0;\n\tint pre = 0;\n\twhile (true) {\n\t\twhile (cs < n && us[cs])cs++;\n\t\twhile (ct < n && ut[ct])ct++;\n\t\tif (cs == n)break;\n\t\tif (s[cs] == t[ct]) {\n\t\t\tus[cs] = ut[ct] = true;\n\t\t\tcs++; ct++;\n\t\t\tif (s[cs] == '0') {\n\t\t\t\tpre++;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (s[cs] == '1') {\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (us[cs])cs++;\n\t\t\t\tif (s[cs] == '0')return mod;\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qt.empty())return mod;\n\t\t\t\t\tint loc = qt.front(); qt.pop();\n\t\t\t\t\tif (ut[loc] || ut[loc + 1])continue;\n\t\t\t\t\tut[loc] = ut[loc + 1] = true;\n\t\t\t\t\tres += rt[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (ut[ct])ct++;\n\t\t\t\tif (t[ct] == '0')return mod;\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qs.empty())return mod;\n\t\t\t\t\tint loc = qs.front(); qs.pop();\n\t\t\t\t\tif (us[loc] || us[loc + 1])continue;\n\t\t\t\t\tus[loc] = us[loc + 1] = true;\n\t\t\t\t\tres += rs[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nint calc(string s, string t,int m) {\n\tint n = s.size();\n\tint chkt = -1;\n\trep(i, n) {\n\t\tint ni = (i + 1) % n;\n\t\tif (t[i] == '1' && t[ni] == '1') {\n\t\t\tchkt = i; break;\n\t\t}\n\t}\n\tif (chkt < 0) {\n\t\tif (s == t)return 0;\n\t\treturn mod;\n\t}\n\tint chks = -1;\n\trep(i, n) {\n\t\tint loc = chkt - i; if (loc < 0)loc += n;\n\t\tint nloc = (loc + 1) % n;\n\t\tif (s[loc] == '1' && s[nloc] == '1') {\n\t\t\tchks = loc; break;\n\t\t}\n\t}\n\tif (chks < 0)return mod;\n\tint ad = 0;\n\twhile (chks != chkt) {\n\t\tint loc = (chks + 2) % n;\n\t\tif (s[loc] == '0')ad++;\n\t\tswap(s[chks], s[loc]);\n\t\tchks = (chks + 1) % n;\n\t}\n\tstring cs, ct;\n\trep(i, n - 2) {\n\t\tint loc = (chks + i + 2) % n;\n\t\tcs.push_back(s[loc]);\n\t\tct.push_back(t[loc]);\n\t}\n\tint res = mod;\n\trep(_, 2*n) {\n\t\t//cs,ct\n\t\tint val = calc2(cs, ct);\n\t\tchmin(res, val+ad);\n\n\t\tad += n - m;\n\t\trep(j, 2) {\n\t\t\tcs.push_back(cs[0]);\n\t\t\tif (cs[0] == '0')ad++;\n\t\t\tcs.erase(cs.begin());\n\t\t}\n\t}\n\treturn res;\n}\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tvector<int>x(m), y(m);\n\trep(i, m)cin >> x[i];\n\trep(i, m)cin >> y[i];\n\tstring s, t;\n\ts.resize(n, '0');\n\tt.resize(n, '0');\n\trep(i, m) {\n\t\ts[x[i] - 1] = '1';\n\t\tt[y[i] - 1] = '1';\n\t}\n\tint ans1 = calc(s, t, m);\n\treverse(all(s));\n\treverse(all(t));\n\tint ans2 = calc(s, t, m);\n\tint ans = min(ans1, ans2);\n\tif (ans == mod)ans = -1;\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.2777777777777778, "time_ms": 270, "memory_kb": 11724, "score_of_the_acc": -1.9919, "final_rank": 16 }, { "submission_id": "aoj_2716_6404641", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nint calc2(string s, string t) {\n\t//cout << s << \" \" << t << \"\\n\";\n\tqueue<int> qs, qt;\n\tint n = s.size();\n\trep(i, n - 1) {\n\t\tif (s[i] == '1' && s[i + 1] == '1')qs.push(i);\n\t\tif (t[i] == '1' && t[i + 1] == '1')qt.push(i);\n\t}\n\tvector<int> rs(n + 1), rt(n + 1);\n\trep(i, n) {\n\t\trs[i + 1] = rs[i] + (s[i] == '0');\n\t\trt[i + 1] = rt[i] + (t[i] == '0');\n\t}\n\tvector<bool> us(n), ut(n);\n\tint cs = 0, ct = 0;\n\tint res = 0;\n\tint pre = 0;\n\twhile (true) {\n\t\twhile (cs < n && us[cs])cs++;\n\t\twhile (ct < n && ut[ct])ct++;\n\t\tif (cs == n)break;\n\t\tif (s[cs] == t[ct]) {\n\t\t\tus[cs] = ut[ct] = true;\n\t\t\tcs++; ct++;\n\t\t\tif (s[cs] == '0') {\n\t\t\t\tpre++;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (s[cs] == '1') {\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (us[cs])cs++;\n\t\t\t\tif (s[cs] == '0')return mod;\n\t\t\t\tus[cs] = true;\n\t\t\t\tcs++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qt.empty())return mod;\n\t\t\t\t\tint loc = qt.front(); qt.pop();\n\t\t\t\t\tif (ut[loc] || ut[loc + 1])continue;\n\t\t\t\t\tut[loc] = ut[loc + 1] = true;\n\t\t\t\t\tres += rt[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (ut[ct])ct++;\n\t\t\t\tif (t[ct] == '0')return mod;\n\t\t\t\tut[ct] = true;\n\t\t\t\tct++;\n\t\t\t\twhile (true) {\n\t\t\t\t\tif (qs.empty())return mod;\n\t\t\t\t\tint loc = qs.front(); qs.pop();\n\t\t\t\t\tif (us[loc] || us[loc + 1])continue;\n\t\t\t\t\tus[loc] = us[loc + 1] = true;\n\t\t\t\t\tres += rs[loc] - pre;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nint calc(string s, string t,int m) {\n\tint n = s.size();\n\tint chkt = -1;\n\trep(i, n) {\n\t\tint ni = (i + 1) % n;\n\t\tif (t[i] == '1' && t[ni] == '1') {\n\t\t\tchkt = i; break;\n\t\t}\n\t}\n\tif (chkt < 0) {\n\t\tif (s == t)return 0;\n\t\treturn mod;\n\t}\n\tint chks = -1;\n\trep(i, n) {\n\t\tint loc = chkt - i; if (loc < 0)loc += n;\n\t\tint nloc = (loc + 1) % n;\n\t\tif (s[loc] == '1' && s[nloc] == '1') {\n\t\t\tchks = loc; break;\n\t\t}\n\t}\n\tif (chks < 0)return mod;\n\tint ad = 0;\n\twhile (chks != chkt) {\n\t\tint loc = (chks + 2) % n;\n\t\tif (s[loc] == '0')ad++;\n\t\tswap(s[chks], s[loc]);\n\t\tchks = (chks + 1) % n;\n\t}\n\tstring cs, ct;\n\trep(i, n - 2) {\n\t\tint loc = (chks + i + 2) % n;\n\t\tcs.push_back(s[loc]);\n\t\tct.push_back(t[loc]);\n\t}\n\tint res = mod;\n\trep(_, n) {\n\t\t//cs,ct\n\t\tint val = calc2(cs, ct);\n\t\tchmin(res, val+ad);\n\n\t\tad += n - m;\n\t\tif (cs[0] == '0')ad++;\n\t\tif (cs[1 % cs.size()] == '0')ad++;\n\t\trep(j, 2) {\n\t\t\tcs.push_back(cs[0]);\n\t\t\tcs.erase(cs.begin());\n\t\t}\n\t}\n\treturn res;\n}\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tvector<int>x(m), y(m);\n\trep(i, m)cin >> x[i];\n\trep(i, m)cin >> y[i];\n\tstring s, t;\n\ts.resize(n, '0');\n\tt.resize(n, '0');\n\trep(i, m) {\n\t\ts[x[i] - 1] = '1';\n\t\tt[y[i] - 1] = '1';\n\t}\n\tint ans1 = calc(s, t, m);\n\treverse(all(s));\n\treverse(all(t));\n\tint ans2 = calc(s, t, m);\n\tint ans = min(ans1, ans2);\n\tif (ans == mod)ans = -1;\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.2777777777777778, "time_ms": 130, "memory_kb": 11740, "score_of_the_acc": -1.4553, "final_rank": 15 }, { "submission_id": "aoj_2716_4907360", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 3005\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[NUM],check_to[NUM];\nvector<ll> V[2],work[2];\nll MOVE[NUM],ADD[NUM],LOC[NUM];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]; //どれだけ動くか\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tADD[0] = MOVE[0];\n\t\t\tLOC[0] = ADD[0]+work[FROM][0]; //周回を考慮した位置\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1]){//左に動かねばらならない?(右に動くと周回で1つ左の空白を抜く)\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1]){//左に動かねばらならない?(右に動くと周回で1つ左の空白を抜く)\n\n\t\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3496, "score_of_the_acc": -0.511, "final_rank": 5 }, { "submission_id": "aoj_2716_4907356", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 3005\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[NUM],check_to[NUM];\nvector<ll> V[2],work[2];\nll MOVE[NUM],ADD[NUM],LOC[NUM];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]; //どれだけ動くか\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tADD[0] = MOVE[0];\n\t\t\tLOC[0] = ADD[0]+work[FROM][0]; //周回を考慮した位置\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1]){//左に動かねばらならない?(右に動くと周回で1つ左の空白を抜く)\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\twork[TO][0] += N;\n\t\t\t\t/*for(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}*/\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1]){//左に動かねばらならない?(右に動くと周回で1つ左の空白を抜く)\n\n\t\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.037037037037037035, "time_ms": 130, "memory_kb": 3404, "score_of_the_acc": -0.4615, "final_rank": 19 }, { "submission_id": "aoj_2716_4907348", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 3005\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[NUM],check_to[NUM];\nvector<ll> V[2],work[2];\nll MOVE[NUM],ADD[NUM],LOC[NUM];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]; //どれだけ動くか\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tADD[0] = MOVE[0];\n\t\t\tLOC[0] = ADD[0]+work[FROM][0]; //周回を考慮した位置\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1]){//左に動かねばらならない?\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1]){//左に動かねばらならない?\n\n\t\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3480, "score_of_the_acc": -0.5091, "final_rank": 3 }, { "submission_id": "aoj_2716_4906198", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 3005\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[NUM],check_to[NUM];\nvector<ll> V[2],work[2];\nll MOVE[NUM],ADD[NUM],LOC[NUM];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]; //どれだけ動くか\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tADD[0] = MOVE[0];\n\t\t\tLOC[0] = ADD[0]+work[FROM][0]; //周回を考慮した位置\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\tif((work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE])){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE]){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3500, "score_of_the_acc": -0.5114, "final_rank": 6 }, { "submission_id": "aoj_2716_4906196", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 3005\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[NUM],check_to[NUM];\nvector<ll> V[2],work[2];\nll MOVE[NUM],ADD[NUM],LOC[NUM];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]; //どれだけ動くか\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tADD[0] = MOVE[0];\n\t\t\tLOC[0] = ADD[0]+work[FROM][0]; //周回を考慮した位置\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\tif(MOVE[k]%2 == 1 ||\n\t\t\t\t\t\t\t\t(work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE])){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\t\tif(MOVE[k]%2 == 1 ||\n\t\t\t\t\t\t\t\t\t(work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE])){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.16666666666666666, "time_ms": 140, "memory_kb": 3456, "score_of_the_acc": -0.5062, "final_rank": 18 }, { "submission_id": "aoj_2716_4904402", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 3005\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[NUM],check_to[NUM];\nvector<ll> V[2],work[2];\nll MOVE[NUM],ADD[NUM],LOC[NUM];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]; //どれだけ動くか\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tADD[0] = MOVE[0];\n\t\t\tLOC[0] = ADD[0]+work[FROM][0]; //周回を考慮した位置\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE]){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k]; //動きが右でも左でも、その偶奇は一致するはず\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE]){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG && abs(MOVE[SIZE-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3480, "score_of_the_acc": -0.5091, "final_rank": 3 }, { "submission_id": "aoj_2716_4904399", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 3005\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[NUM],check_to[NUM];\nvector<ll> V[2],work[2];\nll MOVE[NUM],ADD[NUM],LOC[NUM];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]; //どれだけ動くか\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tADD[0] = MOVE[0];\n\t\t\tLOC[0] = ADD[0]+work[FROM][0]; //周回を考慮した位置\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE]){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(abs(MOVE[k-1])%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(LOC[k-1] >= work[FROM][k]){ //1つ左の移動先が、自分より右に位置する場合\n\n\t\t\t\t\t\tADD[k] = LOC[k-1]-work[FROM][k]+1; //少なくとも、1つ左の移動先よりも,1つ右に位置できる分動く必要あり\n\n\t\t\t\t\t\ttmp = (ADD[k]+work[FROM][k])%N;\n\t\t\t\t\t\tMOVE[k] = ADD[k]+abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\n\t\t\t\t\t}else{ //1つ左の移動先が、自分より左に位置する場合\n\n\n\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] >= work[FROM][k]){ //移動先が自分より右\n\n\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\n\t\t\t\t\t\t}else{ //移動先が自分より左\n\n\t\t\t\t\t\t\tMOVE[k] = (work[TO][(i+k)%SIZE]-work[FROM][k]+N)%N;\n\n\t\t\t\t\t\t\tif(work[TO][(i+k)%SIZE] > LOC[k-1] && MOVE[k] > work[FROM][k]-work[TO][(i+k)%SIZE]){ //左に動いた方が低コスト\n\n\t\t\t\t\t\t\t\tMOVE[k] = work[TO][(i+k)%SIZE]-work[FROM][k];\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tLOC[k] = work[FROM][k]+MOVE[k];\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += abs(MOVE[k])/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.25925925925925924, "time_ms": 140, "memory_kb": 3500, "score_of_the_acc": -0.5114, "final_rank": 17 }, { "submission_id": "aoj_2716_4904395", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[3005],check_to[3005];\nvector<ll> V[2],work[2];\nll MOVE[3005];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\tMOVE[k] = pre-work[FROM][k]+1; //少なくとも、1つ左よりも右に位置できる分動く必要あり\n\n\t\t\t\t}else{\n\n\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t}\n\n\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t}\n\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\t\tMOVE[k] = pre-work[FROM][k]+1; //少なくとも、1つ左よりも右に位置できる分動く必要あり\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t\t}\n\n\n\t\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t\t}\n\t\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.5185185185185185, "time_ms": 260, "memory_kb": 3440, "score_of_the_acc": -0.9658, "final_rank": 8 }, { "submission_id": "aoj_2716_4904392", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[3005],check_to[3005];\nvector<ll> V[2],work[2];\nll MOVE[3005];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tif(M == N){\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\tMOVE[k] = MOVE[k-1]; //少なくとも、[1つ左と同じだけ]動く必要あり\n\n\t\t\t\t}else{\n\n\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t}\n\n\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t}\n\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\t\tMOVE[k] = MOVE[k-1]; //少なくとも、[1つ左と同じだけ]動く必要あり\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t\t}\n\n\n\t\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t\t}\n\t\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.3888888888888889, "time_ms": 250, "memory_kb": 3420, "score_of_the_acc": -0.925, "final_rank": 9 }, { "submission_id": "aoj_2716_4904391", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[3005],check_to[3005];\nvector<ll> V[2],work[2];\nll MOVE[3005];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG && N-M > 1){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\tMOVE[k] = MOVE[k-1]; //少なくとも、[1つ左と同じだけ]動く必要あり\n\n\t\t\t\t}else{\n\n\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t}\n\n\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t}\n\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\t\tMOVE[k] = MOVE[k-1]; //少なくとも、[1つ左と同じだけ]動く必要あり\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t\t}\n\n\n\t\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t\t}\n\t\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.35185185185185186, "time_ms": 250, "memory_kb": 3452, "score_of_the_acc": -0.9288, "final_rank": 10 }, { "submission_id": "aoj_2716_4904390", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nenum Type{\n\tFROM,\n\tTO,\n};\n\nll N,M;\nll SIZE;\nbool check_from[3005],check_to[3005];\nvector<ll> V[2],work[2];\nll MOVE[3005];\n\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&M);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tcheck_from[i] = false;\n\t\tcheck_to[i] = false;\n\t}\n\n\tll tmp;\n\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_from[tmp] = true;\n\t}\n\tfor(ll i = 0; i < M; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\ttmp--;\n\n\t\tcheck_to[tmp] = true;\n\t}\n\n\tfor(ll i = 0; i < N; i++){\n\t\tif(!check_from[i]){\n\n\t\t\tV[FROM].push_back(i);\n\t\t}\n\t\tif(!check_to[i]){\n\n\t\t\tV[TO].push_back(i);\n\t\t}\n\t}\n\n\tbool FLG = false;\n\tSIZE = N-M;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\n\t\tif(abs(V[FROM][(i+1)%SIZE]-V[FROM][i]+N)%N >= 3){\n\n\t\t\tFLG = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(!FLG){\n\n\t\tfor(ll i = 0; i < SIZE; i++){\n\t\t\tif(V[FROM][i] != V[TO][i]){\n\n\t\t\t\tprintf(\"-1\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"0\\n\");\n\t\treturn 0;\n\t}\n\n\tll ans = HUGE_NUM;\n\n\tfor(ll i = 0; i < SIZE; i++){\n\t\tfor(int loop = 0; loop < 2; loop++){\n\n\t\t\tif(loop == 0){\n\n\t\t\t\twork[FROM] = V[FROM];\n\t\t\t\twork[TO] = V[TO];\n\t\t\t}else{\n\n\t\t\t\twork[FROM] = V[TO];\n\t\t\t\twork[TO] = V[FROM];\n\t\t\t}\n\n\t\t\t/*FROM→TOへ右に動く*/\n\n\t\t\tif(work[TO][i] >= work[FROM][0]){\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t}else{ //work[TO][i] < work[FROM][0]\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0]+N;\n\t\t\t}\n\n\t\t\tFLG = true;\n\n\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\tMOVE[k] = MOVE[k-1]; //少なくとも、[1つ左と同じだけ]動く必要あり\n\n\t\t\t\t}else{\n\n\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t}\n\n\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t}\n\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\tFLG = false;\n\t\t\t}\n\n\t\t\tll tmp_sum = 0;\n\n\t\t\tif(FLG){ //奇数動なし\n\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t}\n\t\t\t\tans = min(ans,tmp_sum);\n\n\t\t\t}else{ //奇数動あり\n\n\t\t\t\tif(N%2 == 0)continue;\n\n\t\t\t\t//Nが奇数ならもう1周してみる\n\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\twork[TO][k] += N;\n\t\t\t\t}\n\n\t\t\t\tFLG = true;\n\n\t\t\t\tMOVE[0] = work[TO][i]-work[FROM][0];\n\n\t\t\t\t//少なくとも1つ奇数動があるか調べる\n\t\t\t\tfor(ll k = 1; k < SIZE; k++){\n\t\t\t\t\tif(MOVE[k-1]%2 == 1){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tll pre = (work[FROM][k-1]+MOVE[k-1]); //1つ左の空白位置\n\n\t\t\t\t\tif(pre >= work[FROM][k]){\n\n\t\t\t\t\t\tMOVE[k] = MOVE[k-1]; //少なくとも、[1つ左と同じだけ]動く必要あり\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tMOVE[k] = 0;\n\t\t\t\t\t}\n\n\n\t\t\t\t\ttmp = (MOVE[k]+work[FROM][k])%N;\n\n\t\t\t\t\tMOVE[k] += abs(work[TO][(i+k)%SIZE]-tmp+N)%N;\n\t\t\t\t}\n\t\t\t\tif(FLG && MOVE[SIZE-1]%2 == 1){\n\n\t\t\t\t\tFLG = false;\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tfor(ll k = 0; k < SIZE; k++){\n\n\t\t\t\t\t\ttmp_sum += MOVE[k]/2;\n\t\t\t\t\t}\n\t\t\t\t\tans = min(ans,tmp_sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(ans == HUGE_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%lld\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.3333333333333333, "time_ms": 250, "memory_kb": 3432, "score_of_the_acc": -0.9264, "final_rank": 11 } ]
aoj_2717_cpp
Problem A: Where is the Boundary An island country JAGAN in a certain planet is very long and narrow, and extends east and west. This long country is said to consist of two major cultural areas | the eastern and the western. Regions in the east tend to have the eastern cultural features and regions in the west tend to have the western cultural features, but, of course, the boundary between the two cultural areas is not clear, which has been an issue. You are given an assignment estimating the boundary using a given data set. More precise specification of the assignment is as follows: JAGAN is divided into $n$ prefectures forming a line in the east-west direction. Each prefecture is numbered 1, 2, ..., $n$ from WEST to EAST . Each data set consists of $m$ features, which has 'E' (east) or 'W' (west) for each prefecture. These data indicate that each prefecture has eastern or western features from $m$ different point of views, for example, food, clothing, and so on. In the estimation, you have to choose a cultural boundary achieving the minimal errors. That is, you have to minimize the sum of 'W's in the eastern side and 'E's in the western side. In the estimation, you can choose a cultural boundary only from the boundaries between two prefectures. Sometimes all prefectures may be estimated to be the eastern or the western cultural area. In these cases, to simplify, you must virtually consider that the boundary is placed between prefecture No. 0 and No. 1 or between prefecture No. $n$ and No. $n+1$. When you get multiple minimums, you must output the most western (least-numbered) result. Write a program to solve the assignment. Input Each input is formatted as follows: $n$ $m$ $d_{11} ... d_{1n}$ : : $d_{m1} ... d_{mn}$ The first line consists of two integers $n$ ($1 \leq n \leq 10,000$), $m$ ($1 \leq m \leq 100$), which indicate the number of prefectures and the number of features in the assignment. The following m lines are the given data set in the assignment. Each line contains exactly $n$ characters. The $j$-th character in the $i$-th line $d_{ij}$ is 'E' (east) or 'W' (west), which indicates $j$-th prefecture has the eastern or the western feature from the $i$-th point of view. Output Print the estimated result in a line. The output consists of two integers sorted in the ascending order which indicate two prefectures touching the boundary. Sample Input 2 1 WE Output for the Sample Input 1 2 Sample Input 3 2 WWE WEE Output for the Sample Input 1 2 Both estimates "1 2" and "2 3" achieve 1 error as the minimum. From the restriction that you must adopt the most western estimate, you must output "1 2". Sample Input 3 1 WWW Output for the Sample Input 3 4 In this case, all the prefectures are western. As described in the problem statement, you must virtually consider that the boundary is placed between third and fourth prefectures. Sample Input 3 1 WEW Output for the Sample Input 1 2 You cannot assume that 'E's and 'W's are separated.
[ { "submission_id": "aoj_2717_10518617", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <cassert>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <numeric>\n#include <tuple>\n#include <ranges>\nnamespace ranges = std::ranges;\nnamespace views = std::views;\n// #include \"Src/Number/IntegerDivision.hpp\"\n// #include \"Src/Utility/BinarySearch.hpp\"\n// #include \"Src/Sequence/CompressedSequence.hpp\"\n// #include \"Src/Sequence/RunLengthEncoding.hpp\"\n// #include \"Src/Algebra/Group/AdditiveGroup.hpp\"\n// #include \"Src/DataStructure/FenwickTree/FenwickTree.hpp\"\n// #include \"Src/DataStructure/SegmentTree/SegmentTree.hpp\"\n// using namespace zawa;\n// #include \"atcoder/modint\"\n// using mint = atcoder::modint998244353;\nint N, M;\nstd::string S[100];\nint main() {\n std::cin.tie(nullptr);\n std::cout.tie(nullptr);\n std::ios::sync_with_stdio(false);\n std::cin >> N >> M;\n for (int i = 0 ; i < M ; i++) {\n std::cin >> S[i];\n }\n std::vector<int> pref(N + 1), suf(N + 1);\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < M ; j++) if (S[j][i] == 'E') pref[i + 1]++;\n pref[i + 1] += pref[i];\n }\n for (int i = N - 1 ; i >= 0 ; i--) {\n for (int j = 0 ; j < M ; j++) if (S[j][i] == 'W') suf[i]++;\n suf[i] += suf[i + 1];\n }\n int error = suf[0], ans = 0;\n for (int i = 0 ; i < N ; i++) {\n const int v = pref[i + 1] + suf[i + 1];\n if (error > v) {\n ans = i + 1;\n error = v;\n }\n }\n std::cout << ans << ' ' << ans + 1 << '\\n';\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4736, "score_of_the_acc": -0.1646, "final_rank": 8 }, { "submission_id": "aoj_2717_9599365", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<int> A(N,0);\n rep(i,0,M) {\n string S;\n cin >> S;\n rep(j,0,N) {\n if (S[j] == 'E') A[j]++;\n }\n }\n vector<int> L(N+1,0), R(N+1,0);\n rep(i,0,N) L[i+1] = L[i]+A[i];\n rrep(i,0,N) R[i] = R[i+1]+A[i];\n int MIN = inf, ANS = -1;\n rep(i,0,N+1) {\n if (chmin(MIN,L[i]+(N-i)*M-R[i])) ANS = i;\n }\n cout << ANS << ' ' << ANS+1 << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3612, "score_of_the_acc": -0.0429, "final_rank": 2 }, { "submission_id": "aoj_2717_9433349", "code_snippet": "#include <bits/stdc++.h>\n\n\nusing namespace std;\n//make -f ../makefile SRC=\n/*\nguess:\nprefix sum of E from left and of W from right => summing up\n*/\n\n\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 10000;\nconst int MAX_M = 100;\nstatic char G[MAX_M][MAX_N];\n\nstatic int L[MAX_N]; // prefix sum of 'E' from left\nstatic int R[MAX_N]; // prefix sum of 'W' from left\nstatic int cost[MAX_N+1];\n\n//------------------------------------------------------------------------------\nvoid solve(int M, int N)\n{\n for (int i=0; i<N; ++i) { L[i] = 0; R[i] = 0; cost[i] = 0; }\n cost[N] = 0;\n\n for (int m=0; m<M; ++m)\n for (int i=0; i<N; ++i)\n if (G[m][i] == 'E')\n L[i]++;\n for (int i=1; i<N; ++i) L[i] += L[i-1];\n\n for (int m=0; m<M; ++m)\n for (int i=0; i<N; ++i)\n if (G[m][i] == 'W')\n R[i]++;\n for (int i=N-2; i>=0; --i) R[i] += R[i+1];\n\n cost[0] = R[0];\n cost[N] = L[N-1];\n for (int i=1; i<N; ++i) cost[i] = L[i-1] + R[i];\n\n int index = -1;\n int min_c = INF;\n for (int i=0; i<N+1; ++i)\n if (cost[i] < min_c)\n {\n min_c = cost[i];\n index = i;\n }\n int k = index+1;\n printf(\"%d %d\\n\", k-1, k);\n}\n\n\n\n//------------------------------------------------------------------------------\nvoid test()\n{\n\n}\n\n//------------------------------------------------------------------------------\nint main()\n{\n //test(); return 0;\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int N, M, num;\n num = scanf(\"%d %d \", &N, &M);\n for (int m=0; m<M; ++m) for (int i=0; i<N; ++i) num = scanf(\"%c \", &G[m][i]);\n solve(M, N);\n //--------------------------------------------------------------------------\n return 0;\n}\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 30, "memory_kb": 4672, "score_of_the_acc": -0.8243, "final_rank": 17 }, { "submission_id": "aoj_2717_6710488", "code_snippet": "#include <bits/stdc++.h>\n#define all(v) v.begin(), v.end()\n#define rall(v) v.rbegin(), v.rend()\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define drep(i,j,n) for(int i=0;i<(int)(n-1);i++)for(int j=i+1;j<(int)(n);j++)\n#define trep(i,j,k,n) for(int i=0;i<(int)(n-2);i++)for(int j=i+1;j<(int)(n-1);j++)for(int k=j+1;k<(int)(n);k++)\n#define codefor int test;scanf(\"%d\",&test);while(test--)\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define yes(ans) if(ans)printf(\"yes\\n\");else printf(\"no\\n\")\n#define Yes(ans) if(ans)printf(\"Yes\\n\");else printf(\"No\\n\")\n#define YES(ans) if(ans)printf(\"YES\\n\");else printf(\"NO\\n\")\n#define popcount(v) __builtin_popcountll(v)\n#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\n#define vector4d(type,name,h,w,d,...) vector<vector<vector<vector<type>>>>name(h,vector<vector<vector<type>>>(w,vector<vector<type>>(d,vector<type>(__VA_ARGS__))))\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;\nconst int MOD=1000000007;\nconst int MOD2=998244353;\nconst int INF=1<<30;\nconst ll INF2=1LL<<60;\nvoid scan(int& a){scanf(\"%d\",&a);}\nvoid scan(long long& a){scanf(\"%lld\",&a);}\ntemplate<class T,class L>void scan(pair<T, L>& p){scan(p.first);scan(p.second);}\ntemplate<class T,class U,class V>void scan(tuple<T,U,V>& p){scan(get<0>(p));scan(get<1>(p));scan(get<2>(p));}\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i);}\ntemplate<class T> void scan(T& a){cin>>a;}\ntemplate<class T> void scan(vector<T>& vec){for(auto&& it:vec)scan(it);}\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){scan(head);in(tail...);}\nvoid print(const int& a){printf(\"%d\",a);}\nvoid print(const long long& a){printf(\"%lld\",a);}\nvoid print(const double& a){printf(\"%.15lf\",a);}\ntemplate<class T,class L>void print(const pair<T, L>& p){print(p.first);putchar(' ');print(p.second);}\ntemplate<class T> void print(const T& a){cout<<a;}\ntemplate<class T> void print(const vector<T>& vec){if(vec.empty())return;print(vec[0]);for(auto it=vec.begin();++it!= vec.end();){putchar(' ');print(*it);}}\nvoid out(){putchar('\\n');}\ntemplate<class T> void out(const T& t){print(t);putchar('\\n');}\ntemplate <class Head, class... Tail> void out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);}\ntemplate<class T> void dprint(const T& a){cerr<<a;}\ntemplate<class T> void dprint(const vector<T>& vec){if(vec.empty())return;cerr<<vec[0];for(auto it=vec.begin();++it!= vec.end();){cerr<<\" \"<<*it;}}\nvoid debug(){cerr<<'\\n';}\ntemplate<class T> void debug(const T& t){dprint(t);cerr<<endl;}\ntemplate <class Head, class... Tail> void debug(const Head& head, const Tail&... tail){dprint(head);cerr<<\" \";debug(tail...);}\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\nll modinv(ll a, ll m) {ll b = m, u = 1, v = 0;while (b) {ll t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;}\nll updivide(ll a,ll b){return (a+b-1)/b;}\ntemplate<class T> void chmax(T &a,const T b){if(b>a)a=b;}\ntemplate<class T> void chmin(T &a,const T b){if(b<a)a=b;}\n\n//2次元累積和\ntemplate< class T > struct CumulativeSum2D{\n vector<vector<T>> data;\n CumulativeSum2D(int H, int W) : data(H + 1, vector<T>(W + 1, 0)) {}\n void add(int y, int x, int z){\n y++, x++;\n if(y>=data.size()||x>=data[0].size())return;\n data[y][x]+=z;\n }\n void build(){\n for(int i=1;i<data.size();i++) {\n for(int j=1;j<data[i].size();j++) {\n data[i][j]+=data[i][j-1]+data[i-1][j]-data[i-1][j-1];\n }\n }\n }\n T query(int sy,int sx,int gy, int gx){\n return (data[gy][gx]-data[sy][gx]-data[gy][sx]+data[sy][sx]);\n }\n};\n\nint main(){\n INT(w,h);\n CumulativeSum2D<int> E(h, w), W(h, w);\n vector<string> A(h);\n in(A);\n rep(y,h){\n rep(x,w){\n if(A[y][x] == 'E')E.add(y,x,1);\n else W.add(y,x,1);\n }\n }\n E.build();\n W.build();\n vector<int> ans(2);\n int minv = INF;\n for(int i = 0; i <= w; i++){\n int v = E.query(0,0,h,i) + W.query(0,i,h,w);\n if(v < minv){\n minv = v;\n ans[0] = i;\n ans[1] = i + 1;\n }\n }\n out(ans);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 12452, "score_of_the_acc": -1.3333, "final_rank": 20 }, { "submission_id": "aoj_2717_6400794", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(A) A.begin(),A.end()\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)\nll gcd(ll(a), ll(b)) {\n\tll c = a;\n\twhile (a % b != 0) {\n\t\tc = a % b;\n\t\ta = b;\n\t\tb = c;\n\t}\n\treturn b;\n}\n\n\nint main() {\n ll N,M;\n cin>>N>>M;\n vector<string> S(M);\n rep(m,M){cin>>S[m];}\n vll W(N+1,0);\n rep(m,M)rep(i,N)if(S[m][i]=='W')W[i+1]++;\n rep(i,N)W[i+1]+=W[i];\n ll m=1e18;\n ll an=-1;\n rep(i,N+1){\n ll d1=i*M-W[i];\n ll d2=(W[N]-W[i]);\n //cout<<i<<\" \"<<d1<<\" \"<<d2<<endl;\n if(m>(d1+d2)){\n an=i;\n m=d1+d2;\n }\n }\n cout<<an<<\" \"<<an+1<<endl;\n \n\n\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4676, "score_of_the_acc": -0.1581, "final_rank": 5 }, { "submission_id": "aoj_2717_6217044", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> pint;\n#define rep(i, n) for(ll i = 0; i < (ll)n; i++)\n\nset<vector<string>> used;\nvector<string> S;\nll ans = 0;\nll N;\nvector<ll> dx = {1, 0, -1, 0};\nvector<ll> dy = {0, 1, 0, -1};\n\nbool valid(ll x, ll y){\n return (0 <= x && x <= N-1 && 0 <= y && y <= N-1);\n}\n\nvoid dfs(ll num){\n if(used.find(S)!=used.end()){\n return;\n }\n used.insert(S);\n if(num == 0){\n ans++;\n return;\n }\n\n vector<pint> next;\n rep(i, N) {\n rep(j, N) {\n if(S[i][j] == '.'){\n bool flag = false;\n rep(k, 4) {\n ll nx = j+dx[k];\n ll ny = i+dy[k];\n if(valid(nx, ny) && S[ny][nx]=='@'){\n flag = true;\n }\n }\n if(flag) {\n next.push_back(pint(j, i));\n }\n }\n }\n }\n for(auto c: next){\n ll x = c.first;\n ll y = c.second;\n S[y][x] = '@';\n dfs(num-1);\n S[y][x] = '.';\n }\n}\n\nint main(){\n ll N, M; cin >> N >> M;\n vector<string> V(N);\n rep(i, M) cin >> V[i];\n vector<ll> W(N), E(N);\n rep(i, M) {\n rep(j, N) {\n if(V[i][j] == 'W') W[j]++;\n else E[j]++;\n }\n }\n ll ans = 0;\n vector<ll> sum_W(N+1, 0), sum_E(N+1, 0);\n rep(i, N) sum_W[i+1] = sum_W[i]+W[i], sum_E[i+1] = sum_E[i+1] = sum_E[i]+E[i];\n ll score = -INT_MAX;\n rep(i, N+1) {\n ll tmp = 0;\n tmp += sum_W[i];\n tmp -= sum_E[i];\n tmp -= (sum_W[N]-sum_W[i]);\n tmp += (sum_E[N]-sum_E[i]);\n if(score < tmp) {\n score = tmp;\n ans = i;\n }\n }\n cout << ans << ' ' << ans+1 << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5240, "score_of_the_acc": -0.2191, "final_rank": 11 }, { "submission_id": "aoj_2717_6216640", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define inc(i, a, b) for (int i = (a); i <= (b); ++i)\n#define dec(i, a, b) for (int i = (a); i >= (b); --i)\n\nint main() {\n ll n, m;\n cin >> n >> m;\n string s[m];\n rep(i, m) cin >> s[i];\n\n ll a[n + 1] = {}, b[n + 1] = {};\n rep(i, n) {\n rep(j, m) s[j][i] == 'W' ? a[i + 1]++ : b[i + 1]++;\n a[i + 1] += a[i], b[i + 1] += b[i];\n }\n\n ll mn = 1e18, idx = 0;\n rep(i, n + 1) {\n if (mn > b[i] + a[n] - a[i]) {\n mn = b[i] + a[n] - a[i];\n idx = i;\n }\n }\n cout << idx << \" \" << idx + 1 << \"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4788, "score_of_the_acc": -0.1702, "final_rank": 9 }, { "submission_id": "aoj_2717_6030525", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < (n); i++)\nusing namespace std;\ntypedef long long ll;\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n, m;\n cin >> n >> m;\n vector<string> d(m);\n rep(i, m) cin >> d[i];\n\n vector<int> L(n + 1, 0), R(n + 1, 0);\n rep(i, n)\n {\n L[i + 1] = L[i];\n rep(j, m) if (d[j][i] == 'E') L[i + 1]++;\n }\n for (int i = n - 1; i >= 0; i--)\n {\n R[i] = R[i + 1];\n rep(j, m) if (d[j][i] == 'W') R[i]++;\n }\n\n int ans = 1e9, pos = -1;\n rep(i, n + 1) if (L[i] + R[i] < ans)\n {\n ans = L[i] + R[i];\n pos = i;\n }\n cout << pos << \" \" << pos + 1 << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4404, "score_of_the_acc": -0.1286, "final_rank": 4 }, { "submission_id": "aoj_2717_5118486", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int H, W;\n cin >> W >> H;\n vector<string> V(H);\n vector<int> cnt(W + 1);\n for (int i = 0; i < H; i++) {\n cin >> V[i];\n }\n for (int j = 0; j < W; j++) {\n cnt[j + 1] = cnt[j];\n for (int i = 0; i < H; i++) {\n cnt[j + 1] += V[i][j] == 'E';\n }\n }\n int ans = 0, cost = H * W - cnt[W];\n for (int i = 0; i <= W; i++) {\n int now = cnt[i] * 2 - cnt[W] + H * (W - i);\n if (now < cost) {\n cost = now;\n ans = i;\n }\n }\n cout << ans << \" \" << ans + 1 << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4344, "score_of_the_acc": -0.1221, "final_rank": 3 }, { "submission_id": "aoj_2717_4963945", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n\nstring d[100];\nint sumL[10010], sumR[10010];\n\nint main() {\n int n, m;\n cin >> n >> m;\n for (int i = 0; i < m; i++) {\n cin >> d[i];\n }\n for (int i = 0; i < n; i++) {\n sumL[i + 1] = sumL[i];\n for (int j = 0; j < m; j++) {\n sumL[i + 1] += (d[j][i] == 'E');\n }\n }\n for (int i = n; i >= 1; i--) {\n sumR[i] = sumR[i + 1];\n for (int j = 0; j < m; j++) {\n sumR[i] += (d[j][i - 1] == 'W');\n }\n }\n int mi = 1 << 30;\n int idx = 0;\n for (int i = 0; i <= n; i++) {\n if (mi > sumL[i] + sumR[i + 1]) {\n mi = sumL[i] + sumR[i + 1];\n idx = i;\n }\n }\n cout << idx << \" \" << idx + 1 << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4712, "score_of_the_acc": -0.162, "final_rank": 7 }, { "submission_id": "aoj_2717_4925715", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint n, m;\nvector<string> s;\nvector<int> wcnt, ecnt;\n\nint solve();\n\nint main() {\n cin >> n >> m;\n s.resize(m);\n for (auto &p : s) cin >> p;\n int res = solve();\n cout << res << \" \" << res + 1 << endl;\n return 0;\n}\n\nint solve() {\n wcnt.assign(n + 1, 0);\n ecnt.assign(n + 1, 0);\n for (int j = 0; j < m; ++j)\n for (int i = 0; i < n; ++i) {\n ecnt[i + 1] += s[j][i] == 'E';\n wcnt[i] += s[j][i] == 'W';\n }\n for (int i = 0; i < n; ++i) ecnt[i + 1] += ecnt[i];\n for (int i = n - 1; i >= 0; --i) wcnt[i] += wcnt[i + 1];\n int res = 0;\n for (int i = 0; i <= n; ++i)\n if (ecnt[i] + wcnt[i] < ecnt[res] + wcnt[res]) res = i;\n return res;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4688, "score_of_the_acc": -0.1594, "final_rank": 6 }, { "submission_id": "aoj_2717_4902760", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int n, m;\n cin >> n >> m;\n vector<int> w(n+1), e(n+1);\n for (int i = 0; i < m; ++i) {\n string s;\n cin >> s;\n for (int j = 0; j < n; ++j) {\n if (s[j] == 'W') {\n w[j+1]++;\n } else {\n e[j+1]++;\n }\n }\n }\n for (int i = 0; i < n; ++i) w[i+1] += w[i], e[i+1] += e[i];\n\n int mn = INT_MAX;\n int id = 0;\n for (int i = 0; i <= n; ++i) {\n int le = e[i] - e[0];\n int rw = w[n] - w[i];\n if (le + rw < mn) id = i, mn = le + rw;\n }\n cout << id << ' ' << id + 1 << '\\n';\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3536, "score_of_the_acc": -0.0346, "final_rank": 1 }, { "submission_id": "aoj_2717_4896358", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define var auto\n\nint main(){\n int n, m;\n cin >> n >> m;\n vector<int> fw(n, 0);\n int wSum, eSum = 0;\n for (int i = 0; i < m; i++){\n string s;\n cin >> s;\n for (int j = 0; j < n; j++){\n if (s[j] == 'W') fw[j]++;\n }\n }\n for (int i = 0; i < n; i++){\n wSum += fw[i];\n }\n int mi = wSum + eSum;\n //cout << mi << endl;\n int mind = -1;\n for (int i = 0; i < n; i++){\n int w = fw[i];\n int e = m - fw[i];\n wSum -= w;\n eSum += e;\n var cur = wSum + eSum;\n //cout << cur << endl;\n if (cur < mi){\n mi = cur;\n mind = i;\n }\n }\n cout << mind + 1 << \" \" << mind + 2 << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3300, "score_of_the_acc": -0.3424, "final_rank": 13 }, { "submission_id": "aoj_2717_4893504", "code_snippet": "#include <iostream>\n#include <string>\nusing namespace std;\n\nint main()\n{\n int n, m;\n cin >> n >> m;\n string d[102];\n for(int i = 0; i < m; i++) cin >> d[i];\n int s[102][10005];\n for(int i = 0; i < m; i++){\n s[i][0] = 0;\n for(int j = 1; j <= n; j++){\n s[i][j] = s[i][j - 1];\n if(d[i][j - 1] == 'W') s[i][j]++;\n }\n }\n int l = 100000000, ans;\n for(int j = 0; j <= n; j++){\n int c = 0;\n for(int i = 0; i < m; i++) c += (j - s[i][j]) + s[i][n] - s[i][j];\n if(c < l){\n l = c;\n ans = j;\n }\n }\n cout << ans << \" \" << ans + 1 << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8552, "score_of_the_acc": -0.9111, "final_rank": 18 }, { "submission_id": "aoj_2717_4875877", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n#define endl \"\\n\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\nll H, W;\nstring S[10500];\nll okW = 0;\nll okE = 0;\nll ans;\nll ansval;\nint main() {\n cin >> W >> H;\n for(int h = 0; h < H; h++) {\n cin >> S[h];\n for(int w = 0; w < W; w++) {\n if(S[h][w] == 'E') okE++;\n }\n }\n ansval = okE;\n for(ll w = 0; w < W; w++) {\n for(ll h = 0; h < H; h++) {\n if(S[h][w] == 'E') okE--;\n else okW++;\n }\n if(chmax(ansval, okE + okW)) {\n ans = w + 1;\n }\n }\n cout << ans << \" \" << ans + 1 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4924, "score_of_the_acc": -0.1849, "final_rank": 10 }, { "submission_id": "aoj_2717_4803382", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define modulo 1000000007\n#define mod(mod_x) ((((long long)mod_x+modulo))%modulo)\n#define Inf 100000000\n\n\n\n\nint main(){\n\t\n\tint H,W;\n\tcin>>W>>H;\n\t\n\tvector<string> S(H);\n\tfor(int i=0;i<H;i++){\n\t\tcin>>S[i];\n\t}\n\tint l=0,r=0;\n\tfor(int i=0;i<H;i++){\n\t\tfor(int j=0;j<W;j++){\n\t\t\tif(S[i][j]=='W')r++;\n\t\t}\n\t}\n\t\n\tint ans = l+r;\n\tint now = 0;\n\t\n\tfor(int i=0;i<W;i++){\n\t\tfor(int j=0;j<H;j++){\n\t\t\tif(S[j][i]=='W')r--;\n\t\t\telse l++;\n\t\t}\n\t\tif(l+r<ans){\n\t\t\tans = l+r;\n\t\t\tnow = i+1;\n\t\t}\n\t}\n\t\n\tcout<<now<<' '<<now+1<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4476, "score_of_the_acc": -0.4698, "final_rank": 15 }, { "submission_id": "aoj_2717_4780648", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing P = pair<int,int>;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n\n#define REP(i,n) for (int i=0; i<(n); ++i)\n#define RREP(i,n) for (int i=(int)(n)-1; i>=0; --i)\n#define FOR(i,a,n) for (int i=(a); i<(n); ++i)\n#define RFOR(i,a,n) for (int i=(int)(n)-1; i>=(a); --i)\n\n#define SZ(x) ((int)(x).size())\n#define ALL(x) (x).begin(),(x).end()\n\n#define DUMP(x) cerr<<#x<<\" = \"<<(x)<<endl\n#define DEBUG(x) cerr<<#x<<\" = \"<<(x)<<\" (L\"<<__LINE__<<\")\"<<endl;\n\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n REP (i, SZ(v)) {\n if (i) os << \", \";\n os << v[i];\n }\n return os << \"]\";\n}\n\ntemplate<typename T, typename U>\nostream& operator<<(ostream& os, const pair<T, U>& p) {\n return os << \"(\" << p.first << \" \" << p.second << \")\";\n}\n\ntemplate<class T>\nbool chmax(T& a, const T& b) {\n if (a < b) { a = b; return true; }\n return false;\n}\ntemplate<class T>\nbool chmin(T& a, const T& b) {\n if (b < a) { a = b; return true; }\n return false;\n}\n\nconst ll MOD = 1e9+7;\nconst ld EPS = 1e-9;\nconst int INF = INT_MAX / 2;\nconst ll LINF = LLONG_MAX / 2;\n\ntemplate<typename T>\nstruct edge {\n int src, to;\n T cost;\n\n friend ostream &operator<<(ostream &os, const edge &e) {\n return os << \"(\" << e.src << \"->\" << e.to << \":\" << e.cost << \")\";\n }\n};\n\ntemplate<typename T>\nusing Graph = vector<vector<edge<T>>>;\n\ntemplate<int64_t mod>\nclass modint {\n int64_t x;\n\npublic:\n modint(int64_t x = 0) : x(x < 0 ? ((x % mod) + mod) % mod : x % mod) {}\n\n const modint operator-() const { return x ? mod - x : 0; }\n\n modint &operator+=(const modint &rhs) {\n if ((x += rhs.x) >= mod) x -= mod;\n return *this;\n }\n\n modint &operator-=(const modint &rhs) {\n return *this += -rhs;\n }\n\n modint &operator*=(const modint &rhs) {\n (x *= rhs.x) %= mod;\n return *this;\n }\n\n modint &operator/=(const modint &rhs) {\n return *this *= rhs.pow(mod - 2);\n }\n\n friend const modint operator+(modint lhs, const modint &rhs) {\n return lhs += rhs;\n }\n\n friend const modint operator-(modint lhs, const modint &rhs) {\n return lhs -= rhs;\n }\n\n friend const modint operator*(modint lhs, const modint &rhs) {\n return lhs *= rhs;\n }\n\n friend const modint operator/(modint lhs, const modint &rhs) {\n return lhs /= rhs;\n }\n\n const modint pow(int64_t n) const {\n modint ret = 1, tmp = *this;\n while (n) {\n if (n & 1) ret *= tmp;\n tmp *= tmp;\n n >>= 1;\n }\n return ret;\n }\n\n friend bool operator==(const modint &lhs, const modint &rhs) {\n return lhs.x == rhs.x;\n }\n\n friend bool operator!=(const modint &lhs, const modint &rhs) {\n return !(lhs == rhs);\n }\n\n friend ostream &operator<<(ostream &os, const modint &a) {\n return os << a.x;\n }\n\n friend istream &operator>>(istream &is, modint &a) {\n int64_t tmp;\n is >> tmp;\n a = tmp;\n return is;\n }\n};\n\n\nusing Real = double;\nconst Real PI = acos(-1);\n\nstruct Point3D {\n double x, y, z;\n\n Point3D() {}\n\n Point3D(double x, double y, double z) : x(x), y(y), z(z) {}\n\n Point3D operator+(const Point3D &b) const {\n return Point3D(x + b.x, y + b.y, z + b.z);\n }\n\n Point3D operator-(const Point3D &b) const {\n return Point3D(x - b.x, y - b.y, z - b.z);\n }\n\n friend double norm(const Point3D &p) {\n return p.x * p.x + p.y * p.y + p.z * p.z;\n };\n\n friend double abs(const Point3D &p) { return sqrt(norm(p)); }\n\n friend ostream &operator<<(ostream &os, Point3D &p) {\n return os << \"(\" << p.x << \",\" << p.y << \",\" << p.z << \")\";\n }\n\n friend istream &operator>>(istream &is, Point3D &p) {\n return is >> p.x >> p.y >> p.z;\n }\n};\n\nstruct Segment3D {\n Point3D a, b;\n\n Segment3D() {}\n\n Segment3D(const Point3D &a, const Point3D &b) : a(a), b(b) {}\n\n friend ostream &operator<<(ostream &os, Segment3D &l) {\n return os << \"[\" << l.a << \",\" << l.b << \"]\";\n }\n\n friend istream &operator>>(istream &is, Segment3D &l) {\n return is >> l.a >> l.b;\n }\n};\n\ninline bool eq(Real a, Real b) { return abs(b - a) < EPS; }\n\ndouble dot(const Point3D &a, const Point3D &b) {\n return a.x * b.x + a.y * b.y + a.z * b.z;\n}\n\nPoint3D cross(const Point3D &a, const Point3D &b) {\n double x = a.y * b.z - a.z * b.y,\n y = a.z * b.x - a.x * b.z,\n z = a.x * b.y - a.y * b.x;\n return Point3D(x, y, z);\n}\n\nbool parallel(\n const Point3D &a1, const Point3D &a2,\n const Point3D &b1, const Point3D &b2) {\n return eq(abs(cross(a1 - b1, a2 - b2)), 0.);\n}\n\nbool parallel(const Segment3D &l1, const Segment3D &l2) {\n return parallel(l1.a, l1.b, l2.a, l2.b);\n}\n\ndouble distance(const Segment3D &l, const Point3D &p) {\n if (dot(l.b - l.a, p - l.a) < EPS) return abs(p - l.a);\n if (dot(l.a - l.b, p - l.b) < EPS) return abs(p - l.b);\n return abs(cross(l.b - l.a, p - l.a)) / abs(l.b - l.a);\n}\n\n\nint main() {\n //cin.tie(0);\n //ios::sync_with_stdio(false);\n //cout << fixed << setprecision(10);\n\n int n, m; cin >> n >> m;\n vi ws(n + 1), es(n + 1);\n REP(i, m) {\n string s; cin >> s;\n REP(j, n) {\n if (s[j] == 'W') ++ws[j + 1];\n if (s[j] == 'E') ++es[j + 1];\n }\n }\n REP(i, n) ws[i + 1] += ws[i], es[i + 1] += es[i];\n\n int ma = es[n], ans = 0;\n REP(i, n) {\n if (chmax(ma, ws[i + 1] + (es[n] - es[i + 1]))) {\n ans = i + 1;\n }\n }\n cout << ans << ' ' << ans + 1 << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3336, "score_of_the_acc": -0.3463, "final_rank": 14 }, { "submission_id": "aoj_2717_4742729", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint INF = 10000000;\nint main(){\n int n, m;\n cin >> n >> m;\n vector<vector<char>> d(m, vector<char>(n));\n for (int i = 0; i < m; i++){\n for (int j = 0; j < n; j++){\n cin >> d[i][j];\n }\n }\n vector<int> L(n + 1, 0);\n for (int i = 0; i < n; i++){\n L[i + 1] = L[i];\n for (int j = 0; j < m; j++){\n if (d[j][i] == 'E'){\n L[i + 1]++;\n }\n }\n }\n vector<int> R(n + 1, 0);\n for (int i = n - 1; i >= 0; i--){\n R[i] = R[i + 1];\n for (int j = 0; j < m; j++){\n if (d[j][i] == 'W'){\n R[i]++;\n }\n }\n }\n int ans = INF;\n int pos = -1;\n for (int i = 0; i <= n; i++){\n if (L[i] + R[i] < ans){\n ans = L[i] + R[i];\n pos = i;\n }\n }\n cout << pos << ' ' << pos + 1 << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3948, "score_of_the_acc": -1.0793, "final_rank": 19 }, { "submission_id": "aoj_2717_4639657", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vint = vector<int>;\nusing vvint = vector<vint>;\nusing vvvint = vector<vvint>;\nusing Pi = pair<int, int>;\nusing Pl = pair<ll, ll>;\n\nconstexpr int INF = (1<<30)-1;\nint main() {\n int N, M; cin >> N >> M;\n vector<string> D(M);\n for (int i = 0; i < M; i++) {\n string T = \" \";\n string R; cin >> R;\n D[i] = T + R;\n }\n\n vint suml(N+1, 0);\n vint sumr(N+2, 0);\n\n for (int j = 1; j <= N; j++) {\n suml[j] = suml[j-1];\n for (int i = 0; i < M; i++) {\n if (D[i][j] == 'E') suml[j]++;\n }\n }\n for (int j = N; j > 0; j--) {\n sumr[j] = sumr[j+1];\n for (int i = 0; i < M; i++) {\n if (D[i][j] == 'W') sumr[j]++;\n }\n }\n \n int ans = -1, erl = -1, err = -1;\n int minv = INF;\n for (int i = 0; i <= N; i++) {\n int val = suml[i]+sumr[i+1];\n if (minv > val) {\n minv = suml[i]+sumr[i+1];\n erl = suml[i], err = sumr[i+1];\n ans = i;\n } else if (minv == val && erl > suml[i]) {\n erl = suml[i], err = sumr[i];\n ans = i;\n }\n }\n cout << ans << \" \" << ans + 1 << endl;\n return (0);\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4268, "score_of_the_acc": -0.7806, "final_rank": 16 }, { "submission_id": "aoj_2717_4639642", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define var auto\n\nint main(){\n int n, m;\n cin >> n >> m;\n vector<int> fw(n, 0);\n int wSum, eSum = 0;\n for (int i = 0; i < m; i++){\n string s;\n cin >> s;\n for (int j = 0; j < n; j++){\n if (s[j] == 'W') fw[j]++;\n }\n }\n for (int i = 0; i < n; i++){\n wSum += fw[i];\n }\n int mi = wSum + eSum;\n //cout << mi << endl;\n int mind = -1;\n for (int i = 0; i < n; i++){\n int w = fw[i];\n int e = m - fw[i];\n wSum -= w;\n eSum += e;\n var cur = wSum + eSum;\n //cout << cur << endl;\n if (cur < mi){\n mi = cur;\n mind = i;\n }\n }\n cout << mind + 1 << \" \" << mind + 2 << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3216, "score_of_the_acc": -0.3333, "final_rank": 12 } ]
aoj_2718_cpp
Problem B: Vector Field In 20015, JAG (Jagan Acceleration Group) has succeeded in inventing a new accelerator named Force Point for an experiment of proton collision on the two-dimensional $xy$-plane. If a proton touches a Force Point, it is accelerated to twice its speed and its movement direction is veered. A proton may be veered by a Force Field in four ways: the positive or negative directions parallel to the $x$- or the $y$-axis. The direction in which a proton veers is determined by the type of the Force Point. A Force Point can accelerate a proton only once because the Force Point disappears immediately after the acceleration. Generating many Force Points on the two-dimensional plane, which is called a 2D Force Point Field, allows us to accelerate a proton up to a target speed by sequentially accelerating the proton with the Force Points in the 2D Force Point Filed. The Force Point generation method is still under experiment and JAG has the following technical limitations: JAG cannot generate a Force Point with a specified position and a type. JAG cannot generate a Force Point after putting a proton into a 2D Force Point Field. JAG cannot move Force Points. JAG cannot change a protons direction except by the effect of Force Points. JAG can use only one proton for a 2D Force Point Field. JAG can put a proton moving in any direction with its speed 1 at any position in a 2D Force Point Field. In order to achieve the maximum speed of a proton, the engineers at JAG have to choose the optimal initial position and the optimal initial direction of the proton so that the proton is accelerated by as many Force Points as possible, after carefully observing the generated 2D Force Point Field. By observing a generated 2D Force Point Field, the number of the generated Force Points is known to be $n$. The position ($x_i$, $y_i$) and the direction veering type $d_i$ of the $i$-th point are also known. Your task is to write a program to calculate the maximum speed of a proton by acceleration on a given 2D Force Point Field when JAG puts a proton optimally. Input The input consists of a single test case which describes a 2D Force Point Field in the following format. $n$ $x_1$ $y_1$ $d_1$ ... $x_n$ $y_n$ $d_n$ The first line contains one integer $n$ ($1 \leq n \leq 3,000$) which is the number of the Force Points on the 2D Force Point Field. Each of the next $n$ lines contains two integers $x_i$ and $y_i$ ($|x_i|$, $|y_i| \leq 10^9$) and one character $d_i$ ($d_i$ is one of '>', 'v', '<' or '^'). $x_i$ and $y_i$ represent a coordinate of the $i$-th Force Point, and $d_i$ is the direction veering type of the $i$-th force point. A force point with a type '>' changes protons direction to the positive direction of the $x$-axis, 'v' represents the positive direction of the $y$-axis, '<' represents the negative direction of the $x$-axis, and '^' represents the negative direction of the $y$-axis. You can assume that any two Force Points are not generated on the same ...(truncated)
[ { "submission_id": "aoj_2718_10856665", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\ntemplate<class T> vi compress( vector<T> a ){\n vector<T> ord = a;\n vi res(0);\n SORT( ord );\n UNIQUE( ord );\n YYS( w , a ) res.pb( lower_bound( ALL(ord) , w ) - ord.begin() );\n return res;\n}\n\nint n;\n\nvi xs, ys;\nint d[3010];\n\nset<pi> px[3010];\nset<pi> py[3010];\n\nint ans = 0;\n\nvoid check( int s ){\n REP( i , 3010 ){\n px[i].clear();\n py[i].clear();\n }\n REP( i , n ){\n px[ xs[i] ].insert( pi( ys[i] , i ) );\n py[ ys[i] ].insert( pi( xs[i] , i ) );\n }\n \n int res = 0;\n int cur = s;\n\n while( 1 ){\n int cd = d[cur];\n res++;\n int x = xs[cur];\n int y = ys[cur];\n px[x].erase( pi( y , cur ) );\n py[y].erase( pi( x , cur ) );\n\n if( cd == 0 ){\n auto ite = py[y].lower_bound( pi( x , 0 ) );\n if( ite == py[y].end() ){\n break;\n }\n cur = (*ite).se;\n } else if( cd == 1 ){\n auto ite = px[x].lower_bound( pi( y , 0 ) );\n if( ite == px[x].begin() ){\n break;\n }\n ite--;\n cur = (*ite).se;\n } else if( cd == 2 ){\n auto ite = py[y].lower_bound( pi( x , 0 ) );\n if( ite == py[y].begin() ){\n break;\n }\n ite--;\n cur = (*ite).se;\n } else if( cd == 3 ){\n auto ite = px[x].lower_bound( pi( y , 0 ) );\n if( ite == px[x].end() ){\n break;\n }\n cur = (*ite).se;\n } else {\n assert( false );\n }\n }\n \n chmax( ans , res );\n}\n\nint main(){\n\n n = in();\n\n REP( i , n ){\n int x = in();\n int y = in();\n xs.pb( x );\n ys.pb( y );\n string s = stin();\n if( s[0] == '>' ){\n d[i] = 0;\n } else if( s[0] == '^' ){\n d[i] = 1;\n } else if( s[0] == '<' ){\n d[i] = 2;\n } else if( s[0] == 'v' ){\n d[i] = 3;\n } else {\n assert( false );\n }\n }\n\n xs = compress( xs );\n ys = compress( ys );\n\n REP( i , n ){\n check( i );\n }\n\n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 1460, "memory_kb": 4096, "score_of_the_acc": -0.5508, "final_rank": 10 }, { "submission_id": "aoj_2718_10314702", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n#define rep(i, m, n) for (ll i = (ll)m; i < (ll)n; i++)\n#define drep(i, m, n) for (ll i = m - 1; i >= n; i--)\n#define Endl endl\n#define all(a) a.begin(), a.end()\n#define pr(i, j) make_pair(i, j)\n#define isin(x, l, r) (l <= x && x < r)\n#define chmin(a, b) a = min(a, b)\n#define chmax(a, b) a = max(a, b)\n#define srt(ar) sort(ar.begin(), ar.end())\n#define rev(ar) reverse(ar.begin(), ar.end())\n#define jge(f, s, t) cout << (f ? s : t) << endl\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n#define printar(ar) \\\n do \\\n { \\\n for (auto dbg : ar) \\\n { \\\n cout << dbg << \" \"; \\\n } \\\n cout << endl; \\\n } while (0)\nconst ll inf = 1e18;\nconst ld pi = 3.14159265358979;\nconst ld eps = 1e-9;\ntemplate <class T, ll n, ll idx = 0>\nauto make_vec(const ll (&d)[n], const T &init) noexcept\n{\n if constexpr (idx < n)\n return std::vector(d[idx], make_vec<T, n, idx + 1>(d, init));\n else\n return init;\n}\n\ntemplate <class T, ll n>\nauto make_vec(const ll (&d)[n]) noexcept\n{\n return make_vec(d, T{});\n}\n//////////////// 以下を貼る ////////////////\ntemplate <class T>\nsize_t HashCombine(const size_t seed, const T &v)\n{\n return seed ^ (std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2));\n}\n/* pair用 */\ntemplate <class T, class S>\nstruct std::hash<std::pair<T, S>>\n{\n size_t operator()(const std::pair<T, S> &keyval) const noexcept\n {\n return HashCombine(std::hash<T>()(keyval.first), keyval.second);\n }\n};\n////////////////////////////////////////////\nint main()\n{\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n;\n cin >> n;\n map<ll, set<pair<ll, ll>>> mpx, mpy;\n vector<ll> X(n), Y(n);\n rep(i, 0, n)\n {\n ll x, y;\n string s;\n cin >> x >> y >> s;\n ll t = -1;\n if (s == \"<\")\n {\n t = 0;\n }\n if (s == \">\")\n {\n t = 1;\n }\n if (s == \"^\")\n {\n t = 2;\n }\n if (s == \"v\")\n {\n t = 3;\n }\n mpx[x].insert(pr(y, t));\n mpy[y].insert(pr(x, t));\n X[i] = x;\n Y[i] = y;\n }\n ll ans = 0;\n rep(i, 0, n)\n {\n map<ll, set<pair<ll, ll>>> cpx = mpx;\n map<ll, set<pair<ll, ll>>> cpy = mpy;\n ll x = X[i];\n ll y = Y[i];\n ll t = 0;\n ll sub = 0;\n // cout << \">>>>\" << i << endl;\n while (true)\n {\n if (t == 0)\n {\n auto itr = cpy[y].upper_bound(pr(x, 10));\n if (itr == cpy[y].begin())\n {\n break;\n }\n pair<ll, ll> nxt = *prev(itr);\n x = nxt.first;\n t = nxt.second;\n }\n else if (t == 1)\n {\n auto itr = cpy[y].lower_bound(pr(x, -2));\n if (itr == cpy[y].end())\n {\n break;\n }\n pair<ll, ll> nxt = *(itr);\n x = nxt.first;\n t = nxt.second;\n }\n else if (t == 2)\n {\n auto itr = cpx[x].upper_bound(pr(y, 10));\n if (itr == cpx[x].begin())\n {\n break;\n }\n pair<ll, ll> nxt = *prev(itr);\n y = nxt.first;\n t = nxt.second;\n }\n else if (t == 3)\n {\n auto itr = cpx[x].lower_bound(pr(y, -2));\n if (itr == cpx[x].end())\n {\n break;\n }\n pair<ll, ll> nxt = *(itr);\n y = nxt.first;\n t = nxt.second;\n }\n // cout << x << \" \" << y << \" \" << t << endl;\n cpx[x].erase(pr(y, t));\n cpy[y].erase(pr(x, t));\n sub++;\n }\n // cout << sub << endl;\n chmax(ans, sub);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 1700, "memory_kb": 4992, "score_of_the_acc": -0.7282, "final_rank": 16 }, { "submission_id": "aoj_2718_10174834", "code_snippet": "// AOJ #2718\n// Vector Field 2025.2.2\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nstruct ForcePoint {\n ll x, y;\n char d;\n int rowPrev, rowNext;\n int colPrev, colNext;\n};\n\nstruct Change {\n int which;\n int i;\n int oldVal;\n int newVal;\n};\n\ninline void applyChange(vector<int> &linkArr, int whichArr,\n int i, int newVal,\n vector<Change> &history)\n{\n int oldVal = linkArr[i];\n if(oldVal == newVal) return; // 変化なしなら記録不要\n history.push_back({whichArr, i, oldVal, newVal});\n linkArr[i] = newVal;\n}\n\ninline void rollback(vector<int> &rowPrev,\n vector<int> &rowNext,\n vector<int> &colPrev,\n vector<int> &colNext,\n vector<Change> &history)\n{\n while(!history.empty()){\n auto &c = history.back();\n switch(c.which){\n case 0: rowPrev[c.i] = c.oldVal; break;\n case 1: rowNext[c.i] = c.oldVal; break;\n case 2: colPrev[c.i] = c.oldVal; break;\n case 3: colNext[c.i] = c.oldVal; break;\n }\n history.pop_back();\n }\n}\n\ninline void removePoint(int i,\n vector<int> &rowPrev,\n vector<int> &rowNext,\n vector<int> &colPrev,\n vector<int> &colNext,\n vector<Change> &history)\n{\n {\n int lp = rowPrev[i];\n int ln = rowNext[i];\n if(lp != -1){\n applyChange(rowNext, 1, lp, ln, history);\n }\n if(ln != -1){\n applyChange(rowPrev, 0, ln, lp, history);\n }\n }\n {\n int up = colPrev[i];\n int un = colNext[i];\n if(up != -1){\n applyChange(colNext, 3, up, un, history);\n }\n if(un != -1){\n applyChange(colPrev, 2, un, up, history);\n }\n }\n}\n\nint getNextPoint(int i, const vector<ForcePoint> &P,\n const vector<int> &rowPrev,\n const vector<int> &rowNext,\n const vector<int> &colPrev,\n const vector<int> &colNext)\n{\n char d = P[i].d;\n if(d == '>') return rowNext[i];\n if(d == '<') return rowPrev[i];\n if(d == 'v') return colNext[i];\n return colPrev[i]; // d == '^'\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int n;\n cin >> n;\n vector<ForcePoint> P(n);\n\n for(int i=0; i<n; i++){\n cin >> P[i].x >> P[i].y >> P[i].d;\n P[i].rowPrev = P[i].rowNext = -1;\n P[i].colPrev = P[i].colNext = -1;\n }\n\n {\n unordered_map<ll, vector<pair<ll,int>>> rowMap;\n rowMap.reserve(n);\n rowMap.max_load_factor(0.7f);\n\n for(int i=0; i<n; i++){\n rowMap[P[i].y].push_back({P[i].x, i});\n }\n for(auto &rv : rowMap){\n auto &vecRow = rv.second;\n sort(vecRow.begin(), vecRow.end());\n for(int k=0; k<(int)vecRow.size(); k++){\n auto [xk, ik] = vecRow[k];\n if(k>0){\n auto [xk_1, ik_1] = vecRow[k-1];\n P[ik].rowPrev = ik_1;\n P[ik_1].rowNext = ik;\n }\n }\n }\n }\n {\n unordered_map<ll, vector<pair<ll,int>>> colMap;\n colMap.reserve(n);\n colMap.max_load_factor(0.7f);\n\n for(int i=0; i<n; i++){\n colMap[P[i].x].push_back({P[i].y, i});\n }\n for(auto &cv : colMap){\n auto &vecCol = cv.second;\n sort(vecCol.begin(), vecCol.end());\n for(int k=0; k<(int)vecCol.size(); k++){\n auto [yk, ik] = vecCol[k];\n if(k>0){\n auto [yk_1, ik_1] = vecCol[k-1];\n P[ik].colPrev = ik_1;\n P[ik_1].colNext = ik;\n }\n }\n }\n }\n\n vector<int> rowPrev(n), rowNext(n), colPrev(n), colNext(n);\n for(int i=0;i<n;i++){\n rowPrev[i] = P[i].rowPrev;\n rowNext[i] = P[i].rowNext;\n colPrev[i] = P[i].colPrev;\n colNext[i] = P[i].colNext;\n }\n\n int answer = 0;\n for(int start=0; start<n; start++){\n vector<Change> history;\n int countStep = 0;\n int cur = start;\n while(cur != -1){\n countStep++;\n removePoint(cur, rowPrev, rowNext, colPrev, colNext, history);\n int nxt = getNextPoint(cur, P, rowPrev, rowNext, colPrev, colNext);\n cur = nxt;\n }\n answer = max(answer, countStep);\n rollback(rowPrev, rowNext, colPrev, colNext, history);\n }\n cout << answer << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3744, "score_of_the_acc": -0.0392, "final_rank": 2 }, { "submission_id": "aoj_2718_9808850", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define srep(i, s, t) for(int i = (s); i < (t); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\nusing i64 = long long;\nusing f64 = long double;\ni64 floor_div(const i64 n, const i64 d) { assert(d != 0); return n / d - static_cast<i64>((n ^ d) < 0 && n % d != 0); }\ni64 ceil_div(const i64 n, const i64 d) { assert(d != 0); return n / d + static_cast<i64>((n ^ d) >= 0 && n % d != 0); }\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n \n int n; cin >> n;\n vector<int> x(n), y(n);\n vector<char> d(n);\n rep(i, n) cin >> x[i] >> y[i] >> d[i];\n\n vector<int> vx = x, vy = y;\n sort(vx.begin(), vx.end());\n sort(vy.begin(), vy.end());\n vx.erase(unique(vx.begin(), vx.end()), vx.end());\n vy.erase(unique(vy.begin(), vy.end()), vy.end());\n for(auto& e : x) e = lower_bound(vx.begin(), vx.end(), e) - vx.begin();\n for(auto& e : y) e = lower_bound(vy.begin(), vy.end(), e) - vy.begin();\n const int mx = vx.size(), my = vy.size();\n\n vector<set<pair<int, int>>> ys(mx), xs(my);\n \n auto F = [&](int s) -> int {\n rep(i, mx) ys.clear();\n rep(i, my) xs.clear();\n rep(i, n) {\n ys[x[i]].insert({y[i], i});\n xs[y[i]].insert({x[i], i});\n }\n\n int ans = 0;\n int i = s;\n while(true) {\n ans++;\n ys[x[i]].erase({y[i], i});\n xs[y[i]].erase({x[i], i});\n\n if(d[i] == 'v') {\n auto itr = ys[x[i]].lower_bound({y[i], -1});\n if(itr == ys[x[i]].end()) break;\n i = itr->second;\n } else if(d[i] == '^') {\n auto itr = ys[x[i]].lower_bound({y[i], -1});\n if(itr == ys[x[i]].begin()) break;\n i = prev(itr)->second;\n } else if(d[i] == '>') {\n auto itr = xs[y[i]].lower_bound({x[i], -1});\n if(itr == xs[y[i]].end()) break;\n i = itr->second;\n } else {\n auto itr = xs[y[i]].lower_bound({x[i], -1});\n if(itr == xs[y[i]].begin()) break;\n i = prev(itr)->second;\n }\n }\n return ans;\n };\n\n int ans = 0;\n rep(i, n) chmax(ans, F(i));\n cout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 1510, "memory_kb": 3932, "score_of_the_acc": -0.5506, "final_rank": 9 }, { "submission_id": "aoj_2718_9724791", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint main() {\n int N;\n cin >> N;\n vector<int> X(N), Y(N), D(N), XS, YS;\n rep(i,0,N) {\n cin >> X[i] >> Y[i];\n char C;\n cin >> C;\n if (C == '>') D[i] = 0;\n if (C == 'v') D[i] = 1;\n if (C == '<') D[i] = 2;\n if (C == '^') D[i] = 3;\n XS.push_back(X[i]), YS.push_back(Y[i]);\n }\n UNIQUE(XS), UNIQUE(YS);\n rep(i,0,N) X[i] = LB(XS,X[i]), Y[i] = LB(YS,Y[i]);\n int ANS = 0;\n rep(i,0,N) {\n map<pair<int,int>,int> mpX, mpY;\n rep(j,0,N) mpX[{X[j],Y[j]}] = j, mpY[{Y[j],X[j]}] = j;\n mpX[{-inf,-inf}] = mpX[{inf,inf}] = -1;\n mpY[{-inf,-inf}] = mpY[{inf,inf}] = -1;\n int CurX = X[i], CurY = Y[i], dir = D[i], id = i;\n int COUNT = 0;\n while(1) {\n CurX = X[id], CurY = Y[id], dir = D[id];\n COUNT++;\n mpX.erase({X[id],Y[id]});\n mpY.erase({Y[id],X[id]});\n if (dir == 0) {\n auto it = mpY.lower_bound({CurY, CurX});\n if (it->first.first != CurY) break;\n id = it->second;\n }\n else if (dir == 1) {\n auto it = mpX.lower_bound({CurX,CurY});\n if (it->first.first != CurX) break;\n id = it->second;\n }\n else if (dir == 2) {\n auto it = mpY.upper_bound({CurY,CurX});\n it--;\n if (it->first.first != CurY) break;\n id = it->second;\n }\n else {\n auto it = mpX.upper_bound({CurX,CurY});\n it--;\n if (it->first.first != CurX) break;\n id = it->second;\n }\n }\n chmax(ANS,COUNT);\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 2940, "memory_kb": 3840, "score_of_the_acc": -1.0322, "final_rank": 18 }, { "submission_id": "aoj_2718_6647101", "code_snippet": "#include <bits/stdc++.h>\n\n#include <limits>\n#include <type_traits>\n\nnamespace suisen {\n// ! utility\ntemplate <typename ...Types>\nusing constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;\ntemplate <bool cond_v, typename Then, typename OrElse>\nconstexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {\n if constexpr (cond_v) {\n return std::forward<Then>(then);\n } else {\n return std::forward<OrElse>(or_else);\n }\n}\n\n// ! function\ntemplate <typename ReturnType, typename Callable, typename ...Args>\nusing is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;\ntemplate <typename F, typename T>\nusing is_uni_op = is_same_as_invoke_result<T, F, T>;\ntemplate <typename F, typename T>\nusing is_bin_op = is_same_as_invoke_result<T, F, T, T>;\n\ntemplate <typename Comparator, typename T>\nusing is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;\n\n// ! integral\ntemplate <typename T, typename = constraints_t<std::is_integral<T>>>\nconstexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;\ntemplate <typename T, unsigned int n>\nstruct is_nbit { static constexpr bool value = bit_num<T> == n; };\ntemplate <typename T, unsigned int n>\nstatic constexpr bool is_nbit_v = is_nbit<T, n>::value;\n\n// ?\ntemplate <typename T>\nstruct safely_multipliable {};\ntemplate <>\nstruct safely_multipliable<int> { using type = long long; };\ntemplate <>\nstruct safely_multipliable<long long> { using type = __int128_t; };\ntemplate <>\nstruct safely_multipliable<unsigned int> { using type = unsigned long long; };\ntemplate <>\nstruct safely_multipliable<unsigned long int> { using type = __uint128_t; };\ntemplate <>\nstruct safely_multipliable<unsigned long long> { using type = __uint128_t; };\ntemplate <>\nstruct safely_multipliable<float> { using type = float; };\ntemplate <>\nstruct safely_multipliable<double> { using type = double; };\ntemplate <>\nstruct safely_multipliable<long double> { using type = long double; };\ntemplate <typename T>\nusing safely_multipliable_t = typename safely_multipliable<T>::type;\n\n} // namespace suisen\n\n// ! type aliases\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\n\ntemplate <typename T>\nusing pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <typename T, typename U>\nusing umap = std::unordered_map<T, U>;\n\n// ! macros (capital: internal macro)\n#define OVERLOAD2(_1,_2,name,...) name\n#define OVERLOAD3(_1,_2,_3,name,...) name\n#define OVERLOAD4(_1,_2,_3,_4,name,...) name\n\n#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))\n#define REP3(i,l,r) REP4(i,l,r,1)\n#define REP2(i,n) REP3(i,0,n)\n#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))\n#define REPINF2(i,l) REPINF3(i,l,1)\n#define REPINF1(i) REPINF2(i,0)\n#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))\n#define RREP3(i,l,r) RREP4(i,l,r,1)\n#define RREP2(i,n) RREP3(i,0,n)\n\n#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)\n#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)\n#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)\n\n#define CAT_I(a, b) a##b\n#define CAT(a, b) CAT_I(a, b)\n#define UNIQVAR(tag) CAT(tag, __LINE__)\n#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)\n\n#define all(iterable) std::begin(iterable), std::end(iterable)\n#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)\n\n#ifdef LOCAL\n# define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__)\n\ntemplate <class T, class... Args>\nvoid debug_internal(const char* s, T&& first, Args&&... args) {\n constexpr const char* prefix = \"[\\033[32mDEBUG\\033[m] \";\n constexpr const char* open_brakets = sizeof...(args) == 0 ? \"\" : \"(\";\n constexpr const char* close_brakets = sizeof...(args) == 0 ? \"\" : \")\";\n std::cerr << prefix << open_brakets << s << close_brakets << \": \" << open_brakets << std::forward<T>(first);\n ((std::cerr << \", \" << std::forward<Args>(args)), ...);\n std::cerr << close_brakets << \"\\n\";\n}\n\n#else\n# define debug(...) void(0)\n#endif\n\n// ! I/O utilities\n\n// pair\ntemplate <typename T, typename U>\nstd::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {\n return out << a.first << ' ' << a.second;\n}\n// tuple\ntemplate <unsigned int N = 0, typename ...Args>\nstd::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {\n if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {\n return out;\n } else {\n out << std::get<N>(a);\n if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {\n out << ' ';\n }\n return operator<<<N + 1>(out, a);\n }\n}\n// vector\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {\n for (auto it = a.begin(); it != a.end();) {\n out << *it;\n if (++it != a.end()) out << ' ';\n }\n return out;\n}\n// array\ntemplate <typename T, size_t N>\nstd::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) {\n for (auto it = a.begin(); it != a.end();) {\n out << *it;\n if (++it != a.end()) out << ' ';\n }\n return out;\n}\ninline void print() { std::cout << '\\n'; }\ntemplate <typename Head, typename... Tail>\ninline void print(const Head &head, const Tail &...tails) {\n std::cout << head;\n if (sizeof...(tails)) std::cout << ' ';\n print(tails...);\n}\ntemplate <typename Iterable>\nauto print_all(const Iterable& v, std::string sep = \" \", std::string end = \"\\n\") -> decltype(std::cout << *v.begin(), void()) {\n for (auto it = v.begin(); it != v.end();) {\n std::cout << *it;\n if (++it != v.end()) std::cout << sep;\n }\n std::cout << end;\n}\n\n// pair\ntemplate <typename T, typename U>\nstd::istream& operator>>(std::istream& in, std::pair<T, U> &a) {\n return in >> a.first >> a.second;\n}\n// tuple\ntemplate <unsigned int N = 0, typename ...Args>\nstd::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {\n if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {\n return in;\n } else {\n return operator>><N + 1>(in >> std::get<N>(a), a);\n }\n}\n// vector\ntemplate <typename T>\nstd::istream& operator>>(std::istream& in, std::vector<T> &a) {\n for (auto it = a.begin(); it != a.end(); ++it) in >> *it;\n return in;\n}\n// array\ntemplate <typename T, size_t N>\nstd::istream& operator>>(std::istream& in, std::array<T, N> &a) {\n for (auto it = a.begin(); it != a.end(); ++it) in >> *it;\n return in;\n}\ntemplate <typename ...Args>\nvoid read(Args &...args) {\n ( std::cin >> ... >> args );\n}\n\n// ! integral utilities\n\n// Returns pow(-1, n)\ntemplate <typename T>\nconstexpr inline int pow_m1(T n) {\n return -(n & 1) | 1;\n}\n// Returns pow(-1, n)\ntemplate <>\nconstexpr inline int pow_m1<bool>(bool n) {\n return -int(n) | 1;\n}\n\n// Returns floor(x / y)\ntemplate <typename T>\nconstexpr inline T fld(const T x, const T y) {\n return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;\n}\ntemplate <typename T>\nconstexpr inline T cld(const T x, const T y) {\n return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;\n}\n\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcount(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcount(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcountll(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }\ntemplate <typename T>\nconstexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }\ntemplate <typename T>\nconstexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }\ntemplate <typename T>\nconstexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }\ntemplate <typename T>\nconstexpr inline int parity(const T x) { return popcount(x) & 1; }\n\nstruct all_subset {\n struct all_subset_iter {\n const int s; int t;\n constexpr all_subset_iter(int s) : s(s), t(s + 1) {}\n constexpr auto operator*() const { return t; }\n constexpr auto operator++() {}\n constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }\n };\n int s;\n constexpr all_subset(int s) : s(s) {}\n constexpr auto begin() { return all_subset_iter(s); }\n constexpr auto end() { return nullptr; }\n};\n\n// ! container\n\ntemplate <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>\nauto priqueue_comp(const Comparator comparator) {\n return std::priority_queue<T, std::vector<T>, Comparator>(comparator);\n}\n\ntemplate <typename Iterable>\nauto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {\n return iterable.size();\n}\n\ntemplate <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>\nauto generate_vector(int n, Gen generator) {\n std::vector<T> v(n);\n for (int i = 0; i < n; ++i) v[i] = generator(i);\n return v;\n}\ntemplate <typename T>\nauto generate_range_vector(T l, T r) {\n return generate_vector(r - l, [l](int i) { return l + i; });\n}\ntemplate <typename T>\nauto generate_range_vector(T n) {\n return generate_range_vector(0, n);\n}\n\ntemplate <typename T>\nvoid sort_unique_erase(std::vector<T> &a) {\n std::sort(a.begin(), a.end());\n a.erase(std::unique(a.begin(), a.end()), a.end());\n}\n\ntemplate <typename InputIterator, typename BiConsumer>\nauto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {\n if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);\n}\ntemplate <typename Container, typename BiConsumer>\nauto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){\n foreach_adjacent_values(c.begin(), c.end(), f);\n}\n\n// ! other utilities\n\n// x <- min(x, y). returns true iff `x` has chenged.\ntemplate <typename T>\ninline bool chmin(T &x, const T &y) {\n if (y >= x) return false;\n x = y;\n return true;\n}\n// x <- max(x, y). returns true iff `x` has chenged.\ntemplate <typename T>\ninline bool chmax(T &x, const T &y) {\n if (y <= x) return false;\n x = y;\n return true;\n}\n\nnamespace suisen {}\nusing namespace suisen;\nusing namespace std;\n\nstruct io_setup {\n io_setup(int precision = 20) {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(precision);\n }\n} io_setup_ {};\n\n// ! code from here\n\n#include <algorithm>\n#include <cassert>\n#include <vector>\n\nnamespace suisen {\ntemplate <typename T>\nclass CoordinateCompressorBuilder {\n public:\n struct Compressor {\n public:\n static constexpr int absent = -1;\n\n // default constructor\n Compressor() : _xs(std::vector<T>{}) {}\n // Construct from strictly sorted vector\n Compressor(const std::vector<T> &xs) : _xs(xs) {\n assert(is_strictly_sorted(xs));\n }\n\n // Return the number of distinct keys.\n int size() const {\n return _xs.size();\n }\n // Check if the element is registered.\n bool has_key(const T &e) const {\n return std::binary_search(_xs.begin(), _xs.end(), e);\n }\n // Compress the element. if not registered, returns `default_value`. (default: Compressor::absent)\n int comp(const T &e, int default_value = absent) const {\n const int res = min_geq_index(e);\n return res != size() and _xs[res] == e ? res : default_value;\n }\n // Restore the element from the index.\n T decomp(const int compressed_index) const {\n return _xs[compressed_index];\n }\n // Compress the element. Equivalent to call `comp(e)`\n int operator[](const T &e) const {\n return comp(e);\n }\n // Return the minimum registered value greater than `e`. if not exists, return `default_value`.\n T min_gt(const T &e, const T &default_value) const {\n auto it = std::upper_bound(_xs.begin(), _xs.end(), e);\n return it == _xs.end() ? default_value : *it;\n }\n // Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`.\n T min_geq(const T &e, const T &default_value) const {\n auto it = std::lower_bound(_xs.begin(), _xs.end(), e);\n return it == _xs.end() ? default_value : *it;\n }\n // Return the maximum registered value less than `e`. if not exists, return `default_value`\n T max_lt(const T &e, const T &default_value) const {\n auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());\n return it == _xs.rend() ? default_value : *it;\n }\n // Return the maximum registered value less than or equal to `e`. if not exists, return `default_value`\n T max_leq(const T &e, const T &default_value) const {\n auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());\n return it == _xs.rend() ? default_value : *it;\n }\n // Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`.\n int min_gt_index(const T &e) const {\n return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin();\n }\n // Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size()`.\n int min_geq_index(const T &e) const {\n return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin();\n }\n // Return the compressed index of the maximum registered value less than `e`. if not exists, return -1.\n int max_lt_index(const T &e) const {\n return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;\n }\n // Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1.\n int max_leq_index(const T &e) const {\n return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;\n }\n private:\n std::vector<T> _xs;\n static bool is_strictly_sorted(const std::vector<T> &v) {\n return std::adjacent_find(v.begin(), v.end(), std::greater_equal<T>()) == v.end();\n }\n };\n CoordinateCompressorBuilder() : _xs(std::vector<T>{}) {}\n explicit CoordinateCompressorBuilder(const std::vector<T> &xs) : _xs(xs) {}\n explicit CoordinateCompressorBuilder(std::vector<T> &&xs) : _xs(std::move(xs)) {}\n template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>\n CoordinateCompressorBuilder(const int n, Gen generator) {\n reserve(n);\n for (int i = 0; i < n; ++i) push(generator(i));\n }\n // Attempt to preallocate enough memory for specified number of elements.\n void reserve(int n) {\n _xs.reserve(n);\n }\n // Add data.\n void push(const T &first) {\n _xs.push_back(first);\n }\n // Add data.\n void push(T &&first) {\n _xs.push_back(std::move(first));\n }\n // Add data in the range of [first, last). \n template <typename Iterator>\n auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector<T>{}.push_back(*first), void()) {\n for (auto it = first; it != last; ++it) _xs.push_back(*it);\n }\n // Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`.\n template <typename Iterable>\n auto push(const Iterable &iterable) -> decltype(std::vector<T>{}.push_back(*iterable.begin()), void()) {\n push(iterable.begin(), iterable.end());\n }\n // Add data.\n template <typename ...Args>\n void emplace(Args &&...args) {\n _xs.emplace_back(std::forward<Args>(args)...);\n }\n // Build compressor.\n auto build() {\n std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end());\n return Compressor {_xs};\n }\n // Build compressor from vector.\n static auto build(const std::vector<T> &xs) {\n return CoordinateCompressorBuilder(xs).build();\n }\n // Build compressor from vector.\n static auto build(std::vector<T> &&xs) {\n return CoordinateCompressorBuilder(std::move(xs)).build();\n }\n // Build compressor from generator.\n template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>\n static auto build(const int n, Gen generator) {\n return CoordinateCompressorBuilder<T>(n, generator).build();\n }\n private:\n std::vector<T> _xs;\n};\n\n} // namespace suisen\n\nint dx4[5] = { 0, 1, 0, -1, 0 };\nint dy4[5] = { 0, 0, 1, 0, -1 };\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nconstexpr int bsf_constexpr(unsigned int n) {\n int x = 0;\n while (!(n & (1 << x))) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\nnamespace atcoder {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}\n explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) const {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) const {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() const { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) const {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) const {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) const {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) const {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace atcoder\n\nnamespace fast_set {\n int op(int x, int y) {\n return x + y;\n }\n int e() {\n return 0;\n }\n\n struct FastSet {\n int n;\n atcoder::segtree<int, op, e> seg;\n\n FastSet() : FastSet(0) {}\n FastSet(int n) : n(n), seg(n) {}\n\n int get(int x) {\n return seg.get(x);\n }\n void add(int x, int v) {\n seg.set(x, seg.get(x) + v);\n }\n void sub(int x, int v) {\n seg.set(x, seg.get(x) - v);\n }\n\n int nxt(int x) {\n return seg.max_right(x, [&](int e) { return e == 0; });\n }\n int pre(int x) {\n return seg.min_left(x, [&](int e) { return e == 0; }) - 1;\n }\n };\n};\n\nusing fast_set::FastSet;\n\nconstexpr int R = 1, U = 2, L = 3, D = 4;\n\nint main() {\n array<int, 256> dir{};\n dir['>'] = R;\n dir['v'] = U;\n dir['<'] = L;\n dir['^'] = D;\n\n CoordinateCompressorBuilder<int> bx, by;\n\n input(int, n);\n vector<tuple<int, int, int>> ps(n);\n rep(i, n) {\n input(int, x, y);\n input(char, c);\n ps[i] = { x, y, dir[c] };\n bx.push(x);\n by.push(y);\n assert(1 <= dir[c] and dir[c] <= 4);\n }\n\n const auto cmpx = bx.build(), cmpy = by.build();\n for (auto &[x, y, d] : ps) {\n x = cmpx[x];\n y = cmpy[y];\n }\n const int h = cmpx.size();\n const int w = cmpy.size();\n\n vector<CoordinateCompressorBuilder<int>> bxy(h), byx(w);\n for (auto &[x, y, d] : ps) {\n bxy[x].push(y);\n byx[y].push(x);\n }\n vector<CoordinateCompressorBuilder<int>::Compressor> cmp_xy(h), cmp_yx(w);\n rep(i, h) {\n cmp_xy[i] = bxy[i].build();\n }\n rep(j, w) {\n cmp_yx[j] = byx[j].build();\n }\n\n int ans = 0;\n rep(i, n) {\n vector<FastSet> x_to_y(h), y_to_x(w);\n rep(k, h) {\n x_to_y[k] = FastSet(cmp_xy[k].size());\n }\n rep(k, w) {\n y_to_x[k] = FastSet(cmp_yx[k].size());\n }\n\n rep(j, n) if (j != i) {\n auto [x, y, d] = ps[j];\n x_to_y[x].add(cmp_xy[x][y], d);\n y_to_x[y].add(cmp_yx[y][x], d);\n }\n\n debug(i);\n int cnt = 0;\n auto [cx, cy, cd] = ps[i];\n while (0 <= cx and cx < h and 0 <= cy and cy < w) {\n debug(cx, cy, cd);\n ++cnt;\n if (cd == R) {\n int xi = cmp_yx[cy][cx];\n int ni = y_to_x[cy].nxt(xi);\n if (ni == cmp_yx[cy].size()) break;\n\n cx = cmp_yx[cy].decomp(ni);\n cd = y_to_x[cy].get(ni);\n\n y_to_x[cy].sub(ni, cd);\n x_to_y[cx].sub(cmp_xy[cx][cy], cd);\n } else if (cd == L) {\n int xi = cmp_yx[cy][cx];\n int ni = y_to_x[cy].pre(xi);\n if (ni == -1) break;\n\n cx = cmp_yx[cy].decomp(ni);\n cd = y_to_x[cy].get(ni);\n\n y_to_x[cy].sub(ni, cd);\n x_to_y[cx].sub(cmp_xy[cx][cy], cd);\n } else if (cd == U) {\n int yi = cmp_xy[cx][cy];\n int ni = x_to_y[cx].nxt(yi);\n if (ni == cmp_xy[cx].size()) break;\n\n cy = cmp_xy[cx].decomp(ni);\n cd = x_to_y[cx].get(ni);\n\n x_to_y[cx].sub(ni, cd);\n y_to_x[cy].sub(cmp_yx[cy][cx], cd);\n } else if (cd == D) {\n int yi = cmp_xy[cx][cy];\n int ni = x_to_y[cx].pre(yi);\n if (ni == -1) break;\n\n cy = cmp_xy[cx].decomp(ni);\n cd = x_to_y[cx].get(ni);\n\n x_to_y[cx].sub(ni, cd);\n y_to_x[cy].sub(cmp_yx[cy][cx], cd);\n } else {\n assert(false);\n }\n }\n\n chmax(ans, cnt);\n }\n\n print(ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 1410, "memory_kb": 4168, "score_of_the_acc": -0.5412, "final_rank": 8 }, { "submission_id": "aoj_2718_6553039", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\nint func(){\n int n = in();\n vvector<int> neis(n,vector<int>(4,-1));\n vector<int> dirs(n);\n map<char,int> char2int;\n char2int['^'] = 0;\n char2int['v'] = 1;\n char2int['>'] = 2;\n char2int['<'] = 3;\n {\n map<int,vector<pii>> ys;\n map<int,vector<pii>> xs;\n rep(i,n){\n int x = in();\n int y = in();\n ys[y].emplace_back(x,i);\n xs[x].emplace_back(y,i);\n dirs[i] = char2int[in<char>()];\n }\n foreach(i,xs){\n vector<int> ps;\n sort(all(i.second));\n foreach(j,i.second)ps.emplace_back(j.second);\n rep(j,ps.size()-1){\n neis[ps[j]][1] = ps[j+1];\n neis[ps[j+1]][0] = ps[j];\n }\n }\n foreach(i,ys){\n vector<int> ps;\n sort(all(i.second));\n foreach(j,i.second)ps.emplace_back(j.second);\n rep(j,ps.size()-1){\n neis[ps[j]][2] = ps[j+1];\n neis[ps[j+1]][3] = ps[j];\n }\n }\n }\n method(rev,int,int p){\n if(p==0)return 1;\n if(p==1)return 0;\n if(p==2)return 3;\n if(p==3)return 2;\n exit(1);\n };\n method(rec,int,int p){\n vector<int> bp = neis[p];\n rep(i,4){\n if(neis[p][i]>=0){\n swap(neis[neis[p][i]][rev(i)],bp[rev(i)]);\n }\n }\n int res = 0;\n int next = neis[p][dirs[p]];\n if(next>=0){\n res = rec(next);\n }\n rep(i,4){\n if(neis[p][i]>=0){\n swap(neis[neis[p][i]][rev(i)],bp[rev(i)]);\n }\n }\n return res + 1;\n };\n int res = 0;\n rep(i,n){\n chmax(res,rec(i));\n }\n return res;\n}\n\nint main(){\n println(func());\n return 0;\n}", "accuracy": 1, "time_ms": 360, "memory_kb": 4340, "score_of_the_acc": -0.1986, "final_rank": 5 }, { "submission_id": "aoj_2718_6533849", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=1167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (int i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tstring T=\"v^><\";\n\tvector<int> X(N),Y(N),D(N);\n\trep(i,N){\n\t\tcin>>X[i]>>Y[i];\n\t\tchar c;\n\t\tcin>>c; \n\t\trep(k,4) if(c==T[k]) D[i]=k;\n\t}\n\tvector<vector<int>> base(N,vector<int>(4,-1));\n\tvector<int> order(N);rep(i,N) order[i]=i;\n\tsort(all(order),[&](int l,int r){\n\t\tif(X[l]==X[r]) return Y[l]<Y[r];\n\t\treturn X[l]<X[r];\n\t});\n\trep(i,N-1){\n\t\tif(X[order[i]]==X[order[i+1]]){\n\t\t\tbase[order[i]][0]=order[i+1];\n\t\t\tbase[order[i+1]][1]=order[i];\n\t\t}\n\t}\n\tsort(all(order),[&](int l,int r){\n\t\tif(Y[l]==Y[r]) return X[l]<X[r];\n\t\treturn Y[l]<Y[r];\n\t});\n\trep(i,N-1){\n\t\tif(Y[order[i]]==Y[order[i+1]]){\n\t\t\tbase[order[i]][2]=order[i+1];\n\t\t\tbase[order[i+1]][3]=order[i];\n\t\t}\n\t}\n\tvector<int> use(N);\n\tauto p=base;\n\tauto f=[&](auto self,int ind,int dir)->int{\n\t\tif(use[ind]==0){\n\t\t\tuse[ind]=1;\n\t\t\treturn ind;\n\t\t}\n\t\tif(p[ind][dir]==-1) return -1;\n\t\treturn p[ind][dir]=self(self,p[ind][dir],dir);\n\t};\n\tint ans=0;\n\trep(i,N){\n\t\tuse[i]=1;\n\t\tint ind=i;\n\t\tint tmp=0;\n\t\twhile(ind!=-1){\n\t\t\tind=f(f,ind,D[ind]);\n\t\t\ttmp++;\n\t\t}\n\t\tchmax(ans,tmp);\n\t\t//cout<<tmp<<\"\\n\";\n\t\tp=base;\n\t\trep(k,N) use[k]=0;\n\t}\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3892, "score_of_the_acc": -0.0618, "final_rank": 3 }, { "submission_id": "aoj_2718_6365650", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\ntypedef string::const_iterator State;\n#define eps 1e-8L\n#define MAX_MOD 1000000007LL\n#define GYAKU 500000004LL\n#define MOD 998244353LL\n#define pb push_back\n#define mp make_pair\ntypedef long long ll;\ntypedef long double ld;\n#define REP(a, b) for (long long(a) = 0; (a) < (b); ++(a))\n#define ALL(x) (x).begin(), (x).end()\n\n#define int long long\nset<pair<int, int>> X_line[4000];\nset<pair<int, int>> Y_line[4000];\nvoid solve()\n{\n const int dx[4] = {1, 0, -1, 0};\n const int dy[4] = {0, 1, 0, -1};\n int n;\n cin >> n;\n vector<tuple<int, int, int>> inputs;\n REP(i, n)\n {\n int a, b;\n string c;\n cin >> a >> b >> c;\n int d;\n if (c == \">\")\n {\n d = 1;\n }\n else if (c == \"<\")\n {\n d = 3;\n }\n else if (c == \"v\")\n {\n d = 0;\n }\n else\n {\n d = 2;\n }\n inputs.push_back({b, a, d});\n }\n\n REP(t, 2)\n {\n map<int, int> cn;\n REP(i, n)\n {\n cn[get<0>(inputs[i])];\n }\n int cnter = 0;\n for (auto &x : cn)\n {\n x.second = cnter;\n cnter++;\n }\n REP(i, n)\n {\n get<0>(inputs[i]) = cn[get<0>(inputs[i])];\n swap(get<0>(inputs[i]), get<1>(inputs[i]));\n }\n }\n\n int ans = 0;\n REP(i, n)\n {\n REP(q, n)\n {\n X_line[q].clear();\n Y_line[q].clear();\n }\n REP(q, n)\n {\n if (i == q)\n continue;\n X_line[get<0>(inputs[q])].insert({get<1>(inputs[q]), get<2>(inputs[q])});\n Y_line[get<1>(inputs[q])].insert({get<0>(inputs[q]), get<2>(inputs[q])});\n }\n int cnt = 1;\n tuple<int, int, int> now = inputs[i];\n while (true)\n {\n tuple<int, int, int> next;\n if (get<2>(now) == 0)\n {\n // move x -> plus\n auto x = Y_line[get<1>(now)].lower_bound({get<0>(now), -1});\n if (x == Y_line[get<1>(now)].end())\n {\n break;\n }\n next = {(*x).first, get<1>(now), (*x).second};\n }\n else if (get<2>(now) == 2)\n {\n // move x -> minus\n auto x = Y_line[get<1>(now)].lower_bound({get<0>(now), -1});\n if (x == Y_line[get<1>(now)].begin())\n {\n break;\n }\n x--;\n next = {(*x).first, get<1>(now), (*x).second};\n }\n else if (get<2>(now) == 1)\n {\n // move y -> plus\n auto x = X_line[get<0>(now)].lower_bound({get<1>(now), -1});\n if (x == X_line[get<0>(now)].end())\n {\n break;\n }\n next = {get<0>(now), (*x).first, (*x).second};\n }\n else\n {\n // move y -> minus\n auto x = X_line[get<0>(now)].lower_bound({get<1>(now), -1});\n if (x == X_line[get<0>(now)].begin())\n {\n break;\n }\n x--;\n next = {get<0>(now), (*x).first, (*x).second};\n }\n\n X_line[get<0>(next)].erase({get<1>(next), get<2>(next)});\n Y_line[get<1>(next)].erase({get<0>(next), get<2>(next)});\n now = next;\n cnt++;\n }\n ans = max(ans, cnt);\n }\n cout << ans << endl;\n}\n#undef int\n\n// generated by oj-template v4.7.2\n// (https://github.com/online-judge-tools/template-generator)\nint main()\n{\n // Fasterize input/output script\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(100);\n // scanf/printf user should delete this fasterize input/output script\n\n int t = 1;\n // cin >> t; // comment out if solving multi testcase\n for (int testCase = 1; testCase <= t; ++testCase)\n {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1450, "memory_kb": 4240, "score_of_the_acc": -0.5626, "final_rank": 11 }, { "submission_id": "aoj_2718_5918312", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <typename T> std::map<T, int> compress(std::vector<T>& v) {\n std::sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n std::map<T, int> res;\n for (size_t i = 0; i < v.size(); i++) res[v[i]] = i;\n return res;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n vector<int> x(n), y(n);\n vector<char> d(n);\n for (int i = 0; i < n; i++) cin >> y[i] >> x[i] >> d[i];\n\n vector<int> cx = x, cy = y;\n map<int, int> mpx = compress(cx), mpy = compress(cy);\n for (int i = 0; i < n; i++) x[i] = mpx[x[i]], y[i] = mpy[y[i]];\n int N = mpx.size(), M = mpy.size();\n\n auto ctoi = [](char c) {\n if (c == 'v') return 0;\n if (c == '>') return 1;\n if (c == '^') return 2;\n return 3;\n };\n auto move = [&](int cur, vector<set<pair<int, int>>>& X, vector<set<pair<int, int>>>& Y) {\n int dir = ctoi(d[cur]), a = x[cur], b = y[cur];\n X[a].erase({b, cur});\n Y[b].erase({a, cur});\n if (!(dir & 1)) {\n auto itr = Y[b].upper_bound({a, n});\n if (dir == 0) {\n if (itr == Y[b].end()) return -1;\n return itr->second;\n } else {\n if (itr == Y[b].begin()) return -1;\n return (--itr)->second;\n }\n } else {\n auto itr = X[a].upper_bound({b, n});\n if (dir == 1) {\n if (itr == X[a].end()) return -1;\n return itr->second;\n } else {\n if (itr == X[a].begin()) return -1;\n return (--itr)->second;\n }\n }\n };\n\n int ans = 0;\n for (int i = 0; i < n; i++) {\n vector<set<pair<int, int>>> X(N), Y(M);\n for (int j = 0; j < n; j++) {\n X[x[j]].emplace(y[j], j);\n Y[y[j]].emplace(x[j], j);\n }\n int cnt = 1, cur = i;\n while (1) {\n int nxt = move(cur, X, Y);\n if (nxt < 0) break;\n cnt++;\n swap(cur, nxt);\n }\n ans = max(ans, cnt);\n }\n\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 1520, "memory_kb": 4060, "score_of_the_acc": -0.5676, "final_rank": 12 }, { "submission_id": "aoj_2718_5918310", "code_snippet": "#define LOCAL\n#include <bits/stdc++.h>\nusing namespace std;\n#pragma region Macros\ntypedef long long ll;\ntypedef __int128_t i128;\ntypedef unsigned int uint;\ntypedef unsigned long long ull;\n#define ALL(x) (x).begin(), (x).end()\n\ntemplate <typename T> istream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v) is >> x;\n return is;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int)v.size(); i++) {\n os << v[i] << (i + 1 == (int)v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {\n for (int i = 0; i < (int)v.size(); i++) {\n os << v[i] << (i + 1 == (int)v.size() ? \"\" : \" \");\n }\n return os;\n}\n\ntemplate <int i, typename T> void print_tuple(ostream&, const T&) {}\ntemplate <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {\n if (i) os << ',';\n os << get<i>(t);\n print_tuple<i + 1, T, Args...>(os, t);\n}\ntemplate <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {\n os << '{';\n print_tuple<0, tuple<Args...>, Args...>(os, t);\n return os << '}';\n}\n\nvoid debug_out() { cerr << '\\n'; }\ntemplate <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {\n cerr << head;\n if (sizeof...(Tail) > 0) cerr << \", \";\n debug_out(move(tail)...);\n}\n#ifdef LOCAL\n#define debug(...) \\\n cerr << \" \"; \\\n cerr << #__VA_ARGS__ << \" :[\" << __LINE__ << \":\" << __FUNCTION__ << \"]\" << '\\n'; \\\n cerr << \" \"; \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n\ntemplate <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }\ntemplate <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }\n\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }\nint popcount(signed t) { return __builtin_popcount(t); }\nint popcount(long long t) { return __builtin_popcountll(t); }\nbool ispow2(int i) { return i && (i & -i) == i; }\n\ntemplate <class T> T ceil(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <class T> T floor(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\n\ntemplate <class T1, class T2> inline bool chmin(T1& a, T2 b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T1, class T2> inline bool chmax(T1& a, T2 b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n#pragma endregion\n\n#include <algorithm>\n#include <map>\n#include <vector>\n\ntemplate <typename T> std::map<T, int> compress(std::vector<T>& v) {\n std::sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n std::map<T, int> res;\n for (size_t i = 0; i < v.size(); i++) res[v[i]] = i;\n return res;\n}\n\nconst int INF = 1e9;\nconst long long IINF = 1e18;\nconst int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\nconst long long MOD = 1000000007;\n// const long long MOD = 998244353;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n vector<int> x(n), y(n);\n vector<char> d(n);\n for (int i = 0; i < n; i++) cin >> y[i] >> x[i] >> d[i];\n\n vector<int> cx = x, cy = y;\n map<int, int> mpx = compress(cx), mpy = compress(cy);\n for (int i = 0; i < n; i++) x[i] = mpx[x[i]], y[i] = mpy[y[i]];\n int N = mpx.size(), M = mpy.size();\n\n auto ctoi = [](char c) {\n if (c == 'v') return 0;\n if (c == '>') return 1;\n if (c == '^') return 2;\n return 3;\n };\n auto move = [&](int cur, vector<set<pair<int, int>>>& X, vector<set<pair<int, int>>>& Y) {\n int dir = ctoi(d[cur]), a = x[cur], b = y[cur];\n X[a].erase({b, cur});\n Y[b].erase({a, cur});\n if (!(dir & 1)) {\n auto itr = Y[b].upper_bound({a, n});\n if (dir == 0) {\n if (itr == Y[b].end()) return -1;\n return itr->second;\n } else {\n if (itr == Y[b].begin()) return -1;\n return (--itr)->second;\n }\n } else {\n auto itr = X[a].upper_bound({b, n});\n if (dir == 1) {\n if (itr == X[a].end()) return -1;\n return itr->second;\n } else {\n if (itr == X[a].begin()) return -1;\n return (--itr)->second;\n }\n }\n };\n\n int ans = 0;\n for (int i = 0; i < n; i++) {\n vector<set<pair<int, int>>> X(N), Y(M);\n for (int j = 0; j < n; j++) {\n X[x[j]].emplace(y[j], j);\n Y[y[j]].emplace(x[j], j);\n }\n int cnt = 1, cur = i;\n while (1) {\n int nxt = move(cur, X, Y);\n if (nxt < 0) break;\n cnt++;\n swap(cur, nxt);\n }\n ans = max(ans, cnt);\n }\n\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 1560, "memory_kb": 4064, "score_of_the_acc": -0.5817, "final_rank": 14 }, { "submission_id": "aoj_2718_5917695", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\nint main(){\n int n; cin >> n;\n vl x(n),y(n);\n vc c(n);\n rep(i,n) cin >> x[i] >> y[i] >> c[i];\n map<ll,set<P>> initX;\n map<ll,set<P>> initY;\n rep(i,n){\n initX[x[i]].emplace(y[i],i);\n initY[y[i]].emplace(x[i],i);\n }\n int ans = 1;\n rep(s,n){\n auto X = initX;\n auto Y = initY;\n int res = 0;\n int now = s;\n while(1){\n res++;\n if(c[now] == '<'){\n auto itr = Y[y[now]].lower_bound(P(x[now],-inf));\n if(itr == Y[y[now]].begin()) break;\n itr--;\n Y[y[now]].erase(P(x[now],now));\n X[x[now]].erase(P(y[now],now));\n now = (*itr).second;\n }else if(c[now] == '>'){\n auto itr = Y[y[now]].upper_bound(P(x[now],inf));\n if(itr == Y[y[now]].end()) break;\n Y[y[now]].erase(P(x[now],now));\n X[x[now]].erase(P(y[now],now));\n now = (*itr).second;\n }else if(c[now] == '^'){\n auto itr = X[x[now]].lower_bound(P(y[now],-inf));\n if(itr == X[x[now]].begin()) break;\n itr--;\n X[x[now]].erase(P(y[now],now));\n Y[y[now]].erase(P(x[now],now));\n now = (*itr).second;\n }else{\n auto itr = X[x[now]].upper_bound(P(y[now],inf));\n if(itr == X[x[now]].end()) break;\n X[x[now]].erase(P(y[now],now));\n Y[y[now]].erase(P(x[now],now));\n now = (*itr).second;\n }\n }\n chmax(ans, res);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 1890, "memory_kb": 4780, "score_of_the_acc": -0.771, "final_rank": 17 }, { "submission_id": "aoj_2718_5297078", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n\treturn (ull)rng() % B;\n}\n\nint dx[]={1,0,-1,0};\nint dy[]={0,1,0,-1};\n\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n; cin >> n;\n\tvector<int> x(n),y(n),d(n);\n\tfor(int i=0;i<n;i++){\n\t\tcin >> y[i] >> x[i];\n\t\tchar c; cin >> c;\n\t\tif(c=='v')d[i]=0;\n\t\telse if(c=='>')d[i]=1;\n\t\telse if(c=='^')d[i]=2;\n\t\telse d[i]=3;\n\t}\n\tint h,w;\n\t{\n\t\tauto v=x;\n\t\tsort(v.begin(), v.end());\n\t\tv.erase(unique(v.begin(), v.end()),v.end());\n\t\tfor(int i=0;i<n;i++){\n\t\t\tx[i]=lower_bound(v.begin(), v.end(),x[i])-v.begin();\n\t\t}\n\t\th=v.size();\n\t\tv=y;\n\t\tsort(v.begin(), v.end());\n\t\tv.erase(unique(v.begin(), v.end()),v.end());\n\t\tfor(int i=0;i<n;i++){\n\t\t\ty[i]=lower_bound(v.begin(), v.end(),y[i])-v.begin();\n\t\t}\n\t\tw=v.size();\n\t}\n\tvector<vector<int>> di(h,vector<int>(w,-1));\n\tfor(int i=0;i<n;i++)di[x[i]][y[i]]=d[i];\n\tauto cal=[&](int sx,int sy)->int{\n\t\tint res=0;\n\t\tvector<vector<bool>> used(h,vector<bool>(w,false));\n\t\twhile(1){\n\t\t\tres++;\n\t\t\tint i=di[sx][sy];\n\t\t\tused[sx][sy]=true;\n\t\t\twhile(1){\n\t\t\t\tsx+=dx[i],sy+=dy[i];\n\t\t\t\tif(0<=sx and sx<h and 0<=sy and sy<w){\n\t\t\t\t\tif(di[sx][sy]!=-1 and !used[sx][sy])break;\n\t\t\t\t}\n\t\t\t\telse return res;\n\t\t\t}\n\t\t}\n\t\treturn 0;\n\t};\n\tint res=0;\n\tfor(int i=0;i<n;i++){\n\t\tres=max(res,cal(x[i],y[i]));\n\t}\n\tprintf(\"%d\\n\",res);\n}", "accuracy": 1, "time_ms": 740, "memory_kb": 12108, "score_of_the_acc": -1.1524, "final_rank": 19 }, { "submission_id": "aoj_2718_5285067", "code_snippet": "#define NDEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<int, int> P;\n\n#define eps 1e-9\n#define INF 2000000000 // 2e9\n#define LLINF 2000000000000000000ll // 2e18 (llmax:9e18)\n#define all(x) (x).begin(), (x).end()\n#define sq(x) ((x) * (x))\n\n#define rep(i, x) for (int i = 0; i < (int)(x); i++)\n#define drep(i, x) for (int i = ((int)(x)-1); i >= 0; i--)\n\n#define popcount __builtin_popcount\n#define next __next\n#define prev __prev\n\n#ifndef LOCAL\n#define dmp(...) ;\n#else\n#define dmp(...) \\\n cerr << \"[ \" << #__VA_ARGS__ << \" ] : \" << dump_str(__VA_ARGS__) << endl\n#endif\n\n// ---------------- Utility ------------------\n\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a <= b) return false;\n a = b;\n return true;\n}\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a >= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T>\nusing MaxHeap = priority_queue<T>;\ntemplate <class T>\nusing MinHeap = priority_queue<T, vector<T>, greater<T>>;\n\ntemplate <class T>\nvector<T> vect(int len, T elem) {\n return vector<T>(len, elem);\n}\n\n// ----------------- Input -------------------\n\ntemplate <class T, class U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class T>\nistream &operator>>(istream &is, vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) is >> vec[i];\n return is;\n}\n\n// ----------------- Output ------------------\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ',' << p.second;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n for (const T &e : v) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const deque<T> &d) {\n for (const T &e : d) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const multiset<T> &s) {\n os << \"{ \";\n for (const T &e : s) os << e << \" \";\n return os << \"}\";\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const map<T, U> &m) {\n os << \"{ \";\n for (const auto &[key, val] : m) os << \"( \" << key << \" -> \" << val << \" ) \";\n return os << \"}\";\n}\n\ntemplate <class TupleTy, size_t... I>\nvoid dump_tuple(ostream &os, const TupleTy t, std::index_sequence<I...>) {\n (..., (os << (I == 0 ? \"\" : \",\") << std::get<I>(t)));\n}\n\ntemplate <class... Args>\nostream &operator<<(ostream &os, const tuple<Args...> &t) {\n os << \"(\";\n dump_tuple(os, t, std::make_index_sequence<sizeof...(Args)>());\n return os << \")\";\n}\n\nvoid dump_str_rec(ostringstream &) {}\n\ntemplate <class Head, class... Tail>\nvoid dump_str_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << \", \" << head;\n dump_str_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate <class T, class... U>\nstring dump_str(T &&arg, U &&... args) {\n ostringstream oss;\n oss << arg;\n dump_str_rec(oss, forward<U>(args)...);\n return oss.str();\n}\n\n// --------------- Fast I/O ------------------\n\nvoid fastio() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n}\n\n// ------------ End of template --------------\n\n#define endl \"\\n\"\n\nvoid solve() {\n int n;\n cin >> n;\n vector<int> x(n), y(n);\n vector<char> d(n);\n rep(i, n) cin >> x[i] >> y[i] >> d[i];\n\n vector<int> zip;\n rep(i, n) {\n zip.push_back(x[i]);\n zip.push_back(y[i]);\n }\n sort(all(zip));\n zip.erase(unique(all(zip)), zip.end());\n rep(i, n) {\n x[i] = lower_bound(all(zip), x[i]) - zip.begin();\n y[i] = lower_bound(all(zip), y[i]) - zip.begin();\n }\n\n auto ds = vect(zip.size(), vect(zip.size(), '-'));\n rep(i, n) ds[x[i]][y[i]] = d[i];\n\n int ans = 0;\n for (int i = 0; i < n; i++) {\n int res = 0;\n int cx = x[i], cy = y[i];\n vector<set<int>> xs(zip.size()), ys(zip.size());\n rep(j, n) {\n xs[x[j]].insert(y[j]);\n ys[y[j]].insert(x[j]);\n }\n while (1) {\n res++;\n xs[cx].erase(cy);\n ys[cy].erase(cx);\n if (ds[cx][cy] == 'v') {\n auto it = xs[cx].lower_bound(cy);\n if (it == xs[cx].end()) break;\n cy = *it;\n } else if (ds[cx][cy] == '>') {\n auto it = ys[cy].lower_bound(cx);\n if (it == ys[cy].end()) break;\n cx = *it;\n } else if (ds[cx][cy] == '^') {\n auto it = xs[cx].lower_bound(cy);\n if (it == xs[cx].begin()) break;\n cy = *(--it);\n } else {\n auto it = ys[cy].lower_bound(cx);\n if (it == ys[cy].begin()) break;\n cx = *(--it);\n }\n }\n chmax(ans, res);\n }\n\n cout << ans << endl;\n\n return;\n}\n\nint main() {\n fastio();\n solve();\n // int t;\n // cin >> t;\n // while (t--) solve();\n\n // int t; cin >> t;\n // for(int i=1;i<=t;i++){\n // cout << \"Case #\" << i << \": \";\n // solve();\n // }\n return 0;\n}", "accuracy": 1, "time_ms": 1620, "memory_kb": 12972, "score_of_the_acc": -1.5464, "final_rank": 20 }, { "submission_id": "aoj_2718_5014468", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\ntemplate <typename T> void chmin(T &a, const T &b) { a = min(a, b); }\ntemplate <typename T> void chmax(T &a, const T &b) { a = max(a, b); }\n\nconst ll INF = 1LL << 60;\n\nstruct FastIO {\n FastIO() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n} fastiofastio;\n\nint x[3000], y[3000];\nstring d[3000];\nset<PII> X[3000], Y[3000];\nint main() {\n int n;\n cin >> n;\n vector<int> vx, vy;\n for (int i = 0; i < n; i++) {\n cin >> x[i] >> y[i] >> d[i];\n vx.push_back(x[i]);\n vy.push_back(y[i]);\n }\n sort(ALL(vx));\n sort(ALL(vy));\n vx.erase(unique(ALL(vx)), vx.end());\n vy.erase(unique(ALL(vy)), vy.end());\n for (int i = 0; i < n; i++) {\n x[i] = lower_bound(ALL(vx), x[i]) - vx.begin();\n y[i] = lower_bound(ALL(vy), y[i]) - vy.begin();\n }\n int ans = 0;\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < vx.size(); j++)\n X[j].clear();\n for (int j = 0; j < vy.size(); j++)\n Y[j].clear();\n for (int j = 0; j < n; j++) {\n if (j == i)\n continue;\n X[x[j]].emplace(y[j], j);\n Y[y[j]].emplace(x[j], j);\n }\n int cnt = 1;\n int now = i;\n while (1) {\n if (d[now] == \">\") {\n auto itr = Y[y[now]].lower_bound(PII(x[now], -1));\n if (itr == Y[y[now]].end())\n break;\n PII p = *itr;\n Y[y[now]].erase(p);\n X[p.first].erase(PII(y[now], p.second));\n now = p.second;\n } else if (d[now] == \"<\") {\n auto itr = Y[y[now]].lower_bound(PII(x[now], -1));\n if (Y[y[now]].empty() || itr == Y[y[now]].begin())\n break;\n itr--;\n PII p = *itr;\n Y[y[now]].erase(p);\n X[p.first].erase(PII(y[now], p.second));\n now = p.second;\n } else if (d[now] == \"v\") {\n auto itr = X[x[now]].lower_bound(PII(y[now], -1));\n if (itr == X[x[now]].end())\n break;\n PII p = *itr;\n X[x[now]].erase(p);\n Y[p.first].erase(PII(x[now], p.second));\n now = p.second;\n } else {\n auto itr = X[x[now]].lower_bound(PII(y[now], -1));\n if (X[x[now]].empty() || itr == X[x[now]].begin())\n break;\n itr--;\n PII p = *itr;\n X[x[now]].erase(p);\n Y[p.first].erase(PII(x[now], p.second));\n now = p.second;\n }\n cnt++;\n }\n ans = max(ans, cnt);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 1470, "memory_kb": 4268, "score_of_the_acc": -0.5724, "final_rank": 13 }, { "submission_id": "aoj_2718_4985933", "code_snippet": "#include<iostream>\n#include<map>\n#include<algorithm>\n#include<vector>\nusing namespace std;\nint N;\nint X[3000],Y[3000];\nchar D[3000];\nint nxt[3000][4];\nmap<int,vector<pair<int,int> > >mX,mY;\nmain()\n{\n\tcin>>N;\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tcin>>X[i]>>Y[i]>>D[i];\n\t\tmX[X[i]].push_back(make_pair(Y[i],i));\n\t\tmY[Y[i]].push_back(make_pair(X[i],i));\n\t}\n\tfor(map<int,vector<pair<int,int> > >::iterator it=mX.begin();it!=mX.end();it++)\n\t{\n\t\tsort(it->second.begin(),it->second.end());\n\t}\n\tfor(map<int,vector<pair<int,int> > >::iterator it=mY.begin();it!=mY.end();it++)\n\t{\n\t\tsort(it->second.begin(),it->second.end());\n\t}\n\tint ans=0;\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tfor(int j=0;j<N;j++)for(int k=0;k<4;k++)nxt[j][k]=-1;\n\t\tfor(pair<int,vector<pair<int,int> > >mx:mX)\n\t\t{\n\t\t\tfor(int j=1;j<mx.second.size();j++)\n\t\t\t{\n\t\t\t\tnxt[mx.second[j-1].second][0]=mx.second[j].second;\n\t\t\t\tnxt[mx.second[j].second][2]=mx.second[j-1].second;\n\t\t\t}\n\t\t}\n\t\tfor(pair<int,vector<pair<int,int> > >my:mY)\n\t\t{\n\t\t\tfor(int j=1;j<my.second.size();j++)\n\t\t\t{\n\t\t\t\tnxt[my.second[j-1].second][1]=my.second[j].second;\n\t\t\t\tnxt[my.second[j].second][3]=my.second[j-1].second;\n\t\t\t}\n\t\t}\n\t\tint cnt=0,id=i;\n\t\twhile(id>=0)\n\t\t{\n\t\t\t{\n\t\t\t\tint U=nxt[id][0],D=nxt[id][2];\n\t\t\t\tif(U>=0)nxt[U][2]=D;\n\t\t\t\tif(D>=0)nxt[D][0]=U;\n\t\t\t\tint R=nxt[id][1],L=nxt[id][3];\n\t\t\t\tif(R>=0)nxt[R][3]=L;\n\t\t\t\tif(L>=0)nxt[L][1]=R;\n\t\t\t}\n\t\t\tcnt++;\n\t\t\tif(D[id]=='v')id=nxt[id][0];\n\t\t\telse if(D[id]=='>')id=nxt[id][1];\n\t\t\telse if(D[id]=='^')id=nxt[id][2];\n\t\t\telse id=nxt[id][3];\n\t\t}\n\t\tans=max(ans,cnt);\n\t}\n\tcout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 3536, "score_of_the_acc": -0.1168, "final_rank": 4 }, { "submission_id": "aoj_2718_4849374", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main(){\n int n;\n cin >> n;\n vector<int> x(n), y(n);\n vector<char> d(n);\n for (int i = 0; i < n; i++){\n cin >> x[i] >> y[i] >> d[i];\n }\n map<int, vector<pair<int, int>>> H;\n for (int i = 0; i < n; i++){\n H[y[i]].push_back(make_pair(x[i], i));\n }\n map<int, vector<pair<int, int>>> V;\n for (int i = 0; i < n; i++){\n V[x[i]].push_back(make_pair(y[i], i));\n }\n vector<int> L(n, -1), R(n, -1);\n for (auto P : H){\n sort(P.second.begin(), P.second.end());\n int cnt = P.second.size();\n for (int i = 0; i < cnt - 1; i++){\n int a = P.second[i].second;\n int b = P.second[i + 1].second;\n R[a] = b;\n L[b] = a;\n }\n }\n vector<int> U(n, -1), D(n, -1);\n for (auto P : V){\n sort(P.second.begin(), P.second.end());\n int cnt = P.second.size();\n for (int i = 0; i < cnt - 1; i++){\n int a = P.second[i].second;\n int b = P.second[i + 1].second;\n D[a] = b;\n U[b] = a;\n }\n }\n int ans = 0;\n for (int i = 0; i < n; i++){\n vector<int> L2 = L, R2 = R, U2 = U, D2 = D;\n int cnt = 0;\n int curr = i;\n while (1){\n cnt++;\n if (L2[curr] != -1){\n R2[L2[curr]] = R2[curr];\n }\n if (R2[curr] != -1){\n L2[R2[curr]] = L2[curr];\n }\n if (U2[curr] != -1){\n D2[U2[curr]] = D2[curr];\n }\n if (D2[curr] != -1){\n U2[D2[curr]] = U2[curr];\n }\n int next;\n if (d[curr] == '>'){\n next = R2[curr];\n }\n if (d[curr] == '<'){\n next = L2[curr];\n }\n if (d[curr] == '^'){\n next = U2[curr];\n }\n if (d[curr] == 'v'){\n next = D2[curr];\n }\n if (next == -1){\n break;\n } else {\n curr = next;\n }\n }\n ans = max(ans, cnt);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3652, "score_of_the_acc": -0.0123, "final_rank": 1 }, { "submission_id": "aoj_2718_4848882", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long double EPS = 1e-10;\nconst long long INF = 1e18;\nconst long double PI = acos(-1.0L);\n//const ll mod = 1000000007;\nll x[3005], y[3005];\nchar d[3005];\nbool visited[3005];\nset<i_i> row[3005], column[3005];\nll N;\nll ans = -INF;\nvoid initialize() {\n for(int i = 0; i < N; i++) {\n visited[i] = false;\n row[i].clear();\n column[i].clear();\n }\n for(int i = 0; i < N; i++) {\n row[x[i]].insert({y[i], i});\n column[y[i]].insert({x[i], i});\n }\n}\n\nint g(int now) {\n int ret = -1;\n if(d[now] == '^') {\n auto itr = row[x[now]].lower_bound({y[now], -INF});\n if(itr == row[x[now]].begin()) return -1;\n itr--;\n ret = (*itr).second;\n row[x[now]].erase(itr);\n }\n if(d[now] == 'v') {\n auto itr = row[x[now]].lower_bound({y[now], -INF});\n if(itr == row[x[now]].end()) return -1;\n ret = (*itr).second;\n row[x[now]].erase(itr);\n }\n if(d[now] == '<') {\n auto itr = column[y[now]].lower_bound({x[now], -INF});\n if(itr == column[y[now]].begin()) return -1;\n itr--;\n ret = (*itr).second;\n column[y[now]].erase(itr);\n }\n if(d[now] == '>') {\n auto itr = column[y[now]].lower_bound({x[now], -INF});\n if(itr == column[y[now]].end()) return -1;\n ret = (*itr).second;\n column[y[now]].erase(itr);\n }\n return ret;\n}\n\nvoid f(int s) {\n //cerr << \"-------\" << s << \"--------\" << endl;\n int now = s;\n ll tmpans = 1;\n initialize();\n visited[s] = true;\n while(true) {\n //cerr << now << endl;\n int nxt = g(now);\n if(nxt == -1) break;\n if(visited[nxt]) continue;\n visited[nxt] = true;\n tmpans++;\n now = nxt;\n }\n chmax(ans, tmpans);\n}\n\nint main() {\n cin >> N;\n vector<ll> cmpx, cmpy;\n for(int i = 0; i < N; i++) {\n cin >> x[i] >> y[i] >> d[i];\n cmpx.push_back(x[i]);\n cmpy.push_back(y[i]);\n }\n sort(cmpx.begin(), cmpx.end());\n cmpx.erase(unique(cmpx.begin(), cmpx.end()), cmpx.end());\n sort(cmpy.begin(), cmpy.end());\n cmpy.erase(unique(cmpy.begin(), cmpy.end()), cmpy.end());\n for(int i = 0; i < N; i++) {\n auto itr = lower_bound(cmpx.begin(), cmpx.end(), x[i]);\n x[i] = itr - cmpx.begin();\n itr = lower_bound(cmpy.begin(), cmpy.end(), y[i]);\n y[i] = itr - cmpy.begin();\n }\n for(int i = 0; i < N; i++) {\n f(i);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1230, "memory_kb": 4112, "score_of_the_acc": -0.4734, "final_rank": 7 }, { "submission_id": "aoj_2718_4811248", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=1000000007,MAX=3005,INF=1<<30;\nset<pair<int,int>> X[MAX],Y[MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N;cin>>N;\n map<int,int> mx,my;\n mx[-INF]=1;\n mx[INF]=1;\n my[-INF]=1;\n my[INF]=1;\n vector<int> x(N),y(N),dir(N);\n for(int i=0;i<N;i++){\n cin>>x[i]>>y[i];\n mx[x[i]]=1;\n my[y[i]]=1;\n char c;cin>>c;\n if(c=='^') dir[i]=0;\n if(c=='v') dir[i]=1;\n if(c=='>') dir[i]=2;\n if(c=='<') dir[i]=3;\n }\n \n int idx=0,idy=0;\n for(auto &a:mx){\n a.se=idx;\n idx++;\n }\n for(auto &a:my){\n a.se=idy;\n idy++;\n }\n \n for(int i=0;i<N;i++){\n x[i]=mx[x[i]];\n y[i]=my[y[i]];\n }\n \n int ans=0;\n \n for(int s=0;s<N;s++){\n for(int i=0;i<N;i++){\n X[x[i]].insert(mp(y[i],i));\n Y[y[i]].insert(mp(x[i],i));\n \n X[x[i]].insert(mp(0,-1));\n X[x[i]].insert(mp(idy-1,-1));\n Y[y[i]].insert(mp(0,-1));\n Y[y[i]].insert(mp(idx-1,-1));\n }\n \n int cnt=0;\n int now=s;\n X[x[now]].erase(mp(y[now],now));\n Y[y[now]].erase(mp(x[now],now));\n \n while(1){\n if(now==-1) break;\n \n cnt++;\n \n if(dir[now]==0){\n auto it=X[x[now]].lower_bound(mp(y[now],now));\n it--;\n X[x[now]].erase(it);\n Y[(*it).fi].erase(mp(x[now],(*it).se));\n now=(*it).se;\n }else if(dir[now]==1){\n auto it=X[x[now]].lower_bound(mp(y[now],now));\n X[x[now]].erase(it);\n Y[(*it).fi].erase(mp(x[now],(*it).se));\n now=(*it).se;\n }else if(dir[now]==2){\n auto it=Y[y[now]].lower_bound(mp(x[now],now));\n Y[y[now]].erase(it);\n X[(*it).fi].erase(mp(y[now],(*it).se));\n now=(*it).se;\n }else{\n auto it=Y[y[now]].lower_bound(mp(x[now],now));\n it--;\n Y[y[now]].erase(it);\n X[(*it).fi].erase(mp(y[now],(*it).se));\n now=(*it).se;\n }\n \n }\n \n chmax(ans,cnt);\n }\n \n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 1940, "memory_kb": 4204, "score_of_the_acc": -0.7272, "final_rank": 15 }, { "submission_id": "aoj_2718_4762441", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\nconstexpr long long int MOD = 1000000007;\n//constexpr int MOD = 1000000007;\n//constexpr int MOD = 998244353;\n//constexpr long long int MOD = 998244353;\nconstexpr double EPS = 1e-12;\n\n//int N, M, K, T, H, W, L, R;\nlong long int N, M, K, T, H, W, L, R;\n\nint func(vector<set<pair<int, int>>>xs, vector<set<pair<int, int>>>ys, vector<int>&x, vector<int>&y, vector<char>&c, int st) {\n\tint cx = x[st], cy = y[st];\n\tint ret = 1;\n\txs[cx].erase(xs[cx].lower_bound({ cy,0 }));\n\tys[cy].erase(ys[cy].lower_bound({ cx,0 }));\n\tchar nx = c[st];\n\twhile (ret < N) {\n\t\tif (nx == '^') {\n\t\t\tauto it = xs[cx].lower_bound({ cy,0 });\n\t\t\tif (xs[cx].begin() == it)break;\n\t\t\tit = prev(it);\n\t\t\tret++;\n\t\t\tcy = it->first;\n\t\t\tnx = c[it->second];\n\t\t}\n\t\telse if (nx == '<') {\n\t\t\tauto it = ys[cy].lower_bound({ cx,0 });\n\t\t\tif (ys[cy].begin() == it)break;\n\t\t\tit = prev(it);\n\t\t\tret++;\n\t\t\tcx = it->first;\n\t\t\tnx = c[it->second];\n\t\t}\n\t\telse if (nx == 'v') {\n\t\t\tauto it = xs[cx].lower_bound({ cy,0 });\n\t\t\tif (xs[cx].end() == it)break;\n\t\t\tret++;\n\t\t\tcy = it->first;\n\t\t\tnx = c[it->second];\n\t\t}\n\t\telse {\n\t\t\tauto it = ys[cy].lower_bound({ cx,0 });\n\t\t\tif (ys[cy].end() == it)break;\n\t\t\tret++;\n\t\t\tcx = it->first;\n\t\t\tnx = c[it->second];\n\t\t}\n\t\txs[cx].erase(xs[cx].lower_bound({ cy,0 }));\n\t\tys[cy].erase(ys[cy].lower_bound({ cx,0 }));\n\t}\n\treturn ret;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tcin >> N;\n\tvector<int>x(N);\n\tvector<int>y(N);\n\tvector<char>c(N);\n\tmap<int, int>xp;\n\tmap<int, int>yp;\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> x[i] >> y[i] >> c[i];\n\t\txp[x[i]] = 0;\n\t\typ[y[i]] = 0;\n\t}\n\tint cnt = 0;\n\tfor (auto &i : xp) {\n\t\ti.second = cnt++;\n\t}\n\tcnt = 0;\n\tfor (auto &i : yp) {\n\t\ti.second = cnt++;\n\t}\n\tvector<set<pair<int, int>>>xx(xp.size());\n\tvector<set<pair<int, int>>>yy(yp.size());\n\tfor (int i = 0; i < N; i++) {\n\t\tx[i] = xp[x[i]];\n\t\ty[i] = yp[y[i]];\n\t\txx[x[i]].insert({ y[i],i });\n\t\tyy[y[i]].insert({ x[i],i });\n\t}\n\tint ans = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tans = max(ans, func(xx, yy, x, y, c, i));\n\t//\tcout << i << \" \" << ans << endl;\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 1240, "memory_kb": 3908, "score_of_the_acc": -0.4552, "final_rank": 6 } ]
aoj_2720_cpp
Problem D: Identity Function You are given an integer $N$, which is greater than 1. Consider the following functions: $f(a) = a^N$ mod $N$ $F_1(a) = f(a)$ $F_{k+1}(a) = F_k(f(a))$ $(k = 1,2,3,...)$ Note that we use mod to represent the integer modulo operation. For a non-negative integer $x$ and a positive integer $y$, $x$ mod $y$ is the remainder of $x$ divided by $y$. Output the minimum positive integer $k$ such that $F_k(a) = a$ for all positive integers $a$ less than $N$. If no such $k$ exists, output -1. Input The input consists of a single line that contains an integer $N$ ($2 \leq N \leq 10^9$), whose meaning is described in the problem statement. Output Output the minimum positive integer $k$ such that $F_k(a) = a$ for all positive integers $a$ less than $N$, or -1 if no such $k$ exists. Sample Input 3 Output for the Sample Input 1 Sample Input 4 Output for the Sample Input -1 Sample Input 15 Output for the Sample Input 2
[ { "submission_id": "aoj_2720_10946047", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\nll extgcd( ll a , ll b , ll &x , ll &y ){\n ll d = a;\n if( b != 0 ){\n d = extgcd( b , a % b , y , x );\n y -= a / b * x;\n } else {\n x = 1, y = 0;\n }\n return d;\n}\n\nll inv( ll a , ll mod ){\n ll x, y;\n if( extgcd( a , mod , x , y ) != 1 ){\n throw 0;\n }\n x %= mod;\n if( x < 0 ){\n x += mod;\n }\n return x;\n}\n\nll modlog( ll n , ll mod ){\n ll q = 1;\n while( q * q < mod ){\n q++;\n }\n n %= mod;\n map<ll,ll> ma;\n ll nq = 1;\n ma[1] = 0;\n REP( i , q ){\n nq = ( nq * n ) % mod;\n if( nq == 1 ){\n return i + 1;\n }\n ll a = ( inv( nq , mod ) ) % mod;\n if( ma.find( a ) == ma.end() ){\n ma[a] = i + 1;\n }\n }\n ll cur = 1;\n REP( i , q ){\n cur = ( cur * nq ) % mod;\n if( ma.find( cur ) != ma.end() ){\n return ( i + 1 ) * q + ma[cur];\n }\n }\n assert( false );\n}\n\nvl fact( ll x ){\n vl res;\n for( ll i = 2; i*i <= x; i++ ){\n while( x % i == 0 ){\n res.pb( i );\n x /= i;\n }\n }\n if( x > 1 ) res.pb( x );\n return res;\n}\n\nll f( ll a , ll b , ll mo ){\n // a k = b mod mo\n // a k + mo l = b\n ll g = __gcd( a , mo );\n if( b % g != 0 ){\n return -1;\n }\n a /= g;\n b /= g;\n mo /= g;\n // cout << \"* \" << a << \" \" << mo << endl;\n ll k, l;\n extgcd( a , mo , k , l );\n // cout << \"* \" << k << \" \" << l << endl;\n k *= b;\n l *= b;\n k = ( ( k % mo ) + mo ) % mo;\n return k;\n}\n\nll n;\n\n\nint main(){\n \n n = in();\n\n vl v = fact( n );\n SORT( v );\n REP( i , SZ(v) - 1 ){\n if( v[i] == v[i+1] ){\n puts( \"-1\" );\n return 0;\n }\n }\n \n ll x = 1;\n ll y = 0;\n ll ans = 1;\n REP( i , SZ(v) ){\n ll mod = v[i] - 1;\n if( mod == 1 ){\n continue;\n }\n try{\n ll res = modlog( n , mod );\n if( res == -1 ){\n puts( \"-1\" );\n return 0;\n }\n ll r = f( x , ( ( res - y ) % mod + mod ) % mod, mod );\n // cout << r << \" \" << mod << endl;\n ans = ans * r / __gcd( ans , r );\n /*\n SHOW( x );\n SHOW( y );\n SHOW( res );\n SHOW( mod );\n cout << res << \" \" << mod << \" \" << r << endl;\n ll nx = x * mod;\n ll ny = x * r + y;\n x = nx;\n y = ny;\n y = ( ( y % x ) + x ) % x;\n cout << x << \" \" << y << endl;\n */\n } catch (...){\n puts( \"-1\" );\n return 0;\n }\n }\n\n if( ans == 0 ){\n cout << -1 << endl;\n } else {\n cout << ans << endl;\n }\n /*\n if( y == 0 ){\n cout << -1 << endl;\n } else {\n cout << ans << endl;\n }\n */\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4620, "score_of_the_acc": -0.4903, "final_rank": 3 }, { "submission_id": "aoj_2720_10504333", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nll phi(ll n) {\n ll ans = 1;\n ll m = n;\n for(ll i = 2; i * i <= n; i ++) {\n if(n % i == 0) {\n ans *= i - 1;\n m /= i;\n if(n % (i * i) == 0) return -1;\n }\n }\n if(m > 1) ans *= m - 1;\n return ans;\n}\n\nlong long modinv(long long a, long long MOD) {\n long long b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; std::swap(a, b);\n u -= t * v; std::swap(u, v);\n }\n u %= MOD; \n if (u < 0) u += MOD;\n return u;\n}\n\nlong long modpow(long long a, long long n, long long MOD) {\n long long res = 1;\n a %= MOD;\n if(n < 0) {\n n = -n;\n a = modinv(a, MOD);\n }\n while (n > 0) {\n if (n & 1) res = res * a % MOD;\n a = a * a % MOD;\n n >>= 1;\n }\n return res;\n}\n\n// depends on modpow and modinv\n// a^x ≡ b (mod. m) となる最小の正の整数 x を求める\nlong long modlog(long long a, long long b, int m) {\n a %= m, b %= m;\n\n // calc sqrt{M}\n long long le = -1, ri = m;\n while(ri - le > 1) {\n long long mid = (le + ri) >> 1;\n if(mid * mid >= m) ri = mid;\n else le = mid;\n }\n long long sqrtM = ri;\n\n // {a^0, a^1, a^2, ..., a^sqrt(m)} \n unordered_map<long long, long long> apow;\n long long r = a;\n for(long long i = 1; i < sqrtM; ++ i) {\n if(!apow.count(r)) apow[r] = i;\n (r *= a) %= m;\n }\n\n // check each A^p\n long long A = modpow(modinv(a, m), sqrtM, m);\n r = b;\n for (long long q = 0; q < sqrtM; ++q) {\n if (r == 1 && q > 0) return q * sqrtM;\n else if (apow.count(r)) return q * sqrtM + apow[r];\n (r *= A) %= m;\n }\n\n // no solutions\n return -1;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n // 2乗以上の素因数があったらNG\n // 素数なら1\n // N=6やばい. 素因数に2があるとまずい?\n\n ll n; cin >> n;\n ll N = n;\n if(n == 2) {\n cout << 1 << endl;\n return 0;\n }\n ll m = phi(n);\n if(__gcd(n, m) != 1) {\n cout << -1 << endl;\n return 0;\n }\n n %= m;\n // ll ret = modlog(n, 1, m);\n ll cur = 1, ret = -1;\n for(ll i = 1; i <= 300000000; i ++) {\n cur = (cur * N) % m;\n if(cur == 1) {\n ret = i;\n break;\n }\n }\n if(ret == -1) {\n cout << -1 << endl;\n return 0;\n }\n // if(ret == )\n ll ans = ret;\n auto solve = [&](ll d, ll j) -> void {\n if(d == 0) d += j;\n if(d <= 0) return;\n \n ll a = m/2;\n ll b = min(a + 200, m - 1);\n for(ll i = a; i <= b; i ++) {\n // cout << i << \" \" << N * d << \" \" << modpow(i, N * d, N) << endl;\n if(modpow(i, modpow(N, d, j), N) != i) return;\n }\n ans = min(ans, d);\n };\n // cout << ret << endl;\n vector<ll> vec;\n for(ll i = 1; i * i <= m; i ++) {\n if(m % i == 0) {\n vec.pb(i);\n if(i * i != m) vec.pb(m / i);\n // solve(ret - i, i);\n // if(i * i != m) solve(ret - m / i, m / i);\n }\n }\n sort(all(vec));\n reverse(all(vec));\n foa(i, vec) {\n solve(ret % i, i);\n // if(ans < ret) break;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.5421686746987951, "time_ms": 2800, "memory_kb": 3456, "score_of_the_acc": -0.6923, "final_rank": 14 }, { "submission_id": "aoj_2720_10504320", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nll phi(ll n) {\n ll ans = 1;\n ll m = n;\n for(ll i = 2; i * i <= n; i ++) {\n if(n % i == 0) {\n ans *= i - 1;\n m /= i;\n if(n % (i * i) == 0) return -1;\n }\n }\n if(m > 1) ans *= m - 1;\n return ans;\n}\n\nlong long modinv(long long a, long long MOD) {\n long long b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; std::swap(a, b);\n u -= t * v; std::swap(u, v);\n }\n u %= MOD; \n if (u < 0) u += MOD;\n return u;\n}\n\nlong long modpow(long long a, long long n, long long MOD) {\n long long res = 1;\n a %= MOD;\n if(n < 0) {\n n = -n;\n a = modinv(a, MOD);\n }\n while (n > 0) {\n if (n & 1) res = res * a % MOD;\n a = a * a % MOD;\n n >>= 1;\n }\n return res;\n}\n\n// depends on modpow and modinv\n// a^x ≡ b (mod. m) となる最小の正の整数 x を求める\nlong long modlog(long long a, long long b, int m) {\n a %= m, b %= m;\n\n // calc sqrt{M}\n long long le = -1, ri = m;\n while(ri - le > 1) {\n long long mid = (le + ri) >> 1;\n if(mid * mid >= m) ri = mid;\n else le = mid;\n }\n long long sqrtM = ri;\n\n // {a^0, a^1, a^2, ..., a^sqrt(m)} \n unordered_map<long long, long long> apow;\n long long r = a;\n for(long long i = 1; i < sqrtM; ++ i) {\n if(!apow.count(r)) apow[r] = i;\n (r *= a) %= m;\n }\n\n // check each A^p\n long long A = modpow(modinv(a, m), sqrtM, m);\n r = b;\n for (long long q = 0; q < sqrtM; ++q) {\n if (r == 1 && q > 0) return q * sqrtM;\n else if (apow.count(r)) return q * sqrtM + apow[r];\n (r *= A) %= m;\n }\n\n // no solutions\n return -1;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n // 2乗以上の素因数があったらNG\n // 素数なら1\n // N=6やばい. 素因数に2があるとまずい?\n\n ll n; cin >> n;\n ll N = n;\n if(n == 2) {\n cout << 1 << endl;\n return 0;\n }\n ll m = phi(n);\n if(__gcd(n, m) != 1) {\n cout << -1 << endl;\n return 0;\n }\n n %= m;\n // ll ret = modlog(n, 1, m);\n ll cur = 1, ret = -1;\n for(ll i = 1; i <= 300000000; i ++) {\n cur = (cur * N) % m;\n if(cur == 1) {\n ret = i;\n break;\n }\n }\n if(ret == -1) {\n cout << -1 << endl;\n return 0;\n }\n // if(ret == )\n ll ans = ret;\n auto solve = [&](ll d, ll j) -> void {\n if(d <= 0) return;\n \n ll a = m/2;\n ll b = min(a + 200, m - 1);\n for(ll i = a; i <= b; i ++) {\n // cout << i << \" \" << N * d << \" \" << modpow(i, N * d, N) << endl;\n if(modpow(i, modpow(N, d, j), N) != i) return;\n }\n ans = min(ans, d);\n };\n // cout << ret << endl;\n vector<ll> vec;\n for(ll i = 1; i * i <= m; i ++) {\n if(m % i == 0) {\n vec.pb(i);\n if(i * i != m) vec.pb(m / i);\n // solve(ret - i, i);\n // if(i * i != m) solve(ret - m / i, m / i);\n }\n }\n sort(all(vec));\n reverse(all(vec));\n foa(i, vec) {\n solve(ret - i, i);\n if(ans < ret) break;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.5421686746987951, "time_ms": 2800, "memory_kb": 3488, "score_of_the_acc": -0.7026, "final_rank": 15 }, { "submission_id": "aoj_2720_10504030", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nll phi(ll n) {\n ll ans = 1;\n ll m = n;\n for(ll i = 2; i * i <= n; i ++) {\n if(n % i == 0) {\n ans *= i - 1;\n m /= i;\n if(n % (i * i) == 0) return -1;\n }\n }\n if(m > 1) ans *= m - 1;\n return ans;\n}\n\nlong long modinv(long long a, long long MOD) {\n long long b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; std::swap(a, b);\n u -= t * v; std::swap(u, v);\n }\n u %= MOD; \n if (u < 0) u += MOD;\n return u;\n}\n\nlong long modpow(long long a, long long n, long long MOD) {\n long long res = 1;\n a %= MOD;\n if(n < 0) {\n n = -n;\n a = modinv(a, MOD);\n }\n while (n > 0) {\n if (n & 1) res = res * a % MOD;\n a = a * a % MOD;\n n >>= 1;\n }\n return res;\n}\n\n// depends on modpow and modinv\n// a^x ≡ b (mod. m) となる最小の正の整数 x を求める\nlong long modlog(long long a, long long b, int m) {\n a %= m, b %= m;\n\n // calc sqrt{M}\n long long le = -1, ri = m;\n while(ri - le > 1) {\n long long mid = (le + ri) >> 1;\n if(mid * mid >= m) ri = mid;\n else le = mid;\n }\n long long sqrtM = ri;\n\n // {a^0, a^1, a^2, ..., a^sqrt(m)} \n map<long long, long long> apow;\n long long r = a;\n for(long long i = 1; i < sqrtM; ++ i) {\n if(!apow.count(r)) apow[r] = i;\n (r *= a) %= m;\n }\n\n // check each A^p\n long long A = modpow(modinv(a, m), sqrtM, m);\n r = b;\n for (long long q = 0; q < sqrtM; ++q) {\n if (r == 1 && q > 0) return q * sqrtM;\n else if (apow.count(r)) return q * sqrtM + apow[r];\n (r *= A) %= m;\n }\n\n // no solutions\n return -1;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n // 2乗以上の素因数があったらNG\n // 素数なら1\n // N=6やばい. 素因数に2があるとまずい?\n\n ll n; cin >> n;\n ll N = n;\n if(n == 2) {\n cout << 1 << endl;\n return 0;\n }\n ll m = phi(n);\n if(m == -1 or __gcd(n, m) != 1) {\n cout << -1 << endl;\n return 0;\n }\n n %= m;\n ll ret = modlog(n, 1, m);\n ll ans = ret;\n // auto solve = [&](ll d) -> void {\n // if(d <= 0) return;\n // ll a = m/2;\n // ll b = min(m / 2 + 10, m - 1);\n // for(ll i = a; i <= b; i ++) {\n // // cout << i << \" \" << N * d << \" \" << modpow(i, N * d, N) << endl;\n // if(modpow(i, N * d, N) != i) return;\n // }\n // ans = min(ans, d);\n // };\n // // cout << ret << endl;\n // for(ll i = 1; i * i <= m; i ++) {\n // if(m % i == 0) {\n // solve(ret - i);\n // if(i * i != m) solve(ret - m / i);\n // }\n // }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.5180722891566265, "time_ms": 10, "memory_kb": 6204, "score_of_the_acc": -1, "final_rank": 17 }, { "submission_id": "aoj_2720_10502730", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nll phi(ll n) {\n ll ans = 1;\n ll m = n;\n for(ll i = 2; i * i <= n; i ++) {\n if(n % i == 0) {\n ans *= i - 1;\n m /= i;\n if(n % (i * i) == 0) return -1;\n }\n }\n if(m > 1) ans *= m - 1;\n return ans;\n}\n\nlong long modinv(long long a, long long MOD) {\n long long b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; std::swap(a, b);\n u -= t * v; std::swap(u, v);\n }\n u %= MOD; \n if (u < 0) u += MOD;\n return u;\n}\n\nlong long modpow(long long a, long long n, long long MOD) {\n long long res = 1;\n a %= MOD;\n if(n < 0) {\n n = -n;\n a = modinv(a, MOD);\n }\n while (n > 0) {\n if (n & 1) res = res * a % MOD;\n a = a * a % MOD;\n n >>= 1;\n }\n return res;\n}\n\n// depends on modpow and modinv\n// a^x ≡ b (mod. m) となる最小の正の整数 x を求める\nlong long modlog(long long a, long long b, int m) {\n a %= m, b %= m;\n\n // calc sqrt{M}\n long long le = -1, ri = m;\n while(ri - le > 1) {\n long long mid = (le + ri) >> 1;\n if(mid * mid >= m) ri = mid;\n else le = mid;\n }\n long long sqrtM = ri;\n\n // {a^0, a^1, a^2, ..., a^sqrt(m)} \n map<long long, long long> apow;\n long long r = a;\n for(long long i = 1; i < sqrtM; ++ i) {\n if(!apow.count(r)) apow[r] = i;\n (r *= a) %= m;\n }\n\n // check each A^p\n long long A = modpow(modinv(a, m), sqrtM, m);\n r = b;\n for (long long q = 0; q < sqrtM; ++q) {\n if (r == 1 && q > 0) return q * sqrtM;\n else if (apow.count(r)) return q * sqrtM + apow[r];\n (r *= A) %= m;\n }\n\n // no solutions\n return -1;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n // 2乗以上の素因数があったらNG\n // 素数なら1\n // N=6やばい. 素因数に2があるとまずい?\n\n ll n; cin >> n;\n if(n == 2) {\n cout << 1 << endl;\n return 0;\n }\n ll m = phi(n);\n if(m == -1 or __gcd(n, m) != 1) {\n cout << -1 << endl;\n return 0;\n }\n n %= m;\n ll ret = modlog(n, 1, m);\n cout << ret << endl;\n return 0;\n}", "accuracy": 0.5180722891566265, "time_ms": 10, "memory_kb": 6132, "score_of_the_acc": -0.9768, "final_rank": 16 }, { "submission_id": "aoj_2720_8379309", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nlong long Rand() {\n\tlong long s = 1, t = 0;\n\tfor (int i = 0; i < 3; i++) {\n\t\tt += 1LL * (rand() % 1024) * s;\n\t\ts *= 1024;\n\t}\n\treturn t;\n}\n\nlong long modpow(long long a, long long b, long long m) {\n\tlong long p = 1, q = a;\n\tfor (int i = 0; i < 30; i++) {\n\t\tif ((b >> i) & 1) { p *= q; p %= m; }\n\t\tq *= q; q %= m;\n\t}\n\treturn p;\n}\n\nlong long Euler(long long n) {\n\tlong long cur = n;\n\tlong long ans = n;\n\tfor (int i = 2; i * i <= n; i++) {\n\t\tif (cur % i != 0) continue;\n\t\tans = (1LL * (i - 1) * ans) / (1LL * i);\n\t\twhile (cur % i == 0) cur /= i;\n\t}\n\tif (cur >= 2) ans = (ans * (cur - 1)) / cur;\n\treturn ans;\n}\n\nlong long solve(long long N) {\n\tif (N == 2) return 1;\n\tlong long V = Euler(N);\n\n\t// Step 1\n\tlong long cur = 1, ans = -1;\n\tfor (int i = 1; i <= 300000000; i++) {\n\t\tcur = (cur * N) % V;\n\t\tif (cur == 1) { ans = i; break; }\n\t}\n\tif (ans == -1) return -1;\n\n\t// Step 2\n\tvector<long long> vec;\n\tfor (int i = 1; i * i <= ans; i++) {\n\t\tif (ans % i != 0) continue;\n\t\tvec.push_back(i);\n\t\tvec.push_back(ans / i);\n\t}\n\tsort(vec.begin(), vec.end());\n\tvec.erase(unique(vec.begin(), vec.end()), vec.end());\n\n\t// Step 3\n\tfor (int i = 0; i < vec.size(); i++) {\n\t\tbool flag = true;\n\t\tfor (int j = 0; j < 200; j++) {\n\t\t\tlong long num = Rand() % (N - 1) + 1;\n\t\t\tlong long val1 = modpow(N, vec[i], V);\n\t\t\tlong long val2 = modpow(num, val1, N);\n\t\t\tif (val2 != num) { flag = false; break; }\n\t\t}\n\t\tif (flag == true) return vec[i];\n\t}\n\treturn -1;\n}\n\nint main() {\n\tlong long N;\n\tcin >> N;\n\tcout << solve(N) << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 2800, "memory_kb": 3424, "score_of_the_acc": -0.682, "final_rank": 6 }, { "submission_id": "aoj_2720_8379250", "code_snippet": "#include <iostream>\nusing namespace std;\n\nlong long Euler(long long n) {\n\tlong long cur = n;\n\tlong long ans = n;\n\tfor (int i = 2; i * i <= n; i++) {\n\t\tif (cur % i != 0) continue;\n\t\tans = (1LL * (i - 1) * ans) / (1LL * i);\n\t\twhile (cur % i == 0) cur /= i;\n\t}\n\tif (cur >= 2) ans = (ans * (cur - 1)) / cur;\n\treturn ans;\n}\n\nlong long solve(long long N) {\n\tif (N == 2) return 1;\n\tlong long V = Euler(N);\n\tlong long cur = 1;\n\tfor (int i = 1; i <= 100000000; i++) {\n\t\tcur = (cur * N) % V;\n\t\tif (cur == 1) return i;\n\t}\n\treturn -1;\n}\n\nint main() {\n\tlong long N;\n\tcin >> N;\n\tcout << solve(N) << endl;\n\treturn 0;\n}", "accuracy": 0.5421686746987951, "time_ms": 930, "memory_kb": 3452, "score_of_the_acc": -0.3046, "final_rank": 13 }, { "submission_id": "aoj_2720_8379245", "code_snippet": "#include <iostream>\nusing namespace std;\n\nlong long modpow(long long a, long long b, long long m) {\n\tlong long p = 1, q = a;\n\tfor (int i = 0; i < 30; i++) {\n\t\tif ((b >> i) & 1) { p *= q; p %= m; }\n\t\tq *= q; q %= m;\n\t}\n\treturn p;\n}\n\nlong long Euler(long long n) {\n\tlong long cur = n;\n\tlong long ans = n;\n\tfor (int i = 2; i * i <= n; i++) {\n\t\tif (cur % i != 0) continue;\n\t\tans = (1LL * (i - 1) * ans) / (1LL * i);\n\t\twhile (cur % i == 0) cur /= i;\n\t}\n\tif (cur >= 2) ans = (ans * (cur - 1)) / cur;\n\treturn ans;\n}\n\nlong long solve(long long N) {\n\tif (N == 2) return 1;\n\tlong long V = Euler(N);\n\tfor (int i = 1; i <= 500000; i++) {\n\t\tlong long r = modpow(N, i, V);\n\t\tif (r == 1) return i;\n\t}\n\treturn -1;\n}\n\nint main() {\n\tlong long N;\n\tcin >> N;\n\tcout << solve(N) << endl;\n\treturn 0;\n}", "accuracy": 0.5421686746987951, "time_ms": 150, "memory_kb": 3464, "score_of_the_acc": -0.1473, "final_rank": 12 }, { "submission_id": "aoj_2720_4971909", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconstexpr int mod = 1e9 + 7;\nconstexpr int inf = (1 << 30) - 1;\nconstexpr ll infll = (1LL << 61) - 1;\n#define fast() ios::sync_with_stdio(false), cin.tie(nullptr)\n#define set_digit(N) cout << fixed << setprecision((N))\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\nll modlog(ll x, ll y, ll m)\n{\n\tll H = sqrt(m) + 1;\n\tstatic pair<ll, ll> baby[100010];\n\tfor (ll b = 0, xby = y; b < H; b++, xby = (xby * x) % m)\n\t{\n\t\tbaby[b] = make_pair(xby, b);\n\t}\n\tsort(baby, baby + H);\n\tll xH = 1;\n\tfor (int i = 0; i < H; ++i)\n\t{\n\t\txH = (xH * x) % m;\n\t}\n\tfor (ll a = 1, xaH = xH; a <= H; a++, xaH = (xaH * xH) % m)\n\t{\n\t\tauto it = lower_bound(baby, baby + H, make_pair(xaH + 1, 0LL));\n\t\tif (it == baby)\n\t\t\tcontinue;\n\t\tit--;\n\t\tif (it->first == xaH)\n\t\t\treturn a * H - it->second;\n\t}\n\treturn -1;\n}\n\nll euler_phi(ll n)\n{\n\tll res = n;\n\tfor (ll i = 2; i * i <= n; i++)\n\t{\n\t\tif (n % i == 0)\n\t\t{\n\t\t\tres = res / i * (i - 1);\n\t\t\tfor (; n % i == 0; n /= i)\n\t\t\t\t;\n\t\t}\n\t}\n\tif (n != 1)\n\t\tres = res / n * (n - 1);\n\treturn res;\n}\n\ntemplate <typename T>\nbool is_prime(T N)\n{\n\tif (N < 2)\n\t\treturn false;\n\tfor (T i = 2; i * i <= N; ++i)\n\t{\n\t\tif (N % i == 0)\n\t\t\treturn false;\n\t}\n\treturn true;\n}\n\nll gcd(ll a, ll b) { return (b ? gcd(b, a % b) : a); }\n\nll mod_pow(ll x, ll n, ll mod)\n{\n\tll res = 1;\n\twhile (n > 0)\n\t{\n\t\tif (n & 1)\n\t\t\t(res *= x) %= mod;\n\t\t(x *= x) %= mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\ntemplate <typename T>\nvector<T> divisor(T n)\n{\n\tvector<T> divisor;\n\tfor (T i = 1; i * i <= n; i++)\n\t{\n\t\tif (n % i == 0)\n\t\t{\n\t\t\tdivisor.push_back(i);\n\t\t\tif (i * i != n)\n\t\t\t\tdivisor.push_back(n / i);\n\t\t}\n\t}\n\tsort(divisor.begin(), divisor.end());\n\treturn divisor;\n}\n\nint main()\n{\n\tll N;\n\tcin >> N;\n\tif (is_prime(N))\n\t{\n\t\tcout << 1 << \"\\n\";\n\t\treturn 0;\n\t}\n\n\tll phi = euler_phi(N), k = modlog(N, 1, phi);\n\tif (k == -1 || gcd(N, phi) > 1)\n\t{\n\t\tcout << -1 << \"\\n\";\n\t\treturn 0;\n\t}\n\n\tauto div = divisor(k);\n\n\tll ans = k;\n\n\tfor (auto &d : div)\n\t{\n\t\tbool ok = true;\n\t\tfor (ll i = 1; i < 50000; i++)\n\t\t{\n\t\t\tif (mod_pow(i, mod_pow(N, d, phi), N) != i)\n\t\t\t\tok = false;\n\t\t}\n\t\tif (ok)\n\t\t{\n\t\t\tans = min(ans, d);\n\t\t}\n\t}\n\tcout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 1430, "memory_kb": 3940, "score_of_the_acc": -0.5649, "final_rank": 5 }, { "submission_id": "aoj_2720_4971869", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream> // cout, endl, cin\n#include <string> // string, to_string, stoi\n#include <vector> // vector\n#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound\n#include <utility> // pair, make_pair\n#include <tuple> // tuple, make_tuple\n#include <cstdint> // int64_t, int*_t\n#include <cstdio> // printf\n#include <map> // map\n#include <queue> // queue, priority_queue\n#include <set> // set\n#include <stack> // stack\n#include <deque> // deque\n#include <unordered_map> // unordered_map\n#include <unordered_set> // unordered_set\n#include <bitset> // bitset\n#include <cctype> // isupper, islower, isdigit, toupper, tolower\n#include <iomanip> // setprecision\n#include <complex> // complex\n#include <math.h> \n#include<cmath>\n#include <functional>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// --------------------------------------------------------------------------\n\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n else return gcd(b,a%b);\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll N;\n cin >> N;\n if(N == 6){\n cout << -1 << endl;\n return 0;\n }\n ll ori = N;\n set<ll> se;\n for(ll i=2; i<=10000000; i++){\n if(N%i == 0){\n ll cnt = 0;\n while(N%i == 0){\n cnt++;\n N /= i;\n }\n if(cnt >= 2){\n cout << -1 << endl;\n return 0;\n }\n se.emplace(i);\n }\n }\n if(N != 1){\n se.emplace(N);\n }\n vector<ll> vec;\n for(auto s: se){\n s--;\n vec.emplace_back(s);\n }\n ll g = vec[0];\n for(int i=1; i<vec.size(); i++){\n g = g * vec[i] / gcd(g,vec[i]);\n }\n set<ll> g2;\n for(ll i=1; i*i<=g; i++){\n if(g%i == 0){\n g2.emplace(i);\n g2.emplace(g/i);\n }\n }\n ll ans = 1;\n for(auto s: g2){\n s++;\n ll temp = (ori-1)%(s-1);\n if(temp == 0) temp = s-1;\n temp = ((temp*(s-1))/gcd(temp,s-1)) / temp;\n ans = (temp*ans)/gcd(ans,temp); \n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.13253012048192772, "time_ms": 60, "memory_kb": 3388, "score_of_the_acc": -0.1043, "final_rank": 18 }, { "submission_id": "aoj_2720_4971826", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream> // cout, endl, cin\n#include <string> // string, to_string, stoi\n#include <vector> // vector\n#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound\n#include <utility> // pair, make_pair\n#include <tuple> // tuple, make_tuple\n#include <cstdint> // int64_t, int*_t\n#include <cstdio> // printf\n#include <map> // map\n#include <queue> // queue, priority_queue\n#include <set> // set\n#include <stack> // stack\n#include <deque> // deque\n#include <unordered_map> // unordered_map\n#include <unordered_set> // unordered_set\n#include <bitset> // bitset\n#include <cctype> // isupper, islower, isdigit, toupper, tolower\n#include <iomanip> // setprecision\n#include <complex> // complex\n#include <math.h> \n#include<cmath>\n#include <functional>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// --------------------------------------------------------------------------\n\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n else return gcd(b,a%b);\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll N;\n cin >> N;\n ll ori = N;\n set<ll> se;\n for(ll i=2; i<=10000000; i++){\n if(N%i == 0){\n ll cnt = 0;\n while(N%i == 0){\n cnt++;\n N /= i;\n }\n if(cnt >= 2){\n cout << -1 << endl;\n return 0;\n }\n se.emplace(i);\n }\n }\n if(N != 1){\n se.emplace(N);\n }\n vector<ll> vec;\n for(auto s: se){\n s--;\n vec.emplace_back(s);\n }\n ll g = vec[0];\n for(int i=1; i<vec.size(); i++){\n g = g * vec[i] / gcd(g,vec[i]);\n }\n set<ll> g2;\n for(ll i=1; i*i<=g; i++){\n if(g%i == 0){\n g2.emplace(i);\n g2.emplace(g/i);\n }\n }\n ll ans = 1;\n for(auto s: g2){\n s++;\n ll temp = (ori-1)%(s-1);\n if(temp == 0) temp = s-1;\n temp = temp*(s-1)/gcd(temp,s-1) / temp;\n ans = temp*ans/gcd(ans,temp); \n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.08433734939759036, "time_ms": 60, "memory_kb": 3464, "score_of_the_acc": -0.1287, "final_rank": 20 }, { "submission_id": "aoj_2720_4971766", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconstexpr int mod = 1e9 + 7;\nconstexpr int inf = (1 << 30) - 1;\nconstexpr ll infll = (1LL << 61) - 1;\n#define fast() ios::sync_with_stdio(false), cin.tie(nullptr)\n#define set_digit(N) cout << fixed << setprecision((N))\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\nll modlog(ll x, ll y, ll m)\n{\n\tll H = sqrt(m) + 1;\n\tstatic pair<ll, ll> baby[100010];\n\tfor (ll b = 0, xby = y; b < H; b++, xby = (xby * x) % m)\n\t{\n\t\tbaby[b] = make_pair(xby, b);\n\t}\n\tsort(baby, baby + H);\n\tll xH = 1;\n\tfor (int i = 0; i < H; ++i)\n\t{\n\t\txH = (xH * x) % m;\n\t}\n\tfor (ll a = 1, xaH = xH; a <= H; a++, xaH = (xaH * xH) % m)\n\t{\n\t\tauto it = lower_bound(baby, baby + H, make_pair(xaH + 1, 0LL));\n\t\tif (it == baby)\n\t\t\tcontinue;\n\t\tit--;\n\t\tif (it->first == xaH)\n\t\t\treturn a * H - it->second;\n\t}\n\treturn -1;\n}\n\nll euler_phi(ll n)\n{\n\tll res = n;\n\tfor (ll i = 2; i * i <= n; i++)\n\t{\n\t\tif (n % i == 0)\n\t\t{\n\t\t\tres = res / i * (i - 1);\n\t\t\tfor (; n % i == 0; n /= i)\n\t\t\t\t;\n\t\t}\n\t}\n\tif (n != 1)\n\t\tres = res / n * (n - 1);\n\treturn res;\n}\n\ntemplate <typename T>\nbool is_prime(T N)\n{\n\tif (N < 2)\n\t\treturn false;\n\tfor (T i = 2; i * i <= N; ++i)\n\t{\n\t\tif (N % i == 0)\n\t\t\treturn false;\n\t}\n\treturn true;\n}\n\nll gcd(ll a, ll b) { return (b ? gcd(b, a % b) : a); }\n\nll mod_pow(ll x, ll n, ll mod)\n{\n\tll res = 1;\n\twhile (n > 0)\n\t{\n\t\tif (n & 1)\n\t\t\t(res *= x) %= mod;\n\t\t(x *= x) %= mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\ntemplate <typename T>\nvector<T> divisor(T n)\n{\n\tvector<T> divisor;\n\tfor (T i = 1; i * i <= n; i++)\n\t{\n\t\tif (n % i == 0)\n\t\t{\n\t\t\tdivisor.push_back(i);\n\t\t\tif (i * i != n)\n\t\t\t\tdivisor.push_back(n / i);\n\t\t}\n\t}\n\tsort(divisor.begin(), divisor.end());\n\treturn divisor;\n}\n\nint main()\n{\n\tll N;\n\tcin >> N;\n\tif (is_prime(N))\n\t{\n\t\tcout << 1 << \"\\n\";\n\t\treturn 0;\n\t}\n\n\tll phi = euler_phi(N), k = modlog(N, 1, phi);\n\tif (k == -1 || gcd(N, phi) > 1)\n\t{\n\t\tcout << -1 << \"\\n\";\n\t\treturn 0;\n\t}\n\n\tauto div = divisor(k);\n\n\tll ans = k;\n\n\tfor (auto &d : div)\n\t{\n\t\tbool ok = true;\n\t\tfor (ll i = 1; i < 50000; i++)\n\t\t{\n\t\t\tif (mod_pow(i, mod_pow(N, d, phi), N) != i)\n\t\t\t\tok = false;\n\t\t}\n\t\tif (ok)\n\t\t{\n\t\t\tans = min(ans, d);\n\t\t}\n\t}\n\tcout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 1420, "memory_kb": 3780, "score_of_the_acc": -0.5114, "final_rank": 4 }, { "submission_id": "aoj_2720_4971721", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream> // cout, endl, cin\n#include <string> // string, to_string, stoi\n#include <vector> // vector\n#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound\n#include <utility> // pair, make_pair\n#include <tuple> // tuple, make_tuple\n#include <cstdint> // int64_t, int*_t\n#include <cstdio> // printf\n#include <map> // map\n#include <queue> // queue, priority_queue\n#include <set> // set\n#include <stack> // stack\n#include <deque> // deque\n#include <unordered_map> // unordered_map\n#include <unordered_set> // unordered_set\n#include <bitset> // bitset\n#include <cctype> // isupper, islower, isdigit, toupper, tolower\n#include <iomanip> // setprecision\n#include <complex> // complex\n#include <math.h> \n#include<cmath>\n#include <functional>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// --------------------------------------------------------------------------\n\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n else return gcd(b,a%b);\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll N;\n cin >> N;\n ll ori = N;\n set<ll> se;\n for(ll i=2; i<=10000000; i++){\n if(N%i == 0){\n ll cnt = 0;\n while(N%i == 0){\n cnt++;\n N /= i;\n }\n if(cnt >= 2){\n cout << -1 << endl;\n return 0;\n }\n se.emplace(i);\n }\n }\n if(N != 1){\n se.emplace(N);\n }\n ll ans = 1;\n for(auto s: se){\n ll temp = (ori-1)%(s-1);\n if(temp == 0) temp = s-1;\n temp = temp*(s-1)/gcd(temp,s-1) / temp;\n ans = temp*ans/gcd(ans,temp);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.08433734939759036, "time_ms": 50, "memory_kb": 3456, "score_of_the_acc": -0.1241, "final_rank": 19 }, { "submission_id": "aoj_2720_4956062", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\nll N;\nvector<ll> f(ll x) {\n vector<ll> ret;\n for(ll i = 2; i * i <= x; i++) {\n while(x % i == 0) {\n x /= i;\n ret.push_back(i);\n }\n }\n if(x != 1) ret.push_back(x);\n return ret;\n}\n\nll g(ll x) {\n ll now = 1;\n set<ll> st;\n for(ll t = 1; ; t++) {\n now = now * N % (x - 1);\n if(now == 1) return t;\n if(t >= x) {\n cout << -1 << endl;\n exit(0);\n }\n }\n}\n\nint main() {\n cin >> N;\n auto v = f(N);\n for(int i = 0; i + 1 < v.size(); i++) {\n if(v[i] == v[i+1]) {\n cout << -1 << endl;\n return 0;\n }\n }\n if(v.size() == 1) {\n cout << 1 << endl;\n return 0;\n }\n ll ans = 1;\n for(auto x : v) {\n ll tmp = g(x);\n ans = (ans / __gcd(ans, tmp)) * tmp;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1550, "memory_kb": 3448, "score_of_the_acc": -0.4314, "final_rank": 2 }, { "submission_id": "aoj_2720_4815516", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nlong long modpow(long long a, long long b, long long MOD){\n long long ans = 1;\n while (b > 0){\n if (b % 2 == 1){\n ans *= a;\n ans %= MOD;\n }\n a *= a;\n a %= MOD;\n b /= 2;\n }\n return ans;\n}\nint gcd(int a, int b){\n if (b == 0){\n return a;\n } else {\n return gcd(b, a % b);\n }\n}\nint totient(int N){\n int ans = N;\n for (int i = 2; i * i <= N; i++){\n if (N % i == 0){\n ans /= i;\n ans *= i - 1;\n while (N % i == 0){\n N /= i;\n }\n }\n }\n if (N > 1){\n ans /= N;\n ans *= N - 1;\n }\n return ans;\n}\nint main(){\n random_device rnd;\n mt19937 mt(rnd());\n long long N;\n cin >> N;\n bool ok = true;\n for (int i = 2; i * i <= N; i++){\n if (N % (i * i) == 0){\n ok = false;\n }\n }\n if (!ok){\n cout << -1 << endl;\n } else if (N == 2){\n cout << 1 << endl;\n } else {\n long long p = totient(N);\n long long u = p * 50;\n vector<long long> f;\n for (long long i = 1; i * i <= u; i++){\n if (u % i == 0){\n if (i > 1){\n f.push_back(i);\n }\n if (i * i < u){\n f.push_back(u / i);\n }\n }\n }\n sort(f.rbegin(), f.rend());\n int cnt = f.size();\n int m = -1;\n for (int i = 0; i < cnt; i++){\n bool ok = true;\n for (int j = 0; j < 100; j++){\n int a;\n while (1){\n a = mt() % (N - 1) + 1;\n if (gcd(N, a) == 1){\n break;\n }\n }\n if (modpow(a, f[i], N) != 1){\n ok = false;\n }\n }\n if (ok){\n m = f[i];\n }\n }\n if (m == -1){\n cout << -1 << endl;\n } else {\n //N^x mod m == 1\n long long q = totient(m);\n long long v = q * 50;\n vector<long long> f2;\n for (long long i = 1; i * i <= v; i++){\n if (v % i == 0){\n f2.push_back(i);\n if (i * i < v){\n f2.push_back(v / i);\n }\n }\n }\n sort(f2.begin(), f2.end());\n int cnt2 = f2.size();\n long long ans = -1;\n for (int i = 0; i < cnt2; i++){\n if (modpow(N, f2[i], m) == 1){\n ans = f2[i];\n break;\n }\n }\n cout << ans << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3248, "score_of_the_acc": -0.0572, "final_rank": 1 }, { "submission_id": "aoj_2720_4815510", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nlong long modpow(long long a, long long b, long long MOD){\n long long ans = 1;\n while (b > 0){\n if (b % 2 == 1){\n ans *= a;\n ans %= MOD;\n }\n a *= a;\n a %= MOD;\n b /= 2;\n }\n return ans;\n}\nint gcd(int a, int b){\n if (b == 0){\n return a;\n } else {\n return gcd(b, a % b);\n }\n}\nint totient(int N){\n int ans = 1;\n for (int i = 2; i * i <= N; i++){\n if (N % i == 0){\n ans *= i - 1;\n N /= i;\n }\n }\n if (N > 1){\n ans *= N - 1;\n }\n return ans;\n}\nint main(){\n random_device rnd;\n mt19937 mt(rnd());\n long long N;\n cin >> N;\n bool ok = true;\n for (int i = 2; i * i <= N; i++){\n if (N % (i * i) == 0){\n ok = false;\n }\n }\n if (!ok){\n cout << -1 << endl;\n } else if (N == 2){\n cout << 1 << endl;\n } else {\n long long p = totient(N);\n long long u = p * 50;\n vector<long long> f;\n for (long long i = 1; i * i <= u; i++){\n if (u % i == 0){\n if (i > 1){\n f.push_back(i);\n }\n if (i * i < u){\n f.push_back(u / i);\n }\n }\n }\n sort(f.rbegin(), f.rend());\n int cnt = f.size();\n int m = -1;\n for (int i = 0; i < cnt; i++){\n bool ok = true;\n for (int j = 0; j < 100; j++){\n int a;\n while (1){\n a = mt() % (N - 1) + 1;\n if (gcd(N, a) == 1){\n break;\n }\n }\n if (modpow(a, f[i], N) != 1){\n ok = false;\n }\n }\n if (ok){\n m = f[i];\n }\n }\n if (m == -1){\n cout << -1 << endl;\n } else {\n //N^x mod m == 1\n long long q = totient(m);\n long long v = q * 50;\n vector<long long> f2;\n for (long long i = 1; i * i <= v; i++){\n if (v % i == 0){\n f2.push_back(i);\n if (i * i < v){\n f2.push_back(v / i);\n }\n }\n }\n sort(f2.begin(), f2.end());\n int cnt2 = f2.size();\n long long ans = -1;\n for (int i = 0; i < cnt2; i++){\n if (modpow(N, f2[i], m) == 1){\n ans = f2[i];\n break;\n }\n }\n cout << ans << endl;\n }\n }\n}", "accuracy": 0.6024096385542169, "time_ms": 50, "memory_kb": 3236, "score_of_the_acc": -0.0533, "final_rank": 9 }, { "submission_id": "aoj_2720_4815328", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nlong long modpow(long long a, long long b, long long MOD){\n long long ans = 1;\n while (b > 0){\n if (b % 2 == 1){\n ans *= a;\n ans %= MOD;\n }\n a *= a;\n a %= MOD;\n b /= 2;\n }\n return ans;\n}\nint gcd(int a, int b){\n if (b == 0){\n return a;\n } else {\n return gcd(b, a % b);\n }\n}\nint main(){\n int N;\n cin >> N;\n bool ok = true;\n for (int i = 2; i * i <= N; i++){\n if (N % (i * i) == 0){\n ok = false;\n }\n }\n if (!ok){\n cout << -1 << endl;\n } else {\n vector<int> s;\n for (int i = 1; i < N; i++){\n if (gcd(N, i) == 1){\n s.push_back(i);\n if (s.size() >= 10){\n break;\n }\n }\n }\n int cnt = s.size();\n int ans = 0;\n vector<int> s2 = s;\n while (1){\n for (int i = 0; i < cnt; i++){\n s2[i] = modpow(s2[i], N, N);\n }\n ans++;\n if (s2 == s){\n break;\n }\n if (ans >= 1000000){\n ans = -1;\n break;\n }\n }\n cout << ans << endl;\n }\n}", "accuracy": 0.6385542168674698, "time_ms": 3980, "memory_kb": 3160, "score_of_the_acc": -0.8408, "final_rank": 8 }, { "submission_id": "aoj_2720_4815320", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nlong long modpow(long long a, long long b, long long MOD){\n long long ans = 1;\n while (b > 0){\n if (b % 2 == 1){\n ans *= a;\n ans %= MOD;\n }\n a *= a;\n a %= MOD;\n b /= 2;\n }\n return ans;\n}\nint gcd(int a, int b){\n if (b == 0){\n return a;\n } else {\n return gcd(b, a % b);\n }\n}\nint main(){\n int N;\n cin >> N;\n bool ok = true;\n for (int i = 2; i * i <= N; i++){\n if (N % (i * i) == 0){\n ok = false;\n }\n }\n if (!ok){\n cout << -1 << endl;\n } else if (N == 2){\n cout << 1 << endl;\n } else {\n int p = 2;\n while (gcd(N, p) != 1){\n p++;\n }\n int ans = 0;\n int p2 = p;\n while (1){\n p2 = modpow(p2, N, N);\n ans++;\n if (p2 == p){\n break;\n }\n if (ans >= 1000000){\n ans = -1;\n break;\n }\n }\n cout << ans << endl;\n }\n}", "accuracy": 0.5421686746987951, "time_ms": 390, "memory_kb": 3096, "score_of_the_acc": -0.0785, "final_rank": 11 }, { "submission_id": "aoj_2720_4292809", "code_snippet": "#include <bits/stdc++.h>\n#ifdef __LOCAL\n #define DBG(X) cout << #X << \" = \" << (X) << endl;\n #define SAY(X) cout << (X) << endl;\n#else\n #define DBG(X)\n #define SAY(X)\n#endif\n\n#ifdef __LOCAL\n #include <filesystem>\n namespace fs = std::filesystem;\n#endif\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> pll;\ninline void fast_io() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); };\ntemplate<typename T, typename S> inline ostream& operator<<(ostream& os, const pair<T, S> p) { cout << \"[\" << p.first << \";\" << p.second << \"]\"; return os; }\ntemplate<typename T, typename S> inline ostream& operator<<(ostream& os, const map<T, S> p) { for (auto el : p) cout << \"[\" << el.first << \";\" << el.second << \"]\"; return os; }\ntemplate<typename T> inline ostream& operator<<(ostream& os, const vector<T>& v) { for (auto el : v) cout << el << \" \"; return os; }\n\nll N;\nvoid input(){\n fast_io();\n #ifdef __LOCAL\n fs::path p = __FILE__;\n fs::path input,output;\n input = output = p.parent_path();\n input += string(\"/input/\") + string(p.stem()) + string(\".txt\");\n output += string(\"/output/\") + string(p.stem()) + string(\".txt\");\n freopen(input.c_str(), \"r\", stdin);\n freopen(output.c_str(), \"w\", stdout);\n #endif\n cin >> N;\n}\n\nll euler_phi(ll n) {\n ll ret = n;\n for(ll i = 2; i * i <= n; i++) {\n if(n % i == 0) {\n ret -= ret / i;\n while(n % i == 0) n /= i;\n }\n }\n if(n > 1) ret -= ret / n;\n return ret;\n}\n\n\ntemplate< typename T >\nT mod_pow(T x, T n, const T &p) {\n T ret = 1LL;\n while(n > 0) {\n if(n & 1) (ret *= x) %= p;\n (x *= x) %= p;\n n >>= 1;\n }\n return ret;\n}\n\nmap< ll, ll > prime_factor(ll n) {\n map< ll, ll > ret;\n for(ll i = 2; i * i <= n; i++) {\n while(n % i == 0) {\n ret[i]++;\n n /= i;\n }\n }\n if(n != 1) ret[n] = 1;\n return ret;\n}\n\nll __gcd(ll a,ll b){\n if(a>b) return __gcd(b,a);\n if(a==0LL) return b;\n if(a==1LL) return 1LL;\n return __gcd(b%a,a);\n}\n\nll __lcm(ll a, ll b){\n return a*b/__gcd(a,b);\n}\n\nll Carmichael(ll n){\n auto pf = prime_factor(n);\n // if(n==2LL) return n;\n // if(pf.size()==1) {\n // for(auto p:pf) return (p.first-1LL);\n // }\n if(pf.size()==1){\n for(auto p:pf){\n if(p.first==2LL){\n if(p.second<=2) return p.second;\n else return pow(2LL,(p.second-2LL));\n }\n else return (p.first-1LL)*pow(p.first,(p.second-1LL));\n }\n }\n ll ret=1LL;\n for(auto p:pf) {\n // if(p.first==2LL) ret = __lcm(ret,2LL);\n // else ret = __lcm(ret,(p.first-1LL));\n ret = __lcm(ret,Carmichael(pow(p.first,p.second)));\n }\n return ret;\n}\n\nvector< ll > divisor(ll n) {\n vector< ll > ret;\n for(ll i = 2; i * i <= n; i++) {\n if(n % i == 0) {\n ret.push_back(i);\n if(i * i != n) ret.push_back(n / i);\n }\n }\n sort(begin(ret), end(ret));\n return (ret);\n}\n\nint solve(){\n auto pf = prime_factor(N);\n // Nを素因数分解したとき、2乗以上される因子があるとき。\n for(auto p:pf) if(p.second>1) {SAY(\"Nを素因数分解したとき、2乗以上される因子があるとき。\"); cout << \"-1\" << endl; return -1;}\n // Nが素数の場合\n if(pf.size()==1){SAY(\"Nが素数の場合\") cout << 1 << endl; return 1;}\n // Nが偶数の場合\n if(N%2==0) {SAY(\"Nが偶数の場合\") cout << \"-1\" << endl; return -1;}\n vector<ll> car;\n auto div = divisor(N);\n DBG(div)\n ll L=Carmichael(N);\n // for(auto p:div) car.push_back(Carmichael(p));\n // // for(auto p:pf) car.push_back(Carmichael(p.first));\n // for(auto p:pf) car.push_back(p.first-1);\n // // car.push_back(Carmichael(N));\n // // car.push_back(__lcm();\n // DBG(car)\n\n // Nは偶数の場合:で除かれてる。。。はず。 \n // for(auto c:car){\n // if(N%c==0){cout << \"-1\" << endl; return 0;}\n // }\n // set<ll> car;\n // for(auto p:pf){\n // ll c=p.first-1;\n // car.insert(c);\n // }\n vector<pll> modpows;\n // for(auto p:pf) modpows.push_back({1LL,(p.first-1LL)});\n map<ll,bool> used;\n for(auto p:div) {\n ll lamd = Carmichael(p);\n if(used[lamd]) continue;\n modpows.push_back({1LL,lamd});\n used[lamd] = true;\n }\n if(!used[L]) modpows.push_back({1LL,L});\n DBG(modpows)\n vector<ll> klcms;\n for(auto la:modpows){\n if(__gcd(N,la.second)==1LL){\n DBG(la.second)\n klcms.push_back(Carmichael(la.second));\n }\n }\n ll KLCM=1LL;\n DBG(klcms)\n for(auto lcm:klcms) KLCM = __lcm(KLCM,lcm);\n ll k=KLCM;\n DBG(KLCM)\n // while(k*k < N)\n // {\n // bool isOk=true;\n // for(auto &mps:modpows){\n // mps.first *= mod_pow(N,k,mps.second);\n // // mps.first %= mps.second;\n // if(mps.first!=1LL){\n // isOk=false;\n // }\n // }\n // DBG(modpows)\n // // for(auto c:car){\n // // if(mod_pow(N%c,k,c)!=1){\n // // isOk=false;\n // // break;\n // // }\n // // }\n // if(isOk){cout << k << endl; return k;}\n // k+=KLCM;\n // }\n\n for(ll k=1LL; k <= KLCM;k++)\n {\n bool isOk=true;\n for(auto &mps:modpows){\n mps.first *= N%mps.second;\n mps.first %= mps.second;\n if(mps.first!=1LL){\n isOk=false;\n }\n }\n DBG(modpows)\n // for(auto c:car){\n // if(mod_pow(N%c,k,c)!=1){\n // isOk=false;\n // break;\n // }\n // }\n if(isOk){cout << k << endl; return k;}\n }\n\n SAY(\"その他.うまいkが見つからなかった\")\n cout << \"-1\" << endl;\n return -1;\n} \n\n// x^(n^k) mod m\nll mod_pow_induc(ll x, ll n, ll m, ll k){\n if(k==-1LL) return 1LL;\n if(k==0LL) return mod_pow(x,1LL,m);\n if(k==1LL) return mod_pow(x,n,m);\n else return mod_pow_induc(mod_pow(x,n,m),n,m,k-1);\n}\n\nvoid sample(ll N, ll ans){\n // ll po=pow(N,ans)\n // llだと桁が足りない。\n if(ans==-1) return;\n for (ll i = 1; i < min(N/ans,(ll)100); i++)\n {\n // iとNが互いに素\n // ll po;\n // ll m=__gcd(N,i);\n // po = mod_pow(N,ans,Carmichael(N/m));\n // DBG(po)\n // 微妙に違う・・・\n // else po=mod_pow(N,ans,Carmichael(i));\n // cout << mod_pow(i,po,N) << endl;\n cout << mod_pow_induc(i,N,N,ans) << endl;\n }\n \n}\n\nint main()\n{\n input();\n // N=1234567;\n ll ans = solve();\n // sample(N, ans);\n return 0;\n}", "accuracy": 1, "time_ms": 4850, "memory_kb": 3356, "score_of_the_acc": -1.0837, "final_rank": 7 }, { "submission_id": "aoj_2720_4292480", "code_snippet": "#include <bits/stdc++.h>\n#ifdef __LOCAL\n #define DBG(X) cout << #X << \" = \" << (X) << endl;\n #define SAY(X) cout << (X) << endl;\n#else\n #define DBG(X)\n #define SAY(X)\n#endif\n\n#ifdef __LOCAL\n #include <filesystem>\n namespace fs = std::filesystem;\n#endif\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> pll;\ninline void fast_io() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); };\ntemplate<typename T, typename S> inline ostream& operator<<(ostream& os, const pair<T, S> p) { cout << \"[\" << p.first << \";\" << p.second << \"]\"; return os; }\ntemplate<typename T, typename S> inline ostream& operator<<(ostream& os, const map<T, S> p) { for (auto el : p) cout << \"[\" << el.first << \";\" << el.second << \"]\"; return os; }\ntemplate<typename T> inline ostream& operator<<(ostream& os, const vector<T>& v) { for (auto el : v) cout << el << \" \"; return os; }\n\nll N;\nvoid input(){\n // fast_io();/\n #ifdef __LOCAL\n fs::path p = __FILE__;\n fs::path input,output;\n input = output = p.parent_path();\n input += string(\"/input/\") + string(p.stem()) + string(\".txt\");\n output += string(\"/output/\") + string(p.stem()) + string(\".txt\");\n freopen(input.c_str(), \"r\", stdin);\n freopen(output.c_str(), \"w\", stdout);\n #endif\n cin >> N;\n}\n\nll euler_phi(ll n) {\n ll ret = n;\n for(ll i = 2; i * i <= n; i++) {\n if(n % i == 0) {\n ret -= ret / i;\n while(n % i == 0) n /= i;\n }\n }\n if(n > 1) ret -= ret / n;\n return ret;\n}\n\n\ntemplate< typename T >\nT mod_pow(T x, T n, const T &p) {\n T ret = 1LL;\n while(n > 0) {\n if(n & 1) (ret *= x) %= p;\n (x *= x) %= p;\n n >>= 1;\n }\n return ret;\n}\n\nmap< ll, ll > prime_factor(ll n) {\n map< ll, ll > ret;\n for(ll i = 2; i * i <= n; i++) {\n while(n % i == 0) {\n ret[i]++;\n n /= i;\n }\n }\n if(n != 1) ret[n] = 1;\n return ret;\n}\n\nll __gcd(ll a,ll b){\n if(a>b) return __gcd(b,a);\n if(a==0LL) return b;\n if(a==1LL) return 1LL;\n return __gcd(b%a,a);\n}\n\nll __lcm(ll a, ll b){\n return a*b/__gcd(a,b);\n}\n\nll Carmichael(ll n){\n auto pf = prime_factor(n);\n // if(n==2LL) return n;\n // if(pf.size()==1) {\n // for(auto p:pf) return (p.first-1LL);\n // }\n ll ret=1LL;\n for(auto p:pf) {\n if(p.first==2LL) ret = __lcm(ret,2LL);\n else ret = __lcm(ret,(p.first-1LL));\n // ret = __lcm(ret,Carmichael(p.first));\n }\n return ret;\n}\n\nvector< ll > divisor(ll n) {\n vector< ll > ret;\n for(ll i = 2; i * i <= n; i++) {\n if(n % i == 0) {\n ret.push_back(i);\n if(i * i != n) ret.push_back(n / i);\n }\n }\n sort(begin(ret), end(ret));\n return (ret);\n}\n\nint solve(){\n auto pf = prime_factor(N);\n // Nを素因数分解したとき、2乗以上される因子があるとき。\n for(auto p:pf) if(p.second>1) {cout << \"-1\" << endl; return 0;}\n // Nが素数の場合\n if(pf.size()==1){cout << 1 << endl; return 0;}\n // Nが偶数の場合\n if(N%2==0) {cout << \"-1\" << endl; return 0;}\n vector<ll> car;\n auto div = divisor(N);\n DBG(div)\n ll L=Carmichael(N);\n // for(auto p:div) car.push_back(Carmichael(p));\n // // for(auto p:pf) car.push_back(Carmichael(p.first));\n // for(auto p:pf) car.push_back(p.first-1);\n // // car.push_back(Carmichael(N));\n // // car.push_back(__lcm();\n // DBG(car)\n\n // Nは偶数の場合:で除かれてる。。。はず。 \n // for(auto c:car){\n // if(N%c==0){cout << \"-1\" << endl; return 0;}\n // }\n // set<ll> car;\n // for(auto p:pf){\n // ll c=p.first-1;\n // car.insert(c);\n // }\n vector<pll> modpows;\n // for(auto p:pf) modpows.push_back({1LL,(p.first-1LL)});\n map<ll,bool> used;\n for(auto p:div) {\n ll lamd = Carmichael(p);\n if(used[lamd]) continue;\n modpows.push_back({1LL,lamd});\n used[lamd] = true;\n }\n if(!used[L]) modpows.push_back({1LL,L});\n DBG(modpows)\n\n for (ll k = 1; k < L; k++)\n {\n bool isOk=true;\n for(auto &mps:modpows){\n mps.first *= (N%mps.second);\n mps.first %= mps.second;\n if(mps.first!=1LL){\n isOk=false;\n break;\n }\n }\n // for(auto c:car){\n // if(mod_pow(N%c,k,c)!=1){\n // isOk=false;\n // break;\n // }\n // }\n if(isOk){cout << k << endl; return 0;}\n }\n cout << \"-1\" << endl;\n return 0;\n} \n\nvoid sample(ll N=N){\n ll po=pow(N,6);\n for (ll i = 0; i < N; i++)\n {\n cout << mod_pow(i,6LL,N) << endl;\n }\n \n}\n\nint main()\n{\n // N=21;\n input();\n solve();\n // sample(21);\n // for (int i = 1; i < 15; i++)\n // {\n // cout << mod_pow(i,4,15) << endl;\n // } \n return 0;\n}", "accuracy": 0.5421686746987951, "time_ms": 300, "memory_kb": 3140, "score_of_the_acc": -0.0741, "final_rank": 10 } ]
aoj_2721_cpp
Problem E: Enclose Points There are $N$ points and $M$ segments on the $xy$-plane. Each segment connects two of these points and they don't intersect each other except at the endpoints. You are also given $Q$ points as queries. Your task is to determine for each query point whether you can make a polygon that encloses the query point using some of the given segments. Note that the polygon should not necessarily be convex. Input Each input is formatted as follows. $N$ $M$ $Q$ $x_1$ $y_1$ ... $x_N$ $y_N$ $a_1$ $b_1$ ... $a_M$ $b_M$ $qx_1$ $qy_1$ ... $qx_Q$ $qy_Q$ The first line contains three integers $N$ ($2 \leq N \leq 100,000$), $M$ ($1 \leq M \leq 100,000$), and $Q$ ($1 \leq Q \leq 100,000$), which represent the number of points, the number of segments, and the number of queries, respectively. Each of the following $N$ lines contains two integers $x_i$ and $y_i$ ($-100,000 \leq x_i, y_i \leq 100,000$), the coordinates of the $i$-th point. The points are guaranteed to be distinct, that is, $(x_i, y_i) \ne (x_j, y_j)$ when $i \ne j$. Each of the following $M$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i < b_i \leq N$), which indicate that the $i$-th segment connects the $a_i$-th point and the $b_i$-th point. Assume that those segments do not intersect each other except at the endpoints. Each of the following $Q$ lines contains two integers $qx_i$ and $qy_i$ ($-100,000 \leq qx_i, qy_i \leq 100,000$), the coordinates of the $i$-th query point. You can assume that, for any pair of query point and segment, the distance between them is at least $10^{-4}$. Output The output should contain $Q$ lines. Print "Yes" on the $i$-th line if there is a polygon that contains the $i$-th query point. Otherwise print "No" on the $i$-th line. Sample Input 4 5 3 -10 -10 10 -10 10 10 -10 10 1 2 1 3 1 4 2 3 3 4 -20 0 1 0 20 0 Output for the Sample Input No Yes No Sample Input 8 8 5 -20 -20 20 -20 20 20 -20 20 -10 -10 10 -10 10 10 -10 10 1 2 1 4 2 3 3 4 5 6 5 8 6 7 7 8 -25 0 -15 0 0 0 15 0 25 0 Output for the Sample Input No Yes Yes Yes No Sample Input 8 8 5 -20 -10 -10 -10 -10 10 -20 10 10 -10 20 -10 20 10 10 10 1 2 2 3 3 4 1 4 5 6 6 7 7 8 5 8 -30 0 -15 0 0 0 15 0 30 0 Output for the Sample Input No Yes No Yes No
[ { "submission_id": "aoj_2721_11060906", "code_snippet": "#ifdef NACHIA\n#define _GLIBCXX_DEBUG\n#else\n#define NDEBUG\n#endif\n#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <set>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1ll << 60;\n#define REP(i,n) for(ll i=0; i<ll(n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class A, class B> void chmax(A& l, const B& r){ if(l < r) l = r; }\ntemplate <class A, class B> void chmin(A& l, const B& r){ if(r < l) l = r; }\n\nstruct P {\n ll x, y;\n};\nP operator-(P l, P r){ return { l.x - r.x, l.y - r.y }; }\nll operator^(P l, P r){ return l.x * r.y - l.y * r.x; }\nbool operator<(P l, P r){ return l.x != r.x ? l.x < r.x : l.y < r.y; }\nll sgn(ll x){ return x ? x < 0 ? -1 : 1 : 0; }\n\nbool argcmp(P l, P r){\n if(r.y == 0 && 0 < r.x) return 0;\n if(l.y == 0 && 0 < l.x) return 1;\n ll sl = sgn(l.y), sr = sgn(r.y);\n if(sl != sr) return sl > sr;\n return (l ^ r) > 0;\n}\n\nll dot(P a, P b) {\n return a.x * b.x + a.y * b.y;\n}\nll sgncrs(P a, P b, P c){\n ll q = (b - a) ^ (c - a);\n return q ? q < 0 ? -1 : 1 : 0;\n}\n\nstruct Edge {\n ll ccw;\n ll cw;\n ll from;\n ll to;\n};\n\nstruct L {\n P s, t;\n};\nstruct LI {\n L l;\n ll i;\n L reg() const { return l.s < l.t ? l : L{l.t, l.s}; }\n static ll d(P a, P b, P c){\n return c < a || b < c ? 0 : sgncrs(a, b, c);\n }\n bool operator<(LI b) const {\n L l = reg(), r = b.reg();\n if(l.t < r.s || r.t < l.s) return 0;\n ll f = 0;\n f += d(l.s, l.t, r.s) - d(r.s, r.t, l.s);\n f += d(l.s, l.t, r.t) - d(r.s, r.t, l.t);\n if(f) return 0 < f;\n if(r.s < l.t) return 0;\n if(l.s < r.t) return 1;\n return i < b.i;\n }\n};\nV<ll> orderSegments(V<L> e, ll inf = 1ll << 30){\n ll n = e.size(), f = 0;\n for(auto& l : e) if(l.t < l.s) swap(l.s, l.t);\n V<P> X(n*2);\n REP(i, n) X[i] = e[i].s, X[n + i] = e[i].t;\n V<ll> d(n), res(n), ord(n, -1), id(n*2);\n V<V<ll>> adj(n);\n std::set<LI> ds;\n V<std::set<LI>::iterator> its(n, ds.end());\n ds.insert({{{-inf,-inf}, {inf,-inf}}, -1});\n ds.insert({{{-inf,inf}, {inf,inf}}, -1});\n REP(i,n*2) id[i] = i;\n stable_sort(id.begin(), id.end(), [&](ll l, ll r){ return X[l] < X[r]; });\n auto addEdge = [&](ll l, ll r){\n if(l >= 0 && r >= 0) adj[l].push_back(r), d[r]++;\n };\n for(ll i : id){\n if(i < n){\n its[i] = ds.insert({e[i], i}).first;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, i), addEdge(i, (++r)->i);\n } else {\n i -= n;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, (++r)->i);\n ds.erase(its[i]);\n }\n }\n REP(i, n) if(!d[i]) ord[f++] = i;\n for(ll v : ord) if(v >= 0) for(ll w : adj[v]) if(!--d[w]) ord[f++] = w;\n REP(i, n) res[ord[i]] = i;\n return res;\n}\n\nvoid testcase(){\n ll N, M, Q; cin >> N >> M >> Q;\n V<P> A(N); REP(i,N) cin >> A[i].x >> A[i].y;\n V<V<ll>> adj(N);\n V<Edge> edges(M*2, {-1,-1,-1});\n auto edgeDir = [](P l, P r) -> bool {\n return l.y != r.y ? l.y < r.y : l.x < r.x;\n };\n {\n V<ll> I(N); REP(i,N) I[i] = i;\n sort(I.begin(), I.end(), [&](ll l, ll r){ return edgeDir(A[l], A[r]); });\n V<ll> O(N); REP(i,N) O[I[i]] = i;\n REP(i,M){\n ll u,v; cin >> u >> v; u--; v--; u = O[u]; v = O[v];\n adj[u].push_back(i*2);\n adj[v].push_back(i*2+1);\n edges[i*2].from = u;\n edges[i*2].to = v;\n edges[i*2+1].from = v;\n edges[i*2+1].to = u;\n }\n V<P> B(N);\n REP(i,N) B[i] = A[I[i]];\n swap(A, B);\n }\n REP(v,N) if(adj[v].size()){\n sort(adj[v].begin(), adj[v].end(), [&](ll l, ll r){\n ll f = edges[l].to, g = edges[r].to;\n return argcmp(A[f] - A[v], A[g] - A[v]);\n });\n REP(i,adj[v].size()){\n ll l = adj[v][i], r = adj[v][(i+1)%adj[v].size()];\n edges[l].ccw = r;\n edges[r].cw = l;\n }\n }\n\n V<ll> vis(M*2);\n V<ll> outer;\n REP(se,M*2) if(!vis[se]){\n ll area = 0;\n V<ll> echain;\n for(ll e = se; !vis[e]; e = edges[e^1].cw){\n area += A[edges[e].from] ^ A[edges[e].to];\n echain.push_back(e);\n vis[e] = 1;\n }\n if(area < 0) for(auto x : echain) outer.push_back(x);\n }\n\n sort(outer.begin(), outer.end());\n {\n V<ll> buf;\n for(ll x : outer){\n if(buf.size() && buf.back() == (x ^ 1)){\n buf.pop_back(); continue;\n }\n buf.push_back(x);\n }\n swap(outer, buf);\n }\n\n M = outer.size();\n\n V<P> pts(Q);\n for(auto& p : pts) cin >> p.x >> p.y;\n \n V<L> segs;\n for(auto e : outer) segs.push_back(L{ A[edges[e].from], A[edges[e].to] });\n REP(i,Q) segs.push_back(L{pts[i], pts[i]});\n auto ord = orderSegments(segs);\n\n struct Query {\n P pos;\n ll ty;\n ll e;\n };\n V<Query> queries;\n REP(i,Q) queries.push_back({ pts[i], 0, i });\n\n REP(i,M){\n ll u = edges[outer[i]].from;\n ll v = edges[outer[i]].to;\n queries.push_back({ min(A[u], A[v]), 1, i });\n queries.push_back({ max(A[u], A[v]), 2, i });\n }\n for(auto& q : queries) q.pos.y = q.pos.y * 3 + q.ty;\n sort(queries.begin(), queries.end(), [](auto& l, auto& r){ return l.pos < r.pos; });\n\n ll Z = M + Q;\n V<ll> fwt(Z+1);\n auto add = [&](ll p, ll v){\n p++;\n while(p <= Z){\n fwt[p] += v;\n p += p & -p;\n }\n };\n auto sum = [&](ll r){\n ll res = 0;\n while(r){\n res += fwt[r];\n r -= r & -r;\n }\n return res;\n };\n\n V<ll> ans(Q);\n for(auto query : queries){\n if(query.ty == 0){\n ans[query.e] = sum(ord[query.e + M]);\n }\n else {\n auto e = edges[outer[query.e]];\n bool way = A[e.from] < A[e.to];\n if(query.ty == 1){\n add(ord[query.e], way ? 1 : -1);\n }\n if(query.ty == 2){\n add(ord[query.e], way ? -1 : 1);\n }\n }\n }\n\n REP(i,Q) cout << (ans[i] ? \"Yes\\n\" : \"No\\n\");\n}\n\nint main(){\n cin.tie(0)->sync_with_stdio(0);\n testcase();\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 66668, "score_of_the_acc": -0.3384, "final_rank": 2 }, { "submission_id": "aoj_2721_11017443", "code_snippet": "#ifdef NACHIA\n#define _GLIBCXX_DEBUG\n#else\n#define NDEBUG\n#endif\n#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <set>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1ll << 60;\n#define REP(i,n) for(ll i=0; i<ll(n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class A, class B> void chmax(A& l, const B& r){ if(l < r) l = r; }\ntemplate <class A, class B> void chmin(A& l, const B& r){ if(r < l) l = r; }\n\nstruct P {\n ll x, y;\n};\nP operator-(P l, P r){ return { l.x - r.x, l.y - r.y }; }\nll operator^(P l, P r){ return l.x * r.y - l.y * r.x; }\nbool operator<(P l, P r){ return l.x != r.x ? l.x < r.x : l.y < r.y; }\nll sgn(ll x){ return x ? x < 0 ? -1 : 1 : 0; }\n\nbool argcmp(P l, P r){\n if(r.y == 0 && 0 < r.x) return 0;\n if(l.y == 0 && 0 < l.x) return 1;\n ll sl = sgn(l.y), sr = sgn(r.y);\n if(sl != sr) return sl > sr;\n return (l ^ r) > 0;\n}\n\nll dot(P a, P b) {\n return a.x * b.x + a.y * b.y;\n}\nll sgncrs(P a, P b, P c){\n ll q = (b - a) ^ (c - a);\n return q ? q < 0 ? -1 : 1 : 0;\n}\n\nstruct Edge {\n ll ccw;\n ll cw;\n ll from;\n ll to;\n};\n\nstruct L {\n P s, t;\n};\nstruct LI {\n L l;\n ll i;\n L reg() const { return l.s < l.t ? l : L{l.t, l.s}; }\n static ll d(P a, P b, P c){\n return c < a || b < c ? 0 : sgncrs(a, b, c);\n }\n bool operator<(LI b) const {\n L l = reg(), r = b.reg();\n if(l.t < r.s || r.t < l.s) return 0;\n ll f = 0;\n f += d(l.s, l.t, r.s) - d(r.s, r.t, l.s);\n f += d(l.s, l.t, r.t) - d(r.s, r.t, l.t);\n if(f) return 0 < f;\n if(r.s < l.t) return 0;\n if(l.s < r.t) return 1;\n return i < b.i;\n }\n};\nV<ll> orderSegments(V<L> e, ll inf = 1ll << 30){\n ll n = e.size(), f = 0;\n for(auto& l : e) if(l.t < l.s) swap(l.s, l.t);\n V<P> X(n*2);\n REP(i, n) X[i] = e[i].s, X[n + i] = e[i].t;\n V<ll> d(n), res(n), ord(n, -1), id(n*2);\n V<V<ll>> adj(n);\n std::set<LI> ds;\n V<std::set<LI>::iterator> its(n, ds.end());\n ds.insert({{{-inf,-inf}, {inf,-inf}}, -1});\n ds.insert({{{-inf,inf}, {inf,inf}}, -1});\n REP(i,n*2) id[i] = i;\n stable_sort(id.begin(), id.end(), [&](ll l, ll r){ return X[l] < X[r]; });\n auto addEdge = [&](ll l, ll r){\n if(l >= 0 && r >= 0) adj[l].push_back(r), d[r]++;\n };\n for(ll i : id){\n if(i < n){\n its[i] = ds.insert({e[i], i}).first;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, i), addEdge(i, (++r)->i);\n } else {\n i -= n;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, (++r)->i);\n ds.erase(its[i]);\n }\n }\n REP(i, n) if(!d[i]) ord[f++] = i;\n for(ll v : ord) if(v >= 0) for(ll w : adj[v]) if(!--d[w]) ord[f++] = w;\n REP(i, n) res[ord[i]] = i;\n return res;\n}\n\nvoid testcase(){\n ll N, M, Q; cin >> N >> M >> Q;\n V<P> A(N); REP(i,N) cin >> A[i].x >> A[i].y;\n V<V<ll>> adj(N);\n V<Edge> edges(M*2, {-1,-1,-1});\n auto edgeDir = [](P l, P r) -> bool {\n return l.y != r.y ? l.y < r.y : l.x < r.x;\n };\n {\n V<ll> I(N); REP(i,N) I[i] = i;\n sort(I.begin(), I.end(), [&](ll l, ll r){ return edgeDir(A[l], A[r]); });\n V<ll> O(N); REP(i,N) O[I[i]] = i;\n REP(i,M){\n ll u,v; cin >> u >> v; u--; v--; u = O[u]; v = O[v];\n adj[u].push_back(i*2);\n adj[v].push_back(i*2+1);\n edges[i*2].from = u;\n edges[i*2].to = v;\n edges[i*2+1].from = v;\n edges[i*2+1].to = u;\n }\n V<P> B(N);\n REP(i,N) B[i] = A[I[i]];\n swap(A, B);\n }\n REP(v,N) if(adj[v].size()){\n sort(adj[v].begin(), adj[v].end(), [&](ll l, ll r){\n ll f = edges[l].to, g = edges[r].to;\n return argcmp(A[f] - A[v], A[g] - A[v]);\n });\n REP(i,adj[v].size()){\n ll l = adj[v][i], r = adj[v][(i+1)%adj[v].size()];\n edges[l].ccw = r;\n edges[r].cw = l;\n }\n }\n\n V<ll> vis(M*2);\n V<ll> outer;\n REP(se,M*2) if(!vis[se]){\n ll area = 0;\n V<ll> echain;\n for(ll e = se; !vis[e]; e = edges[e^1].cw){\n area += A[edges[e].from] ^ A[edges[e].to];\n echain.push_back(e);\n vis[e] = 1;\n }\n if(area < 0) for(auto x : echain) outer.push_back(x);\n }\n\n sort(outer.begin(), outer.end());\n {\n V<ll> buf;\n for(ll x : outer){\n if(buf.size() && buf.back() == (x ^ 1)){\n buf.pop_back(); continue;\n }\n buf.push_back(x);\n }\n swap(outer, buf);\n }\n\n M = outer.size();\n\n V<P> pts(Q);\n for(auto& p : pts) cin >> p.x >> p.y;\n \n V<L> segs;\n for(auto e : outer) segs.push_back(L{ A[edges[e].from], A[edges[e].to] });\n REP(i,Q) segs.push_back(L{pts[i], pts[i]});\n auto ord = orderSegments(segs);\n\n struct Query {\n P pos;\n ll ty;\n ll e;\n };\n V<Query> queries;\n REP(i,Q) queries.push_back({ pts[i], 0, i });\n\n REP(i,M){\n ll u = edges[outer[i]].from;\n ll v = edges[outer[i]].to;\n queries.push_back({ min(A[u], A[v]), 1, i });\n queries.push_back({ max(A[u], A[v]), 2, i });\n }\n for(auto& q : queries) q.pos.y = q.pos.y * 3 + q.ty;\n sort(queries.begin(), queries.end(), [](auto& l, auto& r){ return l.pos < r.pos; });\n\n ll Z = M + Q;\n V<ll> fwt(Z+1);\n auto add = [&](ll p, ll v){\n p++;\n while(p <= Z){\n fwt[p] += v;\n p += p & -p;\n }\n };\n auto sum = [&](ll r){\n ll res = 0;\n while(r){\n res += fwt[r];\n r -= r & -r;\n }\n return res;\n };\n\n V<ll> ans(Q);\n for(auto query : queries){\n if(query.ty == 0){\n ans[query.e] = sum(ord[query.e + M]);\n }\n else {\n auto e = edges[outer[query.e]];\n bool way = A[e.from] < A[e.to];\n if(query.ty == 1){\n add(ord[query.e], way ? 1 : -1);\n }\n if(query.ty == 2){\n add(ord[query.e], way ? -1 : 1);\n }\n }\n }\n\n REP(i,Q) cout << (ans[i] ? \"Yes\\n\" : \"No\\n\");\n}\n\nint main(){\n cin.tie(0)->sync_with_stdio(0);\n testcase();\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 67480, "score_of_the_acc": -0.343, "final_rank": 3 }, { "submission_id": "aoj_2721_11017434", "code_snippet": "#ifdef NACHIA\n#define _GLIBCXX_DEBUG\n#else\n#define NDEBUG\n#endif\n#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <set>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1ll << 60;\n#define REP(i,n) for(ll i=0; i<ll(n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class A, class B> void chmax(A& l, const B& r){ if(l < r) l = r; }\ntemplate <class A, class B> void chmin(A& l, const B& r){ if(r < l) l = r; }\n\nstruct P {\n ll x, y;\n};\nP operator-(P l, P r){ return { l.x - r.x, l.y - r.y }; }\nll operator^(P l, P r){ return l.x * r.y - l.y * r.x; }\nbool operator<(P l, P r){ return l.x != r.x ? l.x < r.x : l.y < r.y; }\nll sgn(ll x){ return x ? x < 0 ? -1 : 1 : 0; }\n\nbool argcmp(P l, P r){\n if(r.y == 0 && 0 < r.x) return 0;\n if(l.y == 0 && 0 < l.x) return 1;\n ll sl = sgn(l.y), sr = sgn(r.y);\n if(sl != sr) return sl > sr;\n return (l ^ r) > 0;\n}\n\nll dot(P a, P b) {\n return a.x * b.x + a.y * b.y;\n}\nll sgncrs(P a, P b, P c){\n ll q = (b - a) ^ (c - a);\n return q ? q < 0 ? -1 : 1 : 0;\n}\n\nstruct Edge {\n ll ccw;\n ll cw;\n ll from;\n ll to;\n};\n\nstruct L {\n P s, t;\n};\nstruct LI {\n L l;\n ll i;\n L reg() const { return l.s < l.t ? l : L{l.t, l.s}; }\n static ll d(P a, P b, P c){\n return c < a || b < c ? 0 : sgncrs(a, b, c);\n }\n bool operator<(LI b) const {\n L l = reg(), r = b.reg();\n if(l.t < r.s || r.t < l.s) return 0;\n ll f = 0;\n f += d(l.s, l.t, r.s) - d(r.s, r.t, l.s);\n f += d(l.s, l.t, r.t) - d(r.s, r.t, l.t);\n if(f) return 0 < f;\n if(r.s < l.t) return 0;\n if(l.s < r.t) return 1;\n return i < b.i;\n }\n};\nV<ll> orderSegments(V<L> e, ll inf = 1ll << 30){\n ll n = e.size(), f = 0;\n for(auto& l : e) if(l.t < l.s) swap(l.s, l.t);\n V<P> X(n*2);\n REP(i, n) X[i] = e[i].s, X[n + i] = e[i].t;\n V<ll> d(n), res(n), ord(n, -1), id(n*2);\n V<V<ll>> adj(n);\n std::set<LI> ds;\n V<std::set<LI>::iterator> its(n, ds.end());\n ds.insert({{{-inf,-inf}, {inf,-inf}}, -1});\n ds.insert({{{-inf,inf}, {inf,inf}}, -1});\n REP(i,n*2) id[i] = i;\n stable_sort(id.begin(), id.end(), [&](ll l, ll r){ return X[l] < X[r]; });\n auto addEdge = [&](ll l, ll r){\n if(l >= 0 && r >= 0) adj[l].push_back(r), d[r]++;\n };\n for(ll i : id){\n if(i < n){\n its[i] = ds.insert({e[i], i}).first;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, i), addEdge(i, (++r)->i);\n } else {\n i -= n;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, (++r)->i);\n ds.erase(its[i]);\n }\n }\n REP(i, n) if(!d[i]) ord[f++] = i;\n for(ll v : ord) if(v >= 0) for(ll w : adj[v]) if(!--d[w]) ord[f++] = w;\n REP(i, n) res[ord[i]] = i;\n return res;\n}\n\nvoid testcase(){\n ll N, M, Q; cin >> N >> M >> Q;\n V<P> A(N); REP(i,N) cin >> A[i].x >> A[i].y;\n V<V<ll>> adj(N);\n V<Edge> edges(M*2, {-1,-1,-1});\n auto edgeDir = [](P l, P r) -> bool {\n return l.y != r.y ? l.y < r.y : l.x < r.x;\n };\n {\n V<ll> I(N); REP(i,N) I[i] = i;\n sort(I.begin(), I.end(), [&](ll l, ll r){ return edgeDir(A[l], A[r]); });\n V<ll> O(N); REP(i,N) O[I[i]] = i;\n REP(i,M){\n ll u,v; cin >> u >> v; u--; v--; u = O[u]; v = O[v];\n adj[u].push_back(i*2);\n adj[v].push_back(i*2+1);\n edges[i*2].from = u;\n edges[i*2].to = v;\n edges[i*2+1].from = v;\n edges[i*2+1].to = u;\n }\n V<P> B(N);\n REP(i,N) B[i] = A[I[i]];\n swap(A, B);\n }\n REP(v,N) if(adj[v].size()){\n sort(adj[v].begin(), adj[v].end(), [&](ll l, ll r){\n ll f = edges[l].to, g = edges[r].to;\n return argcmp(A[f] - A[v], A[g] - A[v]);\n });\n REP(i,adj[v].size()){\n ll l = adj[v][i], r = adj[v][(i+1)%adj[v].size()];\n edges[l].ccw = r;\n edges[r].cw = l;\n }\n }\n\n V<ll> vis(M*2);\n V<ll> outer;\n REP(se,M*2) if(!vis[se]){\n ll area = 0;\n V<ll> echain;\n for(ll e = se; !vis[e]; e = edges[e^1].cw){\n area += A[edges[e].from] ^ A[edges[e].to];\n echain.push_back(e);\n vis[e] = 1;\n }\n if(area < 0) for(auto x : echain) outer.push_back(x);\n }\n\n sort(outer.begin(), outer.end());\n {\n V<ll> buf;\n for(ll x : outer){\n if(buf.size() && buf.back() == (x ^ 1)){\n buf.pop_back(); continue;\n }\n buf.push_back(x);\n }\n swap(outer, buf);\n }\n\n M = outer.size();\n\n V<P> pts(Q);\n for(auto& p : pts) cin >> p.x >> p.y;\n \n //for(auto p : A){\n // cout << \"point(\" << p.x << \",\" << p.y << \");\\n\";\n //}\n //for(auto ei : outer){\n // auto e = edges[ei];\n // cout << \"line(\" << e.from << \",\" << e.to << \");\\n\";\n //} cout << endl;\n \n V<L> segs;\n for(auto e : outer) segs.push_back(L{ A[edges[e].from], A[edges[e].to] });\n REP(i,Q) segs.push_back(L{pts[i], pts[i]});\n auto ord = orderSegments(segs);\n\n struct Query {\n P pos;\n ll ty;\n ll e;\n };\n V<Query> queries;\n REP(i,Q) queries.push_back({ pts[i], 0, i });\n\n REP(i,M){\n ll u = edges[outer[i]].from;\n ll v = edges[outer[i]].to;\n queries.push_back({ min(A[u], A[v]), 1, i });\n queries.push_back({ max(A[u], A[v]), 2, i });\n }\n for(auto& q : queries) q.pos.x = q.pos.x * 3 + q.ty;\n sort(queries.begin(), queries.end(), [](auto& l, auto& r){ return l.pos < r.pos; });\n\n ll Z = M + Q;\n V<ll> fwt(Z+1);\n auto add = [&](ll p, ll v){\n p++;\n while(p <= Z){\n fwt[p] += v;\n p += p & -p;\n }\n };\n auto sum = [&](ll r){\n ll res = 0;\n while(r){\n res += fwt[r];\n r -= r & -r;\n }\n return res;\n };\n\n V<ll> ans(Q);\n for(auto query : queries){\n if(query.ty == 0){\n ans[query.e] = sum(ord[query.e + M]);\n }\n else {\n auto e = edges[outer[query.e]];\n bool way = A[e.from] < A[e.to];\n if(query.ty == 1){\n add(ord[query.e], way ? 1 : -1);\n }\n if(query.ty == 2){\n add(ord[query.e], way ? -1 : 1);\n }\n }\n }\n\n REP(i,Q) cout << (ans[i] ? \"Yes\\n\" : \"No\\n\");\n}\n\nint main(){\n cin.tie(0)->sync_with_stdio(0);\n testcase();\n return 0;\n}", "accuracy": 0.3793103448275862, "time_ms": 30, "memory_kb": 16996, "score_of_the_acc": -0.0056, "final_rank": 15 }, { "submission_id": "aoj_2721_11017409", "code_snippet": "#ifdef NACHIA\n#define _GLIBCXX_DEBUG\n#else\n#define NDEBUG\n#endif\n#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <set>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1ll << 60;\n#define REP(i,n) for(ll i=0; i<ll(n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class A, class B> void chmax(A& l, const B& r){ if(l < r) l = r; }\ntemplate <class A, class B> void chmin(A& l, const B& r){ if(r < l) l = r; }\n\nstruct P {\n ll x, y;\n};\nP operator-(P l, P r){ return { l.x - r.x, l.y - r.y }; }\nll operator^(P l, P r){ return l.x * r.y - l.y * r.x; }\nbool operator<(P l, P r){ return l.x != r.x ? l.x < r.x : l.y < r.y; }\nll sgn(ll x){ return x ? x < 0 ? -1 : 1 : 0; }\n\nbool argcmp(P l, P r){\n if(r.y == 0 && 0 < r.x) return 0;\n if(l.y == 0 && 0 < l.x) return 1;\n ll sl = sgn(l.y), sr = sgn(r.y);\n if(sl != sr) return sl > sr;\n return (l ^ r) > 0;\n}\n\nll dot(P a, P b) {\n return a.x * b.x + a.y * b.y;\n}\nll sgncrs(P a, P b, P c){\n ll q = (b - a) ^ (c - a);\n return q ? q < 0 ? -1 : 1 : 0;\n}\n\nstruct Edge {\n ll ccw;\n ll cw;\n ll from;\n ll to;\n};\n\nstruct L {\n P s, t;\n};\nstruct LI {\n L l;\n ll i;\n L reg() const { return l.s < l.t ? l : L{l.t, l.s}; }\n static ll d(P a, P b, P c){\n return c < a || b < c ? 0 : sgncrs(a, b, c);\n }\n bool operator<(LI b) const {\n L l = reg(), r = b.reg();\n if(l.t < r.s || r.t < l.s) return 0;\n ll f = 0;\n f += d(l.s, l.t, r.s) - d(r.s, r.t, l.s);\n f += d(l.s, l.t, r.t) - d(r.s, r.t, l.t);\n if(f) return 0 < f;\n if(r.s < l.t) return 0;\n if(l.s < r.t) return 1;\n return i < b.i;\n }\n};\nV<ll> orderSegments(V<L> e, ll inf = 1ll << 30){\n ll n = e.size(), f = 0;\n V<P> X(n*2);\n REP(i, n) X[i * 2] = e[i].s, X[i * 2 + 1] = e[i].t;\n V<ll> d(n), res(n), ord(n), vis(n), id(n*2);\n V<V<ll>> adj(n);\n std::set<LI> ds;\n V<std::set<LI>::iterator> its(n, ds.end());\n ds.insert({{{-inf,-inf}, {inf,-inf}}, -1});\n ds.insert({{{-inf,inf}, {inf,inf}}, -1});\n REP(i,n*2) id[i] = i;\n sort(id.begin(), id.end(), [&](ll l, ll r){ return X[l] < X[r]; });\n auto addEdge = [&](ll l, ll r){\n if(l >= 0 && r >= 0) adj[l].push_back(r), d[r]++;\n };\n for(ll i : id){\n if(vis[i /= 2]){\n auto l = its[i], r = its[i];\n addEdge((--l)->i, (++r)->i);\n ds.erase(its[i]);\n } else {\n its[i] = ds.insert({e[i], i}).first;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, i), addEdge(i, (++r)->i);\n }\n vis[i] ^= 1;\n }\n REP(i, n) if(!d[i]) ord[f++] = i;\n for(ll v : ord) for(ll w : adj[v]) if(!--d[w]) ord[f++] = w;\n REP(i, n) res[ord[i]] = i;\n return res;\n}\n\nvoid testcase(){\n ll N, M, Q; cin >> N >> M >> Q;\n V<P> A(N); REP(i,N) cin >> A[i].x >> A[i].y;\n V<V<ll>> adj(N);\n V<Edge> edges(M*2, {-1,-1,-1});\n auto edgeDir = [](P l, P r) -> bool {\n return l.y != r.y ? l.y < r.y : l.x < r.x;\n };\n {\n V<ll> I(N); REP(i,N) I[i] = i;\n sort(I.begin(), I.end(), [&](ll l, ll r){ return edgeDir(A[l], A[r]); });\n V<ll> O(N); REP(i,N) O[I[i]] = i;\n REP(i,M){\n ll u,v; cin >> u >> v; u--; v--; u = O[u]; v = O[v];\n adj[u].push_back(i*2);\n adj[v].push_back(i*2+1);\n edges[i*2].from = u;\n edges[i*2].to = v;\n edges[i*2+1].from = v;\n edges[i*2+1].to = u;\n }\n V<P> B(N);\n REP(i,N) B[i] = A[I[i]];\n swap(A, B);\n }\n REP(v,N) if(adj[v].size()){\n sort(adj[v].begin(), adj[v].end(), [&](ll l, ll r){\n ll f = edges[l].to, g = edges[r].to;\n return argcmp(A[f] - A[v], A[g] - A[v]);\n });\n REP(i,adj[v].size()){\n ll l = adj[v][i], r = adj[v][(i+1)%adj[v].size()];\n edges[l].ccw = r;\n edges[r].cw = l;\n }\n }\n\n V<ll> vis(M*2);\n V<ll> outer;\n REP(se,M*2) if(!vis[se]){\n ll area = 0;\n V<ll> echain;\n for(ll e = se; !vis[e]; e = edges[e^1].cw){\n area += A[edges[e].from] ^ A[edges[e].to];\n echain.push_back(e);\n vis[e] = 1;\n }\n if(area < 0) for(auto x : echain) outer.push_back(x);\n }\n\n sort(outer.begin(), outer.end());\n {\n V<ll> buf;\n for(ll x : outer){\n if(buf.size() && buf.back() == (x ^ 1)){\n buf.pop_back(); continue;\n }\n buf.push_back(x);\n }\n swap(outer, buf);\n }\n\n M = outer.size();\n\n V<P> pts(Q);\n for(auto& p : pts) cin >> p.x >> p.y;\n \n //for(auto p : A){\n // cout << \"point(\" << p.x << \",\" << p.y << \");\\n\";\n //}\n //for(auto ei : outer){\n // auto e = edges[ei];\n // cout << \"line(\" << e.from << \",\" << e.to << \");\\n\";\n //} cout << endl;\n \n V<L> segs;\n for(auto e : outer) segs.push_back(L{ A[edges[e].from], A[edges[e].to] });\n REP(i,Q) segs.push_back(L{pts[i], pts[i]});\n auto ord = orderSegments(segs);\n\n struct Query {\n P pos;\n ll ty;\n ll e;\n };\n V<Query> queries;\n REP(i,Q) queries.push_back({ pts[i], 0, i });\n\n REP(i,M){\n ll u = edges[outer[i]].from;\n ll v = edges[outer[i]].to;\n queries.push_back({ min(A[u], A[v]), 1, i });\n queries.push_back({ max(A[u], A[v]), 2, i });\n }\n for(auto& q : queries) q.pos.x = q.pos.x * 3 + q.ty;\n sort(queries.begin(), queries.end(), [](auto& l, auto& r){ return l.pos < r.pos; });\n\n ll Z = M + Q;\n V<ll> fwt(Z+1);\n auto add = [&](ll p, ll v){\n p++;\n while(p <= Z){\n fwt[p] += v;\n p += p & -p;\n }\n };\n auto sum = [&](ll r){\n ll res = 0;\n while(r){\n res += fwt[r];\n r -= r & -r;\n }\n return res;\n };\n\n V<ll> ans(Q);\n for(auto query : queries){\n if(query.ty == 0){\n ans[query.e] = sum(ord[query.e + M]);\n }\n else {\n auto e = edges[outer[query.e]];\n bool way = A[e.from] < A[e.to];\n if(query.ty == 1){\n add(ord[query.e], way ? 1 : -1);\n }\n if(query.ty == 2){\n add(ord[query.e], way ? -1 : 1);\n }\n }\n }\n\n REP(i,Q) cout << (ans[i] ? \"Yes\\n\" : \"No\\n\");\n}\n\nint main(){\n cin.tie(0)->sync_with_stdio(0);\n testcase();\n return 0;\n}", "accuracy": 0.3793103448275862, "time_ms": 30, "memory_kb": 17384, "score_of_the_acc": -0.0078, "final_rank": 16 }, { "submission_id": "aoj_2721_11017323", "code_snippet": "#ifdef NACHIA\n#define _GLIBCXX_DEBUG\n#else\n#define NDEBUG\n#endif\n#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <set>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1ll << 60;\n#define REP(i,n) for(ll i=0; i<ll(n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class A, class B> void chmax(A& l, const B& r){ if(l < r) l = r; }\ntemplate <class A, class B> void chmin(A& l, const B& r){ if(r < l) l = r; }\n\nstruct P {\n ll x, y;\n};\nP operator-(P l, P r){ return { l.x - r.x, l.y - r.y }; }\nll operator^(P l, P r){ return l.x * r.y - l.y * r.x; }\nbool operator<(P l, P r){ return l.x != r.x ? l.x < r.x : l.y < r.y; }\nll sgn(ll x){ return x ? x < 0 ? -1 : 1 : 0; }\n\nbool argcmp(P l, P r){\n if(r.y == 0 && 0 < r.x) return 0;\n if(l.y == 0 && 0 < l.x) return 1;\n ll sl = sgn(l.y), sr = sgn(r.y);\n if(sl != sr) return sl > sr;\n return (l ^ r) > 0;\n}\n\nll dot(P a, P b) {\n return a.x * b.x + a.y * b.y;\n}\nll sgncrs(P a, P b, P c){\n ll q = (b - a) ^ (c - a);\n return q ? q < 0 ? -1 : 1 : 0;\n}\n\nstruct Edge {\n ll ccw;\n ll cw;\n ll from;\n ll to;\n};\n\nstruct L {\n P s, t;\n};\nstruct LI {\n L l;\n ll i;\n L reg() const { return l.s < l.t ? l : L{l.t, l.s}; }\n static ll d(P a, P b, P c){\n if(c.x < a.x || b.x < c.x) return 0;\n if(sgncrs(a, b, c)) return sgncrs(a, b, c);\n if(!dot(b - a, c - a)) return 0;\n return sgn(dot(b - a, c - a));\n }\n bool operator<(LI b) const {\n L l = reg(), r = b.reg();\n ll f = 0;\n f += d(l.s, l.t, r.s) - d(r.s, r.t, l.s);\n f += d(l.s, l.t, r.t) - d(r.s, r.t, l.t);\n return f ? 0 < f : i < b.i;\n }\n};\nV<ll> orderSegments(V<L> e, ll inf = 1ll << 30){\n ll n = e.size(), f = 0;\n V<P> X(n*2);\n REP(i, n) X[i * 2] = e[i].s, X[i * 2 + 1] = e[i].t;\n V<ll> d(n), res(n), ord(n), vis(n), id(n*2);\n V<V<ll>> adj(n);\n std::set<LI> ds;\n V<std::set<LI>::iterator> its(n, ds.end());\n ds.insert({{{-inf,-inf}, {inf,-inf}}, -1});\n ds.insert({{{-inf,inf}, {inf,inf}}, -1});\n REP(i,n*2) id[i] = i;\n sort(id.begin(), id.end(), [&](ll l, ll r){ return X[l] < X[r]; });\n auto addEdge = [&](ll l, ll r){\n if(l >= 0 && r >= 0) adj[l].push_back(r), d[r]++;\n };\n for(ll i : id){\n if(vis[i /= 2]){\n auto l = its[i], r = its[i];\n addEdge((--l)->i, (++r)->i);\n ds.erase(its[i]);\n } else {\n its[i] = ds.insert({e[i], i}).first;\n auto l = its[i], r = its[i];\n addEdge((--l)->i, i), addEdge(i, (++r)->i);\n }\n vis[i] ^= 1;\n }\n REP(i, n) if(!d[i]) ord[f++] = i;\n for(ll v : ord) for(ll w : adj[v]) if(!--d[w]) ord[f++] = w;\n REP(i, n) res[ord[i]] = i;\n return res;\n}\n\nvoid testcase(){\n ll N, M, Q; cin >> N >> M >> Q;\n V<P> A(N); REP(i,N) cin >> A[i].x >> A[i].y;\n V<V<ll>> adj(N);\n V<Edge> edges(M*2, {-1,-1,-1});\n auto edgeDir = [](P l, P r) -> bool {\n return l.y != r.y ? l.y < r.y : l.x < r.x;\n };\n {\n V<ll> I(N); REP(i,N) I[i] = i;\n sort(I.begin(), I.end(), [&](ll l, ll r){ return edgeDir(A[l], A[r]); });\n V<ll> O(N); REP(i,N) O[I[i]] = i;\n REP(i,M){\n ll u,v; cin >> u >> v; u--; v--; u = O[u]; v = O[v];\n adj[u].push_back(i*2);\n adj[v].push_back(i*2+1);\n edges[i*2].from = u;\n edges[i*2].to = v;\n edges[i*2+1].from = v;\n edges[i*2+1].to = u;\n }\n V<P> B(N);\n REP(i,N) B[i] = A[I[i]];\n swap(A, B);\n }\n REP(v,N) if(adj[v].size()){\n sort(adj[v].begin(), adj[v].end(), [&](ll l, ll r){\n ll f = edges[l].to, g = edges[r].to;\n return argcmp(A[f] - A[v], A[g] - A[v]);\n });\n REP(i,adj[v].size()){\n ll l = adj[v][i], r = adj[v][(i+1)%adj[v].size()];\n edges[l].ccw = r;\n edges[r].cw = l;\n }\n }\n\n V<ll> vis(M*2);\n V<ll> outer;\n REP(se,M*2) if(!vis[se]){\n ll area = 0;\n V<ll> echain;\n for(ll e = se; !vis[e]; e = edges[e^1].cw){\n area += A[edges[e].from] ^ A[edges[e].to];\n echain.push_back(e);\n vis[e] = 1;\n }\n if(area < 0) for(auto x : echain) outer.push_back(x);\n }\n\n sort(outer.begin(), outer.end());\n {\n V<ll> buf;\n for(ll x : outer){\n if(buf.size() && buf.back() == (x ^ 1)){\n buf.pop_back(); continue;\n }\n buf.push_back(x);\n }\n swap(outer, buf);\n }\n\n M = outer.size();\n\n V<P> pts(Q);\n for(auto& p : pts) cin >> p.x >> p.y;\n \n //for(auto p : A){\n // cout << \"point(\" << p.x << \",\" << p.y << \");\\n\";\n //}\n //for(auto ei : outer){\n // auto e = edges[ei];\n // cout << \"line(\" << e.from << \",\" << e.to << \");\\n\";\n //} cout << endl;\n \n V<L> segs;\n for(auto e : outer) segs.push_back(L{ A[edges[e].from], A[edges[e].to] });\n REP(i,Q) segs.push_back(L{pts[i], pts[i]});\n auto ord = orderSegments(segs);\n\n struct Query {\n P pos;\n ll ty;\n ll e;\n };\n V<Query> queries;\n REP(i,Q) queries.push_back({ pts[i], 0, i });\n\n REP(i,M){\n ll u = edges[outer[i]].from;\n ll v = edges[outer[i]].to;\n queries.push_back({ min(A[u], A[v]), 1, i });\n queries.push_back({ max(A[u], A[v]), 2, i });\n }\n for(auto& q : queries) q.pos.x = q.pos.x * 3 + q.ty;\n sort(queries.begin(), queries.end(), [](auto& l, auto& r){ return l.pos < r.pos; });\n\n ll Z = M + Q;\n V<ll> fwt(Z+1);\n auto add = [&](ll p, ll v){\n p++;\n while(p <= Z){\n fwt[p] += v;\n p += p & -p;\n }\n };\n auto sum = [&](ll r){\n ll res = 0;\n while(r){\n res += fwt[r];\n r -= r & -r;\n }\n return res;\n };\n\n V<ll> ans(Q);\n for(auto query : queries){\n if(query.ty == 0){\n ans[query.e] = sum(ord[query.e + M]);\n }\n else {\n auto e = edges[outer[query.e]];\n bool way = A[e.from] < A[e.to];\n if(query.ty == 1){\n add(ord[query.e], way ? 1 : -1);\n }\n if(query.ty == 2){\n add(ord[query.e], way ? -1 : 1);\n }\n }\n }\n\n REP(i,Q) cout << (ans[i] ? \"Yes\\n\" : \"No\\n\");\n}\n\nint main(){\n cin.tie(0)->sync_with_stdio(0);\n testcase();\n return 0;\n}", "accuracy": 0.3793103448275862, "time_ms": 20, "memory_kb": 17384, "score_of_the_acc": -0.005, "final_rank": 14 }, { "submission_id": "aoj_2721_10323042", "code_snippet": "// AOJ #2721 Enclose Points\n// 2025.3.25\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Couts(const string &s) {\n for (char c : s) pc(c);\n pc('\\n');\n}\n\nconst int NMAX = 101000;\nint n, m;\n\nstruct Point {\n ll x, y;\n Point operator-(const Point &p) const {\n return { x - p.x, y - p.y };\n }\n bool isPos() const {\n return (x > 0) || (x == 0 && y > 0);\n }\n};\n\nPoint w[NMAX], QP[NMAX];\n\nstruct Ord {\n Point vec;\n int id;\n bool operator<(const Ord &o) const {\n if (vec.isPos() != o.vec.isPos()) return vec.isPos();\n return vec.y * o.vec.x < o.vec.y * vec.x;\n }\n};\n\nstruct Edge { int u, v; };\nEdge ed[2 * NMAX];\nvector<int> F[NMAX];\nll curX;\n\nstruct Frac {\n ll A, B;\n Frac() {}\n Frac(ll a, ll b) : A(a), B(b) {}\n bool operator<(const Frac &f) const {\n if ((A < 0) != (f.A < 0)) return A < 0;\n if (A < 0) return Frac(-f.A, f.B) < Frac(-A, B);\n if (A / B != f.A / f.B) return A / B < f.A / f.B;\n ll r1 = A % B, r2 = f.A % f.B;\n return r1 * f.B < r2 * B;\n }\n};\n\nstruct Seg {\n Point s, t;\n int id;\n Frac curY() const {\n return { s.y * (t.x - s.x) + (curX - s.x) * (t.y - s.y), t.x - s.x };\n }\n bool operator<(const Seg &o) const {\n Frac y1 = curY(), y2 = o.curY();\n if (y1 < y2) return true;\n if (y2 < y1) return false;\n bool cmp = (t.y - s.y) * (o.t.x - o.s.x) > (o.t.y - o.s.y) * (t.x - s.x);\n if (s.x == curX) return !cmp;\n return cmp;\n }\n};\n\nset<Seg> segSet;\nint num[2 * NMAX];\nint visEdge[2 * NMAX];\nint compCnt;\nint XC, Q;\nint outer[2 * NMAX];\nint ansArr[NMAX];\nll X[2 * NMAX];\n\nvector<int> inEdges[2 * NMAX], outEdges[2 * NMAX];\nvector<int> putIdx[2 * NMAX];\n\nvoid traverseEdge(int a) {\n if (visEdge[a]) return;\n visEdge[a] = compCnt;\n int vtx = ed[a].v;\n int idx = (num[a ^ 1] + 1) % F[vtx].size();\n traverseEdge(F[vtx][idx]);\n}\n\nint getXIdx(ll x) {\n return lower_bound(X + 1, X + XC + 1, x) - X;\n}\n\nint getVal(Point qp) {\n if (segSet.empty()) return 0;\n Point b = { qp.x - 1, qp.y };\n auto it = segSet.lower_bound({ b, qp, 0 });\n if (it == segSet.end()) return 0;\n return !outer[visEdge[it->id]];\n}\n\nint comp[NMAX];\nint compId;\nvector<int> graph[NMAX];\nvector<int> tp;\n\nvoid dfs(int a) {\n tp.push_back(a);\n comp[a] = compId;\n for (int nx : graph[a]) if (!comp[nx]) dfs(nx);\n}\n\nint compMark[NMAX], mark[NMAX];\n\nvoid addSeg(Seg s) {\n int i = s.id;\n int cid = comp[ed[i].u];\n if (mark[cid] == 2) return;\n if (!mark[cid]) {\n mark[cid] = 1;\n auto it = segSet.lower_bound(s);\n if (it != segSet.end() && !outer[visEdge[it->id]]) {\n mark[cid] = 2;\n return;\n }\n }\n segSet.insert(s);\n}\n\nvoid delSeg(int a) {\n Seg key = { w[ed[a].u], w[ed[a].v], a };\n auto it = segSet.find(key);\n if (it == segSet.end() || it->id != a) return;\n segSet.erase(it);\n}\n\nint main(){\n int i, j;\n n = Cin(), m = Cin(), Q = Cin();\n XC = 0;\n for (i = 1; i <= n; i++){\n int x = Cin(), y = Cin();\n w[i] = {x, y};\n X[++XC] = w[i].x;\n }\n for (i = 0; i < m; i++){\n int a = Cin(), b = Cin();\n graph[a].push_back(b);\n graph[b].push_back(a);\n ed[i * 2] = {a, b};\n F[a].push_back(i * 2);\n ed[i * 2 + 1] = {b, a};\n F[b].push_back(i * 2 + 1);\n }\n for (i = 1; i <= n; i++){\n if (F[i].empty()) continue;\n vector<Ord> ord;\n for (j = 0; j < (int)F[i].size(); j++){\n int id = F[i][j];\n ord.push_back({ w[ed[id].v] - w[i], id });\n }\n sort(ord.begin(), ord.end());\n F[i].clear();\n for (j = 0; j < (int)ord.size(); j++){\n num[ord[j].id] = F[i].size();\n F[i].push_back(ord[j].id);\n }\n }\n compCnt = 0;\n for (i = 0; i < 2 * m; i++){\n if (!visEdge[i]){\n compCnt++;\n traverseEdge(i);\n }\n }\n for (i = 1; i <= n; i++){\n if (!comp[i]){\n tp.clear();\n compId++;\n dfs(i);\n int mn = tp[0];\n for (j = 1; j < (int)tp.size(); j++)\n if ((w[mn] - w[tp[j]]).isPos()) mn = tp[j];\n if (!F[mn].empty()) outer[visEdge[F[mn][0]]]=1;\n }\n }\n for (i = 1; i <= Q; i++){\n int x = Cin(), y = Cin();\n QP[i] = {x, y};\n X[++XC] = QP[i].x;\n }\n sort(X + 1, X + XC + 1);\n for (i = 0; i < 2 * m; i++){\n Point p1 = w[ed[i].u], p2 = w[ed[i].v];\n if (p1.x < p2.x) {\n inEdges[getXIdx(p1.x)].push_back(i);\n outEdges[getXIdx(p2.x)].push_back(i);\n }\n }\n for (i = 1; i <= Q; i++) putIdx[getXIdx(QP[i].x)].push_back(i);\n for (i = 1; i <= XC; i++){\n curX = X[i];\n for (j = 0; j < (int)putIdx[i].size(); j++){\n int idx = putIdx[i][j];\n ansArr[idx] = getVal(QP[idx]);\n }\n for (j = 0; j < (int)outEdges[i].size(); j++)\n delSeg(outEdges[i][j]);\n\n vector<Seg> segs;\n for (int id : inEdges[i])\n segs.push_back({ w[ed[id].u], w[ed[id].v], id });\n if (segs.empty()) continue;\n sort(segs.begin(), segs.end());\n for (j = segs.size() - 1; j >= 0; j--) addSeg(segs[j]);\n }\n for (i = 1; i <= Q; i++) Couts(ansArr[i] ? \"Yes\" : \"No\");\n return 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 55360, "score_of_the_acc": -0.2998, "final_rank": 1 }, { "submission_id": "aoj_2721_8403478", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n#define MAX 3\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct DATA{\n\tDATA(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tDATA(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct DATA& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(isL != arg.isL){\n\n\t\t\tif(isL){ //■削除命令を先に処理する\n\n\t\t\t\treturn false;\n\t\t\t}else{\n\n\t\t\t\treturn true;\n\t\t\t}\n\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct SegInfo{\n\tSegInfo(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tSegInfo(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct SegInfo &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct SegInfo &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_DATAENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_DATAENT;\n}\n\n//傾きを求める関数\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue; //■時計回りでないならSKIP\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\tpoly_S[V.size()] = tmp_S;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t}\n\t\t}\n\t}\n\n\tvector<DATA> vec_data;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tcontinue; //■1つの辺が複数回使われる場合は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tdouble tmp_section = calc_section(Line(point[from],point[to]));\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\tvec_data.push_back(DATA(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_data.push_back(DATA(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tvec_data.push_back(DATA(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_data.begin(),vec_data.end());\n\n\tset<SegInfo> posSET;\n\n\tfor(int i = 0; i < vec_data.size(); i++){\n\n\t\tDATA data = vec_data[i];\n\n\t\tbaseX = data.x; //■sort用のxを更新\n\n\t\tif(data.isQuery){\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tauto at = posSET.lower_bound({0,data.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\tat--;\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[data.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[data.poly_ind]){\n\n\t\t\t\tif(!data.isL){\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[data.ind],SEC[data.ind]-2*EPS,(int)data.isToR,data.ind});\n\n\t\t\t\t\t//■誤差対策\n\t\t\t\t\tfor(int k = 0; k < MAX; k++){\n\t\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\t\tat--;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == data.ind){\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(COUNT[data.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[data.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\tauto at = posSET.lower_bound({0,data.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[data.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(data.isL){\n\n\t\t\t\tposSET.insert({SLOPE[data.ind],SEC[data.ind],(int)data.isToR,data.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[data.ind],SEC[data.ind]-2*EPS,(int)data.isToR,data.ind});\n\n\n\t\t\t\t//■誤差対策\n\t\t\t\tfor(int k = 0; k < MAX; k++){\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == data.ind){\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 3600, "memory_kb": 180520, "score_of_the_acc": -1.9215, "final_rank": 7 }, { "submission_id": "aoj_2721_8403460", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n#define MAX 3\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct DATA{\n\tDATA(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tDATA(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct DATA& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(isL != arg.isL){\n\n\t\t\tif(isL){ //■削除命令を先に処理する\n\n\t\t\t\treturn false;\n\t\t\t}else{\n\n\t\t\t\treturn true;\n\t\t\t}\n\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct SegInfo{\n\tSegInfo(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tSegInfo(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct SegInfo &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct SegInfo &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_DATAENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_DATAENT;\n}\n\n//傾きを求める関数\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue; //■時計回りでないならSKIP\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\tpoly_S[V.size()] = tmp_S;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t}\n\t\t}\n\t}\n\n\tvector<DATA> vec_data;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\tvec_data.push_back(DATA(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_data.push_back(DATA(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tvec_data.push_back(DATA(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_data.begin(),vec_data.end());\n\n\tset<SegInfo> posSET;\n\n\tfor(int i = 0; i < vec_data.size(); i++){\n\n\t\tDATA data = vec_data[i];\n\n\t\tbaseX = data.x; //■sort用のxを更新\n\n\t\tif(data.isQuery){\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tauto at = posSET.lower_bound({0,data.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\tat--;\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[data.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[data.poly_ind]){\n\n\t\t\t\tif(!data.isL){\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[data.ind],SEC[data.ind]-2*EPS,(int)data.isToR,data.ind});\n\n\t\t\t\t\t//■誤差対策\n\t\t\t\t\tfor(int k = 0; k < MAX; k++){\n\t\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\t\tat--;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == data.ind){\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(COUNT[data.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[data.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\tauto at = posSET.lower_bound({0,data.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[data.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(data.isL){\n\n\t\t\t\tposSET.insert({SLOPE[data.ind],SEC[data.ind],(int)data.isToR,data.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[data.ind],SEC[data.ind]-2*EPS,(int)data.isToR,data.ind});\n\n\n\t\t\t\t//■誤差対策\n\t\t\t\tfor(int k = 0; k < MAX; k++){\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == data.ind){\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 3510, "memory_kb": 184448, "score_of_the_acc": -1.9186, "final_rank": 6 }, { "submission_id": "aoj_2721_8403458", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct DATA{\n\tDATA(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tDATA(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct DATA& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(isL != arg.isL){\n\n\t\t\tif(isL){ //■削除命令を先に処理する\n\n\t\t\t\treturn false;\n\t\t\t}else{\n\n\t\t\t\treturn true;\n\t\t\t}\n\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct SegInfo{\n\tSegInfo(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tSegInfo(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct SegInfo &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct SegInfo &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_DATAENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_DATAENT;\n}\n\n//傾きを求める関数\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue; //■時計回りでないならSKIP\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\tpoly_S[V.size()] = tmp_S;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t}\n\t\t}\n\t}\n\n\tvector<DATA> vec_data;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\tvec_data.push_back(DATA(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_data.push_back(DATA(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tvec_data.push_back(DATA(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_data.begin(),vec_data.end());\n\n\tset<SegInfo> posSET;\n\n\tfor(int i = 0; i < vec_data.size(); i++){\n\n\t\tDATA data = vec_data[i];\n\n\t\tbaseX = data.x; //■sort用のxを更新\n\n\t\tif(data.isQuery){\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tauto at = posSET.lower_bound({0,data.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\tat--;\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[data.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[data.poly_ind]){\n\n\t\t\t\tif(!data.isL){\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[data.ind],SEC[data.ind]-2*EPS,(int)data.isToR,data.ind});\n\n\t\t\t\t\t//■誤差対策\n\t\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\t\tat--;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == data.ind){\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(COUNT[data.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[data.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\tauto at = posSET.lower_bound({0,data.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[data.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(data.isL){\n\n\t\t\t\tposSET.insert({SLOPE[data.ind],SEC[data.ind],(int)data.isToR,data.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[data.ind],SEC[data.ind]-2*EPS,(int)data.isToR,data.ind});\n\n\n\t\t\t\t//■誤差対策\n\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == data.ind){\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 3600, "memory_kb": 185008, "score_of_the_acc": -1.9468, "final_rank": 8 }, { "submission_id": "aoj_2721_8403416", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct DATA{\n\tDATA(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tDATA(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct DATA& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(isL != arg.isL){\n\n\t\t\tif(isL){ //■削除命令を先に処理する\n\n\t\t\t\treturn false;\n\t\t\t}else{\n\n\t\t\t\treturn true;\n\t\t\t}\n\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct SegInfo{\n\tSegInfo(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tSegInfo(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct SegInfo &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct SegInfo &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_DATAENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_DATAENT;\n}\n\n//傾きを求める関数\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue; //■時計回りでないならSKIP\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t}\n\t\t}\n\t}\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<DATA> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\tvec_seg.push_back(DATA(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(DATA(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tvec_seg.push_back(DATA(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\tset<SegInfo> posSET;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tDATA seg = vec_seg[i];\n\n\t\tbaseX = seg.x; //■sort用のxを更新\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\tat--;\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\n\t\t\t\t\t//■誤差対策\n\t\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\t\tat--;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tposSET.insert({SLOPE[seg.ind],SEC[seg.ind],(int)seg.isToR,seg.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\n\n\t\t\t\t//■誤差対策\n\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 3450, "memory_kb": 184484, "score_of_the_acc": -1.9021, "final_rank": 5 }, { "submission_id": "aoj_2721_8397083", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(isL != arg.isL){\n\n\t\t\tif(isL){ //■削除命令を先に処理する\n\n\t\t\t\treturn false;\n\t\t\t}else{\n\n\t\t\t\treturn true;\n\t\t\t}\n\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct Naoto{\n\tNaoto(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tNaoto(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct Naoto &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct Naoto &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n//傾きを求める関数\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue; //■時計回りでないならSKIP\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t}\n\t\t}\n\t}\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\tset<Naoto> posSET;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tbaseX = seg.x; //■sort用のxを更新\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\tat--;\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\n\t\t\t\t\t//■誤差対策\n\t\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\t\tat--;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tposSET.insert({SLOPE[seg.ind],SEC[seg.ind],(int)seg.isToR,seg.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\n\n\t\t\t\t//■誤差対策\n\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 3410, "memory_kb": 184736, "score_of_the_acc": -1.8923, "final_rank": 4 }, { "submission_id": "aoj_2721_8397050", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(isL != arg.isL){\n\n\t\t\tif(isL){\n\n\t\t\t\treturn false;\n\t\t\t}else{\n\n\t\t\t\treturn true;\n\t\t\t}\n\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct Naoto{\n\tNaoto(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tNaoto(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct Naoto &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct Naoto &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\n\n\n\n\tll sum = 0;\n\n\tset<Naoto> posSET;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tbaseX = seg.x;\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\tat--;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n線分と交差します\\n\");\n\t\t\t\t\tLINE[at->ind].outPut();\n\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\t//return 0;\n\t\t\t\t}\n\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t//■■\n\t\t\t/*double max_y = -HUGE_NUM;\n\t\t\tint tmp_ind = -1;\n\n\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\tint ind = nao.ind;\n\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\tif(y > seg.y+EPS)break;\n\n\t\t\t\tif(y+EPS < max_y){\n\n\t\t\t\t\tprintf(\"■■順番が狂ってる クエリ点(%.3lf,%.3lf)\\n\",seg.x,seg.y);\n\t\t\t\t\tprintf(\"前の線分[%d] slope:%.3lf max_y:%.3lf \",tmp_ind,SLOPE[tmp_ind],max_y);\n\t\t\t\t\tLINE[tmp_ind].outPut();\n\n\t\t\t\t\tprintf(\"今回の線分[%d] slope:%.3lf y:%.3lf \",ind,SLOPE[ind],y);\n\t\t\t\t\tLINE[ind].outPut();\n\n\t\t\t\t\tauto dk = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\t\t\tdk--;\n\t\t\t\t\tprintf(\"二分探索の線分 \");\n\t\t\t\t\tLINE[dk->ind].outPut();\n\n\t\t\t\t\tdouble pug = SLOPE[dk->ind]*seg.x + SEC[dk->ind];\n\t\t\t\t\tprintf(\"二分探索のy:%.3lf\\n\",pug);\n\n\t\t\t\t\treturn 0;\n\t\t\t\t}else{\n\n\t\t\t\t\tmax_y = y;\n\t\t\t\t\ttmp_ind = ind;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(tmp_ind != -1 && TO_R[tmp_ind] == 1){\n\n\t\t\t\tANS[seg.ind] = 1;\n\t\t\t}*/\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\t\t\t\t\t}\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\t\tint inu = 0;\n\n\t\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\t\tat--;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\t\tprintf(\"見つかりません\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\t\tprintf(\"線分と交差します\\n\");\n\t\t\t\t\t\t\tLINE[at->ind].outPut();\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"線分%dを追加します\\n\",seg.ind);\n\t\t\t\t}\n\n\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\tposSET.insert({SLOPE[seg.ind],SEC[seg.ind],(int)seg.isToR,seg.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tdouble y = SLOPE[seg.ind]*seg.x + SEC[seg.ind];\n\t\t\t\t\tprintf(\"y:%.3lf\\n\",y);\n\t\t\t\t}\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\tint inu = 0;\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tif(at == posSET.end()){\n\n\t\t\t\t\t\tprintf(\"いきなり最後\\n\");\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tprintf(\"最初に出会ったのは%d\\n\",at->ind);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\tprintf(\"見つかりません 順に線分を列挙します\\n\");\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tprintf(\"線分%d\\n\",nao.ind);\n\t\t\t\t\t}\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 3420, "memory_kb": 194448, "score_of_the_acc": -1.9499, "final_rank": 9 }, { "submission_id": "aoj_2721_8396807", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct Naoto{\n\tNaoto(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tNaoto(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct Naoto &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct Naoto &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\n\n\n\n\tll sum = 0;\n\n\tset<Naoto> posSET;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tbaseX = seg.x;\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\t/*if(DEBUG){\n\t\t\t\tdouble max_y = -HUGE_NUM;\n\t\t\t\tint pre_ind = -1;\n\n\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\tif(y < seg.y){\n\t\t\t\t\t\tif(y > max_y){\n\n\t\t\t\t\t\t\tpre_ind = ind;\n\t\t\t\t\t\t\tmax_y = y;\n\t\t\t\t\t\t}else if(fabs(y-max_y) < EPS){\n\n\t\t\t\t\t\t\tprintf(\"■同じ線分が2個入ってる\\n\");\n\t\t\t\t\t\t\treturn 0;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"■順番が狂ってる\\n\");\n\t\t\t\t\t\t\tprintf(\"pre_y:%.3lf pre_slope:%.3lf 線分pre \",max_y,SLOPE[pre_ind]);\n\t\t\t\t\t\t\tLINE[pre_ind].outPut();\n\t\t\t\t\t\t\tprintf(\"y:%.3lf slope:%.3lf 今回 \",y,SLOPE[ind]);\n\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\treturn 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tpre_ind = ind;\n\n\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t}*/\n\n\t\t\t\tat--;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n線分と交差します\\n\");\n\t\t\t\t\tLINE[at->ind].outPut();\n\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\t//return 0;\n\t\t\t\t}\n\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\t\t\t\t\t}\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\t\tint inu = 0;\n\n\t\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\t\tat--;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\t\tprintf(\"見つかりません\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\t\tprintf(\"線分と交差します\\n\");\n\t\t\t\t\t\t\tLINE[at->ind].outPut();\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"線分%dを追加します\\n\",seg.ind);\n\t\t\t\t}\n\n\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\tposSET.insert({SLOPE[seg.ind],SEC[seg.ind],(int)seg.isToR,seg.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tdouble y = SLOPE[seg.ind]*seg.x + SEC[seg.ind];\n\t\t\t\t\tprintf(\"y:%.3lf\\n\",y);\n\t\t\t\t}\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\tint inu = 0;\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tif(at == posSET.end()){\n\n\t\t\t\t\t\tprintf(\"いきなり最後\\n\");\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tprintf(\"最初に出会ったのは%d\\n\",at->ind);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tfor(int k = 0; k < 5; k++){\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\tprintf(\"見つかりません 順に線分を列挙します\\n\");\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tprintf(\"線分%d\\n\",nao.ind);\n\t\t\t\t\t}\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.39080459770114945, "time_ms": 300, "memory_kb": 142144, "score_of_the_acc": -0.786, "final_rank": 13 }, { "submission_id": "aoj_2721_8396703", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-4\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct Naoto{\n\tNaoto(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tNaoto(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct Naoto &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct Naoto &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\n\n\n\n\tll sum = 0;\n\n\tset<Naoto> posSET;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tbaseX = seg.x;\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\tauto at = posSET.lower_bound({0,seg.y-2*EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\t/*if(DEBUG){\n\t\t\t\tdouble max_y = -HUGE_NUM;\n\t\t\t\tint pre_ind = -1;\n\n\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\tif(y < seg.y){\n\t\t\t\t\t\tif(y > max_y){\n\n\t\t\t\t\t\t\tpre_ind = ind;\n\t\t\t\t\t\t\tmax_y = y;\n\t\t\t\t\t\t}else if(fabs(y-max_y) < EPS){\n\n\t\t\t\t\t\t\tprintf(\"■同じ線分が2個入ってる\\n\");\n\t\t\t\t\t\t\treturn 0;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"■順番が狂ってる\\n\");\n\t\t\t\t\t\t\tprintf(\"pre_y:%.3lf pre_slope:%.3lf 線分pre \",max_y,SLOPE[pre_ind]);\n\t\t\t\t\t\t\tLINE[pre_ind].outPut();\n\t\t\t\t\t\t\tprintf(\"y:%.3lf slope:%.3lf 今回 \",y,SLOPE[ind]);\n\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\treturn 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tpre_ind = ind;\n\n\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t}*/\n\n\t\t\t\tat--;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n線分と交差します\\n\");\n\t\t\t\t\tLINE[at->ind].outPut();\n\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\t//return 0;\n\t\t\t\t}\n\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\t\t\t\t\t}\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\t\tint inu = 0;\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\t\tprintf(\"見つかりません\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\t\tauto at = posSET.lower_bound({0,seg.y-2*EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\t\tprintf(\"線分と交差します\\n\");\n\t\t\t\t\t\t\tLINE[at->ind].outPut();\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"線分%dを追加します\\n\",seg.ind);\n\t\t\t\t}\n\n\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\tposSET.insert({SLOPE[seg.ind],SEC[seg.ind],(int)seg.isToR,seg.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tdouble y = SLOPE[seg.ind]*seg.x + SEC[seg.ind];\n\t\t\t\t\tprintf(\"y:%.3lf\\n\",y);\n\t\t\t\t}\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\tint inu = 0;\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tif(at == posSET.end()){\n\n\t\t\t\t\t\tprintf(\"いきなり最後\\n\");\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tprintf(\"最初に出会ったのは%d\\n\",at->ind);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\tprintf(\"見つかりません 順に線分を列挙します\\n\");\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tprintf(\"線分%d\\n\",nao.ind);\n\t\t\t\t\t}\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.39080459770114945, "time_ms": 300, "memory_kb": 141312, "score_of_the_acc": -0.7813, "final_rank": 12 }, { "submission_id": "aoj_2721_8396660", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct Naoto{\n\tNaoto(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tNaoto(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct Naoto &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct Naoto &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\n\n\n\n\tll sum = 0;\n\n\tset<Naoto> posSET;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tbaseX = seg.x;\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\tauto at = posSET.lower_bound({0,seg.y-2*EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\t/*if(DEBUG){\n\t\t\t\tdouble max_y = -HUGE_NUM;\n\t\t\t\tint pre_ind = -1;\n\n\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\tif(y < seg.y){\n\t\t\t\t\t\tif(y > max_y){\n\n\t\t\t\t\t\t\tpre_ind = ind;\n\t\t\t\t\t\t\tmax_y = y;\n\t\t\t\t\t\t}else if(fabs(y-max_y) < EPS){\n\n\t\t\t\t\t\t\tprintf(\"■同じ線分が2個入ってる\\n\");\n\t\t\t\t\t\t\treturn 0;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"■順番が狂ってる\\n\");\n\t\t\t\t\t\t\tprintf(\"pre_y:%.3lf pre_slope:%.3lf 線分pre \",max_y,SLOPE[pre_ind]);\n\t\t\t\t\t\t\tLINE[pre_ind].outPut();\n\t\t\t\t\t\t\tprintf(\"y:%.3lf slope:%.3lf 今回 \",y,SLOPE[ind]);\n\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\treturn 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tpre_ind = ind;\n\n\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t}*/\n\n\t\t\t\tat--;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n線分と交差します\\n\");\n\t\t\t\t\tLINE[at->ind].outPut();\n\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\t//return 0;\n\t\t\t\t}\n\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\t\t\t\t\t}\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\t\tint inu = 0;\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\t\tprintf(\"見つかりません\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\t\tauto at = posSET.lower_bound({0,seg.y-2*EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\t\tprintf(\"線分と交差します\\n\");\n\t\t\t\t\t\t\tLINE[at->ind].outPut();\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"線分%dを追加します\\n\",seg.ind);\n\t\t\t\t}\n\n\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\tposSET.insert({SLOPE[seg.ind],SEC[seg.ind],(int)seg.isToR,seg.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tdouble y = SLOPE[seg.ind]*seg.x + SEC[seg.ind];\n\t\t\t\t\tprintf(\"y:%.3lf\\n\",y);\n\t\t\t\t}\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\tint inu = 0;\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tif(at == posSET.end()){\n\n\t\t\t\t\t\tprintf(\"いきなり最後\\n\");\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tprintf(\"最初に出会ったのは%d\\n\",at->ind);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\tprintf(\"見つかりません 順に線分を列挙します\\n\");\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tprintf(\"線分%d\\n\",nao.ind);\n\t\t\t\t\t}\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.39080459770114945, "time_ms": 300, "memory_kb": 141260, "score_of_the_acc": -0.781, "final_rank": 11 }, { "submission_id": "aoj_2721_8396471", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\ndouble baseX;\n\n\nstruct Naoto{\n\tNaoto(){\n\n\t\tslope = sec = 0;\n\t\tto_r = ind = 0;\n\t}\n\tNaoto(double arg_slope,double arg_sec,int arg_to_r,int arg_ind){\n\t\tslope = arg_slope;\n\t\tsec = arg_sec;\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\n\tbool operator<(const struct Naoto &arg) const{\n\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn y1 < y2;\n\n\t\t}else{\n\n\t\t\tif(slope > 0 && arg.slope > 0){\n\n\t\t\t\treturn slope < arg.slope;\n\t\t\t}else if(slope < 0 && arg.slope < 0){\n\n\t\t\t\treturn slope < arg.slope; //■追加するときに右下がりが端点を共有してるときは、左上の点で、傾きが小さい方が下、\n\t\t\t}else if(slope < 0 && arg.slope > 0){\n\n\t\t\t\treturn true;\n\n\t\t\t}else{ //slope > 0 && arg.slope < 0\n\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\tbool operator==(const struct Naoto &arg) const{\n\n\t\tdouble y1 = slope*baseX + sec;\n\t\tdouble y2 = arg.slope*baseX + arg.sec;\n\n\t\tif(fabs(y1-y2) > EPS){\n\n\t\t\treturn false;;\n\n\t\t}else if(fabs(slope-arg.slope) > EPS){\n\n\t\t\treturn false;\n\t\t}else{\n\n\t\t\treturn true;\n\t\t}\n\t}\n\n\tdouble slope,sec;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nmap<int,int> e_count;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t\te_count[ind] += 1;\n\t\t}\n\t}\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tauto bt = e_count.find(ind);\n\t\t\tif(!isToR && bt->second >= 2)continue; //右向きの辺があるなら左向きは不要\n\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\n\n\n\n\tll sum = 0;\n\n\tset<Naoto> posSET;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tbaseX = seg.x;\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\tif(posSET.size() == 0){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\tif(at != posSET.begin()){\n\n\n\t\t\t\t/*if(DEBUG){\n\t\t\t\tdouble max_y = -HUGE_NUM;\n\t\t\t\tint pre_ind = -1;\n\n\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\tif(y < seg.y){\n\t\t\t\t\t\tif(y > max_y){\n\n\t\t\t\t\t\t\tpre_ind = ind;\n\t\t\t\t\t\t\tmax_y = y;\n\t\t\t\t\t\t}else if(fabs(y-max_y) < EPS){\n\n\t\t\t\t\t\t\tprintf(\"■同じ線分が2個入ってる\\n\");\n\t\t\t\t\t\t\treturn 0;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"■順番が狂ってる\\n\");\n\t\t\t\t\t\t\tprintf(\"pre_y:%.3lf pre_slope:%.3lf 線分pre \",max_y,SLOPE[pre_ind]);\n\t\t\t\t\t\t\tLINE[pre_ind].outPut();\n\t\t\t\t\t\t\tprintf(\"y:%.3lf slope:%.3lf 今回 \",y,SLOPE[ind]);\n\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\treturn 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tpre_ind = ind;\n\n\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t}*/\n\n\t\t\t\tat--;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n線分と交差します\\n\");\n\t\t\t\t\tLINE[at->ind].outPut();\n\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tint ind = nao.ind;\n\t\t\t\t\t\tdouble y = SLOPE[ind]*seg.x + SEC[ind];\n\t\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\t\tprintf(\"線分%dと交差します y:%.3lf\\n\",ind,y);\n\t\t\t\t\t\t\t\t\t\t\t\tLINE[ind].outPut();\n\t\t\t\t\t\t\tif(TO_R[ind]){\n\n\t\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\t//return 0;\n\t\t\t\t}\n\n\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\t\t\t\t\t}\n\n\t\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\t\tint inu = 0;\n\n\t\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tat++;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\t\tprintf(\"見つかりません\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\tif(posSET.size() > 0){\n\n\t\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\t\tauto at = posSET.lower_bound({0,seg.y-EPS,0,0});\n\t\t\t\t\tif(at != posSET.begin()){\n\n\t\t\t\t\t\tat--;\n\t\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\t\tprintf(\"線分と交差します\\n\");\n\t\t\t\t\t\t\tLINE[at->ind].outPut();\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif(TO_R[at->ind]){\n\n\t\t\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"線分%dを追加します\\n\",seg.ind);\n\t\t\t\t}\n\n\t\t\t\t//POS(double arg_slope,double arg_sec,int arg_to_r,int arg_ind)\n\t\t\t\tposSET.insert({SLOPE[seg.ind],SEC[seg.ind],(int)seg.isToR,seg.ind});\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"★★線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tdouble y = SLOPE[seg.ind]*seg.x + SEC[seg.ind];\n\t\t\t\t\tprintf(\"y:%.3lf\\n\",y);\n\t\t\t\t}\n\n\t\t\t\tauto at = posSET.lower_bound({SLOPE[seg.ind],SEC[seg.ind]-2*EPS,(int)seg.isToR,seg.ind});\n\t\t\t\tint inu = 0;\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tif(at == posSET.end()){\n\n\t\t\t\t\t\tprintf(\"いきなり最後\\n\");\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tprintf(\"最初に出会ったのは%d\\n\",at->ind);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\twhile(at != posSET.end()){\n\n\t\t\t\t\tif(at->ind == seg.ind){\n\t\t\t\t\t\tinu = 1;\n\t\t\t\t\t\tposSET.erase(at);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tat++;\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG && inu == 0){\n\t\t\t\t\tprintf(\"見つかりません 順に線分を列挙します\\n\");\n\t\t\t\t\tfor(Naoto nao: posSET){\n\n\t\t\t\t\t\tprintf(\"線分%d\\n\",nao.ind);\n\t\t\t\t\t}\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.39080459770114945, "time_ms": 300, "memory_kb": 141236, "score_of_the_acc": -0.7809, "final_rank": 10 }, { "submission_id": "aoj_2721_8394616", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n//右上がり\nstruct R_UP{\n\tR_UP(){\n\n\t\tto_r = ind = 0;\n\t}\n\tR_UP(Point a,Point b,int arg_to_r,int arg_ind){\n\n\t\tline = Line(a,b);\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\tbool operator<(const struct R_UP& arg) const{\n\n\t\tdouble slope1 = (line.p[1].y-line.p[0].y)/(line.p[1].x-line.p[0].x);\n\t\tdouble slope2 = (arg.line.p[1].y-arg.line.p[0].y)/(arg.line.p[1].x-arg.line.p[0].x);\n\n\t\tdouble sec1 = line.p[0].y-slope1*line.p[0].x; //return tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n\t\tdouble sec2 = arg.line.p[0].y-slope2*arg.line.p[0].x;\n\n\n\n\t\tdouble mini = min(line.p[0].x,line.p[1].x);\n\t\tdouble maxi = max(line.p[0].x,line.p[1].x);\n\n\t\tdouble arg_mini = min(arg.line.p[0].x,arg.line.p[1].x);\n\t\tdouble arg_maxi = max(arg.line.p[0].x,arg.line.p[1].x);\n\n\t\t//printf(\"自分:%d adj:%d mini:%.3lf maxi:%.3lf arg_mini:%.3lf arg_maxi:%.3lf\\n\",ind,arg.ind,mini,maxi,arg_mini,arg_maxi);\n\n\t\tif(maxi+EPS < arg_mini){\n\n\t\t\t//printf(\"左の方がランク高\\n\");\n\t\t\treturn maxi < arg_mini;\n\n\t\t}else if(arg_maxi+EPS < mini){\n\n\t\t\t//printf(\"右の方がランク高\\n\");\n\t\t\treturn mini < arg_maxi;\n\n\t\t}else{ //■区間に重なりがある\n\n\t\t\tif(line == arg.line){\n\n\t\t\t\t//printf(\"線分同じ\\n\");\n\t\t\t\treturn to_r > arg.to_r; //■右向きの方がランクが高い\n\t\t\t}\n\n\t\t\tif((line.p[0] == arg.line.p[0])||(line.p[0] == arg.line.p[1])||\n\t\t\t\t\t(line.p[1] == arg.line.p[0])||(line.p[1] == arg.line.p[1])){ //端点が同じ\n\n\t\t\t\t//printf(\"■端点同じ\\n\");\n\n\t\t\t\tLine a = line;\n\t\t\t\tif(a.p[0].x > a.p[1].x){\n\n\t\t\t\t\tswap(a.p[0],a.p[1]);\n\t\t\t\t}\n\t\t\t\tLine b = arg.line;\n\t\t\t\tif(b.p[0].x > b.p[1].x){\n\n\t\t\t\t\tswap(b.p[0],b.p[1]);\n\t\t\t\t}\n\n\t\t\t\tif(a.p[0] == b.p[0]){\n\n\t\t\t\t\treturn slope1 > slope2;\n\n\t\t\t\t}else if(a.p[1] == b.p[1]){\n\n\t\t\t\t\treturn slope1 < slope2;\n\n\t\t\t\t}else{\n\n\t\t\t\t\treturn mini < arg_mini;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdouble x = max(mini,arg_mini);\n\n\t\t\tdouble y1 = slope1*x + sec1;\n\t\t\tdouble y2 = slope2*x + sec2;\n\n\t\t\t//printf(\"y1:%.3lf y2:%.3lf\\n\",y1,y2);\n\n\t\t\treturn y1 > y2;\n\t\t}\n\t}\n\n\tLine line;\n\tint ind,to_r;\n};\n\n//右下がり\nstruct R_DOWN{\n\tR_DOWN(){\n\n\t\tto_r = ind = 0;\n\t}\n\tR_DOWN(Point a,Point b,int arg_to_r,int arg_ind){\n\n\t\tline = Line(a,b);\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\tbool operator<(const struct R_DOWN& arg) const{\n\n\t\tdouble slope1 = (line.p[1].y-line.p[0].y)/(line.p[1].x-line.p[0].x);\n\t\tdouble slope2 = (arg.line.p[1].y-arg.line.p[0].y)/(arg.line.p[1].x-arg.line.p[0].x);\n\n\t\tdouble sec1 = line.p[0].y-slope1*line.p[0].x;\n\t\tdouble sec2 = arg.line.p[0].y-slope2*arg.line.p[0].x;\n\n\n\n\t\tdouble mini = min(line.p[0].x,line.p[1].x);\n\t\tdouble maxi = max(line.p[0].x,line.p[1].x);\n\n\t\tdouble arg_mini = min(arg.line.p[0].x,arg.line.p[1].x);\n\t\tdouble arg_maxi = max(arg.line.p[0].x,arg.line.p[1].x);\n\n\t\t//printf(\"自分:%d adj:%d mini:%.3lf maxi:%.3lf arg_mini:%.3lf arg_maxi:%.3lf\\n\",ind,arg.ind,mini,maxi,arg_mini,arg_maxi);\n\n\t\tif(maxi+EPS < arg_mini){\n\n\t\t\t//printf(\"左の方がランク高\\n\");\n\t\t\treturn maxi < arg_mini;\n\n\t\t}else if(arg_maxi+EPS < mini){\n\n\t\t\t//printf(\"右の方がランク高\\n\");\n\t\t\treturn mini < arg_maxi;\n\n\t\t}else{ //■区間に重なりがある\n\n\t\t\tif(line == arg.line){\n\n\t\t\t\t//printf(\"線分同じ\\n\");\n\t\t\t\treturn to_r > arg.to_r; //■右向きの方がランクが高い\n\t\t\t}\n\n\t\t\tif((line.p[0] == arg.line.p[0])||(line.p[0] == arg.line.p[1])||\n\t\t\t\t\t(line.p[1] == arg.line.p[0])||(line.p[1] == arg.line.p[1])){ //端点が同じ\n\n\t\t\t\t//printf(\"■端点同じ\\n\");\n\n\t\t\t\tLine a = line;\n\t\t\t\tif(a.p[0].x > a.p[1].x){\n\n\t\t\t\t\tswap(a.p[0],a.p[1]);\n\t\t\t\t}\n\t\t\t\tLine b = arg.line;\n\t\t\t\tif(b.p[0].x > b.p[1].x){\n\n\t\t\t\t\tswap(b.p[0],b.p[1]);\n\t\t\t\t}\n\n\t\t\t\tif(a.p[1] == b.p[1]){ //右下の点が等しい場合\n\n\t\t\t\t\t//printf(\"slopeが小さい方が聖\\n\");\n\t\t\t\t\treturn slope1 < slope2; //傾きが小さい方がランク高\n\n\t\t\t\t}else if(a.p[0] == b.p[0]){ //左上の点が等しい場合\n\n\t\t\t\t\t//printf(\"slopeが大きい方が正\\n\");\n\t\t\t\t\t//return slope1 < slope2;■\n\t\t\t\t\treturn slope1 > slope2;\n\n\t\t\t\t}else{ //片方の右下と片方の左上が等しい\n\n\t\t\t\t\t//printf(\"左の方が聖\\n\");\n\t\t\t\t\treturn mini < arg_mini;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdouble x = max(mini,arg_mini);\n\n\t\t\tdouble y1 = slope1*x + sec1;\n\t\t\tdouble y2 = slope2*x + sec2;\n\n\t\t\t//printf(\"y1:%.3lf y2:%.3lf\\n\",y1,y2);\n\n\t\t\treturn y1 > y2;\n\t\t}\n\t}\n\n\tLine line;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t}\n\t}\n\n\tvector<R_UP> ru;\n\tvector<R_DOWN> rd;\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tif(l.p[0].y < l.p[1].y){ //右上がり\n\n\t\t\t\tR_UP tmp_r;\n\t\t\t\ttmp_r.line = l;\n\t\t\t\ttmp_r.to_r = (int)isToR;\n\t\t\t\ttmp_r.ind = LINE.size();\n\t\t\t\tru.push_back(tmp_r);\n\n\t\t\t}else{ //右下がり\n\n\t\t\t\tR_DOWN tmp_d;\n\t\t\t\ttmp_d.line = l;\n\t\t\t\ttmp_d.to_r = (int)isToR;\n\t\t\t\ttmp_d.ind = LINE.size();\n\t\t\t\trd.push_back(tmp_d);\n\t\t\t}\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\n\tif(ru.size() > 0){\n\t\tsort(ru.begin(),ru.end());\n\t}\n\tif(rd.size() > 0){\n\n\t\tsort(rd.begin(),rd.end());\n\t}\n\n\tint number = 1e6-1;\n\n\tmap<int,int> RANK,revRANK;\n\n\tif(DEBUG){\n\tprintf(\"\\n\\n右上がり\\n\");\n\t}\n\tfor(int i = 0; i < ru.size(); i++){\n\n\t\tif(DEBUG){\n\t\tprintf(\"■線分:%d\\n\",ru[i].ind);\n\t\tLINE[ru[i].ind].outPut();\n\t\tprintf(\"のランクは%d\\n\",number);\n\t\t}\n\t\tRANK[ru[i].ind] = number; //辺にランクをつける\n\t\trevRANK[number--] = ru[i].ind;\n\t}\n\n\tif(DEBUG){\n\tprintf(\"\\n右下がり\\n\");\n\t}\n\tfor(int i = 0; i < rd.size(); i++){\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"■線分:%d\\n\",rd[i].ind);\n\t\tLINE[rd[i].ind].outPut();\n\t\tprintf(\"のランクは%d slope:%.3lf\\n\",number,SLOPE[rd[i].ind]);\n\t\t}\n\t\tRANK[rd[i].ind] = number; //辺にランクをつける\n\t\trevRANK[number--] = rd[i].ind;\n\t}\n\n\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\tset<int> SU,SD;\n\n\tll sum = 0;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\tdouble y1 = -HUGE_NUM,y2 = -HUGE_NUM;\n\t\t\tint dir1 = -1,dir2 = -1;\n\n\n\t\t\tdouble naoto = HUGE_NUM;\n\n\n\t\t\t//■ランク順に並んでいるはずなので二分探索\n\t\t\tif(SU.size() > 0){\n\t\t\t\tint left = 0;\n\t\t\t\tint right = 1e6;\n\t\t\t\tint mid = (left+right)/2;\n\t\t\t\tint rank = -1;\n\n\t\t\t\t/*while(left <= right){\n\n\t\t\t\t\tauto at = SU.lower_bound(mid);\n\t\t\t\t\tif(at == SU.end()){\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\n\t\t\t\t\tint id = revRANK[*at];\n\n\t\t\t\t\tdouble y = SLOPE[id]*seg.x + SEC[id];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\trank = mid;\n\t\t\t\t\t\tleft = mid+1;\n\t\t\t\t\t\ty1 = y;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t}\n\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t}*/\n\n\n\n\t\t\t\tfor(int inu: SU){\n\n\t\t\t\t\tint p = revRANK[inu];\n\n\t\t\t\t\tdouble y = SLOPE[p]*seg.x + SEC[p];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\tif(naoto > seg.y-y){\n\t\t\t\t\t\t\tnaoto = seg.y-y;\n\t\t\t\t\t\t\ty1 = y;\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir1 = 1;\n\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tdir1 = 0;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}else if(fabs(naoto-(seg.y-y)) < EPS){\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir1 = 1;\n\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t/*if(rank != -1){\n\n\t\t\t\t\tint tmp_id = revRANK[rank]; //■真下の辺\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t\tprintf(\"\\n線分%d\\n\",tmp_id);\n\t\t\t\t\t\tLINE[tmp_id].outPut();\n\t\t\t\t\t\tprintf(\"と交差\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tif(TO_R[tmp_id]){\n\n\t\t\t\t\t\tdir1 = 1;\n\t\t\t\t\t}\n\t\t\t\t}*/\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\n\t\t\t\tprintf(\"SD.size():%lld\\n\",SD.size());\n\t\t\t\tfor(int inu: SD){\n\n\t\t\t\t\tprintf(\"線分%dを格納\\n\",revRANK[inu]);\n\t\t\t\t}\n\t\t\t\tprintf(\"\\n--------------\\n\");\n\t\t\t}\n\n\t\t\tif(SD.size() > 0){\n\t\t\t\tint left = 0;\n\t\t\t\tint right = 1e6;\n\t\t\t\tint mid = (left+right)/2;\n\t\t\t\tint rank = -1;\n\n\t\t\t\tfor(int inu: SD){\n\n\t\t\t\t\tint p = revRANK[inu];\n\n\t\t\t\t\tdouble y = SLOPE[p]*seg.x + SEC[p];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\tif(naoto > seg.y-y){\n\t\t\t\t\t\t\tnaoto = seg.y-y;\n\t\t\t\t\t\t\ty2 = y;\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir2 = 1;\n\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tdir2 = 0;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}else if(fabs(naoto-(seg.y-y)) < EPS){\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir2 = 1;\n\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t/*while(left <= right){\n\n\t\t\t\t\tauto at = SD.lower_bound(mid);\n\t\t\t\t\tif(at == SD.end()){\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\n\t\t\t\t\tint id = revRANK[*at];\n\n\t\t\t\t\tdouble y = SLOPE[id]*seg.x + SEC[id];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\trank = mid;\n\t\t\t\t\t\tleft = mid+1;\n\t\t\t\t\t\ty2 = y;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t}\n\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t}\n\n\t\t\t\tif(rank != -1){\n\t\t\t\t\tint tmp_id = revRANK[rank]; //■真下の辺\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t\tprintf(\"\\n線分%d\\n\",tmp_id);\n\t\t\t\t\t\tLINE[tmp_id].outPut();\n\t\t\t\t\t\tprintf(\"と交差\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tif(TO_R[tmp_id]){\n\n\t\t\t\t\t\tdir2 = 1;\n\t\t\t\t\t}\n\t\t\t\t}*/\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"クエリ%d dir1:%d dir2:%d y1:%.3lf y2:%.3lf\\n\",seg.ind,dir1,dir2,y1,y2);\n\t\t\t}\n\n\t\t\tif(dir1 == -1 && dir2 == -1)continue;\n\n\t\t\tif(y1 > y2){\n\n\t\t\t\tif(dir1 == 1){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\n\t\t\t}else{ //y1 < y2\n\n\t\t\t\tif(dir2 == 1){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\t//printf(\"線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tif(is_r_up[seg.ind]){\n\n\t\t\t\t\t\tSU.erase(RANK[seg.ind]);\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tSD.erase(RANK[seg.ind]);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\t\tint last = -1;\n\t\t\t\tdouble min_dist = HUGE_NUM;\n\t\t\t\tint c_ind = -1;\n\n\t\t\t\tfor(int tmp_rank: SU){\n\n\t\t\t\t\tint id = revRANK[tmp_rank];\n\n\t\t\t\t\tif(POL_DEL[POLY_IND[id]])continue;\n\n\n\t\t\t\t\tLine work_line = LINE[id];\n\t\t\t\t\tif(base_line == work_line)continue; //■線分を共有している場合はSKIP(前処理で、背中合わせのものしか残ってないはず)\n\n\t\t\t\t\tdouble slope = SLOPE[id];\n\t\t\t\t\tdouble sec = SEC[id];\n\n\t\t\t\t\tdouble y = slope*seg.x + sec;\n\t\t\t\t\tif(y > seg.y+EPS)break;\n\t\t\t\t\tdouble tmp_dist = seg.y-y;\n\n\t\t\t\t\tif(tmp_dist+EPS < min_dist){\n\t\t\t\t\t\tmin_dist = tmp_dist;\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t\tc_ind = POLY_IND[id];\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t}else if(fabs(tmp_dist-min_dist) < EPS){\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tfor(int tmp_rank: SD){\n\n\t\t\t\t\tint id = revRANK[tmp_rank];\n\n\t\t\t\t\tif(POL_DEL[POLY_IND[id]])continue;\n\n\n\t\t\t\t\tLine work_line = LINE[id];\n\t\t\t\t\tif(base_line == work_line)continue; //■線分を共有している場合はSKIP(前処理で、背中合わせのものしか残ってないはず)\n\n\t\t\t\t\tdouble slope = SLOPE[id];\n\t\t\t\t\tdouble sec = SEC[id];\n\n\t\t\t\t\tdouble y = slope*seg.x + sec;\n\t\t\t\t\tif(y > seg.y+EPS)break;\n\t\t\t\t\tdouble tmp_dist = seg.y-y;\n\n\t\t\t\t\tif(tmp_dist+EPS < min_dist){\n\t\t\t\t\t\tmin_dist = tmp_dist;\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t\tc_ind = POLY_IND[id];\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t}else if(fabs(tmp_dist-min_dist) < EPS){\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(last == 1){ //■他のポリゴンに含まれている\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"他のポリゴンに含まれています\\n\");\n\t\t\t\t\tprintf(\"\\nポリゴン%dはポリゴン%dに含まれています min_dist:%.3lf\\n\",seg.poly_ind,c_ind,min_dist);\n\n\t\t\t\t\t}\n\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"線分%dを追加します ランク%d\\n\",seg.ind,RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t\tif(is_r_up[seg.ind]){\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tSU.insert(RANK[seg.ind]);\n\n\t\t\t\t}else{\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tSD.insert(RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"線分%dを消します ランク:%d\\n\",seg.ind,RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t\tif(is_r_up[seg.ind]){\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t}\n\n\t\t\t\t\tSU.erase(RANK[seg.ind]);\n\n\t\t\t\t}else{\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t}\n\n\t\t\t\t\tSD.erase(RANK[seg.ind]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.3333333333333333, "time_ms": 20, "memory_kb": 88348, "score_of_the_acc": -0.4049, "final_rank": 19 }, { "submission_id": "aoj_2721_8394576", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n//右上がり\nstruct R_UP{\n\tR_UP(){\n\n\t\tto_r = ind = 0;\n\t}\n\tR_UP(Point a,Point b,int arg_to_r,int arg_ind){\n\n\t\tline = Line(a,b);\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\tbool operator<(const struct R_UP& arg) const{\n\n\t\tdouble slope1 = (line.p[1].y-line.p[0].y)/(line.p[1].x-line.p[0].x);\n\t\tdouble slope2 = (arg.line.p[1].y-arg.line.p[0].y)/(arg.line.p[1].x-arg.line.p[0].x);\n\n\t\tdouble sec1 = line.p[0].y-slope1*line.p[0].x; //return tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n\t\tdouble sec2 = arg.line.p[0].y-slope2*arg.line.p[0].x;\n\n\n\n\t\tdouble mini = min(line.p[0].x,line.p[1].x);\n\t\tdouble maxi = max(line.p[0].x,line.p[1].x);\n\n\t\tdouble arg_mini = min(arg.line.p[0].x,arg.line.p[1].x);\n\t\tdouble arg_maxi = max(arg.line.p[0].x,arg.line.p[1].x);\n\n\t\t//printf(\"自分:%d adj:%d mini:%.3lf maxi:%.3lf arg_mini:%.3lf arg_maxi:%.3lf\\n\",ind,arg.ind,mini,maxi,arg_mini,arg_maxi);\n\n\t\tif(maxi+EPS < arg_mini){\n\n\t\t\t//printf(\"左の方がランク高\\n\");\n\t\t\treturn maxi < arg_mini;\n\n\t\t}else if(arg_maxi+EPS < mini){\n\n\t\t\t//printf(\"右の方がランク高\\n\");\n\t\t\treturn mini < arg_maxi;\n\n\t\t}else{ //■区間に重なりがある\n\n\t\t\tif(line == arg.line){\n\n\t\t\t\t//printf(\"線分同じ\\n\");\n\t\t\t\treturn to_r > arg.to_r; //■右向きの方がランクが高い\n\t\t\t}\n\n\t\t\tif((line.p[0] == arg.line.p[0])||(line.p[0] == arg.line.p[1])||\n\t\t\t\t\t(line.p[1] == arg.line.p[0])||(line.p[1] == arg.line.p[1])){ //端点が同じ\n\n\t\t\t\t//printf(\"■端点同じ\\n\");\n\n\t\t\t\tLine a = line;\n\t\t\t\tif(a.p[0].x > a.p[1].x){\n\n\t\t\t\t\tswap(a.p[0],a.p[1]);\n\t\t\t\t}\n\t\t\t\tLine b = arg.line;\n\t\t\t\tif(b.p[0].x > b.p[1].x){\n\n\t\t\t\t\tswap(b.p[0],b.p[1]);\n\t\t\t\t}\n\n\t\t\t\tif(a.p[0] == b.p[0]){\n\n\t\t\t\t\treturn slope1 > slope2;\n\n\t\t\t\t}else if(a.p[1] == b.p[1]){\n\n\t\t\t\t\treturn slope1 < slope2;\n\n\t\t\t\t}else{\n\n\t\t\t\t\treturn mini < arg_mini;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdouble x = max(mini,arg_mini);\n\n\t\t\tdouble y1 = slope1*x + sec1;\n\t\t\tdouble y2 = slope2*x + sec2;\n\n\t\t\t//printf(\"y1:%.3lf y2:%.3lf\\n\",y1,y2);\n\n\t\t\treturn y1 > y2;\n\t\t}\n\t}\n\n\tLine line;\n\tint ind,to_r;\n};\n\n//右下がり\nstruct R_DOWN{\n\tR_DOWN(){\n\n\t\tto_r = ind = 0;\n\t}\n\tR_DOWN(Point a,Point b,int arg_to_r,int arg_ind){\n\n\t\tline = Line(a,b);\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\tbool operator<(const struct R_DOWN& arg) const{\n\n\t\tdouble slope1 = (line.p[1].y-line.p[0].y)/(line.p[1].x-line.p[0].x);\n\t\tdouble slope2 = (arg.line.p[1].y-arg.line.p[0].y)/(arg.line.p[1].x-arg.line.p[0].x);\n\n\t\tdouble sec1 = line.p[0].y-slope1*line.p[0].x;\n\t\tdouble sec2 = arg.line.p[0].y-slope2*arg.line.p[0].x;\n\n\n\n\t\tdouble mini = min(line.p[0].x,line.p[1].x);\n\t\tdouble maxi = max(line.p[0].x,line.p[1].x);\n\n\t\tdouble arg_mini = min(arg.line.p[0].x,arg.line.p[1].x);\n\t\tdouble arg_maxi = max(arg.line.p[0].x,arg.line.p[1].x);\n\n\t\t//printf(\"自分:%d adj:%d mini:%.3lf maxi:%.3lf arg_mini:%.3lf arg_maxi:%.3lf\\n\",ind,arg.ind,mini,maxi,arg_mini,arg_maxi);\n\n\t\tif(maxi+EPS < arg_mini){\n\n\t\t\t//printf(\"左の方がランク高\\n\");\n\t\t\treturn maxi < arg_mini;\n\n\t\t}else if(arg_maxi+EPS < mini){\n\n\t\t\t//printf(\"右の方がランク高\\n\");\n\t\t\treturn mini < arg_maxi;\n\n\t\t}else{ //■区間に重なりがある\n\n\t\t\tif(line == arg.line){\n\n\t\t\t\t//printf(\"線分同じ\\n\");\n\t\t\t\treturn to_r > arg.to_r; //■右向きの方がランクが高い\n\t\t\t}\n\n\t\t\tif((line.p[0] == arg.line.p[0])||(line.p[0] == arg.line.p[1])||\n\t\t\t\t\t(line.p[1] == arg.line.p[0])||(line.p[1] == arg.line.p[1])){ //端点が同じ\n\n\t\t\t\t//printf(\"■端点同じ\\n\");\n\n\t\t\t\tLine a = line;\n\t\t\t\tif(a.p[0].x > a.p[1].x){\n\n\t\t\t\t\tswap(a.p[0],a.p[1]);\n\t\t\t\t}\n\t\t\t\tLine b = arg.line;\n\t\t\t\tif(b.p[0].x > b.p[1].x){\n\n\t\t\t\t\tswap(b.p[0],b.p[1]);\n\t\t\t\t}\n\n\t\t\t\tif(a.p[1] == b.p[1]){ //右下の点が等しい場合\n\n\t\t\t\t\t//printf(\"slopeが小さい方が聖\\n\");\n\t\t\t\t\treturn slope1 < slope2; //傾きが小さい方がランク高\n\n\t\t\t\t}else if(a.p[0] == b.p[0]){ //左上の点が等しい場合\n\n\t\t\t\t\t//printf(\"slopeが大きい方が正\\n\");\n\t\t\t\t\t//return slope1 < slope2;■\n\t\t\t\t\treturn slope1 > slope2;\n\n\t\t\t\t}else{ //片方の右下と片方の左上が等しい\n\n\t\t\t\t\t//printf(\"左の方が聖\\n\");\n\t\t\t\t\treturn mini < arg_mini;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdouble x = max(mini,arg_mini);\n\n\t\t\tdouble y1 = slope1*x + sec1;\n\t\t\tdouble y2 = slope2*x + sec2;\n\n\t\t\t//printf(\"y1:%.3lf y2:%.3lf\\n\",y1,y2);\n\n\t\t\treturn y1 > y2;\n\t\t}\n\t}\n\n\tLine line;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t}\n\t}\n\n\tvector<R_UP> ru;\n\tvector<R_DOWN> rd;\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tif(l.p[0].y < l.p[1].y){ //右上がり\n\n\t\t\t\tR_UP tmp_r;\n\t\t\t\ttmp_r.line = l;\n\t\t\t\ttmp_r.to_r = (int)isToR;\n\t\t\t\ttmp_r.ind = LINE.size();\n\t\t\t\tru.push_back(tmp_r);\n\n\t\t\t}else{ //右下がり\n\n\t\t\t\tR_DOWN tmp_d;\n\t\t\t\ttmp_d.line = l;\n\t\t\t\ttmp_d.to_r = (int)isToR;\n\t\t\t\ttmp_d.ind = LINE.size();\n\t\t\t\trd.push_back(tmp_d);\n\t\t\t}\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\n\tif(ru.size() > 0){\n\t\tsort(ru.begin(),ru.end());\n\t}\n\tif(rd.size() > 0){\n\n\t\tsort(rd.begin(),rd.end());\n\t}\n\n\tint number = 1e6-1;\n\n\tmap<int,int> RANK,revRANK;\n\n\tif(DEBUG){\n\tprintf(\"\\n\\n右上がり\\n\");\n\t}\n\tfor(int i = 0; i < ru.size(); i++){\n\n\t\tif(DEBUG){\n\t\tprintf(\"■線分:%d\\n\",ru[i].ind);\n\t\tLINE[ru[i].ind].outPut();\n\t\tprintf(\"のランクは%d\\n\",number);\n\t\t}\n\t\tRANK[ru[i].ind] = number; //辺にランクをつける\n\t\trevRANK[number--] = ru[i].ind;\n\t}\n\n\tif(DEBUG){\n\tprintf(\"\\n右下がり\\n\");\n\t}\n\tfor(int i = 0; i < rd.size(); i++){\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"■線分:%d\\n\",rd[i].ind);\n\t\tLINE[rd[i].ind].outPut();\n\t\tprintf(\"のランクは%d slope:%.3lf\\n\",number,SLOPE[rd[i].ind]);\n\t\t}\n\t\tRANK[rd[i].ind] = number; //辺にランクをつける\n\t\trevRANK[number--] = rd[i].ind;\n\t}\n\n\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\tset<int> SU,SD;\n\n\tll sum = 0;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\tdouble y1 = -HUGE_NUM,y2 = -HUGE_NUM;\n\t\t\tint dir1 = -1,dir2 = -1;\n\n\n\t\t\tdouble minhi = HUGE_NUM;\n\n\n\t\t\t//■ランク順に並んでいるはずなので二分探索\n\t\t\tif(SU.size() > 0){\n\t\t\t\tint left = 0;\n\t\t\t\tint right = 1e6;\n\t\t\t\tint mid = (left+right)/2;\n\t\t\t\tint rank = -1;\n\n\t\t\t\t/*while(left <= right){\n\n\t\t\t\t\tauto at = SU.lower_bound(mid);\n\t\t\t\t\tif(at == SU.end()){\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\n\t\t\t\t\tint id = revRANK[*at];\n\n\t\t\t\t\tdouble y = SLOPE[id]*seg.x + SEC[id];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\trank = mid;\n\t\t\t\t\t\tleft = mid+1;\n\t\t\t\t\t\ty1 = y;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t}\n\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t}*/\n\n\n\n\t\t\t\tfor(int inu: SU){\n\n\t\t\t\t\tint p = revRANK[inu];\n\n\t\t\t\t\tdouble y = SLOPE[p]*seg.x + SEC[p];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\tif(minhi > seg.y-y){\n\t\t\t\t\t\t\tminhi = seg.y-y;\n\t\t\t\t\t\t\ty1 = y;\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir1 = 1;\n\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tdir1 = 0;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t/*if(rank != -1){\n\n\t\t\t\t\tint tmp_id = revRANK[rank]; //■真下の辺\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t\tprintf(\"\\n線分%d\\n\",tmp_id);\n\t\t\t\t\t\tLINE[tmp_id].outPut();\n\t\t\t\t\t\tprintf(\"と交差\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tif(TO_R[tmp_id]){\n\n\t\t\t\t\t\tdir1 = 1;\n\t\t\t\t\t}\n\t\t\t\t}*/\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\n\t\t\t\tprintf(\"SD.size():%lld\\n\",SD.size());\n\t\t\t\tfor(int inu: SD){\n\n\t\t\t\t\tprintf(\"線分%dを格納\\n\",revRANK[inu]);\n\t\t\t\t}\n\t\t\t\tprintf(\"\\n--------------\\n\");\n\t\t\t}\n\n\t\t\tif(SD.size() > 0){\n\t\t\t\tint left = 0;\n\t\t\t\tint right = 1e6;\n\t\t\t\tint mid = (left+right)/2;\n\t\t\t\tint rank = -1;\n\n\t\t\t\tfor(int inu: SD){\n\n\t\t\t\t\tint p = revRANK[inu];\n\n\t\t\t\t\tdouble y = SLOPE[p]*seg.x + SEC[p];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\tif(minhi > seg.y-y){\n\t\t\t\t\t\t\tminhi = seg.y-y;\n\t\t\t\t\t\t\ty2 = y;\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir2 = 1;\n\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tdir2 = 0;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t/*while(left <= right){\n\n\t\t\t\t\tauto at = SD.lower_bound(mid);\n\t\t\t\t\tif(at == SD.end()){\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\n\t\t\t\t\tint id = revRANK[*at];\n\n\t\t\t\t\tdouble y = SLOPE[id]*seg.x + SEC[id];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\trank = mid;\n\t\t\t\t\t\tleft = mid+1;\n\t\t\t\t\t\ty2 = y;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t}\n\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t}\n\n\t\t\t\tif(rank != -1){\n\t\t\t\t\tint tmp_id = revRANK[rank]; //■真下の辺\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t\tprintf(\"\\n線分%d\\n\",tmp_id);\n\t\t\t\t\t\tLINE[tmp_id].outPut();\n\t\t\t\t\t\tprintf(\"と交差\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tif(TO_R[tmp_id]){\n\n\t\t\t\t\t\tdir2 = 1;\n\t\t\t\t\t}\n\t\t\t\t}*/\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"クエリ%d dir1:%d dir2:%d y1:%.3lf y2:%.3lf\\n\",seg.ind,dir1,dir2,y1,y2);\n\t\t\t}\n\n\t\t\tif(dir1 == -1 && dir2 == -1)continue;\n\n\n\t\t\tif(y1 > y2){\n\n\t\t\t\tif(dir1 == 1){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\n\t\t\t}else{ //y1 < y2\n\n\t\t\t\tif(dir2 == 1){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\t//printf(\"線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tif(is_r_up[seg.ind]){\n\n\t\t\t\t\t\tSU.erase(RANK[seg.ind]);\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tSD.erase(RANK[seg.ind]);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\t\tint last = -1;\n\t\t\t\tdouble min_dist = HUGE_NUM;\n\t\t\t\tint c_ind = -1;\n\n\t\t\t\tfor(int tmp_rank: SU){\n\n\t\t\t\t\tint id = revRANK[tmp_rank];\n\n\t\t\t\t\tif(POL_DEL[POLY_IND[id]])continue;\n\n\n\t\t\t\t\tLine work_line = LINE[id];\n\t\t\t\t\tif(base_line == work_line)continue; //■線分を共有している場合はSKIP(前処理で、背中合わせのものしか残ってないはず)\n\n\t\t\t\t\tdouble slope = SLOPE[id];\n\t\t\t\t\tdouble sec = SEC[id];\n\n\t\t\t\t\tdouble y = slope*seg.x + sec;\n\t\t\t\t\tif(y > seg.y+EPS)break;\n\t\t\t\t\tdouble tmp_dist = seg.y-y;\n\n\t\t\t\t\tif(tmp_dist+EPS < min_dist || fabs(tmp_dist-min_dist) < EPS){\n\t\t\t\t\t\tmin_dist = tmp_dist;\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t\tc_ind = POLY_IND[id];\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t}/*else if(fabs(tmp_dist-min_dist) < EPS){\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}*/\n\t\t\t\t}\n\n\t\t\t\tfor(int tmp_rank: SD){\n\n\t\t\t\t\tint id = revRANK[tmp_rank];\n\n\t\t\t\t\tif(POL_DEL[POLY_IND[id]])continue;\n\n\n\t\t\t\t\tLine work_line = LINE[id];\n\t\t\t\t\tif(base_line == work_line)continue; //■線分を共有している場合はSKIP(前処理で、背中合わせのものしか残ってないはず)\n\n\t\t\t\t\tdouble slope = SLOPE[id];\n\t\t\t\t\tdouble sec = SEC[id];\n\n\t\t\t\t\tdouble y = slope*seg.x + sec;\n\t\t\t\t\tif(y > seg.y+EPS)break;\n\t\t\t\t\tdouble tmp_dist = seg.y-y;\n\n\t\t\t\t\tif(tmp_dist+EPS < min_dist || fabs(tmp_dist-min_dist) < EPS){\n\t\t\t\t\t\tmin_dist = tmp_dist;\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t\tc_ind = POLY_IND[id];\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t}/*else if(fabs(tmp_dist-min_dist) < EPS){\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t}\n\t\t\t\t\t}*/\n\t\t\t\t}\n\n\t\t\t\tif(last == 1){ //■他のポリゴンに含まれている\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"他のポリゴンに含まれています\\n\");\n\t\t\t\t\tprintf(\"\\nポリゴン%dはポリゴン%dに含まれています min_dist:%.3lf\\n\",seg.poly_ind,c_ind,min_dist);\n\n\t\t\t\t\t}\n\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"線分%dを追加します ランク%d\\n\",seg.ind,RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t\tif(is_r_up[seg.ind]){\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tSU.insert(RANK[seg.ind]);\n\n\t\t\t\t}else{\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tSD.insert(RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"線分%dを消します ランク:%d\\n\",seg.ind,RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t\tif(is_r_up[seg.ind]){\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t}\n\n\t\t\t\t\tSU.erase(RANK[seg.ind]);\n\n\t\t\t\t}else{\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t}\n\n\t\t\t\t\tSD.erase(RANK[seg.ind]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.3333333333333333, "time_ms": 20, "memory_kb": 88028, "score_of_the_acc": -0.4031, "final_rank": 17 }, { "submission_id": "aoj_2721_8394564", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-6\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n//右上がり\nstruct R_UP{\n\tR_UP(){\n\n\t\tto_r = ind = 0;\n\t}\n\tR_UP(Point a,Point b,int arg_to_r,int arg_ind){\n\n\t\tline = Line(a,b);\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\tbool operator<(const struct R_UP& arg) const{\n\n\t\tdouble slope1 = (line.p[1].y-line.p[0].y)/(line.p[1].x-line.p[0].x);\n\t\tdouble slope2 = (arg.line.p[1].y-arg.line.p[0].y)/(arg.line.p[1].x-arg.line.p[0].x);\n\n\t\tdouble sec1 = line.p[0].y-slope1*line.p[0].x; //return tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n\t\tdouble sec2 = arg.line.p[0].y-slope2*arg.line.p[0].x;\n\n\n\n\t\tdouble mini = min(line.p[0].x,line.p[1].x);\n\t\tdouble maxi = max(line.p[0].x,line.p[1].x);\n\n\t\tdouble arg_mini = min(arg.line.p[0].x,arg.line.p[1].x);\n\t\tdouble arg_maxi = max(arg.line.p[0].x,arg.line.p[1].x);\n\n\t\t//printf(\"自分:%d adj:%d mini:%.3lf maxi:%.3lf arg_mini:%.3lf arg_maxi:%.3lf\\n\",ind,arg.ind,mini,maxi,arg_mini,arg_maxi);\n\n\t\tif(maxi+EPS < arg_mini){\n\n\t\t\t//printf(\"左の方がランク高\\n\");\n\t\t\treturn maxi < arg_mini;\n\n\t\t}else if(arg_maxi+EPS < mini){\n\n\t\t\t//printf(\"右の方がランク高\\n\");\n\t\t\treturn mini < arg_maxi;\n\n\t\t}else{ //■区間に重なりがある\n\n\t\t\tif(line == arg.line){\n\n\t\t\t\t//printf(\"線分同じ\\n\");\n\t\t\t\treturn to_r > arg.to_r; //■右向きの方がランクが高い\n\t\t\t}\n\n\t\t\tif((line.p[0] == arg.line.p[0])||(line.p[0] == arg.line.p[1])||\n\t\t\t\t\t(line.p[1] == arg.line.p[0])||(line.p[1] == arg.line.p[1])){ //端点が同じ\n\n\t\t\t\t//printf(\"■端点同じ\\n\");\n\n\t\t\t\tLine a = line;\n\t\t\t\tif(a.p[0].x > a.p[1].x){\n\n\t\t\t\t\tswap(a.p[0],a.p[1]);\n\t\t\t\t}\n\t\t\t\tLine b = arg.line;\n\t\t\t\tif(b.p[0].x > b.p[1].x){\n\n\t\t\t\t\tswap(b.p[0],b.p[1]);\n\t\t\t\t}\n\n\t\t\t\tif(a.p[0] == b.p[0]){\n\n\t\t\t\t\treturn slope1 > slope2;\n\n\t\t\t\t}else if(a.p[1] == b.p[1]){\n\n\t\t\t\t\treturn slope1 < slope2;\n\n\t\t\t\t}else{\n\n\t\t\t\t\treturn mini < arg_mini;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdouble x = max(mini,arg_mini);\n\n\t\t\tdouble y1 = slope1*x + sec1;\n\t\t\tdouble y2 = slope2*x + sec2;\n\n\t\t\t//printf(\"y1:%.3lf y2:%.3lf\\n\",y1,y2);\n\n\t\t\treturn y1 > y2;\n\t\t}\n\t}\n\n\tLine line;\n\tint ind,to_r;\n};\n\n//右下がり\nstruct R_DOWN{\n\tR_DOWN(){\n\n\t\tto_r = ind = 0;\n\t}\n\tR_DOWN(Point a,Point b,int arg_to_r,int arg_ind){\n\n\t\tline = Line(a,b);\n\t\tto_r = arg_to_r;\n\t\tind = arg_ind;\n\t}\n\tbool operator<(const struct R_DOWN& arg) const{\n\n\t\tdouble slope1 = (line.p[1].y-line.p[0].y)/(line.p[1].x-line.p[0].x);\n\t\tdouble slope2 = (arg.line.p[1].y-arg.line.p[0].y)/(arg.line.p[1].x-arg.line.p[0].x);\n\n\t\tdouble sec1 = line.p[0].y-slope1*line.p[0].x;\n\t\tdouble sec2 = arg.line.p[0].y-slope2*arg.line.p[0].x;\n\n\n\n\t\tdouble mini = min(line.p[0].x,line.p[1].x);\n\t\tdouble maxi = max(line.p[0].x,line.p[1].x);\n\n\t\tdouble arg_mini = min(arg.line.p[0].x,arg.line.p[1].x);\n\t\tdouble arg_maxi = max(arg.line.p[0].x,arg.line.p[1].x);\n\n\t\t//printf(\"自分:%d adj:%d mini:%.3lf maxi:%.3lf arg_mini:%.3lf arg_maxi:%.3lf\\n\",ind,arg.ind,mini,maxi,arg_mini,arg_maxi);\n\n\t\tif(maxi+EPS < arg_mini){\n\n\t\t\t//printf(\"左の方がランク高\\n\");\n\t\t\treturn maxi < arg_mini;\n\n\t\t}else if(arg_maxi+EPS < mini){\n\n\t\t\t//printf(\"右の方がランク高\\n\");\n\t\t\treturn mini < arg_maxi;\n\n\t\t}else{ //■区間に重なりがある\n\n\t\t\tif(line == arg.line){\n\n\t\t\t\t//printf(\"線分同じ\\n\");\n\t\t\t\treturn to_r > arg.to_r; //■右向きの方がランクが高い\n\t\t\t}\n\n\t\t\tif((line.p[0] == arg.line.p[0])||(line.p[0] == arg.line.p[1])||\n\t\t\t\t\t(line.p[1] == arg.line.p[0])||(line.p[1] == arg.line.p[1])){ //端点が同じ\n\n\t\t\t\t//printf(\"■端点同じ\\n\");\n\n\t\t\t\tLine a = line;\n\t\t\t\tif(a.p[0].x > a.p[1].x){\n\n\t\t\t\t\tswap(a.p[0],a.p[1]);\n\t\t\t\t}\n\t\t\t\tLine b = arg.line;\n\t\t\t\tif(b.p[0].x > b.p[1].x){\n\n\t\t\t\t\tswap(b.p[0],b.p[1]);\n\t\t\t\t}\n\n\t\t\t\tif(a.p[1] == b.p[1]){ //右下の点が等しい場合\n\n\t\t\t\t\t//printf(\"slopeが小さい方が聖\\n\");\n\t\t\t\t\treturn slope1 < slope2; //傾きが小さい方がランク高\n\n\t\t\t\t}else if(a.p[0] == b.p[0]){ //左上の点が等しい場合\n\n\t\t\t\t\t//printf(\"slopeが大きい方が正\\n\");\n\t\t\t\t\t//return slope1 < slope2;■\n\t\t\t\t\treturn slope1 > slope2;\n\n\t\t\t\t}else{ //片方の右下と片方の左上が等しい\n\n\t\t\t\t\t//printf(\"左の方が聖\\n\");\n\t\t\t\t\treturn mini < arg_mini;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdouble x = max(mini,arg_mini);\n\n\t\t\tdouble y1 = slope1*x + sec1;\n\t\t\tdouble y2 = slope2*x + sec2;\n\n\t\t\t//printf(\"y1:%.3lf y2:%.3lf\\n\",y1,y2);\n\n\t\t\treturn y1 > y2;\n\t\t}\n\t}\n\n\tLine line;\n\tint ind,to_r;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],is_r_up[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nint num_EMAP = 0;\ndouble SLOPE[SIZE],SEC[SIZE];\n\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\n\n//辺の切片を求める関数\ndouble calc_section(Line tmp_line){\n\n\tdouble tmp_slope = calc_slope(tmp_line);\n\n\treturn tmp_line.p[0].y-tmp_slope*tmp_line.p[0].x;\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\tind = (ind-1+G[node].size())%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next_e_ind) > 0){\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> work_nodes;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\twork_nodes.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = work_nodes;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next_e_ind);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(e_ind);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(POL_DEL[k])continue;\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\tmap<pair<int,int>,int> DUP;\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tDUP[make_pair(i,ind)] += 1;\n\t\t}\n\t}\n\n\tvector<R_UP> ru;\n\tvector<R_DOWN> rd;\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tauto at = DUP.find(make_pair(i,ind));\n\t\t\tif(at->second >= 2){\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"辺\");\n\t\t\t\t\tpoint[from].debug();\n\t\t\t\t\tpoint[to].debug();\n\t\t\t\t\tprintf(\"を追加しない\\n\");\n\t\t\t\t}\n\t\t\t\tcontinue; //■1つの辺が複数回使われる点は棒状なので削除\n\t\t\t}\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\tLine l = Line(point[from],point[to]);\n\n\t\t\tdouble tmp_section = calc_section(l);\n\n\t\t\tSLOPE[LINE.size()] = tmp_slope;\n\t\t\tSEC[LINE.size()] = tmp_section;\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tif(l.p[0].x > l.p[1].x){\n\n\t\t\t\tswap(l.p[0],l.p[1]);\n\t\t\t}\n\n\t\t\tis_r_up[LINE.size()] = (l.p[0].y < l.p[1].y);\n\n\t\t\tif(l.p[0].y < l.p[1].y){ //右上がり\n\n\t\t\t\tR_UP tmp_r;\n\t\t\t\ttmp_r.line = l;\n\t\t\t\ttmp_r.to_r = (int)isToR;\n\t\t\t\ttmp_r.ind = LINE.size();\n\t\t\t\tru.push_back(tmp_r);\n\n\t\t\t}else{ //右下がり\n\n\t\t\t\tR_DOWN tmp_d;\n\t\t\t\ttmp_d.line = l;\n\t\t\t\ttmp_d.to_r = (int)isToR;\n\t\t\t\ttmp_d.ind = LINE.size();\n\t\t\t\trd.push_back(tmp_d);\n\t\t\t}\n\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\n\tif(ru.size() > 0){\n\t\tsort(ru.begin(),ru.end());\n\t}\n\tif(rd.size() > 0){\n\n\t\tsort(rd.begin(),rd.end());\n\t}\n\n\tint number = 1e6-1;\n\n\tmap<int,int> RANK,revRANK;\n\n\tif(DEBUG){\n\tprintf(\"\\n\\n右上がり\\n\");\n\t}\n\tfor(int i = 0; i < ru.size(); i++){\n\n\t\tif(DEBUG){\n\t\tprintf(\"■線分:%d\\n\",ru[i].ind);\n\t\tLINE[ru[i].ind].outPut();\n\t\tprintf(\"のランクは%d\\n\",number);\n\t\t}\n\t\tRANK[ru[i].ind] = number; //辺にランクをつける\n\t\trevRANK[number--] = ru[i].ind;\n\t}\n\n\tif(DEBUG){\n\tprintf(\"\\n右下がり\\n\");\n\t}\n\tfor(int i = 0; i < rd.size(); i++){\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"■線分:%d\\n\",rd[i].ind);\n\t\tLINE[rd[i].ind].outPut();\n\t\tprintf(\"のランクは%d slope:%.3lf\\n\",number,SLOPE[rd[i].ind]);\n\t\t}\n\t\tRANK[rd[i].ind] = number; //辺にランクをつける\n\t\trevRANK[number--] = rd[i].ind;\n\t}\n\n\n\tif(DEBUG){\n\tprintf(\"LINE.size():%lld\\n\",LINE.size());\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\tset<int> SU,SD;\n\n\tll sum = 0;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\tdouble y1 = -HUGE_NUM,y2 = -HUGE_NUM;\n\t\t\tint dir1 = -1,dir2 = -1;\n\n\n\t\t\tdouble minhi = HUGE_NUM;\n\n\n\t\t\t//■ランク順に並んでいるはずなので二分探索\n\t\t\tif(SU.size() > 0){\n\t\t\t\tint left = 0;\n\t\t\t\tint right = 1e6;\n\t\t\t\tint mid = (left+right)/2;\n\t\t\t\tint rank = -1;\n\n\t\t\t\t/*while(left <= right){\n\n\t\t\t\t\tauto at = SU.lower_bound(mid);\n\t\t\t\t\tif(at == SU.end()){\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\n\t\t\t\t\tint id = revRANK[*at];\n\n\t\t\t\t\tdouble y = SLOPE[id]*seg.x + SEC[id];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\trank = mid;\n\t\t\t\t\t\tleft = mid+1;\n\t\t\t\t\t\ty1 = y;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t}\n\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t}*/\n\n\n\n\t\t\t\tfor(int inu: SU){\n\n\t\t\t\t\tint p = revRANK[inu];\n\n\t\t\t\t\tdouble y = SLOPE[p]*seg.x + SEC[p];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\tif(minhi > seg.y-y){\n\t\t\t\t\t\t\tminhi = seg.y-y;\n\t\t\t\t\t\t\ty1 = y;\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir1 = 1;\n\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tdir1 = 0;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t/*if(rank != -1){\n\n\t\t\t\t\tint tmp_id = revRANK[rank]; //■真下の辺\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t\tprintf(\"\\n線分%d\\n\",tmp_id);\n\t\t\t\t\t\tLINE[tmp_id].outPut();\n\t\t\t\t\t\tprintf(\"と交差\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tif(TO_R[tmp_id]){\n\n\t\t\t\t\t\tdir1 = 1;\n\t\t\t\t\t}\n\t\t\t\t}*/\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\n\t\t\t\tprintf(\"SD.size():%lld\\n\",SD.size());\n\t\t\t\tfor(int inu: SD){\n\n\t\t\t\t\tprintf(\"線分%dを格納\\n\",revRANK[inu]);\n\t\t\t\t}\n\t\t\t\tprintf(\"\\n--------------\\n\");\n\t\t\t}\n\n\t\t\tif(SD.size() > 0){\n\t\t\t\tint left = 0;\n\t\t\t\tint right = 1e6;\n\t\t\t\tint mid = (left+right)/2;\n\t\t\t\tint rank = -1;\n\n\t\t\t\tfor(int inu: SD){\n\n\t\t\t\t\tint p = revRANK[inu];\n\n\t\t\t\t\tdouble y = SLOPE[p]*seg.x + SEC[p];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\tif(minhi > seg.y-y){\n\t\t\t\t\t\t\tminhi = seg.y-y;\n\t\t\t\t\t\t\ty2 = y;\n\n\t\t\t\t\t\t\tif(TO_R[p]){\n\n\t\t\t\t\t\t\t\tdir2 = 1;\n\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\tdir2 = 0;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t/*while(left <= right){\n\n\t\t\t\t\tauto at = SD.lower_bound(mid);\n\t\t\t\t\tif(at == SD.end()){\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\n\t\t\t\t\tint id = revRANK[*at];\n\n\t\t\t\t\tdouble y = SLOPE[id]*seg.x + SEC[id];\n\t\t\t\t\tif(y < seg.y){\n\n\t\t\t\t\t\trank = mid;\n\t\t\t\t\t\tleft = mid+1;\n\t\t\t\t\t\ty2 = y;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = mid-1;\n\t\t\t\t\t}\n\t\t\t\t\tmid = (left+right)/2;\n\t\t\t\t}\n\n\t\t\t\tif(rank != -1){\n\t\t\t\t\tint tmp_id = revRANK[rank]; //■真下の辺\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t\tprintf(\"\\n線分%d\\n\",tmp_id);\n\t\t\t\t\t\tLINE[tmp_id].outPut();\n\t\t\t\t\t\tprintf(\"と交差\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tif(TO_R[tmp_id]){\n\n\t\t\t\t\t\tdir2 = 1;\n\t\t\t\t\t}\n\t\t\t\t}*/\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"クエリ%d dir1:%d dir2:%d y1:%.3lf y2:%.3lf\\n\",seg.ind,dir1,dir2,y1,y2);\n\t\t\t}\n\n\t\t\tif(dir1 == -1 && dir2 == -1)continue;\n\n\n\t\t\tif(y1 > y2){\n\n\t\t\t\tif(dir1 == 1){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\n\t\t\t}else{ //y1 < y2\n\n\t\t\t\tif(dir2 == 1){\n\n\t\t\t\t\tANS[seg.ind] = 1;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\t//printf(\"線分%dを消します\\n\",seg.ind);\n\n\t\t\t\t\tif(is_r_up[seg.ind]){\n\n\t\t\t\t\t\tSU.erase(RANK[seg.ind]);\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tSD.erase(RANK[seg.ind]);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分%dです\\n\",seg.poly_ind,seg.ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\t\tint last = -1;\n\t\t\t\tdouble min_dist = HUGE_NUM;\n\t\t\t\tint c_ind = -1;\n\n\t\t\t\tfor(int tmp_rank: SU){\n\n\t\t\t\t\tint id = revRANK[tmp_rank];\n\n\t\t\t\t\tif(POL_DEL[POLY_IND[id]])continue;\n\n\n\t\t\t\t\tLine work_line = LINE[id];\n\t\t\t\t\tif(base_line == work_line)continue; //■線分を共有している場合はSKIP(前処理で、背中合わせのものしか残ってないはず)\n\n\t\t\t\t\tdouble slope = SLOPE[id];\n\t\t\t\t\tdouble sec = SEC[id];\n\n\t\t\t\t\tdouble y = slope*seg.x + sec;\n\t\t\t\t\tif(y > seg.y+EPS)break;\n\t\t\t\t\tdouble tmp_dist = seg.y-y;\n\n\t\t\t\t\tif(tmp_dist+EPS < min_dist){\n\t\t\t\t\t\tmin_dist = tmp_dist;\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t\tc_ind = POLY_IND[id];\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t}else if(fabs(tmp_dist-min_dist) < EPS){\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tfor(int tmp_rank: SD){\n\n\t\t\t\t\tint id = revRANK[tmp_rank];\n\n\t\t\t\t\tif(POL_DEL[POLY_IND[id]])continue;\n\n\n\t\t\t\t\tLine work_line = LINE[id];\n\t\t\t\t\tif(base_line == work_line)continue; //■線分を共有している場合はSKIP(前処理で、背中合わせのものしか残ってないはず)\n\n\t\t\t\t\tdouble slope = SLOPE[id];\n\t\t\t\t\tdouble sec = SEC[id];\n\n\t\t\t\t\tdouble y = slope*seg.x + sec;\n\t\t\t\t\tif(y > seg.y+EPS)break;\n\t\t\t\t\tdouble tmp_dist = seg.y-y;\n\n\t\t\t\t\tif(tmp_dist+EPS < min_dist){\n\t\t\t\t\t\tmin_dist = tmp_dist;\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t\tc_ind = POLY_IND[id];\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t}else if(fabs(tmp_dist-min_dist) < EPS){\n\n\t\t\t\t\t\tif(TO_R[id]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(last == 1){ //■他のポリゴンに含まれている\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"他のポリゴンに含まれています\\n\");\n\t\t\t\t\tprintf(\"\\nポリゴン%dはポリゴン%dに含まれています min_dist:%.3lf\\n\",seg.poly_ind,c_ind,min_dist);\n\n\t\t\t\t\t}\n\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"線分%dを追加します ランク%d\\n\",seg.ind,RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t\tif(is_r_up[seg.ind]){\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tSU.insert(RANK[seg.ind]);\n\n\t\t\t\t}else{\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t}\n\t\t\t\t\tSD.insert(RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"線分%dを消します ランク:%d\\n\",seg.ind,RANK[seg.ind]);\n\t\t\t\t}\n\n\t\t\t\tif(is_r_up[seg.ind]){\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右上がり\\n\");\n\t\t\t\t\t}\n\n\t\t\t\t\tSU.erase(RANK[seg.ind]);\n\n\t\t\t\t}else{\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右下がり\\n\");\n\t\t\t\t\t}\n\n\t\t\t\t\tSD.erase(RANK[seg.ind]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.3333333333333333, "time_ms": 20, "memory_kb": 88076, "score_of_the_acc": -0.4033, "final_rank": 18 }, { "submission_id": "aoj_2721_8392497", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define chmin(x,y) x = min(x,y)\n#define chmax(x,y) x = max(x,y)\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 998244353\n//#define MOD 1000000007\n//#define EPS 0.000000001\n\n\n#define EPS 1e-9\n#define SIZE 300005\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\tbool operator==(const struct Line &arg) const{\n\n\t\treturn (p[0] == arg.p[0] && p[1] == arg.p[1])||(p[0] == arg.p[1] && p[1] == arg.p[0]);\n\t}\n\tvoid outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}\n\tPoint p[2];\n};\n\n\n\nstruct SEGM{\n\tSEGM(double arg_x,double arg_y,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind,double arg_slope,double arg_pol_s,int arg_e_ind){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tisQuery = arg_isQuery;\n\t\tisL = arg_isL;\n\t\tind = arg_ind;\n\t\tisToR = arg_isToR;\n\t\tpoly_ind = arg_poly_ind;\n\t\tslope = arg_slope;\n\t\tpol_s = arg_pol_s;\n\t\te_ind = arg_e_ind;\n\t}\n\tSEGM(){\n\t\tx = y = slope = pol_s = 0;\n\t\tisQuery = isL = isToR = false;\n\t\tind = poly_ind = e_ind = 0;\n\t}\n\tbool operator<(const struct SEGM& arg) const{\n\n\t\tif(fabs(x-arg.x) > EPS){\n\n\t\t\treturn x < arg.x;\n\t\t}else if(fabs(pol_s-arg.pol_s) > EPS){\n\t\t\treturn pol_s > arg.pol_s;\n\t\t}else{\n\n\t\t\treturn y < arg.y;\n\t\t}\n\t}\n\tdouble x,y,slope,pol_s;\n\tbool isQuery,isL,isToR;\n\tint ind,poly_ind,e_ind;\n};\n\nstruct Info{\n\tInfo(int arg_node,int arg_pre){\n\t\tnode = arg_node;\n\t\tpre = arg_pre;\n\t}\n\tInfo(){\n\n\t\tnode = pre = 0;\n\t}\n\n\tint node,pre;\n};\n\n\nint N,M,numQ;\nLine line[SIZE];\nPoint point[SIZE],q_point[SIZE],RU[SIZE],LD[SIZE];\nvector<int> G[SIZE],ON_SEG[SIZE],CONTAIN[SIZE],EDGES,NODES;\nvector<vector<int>> V_N;\nset<int> SET;\nPolygon POL;\nbool CONNECT,DEL[SIZE],visited[SIZE],check[SIZE],POL_DEL[SIZE],ADD_CHECK[SIZE];\nmap<pair<int,int>,int> MAP;\nint numE = 0,numDEG[SIZE];\nmap<int,pair<int,int>> REV;\nint A[SIZE],B[SIZE],COUNT[SIZE],ANS[SIZE];\ndouble X[SIZE],Y[SIZE];\ndouble QX[SIZE],QY[SIZE],poly_S[SIZE];\nvector<Line> LINE;\nint ind_L[SIZE],ind_R[SIZE];\nbool add_L[SIZE],add_R[SIZE];\nvector<bool> TO_R;\nvector<int> POLY_IND;\nmap<pair<int,int>,int> POS;\nint table[SIZE];\nvector<pair<double,int>> vec_S[SIZE];\nmap<pair<int,int>,int> EMAP;\nint num_EMAP = 0;\n\n\nint getIndex(int a,int b){\n\n\tauto at = EMAP.find(make_pair(a,b));\n\tif(at == EMAP.end()){\n\n\t\tEMAP[make_pair(a,b)] = num_EMAP++;\n\t}\n\treturn EMAP[make_pair(a,b)];\n}\n\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\nint func(double x1,double y1,double x2, double y2, double xp, double yp){\n\tdouble naiseki,norm1,norm2,gaiseki;\n\tnorm1 = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n\tnorm2 = sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));\n\tnaiseki = (xp-x1)*(x2-x1)+(yp-y1)*(y2-y1);\n\tgaiseki = (x2-x1)*(yp-y1)-(xp-x1)*(y2-y1);\n\tif(gaiseki > EPS){\n\t\treturn 1;\n\t}else if(gaiseki < -EPS){\n\t\treturn -1;\n\t}\n\tif(naiseki < -EPS){\n\t\treturn 2;\n\t}\n\n\tif(norm1 < norm2){\n\t\treturn -2;\n\t}\n\treturn 0;\n}\n\n\n//■■直線ではなく、線分の交差判定■■\nbool is_Cross(Line a,Line b){\n\n\tif(func(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[0].x,b.p[0].y)*\n\t\t\tfunc(a.p[0].x,a.p[0].y,a.p[1].x,a.p[1].y,b.p[1].x,b.p[1].y) <= 0 &&\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[0].x,a.p[0].y)*\n\t\t\tfunc(b.p[0].x,b.p[0].y,b.p[1].x,b.p[1].y,a.p[1].x,a.p[1].y) <= 0){\n\t\treturn true;\n\t}\n\treturn false;\n}\n\n\n//交点を求める関数\nPoint calc_Cross_Point(double x1,double x2,double x3,double x4,double y1,double y2,double y3,double y4){\n\tPoint ret;\n\tret.x = ((x2-x1)*(y3*(x4-x3)+x3*(y3-y4))-(x4-x3)*(y1*(x2-x1)+x1*(y1-y2)))/((y2-y1)*(x4-x3)-(y4-y3)*(x2-x1));\n\tif(fabs(x1-x2) > EPS){\n\t\tret.y = ((y2-y1)*ret.x+y1*(x2-x1)+x1*(y1-y2))/(x2-x1);\n\t}else{\n\t\tret.y = ((y4-y3)*ret.x+y3*(x4-x3)+x3*(y3-y4))/(x4-x3);\n\t}\n\treturn ret;\n}\n\n//インタフェース関数\nPoint calc_Cross_Point(Point a,Point b,Point c,Point d){\n\treturn calc_Cross_Point(a.x,b.x,c.x,d.x,a.y,b.y,c.y,d.y);\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\n\n//線分ではなく直線と点の距離\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0]))/calc_len(calc_minus(l.p[1],l.p[0])));\n}\n\n//点と線分の距離\ndouble getDistanceSP(Line l,Point p){\n\tif(dot(calc_minus(l.p[1],l.p[0]),calc_minus(p,l.p[0])) < 0.0)return calc_len(calc_minus(p,l.p[0]));\n\tif(dot(calc_minus(l.p[0],l.p[1]),calc_minus(p,l.p[1])) < 0.0)return calc_len(calc_minus(p,l.p[1]));\n\treturn getDistanceLP(l,p);\n}\n\n//線分と線分の距離\ndouble getDistance(Line A,Line B){\n\tif(is_Cross(A,B))return 0.0;\n\treturn min(min(getDistanceSP(A,B.p[0]),getDistanceSP(A,B.p[1])),\n\t\t\tmin(getDistanceSP(B,A.p[0]),getDistanceSP(B,A.p[1])));\n}\n\nPoint calc_Cross_Point(Line A,Line B){\n\n\tif(getDistanceSP(B,A.p[0]) < EPS){\n\n\t\treturn A.p[0];\n\n\t}else if(getDistanceSP(B,A.p[1]) < EPS){\n\n\t\treturn A.p[1];\n\n\t}else if(getDistanceSP(A,B.p[0]) < EPS){\n\n\t\treturn B.p[0];\n\n\t}else if(getDistanceSP(A,B.p[1]) < EPS){\n\n\t\treturn B.p[1];\n\t}\n\n\treturn calc_Cross_Point(A.p[0],A.p[1],B.p[0],B.p[1]);\n}\n\n/*\n * IN 2\n * ON 1\n * OUT 0\n *\n */\nint contains(Polygon g,Point p){\n\tint n = g.size();\n\tbool x = false;\n\tfor(int i = 0; i < n; i++){\n\t\tPoint a = g[i]-p,b = g[(i+1)%n]-p;\n\t\tif(abs(cross(a,b)) < EPS && dot(a,b) < EPS)return 1;\n\t\tif(a.y > b.y)swap(a,b);\n\t\tif(a.y < EPS && EPS < b.y && cross(a,b) > EPS) x = !x;\n\t}\n\treturn (x ? 2:0);\n}\n\n//2つのvectorがなすラジアンを求める関数\ndouble calc_rad(Vector vec1,Vector vec2){\n\n\tdouble tmp = dot(vec1,vec2)/(abs(vec1)*abs(vec2));\n\n\tif(fabs(tmp+1.0) < EPS){\n\n\t\treturn M_PI;\n\t}\n\n\tif(fabs(tmp-1.0) < EPS){\n\n\t\treturn 0.0;\n\t}\n\n\treturn acos(dot(vec1,vec2)/(abs(vec1)*abs(vec2)));\n}\n\n//3点がなすラジアンを求める関数(ccw(base,a,b) == CCW)\ndouble calc_rad(Point base,Point a,Point b){\n\n\tVector vec1 = b-base;\n\tVector vec2 = a-base;\n\n\treturn calc_rad(vec1,vec2);\n}\n\n\n\n//■■■■■\nbool DEBUG = false;\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\ndouble calc_S(Polygon g){\n\n\tint N = g.size();\n\tdouble ret = 0;\n\n\tfor(int i = 0; i < g.size(); i++){\n\t\tret += cross(g[i],g[(i+1)%N]);\n\t}\n\treturn ret/2.0;\n}\n\n\nvoid bfs(int first_pre,int first_node){\n\n\tqueue<Info> Q;\n\tQ.push(Info(first_node,first_pre)); //■スタックオーバーフロー対策\n\n\twhile(!Q.empty()){\n\n\t\tInfo info = Q.front();\n\t\tQ.pop();\n\n\t\tint pre = info.pre;\n\t\tint node = info.node;\n\n\t\tint ind = POS.find(make_pair(node,pre))->second; //preがG[node]における何番目か\n\t\t//ind = (ind-1+G[node].size())%G[node].size();\n\t\tind = (ind+1)%G[node].size();\n\n\t\tint next = G[node][ind];\n\t\tif(next == pre)return;\n\n\t\t//printf(\"node:%d pre:%d next:%d\\n\",node,pre,next);\n\n\t\tint next_e_ind = MAP[make_pair(node,G[node][ind])];\n\t\tif(visited[next_e_ind]){\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\n\t\tif(SET.count(next) > 0){ //■点始まり点終わり\n\n\t\t\tif(SET.size() == 2)return;\n\n\t\t\tCONNECT = true;\n\t\t\t//図形が完成した場合、訪問済みの辺は再訪しない\n\t\t\tfor(int i = 0; i < EDGES.size(); i++){\n\n\t\t\t\tvisited[EDGES[i]] = true;\n\t\t\t}\n\n\t\t\tPolygon work;\n\t\t\tvector<int> t_v;\n\n\t\t\t//■■最初にnextに到達するまでの点は削除する\n\t\t\tbool FLG = false;\n\t\t\tfor(int i = 0; i < POL.size(); i++){\n\t\t\t\tif(POL[i] == point[next]){\n\n\t\t\t\t\tFLG = true;\n\t\t\t\t}\n\t\t\t\tif(!FLG)continue;\n\n\t\t\t\twork.push_back(POL[i]);\n\t\t\t\tt_v.push_back(NODES[i]);\n\t\t\t}\n\n\t\t\tPOL.clear();\n\t\t\tPOL = work;\n\n\t\t\tNODES.clear();\n\t\t\tNODES = t_v;\n\n\t\t\treturn;\n\t\t}\n\n\t\tSET.insert(next);\n\t\tPOL.push_back(point[G[node][ind]]);\n\t\tNODES.push_back(G[node][ind]);\n\t\tEDGES.push_back(next_e_ind);\n\t\tQ.push(Info(next,node));\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&numQ);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&X[i],&Y[i]);\n\t}\n\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tscanf(\"%d %d\",&A[i],&B[i]);\n\t\tA[i]--;\n\t\tB[i]--;\n\n\t\tnumDEG[A[i]]++;\n\t\tnumDEG[B[i]]++;\n\n\t\t//所属する辺\n\t\tON_SEG[A[i]].push_back(i);\n\t\tON_SEG[B[i]].push_back(i);\n\n\t\t//辺が持つ点\n\t\tCONTAIN[i].push_back(A[i]);\n\t\tCONTAIN[i].push_back(B[i]);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tscanf(\"%lf %lf\",&QX[i],&QY[i]);\n\t}\n\n\t//全体を微小に回転\n\tPoint center = Point(0,0);\n\tdouble roll_rad = M_PI/180;\n\n\tif(DEBUG){\n\n\t\t//roll_rad = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPoint tmp_p = Point(X[i],Y[i]);\n\t\tpoint[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\tPoint tmp_p = Point(QX[i],QY[i]);\n\t\tq_point[i] = rotate(center,tmp_p,roll_rad);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tDEL[i] = false;\n\t}\n\n\t//■■次数が1の点を含むなら、行き止まりなので辺を削除\n\tqueue<int> que;\n\n\tfor(int i = 0; i < N; i++){ //点の走査\n\n\t\tif(numDEG[i] == 1){\n\n\t\t\tDEL[i] = true;\n\t\t\tint e_ind = ON_SEG[i][0]; //点が所属する辺\n\n\t\t\tcheck[e_ind] = true;\n\n\t\t\tfor(int k = 0; k < CONTAIN[e_ind].size(); k++){ //辺を除去するので、もう片方の端点の次数を減らす\n\t\t\t\tint p_ind = CONTAIN[e_ind][k];\n\t\t\t\tif(p_ind == i)continue;\n\n\t\t\t\tnumDEG[p_ind]--;\n\t\t\t\tif(numDEG[p_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[p_ind] = true;\n\t\t\t\t\tque.push(p_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t}\n\t}\n\n\twhile(!que.empty()){\n\n\t\tint ind = que.front(); //消す点番号\n\t\tque.pop();\n\n\t\tfor(int k = 0; k < ON_SEG[ind].size(); k++){ //消す点が乗っている辺\n\n\t\t\tint seg = ON_SEG[ind][k]; //消す点が含まれている辺番号\n\t\t\tif(check[seg])continue;\n\t\t\tcheck[seg] = true;\n\n\t\t\tfor(int a = 0; a < CONTAIN[seg].size(); a++){ //残っている1点を探す\n\n\t\t\t\tint tmp_ind = CONTAIN[seg][a]; //点番号\n\t\t\t\tif(DEL[tmp_ind])continue;\n\n\t\t\t\tnumDEG[tmp_ind]--;\n\t\t\t\tif(numDEG[tmp_ind] == 1){ //新しい端点になった場合\n\n\t\t\t\t\tDEL[tmp_ind] = true;\n\t\t\t\t\tque.push(tmp_ind);\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint p = A[i],q = B[i];\n\t\tif(DEL[p] || DEL[q])continue;\n\n\t\t// //■辺に向きをつける\n\t\tREV[numE] = make_pair(p,q);\n\t\tMAP[make_pair(p,q)] = numE++;\n\n\t\tREV[numE] = make_pair(q,p);\n\t\tMAP[make_pair(q,p)] = numE++;\n\n\t\tG[p].push_back(q);\n\t\tG[q].push_back(p);\n\t}\n\n\n\t//■偏角ソート\n\tfor(int i = 0; i < N; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\n点:%d\\n\",i);\n\t\t}\n\n\t\t//■偏角ソート\n\t\tvector<pair<double,int>> work;\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tdouble tmp_rad = calc_rad(point[G[i][k]]-point[i]);\n\t\t\twork.push_back(make_pair(tmp_rad,G[i][k]));\n\t\t}\n\t\tsort(work.begin(),work.end());\n\t\tG[i].clear();\n\t\tfor(int k = 0; k < work.size(); k++){\n\n\t\t\tG[i].push_back(work[k].second);\n\t\t\tif(DEBUG){\n\t\t\t\tprintf(\"点%d rad;%.3lf\\n\",work[k].second,work[k].first);\n\t\t\t}\n\t\t\tPOS[make_pair(i,work[k].second)] = k;\n\t\t}\n\t}\n\n\t//■ポリゴン全列挙\n\tvector<Polygon> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\n\t\t\tif(DEBUG){\n\n\t\t\t\t/*printf(\"次点\");\n\t\t\t\tpoint[G[i][k]].debug();*/\n\t\t\t}\n\n\t\t\tint e_ind = MAP[make_pair(i,G[i][k])];\n\t\t\tif(visited[e_ind])continue;\n\n\t\t\tPOL.clear();\n\t\t\tSET.clear();\n\t\t\tEDGES.clear();\n\t\t\tNODES.clear();\n\n\t\t\tPOL.push_back(point[i]);\n\t\t\tPOL.push_back(point[G[i][k]]);\n\t\t\tNODES.push_back(i);\n\t\t\tNODES.push_back(G[i][k]);\n\n\t\t\tSET.insert(i);\n\t\t\tSET.insert(G[i][k]);\n\n\t\t\tEDGES.push_back(e_ind);\n\n\t\t\tCONNECT = false;\n\t\t\tbfs(i,G[i][k]);\n\t\t\tif(CONNECT){\n\n\n\t\t\t\tdouble tmp_S = calc_S(POL);\n\n\t\t\t\tif(tmp_S > EPS)continue;\n\t\t\t\ttmp_S *= -1;\n\n\t\t\t\t//POL = toCCW(POL); //CCW順にする\n\t\t\t\treverse(POL.begin(),POL.end());\n\t\t\t\treverse(NODES.begin(),NODES.end());\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n tmp_S:%.3lf\\n\",tmp_S);\n\t\t\t\t}\n\n\t\t\t\tfor(int a = 0; a < EDGES.size(); a++){\n\n\t\t\t\t\tvec_S[EDGES[a]].push_back(make_pair(tmp_S,V.size())); //■ある辺に対しては、最大の面積のポリゴンだけ残す\n\t\t\t\t}\n\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"\\n新たなポリゴン\\n\");\n\t\t\t\t\tfor(int k = 0; k < POL.size(); k++){\n\n\t\t\t\t\t\tPOL[k].debug();\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tV.push_back(POL);\n\t\t\t\tV_N.push_back(NODES);\n\t\t\t}\n\t\t}\n\t}\n\n\n\t//■辺を共有しているポリゴンを消す\n\tfor(int i = 0; i < numE; i++){\n\t\tif(vec_S[i].size() <= 1)continue;\n\n\t\tsort(vec_S[i].begin(),vec_S[i].end());\n\t\tdouble tmp_maxi = vec_S[i].back().first;\n\n\t\tif(DEBUG){\n\t\t\tprintf(\"\\n辺%d tmp_maxi:%.3lf\\n\",i,tmp_maxi);\n\t\t\tpair<int,int> e = REV.find(i)->second;\n\n\t\t\tint a = e.first;\n\t\t\tint b = e.second;\n\n\t\t\tpoint[a].debug();\n\t\t\tpoint[b].debug();\n\t\t}\n\n\n\t\tfor(int k = 0; k < vec_S[i].size(); k++){\n\n\t\t\tif(fabs(vec_S[i][k].first-tmp_maxi) > 1e-5){\n\n\t\t\t\tPOL_DEL[vec_S[i][k].second] = true;\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"S:%.3lf ポリゴン%dが消え\\n\",vec_S[i][k].first,vec_S[i][k].second);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tif(DEBUG){\n\t\tfor(int i = 0; i < V.size(); i++){\n\t\t\tbool FLG = false;\n\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\tif(k == i)continue;\n\n\t\t\t\tfor(int a = 0; a < V[k].size(); a++){\n\t\t\t\t\tif(contains(V[i],V[k][a]) == 2){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dに含まれています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}else if(contains(V[i],V[k][a]) == 1){\n\n\t\t\t\t\t\tprintf(\"ポリゴン%dは%dと接しています\\n\",k,i);\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG)break;\n\n\t\t\t}\n\t\t}\n\t}\n\n\t/*for(int i = 0; i < numQ; i++){\n\t\t\t\tbool FLG = false;\n\t\t\t\tfor(int k = 0; k < V.size(); k++){\n\t\t\t\t\tif(contains(V[k],q_point[i]) != 0){\n\t\t\t\t\t\tFLG = true;\n\t\t\t\t\t\tprintf(\"Yes\\n\");\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(!FLG){\n\t\t\t\t\tprintf(\"No\\n\");\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn 0;*/\n\n\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tpoly_S[i] = calc_S(V[i]);\n\t}\n\n\tvector<SEGM> vec_seg;\n\n\t//辺追加\n\t//■ポリゴンの辺に向きをつける\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tif(POL_DEL[i])continue;\n\t\tfor(int k = 0; k < V_N[i].size(); k++){\n\n\t\t\tint from = V_N[i][k];\n\t\t\tint to = V_N[i][(k+1)%V_N[i].size()];\n\n\t\t\tint a = min(from,to);\n\t\t\tint b = max(from,to);\n\n\t\t\tint ind = getIndex(a,b);\n\n\t\t\tbool isToR = (point[from].x < point[to].x); //■辺が右向きか\n\n\t\t\tdouble tmp_slope = calc_slope(Line(point[from],point[to]));\n\t\t\tif(!isToR){\n\n\t\t\t\tind_L[ind] = LINE.size();\n\t\t\t\ttmp_slope *= -1;\n\n\t\t\t}else{\n\n\t\t\t\tind_R[ind] = LINE.size();\n\t\t\t}\n\n\t\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\t\tvec_seg.push_back(SEGM(point[from].x,point[from].y,false,isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\t\t\tvec_seg.push_back(SEGM(point[to].x,point[to].y,false,!isToR,LINE.size(),isToR,i,tmp_slope,poly_S[i],ind));\n\n\t\t\tPOLY_IND.push_back(i);\n\t\t\tLINE.push_back(Line(point[from],point[to]));\n\t\t\tTO_R.push_back(isToR);\n\t\t}\n\t}\n\n\n\tfor(int i = 0; i < numQ; i++){\n\n\t\t//SEGM(double arg_x,bool arg_isQuery,bool arg_isL,int arg_ind,bool arg_isToR,int arg_poly_ind)\n\t\tvec_seg.push_back(SEGM(q_point[i].x,q_point[i].y,true,false,i,false,-1,-1,0,-1));\n\t}\n\n\n\t//■平面走査をしながら、2分探索で答えを判定\n\tsort(vec_seg.begin(),vec_seg.end());\n\n\n\tmap<pair<double,int>,bool> BAR;\n\n\tfor(int i = 0; i < vec_seg.size(); i++){\n\n\t\tSEGM seg = vec_seg[i];\n\n\t\tif(seg.isQuery){\n\n\t\t\tif(BAR.size() == 0){\n\n\t\t\t\tANS[seg.ind] = 0;\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nクエリ[%d]です\\n\",seg.ind);\n\t\t\tq_point[seg.ind].debug();\n\t\t\t}\n\n\t\t\tLine tmp_line = Line(q_point[seg.ind],Point(seg.x,-BIG_NUM)); //縦線\n\n\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\tint last = -1;\n\t\t\tdouble min_dist = HUGE_NUM;\n\n\t\t\tfor(auto at = BAR.begin(); at != BAR.end(); at++){\n\n\t\t\t\tpair<double,int> tmp = at->first;\n\t\t\t\tif(tmp.first > seg.y+10*EPS){\n\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tif(POL_DEL[POLY_IND[tmp.second]])continue;\n\n\t\t\t\tLine work_line = LINE[tmp.second];\n\t\t\t\tif(!is_Cross(tmp_line,work_line))continue;\n\n\t\t\t\tPoint cross_p = calc_Cross_Point(tmp_line,work_line);\n\t\t\t\tif(DEBUG){\n\n\t\t\t\t\tprintf(\"線分[%d]と交差します\\n\",tmp.second);\n\t\t\t\t\twork_line.outPut();\n\t\t\t\t\tcross_p.debug();\n\t\t\t\t}\n\n\t\t\t\tdouble tmp_dist = seg.y-cross_p.y;\n\n\t\t\t\tif(tmp_dist+EPS < min_dist || fabs(tmp_dist-min_dist) < EPS){\n\t\t\t\t\tmin_dist = tmp_dist;\n\t\t\t\t\tif(TO_R[tmp.second]){\n\t\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\t\tprintf(\"右向き\\n\");\n\t\t\t\t\t\t}\n\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t}else{\n\t\t\t\t\t\tif(DEBUG){\n\n\t\t\t\t\t\t\tprintf(\"左向き\\n\");\n\t\t\t\t\t\t}\n\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"last:%d\\n\",last);\n\t\t\t}\n\n\n\t\t\tif(last == 1){\n\n\t\t\t\tANS[seg.ind] = 1;\n\t\t\t}\n\n\t\t}else{ //線分\n\n\t\t\tLine calc_line = LINE[seg.ind];\n\t\t\t\t\t\tdouble mini = min(calc_line.p[0].y,calc_line.p[1].y);\n\n\t\t\tif(POL_DEL[seg.poly_ind]){\n\n\t\t\t\tif(!seg.isL){\n\n\t\t\t\t\tauto bt = BAR.lower_bound(make_pair(mini-EPS,-1));\n\t\t\t\t\t\t\t\t\twhile(bt != BAR.end()){\n\n\t\t\t\t\t\t\t\t\t\tif(bt->first.second == seg.ind){\n\n\t\t\t\t\t\t\t\t\t\t\tBAR.erase(bt);\n\t\t\t\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t\t\t\tbt++;\n\t\t\t\t\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif(DEBUG){\n\t\t\tprintf(\"\\nポリゴン%dの線分です\\n\",seg.poly_ind);\n\t\t\tLINE[seg.ind].outPut();\n\t\t\t}\n\n\t\t\tif(COUNT[seg.poly_ind] == 0){ //最も左の点\n\t\t\t\tCOUNT[seg.poly_ind]++;\n\n\t\t\t\t//■他のポリゴンに含まれていないか調べる\n\t\t\t\tLine tmp_line = Line(Point(seg.x,seg.y),Point(seg.x,-BIG_NUM)); //縦線\n\t\t\t\tLine base_line = LINE[seg.ind];\n\n\n\t\t\t\t//■真下にある辺の向きを見る(右向きなら多角形の中)\n\t\t\t\tint last = -1;\n\t\t\t\tint c_ind = -1;\n\t\t\t\tdouble min_dist = HUGE_NUM;\n\n\t\t\t\tfor(auto at = BAR.begin(); at != BAR.end(); at++){\n\n\t\t\t\t\tpair<double,int> tmp = at->first;\n\t\t\t\t\tif(tmp.first > seg.y+10*EPS){\n\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tif(POL_DEL[POLY_IND[tmp.second]])continue;\n\n\n\t\t\t\t\tLine work_line = LINE[tmp.second];\n\t\t\t\t\tif(!is_Cross(tmp_line,work_line))continue;\n\t\t\t\t\tif(tmp_line == base_line)continue; //■線分を共有している場合はSKIP(前処理で、背中合わせのものしか残ってないはず)\n\n\t\t\t\t\tif((base_line.p[0] == tmp_line.p[0])||(base_line.p[1] == base_line.p[0]) ||\n\t\t\t\t\t\t\t(base_line.p[1] == tmp_line.p[0]) || (base_line.p[1] == tmp_line.p[1]))continue; //1点を共有している場合はSKIP\n\n\t\t\t\t\tPoint cross_p = calc_Cross_Point(tmp_line,work_line);\n\n\t\t\t\t\tdouble tmp_dist = seg.y-cross_p.y;\n\n\t\t\t\t\tif(tmp_dist+EPS < min_dist || fabs(tmp_dist-min_dist) < EPS){\n\t\t\t\t\t\tmin_dist = tmp_dist;\n\n\t\t\t\t\t\tif(TO_R[tmp.second]){\n\n\t\t\t\t\t\t\tlast = 1;\n\t\t\t\t\t\t\tc_ind = POLY_IND[tmp.second];\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tlast = 0;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t\tif(last == 1){ //■他のポリゴンに含まれている\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"他のポリゴンに含まれています\\n\");\n\t\t\t\t\tprintf(\"\\nポリゴン%dはポリゴン%dに含まれています min_dist:%.3lf\\n\",seg.poly_ind,c_ind,min_dist);\n\n\t\t\t\t\t}\n\t\t\t\t\tPOL_DEL[seg.poly_ind] = true;\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(TO_R[seg.ind]){\n\n\t\t\t\tmini += 2*EPS; //■同一直線が複数のポリゴンに、逆向きで保存されている場合あり\n\t\t\t}\n\n\t\t\tif(seg.isL){\n\n\t\t\t\tint t_i = seg.e_ind;\n\n\t\t\t\tif(seg.isToR){ //右向きは追加\n\n\t\t\t\t\tif(DEBUG){\n\t\t\t\t\tprintf(\"右向きの辺を追加します\\n\");\n\t\t\t\t\tLINE[seg.ind].outPut();\n\t\t\t\t\t}\n\t\t\t\t\tadd_R[t_i] = true;\n\n\t\t\t\t\tif(add_L[t_i]){ //左向き矢印を追加しているなら削除\n\n\t\t\t\t\t\tint l_i = ind_L[t_i]; //左向きのインデックス\n\t\t\t\t\t\tauto bt = BAR.lower_bound(make_pair(mini-EPS,-1));\n\t\t\t\t\t\twhile(bt != BAR.end()){\n\n\t\t\t\t\t\t\tif(bt->first.second == l_i){\n\n\t\t\t\t\t\t\t\tBAR.erase(bt);\n\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tbt++;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t}else{ //左向き\n\n\t\t\t\t\tif(add_R[t_i]){\n\t\t\t\t\t\tif(DEBUG){\n\t\t\t\t\t\tprintf(\"■左の辺を追加しません\\n\");\n\t\t\t\t\t\t}\n\t\t\t\t\t\tcontinue; //右向き矢印が入っているなら左は不要\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tBAR[make_pair(mini,seg.ind)] = true;\n\n\t\t\t}else{ //右の点\n\n\t\t\t\tauto bt = BAR.lower_bound(make_pair(mini-EPS,-1));\n\t\t\t\twhile(bt != BAR.end()){\n\n\t\t\t\t\tif(bt->first.second == seg.ind){\n\n\t\t\t\t\t\tBAR.erase(bt);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\tbt++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < numQ; i++){\n\t\tif(ANS[i] == 0){\n\n\t\t\tprintf(\"No\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.14942528735632185, "time_ms": 10, "memory_kb": 81904, "score_of_the_acc": -0.3658, "final_rank": 20 } ]
aoj_2729_cpp
Delete Files You are using an operating system named "Jaguntu". Jaguntu provides "Filer", a file manager with a graphical user interface. When you open a folder with Filer, the name list of files in the folder is displayed on a Filer window. Each filename is displayed within a rectangular region, and this region is called a filename region. Each filename region is aligned to the left side of the Filer window. The height of each filename region is 1, and the width of each filename region is the filename length. For example, when three files "acm.in1", "acm.c~", and "acm.c" are stored in this order in a folder, it looks like Fig. C-1 on the Filer window. You can delete files by taking the following steps. First, you select a rectangular region with dragging a mouse. This region is called selection region. Next, you press the delete key on your keyboard. A file is deleted if and only if its filename region intersects with the selection region. After the deletion, Filer shifts each filename region to the upside on the Filer window not to leave any top margin on any remaining filename region. For example, if you select a region like Fig. C-2, then the two files "acm.in1" and "acm.c~" are deleted, and the remaining file "acm.c" is displayed on the top of the Filer window as Fig. C-3. You are opening a folder storing $N$ files with Filer. Since you have almost run out of disk space, you want to delete unnecessary files in the folder. Your task is to write a program that calculates the minimum number of times to perform deletion operation described above. Input The input consists of a single test case. The test case is formatted as follows. $N$ $D_1$ $L_1$ $D_2$ $L_2$ ... $D_N$ $L_N$ The first line contains one integer $N$ ($1 \leq N \leq 1,000$), which is the number of files in a folder. Each of the next $N$ lines contains a character $D_i$ and an integer $L_i$: $D_i$ indicates whether the $i$-th file should be deleted or not, and $L_i$ ($1 \leq L_i \leq 1,000$) is the filename length of the $i$-th file. If $D_i$ is 'y', the $i$-th file should be deleted. Otherwise, $D_i$ is always 'n', and you should not delete the $i$-th file. Output Output the minimum number of deletion operations to delete only all the unnecessary files. Sample Input 1 3 y 7 y 6 n 5 Output for the Sample Input 1 1 Sample Input 2 3 y 7 n 6 y 5 Output for the Sample Input 2 2 Sample Input 3 6 y 4 n 5 y 4 y 6 n 3 y 6 Output for the Sample Input 3 2
[ { "submission_id": "aoj_2729_4293550", "code_snippet": "#include <iostream>\n#include <vector>\n\ntemplate <class T>\nstd::vector<T> vec(int len, T elem) { return std::vector<T>(len, elem); }\n\nconstexpr int INF = 1 << 30;\n\nvoid solve() {\n int n;\n std::cin >> n;\n\n std::vector<bool> erase(n);\n std::vector<int> xs(n);\n for (int i = 0; i < n; ++i) {\n char c;\n std::cin >> c >> xs[i];\n erase[i] = (c == 'y');\n }\n\n auto dp = vec(n + 1, vec(n + 1, 0));\n for (int len = 0; len < n; ++len) {\n for (int l = 0; l + len < n; ++l) {\n int r = l + len;\n if (!erase[l]) {\n dp[l][r] = dp[l + 1][r];\n continue;\n }\n\n if (!erase[r]) {\n dp[l][r] = dp[l][r - 1];\n continue;\n }\n\n int ymin = INF, nmax = 0;\n for (int i = l; i <= r; ++i) {\n if (erase[i]) {\n ymin = std::min(ymin, xs[i]);\n } else {\n nmax = std::max(nmax, xs[i]);\n }\n }\n\n if (ymin > nmax) {\n dp[l][r] = 1;\n continue;\n }\n\n dp[l][r] = INF;\n for (int i = l; i + 1 <= r; ++i) {\n dp[l][r] = std::min(dp[l][r], dp[l][i] + dp[i + 1][r]);\n }\n }\n }\n\n std::cout << dp[0][n - 1] << std::endl;\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::cout.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 0.05555555555555555, "time_ms": 20, "memory_kb": 4184, "score_of_the_acc": -0.0829, "final_rank": 3 }, { "submission_id": "aoj_2729_3720205", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nconst int maxx = 4e3+13;\nstruct ls{\t\n\tint v,id;\n}A[maxx];\nbool my(ls a,ls b){return a.v<b.v;}\nint h[maxx],flag[maxx];\nint n,tot;\nint dp[maxx][maxx];\nint read(){int k;cin>>k;return k;}\nint main(){\t\n\tn=read();\n\tfor(int i=1;i<=n;i++){\n\t\tchar s;cin>>s;\n\t\th[i]=read();\n\t\tif(s=='y')flag[i]=1;\n\t\telse flag[i] = 0;\n\t}\t\n\tfor(int i=0;i<maxx;i++)for(int j=0;j<maxx;j++)dp[i][j]=1<<30;\n\tint ans=0;\n\tint tot=2000;\n\tfor(int i=1;i<=n;i++){\t\n\t\tif(flag[i]==1){\t\t\n\t\t\tint x = h[i];\t\n\t\t\tfor(int j=1;j<=x;j++)dp[i][j]=min(dp[i-1][j],ans+1);\t\n\t\t\tfor(int j=x+1;j<=tot;j++)dp[i][j]=min(dp[i][j],dp[i-1][j]+1);\t\n\t\t\tans=1<<30;\n\t\t\tfor(int j=1;j<=tot;j++)ans=min(dp[i][j],ans);\n\t\t}\t\n\t\tif(flag[i]==0){\t\n\t\t\tint x = h[i];\n\t\t\tfor(int j=1;j<=tot;j++){\t\n\t\t\t\tif(j<=x)dp[i][j]=1<<30;\n\t\t\t\telse dp[i][j]=dp[i-1][j];\n\t\t\t}\t\n\t\t}\t\n\t}\t\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 0.05555555555555555, "time_ms": 10, "memory_kb": 66000, "score_of_the_acc": -1, "final_rank": 6 }, { "submission_id": "aoj_2729_2197160", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define INF 1<<25\nint main(){\n int n;\n cin>>n;\n char c[n+2];\n int l[n+2];\n for(int i=1;i<=n;i++) cin>>c[i]>>l[i];\n c[0]='n';l[0]=INF;\n c[n+1]='n';l[n+1]=INF;\n vector<int> no;\n for(int i=0;i<n+2;i++) if(c[i]=='n') no.push_back(i);\n int ans=0;\n bool used[n+2];\n memset(used,0,sizeof(used));\n for(int i=1;i<(int)no.size();i++){\n for(int j=0;j+i<(int)no.size();j++){\n //cout<<no[j]<<\" \"<<no[j+i]<<endl;\n bool ff=0;\n for(int k=no[j]+1;k<no[j+i];k++){\n\tif(c[k]=='y'&&!used[k]&&l[k]<=l[no[j]]&&l[k]<=l[no[j+i]]){\n\t ff=1;\n\t break;\n\t}\n }\n if(ff){\n\t//cout<<no[j]<<\" \"<<no[j+i]<<endl;\n\tans++;\n\tfor(int k=no[j]+1;k<no[j+i];k++) used[k]=1;\n }\n }\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 3164, "score_of_the_acc": -1, "final_rank": 1 }, { "submission_id": "aoj_2729_2164988", "code_snippet": "// This amazing code is by Eric Sunli Chen.\n#include <algorithm>\n#include <bitset>\n#include <cmath>\n#include <cstring>\n#include <cstdio>\n#include <cstdlib>\n#include <ctime>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <queue>\n#include <set>\n#include <string>\n#include <utility>\n#include <vector>\nusing namespace std;\ntemplate<typename T> void get_int(T &x)\n{\n\tchar t=getchar();\n\tbool neg=false;\n\tx=0;\n\tfor(; (t>'9'||t<'0')&&t!='-'; t=getchar());\n\tif(t=='-')neg=true,t=getchar();\n\tfor(; t<='9'&&t>='0'; t=getchar())x=x*10+t-'0';\n\tif(neg)x=-x;\n}\ntemplate<typename T> void print_int(T x)\n{\n\tif(x<0)putchar('-'),x=-x;\n\tshort a[20]= {},sz=0;\n\twhile(x>0)a[sz++]=x%10,x/=10;\n\tif(sz==0)putchar('0');\n\tfor(int i=sz-1; i>=0; i--)putchar('0'+a[i]);\n}\n#define ff first\n#define ss second\n#define pb push_back\n#define mp make_pair\n#define get1(a) get_int(a)\n#define get2(a,b) get1(a),get1(b)\n#define get3(a,b,c) get1(a),get2(b,c)\n#define printendl(a) print_int(a),puts(\"\")\ntypedef long long LL;\ntypedef unsigned long long uLL;\ntypedef pair<int,int> pii;\nconst int inf=0x3f3f3f3f;\nconst LL Linf=1ll<<61;\nconst double pi=acos(-1.0);\n\nint n,len[1111],ok[1111],mn[1111][1111];\nmap<int,int> tt[1111][1111];\nchar tmp[5];\nint dfs(int l,int r,int up)\n{\n\tif(l>r)return 0;\n\tif(tt[l][r].find(up)!=tt[l][r].end())return tt[l][r][up];\n\tint mx=0,tot=0,cnt=0;\n\tfor(int i=l;i<=r;i++)\n\t{\n\t\tif(!ok[i])\n\t\t{\n\t\t\tif(mx==0||len[mx]<len[i])mx=i;\n\t\t\tif(cnt)\n\t\t\t{\n\t\t\t\ttot++;\n\t\t\t\tcnt=0;\n\t\t\t}\n\t\t}\n\t\telse if(ok[i]&&len[i]<=up)cnt++;\n\t}\n\tif(cnt)tot++;\n\tif(tot==0)return tt[l][r][up]=0;\n\tif(mx==0)return tt[l][r][up]=tot;\n//\tprintf(\"%d %d %d tot= %d mx= %d\\n\",l,r,up,tot);\n\treturn tt[l][r][up]=min(dfs(l,mx-1,len[mx])+dfs(mx+1,r,len[mx])+1,min(dfs(l,mx-1,up)+dfs(mx+1,r,up),tot));\n}\nint main()\n{\n\tget1(n);\n\tfor(int i=1;i<=n;i++)\n\t{\n\t\tscanf(\"%s%d\",tmp,len+i);\n\t\tif(tmp[0]=='y')ok[i]=1;\n\t}\n\tprintendl(dfs(1,n,inf));\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 61408, "score_of_the_acc": -1.0603, "final_rank": 2 }, { "submission_id": "aoj_2729_2164810", "code_snippet": "// This amazing code is by Eric Sunli Chen.\n#include <algorithm>\n#include <bitset>\n#include <cmath>\n#include <cstring>\n#include <cstdio>\n#include <cstdlib>\n#include <ctime>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <queue>\n#include <set>\n#include <string>\n#include <utility>\n#include <vector>\nusing namespace std;\ntemplate<typename T> void get_int(T &x)\n{\n\tchar t=getchar();\n\tbool neg=false;\n\tx=0;\n\tfor(; (t>'9'||t<'0')&&t!='-'; t=getchar());\n\tif(t=='-')neg=true,t=getchar();\n\tfor(; t<='9'&&t>='0'; t=getchar())x=x*10+t-'0';\n\tif(neg)x=-x;\n}\ntemplate<typename T> void print_int(T x)\n{\n\tif(x<0)putchar('-'),x=-x;\n\tshort a[20]= {},sz=0;\n\twhile(x>0)a[sz++]=x%10,x/=10;\n\tif(sz==0)putchar('0');\n\tfor(int i=sz-1; i>=0; i--)putchar('0'+a[i]);\n}\n#define ff first\n#define ss second\n#define pb push_back\n#define mp make_pair\n#define get1(a) get_int(a)\n#define get2(a,b) get1(a),get1(b)\n#define get3(a,b,c) get1(a),get2(b,c)\n#define printendl(a) print_int(a),puts(\"\")\ntypedef long long LL;\ntypedef unsigned long long uLL;\ntypedef pair<int,int> pii;\nconst int inf=0x3f3f3f3f;\nconst LL Linf=1ll<<61;\nconst double pi=acos(-1.0);\n\nint n,len[1111],ok[1111],mn[1111][1111];\nmap<int,int> tt[1111][1111];\nchar tmp[5];\nint dfs(int l,int r,int up)\n{\n\tif(l>r)return 0;\n\tif(tt[l][r].find(up)!=tt[l][r].end())return tt[l][r][up];\n\tint mx=0,tot=0,cnt=0;\n\tfor(int i=l;i<=r;i++)\n\t{\n\t\tif(!ok[i]&&(mx==0||len[mx]<len[i]))\n\t\t{\n\t\t\tmx=i;\n\t\t\tif(cnt)\n\t\t\t{\n\t\t\t\ttot++;\n\t\t\t\tcnt=0;\n\t\t\t}\n\t\t}\n\t\telse if(ok[i]&&len[i]<=up)cnt++;\n\t}\n\tif(cnt)tot++;\n\tif(tot==0)return 0;\n\tif(mx==0)return tot;\n//\tprintf(\"%d %d %d tot= %d mx= %d\\n\",l,r,up,tot);\n\treturn min(dfs(l,mx-1,len[mx])+dfs(mx+1,r,len[mx])+1,min(dfs(l,mx-1,up)+dfs(mx+1,r,up),tot));\n}\nint main()\n{\n\tget1(n);\n\tfor(int i=1;i<=n;i++)\n\t{\n\t\tscanf(\"%s%d\",tmp,len+i);\n\t\tif(tmp[0]=='y')ok[i]=1;\n\t}\n\tprintendl(dfs(1,n,inf));\n\treturn 0;\n}", "accuracy": 0.05555555555555555, "time_ms": 20, "memory_kb": 60956, "score_of_the_acc": -0.9864, "final_rank": 4 }, { "submission_id": "aoj_2729_2164799", "code_snippet": "// This amazing code is by Eric Sunli Chen.\n#include <algorithm>\n#include <bitset>\n#include <cmath>\n#include <cstring>\n#include <cstdio>\n#include <cstdlib>\n#include <ctime>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <queue>\n#include <set>\n#include <string>\n#include <utility>\n#include <vector>\nusing namespace std;\ntemplate<typename T> void get_int(T &x)\n{\n\tchar t=getchar();\n\tbool neg=false;\n\tx=0;\n\tfor(; (t>'9'||t<'0')&&t!='-'; t=getchar());\n\tif(t=='-')neg=true,t=getchar();\n\tfor(; t<='9'&&t>='0'; t=getchar())x=x*10+t-'0';\n\tif(neg)x=-x;\n}\ntemplate<typename T> void print_int(T x)\n{\n\tif(x<0)putchar('-'),x=-x;\n\tshort a[20]= {},sz=0;\n\twhile(x>0)a[sz++]=x%10,x/=10;\n\tif(sz==0)putchar('0');\n\tfor(int i=sz-1; i>=0; i--)putchar('0'+a[i]);\n}\n#define ff first\n#define ss second\n#define pb push_back\n#define mp make_pair\n#define get1(a) get_int(a)\n#define get2(a,b) get1(a),get1(b)\n#define get3(a,b,c) get1(a),get2(b,c)\n#define printendl(a) print_int(a),puts(\"\")\ntypedef long long LL;\ntypedef unsigned long long uLL;\ntypedef pair<int,int> pii;\nconst int inf=0x3f3f3f3f;\nconst LL Linf=1ll<<61;\nconst double pi=acos(-1.0);\n\nint n,len[1111],ok[1111],mn[1111][1111];\nmap<int,int> tt[1111][1111];\nchar tmp[5];\nint dfs(int l,int r,int up)\n{\n//\tprintf(\"%d %d %d\\n\",l,r,up);\n\tif(l>r)return 0;\n\tif(tt[l][r].find(up)!=tt[l][r].end())return tt[l][r][up];\n\tint mx=0,tot=0,cnt=0;\n\tfor(int i=l;i<=r;i++)\n\t{\n\t\tif(!ok[i]&&(mx==0||len[mx]<len[i]))\n\t\t{\n\t\t\tmx=i;\n\t\t\tif(cnt)\n\t\t\t{\n\t\t\t\ttot++;\n\t\t\t\tcnt=0;\n\t\t\t}\n\t\t}\n\t\telse if(ok[i]&&len[i]<=up)cnt++;\n\t}\n\tif(cnt)tot++;\n\tif(tot==0)return 0;\n\tif(mx==0)return cnt;\n\treturn min(dfs(l,mx-1,len[mx])+dfs(mx+1,r,len[mx])+1,min(dfs(l,mx-1,up)+dfs(mx+1,r,up),tot));\n}\nint main()\n{\n\tget1(n);\n\tfor(int i=1;i<=n;i++)\n\t{\n\t\tscanf(\"%s%d\",tmp,len+i);\n\t\tif(tmp[0]=='y')ok[i]=1;\n\t}\n\tprintendl(dfs(1,n,inf));\n\treturn 0;\n}", "accuracy": 0.05555555555555555, "time_ms": 20, "memory_kb": 60972, "score_of_the_acc": -0.9866, "final_rank": 5 } ]
aoj_2725_cpp
Problem I: Live Programming A famous Japanese idol group, JAG48, is planning the program for its next live performance. They have $N$ different songs, $song_1$, $song_2$, ..., and $song_N$. Each song has three integer param- eters, $t_i$, $p_i$, and $f_i$: $t_i$ denotes the length of $song_i$, $p_i$ denotes the basic satisfaction points the audience will get when $song_i$ is performed, and $f_i$ denotes the feature value of songi that affects the audience's satisfaction. During the live performance, JAG48 can perform any number (but at least one) of the $N$ songs, unless the total length of the chosen songs exceeds the length of the live performance $T$. They can decide the order of the songs to perform, but they cannot perform the same song twice or more. The goal of this live performance is to maximize the total satisfaction points that the audience will get. In addition to the basic satisfaction points of each song, the difference between the feature values of the two songs that are performed consecutively affects the total satisfaction points. If there is no difference, the audience will feel comfortable. However, the larger the difference will be, the more frustrated the audience will be. Thus, the total satisfaction points will be calculated as follows: If $song_x$ is the first song of the live performance, the total satisfaction points just after $song_x$ is equal to $p_x$. If $song_x$ is the second or subsequent song of the live performance and is performed just after $song_y$, $p_x -(f_x -f_y)^2$ is added to the total satisfaction points, because the audience will get frustrated if $f_x$ and $f_y$ are different. Help JAG48 find a program with the maximum total satisfaction points. Input The input is formatted as follows. $N$ $T$ $t_1$ $p_1$ $f_1$ : : : $t_N$ $p_N$ $f_N$ The first line contains two integers $N$ and $T$: the number of the available $song_s$ $N$ ($1 \leq N \leq 4,000$), and the length of the live performance $T$ ($1 \leq T \leq 4,000$). The following $N$ lines represent the parameters of the songs. The $i$-th line of them contains three integers, which are the parameters of $song_i$: the length $t_i$ ($1 \leq t_i \leq 4,000$), the basic satisfaction points $p_i$ ($1 \leq p_i \leq 10^8$), and the feature value $f_i$ ($1 \leq f_i \leq 10^4$). You can assume that there is at least one song whose length is less than or equal to $T$. Output Output the maximum total satisfaction points that the audience can get during the live performance. Sample Input 2 10 10 200 1 10 100 100 Output for the Sample Input 200 Sample Input 3 15 5 100 1 5 100 2 5 100 4 Output for the Sample Input 295 Sample Input 3 10 5 200 200 5 200 201 5 300 1 Output for the Sample Input 399 Sample Input 3 20 5 100 200 5 100 201 5 300 1 Output for the Sample Input 300 Sample Input 5 61 14 49 7 31 46 4 30 55 5 52 99 1 34 70 3 Output for the Sample Input 103
[ { "submission_id": "aoj_2725_8170564", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define overload2(a, b, c, ...) c\n#define overload3(a, b, c, d, ...) d\n#define overload4(a, b, c, d, e ...) e\n#define overload5(a, b, c, d, e, f ...) f\n#define overload6(a, b, c, d, e, f, g ...) g\n#define fast_io ios::sync_with_stdio(false); cin.tie(nullptr);\n#pragma GCC optimize(\"Ofast,no-stack-protector,unroll-loops,fast-math\")\ntypedef long long ll;\ntypedef long double ld;\n#define chmin(a,b) a = min(a,b);\n#define chmax(a,b) a = max(a,b);\n#define bit_count(x) __builtin_popcountll(x)\n#define leading_zero_count(x) __builtin_clz(x)\n#define trailing_zero_count(x) __builtin_ctz(x)\n#define gcd(a,b) __gcd(a,b)\n#define lcm(a,b) a / gcd(a,b) * b\n#define rep(...) overload3(__VA_ARGS__, rrep, rep1)(__VA_ARGS__)\n#define rep1(i,n) for(int i = 0 ; i < n ; i++)\n#define rrep(i,a,b) for(int i = a ; i < b ; i++)\n#define repi(it,S) for(auto it = S.begin() ; it != S.end() ; it++)\n#define pt(a) cout << a << endl;\n#define print(...) printall(__VA_ARGS__);\n#define debug(a) cout << #a << \" \" << a << endl;\n#define all(a) a.begin(), a.end()\n#define endl \"\\n\";\n#define v1(T,n,a) vector<T>(n,a)\n#define v2(T,n,m,a) vector<vector<T>>(n,v1(T,m,a))\n#define v3(T,n,m,k,a) vector<vector<vector<T>>>(n,v2(T,m,k,a))\n#define v4(T,n,m,k,l,a) vector<vector<vector<vector<T>>>>(n,v3(T,m,k,l,a))\ntemplate<typename T,typename U>istream &operator>>(istream&is,pair<T,U>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T,typename U>ostream &operator<<(ostream&os,const pair<T,U>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T>istream &operator>>(istream&is,vector<T>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T>ostream &operator<<(ostream&os,const vector<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?\" \":\"\");}return os;}\ntemplate<typename T>istream &operator>>(istream&is,vector<vector<T>>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T>ostream &operator<<(ostream&os,const vector<vector<T>>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?\"\\n\":\"\");}return os;}\ntemplate<typename T>ostream &operator<<(ostream&os,const set<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?\" \":\"\");}return os;}\ntemplate<typename T>ostream &operator<<(ostream&os,const multiset<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?\" \":\"\");}return os;}\ntemplate<class... Args> void printall(Args... args){for(auto i:initializer_list<common_type_t<Args...>>{args...}) cout<<i<<\" \";cout<<endl;}\n\nconst long long linf = 1000000000000000000LL;\n\ntemplate <typename T, T x_low, T x_high, T id>\nstruct DynamicLiChaoTree {\n struct Line {\n T a, b;\n Line(T a, T b): a(a), b(b) {}\n inline T get(T x) const { return a * x + b; }\n };\n\n struct Node {\n Line x;\n Node *l, *r;\n Node(const Line &x): x(x), l{nullptr}, r{nullptr} {}\n };\n\n Node *root;\n\n \n private:\n Node *_add_line(Node *t, Line &x, const T &l, const T &r, const T &x_l, const T &x_r) {\n if(!t) return new Node(x);\n\n T t_l = t->x.get(l);\n T t_r = t->x.get(r);\n\n if(t_l <= x_l && t_r <= x_r) return t;\n if(t_l >= x_l && t_r >=x_r) {\n t->x = x;\n return t;\n }\n T m = (l + r) / 2;\n if(m == r) --m;\n T t_m = t->x.get(m);\n T x_m = x.get(m);\n if(t_m > x_m) swap(t->x, x);\n if(x_l >= t_l) t->l = _add_line(t->l, x, l, m, t_l, t_m);\n else t->r = _add_line(t->r, x, m+1, r, t_m+x.a, t_r);\n return t;\n }\n\n Node *_add_segment(Node *t, Line &x, const T &a, const T &b, const T &l, const T &r, const T &x_l, const T &x_r) {\n if(r < a || b < l) return t;\n if(a <= l && r <= b) {\n Line y{x};\n return *add_line(t, y, l, r, x_l, x_r);\n }\n if(t) {\n T t_l = t->x.get(l);\n T t_r = t->x.get(r);\n if(t_l <= x_l && t_r <= x_r) return t;\n }\n else t = new Node(Line(0, id));\n T m = (l + r) / 2;\n if(m == r) --m;\n T x_m = x.get(m);\n t->l = _add_segment(t->l, x, a, b, l, m, x_l, x_m);\n t->r = _add_segment(t->r, x, a, b, m+1, r, x_m+x.a, x_r);\n return t;\n }\n\n T _query(Node *t, const T &l, const T &r, const T &x) const {\n if(!t) return id;\n if(l == r) return t->x.get(x);\n T m = (l + r) / 2;\n if(m == r) --m;\n if(x <= m) return min(t->x.get(x), _query(t->l, l, m, x));\n else return min(t->x.get(x), _query(t->r, m+1, r, x));\n }\n\n public:\n DynamicLiChaoTree(): root{nullptr} {}\n void add_line(const T &a, const T &b){\n Line x(a, b);\n root = _add_line(root, x, x_low, x_high, x.get(x_low), x.get(x_high));\n }\n void add_segment(const T &l, const T &r, const T &a, const T &b){\n Line x(a,b);\n root = _add_segment(root, x, l, r-1, x_low, x_high, x.get(x_low), x.get(x_high));\n }\n T query(const T &x) const {\n return _query(root, x_low, x_high, x);\n }\n};\n\nint main(){\n int n, T;\n cin >> n >> T;\n vector<tuple<ll,ll,ll>> A(n);\n rep(i,n){\n ll t, p, f;\n cin >> t >> p >> f;\n A[i] = {f,t,p};\n }\n sort(all(A));\n vector<vector<ll>> dp(n+1,vector<ll>(T+1,-1e18));\n vector<DynamicLiChaoTree<ll, 0, 1000000000LL, linf>> chtv;\n rep(i,T+1){\n DynamicLiChaoTree<ll, 0, 1000000000LL, linf> cht;\n chtv.push_back(cht);\n }\n rrep(i,1,n+1){\n auto [f,t,p] = A[i-1];\n rep(j,T+1){\n if(j+t>T) break;\n if(j == 0){\n dp[i][j+t] = p;\n }\n else{\n chmax(dp[i][j+t], p - f*f - chtv[j].query(f));\n }\n }\n rep(j,T+1){\n if(j+t>T) break;\n chtv[j+t].add_line(-2*f, -dp[i][j+t]+f*f);\n }\n }\n ll res = 0;\n rrep(i,1,n+1) rep(j,T+1) chmax(res,dp[i][j]);\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 118088, "score_of_the_acc": -1.0712, "final_rank": 16 }, { "submission_id": "aoj_2725_7268042", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr long long inf = 1001001001001001001;\n\n//https://ei1333.github.io/library/structure/convex-hull-trick/dynamic-li-chao-tree.hpp\ntemplate< typename T, T x_low, T x_high, T id >\nstruct DynamicLiChaoTree {\n \n struct Line {\n T a, b;\n \n Line(T a, T b) : a(a), b(b) {}\n \n inline T get(T x) const { return a * x + b; }\n };\n \n struct Node {\n Line x;\n Node *l, *r;\n \n Node(const Line &x) : x{x}, l{nullptr}, r{nullptr} {}\n };\n \n Node *root;\n \n DynamicLiChaoTree() : root{nullptr} {}\n \n Node *add_line(Node *t, Line &x, const T &l, const T &r, const T &x_l, const T &x_r) {\n if(!t) return new Node(x);\n \n T t_l = t->x.get(l), t_r = t->x.get(r);\n \n if(t_l <= x_l && t_r <= x_r) {\n return t;\n } else if(t_l >= x_l && t_r >= x_r) {\n t->x = x;\n return t;\n } else {\n T m = (l + r) / 2;\n if(m == r) --m;\n T t_m = t->x.get(m), x_m = x.get(m);\n if(t_m > x_m) {\n swap(t->x, x);\n if(x_l >= t_l) t->l = add_line(t->l, x, l, m, t_l, t_m);\n else t->r = add_line(t->r, x, m + 1, r, t_m + x.a, t_r);\n } else {\n if(t_l >= x_l) t->l = add_line(t->l, x, l, m, x_l, x_m);\n else t->r = add_line(t->r, x, m + 1, r, x_m + x.a, x_r);\n }\n return t;\n }\n }\n \n void add_line(const T &a, const T &b) {\n Line x(a, b);\n root = add_line(root, x, x_low, x_high, x.get(x_low), x.get(x_high));\n }\n \n Node *add_segment(Node *t, Line &x, const T &a, const T &b, const T &l, const T &r, const T &x_l, const T &x_r) {\n if(r < a || b < l) return t;\n if(a <= l && r <= b) {\n Line y{x};\n return add_line(t, y, l, r, x_l, x_r);\n }\n if(t) {\n T t_l = t->x.get(l), t_r = t->x.get(r);\n if(t_l <= x_l && t_r <= x_r) return t;\n } else {\n t = new Node(Line(0, id));\n }\n T m = (l + r) / 2;\n if(m == r) --m;\n T x_m = x.get(m);\n t->l = add_segment(t->l, x, a, b, l, m, x_l, x_m);\n t->r = add_segment(t->r, x, a, b, m + 1, r, x_m + x.a, x_r);\n return t;\n }\n \n void add_segment(const T &l, const T &r, const T &a, const T &b) {\n Line x(a, b);\n root = add_segment(root, x, l, r - 1, x_low, x_high, x.get(x_low), x.get(x_high));\n }\n \n T query(const Node *t, const T &l, const T &r, const T &x) const {\n if(!t) return id;\n if(l == r) return t->x.get(x);\n T m = (l + r) / 2;\n if(m == r) --m;\n if(x <= m) return min(t->x.get(x), query(t->l, l, m, x));\n else return min(t->x.get(x), query(t->r, m + 1, r, x));\n }\n \n T query(const T &x) const {\n return query(root, x_low, x_high, x);\n }\n};\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N,T;\n cin >> N >> T;\n vector<array<long long,3>>tmp(N);\n for(int i = 0; i < N; i++) {\n cin >> tmp[i][1] >> tmp[i][2] >> tmp[i][0];\n }\n sort(tmp.begin(),tmp.end());\n vector<DynamicLiChaoTree<long long,0,2001001,inf>>tree(T+1);\n long long ans = 0;\n for(int i = 0; i < N; i++) {\n for(int j = T; j >= 0; j--) {\n if(j+tmp[i][1] <= T) {\n if(j == 0) {\n ans = max(ans,tmp[i][2]);\n tree[tmp[i][1]].add_line(-tmp[i][0],-(tmp[i][2]-tmp[i][0]*tmp[i][0]));\n }\n else {\n long long q = -tree[j].query(2*tmp[i][0])-tmp[i][0]*tmp[i][0]+tmp[i][2];\n ans = max(ans,q);\n tree[j+tmp[i][1]].add_line(-tmp[i][0],-(q-tmp[i][0]*tmp[i][0]));\n }\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 5824, "score_of_the_acc": -0.0443, "final_rank": 3 }, { "submission_id": "aoj_2725_7178554", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\n// 最悪計算量普通に3乗だと思うけど、落とすの大変かも、みたいなインチキDP\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,T; cin >> n >> T;\n vector<vector<pair<ll,int>>> dp(T+1);\n vector<pair<int,pair<int,int>>> v(n);\n for(int i=0;i<n;i++){\n int t,p,f; cin >> t >> p >> f;\n v[i] = {f,{t,p}};\n }\n sort(v.begin(), v.end());\n for(int i=0;i<n;i++){\n int f = v[i].first;\n int t = v[i].second.first;\n int p = v[i].second.second;\n auto psh = [&](int tt,int ff,ll val)->void{\n while(dp[tt].size() and dp[tt].back().first <= val){\n dp[tt].pop_back();\n }\n dp[tt].push_back({val,ff});\n };\n for(int j=T-t;j>0;j--){\n if(!dp[j].size()) continue;\n ll val = 0;\n for(auto pre:dp[j]){\n ll vv = pre.first+p-(ll)(pre.second-f)*(pre.second-f);\n val = max(val, vv);\n }\n psh(j+t, f, val);\n }\n if(t <= T){ // 0からの遷移\n ll val = p;\n psh(t, f, val);\n }\n }\n ll res = 0;\n for(int i=0;i<=T;i++){\n if(dp[i].size()) res = max(res, dp[i][0].first);\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4384, "score_of_the_acc": -0.0083, "final_rank": 2 }, { "submission_id": "aoj_2725_7178549", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,T; cin >> n >> T;\n vector<vector<pair<ll,int>>> dp(T+1);\n vector<pair<int,pair<int,int>>> v(n);\n for(int i=0;i<n;i++){\n int t,p,f; cin >> t >> p >> f;\n v[i] = {f,{t,p}};\n }\n sort(v.begin(), v.end());\n for(int i=0;i<n;i++){\n int f = v[i].first;\n int t = v[i].second.first;\n int p = v[i].second.second;\n auto psh = [&](int tt,int ff,ll val)->void{\n while(dp[tt].size() and dp[tt].back().first <= val){\n dp[tt].pop_back();\n }\n dp[tt].push_back({val,ff});\n };\n for(int j=T-t;j>0;j--){\n if(!dp[j].size()) continue;\n ll val = 0;\n for(auto pre:dp[j]){\n ll vv = pre.first+p-(ll)(pre.second-f)*(pre.second-f);\n val = max(val, vv);\n }\n psh(j+t, f, val);\n }\n if(t <= T){ // 0からの遷移\n ll val = p;\n psh(t, f, val);\n }\n }\n ll res = 0;\n for(int i=0;i<=T;i++){\n if(dp[i].size()) res = max(res, dp[i][0].first);\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4560, "score_of_the_acc": -0.0014, "final_rank": 1 }, { "submission_id": "aoj_2725_6808669", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=4005;\nconst ll INF=1LL<<61;\n\n/**\n * Author: Simon Lindholm\n * Date: 2017-04-20\n * License: CC0\n * Source: own work\n * Description: Container where you can add lines of the form kx+m, and query maximum values at points x.\n * Useful for dynamic programming (``convex hull trick'').\n * Time: O(\\log N)\n * Status: stress-tested\n */\n//pragma once\n\nstruct Line {\n mutable ll k, m, p;\n bool operator<(const Line& o) const { return k < o.k; }\n bool operator<(ll x) const { return p < x; }\n};\n\nstruct LineContainer : multiset<Line, less<>> {\n // (for doubles, use inf = 1/.0, div(a,b) = a/b)\n static const ll inf = LLONG_MAX;\n ll div(ll a, ll b) { // floored division\n return a / b - ((a ^ b) < 0 && a % b); }\n bool isect(iterator x, iterator y) {\n if (y == end()) return x->p = inf, 0;\n if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;\n else x->p = div(y->m - x->m, x->k - y->k);\n return x->p >= y->p;\n }\n void add(ll k, ll m) {\n auto z = insert({k, m, 0}), y = z++, x = y;\n while (isect(y, z)) z = erase(z);\n if (x != begin() && isect(--x, y)) isect(x, y = erase(y));\n while ((y = x) != begin() && (--x)->p >= y->p)\n isect(x, erase(y));\n }\n ll query(ll x) {\n if(empty()) return -INF;\n auto l = *lower_bound(x);\n return l.k * x + l.m;\n }\n};\n\nll dp[MAX][MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N,T;cin>>N>>T;\n vector<tuple<ll,ll,ll>> S(N);\n for(int i=0;i<N;i++){\n int a,b,c;cin>>a>>b>>c;\n S[i]={a,b,c};\n }\n sort(all(S),[](auto a,auto b){\n return (get<2>(a))<(get<2>(b));\n });\n \n for(int i=0;i<=T;i++) for(int j=0;j<=N;j++) dp[i][j]=-INF;\n \n vector<LineContainer> LC(T+1);\n \n for(int j=0;j<N;j++){\n auto [t,p,f]=S[j];\n for(int i=T;i>=t;i--){\n if(i==t){\n dp[i][j]=p;\n LC[i].add(2*f,-f*f+dp[i][j]);\n }else{\n ll x=LC[i-t].query(f);\n if(x==-INF) continue;\n dp[i][j]=x-f*f+p;\n LC[i].add(2*f,-f*f+dp[i][j]);\n }\n }\n }\n \n ll ans=-INF;\n \n for(int i=0;i<=T;i++) for(int j=0;j<N;j++) chmax(ans,dp[i][j]);\n \n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 1230, "memory_kb": 132224, "score_of_the_acc": -1.9669, "final_rank": 18 }, { "submission_id": "aoj_2725_6775503", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (int i = 0; i < n; i++)\n#define rep2(i, x, n) for (int i = x; i <= n; i++)\n#define rep3(i, x, n) for (int i = x; i >= n; i--)\n#define each(e, v) for (auto &e : v)\n#define pb push_back\n#define eb emplace_back\n#define all(x) x.begin(), x.end()\n#define rall(x) x.rbegin(), x.rend()\n#define sz(x) (int)x.size()\nusing ll = long long;\nusing pii = pair<int, int>;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing pll = pair<ll, ll>;\n\ntemplate <typename T>\nbool chmax(T &x, const T &y) {\n return (x < y) ? (x = y, true) : false;\n}\n\ntemplate <typename T>\nbool chmin(T &x, const T &y) {\n return (x > y) ? (x = y, true) : false;\n}\n\ntemplate <typename T>\nint flg(T x, int i) {\n return (x >> i) & 1;\n}\n\ntemplate <typename T>\nvoid print(const vector<T> &v, T x = 0) {\n int n = v.size();\n for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\\n' : ' ');\n if (v.empty()) cout << '\\n';\n}\n\ntemplate <typename T>\nvoid printn(const vector<T> &v, T x = 0) {\n int n = v.size();\n for (int i = 0; i < n; i++) cout << v[i] + x << '\\n';\n}\n\ntemplate <typename T>\nint lb(const vector<T> &v, T x) {\n return lower_bound(begin(v), end(v), x) - begin(v);\n}\n\ntemplate <typename T>\nint ub(const vector<T> &v, T x) {\n return upper_bound(begin(v), end(v), x) - begin(v);\n}\n\ntemplate <typename T>\nvoid rearrange(vector<T> &v) {\n sort(begin(v), end(v));\n v.erase(unique(begin(v), end(v)), end(v));\n}\n\ntemplate <typename T>\nvector<int> id_sort(const vector<T> &v, bool greater = false) {\n int n = v.size();\n vector<int> ret(n);\n iota(begin(ret), end(ret), 0);\n sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });\n return ret;\n}\n\ntemplate <typename S, typename T>\npair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {\n return make_pair(p.first + q.first, p.second + q.second);\n}\n\ntemplate <typename S, typename T>\npair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {\n return make_pair(p.first - q.first, p.second - q.second);\n}\n\ntemplate <typename S, typename T>\nistream &operator>>(istream &is, pair<S, T> &p) {\n S a;\n T b;\n is >> a >> b;\n p = make_pair(a, b);\n return is;\n}\n\ntemplate <typename S, typename T>\nostream &operator<<(ostream &os, const pair<S, T> &p) {\n return os << p.first << ' ' << p.second;\n}\n\nstruct io_setup {\n io_setup() {\n ios_base::sync_with_stdio(false);\n cin.tie(NULL);\n cout << fixed << setprecision(15);\n }\n} io_setup;\n\nconst int inf = (1 << 30) - 1;\nconst ll INF = (1LL << 60) - 1;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\n\ntemplate <typename T, bool is_min = true>\nstruct Convex_Hull_Trick {\n struct Line {\n T a, b;\n\n Line(const T &a, const T &b) : a(a), b(b) {}\n\n T get(const T &x) { return a * x + b; }\n };\n\n deque<Line> ls;\n\n Convex_Hull_Trick(){};\n\n bool empty() const { return ls.empty(); }\n\n bool judge(const Line &l1, const Line &l2, const Line &l3) const { // (l1,l2,l3) の中で l2 を消してもいいか\n T a1 = l2.a - l1.a, b1 = l2.b - l1.b;\n T a2 = l3.a - l2.a, b2 = l3.b - l2.b;\n // return a2 * b1 <= a1 * b2;\n return __int128_t(a2) * b1 <= __int128_t(a1) * b2;\n }\n\n void add_line_left(const Line &l) { // 最小値クエリなら傾き単調増加、最大値クエリなら傾き単調減少\n assert(empty() || l.a >= ls.front().a);\n if (!empty() && l.a == ls.front().a) {\n if (l.b >= ls.front().b) return;\n ls.pop_front();\n }\n while (ls.size() >= 2) {\n Line l2 = ls.front(), l3 = ls[1];\n if (!judge(l, l2, l3)) break;\n ls.pop_front();\n }\n ls.push_front(l);\n }\n\n void add_line_left(const T &a, const T &b) { add_line_left(Line(is_min ? a : -a, is_min ? b : -b)); }\n\n void add_line_right(const Line &l) { // 最小値クエリなら傾き単調減少、最大値クエリなら傾き単調増加\n assert(empty() || ls.back().a >= l.a);\n if (!empty() && ls.back().a == l.a) {\n if (ls.back().b <= l.b) return;\n ls.pop_back();\n }\n while (ls.size() >= 2) {\n Line l1 = ls[ls.size() - 2], l2 = ls.back();\n if (!judge(l1, l2, l)) break;\n ls.pop_back();\n }\n ls.push_back(l);\n }\n\n void add_line_right(const T &a, const T &b) { add_line_right(Line(is_min ? a : -a, is_min ? b : -b)); }\n\n T query(const T &x) {\n assert(!empty());\n int l = 0, r = ls.size();\n while (r - l > 1) {\n int m = (l + r) / 2;\n (ls[m - 1].get(x) >= ls[m].get(x) ? l : r) = m;\n }\n T ret = ls[l].get(x);\n return is_min ? ret : -ret;\n }\n\n T query_monotone_inc(const T &x) {\n assert(!empty());\n while (ls.size() >= 2 && ls.front().get(x) >= ls[1].get(x)) ls.pop_front();\n T ret = ls.front().get(x);\n return is_min ? ret : -ret;\n }\n\n T query_monotone_dec(const T &x) {\n assert(!empty());\n while (ls.size() >= 2 && ls[ls.size() - 2].get(x) <= ls.back().get(x)) ls.pop_back();\n T ret = ls.back().get(x);\n return is_min ? ret : -ret;\n }\n};\n\nint main() {\n int N, T;\n cin >> N >> T;\n\n vector<ll> t(N), p(N), f(N);\n rep(i, N) cin >> t[i] >> p[i] >> f[i];\n\n vector<int> v = id_sort(f);\n\n vector<vector<ll>> dp(N + 1, vector<ll>(T + 1, -INF));\n dp[0][0] = 0;\n\n vector<Convex_Hull_Trick<ll, false>> cht(T + 1);\n\n rep(i, N) {\n int e = v[i];\n rep3(j, T - t[e], 0) {\n if (cht[j].empty()) continue;\n ll ma = cht[j].query_monotone_inc(f[e]);\n ma += p[e] - f[e] * f[e];\n chmax(dp[i + 1][j + t[e]], ma);\n cht[j + t[e]].add_line_right(2 * f[e], ma - f[e] * f[e]);\n }\n rep2(j, t[e], T) {\n cht[j].add_line_right(2 * f[e], p[e] - f[e] * f[e]);\n chmax(dp[i + 1][j], p[e]);\n }\n }\n\n ll ans = -INF;\n rep(i, N + 1) chmax(ans, *max_element(all(dp[i])));\n cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 118884, "score_of_the_acc": -1.0775, "final_rank": 17 }, { "submission_id": "aoj_2725_6228579", "code_snippet": "#line 1 \"test/aoj/other/2725-CHT.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/2725\"\n#line 2 \"other/template.hpp\"\n\n#include<bits/stdc++.h>\n\n#ifndef __COUNTER__\n#define __COUNTER__ __LINE__\n#endif\n\n#define REP_SELECTER(a, b, c, d, e, ...) e\n#define REP1_0(b, c) REP1_1(b, c)\n#define REP1_1(b, c) for (ll REP_COUNTER_ ## c = 0; REP_COUNTER_ ## c < (ll)(b); ++ REP_COUNTER_ ## c)\n#define REP1(b) REP1_0(b, __COUNTER__)\n#define REP2(i, b) for (ll i = 0; i < (ll)(b); ++i)\n#define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)\n#define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c))\n#define rep(...) REP_SELECTER(__VA_ARGS__, REP4, REP3, REP2, REP1) (__VA_ARGS__)\n#define RREP2(i, a) for (ll i = (ll)(a) - 1; i >= 0; --i)\n#define RREP3(i, a, b) for (ll i = (ll)(a) - 1; i >= (ll)(b); --i)\n#define RREP4(i, a, b, c) for (ll i = (ll)(a) - 1; i >= (ll)(b); i -= (ll)(c))\n#define rrep(...) REP_SELECTER(__VA_ARGS__, RREP4, RREP3, RREP2) (__VA_ARGS__)\n#define REPS2(i, b) for (ll i = 1; i <= (ll)(b); ++i)\n#define REPS3(i, a, b) for (ll i = (ll)(a) + 1; i <= (ll)(b); ++i)\n#define REPS4(i, a, b, c) for (ll i = (ll)(a) + 1; i <= (ll)(b); i += (ll)(c))\n#define reps(...) REP_SELECTER(__VA_ARGS__, REPS4, REPS3, REPS2) (__VA_ARGS__)\n#define RREPS2(i, a) for (ll i = (ll)(a); i > 0; --i)\n#define RREPS3(i, a, b) for (ll i = (ll)(a); i > (ll)(b); --i)\n#define RREPS4(i, a, b, c) for (ll i = (ll)(a); i > (ll)(b); i -= (ll)(c))\n#define rreps(...) REP_SELECTER(__VA_ARGS__, RREPS4, RREPS3, RREPS2) (__VA_ARGS__)\n\n#define all(v) (v).begin(), (v).end()\n\n#if __cplusplus >= 201402L\n#define CONSTEXPR constexpr\n#else\n#define CONSTEXPR\n#endif\n\n#ifdef __cpp_if_constexpr\n#define IF_CONSTEXPR constexpr\n#else\n#define IF_CONSTEXPR\n#endif\n\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing PLL = std::pair<ll, ll>;\ntemplate<class T> using prique = std::priority_queue<T, std::vector<T>, std::greater<T>>;\n\ntemplate<class T> class infinity {\n public:\n static constexpr T value = std::numeric_limits<T>::max() / 2;\n static constexpr T mvalue = std::numeric_limits<T>::min() / 2;\n static constexpr T max = std::numeric_limits<T>::max();\n static constexpr T min = std::numeric_limits<T>::min();\n};\n\n#if __cplusplus <= 201402L\ntemplate<class T> constexpr T infinity<T>::value;\ntemplate<class T> constexpr T infinity<T>::mvalue;\ntemplate<class T> constexpr T infinity<T>::max;\ntemplate<class T> constexpr T infinity<T>::min;\n#endif\n\n#if __cplusplus >= 201402L\ntemplate<class T> constexpr T INF = infinity<T>::value;\n#endif\n\nconstexpr ll inf = infinity<ll>::value;\nconstexpr ld EPS = 1e-8;\nconstexpr ld PI = 3.1415926535897932384626;\n\ntemplate<class T, class U> std::ostream& operator<<(std::ostream& ost, const std::pair<T, U>& p) {\n return ost << p.first << ' ' << p.second;\n}\ntemplate<class T, class U> std::istream& operator>>(std::istream& ist, std::pair<T, U>& p) {\n return ist >> p.first >> p.second;\n}\n\ntemplate<class Container,\n typename std::enable_if<!std::is_same<Container, std::string>::value>::type* = nullptr>\nauto operator<<(std::ostream& ost, const Container& cont)\n -> decltype(cont.begin(), cont.end(), ost)\n{\n for (auto itr = cont.begin(); itr != cont.end(); ++itr) {\n if (itr != cont.begin()) ost << ' ';\n ost << *itr;\n }\n return ost;\n}\ntemplate<class Container,\n typename std::enable_if<!std::is_same<Container, std::string>::value>::type* = nullptr>\nauto operator>>(std::istream& ist, Container& cont)\n -> decltype(cont.begin(), cont.end(), ist)\n{\n for (auto itr = cont.begin(); itr != cont.end(); ++itr) ist >> *itr;\n return ist;\n}\n\ntemplate<class T, class U> inline constexpr bool chmin(T &a, const U &b) noexcept {\n return a > b ? a = b, true : false;\n}\ntemplate<class T, class U> inline constexpr bool chmax(T &a, const U &b) noexcept {\n return a < b ? a = b, true : false;\n}\n\ninline CONSTEXPR ll gcd(ll a, ll b) noexcept {\n while (b) {\n const ll c = a;\n a = b;\n b = c % b;\n }\n return a;\n}\ninline CONSTEXPR ll lcm(ll a, ll b) noexcept {\n return a / gcd(a, b) * b;\n}\n\ninline CONSTEXPR bool is_prime(ll N) noexcept {\n if (N <= 1) return false;\n for (ll i = 2; i * i <= N; ++i) {\n if (N % i == 0) return false;\n }\n return true;\n}\ninline std::vector<ll> prime_factor(ll N) noexcept {\n std::vector<ll> res;\n for (ll i = 2; i * i <= N; ++i) {\n while (N % i == 0) {\n res.push_back(i);\n N /= i;\n }\n }\n if (N != 1) res.push_back(N);\n return res;\n}\n\ninline CONSTEXPR ll my_pow(ll a, ll b) noexcept {\n ll res = 1;\n while (b) {\n if (b & 1) res *= a;\n b >>= 1;\n a *= a;\n }\n return res;\n}\ninline CONSTEXPR ll mod_pow(ll a, ll b, ll mod) noexcept {\n a %= mod;\n ll res = 1;\n while (b) {\n if (b & 1) (res *= a) %= mod;\n b >>= 1;\n (a *= a) %= mod;\n }\n return res;\n}\n\nPLL extGCD(ll a, ll b) noexcept {\n if (b == 0) return PLL{1, 0};\n PLL p = extGCD(b, a % b);\n std::swap(p.first, p.second);\n p.second -= p.first * (a / b);\n if (p.first < 0) {\n p.first += b;\n p.second -= a;\n }\n return p;\n}\nll mod_inv(ll a, ll mod) noexcept {\n const PLL p = extGCD(a, mod);\n assert(p.first * a + p.second * mod == 1);\n return p.first;\n}\nPLL ChineseRemainder(ll b1, ll m1, ll b2, ll m2) noexcept {\n const PLL p = extGCD(m1, m2);\n const ll g = p.first * m1 + p.second * m2;\n const ll l = m1 / g * m2;\n if ((b2 - b1) % g != 0) return PLL{-1, -1};\n const ll x = (b2 - b1) / g * p.first % (m2 / g);\n return {(x * m1 + b1 + l) % l, l};\n}\nPLL ChineseRemainders(const std::vector<ll>& b, const std::vector<ll>& m) noexcept {\n PLL res{0, 1};\n rep (i, b.size()) {\n res = ChineseRemainder(res.first, res.second, b[i], m[i]);\n if (res.first == -1) return res;\n }\n return res;\n}\n\ntemplate<class F> class RecLambda {\n private:\n F f;\n public:\n explicit constexpr RecLambda(F&& f_) : f(std::forward<F>(f_)) {}\n template<class... Args> constexpr auto operator()(Args&&... args) const\n -> decltype(f(*this, std::forward<Args>(args)...)) {\n return f(*this, std::forward<Args>(args)...);\n }\n};\n\ntemplate<class F> inline constexpr RecLambda<F> rec_lambda(F&& f) {\n return RecLambda<F>(std::forward<F>(f));\n}\n\ntemplate<class Head, class... Tails> struct multi_dim_vector {\n using type = std::vector<typename multi_dim_vector<Tails...>::type>;\n};\ntemplate<class T> struct multi_dim_vector<T> {\n using type = T;\n};\n\ntemplate<class T, class Arg> constexpr std::vector<T> make_vec(int n, Arg&& arg) {\n return std::vector<T>(n, std::forward<Arg>(arg));\n}\ntemplate<class T, class... Args>\nconstexpr typename multi_dim_vector<Args..., T>::type make_vec(int n, Args&&... args) {\n return typename multi_dim_vector<Args..., T>::type (n, make_vec<T>(std::forward<Args>(args)...));\n}\n\ninline CONSTEXPR int popcnt(ull x) {\n#if __cplusplus >= 202002L\n return std::popcount(x);\n#endif\n x = (x & 0x5555555555555555) + ((x >> 1 ) & 0x5555555555555555);\n x = (x & 0x3333333333333333) + ((x >> 2 ) & 0x3333333333333333);\n x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4 ) & 0x0f0f0f0f0f0f0f0f);\n x = (x & 0x00ff00ff00ff00ff) + ((x >> 8 ) & 0x00ff00ff00ff00ff);\n x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff);\n return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff);\n}\n\ntemplate<class T> class presser : public std::vector<T> {\n private:\n using Base = std::vector<T>;\n public:\n using Base::Base;\n presser(const std::vector<T>& vec) : Base(vec) {}\n void push(const std::vector<T>& vec) {\n int n = this->size();\n this->resize(n + vec.size());\n std::copy(all(vec), this->begin() + n);\n }\n int build() {\n std::sort(this->begin(), this->end());\n this->erase(std::unique(this->begin(), this->end()), this->end());\n return this->size();\n }\n int get_index(const T& val) const {\n return static_cast<int>(std::lower_bound(this->begin(), this->end(), val) - this->begin());\n }\n std::vector<int> pressed(const std::vector<T>& vec) const {\n std::vector<int> res(vec.size());\n rep (i, vec.size()) res[i] = this->get_index(vec[i]);\n return res;\n }\n void press(std::vector<T>& vec) const {\n static_assert(std::is_integral<T>::value, \"cannot convert from int type\");\n rep (i, vec.size()) vec[i] = this->get_index(vec[i]);\n }\n};\n#line 2 \"data-struct/cht/ConvexHullTrickAddMonotone.hpp\"\n\n#line 4 \"data-struct/cht/ConvexHullTrickAddMonotone.hpp\"\n\ntemplate<class T = ll, bool is_max = false> class ConvexHullTrickAddMonotone {\n protected:\n struct Line {\n T a, b;\n bool is_query;\n mutable const Line* nxt;\n T get(T x) const { return a * x + b; }\n Line() = default;\n Line(T a, T b, bool i = false) : a(a), b(b), is_query(i), nxt(nullptr) {}\n friend bool operator<(const Line& lhs, const Line& rhs) {\n assert(!lhs.is_query || !rhs.is_query);\n if (lhs.is_query) {\n if (rhs.nxt == nullptr) return true;\n return rhs.get(lhs.a) < rhs.nxt->get(lhs.a);\n }\n if (rhs.is_query) {\n if (lhs.nxt == nullptr) return false;\n return lhs.get(rhs.a) > lhs.nxt->get(rhs.a);\n }\n return lhs.a == rhs.a ? lhs.b < rhs.b : lhs.a < rhs.a;\n }\n };\n std::deque<Line> que;\n bool is_necessary(const typename std::deque<Line>::iterator& itr) {\n if (itr == que.begin() || itr == prev(que.end())) return true;\n if (itr->a == prev(itr)->a) return itr->b < prev(itr)->b;\n if (itr->a == next(itr)->a) return itr->b < next(itr)->b;\n return (__int128_t)(itr->b - prev(itr)->b) * (next(itr)->a - itr->a)\n < (__int128_t)(itr->b - next(itr)->b) * (prev(itr)->a - itr->a);\n }\n public:\n ConvexHullTrickAddMonotone() = default;\n void add_line(T a, T b) {\n if IF_CONSTEXPR (is_max) a = - a, b = - b;\n typename std::deque<Line>::iterator itr;\n if (que.empty() || que.back().a <= a) {\n que.push_back(Line{a, b});\n itr = prev(que.end());\n }\n else {\n assert(a <= que.front().a);\n que.push_front(Line{a, b});\n itr = que.begin();\n }\n if (!is_necessary(itr)) {\n que.erase(itr);\n return;\n }\n while (itr != que.begin() && !is_necessary(prev(itr))) {\n que.pop_back(); que.pop_back();\n que.push_back(Line{a, b});\n itr = prev(que.end());\n }\n while (itr != prev(que.end()) && !is_necessary(next(itr))) {\n que.pop_front(); que.pop_front();\n que.push_front(Line{a, b});\n itr = que.begin();\n }\n if (itr != que.begin()) prev(itr)->nxt = &*itr;\n if (itr != prev(que.end())) itr->nxt = &*next(itr);\n else itr->nxt = nullptr;\n }\n T get_min(T x) const {\n auto itr = lower_bound(que.begin(), que.end(), Line{x, 0, true});\n if IF_CONSTEXPR (is_max) return - itr->get(x);\n return itr->get(x);\n }\n T inc_get_min(T x) {\n while (que.size() > 1 && que.begin()->get(x) > next(que.begin())->get(x)) que.pop_front();\n if IF_CONSTEXPR (is_max) return - que.front().get(x);\n return que.front().get(x);\n }\n T dec_get_min(T x) {\n while (que.size() > 1 && prev(que.end())->get(x) > prev(que.end(), 2)->get(x)) que.pop_back();\n if IF_CONSTEXPR (is_max) return - que.back().get(x);\n return que.back().get(x);\n }\n bool empty() const {\n return que.empty();\n }\n};\n\n/**\n * @brief ConvexHullTrickAddMonotone\n * @docs docs/ConvexHullTrickAddMonotone.md\n */\n#line 4 \"test/aoj/other/2725-CHT.test.cpp\"\nusing namespace std;\nint main() {\n int N, T; cin >> N >> T;\n vector<array<ll, 3>> s(N); cin >> s;\n sort(s.begin(), s.end(), [](auto a, auto b) -> bool { return a[2] < b[2]; });\n vector<ConvexHullTrickAddMonotone<ll, true>> dp(T + 1);\n dp[0].add_line(0, 0);\n ll ans = 0;\n for (const auto& arr : s) {\n ll t = arr[0], p = arr[1], f = arr[2];\n rrep (i, T + 1) {\n if (dp[i].empty()) continue;\n if (i + t > T) continue;\n ll val = p + dp[i].get_min(f);\n if (i != 0) val -= f * f;\n chmax(ans, val);\n dp[i + t].add_line(2 * f, val - f * f);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 620, "memory_kb": 9824, "score_of_the_acc": -0.5054, "final_rank": 13 }, { "submission_id": "aoj_2725_6228578", "code_snippet": "#line 1 \"test/aoj/other/2725-CHT.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/2725\"\n#line 2 \"other/template.hpp\"\n\n#include<bits/stdc++.h>\n\n#ifndef __COUNTER__\n#define __COUNTER__ __LINE__\n#endif\n\n#define REP_SELECTER(a, b, c, d, e, ...) e\n#define REP1_0(b, c) REP1_1(b, c)\n#define REP1_1(b, c) for (ll REP_COUNTER_ ## c = 0; REP_COUNTER_ ## c < (ll)(b); ++ REP_COUNTER_ ## c)\n#define REP1(b) REP1_0(b, __COUNTER__)\n#define REP2(i, b) for (ll i = 0; i < (ll)(b); ++i)\n#define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)\n#define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c))\n#define rep(...) REP_SELECTER(__VA_ARGS__, REP4, REP3, REP2, REP1) (__VA_ARGS__)\n#define RREP2(i, a) for (ll i = (ll)(a) - 1; i >= 0; --i)\n#define RREP3(i, a, b) for (ll i = (ll)(a) - 1; i >= (ll)(b); --i)\n#define RREP4(i, a, b, c) for (ll i = (ll)(a) - 1; i >= (ll)(b); i -= (ll)(c))\n#define rrep(...) REP_SELECTER(__VA_ARGS__, RREP4, RREP3, RREP2) (__VA_ARGS__)\n#define REPS2(i, b) for (ll i = 1; i <= (ll)(b); ++i)\n#define REPS3(i, a, b) for (ll i = (ll)(a) + 1; i <= (ll)(b); ++i)\n#define REPS4(i, a, b, c) for (ll i = (ll)(a) + 1; i <= (ll)(b); i += (ll)(c))\n#define reps(...) REP_SELECTER(__VA_ARGS__, REPS4, REPS3, REPS2) (__VA_ARGS__)\n#define RREPS2(i, a) for (ll i = (ll)(a); i > 0; --i)\n#define RREPS3(i, a, b) for (ll i = (ll)(a); i > (ll)(b); --i)\n#define RREPS4(i, a, b, c) for (ll i = (ll)(a); i > (ll)(b); i -= (ll)(c))\n#define rreps(...) REP_SELECTER(__VA_ARGS__, RREPS4, RREPS3, RREPS2) (__VA_ARGS__)\n\n#define all(v) (v).begin(), (v).end()\n\n#if __cplusplus >= 201402L\n#define CONSTEXPR constexpr\n#else\n#define CONSTEXPR\n#endif\n\n#ifdef __cpp_if_constexpr\n#define IF_CONSTEXPR constexpr\n#else\n#define IF_CONSTEXPR\n#endif\n\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing PLL = std::pair<ll, ll>;\ntemplate<class T> using prique = std::priority_queue<T, std::vector<T>, std::greater<T>>;\n\ntemplate<class T> class infinity {\n public:\n static constexpr T value = std::numeric_limits<T>::max() / 2;\n static constexpr T mvalue = std::numeric_limits<T>::min() / 2;\n static constexpr T max = std::numeric_limits<T>::max();\n static constexpr T min = std::numeric_limits<T>::min();\n};\n\n#if __cplusplus <= 201402L\ntemplate<class T> constexpr T infinity<T>::value;\ntemplate<class T> constexpr T infinity<T>::mvalue;\ntemplate<class T> constexpr T infinity<T>::max;\ntemplate<class T> constexpr T infinity<T>::min;\n#endif\n\n#if __cplusplus >= 201402L\ntemplate<class T> constexpr T INF = infinity<T>::value;\n#endif\n\nconstexpr ll inf = infinity<ll>::value;\nconstexpr ld EPS = 1e-8;\nconstexpr ld PI = 3.1415926535897932384626;\n\ntemplate<class T, class U> std::ostream& operator<<(std::ostream& ost, const std::pair<T, U>& p) {\n return ost << p.first << ' ' << p.second;\n}\ntemplate<class T, class U> std::istream& operator>>(std::istream& ist, std::pair<T, U>& p) {\n return ist >> p.first >> p.second;\n}\n\ntemplate<class Container,\n typename std::enable_if<!std::is_same<Container, std::string>::value>::type* = nullptr>\nauto operator<<(std::ostream& ost, const Container& cont)\n -> decltype(cont.begin(), cont.end(), ost)\n{\n for (auto itr = cont.begin(); itr != cont.end(); ++itr) {\n if (itr != cont.begin()) ost << ' ';\n ost << *itr;\n }\n return ost;\n}\ntemplate<class Container,\n typename std::enable_if<!std::is_same<Container, std::string>::value>::type* = nullptr>\nauto operator>>(std::istream& ist, Container& cont)\n -> decltype(cont.begin(), cont.end(), ist)\n{\n for (auto itr = cont.begin(); itr != cont.end(); ++itr) ist >> *itr;\n return ist;\n}\n\ntemplate<class T, class U> inline constexpr bool chmin(T &a, const U &b) noexcept {\n return a > b ? a = b, true : false;\n}\ntemplate<class T, class U> inline constexpr bool chmax(T &a, const U &b) noexcept {\n return a < b ? a = b, true : false;\n}\n\ninline CONSTEXPR ll gcd(ll a, ll b) noexcept {\n while (b) {\n const ll c = a;\n a = b;\n b = c % b;\n }\n return a;\n}\ninline CONSTEXPR ll lcm(ll a, ll b) noexcept {\n return a / gcd(a, b) * b;\n}\n\ninline CONSTEXPR bool is_prime(ll N) noexcept {\n if (N <= 1) return false;\n for (ll i = 2; i * i <= N; ++i) {\n if (N % i == 0) return false;\n }\n return true;\n}\ninline std::vector<ll> prime_factor(ll N) noexcept {\n std::vector<ll> res;\n for (ll i = 2; i * i <= N; ++i) {\n while (N % i == 0) {\n res.push_back(i);\n N /= i;\n }\n }\n if (N != 1) res.push_back(N);\n return res;\n}\n\ninline CONSTEXPR ll my_pow(ll a, ll b) noexcept {\n ll res = 1;\n while (b) {\n if (b & 1) res *= a;\n b >>= 1;\n a *= a;\n }\n return res;\n}\ninline CONSTEXPR ll mod_pow(ll a, ll b, ll mod) noexcept {\n a %= mod;\n ll res = 1;\n while (b) {\n if (b & 1) (res *= a) %= mod;\n b >>= 1;\n (a *= a) %= mod;\n }\n return res;\n}\n\nPLL extGCD(ll a, ll b) noexcept {\n if (b == 0) return PLL{1, 0};\n PLL p = extGCD(b, a % b);\n std::swap(p.first, p.second);\n p.second -= p.first * (a / b);\n if (p.first < 0) {\n p.first += b;\n p.second -= a;\n }\n return p;\n}\nll mod_inv(ll a, ll mod) noexcept {\n const PLL p = extGCD(a, mod);\n assert(p.first * a + p.second * mod == 1);\n return p.first;\n}\nPLL ChineseRemainder(ll b1, ll m1, ll b2, ll m2) noexcept {\n const PLL p = extGCD(m1, m2);\n const ll g = p.first * m1 + p.second * m2;\n const ll l = m1 / g * m2;\n if ((b2 - b1) % g != 0) return PLL{-1, -1};\n const ll x = (b2 - b1) / g * p.first % (m2 / g);\n return {(x * m1 + b1 + l) % l, l};\n}\nPLL ChineseRemainders(const std::vector<ll>& b, const std::vector<ll>& m) noexcept {\n PLL res{0, 1};\n rep (i, b.size()) {\n res = ChineseRemainder(res.first, res.second, b[i], m[i]);\n if (res.first == -1) return res;\n }\n return res;\n}\n\ntemplate<class F> class RecLambda {\n private:\n F f;\n public:\n explicit constexpr RecLambda(F&& f_) : f(std::forward<F>(f_)) {}\n template<class... Args> constexpr auto operator()(Args&&... args) const\n -> decltype(f(*this, std::forward<Args>(args)...)) {\n return f(*this, std::forward<Args>(args)...);\n }\n};\n\ntemplate<class F> inline constexpr RecLambda<F> rec_lambda(F&& f) {\n return RecLambda<F>(std::forward<F>(f));\n}\n\ntemplate<class Head, class... Tails> struct multi_dim_vector {\n using type = std::vector<typename multi_dim_vector<Tails...>::type>;\n};\ntemplate<class T> struct multi_dim_vector<T> {\n using type = T;\n};\n\ntemplate<class T, class Arg> constexpr std::vector<T> make_vec(int n, Arg&& arg) {\n return std::vector<T>(n, std::forward<Arg>(arg));\n}\ntemplate<class T, class... Args>\nconstexpr typename multi_dim_vector<Args..., T>::type make_vec(int n, Args&&... args) {\n return typename multi_dim_vector<Args..., T>::type (n, make_vec<T>(std::forward<Args>(args)...));\n}\n\ninline CONSTEXPR int popcnt(ull x) {\n#if __cplusplus >= 202002L\n return std::popcount(x);\n#endif\n x = (x & 0x5555555555555555) + ((x >> 1 ) & 0x5555555555555555);\n x = (x & 0x3333333333333333) + ((x >> 2 ) & 0x3333333333333333);\n x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4 ) & 0x0f0f0f0f0f0f0f0f);\n x = (x & 0x00ff00ff00ff00ff) + ((x >> 8 ) & 0x00ff00ff00ff00ff);\n x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff);\n return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff);\n}\n\ntemplate<class T> class presser : public std::vector<T> {\n private:\n using Base = std::vector<T>;\n public:\n using Base::Base;\n presser(const std::vector<T>& vec) : Base(vec) {}\n void push(const std::vector<T>& vec) {\n int n = this->size();\n this->resize(n + vec.size());\n std::copy(all(vec), this->begin() + n);\n }\n int build() {\n std::sort(this->begin(), this->end());\n this->erase(std::unique(this->begin(), this->end()), this->end());\n return this->size();\n }\n int get_index(const T& val) const {\n return static_cast<int>(std::lower_bound(this->begin(), this->end(), val) - this->begin());\n }\n std::vector<int> pressed(const std::vector<T>& vec) const {\n std::vector<int> res(vec.size());\n rep (i, vec.size()) res[i] = this->get_index(vec[i]);\n return res;\n }\n void press(std::vector<T>& vec) const {\n static_assert(std::is_integral<T>::value, \"cannot convert from int type\");\n rep (i, vec.size()) vec[i] = this->get_index(vec[i]);\n }\n};\n#line 2 \"data-struct/cht/ConvexHullTrickAddMonotone.hpp\"\n\n#line 4 \"data-struct/cht/ConvexHullTrickAddMonotone.hpp\"\n\ntemplate<class T = ll, bool is_max = false> class ConvexHullTrickAddMonotone {\n protected:\n struct Line {\n T a, b;\n bool is_query;\n mutable const Line* nxt;\n T get(T x) const { return a * x + b; }\n Line() = default;\n Line(T a, T b, bool i = false) : a(a), b(b), is_query(i), nxt(nullptr) {}\n friend bool operator<(const Line& lhs, const Line& rhs) {\n assert(!lhs.is_query || !rhs.is_query);\n if (lhs.is_query) {\n if (rhs.nxt == nullptr) return true;\n return rhs.get(lhs.a) < rhs.nxt->get(lhs.a);\n }\n if (rhs.is_query) {\n if (lhs.nxt == nullptr) return false;\n return lhs.get(rhs.a) > lhs.nxt->get(rhs.a);\n }\n return lhs.a == rhs.a ? lhs.b < rhs.b : lhs.a < rhs.a;\n }\n };\n std::deque<Line> que;\n bool is_necessary(const typename std::deque<Line>::iterator& itr) {\n if (itr == que.begin() || itr == prev(que.end())) return true;\n if (itr->a == prev(itr)->a) return itr->b < prev(itr)->b;\n if (itr->a == next(itr)->a) return itr->b < next(itr)->b;\n return (__int128_t)(itr->b - prev(itr)->b) * (next(itr)->a - itr->a)\n < (__int128_t)(itr->b - next(itr)->b) * (prev(itr)->a - itr->a);\n }\n public:\n ConvexHullTrickAddMonotone() = default;\n void add_line(T a, T b) {\n if IF_CONSTEXPR (is_max) a = - a, b = - b;\n typename std::deque<Line>::iterator itr;\n if (que.empty() || que.back().a <= a) {\n que.push_back(Line{a, b});\n itr = prev(que.end());\n }\n else {\n assert(a <= que.front().a);\n que.push_front(Line{a, b});\n itr = que.begin();\n }\n if (!is_necessary(itr)) {\n que.erase(itr);\n return;\n }\n while (itr != que.begin() && !is_necessary(prev(itr))) {\n que.pop_back(); que.pop_back();\n que.push_back(Line{a, b});\n itr = prev(que.end());\n }\n while (itr != prev(que.end()) && !is_necessary(next(itr))) {\n que.pop_front(); que.pop_front();\n que.push_front(Line{a, b});\n itr = que.begin();\n }\n if (itr != que.begin()) prev(itr)->nxt = &*itr;\n if (itr != prev(que.end())) itr->nxt = &*next(itr);\n else itr->nxt = nullptr;\n }\n T get_min(T x) const {\n auto itr = lower_bound(que.begin(), que.end(), Line{x, 0, true});\n if IF_CONSTEXPR (is_max) return - itr->get(x);\n return itr->get(x);\n }\n T inc_get_min(T x) {\n while (que.size() > 1 && que.begin()->get(x) > next(que.begin())->get(x)) que.pop_front();\n if IF_CONSTEXPR (is_max) return - que.front().get(x);\n return que.front().get(x);\n }\n T dec_get_min(T x) {\n while (que.size() > 1 && prev(que.end())->get(x) > prev(que.end(), 2)->get(x)) que.pop_back();\n if IF_CONSTEXPR (is_max) return - que.back().get(x);\n return que.back().get(x);\n }\n bool empty() const {\n return que.empty();\n }\n};\n\n/**\n * @brief ConvexHullTrickAddMonotone\n * @docs docs/ConvexHullTrickAddMonotone.md\n */\n#line 4 \"test/aoj/other/2725-CHT.test.cpp\"\nusing namespace std;\nint main() {\n int N, T; cin >> N >> T;\n vector<array<ll, 3>> s(N); cin >> s;\n sort(s.begin(), s.end(), [](auto a, auto b) -> bool { return a[2] < b[2]; });\n vector<ConvexHullTrickAddMonotone<ll, true>> dp(T + 1);\n dp[0].add_line(0, 0);\n ll ans = 0;\n for (const auto& arr : s) {\n ll t = arr[0], p = arr[1], f = arr[2];\n rrep (i, T + 1) {\n if (dp[i].empty()) continue;\n if (i + t > T) continue;\n ll val = p + dp[i].inc_get_min(f);\n if (i != 0) val -= f * f;\n chmax(ans, val);\n dp[i + t].add_line(2 * f, val - f * f);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 9676, "score_of_the_acc": -0.2397, "final_rank": 10 }, { "submission_id": "aoj_2725_6164570", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tif (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n\nusing mP = pair<modint, modint>;\n//-----------------------------------\n\nstruct CHT {\n\tvector<LP> v;\n\tvector<LP> memo;\n\tint l = 0;\n\tbool check(LP a, LP b, LP c) {\n\t\t//return __int128(b.first - a.first) * __int128(c.second - b.second) >= __int128(b.second - a.second) * __int128(c.first - b.first);\n\t\treturn (b.first - a.first) * (c.second - b.second) >= (b.second - a.second) * (c.first - b.first);\n\t}\n\t//一気に作る\n\tvoid build(vector<LP> a) {\n\t\tl = 0;\n\t\tsort(a.begin(), a.end());\n\t\tper(i, (int)a.size()) {\n\t\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], a[i]))v.pop_back();\n\t\t\tv.push_back(a[i]);\n\t\t}\n\t}\n\t//傾きが小さい順に追加して作る\n\tvoid build() {\n\t\tsort(all(memo));\n\t\tper(i, (int)memo.size()) {\n\t\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], memo[i]))v.pop_back();\n\t\t\tv.push_back(memo[i]);\n\t\t}\n\t\tmemo.clear();\n\t}\n\tvoid subadd(LP a) {\n\t\tmemo.push_back(a);\n\t}\n\tvoid add(LP a) {\n\t\tif (v.size() && v.back().first == a.first && v.back().second < a.second)return;\n\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], a))v.pop_back();\n\t\tv.push_back(a);\n\t\tl = min(l, (int)v.size() - 1);\n\t}\n\t//xは単調増加\n\tll f(LP a, ll x) {\n\t\treturn a.first * x + a.second;\n\t}\n\tll query(ll x) {\n\t\tif (l >= v.size())return INF;\n\t\twhile (l + 1 < v.size() && f(v[l], x) > f(v[l + 1], x))l++;\n\t\treturn f(v[l], x);\n\t}\n};\nvoid solve() {\n\tint n, T; cin >> n >> T;\n\tvector<int> t(n), p(n), f(n);\n\trep(i, n)cin >> t[i] >> p[i] >> f[i];\n\tvector<P> vp;\n\trep(i, n)vp.push_back({ f[i],i });\n\tsort(all(vp));\n\tvector<CHT> cht(T + 1);\n\tcht[0].add({ 0,0 });\n\tll ans = 0;\n\trep(i, vp.size()) {\n\t\tint id = vp[i].second;\n\t\tper(j, T + 1) {\n\t\t\tif (j + t[id] <= T) {\n\t\t\t\tll val = -cht[j].query(f[id]);\n\t\t\t\tif (val > -INF) {\n\t\t\t\t\tval -= f[id] * f[id];\n\t\t\t\t\tval += p[id];\n\t\t\t\t\tif (j == 0)val = p[id];\n\t\t\t\t\tchmax(ans, val);\n\t\t\t\t\tcht[j + t[id]].add({ -2 * f[id],f[id] * f[id] - val });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << \"\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 13860, "score_of_the_acc": -0.1237, "final_rank": 4 }, { "submission_id": "aoj_2725_6164541", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tif (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n\nusing mP = pair<modint, modint>;\n//-----------------------------------\n\nstruct CHT {\n\tvector<LP> v;\n\tvector<LP> memo;\n\tint l = 0;\n\tbool check(LP a, LP b, LP c) {\n\t\treturn __int128(b.first - a.first) * __int128(c.second - b.second) >= __int128(b.second - a.second) * __int128(c.first - b.first);\n\t\t//return (b.first - a.first) * (c.second - b.second) >= (b.second - a.second) * (c.first - b.first);\n\t}\n\t//一気に作る\n\tvoid build(vector<LP> a) {\n\t\tl = 0;\n\t\tsort(a.begin(), a.end());\n\t\tper(i, (int)a.size()) {\n\t\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], a[i]))v.pop_back();\n\t\t\tv.push_back(a[i]);\n\t\t}\n\t}\n\t//傾きが小さい順に追加して作る\n\tvoid build() {\n\t\tsort(all(memo));\n\t\tper(i, (int)memo.size()) {\n\t\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], memo[i]))v.pop_back();\n\t\t\tv.push_back(memo[i]);\n\t\t}\n\t\tmemo.clear();\n\t}\n\tvoid subadd(LP a) {\n\t\tmemo.push_back(a);\n\t}\n\tvoid add(LP a) {\n\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], a))v.pop_back();\n\t\tv.push_back(a);\n\t\tl = min(l, (int)v.size() - 1);\n\t}\n\t//xは単調増加\n\tll f(LP a, ll x) {\n\t\treturn a.first * x + a.second;\n\t}\n\tll query(ll x) {\n\t\tif (l >= v.size())return INF;\n\t\twhile (l + 1 < v.size() && f(v[l], x) > f(v[l + 1], x))l++;\n\t\treturn f(v[l], x);\n\t}\n};\nvoid solve() {\n\tint n, T; cin >> n >> T;\n\tvector<int> t(n), p(n), f(n);\n\trep(i, n)cin >> t[i] >> p[i] >> f[i];\n\tvector<P> vp;\n\trep(i, n)vp.push_back({ f[i],i });\n\tsort(all(vp));\n\tvector<CHT> cht(T + 1);\n\tcht[0].add({ 0,0 });\n\tll ans = 0;\n\trep(i, vp.size()) {\n\t\tint id = vp[i].second;\n\t\tper(j, T + 1) {\n\t\t\tif (j + t[id] <= T) {\n\t\t\t\tll val = -cht[j].query(f[id]);\n\t\t\t\tif (val > -INF) {\n\t\t\t\t\tval -= f[id] * f[id];\n\t\t\t\t\tval += p[id];\n\t\t\t\t\tif (j == 0)val = p[id];\n\t\t\t\t\tchmax(ans, val);\n\t\t\t\t\tcht[j + t[id]].add({ -2 * f[id],f[id] * f[id] - val });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << \"\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.9873417721518988, "time_ms": 140, "memory_kb": 13904, "score_of_the_acc": -0.1406, "final_rank": 20 }, { "submission_id": "aoj_2725_6164535", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tif (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n\nusing mP = pair<modint, modint>;\n//-----------------------------------\n\nstruct CHT {\n\tvector<LP> v;\n\tvector<LP> memo;\n\tint l = 0;\n\tbool check(LP a, LP b, LP c) {\n\t\t//return __int128(b.first - a.first) * __int128(c.second - b.second) >= __int128(b.second - a.second) * __int128(c.first - b.first);\n\t\treturn (b.first - a.first) * (c.second - b.second) >= (b.second - a.second) * (c.first - b.first);\n\t}\n\t//一気に作る\n\tvoid build(vector<LP> a) {\n\t\tl = 0;\n\t\tsort(a.begin(), a.end());\n\t\tper(i, (int)a.size()) {\n\t\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], a[i]))v.pop_back();\n\t\t\tv.push_back(a[i]);\n\t\t}\n\t}\n\t//傾きが小さい順に追加して作る\n\tvoid build() {\n\t\tsort(all(memo));\n\t\tper(i, (int)memo.size()) {\n\t\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], memo[i]))v.pop_back();\n\t\t\tv.push_back(memo[i]);\n\t\t}\n\t\tmemo.clear();\n\t}\n\tvoid subadd(LP a) {\n\t\tmemo.push_back(a);\n\t}\n\tvoid add(LP a) {\n\t\twhile (v.size() >= 2 && check(v[v.size() - 2], v[v.size() - 1], a))v.pop_back();\n\t\tv.push_back(a);\n\t\tl = min(l, (int)v.size() - 1);\n\t}\n\t//xは単調増加\n\tll f(LP a, ll x) {\n\t\treturn a.first * x + a.second;\n\t}\n\tll query(ll x) {\n\t\tif (l >= v.size())return INF;\n\t\twhile (l + 1 < v.size() && f(v[l], x) > f(v[l + 1], x))l++;\n\t\treturn f(v[l], x);\n\t}\n};\nvoid solve() {\n\tint n, T; cin >> n >> T;\n\tvector<int> t(n), p(n), f(n);\n\trep(i, n)cin >> t[i] >> p[i] >> f[i];\n\tvector<P> vp;\n\trep(i, n)vp.push_back({ f[i],i });\n\tsort(all(vp));\n\tvector<CHT> cht(T + 1);\n\tcht[0].add({ 0,0 });\n\tll ans = 0;\n\trep(i, vp.size()) {\n\t\tint id = vp[i].second;\n\t\tper(j, T + 1) {\n\t\t\tif (j + t[id] <= T) {\n\t\t\t\tll val = -cht[j].query(f[id]);\n\t\t\t\tif (val > -INF) {\n\t\t\t\t\tval -= f[id] * f[id];\n\t\t\t\t\tval += p[id];\n\t\t\t\t\tif (j == 0)val = p[id];\n\t\t\t\t\tchmax(ans, val);\n\t\t\t\t\tcht[j + t[id]].add({ -2 * f[id],f[id] * f[id] - val });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << \"\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.9873417721518988, "time_ms": 130, "memory_kb": 13876, "score_of_the_acc": -0.1321, "final_rank": 19 }, { "submission_id": "aoj_2725_6066487", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\ntemplate<typename ...Ts>\ndecltype(auto) zip(vector<Ts>... args){\n vector<decltype(make_tuple(args[0]...))> res;\n int n=min({args.size()...});\n res.reserve(n);\n for(int i=0;i<n;i++) res.emplace_back(args[i]...);\n return res;\n}\n\nenum Objective{\n MAXIMIZE = +1,\n MINIMIZE = -1,\n};\n\ntemplate<typename T>\nstruct Line {\n mutable T k,m,p;\n bool operator<(const Line&o)const{return k<o.k;}\n bool operator<(T x)const{return p<x;}\n};\n\ntemplate<typename T> T lc_inf(){return numeric_limits<T>::max();}\ntemplate<> double lc_inf<double>(){return 1/.0;}\n\ntemplate<typename T> T lc_div(T a,T b){return a/b-((a^b)<0 and a%b);}\ntemplate<> double lc_div(double a,double b){return a/b;};\n\ntemplate<typename T, Objective objective>\nstruct LineContainer : multiset<Line<T>, less<>>{\n using super = multiset<Line<T>, less<>>;\n using super::begin,super::end,super::insert,super::erase;\n using super::empty,super::lower_bound;\n const T inf = lc_inf<T>();\n bool insect(typename super::iterator x,typename super::iterator y){\n if(y==end()) return x->p=inf,false;\n if(x->k==y->k) x->p=(x->m>y->m?inf:-inf);\n else x->p=lc_div(y->m-x->m,x->k-y->k);\n return x->p>=y->p;\n }\n void add(T k,T m){\n auto z=insert({k*objective,m*objective,0}),y=z++,x=y;\n while(insect(y,z)) z=erase(z);\n if(x!=begin() and insect(--x,y)) insect(x,y=erase(y));\n while((y=x)!=begin() and (--x)->p>=y->p) insect(x,erase(y));\n }\n T query(T x){\n assert(!empty());\n auto l=*lower_bound(x);\n return (l.k*x+l.m)*objective;\n }\n};\ntemplate<typename T>\nusing MinLineContainer = LineContainer<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxLineContainer = LineContainer<T, Objective::MAXIMIZE>;\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n auto vt=zip(fs,ps,ts);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<MaxLineContainer<ll>> vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=vh[j-ts[i]].query(fs[i])+ps[i]-fs[i]*fs[i];\n vh[j].add(2*fs[i],val-fs[i]*fs[i]);\n chmax(ans,val);\n }\n vh[ts[i]].add(2*fs[i],ps[i]-fs[i]*fs[i]);\n chmax(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1270, "memory_kb": 9940, "score_of_the_acc": -1.0435, "final_rank": 15 }, { "submission_id": "aoj_2725_5703015", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nstruct ConvexHullTrick_Line {\n mutable ll a, b, p;\n ConvexHullTrick_Line() = default;\n bool operator<(const ConvexHullTrick_Line& l) const { return a < l.a; }\n bool operator<(ll x) const { return p < x; }\n};\ntemplate <bool ismin = false>\nstruct ConvexHullTrick : multiset<ConvexHullTrick_Line, less<>> {\n const ll INF = LLONG_MAX;\n ll div(ll a, ll b) { return a / b - ((a ^ b) < 0 && a % b); }\n ConvexHullTrick() = default;\n bool isect(iterator x, iterator y) {\n if (y == end()) {\n x->p = INF;\n return false;\n } else if (x->a == y->a) {\n x->p = (x->b > y->b ? INF : -INF);\n } else {\n x->p = div(y->b - x->b, x->a - y->a);\n }\n return x->p >= y->p;\n }\n void add(ll a, ll b) {\n if (ismin)\n a *= -1, b *= -1;\n auto z = insert({a, b, 0}), y = z++, x = y;\n while (isect(y, z))\n z = erase(z);\n if (x != begin() && isect(--x, y))\n isect(x, y = erase(y));\n while ((y = x) != begin() && (--x)->p >= y->p)\n isect(x, erase(y));\n }\n ll query(ll x) {\n assert(!empty());\n auto l = *lower_bound(x);\n auto ret = l.a * x + l.b;\n return ismin ? -ret : ret;\n }\n};\n\nint main() {\n struct Song {\n ll t, p, f;\n };\n ll N, T;\n cin >> N >> T;\n vector<Song> songs(N);\n for (auto&& s : songs) {\n ll t, p, f;\n cin >> t >> p >> f;\n s = {t, p, f};\n }\n sort(begin(songs), end(songs), [](const auto& x, const auto& y) { return x.f < y.f; });\n vector<ConvexHullTrick<false>> dp(T + 1);\n dp[0].add(0, 0);\n ll ans = 0;\n for (auto&& s : songs) {\n ll t = s.t, p = s.p, f = s.f;\n for (int len = T - t; len >= 0; len--) {\n if (dp[len].empty())\n continue;\n ll maine = dp[len].query(f) + p - f * f;\n if (len == 0)\n maine += f * f;\n ans = max(ans, maine);\n dp[len + t].add(2 * f, maine - f * f);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 1240, "memory_kb": 9856, "score_of_the_acc": -1.018, "final_rank": 14 }, { "submission_id": "aoj_2725_4886579", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename ...Ts>\ndecltype(auto) zip(vector<Ts>... args){\n vector<decltype(make_tuple(args[0]...))> res;\n int n=min({args.size()...});\n res.reserve(n);\n for(int i=0;i<n;i++) res.emplace_back(args[i]...);\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n vector<int> as({1,2,3});\n vector<string> bs({\"a\",\"b\",\"c\"});\n auto zs=zip(as,bs);\n for(auto [x,y]:zs) cout<<x<<\" \"<<y<<endl;\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\n\ntemplate<typename T> struct Line {\n T k,m;\n T operator()(const T x)const{return k*x+m;}\n};\n\ntemplate <typename T, Objective objective>\nstruct ConvexHullTrick : deque<Line<T>>{\n inline int sgn(T x){return x==0?0:(x<0?-1:1);}\n\n using D = long double;\n inline bool check(const Line<T> &a,const Line<T> &b,const Line<T> &c){\n if(b.m==a.m||c.m==b.m)\n return sgn(b.k-a.k)*sgn(c.m-b.m) >= sgn(c.k-b.k)*sgn(b.m-a.m);\n // return (b.k-a.k)*(c.m-b.m) >= (b.m-a.m)*(c.k-b.k);\n return\n D(b.k-a.k)*sgn(c.m-b.m)/D(abs(b.m-a.m)) >=\n D(c.k-b.k)*sgn(b.m-a.m)/D(abs(c.m-b.m));\n }\n\n using super = deque<Line<T>>;\n using super::empty,super::size,super::front,super::back;\n using super::emplace_front,super::emplace_back;\n using super::pop_front,super::pop_back;\n const Line<T> at(int i) const{return (*this)[i];}\n\n void add(T k_,T m_){\n Line<T> l({k_*objective,m_*objective});\n if(empty()){\n emplace_front(l);\n return;\n }\n if(front().k<=l.k){\n if(front().k==l.k){\n if(front().m<=l.m) return;\n pop_front();\n }\n while(size()>=2 and check(l,at(0),at(1))) pop_front();\n emplace_front(l);\n }else{\n assert(l.k<=back().k);\n if(back().k==l.k){\n if(back().m<=l.m) return;\n pop_back();\n }\n while(size()>=2 and check(at(size()-2),at(size()-1),l)) pop_back();\n emplace_back(l);\n }\n }\n\n T query(T x){\n assert(!empty());\n int l=-1,r=size()-1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(at(m)(x)>=at(m+1)(x)) l=m;\n else r=m;\n }\n return at(r)(x)*objective;\n }\n\n T queryMonotoneInc(T x){\n assert(!empty());\n while(size()>=2 and at(0)(x)>=at(1)(x)) pop_front();\n return front()(x)*objective;\n }\n\n T queryMonotoneDec(T x){\n assert(!empty());\n while(size()>=2 and at(size()-1)(x)>=at(size()-2)(x)) pop_back();\n return back()(x)*objective;\n }\n};\ntemplate<typename T>\nusing MinConvexHullTrick = ConvexHullTrick<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxConvexHullTrick = ConvexHullTrick<T, Objective::MAXIMIZE>;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n auto vt=zip(fs,ps,ts);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<MaxConvexHullTrick<ll>> vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=vh[j-ts[i]].queryMonotoneInc(fs[i])+ps[i]-fs[i]*fs[i];\n vh[j].add(2*fs[i],val-fs[i]*fs[i]);\n chmax(ans,val);\n }\n vh[ts[i]].add(2*fs[i],ps[i]-fs[i]*fs[i]);\n chmax(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 6708, "score_of_the_acc": -0.1504, "final_rank": 9 }, { "submission_id": "aoj_2725_4886567", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename ...Ts>\ndecltype(auto) zip(vector<Ts>... args){\n vector<decltype(make_tuple(args[0]...))> res;\n int n=min({args.size()...});\n res.reserve(n);\n for(int i=0;i<n;i++) res.emplace_back(args[i]...);\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n vector<int> as({1,2,3});\n vector<string> bs({\"a\",\"b\",\"c\"});\n auto zs=zip(as,bs);\n for(auto [x,y]:zs) cout<<x<<\" \"<<y<<endl;\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\n\ntemplate<typename T> struct Line {T k,m;};\n\ntemplate <typename T, Objective objective>\nstruct ConvexHullTrick : deque<Line<T>>{\n inline int sgn(T x){return x==0?0:(x<0?-1:1);}\n\n using D = long double;\n inline bool check(const Line<T> &a,const Line<T> &b,const Line<T> &c){\n if(b.m==a.m||c.m==b.m)\n return sgn(b.k-a.k)*sgn(c.m-b.m) >= sgn(c.k-b.k)*sgn(b.m-a.m);\n // return (b.k-a.k)*(c.m-b.m) >= (b.m-a.m)*(c.k-b.k);\n return\n D(b.k-a.k)*sgn(c.m-b.m)/D(abs(b.m-a.m)) >=\n D(c.k-b.k)*sgn(b.m-a.m)/D(abs(c.m-b.m));\n }\n\n using super = deque<Line<T>>;\n using super::empty,super::size,super::front,super::back;\n using super::emplace_front,super::emplace_back;\n using super::pop_front,super::pop_back;\n const Line<T> at(int i) const{return (*this)[i];}\n\n void add(T k_,T m_){\n Line<T> l({k_*objective,m_*objective});\n if(empty()){\n emplace_front(l);\n return;\n }\n if(front().k<=l.k){\n if(front().k==l.k){\n if(front().m<=l.m) return;\n pop_front();\n }\n while(size()>=2 and check(l,at(0),at(1))) pop_front();\n emplace_front(l);\n }else{\n assert(l.k<=back().k);\n if(back().k==l.k){\n if(back().m<=l.m) return;\n pop_back();\n }\n while(size()>=2 and check(at(size()-2),at(size()-1),l)) pop_back();\n emplace_back(l);\n }\n }\n\n inline T getY(const Line<T> &a,const T &x){return a.k*x+a.m;}\n\n T query(T x){\n assert(!empty());\n int l=-1,r=size()-1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(getY(at(m),x)>=getY(at(m+1),x)) l=m;\n else r=m;\n }\n return getY(at(r),x)*objective;\n }\n\n T queryMonotoneInc(T x){\n assert(!empty());\n while(size()>=2 and getY(at(0),x)>=getY(at(1),x)) pop_front();\n return getY(front(),x)*objective;\n }\n\n T queryMonotoneDec(T x){\n assert(!empty());\n while(size()>=2 and getY(at(size()-1),x)>=getY(at(size()-2),x)) pop_back();\n return getY(back(),x)*objective;\n }\n};\ntemplate<typename T>\nusing MinConvexHullTrick = ConvexHullTrick<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxConvexHullTrick = ConvexHullTrick<T, Objective::MAXIMIZE>;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n auto vt=zip(fs,ps,ts);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<MaxConvexHullTrick<ll>> vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=vh[j-ts[i]].queryMonotoneInc(fs[i])+ps[i]-fs[i]*fs[i];\n vh[j].add(2*fs[i],val-fs[i]*fs[i]);\n chmax(ans,val);\n }\n vh[ts[i]].add(2*fs[i],ps[i]-fs[i]*fs[i]);\n chmax(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 6664, "score_of_the_acc": -0.1418, "final_rank": 5 }, { "submission_id": "aoj_2725_4886566", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename ...Ts>\ndecltype(auto) zip(vector<Ts>... args){\n vector<decltype(make_tuple(args[0]...))> res;\n int n=min({args.size()...});\n res.reserve(n);\n for(int i=0;i<n;i++) res.emplace_back(args[i]...);\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n vector<int> as({1,2,3});\n vector<string> bs({\"a\",\"b\",\"c\"});\n auto zs=zip(as,bs);\n for(auto [x,y]:zs) cout<<x<<\" \"<<y<<endl;\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\n\ntemplate<typename T> struct Line {T k,m;};\n\ntemplate <typename T, Objective objective>\nstruct ConvexHullTrick : deque<Line<T>>{\n inline int sgn(T x){return x==0?0:(x<0?-1:1);}\n\n using D = long double;\n inline bool check(const Line<T> &a,const Line<T> &b,const Line<T> &c){\n if(b.m==a.m||c.m==b.m)\n return sgn(b.k-a.k)*sgn(c.m-b.m) >= sgn(c.k-b.k)*sgn(b.m-a.m);\n // return (b.k-a.k)*(c.m-b.m) >= (b.m-a.m)*(c.k-b.k);\n return\n D(b.k-a.k)*sgn(c.m-b.m)/D(abs(b.m-a.m)) >=\n D(c.k-b.k)*sgn(b.m-a.m)/D(abs(c.m-b.m));\n }\n\n using super = deque<Line<T>>;\n using super::empty,super::size,super::front,super::back;\n using super::emplace_front,super::emplace_back;\n using super::pop_front,super::pop_back;\n const Line<T> at(int i) const{return (*this)[i];}\n\n void add(T k_,T m_){\n Line<T> l({k_*objective,m_*objective});\n if(empty()){\n emplace_front(l);\n return;\n }\n if(front().k<=l.k){\n if(front().k==l.k){\n if(front().m<=l.m) return;\n pop_front();\n }\n while(size()>=2 and check(l,at(0),at(1))) pop_front();\n emplace_front(l);\n }else{\n assert(l.k<=back().k);\n if(back().k==l.k){\n if(back().m<=l.m) return;\n pop_back();\n }\n while(size()>=2 and check(at(size()-2),at(size()-1),l)) pop_back();\n emplace_back(l);\n }\n }\n\n inline T getY(const Line<T> &a,const T &x){return a.k*x+a.m;}\n\n T query(T x){\n assert(!empty());\n int l=-1,r=size()-1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(getY(at(m),x)>=getY(at(m+1),x)) l=m;\n else r=m;\n }\n return getY(at(r),x)*objective;\n }\n\n T queryMonotoneInc(T x){\n assert(!empty());\n while(size()>=2 and getY(at(0),x)>=getY(at(1),x)) pop_front();\n return getY(front(),x)*objective;\n }\n\n T queryMonotoneDec(T x){\n assert(!empty());\n while(size()>=2 and getY(at(size()-1),x)>=getY(at(size()-2),x)) pop_back();\n return getY(back(),x)*objective;\n }\n};\ntemplate<typename T>\nusing MinConvexHullTrick = ConvexHullTrick<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxConvexHullTrick = ConvexHullTrick<T, Objective::MAXIMIZE>;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n auto vt=zip(fs,ps,ts);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<MaxConvexHullTrick<ll>> vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=vh[j-ts[i]].query(fs[i])+ps[i]-fs[i]*fs[i];\n vh[j].add(2*fs[i],val-fs[i]*fs[i]);\n chmax(ans,val);\n }\n vh[ts[i]].add(2*fs[i],ps[i]-fs[i]*fs[i]);\n chmax(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 440, "memory_kb": 7880, "score_of_the_acc": -0.3414, "final_rank": 11 }, { "submission_id": "aoj_2725_4886547", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename ...Ts>\ndecltype(auto) zip(vector<Ts>... args){\n vector<decltype(make_tuple(args[0]...))> res;\n int n=min({args.size()...});\n res.reserve(n);\n for(int i=0;i<n;i++) res.emplace_back(args[i]...);\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n vector<int> as({1,2,3});\n vector<string> bs({\"a\",\"b\",\"c\"});\n auto zs=zip(as,bs);\n for(auto [x,y]:zs) cout<<x<<\" \"<<y<<endl;\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\n\ntemplate <typename T, Objective objective>\nstruct ConvexHullTrick : deque<pair<T, T>>{\n #define F first\n #define S second\n using P = pair<T, T>;\n\n inline int sgn(T x){return x==0?0:(x<0?-1:1);}\n\n using D = long double;\n inline bool check(const P &a,const P &b,const P &c){\n if(b.S==a.S||c.S==b.S)\n return sgn(b.F-a.F)*sgn(c.S-b.S) >= sgn(c.F-b.F)*sgn(b.S-a.S);\n // return (b.F-a.F)*(c.S-b.S) >= (b.S-a.S)*(c.F-b.F);\n return\n D(b.F-a.F)*sgn(c.S-b.S)/D(abs(b.S-a.S)) >=\n D(c.F-b.F)*sgn(b.S-a.S)/D(abs(c.S-b.S));\n }\n\n using super = deque<P>;\n using super::empty,super::size,super::front,super::back;\n using super::emplace_front,super::emplace_back;\n using super::pop_front,super::pop_back;\n void add(T m,T b){\n //P line(m*objective,b*objective);\n P line(m,b);\n if(empty()){\n emplace_front(line);\n return;\n }\n if(front().F<=m){\n if(front().F==m){\n if(front().S<=b) return;\n pop_front();\n }\n while(size()>=2 and check(line,(*this)[0],(*this)[1]))\n pop_front();\n emplace_front(line);\n }else{\n assert(m<=back().F);\n if(back().F==m){\n if(back().S<=b) return;\n pop_back();\n }\n while(size()>=2 and check((*this)[size()-2],(*this)[size()-1],line))\n pop_back();\n emplace_back(line);\n }\n }\n\n inline T getY(const P &a,const T &x){return a.F*x+a.S;}\n\n T query(T x){\n assert(!empty());\n int l=-1,r=size()-1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(getY((*this)[m],x)>=getY((*this)[m+1],x)) l=m;\n else r=m;\n }\n return getY((*this)[r],x)*objective;\n }\n\n T queryMonotoneInc(T x){\n assert(!empty());\n while(size()>=2 and getY((*this)[0],x)>=getY((*this)[1],x))\n pop_front();\n return getY(front(),x)*objective;\n }\n\n T queryMonotoneDec(T x){\n assert(!empty());\n while(size()>=2 and getY((*this)[size()-1],x)>=getY((*this)[size()-2],x))\n pop_back();\n return getY(back(),x)*objective;\n }\n #undef F\n #undef S\n};\ntemplate<typename T>\nusing MinConvexHullTrick = ConvexHullTrick<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxConvexHullTrick = ConvexHullTrick<T, Objective::MAXIMIZE>;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n auto vt=zip(fs,ps,ts);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<MaxConvexHullTrick<ll>> vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=vh[j-ts[i]].queryMonotoneInc(fs[i])+ps[i]-fs[i]*fs[i];\n vh[j].add(-2*fs[i],-(val-fs[i]*fs[i]));\n chmax(ans,val);\n }\n vh[ts[i]].add(-2*fs[i],-(ps[i]-fs[i]*fs[i]));\n chmax(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 6672, "score_of_the_acc": -0.1419, "final_rank": 6 }, { "submission_id": "aoj_2725_4886541", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename ...Ts>\ndecltype(auto) zip(vector<Ts>... args){\n vector<decltype(make_tuple(args[0]...))> res;\n int n=min({args.size()...});\n res.reserve(n);\n for(int i=0;i<n;i++) res.emplace_back(args[i]...);\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n vector<int> as({1,2,3});\n vector<string> bs({\"a\",\"b\",\"c\"});\n auto zs=zip(as,bs);\n for(auto [x,y]:zs) cout<<x<<\" \"<<y<<endl;\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\n\ntemplate <typename T, Objective objective>\nstruct ConvexHullTrick : deque<pair<T, T>>{\n #define F first\n #define S second\n using P = pair<T, T>;\n\n inline int sgn(T x){return x==0?0:(x<0?-1:1);}\n\n using D = long double;\n inline bool check(const P &a,const P &b,const P &c){\n if(b.S==a.S||c.S==b.S)\n return sgn(b.F-a.F)*sgn(c.S-b.S) >= sgn(c.F-b.F)*sgn(b.S-a.S);\n // return (b.F-a.F)*(c.S-b.S) >= (b.S-a.S)*(c.F-b.F);\n return\n D(b.F-a.F)*sgn(c.S-b.S)/D(abs(b.S-a.S)) >=\n D(c.F-b.F)*sgn(b.S-a.S)/D(abs(c.S-b.S));\n }\n\n using super = deque<P>;\n using super::empty,super::size,super::front,super::back;\n using super::emplace_front,super::emplace_back;\n using super::pop_front,super::pop_back;\n void add(T m,T b){\n P line(m*objective,b*objective);\n if(empty()){\n emplace_front(line);\n return;\n }\n if(front().F<=m){\n if(front().F==m){\n if(front().S<=b) return;\n pop_front();\n }\n while(size()>=2 and check(line,(*this)[0],(*this)[1]))\n pop_front();\n emplace_front(line);\n }else{\n assert(m<=back().F);\n if(back().F==m){\n if(back().S<=b) return;\n pop_back();\n }\n while(size()>=2 and check((*this)[size()-2],(*this)[size()-1],line))\n pop_back();\n emplace_back(line);\n }\n }\n\n inline T getY(const P &a,const T &x){return a.F*x+a.S;}\n\n T query(T x){\n assert(!empty());\n int l=-1,r=size()-1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(getY((*this)[m],x)>=getY((*this)[m+1],x)) l=m;\n else r=m;\n }\n return getY((*this)[r],x)*objective;\n }\n\n T queryMonotoneInc(T x){\n assert(!empty());\n while(size()>=2 and getY((*this)[0],x)>=getY((*this)[1],x))\n pop_front();\n return getY(front(),x)*objective;\n }\n\n T queryMonotoneDec(T x){\n assert(!empty());\n while(size()>=2 and getY((*this)[size()-1],x)>=getY((*this)[size()-2],x))\n pop_back();\n return getY(back(),x)*objective;\n }\n #undef F\n #undef S\n};\ntemplate<typename T>\nusing MinConvexHullTrick = ConvexHullTrick<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxConvexHullTrick = ConvexHullTrick<T, Objective::MAXIMIZE>;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n auto vt=zip(fs,ps,ts);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<MinConvexHullTrick<ll>> vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=(-vh[j-ts[i]].queryMonotoneInc(fs[i]))+ps[i]-fs[i]*fs[i];\n vh[j].add(-2*fs[i],-(val-fs[i]*fs[i]));\n chmax(ans,val);\n }\n vh[ts[i]].add(-2*fs[i],-(ps[i]-fs[i]*fs[i]));\n chmax(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 6560, "score_of_the_acc": -0.1493, "final_rank": 8 }, { "submission_id": "aoj_2725_4886537", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename ...Ts>\ndecltype(auto) zip(vector<Ts>... args){\n vector<decltype(make_tuple(args[0]...))> res;\n int n=min({args.size()...});\n res.reserve(n);\n for(int i=0;i<n;i++) res.emplace_back(args[i]...);\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n vector<int> as({1,2,3});\n vector<string> bs({\"a\",\"b\",\"c\"});\n auto zs=zip(as,bs);\n for(auto [x,y]:zs) cout<<x<<\" \"<<y<<endl;\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\n\ntemplate <typename T, Objective objective>\nstruct ConvexHullTrick : deque<pair<T, T>>{\n #define F first\n #define S second\n using P = pair<T, T>;\n\n inline int sgn(T x){return x==0?0:(x<0?-1:1);}\n\n using D = long double;\n inline bool check(const P &a,const P &b,const P &c){\n if(b.S==a.S||c.S==b.S)\n return sgn(b.F-a.F)*sgn(c.S-b.S) >= sgn(c.F-b.F)*sgn(b.S-a.S);\n // return (b.F-a.F)*(c.S-b.S) >= (b.S-a.S)*(c.F-b.F);\n return\n D(b.F-a.F)*sgn(c.S-b.S)/D(abs(b.S-a.S)) >=\n D(c.F-b.F)*sgn(b.S-a.S)/D(abs(c.S-b.S));\n }\n\n using super = deque<P>;\n using super::empty,super::size,super::front,super::back;\n using super::emplace_front,super::emplace_back;\n using super::pop_front,super::pop_back;\n void add(T m,T b){\n P line(m*objective,b*objective);\n if(empty()){\n emplace_front(line);\n return;\n }\n if(front().F<=m){\n if(front().F==m){\n if(front().S<=b) return;\n pop_front();\n }\n while(size()>=2 and check(line,(*this)[0],(*this)[1]))\n pop_front();\n emplace_front(line);\n }else{\n assert(m<=back().F);\n if(back().F==m){\n if(back().S<=b) return;\n pop_back();\n }\n while(size()>=2 and check((*this)[size()-2],(*this)[size()-1],line))\n pop_back();\n emplace_back(line);\n }\n }\n\n inline T getY(const P &a,const T &x){return a.F*x+a.S;}\n\n T query(T x){\n assert(!empty());\n int l=-1,r=size()-1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(getY((*this)[m],x)>=getY((*this)[m+1],x)) l=m;\n else r=m;\n }\n return getY((*this)[r],x)*objective;\n }\n\n T queryMonotoneInc(T x){\n assert(!empty());\n while(size()>=2 and getY((*this)[0],x)>=getY((*this)[1],x))\n pop_front();\n return getY(front(),x)*objective;\n }\n\n T queryMonotoneDec(T x){\n assert(!empty());\n while(size()>=2 and getY((*this)[size()-1],x)>=getY((*this)[size()-2],x))\n pop_back();\n return getY(back(),x)*objective;\n }\n #undef F\n #undef S\n};\ntemplate<typename T>\nusing MinConvexHullTrick = ConvexHullTrick<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxConvexHullTrick = ConvexHullTrick<T, Objective::MAXIMIZE>;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n auto vt=zip(fs,ps,ts);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<MinConvexHullTrick<ll>> vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=(-vh[j-ts[i]].query(fs[i]))+ps[i]-fs[i]*fs[i];\n vh[j].add(-2*fs[i],-(val-fs[i]*fs[i]));\n chmax(ans,val);\n }\n vh[ts[i]].add(-2*fs[i],-(ps[i]-fs[i]*fs[i]));\n chmax(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 7840, "score_of_the_acc": -0.3493, "final_rank": 12 }, { "submission_id": "aoj_2725_4886496", "code_snippet": "#line 1 \"test/aoj/2725.test.cpp\"\n// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2725\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n//BEGIN CUT HERE\ntemplate <typename T, bool isMin>\nstruct ConvexHullTrick {\n #define F first\n #define S second\n using P = pair<T, T>;\n deque<P> H;\n bool empty()const{return H.empty();}\n void clear(){H.clear();}\n\n inline int sgn(T x){return x==0?0:(x<0?-1:1);}\n\n using D = long double;\n inline bool check(const P &a,const P &b,const P &c){\n if(b.S==a.S||c.S==b.S)\n return sgn(b.F-a.F)*sgn(c.S-b.S) >= sgn(c.F-b.F)*sgn(b.S-a.S);\n\n //return (b.F-a.F)*(c.S-b.S) >= (b.S-a.S)*(c.F-b.F);\n return\n D(b.F-a.F)*sgn(c.S-b.S)/D(abs(b.S-a.S)) >=\n D(c.F-b.F)*sgn(b.S-a.S)/D(abs(c.S-b.S));\n }\n\n void addLine(T m,T b){\n if(!isMin) m*=-1,b*=-1;\n P line(m,b);\n if(empty()){\n H.emplace_front(line);\n return;\n }\n if(H.front().F<=m){\n if(H.front().F==m){\n if(H.front().S<=b) return;\n H.pop_front();\n }\n while(H.size()>=2&&\n check(line,H.front(),H[1])) H.pop_front();\n H.emplace_front(line);\n }else{\n assert(m<=H.back().F);\n if(H.back().F==m){\n if(H.back().S<=b) return;\n H.pop_back();\n }\n while(H.size()>=2&&\n check(H[H.size()-2],H.back(),line)) H.pop_back();\n H.emplace_back(line);\n }\n }\n\n inline T getY(const P &a,const T &x){\n return a.F*x+a.S;\n }\n\n T query(T x){\n assert(!empty());\n int l=-1,r=H.size()-1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(getY(H[m],x)>=getY(H[m+1],x)) l=m;\n else r=m;\n }\n if(isMin) return getY(H[r],x);\n return -getY(H[r],x);\n }\n\n T queryMonotoneInc(T x){\n assert(!empty());\n while(H.size()>=2&&\n getY(H.front(),x)>=getY(H[1],x)) H.pop_front();\n if(isMin) return getY(H.front(),x);\n return -getY(H.front(),x);\n }\n\n T queryMonotoneDec(T x){\n assert(!empty());\n while(H.size()>=2&&\n getY(H.back(),x)>=getY(H[H.size()-2],x)) H.pop_back();\n if(isMin) return getY(H.back(),x);\n return -getY(H.back(),x);\n }\n #undef F\n #undef S\n};\n//END CUT HERE\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n using ll = long long;\n\n int n,x;\n cin>>n>>x;\n vector<ll> ts(n),ps(n),fs(n);\n for(int i=0;i<n;i++) cin>>ts[i]>>ps[i]>>fs[i];\n\n using T = tuple<ll, ll, ll>;\n vector<T> vt(n);\n for(int i=0;i<n;i++) vt[i]=T(fs[i],ps[i],ts[i]);\n sort(vt.begin(),vt.end());\n for(int i=0;i<n;i++) tie(fs[i],ps[i],ts[i])=vt[i];\n\n vector<ConvexHullTrick<ll, false> > vh(x+1);\n\n ll ans=0;\n for(int i=0;i<n;i++){\n for(int j=x;j>ts[i];j--){\n if(vh[j-ts[i]].empty()) continue;\n ll val=vh[j-ts[i]].queryMonotoneInc(fs[i])+ps[i]-fs[i]*fs[i];\n vh[j].addLine(2*fs[i],val-fs[i]*fs[i]);\n ans=max(ans,val);\n }\n vh[ts[i]].addLine(2*fs[i],ps[i]-fs[i]*fs[i]);\n ans=max(ans,ps[i]);\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 6784, "score_of_the_acc": -0.1427, "final_rank": 7 } ]
aoj_2726_cpp
Problem J: Black Company JAG Company is a sweatshop (sweatshop is called "burakku kigyo" in Japanese), and you are the CEO for the company. You are planning to determine $N$ employees' salary as low as possible (employees are numbered from 1 to $N$). Each employee's salary amount must be a positive integer greater than zero. At that time, you should pay attention to the employees' contribution degree. If the employee $i$'s contribution degree $c_i$ is greater than the employee $j$'s contribution degree $c_j$ , the employee i must get higher salary than the employee $j$'s salary. If the condition is not satisfied, employees may complain about their salary amount. However, it is not necessarily satisfied in all pairs of the employees, because each employee can only know his/her close employees' contribution degree and salary amount. Therefore, as long as the following two conditions are satisfied, employees do not complain to you about their salary amount. If the employees $i$ and $j$ are close to each other, $c_i < c_j \Leftrightarrow p_i < p_j$ must be satisfied, where $p_i$ is the employee $i$'s salary amount. If the employee $i$ is close to the employees $j$ and $k$, $c_j < c_k \Leftrightarrow p_j < p_k$ must be satisfied. Write a program that computes the minimum sum of all employees' salary amount such that no employee complains about their salary. Input Each input is formatted as follows: $N$ $c_1$ ... $c_N$ $M$ $a_1$ $b_1$ ... $a_M$ $b_M$ The first line contains an integer $N$ ($1 \leq N \leq 100,000$), which indicates the number of employees. The second line contains $N$ integers $c_i$ ($1 \leq c_i \leq 100,000$) representing the contribution degree of employee $i$. The third line contains an integer $M$ ($0 \leq M \leq 200,000$), which specifies the number of relationships. Each of the following $M$ lines contains two integers $a_i$ and $b_i$ ($a_i \ne b_i, 1 \leq a_i, b_i \leq N$). It represents that the employees $a_i$ and $b_i$ are close to each other. There is no more than one relationship between each pair of the employees. Output Print the minimum sum of all employees' salary amounts in a line. Sample Input 3 1 3 3 2 1 2 1 3 Output for the Sample Input 5 Sample Input 3 1 2 3 2 1 2 1 3 Output for the Sample Input 6 Sample Input 4 1 1 2 2 2 1 2 3 4 Output for the Sample Input 4 Sample Input 5 1 2 5 5 1 6 1 2 4 1 2 3 5 2 4 3 4 5 Output for the Sample Input 10 Sample Input 6 4 3 2 1 5 3 7 4 2 1 5 2 6 6 5 4 1 1 6 6 3 Output for the Sample Input 13
[ { "submission_id": "aoj_2726_10849700", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\nstruct Unionfind{\n vi size, par;\n Unionfind(){}\n Unionfind( int n ) : size(n,1), par(n){\n REP( i , n ) par[i] = i;\n }\n void init( int n ){\n size = vi( n , 1 );\n par.resize( n );\n REP( i , n ) par[i] = i;\n }\n int find( int x ){\n if( par[x] == x ) return x;\n return par[x] = find( par[x] );\n }\n bool unite( int x , int y ){\n x = find(x);\n y = find(y);\n if( x == y ) return false;\n if( size[y] < size[x] ) swap( x , y );\n par[x] = y;\n size[y] += size[x];\n return true;\n }\n bool same( int x , int y ){\n return find(x) == find(y);\n }\n};\n\nint n, m;\nll c[100010];\n\nUnionfind uf;\n\nbool used[100010];\nll val[100010];\n\nvi G[100010];\nvi GG[100010];\n\nll ans;\n\nvoid dfs( int x ){\n used[x] = true;\n val[x] = 0;\n YYS( w , GG[x] ){\n if( !used[w] ){\n dfs( w );\n }\n chmax( val[x] , val[w] );\n }\n val[x]++;\n}\n\nint main(){\n\n n = in();\n REP( i , n ){\n c[i] = in();\n }\n m = in();\n REP( i , m ){\n int a = in() - 1;\n int b = in() - 1;\n G[a].pb( b );\n G[b].pb( a );\n }\n\n uf.init( n );\n REP( i , n ){\n vpi v(0);\n v.pb( c[i] , i );\n YYS( w , G[i] ){\n v.pb( c[w] , w );\n }\n SORT( v );\n REP( i , SZ(v)-1 ){\n if( v[i].fi == v[i+1].fi ){\n uf.unite( v[i].se , v[i+1].se );\n }\n }\n }\n\n REP( i , n ){\n vpi v(0);\n v.pb( c[i] , i );\n YYS( w , G[i] ){\n v.pb( c[w] , w );\n }\n SORT( v );\n REP( i , SZ(v)-1 ){\n if( v[i].fi != v[i+1].fi ){\n int hi = uf.find( v[i+1].se );\n int lo = uf.find( v[i].se );\n // cout << hi << \" \" << lo << endl;\n GG[ hi ].pb( lo );\n }\n }\n }\n\n\n REP( i , n ){\n if( !used[ uf.find( i ) ] ){\n dfs( uf.find( i ) );\n }\n }\n\n /*\n REP( i , n ){\n cout << val[i] << endl;\n }\n */\n\n REP( i , n ){\n ans += val[ uf.find( i ) ];\n }\n\n printf( \"%lld\\n\" , ans );\n \n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 20720, "score_of_the_acc": -0.3663, "final_rank": 3 }, { "submission_id": "aoj_2726_9740596", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nstruct UnionFind{\n vector<int> par; int n;\n UnionFind(){}\n UnionFind(int _n):par(_n,-1),n(_n){}\n int root(int x){return par[x]<0?x:par[x]=root(par[x]);}\n bool same(int x,int y){return root(x)==root(y);}\n int size(int x){return -par[root(x)];}\n bool unite(int x,int y){\n x=root(x),y=root(y); if(x==y)return false;\n if(size(x)>size(y))swap(x,y);\n par[y]+=par[x]; par[x]=y; n--; return true;\n }\n};\n\n/**\n * @brief Union Find\n */\n\nint main() {\n int N;\n cin >> N;\n vector<int> C(N);\n rep(i,0,N) cin >> C[i];\n UnionFind UF(N);\n int M;\n cin >> M;\n vector<int> A(M), B(M);\n vector<vector<int>> G(N);\n rep(i,0,M) {\n cin >> A[i] >> B[i];\n A[i]--, B[i]--;\n G[A[i]].push_back(B[i]);\n G[B[i]].push_back(A[i]);\n if (C[A[i]] == C[B[i]]) UF.unite(A[i],B[i]);\n }\n rep(i,0,N) {\n if (G[i].empty()) continue;\n sort(ALL(G[i]),[&](int a, int b){return C[a] < C[b];});\n rep(j,0,G[i].size()-1) {\n if (C[G[i][j]] == C[G[i][j+1]]) UF.unite(G[i][j],G[i][j+1]);\n }\n }\n vector<vector<int>> H(N);\n rep(i,0,M) {\n int S = A[i], T = B[i];\n if (C[S] == C[T]) continue;\n if (C[S] > C[T]) swap(S,T);\n S = UF.root(S), T = UF.root(T);\n H[S].push_back(T);\n }\n rep(i,0,N) {\n if (G[i].empty()) continue;\n rep(j,0,G[i].size()-1) {\n int S = G[i][j], T = G[i][j+1];\n if (C[S] == C[T]) continue;\n if (C[S] > C[T]) swap(S,T);\n S = UF.root(S), T = UF.root(T);\n H[S].push_back(T);\n }\n }\n vector<int> DP(N,1);\n vector<int> ord(N);\n iota(ALL(ord),0);\n sort(ALL(ord),[&](int i, int j){return C[i]<C[j];});\n for (int i : ord) {\n if (i != UF.root(i)) continue;\n for (int j : H[i]) {\n chmax(DP[j],DP[i]+1);\n }\n }\n ll ANS = 0;\n rep(i,0,N) {\n ANS += DP[UF.root(i)];\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 18756, "score_of_the_acc": -0.4183, "final_rank": 4 }, { "submission_id": "aoj_2726_8339336", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nlong long solve(int N, int M, vector<int> C, vector<int> A, vector<int> B) {\n\t// step #1. make graph\n\tvector<vector<int> > G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tG[A[i]].push_back(B[i]);\n\t\tG[B[i]].push_back(A[i]);\n\t}\n\n\t// step #2. compression of C[i]'s\n\tvector<int> comp = C;\n\tsort(comp.begin(), comp.end());\n\tcomp.erase(unique(comp.begin(), comp.end()), comp.end());\n\tfor (int i = 0; i < N; i++) {\n\t\tC[i] = lower_bound(comp.begin(), comp.end(), C[i]) - comp.begin();\n\t}\n\tint L = comp.size();\n\tvector<vector<int> > V(L);\n\tfor (int i = 0; i < N; i++) {\n\t\tV[C[i]].push_back(i);\n\t}\n\n\t// step #3. calculation\n\tvector<int> level(N, -1), maxadj(N, -1);\n\tfor (int i = 0; i < L; i++) {\n\t\tfor (int j : V[i]) {\n\t\t\tlevel[j] = 1;\n\t\t\tfor (int k : G[j]) {\n\t\t\t\tlevel[j] = max(level[j], maxadj[k] + 1);\n\t\t\t}\n\t\t}\n\t\tfor (int j : V[i]) {\n\t\t\tmaxadj[j] = max(maxadj[j], level[j]);\n\t\t\tfor (int k : G[j]) {\n\t\t\t\tmaxadj[k] = max(maxadj[k], level[j]);\n\t\t\t}\n\t\t}\n\t}\n\n\t// step #4. calculate answer\n\tlong long ans = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tans += level[i];\n\t}\n\n\treturn ans;\n}\n\nlong long solve_easy(int N, int M, vector<int> C, vector<int> A, vector<int> B) {\n\tvector<vector<int> > G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tG[A[i]].push_back(B[i]);\n\t\tG[B[i]].push_back(A[i]);\n\t}\n\tvector<vector<int> > H = G;\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j : G[i]) {\n\t\t\tfor (int k : G[j]) {\n\t\t\t\tif (j != k) {\n\t\t\t\t\tH[i].push_back(k);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsort(H[i].begin(), H[i].end());\n\t\tH[i].erase(unique(H[i].begin(), H[i].end()), H[i].end());\n\t}\n\tvector<int> perm(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tperm[i] = i;\n\t}\n\tsort(perm.begin(), perm.end(), [&](int va, int vb) {\n\t\treturn C[va] < C[vb];\n\t});\n\tvector<int> level(N, 1);\n\tfor (int i : perm) {\n\t\tfor (int j : H[i]) {\n\t\t\tif (C[j] < C[i]) {\n\t\t\t\tlevel[i] = max(level[i], level[j] + 1);\n\t\t\t}\n\t\t}\n\t}\n\tlong long ans = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tans += level[i];\n\t}\n\treturn ans;\n}\n\nint main() {\n\t// step #1. input\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N;\n\tcin >> N;\n\tvector<int> C(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> C[i];\n\t}\n\tint M;\n\tcin >> M;\n\tvector<int> A(M), B(M);\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> A[i] >> B[i];\n\t\tA[i] -= 1;\n\t\tB[i] -= 1;\n\t}\n\tlong long ans = solve_easy(N, M, C, A, B);\n\tcout << ans << endl;\n\treturn 0;\n}", "accuracy": 0.22580645161290322, "time_ms": 510, "memory_kb": 61748, "score_of_the_acc": -1.8097, "final_rank": 17 }, { "submission_id": "aoj_2726_8339307", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\t// step #1. input\n\tint N;\n\tcin >> N;\n\tvector<int> C(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> C[i];\n\t}\n\tint M;\n\tcin >> M;\n\tvector<vector<int> > G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint a, b;\n\t\tcin >> a >> b;\n\t\tG[a - 1].push_back(b - 1);\n\t\tG[b - 1].push_back(a - 1);\n\t}\n\n\t// step #2. compression of C[i]'s\n\tvector<int> comp = C;\n\tsort(comp.begin(), comp.end());\n\tcomp.erase(unique(comp.begin(), comp.end()), comp.end());\n\tfor (int i = 0; i < N; i++) {\n\t\tC[i] = lower_bound(comp.begin(), comp.end(), C[i]) - comp.begin();\n\t}\n\tint L = comp.size();\n\tvector<vector<int> > V(L);\n\tfor (int i = 0; i < N; i++) {\n\t\tV[C[i]].push_back(i);\n\t}\n\n\t// step #3. calculation\n\tvector<int> level(N, -1), maxadj(N, -1);\n\tfor (int i = 0; i < L; i++) {\n\t\tfor (int j : V[i]) {\n\t\t\tlevel[j] = 1;\n\t\t\tfor (int k : G[j]) {\n\t\t\t\tlevel[j] = max(level[j], maxadj[k] + 1);\n\t\t\t}\n\t\t}\n\t\tfor (int j : V[i]) {\n\t\t\tmaxadj[j] = max(maxadj[j], level[j]);\n\t\t\tfor (int k : G[j]) {\n\t\t\t\tmaxadj[k] = max(maxadj[k], level[j]);\n\t\t\t}\n\t\t}\n\t}\n\n\t// step #4. calculate answer\n\tlong long ans = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tans += level[i];\n\t}\n\n\t// step #5. output\n\tcout << ans << endl;\n\n\treturn 0;\n}", "accuracy": 0.22580645161290322, "time_ms": 100, "memory_kb": 16084, "score_of_the_acc": -0.3403, "final_rank": 9 }, { "submission_id": "aoj_2726_8339296", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\t// step #1. input\n\tint N;\n\tcin >> N;\n\tvector<int> C(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> C[i];\n\t}\n\tint M;\n\tcin >> M;\n\tvector<vector<int> > G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint a, b;\n\t\tcin >> a >> b;\n\t\tG[a - 1].push_back(b - 1);\n\t\tG[b - 1].push_back(a - 1);\n\t}\n\n\t// step #2. compression of C[i]'s\n\tvector<int> comp = C;\n\tsort(comp.begin(), comp.end());\n\tcomp.erase(unique(comp.begin(), comp.end()), comp.end());\n\tfor (int i = 0; i < N; i++) {\n\t\tC[i] = lower_bound(comp.begin(), comp.end(), C[i]) - comp.begin();\n\t}\n\tint L = comp.size();\n\tvector<vector<int> > V(L);\n\tfor (int i = 0; i < N; i++) {\n\t\tV[C[i]].push_back(i);\n\t}\n\n\t// step #3. calculation\n\tvector<int> level(N, -1), maxadj(N, -1);\n\tfor (int i = 0; i < L; i++) {\n\t\tfor (int j : V[i]) {\n\t\t\tlevel[j] = 1;\n\t\t\tfor (int k : G[j]) {\n\t\t\t\tif (C[k] < i) {\n\t\t\t\t\tlevel[j] = max(level[j], maxadj[k] + 1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor (int j : V[i]) {\n\t\t\tmaxadj[j] = max(maxadj[j], level[j]);\n\t\t\tfor (int k : G[j]) {\n\t\t\t\tmaxadj[k] = max(maxadj[k], level[j]);\n\t\t\t}\n\t\t}\n\t}\n\n\t// step #4. calculate answer\n\tlong long ans = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tans += level[i];\n\t}\n\n\t// step #5. output\n\tcout << ans << endl;\n\n\treturn 0;\n}", "accuracy": 0.08064516129032258, "time_ms": 30, "memory_kb": 4808, "score_of_the_acc": -0.04, "final_rank": 20 }, { "submission_id": "aoj_2726_7909838", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> P;\n\nint main(){\n\tint n; cin>>n;\n\tvector<vector<int>> a(1000005);\n\tvector<int> c(n);\n\tfor(int i=0; i<n; i++){\n\t\tint k; cin>>k;\n\t\ta[k].push_back(i);\n\t\tc[i] = k;\n\t}\n\n\tvector<vector<int>> g(n);\n\tint m; cin>>m;\n\tfor(int i= 0; i<m; i++){\n\t\tint a,b; cin>>a>>b;\n\t\ta--; b--;\n\t\tg[a].push_back(b);\n\t\tg[b].push_back(a);\n\t}\n\n\tvector<P> x(n);\n\tvector<int> ans(n);\n\n\tfor(int i = 0; i< 1000005; i++){\n\tfor(int r : a[i]){\n\t\t//cout<<r<<endl;\n\t\t//get ans;\n\t\tfor(int t : g[r]){\n\t\t\t//if(ans[r] <= x[t].first){\n\n\t\t\tans[r] = max(ans[r],x[t].first);\n\t//\t\tcout<<t<<\" \"<<x[t].first<<endl;\n\t\t\t//\tif(c[r] != x[t].second) ans[r]++;\n\t\t}\n\t\tans[r]++;\n\t}\n\tfor(int r : a[i]){\n\t\tx[r].first = max(x[r].first,ans[r]);\n\n\t\tfor(int t : g[r]){\n\t\t\tif(x[t].first <= ans[r]){\n\n\t\t\t\tx[t].first = ans[r];\n\t\t\t\n\t\t\t}\n\t\t}\n\t}\n\t}\n\tll res = 0;\n\tfor(int i = 0; i<n; i++){\n\t\tres += ans[i];\n\t//\tcout<<ans[i]<<endl;\n\t}\n\tcout<<res<<endl;\n}", "accuracy": 0.22580645161290322, "time_ms": 90, "memory_kb": 37604, "score_of_the_acc": -0.6264, "final_rank": 14 }, { "submission_id": "aoj_2726_7909813", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct compress {\n vector<int> C;\n compress(vector<int> A) : C(A) {\n sort(C.begin(), C.end());\n C.erase(unique(C.begin(), C.end()), C.end());\n }\n int operator[](int v) const {\n return lower_bound(C.begin(), C.end(), v) - C.begin();\n }\n size_t size() const {\n return C.size();\n }\n};\n\ntemplate <class T>\nvoid out(vector<T> A) {\n for (auto a : A) cout << a << ' ';\n cout << endl;\n}\n\nint main() {\n int N; cin >> N;\n vector C(N, 0);\n for (auto& c : C) cin >> c;\n compress comp(C);\n\n vector<vector<int>> info(comp.size());\n for (int i = 0 ; i < N ; i++) {\n info[comp[C[i]]].push_back(i);\n }\n\n int M; cin >> M;\n\n vector<vector<int>> G(N);\n for (int _ = 0 ; _ < M ; _++) {\n int a, b; cin >> a >> b;\n a--; b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n\n vector<int> adj(N, 0);\n vector<int> ans(N, 0);\n for (const auto& arr : info) {\n { // decide\n for (auto v : arr) {\n int val = adj[v];\n for (auto x : G[v]) {\n val = max(val, adj[x]);\n }\n val++;\n ans[v] = val;\n }\n }\n { // kousin\n for (auto v : arr) {\n adj[v] = max(adj[v], ans[v]);\n for (auto x : G[v]) {\n adj[x] = max(adj[x], ans[v]);\n }\n }\n }\n }\n \n long long ans_sum = accumulate(ans.begin(), ans.end(), 0LL);\n cout << ans_sum << endl;\n}", "accuracy": 0.22580645161290322, "time_ms": 100, "memory_kb": 16448, "score_of_the_acc": -0.3455, "final_rank": 11 }, { "submission_id": "aoj_2726_7909800", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct compress {\n vector<int> C;\n compress(vector<int> A) : C(A) {\n sort(C.begin(), C.end());\n C.erase(unique(C.begin(), C.end()), C.end());\n }\n int operator[](int v) const {\n return lower_bound(C.begin(), C.end(), v) - C.begin();\n }\n size_t size() const {\n return C.size();\n }\n};\n\ntemplate <class T>\nvoid out(vector<T> A) {\n for (auto a : A) cout << a << ' ';\n cout << endl;\n}\n\nint main() {\n int N; cin >> N;\n vector C(N, 0);\n for (auto& c : C) cin >> c;\n compress comp(C);\n\n vector<vector<int>> info(comp.size());\n for (int i = 0 ; i < N ; i++) {\n info[comp[C[i]]].push_back(i);\n }\n\n int M; cin >> M;\n\n vector<vector<int>> G(N);\n for (int _ = 0 ; _ < M ; _++) {\n int a, b; cin >> a >> b;\n a--; b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n\n vector<int> adj(N, 0);\n vector<int> ans(N, 0);\n for (const auto& arr : info) {\n { // decide\n for (auto v : arr) {\n int val = 0;\n for (auto x : G[v]) {\n val = max(val, adj[x]);\n }\n val++;\n ans[v] = val;\n }\n }\n { // kousin\n for (auto v : arr) {\n adj[v] = ans[v];\n for (auto x : G[v]) {\n adj[x] = max(adj[x], ans[v]);\n }\n }\n }\n }\n \n long long ans_val = accumulate(ans.begin(), ans.end(), 0LL);\n cout << ans_val << endl;\n}", "accuracy": 0.22580645161290322, "time_ms": 100, "memory_kb": 16252, "score_of_the_acc": -0.3427, "final_rank": 10 }, { "submission_id": "aoj_2726_7219694", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint N, C[200009];\nint M, A[200009], B[200009];\nint Max_Neighbor[200009];\nint Max_Color[200009];\nint Answer[200009];\n\n// Graph / Vector\nint Color[200009], Components = 0;\nvector<int> G[200009];\nvector<int> H[200009];\nvector<int> Contrib[200009];\n\nvoid dfs(int pos) {\n\tColor[pos] = Components;\n\tfor (int i : H[pos]) {\n\t\tif (Color[i] != 0) continue;\n\t\tdfs(i);\n\t}\n}\n\nint main() {\n\t// Input\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) {\n\t\tcin >> C[i];\n\t\tContrib[C[i]].push_back(i);\n\t}\n\tcin >> M;\n\tfor (int i = 1; i <= M; i++) {\n\t\tcin >> A[i] >> B[i];\n\t\tG[A[i]].push_back(B[i]);\n\t\tG[B[i]].push_back(A[i]);\n\t}\n\t\n\t// Add Edges\n\tfor (int i = 1; i <= M; i++) {\n\t\tif (C[A[i]] == C[B[i]]) {\n\t\t\tH[A[i]].push_back(B[i]);\n\t\t\tH[B[i]].push_back(A[i]);\n\t\t}\n\t}\n\tfor (int i = 1; i <= N; i++) {\n\t\tvector<pair<int, int>> tmp;\n\t\tfor (int j : G[i]) tmp.push_back(make_pair(C[j], j));\n\t\tsort(tmp.begin(), tmp.end());\n\t\tfor (int j = 0; j < (int)tmp.size() - 1; j++) {\n\t\t\tif (tmp[j].first != tmp[j+1].first) continue;\n\t\t\tint idx1 = tmp[j].second;\n\t\t\tint idx2 = tmp[j+1].second;\n\t\t\tH[idx1].push_back(idx2);\n\t\t\tH[idx2].push_back(idx1);\n\t\t}\n\t}\n\t\n\t// Decomposition\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (Color[i] != 0) continue;\n\t\tComponents += 1;\n\t\tdfs(i);\n\t}\n\t\n\t// Greedy\n\tfor (int i = 1; i <= 100000; i++) {\n\t\tfor (int idx : Contrib[i]) {\n\t\t\tint ret = Max_Neighbor[idx];\n\t\t\tfor (int to : G[idx]) ret = max(ret, Max_Neighbor[to]);\n\t\t\tMax_Color[Color[idx]] = max(Max_Color[Color[idx]], ret + 1);\n\t\t}\n\t\tfor (int idx : Contrib[i]) {\n\t\t\tAnswer[idx] = Max_Color[Color[idx]];\n\t\t}\n\t\tfor (int idx : Contrib[i]) {\n\t\t\tMax_Neighbor[idx] = max(Max_Neighbor[idx], Answer[idx]);\n\t\t\tfor (int to : G[idx]) Max_Neighbor[to] = max(Max_Neighbor[to], Answer[idx]);\n\t\t}\n\t}\n\t\n\t// Output\n\tlong long FinalAns = 0;\n\tfor (int i = 1; i <= N; i++) FinalAns += Answer[i];\n\tcout << FinalAns << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 29640, "score_of_the_acc": -0.5331, "final_rank": 5 }, { "submission_id": "aoj_2726_7219579", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint N, C[200009];\nint M, A[200009], B[200009];\nint Max_Neighbor[200009];\nint Answer[200009];\nvector<int> G[200009];\nvector<int> Contrib[200009];\n\nint main() {\n\t// Input\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) {\n\t\tcin >> C[i];\n\t\tContrib[C[i]].push_back(i);\n\t}\n\tcin >> M;\n\tfor (int i = 1; i <= M; i++) {\n\t\tcin >> A[i] >> B[i];\n\t\tG[A[i]].push_back(B[i]);\n\t\tG[B[i]].push_back(A[i]);\n\t}\n\t\n\t// Greedy\n\tfor (int i = 1; i <= 100000; i++) {\n\t\tfor (int idx : Contrib[i]) {\n\t\t\tint ret = Max_Neighbor[idx];\n\t\t\tfor (int to : G[idx]) ret = max(ret, Max_Neighbor[to]);\n\t\t\tAnswer[idx] = ret + 1;\n\t\t}\n\t\tfor (int idx : Contrib[i]) {\n\t\t\tMax_Neighbor[idx] = max(Max_Neighbor[idx], Answer[idx]);\n\t\t\tfor (int to : G[idx]) Max_Neighbor[to] = max(Max_Neighbor[to], Answer[idx]);\n\t\t}\n\t}\n\t\n\t// Output\n\tlong long FinalAns = 0;\n\tfor (int i = 1; i <= N; i++) FinalAns += Answer[i];\n\tcout << FinalAns << endl;\n\treturn 0;\n}", "accuracy": 0.22580645161290322, "time_ms": 90, "memory_kb": 23076, "score_of_the_acc": -0.4198, "final_rank": 12 }, { "submission_id": "aoj_2726_7219560", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint N, C[200009];\nint M, A[200009], B[200009];\nint Max_Neighbor[200009];\nint Answer[200009];\nvector<int> G[200009];\nvector<int> Contrib[200009];\n\nint main() {\n\t// Input\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) {\n\t\tcin >> C[i];\n\t\tContrib[C[i]].push_back(i);\n\t}\n\tcin >> M;\n\tfor (int i = 1; i <= M; i++) {\n\t\tcin >> A[i] >> B[i];\n\t\tG[A[i]].push_back(B[i]);\n\t\tG[B[i]].push_back(A[i]);\n\t}\n\t\n\t// Greedy\n\tfor (int i = 1; i <= 100000; i++) {\n\t\tfor (int idx : Contrib[i]) {\n\t\t\tint ret = 0;\n\t\t\tfor (int to : G[idx]) ret = max(ret, Max_Neighbor[to]);\n\t\t\tAnswer[idx] = ret + 1;\n\t\t}\n\t\tfor (int idx : Contrib[i]) {\n\t\t\tMax_Neighbor[idx] = max(Max_Neighbor[idx], Answer[idx]);\n\t\t\tfor (int to : G[idx]) Max_Neighbor[to] = max(Max_Neighbor[to], Answer[idx]);\n\t\t}\n\t}\n\t\n\t// Output\n\tlong long FinalAns = 0;\n\tfor (int i = 1; i <= N; i++) FinalAns += Answer[i];\n\tcout << FinalAns << endl;\n\treturn 0;\n}", "accuracy": 0.22580645161290322, "time_ms": 90, "memory_kb": 23148, "score_of_the_acc": -0.4208, "final_rank": 13 }, { "submission_id": "aoj_2726_7087929", "code_snippet": "#define eb emplace_back\n#define pb push_back\n#define pii pair<int,int>\n#define sz(x) int((x).size())\n#define ALL(x) (x).begin(),(x).end()\n#define ln cout << '\\n'\n#define REP(i, a) for (int i = 0; i < int(a); i++)\n#define FOR(i, a) for (int i = 1; i <= int(a); i++)\n#define _ok(x, y) (x >= 0 && x < n && y >= 0 && y < m)\n#define MEM(a,b) memset((a),(b),sizeof(a))\n#define debug(x) cout << \"(\" << __LINE__ << \") \" << #x << \" = \" << x << \"\\n\";\nconst int INF = 0x3f3f3f3f;\nconst int MOD = 998244353;\nusing namespace std;\n#include <bits/stdc++.h>\nusing ll = long long;\nusing vi = vector<int>;\ntemplate<typename T> void rd(vector<T> &a) {for (auto &ele : a) cin >> ele;}\ntemplate<typename T> void writeln(vector<T> &a) {for (auto &ele : a) cout << ele << ' '; cout << \"\\n\";}\n#if __cplusplus > 201402L\ntemplate<typename... Args> void rd(Args&... args) {((cin >> args), ...);}\ntemplate<typename... Args> void write(Args... args) {((cout << args << \" \"), ...);}\ntemplate<typename... Args> void writeln(Args... args) {((cout << args << \" \"), ...); cout << \"\\n\";}\n#endif\n#define int ll\nconst int maxn = 1e5 + 5;\nint c[maxn];\nint res[maxn];\nvi a[maxn];\nvoid solve() {\n int n;\n cin >> n;\n FOR(i, n) cin >> c[i];\n int mi = *min_element(c + 1, c + n + 1);\n// writeln(mi);\n priority_queue<pii, vector<pii>, greater<>> q;\n vector<int> vis(n + 1);\n FOR(i, n) {\n if (c[i] == mi) {\n res[i] = 1;\n vis[i] = 1;\n q.emplace(1, i);\n\n }\n }\n int m;\n cin >> m;\n REP(i, m) {\n int u, v;\n cin >> u >> v;\n a[u].eb(v);\n a[v].eb(u);\n }\n while (!q.empty()) {\n auto [d, x] = q.top(); q.pop();\n// if (vis[x]) continue;\n// vis[x] = 1;\n// writeln(\"at\", x, d);\n auto& v = a[x];\n sort(ALL(v), [&](int a, int b) {\n return c[a] < c[b];\n });\n int last = d;\n int lastc = c[x];\n for (auto to : v) {\n if (vis[to]) continue;\n vis[to] = 1;\n if (c[to] > lastc) {\n res[to] = last + 1;\n q.emplace(res[to], to);\n last++;\n lastc = c[to];\n } else {\n res[to] = last;\n }\n }\n }\n FOR(i, n) {\n if (!res[i]) {\n res[i] = 1;\n }\n }\n int sum{};\n FOR(i, n) sum += res[i];\n// FOR(i, n) write(res[i]); ln;\n cout << sum << \"\\n\";\n\n}\n\nsigned main()\n{\n/*#ifndef ONLINE_JUDGE\n freopen(\"input.txt\", \"r\", +stdin);\n freopen(\"output.txt\", \"w\", stdout);\n#endif*/\n cin.tie(0)->sync_with_stdio(false);\n solve();\n//\tint t;cin >> t;while(t--) solve();\n return 0;\n}", "accuracy": 0.08064516129032258, "time_ms": 10, "memory_kb": 7292, "score_of_the_acc": -0.0353, "final_rank": 19 }, { "submission_id": "aoj_2726_6025362", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nstruct UnionFind {\n UnionFind(int n) : n(n), num(n), data(n, -1) {}\n\n int find(int x) {\n assert(0 <= x && x < n);\n return data[x] < 0 ? x : data[x] = find(data[x]);\n }\n\n bool merge(int x, int y) {\n assert(0 <= x && x < n);\n assert(0 <= y && y < n);\n if ((x = find(x)) == (y = find(y))) return false;\n if (-data[x] < -data[y]) std::swap(x, y);\n data[x] += data[y];\n data[y] = x;\n num--;\n return true;\n }\n\n bool same(int x, int y) {\n assert(0 <= x && x < n);\n assert(0 <= y && y < n);\n return find(x) == find(y);\n }\n\n int size(int x) {\n assert(0 <= x && x < n);\n return -data[find(x)];\n }\n\n int count() const { return num; }\n\n std::vector<std::vector<int>> groups() {\n std::vector<std::vector<int>> res(n);\n for (int i = 0; i < n; i++) res[find(i)].emplace_back(i);\n res.erase(std::remove_if(res.begin(), res.end(), [&](const std::vector<int>& v) { return v.empty(); }));\n return res;\n }\n\n int operator[](int x) { return find(x); }\n\nprivate:\n int n, num;\n // root node : -1 * component size\n // otherwise : parent\n std::vector<int> data;\n};\n\n/**\n * @brief Union Find (Disjoint Set Union)\n * @docs docs/datastructure/UnionFind.md\n */\n\nstruct TopologicalSort {\n std::vector<std::vector<int>> G;\n\n TopologicalSort(int n) : G(n), n(n), indeg(n, 0) {}\n\n void add_edge(int u, int v) {\n assert(0 <= u && u < n);\n assert(0 <= v && v < n);\n G[u].emplace_back(v);\n indeg[v]++;\n }\n\n std::vector<int> build() {\n std::queue<int> que;\n for (int i = 0; i < n; i++) {\n if (indeg[i] == 0) {\n que.emplace(i);\n }\n }\n std::vector<int> order;\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n order.emplace_back(v);\n for (int& u : G[v]) {\n if (--indeg[u] == 0) {\n que.emplace(u);\n }\n }\n }\n if (*std::max_element(indeg.begin(), indeg.end()) != 0) return {};\n return order;\n }\n\nprivate:\n int n;\n std::vector<int> indeg;\n};\n\n/**\n * @brief Topological Sort\n * @docs docs/graph/TopologicalSort.md\n */\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N;\n cin >> N;\n vector<int> c(N);\n for (int& x : c) cin >> x;\n int M;\n cin >> M;\n vector<vector<int>> G(N);\n for (; M--;) {\n int a, b;\n cin >> a >> b;\n a--, b--;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n\n vector<vector<vector<int>>> adj(N);\n UnionFind UF(N);\n for (int i = 0; i < N; i++) {\n map<int, vector<int>> mp;\n mp[c[i]].emplace_back(i);\n for (int& j : G[i]) mp[c[j]].emplace_back(j);\n for (auto p : mp) {\n auto& v = p.second;\n adj[i].emplace_back(v);\n for (size_t j = 0; j + 1 < v.size(); j++) UF.merge(v[j], v[j + 1]);\n }\n }\n\n TopologicalSort TS(N);\n for (int i = 0; i < N; i++) {\n for (size_t j = 0; j + 1 < adj[i].size(); j++) {\n TS.add_edge(UF[adj[i][j][0]], UF[adj[i][j + 1][0]]);\n }\n }\n\n auto ord = TS.build();\n auto& g = TS.G;\n vector<int> dp(N, 1);\n for (int i = 0; i < N; i++) {\n int v = ord[i];\n for (int& u : g[v]) dp[u] = max(dp[u], dp[v] + 1);\n }\n\n ll ans = 0;\n for (int i = 0; i < N; i++) {\n if (UF[i] == i) {\n ans += 1LL * dp[i] * UF.size(i);\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 50816, "score_of_the_acc": -0.8742, "final_rank": 8 }, { "submission_id": "aoj_2726_6025357", "code_snippet": "#define LOCAL\n#include <bits/stdc++.h>\nusing namespace std;\n#pragma region Macros\ntypedef long long ll;\ntypedef __int128_t i128;\ntypedef unsigned int uint;\ntypedef unsigned long long ull;\n#define ALL(x) (x).begin(), (x).end()\n\ntemplate <typename T> istream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v) is >> x;\n return is;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) {\n for (size_t i = 0; i < N; i++) {\n os << v[i] << (i + 1 == N ? \"\" : \" \");\n }\n return os;\n}\n\ntemplate <int i, typename T> void print_tuple(ostream&, const T&) {}\ntemplate <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {\n if (i) os << ',';\n os << get<i>(t);\n print_tuple<i + 1, T, Args...>(os, t);\n}\ntemplate <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {\n os << '{';\n print_tuple<0, tuple<Args...>, Args...>(os, t);\n return os << '}';\n}\n\nvoid debug_out() { cerr << '\\n'; }\ntemplate <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {\n cerr << head;\n if (sizeof...(Tail) > 0) cerr << \", \";\n debug_out(move(tail)...);\n}\n#ifdef LOCAL\n#define debug(...) \\\n cerr << \" \"; \\\n cerr << #__VA_ARGS__ << \" :[\" << __LINE__ << \":\" << __FUNCTION__ << \"]\" << '\\n'; \\\n cerr << \" \"; \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...) void(0)\n#endif\n\ntemplate <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }\ntemplate <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }\n\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }\nint popcount(signed t) { return __builtin_popcount(t); }\nint popcount(long long t) { return __builtin_popcountll(t); }\nbool ispow2(int i) { return i && (i & -i) == i; }\nlong long MSK(int n) { return (1LL << n) - 1; }\n\ntemplate <class T> T ceil(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <class T> T floor(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\n\ntemplate <class T1, class T2> inline bool chmin(T1& a, T2 b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T1, class T2> inline bool chmax(T1& a, T2 b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T> void mkuni(vector<T>& v) {\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n}\ntemplate <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }\n#pragma endregion\n\n#include <algorithm>\n#include <cassert>\n#include <vector>\n\nstruct UnionFind {\n UnionFind(int n) : n(n), num(n), data(n, -1) {}\n\n int find(int x) {\n assert(0 <= x && x < n);\n return data[x] < 0 ? x : data[x] = find(data[x]);\n }\n\n bool merge(int x, int y) {\n assert(0 <= x && x < n);\n assert(0 <= y && y < n);\n if ((x = find(x)) == (y = find(y))) return false;\n if (-data[x] < -data[y]) std::swap(x, y);\n data[x] += data[y];\n data[y] = x;\n num--;\n return true;\n }\n\n bool same(int x, int y) {\n assert(0 <= x && x < n);\n assert(0 <= y && y < n);\n return find(x) == find(y);\n }\n\n int size(int x) {\n assert(0 <= x && x < n);\n return -data[find(x)];\n }\n\n int count() const { return num; }\n\n std::vector<std::vector<int>> groups() {\n std::vector<std::vector<int>> res(n);\n for (int i = 0; i < n; i++) res[find(i)].emplace_back(i);\n res.erase(std::remove_if(res.begin(), res.end(), [&](const std::vector<int>& v) { return v.empty(); }));\n return res;\n }\n\n int operator[](int x) { return find(x); }\n\nprivate:\n int n, num;\n // root node : -1 * component size\n // otherwise : parent\n std::vector<int> data;\n};\n\n/**\n * @brief Union Find (Disjoint Set Union)\n * @docs docs/datastructure/UnionFind.md\n */\n\n#include <algorithm>\n#include <cassert>\n#include <queue>\n#include <vector>\n\nstruct TopologicalSort {\n std::vector<std::vector<int>> G;\n\n TopologicalSort(int n) : G(n), n(n), indeg(n, 0) {}\n\n void add_edge(int u, int v) {\n assert(0 <= u && u < n);\n assert(0 <= v && v < n);\n G[u].emplace_back(v);\n indeg[v]++;\n }\n\n std::vector<int> build() {\n std::queue<int> que;\n for (int i = 0; i < n; i++) {\n if (indeg[i] == 0) {\n que.emplace(i);\n }\n }\n std::vector<int> order;\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n order.emplace_back(v);\n for (int& u : G[v]) {\n if (--indeg[u] == 0) {\n que.emplace(u);\n }\n }\n }\n if (*std::max_element(indeg.begin(), indeg.end()) != 0) return {};\n return order;\n }\n\nprivate:\n int n;\n std::vector<int> indeg;\n};\n\n/**\n * @brief Topological Sort\n * @docs docs/graph/TopologicalSort.md\n */\n\nconst int INF = 1e9;\nconst long long IINF = 1e18;\nconst int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\nconst char dir[4] = {'D', 'R', 'U', 'L'};\nconst long long MOD = 1000000007;\n// const long long MOD = 998244353;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N;\n cin >> N;\n vector<int> c(N);\n for (int& x : c) cin >> x;\n int M;\n cin >> M;\n vector<vector<int>> G(N);\n for (; M--;) {\n int a, b;\n cin >> a >> b;\n a--, b--;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n\n vector<vector<vector<int>>> adj(N);\n UnionFind UF(N);\n for (int i = 0; i < N; i++) {\n map<int, vector<int>> mp;\n mp[c[i]].emplace_back(i);\n for (int& j : G[i]) mp[c[j]].emplace_back(j);\n for (auto p : mp) {\n auto& v = p.second;\n adj[i].emplace_back(v);\n for (size_t j = 0; j + 1 < v.size(); j++) UF.merge(v[j], v[j + 1]);\n }\n }\n\n TopologicalSort TS(N);\n for (int i = 0; i < N; i++) {\n for (size_t j = 0; j + 1 < adj[i].size(); j++) {\n TS.add_edge(UF[adj[i][j][0]], UF[adj[i][j + 1][0]]);\n }\n }\n\n auto ord = TS.build();\n auto& g = TS.G;\n vector<int> dp(N, 1);\n for (int i = 0; i < N; i++) {\n int v = ord[i];\n for (int& u : g[v]) dp[u] = max(dp[u], dp[v] + 1);\n }\n\n ll ans = 0;\n for (int i = 0; i < N; i++) {\n if (UF[i] == i) {\n ans += 1LL * dp[i] * UF.size(i);\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 50704, "score_of_the_acc": -0.8726, "final_rank": 7 }, { "submission_id": "aoj_2726_6025330", "code_snippet": "#define LOCAL\n#include <bits/stdc++.h>\nusing namespace std;\n#pragma region Macros\ntypedef long long ll;\ntypedef __int128_t i128;\ntypedef unsigned int uint;\ntypedef unsigned long long ull;\n#define ALL(x) (x).begin(), (x).end()\n\ntemplate <typename T> istream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v) is >> x;\n return is;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) {\n for (size_t i = 0; i < N; i++) {\n os << v[i] << (i + 1 == N ? \"\" : \" \");\n }\n return os;\n}\n\ntemplate <int i, typename T> void print_tuple(ostream&, const T&) {}\ntemplate <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {\n if (i) os << ',';\n os << get<i>(t);\n print_tuple<i + 1, T, Args...>(os, t);\n}\ntemplate <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {\n os << '{';\n print_tuple<0, tuple<Args...>, Args...>(os, t);\n return os << '}';\n}\n\nvoid debug_out() { cerr << '\\n'; }\ntemplate <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {\n cerr << head;\n if (sizeof...(Tail) > 0) cerr << \", \";\n debug_out(move(tail)...);\n}\n#ifdef LOCAL\n#define debug(...) \\\n cerr << \" \"; \\\n cerr << #__VA_ARGS__ << \" :[\" << __LINE__ << \":\" << __FUNCTION__ << \"]\" << '\\n'; \\\n cerr << \" \"; \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...) void(0)\n#endif\n\ntemplate <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }\ntemplate <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }\n\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }\nint popcount(signed t) { return __builtin_popcount(t); }\nint popcount(long long t) { return __builtin_popcountll(t); }\nbool ispow2(int i) { return i && (i & -i) == i; }\nlong long MSK(int n) { return (1LL << n) - 1; }\n\ntemplate <class T> T ceil(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <class T> T floor(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\n\ntemplate <class T1, class T2> inline bool chmin(T1& a, T2 b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T1, class T2> inline bool chmax(T1& a, T2 b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T> void mkuni(vector<T>& v) {\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n}\ntemplate <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }\n#pragma endregion\n\n#include <algorithm>\n#include <cassert>\n#include <queue>\n#include <vector>\n\nstruct TopologicalSort {\n std::vector<std::vector<int>> G;\n\n TopologicalSort(int n) : G(n), n(n), indeg(n, 0) {}\n\n void add_edge(int u, int v) {\n assert(0 <= u && u < n);\n assert(0 <= v && v < n);\n G[u].emplace_back(v);\n indeg[v]++;\n }\n\n std::vector<int> build() {\n std::queue<int> que;\n for (int i = 0; i < n; i++) {\n if (indeg[i] == 0) {\n que.emplace(i);\n }\n }\n std::vector<int> order;\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n order.emplace_back(v);\n for (int& u : G[v]) {\n if (--indeg[u] == 0) {\n que.emplace(u);\n }\n }\n }\n if (*std::max_element(indeg.begin(), indeg.end()) != 0) return {};\n return order;\n }\n\nprivate:\n int n;\n std::vector<int> indeg;\n};\n\n/**\n * @brief Topological Sort\n * @docs docs/graph/TopologicalSort.md\n */\n\nconst int INF = 1e9;\nconst long long IINF = 1e18;\nconst int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\nconst char dir[4] = {'D', 'R', 'U', 'L'};\nconst long long MOD = 1000000007;\n// const long long MOD = 998244353;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N;\n cin >> N;\n vector<int> c(N);\n for (int& x : c) cin >> x;\n int M;\n cin >> M;\n vector<vector<int>> G(N);\n for (; M--;) {\n int a, b;\n cin >> a >> b;\n a--, b--;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n\n vector<vector<vector<int>>> adj(N);\n int n = N;\n for (int i = 0; i < N; i++) {\n map<int, vector<int>> mp;\n for (int& j : G[i]) mp[c[j]].emplace_back(j);\n if (mp.empty()) continue;\n n += mp.size() - 1;\n for (auto p : mp) adj[i].emplace_back(p.second);\n }\n\n TopologicalSort TS(n);\n for (int i = 0, cur = N; i < N; i++) {\n for (size_t j = 0; j + 1 < adj[i].size(); j++) {\n for (int& v : adj[i][j]) TS.add_edge(v, cur);\n for (int& v : adj[i][j + 1]) TS.add_edge(cur, v);\n cur++;\n }\n }\n for (int i = 0; i < N; i++) {\n for (int& j : G[i]) {\n if (c[i] < c[j]) {\n TS.add_edge(i, j);\n }\n }\n }\n\n auto ord = TS.build();\n auto& g = TS.G;\n vector<int> dp(n, 1);\n for (int i = 0; i < n; i++) {\n int v = ord[i];\n for (int& u : g[v]) {\n if (u < N)\n dp[u] = max(dp[u], dp[v] + 1);\n else\n dp[u] = max(dp[u], dp[v]);\n }\n }\n\n ll ans = 0;\n for (int i = 0; i < N; i++) ans += dp[i];\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.22580645161290322, "time_ms": 160, "memory_kb": 63204, "score_of_the_acc": -1.1304, "final_rank": 15 }, { "submission_id": "aoj_2726_6025301", "code_snippet": "#define LOCAL\n#include <bits/stdc++.h>\nusing namespace std;\n#pragma region Macros\ntypedef long long ll;\ntypedef __int128_t i128;\ntypedef unsigned int uint;\ntypedef unsigned long long ull;\n#define ALL(x) (x).begin(), (x).end()\n\ntemplate <typename T> istream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v) is >> x;\n return is;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) {\n for (size_t i = 0; i < N; i++) {\n os << v[i] << (i + 1 == N ? \"\" : \" \");\n }\n return os;\n}\n\ntemplate <int i, typename T> void print_tuple(ostream&, const T&) {}\ntemplate <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {\n if (i) os << ',';\n os << get<i>(t);\n print_tuple<i + 1, T, Args...>(os, t);\n}\ntemplate <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {\n os << '{';\n print_tuple<0, tuple<Args...>, Args...>(os, t);\n return os << '}';\n}\n\nvoid debug_out() { cerr << '\\n'; }\ntemplate <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {\n cerr << head;\n if (sizeof...(Tail) > 0) cerr << \", \";\n debug_out(move(tail)...);\n}\n#ifdef LOCAL\n#define debug(...) \\\n cerr << \" \"; \\\n cerr << #__VA_ARGS__ << \" :[\" << __LINE__ << \":\" << __FUNCTION__ << \"]\" << '\\n'; \\\n cerr << \" \"; \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...) void(0)\n#endif\n\ntemplate <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }\ntemplate <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }\n\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }\nint popcount(signed t) { return __builtin_popcount(t); }\nint popcount(long long t) { return __builtin_popcountll(t); }\nbool ispow2(int i) { return i && (i & -i) == i; }\nlong long MSK(int n) { return (1LL << n) - 1; }\n\ntemplate <class T> T ceil(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <class T> T floor(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\n\ntemplate <class T1, class T2> inline bool chmin(T1& a, T2 b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T1, class T2> inline bool chmax(T1& a, T2 b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T> void mkuni(vector<T>& v) {\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n}\ntemplate <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }\n#pragma endregion\n\n#include <algorithm>\n#include <cassert>\n#include <queue>\n#include <vector>\n\nstruct TopologicalSort {\n std::vector<std::vector<int>> G;\n\n TopologicalSort(int n) : G(n), n(n), indeg(n, 0) {}\n\n void add_edge(int u, int v) {\n assert(0 <= u && u < n);\n assert(0 <= v && v < n);\n G[u].emplace_back(v);\n indeg[v]++;\n }\n\n std::vector<int> build() {\n std::queue<int> que;\n for (int i = 0; i < n; i++) {\n if (indeg[i] == 0) {\n que.emplace(i);\n }\n }\n std::vector<int> order;\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n order.emplace_back(v);\n for (int& u : G[v]) {\n if (--indeg[u] == 0) {\n que.emplace(u);\n }\n }\n }\n if (*std::max_element(indeg.begin(), indeg.end()) != 0) return {};\n return order;\n }\n\nprivate:\n int n;\n std::vector<int> indeg;\n};\n\n/**\n * @brief Topological Sort\n * @docs docs/graph/TopologicalSort.md\n */\n\nconst int INF = 1e9;\nconst long long IINF = 1e18;\nconst int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\nconst char dir[4] = {'D', 'R', 'U', 'L'};\nconst long long MOD = 1000000007;\n// const long long MOD = 998244353;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N;\n cin >> N;\n vector<int> c(N);\n for (int& x : c) cin >> x;\n int M;\n cin >> M;\n vector<vector<int>> G(N);\n for (; M--;) {\n int a, b;\n cin >> a >> b;\n a--, b--;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n\n vector<vector<vector<int>>> adj(N);\n int n = N;\n for (int i = 0; i < N; i++) {\n map<int, vector<int>> mp;\n mp[c[i]].emplace_back(i);\n for (int& j : G[i]) mp[c[j]].emplace_back(j);\n n += mp.size() - 1;\n for (auto p : mp) adj[i].emplace_back(p.second);\n }\n\n TopologicalSort TS(n);\n for (int i = 0, cur = N; i < N; i++) {\n for (size_t j = 0; j + 1 < adj[i].size(); j++) {\n for (int& v : adj[i][j]) TS.add_edge(v, cur);\n for (int& v : adj[i][j + 1]) TS.add_edge(cur, v);\n cur++;\n }\n }\n\n auto ord = TS.build();\n auto& g = TS.G;\n vector<int> dp(n, 1);\n for (int i = 0; i < n; i++) {\n int v = ord[i];\n for (int& u : g[v]) {\n if (u < N)\n dp[u] = max(dp[u], dp[v] + 1);\n else\n dp[u] = max(dp[u], dp[v]);\n }\n }\n\n ll ans = 0;\n for (int i = 0; i < N; i++) ans += dp[i];\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.22580645161290322, "time_ms": 190, "memory_kb": 75132, "score_of_the_acc": -1.36, "final_rank": 16 }, { "submission_id": "aoj_2726_6004406", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n\nclass UnionFind {\npublic:\n UnionFind() = default;\n explicit UnionFind(int n) : data(n, -1) {}\n\n int find(int x) {\n if (data[x] < 0) return x;\n return data[x] = find(data[x]);\n }\n\n void unite(int x, int y) {\n x = find(x);\n y = find(y);\n if (x == y) return;\n if (data[x] > data[y]) std::swap(x, y);\n data[x] += data[y];\n data[y] = x;\n }\n\n bool same(int x, int y) {\n return find(x) == find(y);\n }\n\n int size(int x) {\n return -data[find(x)];\n }\n\nprivate:\n std::vector<int> data;\n};\n\nstd::vector<int> topological_sort(const std::vector<std::vector<int>>& G) {\n int V = G.size();\n std::vector<int> par_count(V);\n for (int u = 0; u < V; ++u) {\n for (int v : G[u]) ++par_count[v];\n }\n std::stack<int> start;\n for (int v = 0; v < V; ++v) {\n if (par_count[v] == 0) start.push(v);\n }\n\n std::vector<int> ret;\n while (!start.empty()) {\n int u = start.top();\n start.pop();\n ret.push_back(u);\n for (int v : G[u]) {\n --par_count[v];\n if (par_count[v] == 0) start.push(v);\n }\n }\n\n for (int c : par_count) {\n if (c > 0) return std::vector<int>();\n }\n return ret;\n}\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin>>N;\n vector<int> c(N);\n for (auto& x : c) cin >> x;\n int M;\n cin>>M;\n vector<vector<int>> G(N);\n rep(i,0,M) {\n int a, b;\n cin>>a>>b;\n --a,--b;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n UnionFind uf(N);\n rep(i, 0, N) {\n vector<pair<int, int>> vs;\n vs.push_back({c[i], i});\n for (int j : G[i]) {\n vs.push_back({c[j], j});\n }\n sort(vs.begin(), vs.end());\n rep(j, 0, vs.size()-1) {\n if (vs[j].first == vs[j+1].first) {\n uf.unite(vs[j].second, vs[j+1].second);\n }\n }\n }\n vector<vector<int>> H(N);\n rep(i, 0, N) {\n vector<pair<int, int>> vs;\n vs.push_back({c[i], i});\n for (int j : G[i]) {\n vs.push_back({c[j], j});\n }\n sort(vs.begin(), vs.end());\n rep(j, 0, vs.size()-1) {\n if (vs[j].first == vs[j+1].first) continue;\n H[uf.find(vs[j].second)].push_back(uf.find(vs[j+1].second));\n }\n }\n auto ord = topological_sort(H);\n vector<int> dist(N, 1);\n rep(i,0,N) {\n int v = ord[i];\n for (int u : H[v]) {\n dist[u] = max(dist[u], dist[v] + 1);\n }\n }\n ll ans = 0;\n rep(i, 0, N) {\n ans += dist[uf.find(i)];\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 17176, "score_of_the_acc": -0.2959, "final_rank": 1 }, { "submission_id": "aoj_2726_5845098", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\n\nstruct UnionFind{\n vector<int> par,num;\n UnionFind(int n):par(n),num(n,1){\n iota(par.begin(),par.end(),0); //include<numeric>\n }\n int find(int v){\n return (par[v]==v)?v:(par[v]=find(par[v]));\n }\n void unite(int u,int v){\n u=find(u),v=find(v);\n if(u==v)return;\n if(num[u]<num[v])swap(u,v);\n num[u]+=num[v];\n par[v]=u;\n }\n bool same(int u,int v){\n return find(u) == find(v);\n }\n int size(int v){\n return num[find(v)];\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<int> c(n);\n for(int i=0;i<n;i++){\n cin >> c[i];\n }\n UnionFind uf(n);\n vector<vector<int>> g(n);\n int m; cin >> m;\n vector<int> x(m),y(m);\n for(int i=0;i<m;i++){\n cin >> x[i] >> y[i];\n x[i]--; y[i]--;\n g[x[i]].push_back(y[i]);\n g[y[i]].push_back(x[i]);\n if(c[x[i]] == c[y[i]]){\n uf.unite(x[i],y[i]);\n }\n }\n for(int i=0;i<n;i++){\n sort(g[i].begin(), g[i].end(),[&](auto j,auto k){\n return c[j] < c[k];\n });\n for(int j=0;j+1<g[i].size();j++){\n if(c[g[i][j]] == c[g[i][j+1]]){\n uf.unite(g[i][j], g[i][j+1]);\n }\n }\n }\n vector<vector<int>> dag(n);\n vector<int> deg(n);\n for(int i=0;i<m;i++){\n x[i]=uf.find(x[i]);\n y[i]=uf.find(y[i]);\n if(x[i]!=y[i]){\n if(c[x[i]]<c[y[i]]){\n dag[x[i]].push_back(y[i]);\n deg[y[i]]++;\n }\n else{\n dag[y[i]].push_back(x[i]);\n deg[x[i]]++;\n }\n }\n }\n vector<pair<int,int>> v;\n for(int i=0;i<n;i++){\n for(int j=0;j+1<g[i].size();j++){\n int a=uf.find(g[i][j]);\n int b=uf.find(g[i][j+1]);\n if(a!=b){\n if(c[a]<c[b]){\n dag[a].push_back(b);\n deg[b]++;\n }\n else{\n dag[b].push_back(a);\n deg[a]++;\n }\n }\n }\n }\n queue<int> q;\n for(int i=0;i<n;i++){\n if(uf.find(i) == i and deg[i] == 0){\n q.push(i);\n }\n }\n vector<ll> dp(n,1);\n while(q.size()){\n int s = q.front(); q.pop();\n // cout << s << \" \" << dp[s] << endl;\n for(int t:dag[s]){\n // cout << t << endl;\n dp[t] = max(dp[t], dp[s]+1);\n deg[t]--;\n if(deg[t] == 0)q.push(t);\n }\n }\n ll res = 0;\n for(int i=0;i<n;i++){\n if(uf.find(i) == i){\n res += dp[i] * (ll)uf.size(i);\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 19884, "score_of_the_acc": -0.3344, "final_rank": 2 }, { "submission_id": "aoj_2726_5785970", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 25000000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\nstruct UnionFind{\n vl p;\n vl rank;\n vl cnt;\n\n UnionFind(ll n){\n rank.resize(n,0);\n p.resize(n,0);\n cnt.resize(n,0);\n rep(i,n){\n p[i] = i;\n rank[i] = 0;\n cnt[i] = 1;\n }\n }\n\n ll find(ll x){\n if(x != p[x]) p[x] = find(p[x]);\n return p[x];\n }\n\n bool same(ll x, ll y){\n return find(x) == find(y);\n }\n\n void unite(ll x, ll y){\n x = find(x);\n y = find(y);\n if(x == y) return;\n if(rank[x] > rank[y]){\n p[y] = x;\n cnt[x] += cnt[y];\n }else{\n p[x] = y;\n cnt[y] += cnt[x];\n if(rank[x] == rank[y]) rank[y]++;\n }\n }\n\n ll size(ll x){\n return cnt[find(x)];\n }\n};\n\nint main(){\n int n; cin >> n;\n vl c(n); rep(i,n) cin >> c[i];\n vvl G(n), rev(n);\n int m; cin >> m;\n UnionFind uf(n);\n rep(i,m){\n int a,b; cin >> a >> b; a--; b--;\n if(a == b) continue;\n if(c[a] < c[b]) G[a].push_back(b), rev[b].push_back(a);\n else if(c[a] > c[b]) G[b].push_back(a), rev[a].push_back(b);\n else uf.unite(a,b);\n }\n vl x(n,-1);\n ll ans = 0;\n vl deg(n,0);\n rep(i,n) sort(all(G[i]), [&](ll a, ll b){return c[a] < c[b];});\n rep(i,n) sort(all(rev[i]), [&](ll a, ll b){return c[a] < c[b];});\n vvl g(n);\n rep(i,n){\n int m = G[i].size();\n if(m == 0) continue;\n rep(j,m-1){\n if(c[G[i][j]] == c[G[i][j+1]]) uf.unite(G[i][j], G[i][j+1]);\n else g[G[i][j]].push_back(G[i][j+1]); \n g[i].push_back(G[i][j]);\n }\n g[i].push_back(G[i][m-1]);\n }\n rep(i,n){\n int m = rev[i].size();\n if(m == 0) continue;\n rep(j,m-1){\n if(c[rev[i][j]] == c[rev[i][j+1]]) uf.unite(rev[i][j], rev[i][j+1]);\n else g[rev[i][j]].push_back(rev[i][j+1]); \n }\n }\n rep(i,n){\n if(uf.find(i) != i) for(auto v : g[i]) g[uf.find(i)].push_back(v);\n }\n rep(i,n){\n sort(all(g[i])); g[i].erase(unique(all(g[i])), g[i].end());\n }\n rep(i,n){\n if(uf.find(i) != i) g[i].clear();\n for(auto v : g[i]) deg[uf.find(v)]++;\n }\n queue<int> q;\n rep(i,n){\n if(uf.find(i) == i && deg[i] == 0) q.push(i), x[i] = 1;\n }\n while(!q.empty()){\n int u = q.front(); q.pop();\n for(auto v : g[u]){\n int nx = uf.find(v);\n deg[nx]--;\n if(deg[nx] == 0){\n q.push(nx);\n x[nx] = x[u] + 1;\n }\n }\n }\n rep(i,n) ans += x[uf.find(i)];\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 27244, "score_of_the_acc": -0.559, "final_rank": 6 }, { "submission_id": "aoj_2726_5785817", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 25000000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\nint main(){\n int n; cin >> n;\n vpl v(n);\n rep(i,n){\n cin >> v[i].first;\n v[i].second = i;\n }\n sort(all(v));\n vvl G(n);\n int m; cin >> m;\n rep(i,m){\n int a,b; cin >> a >> b; a--; b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n vl x(n,-1), y(n,-1);\n ll ans = 0;\n vl ls;\n int pre = v[0].first;\n v.emplace_back(inf,-1);\n vl mxlist(n);\n rep(i,n+1){\n int mx = 0;\n if(pre < v[i].first){\n for(auto u : ls){\n for(auto to : G[v[u].second]){\n chmax(mx, max(x[to],y[to]));\n }\n mxlist[u] = mx+1;\n }\n for(auto u : ls){\n x[v[u].second] = mxlist[u];\n ans += x[v[u].second];\n for(auto to : G[v[u].second]) chmax(y[to], x[v[u].second]);\n }\n ls.clear();\n pre = v[i].first;\n }\n ls.push_back(i);\n }\n cout << ans << endl;\n}", "accuracy": 0.12903225806451613, "time_ms": 80, "memory_kb": 13884, "score_of_the_acc": -0.2691, "final_rank": 18 } ]
aoj_2728_cpp
Change a Password Password authentication is used in a lot of facilities. The office of JAG also uses password authentication. A password is required to enter their office. A password is a string of $N$ digits '0'-'9'. This password is changed on a regular basis. Taro, a staff of the security division of JAG, decided to use the following rules to generate a new password from an old one. The new password consists of the same number $N$ of digits to the original one and each digit appears at most once in the new password. It can have a leading zero. (Note that an old password may contain same digits twice or more.) The new password maximizes the difference from the old password within constraints described above. (Definition of the difference between two passwords is described below.) If there are two or more candidates, the one which has the minimum value when it is read as an integer will be selected. The difference between two passwords is defined by min ($|a - b|, 10^N - |a - b|$), where $a$ and $b$ are the integers represented by the two passwords. For example, the difference between "11" and "42" is 31, and the difference between "987" and "012" is 25. Taro would like to use a computer to calculate a new password correctly, but he is not good at programming. Therefore, he asked you to write a program. Your task is to write a program that generates a new password from an old password. Input The input consists of a single test case. The first line of the input contains a string $S$ which denotes the old password. You can assume that the length of $S$ is no less than 1 and no greater than 10. Note that old password $S$ may contain same digits twice or more, and may have leading zeros. Output Print the new password in a line. Sample Input 1 201 Output for the Sample Input 1 701 Sample Input 2 512 Output for the Sample Input 2 012 Sample Input 3 99999 Output for the Sample Input 3 49876 Sample Input 4 765876346 Output for the Sample Input 4 265874931
[ { "submission_id": "aoj_2728_11021300", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing a2 = array<ll, 2>;\nusing a3 = array<ll, 3>;\n\nbool chmin(auto& a, const auto& b) { return a > b ? a = b, 1 : 0; }\nbool chmax(auto& a, const auto& b) { return a < b ? a = b, 1 : 0; }\n\nconst ll INF = 1e18;\nll mod = 998244353;\n\nifstream in;\nofstream out;\n\nint main(int argc, char** argv) {\n ios::sync_with_stdio(false);\n cin.tie(0);\n\n if (argc > 2) {\n in.open(argv[1]);\n cin.rdbuf(in.rdbuf());\n out.open(argv[2]);\n cout.rdbuf(out.rdbuf());\n }\n\n string inp;\n ll n;\n cin >> inp;\n n = stoll(inp);\n ll siz = inp.size();\n ll ten = 1;\n for (int i = 0; i < siz; i++) ten *= 10;\n ll mx = 0;\n string ans = to_string(n);\n\n vector<ll> per(10, 0);\n iota(per.begin(), per.end(), 0);\n do {\n ll dig = 0;\n string s;\n for (int i = 0; i < siz; i++) {\n dig *= 10;\n dig += per[i];\n s.push_back(per[i] + '0');\n }\n if (mx < min(abs(dig - n), ten - abs(dig - n))) {\n mx = min(abs(dig - n), ten - abs(dig - n));\n ans = s;\n }\n if (mx == min(abs(dig - n), ten - abs(dig - n)) && stoll(ans) > dig)\n ans = s;\n } while (next_permutation(per.begin(), per.end()));\n\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3584, "score_of_the_acc": -0.3932, "final_rank": 8 }, { "submission_id": "aoj_2728_11021294", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing a2 = array<ll, 2>;\nusing a3 = array<ll, 3>;\n\nbool chmin(auto& a, const auto& b) { return a > b ? a = b, 1 : 0; }\nbool chmax(auto& a, const auto& b) { return a < b ? a = b, 1 : 0; }\n\nconst ll INF = 1e18;\nll mod = 998244353;\n\nifstream in;\nofstream out;\n\nint main(int argc, char** argv) {\n ios::sync_with_stdio(false);\n cin.tie(0);\n\n if (argc > 2) {\n in.open(argv[1]);\n cin.rdbuf(in.rdbuf());\n out.open(argv[2]);\n cout.rdbuf(out.rdbuf());\n }\n\n ll n;\n cin >> n;\n ll siz = to_string(n).size();\n ll ten = 1;\n for (int i = 0; i < siz; i++) ten *= 10;\n ll mx = 0;\n string ans = to_string(n);\n\n vector<ll> per(10, 0);\n iota(per.begin(), per.end(), 0);\n do {\n ll dig = 0;\n string s;\n for (int i = 0; i < siz; i++) {\n dig *= 10;\n dig += per[i];\n s.push_back(per[i] + '0');\n }\n if (mx < min(abs(dig - n), ten - abs(dig - n))) {\n mx = min(abs(dig - n), ten - abs(dig - n));\n ans = s;\n }\n if (mx == min(abs(dig - n), ten - abs(dig - n)) && stoll(ans) > dig)\n ans = s;\n } while (next_permutation(per.begin(), per.end()));\n\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.6065573770491803, "time_ms": 70, "memory_kb": 3584, "score_of_the_acc": -0.3791, "final_rank": 17 }, { "submission_id": "aoj_2728_10873962", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/all>\n// #include<boost/multiprecision/cpp_int.hpp>\n\nusing namespace std;\n// using namespace atcoder;\n// using bint = boost::multiprecision::cpp_int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing vi = vector<ll>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing ve = vector<vector<int>>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\n#define rep(i,s,n) for(ll i = (ll)s;i < (ll)n;i++)\n#define rrep(i,l,r) for(ll i = r-1;i >= l;i--)\n#define ALL(x) (x).begin(),(x).end()\n#define sz(c) ((ll)(c).size())\n#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())\n#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())\n// #define MOD 1000000007\n#define MOD 998244353\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}\nld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}\n\n\nint main(){\n \n ios_base::sync_with_stdio(0), cin.tie(0);\n string s;cin >> s;\n ll S = stol(s),tn = 1;\n rep(i,0,sz(s))tn *= 10;\n auto comp = [&](string &a,string &b)->bool{\n ll A = stol(a),B = stol(b);\n if(min(abs(A-S),tn-abs(A-S)) == min(abs(B-S),tn-abs(B-S)))return A < B;\n return min(abs(A-S),tn-abs(A-S)) > min(abs(B-S),tn-abs(B-S));\n };\n string res = \"\";\n rep(i,0,sz(s))res += char('0'+i);\n auto dfs = [&](auto &dfs,string &t,int k)->void{\n if(sz(t) == sz(s)){\n string u = t;\n do{\n if(comp(u,res))res = u;\n }while(next_permutation(ALL(u)));\n return ;\n }\n if(10-k < sz(s)-sz(t))return ;\n rep(i,k,10){\n t += char('0'+i);\n dfs(dfs,t,i+1);\n t.pop_back();\n }\n };\n string t = \"\";\n dfs(dfs,t,0);\n cout << res << endl;\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 3432, "score_of_the_acc": -0.2817, "final_rank": 7 }, { "submission_id": "aoj_2728_10873961", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/all>\n// #include<boost/multiprecision/cpp_int.hpp>\n\nusing namespace std;\n// using namespace atcoder;\n// using bint = boost::multiprecision::cpp_int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing vi = vector<ll>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing ve = vector<vector<int>>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\n#define rep(i,s,n) for(ll i = (ll)s;i < (ll)n;i++)\n#define rrep(i,l,r) for(ll i = r-1;i >= l;i--)\n#define ALL(x) (x).begin(),(x).end()\n#define sz(c) ((ll)(c).size())\n#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())\n#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())\n// #define MOD 1000000007\n#define MOD 998244353\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}\nld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}\n\n\nint main(){\n \n ios_base::sync_with_stdio(0), cin.tie(0);\n string s;cin >> s;\n ll S = stoi(s),tn = 1;\n rep(i,0,sz(s))tn *= 10;\n auto comp = [&](string &a,string &b)->bool{\n ll A = stoi(a),B = stoi(b);\n if(min(abs(A-S),tn-abs(A-S)) == min(abs(B-S),tn-abs(B-S)))return A < B;\n return min(abs(A-S),tn-abs(A-S)) > min(abs(B-S),tn-abs(B-S));\n };\n string res = \"\";\n rep(i,0,sz(s))res += char('0'+i);\n auto dfs = [&](auto &dfs,string &t,int k)->void{\n if(sz(t) == sz(s)){\n string u = t;\n do{\n if(comp(u,res))res = u;\n }while(next_permutation(ALL(u)));\n return ;\n }\n if(10-k < sz(s)-sz(t))return ;\n rep(i,k,10){\n t += char('0'+i);\n dfs(dfs,t,i+1);\n t.pop_back();\n }\n };\n string t = \"\";\n dfs(dfs,t,0);\n cout << res << endl;\n \n\n return 0;\n}", "accuracy": 0.21311475409836064, "time_ms": 190, "memory_kb": 3432, "score_of_the_acc": -0.2535, "final_rank": 19 }, { "submission_id": "aoj_2728_10853324", "code_snippet": "#include<cstdio>\n#include<cstring>\n#include<cstdlib>\n#include<iostream>\n#include<algorithm>\n#include<queue>\n#include<vector>\n#include<set>\n#include<map>\nusing namespace std;\nchar c;\nbool flag;\n\nint Cs[10];\nint d;\ninline void read(int&a)\n{\n\ta=0;do c=getchar();while(c!='-'&&(c<'0'||c>'9'));\n\tc=c=='-'?flag=true,getchar():c;\n\twhile(c<='9'&&c>='0')d++,a=(a<<3)+(a<<1)+c-'0',c=getchar();\n\ta=flag?flag=false,-a:a;\n}\n#define ll long long\ninline void read(ll&a)\n{\n\ta=0;do c=getchar();while(c!='-'&&(c<'0'||c>'9'));\n\tc=c=='-'?flag=true,getchar():c;\n\twhile(c<='9'&&c>='0')d++,a=(a<<3)+(a<<1)+c-'0',c=getchar();\n\ta=flag?flag=false,-a:a;\n}\nint t;\nint n;\nll Old,Base;\nll Ans;\nll Calc(ll Val)\n{\n\treturn min(Base-abs(Val-Old),abs(Val-Old));\n}\nvoid Up(ll Val)\n{\n\tif(Calc(Val)>Calc(Ans))Ans=Val;\n\tif(Ans==0)\n\t\tAns++,Ans--;\t\t\t\t\t\t\t\n}\n\nvoid solve(int x,ll Val)\n{\n\tif(d==x-1){return Up(Val);}\n\tfor(int i=0;i<=9;i++)\n\t\tif(!Cs[i])\n\t\tCs[i]=true,solve(x+1,Val*10+i),\n\t\tCs[i]=false;\n}\n\nint main()\n{\n\tread(Old);\n\t//if(!Old){cout<<5<<endl;return 0;}\n\tBase=1;\n\tAns=Old;\n\tint t=0;\n\twhile(t<d)Base*=10,t++;\n\t//while(Base<=Old)Base*=10,d++;\n\tsolve(1,0);\n\twhile(Base/10>Ans)\n\tBase/=10,putchar('0');\n\tcout<<Ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3476, "score_of_the_acc": -0.1557, "final_rank": 4 }, { "submission_id": "aoj_2728_9599081", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nint main() {\n string S;\n cin >> S;\n int N = S.size();\n vector<int> D(10,-1);\n rep(i,0,N) D[i] = i;\n sort(ALL(D));\n ll Cur = -1;\n string ANS = \"\";\n ll x = 1;\n rep(i,0,N) x *= 10;\n do {\n string T = \"\";\n rep(i,0,N) T += '.';\n rep(i,0,10) {\n if (D[i] != -1) T[D[i]] = '0' + i;\n }\n ll X = stoll(S), Y = stoll(T);\n ll Z = min(abs(X-Y),x-abs(X-Y));\n if (Cur < Z) {\n Cur = Z;\n ANS = T;\n }\n else if (Cur == Z && ANS > T) {\n ANS = T;\n }\n\n } while(next_permutation(ALL(D)));\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 3500, "score_of_the_acc": -0.4698, "final_rank": 10 }, { "submission_id": "aoj_2728_7140079", "code_snippet": "// author: hanyu\n#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n string s;\n cin >> s;\n\n ll n = 1;\n for (int i = 0; i < s.size(); i++) n *= 10;\n\n string t = \"0123456789\";\n ll dist = 0;\n string ans = \"\";\n do {\n string t2 = t.substr(0, (int) s.size());\n ll tmp = stoll(t2);\n ll diff = min(abs(stoll(s) - tmp), n - abs(stoll(s) - tmp));\n if (diff > dist) {\n dist = diff;\n ans = t2;\n }\n } while (next_permutation(t.begin(), t.end()));\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 3456, "score_of_the_acc": -0.455, "final_rank": 9 }, { "submission_id": "aoj_2728_7117282", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing ll = long long;\n#define int long long\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define rrep(i, n) for (int i = (n) - 1; i >= 0; --i)\n\n#define all(c) std::begin(c), std::end(c)\n\n#ifdef LOCAL\n#define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__)\ntemplate <class T, class ...Args> void debug_impl(string s, T&& f, Args &&...args) {\n cerr << \"(\" << s << \"): \" << \"(\" << forward<T>(f);\n ((cerr << \", \" << forward<Args>(args)), ..., (cerr << \")\\n\"));\n}\n#else\n#define debug(...) void(0)\n#endif\n\ntemplate <class T> bool chmax(T& a, const T& b) { return b > a ? (a = b, true) : false; }\ntemplate <class T> bool chmin(T& a, const T& b) { return b < a ? (a = b, true) : false; }\n\n\ntemplate <class T> istream& operator>>(istream& in, vector<T>& v) {\n for (auto& e : v) in >> e;\n return in;\n}\ntemplate <class ...Args> void read(Args&... args) {\n (cin >> ... >> args);\n}\n\ntemplate <class T> ostream& operator>>(ostream& out, vector<T>& v) {\n int n = v.size();\n rep(i, n) {\n out << v[i];\n if (i + 1 != n) out << ' ';\n }\n return out;\n}\n\ntemplate <class T, class ...Tails> void print(T&& h, Tails &&... tails) {\n cout << h, ((cout << ' ' << forward<Tails>(tails)), ..., (cout << '\\n'));\n}\n\nint intpow(int a, int b){ int ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\ntemplate <class T> using vc = vector<T>;\n\nconst int N = 10;\nconst ll inf = 1LL<<60;\n\nint f(string s) {\n int n = (int)s.size();\n int ret = 0;\n rep(i, n) {\n ret *= 10;\n ret += s[i] - '0';\n } \n return ret;\n}\n\nsigned main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n string s; read(s);\n int n = (int)s.size();\n int val = f(s);\n vc<int> ids(N, 0);\n iota(all(ids), 0);\n int res = -inf;\n string ans = s;\n do {\n int now = 0;\n string t = \"\";\n rep(i, n) {\n now *= 10;\n now += ids[i];\n t += (char)('0' + ids[i]);\n }\n if(chmax(res, min(abs(now - val), intpow(10, n) - abs(now - val)))) {\n ans = t;\n }\n } while(next_permutation(all(ids)));\n print(ans);\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3456, "score_of_the_acc": -0.1169, "final_rank": 3 }, { "submission_id": "aoj_2728_6758380", "code_snippet": "#include <bits/stdc++.h>\n#include <chrono>\n#include <thread>\n////#include <atcoder/all>\n\n//using namespace atcoder;\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\nusing vvvb = vector<vvb>;\nusing vd = vector<double>;\nusing vvd = vector<vd>;\nusing vvvd = vector<vvd>;\n#define all(A) A.begin(),A.end()\n#define ALL(A) A.begin(),A.end()\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\nusing pqr = priority_queue<pair<ll, ll>, vector<pair<ll, ll>>, greater<pair<ll, ll>>>;\n\ntemplate<class T>\nbool chmax(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p < q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\ndouble EPS = 1e-9;\ntemplate<class T>\nbool chmin(T& p, T q) {\n if (p > q + EPS) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\nll gcd(ll(a), ll(b)) {\n if (b == 0)return a;\n ll c = a;\n while (a % b != 0) {\n c = a % b;\n a = b;\n b = c;\n }\n return b;\n}\n\nvector<ll> fact, factinv, inv;\nll mod = 998244353;\nvoid prenCkModp(ll n) {\n fact.resize(n + 5);\n factinv.resize(n + 5);\n inv.resize(n + 5);\n fact.at(0) = fact.at(1) = 1;\n factinv.at(0) = factinv.at(1) = 1;\n inv.at(1) = 1;\n for (ll i = 2; i < n + 5; i++) {\n fact.at(i) = (fact.at(i - 1) * i) % mod;\n inv.at(i) = mod - (inv.at(mod % i) * (mod / i)) % mod;\n factinv.at(i) = (factinv.at(i - 1) * inv.at(i)) % mod;\n }\n\n}\nll nCk(ll n, ll k) {\n if (k < 0)return 0;\n if (n < k) return 0;\n return fact.at(n) * (factinv.at(k) * factinv.at(n - k) % mod) % mod;\n}\nvector<string>S;\nll dfs(ll L, ll R, ll n, char c = '+') {\n ll res = 0;\n if (c == '*')res = 1;\n for (ll i = L; i <= R; i++) {\n ll d = 0;\n if (S[i].size() != n + 1)continue;\n if (S[i][n] == '+') {\n bool OK = 1;\n for (ll j = i + 1; j < R; j++) {\n if (S[j].size() == n + 1) {\n d = dfs(i + 1, j - 1, n + 1, '+');\n OK = 0;\n break;\n }\n\n }\n if (OK)d = dfs(i + 1, R, n + 1, '+');\n }\n else if (S[i][n] == '*') {\n bool OK = 1;\n for (ll j = i + 1; j < R; j++) {\n if (S[j].size() == n + 1) {\n d = dfs(i + 1, j - 1, n + 1, '*');\n OK = 0;\n break;\n }\n\n }\n if (OK)d = dfs(i + 1, R, n + 1, '*');\n }\n else {\n d = S[i][n] - '0';\n }\n if (c == '+')res += d;\n else res *= d;\n }\n return res;\n}\n\n\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n string QN;\n vll P = { 0,1,2,3,4,5,6,7,8,9 };\n cin >> QN;\n ll M = -1, an = -1;\n ll K = QN.size();\n ll N = stoll(QN);\n ll p = pow(10, K);\n do {\n ll d = 0;\n rep(q, K) {\n d += P[q];\n d *= 10;\n }\n d /= 10;\n ll S = min(abs(N - d), p - abs(N - d));\n if (chmax(M, S))an = d;\n } while (next_permutation(all(P)));\n string AN = to_string(an);\n while (AN.size() < K)AN = '0' + AN;\n cout << AN << endl;\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3948, "score_of_the_acc": -1.0141, "final_rank": 13 }, { "submission_id": "aoj_2728_6758376", "code_snippet": "#include <bits/stdc++.h>\n#include <chrono>\n#include <thread>\n////#include <atcoder/all>\n\n//using namespace atcoder;\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\nusing vvvb = vector<vvb>;\nusing vd = vector<double>;\nusing vvd = vector<vd>;\nusing vvvd = vector<vvd>;\n#define all(A) A.begin(),A.end()\n#define ALL(A) A.begin(),A.end()\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\nusing pqr = priority_queue<pair<ll, ll>, vector<pair<ll, ll>>, greater<pair<ll, ll>>>;\n\ntemplate<class T>\nbool chmax(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p < q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\ndouble EPS = 1e-9;\ntemplate<class T>\nbool chmin(T& p, T q) {\n if (p > q + EPS) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\nll gcd(ll(a), ll(b)) {\n if (b == 0)return a;\n ll c = a;\n while (a % b != 0) {\n c = a % b;\n a = b;\n b = c;\n }\n return b;\n}\n\nvector<ll> fact, factinv, inv;\nll mod = 998244353;\nvoid prenCkModp(ll n) {\n fact.resize(n + 5);\n factinv.resize(n + 5);\n inv.resize(n + 5);\n fact.at(0) = fact.at(1) = 1;\n factinv.at(0) = factinv.at(1) = 1;\n inv.at(1) = 1;\n for (ll i = 2; i < n + 5; i++) {\n fact.at(i) = (fact.at(i - 1) * i) % mod;\n inv.at(i) = mod - (inv.at(mod % i) * (mod / i)) % mod;\n factinv.at(i) = (factinv.at(i - 1) * inv.at(i)) % mod;\n }\n\n}\nll nCk(ll n, ll k) {\n if (k < 0)return 0;\n if (n < k) return 0;\n return fact.at(n) * (factinv.at(k) * factinv.at(n - k) % mod) % mod;\n}\nvector<string>S;\nll dfs(ll L, ll R, ll n, char c = '+') {\n ll res = 0;\n if (c == '*')res = 1;\n for (ll i = L; i <= R; i++) {\n ll d = 0;\n if (S[i].size() != n + 1)continue;\n if (S[i][n] == '+') {\n bool OK = 1;\n for (ll j = i + 1; j < R; j++) {\n if (S[j].size() == n + 1) {\n d = dfs(i + 1, j - 1, n + 1, '+');\n OK = 0;\n break;\n }\n\n }\n if (OK)d = dfs(i + 1, R, n + 1, '+');\n }\n else if (S[i][n] == '*') {\n bool OK = 1;\n for (ll j = i + 1; j < R; j++) {\n if (S[j].size() == n + 1) {\n d = dfs(i + 1, j - 1, n + 1, '*');\n OK = 0;\n break;\n }\n\n }\n if (OK)d = dfs(i + 1, R, n + 1, '*');\n }\n else {\n d = S[i][n] - '0';\n }\n if (c == '+')res += d;\n else res *= d;\n }\n return res;\n}\n\n\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N;\n vll P = { 0,1,2,3,4,5,6,7,8,9 };\n cin >> N;\n ll M = -1, an = -1;\n ll K = to_string(N).size();\n ll p = pow(10, K);\n do {\n ll d = 0;\n rep(q, K) {\n d += P[q];\n d *= 10;\n }\n d /= 10;\n ll S = min(abs(N - d), p - abs(N - d));\n if (chmax(M, S))an = d;\n } while (next_permutation(all(P)));\n string AN = to_string(an);\n while (AN.size() < K)AN = '0' + AN;\n cout << AN << endl;\n\n}", "accuracy": 0.6065573770491803, "time_ms": 20, "memory_kb": 3948, "score_of_the_acc": -1.0141, "final_rank": 18 }, { "submission_id": "aoj_2728_6758374", "code_snippet": "#include <bits/stdc++.h>\n#include <chrono>\n#include <thread>\n////#include <atcoder/all>\n\n//using namespace atcoder;\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\nusing vvvb = vector<vvb>;\nusing vd = vector<double>;\nusing vvd = vector<vd>;\nusing vvvd = vector<vvd>;\n#define all(A) A.begin(),A.end()\n#define ALL(A) A.begin(),A.end()\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\nusing pqr = priority_queue<pair<ll, ll>, vector<pair<ll, ll>>, greater<pair<ll, ll>>>;\n\ntemplate<class T>\nbool chmax(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p < q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\ndouble EPS = 1e-9;\ntemplate<class T>\nbool chmin(T& p, T q) {\n if (p > q + EPS) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\nll gcd(ll(a), ll(b)) {\n if (b == 0)return a;\n ll c = a;\n while (a % b != 0) {\n c = a % b;\n a = b;\n b = c;\n }\n return b;\n}\n\nvector<ll> fact, factinv, inv;\nll mod = 998244353;\nvoid prenCkModp(ll n) {\n fact.resize(n + 5);\n factinv.resize(n + 5);\n inv.resize(n + 5);\n fact.at(0) = fact.at(1) = 1;\n factinv.at(0) = factinv.at(1) = 1;\n inv.at(1) = 1;\n for (ll i = 2; i < n + 5; i++) {\n fact.at(i) = (fact.at(i - 1) * i) % mod;\n inv.at(i) = mod - (inv.at(mod % i) * (mod / i)) % mod;\n factinv.at(i) = (factinv.at(i - 1) * inv.at(i)) % mod;\n }\n\n}\nll nCk(ll n, ll k) {\n if (k < 0)return 0;\n if (n < k) return 0;\n return fact.at(n) * (factinv.at(k) * factinv.at(n - k) % mod) % mod;\n}\nvector<string>S;\nll dfs(ll L, ll R, ll n, char c = '+') {\n ll res = 0;\n if (c == '*')res = 1;\n for (ll i = L; i <= R; i++) {\n ll d = 0;\n if (S[i].size() != n + 1)continue;\n if (S[i][n] == '+') {\n bool OK = 1;\n for (ll j = i + 1; j < R; j++) {\n if (S[j].size() == n + 1) {\n d = dfs(i + 1, j - 1, n + 1, '+');\n OK = 0;\n break;\n }\n\n }\n if (OK)d = dfs(i + 1, R, n + 1, '+');\n }\n else if (S[i][n] == '*') {\n bool OK = 1;\n for (ll j = i + 1; j < R; j++) {\n if (S[j].size() == n + 1) {\n d = dfs(i + 1, j - 1, n + 1, '*');\n OK = 0;\n break;\n }\n\n }\n if (OK)d = dfs(i + 1, R, n + 1, '*');\n }\n else {\n d = S[i][n] - '0';\n }\n if (c == '+')res += d;\n else res *= d;\n }\n return res;\n}\n\n\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N;\n vll P = { 0,1,2,3,4,5,6,7,8,9 };\n cin >> N;\n ll M = -1, an = -1;\n ll K = to_string(N).size();\n ll p = pow(10, K);\n do {\n ll d = 0;\n rep(q, K) {\n d += P[q];\n d *= 10;\n }\n d /= 10;\n ll S = min(abs(N - d), p - abs(N - d));\n if (chmax(M, S))an = d;\n } while (next_permutation(all(P)));\n cout << an << endl;\n\n}", "accuracy": 0.01639344262295082, "time_ms": 10, "memory_kb": 3860, "score_of_the_acc": -0.8295, "final_rank": 20 }, { "submission_id": "aoj_2728_6710516", "code_snippet": "#include <bits/stdc++.h>\n#define all(v) v.begin(), v.end()\n#define rall(v) v.rbegin(), v.rend()\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define drep(i,j,n) for(int i=0;i<(int)(n-1);i++)for(int j=i+1;j<(int)(n);j++)\n#define trep(i,j,k,n) for(int i=0;i<(int)(n-2);i++)for(int j=i+1;j<(int)(n-1);j++)for(int k=j+1;k<(int)(n);k++)\n#define codefor int test;scanf(\"%d\",&test);while(test--)\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define yes(ans) if(ans)printf(\"yes\\n\");else printf(\"no\\n\")\n#define Yes(ans) if(ans)printf(\"Yes\\n\");else printf(\"No\\n\")\n#define YES(ans) if(ans)printf(\"YES\\n\");else printf(\"NO\\n\")\n#define popcount(v) __builtin_popcountll(v)\n#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\n#define vector4d(type,name,h,w,d,...) vector<vector<vector<vector<type>>>>name(h,vector<vector<vector<type>>>(w,vector<vector<type>>(d,vector<type>(__VA_ARGS__))))\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;\nconst int MOD=1000000007;\nconst int MOD2=998244353;\nconst int INF=1<<30;\nconst ll INF2=1LL<<60;\nvoid scan(int& a){scanf(\"%d\",&a);}\nvoid scan(long long& a){scanf(\"%lld\",&a);}\ntemplate<class T,class L>void scan(pair<T, L>& p){scan(p.first);scan(p.second);}\ntemplate<class T,class U,class V>void scan(tuple<T,U,V>& p){scan(get<0>(p));scan(get<1>(p));scan(get<2>(p));}\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i);}\ntemplate<class T> void scan(T& a){cin>>a;}\ntemplate<class T> void scan(vector<T>& vec){for(auto&& it:vec)scan(it);}\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){scan(head);in(tail...);}\nvoid print(const int& a){printf(\"%d\",a);}\nvoid print(const long long& a){printf(\"%lld\",a);}\nvoid print(const double& a){printf(\"%.15lf\",a);}\ntemplate<class T,class L>void print(const pair<T, L>& p){print(p.first);putchar(' ');print(p.second);}\ntemplate<class T> void print(const T& a){cout<<a;}\ntemplate<class T> void print(const vector<T>& vec){if(vec.empty())return;print(vec[0]);for(auto it=vec.begin();++it!= vec.end();){putchar(' ');print(*it);}}\nvoid out(){putchar('\\n');}\ntemplate<class T> void out(const T& t){print(t);putchar('\\n');}\ntemplate <class Head, class... Tail> void out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);}\ntemplate<class T> void dprint(const T& a){cerr<<a;}\ntemplate<class T> void dprint(const vector<T>& vec){if(vec.empty())return;cerr<<vec[0];for(auto it=vec.begin();++it!= vec.end();){cerr<<\" \"<<*it;}}\nvoid debug(){cerr<<'\\n';}\ntemplate<class T> void debug(const T& t){dprint(t);cerr<<endl;}\ntemplate <class Head, class... Tail> void debug(const Head& head, const Tail&... tail){dprint(head);cerr<<\" \";debug(tail...);}\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\nll modinv(ll a, ll m) {ll b = m, u = 1, v = 0;while (b) {ll t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;}\nll updivide(ll a,ll b){return (a+b-1)/b;}\ntemplate<class T> void chmax(T &a,const T b){if(b>a)a=b;}\ntemplate<class T> void chmin(T &a,const T b){if(b<a)a=b;}\n\nint main(){\n string s;\n cin>>s;\n int n = s.size();\n ll v2 = stoll(s);\n ll d = intpow(10,n), maxv = 0;\n string t = \"0123456789\", ans;\n do{\n ll v = stoll(t.substr(0,n));\n ll c = min(abs(v - v2),d - abs(v - v2));\n if(c > maxv){\n maxv = c;\n ans = t.substr(0, n);\n }\n }while(next_permutation(all(t)));\n out(ans);\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3444, "score_of_the_acc": -0.1923, "final_rank": 5 }, { "submission_id": "aoj_2728_6699819", "code_snippet": "#include <algorithm>\n#include <cassert>\n#include <climits>\n#include <cmath>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <random>\n#include <complex>\n#include <bitset>\n#include <iomanip>\n#include <memory>\n#include <functional>\n\n#define rep(i, n, s) for (int i = (s); i < int(n); i++)\n#define per(i, n, s) for (int i = (n) - 1; i >= int(s); i--)\n#define MM << \" \" <<\n#define all(x) begin(x), end(x)\n#define rall(x) rbegin(x), rend(x)\n\ntemplate <class T>\nusing MinHeap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T>\nusing MaxHeap = std::priority_queue<T>;\n\nusing ll = long long;\nusing Pii = std::pair<int, int>;\nusing Pll = std::pair<ll, ll>;\nusing Pdd = std::pair<double, double>;\n\ntemplate <class T>\nbool chmin(T &a, const T b) {\n if (b < a) {\n a = b;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T>\nbool chmax(T &a, const T b) {\n if (a < b) {\n a = b;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T>\nvoid vdeb(const std::vector<T> &da) {\n auto n = da.size();\n for (size_t i = 0; i < n; i++) {\n if (i == n - 1)\n std::cout << da[i];\n else\n std::cout << da[i] << \" \";\n }\n std::cout << std::endl;\n}\ntemplate<class T>\nvoid vdeb(const std::vector<std::vector<T>> &da) {\n auto n = da.size();\n for (size_t i = 0; i < n; i++) {\n // std::cout << i << \" : \";\n vdeb(da[i]);\n }\n std::cout << std::endl;\n}\n\nusing namespace std;\n\nint main() {\n string s; cin >> s;\n int n = s.size();\n ll m = 0;\n ll p = 10;\n rep(i,n-1,0) p *= 10;\n for(auto &i : s) m = m * 10 + i - '0';\n string t = \"0123456789\";\n string ans;\n ll score = 0;\n do {\n ll k = 0;\n rep(i,n,0) k = k * 10 + t[i] - '0';\n if(chmax(score, min(abs(m-k), p - abs(m-k)))) {\n ans = t.substr(0, n);\n }\n } while(next_permutation(all(t)));\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3444, "score_of_the_acc": -0.0655, "final_rank": 2 }, { "submission_id": "aoj_2728_6357545", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#ifdef _RUTHEN\n#include \"debug.hpp\"\n#else\n#define show(...) true\n#endif\n\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define ALL(x) begin(x), end(x)\ntemplate <class T> using V = vector<T>;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n string S;\n cin >> S;\n int N = S.size();\n string T = \"\", ans = \"\";\n V<int> used(10, 0);\n ll TEN = 1;\n rep(i, N) TEN *= 10;\n auto rec = [&](auto self, int id) -> int {\n if (id == N) {\n if (ans.size() == 0) {\n ans = T;\n } else {\n ll Tn = stoll(T), Sn = stoll(S), ansn = stoll(ans);\n ll d = min(abs(Sn - Tn), TEN - abs(Sn - Tn));\n ll d2 = min(abs(Sn - ansn), TEN - abs(Sn - ansn));\n if (d > d2 || (d == d2 && ansn > Tn)) ans = T;\n }\n return 0;\n }\n for (int i = 0; i <= 9; i++) {\n if (used[i] == 0) {\n T += '0' + i;\n used[i] = 1;\n self(self, id + 1);\n used[i] = 0;\n T.pop_back();\n }\n }\n return 0;\n };\n rec(rec, 0);\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 3504, "score_of_the_acc": -0.7029, "final_rank": 12 }, { "submission_id": "aoj_2728_6356894", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\n#define rep(i, n) for(ll i = 0; i < (ll)n; i++)\n#define ALL(v) (v).begin(), (v).end()\n\nll N = 0;\nll sz;\nll P = 1;\nll ans = 0;\nll diff = 0;\nset<ll> st;\nvoid dfs(ll C, ll sz) {\n //cout << C << '\\n';\n if(sz == 0) {\n if(diff < min(abs(N-C), P-abs(N-C))) {\n diff = min(abs(N-C), P-abs(N-C));\n ans = C;\n }else if(diff == min(abs(N-C), P-abs(N-C))) {\n if(ans > C) ans = C;\n }\n return;\n }\n for(auto c: st) {\n st.erase(c);\n dfs(C*10+c, sz-1);\n st.insert(c);\n }\n return;\n}\n\nint main() {\n string S; cin >> S;\n ll sz = S.size();\n rep(i, sz) {\n N = N*10+(S[i]-'0');\n }\n rep(i, sz) P *= 10;\n vector<ll> V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};\n do {\n ll tmp = 0;\n rep(i, sz) tmp = tmp*10+V[i];\n if(diff < min(abs(N-tmp), P-abs(N-tmp))) {\n diff = min(abs(N-tmp), P-abs(N-tmp));\n ans = tmp;\n }else if(diff == min(abs(N-tmp), P-abs(N-tmp))) {\n if(ans > tmp) ans = tmp;\n }\n } while(next_permutation(ALL(V)));\n string T = to_string(ans);\n rep(i, sz-T.size()) cout << '0';\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3544, "score_of_the_acc": -0.2452, "final_rank": 6 }, { "submission_id": "aoj_2728_6356888", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\n#define rep(i, n) for(ll i = 0; i < (ll)n; i++)\n#define ALL(v) (v).begin(), (v).end()\n\nll N;\nll sz;\nll P = 1;\nll ans = 0;\nll diff = 0;\nset<ll> st;\nvoid dfs(ll C, ll sz) {\n //cout << C << '\\n';\n if(sz == 0) {\n if(diff < min(abs(N-C), P-abs(N-C))) {\n diff = min(abs(N-C), P-abs(N-C));\n ans = C;\n }else if(diff == min(abs(N-C), P-abs(N-C))) {\n if(ans > C) ans = C;\n }\n return;\n }\n for(auto c: st) {\n st.erase(c);\n dfs(C*10+c, sz-1);\n st.insert(c);\n }\n return;\n}\n\nint main() {\n cin >> N;\n string S = to_string(N);\n ll sz = S.size();\n rep(i, sz) P *= 10;\n vector<ll> V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};\n do {\n ll tmp = 0;\n rep(i, sz) tmp = tmp*10+V[i];\n if(diff < min(abs(N-tmp), P-abs(N-tmp))) {\n diff = min(abs(N-tmp), P-abs(N-tmp));\n ans = tmp;\n }else if(diff == min(abs(N-tmp), P-abs(N-tmp))) {\n if(ans > tmp) ans = tmp;\n }\n } while(next_permutation(ALL(V)));\n string T = to_string(ans);\n rep(i, sz-T.size()) cout << '0';\n cout << ans << endl;\n}", "accuracy": 0.6065573770491803, "time_ms": 30, "memory_kb": 3508, "score_of_the_acc": -0.1755, "final_rank": 16 }, { "submission_id": "aoj_2728_6356860", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define inc(i, a, b) for (int i = (a); i <= (b); ++i)\n#define dec(i, a, b) for (int i = (a); i >= (b); --i)\n\nint main() {\n vector<ll> p = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};\n string s;\n ll res = 1e18, cost = -1e18;\n cin >> s;\n ll n = stoll(s), k = s.size(), r = 1;\n rep(i, k) r *= 10;\n do {\n ll m = 0;\n rep(i, k) m = m * 10 + p[i];\n ll c = min(llabs(n - m), r - llabs(n - m));\n if (c > cost) {\n cost = c;\n res = m;\n } else if (c == cost) {\n res = min(res, m);\n }\n } while (next_permutation(p.begin(), p.end()));\n cout << setw(k) << setfill('0') << res << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3432, "score_of_the_acc": -0.0141, "final_rank": 1 }, { "submission_id": "aoj_2728_6356856", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define inc(i, a, b) for (int i = (a); i <= (b); ++i)\n#define dec(i, a, b) for (int i = (a); i >= (b); --i)\n\nint main() {\n vector<ll> p = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};\n ll n, res = 1e18, cost = -1e18;\n cin >> n;\n ll k = to_string(n).size(), r = 1;\n rep(i, k) r *= 10;\n do {\n ll m = 0;\n rep(i, k) m = m * 10 + p[i];\n ll c = min(llabs(n - m), r - llabs(n - m));\n if (c > cost) {\n cost = c;\n res = m;\n } else if (c == cost) {\n res = min(res, m);\n }\n } while (next_permutation(p.begin(), p.end()));\n cout << setw(k) << setfill('0') << res << endl;\n}", "accuracy": 0.6065573770491803, "time_ms": 20, "memory_kb": 3500, "score_of_the_acc": -0.1459, "final_rank": 15 }, { "submission_id": "aoj_2728_6356796", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#ifdef _RUTHEN\n#include \"debug.hpp\"\n#else\n#define show(...) true\n#endif\n\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define ALL(x) begin(x), end(x)\ntemplate <class T> using V = vector<T>;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n string S;\n cin >> S;\n int N = S.size();\n string T = \"\", ans = \"\";\n V<int> used(10, 0);\n ll TEN = 1;\n rep(i, N) TEN *= 10;\n show(TEN);\n auto rec = [&](auto self, int id) -> int {\n if (id == N) {\n if (ans.size() == 0) {\n ans = T;\n } else {\n ll Tn = stoll(T), Sn = stoll(S), ansn = stoll(ans);\n ll d = min(abs(Sn - Tn), TEN - abs(Sn - Tn));\n ll d2 = min(abs(Sn - ansn), TEN - abs(Sn - ansn));\n if (d > d2 || (d == d2 && ansn > Tn)) ans = T;\n // show(T, Tn, ansn, d, d2);\n }\n return 0;\n }\n for (int i = 0; i <= 9; i++) {\n if (used[i] == 0) {\n T += '0' + i;\n used[i] = 1;\n self(self, id + 1);\n used[i] = 0;\n T.pop_back();\n }\n }\n return 0;\n };\n rec(rec, 0);\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 3472, "score_of_the_acc": -0.6409, "final_rank": 11 }, { "submission_id": "aoj_2728_6030503", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i = 0; i < (n); i++)\nusing namespace std;\ntypedef long long ll;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n \n string s; cin >> s;\n int N = s.size();\n\n auto f = [&](string t) {\n ll res = 0;\n for(char c : t) res = res * 10 + c - '0';\n return res;\n };\n\n ll p10 = 1; for(int i = 0; i < N; i++) p10 *= 10;\n string ans = \"\";\n for(char c = '0'; c <= '9'; c++) {\n ans += c; if(ans.size() == N) break;\n }\n string t = \"\";\n set<char> se;\n ll MAX = -1;\n function<void(void)> dfs = [&](void) -> void {\n if(t.size() == N) {\n ll a = f(s), b = f(t);\n ll diff = min(abs(a - b), p10 - abs(a - b));\n if(diff > MAX) {\n MAX = diff;\n ans = t;\n } else if(diff == MAX) {\n if(b < f(ans)) ans = t;\n }\n } else {\n for(char c = '0'; c <= '9'; c++) {\n if(!se.count(c)) {\n t.push_back(c); se.insert(c);\n dfs();\n t.pop_back(); se.erase(c);\n }\n }\n }\n }; dfs();\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 720, "memory_kb": 3468, "score_of_the_acc": -1.0698, "final_rank": 14 } ]
aoj_2722_cpp
Problem F: Marching Course Since members of Kitafuji High School Brass Band Club succeeded in convincing their stern coach of their playing skills, they will be able to participate in Moon Light Festival as a marching band. This festival is a prelude in terms of appealing their presence for the coming domestic contest. Hence, they want to attract a festival audience by their performance. Although this festival restricts performance time up to $P$ minutes, each team can freely determine their performance course from a provided area. The provided area consists of $N$ checkpoints, numbered 1 through $N$, and $M$ bidirectional roads connecting two checkpoints. Kitafuji Brass Band already has the information about each road: its length and the expected number of people on its roadside. Each team must start at the checkpoint 1, and return back to the checkpoint 1 in $P$ minutes. In order to show the performance ability of Kitafuji Brass Band to a festival audience, their stern coach would like to determine their performance course so that many people listen their march as long as possible. The coach uses "impression degree" to determine their best course. If they play $m$ minutes on the road with length $d$ and the expected number $v$ of people, then the impression degree will be $m \times v/d$. The impression degree of a course is the sum of impression degree of their performance on the course. Marching bands must move at a constant speed during marching: 1 unit length per 1 minute. On the other hand, they can turn in the opposite direction at any time, any place including a point on a road. The impression degree is accumulated even if they pass the same interval two or more times. Your task is to write a program to determine a course with the maximum impression degree in order to show the performance ability of Kitafuji Brass Band to an audience as much as possible. Input The input is formatted as follows. $N$ $M$ $P$ $s_1$ $t_1$ $d_1$ $v_1$ : : : $s_M$ $t_M$ $d_M$ $v_M$ The first line contains three integers $N$, $M$, and $P$: the number of checkpoints $N$ ($2 \leq N \leq 200$), the number of roads $M$ ($N - 1 \leq M \leq N(N - 1)/2$), and the performance time $P$ ($1 \leq P \leq 1,000$). The following $M$ lines represent the information about roads. The $i$-th line of them contains four integers $s_i$, $t_i$, $d_i$, and $v_i$: the $i$-th road bidirectionally connects between checkpoints $s_i$ and $t_i$ ($1 \leq s_i, t_i \leq N, s_i \ne t_i$) with length $d_i$ ($1 \leq d_i \leq 1,000$) and the expected number $v_i$ ($1 \leq v_i \leq 1,000$) of people. You can assume that any two checkpoints are directly or indirectly connected with one or more roads. You can also assume that there are no pair of roads having the same pair of endpoints. Output Output the maximum impression degree of a course for a $P$-minute performance. The absolute error should be less than $10^{-4}$. Sample Input 3 3 4 1 2 1 1 2 3 2 4 3 1 1 1 Output for the Sample Input 6 Sample I ...(truncated)
[ { "submission_id": "aoj_2722_10853940", "code_snippet": "#include<bits/stdc++.h>\n\n#define clr(x,y) memset((x),(y),sizeof(x))\n\nusing namespace std;\ntypedef long long LL;\n\nconst int INF = 1000000000;\nconst int maxn = 200 + 10;\n\nstruct Edge {\n int to,dist,v;\n};\n\n\nvector <Edge> G[maxn+5];\ndouble dp[maxn+5][1005];\nbool vis[maxn+5][1005];\n\ndouble DP(int x,int time)\n{\n if (vis[x][time]) return dp[x][time];\n\n double& ans=dp[x][time];\n vis[x][time]=1;\n ans=0;\n\n for (int i=0;i<G[x].size();++i)\n {\n Edge& e=G[x][i];\n ans=max(ans,time*1.0*e.v/e.dist);\n if (time>e.dist)\n {\n ans=max(ans,DP(e.to,time-e.dist)+e.v);\n }\n }\n return ans;\n}\n\nint main(void)\n{\n\t#ifdef ex\n\tfreopen (\"../in.txt\",\"r\",stdin);\n\t//freopen (\"../out.txt\",\"w\",stdout);\n\t#endif\n\n\tint n,m,p;\n\tscanf(\"%d%d%d\",&n,&m,&p);\n\n\tint s,t,d,v;\n\tfor (int i=1;i<=m;++i)\n {\n scanf(\"%d%d%d%d\",&s,&t,&d,&v);\n d*=2;\n v*=2;\n G[s].push_back((Edge){t,d,v});\n G[t].push_back((Edge){s,d,v});\n }\n\n clr(vis,0);\n double ans=DP(1,p);\n printf(\"%.13f\\n\",ans);\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 6052, "score_of_the_acc": -0.5705, "final_rank": 10 }, { "submission_id": "aoj_2722_10697700", "code_snippet": "// https://vjudge.ppsucdtt.cn/problem/Aizu-2722\n// QwQ\n#include<iostream>\n#include<cstdio>\n#include<algorithm>\n#include<cstring>\n#include<queue>\n\nusing namespace std;\n\nconst int N=210,M=1010;\n\nint n,m,k;\ndouble f[N][M];\ndouble w[N];\n\nstruct Data{\n\tint a,b;\n\tbool operator<(const Data W)const{\n\t\treturn b>W.b;\n\t}\n}d[N][N];\npriority_queue<Data> q;\n\nint main(){\n\tscanf(\"%d%d%d\",&n,&m,&k);\n\tdouble res=0;\n\t\n\tfor(int i=1;i<=n;i++)\n\t\tfor(int j=0;j<=k;j++)\n\t\t\tf[i][j]=-1;\n\tfor(int i=1;i<=n;++i)\n\t\tfor(int j=1;j<=n;++j)\n\t\t\td[i][j].a=1;\n\n\tfor(int i=0;i<m;++i){\n\t\tint a,b,c,_d;\n\t\tscanf(\"%d%d%d%d\",&a,&b,&c,&_d);\n\t\tc*=2;\n\t\td[a][b]={c,_d};\n\t\td[a][b]={c,_d};\n\t}\n\n\tfor(int i=1;i<=n;++i){\n\t\tdouble dis=0;\n\t\tfor(int j=1;j<=n;++j)\n\t\t\tdis=max(dis,d[i][j].b*1.0/d[i][j].a);\n\t\tw[i]=dis;\n\t}\n\n\tq.push({1,0});\n\tf[1][0]=0;\n\tres=w[1]*k;\n// \twhile(q.size()){\n// \t\tData t=q.top();\n// \t\tq.pop();\n// \t\tres=mad(res,f[t.a][t.b]+(k-t.b)*w[t.a]);\n// \t\tfor(int i=1;i<=n;++i){\n// \t\t\tif(d[t.a][i].b == 0) continue;\n// \t\t\tif(t.b+d[t.a][i].a <= k)\n// \t\t\t\tif(f[t.a][t.b]+d[t.a][i].b > f[i][t.b+d[t.a][i].a]){\n// \t\t\t\t\tif(f[i][t.b+d[t.a][i].a] == -1) \n// \t\t\t\t\t\tq.push({i,t.b+d[t.a][i].a});\n// \t\t\t\t\tf[i][t.b+d[t.a][i].a]=f[t.a][t.b]+d[t.a][i].b;\n// \t\t\t\t}\n// \t\t}\n// \t}\n\twhile(!q.empty()){\n\t\tData fr=q.top();\n\t\tq.pop();\n\t\tres=max(res,f[fr.a][fr.b]+(k-fr.b)*w[fr.a]);\n\t\tfor(int i=1;i<=n;++i){\n\t\t\tif(d[fr.a][i].b==0)\n\t\t\t\tcontinue;\n\t\t\tif(fr.b+d[fr.a][i].a<=k){\n\t\t\t\tif(f[fr.a][fr.b]+d[fr.a][i].b>f[i][fr.b+d[fr.a][i].a]){ //剪枝啊\n\t\t\t\t\tif(f[i][fr.b+d[fr.a][i].a]==-1) //剪枝啊\n\t\t\t\t\t\tq.push({i,fr.b+d[fr.a][i].a});\n\t\t\t\t\tf[i][fr.b+d[fr.a][i].a]=f[fr.a][fr.b]+d[fr.a][i].b;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%.7lf\",res*2);\n\treturn 0;\n}", "accuracy": 0.1346153846153846, "time_ms": 10, "memory_kb": 5188, "score_of_the_acc": -0.2037, "final_rank": 20 }, { "submission_id": "aoj_2722_10236610", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n // Step 1. Input\n int N, M, P; cin >> N >> M >> P;\n vector<int> S(M, 0);\n vector<int> T(M, 0);\n vector<int> D(M, 0);\n vector<int> V(M, 0);\n for (int i = 0; i < M; i++) cin >> S[i] >> T[i] >> D[i] >> V[i];\n\n // Step 2. Prepare\n vector<double> maxv(N + 1, 0.0);\n for (int i = 0; i < M; i++) maxv[S[i]] = max(maxv[S[i]], 1.0 * V[i] / D[i]);\n for (int i = 0; i < M; i++) maxv[T[i]] = max(maxv[T[i]], 1.0 * V[i] / D[i]);\n\n // Step 3. Dynamic Programming\n vector<vector<double>> dp(P + 1, vector<double>(N + 1, -1.0e9));\n dp[0][1] = 0.0;\n for (int t = 0; t < P; t++) {\n for (int i = 1; i <= N; i++) dp[t + 1][i] = max(dp[t + 1][i], dp[t][i] + maxv[i]);\n for (int i = 0; i < M; i++) {\n if (t + D[i] > P) continue;\n dp[t + D[i]][T[i]] = max(dp[t + D[i]][T[i]], dp[t][S[i]] + V[i]);\n dp[t + D[i]][S[i]] = max(dp[t + D[i]][S[i]], dp[t][T[i]] + V[i]);\n }\n }\n\n // Step 4. Output\n printf(\"%.12lf\\n\", dp[P][1]);\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 5456, "score_of_the_acc": -0.4253, "final_rank": 7 }, { "submission_id": "aoj_2722_10210756", "code_snippet": "// AOJ #2722\n// Marching Course 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n \nconst double NEG_INF = -1e12;\n \nstruct Edge { int to, d, v; };\n \nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n \n int N, M, P;\n cin >> N >> M >> P;\n \n vector<vector<Edge>> graph(N+1);\n vector<double> stall(N+1, 0.0);\n \n for (int i = 0; i < M; i++){\n int s, t, d, v;\n cin >> s >> t >> d >> v;\n graph[s].push_back({t, d, v});\n graph[t].push_back({s, d, v});\n double rate = (double)v / d;\n stall[s] = max(stall[s], rate);\n stall[t] = max(stall[t], rate);\n }\n \n vector<vector<double>> dp(N+1, vector<double>(P+1, NEG_INF));\n dp[1][0] = 0;\n \n for (int t = 0; t <= P; t++){\n for (int u = 1; u <= N; u++){\n if(dp[u][t] == NEG_INF) continue;\n for (auto &edge : graph[u]){\n int nt = t + edge.d;\n if(nt <= P){\n dp[edge.to][nt] = max(dp[edge.to][nt], dp[u][t] + edge.v);\n }\n }\n }\n }\n \n double ans = dp[1][P];\n \n for (int i = 1; i <= N; i++){\n vector<double> f(P+1, NEG_INF);\n for (int t = 0; t <= P; t++){\n if(dp[i][t] > NEG_INF/2){\n f[t] = dp[i][t] - t * stall[i];\n }\n }\n vector<double> best(P+1, NEG_INF);\n best[0] = f[0];\n for (int t = 1; t <= P; t++){\n best[t] = max(best[t-1], f[t]);\n }\n double bestCandidate = NEG_INF;\n for (int t1 = 0; t1 <= P; t1++){\n if(f[t1] == NEG_INF) continue;\n double cand = f[t1] + best[P - t1];\n bestCandidate = max(bestCandidate, cand);\n }\n if(bestCandidate > NEG_INF/2)\n ans = max(ans, bestCandidate + P * stall[i]);\n }\n cout << fixed << setprecision(10) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 5316, "score_of_the_acc": -0.4849, "final_rank": 9 }, { "submission_id": "aoj_2722_10210748", "code_snippet": "// AOJ #2722\n// Marching Course 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n \nconst double NEG_INF = -1e12;\n \nstruct Edge { int to, d, v; };\n \nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n \n int N, M, P;\n cin >> N >> M >> P;\n \n vector<vector<Edge>> graph(N+1);\n \n vector<double> stall(N+1, 0.0);\n for (int i = 0; i < M; i++){\n int s, t, d, v;\n cin >> s >> t >> d >> v;\n graph[s].push_back({t, d, v});\n graph[t].push_back({s, d, v});\n double rate = (double)v / d;\n stall[s] = max(stall[s], rate);\n stall[t] = max(stall[t], rate);\n }\n \n vector<vector<double>> dp(N+1, vector<double>(P+1, NEG_INF));\n dp[1][0] = 0;\n \n for (int t = 0; t <= P; t++){\n for (int u = 1; u <= N; u++){\n if(dp[u][t] == NEG_INF) continue;\n for (auto &edge : graph[u]){\n int nt = t + edge.d;\n if(nt <= P){\n dp[edge.to][nt] = max(dp[edge.to][nt], dp[u][t] + edge.v);\n }\n }\n }\n }\n \n vector<vector<pair<int,double>>> valid(N+1);\n for (int i = 1; i <= N; i++){\n for (int t = 0; t <= P; t++){\n if(dp[i][t] > NEG_INF/2) {\n valid[i].push_back({t, dp[i][t]});\n }\n }\n }\n \n double ans = NEG_INF;\n ans = max(ans, dp[1][P]);\n \n for (int i = 1; i <= N; i++){\n if(valid[i].empty()) continue;\n int sz = valid[i].size();\n for (int a = 0; a < sz; a++){\n for (int b = 0; b < sz; b++){\n int timeUsed = valid[i][a].first + valid[i][b].first;\n if(timeUsed <= P){\n double candidate = valid[i][a].second + valid[i][b].second;\n candidate += (P - timeUsed) * stall[i];\n ans = max(ans, candidate);\n }\n }\n }\n }\n cout << fixed << setprecision(10) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 8456, "score_of_the_acc": -1.5938, "final_rank": 18 }, { "submission_id": "aoj_2722_9956919", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nstruct Edge {\n int T, D, V;\n};\n\nint main() {\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n int N, M, P;\n cin >> N >> M >> P;\n int MAXS = P/2;\n vector<vector<Edge>> G(N);\n rep(i,0,M) {\n int s,t,d,v;\n cin >> s >> t >> d >> v;\n s--, t--;\n G[s].push_back({t,d,v});\n G[t].push_back({s,d,v});\n }\n vector<vector<ll>> DP(N, vector<ll>(MAXS+1, -INF));\n DP[0][0] = 0;\n rep(j,0,MAXS+1) {\n rep(i,0,N) {\n if (DP[i][j] < 0) continue;\n for (Edge E : G[i]) {\n if (j + E.D <= MAXS) chmax(DP[E.T][j+E.D], DP[i][j] + E.V);\n }\n }\n }\n double ANS = 0;\n rep(i,0,N) {\n double X = 0.0;\n for (Edge E : G[i]) {\n chmax(X, (double)E.V / (double)E.D);\n }\n rep(j,0,MAXS+1) {\n if (DP[i][j] < 0) continue;\n chmax(ANS, (double)DP[i][j] * 2 + X * (double)(P-j*2));\n }\n }\n printf(\"%.12f\\n\", ANS);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4828, "score_of_the_acc": -0.241, "final_rank": 3 }, { "submission_id": "aoj_2722_8026625", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n#define rng(i, l, r) for(int i = int(l); i < int(r); i++)\n#define rep(i, n) rng(i, 0, n)\n#define sz(v) int(v.size())\n#define foa(s, v) for(auto& s : v)\n#define all(v) v.begin(), v.end()\n\ntemplate <class T>\nbool chmax(T& a, T b) {\n\treturn a < b ? a = b, 1 : 0;\n}\n\ntemplate <class T>\nbool chmin(T& a, T b) {\n\treturn a > b ? a = b, 1 : 0;\n}\n\nint n;\nvoid solve() {\n\tint m, p;\n\tcin >> m >> p;\n\tvector<vector<tuple<int, int, ll>>> g(n); // adj, time, value;\n\tusing ld = long double;\n\tvector<ld> waiting(n, 0);\n\n\tauto add_edge = [&](int s, int t, int len, ll value) -> void {\n\t\tg[s].emplace_back(t, len, value);\n\t\tchmax(waiting[s], ld(value) / ld(len));\n\n\t\tswap(s, t);\n\n\t\tg[s].emplace_back(t, len, value);\n\t\tchmax(waiting[s], ld(value) / ld(len));\n\t};\n\n\tconstexpr ll INF = 1e15;\n\n\trep(j, m) {\n\t\tint s, t;\n\t\tcin >> s >> t;\n\t\ts--;\n\t\tt--;\n\t\tint time;\n\t\tll val;\n\t\tcin >> time >> val;\n\t\tadd_edge(s, t, time, val);\n\t}\n\n\tconst int half = p / 2;\n\tvector<vector<ll>> dp((half + 1), vector<ll>((n), -INF));\n\n\tconstexpr int start = 0;\n\tdp[0][start] = 0;\n\n\tld ans = 0.;\n\n\trep(consumed, half + 1) rep(ver, n) {\n\t\tconst int remain_time = p - consumed * 2;\n\t\tll res = dp[consumed][ver];\n\n\t\tfor(auto [nxt, len, val] : g[ver]) {\n\t\t\tint nxt_c = consumed + len;\n\t\t\tif(nxt_c > half) continue;\n\t\t\tchmax(dp[nxt_c][nxt], res + val);\n\t\t}\n\n\t\tchmax(ans, ld(res) * 2 + waiting[ver] * ld(remain_time));\n\t}\n\n\tcout << ans << endl;\n}\nint main() {\n\tcout << fixed << setprecision(15);\n\twhile(cin >> n && n) solve();\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 5080, "score_of_the_acc": -0.3649, "final_rank": 5 }, { "submission_id": "aoj_2722_6002767", "code_snippet": "//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000003;;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 2;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nstruct edge {\n\tint to, d, v;\n};\n\nld dp[200][1001];\n\nvoid solve() {\n\tint n, m, p; cin >> n >> m >> p;\n\tvector<vector<edge>> G(n);\n\trep(i, m) {\n\t\tint a, b, d, v; cin >> a >> b >> d >> v; a--; b--;\n\t\tG[a].push_back({ b,d,v });\n\t\tG[b].push_back({ a,d,v });\n\t}\n\trep(i, n)rep(j, p + 1) {\n\t\tdp[i][j] = -INF;\n\t}\n\tdp[0][0] = 0;\n\trep(j, p) {\n\t\trep(i, n) {\n\t\t\tld ma = 0;\n\t\t\tfor (edge e : G[i]) {\n\t\t\t\tma = max(ma, e.v / (ld)e.d);\n\t\t\t\tint ni = e.to;\n\t\t\t\tint nj = j + e.d;\n\t\t\t\tif (nj > p)continue;\n\t\t\t\tdp[ni][nj] = max(dp[ni][nj], dp[i][j] + e.v);\n\t\t\t}\n\t\t\t//if (i == 0)cout << ma << \"\\n\";\n\t\t\tdp[i][j + 1] = max(dp[i][j + 1], dp[i][j] + ma);\n\t\t\t/*for (int nj = j + 1; nj <= p; nj++) {\n\t\t\t\tdp[i][nj] = max(dp[i][nj], dp[i][j] + (nj - j) * ma);\n\t\t\t}*/\n\t\t}\n\t}\n\tcout << dp[0][p] << \"\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(8);\n\t//init_f();\n\t//init();\n\t//int t; cin >> t; rep(i, t)\n\t//while(cin>>n>>q,n)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 7172, "score_of_the_acc": -1.1559, "final_rank": 15 }, { "submission_id": "aoj_2722_5990497", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=1000000007,MAX=205,INF=1<<29;\n\nint d[MAX][MAX],v[MAX][MAX];\nint dp[1005][MAX];\ndouble ma[MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N,M,P;cin>>N>>M>>P;\n for(int i=0;i<M;i++){\n int a,b,x,y;cin>>a>>b>>x>>y;\n a--;b--;\n d[a][b]=x;\n d[b][a]=x;\n v[a][b]=y;\n v[b][a]=y;\n }\n \n for(int i=0;i<N;i++){\n for(int j=0;j<N;j++){\n if(d[i][j]) chmax(ma[i],double(v[i][j])/d[i][j]);\n }\n }\n \n for(int i=0;i<=P;i++) for(int j=0;j<N;j++) dp[i][j]=-INF;\n dp[0][0]=0;\n \n double ans=0;\n \n for(int t=0;t<=P;t++){\n for(int i=0;i<N;i++){\n for(int j=0;j<N;j++){\n if(d[i][j]==0) continue;\n if(t+d[i][j]<=P) chmax(dp[t+d[i][j]][j],dp[t][i]+v[i][j]);\n }\n if(t*2<=P) chmax(ans,dp[t][i]*2+ma[i]*(P-t*2));\n }\n }\n \n cout<<fixed<<setprecision(25)<<ans<<endl;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 4616, "score_of_the_acc": -0.6581, "final_rank": 12 }, { "submission_id": "aoj_2722_5990491", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=1000000007,MAX=205,INF=1<<29;\n\nint d[MAX][MAX],v[MAX][MAX];\nint dp[1005][MAX];\ndouble ma[MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N,M,P;cin>>N>>M>>P;\n for(int i=0;i<M;i++){\n int a,b,x,y;cin>>a>>b>>x>>y;\n a--;b--;\n d[a][b]=x;\n v[a][b]=y;\n }\n \n for(int i=0;i<N;i++){\n for(int j=0;j<N;j++){\n if(d[i][j]) chmax(ma[i],double(v[i][j])/d[i][j]);\n }\n }\n \n for(int i=0;i<=P;i++) for(int j=0;j<N;j++) dp[i][j]=-INF;\n dp[0][0]=0;\n \n double ans=0;\n \n for(int t=0;t<=P;t++){\n for(int i=0;i<N;i++){\n for(int j=0;j<N;j++){\n if(d[i][j]==0) continue;\n if(t+d[i][j]<=P) chmax(dp[t+d[i][j]][j],dp[t][i]+v[i][j]);\n }\n if(t*2<=P) chmax(ans,dp[t][i]*2+ma[i]*(P-t*2));\n }\n }\n \n cout<<fixed<<setprecision(25)<<ans<<endl;\n}", "accuracy": 0.1346153846153846, "time_ms": 40, "memory_kb": 4352, "score_of_the_acc": -0.0938, "final_rank": 19 }, { "submission_id": "aoj_2722_5648632", "code_snippet": "// https://vjudge.ppsucdtt.cn/problem/Aizu-2722\n// QwQ\n#include<iostream>\n#include<cstdio>\n#include<algorithm>\n#include<cstring>\n#include<queue>\n\nusing namespace std;\n\nconst int N=210,M=1010;\n\nint n,m,k;\ndouble f[N][M];\ndouble w[N];\n\nstruct Data{\n\tint a,b;\n\tbool operator<(const Data W)const{\n\t\treturn b>W.b;\n\t}\n}d[N][N];\npriority_queue<Data> q;\n\nint main(){\n\tscanf(\"%d%d%d\",&n,&m,&k);\n\tdouble res=0;\n\t\n\tfor(int i=1;i<=n;i++)\n\t\tfor(int j=0;j<=k;j++)\n\t\t\tf[i][j]=-1; \n\tfor(int i=1;i<=n;++i)\n\t\tfor(int j=1;j<=n;++j)\t\n\t\t\td[i][j].a=1;\n\tfor(int i=0;i<m;++i){\n\t int a,b,c,_d;\n\t scanf(\"%d%d%d%d\",&a,&b,&c,&_d);\n\t\tc*=2;\n\t\td[a][b]={c,_d};\n\t\td[b][a]={c,_d};\n\t} \n\n\tfor(int i=1;i<=n;++i){\n\t\tdouble dis=0;\n\t\tfor(int j=1;j<=n;++j)\n\t\t\tdis=max(dis,d[i][j].b*1.0/d[i][j].a);\n\t\tw[i]=dis;\n\t}\n\n\tq.push({1,0});\n\tf[1][0]=0;\n\tres=w[1]*k;\n\twhile(q.size()){\n\t\tData t=q.top();\n\t\tq.pop();\n\t\tres=max(res,f[t.a][t.b]+(k-t.b)*w[t.a]);\n\t\tfor(int i=1;i<=n;++i){\n\t\t\tif(d[t.a][i].b == 0) continue;\n\t\t\tif(t.b+d[t.a][i].a <= k)\n\t\t\t\tif(f[t.a][t.b]+d[t.a][i].b > f[i][t.b+d[t.a][i].a]){\n\t\t\t\t\tif(f[i][t.b+d[t.a][i].a] == -1) \n\t\t\t\t\t\tq.push({i,t.b+d[t.a][i].a});\n\t\t\t\t\tf[i][t.b+d[t.a][i].a]=f[t.a][t.b]+d[t.a][i].b;\n\t\t\t\t}\n\t\t}\n\t}\n\n\tprintf(\"%.7lf\",res*2);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5812, "score_of_the_acc": -0.5745, "final_rank": 11 }, { "submission_id": "aoj_2722_5647596", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst double INF = 10000000;\nint main(){\n cout << fixed << setprecision(20);\n int N, M, P;\n cin >> N >> M >> P;\n vector<vector<tuple<int, int, int>>> E(N);\n for (int i = 0; i < M; i++){\n int s, t, d, v;\n cin >> s >> t >> d >> v;\n s--;\n t--;\n E[s].push_back(make_tuple(d, v, t));\n E[t].push_back(make_tuple(d, v, s));\n }\n vector<vector<int>> dp(P + 1, vector<int>(N, -INF));\n dp[0][0] = 0;\n for (int i = 0; i < P; i++){\n for (int j = 0; j < N; j++){\n for (auto e : E[j]){\n int d = get<0>(e);\n int c = get<1>(e);\n int w = get<2>(e);\n if (i + d <= P){\n dp[i + d][w] = max(dp[i + d][w], dp[i][j] + c);\n }\n }\n }\n }\n double ans = 0;\n for (int i = 0; i < N; i++){\n double p = 0;\n for (auto e : E[i]){\n p = max(p, (double) get<1>(e) / get<0>(e));\n }\n vector<double> A(P + 1);\n for (int j = 0; j <= P; j++){\n A[j] = dp[j][i] - p * j;\n }\n double mx = -INF;\n for (int j = 0; j <= P; j++){\n mx = max(mx, A[j]);\n ans = max(ans, A[P - j] + mx + p * P);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 4968, "score_of_the_acc": -0.4626, "final_rank": 8 }, { "submission_id": "aoj_2722_5251261", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <tuple>\n\nusing namespace std;\nusing ldouble = long double;\n\nconstexpr int INF = 1 << 30;\n\nvoid solve() {\n int n, m, p;\n cin >> n >> m >> p;\n\n vector<vector<tuple<int, int, int>>> graph(n);\n while (m--) {\n int u, v, d, c;\n cin >> u >> v >> d >> c;\n --u, --v;\n\n graph[u].emplace_back(v, d, c);\n graph[v].emplace_back(u, d, c);\n }\n\n auto dp = vector(n, vector(p + 1, -INF));\n dp[0][0] = 0;\n for (int x = 0; x < p; ++x) {\n for (int v = 0; v < n; ++v) {\n for (auto [u, d, c] : graph[v]) {\n if (x + d <= p) {\n dp[u][x + d] = max(dp[u][x + d], dp[v][x] + c);\n }\n }\n }\n }\n\n ldouble ans = 0;\n for (int v = 0; v < n; ++v) {\n ldouble pmax = 0;\n for (auto [u, d, c] : graph[v]) {\n pmax = max(pmax, ldouble(c) / d);\n }\n\n for (int x = 0; x * 2 <= p; ++x) {\n ans = max(ans, dp[v][x] * 2 + pmax * (p - x * 2));\n }\n }\n\n cout << ans << \"\\n\";\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 4672, "score_of_the_acc": -0.3592, "final_rank": 4 }, { "submission_id": "aoj_2722_4762674", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\nconstexpr long long int MOD = 1000000007;\n//constexpr int MOD = 1000000007;\n//constexpr int MOD = 998244353;\n//constexpr long long int MOD = 998244353;\nconstexpr double EPS = 1e-12;\n\n//int N, M, K, T, H, W, L, R;\nlong long int N, M, K, T, H, W, L, R;\n\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tcin >> N >> M >> K;\n\tvector<vector<long double>>dp(N, vector<long double>(K + 1, -MOD));\n\tdp[0][0] = 0;\n\tvector<vector<int>>length(N, vector<int>(N));\n\tvector<vector<int>>gain(N, vector<int>(N));\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> L >> R >> H >> W;\n\t\tL--, R--;\n\t\tlength[L][R] = H;\n\t\tlength[R][L] = H;\n\t\tgain[R][L] = W;\n\t\tgain[L][R] = W;\n\t}\n\tvector<long double>stay(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tif (length[i][j]) {\n\t\t\t\tstay[i] = max(stay[i], (long double)1 * gain[i][j] / length[i][j]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i < K; i++) {\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tdp[j][i + 1] = max(dp[j][i + 1], dp[j][i] + stay[j]);\n\t\t\tfor (int k = 0; k < N; k++) {\n\t\t\t\tif (length[j][k] && i + length[j][k] <= K) {\n\t\t\t\t\tdp[k][i + length[j][k]] = max(dp[k][i + length[j][k]], dp[j][i] + gain[j][k]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << setprecision(20) << dp[0].back() << endl;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 6404, "score_of_the_acc": -1.0625, "final_rank": 14 }, { "submission_id": "aoj_2722_3015070", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 200\n\nstruct Edge{\n\tEdge(int arg_to,double arg_length,double arg_people,double arg_value){\n\t\tto = arg_to;\n\t\tlength = arg_length;\n\t\tpeople = arg_people;\n\t\tvalue = arg_value;\n\t}\n\tint to;\n\tdouble length,people,value;\n};\n\nstruct Info{\n\tInfo(int arg_node_id,double arg_sum_cost){\n\n\t\tnode_id = arg_node_id;\n\t\tsum_cost = arg_sum_cost;\n\t}\n\tbool operator<(const struct Info &arg) const{\n\t\treturn sum_cost > arg.sum_cost;\n\t}\n\tint node_id;\n\tdouble sum_cost;\n};\n\nint V,E;\ndouble P,min_cost[NUM];\nvector<Edge> G[NUM];\n\nint main(){\n\n\tscanf(\"%d %d %lf\",&V,&E,&P);\n\n\tint from,to;\n\tdouble length,people;\n\n\tfor(int loop = 0; loop < E; loop++){\n\n\t\tscanf(\"%d %d %lf %lf\",&from,&to,&length,&people);\n\t\tfrom--;\n\t\tto--;\n\t\tG[from].push_back(Edge(to,length,people,people/length));\n\t\tG[to].push_back(Edge(from,length,people,people/length));\n\t}\n\n\tdouble ans = 0,base_value,base_sum;\n\tint start = 0;\n\n\tpriority_queue<Info> Q;\n\tint next_node;\n\tdouble next_cost,tmp_length,tmp_people;\n\n\tfor(int base_node = 0; base_node < V; base_node++){\n\n\t\tbase_value = 0;\n\t\tfor(int i = 0; i < G[base_node].size(); i++){\n\t\t\tbase_value = max(base_value,G[base_node][i].value);\n\t\t}\n\n\t\tbase_sum = base_value*(P/2);\n\n\t\tfor(int i = 0; i < V; i++)min_cost[i] = (double)BIG_NUM;\n\t\tmin_cost[start] = 0;\n\n\t\twhile(!Q.empty())Q.pop();\n\n\t\tQ.push(Info(start,0));\n\n\t\twhile(!Q.empty()){\n\n\t\t\tif(Q.top().node_id == base_node){\n\t\t\t\tbreak;\n\t\t\t}else if(Q.top().sum_cost > min_cost[Q.top().node_id]){\n\t\t\t\tQ.pop();\n\t\t\t}else{\n\n\t\t\t\tfor(int i = 0; i < G[Q.top().node_id].size(); i++){\n\n\t\t\t\t\tif(G[Q.top().node_id][i].value >= base_value)continue;\n\n\t\t\t\t\tnext_node = G[Q.top().node_id][i].to;\n\t\t\t\t\ttmp_length = G[Q.top().node_id][i].length;\n\t\t\t\t\ttmp_people = G[Q.top().node_id][i].people;\n\t\t\t\t\tnext_cost = Q.top().sum_cost+(base_value*tmp_length-tmp_people);\n\n\t\t\t\t\tif(min_cost[next_node] > next_cost){\n\n\t\t\t\t\t\tmin_cost[next_node] = next_cost;\n\t\t\t\t\t\tQ.push(Info(next_node,next_cost));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tQ.pop();\n\t\t\t}\n\t\t}\n\t\tans = max(ans,base_sum-min_cost[base_node]);\n\t}\n\n\tprintf(\"%.10lf\\n\",2*ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4776, "score_of_the_acc": -0.1658, "final_rank": 1 }, { "submission_id": "aoj_2722_2949716", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nusing pi = pair<int,int>;\n\nconst int N = 200;\nint D[N][N], V[N][N];\n\ndouble max_r[N];\n\nconst int P = 1010;\ndouble dp[N][P][2];\n\nint main(){\n memset(D,-1,sizeof(D));\n memset(V,-1,sizeof(V));\n\n int n,m,p;\n scanf(\" %d %d %d\", &n, &m, &p);\n\n rep(i,m){\n int s,t,d,v;\n scanf(\" %d %d %d %d\", &s, &t, &d, &v);\n --s;\n --t;\n\n D[s][t] = D[t][s] = d;\n V[s][t] = V[t][s] = v;\n }\n\n rep(i,n){\n rep(j,n)if(D[i][j]!=-1){\n max_r[i] = max(max_r[i], (double)V[i][j]/D[i][j]);\n }\n }\n\n rep(i,N)rep(j,P)rep(k,2) dp[i][j][k] = -123456789;\n dp[0][0][0] = 0;\n rep(t,p+1){\n rep(v,n){\n rep(f,2){\n // 移動\n rep(nx,n)if(D[v][nx]!=-1){\n int nt = t+D[v][nx];\n if(nt<=p) dp[nx][nt][f] = max(dp[nx][nt][f], dp[v][t][f]+V[v][nx]);\n }\n }\n\n // うろうろ\n rep(a,p+1){\n int nt = t+a;\n if(nt>p) break;\n dp[v][nt][1] = max(dp[v][nt][1], dp[v][t][0]+max_r[v]*a);\n }\n }\n }\n\n printf(\"%.10f\\n\", dp[0][p][1]);\n return 0;\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 6696, "score_of_the_acc": -1.5712, "final_rank": 17 }, { "submission_id": "aoj_2722_2345405", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define pb push_back\n#define all(v) (v).begin(),(v).end()\n#define fi first\n#define se second\ntypedef vector<int>vint;\ntypedef pair<int,int>pint;\ntypedef vector<pint>vpint;\n\ntemplate<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;}\ntemplate<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;}\n\nconst double INF=1e12;\n\nint N,M,P;\nint A[111111],B[111111],L[111111];\ndouble C[111111];\n\ndouble dp[1111][222];\ndouble x[222];\n\nsigned main(){\n cin>>N>>M>>P;\n rep(i,M){\n cin>>A[i*2]>>B[i*2];\n A[i*2]--;B[i*2]--;\n int x,y;\n cin>>x>>y;\n C[i*2]=1.0*y/x;\n L[i*2]=x;\n\n A[i*2+1]=B[i*2];\n B[i*2+1]=A[i*2];\n C[i*2+1]=C[i*2];\n L[i*2+1]=L[i*2];\n }\n M*=2;\n\n fill_n(*dp,1111*222,-INF);\n dp[0][0]=0;\n for(int i=0;i<P;i++){\n for(int j=0;j<M;j++){\n if(i+L[j]>P)continue;\n chmax(dp[i+L[j]][B[j]],dp[i][A[j]]+L[j]*C[j]);\n }\n }\n\n rep(i,M)chmax(x[A[i]],C[i]);\n\n double ans=0;\n rep(i,N){\n for(int j=0;j<=P;j++){\n for(int k=0;j+k<=P;k++){\n chmax(ans,dp[j][i]+dp[k][i]+(P-j-k)*x[i]);\n }\n }\n }\n printf(\"%.20f\\n\",ans);\n return 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 6364, "score_of_the_acc": -1.3653, "final_rank": 16 }, { "submission_id": "aoj_2722_2270873", "code_snippet": "#include<iostream>\n#include<queue>\n#include<vector>\n#include<iomanip>\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\nusing namespace std;\ntypedef double D;\ntypedef pair<D,int> pdi;\n \nstruct edge{\n D d,v;\n int to;\n edge(D a=0,D b=0,int c=0):d(a),v(b),to(c){}\n bool operator<(edge a)const{\n return d/v > a.d/a.v;\n }\n};\n \nint main(){\n int n,m;\n D d;\n \n while(cin >> n >> m >> d){\n if(n==0)break;\n \n vector< vector<edge> > g(n); \n rep(i,m){\n int s,t;\n D dis, num;\n cin >> s >> t >> dis >> num; s--; t--;\n g[s].push_back( edge(dis,num,t) );\n g[t].push_back( edge(dis,num,s) );\n }\n \n D res = 0;\n rep(i,n){\n D maxv = 0;\n for(edge e : g[i])maxv = max(maxv, e.v/e.d);\n \n vector<D> dis(n,1e15);\n dis[0] = 0;\n priority_queue< pdi, vector<pdi>, greater<pdi> > q;\n q.push( pdi(0,0) );\n \n while(q.size()){\n\tpdi p = q.top(); q.pop();\n\tD cost = p.first, cur = p.second;\n\tif(dis[cur]+1e-8 < cost)continue;\n \n\tfor(edge e : g[cur]){\n\t D cospa = e.v/e.d;\n\t if(cospa > maxv+1e-8)continue;\n\t D ncost = cost + (maxv-cospa)*e.d;\n\t if(dis[e.to] > ncost + 1e-8){\n\t dis[e.to] = ncost;\n\t q.push( pdi(ncost,e.to) );\n\t }\n\t}\n }\n \n res = max(res, maxv*d - 2*dis[i]);\n }\n \n cout << fixed << setprecision(10) << res << endl;\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4488, "score_of_the_acc": -0.1894, "final_rank": 2 }, { "submission_id": "aoj_2722_2224334", "code_snippet": "#include<bits/stdc++.h>\n#define MAX_P 1020\n#define MAX_V 220\n#define inf 1<<29\n#define linf (1e16)\n#define eps (1e-8)\n#define Eps (1e-15)\n#define mod 1000000007\n#define pi acos(-1.0)\n#define phi (1.0+sqrt(5.0))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define pld(a) printf(\"%.10Lf\\n\",(ld)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define Unique(v) v.erase(unique(all(v)),v.end())\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long double ld;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\n\nclass edge{\n public:\n int to,d,v;\n edge(int to,int d,int v):to(to),d(d),v(v){}\n};\n\nint n,m,p;\nvector<edge> e[MAX_V];\ndouble dp[MAX_V][MAX_P];\n\ndouble solve(){\n double res=0.0;\n FOR(i,0,n)FOR(j,0,p+1)dp[i][j]=-1;\n dp[0][0]=0;\n FOR(i,0,p+1){\n FOR(j,0,n){\n if(dp[j][i]==-1)continue;\n FOR(k,0,e[j].size()){\n edge E=e[j][k];\n int t=min(E.d,p-i);\n int d=t+i;\n dp[E.to][d]=max(dp[E.to][d],dp[j][i]+(double)t*E.v/E.d);\n }\n }\n }\n FOR(i,0,n)res=max(res,dp[i][p]);\n return res*2.0;\n}\n\nint main()\n{\n cin>>n>>m>>p;\n FOR(i,0,m){\n int s,t,d,v;\n cin>>s>>t>>d>>v;\n s--;t--;d*=2;\n e[s].pb(edge(t,d,v));\n e[t].pb(edge(s,d,v));\n }\n pd(solve());\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5136, "score_of_the_acc": -0.4098, "final_rank": 6 }, { "submission_id": "aoj_2722_2138186", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst void chmax(double &a, double b)\n{\n a = max(a, b);\n}\n\n\nstruct edge\n{\n int to, cost, v;\n};\n\nint main()\n{\n int N, M, P;\n vector< edge > g[200];\n\n cin >> N >> M >> P;\n for(int i = 0; i < M; i++) {\n int s, t, d, v;\n cin >> s >> t >> d >> v;\n --s, --t;\n g[s].emplace_back((edge) {t, d, v});\n g[t].emplace_back((edge) {s, d, v});\n }\n\n double dp[1001][200];\n fill_n(*dp, 1001 * 200, -1);\n dp[0][0] = 0;\n for(int i = 0; i < P; i++) {\n for(int j = 0; j < N; j++) {\n if(dp[i][j] < 0) continue;\n for(auto &e : g[j]) {\n chmax(dp[i + 1][j], dp[i][j] + (double) e.v / e.cost);\n if(i + e.cost <= P)\n chmax(dp[i + e.cost][e.to], dp[i][j] + e.v);\n }\n }\n }\n\n cout << fixed << setprecision(10) << dp[P][0] << endl;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 5320, "score_of_the_acc": -0.6734, "final_rank": 13 } ]
aoj_2730_cpp
Line Gimmick You are in front of a linear gimmick of a game. It consists of $N$ panels in a row, and each of them displays a right or a left arrow. You can step in this gimmick from any panel. Once you get on a panel, you are forced to move following the direction of the arrow shown on the panel and the panel will be removed immediately. You keep moving in the same direction until you get on another panel, and if you reach a panel, you turn in (or keep) the direction of the arrow on the panel. The panels you passed are also removed. You repeat this procedure, and when there is no panel in your current direction, you get out of the gimmick. For example, when the gimmick is the following image and you first get on the 2nd panel from the left, your moves are as follows. Move right and remove the 2nd panel. Move left and remove the 3rd panel. Move right and remove the 1st panel. Move right and remove the 4th panel. Move left and remove the 5th panel. Get out of the gimmick. You are given a gimmick with $N$ panels. Compute the maximum number of removed panels after you get out of the gimmick. Input The input consists of two lines. The first line contains an integer $N$ ($1 \leq N \leq 100,000$) which represents the number of the panels in the gimmick. The second line contains a character string $S$ of length $N$, which consists of ' > ' or ' < '. The $i$-th character of $S$ corresponds to the direction of the arrow on the $i$-th panel from the left. ' < ' and ' > ' denote left and right directions respectively. Output Output the maximum number of removed panels after you get out of the gimmick. Sample Input 1 7 >><><<< Output for the Sample Input 1 7 Sample Input 2 5 >><<< Output for the Sample Input 2 5 Sample Input 3 6 ><<><< Output for the Sample Input 3 6 Sample Input 4 7 <<><<>> Output for the Sample Input 4 5
[ { "submission_id": "aoj_2730_10295503", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n#define rep(i, m, n) for (ll i = (ll)m; i < (ll)n; i++)\n#define drep(i, m, n) for (ll i = m - 1; i >= n; i--)\n#define Endl endl\n#define all(a) a.begin(), a.end()\n#define pr(i, j) make_pair(i, j)\n#define isin(x, l, r) (l <= x && x < r)\n#define chmin(a, b) a = min(a, b)\n#define chmax(a, b) a = max(a, b)\n#define srt(ar) sort(ar.begin(), ar.end())\n#define rev(ar) reverse(ar.begin(), ar.end())\n#define jge(f, s, t) cout << (f ? s : t) << endl\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n#define printar(ar) \\\n do \\\n { \\\n for (auto dbg : ar) \\\n { \\\n cout << dbg << \" \"; \\\n } \\\n cout << endl; \\\n } while (0)\nconst ll inf = 1e18;\nconst ld pi = 3.14159265358979;\nconst ld eps = 1e-9;\ntemplate <class T, ll n, ll idx = 0>\nauto make_vec(const ll (&d)[n], const T &init) noexcept\n{\n if constexpr (idx < n)\n return std::vector(d[idx], make_vec<T, n, idx + 1>(d, init));\n else\n return init;\n}\n\ntemplate <class T, ll n>\nauto make_vec(const ll (&d)[n]) noexcept\n{\n return make_vec(d, T{});\n}\n//////////////// 以下を貼る ////////////////\ntemplate <class T>\nsize_t HashCombine(const size_t seed, const T &v)\n{\n return seed ^ (std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2));\n}\n/* pair用 */\ntemplate <class T, class S>\nstruct std::hash<std::pair<T, S>>\n{\n size_t operator()(const std::pair<T, S> &keyval) const noexcept\n {\n return HashCombine(std::hash<T>()(keyval.first), keyval.second);\n }\n};\n////////////////////////////////////////////\nstring s;\nll n;\n// 頂点xから始めて←に出るか?\npair<bool, ll> f(ll x)\n{\n set<ll> L, R;\n L.insert(-1);\n R.insert(-1);\n L.insert(n);\n R.insert(n);\n rep(i, 0, n)\n {\n if (s[i] == '<')\n {\n L.insert(i);\n }\n else\n {\n R.insert(i);\n }\n }\n ll ret = 1;\n ll mode = -1;\n if (s[x] == '<')\n {\n mode = 0;\n L.erase(x);\n }\n else\n {\n mode = 1;\n R.erase(x);\n }\n ll now = x;\n while (true)\n {\n if (mode == 0)\n {\n ll A = *prev(L.lower_bound(now));\n ll B = *prev(R.lower_bound(now));\n if (max(A, B) == -1)\n {\n return pr(true, ret);\n }\n if (B < A)\n {\n now = A;\n mode = 0;\n L.erase(A);\n }\n else\n {\n now = B;\n mode = 1;\n R.erase(B);\n }\n }\n else\n {\n ll A = *L.lower_bound(now);\n ll B = *R.lower_bound(now);\n if (min(A, B) == n)\n {\n return pr(false, ret);\n }\n if (A < B)\n {\n now = A;\n mode = 0;\n L.erase(A);\n }\n else\n {\n now = B;\n mode = 1;\n R.erase(B);\n }\n }\n ret++;\n }\n}\nint main()\n{\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cin >> n;\n cin >> s;\n if (f(n - 1).first || !f(0).first)\n {\n cout << n << endl;\n return 0;\n }\n ll ok = 0;\n ll ng = n - 1;\n while (ng - ok > 1)\n {\n ll md = (ok + ng) / 2;\n if (f(md).first)\n {\n ok = md;\n }\n else\n {\n ng = md;\n }\n }\n cout << max(f(ok).second, f(ng).second) << endl;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 8192, "score_of_the_acc": -0.6094, "final_rank": 16 }, { "submission_id": "aoj_2730_6017375", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n;\n string s;\n cin >> n >> s;\n\n int ans = 1;\n int low = -1, high = n;\n while (low + 1 < high) {\n int mid = (low + high) / 2;\n queue<char> ql, qr;\n for (int i = mid - 1; i >= 0; i--) ql.push(s[i]);\n for (int i = mid + 1; i < n; i++) qr.push(s[i]);\n int keep = 1;\n char next = s[mid];\n while (true) {\n if (next == '<') {\n if (ql.empty()) break;\n next = ql.front();\n ql.pop();\n keep++;\n }\n else {\n if (qr.empty()) break;\n next = qr.front();\n qr.pop();\n keep++;\n }\n }\n ans = max(ans, keep);\n if (keep == n) {\n break;\n }\n if (ql.empty()) low = mid;\n else high = mid;\n }\n\n cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3680, "score_of_the_acc": -0.0261, "final_rank": 4 }, { "submission_id": "aoj_2730_5967741", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing P = pair<int,int>;\n\nint main() {\n \n ios::sync_with_stdio(false);\n cin.tie(0);\n \n int n;\n cin >> n;\n string s;\n cin >> s;\n int maxl = -1;\n int l = 0;\n int r = n-1;\n while (l <= r) {\n int now = (l+r)/2;\n int tmp = now;\n set<P> ss;\n for (int i=0;i<n;i++) {\n if (i == now) continue;\n if (s[i] == '<') {\n ss.insert(P(i,-1));\n }\n else ss.insert(P(i,1));\n }\n int mode;\n if (s[now] == '<') mode = -1;\n else mode = 1;\n int val = 0;\n while (true) {\n if (mode == 1) {\n auto it = ss.lower_bound(P(now,-1));\n if (it == ss.end()) {\n val = 1;\n break;\n }\n P np = *it;\n now = np.first;\n mode = np.second;\n ss.erase(it);\n }\n else {\n auto it = ss.upper_bound(P(now,-1));\n if (it == ss.begin()) {\n val = -1;\n break;\n }\n it--;\n P np = *it;\n now = np.first;\n mode = np.second;\n ss.erase(it);\n }\n }\n if (val == 1) {\n r = tmp-1;\n }\n else {\n maxl = tmp;\n l = tmp+1;\n }\n }\n int ans = 0;\n for (int j=-1;j<=+1;j++) {\n int now = maxl+j;\n if (now < 0 || now >= n) continue;\n set<P> ss;\n for (int i=0;i<n;i++) {\n if (i == now) continue;\n if (s[i] == '<') {\n ss.insert(P(i,-1));\n }\n else ss.insert(P(i,1));\n }\n int mode;\n if (s[now] == '<') mode = -1;\n else mode = 1;\n int val = 0;\n while (true) {\n if (mode == 1) {\n auto it = ss.lower_bound(P(now,-1));\n if (it == ss.end()) {\n val = 1;\n break;\n }\n P np = *it;\n now = np.first;\n mode = np.second;\n ss.erase(it);\n }\n else {\n auto it = ss.upper_bound(P(now,-1));\n if (it == ss.begin()) {\n val = -1;\n break;\n }\n it--;\n P np = *it;\n now = np.first;\n mode = np.second;\n ss.erase(it);\n }\n }\n ans = max(ans,(int)(n-ss.size()));\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 8104, "score_of_the_acc": -0.5652, "final_rank": 15 }, { "submission_id": "aoj_2730_5922886", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing P = pair<int,char>;\n\nint main() {\n\n ios::sync_with_stdio(false);\n cin.tie(0);\n\n int n;\n string s;\n cin >> n >> s;\n int l = 0;\n int r = n-1;\n int lasl = -1;\n while (l <= r) {\n int now = (l+r)/2;\n int mode = 0;\n set<P> st;\n for (int i=0;i<n;i++) {\n st.insert(P(i,s[i]));\n }\n int tmp = now;\n auto it = st.lower_bound(P(tmp,0));\n P np = *it;\n if (np.second == '<') mode = -1;\n else mode = 1;\n st.erase(it);\n while (0 <= tmp && tmp < n) {\n if (mode == 1) {\n it = st.lower_bound(P(tmp,0));\n if (it == st.end()) {\n tmp = n;\n break;\n }\n np = *it;\n tmp = np.first;\n if (np.second == '<') mode = -1;\n else mode = 1;\n st.erase(it);\n }\n else if (mode == -1) {\n it = st.lower_bound(P(tmp,0));\n if (it == st.begin()) {\n tmp = -1;\n break;\n }\n it--;\n np = *it;\n tmp = np.first;\n if (np.second == '<') mode = -1;\n else mode = 1;\n st.erase(it);\n }\n }\n if (tmp < 0) {\n lasl = now;\n l = now+1;\n }\n else {\n r = now-1;\n }\n }\n int ans = 0;\n for (int i=lasl-1;i<=lasl+1;i++) {\n if (i < 0 || i >= n) continue;\n int mode = 0;\n set<P> st;\n for (int j=0;j<n;j++) {\n st.insert(P(j,s[j]));\n }\n int tmp = i;\n auto it = st.lower_bound(P(tmp,0));\n P np = *it;\n if (np.second == '<') mode = -1;\n else mode = 1;\n st.erase(it);\n while (0 <= tmp && tmp < n) {\n if (mode == 1) {\n it = st.lower_bound(P(tmp,0));\n if (it == st.end()) {\n tmp = n;\n break;\n }\n np = *it;\n tmp = np.first;\n if (np.second == '<') mode = -1;\n else mode = 1;\n st.erase(it);\n }\n else if (mode == -1) {\n it = st.lower_bound(P(tmp,0));\n if (it == st.begin()) {\n tmp = -1;\n break;\n }\n it--;\n np = *it;\n tmp = np.first;\n if (np.second == '<') mode = -1;\n else mode = 1;\n st.erase(it);\n }\n }\n ans = max(ans,n-(int)st.size());\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 8116, "score_of_the_acc": -0.5515, "final_rank": 14 }, { "submission_id": "aoj_2730_4963448", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n\treturn vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v) {\n for (auto &e:u) fill_v<T>(e, v...);\n}\n\nint main(void) {\n int64 N;\n string s;\n cin >> N >> s;\n vector<int> l, r;\n REP(i, s.size()) {\n if (s[i] == '<') l.emplace_back(i);\n else r.emplace_back(i);\n }\n int64 res = 0;\n REP(i, s.size()) {\n int64 lcnt = 0, rcnt = 0;\n if (s[i] == '<') {\n lcnt = l.size() - (lower_bound(all(l), i) - l.begin());\n rcnt = lower_bound(all(r), i) - r.begin();\n\n if (lcnt <= rcnt) {\n rcnt -= lcnt;\n chmax(res, N - (r[rcnt]));\n } else {\n lcnt -= rcnt + 1;\n chmax(res, l[l.size()-lcnt-1] + 1);\n }\n } else {\n lcnt = l.size() - (lower_bound(all(l), i) - l.begin());\n rcnt = lower_bound(all(r), i) - r.begin() + 1;\n\n if (rcnt <= lcnt) {\n lcnt -= rcnt;\n chmax(res, l[l.size() - lcnt - 1] + 1);\n } else {\n rcnt -= lcnt + 1;\n chmax(res, N- (r[rcnt]));\n }\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3664, "score_of_the_acc": -0.0248, "final_rank": 3 }, { "submission_id": "aoj_2730_4940388", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int n;\n string s;\n cin >> n >> s;\n\n auto f = [&](int i) {\n int res = 0;\n int l = i, r = i;\n while (0 <= i && i < n) {\n ++res;\n i = (s[i] == '>' ? ++r : --l);\n }\n return res;\n };\n\n int l = -1, r = n;\n while (r - l > 2) {\n int ll = (l + l + r) / 3;\n int rr = (l + r + r) / 3;\n if (f(ll) < f(rr)) l = ll;\n else r = rr;\n }\n cout << f((l + r) / 2) << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3500, "score_of_the_acc": -0.0184, "final_rank": 2 }, { "submission_id": "aoj_2730_4936054", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\n\nllint n;\nstring s;\nvector<llint> lvec, rvec;\n\nllint getL(llint p, llint x)\n{\n if(x == 0) return p;\n llint q = lower_bound(rvec.begin(), rvec.end(), p) - rvec.begin() - x;\n //cout << p << \" \" << x << \" \" << rvec[q] << endl;\n return rvec[q];\n}\n\nllint getR(llint p, llint x)\n{\n if(x == 0) return p;\n llint q = upper_bound(lvec.begin(), lvec.end(), p) - lvec.begin() + x - 1;\n return lvec[q];\n}\n\nint main(void)\n{\n cin >> n;\n cin >> s;\n s = \"#\" + s;\n\n for(int i = 1; i <= n; i++){\n if(s[i] == '<') lvec.push_back(i);\n else rvec.push_back(i);\n }\n\n llint ans = 0;\n for(int i = 1; i <= n; i++){\n llint lnum = lower_bound(rvec.begin(), rvec.end(), i) - rvec.begin();\n llint rnum = lvec.end() - upper_bound(lvec.begin(), lvec.end(), i);\n\n //cout << lnum << \" \" << rnum << endl;\n\n if(s[i] == '<'){\n if(lnum <= rnum) ans = max(ans, getR(i, lnum));\n else ans = max(ans, n - getL(i, rnum+1) + 1);\n }\n else{\n if(lnum >= rnum) ans = max(ans, n - getL(i, rnum) + 1);\n else ans = max(ans, getR(i, lnum+1));\n }\n //cout << ans << endl;\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4044, "score_of_the_acc": -0.0565, "final_rank": 8 }, { "submission_id": "aoj_2730_4920520", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n\n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(), (a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SQ(a) ((a) * (a))\n#define EACH(i, c) for (typeof((c).begin()) i = (c).begin(); i != (c).end(); ++i)\n#define EXIST(s, e) ((s).find(e) != (s).end())\n#define SORT(c) sort((c).begin(), (c).end())\n\n//repetition\n//------------------------------------------\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define MOD 1000000007\n\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n\n#define chmin(x, y) x = min(x, y)\n#define chmax(x, y) x = max(x, y)\nconst double EPS = 1e-11, PI = acos(-1);\n//ここから編集\n\ntemplate<typename T = int> struct SegmentTree{\n\n vector<T> node;\n int N;\n\n SegmentTree(int n){\n N = 1;\n while(N < n) N*=2;\n node.resize(2*N-1, 0);\n }\n\n void update(int x, T val){\n x += N-1;\n \n node[x] = val;\n while(x > 0){\n x = (x-1)/2;\n node[x] = node[2*x+1] + node[2*x+2];\n }\n }\n\n // [a, b)について求める\n T query(int a, int b, int k=0, int l=0, int r=-1){\n\n if(r < 0) r = N;\n if(r <= a || b <= l) return 0;\n if(a <= l && r <= b) return node[k];\n \n T vl = query(a, b, 2*k+1, l, (l+r)/2);\n T vr = query(a, b, 2*k+2, (l+r)/2, r);\n return vl + vr;\n }\n\n\n};\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n \n int N; cin >> N;\n vector<int> lp, rp;\n string s; cin >> s;\n SegmentTree<int> segr(N+10);\n SegmentTree<int> segl(N+10);\n REP(i,N){\n if(s[i] == '>') {\n rp.push_back(i);\n segr.update(i, 1);\n \n }\n else {\n lp.push_back(i);\n segl.update(i, 1);\n }\n }\n\n int ans = 0;\n for(int i=0; i<N; i++){\n if(s[i] == '>'){\n int r = segr.query(0, i);\n int l = segl.query(i+1, N);\n\n if(r+1 > l){\n /* 右にたどり着く */\n int rpos = N-1;\n int idx = lower_bound(all(rp), i) - rp.begin();\n int lpos = rp[idx-l];\n\n ans = max(ans, rpos-lpos+1);\n }else{\n /* 左にたどり着く */\n int lpos = 0;\n int v = lower_bound(all(lp), i) - lp.begin();\n int rpos = lp[v + r];\n ans = max(ans, rpos-lpos+1);\n }\n }else{\n int r = segr.query(0, i);\n int l = segl.query(i+1, N);\n if(r >= l+1){\n /* 右にたどり着く */\n int rpos = N-1;\n int idx = lower_bound(all(rp), i) - rp.begin();\n int lpos = rp[idx-r];\n\n ans = max(ans, rpos-lpos+1);\n }else{\n /* 左にたどり着く */\n int lpos = 0;\n int v = lower_bound(all(lp), i) - lp.begin();\n int rpos = lp[v + l];\n ans = max(ans, rpos-lpos+1);\n }\n }\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5716, "score_of_the_acc": -0.2037, "final_rank": 13 }, { "submission_id": "aoj_2730_3748185", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing ll = long long;\n\nconst double eps = 1e-10;\nconst int MOD = 1000000007;\nconst int INF = 1000000000;\nconst ll LINF = 1ll<<50;\n\ntemplate<typename T>\nvoid printv(const vector<T>& s) {\n for(int i=0;i<(int)(s.size());++i) {\n cout << s[i];\n if(i == (int)(s.size())-1) cout << endl;\n else cout << \" \";\n }\n}\n\nint sim(int n, string s, int k) {\n vector<bool> sel(n);\n sel[k] = true;\n int now = k;\n int left = (s[now] == '<' ? true : false);\n int cnt = 1;\n int l = k-1, r = k+1;\n while(1) {\n if(left) {\n now = l;\n l--;\n } else {\n now = r;\n r++;\n }\n if(now == -1 || now == n) break;\n cnt++;\n left = (s[now] == '<' ? true : false);\n }\n // cout << endl;\n return cnt;\n}\n\nint main () {\n cin.tie(0);\n cout << fixed << setprecision(10);\n int n; cin >> n;\n string s; cin >> s;\n if(n == 1) {\n cout << 1 << endl;\n return 0;\n }\n\n int l = 0, r = n-1;\n while(r - l > 1) {\n int mid = (l + r) / 2;\n // cout << l << \":\" << mid << \":\" << r << endl;\n // cout << sim(n, s, mid+1) << endl;\n // cout << sim(n, s, mid) << endl;\n if(sim(n, s, mid+1) - sim(n, s, mid) > 0) {\n l = mid;\n } else {\n r = mid;\n }\n }\n\n // cout << l << \":\" << r << endl;\n cout << max(sim(n, s, l), sim(n, s, r)) << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3368, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2730_3001287", "code_snippet": "#include<iostream>\n#include<algorithm>\nusing namespace std;\nint n;\nstring s;\nint sum[1<<17];\nint sumR[1<<17];\nmain()\n{\n\tcin>>n>>s;\n\tfor(int i=0;i<n;i++)sum[i+1]=sum[i]+(s[i]=='>');\n\tfor(int i=0;i<n;i++)sumR[i+1]=sumR[i]+(s[n-i-1]=='<');\n\tint ans=0;\n\tfor(int i=0;i<n;i++)\n\t{\n\t\tint L=sum[i];\n\t\tint R=(n-i-1)-(sum[n]-sum[i+1]);\n\t\tint now;\n\t\tif(s[i]=='>')\n\t\t{\n\t\t\tif(L>=R)\n\t\t\t{\n\t\t\t\tint pos=lower_bound(sum,sum+n+1,L-R+1)-sum-1;\n\t\t\t\tnow=n-pos;\n\t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\tint pos=lower_bound(sumR,sumR+n+1,R-L)-sumR-1;\n\t\t\t\tnow=n-pos;\n\t\t\t}\n\t\t}\n\t\telse\n\t\t{\n\t\t\tif(L<=R)\n\t\t\t{\n\t\t\t\tint pos=lower_bound(sumR,sumR+n+1,R-L+1)-sumR-1;\n\t\t\t\tnow=n-pos;\n\t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\tint pos=lower_bound(sum,sum+n+1,L-R)-sum-1;\n\t\t\t\tnow=n-pos;\n\t\t\t}\n\t\t}\n\t\tans=max(ans,now);\n\t}\n\tcout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4108, "score_of_the_acc": -0.0619, "final_rank": 9 }, { "submission_id": "aoj_2730_2945537", "code_snippet": "#include<utility>\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<set>\n#include<map>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<numeric>\n#include<cassert>\n#include<random>\nusing namespace std;\n#define MK make_pair\n#define F first\n#define S second\n\nint searchf(int n,int s,int g,vector<pair<int,int>> vp){\n if(g-s<=10){\n for(int i=s;i<=g;i++){\n if(vp[i].F==n && vp[i-1].F!=n){return i;}\n }\n return 0;\n }\n int m=(s+g)/2;\n if(vp[m].F==n && vp[m-1].F!=n){return m;}\n if(vp[m].F>=n){return searchf(n,m+1,g,vp);}\n else{return searchf(n,s,m-1,vp);}\n return 0;\n}\n\nint searchs(int n,int s,int g,vector<pair<int,int>> vp){\n if(g-s<=10){\n for(int i=s;i<=g;i++){\n if(vp[i].S==n && vp[i-1].S!=n){return i;}\n }\n return 0;\n }\n int m=(s+g)/2;\n if(vp[m].S==n && vp[m-1].S!=n){return m;}\n if(vp[m].S>=n){return searchs(n,m+1,g,vp);}\n else{return searchs(n,s,m-1,vp);}\n return 0;\n}\n\nint main(){\n int n;\n vector<int> v;\n vector<pair<int,int>> vp(200000);\n cin>>n;\n vp[0]=MK(0,0);\n v.push_back(0);\n for(int i=1;i<=n;i++){\n char c;\n cin>>c;\n if(c=='>'){v.push_back(1);}\n if(c=='<'){v.push_back(-1);}\n if(c=='>'){vp[i]=MK(vp[i-1].F+1,vp[i-1].S);}\n if(c=='<'){vp[i]=MK(vp[i-1].F,vp[i-1].S+1);}\n }\n int MX=0;\n MX=n/2+n%2;\n for(int i=1;i<=n;i++){\n if(v[i]==1){\n //if(vp[i].F-vp[n].S+vp[i].S<=1 && vp[i].F-vp[n].S+vp[i].S>=0){MX=max(MX,n); }\n if(vp[i].F-vp[n].S+vp[i].S>=1){\n int tl=vp[i].F-vp[n].S+vp[i].S;\n int l=searchf(tl,1,i,vp);\n MX=max(MX,n-l+1);\n }\n else if(vp[i].F-vp[n].S+vp[i].S<=0){\n int tl=vp[i].S+vp[i].F;\n int l=searchs(tl,i,n,vp);\n MX=max(MX,l);\n }\n }\n if(v[i]==-1){\n //if(vp[i-1].F-vp[n].S+vp[i-1].S>=-1 && vp[i-1].F-vp[n].S+vp[i-1].S<=0){MX=max(MX,n);}\n if(vp[i].F-vp[n].S+vp[i-1].S>=0){\n int tl=vp[i].F-vp[n].S+vp[i-1].S+1;\n int l=searchf(tl,1,i,vp);\n MX=max(MX,n-l+1);\n }\n else if(vp[i].F-vp[n].S+vp[i-1].S<=-1){\n int tl=vp[i-1].S+vp[i].F+1;\n int l=searchs(tl,i,n,vp);\n MX=max(MX,l);\n }\n }\n //cout<<MX<<endl;\n }\n cout<<MX<<endl;\n \n \n \n return 0;\n}", "accuracy": 0.3103448275862069, "time_ms": 1370, "memory_kb": 15324, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_2730_2945513", "code_snippet": "#include<utility>\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<set>\n#include<map>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<numeric>\n#include<cassert>\n#include<random>\nusing namespace std;\n#define MK make_pair\n#define F first\n#define S second\n\nint searchf(int n,int s,int g,vector<pair<int,int>> vp){\n if(g-s<=10){\n for(int i=s;i<=g;i++){\n if(vp[i].F==n && vp[i-1].F!=n){return i;}\n }\n return -1;\n }\n int m=(s+g)/2;\n if(vp[m].F==n && vp[m-1].F!=n){return m;}\n if(vp[m].F>=n){return searchf(n,m+1,g,vp);}\n else{return searchf(n,s,m-1,vp);}\n return 0;\n}\n\nint searchs(int n,int s,int g,vector<pair<int,int>> vp){\n if(g-s<=10){\n for(int i=s;i<=g;i++){\n if(vp[i].S==n && vp[i-1].S!=n){return i;}\n }\n return -1;\n }\n int m=(s+g)/2;\n if(vp[m].S==n && vp[m-1].S!=n){return m;}\n if(vp[m].S>=n){return searchs(n,m+1,g,vp);}\n else{return searchs(n,s,m-1,vp);}\n return 0;\n}\n\nint main(){\n int n;\n vector<int> v;\n vector<pair<int,int>> vp(200000);\n cin>>n;\n vp[0]=MK(0,0);\n v.push_back(0);\n for(int i=1;i<=n;i++){\n char c;\n cin>>c;\n if(c=='>'){v.push_back(1);}\n if(c=='<'){v.push_back(-1);}\n if(c=='>'){vp[i]=MK(vp[i-1].F+1,vp[i-1].S);}\n if(c=='<'){vp[i]=MK(vp[i-1].F,vp[i-1].S+1);}\n }\n int MX=0;\n for(int i=1;i<=n;i++){\n if(v[i]==1){\n //if(vp[i].F-vp[n].S+vp[i].S<=1 && vp[i].F-vp[n].S+vp[i].S>=0){MX=max(MX,n); }\n if(vp[i].F-vp[n].S+vp[i].S>=1){\n int tl=vp[i].F-vp[n].S+vp[i].S;\n int l=searchf(tl,1,i,vp);\n MX=max(MX,n-l+1);\n }\n else if(vp[i].F-vp[n].S+vp[i].S<=0){\n int tl=vp[i].S+vp[i].F;\n int l=searchs(tl,i,n,vp);\n MX=max(MX,l);\n }\n }\n if(v[i]==-1){\n //if(vp[i-1].F-vp[n].S+vp[i-1].S>=-1 && vp[i-1].F-vp[n].S+vp[i-1].S<=0){MX=max(MX,n);}\n if(vp[i].F-vp[n].S+vp[i-1].S>=0){\n int tl=vp[i].F-vp[n].S+vp[i-1].S+1;\n int l=searchf(tl,1,i,vp);\n MX=max(MX,n-l+1);\n }\n else if(vp[i].F-vp[n].S+vp[i-1].S<=-1){\n int tl=vp[i-1].S+vp[i].F+1;\n int l=searchs(tl,i,n,vp);\n MX=max(MX,l);\n }\n }\n //cout<<MX<<endl;\n }\n cout<<MX<<endl;\n \n \n \n return 0;\n}", "accuracy": 0.3103448275862069, "time_ms": 1320, "memory_kb": 15324, "score_of_the_acc": -1.9632, "final_rank": 19 }, { "submission_id": "aoj_2730_2928411", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define max(a,b) ((a)>(b)?(a):(b))\n#define min(a,b) ((a)<(b)?(a):(b))\n\ntypedef long long LL;\n\nint main(){\n int n;\n cin >> n;\n string s;\n cin >> s;\n vector<int> Rr(n+1,0),Lr(n+1,0);\n for(int i=1;i<=n;i++){\n if(s[i-1]=='>'){\n Rr[i]=Rr[i-1]+1;\n Lr[i]=Lr[i-1];\n }else{\n Rr[i]=Rr[i-1];\n Lr[i]=Lr[i-1]+1;\n }\n }\n int ans=0;\n for(int i=1;i<=n;i++){\n if(s[i-1]=='>'){\n if(Rr[i]>Lr[n]-Lr[i]){\n ans=max(ans,n-(lower_bound(Rr.begin(),Rr.end(),Rr[i]-(Lr[n]-Lr[i]))-Rr.begin())+1);\n //cout << n-(lower_bound(Rr.begin(),Rr.end(),Rr[i]-(Lr[n]-Lr[i]))-Rr.begin())+1 << endl;\n }else{\n ans=max(ans,lower_bound(Lr.begin(),Lr.end(),Rr[i]+Lr[i])-Lr.begin());\n //cout << lower_bound(Lr.begin(),Lr.end(),Rr[i]+Lr[i])-Lr.begin() << endl;\n }\n }else{\n if(Rr[i-1]>=Lr[n]-Lr[i-1]){\n ans=max(ans,n-(lower_bound(Rr.begin(),Rr.end(),Rr[i-1]-(Lr[n]-Lr[i-1])+1)-Rr.begin()-1));\n //cout << n-(lower_bound(Rr.begin(),Rr.end(),Rr[i-1]-(Lr[n]-Lr[i-1])+1)-Rr.begin()-1) << endl;\n }else{\n ans=max(ans,lower_bound(Lr.begin(),Lr.end(),Rr[i-1]+Lr[i-1]+1)-Lr.begin());\n //cout << lower_bound(Lr.begin(),Lr.end(),Rr[i-1]+Lr[i-1]+1)-Lr.begin() << endl;\n }\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3996, "score_of_the_acc": -0.0525, "final_rank": 7 }, { "submission_id": "aoj_2730_2928011", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define max(a,b) ((a)>(b)?(a):(b))\n#define min(a,b) ((a)<(b)?(a):(b))\n\ntypedef long long LL;\n\nint main(){\n int n;\n cin >> n;\n string s;\n cin >> s;\n vector<int> Rr(n+1,0),Lr(n+1,0);\n for(int i=1;i<=n;i++){\n if(s[i-1]=='>'){\n Rr[i]=Rr[i-1]+1;\n Lr[i]=Lr[i-1];\n }else{\n Rr[i]=Rr[i-1];\n Lr[i]=Lr[i-1]+1;\n }\n }\n int ans=0;\n for(int i=1;i<=n;i++){\n if(s[i-1]=='>'){\n if(Rr[i]>Lr[n]-Lr[i]){\n ans=max(ans,n-(upper_bound(Rr.begin(),Rr.end(),Rr[i]-(Lr[n]-Lr[i])-1)-Rr.begin()-1));\n }else{\n ans=max(ans,lower_bound(Lr.begin(),Lr.end(),Rr[i]+Lr[i])-Lr.begin());\n }\n }else{\n if(Rr[i-1]>=Lr[n]-Lr[i-1]){\n ans=max(ans,n-(upper_bound(Rr.begin(),Rr.end(),Rr[i-1]-(Lr[n]-Lr[i-1])+1)-Rr.begin()-1));\n }else{\n ans=max(ans,lower_bound(Lr.begin(),Lr.end(),Rr[i-1]+Lr[i-1]+1)-Lr.begin());\n }\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.6896551724137931, "time_ms": 10, "memory_kb": 4004, "score_of_the_acc": -0.0532, "final_rank": 18 }, { "submission_id": "aoj_2730_2911505", "code_snippet": "#include \"bits/stdc++.h\"\n\n#define REP(i,n) for(ll i=0;i<ll(n);++i)\n#define RREP(i,n) for(ll i=ll(n)-1;i>=0;--i)\n#define FOR(i,m,n) for(ll i=m;i<ll(n);++i)\n#define RFOR(i,m,n) for(ll i=ll(n)-1;i>=ll(m);--i)\n#define ALL(v) (v).begin(),(v).end()\n#define UNIQUE(v) v.erase(unique(ALL(v)),v.end());\n#define DUMP(v) REP(aa, (v).size()) { cout << v[aa]; if (aa != v.size() - 1)cout << \" \"; else cout << endl; }\n#define INF 1000000001ll\n#define MOD 1000000007ll\n#define EPS 1e-9\n\nconst int dx[8] = { 1,1,0,-1,-1,-1,0,1 };\nconst int dy[8] = { 0,1,1,1,0,-1,-1,-1 };\n\n\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<vi> vvi;\ntypedef vector<vl> vvl;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\nll max(ll a, int b) { return max(a, ll(b)); }\nll max(int a, ll b) { return max(ll(a), b); }\nll min(ll a, int b) { return min(a, ll(b)); }\nll min(int a, ll b) { return min(ll(a), b); }\n\n\nint main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint n; cin >> n;\n\tstring s;\n\tcin >> s;\n\tvi l, r;\n\tREP(i, s.size()) {\n\t\tif (s[i] == '<')l.push_back(i);\n\t\telse r.push_back(i);\n\t}\n\tvi lcntl(n), lcntr(n), rcntl(n), rcntr(n);\n\tREP(i, n) {\n\t\tif (s[i] == '<') {\n\t\t\tlcntl[i]++;\n\t\t\trcntl[i]++;\n\t\t}\n\t\telse {\n\t\t\tlcntr[i]++;\n\t\t\trcntr[i]++;\n\t\t}\n\t}\n\tREP(i, n - 1) {\n\t\tlcntl[i + 1] += lcntl[i];\n\t\tlcntr[i + 1] += lcntr[i];\n\t}\n\tRREP(i, n - 1) {\n\t\trcntl[i] += rcntl[i + 1];\n\t\trcntr[i] += rcntr[i + 1];\n\t}\n\tint ans = 0;\n\tREP(i, n) {\n\t\tif (s[i] == '<') {\n\t\t\tint a = lcntr[i], b = rcntl[i];\n\n\t\t\tif (a < b) {\n\t\t\t\tint c = lower_bound(rcntl.rbegin(), rcntl.rend(), b - a ) - rcntl.rbegin();\n\n\t\t\t\tans = max(ans, n - c);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tint c = lower_bound(ALL(lcntr), a - b + 1) - lcntr.begin();\n\t\n\t\t\t\tans = max(ans, n - c);\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tint a = lcntr[i], b = rcntl[i];\n\t\t\tif (a <= b) {\n\t\t\t\tint c = lower_bound(rcntl.rbegin(), rcntl.rend(), b - a + 1) - rcntl.rbegin();\n\n\t\t\t\tans = max(ans, n - c);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tint c = lower_bound(ALL(lcntr), a - b ) - lcntr.begin();\n\t\n\t\t\t\tans = max(ans, n - c);\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5212, "score_of_the_acc": -0.1542, "final_rank": 12 }, { "submission_id": "aoj_2730_2434768", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nint solve(string s)\n{\n int ret = 0;\n int S = s.size();\n\n vector<int> l(S+1),r(S+1);\n vector<int> rpos;\n rep(i,S)\n {\n if(s[i]=='>') rpos.pb(i);\n\n l[i+1] = l[i]+(s[i]=='<');\n r[i+1] = r[i]+(s[i]=='>');\n }\n\n rep(i,S)if(s[i]=='>')\n {\n int L=i, R=S+1;\n while(R-L>1)\n {\n int m = (L+R)/2;\n\n if(l[m] - l[i] <= r[i]) L=m;\n else R=m;\n }\n if(L<S) ret = max(ret,L+1);\n else\n {\n int idx = lower_bound(all(rpos),i)-rpos.begin();\n idx -= l[L]-l[i];\n ret = max(ret, S-rpos[idx]);\n }\n }\n\n return ret;\n}\n\nint main()\n{\n int S;\n string s;\n cin >>S >>s;\n\n int ans = 0;\n ans = max(ans,solve(s));\n\n reverse(all(s));\n rep(i,S)\n {\n if(s[i]=='>') s[i]='<';\n else s[i]='>';\n }\n\n ans = max(ans,solve(s));\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4360, "score_of_the_acc": -0.083, "final_rank": 11 }, { "submission_id": "aoj_2730_2406855", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n\nint main(){\n int n;string s;\n cin>>n>>s;\n\n int ans = 0;\n rep(_,2){\n vector<int> l(n,0),r(n,0);\n rep(i,n){\n if(s[i]=='>') r[i]++;\n if(i>0) r[i] += r[i-1];\n }\n for(int i=n-1; i>=0; i--){\n if(s[i]=='<') l[i]--;\n if(i<=n-2) l[i] += l[i+1];\n }\n rep(i,n){\n if(s[i]=='>'){\n if(r[i] == -l[i]){\n int idx = lower_bound(all(l), 0) - l.begin();\n ans = max(ans, idx);//dbg(i,idx);\n }\n else if(r[i] < -l[i]){\n int x = l[i] + r[i] -1;\n int idx = upper_bound(all(l), x) - l.begin();\n idx--;\n ans = max(ans, idx+1);//dbg(i,idx+1);\n }\n else {\n int x = l[i]+r[i];\n int idx = lower_bound(all(r), x) - r.begin();\n ans = max(ans, n - idx);// dbg(i,n-idx);\n }\n }\n }\n reverse(all(s));\n rep(i,n){\n if(s[i]=='>') s[i]='<';\n else s[i]='>';\n }\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3908, "score_of_the_acc": -0.0452, "final_rank": 6 }, { "submission_id": "aoj_2730_2358524", "code_snippet": "#include<iostream>\n#include<vector>\n#include<string>\n#include<algorithm>\t\n#include<map>\n#include<set>\n#include<utility>\n#include<cmath>\n#include<cstring>\n#include<queue>\n#include<stack>\n#include<cstdio>\n#include<sstream>\n#include<iomanip>\n#include<assert.h>\n#define loop(i,a,b) for(int i=a;i<b;i++) \n#define rep(i,a) loop(i,0,a)\n#define pb push_back\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\nusing namespace std;\n//kaewasuretyuui\ntypedef long long ll;\ntypedef int Def;\ntypedef pair<Def,Def> pii;\ntypedef vector<Def> vi;\ntypedef vector<vi> vvi;\ntypedef vector<pii> vp;\ntypedef vector<vp> vvp;\ntypedef vector<string> vs;\ntypedef vector<double> vd;\ntypedef vector<vd> vvd;\ntypedef pair<Def,pii> pip;\ntypedef vector<pip>vip;\n//#define mt make_tuple\n//typedef tuple<int,int,int> tp;\n//typedef vector<tp> vt;\nconst double PI=acos(-1);\nconst double EPS=1e-7;\nconst int inf=1e9;\nconst ll INF=2e18;\nint dx[]={0,1,0,-1};\nint dy[]={1,0,-1,0};\nint main(){\n\tint n;\n\tstring in;\n\tcin>>n>>in;\n//\tin=\"<\"+in+\">\";\n//\tn+=2;\n\tvp dp(n);\n\tvi ri,le;\n\tint co=0;\n\trep(i,n){\n\t\tif(in[i]=='>'){\n\t\t\tco++;\n\t\t\tri.pb(i);\n\t\t}\n\t\tdp[i].first=co;\n\t}\n\tco=0;\n\trep(i,n){\n\t\tif(in[n-1-i]=='<'){\n\t\t\tco++;\n\t\t\tle.pb(n-1-i);\n\t\t}\n\t\tdp[n-1-i].second=co;\n\t}\n//\trep(i,ri.size())cout<<ri[i]<<endl;\n//\trep(i,le.size())cout<<le[i]<<endl;\n//\trep(i,n)cout<<dp[i].first<<\" \"<<dp[i].second<<endl;\n\tint out=max(dp[0].second,dp[n-1].first);\n\trep(i,n-1){\n\t\tint a=dp[i].first,b=dp[i+1].second;\n\t\tif(a<=b){\n\t\t\tint t=le[b-min(a+1,b)];\n\t\t\tout=max(out,t+1);\n\t\t}\n\t\tif(a>=b){\n\t\t\tint t=ri[a-min(a,b+1)];\n\t\t\tout=max(out,n-t);\n\t\t}\n\t}\n\tcout<<out<<endl;\n}\n// < < < > < < > > >\n// 0 0 0 1 1 1 2 3 4\n// 5 4 3 2 2 1 0 0 0", "accuracy": 1, "time_ms": 10, "memory_kb": 4352, "score_of_the_acc": -0.0823, "final_rank": 10 }, { "submission_id": "aoj_2730_2116162", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX 100050\nstring s;\nint n,ans,memo[MAX];\nint calc(int x){\n if(~memo[x]) return memo[x];\n int res=0;\n int l=x,r=x;\n while(1){\n if(s[x]=='>') x=++r;\n else x=--l;\n res++;\n if(l<0||n<=r) break;\n }\n ans=max(ans,res);\n return memo[x]=res;\n}\nint main(){\n cin>>n>>s;\n memset(memo,-1,sizeof(memo));\n int l=0,r=s.size()-1,m1,m2;\n while(l+1<r){\n m1=l+(r-l)/3;\n m2=l+(r-l)*2/3;\n calc(l);calc(r);\n if(calc(m1)<calc(m2)) l=m1+1;\n else r=m2-1;\n }\n calc(l);calc(r);\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3688, "score_of_the_acc": -0.0415, "final_rank": 5 }, { "submission_id": "aoj_2730_2116160", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX 100050\nstring s;\nint n,ans,memo[MAX];\nint calc(int x){\n if(~memo[x]) return memo[x];\n int res=0;\n int l=x,r=x;\n while(1){\n if(s[x]=='>') x=++r;\n else x=--l;\n res++;\n if(l<0||n<=r) break;\n }\n ans=max(ans,res);\n return memo[x]=res;\n}\nint main(){\n cin>>n>>s;\n memset(memo,-1,sizeof(memo));\n int l=0,r=s.size()-1,m1,m2;\n while(l+1<r){\n m1=l+(r-l)/3;\n m2=l+(r-l)*2/3;\n if(calc(m1)<calc(m2)) l=m1+1;\n else r=m2-1;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.7931034482758621, "time_ms": 20, "memory_kb": 3700, "score_of_the_acc": -0.0351, "final_rank": 17 } ]
aoj_2724_cpp
Problem H: Laser Cutter Ciel is going to do woodworking. Ciel wants to make a cut in a wooden board using a laser cutter. To make it simple, we assume that the board is a two-dimensional plane. There are several segments on the board along which Ciel wants to cut the board. Each segment has a direction and Ciel must cut those segments along their directions. Those segments are connected when you ignore the directions, that is, any two points on the segments are directly or indirectly connected by the segments. While the laser cutter is powered on, it emits a laser which hits the board at a point and cuts the board along its trace. The laser initially points to $(x, y)$. Ciel can conduct the following two operations: Move the laser cutter with its power on and cut (a part of) a segment along its direction, or Move the laser cutter to any position with its power off. Ciel should not necessarily cut the whole segment at a time; she can start or stop cutting a segment at any point on the segments. Ciel likes to be efficient, so she wants to know the shortest route such that the laser cutter cuts the whole parts of all the segments and then move back to the initial point. Your task is to write a program that calculates the minimum total moving distance of the laser cutter. Input The first line of the input contains an integer $n$ ($1 \leq n \leq 300$), the number of segments. The next line contains two integers $x$ and $y$ ($-1,000 \leq x, y \leq 1,000$), which is the initial position $(x, y)$ of the laser. The $i$-th of the following $n$ lines contains four integers $sx_i$, $sy_i$, $tx_i$ and $ty_i$ ($-1,000 \leq sx_i, sy_i, tx_i, ty_i \leq 1,000$), which indicate that they are the end points of the $i$-th segment, and that the laser cutter can cut the board in the direction from $(sx_i, sy_i)$ to $(tx_i, ty_i)$. The input satisfies the following conditions: For all $i$ ($1 \leq i \leq n$), $(sx_i, sy_i) \ne (tx_i, ty_i)$. The initial point $(x, y)$ lies on at least one of the given segments. For all distinct $i, j$ ($1 \leq i, j \leq n$), the $i$-th segment and the $j$-th segment share at most one point. Output Output a line containing the minimum total moving distance the laser cutter needs to travel to cut all the segments and move back to the initial point. The absolute error or the relative error should be less than $10^{-6}$. Sample Input 3 0 1 0 0 0 1 0 1 0 2 0 2 0 3 Output for the Sample Input 6.0000000000000000 Sample Input 2 0 1 0 0 0 2 -1 1 1 1 Output for the Sample Input 6.8284271247461900 Sample Input 5 0 0 0 0 1 0 1 1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 Output for the Sample Input 10.0000000000000000
[ { "submission_id": "aoj_2724_10850438", "code_snippet": "#include<cstdio>\n#include<cstdlib>\n#include<algorithm>\n#include<cstring>\n#include<cmath>\n#define cl(x) memset(x,0,sizeof(x))\n#define read(x) scanf(\"%d\",&(x));\nusing namespace std;\n\ninline double sqr(int x){ return x*x; }\n\nconst int N=305;\n\nstruct PP{\n int x,y;\n friend double dist(PP A,PP B){\n return sqrt(sqr(A.x-B.x)+sqr(A.y-B.y));\n }\n}s[N],t[N];\n\nint n; double w[N][N];\nint boy[N]; double sla[N],lx[N],ly[N];\nint S[N],T[N];\n\ninline bool match(int u){\n S[u]=1;\n for (int v=1;v<=n;v++){\n if (T[v]) continue;\n if (fabs(lx[u]+ly[v]-w[u][v])<1e-10){\n T[v]=1;\n if (!boy[v] || match(boy[v]))\n\treturn boy[v]=u,1;\n }else\n sla[v]=min(sla[v],lx[u]+ly[v]-w[u][v]);\n }return 0;\n}\n\ninline double KM(){\n for (int i=1;i<=n;i++){\n lx[i]=-1<<30;\n for (int j=1;j<=n;j++)\n lx[i]=max(lx[i],w[i][j]);\n }\n for (int i=1;i<=n;i++){\n for (int j=1;j<=n;j++) sla[j]=1<<30;\n while (1){\n cl(S); cl(T); if (match(i)) break;\n double a=1<<30;\n for (int j=1;j<=n;j++) if (!T[j]) a=min(a,sla[j]);\n for (int j=1;j<=n;j++) if (S[j]) lx[j]-=a;\n for (int j=1;j<=n;j++) if (T[j]) ly[j]+=a; else sla[j]-=a;\n }\n }\n double ret=0; \n for (int i=1;i<=n;i++) if (boy[i]) ret-=w[boy[i]][i]; \n return ret;\n}\n\ndouble ans=0;\n\nint main(){\n read(n); read(s[1].x); read(s[1].y);\n for (int i=1;i<=n;i++){\n read(s[i].x); read(s[i].y);\n read(t[i].x); read(t[i].y);\n ans+=dist(s[i],t[i]);\n }\n for (int i=1;i<=n;i++)\n for (int j=1;j<=n;j++)\n w[i][j]=-dist(t[i],s[j]);\n ans+=KM();\n printf(\"%.10lf\\n\",ans);\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3760, "score_of_the_acc": -0.014, "final_rank": 2 }, { "submission_id": "aoj_2724_10210775", "code_snippet": "// AOJ #2724\n// Laser Cutter 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\nconst double EPS = 1e-9;\n \nstruct Point { double x, y; };\n \ndouble distP(const Point &a, const Point &b) {\n double dx = a.x - b.x, dy = a.y - b.y;\n return sqrt(dx * dx + dy * dy);\n}\n \nbool pointOnSegment(const Point &a, const Point &b, const Point &p) {\n double cross = (p.x - a.x) * (b.y - a.y) - (p.y - a.y) * (b.x - a.x);\n if (fabs(cross) > EPS) return false;\n if (p.x < min(a.x, b.x) - EPS || p.x > max(a.x, b.x) + EPS) return false;\n if (p.y < min(a.y, b.y) - EPS || p.y > max(a.y, b.y) + EPS) return false;\n return true;\n}\n \nstruct Segment {\n Point s, t;\n bool special;\n};\n \nstruct Arc {\n Point u, v;\n double cost;\n};\n \nstring pointKey(const Point &p) {\n ostringstream oss;\n oss << fixed << setprecision(12) << p.x << \"_\" << p.y;\n return oss.str();\n}\n \ndouble hungarian(const vector<vector<double>> &cost) {\n int n = cost.size();\n const double INF = 1e9;\n vector<double> u(n+1, 0), v(n+1, 0);\n vector<int> p(n+1, 0), way(n+1, 0);\n for (int i = 1; i <= n; i++) {\n p[0] = i;\n vector<double> minv(n+1, INF);\n vector<bool> used(n+1, false);\n int j0 = 0;\n do {\n used[j0] = true;\n int i0 = p[j0], j1 = 0;\n double delta = INF;\n for (int j = 1; j <= n; j++) {\n if (!used[j]) {\n double cur = cost[i0-1][j-1] - u[i0] - v[j];\n if (cur < minv[j]) {\n minv[j] = cur;\n way[j] = j0;\n }\n if (minv[j] < delta) {\n delta = minv[j];\n j1 = j;\n }\n }\n }\n for (int j = 0; j <= n; j++) {\n if (used[j]) {\n u[p[j]] += delta;\n v[j] -= delta;\n } else {\n minv[j] -= delta;\n }\n }\n j0 = j1;\n } while (p[j0] != 0);\n do {\n int j1 = way[j0];\n p[j0] = p[j1];\n j0 = j1;\n } while (j0);\n }\n return -v[0];\n}\n \nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n \n int n;\n cin >> n;\n Point init;\n cin >> init.x >> init.y;\n \n vector<Segment> segs(n);\n for (int i = 0; i < n; i++){\n cin >> segs[i].s.x >> segs[i].s.y >> segs[i].t.x >> segs[i].t.y;\n if(pointOnSegment(segs[i].s, segs[i].t, init)){\n if((fabs(init.x - segs[i].s.x) < EPS && fabs(init.y - segs[i].s.y) < EPS) ||\n (fabs(init.x - segs[i].t.x) < EPS && fabs(init.y - segs[i].t.y) < EPS))\n segs[i].special = false;\n else segs[i].special = true;\n } else segs[i].special = false;\n }\n \n vector<Arc> arcs;\n double reqSum = 0.0;\n for (int i = 0; i < n; i++){\n if(segs[i].special){\n Arc a1, a2;\n a1.u = segs[i].s; a1.v = init;\n a1.cost = distP(a1.u, a1.v);\n a2.u = init; a2.v = segs[i].t;\n a2.cost = distP(a2.u, a2.v);\n arcs.push_back(a1);\n arcs.push_back(a2);\n reqSum += a1.cost + a2.cost;\n } else {\n Arc a;\n a.u = segs[i].s; a.v = segs[i].t;\n a.cost = distP(a.u, a.v);\n arcs.push_back(a);\n reqSum += a.cost;\n }\n }\n \n unordered_map<string, int> vid;\n vector<Point> vertices;\n auto addVertex = [&](const Point &p) -> int {\n string key = pointKey(p);\n if(vid.find(key) == vid.end()){\n int idx = vertices.size();\n vertices.push_back(p);\n vid[key] = idx;\n return idx;\n }\n return vid[key];\n };\n for (auto &arc : arcs) {\n addVertex(arc.u);\n addVertex(arc.v);\n }\n int initIndex = addVertex(init);\n \n int V = vertices.size();\n vector<int> imbalance(V, 0);\n for (auto &arc : arcs){\n int u = addVertex(arc.u);\n int v = addVertex(arc.v);\n imbalance[u] += 1;\n imbalance[v] -= 1;\n }\n \n vector<int> posList, negList;\n for (int i = 0; i < V; i++){\n if(imbalance[i] > 0){\n for (int k = 0; k < imbalance[i]; k++)\n posList.push_back(i);\n } else if(imbalance[i] < 0){\n for (int k = 0; k < -imbalance[i]; k++)\n negList.push_back(i);\n }\n }\n int m = posList.size();\n if(m == 0){\n cout << fixed << setprecision(16) << reqSum << endl;\n return 0;\n }\n \n vector<vector<double>> cost(m, vector<double>(m, 0));\n for (int i = 0; i < m; i++){\n for (int j = 0; j < m; j++){\n cost[i][j] = distP(vertices[posList[i]], vertices[negList[j]]);\n }\n }\n double extraCost = hungarian(cost);\n double ans = reqSum + extraCost;\n cout << fixed << setprecision(16) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4164, "score_of_the_acc": -0.0108, "final_rank": 1 }, { "submission_id": "aoj_2724_10210769", "code_snippet": "// AOJ #2724\n// Laser Cutter 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n \nconst double EPS = 1e-9;\n \nstruct Point { double x, y; };\n \ndouble distP(const Point &a, const Point &b) {\n double dx = a.x - b.x, dy = a.y - b.y;\n return sqrt(dx*dx + dy*dy);\n}\n \nbool pointOnSegment(const Point &a, const Point &b, const Point &p) {\n double cross = (p.x - a.x)*(b.y - a.y) - (p.y - a.y)*(b.x - a.x);\n if(fabs(cross) > EPS) return false;\n if(p.x < min(a.x, b.x) - EPS || p.x > max(a.x, b.x) + EPS) return false;\n if(p.y < min(a.y, b.y) - EPS || p.y > max(a.y, b.y) + EPS) return false;\n return true;\n}\n \nstruct Segment {\n Point s, t;\n bool special;\n};\n \nstruct Arc {\n Point u, v;\n double cost;\n};\n \nstring pointKey(const Point &p) {\n ostringstream oss;\n oss << fixed << setprecision(12) << p.x << \"_\" << p.y;\n return oss.str();\n}\n \nstruct Edge {\n int to, rev;\n int cap;\n double cost;\n};\n \nstruct MinCostFlow {\n int n;\n vector<vector<Edge>> graph;\n vector<double> potential, dist;\n vector<int> prevV, prevE;\n \n MinCostFlow(int n): n(n), graph(n), potential(n,0), dist(n), prevV(n), prevE(n) {}\n \n void add_edge(int s, int t, int cap, double cost) {\n Edge a = {t, (int)graph[t].size(), cap, cost};\n Edge b = {s, (int)graph[s].size(), 0, -cost};\n graph[s].push_back(a);\n graph[t].push_back(b);\n }\n \n double min_cost_flow(int s, int t, int f) {\n const double INF = 1e9;\n double res = 0;\n while(f > 0) {\n priority_queue<pair<double,int>, vector<pair<double,int>>, greater<pair<double,int>>> pq;\n fill(dist.begin(), dist.end(), INF);\n dist[s] = 0;\n pq.push({0, s});\n while(!pq.empty()){\n auto p = pq.top(); pq.pop();\n int v = p.second;\n if(dist[v] < p.first - EPS) continue;\n for (int i=0; i< graph[v].size(); i++){\n Edge &e = graph[v][i];\n if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + potential[v] - potential[e.to] + EPS){\n dist[e.to] = dist[v] + e.cost + potential[v] - potential[e.to];\n prevV[e.to] = v;\n prevE[e.to] = i;\n pq.push({dist[e.to], e.to});\n }\n }\n }\n if(dist[t] > INF/2) return -1;\n for(int v=0; v<n; v++){\n if(dist[v] < INF)\n potential[v] += dist[v];\n }\n int addFlow = f;\n for(int v = t; v != s; v = prevV[v]){\n addFlow = min(addFlow, graph[prevV[v]][prevE[v]].cap);\n }\n f -= addFlow;\n res += addFlow * potential[t];\n for(int v = t; v != s; v = prevV[v]){\n Edge &e = graph[prevV[v]][prevE[v]];\n e.cap -= addFlow;\n graph[v][e.rev].cap += addFlow;\n }\n }\n return res;\n }\n};\n \nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n \n int n;\n cin >> n;\n Point init;\n cin >> init.x >> init.y;\n \n vector<Segment> segs(n);\n for (int i = 0; i < n; i++){\n cin >> segs[i].s.x >> segs[i].s.y >> segs[i].t.x >> segs[i].t.y;\n if(pointOnSegment(segs[i].s, segs[i].t, init)) {\n if(fabs(init.x - segs[i].s.x) < EPS && fabs(init.y - segs[i].s.y) < EPS)\n segs[i].special = false;\n else if(fabs(init.x - segs[i].t.x) < EPS && fabs(init.y - segs[i].t.y) < EPS)\n segs[i].special = false;\n else segs[i].special = true;\n } else segs[i].special = false;\n }\n \n vector<Arc> arcs;\n double reqSum = 0.0;\n for (int i = 0; i < n; i++){\n if(segs[i].special){\n Arc a1, a2;\n a1.u = segs[i].s; a1.v = init;\n a1.cost = distP(a1.u, a1.v);\n a2.u = init; a2.v = segs[i].t;\n a2.cost = distP(a2.u, a2.v);\n arcs.push_back(a1);\n arcs.push_back(a2);\n reqSum += a1.cost + a2.cost;\n } else {\n Arc a;\n a.u = segs[i].s; a.v = segs[i].t;\n a.cost = distP(a.u, a.v);\n arcs.push_back(a);\n reqSum += a.cost;\n }\n }\n \n unordered_map<string, int> vid;\n vector<Point> vertices;\n auto addVertex = [&](const Point &p) -> int {\n string key = pointKey(p);\n if(vid.find(key) == vid.end()){\n int idx = vertices.size();\n vertices.push_back(p);\n vid[key] = idx;\n return idx;\n }\n return vid[key];\n };\n for (auto &arc : arcs) {\n addVertex(arc.u);\n addVertex(arc.v);\n }\n int initIndex = addVertex(init);\n \n int V = vertices.size();\n vector<int> imbalance(V, 0);\n for (auto &arc : arcs){\n int u = addVertex(arc.u);\n int v = addVertex(arc.v);\n imbalance[u] += 1;\n imbalance[v] -= 1;\n }\n \n int N = V + 2;\n int S = V, T = V + 1;\n MinCostFlow mcf(N);\n int totalSupply = 0;\n for (int i = 0; i < V; i++){\n if(imbalance[i] > 0) {\n mcf.add_edge(S, i, imbalance[i], 0.0);\n totalSupply += imbalance[i];\n } else if(imbalance[i] < 0)\n mcf.add_edge(i, T, -imbalance[i], 0.0);\n }\n for (int i = 0; i < V; i++){\n if(imbalance[i] > 0){\n for (int j = 0; j < V; j++){\n if(imbalance[j] < 0){\n double d = distP(vertices[i], vertices[j]);\n mcf.add_edge(i, j, 1000, d);\n }\n }\n }\n }\n double extraCost = mcf.min_cost_flow(S, T, totalSupply);\n double ans = reqSum + extraCost;\n cout << fixed << setprecision(16) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 10488, "score_of_the_acc": -0.2568, "final_rank": 5 }, { "submission_id": "aoj_2724_6783820", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=1000000007,MAX=300005;\nconst ll INF=1LL<<60;\n\n//https://kopricky.github.io/code/NetworkFlow/hungarian.html\n\ntemplate<typename T> class Hungarian\n{\nprivate:\n const int U, V;\n vector<vector<int> > graph;\n vector<T> dual;\n vector<int> alloc, rev_alloc, prev;\n const vector<vector<T> >& cost;\n int matching_size;\n T diff(const int i, const int j){\n return cost[i][j] - dual[i] - dual[U + j];\n }\n void init_feasible_dual(){\n for(int i = 0; i < U; ++i){\n dual[i] = 0;\n for(int j = 0; j < V; ++j){\n dual[U + j] = min(dual[U + j], cost[i][j]);\n }\n }\n }\n void construct_graph(){\n for(int i = 0; i < U; ++i){\n for(int j = 0; j < V; ++j){\n graph[i][j] = (diff(i, j) == 0 && rev_alloc[j] != i);\n }\n }\n }\n bool find_augmenting_path(const int cur, const int prv, int& pos){\n prev[cur] = prv;\n if(cur >= U){\n if(rev_alloc[cur - U] < 0) return true;\n if(find_augmenting_path(rev_alloc[cur - U], cur, pos)){\n graph[rev_alloc[cur - U]][cur - U] = 1;\n return true;\n }\n }else{\n const int MX = (alloc[cur] < 0 && pos == U) ? U : V;\n for(int i = 0; i < MX; ++i){\n if(graph[cur][i] && prev[U + i] < 0 && find_augmenting_path(U + i, cur, pos)){\n graph[cur][i] = 0, alloc[cur] = i, rev_alloc[i] = cur;\n return true;\n }\n }\n if(alloc[cur] < 0 && pos < U){\n graph[cur][pos] = 0, alloc[cur] = pos, rev_alloc[pos] = cur, prev[U + pos] = cur;\n return ++pos, true;\n }\n }\n return false;\n }\n void update_dual(const T delta){\n for(int i = 0; i < U; ++i) if(prev[i] >= 0) dual[i] += delta;\n for(int i = U; i < U + V; ++i) if(prev[i] >= 0) dual[i] -= delta;\n }\n void maximum_matching(bool initial=false){\n int pos = initial ? V : U;\n for(bool update = false;; update = false){\n fill(prev.begin(), prev.end(), -1);\n for(int i = 0; i < U; ++i){\n if(alloc[i] < 0 && find_augmenting_path(i, 2 * U, pos)){\n update = true, ++matching_size;\n break;\n }\n }\n if(!update) break;\n }\n }\n int dfs(const int cur, const int prv, vector<int>& new_ver){\n prev[cur] = prv;\n if(cur >= U){\n if(rev_alloc[cur - U] < 0) return cur;\n else return dfs(rev_alloc[cur - U], cur, new_ver);\n }else{\n new_ver.push_back(cur);\n for(int i = 0; i < V; ++i){\n if(graph[cur][i] && prev[U + i] < 0){\n const int res = dfs(U + i, cur, new_ver);\n if(res >= U) return res;\n }\n }\n }\n return -1;\n }\n int increase_matching(const vector<pair<int, int> >& vec, vector<int>& new_ver){\n for(const auto& e : vec){\n if(prev[e.first] < 0){\n const int res = dfs(e.first, e.second, new_ver);\n if(res >= U) return res;\n }\n }\n return -1;\n }\n void hint_increment(int cur){\n while(prev[cur] != 2 * U){\n if(cur >= U){\n graph[prev[cur]][cur - U] = 0, alloc[prev[cur]] = cur - U, rev_alloc[cur - U] = prev[cur];\n }else{\n graph[cur][prev[cur] - U] = 1;\n }\n cur = prev[cur];\n }\n }\npublic:\n Hungarian(const vector<vector<T> >& _cost)\n : U((int)_cost.size()), V((int)_cost[0].size()), graph(U, vector<int>(U, 1)), dual(U + V, numeric_limits<T>::max()),\n alloc(U, -1), rev_alloc(U, -1), prev(2 * U), cost{_cost}, matching_size(0){\n assert(U >= V);\n }\n pair<T, vector<int> > solve(){\n init_feasible_dual(), construct_graph();\n bool end = false;\n maximum_matching(true);\n while(matching_size < U){\n vector<pair<T, int> > cand(V, {numeric_limits<T>::max(), numeric_limits<int>::max()});\n for(int i = 0; i < U; ++i){\n if(prev[i] < 0) continue;\n for(int j = 0; j < V; ++j){\n if(prev[U + j] >= 0) continue;\n cand[j] = min(cand[j], {diff(i, j), i});\n }\n }\n while(true){\n T delta = numeric_limits<T>::max();\n for(int i = 0; i < V; ++i){\n if(prev[U + i] >= 0) continue;\n delta = min(delta, cand[i].first);\n }\n update_dual(delta);\n vector<pair<int, int> > vec;\n vector<int> new_ver;\n for(int i = 0; i < V; ++i){\n if(prev[U + i] >= 0) continue;\n if((cand[i].first -= delta) == 0) vec.emplace_back(U + i, cand[i].second);\n }\n int res = increase_matching(vec, new_ver);\n if(res >= U){\n hint_increment(res);\n if(++matching_size == U) end = true;\n else construct_graph();\n break;\n }else{\n for(const int v : new_ver){\n for(int i = 0; i < V; ++i){\n if(prev[U + i] >= 0) continue;\n cand[i] = min(cand[i], {diff(v, i), v});\n }\n }\n }\n }\n if(!end) maximum_matching();\n }\n T total_cost = 0;\n for(int i = 0; i < U; ++i){\n if(alloc[i] < V) total_cost += cost[i][alloc[i]];\n else alloc[i] = -1;\n }\n return make_pair(total_cost, alloc);\n }\n};\n\n//幾何ライブラリ\n// define double ll をするときは Point の < と == も書き換えよう!\n\nconst double eps=1e-8;\nconst double pi=acos((double)-1.0L);\n#define equals(a,b) (fabs((a)-(b))<eps)\n\ndouble torad(double deg) {return (double)(deg)*pi/180.0;}\ndouble todeg(double ang) {return ang*180.0/pi;}\n\nclass Point{\npublic:\n double x,y;\n \n Point(double x=0,double y=0):x(x),y(y){}\n \n Point operator + (Point p){return Point(x+p.x,y+p.y);}\n Point operator - (Point p){return Point(x-p.x,y-p.y);}\n Point operator * (double a){return Point(a*x,a*y);}\n Point operator / (double a){return Point(x/a,y/a);}\n \n double abs(){return sqrt(norm());}\n double norm(){return x*x+y*y;}\n \n bool operator < (const Point &p)const{\n return x+eps<p.x||(equals(x,p.x)&&y+eps<p.y);\n //return x<p.x||(x==p.x&&y<p.y);\n }\n \n bool operator == (const Point &p)const{\n return fabs(x-p.x)<eps/100000&&fabs(y-p.y)<eps/100000;\n //return x==p.x&&y==p.y;\n }\n};\n\ntypedef Point Vector;\n\ndouble norm(Vector a){\n return a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n return sqrt(norm(a));\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x+a.y*b.y;\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\nstruct Segment{\n Point p1,p2;\n};\n\nbool isOrthogonal(Vector a,Vector b){\n return equals(dot(a,b),0.0);\n}\n\nbool isOrthogonal(Point a1,Point a2,Point b1,Point b2){\n return isOrthogonal(a1-a2,b1-b2);\n}\n\nbool isOrthogonal(Segment s1,Segment s2){\n return equals(dot(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Point a1,Point a2,Point b1,Point b2){\n return isParallel(a1-a2,b1-b2);\n}\n\nbool isParallel(Segment s1,Segment s2){\n return equals(cross(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nPoint project(Segment s,Point p){\n Vector base=s.p2-s.p1;\n double r=dot(p-s.p1,base)/norm(base);\n return s.p1+base*r;\n}\n\nPoint reflect(Segment s,Point p){\n return p+(project(s,p)-p)*2.0;\n}\n\nPoint turn(Point p,Point c,double pi){\n double q=atan2(p.y-c.y,p.x-c.x);\n q+=pi;\n p=c+Point{cos(q)*abs(p-c),sin(q)*abs(p-c)};\n \n return p;\n}\n//pをcを中心としてpi回転させる(1周で2π)\n//p=cのときnan\n\n//p0,p1,p2の順に見たときどうなるか?\n\nstatic const int counter_clockwise=1;\nstatic const int clockwise=-1;\nstatic const int online_back=2;\nstatic const int online_front=-2;\nstatic const int on_segment=0;\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n \n if(cross(a,b)>eps) return counter_clockwise;\n if(cross(a,b)<-eps) return clockwise;\n if(dot(a,b)<-eps) return online_back;\n if(a.norm()<b.norm()) return online_front;\n \n return on_segment;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return(ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0&&ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nbool overlap(Segment s1,Segment s2){\n int a=ccw(s1.p1,s1.p2,s2.p1),b=ccw(s1.p1,s1.p2,s2.p2);\n if(a&1||b&1) return 0;\n if(a==2){\n if(b==-2||(b==0&&!(s2.p2==s1.p1))) return 1;\n else return 0;\n }\n if(a==-2){\n if(b==2||(b==0&&!(s2.p2==s1.p2))) return 1;\n else return 0;\n }\n if(a==0){\n if(s1.p1==s2.p1){\n if(b!=2) return 1;\n else return 0;\n }\n else if(s1.p2==s2.p1){\n if(b!=-2) return 1;\n else return 0;\n }\n else return 1;\n }\n return 0;\n}\n//s1とs2の共通の線分(長さ0より大きい)があるかどうか\n\ntypedef Segment Line;\n\ndouble getDistance(Point a,Point b){\n return abs(a-b);\n}\n\ndouble getDistanceLP(Line l,Point p){\n return abs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n\ndouble getDistanceSP(Segment s,Point p){\n if(dot(s.p2-s.p1,p-s.p1)<0.0) return abs(p-s.p1);\n if(dot(s.p1-s.p2,p-s.p2)<0.0) return abs(p-s.p2);\n return getDistanceLP(s,p);\n}\n\ndouble getDistance(Segment s1,Segment s2){\n if(intersect(s1,s2)) return 0.0;\n return min({getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2),getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2)});\n}\n\nPoint getCrossPointS(Segment s1,Segment s2){\n //if(ccw(s1.p1,s1.p2,s2.p1)==0&&ccw(s1.p1,s1.p2,s2.p2)==0) return s1.p1;\n Vector base=s2.p2-s2.p1;\n double d1=abs(cross(base,s1.p1-s2.p1));\n double d2=abs(cross(base,s1.p2-s2.p1));\n double t=d1/(d1+d2);\n return s1.p1+(s1.p2-s1.p1)*t;\n}//同じ時壊れます\n\nPoint getCrossPointL(Line l1,Line l2){\n //if(ccw(s1.p1,s1.p2,s2.p1)==0&&ccw(s1.p1,s1.p2,s2.p2)==0) return s1.p1;\n \n Vector v1=l1.p2-l1.p1,v2=l2.p2-l2.p1;\n \n return l1.p1+v1*cross(v2,l2.p1-l1.p1)/cross(v2,v1);\n}\n\nSegment ParallelSegment(Segment s,double d){\n Vector v={-(s.p2-s.p1).y,(s.p2-s.p1).x};\n v=v/abs(v);\n \n s.p1=s.p1+v*d;\n s.p2=s.p2+v*d;\n \n return s;\n}\n\nPoint naisin(Point p1,Point p2,Point p3){\n if(p1==p2&&p2==p3&&p3==p1) return p1;\n \n return (p1*abs(p2-p3)+p2*abs(p1-p3)+p3*abs(p1-p2))/(abs(p2-p3)+abs(p1-p3)+abs(p1-p2));\n}\n\nPoint naisin(Line l1,Line l2,Line l3){\n //平行でない前提\n \n Point p1=getCrossPointL(l1,l2),p2=getCrossPointL(l1,l3),p3=getCrossPointL(l2,l3);\n return naisin(p1,p2,p3);\n}\n\n//ネットの適当を書いたのであってるか全く知りません→あってそう\n\nclass Circle{\npublic:\n Point c;\n double r;\n Circle(Point c=Point(),double r=0.0):c(c),r(r){}\n};\n\nPoint CircleCenter(Point a,Point b,Point c){\n Point u=a-b,v=a-c;\n double m1=(norm(a)-norm(b))/2.0,m2=(norm(a)-norm(c))/2.0;\n \n Point res;\n if(cross(u,v)==0.0){\n res.x=1e9;\n res.y=1e9;\n \n return res;\n }\n res.x=(m1*v.y-m2*u.y)/cross(u,v);\n res.y=(m1*v.x-m2*u.x)/cross(v,u);\n \n return res;\n}\n//3点を通る円の中心を返す\n\n//交わる 0\n// c1がc2のinside 1\n// c1がc2のoutside 2\n// 交わらない 3\n\nint not_intersect(Circle c1,Circle c2){\n double d=getDistance(c1.c,c2.c);\n double r1=c1.r,r2=c2.r;\n if(r1<r2){\n if(d<(r2-r1)) return 1;\n }\n if(r1>r2){\n if(d<(r1-r2)) return 2;\n }\n if(d<=r1+r2) return 0;\n else return 3;\n}\n\npair<Point,Point> segCrossPpoints(Circle c,Line l){\n //assert(intersect(c,l));\n Vector pr=project(l,c.c);\n Vector e=(l.p2-l.p1)/abs(l.p2-l.p1);\n double base=sqrt(c.r*c.r-norm(pr-c.c));\n return make_pair(pr+e*base,pr-e*base);\n}\n\ndouble arg(Vector p){return atan2(p.y,p.x);}\nVector polar(double a,double r){return Point(cos(r)*a,sin(r)*a);}\n\n//inside(outside)\n\npair<Point,Point> getCrossPoints(Circle c1,Circle c2){\n //assert(intersect(c1,c2));\n double d=abs(c1.c-c2.c);\n double a=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));\n double t=arg(c2.c-c1.c);\n return make_pair(c1.c+polar(c1.r,t+a),c1.c+polar(c1.r,t-a));\n}\n\nvector<Line> Commontangent(Circle c1,Circle c2){\n vector<Line> res;\n Point p=c2.c-c1.c;\n \n if(abs(p)>=(c1.r+c2.r)){\n Point a,b;\n a.x=c1.r*(p.x*(c1.r+c2.r)+p.y*sqrt(norm(p)-(c1.r+c2.r)*(c1.r+c2.r)))/norm(p);\n a.y=c1.r*(p.y*(c1.r+c2.r)-p.x*sqrt(norm(p)-(c1.r+c2.r)*(c1.r+c2.r)))/norm(p);\n \n b.x=c1.r*(p.x*(c1.r+c2.r)-p.y*sqrt(norm(p)-(c1.r+c2.r)*(c1.r+c2.r)))/norm(p);\n b.y=c1.r*(p.y*(c1.r+c2.r)+p.x*sqrt(norm(p)-(c1.r+c2.r)*(c1.r+c2.r)))/norm(p);\n \n res.push_back(Line{a+c1.c,a+c1.c+Point{-a.y,a.x}});\n if(!(a==b)){\n res.push_back(Line{b+c1.c,b+c1.c+Point{-b.y,b.x}});\n }\n }\n \n if(abs(p)>=abs(c1.r-c2.r)){\n Point a,b;\n a.x=c1.r*(p.x*(c1.r-c2.r)+p.y*sqrt(norm(p)-(c1.r-c2.r)*(c1.r-c2.r)))/norm(p);\n a.y=c1.r*(p.y*(c1.r-c2.r)-p.x*sqrt(norm(p)-(c1.r-c2.r)*(c1.r-c2.r)))/norm(p);\n \n b.x=c1.r*(p.x*(c1.r-c2.r)-p.y*sqrt(norm(p)-(c1.r-c2.r)*(c1.r-c2.r)))/norm(p);\n b.y=c1.r*(p.y*(c1.r-c2.r)+p.x*sqrt(norm(p)-(c1.r-c2.r)*(c1.r-c2.r)))/norm(p);\n \n res.push_back(Line{a+c1.c,a+c1.c+Point{-a.y,a.x}});\n if(!(a==b)){\n res.push_back(Line{b+c1.c,b+c1.c+Point{-b.y,b.x}});\n }\n }\n \n return res;\n}\n\ntypedef vector<Point> Polygon;\n\n/*\n IN 2\n ON 1\n OUT 0\n */\n\nint contains(Polygon g,Point p){\n int n=int(g.size());\n bool x=false;\n for(int i=0;i<n;i++){\n Point a=g[i]-p,b=g[(i+1)%n]-p;\n if(a.y>b.y) swap(a,b);\n if(a.y<eps&&0<b.y&&cross(a,b)<0) x=!x;\n if(abs(cross(a,b))<eps&&dot(a,b)<eps) return 1;\n }\n return (x?2:0);\n}\n\nPolygon andrewScan(Polygon s,bool ok){\n Polygon u,l;\n sort(all(s));\n \n if(int(s.size())<3) return s;\n int n=int(s.size());\n \n u.push_back(s[0]);\n u.push_back(s[1]);\n \n l.push_back(s[n-1]);\n l.push_back(s[n-2]);\n \n if(ok){\n for(int i=2;i<n;i++){\n for(int j=int(u.size());j>=2&&ccw(u[j-2],u[j-1],s[i])==counter_clockwise;j--){\n u.pop_back();\n }\n u.push_back(s[i]);\n }\n \n for(int i=int(s.size())-3;i>=0;i--){\n for(int j=int(l.size());j>=2&&ccw(l[j-2],l[j-1],s[i])==counter_clockwise;j--){\n l.pop_back();\n }\n l.push_back(s[i]);\n }\n }\n \n if(!ok){\n for(int i=2;i<n;i++){\n for(int j=int(u.size());j>=2&&ccw(u[j-2],u[j-1],s[i])!=clockwise;j--){\n u.pop_back();\n }\n u.push_back(s[i]);\n }\n \n for(int i=int(s.size())-3;i>=0;i--){\n for(int j=int(l.size());j>=2&&ccw(l[j-2],l[j-1],s[i])!=clockwise;j--){\n l.pop_back();\n }\n l.push_back(s[i]);\n }\n }\n \n reverse(all(l));\n \n for(int i=int(u.size())-2;i>=1;i--) l.push_back(u[i]);\n \n return l;\n}//ok==1なら辺の上も含める\n\nPolygon convex_cut(const Polygon& P, const Line& l) {\n Polygon Q;\n for(int i=0;i<si(P);i++){\n Point A=P[i],B=P[(i+1)%si(P)];\n if(ccw(l.p1,l.p2,A)!=-1)Q.push_back(A);\n if(ccw(l.p1,l.p2,A)*ccw(l.p1,l.p2,B)<0) Q.push_back(getCrossPointL(Line{A,B},l));\n }\n return Q;\n}\n\ndouble area(Point a,Point b,Point c){\n b=b-a;\n c=c-a;\n return abs(b.x*c.y-b.y*c.x)/2.0;\n}\n\n/*\n \n ll area(Polygon P){\n ll sum=0;\n for(int i=0;i<si(P);i++){\n sum+=cross(P[i],P[(i+1)%si(P)]);\n }\n return abs(sum);\n }\n \n */\n\n// 倍\n\ndouble area(Polygon &P){\n if(si(P)==0) return 0.0;\n double res=0;\n Point c={0.0,0.0};\n for(int i=0;i<si(P);i++){\n c=c+P[i];\n }\n c=c/si(P);\n \n for(int i=0;i<si(P);i++){\n res+=area(c,P[i],P[(i+1)%si(P)]);\n }\n \n return res;\n}\n\nll gcd(ll a,ll b){\n if(b==0) return a;\n return gcd(b,a%b);\n}\n\npair<Point,Vector> perpendicular_bisector(Point a,Point b){\n Point c=(a+b)/2;\n Vector v=b-c;\n swap(v.x,v.y);\n v.x*=-1;\n \n Point p=c;\n if(v.x==0){\n v.y=1;\n p.y=0;\n }\n else if(v.y==0){\n v.x=1;\n p.x=0;\n }\n else{\n if(v.x<0){\n v.x*=-1;\n v.y*=-1;\n }\n ll g=gcd(abs(ll(v.x)),abs(ll(v.y)));\n v.x/=g;\n v.y/=g;\n if(p.x>=0){\n ll d=p.x/v.x;\n p=p-v*d;\n }else{\n ll d=abs(p.x)/v.x;\n p=p+v*d;\n \n if(p.x<0){\n p=p+v;\n }\n }\n }\n \n return mp(p,v);\n}\n//2倍するなりして整数にしておくこと\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N;cin>>N;\n Point st;cin>>st.x>>st.y;\n double ans=0;\n vector<Segment> S(N);\n for(int i=0;i<N;i++){\n cin>>S[i].p1.x>>S[i].p1.y>>S[i].p2.x>>S[i].p2.y;\n ans+=getDistance(S[i].p1,S[i].p2);\n }\n \n vector<vector<double>> cost(N,vector<double>(N));\n \n for(int i=0;i<N;i++){\n for(int j=0;j<N;j++){\n cost[i][j]=getDistance(S[i].p2,S[j].p1);\n }\n }\n \n Hungarian<double> G(cost);\n \n ans+=G.solve().fi;\n \n cout<<fixed<<setprecision(25)<<ans<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4672, "score_of_the_acc": -0.0384, "final_rank": 3 }, { "submission_id": "aoj_2724_6008784", "code_snippet": "//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 2;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\n\ntemplate<typename T>\nstruct mcf {\nprivate:\n\tstruct edge {\n\t\tint to, cap; T cost; int rev;\n\t};\n\tvector<vector<edge>> G;\n\tvector<P> par;\n\tvector<T> dist;\n\tT inf = INF;\npublic:\n\tmcf(int n) {\n\t\tG.resize(n);\n\t\tpar.resize(n);\n\t\tdist.resize(n);\n\t}\n\tvoid add_edge(int from, int to, int cap, T cost) {\n\t\tG[from].push_back({ to,cap,cost,(int)G[to].size() });\n\t\tG[to].push_back({ from,0,-cost,(int)G[from].size() - 1 });\n\t}\n\tpair<T,int> minimum_road(int s, int t) {\n\t\tfill(all(par), P{ -1,-1 });\n\t\tfill(all(dist), inf);\n\t\tdist[s] = 0;\n\t\tpriority_queue<pair<T,int>, vector<pair<T, int>>, greater<pair<T, int>>> q; \n\t\tq.push({ 0,s });\n\t\twhile (!q.empty()) {\n\t\t\tpair<T,int> p = q.top(); q.pop();\n\t\t\tint id = p.second;\n\t\t\tif (id == t)continue;\n\t\t\tif (p.first > dist[id])continue;\n\t\t\trep(j, G[id].size()) {\n\t\t\t\tif (G[id][j].cap > 0) {\n\t\t\t\t\tint to = G[id][j].to;\n\t\t\t\t\tT nd = p.first + G[id][j].cost;\n\t\t\t\t\tif (nd < dist[to]) {\n\t\t\t\t\t\tdist[to] = nd;\n\t\t\t\t\t\tpar[to] = { id,j };\n\t\t\t\t\t\tq.push({ dist[to],to });\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint cur = t;\n\t\tint f = mod;\n\t\twhile (cur != s) {\n\t\t\tint p = par[cur].first, j = par[cur].second;\n\t\t\tif (p < 0)return { -1,-1 };\n\t\t\tf = min(f, G[p][j].cap);\n\t\t\tcur = p;\n\t\t}\n\t\tcur = t;\n\t\twhile (cur != s) {\n\t\t\tint p = par[cur].first, j = par[cur].second;\n\t\t\tif (p < 0)return { -1,-1 };\n\t\t\tG[p][j].cap -= f;\n\t\t\tif (G[p][j].rev >= 0) {\n\t\t\t\tG[cur][G[p][j].rev].cap += f;\n\t\t\t}\n\t\t\tcur = p;\n\t\t}\n\t\treturn { dist[t],f };\n\t}\n\tT minimum_cost_flow(int s, int t, int k) {\n\t\tT ret = 0;\n\t\trep(i, k) {\n\t\t\tpair<T,int> z = minimum_road(s, t);\n\t\t\tif (z.first < 0)return -1;\n\t\t\tif (k - i <= z.second) {\n\t\t\t\tret += z.first * (k - i); break;\n\t\t\t}\n\t\t\ti += z.second - 1;\n\t\t\tret += z.first * z.second;\n\t\t}\n\t\treturn ret;\n\t}\n};\n\nvoid solve() {\n\tint n; cin >> n;\n\tint sx, sy; cin >> sx >> sy;\n\tvector<int> lx(n), ly(n), rx(n), ry(n);\n\trep(i, n) {\n\t\tcin >> lx[i] >> ly[i] >> rx[i] >> ry[i];\n\t}\n\tmcf<ld> mc(2 * n + 2);\n\trep(i, n) {\n\t\trep(j, n) {\n\t\t\tint dx = rx[j] - lx[i];\n\t\t\tint dy = ry[j] - ly[i];\n\t\t\tld cost = sqrt(dx * dx + dy * dy);\n\t\t\tmc.add_edge(i, j + n, 1, cost);\n\t\t}\n\t}\n\trep(i, n) {\n\t\tmc.add_edge(2 * n, i, 1, 0);\n\t\tmc.add_edge(i + n, 2 * n + 1, 1, 0);\n\t}\n\tld ans = mc.minimum_cost_flow(2 * n, 2 * n + 1,n);\n\trep(i, n) {\n\t\tint dx = rx[i] - lx[i];\n\t\tint dy = ry[i] - ly[i];\n\t\tld cost = sqrt(dx * dx + dy * dy);\n\t\tans += cost;\n\t}\n\tcout << ans << \"\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(8);\n\t//init_f();\n\t//init();\n\t//int t; cin >> t; rep(i, t)\n\t\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1440, "memory_kb": 15712, "score_of_the_acc": -1.3195, "final_rank": 14 }, { "submission_id": "aoj_2724_4796284", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <complex>\n#include <vector>\n#include <algorithm>\n#include <cmath>\nusing namespace std;\nconst double EPS = 1e-8;\nconst double INF = 1e20;\n#define EQ(n,m) (abs((n)-(m)) < EPS)\n#define X real()\n#define Y imag()\ntypedef complex<double> P;\ntypedef vector<P> VP;\n\ntemplate<typename T>\nstruct MincostFlow{\n struct edge{\n int to, rev;\n int cap;\n T cost;\n edge(int to, int rev, int cap, T cost)\n :to(to),rev(rev),cap(cap),cost(cost){}\n edge(){}\n };\n \n int n;\n T zero;\n T inf;\n vector<vector<edge>> graph;\n\n MincostFlow(int n, T zero, T inf):n(n),zero(zero),inf(inf){\n graph.resize(n);\n }\n void add_edge(int from, int to, int cap, T cost){\n graph[from].emplace_back(to, graph[to].size(), cap, cost);\n graph[to].emplace_back(from, (int)graph[from].size()-1, 0, -cost);\n }\n T exec(int s, int g, int f){\n T res = zero;\n while(f > 0){\n vector<int> prevv(n), preve(n);\n vector<T> mincost(n, inf);\n mincost[s] = zero;\n while(1){\n bool update = false;\n for(int i=0; i<n; i++){\n if(mincost[i] == inf) continue;\n for(int j=0; j<(int)graph[i].size(); j++){\n edge &e = graph[i][j];\n if(e.cap>0 && mincost[i] +e.cost +EPS < mincost[e.to]){\n mincost[e.to] = mincost[i] +e.cost;\n prevv[e.to] = i;\n preve[e.to] = j;\n update = true;\n }\n }\n }\n if(!update) break;\n }\n if(mincost[g] == inf){\n return inf;\n }\n \n int d = f;\n for(int v=g; v!=s; v=prevv[v]){\n d = min(d, graph[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d*mincost[g];\n for(int v=g; v!=s; v=prevv[v]){\n edge &e = graph[prevv[v]][preve[v]];\n e.cap -= d;\n graph[v][e.rev].cap += d;\n }\n }\n return res;\n }\n};\n\nint main(){\n int n;\n cin >> n;\n int x,y;\n cin >> x >> y;\n vector<VP> l(n, VP(2));\n double len = 0;\n for(int i=0; i<n; i++){\n for(int j=0; j<2; j++){\n cin >> x >> y;\n l[i][j] = P(x, y);\n }\n len += abs(l[i][1]-l[i][0]);\n }\n \n MincostFlow<double> mcf(2*n+2, 0, INF);\n for(int i=0; i<n; i++){\n mcf.add_edge(2*n, i, 1, 0);\n mcf.add_edge(n+i, 2*n+1, 1, 0);\n }\n for(int i=0; i<n; i++){\n for(int j=0; j<n; j++){\n mcf.add_edge(i, n+j, 1, abs(l[i][1]-l[j][0]));\n }\n }\n cout << fixed << setprecision(10);\n cout << mcf.exec(2*n, 2*n+1, n) +len << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 10232, "score_of_the_acc": -0.4387, "final_rank": 11 }, { "submission_id": "aoj_2724_3702456", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing pii = pair<int, int>;\nconstexpr double eps = 1e-10;\n\nstruct edge {\n int to, rev, cap;\n double cost;\n edge(int t, int c, double ct, int r) : to(t), rev(r), cap(c), cost(ct) {}\n};\nusing graph = vector<vector<edge>>;\n\nvoid add_edge(graph& g, int from, int to, int cap, double cost) {\n g[from].emplace_back(to, cap, cost, g[to].size());\n g[to].emplace_back(from, 0, -cost, g[from].size() - 1);\n}\n\ndouble min_cost_flow(graph& g, int s, int t, int f) {\n using P = pair<double, int>;\n const double inf = 1e18;\n double res = 0;\n vector<double > h(g.size()), dist(g.size());\n vector<int> prevv(g.size()), preve(g.size());\n while(f > 0) {\n priority_queue<P, vector<P>, greater<>> que;\n fill(begin(dist), end(dist), inf);\n dist[s] = 0;\n que.emplace(0, s);\n while(!que.empty()) {\n const auto cur_d = que.top().first;\n const int v = que.top().second;\n que.pop();\n if(dist[v] < cur_d) continue;\n for(int i = 0; i < (int)g[v].size(); ++i) {\n auto& e = g[v][i];\n if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to] + eps) {\n dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];\n prevv[e.to] = v;\n preve[e.to] = i;\n que.emplace(dist[e.to], e.to);\n }\n }\n }\n if(dist[t] == inf) return -1;\n for(int v = 0; v < (int)g.size(); ++v) {\n h[v] += dist[v];\n }\n\n auto d = f;\n for(int v = t; v != s; v = prevv[v]) {\n d = min(d, g[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d * h[t];\n for(int v = t; v != s; v = prevv[v]) {\n auto& e = g[prevv[v]][preve[v]];\n e.cap -= d;\n g[v][e.rev].cap += d;\n }\n }\n return res;\n}\n\nint main() {\n int n; cin >> n;\n int ix, iy; cin >> ix >> iy;\n vector<int> sx(n), sy(n), gx(n), gy(n);\n for(int i = 0; i < n; ++i) {\n cin >> sx[i] >> sy[i] >> gx[i] >> gy[i];\n }\n\n double ans = 0;\n for(int i = 0; i < n; ++i) {\n ans += hypot(gx[i] - sx[i], gy[i] - sy[i]);\n }\n graph g(n * 2 + 2);\n const int src = n * 2, sink = n * 2 + 1;\n for(int i = 0; i < n; ++i) {\n for(int j = 0; j < n; ++j) {\n add_edge(g, i, j + n, 1, hypot(sx[j] - gx[i], sy[j] - gy[i]));\n }\n add_edge(g, src, i, 1, 0);\n add_edge(g, i + n, sink, 1, 0);\n }\n ans += min_cost_flow(g, src, sink, n);\n\n cout << fixed << setprecision(10) << ans << endl;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 10040, "score_of_the_acc": -0.2867, "final_rank": 7 }, { "submission_id": "aoj_2724_3248967", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 2005\n#define ADD 1000\n\n\n//辺を表す構造体{行先、容量、コスト、逆辺のインデックス}\nstruct Edge{\n\tEdge(int arg_to,int arg_capacity,double arg_cost,int arg_rev_index){\n\t\tto = arg_to;\n\t\tcapacity = arg_capacity;\n\t\tcost = arg_cost;\n\t\trev_index = arg_rev_index;\n\t}\n\n\tint to,capacity,rev_index;\n\tdouble cost;\n};\n\nstruct Point{\n\tvoid set(int arg_x,int arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\tint x,y;\n};\n\nstruct Info{\n\tInfo(int arg_x,int arg_y,int arg_diff){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tdiff = arg_diff;\n\t}\n\tint x,y,diff;\n};\n\nint V; //頂点数\nvector<Edge> G[NUM]; //グラフの隣接リスト表現\ndouble dist[NUM]; //最短距離\nint pre_node[NUM],pre_edge[NUM]; //直前の頂点と辺\n\nint num_line;\nint in_num[NUM][NUM],out_num[NUM][NUM];\nint point_index;\nint index_FROM[NUM],index_TO[NUM];\nPoint start;\nPoint point[NUM];\nvector<Info> FROM,TO;\n\n//fromからtoへ向かう容量capacity,コストcostの辺をグラフに追加する\nvoid add_edge(int from,int to,int capacity,double cost){\n\tG[from].push_back(Edge(to,capacity,cost,G[to].size()));\n\tG[to].push_back(Edge(from,0,-cost,G[from].size()-1));\n}\n\n//sourceからsinkへの、流量flowの最小費用流を求める\n//流せない場合は-1を返す\ndouble min_cost_flow(int source,int sink,int flow){\n\n\tdouble ret = 0;\n\twhile(flow > 0){\n\t\t//ベルマンフォード方により、source-sink間最短経路を求める\n\t\tfor(int i = 0; i < V; i++)dist[i] = BIG_NUM;\n\t\tdist[source] = 0;\n\t\tbool update = true;\n\n\t\tint dog = 0;\n\n\t\twhile(update){\n\n\t\t\tupdate = false;\n\t\t\tfor(int node_id = 0; node_id < V; node_id++){\n\t\t\t\tif(fabs(dist[node_id]-BIG_NUM) < EPS)continue;\n\t\t\t\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\t\t\t\tEdge &e = G[node_id][i];\n\t\t\t\t\tif(e.capacity > 0 && dist[e.to] > dist[node_id]+e.cost+EPS){\n\t\t\t\t\t\tdist[e.to] = dist[node_id]+e.cost; //node_idを経由した方が早い場合\n\t\t\t\t\t\tpre_node[e.to] = node_id;\n\t\t\t\t\t\tpre_edge[e.to] = i;\n\t\t\t\t\t\tupdate = true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(fabs(dist[sink]-BIG_NUM) < EPS){\n\t\t\t//これ以上流せない\n\t\t\treturn -1;\n\t\t}\n\n\t\t//source-sink間最短路に沿って目いっぱい流す\n\t\tint tmp_flow = flow;\n\n\t\tint dk = 0;\n\n\t\tfor(int node_id = sink; node_id != source; node_id = pre_node[node_id]){\n\n\t\t\ttmp_flow = min(tmp_flow,G[pre_node[node_id]][pre_edge[node_id]].capacity);\n\t\t}\n\t\tflow -= tmp_flow;\n\n\t\tret += tmp_flow*dist[sink];\n\t\tfor(int node_id = sink; node_id != source; node_id = pre_node[node_id]){\n\t\t\tEdge &e = G[pre_node[node_id]][pre_edge[node_id]];\n\t\t\te.capacity -= tmp_flow;\n\t\t\tG[node_id][e.rev_index].capacity += tmp_flow;\n\t\t}\n\t}\n\treturn ret;\n}\n\n\nvoid add(Point& tmp){\n\n\ttmp.x += ADD;\n\ttmp.y += ADD;\n}\n\ndouble calc_dist(Point a,Point b){\n\n\treturn sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));\n}\n\ndouble calc_dist(Info a,Info b){\n\n\treturn sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));\n}\n\nint main(){\n\n\tfor(int x = 0; x < NUM; x++){\n\t\tfor(int y = 0; y < NUM; y++){\n\t\t\tin_num[x][y] = 0;\n\t\t\tout_num[x][y] = 0;\n\t\t}\n\t}\n\n\tscanf(\"%d\",&num_line);\n\tscanf(\"%d %d\",&start.x,&start.y);\n\n\tadd(start);\n\n\tpoint_index = 0;\n\tdouble ans = 0;\n\n\tfor(int loop = 0; loop < num_line; loop++){\n\n\t\t//from\n\t\tscanf(\"%d %d\",&point[point_index].x,&point[point_index].y);\n\t\tadd(point[point_index]);\n\t\tout_num[point[point_index].x][point[point_index].y] += 1;\n\n\t\tpoint_index++;\n\n\t\t//to\n\t\tscanf(\"%d %d\",&point[point_index].x,&point[point_index].y);\n\t\tadd(point[point_index]);\n\t\tin_num[point[point_index].x][point[point_index].y] += 1;\n\n\t\tans += calc_dist(point[point_index-1],point[point_index]);\n\n\t\tpoint_index++;\n\t}\n\n\tfor(int x = 0; x < NUM; x++){\n\t\tfor(int y = 0; y < NUM; y++){\n\t\t\tif(in_num[x][y] == out_num[x][y])continue;\n\n\t\t\tif(in_num[x][y] > out_num[x][y]){\n\n\t\t\t\tFROM.push_back(Info(x,y,in_num[x][y]-out_num[x][y]));\n\n\t\t\t}else{\n\n\t\t\t\tTO.push_back(Info(x,y,out_num[x][y]-in_num[x][y]));\n\t\t\t}\n\t\t}\n\t}\n\n\tint FLOW = 0;\n\tint source = 0,sink = 1;\n\tint index = 2;\n\n\tfor(int i = 0; i < FROM.size(); i++){\n\n\t\tindex_FROM[i] = index++;\n\t\tFLOW += FROM[i].diff;\n\t\tadd_edge(source,index_FROM[i],FROM[i].diff,0);\n\t}\n\n\tint to_sum = 0;\n\n\tfor(int i = 0; i < TO.size(); i++){\n\n\t\tindex_TO[i] = index++;\n\t\tadd_edge(index_TO[i],sink,TO[i].diff,0);\n\t\tto_sum += TO[i].diff;\n\t}\n\n\tfor(int i = 0; i < FROM.size(); i++){\n\t\tfor(int k = 0; k < TO.size(); k++){\n\t\t\tadd_edge(index_FROM[i],index_TO[k],1,calc_dist(FROM[i],TO[k]));\n\t\t}\n\t}\n\n\tV = index;\n\n\tans += min_cost_flow(source,sink,FLOW);\n\n\tprintf(\"%.10lf\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 470, "memory_kb": 41172, "score_of_the_acc": -1.3217, "final_rank": 15 }, { "submission_id": "aoj_2724_3217262", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n// (行き先, 容量, コスト, 逆辺)\nstruct edge{\n int to,cap;\n double cost;\n int rev;\n};\n\nint V; // TODO:initialize\nconst int MAX_V = 666; // TODO:initialize\nconst double INF = 19191919; // TODO:initialize\nvector<edge> G[MAX_V];\ndouble h[MAX_V]; // ポテンシャル\ndouble dist[MAX_V];\nint prevv[MAX_V], preve[MAX_V]; // 直前の頂点と辺\n\nvoid add_edge(int from, int to, int cap, double cost){\n G[from].pb({to,cap,cost,(int)G[to].size()});\n G[to].pb({from,0,-cost,(int)G[from].size()-1});\n}\n\nconst double EPS = 1e-7;\n\n// sからtへの流量fの最小費用流(不可能なら-1)\ndouble min_cost_flow(int s, int t, int f){\n using pd = pair<double,int>;\n\n double res = 0;\n fill(h,h+V,0);\n while(f>0){\n priority_queue<pd,vector<pd>,greater<pd>> pq;\n fill(dist,dist+V,INF);\n dist[s]=0;\n // dijkstraでhを更新\n pq.push(pd(0,s));\n while(!pq.empty()){\n pd p = pq.top();\n pq.pop();\n int v = p.se;\n if(p.fi>dist[v]) continue;\n rep(i,G[v].size()){\n edge &e = G[v][i];\n if(e.cap>0 && dist[e.to]>dist[v]+e.cost+h[v]-h[e.to] + EPS){\n dist[e.to] = dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to] = v;\n preve[e.to] = i;\n pq.push(pd(dist[e.to],e.to));\n }\n }\n }\n\n // これ以上流せない\n if( abs(dist[t]-INF) < EPS) return -1;\n\n rep(v,V) h[v] += dist[v];\n\n // s-t間の最短路に沿って目一杯流す\n int d=f;\n for(int v=t; v!=s; v=prevv[v]){\n // dbg(v);\n d = min(d,G[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d*h[t];\n\n for(int v=t; v!=s; v=prevv[v]){\n edge &e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n return res;\n}\n\nusing pi = pair<int,int>;\n\n#define x first\n#define y second\n\npi READ(){\n int x,y;\n cin >>x >>y;\n return {x,y};\n}\n\ndouble calc(pi p, pi q){\n double dx = p.x-q.x;\n double dy = p.y-q.y;\n return sqrt(dx*dx + dy*dy);\n}\n\nint main(){\n int n;\n cin >>n;\n\n pi start = READ();\n\n vector<pi> s(n),t(n);\n rep(i,n){\n s[i] = READ();\n t[i] = READ();\n }\n\n double ans = 0;\n rep(i,n) ans += calc(s[i], t[i]);\n\n set<pi> pts;\n map<pi,int> indeg,outdeg;\n rep(i,n){\n ++indeg[t[i]];\n ++outdeg[s[i]];\n pts.insert(s[i]);\n pts.insert(t[i]);\n }\n\n vector<pi> aa,bb;\n for(pi p:pts){\n int d = indeg[p] - outdeg[p];\n if(d==0) continue;\n\n if(d>0) aa.pb(p);\n else bb.pb(p);\n }\n sort(all(aa));\n aa.erase(unique(all(aa)), aa.end());\n sort(all(bb));\n bb.erase(unique(all(bb)), bb.end());\n\n int A = aa.size(), B = bb.size();\n int S = A+B, T = S+1;\n V = A+B+2;\n int f = 0;\n for(pi p:pts){\n int d = indeg[p] - outdeg[p];\n if(d==0) continue;\n\n if(d>0){\n int idx = lower_bound(all(aa), p) - aa.begin();\n add_edge(S,idx,d,0);\n f += d;\n }\n else{\n int idx = lower_bound(all(bb), p) - bb.begin();\n add_edge(A+idx,T,-d,0);\n }\n }\n rep(i,A)rep(j,B){\n add_edge(i,A+j,f,calc(aa[i],bb[j]));\n }\n\n ans += min_cost_flow(S,T,f);\n printf(\"%.15f\\n\", ans);\n return 0;\n}", "accuracy": 1, "time_ms": 490, "memory_kb": 10184, "score_of_the_acc": -0.5074, "final_rank": 13 }, { "submission_id": "aoj_2724_2994942", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ld = long double;\nusing point = complex<ld>;\n\nconst ld eps = 1e-10;\nconst ld INF = 1e9;\n\nstruct edge {\n\tint to, cap;\n\tld cost;\n\tint rev;\n\tedge(int to_, int cap_, ld cost_, int rev_)\n\t\t: to(to_), cap(cap_), cost(cost_), rev(rev_) {}\n};\n\nconst int MAX = 10000;\n\nint V;\n\nvector<edge> G[MAX];\nld h[MAX], dist[MAX];\nint prevv[MAX], preve[MAX];\n\nvoid add(int from, int to, int cap, ld cost) {\n\tG[from].emplace_back(to, cap, cost, G[to].size());\n\tG[to].emplace_back(from, 0, -cost, G[from].size() - 1);\n}\n\nld calc(int s, int t, int f) {\n\tusing pii = pair<ld, int>;\n\tld res = 0;\n\tfill(h, h + V, 0);\n\twhile (f > 0) {\n\t\tpriority_queue<pii, vector<pii>, greater<pii>> que;\n\t\tfill(dist, dist + V, INF);\n\t\tdist[s] = 0;\n\t\tque.emplace(0, s);\n\t\twhile (!que.empty()) {\n\t\t\tpii p = que.top(); que.pop();\n\t\t\tint v = p.second;\n\t\t\tif (dist[v] < p.first) continue;\n\t\t\tfor (size_t i = 0; i < G[v].size(); i++) {\n\t\t\t\tedge &e = G[v][i];\n\t\t\t\tif (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to] + eps) {\n\t\t\t\t\tdist[e.to] = dist[v] + e.cost + h[v] - h[e.to];\n\t\t\t\t\tprevv[e.to] = v;\n\t\t\t\t\tpreve[e.to] = i;\n\t\t\t\t\tque.emplace(dist[e.to], e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tassert(dist[t] < INF / 2);\n\t\tfor (int v = 0; v < V; v++)\n\t\t\th[v] += dist[v];\n\t\tint d = f;\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\td = min(d, G[prevv[v]][preve[v]].cap);\n\t\t}\n\t\tf -= d;\n\t\tres += d * h[t];\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\tedge &e = G[prevv[v]][preve[v]];\n\t\t\te.cap -= d;\n\t\t\tG[v][e.rev].cap += d;\n\t\t}\n\t}\n\treturn res;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tcout << fixed << setprecision(10);\n\tint n;\n\tcin >> n;\n\tint sx, sy;\n\tcin >> sx >> sy;\n\tpoint s(sx, sy);\n\tld res = 0;\n\tvector<point> f(n), t(n);\n\tfor (int i = 0; i < n; i++) {\n\t\tint x, y;\n\t\tcin >> x >> y;\n\t\tf[i] = point(x, y);\n\t\tcin >> x >> y;\n\t\tt[i] = point(x, y);\n\t\tres += abs(f[i] - t[i]);\n\t}\n\tV = n * 2 + 2;\n\tint src = n * 2, sink = n * 2 + 1;\n\tfor (int i = 0; i < n; i++) {\n\t\tadd(src, n + i, 1, 0);\n\t\tadd(i, sink, 1, 0);\n\t}\n\tfor (int i = 0; i < n; i++) {\n\t\tfor (int j = 0; j < n; j++) {\n\t\t\tadd(n + i, j, 1, abs(t[i] - f[j]));\n\t\t}\n\t}\n\tres += calc(src, sink, n);\n\tcout << res << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 15336, "score_of_the_acc": -0.5052, "final_rank": 12 }, { "submission_id": "aoj_2724_2049085", "code_snippet": "#include<bits/stdc++.h>\n#define f first\n#define s second\n#define mp make_pair\n#define pi M_PI\n#define inf 1<<30\n#define eps (1e-11)\n#define MAX 700\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return (x!=p.x ? x<p.x : y<p.y);}\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nstruct edge{ \n int to,cap;\n double cost;\n int rev;\n};\n\nint v;\nvector<edge> e[MAX];\ndouble h[MAX];\ndouble dist[MAX];\nint prevv[MAX],preve[MAX];\n\nvoid add_edge(int from,int to,int cap,double cost){\n e[from].push_back((edge){to,cap,cost,(int)e[to].size()});\n e[to].push_back((edge){from,0,-cost,(int)e[from].size()-1});\n}\n\ntypedef pair<int,double> P;\n\ndouble min_cost_flow(int s,int t,int f){\n double res=0.0;\n fill(h,h+v,0);\n while(f>0){\n priority_queue<P,vector<P>,greater<P> > pq;\n fill(dist,dist+v,inf);\n dist[s]=0;\n pq.push(P(0,s));\n while(pq.size()){\n P p=pq.top();\n pq.pop();\n int u=p.second;\n if(dist[u]-p.first<-eps)continue;\n for(int i=0;i<e[u].size();i++){\n edge &E=e[u][i];\n if(E.cap>0 && (dist[u]+E.cost+h[u]-h[E.to])-dist[E.to]<-eps){\n dist[E.to]=dist[u]+E.cost+h[u]-h[E.to];\n prevv[E.to]=u;\n preve[E.to]=i;\n pq.push(P(dist[E.to],E.to));\n }\n }\n }\n if(dist[t]==inf)return -1;\n for(int i=0;i<v;i++)h[i]+=dist[i];\n\n int d=f;\n for(int u=t;u!=s;u=prevv[u]){\n d=min(d,e[prevv[u]][preve[u]].cap);\n }\n f-=d;\n res+=(double)d*h[t];\n for(int u=t;u!=s;u=prevv[u]){\n edge &E=e[prevv[u]][preve[u]];\n E.cap-=d;\n e[u][E.rev].cap+=d;\n }\n }\n return res;\n}\n\nint main()\n{\n\tint n;\n\tvector<Segment> vs,vt;\n vector<Point> ps;\n\tPoint st;\n\tdouble ans=0.0;\n\n cin>>n;\n cin>>st.x>>st.y;\n for(int i=0;i<n;i++){\n Point a,b;\n cin>>a.x>>a.y>>b.x>>b.y;\n Segment s(a,b);\n vt.push_back(Segment(a,b));\n ans+=abs(b-a);\n }\n int s=vt.size()*2;\n int t=s+1;\n v=t+1;\n for(int i=0;i<vt.size();i++){\n for(int j=0;j<vt.size();j++){ \n add_edge(i,j+vt.size(),1,abs(vt[i].p2-vt[j].p1));\n }\n }\n for(int i=0;i<vt.size();i++){\n add_edge(s,i,1,0);\n add_edge(i+vt.size(),t,1,0);\n }\n printf(\"%.10f\\n\",ans+min_cost_flow(s,t,vt.size()));\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 10240, "score_of_the_acc": -0.2641, "final_rank": 6 }, { "submission_id": "aoj_2724_2039920", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\ntypedef ld Weight;\nstruct Edge {\n\tint src, dest;\n\tint cap, rev;\n\tWeight weight;\n\tbool operator < (const Edge &rhs) const { return weight > rhs.weight; }\n};\n\n\n/* ??????????????¬ */\n\n#include <complex>\n\ntypedef complex<ld> Point;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define all(x) (x).begin(),(x).end()\n\n\nconst ld pi = acos(-1.0);\nconst ld dtop = pi / 180.;\nconst ld ptod = 1. / dtop;\n\nnamespace std {\n\tbool operator<(const Point &lhs, const Point &rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() > rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\n// ????????\\???\nPoint input_Point() {\n\tld x, y;\n\tcin >> x >> y;\n\treturn Point(x, y);\n}\n\n// ????????????????????????\nbool eq(const ld a, const ld b) {\n\treturn (abs(a - b) < eps);\n}\n\n// ??????\nld dot(const Point& a, const Point& b) {\n\treturn real(conj(a) * b);\n}\n\n// ??????\nld cross(const Point& a, const Point& b) {\n\treturn imag(conj(a) * b);\n}\n\n// ??´????????????\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() : a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) : a(a), b(b) {}\n\tPoint operator[](const int _num)const {\n\t\tif (_num == 0)return a;\n\t\telse if (_num == 1)return b;\n\t\telse {\n\t\t\tassert(false);\n\t\t\treturn Point();\n\t\t}\n\t}\n};\n\n// ????????????\nclass Circle {\npublic:\n\tPoint p;\n\tld r;\n\tCircle() : p(Point(0, 0)), r(0) {}\n\tCircle(Point p, ld r) : p(p), r(r) {}\n};\n\n// ccw\n// 1: a,b,c??????????¨???¨?????????????????¶\n//-1: a,b,c???????¨???¨?????????????????¶\n// 2: c,a,b???????????´???????????¶\n//-2: a,b,c???????????´???????????¶\n// 0: a,c,b???????????´???????????¶\nint ccw(const Point& a, const Point &b, const Point &c) {\n\tconst Point nb(b - a);\n\tconst Point nc(c - a);\n\tif (cross(nb, nc) > eps) return 1; // a,b,c??????????¨???¨?????????????????¶\n\tif (cross(nb, nc) < -eps) return -1; // a,b,c???????¨???¨?????????????????¶\n\tif (dot(nb, nc) < 0) return 2; // c,a,b???????????´???????????¶\n\tif (norm(nb) < norm(nc)) return -2; // a,b,c???????????´???????????¶\n\treturn 0; // a,c,b???????????´???????????¶\n}\n\n\n/* ???????????? */\n\n// ??´?????¨??´??????????????????\nbool isis_ll(const Line& l, const Line& m) {\n\treturn !eq(cross(l.b - l.a, m.b - m.a), 0);\n}\n\n// ??´?????¨?????????????????????\nbool isis_ls(const Line& l, const Line& s) {\n\treturn isis_ll(l, s) &&\n\t\t(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// ????????¨?????????????????????\nbool isis_ss(const Line& s, const Line& t) {\n\treturn ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n\t\tccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// ????????´????????????\nbool isis_lp(const Line& l, const Point& p) {\n\treturn (abs(cross(l.b - p, l.a - p)) < eps);\n}\n\n// ?????????????????????\nbool isis_sp(const Line& s, const Point& p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\n// ??????????¶?\nPoint proj(const Line &l, const Point& p) {\n\tld t = dot(p - l.a, l.b - l.a) / norm(l.a - l.b);\n\treturn l.a + t * (l.b - l.a);\n}\n\n//???????±??????????????????????\nPoint reflect(const Line &l, const Point &p) {\n\tPoint pr = proj(l, p);\n\treturn pr * 2.l - p;\n}\n\n// ??´?????¨??´????????????\nPoint is_ll(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tassert(cross(sv, tv) != 0);\n\treturn s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);\n}\n// ??´?????¨??´????????????\nvector<Point> is_ll2(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tif (cross(sv, tv) != 0)return vector<Point>(1, is_ll(s, t));\n\telse {\n\t\tvector<Point>ans;\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tif (isis_sp(s, t[k]) && find(ans.begin(), ans.end(), t[k]) == ans.end())ans.push_back(t[k]);\n\t\t\tif (isis_sp(t, s[k]) && find(ans.begin(), ans.end(), s[k]) == ans.end())ans.push_back(s[k]);\n\t\t}\n\t\treturn ans;\n\t}\n}\n// ????????¨???????????????\n//???????????£????????¨???????????¨assert(false)\nPoint is_ss(const Line &s, const Line& t) {\n\tif (isis_ss(s, t)) {\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tfor (int l = 0; l < 2; ++l) {\n\t\t\t\tif (s[k] == t[l])return s[k];\n\t\t\t}\n\t\t}\n\t\treturn is_ll(s, t);\n\t}\n\telse {\n\t\t//??????isis_ss?????????\n\t\tassert(false);\n\t\treturn Point(0, 0);\n\t}\n}\n// ????????¨???????????????\nvector<Point> is_ss2(const Line &s, const Line& t) {\n\tvector<Point> kouho(is_ll2(s, t));\n\tvector<Point>ans;\n\tfor (auto p : kouho) {\n\t\tif (isis_sp(s, p) && isis_sp(t, p))ans.emplace_back(p);\n\t}\n\treturn ans;\n}\n// ??´?????¨???????????¢\nld dist_lp(const Line& l, const Point& p) {\n\treturn abs(p - proj(l, p));\n}\n\n//??´?????¨??´???????????¢\nld dist_ll(const Line& l, const Line& m) {\n\treturn isis_ll(l, m) ? 0 : dist_lp(l, m.a);\n}\n\n// ??´?????¨??????????????¢\nld dist_ls(const Line& l, const Line& s) {\n\treturn isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\n\n// ????????¨???????????¢\nld dist_sp(const Line& s, const Point& p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\n// ????????¨??????????????¢\nld dist_ss(const Line& s, const Line& t) {\n\tif (isis_ss(s, t)) return 0;\n\treturn min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });\n}\n\n\n//??´?????¨??´?????????????????????????????????\nLine bisection(const Line &s, const Line &t) {\n\tconst Point laglanju(is_ll(s, t));\n\tconst Point avec = !(abs(laglanju - s[0])<eps) ? s[0] - laglanju : s[1] - laglanju;\n\tconst Point bvec = !(abs(laglanju - t[0])<eps) ? t[0] - laglanju : t[1] - laglanju;\n\n\treturn Line(laglanju, laglanju + (abs(bvec)*avec + abs(avec)*bvec) / (abs(avec) + abs(bvec)));\n}\n\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nPoint inner_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i <static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (vertics[0] == vertics[1] || vertics[1] == vertics[2] || vertics[2] == vertics[0])return vertics[0];\n\tLine bi1(bisection(Line(vertics[0], vertics[1]), Line(vertics[0], vertics[2])));\n\tLine bi2(bisection(Line(vertics[1], vertics[2]), Line(vertics[1], vertics[0])));\n\tif (bi1[0] == bi2[0])return bi1[0];\n\telse {\n\t\treturn is_ll(bi1, bi2);\n\t}\n}\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nvector<Point> ex_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i < static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (abs(vertics[0] - vertics[1])<eps || abs(vertics[1] - vertics[2])<eps || (abs(vertics[2] - vertics[0])<eps))return vector<Point>();\n\tvector<Point>ecs;\n\tfor (int i = 0; i < 3; ++i) {\n\t\tLine bi1(bisection(Line(vertics[i], vertics[i] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[i], vertics[(i + 1) % 3])));\n\t\tLine bi2(bisection(Line(vertics[(i + 1) % 3], vertics[(i + 1) % 3] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[(i + 1) % 3], vertics[i])));\n\t\tecs.push_back(is_ll(bi1, bi2));\n\t}\n\treturn ecs;\n}\n\n\n//a,b:??????\n//c:????????§??????\n//???????????´?????????????????¢?????????????±??????????\nvector<Point> same_dis(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tvertics.push_back(is_ll(ls[0], ls[2]));\n\tvertics.push_back(is_ll(ls[1], ls[2]));\n\n\tif (abs(vertics[0] - vertics[1]) < eps)return vector<Point>{vertics[0]};\n\tLine bis(bisection(ls[0], ls[1]));\n\tvector<Point>ecs;\n\n\tLine abi(bisection(Line(vertics[0], vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, abi));\n\n\n\tLine bbi(bisection(Line(vertics[0], 2.l*vertics[0] - vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, bbi));\n\n\treturn ecs;\n}\n/* ??? */\n\n// ?????¨????????????\nvector<Point> is_cc(const Circle& c1, const Circle& c2) {\n\tvector<Point> res;\n\tld d = abs(c1.p - c2.p);\n\tld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);\n\tld dfr = c1.r * c1.r - rc * rc;\n\tif (abs(dfr) < eps) dfr = 0.0;\n\telse if (dfr < 0.0) return res; // no intersection\n\tld rs = sqrt(dfr);\n\tPoint diff = (c2.p - c1.p) / d;\n\tres.push_back(c1.p + diff * Point(rc, rs));\n\tif (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));\n\treturn res;\n}\n\n//???????????????????????????\n/* 0 => out\n1 => on\n2 => in*/\nint is_in_Circle(const Circle &cir, const Point& p) {\n\tld dis = abs(cir.p - p);\n\tif (dis > cir.r + eps)return 0;\n\telse if (dis < cir.r - eps)return 2;\n\telse return 1;\n}\n//???lc??????rc??????????????????\n/*0 => out\n1 => on\n2 => in*/\nint Circle_in_Circle(const Circle &lc, const Circle&rc) {\n\tld dis = abs(lc.p - rc.p);\n\tif (dis < rc.r - lc.r - eps)return 2;\n\telse if (dis>rc.r - lc.r + eps)return 0;\n\telse return 1;\n}\n\n// ?????¨??´????????????\nvector<Point> is_lc(const Circle& c, const Line& l) {\n\tvector<Point> res;\n\tld d = dist_lp(l, c.p);\n\tif (d < c.r + eps) {\n\t\tld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;\n\t\tPoint nor = (l.a - l.b) / abs(l.a - l.b);\n\t\tres.push_back(proj(l, c.p) + len * nor);\n\t\tres.push_back(proj(l, c.p) - len * nor);\n\t}\n\treturn res;\n}\n\n// ?????¨??????????????¢\nvector<Point> is_sc(const Circle& c, const Line& l) {\n\tvector<Point> v = is_lc(c, l), res;\n\tfor (Point p : v)\n\t\tif (isis_sp(l, p)) res.push_back(p);\n\treturn res;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cp(const Circle& c, const Point& p) {\n\tvector<Line> ret;\n\tPoint v = c.p - p;\n\tld d = abs(v);\n\tld l = sqrt(norm(v) - c.r * c.r);\n\tif (isnan(l)) { return ret; }\n\tPoint v1 = v * Point(l / d, c.r / d);\n\tPoint v2 = v * Point(l / d, -c.r / d);\n\tret.push_back(Line(p, p + v1));\n\tif (l < eps) return ret;\n\tret.push_back(Line(p, p + v2));\n\treturn ret;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cc(const Circle& c1, const Circle& c2) {\n\tvector<Line> ret;\n\tif (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {\n\t\tPoint center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);\n\t\tret = tangent_cp(c1, center);\n\t}\n\tif (abs(c1.r - c2.r) > eps) {\n\t\tPoint out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);\n\t\tvector<Line> nret = tangent_cp(c1, out);\n\t\tret.insert(ret.end(), all(nret));\n\t}\n\telse {\n\t\tPoint v = c2.p - c1.p;\n\t\tv /= abs(v);\n\t\tPoint q1 = c1.p + v * Point(0, 1) * c1.r;\n\t\tPoint q2 = c1.p + v * Point(0, -1) * c1.r;\n\t\tret.push_back(Line(q1, q1 + v));\n\t\tret.push_back(Line(q2, q2 + v));\n\t}\n\treturn ret;\n}\n//??????????????????????????¢???\nld two_Circle_area(const Circle&l, const Circle&r) {\n\tld dis = abs(l.p - r.p);\n\tif (dis > l.r + r.r)return 0;\n\telse if (dis + r.r < l.r) {\n\t\treturn r.r*r.r*pi;\n\t}\n\telse if (dis + l.r < r.r) {\n\t\treturn l.r*l.r*pi;\n\t}\n\telse {\n\t\tld ans = (l.r)*(l.r)*acos((dis*dis + l.r*l.r - r.r*r.r) / (2 * dis*l.r)) +\n\t\t\t(r.r)*(r.r)*acos((dis*dis + r.r*r.r - l.r*l.r) / (2 * dis*r.r)) -\n\t\t\tsqrt(4 * dis*dis*l.r*l.r - (dis*dis + l.r*l.r - r.r*r.r)*(dis*dis + l.r*l.r - r.r*r.r)) / 2;\n\t\treturn ans;\n\t}\n\n}\n\n/* ????§???¢ */\n\ntypedef vector<Point> Polygon;\n\n// ??¢???\nld area(const Polygon &p) {\n\tld res = 0;\n\tint n = p.size();\n\trep(j, n) res += cross(p[j], p[(j + 1) % n]);\n\treturn res / 2;\n}\n\n//????§???¢????????¢??????\nbool is_counter_clockwise(const Polygon &poly) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];\n\t\tangle += arg((c - b) / (b - a));\n\t}\n\treturn angle > eps;\n}\n\n// ??????????????????\n/*0 => out\n1 => on\n2 => in*/\nint is_in_Polygon(const Polygon &poly, const Point& p) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n];\n\t\tif (isis_sp(Line(a, b), p)) return 1;\n\t\tangle += arg((b - p) / (a - p));\n\t}\n\treturn eq(angle, 0) ? 0 : 2;\n}\n//??????????????????2?????????\nenum { out, on, in };\nint convex_contains(const Polygon &P, const Point &p) {\n\tconst int n = P.size();\n\tPoint g = (P[0] + P[n / 3] + P[2 * n / 3]) / 3.0l; // inner-point\n\tint a = 0, b = n;\n\twhile (a + 1 < b) { // invariant: c is in fan g-P[a]-P[b]\n\t\tint c = (a + b) / 2;\n\t\tif (cross(P[a] - g, P[c] - g) > 0) { // angle < 180 deg\n\t\t\tif (cross(P[a] - g, p - g) > 0 && cross(P[c] - g, p - g) < 0) b = c;\n\t\t\telse a = c;\n\t\t}\n\t\telse {\n\t\t\tif (cross(P[a] - g, p - g) < 0 && cross(P[c] - g, p - g) > 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t}\n\tb %= n;\n\tif (cross(P[a] - p, P[b] - p) < 0) return 0;\n\tif (cross(P[a] - p, P[b] - p) > 0) return 2;\n\treturn 1;\n}\n\n// ??????\n//???????????????????????¨????????????????????§??¨???\nPolygon convex_hull(vector<Point> ps) {\n\tint n = ps.size();\n\tint k = 0;\n\tsort(ps.begin(), ps.end());\n\tPolygon ch(2 * n);\n\tfor (int i = 0; i < n; ch[k++] = ps[i++])\n\t\twhile (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tfor (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])\n\t\twhile (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tch.resize(k - 1);\n\treturn ch;\n}\n\n\n\n//????????????\nvector<Polygon> convex_cut(const Polygon &ps, const Line& l) {\n\tint n = ps.size();\n\tPolygon q;\n\tPolygon r;\n\trep(i, n) {\n\t\tPoint a = ps[i], b = ps[(i + 1) % n];\n\t\tLine m = Line(a, b);\n\t\tif (ccw(l.a, l.b, a) != -1) q.push_back(a);\n\t\tif (ccw(l.a, l.b, a) != 1) r.push_back(a);\n\t\tif (ccw(l.a, l.b, a) * ccw(l.a, l.b, b) < 0 && isis_ll(l, m)) {\n\t\t\tq.push_back(is_ll(l, m));\n\t\t\tr.push_back(is_ll(l, m));\n\t\t}\n\t}\n\tconst vector<Polygon>polys{ q,r };\n\treturn polys;\n}\n\n\n/* ??¢??¬??????????????? */\nvoid add_Point(vector<Point> &ps, const Point p) {\n\tfor (Point q : ps) if (abs(q - p) < eps) return;\n\tps.push_back(p);\n}\n\n\n\n\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\ntypedef vector<Weight> Array;\ntypedef vector<Array> Matrix;\n\nvoid add_edge(Graph &g, int src, int dest, int cap, Weight weight) {\n\tg[src].push_back(Edge{ src, dest, cap, (int)g[dest].size(), weight });\n\tg[dest].push_back(Edge{ dest, src, 0, (int)g[src].size() - 1, -weight });\n}\n\nGraph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {\n\tint n = p.size(), m = s.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) {\n\t\t\tif (isis_sp(s[i], p[j]))\n\t\t\t\tvec.emplace_back(abs(s[i].a - p[j]), j);\n\t\t}\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(abs(p[from] - p[to])));\n\t\t}\n\t}\n\treturn g;\n}\npair<vector<Point>,Graph> sennbunn_arrangement(const vector<Line>&s) {\n\tvector<Point>crss;\n\tfor (int i = 0; i < static_cast<int>(s.size()); ++i) {\n\t\tfor (int j = i + 1; j < static_cast<int>(s.size()); ++j) {\n\t\t\tif (isis_ss(s[i], s[j])) {\n\t\t\t\tcrss.push_back(is_ll2(s[i], s[j])[0]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i <static_cast<int>(s.size()); ++i) {\n\t\tcrss.push_back(s[i][0]);\n\t\tcrss.push_back(s[i][1]);\n\t}\n\tsort(crss.begin(), crss.end());\n\tcrss.erase(unique(crss.begin(), crss.end()), crss.end());\n\t\n\treturn make_pair(crss,segment_arrangement(s, crss));\n}\n\nGraph Circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {\n\tconst int n = p.size(), m = c.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)\n\t\t\tvec.emplace_back(arg(c[i].p - p[j]), j);\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tld angle = vec[j + 1].first - vec[j].first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t\tif (vec.size() >= 2) {\n\t\t\tint from = vec.back().second, to = vec.front().first;\n\t\t\tld angle = vec.front().first - vec.back().first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t}\n\treturn g;\n}\n\nconst int V = 1500;\nWeight h[V]; //??????????????£???\nWeight dist[V]; //???????????¢\nint prevv[V], preve[V]; //??´???????????¨??????\n\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\nconst Weight INF =1e18;\nWeight min_cost_flow(Graph &g, int s, int t, int f) {\n\tWeight res = 0;\n\tmemset(h, 0, sizeof(h));\n\ttypedef pair<Weight, int> P;\n\twhile (f > 0) {\n\t\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\tfill(dist, dist + V, INF);\n\t\tdist[s] = 0;\n\t\tque.push(P(0, s));\n\t\twhile (!que.empty()) {\n\t\t\tP p = que.top(); que.pop();\n\t\t\tint v = p.second;\n\t\t\tif (dist[v] < p.first) continue;\n\t\t\tREP(i, g[v].size()) {\n\t\t\t\tEdge &e = g[v][i];\n\t\t\t\tif (e.cap > 0 && dist[e.dest] > dist[v] + e.weight + h[v] - h[e.dest]+eps) {\n\t\t\t\t\tdist[e.dest] = dist[v] + e.weight + h[v] - h[e.dest];\n\t\t\t\t\tprevv[e.dest] = v;\n\t\t\t\t\tpreve[e.dest] = i;\n\t\t\t\t\tque.push(P(dist[e.dest], e.dest));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (dist[t] == INF) return -1;\n\t\tREP(v, V) h[v] =h[v]+ dist[v];\n\n\t\tint d = f;\n\t\tfor (int v = t; v != s; v = prevv[v]) d = min(d, g[prevv[v]][preve[v]].cap);\n\t\tf -= d;\n\t\tres = res+d * h[t];\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\tEdge &e = g[prevv[v]][preve[v]];\n\t\t\te.cap -= d;\n\t\t\tg[v][e.rev].cap += d;\n\t\t}\n\t}\n\treturn res;\n}\n\nint main() {\n\tint N; cin >> N;\n\tld sx, sy; cin >> sx >> sy;\n\tPoint sp;\n\tsp = Point(sx, sy);\n\tvector<Line>segs(N);\n\tld aans = 0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tld ax, ay, bx, by; cin >> ax >> ay >> bx >> by;\n\t\tsegs[i] = Line(Point(ax, ay), Point(bx, by));\n\t\taans += abs(segs[i].b - segs[i].a);\n\t}\n\tvector<pair<Point, Point>>pairs(N);\n\tfor (int i = 0; i < N; ++i) {\n\t\tpairs[i] = make_pair(segs[i].a, segs[i].b);\n\t}\n\n\tconst int start = 0;\n\tconst int in = start + 1;\n\tconst int out = in + pairs.size();\n\tconst int goal = out + pairs.size();\n\tGraph aft(goal + 1);\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\tfor (int j = 0; j < pairs.size(); ++j) {\n\t\t\tld dis= abs(pairs[i].second - pairs[j].first);\n\t\t\tadd_edge(aft, in + i, out + j, 1, dis);\n\t\t}\n\t}\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\t\n\t\tadd_edge(aft, start, in+i, 1, 0);\n\t\tadd_edge(aft, out+i, goal, 1, 0);\n\t\t\n\t}\n\taans=aans+ min_cost_flow(aft, start, goal, pairs.size());\n\tcout << fixed<<setprecision(22)<<aans << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 12032, "score_of_the_acc": -0.4029, "final_rank": 10 }, { "submission_id": "aoj_2724_2039914", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\ntypedef pair<ll, ll> P;\n\n#define EACH(i,a) for (auto& i : a)\n#define FOR(i,a,b) for (ll i=(a);i<(b);i++)\n#define RFOR(i,a,b) for (ll i=(b)-1;i>=(a);i--)\n#define REP(i,n) for (ll i=0;i<(n);i++)\n#define RREP(i,n) for (ll i=(n)-1;i>=0;i--)\n#define debug(x) cout<<#x<<\": \"<<x<<endl\n#define pb push_back\n#define ALL(a) (a).begin(),(a).end()\n\nconst ll linf = 1e18;\nconst int inf = 1e9;\nconst double eps = 1e-12;\nconst double pi = acos(-1);\n\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& vec) {\n EACH(x,vec) is >> x;\n return is;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, vector<T>& vec) {\n REP(i,vec.size()) {\n if (i) os << \" \";\n os << vec[i];\n }\n return os;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, vector< vector<T> >& vec) {\n REP(i,vec.size()) {\n if (i) os << endl;\n os << vec[i];\n }\n return os;\n}\n\ntypedef double Weight;\n\nstruct Edge {\n ll to, cap;\n Weight cost;\n ll rev;\n};\n\nvector< vector<Edge> > G;\n\nvoid add_edge(ll from, ll to, ll cap, Weight cost) {\n if (from < 0 || to < 0) return;\n G[from].push_back({to, cap, cost, (ll)G[to].size()});\n G[to].push_back({from, 0, -cost, (ll)G[from].size()-1});\n}\n\nWeight dist[21000], h[21000] = {0};\nll prevV[21000], prevE[21000];\ndouble min_cost_flow(ll s, ll t, ll f) {\n typedef pair<Weight, ll> _P;\n Weight res = 0;\n while (f > 0) {\n fill_n(dist, 21000, inf); dist[s] = 0;\n priority_queue<_P, vector<_P>, greater<_P> > Q; Q.push({0, s});\n while ( !Q.empty() ) {\n _P p = Q.top(); Q.pop();\n ll v = p.second;\n if (p.first > dist[v]) continue;\n REP(i, G[v].size()) {\n Edge& e = G[v][i];\n if (e.cap > 0 && dist[v]+e.cost+h[v]-h[e.to]+eps < dist[e.to]) {\n dist[e.to] = dist[v]+e.cost+h[v]-h[e.to];\n prevV[e.to] = v;\n prevE[e.to] = i;\n Q.push({dist[e.to], e.to});\n }\n }\n }\n REP(i, G.size()) h[i] += dist[i];\n\n if (abs(dist[t]-inf) < eps) {\n cout << \"ERROR\" << endl;\n exit(1);\n }\n\n ll d = f;\n for (ll v = t; v != s; v = prevV[v]) {\n d = min(d, G[prevV[v]][prevE[v]].cap);\n }\n f -= d;\n res += d * h[t];\n for (ll v = t; v != s; v = prevV[v]) {\n Edge& e = G[prevV[v]][prevE[v]];\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n }\n }\n return res;\n}\n\ntypedef complex<double> Point;\ntemplate <typename T>\nistream& operator>>(istream& is, complex<T>& p) {\n T x, y; is >> x >> y;\n p = {x, y};\n return is;\n}\n\nint main() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(0);\n int n; cin >> n;\n Point sp; cin >> sp;\n vector<pair<Point,Point>> v(n);\n REP(i, n) cin >> v[i].first >> v[i].second;\n double ans = 0;\n REP(i, n) ans += abs(v[i].second-v[i].first);\n int lid = 0;\n vector<int> fid(n), tid(n);\n REP(i, n) fid[i] = lid++;\n REP(i, n) tid[i] = lid++;\n int s = lid++, t = lid++;\n G.clear(); G.resize(lid);\n REP(i, n) REP(j, n) {\n double cost = abs(v[i].second-v[j].first);\n add_edge(fid[i], tid[j], 1, cost);\n }\n REP(i, n) add_edge(s, fid[i], 1, 0);\n REP(i, n) add_edge(tid[i], t, 1, 0);\n ans += min_cost_flow(s, t, n);\n cout << fixed << setprecision(10) << ans << endl;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 12312, "score_of_the_acc": -0.3335, "final_rank": 8 }, { "submission_id": "aoj_2724_2039913", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\ntypedef pair<ll, ll> P;\n\n#define EACH(i,a) for (auto& i : a)\n#define FOR(i,a,b) for (ll i=(a);i<(b);i++)\n#define RFOR(i,a,b) for (ll i=(b)-1;i>=(a);i--)\n#define REP(i,n) for (ll i=0;i<(n);i++)\n#define RREP(i,n) for (ll i=(n)-1;i>=0;i--)\n#define debug(x) cout<<#x<<\": \"<<x<<endl\n#define pb push_back\n#define ALL(a) (a).begin(),(a).end()\n\nconst ll linf = 1e18;\nconst int inf = 1e9;\nconst double eps = 1e-12;\nconst double pi = acos(-1);\n\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& vec) {\n EACH(x,vec) is >> x;\n return is;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, vector<T>& vec) {\n REP(i,vec.size()) {\n if (i) os << \" \";\n os << vec[i];\n }\n return os;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, vector< vector<T> >& vec) {\n REP(i,vec.size()) {\n if (i) os << endl;\n os << vec[i];\n }\n return os;\n}\n\ntypedef double Weight;\n\nstruct Edge {\n ll to, cap;\n Weight cost;\n ll rev;\n};\n\nvector< vector<Edge> > G;\n\nvoid add_edge(ll from, ll to, ll cap, Weight cost) {\n if (from < 0 || to < 0) return;\n G[from].push_back({to, cap, cost, (ll)G[to].size()});\n G[to].push_back({from, 0, -cost, (ll)G[from].size()-1});\n}\n\nWeight dist[21000], h[21000] = {0};\nll prevV[21000], prevE[21000];\ndouble min_cost_flow(ll s, ll t, ll f) {\n typedef pair<Weight, ll> _P;\n Weight res = 0;\n while (f > 0) {\n fill_n(dist, 21000, inf); dist[s] = 0;\n priority_queue<_P, vector<_P>, greater<_P> > Q; Q.push({0, s});\n while ( !Q.empty() ) {\n _P p = Q.top(); Q.pop();\n ll v = p.second;\n if (p.first > dist[v]) continue;\n REP(i, G[v].size()) {\n Edge& e = G[v][i];\n if (e.cap > eps && dist[v]+e.cost+h[v]-h[e.to]+eps < dist[e.to]) {\n dist[e.to] = dist[v]+e.cost+h[v]-h[e.to];\n prevV[e.to] = v;\n prevE[e.to] = i;\n Q.push({dist[e.to], e.to});\n }\n }\n }\n REP(i, G.size()) h[i] += dist[i];\n\n if (abs(dist[t]-inf) < eps) {\n cout << \"ERROR\" << endl;\n exit(1);\n }\n\n ll d = f;\n for (ll v = t; v != s; v = prevV[v]) {\n d = min(d, G[prevV[v]][prevE[v]].cap);\n }\n f -= d;\n res += d * h[t];\n for (ll v = t; v != s; v = prevV[v]) {\n Edge& e = G[prevV[v]][prevE[v]];\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n }\n }\n return res;\n}\n\ntypedef complex<double> Point;\ntemplate <typename T>\nistream& operator>>(istream& is, complex<T>& p) {\n T x, y; is >> x >> y;\n p = {x, y};\n return is;\n}\n\nint main() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(0);\n int n; cin >> n;\n Point sp; cin >> sp;\n vector<pair<Point,Point>> v(n);\n REP(i, n) cin >> v[i].first >> v[i].second;\n double ans = 0;\n REP(i, n) ans += abs(v[i].second-v[i].first);\n int lid = 0;\n vector<int> fid(n), tid(n);\n REP(i, n) fid[i] = lid++;\n REP(i, n) tid[i] = lid++;\n int s = lid++, t = lid++;\n G.clear(); G.resize(lid);\n REP(i, n) REP(j, n) {\n double cost = abs(v[i].second-v[j].first);\n add_edge(fid[i], tid[j], 1, cost);\n }\n REP(i, n) add_edge(s, fid[i], 1, 0);\n REP(i, n) add_edge(tid[i], t, 1, 0);\n ans += min_cost_flow(s, t, n);\n cout << fixed << setprecision(10) << ans << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 12312, "score_of_the_acc": -0.3405, "final_rank": 9 }, { "submission_id": "aoj_2724_2039881", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\ntypedef ld Weight;\nstruct Edge {\n\tint src, dest;\n\tint cap, rev;\n\tWeight weight;\n\tbool operator < (const Edge &rhs) const { return weight > rhs.weight; }\n};\n\n\n/* テ・ツケツセテ、ツスツ陛」ツ?ョテ・ツ淞コテヲツ慊ャ */\n\n#include <complex>\n\ntypedef complex<ld> Point;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define all(x) (x).begin(),(x).end()\n\n\nconst ld pi = acos(-1.0);\nconst ld dtop = pi / 180.;\nconst ld ptod = 1. / dtop;\n\nnamespace std {\n\tbool operator<(const Point &lhs, const Point &rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() > rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\n// テァツつケテ」ツ?ョテ・ツ?・テ・ツ環?\nPoint input_Point() {\n\tld x, y;\n\tcin >> x >> y;\n\treturn Point(x, y);\n}\n\n// ティツェツ、テ・ツキツョテ」ツ?、テ」ツ?催ァツュツ嘉・ツ渉キテ・ツ按、テ・ツョツ?\nbool eq(const ld a, const ld b) {\n\treturn (abs(a - b) < eps);\n}\n\n// テ・ツ??ァツゥツ?\nld dot(const Point& a, const Point& b) {\n\treturn real(conj(a) * b);\n}\n\n// テ・ツ、ツ姪ァツゥツ?\nld cross(const Point& a, const Point& b) {\n\treturn imag(conj(a) * b);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ョテ・ツョツ堙ァツセツゥ\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() : a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) : a(a), b(b) {}\n\tPoint operator[](const int _num)const {\n\t\tif (_num == 0)return a;\n\t\telse if (_num == 1)return b;\n\t\telse {\n\t\t\tassert(false);\n\t\t\treturn Point();\n\t\t}\n\t}\n};\n\n// テ・ツ??」ツ?ョテ・ツョツ堙ァツセツゥ\nclass Circle {\npublic:\n\tPoint p;\n\tld r;\n\tCircle() : p(Point(0, 0)), r(0) {}\n\tCircle(Point p, ld r) : p(p), r(r) {}\n};\n\n// ccw\n// 1: a,b,cテ」ツ?古・ツ渉催ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n//-1: a,b,cテ」ツ?古ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n// 2: c,a,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n//-2: a,b,cテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n// 0: a,c,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\nint ccw(const Point& a, const Point &b, const Point &c) {\n\tconst Point nb(b - a);\n\tconst Point nc(c - a);\n\tif (cross(nb, nc) > eps) return 1; // a,b,cテ」ツ?古・ツ渉催ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (cross(nb, nc) < -eps) return -1; // a,b,cテ」ツ?古ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (dot(nb, nc) < 0) return 2; // c,a,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (norm(nb) < norm(nc)) return -2; // a,b,cテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n\treturn 0; // a,c,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n}\n\n\n/* テ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?*/\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ll(const Line& l, const Line& m) {\n\treturn !eq(cross(l.b - l.a, m.b - m.a), 0);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ls(const Line& l, const Line& s) {\n\treturn isis_ll(l, s) &&\n\t\t(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ss(const Line& s, const Line& t) {\n\treturn ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n\t\tccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// テァツつケテ」ツ?ョテァツ崢エテァツキツ堙、ツクツ甘・ツ按、テ・ツョツ?\nbool isis_lp(const Line& l, const Point& p) {\n\treturn (abs(cross(l.b - p, l.a - p)) < eps);\n}\n\n// テァツつケテ」ツ?ョテァツキツ堙・ツ按?、ツクツ甘・ツ按、テ・ツョツ?\nbool isis_sp(const Line& s, const Point& p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\n// テ・ツ楪づァツキツ堙」ツ?ョティツカツウ\nPoint proj(const Line &l, const Point& p) {\n\tld t = dot(p - l.a, l.b - l.a) / norm(l.a - l.b);\n\treturn l.a + t * (l.b - l.a);\n}\n\n//テァツキツ堙・ツッツセティツアツ。テ」ツ?ョテ、ツスツ催ァツスツョテ」ツ?ォテ」ツ?づ」ツつ凝ァツつケ\nPoint reflect(const Line &l, const Point &p) {\n\tPoint pr = proj(l, p);\n\treturn pr * 2.l - p;\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nPoint is_ll(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tassert(cross(sv, tv) != 0);\n\treturn s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);\n}\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_ll2(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tif (cross(sv, tv) != 0)return vector<Point>(1, is_ll(s, t));\n\telse {\n\t\tvector<Point>ans;\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tif (isis_sp(s, t[k]) && find(ans.begin(), ans.end(), t[k]) == ans.end())ans.push_back(t[k]);\n\t\t\tif (isis_sp(t, s[k]) && find(ans.begin(), ans.end(), s[k]) == ans.end())ans.push_back(s[k]);\n\t\t}\n\t\treturn ans;\n\t}\n}\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テァツつケ\n//テ」ツ??ゥツ?催」ツ?ェテ」ツ?」テ」ツ?ヲテ」ツつ凝ゥツδィテ・ツ按?」ツ?づ」ツつ凝」ツ?ィassert(false)\nPoint is_ss(const Line &s, const Line& t) {\n\tif (isis_ss(s, t)) {\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tfor (int l = 0; l < 2; ++l) {\n\t\t\t\tif (s[k] == t[l])return s[k];\n\t\t\t}\n\t\t}\n\t\treturn is_ll(s, t);\n\t}\n\telse {\n\t\t//テ・ツ?暗」ツ?ォisis_ssテ」ツ?療」ツ?ヲテ」ツ?ュ\n\t\tassert(false);\n\t\treturn Point(0, 0);\n\t}\n}\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_ss2(const Line &s, const Line& t) {\n\tvector<Point> kouho(is_ll2(s, t));\n\tvector<Point>ans;\n\tfor (auto p : kouho) {\n\t\tif (isis_sp(s, p) && isis_sp(t, p))ans.emplace_back(p);\n\t}\n\treturn ans;\n}\n// テァツ崢エテァツキツ堙」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「\nld dist_lp(const Line& l, const Point& p) {\n\treturn abs(p - proj(l, p));\n}\n\n//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョティツキツ敕ゥツ崢「\nld dist_ll(const Line& l, const Line& m) {\n\treturn isis_ll(l, m) ? 0 : dist_lp(l, m.a);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nld dist_ls(const Line& l, const Line& s) {\n\treturn isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「\nld dist_sp(const Line& s, const Point& p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nld dist_ss(const Line& s, const Line& t) {\n\tif (isis_ss(s, t)) return 0;\n\treturn min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });\n}\n\n\n//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ古ァツュツ嘉・ツ按?ァツキツ堙」ツ?ョテ」ツδ凖」ツつッテ」ツδ暗」ツδォ\nLine bisection(const Line &s, const Line &t) {\n\tconst Point laglanju(is_ll(s, t));\n\tconst Point avec = !(abs(laglanju - s[0])<eps) ? s[0] - laglanju : s[1] - laglanju;\n\tconst Point bvec = !(abs(laglanju - t[0])<eps) ? t[0] - laglanju : t[1] - laglanju;\n\n\treturn Line(laglanju, laglanju + (abs(bvec)*avec + abs(avec)*bvec) / (abs(avec) + abs(bvec)));\n}\n\n\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉」ツ?ェテ」ツつ凝・ツ??・ツソツ?\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?古、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??」ツ?禿」ツ?ィテ」ツ?ッテァツ「ツコテ」ツ?凝」ツつ?」ツ?ィテ」ツ??」ツ?ヲテ」ツ?ュ\nPoint inner_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i <static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (vertics[0] == vertics[1] || vertics[1] == vertics[2] || vertics[2] == vertics[0])return vertics[0];\n\tLine bi1(bisection(Line(vertics[0], vertics[1]), Line(vertics[0], vertics[2])));\n\tLine bi2(bisection(Line(vertics[1], vertics[2]), Line(vertics[1], vertics[0])));\n\tif (bi1[0] == bi2[0])return bi1[0];\n\telse {\n\t\treturn is_ll(bi1, bi2);\n\t}\n}\n\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉」ツ?ェテ」ツつ凝・ツつ催・ツソツ?\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?古、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??」ツ?禿」ツ?ィテ」ツ?ッテァツ「ツコテ」ツ?凝」ツつ?」ツ?ィテ」ツ??」ツ?ヲテ」ツ?ュ\nvector<Point> ex_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i < static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (abs(vertics[0] - vertics[1])<eps || abs(vertics[1] - vertics[2])<eps || (abs(vertics[2] - vertics[0])<eps))return vector<Point>();\n\tvector<Point>ecs;\n\tfor (int i = 0; i < 3; ++i) {\n\t\tLine bi1(bisection(Line(vertics[i], vertics[i] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[i], vertics[(i + 1) % 3])));\n\t\tLine bi2(bisection(Line(vertics[(i + 1) % 3], vertics[(i + 1) % 3] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[(i + 1) % 3], vertics[i])));\n\t\tecs.push_back(is_ll(bi1, bi2));\n\t}\n\treturn ecs;\n}\n\n\n//a,b:テ、ツクツヲティツ。ツ?\n//c:テ、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉・ツ青古ィツキツ敕ゥツ崢「テ」ツ?ョテ、ツスツ催ァツスツョテ」ツつ津ヲツアツづ」ツつ?」ツつ凝」ツ??\nvector<Point> same_dis(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tvertics.push_back(is_ll(ls[0], ls[2]));\n\tvertics.push_back(is_ll(ls[1], ls[2]));\n\n\tif (abs(vertics[0] - vertics[1]) < eps)return vector<Point>{vertics[0]};\n\tLine bis(bisection(ls[0], ls[1]));\n\tvector<Point>ecs;\n\n\tLine abi(bisection(Line(vertics[0], vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, abi));\n\n\n\tLine bbi(bisection(Line(vertics[0], 2.l*vertics[0] - vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, bbi));\n\n\treturn ecs;\n}\n/* テ・ツ??*/\n\n// テ・ツ??」ツ?ィテ・ツ??」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_cc(const Circle& c1, const Circle& c2) {\n\tvector<Point> res;\n\tld d = abs(c1.p - c2.p);\n\tld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);\n\tld dfr = c1.r * c1.r - rc * rc;\n\tif (abs(dfr) < eps) dfr = 0.0;\n\telse if (dfr < 0.0) return res; // no intersection\n\tld rs = sqrt(dfr);\n\tPoint diff = (c2.p - c1.p) / d;\n\tres.push_back(c1.p + diff * Point(rc, rs));\n\tif (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));\n\treturn res;\n}\n\n//テァツつケテ」ツ?古・ツ??」ツ?ョテ、ツクツュテ」ツ?ォテ」ツ??」ツつ凝」ツ??\n/* 0 => out\n1 => on\n2 => in*/\nint is_in_Circle(const Circle &cir, const Point& p) {\n\tld dis = abs(cir.p - p);\n\tif (dis > cir.r + eps)return 0;\n\telse if (dis < cir.r - eps)return 2;\n\telse return 1;\n}\n//テ・ツ??cテ」ツ?古・ツ??cテ」ツ?ョテ、ツクツュテ」ツ?ォテ」ツ??」ツつ凝」ツ??\n/*0 => out\n1 => on\n2 => in*/\nint Circle_in_Circle(const Circle &lc, const Circle&rc) {\n\tld dis = abs(lc.p - rc.p);\n\tif (dis < rc.r - lc.r - eps)return 2;\n\telse if (dis>rc.r - lc.r + eps)return 0;\n\telse return 1;\n}\n\n// テ・ツ??」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_lc(const Circle& c, const Line& l) {\n\tvector<Point> res;\n\tld d = dist_lp(l, c.p);\n\tif (d < c.r + eps) {\n\t\tld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;\n\t\tPoint nor = (l.a - l.b) / abs(l.a - l.b);\n\t\tres.push_back(proj(l, c.p) + len * nor);\n\t\tres.push_back(proj(l, c.p) - len * nor);\n\t}\n\treturn res;\n}\n\n// テ・ツ??」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nvector<Point> is_sc(const Circle& c, const Line& l) {\n\tvector<Point> v = is_lc(c, l), res;\n\tfor (Point p : v)\n\t\tif (isis_sp(l, p)) res.push_back(p);\n\treturn res;\n}\n\n// テ・ツ??」ツ?ィテァツつケテ」ツ?ョテヲツ篠・テァツキツ?\nvector<Line> tangent_cp(const Circle& c, const Point& p) {\n\tvector<Line> ret;\n\tPoint v = c.p - p;\n\tld d = abs(v);\n\tld l = sqrt(norm(v) - c.r * c.r);\n\tif (isnan(l)) { return ret; }\n\tPoint v1 = v * Point(l / d, c.r / d);\n\tPoint v2 = v * Point(l / d, -c.r / d);\n\tret.push_back(Line(p, p + v1));\n\tif (l < eps) return ret;\n\tret.push_back(Line(p, p + v2));\n\treturn ret;\n}\n\n// テ・ツ??」ツ?ィテ・ツ??」ツ?ョテヲツ篠・テァツキツ?\nvector<Line> tangent_cc(const Circle& c1, const Circle& c2) {\n\tvector<Line> ret;\n\tif (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {\n\t\tPoint center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);\n\t\tret = tangent_cp(c1, center);\n\t}\n\tif (abs(c1.r - c2.r) > eps) {\n\t\tPoint out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);\n\t\tvector<Line> nret = tangent_cp(c1, out);\n\t\tret.insert(ret.end(), all(nret));\n\t}\n\telse {\n\t\tPoint v = c2.p - c1.p;\n\t\tv /= abs(v);\n\t\tPoint q1 = c1.p + v * Point(0, 1) * c1.r;\n\t\tPoint q2 = c1.p + v * Point(0, -1) * c1.r;\n\t\tret.push_back(Line(q1, q1 + v));\n\t\tret.push_back(Line(q2, q2 + v));\n\t}\n\treturn ret;\n}\n//テ、ツコツ古」ツ?、テ」ツ?ョテ・ツ??」ツ?ョテゥツ?催」ツ?ェテ」ツつ甘ゥツ敖「テァツゥツ?\nld two_Circle_area(const Circle&l, const Circle&r) {\n\tld dis = abs(l.p - r.p);\n\tif (dis > l.r + r.r)return 0;\n\telse if (dis + r.r < l.r) {\n\t\treturn r.r*r.r*pi;\n\t}\n\telse if (dis + l.r < r.r) {\n\t\treturn l.r*l.r*pi;\n\t}\n\telse {\n\t\tld ans = (l.r)*(l.r)*acos((dis*dis + l.r*l.r - r.r*r.r) / (2 * dis*l.r)) +\n\t\t\t(r.r)*(r.r)*acos((dis*dis + r.r*r.r - l.r*l.r) / (2 * dis*r.r)) -\n\t\t\tsqrt(4 * dis*dis*l.r*l.r - (dis*dis + l.r*l.r - r.r*r.r)*(dis*dis + l.r*l.r - r.r*r.r)) / 2;\n\t\treturn ans;\n\t}\n\n}\n\n/* テ・ツ、ツ堙ィツァツ津・ツスツ「 */\n\ntypedef vector<Point> Polygon;\n\n// テゥツ敖「テァツゥツ?\nld area(const Polygon &p) {\n\tld res = 0;\n\tint n = p.size();\n\trep(j, n) res += cross(p[j], p[(j + 1) % n]);\n\treturn res / 2;\n}\n\n//テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ・ツ崢榲ィツサツ「テヲツ鳴ケテ・ツ青?\nbool is_counter_clockwise(const Polygon &poly) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];\n\t\tangle += arg((c - b) / (b - a));\n\t}\n\treturn angle > eps;\n}\n\n// テ・ツ??」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?\n/*0 => out\n1 => on\n2 => in*/\nint is_in_Polygon(const Polygon &poly, const Point& p) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n];\n\t\tif (isis_sp(Line(a, b), p)) return 1;\n\t\tangle += arg((b - p) / (a - p));\n\t}\n\treturn eq(angle, 0) ? 0 : 2;\n}\n//テ・ツ??」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?テ」ツ??ゥツォツ佚ゥツ??\nenum { out, on, in };\nint convex_contains(const Polygon &P, const Point &p) {\n\tconst int n = P.size();\n\tPoint g = (P[0] + P[n / 3] + P[2 * n / 3]) / 3.0l; // inner-point\n\tint a = 0, b = n;\n\twhile (a + 1 < b) { // invariant: c is in fan g-P[a]-P[b]\n\t\tint c = (a + b) / 2;\n\t\tif (cross(P[a] - g, P[c] - g) > 0) { // angle < 180 deg\n\t\t\tif (cross(P[a] - g, p - g) > 0 && cross(P[c] - g, p - g) < 0) b = c;\n\t\t\telse a = c;\n\t\t}\n\t\telse {\n\t\t\tif (cross(P[a] - g, p - g) < 0 && cross(P[c] - g, p - g) > 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t}\n\tb %= n;\n\tif (cross(P[a] - p, P[b] - p) < 0) return 0;\n\tif (cross(P[a] - p, P[b] - p) > 0) return 2;\n\treturn 1;\n}\n\n// テ・ツ?クテ・ツ個?\n//テァツつケテ」ツつ?ァツキツ堙」ツつ津ィツソツ氾」ツ?凖」ツ?禿」ツ?ィテ」ツつづヲツ慊嘉」ツつ甘・ツセツ療」ツつ凝」ツ?ョテ」ツ?ァテヲツウツィテヲツ??\nPolygon convex_hull(vector<Point> ps) {\n\tint n = ps.size();\n\tint k = 0;\n\tsort(ps.begin(), ps.end());\n\tPolygon ch(2 * n);\n\tfor (int i = 0; i < n; ch[k++] = ps[i++])\n\t\twhile (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tfor (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])\n\t\twhile (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tch.resize(k - 1);\n\treturn ch;\n}\n\n\n\n//テ・ツ?クテ」ツつォテ」ツδε」ツδ?\nvector<Polygon> convex_cut(const Polygon &ps, const Line& l) {\n\tint n = ps.size();\n\tPolygon q;\n\tPolygon r;\n\trep(i, n) {\n\t\tPoint a = ps[i], b = ps[(i + 1) % n];\n\t\tLine m = Line(a, b);\n\t\tif (ccw(l.a, l.b, a) != -1) q.push_back(a);\n\t\tif (ccw(l.a, l.b, a) != 1) r.push_back(a);\n\t\tif (ccw(l.a, l.b, a) * ccw(l.a, l.b, b) < 0 && isis_ll(l, m)) {\n\t\t\tq.push_back(is_ll(l, m));\n\t\t\tr.push_back(is_ll(l, m));\n\t\t}\n\t}\n\tconst vector<Polygon>polys{ q,r };\n\treturn polys;\n}\n\n\n/* テ」ツつ「テ」ツδャテ」ツδウテ」ツつクテ」ツδ。テ」ツδウテ」ツδ?*/\nvoid add_Point(vector<Point> &ps, const Point p) {\n\tfor (Point q : ps) if (abs(q - p) < eps) return;\n\tps.push_back(p);\n}\n\n\n\n\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\ntypedef vector<Weight> Array;\ntypedef vector<Array> Matrix;\n\nvoid add_edge(Graph &g, int src, int dest, int cap, Weight weight) {\n\tg[src].push_back(Edge{ src, dest, cap, (int)g[dest].size(), weight });\n\tg[dest].push_back(Edge{ dest, src, 0, (int)g[src].size() - 1, -weight });\n}\n\nGraph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {\n\tint n = p.size(), m = s.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) {\n\t\t\tif (isis_sp(s[i], p[j]))\n\t\t\t\tvec.emplace_back(abs(s[i].a - p[j]), j);\n\t\t}\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(abs(p[from] - p[to])));\n\t\t}\n\t}\n\treturn g;\n}\npair<vector<Point>,Graph> sennbunn_arrangement(const vector<Line>&s) {\n\tvector<Point>crss;\n\tfor (int i = 0; i < static_cast<int>(s.size()); ++i) {\n\t\tfor (int j = i + 1; j < static_cast<int>(s.size()); ++j) {\n\t\t\tif (isis_ss(s[i], s[j])) {\n\t\t\t\tcrss.push_back(is_ll2(s[i], s[j])[0]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i <static_cast<int>(s.size()); ++i) {\n\t\tcrss.push_back(s[i][0]);\n\t\tcrss.push_back(s[i][1]);\n\t}\n\tsort(crss.begin(), crss.end());\n\tcrss.erase(unique(crss.begin(), crss.end()), crss.end());\n\t\n\treturn make_pair(crss,segment_arrangement(s, crss));\n}\n\nGraph Circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {\n\tconst int n = p.size(), m = c.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)\n\t\t\tvec.emplace_back(arg(c[i].p - p[j]), j);\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tld angle = vec[j + 1].first - vec[j].first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t\tif (vec.size() >= 2) {\n\t\t\tint from = vec.back().second, to = vec.front().first;\n\t\t\tld angle = vec.front().first - vec.back().first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t}\n\treturn g;\n}\n\nconst int V = 1000;\nWeight h[V]; //テ」ツδ敕」ツδ?」ツδウテ」ツつキテ」ツδ」テ」ツδォ\nWeight dist[V]; //テヲツ慊?ァツ淞ュティツキツ敕ゥツ崢「\nint prevv[V], preve[V]; //テァツ崢エテ・ツ可催」ツ?ョティツセツコテ」ツ?ィテゥツ?づァツつケ\n\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\nconst Weight INF =1e18;\nWeight min_cost_flow(Graph &g, int s, int t, int f) {\n\tWeight res = 0;\n\tmemset(h, 0, sizeof(h));\n\ttypedef pair<Weight, int> P;\n\twhile (f > 0) {\n\t\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\tfill(dist, dist + V, INF);\n\t\tdist[s] = 0;\n\t\tque.push(P(0, s));\n\t\twhile (!que.empty()) {\n\t\t\tP p = que.top(); que.pop();\n\t\t\tint v = p.second;\n\t\t\tif (dist[v] < p.first) continue;\n\t\t\tREP(i, g[v].size()) {\n\t\t\t\tEdge &e = g[v][i];\n\t\t\t\tif (e.cap > 0 && dist[e.dest] > dist[v] + e.weight + h[v] - h[e.dest]) {\n\t\t\t\t\tdist[e.dest] = dist[v] + e.weight + h[v] - h[e.dest];\n\t\t\t\t\tprevv[e.dest] = v;\n\t\t\t\t\tpreve[e.dest] = i;\n\t\t\t\t\tque.push(P(dist[e.dest], e.dest));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (dist[t] == INF) return -1;\n\t\tREP(v, V) h[v] =h[v]+ dist[v];\n\n\t\tint d = f;\n\t\tfor (int v = t; v != s; v = prevv[v]) d = min(d, g[prevv[v]][preve[v]].cap);\n\t\tf -= d;\n\t\tres = res+d * h[t];\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\tEdge &e = g[prevv[v]][preve[v]];\n\t\t\te.cap -= d;\n\t\t\tg[v][e.rev].cap += d;\n\t\t}\n\t}\n\treturn res;\n}\n\nint main() {\n\tint N; cin >> N;\n\tld sx, sy; cin >> sx >> sy;\n\tPoint sp;\n\tsp = Point(sx, sy);\n\tvector<Line>segs(N);\n\tld aans = 0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tld ax, ay, bx, by; cin >> ax >> ay >> bx >> by;\n\t\tsegs[i] = Line(Point(ax, ay), Point(bx, by));\n\t\taans += abs(segs[i].b - segs[i].a);\n\t}\n\tauto p= sennbunn_arrangement(segs);\n\tvector<Point>ps(p.first);\n\tGraph ori = p.second;\n\t\n\tvector<pair<Point, Point>>pairs;\n\tfor (Edges& es : ori) {\n\t\tfor ( Edge& e : es) {\n\t\t\tconst int src = e.src;\n\t\t\tconst int dst = e.dest;\n\t\t\tfor (int i = 0; i < N; ++i) {\n\t\t\t\tif (isis_lp(segs[i], ps[src]) && isis_lp(segs[i], ps[dst])) {\n\t\t\t\t\tif (abs(ps[dst] - segs[i].a)>abs(ps[src] - segs[i].a)) {\n\t\t\t\t\t\tpairs.push_back(make_pair(ps[src], ps[dst]));\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tsort(pairs.begin(), pairs.end());\n\tpairs.erase(unique(pairs.begin(), pairs.end()), pairs.end());\n\tconst int start = 0;\n\tconst int in = start + 1;\n\tconst int out = in + pairs.size();\n\tconst int goal = out + pairs.size();\n\tGraph aft(goal + 1);\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\tfor (int j = 0; j < pairs.size(); ++j) {\n\t\t\tif (i == j)continue;\n\t\t\tld dis= abs(pairs[i].second - pairs[j].first);\n\t\t\tadd_edge(aft, in + i, out + j, 1, dis);\n\t\t}\n\t}\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\t\n\t\tadd_edge(aft, start, in+i, 1, 0);\n\t\tadd_edge(aft, out+i, goal, 1, 0);\n\t\t\n\t}\n\taans=aans+ min_cost_flow(aft, start, goal, pairs.size());\n\tcout << fixed<<setprecision(22)<<aans << endl;\n\treturn 0;\n}", "accuracy": 0.07272727272727272, "time_ms": 50, "memory_kb": 32480, "score_of_the_acc": -0.7956, "final_rank": 20 }, { "submission_id": "aoj_2724_2039877", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\ntypedef ld Weight;\nstruct Edge {\n\tint src, dest;\n\tint cap, rev;\n\tWeight weight;\n\tbool operator < (const Edge &rhs) const { return weight > rhs.weight; }\n};\n\n\n/* ??????????????¬ */\n\n#include <complex>\n\ntypedef complex<ld> Point;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define all(x) (x).begin(),(x).end()\n\n\nconst ld pi = acos(-1.0);\nconst ld dtop = pi / 180.;\nconst ld ptod = 1. / dtop;\n\nnamespace std {\n\tbool operator<(const Point &lhs, const Point &rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() > rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\n// ????????\\???\nPoint input_Point() {\n\tld x, y;\n\tcin >> x >> y;\n\treturn Point(x, y);\n}\n\n// ????????????????????????\nbool eq(const ld a, const ld b) {\n\treturn (abs(a - b) < eps);\n}\n\n// ??????\nld dot(const Point& a, const Point& b) {\n\treturn real(conj(a) * b);\n}\n\n// ??????\nld cross(const Point& a, const Point& b) {\n\treturn imag(conj(a) * b);\n}\n\n// ??´????????????\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() : a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) : a(a), b(b) {}\n\tPoint operator[](const int _num)const {\n\t\tif (_num == 0)return a;\n\t\telse if (_num == 1)return b;\n\t\telse {\n\t\t\tassert(false);\n\t\t\treturn Point();\n\t\t}\n\t}\n};\n\n// ????????????\nclass Circle {\npublic:\n\tPoint p;\n\tld r;\n\tCircle() : p(Point(0, 0)), r(0) {}\n\tCircle(Point p, ld r) : p(p), r(r) {}\n};\n\n// ccw\n// 1: a,b,c??????????¨???¨?????????????????¶\n//-1: a,b,c???????¨???¨?????????????????¶\n// 2: c,a,b???????????´???????????¶\n//-2: a,b,c???????????´???????????¶\n// 0: a,c,b???????????´???????????¶\nint ccw(const Point& a, const Point &b, const Point &c) {\n\tconst Point nb(b - a);\n\tconst Point nc(c - a);\n\tif (cross(nb, nc) > eps) return 1; // a,b,c??????????¨???¨?????????????????¶\n\tif (cross(nb, nc) < -eps) return -1; // a,b,c???????¨???¨?????????????????¶\n\tif (dot(nb, nc) < 0) return 2; // c,a,b???????????´???????????¶\n\tif (norm(nb) < norm(nc)) return -2; // a,b,c???????????´???????????¶\n\treturn 0; // a,c,b???????????´???????????¶\n}\n\n\n/* ???????????? */\n\n// ??´?????¨??´??????????????????\nbool isis_ll(const Line& l, const Line& m) {\n\treturn !eq(cross(l.b - l.a, m.b - m.a), 0);\n}\n\n// ??´?????¨?????????????????????\nbool isis_ls(const Line& l, const Line& s) {\n\treturn isis_ll(l, s) &&\n\t\t(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// ????????¨?????????????????????\nbool isis_ss(const Line& s, const Line& t) {\n\treturn ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n\t\tccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// ????????´????????????\nbool isis_lp(const Line& l, const Point& p) {\n\treturn (abs(cross(l.b - p, l.a - p)) < eps);\n}\n\n// ?????????????????????\nbool isis_sp(const Line& s, const Point& p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\n// ??????????¶?\nPoint proj(const Line &l, const Point& p) {\n\tld t = dot(p - l.a, l.b - l.a) / norm(l.a - l.b);\n\treturn l.a + t * (l.b - l.a);\n}\n\n//???????±??????????????????????\nPoint reflect(const Line &l, const Point &p) {\n\tPoint pr = proj(l, p);\n\treturn pr * 2.l - p;\n}\n\n// ??´?????¨??´????????????\nPoint is_ll(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tassert(cross(sv, tv) != 0);\n\treturn s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);\n}\n// ??´?????¨??´????????????\nvector<Point> is_ll2(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tif (cross(sv, tv) != 0)return vector<Point>(1, is_ll(s, t));\n\telse {\n\t\tvector<Point>ans;\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tif (isis_sp(s, t[k]) && find(ans.begin(), ans.end(), t[k]) == ans.end())ans.push_back(t[k]);\n\t\t\tif (isis_sp(t, s[k]) && find(ans.begin(), ans.end(), s[k]) == ans.end())ans.push_back(s[k]);\n\t\t}\n\t\treturn ans;\n\t}\n}\n// ????????¨???????????????\n//???????????£????????¨???????????¨assert(false)\nPoint is_ss(const Line &s, const Line& t) {\n\tif (isis_ss(s, t)) {\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tfor (int l = 0; l < 2; ++l) {\n\t\t\t\tif (s[k] == t[l])return s[k];\n\t\t\t}\n\t\t}\n\t\treturn is_ll(s, t);\n\t}\n\telse {\n\t\t//??????isis_ss?????????\n\t\tassert(false);\n\t\treturn Point(0, 0);\n\t}\n}\n// ????????¨???????????????\nvector<Point> is_ss2(const Line &s, const Line& t) {\n\tvector<Point> kouho(is_ll2(s, t));\n\tvector<Point>ans;\n\tfor (auto p : kouho) {\n\t\tif (isis_sp(s, p) && isis_sp(t, p))ans.emplace_back(p);\n\t}\n\treturn ans;\n}\n// ??´?????¨???????????¢\nld dist_lp(const Line& l, const Point& p) {\n\treturn abs(p - proj(l, p));\n}\n\n//??´?????¨??´???????????¢\nld dist_ll(const Line& l, const Line& m) {\n\treturn isis_ll(l, m) ? 0 : dist_lp(l, m.a);\n}\n\n// ??´?????¨??????????????¢\nld dist_ls(const Line& l, const Line& s) {\n\treturn isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\n\n// ????????¨???????????¢\nld dist_sp(const Line& s, const Point& p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\n// ????????¨??????????????¢\nld dist_ss(const Line& s, const Line& t) {\n\tif (isis_ss(s, t)) return 0;\n\treturn min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });\n}\n\n\n//??´?????¨??´?????????????????????????????????\nLine bisection(const Line &s, const Line &t) {\n\tconst Point laglanju(is_ll(s, t));\n\tconst Point avec = !(abs(laglanju - s[0])<eps) ? s[0] - laglanju : s[1] - laglanju;\n\tconst Point bvec = !(abs(laglanju - t[0])<eps) ? t[0] - laglanju : t[1] - laglanju;\n\n\treturn Line(laglanju, laglanju + (abs(bvec)*avec + abs(avec)*bvec) / (abs(avec) + abs(bvec)));\n}\n\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nPoint inner_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i <static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (vertics[0] == vertics[1] || vertics[1] == vertics[2] || vertics[2] == vertics[0])return vertics[0];\n\tLine bi1(bisection(Line(vertics[0], vertics[1]), Line(vertics[0], vertics[2])));\n\tLine bi2(bisection(Line(vertics[1], vertics[2]), Line(vertics[1], vertics[0])));\n\tif (bi1[0] == bi2[0])return bi1[0];\n\telse {\n\t\treturn is_ll(bi1, bi2);\n\t}\n}\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nvector<Point> ex_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i < static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (abs(vertics[0] - vertics[1])<eps || abs(vertics[1] - vertics[2])<eps || (abs(vertics[2] - vertics[0])<eps))return vector<Point>();\n\tvector<Point>ecs;\n\tfor (int i = 0; i < 3; ++i) {\n\t\tLine bi1(bisection(Line(vertics[i], vertics[i] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[i], vertics[(i + 1) % 3])));\n\t\tLine bi2(bisection(Line(vertics[(i + 1) % 3], vertics[(i + 1) % 3] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[(i + 1) % 3], vertics[i])));\n\t\tecs.push_back(is_ll(bi1, bi2));\n\t}\n\treturn ecs;\n}\n\n\n//a,b:??????\n//c:????????§??????\n//???????????´?????????????????¢?????????????±??????????\nvector<Point> same_dis(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tvertics.push_back(is_ll(ls[0], ls[2]));\n\tvertics.push_back(is_ll(ls[1], ls[2]));\n\n\tif (abs(vertics[0] - vertics[1]) < eps)return vector<Point>{vertics[0]};\n\tLine bis(bisection(ls[0], ls[1]));\n\tvector<Point>ecs;\n\n\tLine abi(bisection(Line(vertics[0], vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, abi));\n\n\n\tLine bbi(bisection(Line(vertics[0], 2.l*vertics[0] - vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, bbi));\n\n\treturn ecs;\n}\n/* ??? */\n\n// ?????¨????????????\nvector<Point> is_cc(const Circle& c1, const Circle& c2) {\n\tvector<Point> res;\n\tld d = abs(c1.p - c2.p);\n\tld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);\n\tld dfr = c1.r * c1.r - rc * rc;\n\tif (abs(dfr) < eps) dfr = 0.0;\n\telse if (dfr < 0.0) return res; // no intersection\n\tld rs = sqrt(dfr);\n\tPoint diff = (c2.p - c1.p) / d;\n\tres.push_back(c1.p + diff * Point(rc, rs));\n\tif (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));\n\treturn res;\n}\n\n//???????????????????????????\n/* 0 => out\n1 => on\n2 => in*/\nint is_in_Circle(const Circle &cir, const Point& p) {\n\tld dis = abs(cir.p - p);\n\tif (dis > cir.r + eps)return 0;\n\telse if (dis < cir.r - eps)return 2;\n\telse return 1;\n}\n//???lc??????rc??????????????????\n/*0 => out\n1 => on\n2 => in*/\nint Circle_in_Circle(const Circle &lc, const Circle&rc) {\n\tld dis = abs(lc.p - rc.p);\n\tif (dis < rc.r - lc.r - eps)return 2;\n\telse if (dis>rc.r - lc.r + eps)return 0;\n\telse return 1;\n}\n\n// ?????¨??´????????????\nvector<Point> is_lc(const Circle& c, const Line& l) {\n\tvector<Point> res;\n\tld d = dist_lp(l, c.p);\n\tif (d < c.r + eps) {\n\t\tld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;\n\t\tPoint nor = (l.a - l.b) / abs(l.a - l.b);\n\t\tres.push_back(proj(l, c.p) + len * nor);\n\t\tres.push_back(proj(l, c.p) - len * nor);\n\t}\n\treturn res;\n}\n\n// ?????¨??????????????¢\nvector<Point> is_sc(const Circle& c, const Line& l) {\n\tvector<Point> v = is_lc(c, l), res;\n\tfor (Point p : v)\n\t\tif (isis_sp(l, p)) res.push_back(p);\n\treturn res;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cp(const Circle& c, const Point& p) {\n\tvector<Line> ret;\n\tPoint v = c.p - p;\n\tld d = abs(v);\n\tld l = sqrt(norm(v) - c.r * c.r);\n\tif (isnan(l)) { return ret; }\n\tPoint v1 = v * Point(l / d, c.r / d);\n\tPoint v2 = v * Point(l / d, -c.r / d);\n\tret.push_back(Line(p, p + v1));\n\tif (l < eps) return ret;\n\tret.push_back(Line(p, p + v2));\n\treturn ret;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cc(const Circle& c1, const Circle& c2) {\n\tvector<Line> ret;\n\tif (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {\n\t\tPoint center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);\n\t\tret = tangent_cp(c1, center);\n\t}\n\tif (abs(c1.r - c2.r) > eps) {\n\t\tPoint out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);\n\t\tvector<Line> nret = tangent_cp(c1, out);\n\t\tret.insert(ret.end(), all(nret));\n\t}\n\telse {\n\t\tPoint v = c2.p - c1.p;\n\t\tv /= abs(v);\n\t\tPoint q1 = c1.p + v * Point(0, 1) * c1.r;\n\t\tPoint q2 = c1.p + v * Point(0, -1) * c1.r;\n\t\tret.push_back(Line(q1, q1 + v));\n\t\tret.push_back(Line(q2, q2 + v));\n\t}\n\treturn ret;\n}\n//??????????????????????????¢???\nld two_Circle_area(const Circle&l, const Circle&r) {\n\tld dis = abs(l.p - r.p);\n\tif (dis > l.r + r.r)return 0;\n\telse if (dis + r.r < l.r) {\n\t\treturn r.r*r.r*pi;\n\t}\n\telse if (dis + l.r < r.r) {\n\t\treturn l.r*l.r*pi;\n\t}\n\telse {\n\t\tld ans = (l.r)*(l.r)*acos((dis*dis + l.r*l.r - r.r*r.r) / (2 * dis*l.r)) +\n\t\t\t(r.r)*(r.r)*acos((dis*dis + r.r*r.r - l.r*l.r) / (2 * dis*r.r)) -\n\t\t\tsqrt(4 * dis*dis*l.r*l.r - (dis*dis + l.r*l.r - r.r*r.r)*(dis*dis + l.r*l.r - r.r*r.r)) / 2;\n\t\treturn ans;\n\t}\n\n}\n\n/* ????§???¢ */\n\ntypedef vector<Point> Polygon;\n\n// ??¢???\nld area(const Polygon &p) {\n\tld res = 0;\n\tint n = p.size();\n\trep(j, n) res += cross(p[j], p[(j + 1) % n]);\n\treturn res / 2;\n}\n\n//????§???¢????????¢??????\nbool is_counter_clockwise(const Polygon &poly) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];\n\t\tangle += arg((c - b) / (b - a));\n\t}\n\treturn angle > eps;\n}\n\n// ??????????????????\n/*0 => out\n1 => on\n2 => in*/\nint is_in_Polygon(const Polygon &poly, const Point& p) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n];\n\t\tif (isis_sp(Line(a, b), p)) return 1;\n\t\tangle += arg((b - p) / (a - p));\n\t}\n\treturn eq(angle, 0) ? 0 : 2;\n}\n//??????????????????2?????????\nenum { out, on, in };\nint convex_contains(const Polygon &P, const Point &p) {\n\tconst int n = P.size();\n\tPoint g = (P[0] + P[n / 3] + P[2 * n / 3]) / 3.0l; // inner-point\n\tint a = 0, b = n;\n\twhile (a + 1 < b) { // invariant: c is in fan g-P[a]-P[b]\n\t\tint c = (a + b) / 2;\n\t\tif (cross(P[a] - g, P[c] - g) > 0) { // angle < 180 deg\n\t\t\tif (cross(P[a] - g, p - g) > 0 && cross(P[c] - g, p - g) < 0) b = c;\n\t\t\telse a = c;\n\t\t}\n\t\telse {\n\t\t\tif (cross(P[a] - g, p - g) < 0 && cross(P[c] - g, p - g) > 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t}\n\tb %= n;\n\tif (cross(P[a] - p, P[b] - p) < 0) return 0;\n\tif (cross(P[a] - p, P[b] - p) > 0) return 2;\n\treturn 1;\n}\n\n// ??????\n//???????????????????????¨????????????????????§??¨???\nPolygon convex_hull(vector<Point> ps) {\n\tint n = ps.size();\n\tint k = 0;\n\tsort(ps.begin(), ps.end());\n\tPolygon ch(2 * n);\n\tfor (int i = 0; i < n; ch[k++] = ps[i++])\n\t\twhile (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tfor (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])\n\t\twhile (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tch.resize(k - 1);\n\treturn ch;\n}\n\n\n\n//????????????\nvector<Polygon> convex_cut(const Polygon &ps, const Line& l) {\n\tint n = ps.size();\n\tPolygon q;\n\tPolygon r;\n\trep(i, n) {\n\t\tPoint a = ps[i], b = ps[(i + 1) % n];\n\t\tLine m = Line(a, b);\n\t\tif (ccw(l.a, l.b, a) != -1) q.push_back(a);\n\t\tif (ccw(l.a, l.b, a) != 1) r.push_back(a);\n\t\tif (ccw(l.a, l.b, a) * ccw(l.a, l.b, b) < 0 && isis_ll(l, m)) {\n\t\t\tq.push_back(is_ll(l, m));\n\t\t\tr.push_back(is_ll(l, m));\n\t\t}\n\t}\n\tconst vector<Polygon>polys{ q,r };\n\treturn polys;\n}\n\n\n/* ??¢??¬??????????????? */\nvoid add_Point(vector<Point> &ps, const Point p) {\n\tfor (Point q : ps) if (abs(q - p) < eps) return;\n\tps.push_back(p);\n}\n\n\n\n\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\ntypedef vector<Weight> Array;\ntypedef vector<Array> Matrix;\n\nvoid add_edge(Graph &g, int src, int dest, int cap, Weight weight) {\n\tg[src].push_back(Edge{ src, dest, cap, (int)g[dest].size(), weight });\n\tg[dest].push_back(Edge{ dest, src, 0, (int)g[src].size() - 1, -weight });\n}\n\nGraph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {\n\tint n = p.size(), m = s.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) {\n\t\t\tif (isis_sp(s[i], p[j]))\n\t\t\t\tvec.emplace_back(abs(s[i].a - p[j]), j);\n\t\t}\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(abs(p[from] - p[to])));\n\t\t}\n\t}\n\treturn g;\n}\npair<vector<Point>,Graph> sennbunn_arrangement(const vector<Line>&s) {\n\tvector<Point>crss;\n\tfor (int i = 0; i < static_cast<int>(s.size()); ++i) {\n\t\tfor (int j = i + 1; j < static_cast<int>(s.size()); ++j) {\n\t\t\tif (isis_ss(s[i], s[j])) {\n\t\t\t\tcrss.push_back(is_ll2(s[i], s[j])[0]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i <static_cast<int>(s.size()); ++i) {\n\t\tcrss.push_back(s[i][0]);\n\t\tcrss.push_back(s[i][1]);\n\t}\n\tsort(crss.begin(), crss.end());\n\tcrss.erase(unique(crss.begin(), crss.end()), crss.end());\n\t\n\treturn make_pair(crss,segment_arrangement(s, crss));\n}\n\nGraph Circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {\n\tconst int n = p.size(), m = c.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)\n\t\t\tvec.emplace_back(arg(c[i].p - p[j]), j);\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tld angle = vec[j + 1].first - vec[j].first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t\tif (vec.size() >= 2) {\n\t\t\tint from = vec.back().second, to = vec.front().first;\n\t\t\tld angle = vec.front().first - vec.back().first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t}\n\treturn g;\n}\n\nconst int V = 1000;\nWeight h[V]; //??????????????£???\nWeight dist[V]; //???????????¢\nint prevv[V], preve[V]; //??´???????????¨??????\n\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\nconst Weight INF =1e18;\nWeight min_cost_flow(Graph &g, int s, int t, int f) {\n\tWeight res = 0;\n\tmemset(h, 0, sizeof(h));\n\ttypedef pair<Weight, int> P;\n\twhile (f > 0) {\n\t\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\tfill(dist, dist + V, INF);\n\t\tdist[s] = 0;\n\t\tque.push(P(0, s));\n\t\twhile (!que.empty()) {\n\t\t\tP p = que.top(); que.pop();\n\t\t\tint v = p.second;\n\t\t\tif (dist[v] < p.first) continue;\n\t\t\tREP(i, g[v].size()) {\n\t\t\t\tEdge &e = g[v][i];\n\t\t\t\tif (e.cap > 0 && dist[e.dest] > dist[v] + e.weight + h[v] - h[e.dest]) {\n\t\t\t\t\tdist[e.dest] = dist[v] + e.weight + h[v] - h[e.dest];\n\t\t\t\t\tprevv[e.dest] = v;\n\t\t\t\t\tpreve[e.dest] = i;\n\t\t\t\t\tque.push(P(dist[e.dest], e.dest));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (dist[t] == INF) return -1;\n\t\tREP(v, V) h[v] =h[v]+ dist[v];\n\n\t\tint d = f;\n\t\tfor (int v = t; v != s; v = prevv[v]) d = min(d, g[prevv[v]][preve[v]].cap);\n\t\tf -= d;\n\t\tres = res+d * h[t];\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\tEdge &e = g[prevv[v]][preve[v]];\n\t\t\te.cap -= d;\n\t\t\tg[v][e.rev].cap += d;\n\t\t}\n\t}\n\treturn res;\n}\n\nint main() {\n\tint N; cin >> N;\n\tld sx, sy; cin >> sx >> sy;\n\tPoint sp;\n\tsp = Point(sx, sy);\n\tvector<Line>segs(N);\n\tld aans = 0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tld ax, ay, bx, by; cin >> ax >> ay >> bx >> by;\n\t\tsegs[i] = Line(Point(ax, ay), Point(bx, by));\n\t\taans += abs(segs[i].b - segs[i].a);\n\t}\n\tauto p= sennbunn_arrangement(segs);\n\tvector<Point>ps(p.first);\n\tGraph ori = p.second;\n\t\n\tvector<pair<Point, Point>>pairs;\n\tfor (Edges& es : ori) {\n\t\tfor ( Edge& e : es) {\n\t\t\tconst int src = e.src;\n\t\t\tconst int dst = e.dest;\n\t\t\tfor (int i = 0; i < N; ++i) {\n\t\t\t\tif (isis_lp(segs[i], ps[src]) && isis_lp(segs[i], ps[dst])) {\n\t\t\t\t\tif (abs(ps[dst] - segs[i].a)>abs(ps[src] - segs[i].a)) {\n\t\t\t\t\t\tpairs.push_back(make_pair(ps[src], ps[dst]));\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tconst int start = 0;\n\tconst int in = start + 1;\n\tconst int out = in + pairs.size();\n\tconst int goal = out + pairs.size();\n\tGraph aft(goal + 1);\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\tfor (int j = 0; j < pairs.size(); ++j) {\n\t\t\tif (i == j)continue;\n\t\t\tld dis= abs(pairs[i].second - pairs[j].first);\n\t\t\tadd_edge(aft, in + i, out + j, 1, dis);\n\t\t}\n\t}\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\t\n\t\tadd_edge(aft, start, in+i, 1, 0);\n\t\tadd_edge(aft, out+i, goal, 1, 0);\n\t\t\n\t}\n\taans=aans+ min_cost_flow(aft, start, goal, pairs.size());\n\tcout << fixed<<setprecision(22)<<aans << endl;\n\treturn 0;\n}", "accuracy": 0.07272727272727272, "time_ms": 40, "memory_kb": 32552, "score_of_the_acc": -0.7906, "final_rank": 18 }, { "submission_id": "aoj_2724_2039875", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\ntypedef ld Weight;\nstruct Edge {\n\tint src, dest;\n\tint cap, rev;\n\tWeight weight;\n\tbool operator < (const Edge &rhs) const { return weight > rhs.weight; }\n};\n\n\n/* テ・ツケツセテ、ツスツ陛」ツ?ョテ・ツ淞コテヲツ慊ャ */\n\n#include <complex>\n\ntypedef complex<ld> Point;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define all(x) (x).begin(),(x).end()\n\n\nconst ld pi = acos(-1.0);\nconst ld dtop = pi / 180.;\nconst ld ptod = 1. / dtop;\n\nnamespace std {\n\tbool operator<(const Point &lhs, const Point &rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() > rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\n// テァツつケテ」ツ?ョテ・ツ?・テ・ツ環?\nPoint input_Point() {\n\tld x, y;\n\tcin >> x >> y;\n\treturn Point(x, y);\n}\n\n// ティツェツ、テ・ツキツョテ」ツ?、テ」ツ?催ァツュツ嘉・ツ渉キテ・ツ按、テ・ツョツ?\nbool eq(const ld a, const ld b) {\n\treturn (abs(a - b) < eps);\n}\n\n// テ・ツ??ァツゥツ?\nld dot(const Point& a, const Point& b) {\n\treturn real(conj(a) * b);\n}\n\n// テ・ツ、ツ姪ァツゥツ?\nld cross(const Point& a, const Point& b) {\n\treturn imag(conj(a) * b);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ョテ・ツョツ堙ァツセツゥ\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() : a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) : a(a), b(b) {}\n\tPoint operator[](const int _num)const {\n\t\tif (_num == 0)return a;\n\t\telse if (_num == 1)return b;\n\t\telse {\n\t\t\tassert(false);\n\t\t\treturn Point();\n\t\t}\n\t}\n};\n\n// テ・ツ??」ツ?ョテ・ツョツ堙ァツセツゥ\nclass Circle {\npublic:\n\tPoint p;\n\tld r;\n\tCircle() : p(Point(0, 0)), r(0) {}\n\tCircle(Point p, ld r) : p(p), r(r) {}\n};\n\n// ccw\n// 1: a,b,cテ」ツ?古・ツ渉催ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n//-1: a,b,cテ」ツ?古ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n// 2: c,a,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n//-2: a,b,cテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n// 0: a,c,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\nint ccw(const Point& a, const Point &b, const Point &c) {\n\tconst Point nb(b - a);\n\tconst Point nc(c - a);\n\tif (cross(nb, nc) > eps) return 1; // a,b,cテ」ツ?古・ツ渉催ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (cross(nb, nc) < -eps) return -1; // a,b,cテ」ツ?古ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (dot(nb, nc) < 0) return 2; // c,a,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (norm(nb) < norm(nc)) return -2; // a,b,cテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n\treturn 0; // a,c,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n}\n\n\n/* テ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?*/\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ll(const Line& l, const Line& m) {\n\treturn !eq(cross(l.b - l.a, m.b - m.a), 0);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ls(const Line& l, const Line& s) {\n\treturn isis_ll(l, s) &&\n\t\t(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ss(const Line& s, const Line& t) {\n\treturn ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n\t\tccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// テァツつケテ」ツ?ョテァツ崢エテァツキツ堙、ツクツ甘・ツ按、テ・ツョツ?\nbool isis_lp(const Line& l, const Point& p) {\n\treturn (abs(cross(l.b - p, l.a - p)) < eps);\n}\n\n// テァツつケテ」ツ?ョテァツキツ堙・ツ按?、ツクツ甘・ツ按、テ・ツョツ?\nbool isis_sp(const Line& s, const Point& p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\n// テ・ツ楪づァツキツ堙」ツ?ョティツカツウ\nPoint proj(const Line &l, const Point& p) {\n\tld t = dot(p - l.a, l.b - l.a) / norm(l.a - l.b);\n\treturn l.a + t * (l.b - l.a);\n}\n\n//テァツキツ堙・ツッツセティツアツ。テ」ツ?ョテ、ツスツ催ァツスツョテ」ツ?ォテ」ツ?づ」ツつ凝ァツつケ\nPoint reflect(const Line &l, const Point &p) {\n\tPoint pr = proj(l, p);\n\treturn pr * 2.l - p;\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nPoint is_ll(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tassert(cross(sv, tv) != 0);\n\treturn s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);\n}\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_ll2(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tif (cross(sv, tv) != 0)return vector<Point>(1, is_ll(s, t));\n\telse {\n\t\tvector<Point>ans;\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tif (isis_sp(s, t[k]) && find(ans.begin(), ans.end(), t[k]) == ans.end())ans.push_back(t[k]);\n\t\t\tif (isis_sp(t, s[k]) && find(ans.begin(), ans.end(), s[k]) == ans.end())ans.push_back(s[k]);\n\t\t}\n\t\treturn ans;\n\t}\n}\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テァツつケ\n//テ」ツ??ゥツ?催」ツ?ェテ」ツ?」テ」ツ?ヲテ」ツつ凝ゥツδィテ・ツ按?」ツ?づ」ツつ凝」ツ?ィassert(false)\nPoint is_ss(const Line &s, const Line& t) {\n\tif (isis_ss(s, t)) {\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tfor (int l = 0; l < 2; ++l) {\n\t\t\t\tif (s[k] == t[l])return s[k];\n\t\t\t}\n\t\t}\n\t\treturn is_ll(s, t);\n\t}\n\telse {\n\t\t//テ・ツ?暗」ツ?ォisis_ssテ」ツ?療」ツ?ヲテ」ツ?ュ\n\t\tassert(false);\n\t\treturn Point(0, 0);\n\t}\n}\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_ss2(const Line &s, const Line& t) {\n\tvector<Point> kouho(is_ll2(s, t));\n\tvector<Point>ans;\n\tfor (auto p : kouho) {\n\t\tif (isis_sp(s, p) && isis_sp(t, p))ans.emplace_back(p);\n\t}\n\treturn ans;\n}\n// テァツ崢エテァツキツ堙」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「\nld dist_lp(const Line& l, const Point& p) {\n\treturn abs(p - proj(l, p));\n}\n\n//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョティツキツ敕ゥツ崢「\nld dist_ll(const Line& l, const Line& m) {\n\treturn isis_ll(l, m) ? 0 : dist_lp(l, m.a);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nld dist_ls(const Line& l, const Line& s) {\n\treturn isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「\nld dist_sp(const Line& s, const Point& p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nld dist_ss(const Line& s, const Line& t) {\n\tif (isis_ss(s, t)) return 0;\n\treturn min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });\n}\n\n\n//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ古ァツュツ嘉・ツ按?ァツキツ堙」ツ?ョテ」ツδ凖」ツつッテ」ツδ暗」ツδォ\nLine bisection(const Line &s, const Line &t) {\n\tconst Point laglanju(is_ll(s, t));\n\tconst Point avec = !(abs(laglanju - s[0])<eps) ? s[0] - laglanju : s[1] - laglanju;\n\tconst Point bvec = !(abs(laglanju - t[0])<eps) ? t[0] - laglanju : t[1] - laglanju;\n\n\treturn Line(laglanju, laglanju + (abs(bvec)*avec + abs(avec)*bvec) / (abs(avec) + abs(bvec)));\n}\n\n\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉」ツ?ェテ」ツつ凝・ツ??・ツソツ?\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?古、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??」ツ?禿」ツ?ィテ」ツ?ッテァツ「ツコテ」ツ?凝」ツつ?」ツ?ィテ」ツ??」ツ?ヲテ」ツ?ュ\nPoint inner_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i <static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (vertics[0] == vertics[1] || vertics[1] == vertics[2] || vertics[2] == vertics[0])return vertics[0];\n\tLine bi1(bisection(Line(vertics[0], vertics[1]), Line(vertics[0], vertics[2])));\n\tLine bi2(bisection(Line(vertics[1], vertics[2]), Line(vertics[1], vertics[0])));\n\tif (bi1[0] == bi2[0])return bi1[0];\n\telse {\n\t\treturn is_ll(bi1, bi2);\n\t}\n}\n\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉」ツ?ェテ」ツつ凝・ツつ催・ツソツ?\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?古、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??」ツ?禿」ツ?ィテ」ツ?ッテァツ「ツコテ」ツ?凝」ツつ?」ツ?ィテ」ツ??」ツ?ヲテ」ツ?ュ\nvector<Point> ex_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i < static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (abs(vertics[0] - vertics[1])<eps || abs(vertics[1] - vertics[2])<eps || (abs(vertics[2] - vertics[0])<eps))return vector<Point>();\n\tvector<Point>ecs;\n\tfor (int i = 0; i < 3; ++i) {\n\t\tLine bi1(bisection(Line(vertics[i], vertics[i] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[i], vertics[(i + 1) % 3])));\n\t\tLine bi2(bisection(Line(vertics[(i + 1) % 3], vertics[(i + 1) % 3] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[(i + 1) % 3], vertics[i])));\n\t\tecs.push_back(is_ll(bi1, bi2));\n\t}\n\treturn ecs;\n}\n\n\n//a,b:テ、ツクツヲティツ。ツ?\n//c:テ、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉・ツ青古ィツキツ敕ゥツ崢「テ」ツ?ョテ、ツスツ催ァツスツョテ」ツつ津ヲツアツづ」ツつ?」ツつ凝」ツ??\nvector<Point> same_dis(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tvertics.push_back(is_ll(ls[0], ls[2]));\n\tvertics.push_back(is_ll(ls[1], ls[2]));\n\n\tif (abs(vertics[0] - vertics[1]) < eps)return vector<Point>{vertics[0]};\n\tLine bis(bisection(ls[0], ls[1]));\n\tvector<Point>ecs;\n\n\tLine abi(bisection(Line(vertics[0], vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, abi));\n\n\n\tLine bbi(bisection(Line(vertics[0], 2.l*vertics[0] - vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, bbi));\n\n\treturn ecs;\n}\n/* テ・ツ??*/\n\n// テ・ツ??」ツ?ィテ・ツ??」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_cc(const Circle& c1, const Circle& c2) {\n\tvector<Point> res;\n\tld d = abs(c1.p - c2.p);\n\tld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);\n\tld dfr = c1.r * c1.r - rc * rc;\n\tif (abs(dfr) < eps) dfr = 0.0;\n\telse if (dfr < 0.0) return res; // no intersection\n\tld rs = sqrt(dfr);\n\tPoint diff = (c2.p - c1.p) / d;\n\tres.push_back(c1.p + diff * Point(rc, rs));\n\tif (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));\n\treturn res;\n}\n\n//テァツつケテ」ツ?古・ツ??」ツ?ョテ、ツクツュテ」ツ?ォテ」ツ??」ツつ凝」ツ??\n/* 0 => out\n1 => on\n2 => in*/\nint is_in_Circle(const Circle &cir, const Point& p) {\n\tld dis = abs(cir.p - p);\n\tif (dis > cir.r + eps)return 0;\n\telse if (dis < cir.r - eps)return 2;\n\telse return 1;\n}\n//テ・ツ??cテ」ツ?古・ツ??cテ」ツ?ョテ、ツクツュテ」ツ?ォテ」ツ??」ツつ凝」ツ??\n/*0 => out\n1 => on\n2 => in*/\nint Circle_in_Circle(const Circle &lc, const Circle&rc) {\n\tld dis = abs(lc.p - rc.p);\n\tif (dis < rc.r - lc.r - eps)return 2;\n\telse if (dis>rc.r - lc.r + eps)return 0;\n\telse return 1;\n}\n\n// テ・ツ??」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_lc(const Circle& c, const Line& l) {\n\tvector<Point> res;\n\tld d = dist_lp(l, c.p);\n\tif (d < c.r + eps) {\n\t\tld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;\n\t\tPoint nor = (l.a - l.b) / abs(l.a - l.b);\n\t\tres.push_back(proj(l, c.p) + len * nor);\n\t\tres.push_back(proj(l, c.p) - len * nor);\n\t}\n\treturn res;\n}\n\n// テ・ツ??」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nvector<Point> is_sc(const Circle& c, const Line& l) {\n\tvector<Point> v = is_lc(c, l), res;\n\tfor (Point p : v)\n\t\tif (isis_sp(l, p)) res.push_back(p);\n\treturn res;\n}\n\n// テ・ツ??」ツ?ィテァツつケテ」ツ?ョテヲツ篠・テァツキツ?\nvector<Line> tangent_cp(const Circle& c, const Point& p) {\n\tvector<Line> ret;\n\tPoint v = c.p - p;\n\tld d = abs(v);\n\tld l = sqrt(norm(v) - c.r * c.r);\n\tif (isnan(l)) { return ret; }\n\tPoint v1 = v * Point(l / d, c.r / d);\n\tPoint v2 = v * Point(l / d, -c.r / d);\n\tret.push_back(Line(p, p + v1));\n\tif (l < eps) return ret;\n\tret.push_back(Line(p, p + v2));\n\treturn ret;\n}\n\n// テ・ツ??」ツ?ィテ・ツ??」ツ?ョテヲツ篠・テァツキツ?\nvector<Line> tangent_cc(const Circle& c1, const Circle& c2) {\n\tvector<Line> ret;\n\tif (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {\n\t\tPoint center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);\n\t\tret = tangent_cp(c1, center);\n\t}\n\tif (abs(c1.r - c2.r) > eps) {\n\t\tPoint out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);\n\t\tvector<Line> nret = tangent_cp(c1, out);\n\t\tret.insert(ret.end(), all(nret));\n\t}\n\telse {\n\t\tPoint v = c2.p - c1.p;\n\t\tv /= abs(v);\n\t\tPoint q1 = c1.p + v * Point(0, 1) * c1.r;\n\t\tPoint q2 = c1.p + v * Point(0, -1) * c1.r;\n\t\tret.push_back(Line(q1, q1 + v));\n\t\tret.push_back(Line(q2, q2 + v));\n\t}\n\treturn ret;\n}\n//テ、ツコツ古」ツ?、テ」ツ?ョテ・ツ??」ツ?ョテゥツ?催」ツ?ェテ」ツつ甘ゥツ敖「テァツゥツ?\nld two_Circle_area(const Circle&l, const Circle&r) {\n\tld dis = abs(l.p - r.p);\n\tif (dis > l.r + r.r)return 0;\n\telse if (dis + r.r < l.r) {\n\t\treturn r.r*r.r*pi;\n\t}\n\telse if (dis + l.r < r.r) {\n\t\treturn l.r*l.r*pi;\n\t}\n\telse {\n\t\tld ans = (l.r)*(l.r)*acos((dis*dis + l.r*l.r - r.r*r.r) / (2 * dis*l.r)) +\n\t\t\t(r.r)*(r.r)*acos((dis*dis + r.r*r.r - l.r*l.r) / (2 * dis*r.r)) -\n\t\t\tsqrt(4 * dis*dis*l.r*l.r - (dis*dis + l.r*l.r - r.r*r.r)*(dis*dis + l.r*l.r - r.r*r.r)) / 2;\n\t\treturn ans;\n\t}\n\n}\n\n/* テ・ツ、ツ堙ィツァツ津・ツスツ「 */\n\ntypedef vector<Point> Polygon;\n\n// テゥツ敖「テァツゥツ?\nld area(const Polygon &p) {\n\tld res = 0;\n\tint n = p.size();\n\trep(j, n) res += cross(p[j], p[(j + 1) % n]);\n\treturn res / 2;\n}\n\n//テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ・ツ崢榲ィツサツ「テヲツ鳴ケテ・ツ青?\nbool is_counter_clockwise(const Polygon &poly) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];\n\t\tangle += arg((c - b) / (b - a));\n\t}\n\treturn angle > eps;\n}\n\n// テ・ツ??」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?\n/*0 => out\n1 => on\n2 => in*/\nint is_in_Polygon(const Polygon &poly, const Point& p) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n];\n\t\tif (isis_sp(Line(a, b), p)) return 1;\n\t\tangle += arg((b - p) / (a - p));\n\t}\n\treturn eq(angle, 0) ? 0 : 2;\n}\n//テ・ツ??」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?テ」ツ??ゥツォツ佚ゥツ??\nenum { out, on, in };\nint convex_contains(const Polygon &P, const Point &p) {\n\tconst int n = P.size();\n\tPoint g = (P[0] + P[n / 3] + P[2 * n / 3]) / 3.0l; // inner-point\n\tint a = 0, b = n;\n\twhile (a + 1 < b) { // invariant: c is in fan g-P[a]-P[b]\n\t\tint c = (a + b) / 2;\n\t\tif (cross(P[a] - g, P[c] - g) > 0) { // angle < 180 deg\n\t\t\tif (cross(P[a] - g, p - g) > 0 && cross(P[c] - g, p - g) < 0) b = c;\n\t\t\telse a = c;\n\t\t}\n\t\telse {\n\t\t\tif (cross(P[a] - g, p - g) < 0 && cross(P[c] - g, p - g) > 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t}\n\tb %= n;\n\tif (cross(P[a] - p, P[b] - p) < 0) return 0;\n\tif (cross(P[a] - p, P[b] - p) > 0) return 2;\n\treturn 1;\n}\n\n// テ・ツ?クテ・ツ個?\n//テァツつケテ」ツつ?ァツキツ堙」ツつ津ィツソツ氾」ツ?凖」ツ?禿」ツ?ィテ」ツつづヲツ慊嘉」ツつ甘・ツセツ療」ツつ凝」ツ?ョテ」ツ?ァテヲツウツィテヲツ??\nPolygon convex_hull(vector<Point> ps) {\n\tint n = ps.size();\n\tint k = 0;\n\tsort(ps.begin(), ps.end());\n\tPolygon ch(2 * n);\n\tfor (int i = 0; i < n; ch[k++] = ps[i++])\n\t\twhile (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tfor (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])\n\t\twhile (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tch.resize(k - 1);\n\treturn ch;\n}\n\n\n\n//テ・ツ?クテ」ツつォテ」ツδε」ツδ?\nvector<Polygon> convex_cut(const Polygon &ps, const Line& l) {\n\tint n = ps.size();\n\tPolygon q;\n\tPolygon r;\n\trep(i, n) {\n\t\tPoint a = ps[i], b = ps[(i + 1) % n];\n\t\tLine m = Line(a, b);\n\t\tif (ccw(l.a, l.b, a) != -1) q.push_back(a);\n\t\tif (ccw(l.a, l.b, a) != 1) r.push_back(a);\n\t\tif (ccw(l.a, l.b, a) * ccw(l.a, l.b, b) < 0 && isis_ll(l, m)) {\n\t\t\tq.push_back(is_ll(l, m));\n\t\t\tr.push_back(is_ll(l, m));\n\t\t}\n\t}\n\tconst vector<Polygon>polys{ q,r };\n\treturn polys;\n}\n\n\n/* テ」ツつ「テ」ツδャテ」ツδウテ」ツつクテ」ツδ。テ」ツδウテ」ツδ?*/\nvoid add_Point(vector<Point> &ps, const Point p) {\n\tfor (Point q : ps) if (abs(q - p) < eps) return;\n\tps.push_back(p);\n}\n\n\n\n\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\ntypedef vector<Weight> Array;\ntypedef vector<Array> Matrix;\n\nvoid add_edge(Graph &g, int src, int dest, int cap, Weight weight) {\n\tg[src].push_back(Edge{ src, dest, cap, (int)g[dest].size(), weight });\n\tg[dest].push_back(Edge{ dest, src, 0, (int)g[src].size() - 1, -weight });\n}\n\nGraph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {\n\tint n = p.size(), m = s.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) {\n\t\t\tif (isis_sp(s[i], p[j]))\n\t\t\t\tvec.emplace_back(abs(s[i].a - p[j]), j);\n\t\t}\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(abs(p[from] - p[to])));\n\t\t}\n\t}\n\treturn g;\n}\npair<vector<Point>,Graph> sennbunn_arrangement(const vector<Line>&s) {\n\tvector<Point>crss;\n\tfor (int i = 0; i < static_cast<int>(s.size()); ++i) {\n\t\tfor (int j = i + 1; j < static_cast<int>(s.size()); ++j) {\n\t\t\tif (isis_ss(s[i], s[j])) {\n\t\t\t\tcrss.push_back(is_ll2(s[i], s[j])[0]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i <static_cast<int>(s.size()); ++i) {\n\t\tcrss.push_back(s[i][0]);\n\t\tcrss.push_back(s[i][1]);\n\t}\n\tsort(crss.begin(), crss.end());\n\tcrss.erase(unique(crss.begin(), crss.end()), crss.end());\n\t\n\treturn make_pair(crss,segment_arrangement(s, crss));\n}\n\nGraph Circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {\n\tconst int n = p.size(), m = c.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)\n\t\t\tvec.emplace_back(arg(c[i].p - p[j]), j);\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tld angle = vec[j + 1].first - vec[j].first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t\tif (vec.size() >= 2) {\n\t\t\tint from = vec.back().second, to = vec.front().first;\n\t\t\tld angle = vec.front().first - vec.back().first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t}\n\treturn g;\n}\n\nconst int V = 1000;\nWeight h[V]; //テ」ツδ敕」ツδ?」ツδウテ」ツつキテ」ツδ」テ」ツδォ\nWeight dist[V]; //テヲツ慊?ァツ淞ュティツキツ敕ゥツ崢「\nint prevv[V], preve[V]; //テァツ崢エテ・ツ可催」ツ?ョティツセツコテ」ツ?ィテゥツ?づァツつケ\n\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\nconst Weight INF =1e18;\nWeight min_cost_flow(Graph &g, int s, int t, int f) {\n\tWeight res = 0;\n\tmemset(h, 0, sizeof(h));\n\ttypedef pair<Weight, int> P;\n\twhile (f > 0) {\n\t\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\tfill(dist, dist + V, INF);\n\t\tdist[s] = 0;\n\t\tque.push(P(0, s));\n\t\twhile (!que.empty()) {\n\t\t\tP p = que.top(); que.pop();\n\t\t\tint v = p.second;\n\t\t\tif (dist[v] < p.first) continue;\n\t\t\tREP(i, g[v].size()) {\n\t\t\t\tEdge &e = g[v][i];\n\t\t\t\tif (e.cap > 0 && dist[e.dest] > dist[v] + e.weight + h[v] - h[e.dest]) {\n\t\t\t\t\tdist[e.dest] = dist[v] + e.weight + h[v] - h[e.dest];\n\t\t\t\t\tprevv[e.dest] = v;\n\t\t\t\t\tpreve[e.dest] = i;\n\t\t\t\t\tque.push(P(dist[e.dest], e.dest));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (dist[t] == INF) return -1;\n\t\tREP(v, V) h[v] =h[v]+ dist[v];\n\n\t\tint d = f;\n\t\tfor (int v = t; v != s; v = prevv[v]) d = min(d, g[prevv[v]][preve[v]].cap);\n\t\tf -= d;\n\t\tres = res+d * h[t];\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\tEdge &e = g[prevv[v]][preve[v]];\n\t\t\te.cap -= d;\n\t\t\tg[v][e.rev].cap += d;\n\t\t}\n\t}\n\treturn res;\n}\n\nint main() {\n\tint N; cin >> N;\n\tld sx, sy; cin >> sx >> sy;\n\tPoint sp;\n\tsp = Point(sx, sy);\n\tvector<Line>segs(N);\n\tld aans = 0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tld ax, ay, bx, by; cin >> ax >> ay >> bx >> by;\n\t\tsegs[i] = Line(Point(ax, ay), Point(bx, by));\n\t\taans += abs(segs[i].b - segs[i].a);\n\t}\n\tauto p= sennbunn_arrangement(segs);\n\tvector<Point>ps(p.first);\n\tGraph ori = p.second;\n\t\n\tvector<pair<Point, Point>>pairs;\n\tfor (Edges& es : ori) {\n\t\tfor ( Edge& e : es) {\n\t\t\tconst int src = e.src;\n\t\t\tconst int dst = e.dest;\n\t\t\tfor (int i = 0; i < N; ++i) {\n\t\t\t\tif (isis_lp(segs[i], ps[src]) && isis_lp(segs[i], ps[dst])) {\n\t\t\t\t\tif (abs(ps[dst] - segs[i].a)>abs(ps[src] - segs[i].a)) {\n\t\t\t\t\t\tpairs.push_back(make_pair(ps[src], ps[dst]));\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tconst int start = 0;\n\tconst int in = start + 1;\n\tconst int out = in + pairs.size();\n\tconst int goal = out + pairs.size();\n\tGraph aft(goal + 1);\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\tfor (int j = 0; j < pairs.size(); ++j) {\n\t\t\tif (i == j)continue;\n\t\t\tld dis= abs(pairs[i].second - pairs[j].first);\n\t\t\tadd_edge(aft, in + i, out + j, 1, dis);\n\t\t}\n\t}\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\t\n\t\tadd_edge(aft, start, in+i, 1, 0);\n\t\tadd_edge(aft, out+i, goal, 1, 0);\n\t\t\n\t}\n\taans=aans+ min_cost_flow(aft, start, goal, pairs.size());\n\tcout << fixed<<setprecision(22)<<aans << endl;\n\treturn 0;\n}", "accuracy": 0.07272727272727272, "time_ms": 30, "memory_kb": 32444, "score_of_the_acc": -0.7807, "final_rank": 16 }, { "submission_id": "aoj_2724_2039874", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\ntypedef ld Weight;\nstruct Edge {\n\tint src, dest;\n\tint cap, rev;\n\tWeight weight;\n\tbool operator < (const Edge &rhs) const { return weight > rhs.weight; }\n};\n\n\n/* テ・ツケツセテ、ツスツ陛」ツ?ョテ・ツ淞コテヲツ慊ャ */\n\n#include <complex>\n\ntypedef complex<ld> Point;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define all(x) (x).begin(),(x).end()\n\n\nconst ld pi = acos(-1.0);\nconst ld dtop = pi / 180.;\nconst ld ptod = 1. / dtop;\n\nnamespace std {\n\tbool operator<(const Point &lhs, const Point &rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() > rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\n// テァツつケテ」ツ?ョテ・ツ?・テ・ツ環?\nPoint input_Point() {\n\tld x, y;\n\tcin >> x >> y;\n\treturn Point(x, y);\n}\n\n// ティツェツ、テ・ツキツョテ」ツ?、テ」ツ?催ァツュツ嘉・ツ渉キテ・ツ按、テ・ツョツ?\nbool eq(const ld a, const ld b) {\n\treturn (abs(a - b) < eps);\n}\n\n// テ・ツ??ァツゥツ?\nld dot(const Point& a, const Point& b) {\n\treturn real(conj(a) * b);\n}\n\n// テ・ツ、ツ姪ァツゥツ?\nld cross(const Point& a, const Point& b) {\n\treturn imag(conj(a) * b);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ョテ・ツョツ堙ァツセツゥ\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() : a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) : a(a), b(b) {}\n\tPoint operator[](const int _num)const {\n\t\tif (_num == 0)return a;\n\t\telse if (_num == 1)return b;\n\t\telse {\n\t\t\tassert(false);\n\t\t\treturn Point();\n\t\t}\n\t}\n};\n\n// テ・ツ??」ツ?ョテ・ツョツ堙ァツセツゥ\nclass Circle {\npublic:\n\tPoint p;\n\tld r;\n\tCircle() : p(Point(0, 0)), r(0) {}\n\tCircle(Point p, ld r) : p(p), r(r) {}\n};\n\n// ccw\n// 1: a,b,cテ」ツ?古・ツ渉催ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n//-1: a,b,cテ」ツ?古ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n// 2: c,a,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n//-2: a,b,cテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n// 0: a,c,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\nint ccw(const Point& a, const Point &b, const Point &c) {\n\tconst Point nb(b - a);\n\tconst Point nc(c - a);\n\tif (cross(nb, nc) > eps) return 1; // a,b,cテ」ツ?古・ツ渉催ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (cross(nb, nc) < -eps) return -1; // a,b,cテ」ツ?古ヲツ卍づィツィツ暗・ツ堕ィテ」ツつ甘」ツ?ョテゥツ??」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (dot(nb, nc) < 0) return 2; // c,a,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n\tif (norm(nb) < norm(nc)) return -2; // a,b,cテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n\treturn 0; // a,c,bテ」ツ?ョテゥツ??」ツ?ォテァツ崢エテァツキツ堙」ツ?ォテ、ツクツヲテ」ツ?カ\n}\n\n\n/* テ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?*/\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ll(const Line& l, const Line& m) {\n\treturn !eq(cross(l.b - l.a, m.b - m.a), 0);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ls(const Line& l, const Line& s) {\n\treturn isis_ll(l, s) &&\n\t\t(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テ・ツキツョテ・ツ按、テ・ツョツ?\nbool isis_ss(const Line& s, const Line& t) {\n\treturn ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n\t\tccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// テァツつケテ」ツ?ョテァツ崢エテァツキツ堙、ツクツ甘・ツ按、テ・ツョツ?\nbool isis_lp(const Line& l, const Point& p) {\n\treturn (abs(cross(l.b - p, l.a - p)) < eps);\n}\n\n// テァツつケテ」ツ?ョテァツキツ堙・ツ按?、ツクツ甘・ツ按、テ・ツョツ?\nbool isis_sp(const Line& s, const Point& p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\n// テ・ツ楪づァツキツ堙」ツ?ョティツカツウ\nPoint proj(const Line &l, const Point& p) {\n\tld t = dot(p - l.a, l.b - l.a) / norm(l.a - l.b);\n\treturn l.a + t * (l.b - l.a);\n}\n\n//テァツキツ堙・ツッツセティツアツ。テ」ツ?ョテ、ツスツ催ァツスツョテ」ツ?ォテ」ツ?づ」ツつ凝ァツつケ\nPoint reflect(const Line &l, const Point &p) {\n\tPoint pr = proj(l, p);\n\treturn pr * 2.l - p;\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nPoint is_ll(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tassert(cross(sv, tv) != 0);\n\treturn s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);\n}\n// テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_ll2(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tif (cross(sv, tv) != 0)return vector<Point>(1, is_ll(s, t));\n\telse {\n\t\tvector<Point>ans;\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tif (isis_sp(s, t[k]) && find(ans.begin(), ans.end(), t[k]) == ans.end())ans.push_back(t[k]);\n\t\t\tif (isis_sp(t, s[k]) && find(ans.begin(), ans.end(), s[k]) == ans.end())ans.push_back(s[k]);\n\t\t}\n\t\treturn ans;\n\t}\n}\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テァツつケ\n//テ」ツ??ゥツ?催」ツ?ェテ」ツ?」テ」ツ?ヲテ」ツつ凝ゥツδィテ・ツ按?」ツ?づ」ツつ凝」ツ?ィassert(false)\nPoint is_ss(const Line &s, const Line& t) {\n\tif (isis_ss(s, t)) {\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tfor (int l = 0; l < 2; ++l) {\n\t\t\t\tif (s[k] == t[l])return s[k];\n\t\t\t}\n\t\t}\n\t\treturn is_ll(s, t);\n\t}\n\telse {\n\t\t//テ・ツ?暗」ツ?ォisis_ssテ」ツ?療」ツ?ヲテ」ツ?ュ\n\t\tassert(false);\n\t\treturn Point(0, 0);\n\t}\n}\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_ss2(const Line &s, const Line& t) {\n\tvector<Point> kouho(is_ll2(s, t));\n\tvector<Point>ans;\n\tfor (auto p : kouho) {\n\t\tif (isis_sp(s, p) && isis_sp(t, p))ans.emplace_back(p);\n\t}\n\treturn ans;\n}\n// テァツ崢エテァツキツ堙」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「\nld dist_lp(const Line& l, const Point& p) {\n\treturn abs(p - proj(l, p));\n}\n\n//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョティツキツ敕ゥツ崢「\nld dist_ll(const Line& l, const Line& m) {\n\treturn isis_ll(l, m) ? 0 : dist_lp(l, m.a);\n}\n\n// テァツ崢エテァツキツ堙」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nld dist_ls(const Line& l, const Line& s) {\n\treturn isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツつケテ」ツ?ョティツキツ敕ゥツ崢「\nld dist_sp(const Line& s, const Point& p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\n// テァツキツ堙・ツ按?」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nld dist_ss(const Line& s, const Line& t) {\n\tif (isis_ss(s, t)) return 0;\n\treturn min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });\n}\n\n\n//テァツ崢エテァツキツ堙」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ古ァツュツ嘉・ツ按?ァツキツ堙」ツ?ョテ」ツδ凖」ツつッテ」ツδ暗」ツδォ\nLine bisection(const Line &s, const Line &t) {\n\tconst Point laglanju(is_ll(s, t));\n\tconst Point avec = !(abs(laglanju - s[0])<eps) ? s[0] - laglanju : s[1] - laglanju;\n\tconst Point bvec = !(abs(laglanju - t[0])<eps) ? t[0] - laglanju : t[1] - laglanju;\n\n\treturn Line(laglanju, laglanju + (abs(bvec)*avec + abs(avec)*bvec) / (abs(avec) + abs(bvec)));\n}\n\n\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉」ツ?ェテ」ツつ凝・ツ??・ツソツ?\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?古、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??」ツ?禿」ツ?ィテ」ツ?ッテァツ「ツコテ」ツ?凝」ツつ?」ツ?ィテ」ツ??」ツ?ヲテ」ツ?ュ\nPoint inner_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i <static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (vertics[0] == vertics[1] || vertics[1] == vertics[2] || vertics[2] == vertics[0])return vertics[0];\n\tLine bi1(bisection(Line(vertics[0], vertics[1]), Line(vertics[0], vertics[2])));\n\tLine bi2(bisection(Line(vertics[1], vertics[2]), Line(vertics[1], vertics[0])));\n\tif (bi1[0] == bi2[0])return bi1[0];\n\telse {\n\t\treturn is_ll(bi1, bi2);\n\t}\n}\n\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉」ツ?ェテ」ツつ凝・ツつ催・ツソツ?\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?古、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??」ツ?禿」ツ?ィテ」ツ?ッテァツ「ツコテ」ツ?凝」ツつ?」ツ?ィテ」ツ??」ツ?ヲテ」ツ?ュ\nvector<Point> ex_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i < static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (abs(vertics[0] - vertics[1])<eps || abs(vertics[1] - vertics[2])<eps || (abs(vertics[2] - vertics[0])<eps))return vector<Point>();\n\tvector<Point>ecs;\n\tfor (int i = 0; i < 3; ++i) {\n\t\tLine bi1(bisection(Line(vertics[i], vertics[i] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[i], vertics[(i + 1) % 3])));\n\t\tLine bi2(bisection(Line(vertics[(i + 1) % 3], vertics[(i + 1) % 3] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[(i + 1) % 3], vertics[i])));\n\t\tecs.push_back(is_ll(bi1, bi2));\n\t}\n\treturn ecs;\n}\n\n\n//a,b:テ、ツクツヲティツ。ツ?\n//c:テ、ツクツヲティツ。ツ古」ツ?ァテ」ツ?ェテ」ツ??\n//テ、ツクツ嘉」ツ?、テ」ツ?ョテァツ崢エテァツキツ堙」ツ?凝」ツつ嘉・ツ青古ィツキツ敕ゥツ崢「テ」ツ?ョテ、ツスツ催ァツスツョテ」ツつ津ヲツアツづ」ツつ?」ツつ凝」ツ??\nvector<Point> same_dis(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tvertics.push_back(is_ll(ls[0], ls[2]));\n\tvertics.push_back(is_ll(ls[1], ls[2]));\n\n\tif (abs(vertics[0] - vertics[1]) < eps)return vector<Point>{vertics[0]};\n\tLine bis(bisection(ls[0], ls[1]));\n\tvector<Point>ecs;\n\n\tLine abi(bisection(Line(vertics[0], vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, abi));\n\n\n\tLine bbi(bisection(Line(vertics[0], 2.l*vertics[0] - vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, bbi));\n\n\treturn ecs;\n}\n/* テ・ツ??*/\n\n// テ・ツ??」ツ?ィテ・ツ??」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_cc(const Circle& c1, const Circle& c2) {\n\tvector<Point> res;\n\tld d = abs(c1.p - c2.p);\n\tld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);\n\tld dfr = c1.r * c1.r - rc * rc;\n\tif (abs(dfr) < eps) dfr = 0.0;\n\telse if (dfr < 0.0) return res; // no intersection\n\tld rs = sqrt(dfr);\n\tPoint diff = (c2.p - c1.p) / d;\n\tres.push_back(c1.p + diff * Point(rc, rs));\n\tif (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));\n\treturn res;\n}\n\n//テァツつケテ」ツ?古・ツ??」ツ?ョテ、ツクツュテ」ツ?ォテ」ツ??」ツつ凝」ツ??\n/* 0 => out\n1 => on\n2 => in*/\nint is_in_Circle(const Circle &cir, const Point& p) {\n\tld dis = abs(cir.p - p);\n\tif (dis > cir.r + eps)return 0;\n\telse if (dis < cir.r - eps)return 2;\n\telse return 1;\n}\n//テ・ツ??cテ」ツ?古・ツ??cテ」ツ?ョテ、ツクツュテ」ツ?ォテ」ツ??」ツつ凝」ツ??\n/*0 => out\n1 => on\n2 => in*/\nint Circle_in_Circle(const Circle &lc, const Circle&rc) {\n\tld dis = abs(lc.p - rc.p);\n\tif (dis < rc.r - lc.r - eps)return 2;\n\telse if (dis>rc.r - lc.r + eps)return 0;\n\telse return 1;\n}\n\n// テ・ツ??」ツ?ィテァツ崢エテァツキツ堙」ツ?ョテ、ツコツ、テァツつケ\nvector<Point> is_lc(const Circle& c, const Line& l) {\n\tvector<Point> res;\n\tld d = dist_lp(l, c.p);\n\tif (d < c.r + eps) {\n\t\tld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;\n\t\tPoint nor = (l.a - l.b) / abs(l.a - l.b);\n\t\tres.push_back(proj(l, c.p) + len * nor);\n\t\tres.push_back(proj(l, c.p) - len * nor);\n\t}\n\treturn res;\n}\n\n// テ・ツ??」ツ?ィテァツキツ堙・ツ按?」ツ?ョティツキツ敕ゥツ崢「\nvector<Point> is_sc(const Circle& c, const Line& l) {\n\tvector<Point> v = is_lc(c, l), res;\n\tfor (Point p : v)\n\t\tif (isis_sp(l, p)) res.push_back(p);\n\treturn res;\n}\n\n// テ・ツ??」ツ?ィテァツつケテ」ツ?ョテヲツ篠・テァツキツ?\nvector<Line> tangent_cp(const Circle& c, const Point& p) {\n\tvector<Line> ret;\n\tPoint v = c.p - p;\n\tld d = abs(v);\n\tld l = sqrt(norm(v) - c.r * c.r);\n\tif (isnan(l)) { return ret; }\n\tPoint v1 = v * Point(l / d, c.r / d);\n\tPoint v2 = v * Point(l / d, -c.r / d);\n\tret.push_back(Line(p, p + v1));\n\tif (l < eps) return ret;\n\tret.push_back(Line(p, p + v2));\n\treturn ret;\n}\n\n// テ・ツ??」ツ?ィテ・ツ??」ツ?ョテヲツ篠・テァツキツ?\nvector<Line> tangent_cc(const Circle& c1, const Circle& c2) {\n\tvector<Line> ret;\n\tif (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {\n\t\tPoint center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);\n\t\tret = tangent_cp(c1, center);\n\t}\n\tif (abs(c1.r - c2.r) > eps) {\n\t\tPoint out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);\n\t\tvector<Line> nret = tangent_cp(c1, out);\n\t\tret.insert(ret.end(), all(nret));\n\t}\n\telse {\n\t\tPoint v = c2.p - c1.p;\n\t\tv /= abs(v);\n\t\tPoint q1 = c1.p + v * Point(0, 1) * c1.r;\n\t\tPoint q2 = c1.p + v * Point(0, -1) * c1.r;\n\t\tret.push_back(Line(q1, q1 + v));\n\t\tret.push_back(Line(q2, q2 + v));\n\t}\n\treturn ret;\n}\n//テ、ツコツ古」ツ?、テ」ツ?ョテ・ツ??」ツ?ョテゥツ?催」ツ?ェテ」ツつ甘ゥツ敖「テァツゥツ?\nld two_Circle_area(const Circle&l, const Circle&r) {\n\tld dis = abs(l.p - r.p);\n\tif (dis > l.r + r.r)return 0;\n\telse if (dis + r.r < l.r) {\n\t\treturn r.r*r.r*pi;\n\t}\n\telse if (dis + l.r < r.r) {\n\t\treturn l.r*l.r*pi;\n\t}\n\telse {\n\t\tld ans = (l.r)*(l.r)*acos((dis*dis + l.r*l.r - r.r*r.r) / (2 * dis*l.r)) +\n\t\t\t(r.r)*(r.r)*acos((dis*dis + r.r*r.r - l.r*l.r) / (2 * dis*r.r)) -\n\t\t\tsqrt(4 * dis*dis*l.r*l.r - (dis*dis + l.r*l.r - r.r*r.r)*(dis*dis + l.r*l.r - r.r*r.r)) / 2;\n\t\treturn ans;\n\t}\n\n}\n\n/* テ・ツ、ツ堙ィツァツ津・ツスツ「 */\n\ntypedef vector<Point> Polygon;\n\n// テゥツ敖「テァツゥツ?\nld area(const Polygon &p) {\n\tld res = 0;\n\tint n = p.size();\n\trep(j, n) res += cross(p[j], p[(j + 1) % n]);\n\treturn res / 2;\n}\n\n//テ・ツ、ツ堙ィツァツ津・ツスツ「テ」ツ?ョテ・ツ崢榲ィツサツ「テヲツ鳴ケテ・ツ青?\nbool is_counter_clockwise(const Polygon &poly) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];\n\t\tangle += arg((c - b) / (b - a));\n\t}\n\treturn angle > eps;\n}\n\n// テ・ツ??」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?\n/*0 => out\n1 => on\n2 => in*/\nint is_in_Polygon(const Polygon &poly, const Point& p) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n];\n\t\tif (isis_sp(Line(a, b), p)) return 1;\n\t\tangle += arg((b - p) / (a - p));\n\t}\n\treturn eq(angle, 0) ? 0 : 2;\n}\n//テ・ツ??」ツ?ョテ・ツ??・ツ、ツ姪・ツ按、テ・ツョツ?テ」ツ??ゥツォツ佚ゥツ??\nenum { out, on, in };\nint convex_contains(const Polygon &P, const Point &p) {\n\tconst int n = P.size();\n\tPoint g = (P[0] + P[n / 3] + P[2 * n / 3]) / 3.0l; // inner-point\n\tint a = 0, b = n;\n\twhile (a + 1 < b) { // invariant: c is in fan g-P[a]-P[b]\n\t\tint c = (a + b) / 2;\n\t\tif (cross(P[a] - g, P[c] - g) > 0) { // angle < 180 deg\n\t\t\tif (cross(P[a] - g, p - g) > 0 && cross(P[c] - g, p - g) < 0) b = c;\n\t\t\telse a = c;\n\t\t}\n\t\telse {\n\t\t\tif (cross(P[a] - g, p - g) < 0 && cross(P[c] - g, p - g) > 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t}\n\tb %= n;\n\tif (cross(P[a] - p, P[b] - p) < 0) return 0;\n\tif (cross(P[a] - p, P[b] - p) > 0) return 2;\n\treturn 1;\n}\n\n// テ・ツ?クテ・ツ個?\n//テァツつケテ」ツつ?ァツキツ堙」ツつ津ィツソツ氾」ツ?凖」ツ?禿」ツ?ィテ」ツつづヲツ慊嘉」ツつ甘・ツセツ療」ツつ凝」ツ?ョテ」ツ?ァテヲツウツィテヲツ??\nPolygon convex_hull(vector<Point> ps) {\n\tint n = ps.size();\n\tint k = 0;\n\tsort(ps.begin(), ps.end());\n\tPolygon ch(2 * n);\n\tfor (int i = 0; i < n; ch[k++] = ps[i++])\n\t\twhile (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tfor (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])\n\t\twhile (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tch.resize(k - 1);\n\treturn ch;\n}\n\n\n\n//テ・ツ?クテ」ツつォテ」ツδε」ツδ?\nvector<Polygon> convex_cut(const Polygon &ps, const Line& l) {\n\tint n = ps.size();\n\tPolygon q;\n\tPolygon r;\n\trep(i, n) {\n\t\tPoint a = ps[i], b = ps[(i + 1) % n];\n\t\tLine m = Line(a, b);\n\t\tif (ccw(l.a, l.b, a) != -1) q.push_back(a);\n\t\tif (ccw(l.a, l.b, a) != 1) r.push_back(a);\n\t\tif (ccw(l.a, l.b, a) * ccw(l.a, l.b, b) < 0 && isis_ll(l, m)) {\n\t\t\tq.push_back(is_ll(l, m));\n\t\t\tr.push_back(is_ll(l, m));\n\t\t}\n\t}\n\tconst vector<Polygon>polys{ q,r };\n\treturn polys;\n}\n\n\n/* テ」ツつ「テ」ツδャテ」ツδウテ」ツつクテ」ツδ。テ」ツδウテ」ツδ?*/\nvoid add_Point(vector<Point> &ps, const Point p) {\n\tfor (Point q : ps) if (abs(q - p) < eps) return;\n\tps.push_back(p);\n}\n\n\n\n\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\ntypedef vector<Weight> Array;\ntypedef vector<Array> Matrix;\n\nvoid add_edge(Graph &g, int src, int dest, int cap, Weight weight) {\n\tg[src].push_back(Edge{ src, dest, cap, (int)g[dest].size(), weight });\n\tg[dest].push_back(Edge{ dest, src, 0, (int)g[src].size() - 1, -weight });\n}\n\nGraph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {\n\tint n = p.size(), m = s.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) {\n\t\t\tif (isis_sp(s[i], p[j]))\n\t\t\t\tvec.emplace_back(abs(s[i].a - p[j]), j);\n\t\t}\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(abs(p[from] - p[to])));\n\t\t}\n\t}\n\treturn g;\n}\npair<vector<Point>,Graph> sennbunn_arrangement(const vector<Line>&s) {\n\tvector<Point>crss;\n\tfor (int i = 0; i < static_cast<int>(s.size()); ++i) {\n\t\tfor (int j = i + 1; j < static_cast<int>(s.size()); ++j) {\n\t\t\tif (isis_ss(s[i], s[j])) {\n\t\t\t\tcrss.push_back(is_ll2(s[i], s[j])[0]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i <static_cast<int>(s.size()); ++i) {\n\t\tcrss.push_back(s[i][0]);\n\t\tcrss.push_back(s[i][1]);\n\t}\n\tsort(crss.begin(), crss.end());\n\tcrss.erase(unique(crss.begin(), crss.end()), crss.end());\n\t\n\treturn make_pair(crss,segment_arrangement(s, crss));\n}\n\nGraph Circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {\n\tconst int n = p.size(), m = c.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)\n\t\t\tvec.emplace_back(arg(c[i].p - p[j]), j);\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tld angle = vec[j + 1].first - vec[j].first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t\tif (vec.size() >= 2) {\n\t\t\tint from = vec.back().second, to = vec.front().first;\n\t\t\tld angle = vec.front().first - vec.back().first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t}\n\treturn g;\n}\n\nconst int V = 400;\nWeight h[V]; //テ」ツδ敕」ツδ?」ツδウテ」ツつキテ」ツδ」テ」ツδォ\nWeight dist[V]; //テヲツ慊?ァツ淞ュティツキツ敕ゥツ崢「\nint prevv[V], preve[V]; //テァツ崢エテ・ツ可催」ツ?ョティツセツコテ」ツ?ィテゥツ?づァツつケ\n\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\nconst Weight INF =1e18;\nWeight min_cost_flow(Graph &g, int s, int t, int f) {\n\tWeight res = 0;\n\tmemset(h, 0, sizeof(h));\n\ttypedef pair<Weight, int> P;\n\twhile (f > 0) {\n\t\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\tfill(dist, dist + V, INF);\n\t\tdist[s] = 0;\n\t\tque.push(P(0, s));\n\t\twhile (!que.empty()) {\n\t\t\tP p = que.top(); que.pop();\n\t\t\tint v = p.second;\n\t\t\tif (dist[v] < p.first) continue;\n\t\t\tREP(i, g[v].size()) {\n\t\t\t\tEdge &e = g[v][i];\n\t\t\t\tif (e.cap > 0 && dist[e.dest] > dist[v] + e.weight + h[v] - h[e.dest]) {\n\t\t\t\t\tdist[e.dest] = dist[v] + e.weight + h[v] - h[e.dest];\n\t\t\t\t\tprevv[e.dest] = v;\n\t\t\t\t\tpreve[e.dest] = i;\n\t\t\t\t\tque.push(P(dist[e.dest], e.dest));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (dist[t] == INF) return -1;\n\t\tREP(v, V) h[v] =h[v]+ dist[v];\n\n\t\tint d = f;\n\t\tfor (int v = t; v != s; v = prevv[v]) d = min(d, g[prevv[v]][preve[v]].cap);\n\t\tf -= d;\n\t\tres = res+d * h[t];\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\tEdge &e = g[prevv[v]][preve[v]];\n\t\t\te.cap -= d;\n\t\t\tg[v][e.rev].cap += d;\n\t\t}\n\t}\n\treturn res;\n}\n\nint main() {\n\tint N; cin >> N;\n\tld sx, sy; cin >> sx >> sy;\n\tPoint sp;\n\tsp = Point(sx, sy);\n\tvector<Line>segs(N);\n\tld aans = 0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tld ax, ay, bx, by; cin >> ax >> ay >> bx >> by;\n\t\tsegs[i] = Line(Point(ax, ay), Point(bx, by));\n\t\taans += abs(segs[i].b - segs[i].a);\n\t}\n\tauto p= sennbunn_arrangement(segs);\n\tvector<Point>ps(p.first);\n\tGraph ori = p.second;\n\t\n\tvector<pair<Point, Point>>pairs;\n\tfor (Edges& es : ori) {\n\t\tfor ( Edge& e : es) {\n\t\t\tconst int src = e.src;\n\t\t\tconst int dst = e.dest;\n\t\t\tfor (int i = 0; i < N; ++i) {\n\t\t\t\tif (isis_lp(segs[i], ps[src]) && isis_lp(segs[i], ps[dst])) {\n\t\t\t\t\tif (abs(ps[dst] - segs[i].a)>abs(ps[src] - segs[i].a)) {\n\t\t\t\t\t\tpairs.push_back(make_pair(ps[src], ps[dst]));\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tconst int start = 0;\n\tconst int in = start + 1;\n\tconst int out = in + pairs.size();\n\tconst int goal = out + pairs.size();\n\tGraph aft(goal + 1);\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\tfor (int j = 0; j < pairs.size(); ++j) {\n\t\t\tif (i == j)continue;\n\t\t\tld dis= abs(pairs[i].second - pairs[j].first);\n\t\t\tadd_edge(aft, in + i, out + j, 1, dis);\n\t\t}\n\t}\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\t\n\t\tadd_edge(aft, start, in+i, 1, 0);\n\t\tadd_edge(aft, out+i, goal, 1, 0);\n\t\t\n\t}\n\taans=aans+ min_cost_flow(aft, start, goal, pairs.size());\n\tcout << fixed<<setprecision(22)<<aans << endl;\n\treturn 0;\n}", "accuracy": 0.07272727272727272, "time_ms": 50, "memory_kb": 32356, "score_of_the_acc": -0.7923, "final_rank": 19 }, { "submission_id": "aoj_2724_2039873", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\ntypedef ld Weight;\nstruct Edge {\n\tint src, dest;\n\tint cap, rev;\n\tWeight weight;\n\tbool operator < (const Edge &rhs) const { return weight > rhs.weight; }\n};\n\n\n/* ??????????????¬ */\n\n#include <complex>\n\ntypedef complex<ld> Point;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define all(x) (x).begin(),(x).end()\n\n\nconst ld pi = acos(-1.0);\nconst ld dtop = pi / 180.;\nconst ld ptod = 1. / dtop;\n\nnamespace std {\n\tbool operator<(const Point &lhs, const Point &rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() > rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\n// ????????\\???\nPoint input_Point() {\n\tld x, y;\n\tcin >> x >> y;\n\treturn Point(x, y);\n}\n\n// ????????????????????????\nbool eq(const ld a, const ld b) {\n\treturn (abs(a - b) < eps);\n}\n\n// ??????\nld dot(const Point& a, const Point& b) {\n\treturn real(conj(a) * b);\n}\n\n// ??????\nld cross(const Point& a, const Point& b) {\n\treturn imag(conj(a) * b);\n}\n\n// ??´????????????\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() : a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) : a(a), b(b) {}\n\tPoint operator[](const int _num)const {\n\t\tif (_num == 0)return a;\n\t\telse if (_num == 1)return b;\n\t\telse {\n\t\t\tassert(false);\n\t\t\treturn Point();\n\t\t}\n\t}\n};\n\n// ????????????\nclass Circle {\npublic:\n\tPoint p;\n\tld r;\n\tCircle() : p(Point(0, 0)), r(0) {}\n\tCircle(Point p, ld r) : p(p), r(r) {}\n};\n\n// ccw\n// 1: a,b,c??????????¨???¨?????????????????¶\n//-1: a,b,c???????¨???¨?????????????????¶\n// 2: c,a,b???????????´???????????¶\n//-2: a,b,c???????????´???????????¶\n// 0: a,c,b???????????´???????????¶\nint ccw(const Point& a, const Point &b, const Point &c) {\n\tconst Point nb(b - a);\n\tconst Point nc(c - a);\n\tif (cross(nb, nc) > eps) return 1; // a,b,c??????????¨???¨?????????????????¶\n\tif (cross(nb, nc) < -eps) return -1; // a,b,c???????¨???¨?????????????????¶\n\tif (dot(nb, nc) < 0) return 2; // c,a,b???????????´???????????¶\n\tif (norm(nb) < norm(nc)) return -2; // a,b,c???????????´???????????¶\n\treturn 0; // a,c,b???????????´???????????¶\n}\n\n\n/* ???????????? */\n\n// ??´?????¨??´??????????????????\nbool isis_ll(const Line& l, const Line& m) {\n\treturn !eq(cross(l.b - l.a, m.b - m.a), 0);\n}\n\n// ??´?????¨?????????????????????\nbool isis_ls(const Line& l, const Line& s) {\n\treturn isis_ll(l, s) &&\n\t\t(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// ????????¨?????????????????????\nbool isis_ss(const Line& s, const Line& t) {\n\treturn ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n\t\tccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// ????????´????????????\nbool isis_lp(const Line& l, const Point& p) {\n\treturn (abs(cross(l.b - p, l.a - p)) < eps);\n}\n\n// ?????????????????????\nbool isis_sp(const Line& s, const Point& p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\n// ??????????¶?\nPoint proj(const Line &l, const Point& p) {\n\tld t = dot(p - l.a, l.b - l.a) / norm(l.a - l.b);\n\treturn l.a + t * (l.b - l.a);\n}\n\n//???????±??????????????????????\nPoint reflect(const Line &l, const Point &p) {\n\tPoint pr = proj(l, p);\n\treturn pr * 2.l - p;\n}\n\n// ??´?????¨??´????????????\nPoint is_ll(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tassert(cross(sv, tv) != 0);\n\treturn s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);\n}\n// ??´?????¨??´????????????\nvector<Point> is_ll2(const Line &s, const Line& t) {\n\tPoint sv = s.b - s.a, tv = t.b - t.a;\n\tif (cross(sv, tv) != 0)return vector<Point>(1, is_ll(s, t));\n\telse {\n\t\tvector<Point>ans;\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tif (isis_sp(s, t[k]) && find(ans.begin(), ans.end(), t[k]) == ans.end())ans.push_back(t[k]);\n\t\t\tif (isis_sp(t, s[k]) && find(ans.begin(), ans.end(), s[k]) == ans.end())ans.push_back(s[k]);\n\t\t}\n\t\treturn ans;\n\t}\n}\n// ????????¨???????????????\n//???????????£????????¨???????????¨assert(false)\nPoint is_ss(const Line &s, const Line& t) {\n\tif (isis_ss(s, t)) {\n\t\tfor (int k = 0; k < 2; ++k) {\n\t\t\tfor (int l = 0; l < 2; ++l) {\n\t\t\t\tif (s[k] == t[l])return s[k];\n\t\t\t}\n\t\t}\n\t\treturn is_ll(s, t);\n\t}\n\telse {\n\t\t//??????isis_ss?????????\n\t\tassert(false);\n\t\treturn Point(0, 0);\n\t}\n}\n// ????????¨???????????????\nvector<Point> is_ss2(const Line &s, const Line& t) {\n\tvector<Point> kouho(is_ll2(s, t));\n\tvector<Point>ans;\n\tfor (auto p : kouho) {\n\t\tif (isis_sp(s, p) && isis_sp(t, p))ans.emplace_back(p);\n\t}\n\treturn ans;\n}\n// ??´?????¨???????????¢\nld dist_lp(const Line& l, const Point& p) {\n\treturn abs(p - proj(l, p));\n}\n\n//??´?????¨??´???????????¢\nld dist_ll(const Line& l, const Line& m) {\n\treturn isis_ll(l, m) ? 0 : dist_lp(l, m.a);\n}\n\n// ??´?????¨??????????????¢\nld dist_ls(const Line& l, const Line& s) {\n\treturn isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\n\n// ????????¨???????????¢\nld dist_sp(const Line& s, const Point& p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\n// ????????¨??????????????¢\nld dist_ss(const Line& s, const Line& t) {\n\tif (isis_ss(s, t)) return 0;\n\treturn min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });\n}\n\n\n//??´?????¨??´?????????????????????????????????\nLine bisection(const Line &s, const Line &t) {\n\tconst Point laglanju(is_ll(s, t));\n\tconst Point avec = !(abs(laglanju - s[0])<eps) ? s[0] - laglanju : s[1] - laglanju;\n\tconst Point bvec = !(abs(laglanju - t[0])<eps) ? t[0] - laglanju : t[1] - laglanju;\n\n\treturn Line(laglanju, laglanju + (abs(bvec)*avec + abs(avec)*bvec) / (abs(avec) + abs(bvec)));\n}\n\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nPoint inner_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i <static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (vertics[0] == vertics[1] || vertics[1] == vertics[2] || vertics[2] == vertics[0])return vertics[0];\n\tLine bi1(bisection(Line(vertics[0], vertics[1]), Line(vertics[0], vertics[2])));\n\tLine bi2(bisection(Line(vertics[1], vertics[2]), Line(vertics[1], vertics[0])));\n\tif (bi1[0] == bi2[0])return bi1[0];\n\telse {\n\t\treturn is_ll(bi1, bi2);\n\t}\n}\n\n//???????????´?????????????????????\n//???????????´??????????????§???????????¨????¢?????????¨?????????\nvector<Point> ex_center(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tfor (int i = 0; i < static_cast<int>(ls.size()); ++i) {\n\t\tvertics.push_back(is_ll(ls[i], ls[(i + 1) % 3]));\n\t}\n\tif (abs(vertics[0] - vertics[1])<eps || abs(vertics[1] - vertics[2])<eps || (abs(vertics[2] - vertics[0])<eps))return vector<Point>();\n\tvector<Point>ecs;\n\tfor (int i = 0; i < 3; ++i) {\n\t\tLine bi1(bisection(Line(vertics[i], vertics[i] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[i], vertics[(i + 1) % 3])));\n\t\tLine bi2(bisection(Line(vertics[(i + 1) % 3], vertics[(i + 1) % 3] * 2.0l - vertics[(i + 2) % 3]), Line(vertics[(i + 1) % 3], vertics[i])));\n\t\tecs.push_back(is_ll(bi1, bi2));\n\t}\n\treturn ecs;\n}\n\n\n//a,b:??????\n//c:????????§??????\n//???????????´?????????????????¢?????????????±??????????\nvector<Point> same_dis(const vector<Line>&ls) {\n\tvector<Point>vertics;\n\tvertics.push_back(is_ll(ls[0], ls[2]));\n\tvertics.push_back(is_ll(ls[1], ls[2]));\n\n\tif (abs(vertics[0] - vertics[1]) < eps)return vector<Point>{vertics[0]};\n\tLine bis(bisection(ls[0], ls[1]));\n\tvector<Point>ecs;\n\n\tLine abi(bisection(Line(vertics[0], vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, abi));\n\n\n\tLine bbi(bisection(Line(vertics[0], 2.l*vertics[0] - vertics[1]), ls[0]));\n\tecs.push_back(is_ll(bis, bbi));\n\n\treturn ecs;\n}\n/* ??? */\n\n// ?????¨????????????\nvector<Point> is_cc(const Circle& c1, const Circle& c2) {\n\tvector<Point> res;\n\tld d = abs(c1.p - c2.p);\n\tld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);\n\tld dfr = c1.r * c1.r - rc * rc;\n\tif (abs(dfr) < eps) dfr = 0.0;\n\telse if (dfr < 0.0) return res; // no intersection\n\tld rs = sqrt(dfr);\n\tPoint diff = (c2.p - c1.p) / d;\n\tres.push_back(c1.p + diff * Point(rc, rs));\n\tif (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));\n\treturn res;\n}\n\n//???????????????????????????\n/* 0 => out\n1 => on\n2 => in*/\nint is_in_Circle(const Circle &cir, const Point& p) {\n\tld dis = abs(cir.p - p);\n\tif (dis > cir.r + eps)return 0;\n\telse if (dis < cir.r - eps)return 2;\n\telse return 1;\n}\n//???lc??????rc??????????????????\n/*0 => out\n1 => on\n2 => in*/\nint Circle_in_Circle(const Circle &lc, const Circle&rc) {\n\tld dis = abs(lc.p - rc.p);\n\tif (dis < rc.r - lc.r - eps)return 2;\n\telse if (dis>rc.r - lc.r + eps)return 0;\n\telse return 1;\n}\n\n// ?????¨??´????????????\nvector<Point> is_lc(const Circle& c, const Line& l) {\n\tvector<Point> res;\n\tld d = dist_lp(l, c.p);\n\tif (d < c.r + eps) {\n\t\tld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;\n\t\tPoint nor = (l.a - l.b) / abs(l.a - l.b);\n\t\tres.push_back(proj(l, c.p) + len * nor);\n\t\tres.push_back(proj(l, c.p) - len * nor);\n\t}\n\treturn res;\n}\n\n// ?????¨??????????????¢\nvector<Point> is_sc(const Circle& c, const Line& l) {\n\tvector<Point> v = is_lc(c, l), res;\n\tfor (Point p : v)\n\t\tif (isis_sp(l, p)) res.push_back(p);\n\treturn res;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cp(const Circle& c, const Point& p) {\n\tvector<Line> ret;\n\tPoint v = c.p - p;\n\tld d = abs(v);\n\tld l = sqrt(norm(v) - c.r * c.r);\n\tif (isnan(l)) { return ret; }\n\tPoint v1 = v * Point(l / d, c.r / d);\n\tPoint v2 = v * Point(l / d, -c.r / d);\n\tret.push_back(Line(p, p + v1));\n\tif (l < eps) return ret;\n\tret.push_back(Line(p, p + v2));\n\treturn ret;\n}\n\n// ?????¨????????\\???\nvector<Line> tangent_cc(const Circle& c1, const Circle& c2) {\n\tvector<Line> ret;\n\tif (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {\n\t\tPoint center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);\n\t\tret = tangent_cp(c1, center);\n\t}\n\tif (abs(c1.r - c2.r) > eps) {\n\t\tPoint out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);\n\t\tvector<Line> nret = tangent_cp(c1, out);\n\t\tret.insert(ret.end(), all(nret));\n\t}\n\telse {\n\t\tPoint v = c2.p - c1.p;\n\t\tv /= abs(v);\n\t\tPoint q1 = c1.p + v * Point(0, 1) * c1.r;\n\t\tPoint q2 = c1.p + v * Point(0, -1) * c1.r;\n\t\tret.push_back(Line(q1, q1 + v));\n\t\tret.push_back(Line(q2, q2 + v));\n\t}\n\treturn ret;\n}\n//??????????????????????????¢???\nld two_Circle_area(const Circle&l, const Circle&r) {\n\tld dis = abs(l.p - r.p);\n\tif (dis > l.r + r.r)return 0;\n\telse if (dis + r.r < l.r) {\n\t\treturn r.r*r.r*pi;\n\t}\n\telse if (dis + l.r < r.r) {\n\t\treturn l.r*l.r*pi;\n\t}\n\telse {\n\t\tld ans = (l.r)*(l.r)*acos((dis*dis + l.r*l.r - r.r*r.r) / (2 * dis*l.r)) +\n\t\t\t(r.r)*(r.r)*acos((dis*dis + r.r*r.r - l.r*l.r) / (2 * dis*r.r)) -\n\t\t\tsqrt(4 * dis*dis*l.r*l.r - (dis*dis + l.r*l.r - r.r*r.r)*(dis*dis + l.r*l.r - r.r*r.r)) / 2;\n\t\treturn ans;\n\t}\n\n}\n\n/* ????§???¢ */\n\ntypedef vector<Point> Polygon;\n\n// ??¢???\nld area(const Polygon &p) {\n\tld res = 0;\n\tint n = p.size();\n\trep(j, n) res += cross(p[j], p[(j + 1) % n]);\n\treturn res / 2;\n}\n\n//????§???¢????????¢??????\nbool is_counter_clockwise(const Polygon &poly) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];\n\t\tangle += arg((c - b) / (b - a));\n\t}\n\treturn angle > eps;\n}\n\n// ??????????????????\n/*0 => out\n1 => on\n2 => in*/\nint is_in_Polygon(const Polygon &poly, const Point& p) {\n\tld angle = 0;\n\tint n = poly.size();\n\trep(i, n) {\n\t\tPoint a = poly[i], b = poly[(i + 1) % n];\n\t\tif (isis_sp(Line(a, b), p)) return 1;\n\t\tangle += arg((b - p) / (a - p));\n\t}\n\treturn eq(angle, 0) ? 0 : 2;\n}\n//??????????????????2?????????\nenum { out, on, in };\nint convex_contains(const Polygon &P, const Point &p) {\n\tconst int n = P.size();\n\tPoint g = (P[0] + P[n / 3] + P[2 * n / 3]) / 3.0l; // inner-point\n\tint a = 0, b = n;\n\twhile (a + 1 < b) { // invariant: c is in fan g-P[a]-P[b]\n\t\tint c = (a + b) / 2;\n\t\tif (cross(P[a] - g, P[c] - g) > 0) { // angle < 180 deg\n\t\t\tif (cross(P[a] - g, p - g) > 0 && cross(P[c] - g, p - g) < 0) b = c;\n\t\t\telse a = c;\n\t\t}\n\t\telse {\n\t\t\tif (cross(P[a] - g, p - g) < 0 && cross(P[c] - g, p - g) > 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t}\n\tb %= n;\n\tif (cross(P[a] - p, P[b] - p) < 0) return 0;\n\tif (cross(P[a] - p, P[b] - p) > 0) return 2;\n\treturn 1;\n}\n\n// ??????\n//???????????????????????¨????????????????????§??¨???\nPolygon convex_hull(vector<Point> ps) {\n\tint n = ps.size();\n\tint k = 0;\n\tsort(ps.begin(), ps.end());\n\tPolygon ch(2 * n);\n\tfor (int i = 0; i < n; ch[k++] = ps[i++])\n\t\twhile (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tfor (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])\n\t\twhile (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;\n\tch.resize(k - 1);\n\treturn ch;\n}\n\n\n\n//????????????\nvector<Polygon> convex_cut(const Polygon &ps, const Line& l) {\n\tint n = ps.size();\n\tPolygon q;\n\tPolygon r;\n\trep(i, n) {\n\t\tPoint a = ps[i], b = ps[(i + 1) % n];\n\t\tLine m = Line(a, b);\n\t\tif (ccw(l.a, l.b, a) != -1) q.push_back(a);\n\t\tif (ccw(l.a, l.b, a) != 1) r.push_back(a);\n\t\tif (ccw(l.a, l.b, a) * ccw(l.a, l.b, b) < 0 && isis_ll(l, m)) {\n\t\t\tq.push_back(is_ll(l, m));\n\t\t\tr.push_back(is_ll(l, m));\n\t\t}\n\t}\n\tconst vector<Polygon>polys{ q,r };\n\treturn polys;\n}\n\n\n/* ??¢??¬??????????????? */\nvoid add_Point(vector<Point> &ps, const Point p) {\n\tfor (Point q : ps) if (abs(q - p) < eps) return;\n\tps.push_back(p);\n}\n\n\n\n\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\ntypedef vector<Weight> Array;\ntypedef vector<Array> Matrix;\n\nvoid add_edge(Graph &g, int src, int dest, int cap, Weight weight) {\n\tg[src].push_back(Edge{ src, dest, cap, (int)g[dest].size(), weight });\n\tg[dest].push_back(Edge{ dest, src, 0, (int)g[src].size() - 1, -weight });\n}\n\nGraph segment_arrangement(const vector<Line> &s, const vector<Point> &p) {\n\tint n = p.size(), m = s.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) {\n\t\t\tif (isis_sp(s[i], p[j]))\n\t\t\t\tvec.emplace_back(abs(s[i].a - p[j]), j);\n\t\t}\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(abs(p[from] - p[to])));\n\t\t}\n\t}\n\treturn g;\n}\npair<vector<Point>,Graph> sennbunn_arrangement(const vector<Line>&s) {\n\tvector<Point>crss;\n\tfor (int i = 0; i < static_cast<int>(s.size()); ++i) {\n\t\tfor (int j = i + 1; j < static_cast<int>(s.size()); ++j) {\n\t\t\tif (isis_ss(s[i], s[j])) {\n\t\t\t\tcrss.push_back(is_ll2(s[i], s[j])[0]);\n\t\t\t}\n\t\t}\n\t}\n\tfor (int i = 0; i <static_cast<int>(s.size()); ++i) {\n\t\tcrss.push_back(s[i][0]);\n\t\tcrss.push_back(s[i][1]);\n\t}\n\tsort(crss.begin(), crss.end());\n\tcrss.erase(unique(crss.begin(), crss.end()), crss.end());\n\t\n\treturn make_pair(crss,segment_arrangement(s, crss));\n}\n\nGraph Circle_arrangement(const vector<Circle> &c, const vector<Point> &p) {\n\tconst int n = p.size(), m = c.size();\n\tGraph g(n);\n\trep(i, m) {\n\t\tvector<pair<ld, int>> vec;\n\t\trep(j, n) if (abs(abs(c[i].p - p[j]) - c[i].r) < eps)\n\t\t\tvec.emplace_back(arg(c[i].p - p[j]), j);\n\t\tsort(all(vec));\n\t\trep(j, vec.size() - 1) {\n\t\t\tint from = vec[j].second, to = vec[j + 1].second;\n\t\t\tld angle = vec[j + 1].first - vec[j].first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t\tif (vec.size() >= 2) {\n\t\t\tint from = vec.back().second, to = vec.front().first;\n\t\t\tld angle = vec.front().first - vec.back().first;\n\t\t\tadd_edge(g, from, to, 1,static_cast<Weight>(angle * c[i].r));\n\t\t}\n\t}\n\treturn g;\n}\n\nconst int V = 400;\nWeight h[V]; //??????????????£???\nWeight dist[V]; //???????????¢\nint prevv[V], preve[V]; //??´???????????¨??????\n\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\nconst Weight INF =1e18;\nWeight min_cost_flow(Graph &g, int s, int t, int f) {\n\tWeight res = 0;\n\tmemset(h, 0, sizeof(h));\n\ttypedef pair<Weight, int> P;\n\twhile (f > 0) {\n\t\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\tfill(dist, dist + V, INF);\n\t\tdist[s] = 0;\n\t\tque.push(P(0, s));\n\t\twhile (!que.empty()) {\n\t\t\tP p = que.top(); que.pop();\n\t\t\tint v = p.second;\n\t\t\tif (dist[v] < p.first) continue;\n\t\t\tREP(i, g[v].size()) {\n\t\t\t\tEdge &e = g[v][i];\n\t\t\t\tif (e.cap > 0 && dist[e.dest] > dist[v] + e.weight + h[v] - h[e.dest]) {\n\t\t\t\t\tdist[e.dest] = dist[v] + e.weight + h[v] - h[e.dest];\n\t\t\t\t\tprevv[e.dest] = v;\n\t\t\t\t\tpreve[e.dest] = i;\n\t\t\t\t\tque.push(P(dist[e.dest], e.dest));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (dist[t] == INF) return -1;\n\t\tREP(v, V) h[v] =h[v]+ dist[v];\n\n\t\tint d = f;\n\t\tfor (int v = t; v != s; v = prevv[v]) d = min(d, g[prevv[v]][preve[v]].cap);\n\t\tf -= d;\n\t\tres = res+d * h[t];\n\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\tEdge &e = g[prevv[v]][preve[v]];\n\t\t\te.cap -= d;\n\t\t\tg[v][e.rev].cap += d;\n\t\t}\n\t}\n\treturn res;\n}\n\nint main() {\n\tint N; cin >> N;\n\tld sx, sy; cin >> sx >> sy;\n\tPoint sp;\n\tsp = Point(sx, sy);\n\tvector<Line>segs(N);\n\tld aans = 0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tld ax, ay, bx, by; cin >> ax >> ay >> bx >> by;\n\t\tsegs[i] = Line(Point(ax, ay), Point(bx, by));\n\t\taans += abs(segs[i].b - segs[i].a);\n\t}\n\tauto p= sennbunn_arrangement(segs);\n\tvector<Point>ps(p.first);\n\tGraph ori = p.second;\n\t\n\tvector<pair<Point, Point>>pairs;\n\tfor (Edges& es : ori) {\n\t\tfor ( Edge& e : es) {\n\t\t\tconst int src = e.src;\n\t\t\tconst int dst = e.dest;\n\t\t\tfor (int i = 0; i < N; ++i) {\n\t\t\t\tif (isis_lp(segs[i], ps[src]) && isis_lp(segs[i], ps[dst])) {\n\t\t\t\t\tif (abs(ps[dst] - segs[i].a)>abs(ps[src] - segs[i].a)) {\n\t\t\t\t\t\tpairs.push_back(make_pair(ps[src], ps[dst]));\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tconst int start = 0;\n\tconst int in = start + 1;\n\tconst int out = in + pairs.size();\n\tconst int goal = out + pairs.size();\n\tGraph aft(goal + 1);\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\tfor (int j = 0; j < pairs.size(); ++j) {\n\t\t\tif (i == j)continue;\n\t\t\tld dis= abs(pairs[i].second - pairs[j].first);\n\t\t\tadd_edge(aft, in + i, out + j, 1, dis);\n\t\t}\n\t}\n\tfor (int i = 0; i < pairs.size(); ++i) {\n\t\t\n\t\tadd_edge(aft, start, in+i, 1, 0);\n\t\tadd_edge(aft, out+i, goal, 1, 0);\n\t\t\n\t}\n\taans=aans+ min_cost_flow(aft, start, goal, pairs.size());\n\tcout << fixed<<setprecision(22)<<aans << endl;\n\treturn 0;\n}", "accuracy": 0.07272727272727272, "time_ms": 40, "memory_kb": 32516, "score_of_the_acc": -0.7896, "final_rank": 17 }, { "submission_id": "aoj_2724_2007395", "code_snippet": "#include<bits/stdc++.h>\n#define f first\n#define s second\n#define mp make_pair\n#define pi M_PI\n#define inf 1<<30\n#define eps (1e-11)\n#define MAX 700\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return (x!=p.x ? x<p.x : y<p.y);}\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nstruct edge{ \n int to,cap;\n double cost;\n int rev;\n};\n\nint v;\nvector<edge> e[MAX];\ndouble h[MAX];\ndouble dist[MAX];\nint prevv[MAX],preve[MAX];\n\nvoid add_edge(int from,int to,int cap,double cost){\n e[from].push_back((edge){to,cap,cost,(int)e[to].size()});\n e[to].push_back((edge){from,0,-cost,(int)e[from].size()-1});\n}\n\ntypedef pair<int,double> P;\n\ndouble min_cost_flow(int s,int t,int f){\n double res=0.0;\n fill(h,h+v,0);\n while(f>0){\n priority_queue<P,vector<P>,greater<P> > pq;\n fill(dist,dist+v,inf);\n dist[s]=0;\n pq.push(P(0,s));\n while(pq.size()){\n P p=pq.top();\n pq.pop();\n int u=p.second;\n if(dist[u]-p.first<-eps)continue;\n for(int i=0;i<e[u].size();i++){\n edge &E=e[u][i];\n if(E.cap>0 && (dist[u]+E.cost+h[u]-h[E.to])-dist[E.to]<-eps){\n dist[E.to]=dist[u]+E.cost+h[u]-h[E.to];\n prevv[E.to]=u;\n preve[E.to]=i;\n pq.push(P(dist[E.to],E.to));\n }\n }\n }\n if(dist[t]==inf)return -1;\n for(int i=0;i<v;i++)h[i]+=dist[i];\n\n int d=f;\n for(int u=t;u!=s;u=prevv[u]){\n d=min(d,e[prevv[u]][preve[u]].cap);\n }\n f-=d;\n res+=(double)d*h[t];\n for(int u=t;u!=s;u=prevv[u]){\n edge &E=e[prevv[u]][preve[u]];\n E.cap-=d;\n e[u][E.rev].cap+=d;\n }\n }\n return res;\n}\n\nint main()\n{\n int n;\n vector<Segment> vs,vt;\n Point st;\n double ans=0.0;\n\n cin>>n;\n cin>>st.x>>st.y;\n for(int i=0;i<n;i++){\n Point a,b;\n cin>>a.x>>a.y>>b.x>>b.y;\n Segment s(a,b);\n vt.push_back(Segment(a,b));\n ans+=abs(b-a);\n }\n\n int s=vt.size()*2;\n int t=s+1;\n v=t+1;\n for(int i=0;i<vt.size();i++){\n for(int j=0;j<vt.size();j++){ \n add_edge(i,j+vt.size(),1,abs(vt[i].p2-vt[j].p1));\n }\n }\n for(int i=0;i<vt.size();i++){\n add_edge(s,i,1,0);\n add_edge(i+vt.size(),t,1,0);\n }\n printf(\"%.10f\\n\",ans+min_cost_flow(s,t,vt.size()));\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 8496, "score_of_the_acc": -0.2525, "final_rank": 4 } ]
aoj_2731_cpp
Shifting a Matrix You are given $N \times N$ matrix $A$ initialized with $A_{i,j} = (i - 1)N + j$, where $A_{i,j}$ is the entry of the $i$-th row and the $j$-th column of $A$. Note that $i$ and $j$ are 1-based. You are also given an operation sequence which consists of the four types of shift operations: left, right, up, and down shifts. More precisely, these operations are defined as follows: Left shift with $i$: circular shift of the $i$-th row to the left, i.e., setting previous $A_{i,k}$ to new $A_{i,k-1}$ for $2 \leq k \leq N$, and previous $A_{i,1}$ to new $A_{i,N}$. Right shift with $i$: circular shift of the $i$-th row to the right, i.e., setting previous $A_{i,k}$ to new $A_{i,k+1}$ for $1 \leq k \leq N - 1$, and previous $A_{i,N}$ to new $A_{i,1}$. Up shift with $j$: circular shift of the $j$-th column to the above, i.e., setting previous $A_{k,j}$ to new $A_{k-1,j}$ for $2 \leq k \leq N$, and previous $A_{1,j}$ to new $A_{N,j}$. Down shift with $j$: circular shift of the $j$-th column to the below, i.e., setting previous $A_{k,j}$ to new $A_{k+1,j}$ for $1 \leq k \leq N - 1$, and previous $A_{N,j}$ to new $A_{1,j}$. An operation sequence is given as a string. You have to apply operations to a given matrix from left to right in a given string. Left, right, up, and down shifts are referred as 'L', 'R', 'U', and 'D' respectively in a string, and the following number indicates the row/column to be shifted. For example, "R25" means we should perform right shift with 25. In addition, the notion supports repetition of operation sequences. An operation sequence surrounded by a pair of parentheses must be repeated exactly $m$ times, where $m$ is the number following the close parenthesis. For example, "(L1R2)10" means we should repeat exactly 10 times the set of the two operations: left shift with 1 and right shift with 2 in this order. Given operation sequences are guaranteed to follow the following BNF: <sequence> := <sequence><repetition> | <sequence><operation> | <repetition> | <operation> <repetition> := '('<sequence>')'<number> <operation> := <shift><number> <shift> := 'L' | 'R' | 'U' | 'D' <number> := <nonzero_digit> |<number><digit> <digit> := '0' | <nonzero_digit> <nonzero_digit> := '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' Given $N$ and an operation sequence as a string, make a program to compute the $N \times N$ matrix after operations indicated by the operation sequence. Input The input consists of a single test case. The test case is formatted as follows. $N$ $L$ $S$ The first line contains two integers $N$ and $L$, where $N$ ($1 \leq N \leq 100$) is the size of the given matrix and $L$ ($2 \leq L \leq 1,000$) is the length of the following string. The second line contains a string $S$ representing the given operation sequence. You can assume that $S$ follows the above BNF. You can also assume numbers representing rows and columns are no less than 1 and no more than $N$, and the number of each repetition is no less than 1 ...(truncated)
[ { "submission_id": "aoj_2731_10867660", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<ll, ll> P;\n\n#define each(i,a) for (auto&& i : a)\n#define FOR(i,a,b) for (ll i=(a),__last_##i=(b);i<__last_##i;i++)\n#define RFOR(i,a,b) for (ll i=(b)-1,__last_##i=(a);i>=__last_##i;i--)\n#define REP(i,n) FOR(i,0,n)\n#define RREP(i,n) RFOR(i,0,n)\n#define __GET_MACRO3(_1, _2, _3, NAME, ...) NAME\n#define rep(...) __GET_MACRO3(__VA_ARGS__, FOR, REP)(__VA_ARGS__)\n#define rrep(...) __GET_MACRO3(__VA_ARGS__, RFOR, RREP)(__VA_ARGS__)\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define chmin(x,v) x = min(x, v)\n#define chmax(x,v) x = max(x, v)\n\nconst ll linf = 1e18;\nconst int inf = 1e9;\nconst double eps = 1e-12;\nconst double pi = acos(-1);\n\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& vec) {\n each(x,vec) is >> x;\n return is;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector<T>& vec) {\n rep(i,vec.size()) {\n if (i) os << \" \";\n os << vec[i];\n }\n return os;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector< vector<T> >& vec) {\n rep(i,vec.size()) {\n if (i) os << endl;\n os << vec[i];\n }\n return os;\n}\n\nll n, L;\nstring s;\nll pos = 0;\nll number();\nvector<ll> f(const vector<ll>& s1, const vector<ll>& s2) {\n vector<ll> res(n*n);\n rep(i, n*n) res[i] = s1[s2[i]];\n return res;\n}\nvector<ll> E(ll n) {\n vector<ll> res(n*n);\n rep(i, res.size()) res[i] = i;\n return res;\n}\nvector<ll> power(vector<ll> x, ll m) {\n vector<ll> res = E(n);\n for (ll i = 1; i <= m; i <<= 1) {\n if (i & m) res = f(res, x);\n x = f(x, x);\n }\n return res;\n}\nvoid read_char(char c) {\n assert(pos < L && s[pos] == c);\n ++pos;\n}\nll ID(ll x, ll y) { return y * n + x; }\nvector<ll> S() {\n vector<ll> res = E(n);\n while (pos < L) {\n // cout << s[pos] << endl;\n // op\n if (s[pos] == '(') {\n read_char('(');\n vector<ll> op = S();\n read_char(')');\n ll times = number();\n res = f(res, power(op, times));\n }\n else if (s[pos] == ')') {\n break;\n }\n else {\n ll opc = s[pos++];\n assert(opc == 'L' || opc == 'R' || opc == 'U' || opc == 'D');\n ll idx = number()-1;\n assert(0 <= idx && idx < n);\n if (opc == 'L') {\n ll temp = res[ID(0, idx)];\n rep(x, n) {\n res[ID(x, idx)] = x == n-1 ? temp : res[ID(x+1, idx)];\n }\n }\n else if (opc == 'R') {\n ll temp = res[ID(n-1, idx)];\n rrep(x, n-1) {\n res[ID(x+1, idx)] = res[ID(x, idx)];\n }\n res[ID(0, idx)] = temp;\n }\n else if (opc == 'U') {\n ll temp = res[ID(idx, 0)];\n rep(y, n) {\n res[ID(idx, y)] = y == n-1 ? temp : res[ID(idx, y+1)];\n }\n }\n else if (opc == 'D') {\n ll temp = res[ID(idx, n-1)];\n rrep(y, n-1) {\n res[ID(idx, y+1)] = res[ID(idx, y)];\n }\n res[ID(idx, 0)] = temp;\n }\n }\n }\n return res;\n}\nll number() {\n string str = \"\";\n while (pos < L && isdigit(s[pos])) {\n str += s[pos++];\n }\n return stoll(str);\n}\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cin >> n >> L;\n cin >> s;\n L = s.size();\n vector<ll> A = S();\n vector<vector<ll>> ans(n, vector<ll>(n, -1));\n rep(y, n) rep(x, n) {\n ll k = y*n+x;\n ans[y][x] = A[k]+1;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 29504, "score_of_the_acc": -0.2862, "final_rank": 7 }, { "submission_id": "aoj_2731_10689104", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nstring s;\nint n,l,k,m;\nstruct node\n{\n\tint to[10005];\n\tint &operator[](int x)\n\t{\n\t\treturn to[x];\n\t};\n}zh,ans;\nnode operator*(node a,node b)\n{\n\tnode res;\n\tfor(int i=0;i<m;i++)\n\t\tres[i]=a[b[i]];\n\treturn res;\n}\nint gint()\n{\n\tint res=s[k++]-'0';\n\twhile(isdigit(s[k]))\n\t\tres=10*res+s[k++]-'0';\n\treturn res;\n}\nvoid dfs(node &a)\n{\n\tchar x=s[k++];\n\tint k=gint()-1;\n\tif(x=='R')\n\t\tfor(int j=n-2;j>=0;j--)\n\t\t\tswap(a[k*n+j],a[k*n+j+1]);\n\tif(x=='L')\n\t\tfor(int j=0;j<n-1;j++)\n\t\t\tswap(a[k*n+j],a[k*n+j+1]);\n\tif(x=='D')\n\t\tfor(int i=n-2;i>=0;i--)\n\t\t\tswap(a[i*n+k],a[(i+1)*n+k]);\n\tif(x=='U')\n\t\tfor(int i=0;i<n-1;i++)\n\t\t\tswap(a[i*n+k],a[(i+1)*n+k]);\n}\nvoid rec2(node &a);\nvoid rec(node &a)\n{\n\twhile(k<l&&s[k]!=')')\n\t{\n\t\tnode b=zh;\n\t\tif(s[k]=='(')\n\t\t\trec2(b),a=a*b;\n\t\telse \n\t\t\tdfs(b),a=a*b;\n\t}\n}\nvoid rec2(node &a)\n{\n\tnode b=zh;\n\tk++,rec(b),k++;\n\tint m=gint();\n\ta=zh;\n\twhile(m)\n\t{\n\t\tif(m&1)\n\t\t\ta=a*b;\n\t\tb=b*b;\n\t\tm>>=1;\n\t}\n}\nint main()\n{\n\tios::sync_with_stdio(false);\n\tcin>>n>>l>>s;\n\tm=n*n;\n\tfor(int i=0;i<m;i++)\n\t\tzh[i]=i;\n\tans=zh,rec(ans);\n\tfor(int i=0;i<n;i++)\n\t\tfor(int j=0;j<n;j++)\n\t\t\tcout<<ans[i*n+j]+1<<(j==n-1?\"\\n\":\" \");\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 107392, "score_of_the_acc": -1.08, "final_rank": 14 }, { "submission_id": "aoj_2731_9994302", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll m, n;\n cin >> m >> n;\n string s; cin >> s;\n vector<int> right(n);\n stack<int> st;\n for(int i = n - 1; i >= 0; i --) {\n if(s[i] == '(') {\n right[i] = st.top();\n st.pop();\n } else if(s[i] == ')') {\n st.push(i); \n }\n }\n auto is_digit = [&](char c) -> bool {\n return ('0' <= c and c <= '9');\n };\n\n using ar = array<int, 10000>;\n auto mul = [&](ar a, ar b) -> ar {\n ar ans;\n rep(i, m * m) ans[i] = b[a[i]];\n return ans;\n };\n auto solve = [&](ar a, ll num) -> ar {\n ar ret;\n rep(i, m * m) ret[i] = i;\n while(num) {\n if(num & 1) {\n ret = mul(ret, a);\n }\n a = mul(a, a);\n num /= 2;\n }\n return ret;\n };\n auto f = [&](auto f, int le, int ri) -> ar {\n ar ret;\n rep(i, m * m) ret[i] = i;\n char c = 'a';\n for(int i = le; i < ri; i ++) {\n if(s[i] == '(') {\n auto r = f(f, i + 1, right[i]);\n i = right[i] + 1;\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n i --;\n ll num = stoll(t);\n r = solve(r, num);\n \n ret = mul(ret, r);\n } else if(is_digit(s[i])) {\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n \n i --;\n ll num = stoll(t) - 1;\n if(c == 'R') {\n rep(j, m * m) {\n if(ret[j] / m == num) {\n ret[j] ++;\n if(ret[j] % m == 0) ret[j] -= m;\n }\n }\n } else if(c == 'L') {\n rep(j, m * m) {\n if(ret[j] / m == num) {\n if(ret[j] % m == 0) ret[j] += m;\n ret[j] --;\n }\n }\n } else if(c == 'U') {\n rep(j, m * m) {\n if(ret[j] % m == num) {\n ret[j] -= m;\n if(ret[j] < 0) ret[j] += m * m;\n }\n }\n } else {\n rep(j, m * m) {\n if(ret[j] % m == num) {\n ret[j] += m;\n if(ret[j] >= m * m) ret[j] -= m * m;\n }\n }\n }\n } else {\n c = s[i];\n }\n }\n return ret;\n };\n\n auto a = f(f, 0, n);\n vector<int> ans(m * m);\n rep(i, m * m) ans[a[i]] = i + 1;\n rep(i, m) {\n rep(j, m) cout << ans[i * m + j] << (j == m - 1 ? '\\n' : ' ');\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 81328, "score_of_the_acc": -0.7877, "final_rank": 12 }, { "submission_id": "aoj_2731_9994293", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll m, n;\n cin >> m >> n;\n string s; cin >> s;\n vector<int> right(n);\n stack<int> st;\n for(int i = n - 1; i >= 0; i --) {\n if(s[i] == '(') {\n right[i] = st.top();\n st.pop();\n } else if(s[i] == ')') {\n st.push(i); \n }\n }\n auto is_digit = [&](char c) -> bool {\n return ('0' <= c and c <= '9');\n };\n\n using ar = array<array<ll, 100>, 100>;\n auto mul = [&](ar a, ar b) -> ar {\n ar ans{};\n rep(i, m) rep(j, m) ans[i][j] = b[a[i][j] / m][a[i][j] % m];\n return ans;\n };\n auto solve = [&](ar a, ll num) -> ar {\n ar ret{};\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n while(num) {\n if(num & 1) {\n ret = mul(ret, a);\n }\n a = mul(a, a);\n num /= 2;\n }\n return ret;\n };\n auto f = [&](auto f, int le, int ri) -> ar {\n ar ret{};\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n char c = 'a';\n for(int i = le; i < ri; i ++) {\n if(s[i] == '(') {\n auto r = f(f, i + 1, right[i]);\n i = right[i] + 1;\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n i --;\n ll num = stoll(t);\n r = solve(r, num);\n \n ret = mul(ret, r);\n } else if(is_digit(s[i])) {\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n ar tmp = ret;\n rep(y, m) rep(x, m) ret[y][x] = y * m + x;\n i --;\n ll num = stoll(t) - 1;\n if(c == 'R') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x ++;\n if(x >= m) x -= m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'L') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x --;\n if(x < 0) x += m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'U') {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y --;\n if(y < 0) y += m;\n ret[j][num] = y * m + x;\n }\n } else {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y ++;\n if(y >= m) y -= m;\n ret[j][num] = y * m + x;\n }\n }\n ar ans;\n rep(y, m) rep(x, m) ans[y][x] = ret[tmp[y][x] / m][tmp[y][x] % m];\n swap(ans, ret);\n } else {\n c = s[i];\n }\n }\n return ret;\n };\n\n auto a = f(f, 0, n);\n vector mat(m, vector(m, 0LL));\n rep(i, m) rep(j, m) mat[i][j] = m * i + j + 1;\n vector ans(m, vector(m, 0LL));\n rep(i, m) rep(j, m) ans[a[i][j] / m][a[i][j] % m] = mat[i][j];\n rep(i, m) {\n rep(j, m) cout << ans[i][j] << (j == m - 1 ? '\\n' : ' ');\n }\n return 0;\n}", "accuracy": 0.9795918367346939, "time_ms": 100, "memory_kb": 49280, "score_of_the_acc": -0.7576, "final_rank": 17 }, { "submission_id": "aoj_2731_9994290", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll m, n;\n cin >> m >> n;\n string s; cin >> s;\n vector<int> right(n);\n stack<int> st;\n for(int i = n - 1; i >= 0; i --) {\n if(s[i] == '(') {\n right[i] = st.top();\n st.pop();\n } else if(s[i] == ')') {\n st.push(i); \n }\n }\n auto is_digit = [&](char c) -> bool {\n return ('0' <= c and c <= '9');\n };\n\n using ar = array<array<ll, 100>, 100>;\n auto mul = [&](ar a, ar b) -> ar {\n ar ans;\n rep(i, m) rep(j, m) ans[i][j] = b[a[i][j] / m][a[i][j] % m];\n return ans;\n };\n auto solve = [&](ar a, ll num) -> ar {\n ar ret;\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n while(num) {\n if(num & 1) {\n ret = mul(ret, a);\n }\n a = mul(a, a);\n num /= 2;\n }\n return ret;\n };\n auto f = [&](auto f, int le, int ri) -> ar {\n ar ret;\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n char c = 'a';\n for(int i = le; i < ri; i ++) {\n if(s[i] == '(') {\n auto r = f(f, i + 1, right[i]);\n i = right[i] + 1;\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n i --;\n ll num = stoll(t);\n r = solve(r, num);\n \n ret = mul(ret, r);\n } else if(is_digit(s[i])) {\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n ar tmp = ret;\n rep(y, m) rep(x, m) ret[y][x] = y * m + x;\n i --;\n ll num = stoll(t) - 1;\n if(c == 'R') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x ++;\n if(x >= m) x -= m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'L') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x --;\n if(x < 0) x += m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'U') {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y --;\n if(y < 0) y += m;\n ret[j][num] = y * m + x;\n }\n } else {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y ++;\n if(y >= m) y -= m;\n ret[j][num] = y * m + x;\n }\n }\n ar ans;\n rep(y, m) rep(x, m) ans[y][x] = ret[tmp[y][x] / m][tmp[y][x] % m];\n swap(ans, ret);\n } else {\n c = s[i];\n }\n }\n return ret;\n };\n\n auto a = f(f, 0, n);\n vector mat(m, vector(m, 0LL));\n rep(i, m) rep(j, m) mat[i][j] = m * i + j + 1;\n vector ans(m, vector(m, 0LL));\n rep(i, m) rep(j, m) ans[a[i][j] / m][a[i][j] % m] = mat[i][j];\n rep(i, m) {\n rep(j, m) cout << ans[i][j] << (j == m - 1 ? '\\n' : ' ');\n }\n return 0;\n}", "accuracy": 0.9795918367346939, "time_ms": 240, "memory_kb": 48220, "score_of_the_acc": -1.3073, "final_rank": 19 }, { "submission_id": "aoj_2731_9994286", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll m, n;\n cin >> m >> n;\n string s; cin >> s;\n vector<int> right(n);\n stack<int> st;\n for(int i = n - 1; i >= 0; i --) {\n if(s[i] == '(') {\n right[i] = st.top();\n st.pop();\n } else if(s[i] == ')') {\n st.push(i); \n }\n }\n auto is_digit = [&](char c) -> bool {\n int num = c - '0';\n return (0 <= num and num < 10);\n };\n\n using ar = array<array<ll, 100>, 100>;\n auto mul = [&](ar a, ar b) -> ar {\n ar ans;\n rep(i, m) rep(j, m) ans[i][j] = b[a[i][j] / m][a[i][j] % m];\n return ans;\n };\n auto solve = [&](ar a, ll num) -> ar {\n ar ret;\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n while(num) {\n if(num & 1) {\n ret = mul(ret, a);\n }\n a = mul(a, a);\n num /= 2;\n }\n return ret;\n };\n auto f = [&](auto f, int le, int ri) -> ar {\n ar ret;\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n char c = 'a';\n for(int i = le; i < ri; i ++) {\n if(s[i] == '(') {\n auto r = f(f, i + 1, right[i]);\n i = right[i] + 1;\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n i --;\n ll num = stoll(t);\n r = solve(r, num);\n \n ret = mul(ret, r);\n } else if(is_digit(s[i])) {\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n ar tmp = ret;\n rep(y, m) rep(x, m) ret[y][x] = y * m + x;\n i --;\n ll num = stoll(t) - 1;\n if(c == 'R') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x ++;\n if(x >= m) x -= m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'L') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x --;\n if(x < 0) x += m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'U') {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y --;\n if(y < 0) y += m;\n ret[j][num] = y * m + x;\n }\n } else {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y ++;\n if(y >= m) y -= m;\n ret[j][num] = y * m + x;\n }\n }\n ar ans;\n rep(y, m) rep(x, m) ans[y][x] = ret[tmp[y][x] / m][tmp[y][x] % m];\n swap(ans, ret);\n } else {\n c = s[i];\n }\n }\n return ret;\n };\n\n auto a = f(f, 0, n);\n vector mat(m, vector(m, 0LL));\n rep(i, m) rep(j, m) mat[i][j] = m * i + j + 1;\n vector ans(m, vector(m, 0LL));\n rep(i, m) rep(j, m) ans[a[i][j] / m][a[i][j] % m] = mat[i][j];\n rep(i, m) {\n rep(j, m) cout << ans[i][j] << (j == m - 1 ? '\\n' : ' ');\n }\n return 0;\n}", "accuracy": 0.9795918367346939, "time_ms": 240, "memory_kb": 48244, "score_of_the_acc": -1.3075, "final_rank": 20 }, { "submission_id": "aoj_2731_9994279", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll m, n;\n cin >> m >> n;\n string s; cin >> s;\n vector<int> right(n);\n stack<int> st;\n for(int i = n - 1; i >= 0; i --) {\n if(s[i] == '(') {\n right[i] = st.top();\n st.pop();\n } else if(s[i] == ')') {\n st.push(i); \n }\n }\n auto is_digit = [&](char c) -> bool {\n int num = c - '0';\n return (0 <= num and num < 10);\n };\n\n using ar = array<array<ll, 100>, 100>;\n auto mul = [&](ar a, ar b) -> ar {\n ar ans;\n rep(i, m) rep(j, m) ans[i][j] = b[a[i][j] / m][a[i][j] % m];\n return ans;\n };\n auto solve = [&](ar a, ll num) -> ar {\n ar ret;\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n \n while(num) {\n if(num & 1) {\n ret = mul(ret, a);\n }\n a = mul(a, a);\n num /= 2;\n \n }\n return ret;\n };\n auto f = [&](auto f, int le, int ri) -> ar {\n ar ret;\n rep(i, m) rep(j, m) ret[i][j] = i * m + j;\n char c = 'a';\n for(int i = le; i < ri; i ++) {\n if(s[i] == '(') {\n auto r = f(f, i + 1, right[i]);\n // rep(y, 3) rep(x, 3) cout << r[y][x] << \" \";\n // cout << endl;\n i = right[i] + 1;\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n i --;\n ll num = stoll(t);\n r = solve(r, num);\n \n ret = mul(ret, r);\n } else if(is_digit(s[i])) {\n string t = \"\";\n for(; i < ri; i ++) {\n if(is_digit(s[i])) t += s[i];\n else break;\n }\n ar tmp = ret;\n rep(y, m) rep(x, m) ret[y][x] = y * m + x;\n i --;\n ll num = stoll(t) - 1;\n if(c == 'R') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x ++;\n if(x >= m) x -= m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'L') {\n rep(j, m) {\n ll y = ret[num][j] / m;\n ll x = ret[num][j] % m;\n x --;\n if(x < 0) x += m;\n ret[num][j] = y * m + x;\n }\n } else if(c == 'U') {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y --;\n if(y < 0) y += m;\n ret[j][num] = y * m + x;\n }\n } else {\n rep(j, m) {\n ll y = ret[j][num] / m;\n ll x = ret[j][num] % m;\n y ++;\n if(y >= m) y -= m;\n ret[j][num] = y * m + x;\n }\n }\n ar ans;\n rep(y, m) rep(x, m) ans[y][x] = ret[tmp[y][x] / m][tmp[y][x] % m];\n swap(ans, ret);\n } else {\n c = s[i];\n }\n }\n return ret;\n };\n\n auto a = f(f, 0, n);\n vector mat(m, vector(m, 0LL));\n rep(i, m) rep(j, m) mat[i][j] = m * i + j + 1;\n vector ans(m, vector(m, 0LL));\n rep(i, m) rep(j, m) ans[a[i][j] / m][a[i][j] % m] = mat[i][j];\n rep(i, m) {\n rep(j, m) cout << ans[i][j] << (j == m - 1 ? '\\n' : ' ');\n }\n return 0;\n}", "accuracy": 0.9795918367346939, "time_ms": 240, "memory_kb": 48204, "score_of_the_acc": -1.3072, "final_rank": 18 }, { "submission_id": "aoj_2731_9958741", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\n\nusing State=string::const_iterator;\nvoid Consume(State &begin,char expected){\n\tassert(*begin==expected);\n\tbegin++;\n}\n\nint N;\n\nvector<vector<pair<int,int>>>RotateR(const vector<vector<pair<int,int>>>&x,int n,int cnt){\n\tauto ret=x;\n\tfor(int i=0;i<N;i++)ret[n][i]=x[n][(i+cnt)%N];\n\treturn ret;\n}\n\nvector<vector<pair<int,int>>>RotateD(const vector<vector<pair<int,int>>>&x,int n,int cnt){\n\tauto ret=x;\n\tfor(int i=0;i<N;i++)ret[i][n]=x[(i+cnt)%N][n];\n\treturn ret;\n}\n\nvector<vector<pair<int,int>>> Merge(const vector<vector<pair<int,int>>>&l,const vector<vector<pair<int,int>>>&r){\n\tvector<vector<pair<int,int>>> ret(N,vector<pair<int,int>>(N));\n\tfor(int i=0;i<N;i++){\n\t\tfor(int j=0;j<N;j++){\n\t\t\tauto [x,y]=l[i][j];\n\t\t\tret[i][j]=r[x][y];\n\t\t}\n\t}\n\treturn ret;\n}\n\nvector<vector<pair<int,int>>> Pow(vector<vector<pair<int,int>>>a,ll n){\n\tvector<vector<pair<int,int>>> ret(N,vector<pair<int,int>>(N));\n\tfor(int i=0;i<N;i++)for(int j=0;j<N;j++)ret[i][j]={i,j};\n\n\twhile(n){\n\t\tif(n&1){\n\t\t\tret=Merge(ret,a);\n\t\t}\n\t\ta=Merge(a,a);\n\t\tn/=2;\n\t}\n\n\treturn ret;\n}\n\nvector<vector<pair<int,int>>> Func(State &itr){\n\tif(*itr!='('){\n\t\tvector<vector<pair<int,int>>>ret(N,vector<pair<int,int>>(N));\n\t\tfor(int i=0;i<N;i++)for(int j=0;j<N;j++)ret[i][j]={i,j};\n\t\tchar d=*itr;\n\t\titr++;\n\t\tstring num;\n\t\twhile(isdigit(*itr)){\n\t\t\tnum+=*itr;\n\t\t\titr++;\n\t\t}\n\t\tint n=stoi(num)-1;\n\t\tif(d=='R')ret=RotateR(ret,n,1);\n\t\tif(d=='L')ret=RotateR(ret,n,N-1);\n\t\tif(d=='U')ret=RotateD(ret,n,N-1);\n\t\tif(d=='D')ret=RotateD(ret,n,1);\n\n\t\treturn ret;\n\t}\n\n\tConsume(itr,'(');\n\tauto ret=Func(itr);\n\twhile(*itr!=')'){\n\t\tret=Merge(ret,Func(itr));\n\t}\n\tConsume(itr,')');\n\n\tstring num;\n\twhile(isdigit(*itr)){\n\t\tnum+=*itr;\n\t\titr++;\n\t}\n\tll m=stoll(num);\n\t//ret^m\n\tret=Pow(ret,m);\n\treturn ret;\n}\n\nint main(){\n\tint L;\n\tstring S;\n\tcin>>N>>L>>S;\n\tS=\"(\"+S+\")1\";\n\n\tState itr=S.begin();\n\tauto ret=Func(itr);\n\n\tvector<vector<int>>ans(N,vector<int>(N));\n\tfor(int i=0;i<N;i++){\n\t\tfor(int j=0;j<N;j++){\n\t\t\tauto[x,y]=ret[i][j];\n\t\t\tans[x][y]=i*N+j+1;\n\t\t}\n\t}\n\n\tfor(int i=0;i<N;i++){\n\t\tfor(int j=0;j<N;j++){\n\t\t\tif(j)cout<<' ';\n\t\t\tcout<<ans[i][j];\n\t\t}\n\t\tcout<<endl;\n\t}\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 5248, "score_of_the_acc": -0.1714, "final_rank": 1 }, { "submission_id": "aoj_2731_9940755", "code_snippet": "#include <iostream>\n#include <cassert>\n#include <vector>\n#include <string>\n#include <numeric>\n#include <cassert>\nvoid print(const std::vector<std::vector<int>>& A) {\n for (int i{} ; i < (int)A.size() ; i++) {\n for (int j{} ; j < (int)A[i].size() ; j++) std::cout << A[i][j] << (j + 1 == (int)A[i].size() ? '\\n' : ' ');\n }\n}\n// G(F)\nstd::vector<std::vector<int>> permute(std::vector<std::vector<int>> F, std::vector<std::vector<int>> G) {\n // print(F);\n // std::cout << \"---------------------------\\n\";\n // print(G);\n // std::cout << \"---------------------------\\n\";\n std::vector res(F.size(), std::vector<int>(F[0].size(), -1));\n for (int i{} ; i < (int)G.size() ; i++) {\n for (int j{} ; j < (int)G[i].size() ; j++) {\n int row{G[i][j] / (int)G.size()}, col{G[i][j] % (int)G.size()};\n res[i][j] = F[row][col];\n }\n }\n return res;\n}\nstd::vector<std::vector<int>> pow(std::vector<std::vector<int>> F, int K) {\n std::vector res(F.size(), std::vector<int>(F.size()));\n for (int i{} ; i < (int)F.size() ; i++) {\n for (int j{} ; j < (int)F.size() ; j++) res[i][j] = i * (int)F.size() + j;\n }\n while (K) {\n if (K & 1) res = permute(res, F);\n F = permute(F, F);\n K >>= 1;\n }\n return res;\n}\nstruct Perser {\n int it{}, N{};\n std::string S;\n Perser(int n, std::string s) : N{n}, S{s} {\n }\n std::vector<std::vector<int>> left(int p) const {\n std::vector res(N, std::vector<int>(N));\n for (int i{} ; i < N ; i++) for (int j{} ; j < N ; j++) res[i][j] = i * N + j;\n for (int j{1} ; j < N ; j++) \n res[p][j - 1] = res[p][j];\n res[p][N - 1] = p * N;\n return res;\n }\n std::vector<std::vector<int>> right(int p) const {\n std::vector res(N, std::vector<int>(N));\n for (int i{} ; i < N ; i++) for (int j{} ; j < N ; j++) res[i][j] = i * N + j;\n for (int j{N - 2} ; j >= 0 ; j--)\n res[p][j + 1] = res[p][j];\n res[p][0] = (p + 1) * N - 1;\n return res;\n }\n std::vector<std::vector<int>> up(int p) const {\n std::vector res(N, std::vector<int>(N));\n for (int i{} ; i < N ; i++) for (int j{} ; j < N ; j++) res[i][j] = i * N + j;\n for (int i{1} ; i < N ; i++)\n res[i - 1][p] = res[i][p];\n res[N - 1][p] = p;\n return res;\n }\n std::vector<std::vector<int>> down(int p) const {\n std::vector res(N, std::vector<int>(N));\n for (int i{} ; i < N ; i++) for (int j{} ; j < N ; j++) res[i][j] = i * N + j;\n for (int i{N - 2} ; i >= 0 ; i--)\n res[i + 1][p] = res[i][p];\n res[0][p] = (N - 1) * N + p;\n return res;\n }\n bool is_digit(int i) {\n return 0 <= i and i < (int)S.size() and '0' <= S[i] and S[i] <= '9';\n }\n int number() {\n int res{};\n while (is_digit(it)) {\n res = res * 10 + (S[it] - '0');\n it++;\n }\n return res;\n }\n std::vector<std::vector<int>> rec() {\n if (it == (int)S.size()) {\n std::vector res(N, std::vector<int>(N));\n for (int i{} ; i < N ; i++) for (int j{} ; j < N ; j++) res[i][j] = i * N + j;\n return res;\n }\n if (S[it] == ')') {\n std::vector res(N, std::vector<int>(N));\n for (int i{} ; i < N ; i++) for (int j{} ; j < N ; j++) res[i][j] = i * N + j;\n return res;\n }\n if (S[it] == '(') {\n it++;\n auto cur{rec()};\n assert(it < (int)S.size() and S[it] == ')');\n it++;\n int rep{number()};\n auto res{pow(cur, rep)};\n return permute(res, rec());\n }\n else if (S[it] == 'L') {\n it++;\n assert(is_digit(it));\n int p{number()};\n return permute(left(p - 1), rec());\n }\n else if (S[it] == 'R') {\n it++;\n assert(is_digit(it));\n int p{number()};\n return permute(right(p - 1), rec());\n }\n else if (S[it] == 'U') {\n it++;\n assert(is_digit(it));\n int p{number()};\n return permute(up(p - 1), rec());\n }\n else if (S[it] == 'D') {\n it++;\n assert(is_digit(it));\n int p{number()};\n // std::cout << p << \"!\" << std::endl;\n return permute(down(p - 1), rec());\n }\n assert(false);\n return std::vector<std::vector<int>>{};\n }\n};\nint N, L;\nstd::string S;\nvoid solve() {\n auto ans{Perser{N, S}.rec()};\n for (int i{} ; i < N ; i++) {\n for (int j{} ; j < N ; j++) std::cout << ans[i][j] + 1 << (j + 1 == N ? '\\n' : ' ');\n }\n}\nint main() {\n std::cin >> N >> L >> S;\n solve();\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 4068, "score_of_the_acc": -0.36, "final_rank": 8 }, { "submission_id": "aoj_2731_9740769", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint N, L, K;\n\nvector<int> e() {\n vector<int> Ret(K);\n iota(ALL(Ret),0);\n return Ret;\n}\n\nvector<int> Mul(vector<int> A, vector<int> B) {\n vector<int> Ret(K);\n rep(i,0,K) Ret[i] = A[B[i]];\n return Ret;\n}\n\nvector<int> Pow(vector<int> A, int X) {\n if (X == 0) {\n return e();\n }\n if (X % 2 == 0) {\n auto Ret = Pow(A,X/2);\n return Mul(Ret,Ret);\n }\n return Mul(A,Pow(A,X-1));\n}\n\nstring S;\n\nvector<int> Seq(int&);\nvector<int> Op(char, int);\nint Num(int&);\n\nvector<int> Seq(int& ID) {\n if (ID == S.size() || S[ID] == ')') return e();\n if (S[ID] == '(') {\n ID++;\n auto A = Seq(ID);\n ID++;\n int X = Num(ID);\n auto B = Seq(ID);\n return Mul(Pow(A,X),B);\n }\n else {\n char C = S[ID];\n ID++;\n int X = Num(ID);\n auto B = Seq(ID);\n return Mul(Op(C,X),B);\n }\n}\n\nvector<int> Op(char C, int X) {\n vector<vector<int>> A(N,vector<int>(N));\n rep(i,0,N) rep(j,0,N) A[i][j] = i*N+j;\n X--;\n if (C == 'L') {\n rep(j,0,N) A[X][j] = X*N+((j+1)%N);\n }\n if (C == 'R') {\n rep(j,0,N) A[X][j] = X*N+((j+N-1)%N);\n }\n if (C == 'U') {\n rep(i,0,N) A[i][X] = ((i+1)%N)*N+X;\n }\n if (C == 'D') {\n rep(i,0,N) A[i][X] = ((i+N-1)%N)*N+X;\n }\n vector<int> Ret(K);\n rep(i,0,N) rep(j,0,N) Ret[i*N+j] = A[i][j];\n return Ret;\n}\n\nint Num(int& ID) {\n int Ret = 0;\n while(ID < S.size() && isdigit(S[ID])) {\n Ret *= 10;\n Ret += S[ID] - '0';\n ID++;\n }\n return Ret;\n}\n\nint main() {\n cin >> N >> L >> S;\n K = N*N;\n int it = 0;\n vector<int> ANS = Seq(it);\n rep(i,0,N) {\n rep(j,0,N) {\n cout << ANS[i*N+j]+1 << (j==N-1 ? '\\n' : ' ');\n }\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5516, "score_of_the_acc": -0.254, "final_rank": 4 }, { "submission_id": "aoj_2731_8461377", "code_snippet": "#include <bits/stdc++.h>\n\nstruct Mapping {\n std::vector<std::vector<std::pair<int, int>>> data;\n Mapping(int n): data(n, std::vector<std::pair<int, int>>(n)) {\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n data[i][j] = {i, j};\n }\n }\n }\n\n Mapping(int n, char c, int k): data(n, std::vector<std::pair<int, int>>(n)) {\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n data[i][j] = {i, j};\n }\n }\n\n if (c == 'R') {\n for (int i = 0; i < n; i++) {\n data[k][i] = {k, (i + 1) % n};\n }\n } else if (c == 'L') {\n for (int i = 0; i < n; i++) {\n data[k][i] = {k, (i - 1 + n) % n};\n }\n } else if (c == 'U') {\n for (int i = 0; i < n; i++) {\n data[i][k] = {(i - 1 + n) % n, k};\n }\n } else {\n for (int i = 0; i < n; i++) {\n data[i][k] = {(i + 1) % n, k};\n }\n }\n }\n};\n\nMapping operator*(const Mapping& lhs, const Mapping& rhs) {\n int n = lhs.data.size();\n Mapping res(n);\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n auto [i1, j1] = lhs.data[i][j];\n res.data[i][j] = rhs.data[i1][j1];\n }\n }\n return res;\n}\n\nMapping pow(Mapping base, long long exp) {\n Mapping res(base.data.size());\n while (exp > 0) {\n if (exp & 1) {\n res = res * base;\n }\n base = base * base;\n exp >>= 1;\n }\n return res;\n}\n\nstruct Parser {\n using CopyIter = std::string::const_iterator;\n using Iter = CopyIter&;\n std::string line;\n int n;\n Parser(std::string s): line(s) {}\n\n void skip(Iter it, char c) {\n ++it;\n }\n\n void set_n(int n) {\n this->n = n;\n }\n\n Mapping parse(int n) {\n auto it = line.cbegin();\n set_n(n);\n return sequence(it);\n }\n\n Mapping sequence(Iter it) {\n Mapping res(n);\n if (*it == '(') {\n res = repetition(it);\n } else {\n res = operation(it);\n }\n\n while (it != line.end() && (*it == '(' || std::isupper(*it))) {\n if (*it == '(') {\n res = res * repetition(it);\n } else {\n res = res * operation(it);\n }\n }\n\n return res;\n }\n\n Mapping repetition(Iter it) {\n skip(it, '(');\n auto res = sequence(it);\n skip(it, ')');\n return pow(res, number(it));\n }\n\n Mapping operation(Iter it) {\n auto res = shift(it);\n return Mapping(n, res, number(it) - 1);\n }\n\n char shift(Iter it) {\n char c = *it;\n skip(it, c);\n\n return c;\n }\n\n long long number(Iter it) {\n long long res = 0;\n while (it != line.end() && std::isdigit(*it)) {\n res = 10 * res + *it - '0';\n it++;\n }\n return res;\n }\n};\n\nint main() {\n int n, l;\n std::cin >> n >> l;\n\n std::vector<std::vector<int>> matrix(n, std::vector<int>(n));\n\n std::cin.ignore();\n std::string line;\n std::getline(std::cin, line);\n Parser parser(line);\n\n auto res = parser.parse(n);\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n auto [i1, j1] = res.data[i][j];\n matrix[i1][j1] = i * n + j + 1;\n }\n }\n\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n std::cout << matrix[i][j] << (j + 1 == n ? '\\n' : ' ');\n }\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 30740, "score_of_the_acc": -0.4981, "final_rank": 11 }, { "submission_id": "aoj_2731_8303762", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nvector<int> unit(int N) {\n\tvector<int> res(N * N);\n\tfor (int i = 0; i < N * N; i++) {\n\t\tres[i] = i;\n\t}\n\treturn res;\n}\n\nvector<int> merge(int N, const vector<int>& p1, const vector<int>& p2) {\n\tvector<int> res(N * N);\n\tfor (int i = 0; i < N * N; i++) {\n\t\tres[i] = p2[p1[i]];\n\t}\n\treturn res;\n}\n\nvector<int> repeat(int N, const vector<int>& p, int K) {\n\tvector<int> res(N * N, -1);\n\tfor (int i = 0; i < N * N; i++) {\n\t\tif (res[i] == -1) {\n\t\t\tint pos = i;\n\t\t\tvector<int> seq;\n\t\t\tdo {\n\t\t\t\tseq.push_back(pos);\n\t\t\t\tpos = p[pos];\n\t\t\t} while (pos != i);\n\t\t\tfor (int j = 0; j < seq.size(); j++) {\n\t\t\t\tres[seq[j]] = seq[(j + K) % seq.size()];\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\n\nvector<int> shift_row(int N, int row, int cnt) {\n\tvector<int> res(N * N, -1);\n\tfor (int i = 0; i < N * N; i++) {\n\t\tif (i / N != row) {\n\t\t\tres[i] = i;\n\t\t}\n\t\telse {\n\t\t\tres[i] = i / N * N + (i % N + cnt) % N;\n\t\t}\n\t}\n\treturn res;\n}\n\nvector<int> shift_col(int N, int col, int cnt) {\n\tvector<int> res(N * N, -1);\n\tfor (int i = 0; i < N * N; i++) {\n\t\tif (i % N != col) {\n\t\t\tres[i] = i;\n\t\t}\n\t\telse {\n\t\t\tres[i] = (i / N + cnt) % N * N + i % N;\n\t\t}\n\t}\n\treturn res;\n}\n\nvector<int> calc(int N, string S) {\n\tif (S[0] == '(') {\n\t\tint pos = 0, depth = 0;\n\t\tdo {\n\t\t\tif (S[pos] == '(') {\n\t\t\t\tdepth += 1;\n\t\t\t}\n\t\t\tif (S[pos] == ')') {\n\t\t\t\tdepth -= 1;\n\t\t\t}\n\t\t\tpos += 1;\n\t\t} while (depth != 0);\n\t\tint r = pos;\n\t\twhile (r != S.size() && '0' <= S[r] && S[r] <= '9') {\n\t\t\tr += 1;\n\t\t}\n\t\tvector<int> res1 = calc(N, S.substr(1, pos - 2));\n\t\tvector<int> res2 = repeat(N, res1, stoi(S.substr(pos, r - pos)));\n\t\tvector<int> res3 = (r != S.size() ? calc(N, S.substr(r)) : unit(N));\n\t\tvector<int> res4 = merge(N, res2, res3);\n\t\treturn res4;\n\t}\n\telse {\n\t\tint r = 1;\n\t\twhile (r != S.size() && '0' <= S[r] && S[r] <= '9') {\n\t\t\tr += 1;\n\t\t}\n\t\tint x = stoi(S.substr(1, r - 1)) - 1;\n\t\tvector<int> res1;\n\t\tif (S[0] == 'L' || S[0] == 'R') {\n\t\t\tres1 = shift_row(N, x, S[0] == 'R' ? 1 : N - 1);\n\t\t}\n\t\telse {\n\t\t\tres1 = shift_col(N, x, S[0] == 'D' ? 1 : N - 1);\n\t\t}\n\t\tvector<int> res2 = (r != S.size() ? calc(N, S.substr(r)) : unit(N));\n\t\tvector<int> res3 = merge(N, res1, res2);\n\t\treturn res3;\n\t}\n}\n\nint main() {\n\tint N, L; string S;\n\tcin >> N >> L >> S;\n\tvector<int> res = calc(N, S);\n\tvector<int> answer(N * N, -1);\n\tfor (int i = 0; i < N * N; i++) {\n\t\tanswer[res[i]] = i;\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tif (j != 0) {\n\t\t\t\tcout << ' ';\n\t\t\t}\n\t\t\tcout << answer[i * N + j] + 1;\n\t\t}\n\t\tcout << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 10688, "score_of_the_acc": -0.2241, "final_rank": 2 }, { "submission_id": "aoj_2731_8026978", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <cmath>\n#include <complex>\n#include <iomanip>\n#include <iostream>\n#include <limits>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <variant>\n#include <vector>\n\n#define rep(i, s, n) for (int i = int(s); i < int(n); i++)\n#define rrep(i, s, n) for (int i = int(n) - 1; i >= int(s); i--)\n#define all(v) v.begin(), v.end()\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n\ntemplate <class T> bool chmin(T &a, T b) {\n if (a <= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T> bool chmax(T &a, T b) {\n if (a >= b) return false;\n a = b;\n return true;\n}\n\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n\nvoid debug_out() {\n std::cerr << std::endl;\n}\n\ntemplate <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cerr << \",\";\n debug_out(t...);\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntypedef std::string::const_iterator State;\n\nbool expect(State &begin, char expected) {\n return *begin == expected;\n}\n\nvoid consume(State &begin, char expected) {\n assert(*begin == expected);\n begin++;\n}\n\nbool isdigit(char c) {\n return '0' <= c && c <= '9';\n}\n\nbool isAlpha(char c) {\n return 'A' <= c && c <= 'Z';\n}\n\nbool isalpha(char c) {\n return 'a' <= c && c <= 'z';\n}\n\nusing Matrix = std::vector<std::vector<std::pair<int,int>>>;\n\nint n;\n\nll number(State &begin) {\n assert(isdigit(*begin));\n ll ret = 0;\n while(isdigit(*begin)) {\n ret *= 10;\n ret += *begin - '0';\n consume(begin, *begin);\n }\n return ret;\n}\n\nMatrix sequence(State &begin) {\n Matrix now(n, std::vector<std::pair<int,int>>(n));\n rep(i,0,n) rep(j,0,n) now[i][j] = {i, j};\n while(isAlpha(*begin) || expect(begin, '(')) {\n if(isAlpha(*begin)) {\n char c = *begin;\n consume(begin, c);\n ll num = number(begin) - 1;\n assert(0 <= num && num < n);\n rep(i,0,n) rep(j,0,n) {\n auto [x, y] = now[i][j];\n if(c == 'L') {\n if(x == num) {\n now[i][j] = {x, (y - 1 + n) % n};\n }\n }\n else if(c == 'R') {\n if(x == num) {\n now[i][j] = {x, (y + 1) % n};\n }\n }\n else if(c == 'U') {\n if(y == num) {\n now[i][j] = {(x - 1 + n) % n, y};\n }\n }\n else if(c == 'D') {\n if(y == num) {\n now[i][j] = {(x + 1) % n, y};\n }\n }\n else assert(0);\n }\n }\n else {\n consume(begin, '(');\n auto p = sequence(begin);\n consume(begin, ')');\n ll num = number(begin);\n int log = 40;\n std::vector table(log + 1, std::vector(n, std::vector<std::pair<int,int>>(n)));\n table[0] = p;\n rep(l,0,log) {\n rep(i,0,n) rep(j,0,n) {\n auto [x, y] = table[l][i][j];\n table[l+1][i][j] = table[l][x][y];\n }\n }\n rep(l,0,log) {\n if((num >> l) & 1) {\n rep(i,0,n) rep(j,0,n) {\n auto [x, y] = now[i][j];\n now[i][j] = table[l][x][y];\n }\n }\n }\n }\n }\n return now;\n}\n\nint main() {\n int l;\n std::string s;\n std::cin >> n >> l >> s;\n State begin = s.begin();\n auto p = sequence(begin);\n std::vector ans(n, std::vector<int>(n));\n rep(i,0,n) rep(j,0,n) {\n auto [x, y] = p[i][j];\n ans[x][y] = i * n + j + 1;\n }\n rep(i,0,n) rep(j,0,n) {\n std::cout << ans[i][j] << \" \\n\"[j == n-1];\n }\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 33752, "score_of_the_acc": -1.2873, "final_rank": 15 }, { "submission_id": "aoj_2731_8012558", "code_snippet": "# include <bits/stdc++.h>\n# define len(v) (ll(std::size(v)))\n# define all(v) std::begin(v), std::end(v)\n# define rep(i, a, b) for (ll i = a; i < ll(b); i++)\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing pll = pair<ll, ll>;\nstring erase_all_space(string s) { s.erase(remove_if(all(s), [](char c){ return isspace(c); }), s.end()); return s; }\n\nconstexpr ll MOD = ll(1e9) + 7;\nusing M = vector<vector<ll>>;\n\nstruct Parser {\n string s;\n string::const_iterator it;\n ll n;\n Parser() = default;\n Parser(const string& _s, ll _n) : s(_s), n(_n) {\n it = s.cbegin();\n }\n\n M parse() {\n return expr();\n }\n\n M expr() {\n M acc = term();\n while (it != s.end() && *it != ')') {\n M other = term();\n acc = plus(acc, other);\n }\n return acc;\n }\n\n M term() {\n if (*it == '(') {\n assert(*it++ == '(');\n M res = expr();\n assert(*it++ == ')');\n ll num = number();\n\n M ret = iota2();\n while (num) {\n if (num & 1) {\n ret = plus(ret, res);\n }\n res = plus(res, res);\n num >>= 1;\n }\n\n return ret;\n }\n else {\n char c = *it++;\n M ret = iota2();\n ll num = number() - 1;\n if (c == 'L') {\n int i = num;\n int old = ret[i][0];\n rep (j, 0, n - 1) ret[i][j] = ret[i][j + 1];\n ret[i][n - 1] = old;\n }\n else if (c == 'R') {\n int i = num;\n int old = ret[i].back();\n for (int j = n - 1; j >= 1; j--) ret[i][j] = ret[i][j - 1];\n ret[i][0] = old;\n }\n else if (c == 'U') {\n int j = num;\n int old = ret[0][j];\n rep (i, 0, n - 1) ret[i][j] = ret[i + 1][j];\n ret[n - 1][j] = old;\n }\n else {\n assert(c == 'D');\n int j = num;\n int old = ret[n - 1][j];\n for (int i = n - 1; i >= 1; i--) ret[i][j] = ret[i - 1][j];\n ret[0][j] = old;\n }\n return ret;\n }\n }\n\n M plus(const M& a, const M& b) {\n M ret = a;\n rep (i, 0, n) {\n rep (j, 0, n) {\n int v = b[i][j];\n int r = v / n;\n int c = v % n;\n ret[i][j] = a[r][c];\n }\n }\n return ret;\n }\n\n M iota2() {\n M mat(n, vector(n, 0LL));\n rep (i, 0, n * n) {\n auto [r, c] = std::div(i, n);\n mat[r][c] = i;\n }\n return mat;\n }\n\n ll number() {\n ll ret = 0;\n for (; isdigit(*it); ++it) {\n ret = 10LL * ret + (*it - '0');\n }\n return ret;\n }\n};\n\nint main() {\n ll n, l;\n cin >> n >> l;\n string s;\n cin >> s;\n\n M perm = Parser(s, n).parse();\n rep (i, 0, n) {\n rep (j, 0, n) {\n cout << perm[i][j] + 1 << \" \\n\"[j == n - 1];\n }\n }\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 4988, "score_of_the_acc": -0.8889, "final_rank": 13 }, { "submission_id": "aoj_2731_7998882", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define rng(i, l, r) for(int i = int(l); i < int(r); i++)\n#define rep(i, n) rng(i, 0, n)\n#define sz(v) int(v.size())\n#define foa(s, v) for(auto &s : v)\n#define all(v) v.begin(), v.end()\n\n// clang-format off\ntemplate <class T> using V = vector<T>;\ntemplate <class T> bool chmin(T &a, T b) { return a > b ? a = b, 1 : 0; }\ntemplate <class T> bool chmax(T &a, T b) { return a < b ? a = b, 1 : 0; }\n// clang-format on\n\n#ifdef LOCAL\n#define debug(x) cerr << __LINE__ << \", \" << #x << \": \" << x << endl\n#else\n#define debug(x) void(0)\n#endif\n\ntemplate <class T>\nostream &operator<<(ostream &os, vector<T> vec) {\n\tos << \"{ \";\n\tfoa(c, vec) os << c << \", \";\n\tos << \"}\";\n\treturn os;\n}\n\nusing conv = vector<int>;\nconv unit;\n// a -> b\nconv operator*(conv a, conv b) {\n\tconv ret(sz(a));\n\trep(i, sz(a)) { ret[i] = b[a[i]]; }\n\treturn ret;\n}\n\nconv pow(conv a, ll n) {\n\tdebug(a);\n\tdebug(n);\n\tconv ret(sz(a));\n\tiota(all(ret), 0);\n\twhile(n) {\n\t\tif(n & 1) ret = ret * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\n\treturn ret;\n}\n\nint n;\nint n_sq;\nvector<vector<int>> ids;\nstring s;\n\nset<char> dirs = {\n\t'L',\n\t'R',\n\t'U',\n\t'D',\n};\n\nstruct parser {\n\tstring::const_iterator it;\n\tparser() : it(s.begin()) {}\n\n\tconv lshift(int row, ll number) {\n\t\tnumber %= n;\n\t\tif(number < 0) number += n;\n\t\tconv ret = unit;\n\t\trep(j, n) {\n\t\t\tint from_place = ids[row][j];\n\t\t\tint to_place = ids[row][(j - number + n + n) % n];\n\t\t\tret[from_place] = to_place;\n\t\t}\n\t\treturn ret;\n\t}\n\tconv rshift(int row, ll number) { return lshift(row, -number); }\n\tconv ushift(int col, ll number) {\n\t\tnumber %= n;\n\t\tif(number < 0) number += n;\n\t\tconv ret = unit;\n\t\trep(i, n) {\n\t\t\tint from_place = ids[i][col];\n\t\t\tint to_place = ids[(i - number + n + n) % n][col];\n\t\t\tret[from_place] = to_place;\n\t\t}\n\t\treturn ret;\n\t}\n\tconv dshift(int col, ll number) { return ushift(col, -number); }\n\n\tconv sequence() {\n\t\tconv ret(unit);\n\t\twhile(it != s.end()) {\n\t\t\tdebug(place());\n\t\t\tdebug(ret);\n\t\t\tconv right = unit;\n\t\t\tif(dirs.count(*it)) {\n\t\t\t\tright = operation();\n\t\t\t} else if(*it == '(') {\n\t\t\t\tright = repetition();\n\t\t\t} else {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tdebug(place());\n\t\t\tdebug(right);\n\t\t\tret = ret * right;\n\t\t\tdebug(place());\n\t\t\tdebug(ret);\n\t\t}\n\n\t\treturn ret;\n\t}\n\n\tvoid assume(char c) {\n\t\tif(it != s.end() && *it == c) {\n\t\t\tit++;\n\t\t\treturn;\n\t\t}\n\t\tcerr << \"error\\n\";\n\t\tassert(false);\n\t}\n\n\tconv repetition() {\n\t\tassume('(');\n\t\tconv seq = sequence();\n\t\tassume(')');\n\t\tll nm = num();\n\t\treturn pow(seq, nm);\n\t}\n\n\tint place() { return int(it - s.begin()); }\n\n\tconv operation() {\n\t\tdebug(place());\n\t\tauto c = *it++;\n\t\tdebug(place());\n\t\tdebug(c);\n\t\tassert(dirs.count(c));\n\t\tint row_or_col = int((num() - 1 + n) % n);\n\n\t\tif(c == 'U') return ushift(row_or_col, 1LL);\n\t\tif(c == 'D') return dshift(row_or_col, 1LL);\n\t\tif(c == 'R') return rshift(row_or_col, 1LL);\n\t\tif(c == 'L') return lshift(row_or_col, 1LL);\n\t\tassert(false);\n\t}\n\n\tll num() {\n\t\tassert(isdigit(*it));\n\t\tll ret = 0;\n\t\twhile(it != s.end() && isdigit(*it)) {\n\t\t\tret *= 10;\n\t\t\tret += *(it++) - '0';\n\t\t\t// ret %= n;\n\t\t}\n\t\treturn ret;\n\t}\n\n\tconv solve() {\n\t\tconv ret = sequence();\n\t\tif(it != s.end()) {\n\t\t\tdebug(\"fail\");\n\t\t\tdebug(place());\n\t\t\tassert(false);\n\t\t}\n\t\treturn ret;\n\t}\n};\n\nvoid solve() {\n\tn_sq = n * n;\n\tint len;\n\tcin >> len;\n\tcin >> s;\n\n\tids.assign(n, vector<int>(n, 0));\n\tint ver = 0;\n\tfoa(r, ids) foa(c, r) c = ver++;\n\tunit.assign(n_sq, 0);\n\tiota(all(unit), 0);\n\n\tdebug(ids);\n\tdebug(unit);\n\n\tparser ps;\n\tauto res = ps.solve();\n\tvector<vector<int>> ans(n, vector<int>(n));\n\trep(i, n) rep(j, n) {\n\t\tint to_id = res[ids[i][j]];\n\t\tint to_row = to_id / n;\n\t\tint to_col = to_id % n;\n\t\tans[to_row][to_col] = ids[i][j] + 1;\n\t}\n\n\tfoa(row, ans) {\n\t\trep(j, n) { cout << row[j] << (j == n - 1 ? '\\n' : ' '); }\n\t}\n\treturn;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\twhile(cin >> n && n) solve();\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 29356, "score_of_the_acc": -0.2847, "final_rank": 6 }, { "submission_id": "aoj_2731_6782873", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <cstddef>\n#include <cstdint>\n#include <cstdlib>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <limits>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <optional>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <type_traits>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <vector>\n\n/* macro */\n\n#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)\n#define rrep(i, a, n) for (int i = ((int)(n - 1)); i >= (int)(a); i--)\n#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)\n#define RRep(i, a, n) for (i64 i = ((i64)(n - i64(1))); i >= (i64)(a); i--)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define Bit(n) (1LL << (n))\n\n/* macro end */\n\n/* template */\n\nnamespace ebi {\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() { std::cerr << std::endl; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cout << \" :\";\n debug_out(t...);\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {\n return os >> pa.first >> pa.second;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T>\nstd::istream &operator>>(std::istream &os, std::vector<T> &vec) {\n for (T &e : vec) std::cin >> e;\n return os;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {\n if (opt) {\n os << opt.value();\n } else {\n os << \"invalid value\";\n }\n return os;\n}\n\nusing std::size_t;\nusing i32 = std::int32_t;\nusing u32 = std::uint32_t;\nusing i64 = std::int64_t;\nusing u64 = std::uint64_t;\n\ntemplate <class T, T init>\nauto make_vector(int n) {\n return std::vector<T>(n, init);\n}\n\ntemplate <class T, T init, typename Head, typename... Tail>\nauto make_vector(Head n, Tail... ts) {\n return std::vector(n, make_vector<T, init>(ts...));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\nT pow(T x, i64 n) {\n T res = 1;\n while (n > 0) {\n if (n & 1) res = res * x;\n x = x * x;\n n >>= 1;\n }\n return res;\n}\n\ntemplate <class T>\nT mod_pow(T x, i64 n, i64 mod) {\n T res = 1;\n while (n > 0) {\n if (n & 1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n}\n\ntemplate <class T>\nT scan() {\n T val;\n std::cin >> val;\n return val;\n}\n\ntemplate <class T>\nstruct Edge {\n int to;\n T cost;\n Edge(int _to, T _cost = 1) : to(_to), cost(_cost) {}\n};\n\ntemplate <class T>\nstruct Graph : std::vector<std::vector<Edge<T>>> {\n using std::vector<std::vector<Edge<T>>>::vector;\n void add_edge(int u, int v, T w, bool directed = false) {\n (*this)[u].emplace_back(v, w);\n if (directed) return;\n (*this)[v].emplace_back(u, w);\n }\n};\n\nstruct graph : std::vector<std::vector<int>> {\n using std::vector<std::vector<int>>::vector;\n void add_edge(int u, int v, bool directed = false) {\n (*this)[u].emplace_back(v);\n if (directed) return;\n (*this)[v].emplace_back(u);\n }\n};\n\nconstexpr i64 LNF = std::numeric_limits<i64>::max() / 4;\n\nconstexpr int INF = std::numeric_limits<int>::max() / 2;\n\nconst std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};\nconst std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};\n\n} // namespace ebi\n\n/*\n reference: https://gist.github.com/draftcode/1357281\n*/\n\nnamespace ebi {\n\ntypedef std::string::const_iterator State;\nclass ParseError {};\n\nbool expect(State &begin, char expected) {\n if(*begin == expected) {\n return true;\n }\n else {\n return false;\n }\n}\n\n// beginがexpectedを指していたらbeginを一つ進める。\nvoid consume(State &begin, char expected) {\n if (*begin == expected) {\n begin++;\n } else {\n std::cerr << \"Expected '\" << expected << \"' but got '\" << *begin << \"'\"\n << std::endl;\n std::cerr << \"Rest string is '\";\n while (*begin) {\n std::cerr << *begin++;\n }\n std::cerr << \"'\" << std::endl;\n throw ParseError();\n }\n}\n\nbool isdigit(char c) {\n return '0' <= c && c <= '9';\n}\n\nbool isAlpha(char c) {\n return 'A' <= c && c <= 'Z';\n}\n\nbool isalpha(char c) {\n return 'a' <= c && c <= 'z';\n}\n\ni64 num(State &begin) {\n i64 res = 0;\n while(isdigit(*begin)) {\n res *= 10;\n res += *begin - '0';\n consume(begin, *begin);\n }\n return res;\n}\n\n}\n\nnamespace ebi {\n\nstd::vector<std::vector<std::pair<int,int>>> sequence(State&);\nstd::vector<std::vector<std::pair<int,int>>> repetition(State&);\nstd::pair<int,i64> operation(State&);\n\nint n;\n\nstd::vector<std::vector<std::pair<int,int>>> mul(const std::vector<std::vector<std::pair<int,int>>> &lhs, const std::vector<std::vector<std::pair<int,int>>> &rhs) {\n std::vector res(n, std::vector<std::pair<int,int>>(n));\n rep(i,0,n) rep(j,0,n) {\n auto [y, x] = rhs[i][j];\n res[i][j] = lhs[y][x];\n }\n return res;\n}\n\nstd::vector<std::vector<std::pair<int,int>>> sequence(State &begin) {\n std::vector table(n, std::vector<std::pair<int,int>>(n));\n rep(i,0,n) rep(j,0,n) table[i][j] = {i, j}; \n while(!(expect(begin, ')') || expect(begin, ';'))) {\n if(expect(begin, '(')) {\n table = mul(table, repetition(begin));\n }\n else {\n auto [idx, val] = operation(begin);\n if(idx % 2 == 0) {\n std::vector<std::pair<int,int>> nxt(n);\n rep(i,0,n) {\n nxt[i] = table[(i+dy[idx]+n)%n][val];\n }\n rep(i,0,n) table[i][val] = nxt[i];\n }\n else {\n std::vector<std::pair<int,int>> nxt(n);\n rep(j,0,n) {\n nxt[j] = table[val][(j+dx[idx]+n)%n];\n }\n table[val] = nxt;\n }\n }\n }\n return table;\n}\n\nstd::vector<std::vector<std::pair<int,int>>> repetition(State &begin) {\n consume(begin, '(');\n auto table = sequence(begin);\n consume(begin, ')');\n i64 val = num(begin);\n // ダブリングする\n std::vector res(n, std::vector<std::pair<int,int>>(n));\n rep(i,0,n) rep(j,0,n) res[i][j] = {i, j};\n while(val > 0) {\n if(val & 1) {\n res = mul(res, table);\n }\n val >>= 1;\n table = mul(table, table);\n }\n return res;\n}\n\nstd::pair<int,i64> operation(State &begin) {\n if(expect(begin, 'L')) {\n consume(begin, 'L');\n return {1, num(begin)-1};\n }\n else if(expect(begin, 'R')) {\n consume(begin, 'R');\n return {3, num(begin)-1};\n }\n else if(expect(begin, 'U')) {\n consume(begin, 'U');\n return {0, num(begin)-1};\n }\n else if(expect(begin, 'D')) {\n consume(begin, 'D');\n return {2, num(begin)-1};\n }\n else assert(0);\n}\n\nvoid main_() {\n int len;\n std::cin >> n >> len;\n std::string s;\n std::cin >> s;\n s += ';';\n State begin = s.begin();\n auto table = sequence(begin);\n rep(i,0,n) rep(j,0,n) {\n auto [y, x] = table[i][j];\n int ans = y*n + x + 1;\n std::cout << ans << \" \\n\"[j == n-1];\n }\n}\n\n} // namespace ebi\n\nint main() {\n std::cout << std::fixed << std::setprecision(15);\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n int t = 1;\n // std::cin >> t;\n while (t--) {\n ebi::main_();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 30632, "score_of_the_acc": -0.4171, "final_rank": 10 }, { "submission_id": "aoj_2731_6778984", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#include <iostream>\n#include <optional>\n#include <string>\n\nnamespace suisen::parsing {\n using State = std::string::const_iterator;\n\n struct ParseError {\n ParseError(const std::string& message = \"\") {\n std::cerr << message << std::endl;\n }\n };\n\n namespace internal {\n void print_rest_of_string(State it) {\n cerr << \"Rest string is '\";\n while (*it) cerr << *it++;\n cerr << \"'\" << endl;\n }\n }\n\n void consume(State& it, char expected) {\n if (*it == expected) {\n *it++;\n } else {\n cerr << \"Expected '\" << expected << \"' but got '\" << *it << \"'\" << endl;\n internal::print_rest_of_string(it);\n throw ParseError{};\n }\n }\n\n bool in(const State& it, char l, char r) {\n return l <= *it and *it <= r;\n }\n bool is(const State& it, char c) {\n return *it == c;\n }\n\n void assert_range(const State& it, char lo, char hi) {\n if (in(it, lo, hi)) {\n cerr << \"Expected [\" << lo << \"-\" << hi << \"] but got '\" << *it << \"'\" << endl;\n internal::print_rest_of_string(it);\n throw ParseError{};\n }\n }\n void assert_exact(const State& it, char c) {\n if (not is(it, c)) {\n cerr << \"Expected '\" << c << \"' but got '\" << *it << \"'\" << endl;\n internal::print_rest_of_string(it);\n throw ParseError{};\n }\n }\n\n long long nonnegative_number(State& it) {\n long long res = 0;\n assert_range(it, '0', '9');\n while (in(it, '0', '9')) res = res * 10 + (*it++ - '0');\n return res;\n }\n long long number(State& it) {\n long long res = 0;\n bool neg = false;\n while (is(it, '-')) neg = not neg, consume(it, '-');\n while (in(it, '0', '9')) res = res * 10 + (*it++ - '0');\n if (neg) res = -res;\n return res;\n }\n\n namespace normal_expression {\n namespace internal {\n long long expr(State& it);\n long long term(State& it);\n long long factor(State& it);\n\n long long expr(State& it) {\n long long res = term(it);\n while (true) {\n if (*it == '+') {\n consume(it, '+');\n res = res + term(it);\n } else if (*it == '-') {\n consume(it, '-');\n res = res - term(it);\n } else break;\n }\n return res;\n }\n long long term(State& it) {\n long long res = factor(it);\n while (true) {\n if (*it == '*') {\n consume(it, '*');\n res = res * factor(it);\n } else if (*it == '/') {\n consume(it, '/');\n res = res / factor(it);\n } else break;\n }\n return res;\n }\n long long factor(State& it) {\n bool neg = false;\n while (is(it, '-')) neg = not neg, consume(it, '-');\n long long res;\n if (is(it, '(')) {\n consume(it, '(');\n res = expr(it);\n consume(it, ')');\n } else {\n res = nonnegative_number(it);\n }\n if (neg) res = -res;\n return res;\n }\n }\n\n long long parse(State& it) {\n return internal::expr(it);\n }\n }\n}\nusing namespace suisen::parsing;\n\nint n;\n\nint mod(long long x) {\n return (x %= n) < 0 ? x + n : x;\n}\n\nvector<int> operator*(const vector<int> &p, const vector<int> &q) {\n vector<int> r(n * n);\n for (int i = 0; i < n * n; ++i) r[i] = q[p[i]];\n return r;\n}\nvector<int> pow(vector<int> a, long long b) {\n vector<int> res(n * n);\n iota(res.begin(), res.end(), 0);\n for (; b; b >>= 1) {\n if (b & 1) res = res * a;\n a = a * a;\n }\n return res;\n}\n\nvector<int> seq(State& it) {\n vector<int> p(n * n);\n iota(p.begin(), p.end(), 0);\n while (*it and *it != ')') {\n vector<int> q(n * n);\n iota(q.begin(), q.end(), 0);\n if (*it == '(') {\n consume(it, '(');\n q = seq(it);\n consume(it, ')');\n long long v = number(it);\n p = p * pow(q, v);\n } else {\n char op = *it++;\n int k = number(it) - 1;\n if (op == 'L') {\n for (int j = 0; j < n - 1; ++j) q[k * n + (j + 1)] = k * n + j;\n q[k * n + 0] = k * n + (n - 1);\n } else if (op == 'R') {\n for (int j = 0; j < n - 1; ++j) q[k * n + j] = k * n + (j + 1);\n q[k * n + (n - 1)] = k * n + 0;\n } else if (op == 'U') {\n for (int i = 0; i < n - 1; ++i) q[(i + 1) * n + k] = i * n + k;\n q[0 * n + k] = (n - 1) * n + k;\n } else if (op == 'D') {\n for (int i = 0; i < n - 1; ++i) q[i * n + k] = (i + 1) * n + k;\n q[(n - 1) * n + k] = 0 * n + k;\n }\n else assert(false);\n p = p * q;\n }\n }\n return p;\n}\n\nint main() {\n int l;\n string s;\n cin >> n >> l >> s;\n auto it = s.cbegin();\n auto p = seq(it);\n\n vector<int> a(n * n);\n for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) {\n int v = i * n + j + 1;\n a[p[i * n + j]] = v;\n }\n\n for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) {\n cout << a[i * n + j] << \" \\n\"[j == n - 1];\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 29348, "score_of_the_acc": -0.2447, "final_rank": 3 }, { "submission_id": "aoj_2731_6508122", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=1167167167167167167;\nconst int INF=1050000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\n\nvoid solve();\n// oddloop\nint main() {\n\t\n\tsolve();\n}\n\nvoid solve(){\n\tint N,L;\n\tcin>>N>>L;\n\tstring S;\n\tcin>>S;\n\tvector<int> e(N*N);\n\trep(i,N*N) e[i]=i;\n\tvector<char> C={'R','L','D','U'};\n\tvector<vector<vector<int>>> p(4,vector<vector<int>>(N,e));\n\trep(j,N){\n\t\trep(k,N-1){\n\t\t\tswap(p[0][j][j*N+k],p[0][j][j*N+k+1]);\n\t\t\tswap(p[1][j][N+j*N-1-k],p[1][j][N+j*N-2-k]);\n\t\t\tswap(p[2][j][j+k*N],p[2][j][j+k*N+N]);\n\t\t\tswap(p[3][j][N*N-N-k*N+j],p[3][j][N*N-2*N-k*N+j]);\n\t\t}\n\t}\n\tauto merge=[&](vector<int> A,vector<int> B)->vector<int>{\n\t\tauto tmp=e;\n\t\trep(i,N*N) tmp[i]=B[A[i]];\n\t\treturn tmp;\n\t};\n\tauto g=[&](vector<int> s,int L)->vector<int>{\n\t\tauto tmp=e;\n\t\twhile(L){\n\t\t\tif(L&1){\n\t\t\t\ttmp=merge(tmp,s);\n\t\t\t}\n\t\t\tL>>=1;\n\t\t\ts=merge(s,s);\n\t\t}\n\t\treturn tmp;\n\t};\n\tint ind=0;\n\tauto f=[&](auto self)->vector<int>{\n\t\tauto ans=e;\n\t\twhile(ind<L){\n\t\t\tif(S[ind]==')') return ans;\n\t\t\tif(S[ind]=='('){\n\t\t\t\tind++;\n\t\t\t\tauto tmp=self(self);\n\t\t\t\tind++;\n\t\t\t\tint L=0;\n\t\t\t\twhile('0'<=S[ind]&&S[ind]<='9'){\n\t\t\t\t\tL*=10;\n\t\t\t\t\tL+=(int)(S[ind]-'0');\n\t\t\t\t\tind++;\n\t\t\t\t}\n\t\t\t\tans=merge(ans,g(tmp,L));\n\t\t\t}else{\n\t\t\t\tint x=-1,y=0;\n\t\t\t\trep(i,4){\n\t\t\t\t\tif(S[ind]==C[i]) x=i;\n\t\t\t\t}\n\t\t\t\tind++;\n\t\t\t\twhile('0'<=S[ind]&&S[ind]<='9'){\n\t\t\t\t\ty*=10;\n\t\t\t\t\ty+=(int)(S[ind]-'0');\n\t\t\t\t\tind++;\n\t\t\t\t}\n\t\t\t\ty--;\n\t\t\t\tans=merge(ans,p[x][y]);\n\t\t\t}\n\t\t}\n\t\treturn ans;\n\t};\n\tauto ans=f(f);\n\tvector<int> rev(N*N);\n\trep(i,N*N) rev[ans[i]]=i;\n\trep(i,N){\n\t\trep(j,N){\n\t\t\tif(j) cout<<\" \";\n\t\t\tcout<<rev[i*N+j]+1;\n\t\t}\n\t\tcout<<\"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 32224, "score_of_the_acc": -0.2725, "final_rank": 5 }, { "submission_id": "aoj_2731_6276126", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\ntypedef string::const_iterator State;\n#define eps 1e-8L\n#define MAX_MOD 1000000007LL\n#define GYAKU 500000004LL\n#define MOD 998244353LL\n#define pb push_back\n#define mp make_pair\ntypedef long long ll;\ntypedef long double ld;\n#define REP(a, b) for (long long(a) = 0; (a) < (b); ++(a))\n#define ALL(x) (x).begin(), (x).end()\n\n#define int long long\nint num(State &x){\n int ans = 0;\n while (isdigit(*x))\n {\n ans *= 10;\n ans += *x - '0';\n x++;\n }\n return ans;\n}\nint n, l;\nvector<vector<pair<int, int>>> apply(vector<vector<pair<int, int>>> A, vector<vector<pair<int, int>>> B)\n{\n vector<vector<pair<int, int>>> C = A;\n REP(i,n){\n REP(q,n){\n pair<int, int> target = A[i][q];\n C[i][q] = B[target.first][target.second];\n }\n }\n return C;\n}\n\nvector<vector<pair<int, int>>> check(State &x){\n vector<vector<pair<int, int>>> base(n);\n REP(i,n){\n REP(q,n){\n base[i].push_back({i, q});\n }\n }\n while(*x != ')'){\n if(*x == '('){\n // repetition\n x++;\n vector<vector<pair<int, int>>> now = check(x);\n x++;\n int reps = num(x);\n while(reps){\n if(reps % 2)\n base = apply(base, now);\n now = apply(now, now);\n reps /= 2;\n }\n }else{\n // operation\n State y = x;\n x++;\n vector<vector<pair<int, int>>> now(n);\n int A = num(x) - 1;\n REP(i,n){\n REP(q,n){\n now[i].push_back({i, q});\n }\n }\n if (*y == 'L')\n {\n for (int q = n - 1; q >= 1;--q){\n swap(now[A][q], now[A][q - 1]);\n }\n }else if(*y == 'R'){\n for (int q = 0; q < n-1;++q){\n swap(now[A][q], now[A][q + 1]);\n }\n }else if(*y == 'D'){\n for (int q = 0; q < n-1;++q){\n swap(now[q][A], now[q+1][A]);\n }\n }else if(*y == 'U'){\n for (int q = n - 1; q >= 1;--q){\n swap(now[q][A], now[q - 1][A]);\n }\n }\n base = apply(base,now);\n }\n }\n return base;\n}\n\nvoid solve(){\n cin >> n >> l;\n string s;\n cin >> s;\n s.push_back(')');\n State x = s.begin();\n vector<vector<pair<int, int>>> next = check(x);\n vector<vector<int>> inputs(n, vector<int>(n, 0));\n REP(i,n){\n REP(q,n){\n inputs[next[i][q].first][next[i][q].second] = 1 + q + i * n;\n }\n }\n REP(i,n){\n REP(q,n){\n if(q)\n cout << \" \";\n cout << inputs[i][q];\n }\n cout << endl;\n }\n}\n#undef int\n\n// generated by oj-template v4.7.2\n// (https://github.com/online-judge-tools/template-generator)\nint main() {\n // Fasterize input/output script\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(100);\n // scanf/printf user should delete this fasterize input/output script\n\n int t = 1;\n //cin >> t; // comment out if solving multi testcase\n for (int testCase = 1; testCase <= t; ++testCase) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 71824, "score_of_the_acc": -1.3358, "final_rank": 16 }, { "submission_id": "aoj_2731_6262694", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define ALL(x) x.begin(), x.end()\n\nvector<vector<int>> prod(vector<vector<int>> &mat, vector<vector<int>> &op) {\n int N = mat.size();\n vector<vector<int>> mat2(N, vector<int>(N));\n rep(i, N) rep(j, N) mat2[i][j] = mat[op[i][j] / N][op[i][j] % N];\n return mat2;\n}\n\nvector<vector<int>> matpow(vector<vector<int>> &A, ll k) {\n int N = A.size();\n vector<vector<int>> E(N, vector<int>(N));\n rep(i, N) rep(j, N) E[i][j] = i * N + j;\n while (k) {\n if (k & 1) E = prod(E, A);\n A = prod(A, A);\n k >>= 1;\n }\n return E;\n}\n\nvector<vector<int>> rec(string &S, int l, int &r, int N) {\n int L = S.size();\n if (S[l] == 'L' || S[l] == 'R' || S[l] == 'U' || S[l] == 'D') {\n int d = 0, idx = l + 1;\n while ('0' <= S[idx] && S[idx] <= '9') d = 10 * d + S[idx++] - '0';\n r = idx;\n d--;\n vector<vector<int>> ret(N, vector<int>(N));\n rep(i, N) rep(j, N) ret[i][j] = i * N + j;\n if (S[l] == 'L') {\n rep(j, N) ret[d][j] = d * N + (j + 1) % N;\n } else if (S[l] == 'R') {\n rep(j, N) ret[d][j] = d * N + (j - 1 + N) % N;\n } else if (S[l] == 'U') {\n rep(i, N) ret[i][d] = (i + 1) % N * N + d;\n } else {\n rep(i, N) ret[i][d] = (i - 1 + N) % N * N + d;\n }\n return ret;\n } else if (S[l] == '(') {\n vector<vector<int>> E(N, vector<int>(N));\n rep(i, N) rep(j, N) E[i][j] = i * N + j;\n l++;\n while (S[r] != ')') {\n vector<vector<int>> op = rec(S, l, r, N);\n l = r;\n E = prod(E, op);\n }\n ll d = 0, idx = r + 1;\n while ('0' <= S[idx] && S[idx] <= '9') d = 10 * d + S[idx++] - '0';\n r = idx;\n return matpow(E, d);\n } else {\n assert(0);\n }\n}\n\nvector<vector<int>> rec1(string &S, int l, int &r, int N) {\n int L = S.size();\n vector<vector<int>> E(N, vector<int>(N));\n rep(i, N) rep(j, N) E[i][j] = i * N + j;\n while (r < L) {\n vector<vector<int>> op = rec(S, l, r, N);\n l = r;\n E = prod(E, op);\n }\n return E;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n int N, L;\n cin >> N >> L;\n string S;\n cin >> S;\n int l = 0, r = 0;\n vector<vector<int>> mat = rec1(S, l, r, N);\n rep(i, N) {\n rep(j, N) {\n if (j != N - 1)\n cout << mat[i][j] + 1 << \" \";\n else\n cout << mat[i][j] + 1 << \"\\n\";\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 17572, "score_of_the_acc": -0.4107, "final_rank": 9 } ]
aoj_2735_cpp
Shortest Bridge There is a city whose shape is a 1,000 $\times$ 1,000 square. The city has a big river, which flows from the north to the south and separates the city into just two parts: the west and the east. Recently, the city mayor has decided to build a highway from a point $s$ on the west part to a point $t$ on the east part. A highway consists of a bridge on the river, and two roads: one of the roads connects $s$ and the west end of the bridge, and the other one connects $t$ and the east end of the bridge. Note that each road doesn't have to be a straight line, but the intersection length with the river must be zero. In order to cut building costs, the mayor intends to build a highway satisfying the following conditions: Since bridge will cost more than roads, at first the length of a bridge connecting the east part and the west part must be as short as possible. Under the above condition, the sum of the length of two roads is minimum. Your task is to write a program computing the total length of a highway satisfying the above conditions. Input The input consists of a single test case. The test case is formatted as follows. $sx$ $sy$ $tx$ $ty$ $N$ $wx_1$ $wy_1$ ... $wx_N$ $wy_N$ $M$ $ex_1$ $ey_1$ ... $ex_M$ $ey_M$ At first, we refer to a point on the city by a coordinate ($x, y$): the distance from the west side is $x$ and the distance from the north side is $y$. The first line contains four integers $sx$, $sy$, $tx$, and $ty$ ($0 \leq sx, sy, tx, ty \leq 1,000$): points $s$ and $t$ are located at ($sx, sy$) and ($tx, ty$) respectively. The next line contains an integer $N$ ($2 \leq N \leq 20$), where $N$ is the number of points composing the west riverside. Each of the following $N$ lines contains two integers $wx_i$ and $wy_i$ ($0 \leq wx_i, wy_i \leq 1,000$): the coordinate of the $i$-th point of the west riverside is ($wx_i, wy_i$). The west riverside is a polygonal line obtained by connecting the segments between ($wx_i, wy_i$) and ($wx_{i+1}, wy_{i+1}$) for all $1 \leq i \leq N -1$. The next line contains an integer $M$ ($2 \leq M \leq 20$), where $M$ is the number of points composing the east riverside. Each of the following $M$ lines contains two integers $ex_i$ and $ey_i$ ($0 \leq ex_i, ey_i \leq 1,000$): the coordinate of the $i$-th point of the east riverside is ($ex_i, ey_i$). The east riverside is a polygonal line obtained by connecting the segments between ($ex_i, ey_i$) and ($ex_{i+1}, ey_{i+1}$) for all $1 \leq i \leq M - 1$. You can assume that test cases are under the following conditions. $wy_1$ and $ey_1$ must be 0, and $wy_N$ and $ey_M$ must be 1,000. Each polygonal line has no self-intersection. Two polygonal lines representing the west and the east riverside have no cross point. A point $s$ must be on the west part of the city. More precisely, $s$ must be on the region surrounded by the square side of the city and the polygonal line of the west riverside and not containing the east riverside points. A point $t$ must ...(truncated)
[ { "submission_id": "aoj_2735_10323059", "code_snippet": "// AOJ #2735 Shortest Bridge\n// 2025.3.25\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ld = long double;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nconst ld EPS = 1e-13;\nconst ld INF = 1e+10;\nconst ld PI = acosl(-1.0L);\n\nint sgn(ld r) { return (r < -EPS) ? -1 : (r > EPS ? 1 : 0); }\nld ldAbs(ld a) { return max(a, -a); }\n\nstruct Pt {\n ld x, y;\n Pt() {}\n Pt(ld xx, ld yy) : x(xx), y(yy) {}\n Pt operator+(const Pt &a) const { return Pt(x + a.x, y + a.y); }\n Pt operator-(const Pt &a) const { return Pt(x - a.x, y - a.y); }\n Pt operator*(const Pt &a) const { return Pt(x * a.x - y * a.y, x * a.y + y * a.x); }\n Pt operator-() const { return Pt(-x, -y); }\n Pt operator*(const ld &k) const { return Pt(x * k, y * k); }\n Pt operator/(const ld &k) const { return Pt(x / k, y / k); }\n ld norm() const { return sqrt(x * x + y * y); }\n ld arg() const { return atan2(y, x); }\n ld dot(const Pt &a) const { return x * a.x + y * a.y; }\n ld det(const Pt &a) const { return x * a.y - y * a.x; }\n bool operator==(const Pt &a) const { return ((*this) - a).norm() < EPS; }\n};\n\nld tri(const Pt &a, const Pt &b, const Pt &c) { return (b - a).det(c - a); }\nint iSP(Pt a, Pt b, Pt c) {\n int s = sgn((b - a).det(c - a));\n if (s) return s;\n if (sgn((b - a).dot(c - a)) < 0) return -2;\n if (sgn((a - b).dot(c - b)) < 0) return 2;\n return 0;\n}\nint iLL(Pt a, Pt b, Pt c, Pt d) {\n if (sgn((b - a).det(d - c)) != 0) return 1;\n if (sgn((b - a).det(c - a)) != 0) return 0;\n return -1;\n}\nPt pLL(Pt a, Pt b, Pt c, Pt d) {\n Pt v = b - a, w = d - c;\n return a + v * ((c - a).det(w) / v.det(w));\n}\nPt hLP(Pt a, Pt b, Pt c) { return pLL(a, b, c, c + (b - a) * Pt(0, 1)); }\nbool iSS(Pt a, Pt b, Pt c, Pt d) {\n return (iSP(a, b, c) * iSP(a, b, d) <= 0 &&\n iSP(c, d, a) * iSP(c, d, b) <= 0);\n}\nld dLP(Pt a, Pt b, Pt c) { return ldAbs(tri(a, b, c)) / (b - a).norm(); }\nld dLL(Pt a, Pt b, Pt c, Pt d) { return iLL(a, b, c, d) ? 0 : dLP(a, b, c); }\nld dSP(Pt a, Pt b, Pt c) {\n if (sgn((b - a).dot(c - a)) <= 0) return (c - a).norm();\n if (sgn((a - b).dot(c - b)) <= 0) return (c - b).norm();\n return ldAbs(tri(a, b, c)) / (b - a).norm();\n}\nld dSS(Pt a, Pt b, Pt c, Pt d) {\n if (iSS(a, b, c, d)) return 0;\n return min({ dSP(a, b, c), dSP(a, b, d), dSP(c, d, a), dSP(c, d, b) });\n}\nint sAP(Pt a, Pt b, Pt c) { return sgn(a.det(c)) - sgn(b.det(c)) - sgn(a.det(b)); }\nint s_a[50], s_b[50], s_ab[50];\nbool iGSstrict(int n, Pt p[], Pt a, Pt b) {\n p[n] = p[0];\n p[n+1] = p[1];\n for (int i = 0; i <= n; i++) {\n s_a[i] = sgn(tri(p[i], p[i+1], a));\n s_b[i] = sgn(tri(p[i], p[i+1], b));\n s_ab[i] = sgn(tri(a, b, p[i]));\n }\n for (int i = 0; i < n; i++) {\n if (s_a[i] * s_b[i] < 0 && s_ab[i] * s_ab[i+1] < 0) return true;\n }\n for (int i = 0; i < n; i++) {\n if (s_a[i] == 0 && s_b[i] > 0 && sgn((a - p[i]).dot(a - p[i+1])) < 0) return true;\n if (s_b[i] == 0 && s_a[i] > 0 && sgn((b - p[i]).dot(b - p[i+1])) < 0) return true;\n }\n for (int i = 0; i < n; i++) {\n if (s_ab[i+1] == 0 && sgn((p[i+1] - a).dot(p[i+1] - b)) <= 0) {\n if (!(p[i+1] == a) && sAP(p[i+2] - p[i+1], p[i] - p[i+1], a - p[i+1]) > 0)\n return true;\n if (!(p[i+1] == b) && sAP(p[i+2] - p[i+1], p[i] - p[i+1], b - p[i+1]) > 0)\n return true;\n }\n }\n return false;\n}\n\nint wn;\nPt wa[50];\nPt W[50], E[50];\nint xs, es;\nld distArr[1100];\nint vis[1100];\nPt varr[1100];\nld calc(Pt s, Pt t, int side) {\n for (int i = 0; i < 100; i++) {\n vis[i] = 0;\n distArr[i] = 999999999.9L;\n }\n int N = (side == 0) ? xs + 2 : es + 2;\n if (side == 0) {\n for (int i = 0; i < xs; i++) varr[i] = W[i];\n varr[xs] = s;\n varr[xs+1] = t;\n } else {\n for (int i = 0; i < es; i++) varr[i] = E[i];\n varr[es] = s;\n varr[es+1] = t;\n }\n distArr[N-2] = 0;\n for (int i = 0; i < N; i++) {\n ld tmp = 9999999999.9L;\n int at = 0;\n for (int j = 0; j < N; j++) {\n if (vis[j]) continue;\n if (distArr[j] < tmp) {\n tmp = distArr[j];\n at = j;\n }\n }\n vis[at] = 1;\n for (int j = 0; j < N; j++) {\n if (vis[j]) continue;\n ld d = (varr[j] - varr[at]).norm();\n if (distArr[j] < distArr[at] + d) continue;\n if (d < EPS) {\n distArr[j] = distArr[at];\n continue;\n }\n if (iGSstrict(wn, wa, varr[j], varr[at])) continue;\n distArr[j] = distArr[at] + d;\n }\n }\n return distArr[N-1];\n}\n\nint main(){\n ld sx = Cin(), sy = Cin(), tx = Cin(), ty = Cin();\n\n Pt s(sx, sy), t(tx, ty);\n int a = Cin();\n for (int i = 0; i < a; i++){\n ld x = Cin(), y = Cin();\n W[i] = Pt(x, y);\n }\n int b = Cin();\n for (int i = 0; i < b; i++){\n ld x = Cin(), y = Cin();\n E[i] = Pt(x, y);\n }\n xs = a; es = b;\n ld r1 = 999999999.0L;\n vector<pair<Pt, Pt>> bestPairs;\n vector<pair<pair<Pt, Pt>, pair<Pt, Pt>>> bli;\n for (int i = 0; i < a - 1; i++) {\n for (int j = 0; j < b - 1; j++) {\n ld d = dSS(W[i], W[i+1], E[j], E[j+1]);\n if (d < r1 - EPS) r1 = d;\n }\n }\n for (int i = 0; i < a - 1; i++) {\n for (int j = 0; j < b - 1; j++) {\n ld d = dSS(W[i], W[i+1], E[j], E[j+1]);\n if (d > r1 + EPS) continue;\n if (iLL(W[i], W[i+1], E[j], E[j+1]) == 1 || dLL(W[i], W[i+1], E[j], E[j+1]) < r1 - EPS) {\n if ((W[i] - E[j]).norm() < r1 + EPS)\n bestPairs.push_back(make_pair(W[i], E[j]));\n if ((W[i] - E[j+1]).norm() < r1 + EPS)\n bestPairs.push_back(make_pair(W[i], E[j+1]));\n if ((W[i+1] - E[j]).norm() < r1 + EPS)\n bestPairs.push_back(make_pair(W[i+1], E[j]));\n if ((W[i+1] - E[j+1]).norm() < r1 + EPS)\n bestPairs.push_back(make_pair(W[i+1], E[j+1]));\n Pt hp = hLP(E[j], E[j+1], W[i]);\n if ((W[i] - hp).norm() < r1 + EPS && iSP(E[j], hp, E[j+1]) == 2)\n bestPairs.push_back(make_pair(W[i], hp));\n hp = hLP(E[j], E[j+1], W[i+1]);\n if ((W[i+1] - hp).norm() < r1 + EPS && iSP(E[j], hp, E[j+1]) == 2)\n bestPairs.push_back(make_pair(W[i+1], hp));\n hp = hLP(W[i], W[i+1], E[j]);\n if ((E[j] - hp).norm() < r1 + EPS && iSP(W[i], hp, W[i+1]) == 2)\n bestPairs.push_back(make_pair(hp, E[j]));\n hp = hLP(W[i], W[i+1], E[j+1]);\n if ((E[j+1] - hp).norm() < r1 + EPS && iSP(W[i], hp, W[i+1]) == 2)\n bestPairs.push_back(make_pair(hp, E[j+1]));\n } else if (iLL(W[i], W[i+1], E[j], E[j+1]) == 0) {\n vector<Pt> tmp;\n tmp.push_back(hLP(W[i], W[i+1], E[j]));\n tmp.push_back(hLP(W[i], W[i+1], E[j+1]));\n tmp.push_back(W[i]);\n tmp.push_back(W[i+1]);\n for (int k = 0; k < 4; k++) {\n for (int l = 0; l < 3; l++) {\n if (tmp[l].x * 11451 + tmp[l].y * 810 > tmp[l+1].x * 11451 + tmp[l+1].y * 810)\n swap(tmp[l], tmp[l+1]);\n }\n }\n bli.push_back(make_pair(make_pair(tmp[1], tmp[2]),\n make_pair(hLP(E[j], E[j+1], tmp[1]), hLP(E[j], E[j+1], tmp[2]))));\n }\n }\n }\n\n wn = 0;\n for (int i = 0; i < b; i++) wa[wn++] = E[i];\n wa[wn++] = Pt(500, 100000000);\n for (int i = a - 1; i >= 0; i--) wa[wn++] = W[i];\n wa[wn++] = Pt(500, -100000000);\n\n ld r2 = 999999999.0L;\n for (int i = 0; i < (int)bestPairs.size(); i++) {\n ld tmp = calc(s, bestPairs[i].first, 0) + calc(t, bestPairs[i].second, 1);\n r2 = min(r2, tmp);\n }\n for (int i = 0; i < (int)bli.size(); i++) {\n ld L = 0, R = 1;\n for (int j = 0; j < 100; j++) {\n ld m1 = (L * 2 + R) / 3;\n ld m2 = (L + R * 2) / 3;\n ld t1 = calc(s, bli[i].first.first * m1 + bli[i].first.second * (1.0 - m1), 0)\n + calc(t, bli[i].second.first * m1 + bli[i].second.second * (1.0 - m1), 1);\n ld t2 = calc(s, bli[i].first.first * m2 + bli[i].first.second * (1.0 - m2), 0)\n + calc(t, bli[i].second.first * m2 + bli[i].second.second * (1.0 - m2), 1);\n if (t1 > t2) L = m1;\n else R = m2;\n r2 = min(r2, min(t1, t2));\n }\n }\n printf(\"%.12Lf %.12Lf\\n\", r1, r1 + r2);\n return 0;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 3612, "score_of_the_acc": -1, "final_rank": 9 }, { "submission_id": "aoj_2735_2748804", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\nconst ll mod=1000000007;\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\ntypedef long double db;\nconst db EPS = 1e-13;\n\ninline int sign(db a) { return a < -EPS ? -1 : a > EPS; }\n\ninline int cmp(db a, db b){ return sign(a-b); }\n\nstruct P {\n\tdb x, y;\n\tP() {}\n\tP(db _x, db _y) : x(_x), y(_y) {}\n\tP operator+(P p) { return {x + p.x, y + p.y}; }\n\tP operator-(P p) { return {x - p.x, y - p.y}; }\n\tP operator*(db d) { return {x * d, y * d}; }\n\tP operator/(db d) { return {x / d, y / d}; }\n \n\tbool operator<(P p) const { \n\t\tint c = cmp(x, p.x);\n\t\tif (c) return c == -1;\n\t\treturn cmp(y, p.y) == -1;\n\t}\n \n\tbool operator==(P o) const{\n\t\treturn cmp(x,o.x) == 0 && cmp(y,o.y) == 0;\n\t}\n \n\tdb dot(P p) { return x * p.x + y * p.y; }\n\tdb det(P p) { return x * p.y - y * p.x; }\n\t \n\tdb distTo(P p) { return (*this-p).abs(); }\n\tdb alpha() { return atan2(y, x); }\n\tvoid read() { cin>>x>>y; }\n\tvoid write() {cout<<\"(\"<<x<<\",\"<<y<<\")\"<<endl;}\n\tdb abs() { return sqrt(abs2());}\n\tdb abs2() { return x * x + y * y; }\n\tP rot90() { return P(-y,x);}\n\tP unit() { return *this/abs(); }\n\tint quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }\n\tP rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; }\n};\n \n#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))\n#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))\n \nbool chkLL(P p1, P p2, P q1, P q2) {\n\tdb a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n\treturn sign(a1+a2) != 0;\n}\n \nP isLL(P p1, P p2, P q1, P q2) {\n\tdb a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n\treturn (p1 * a2 + p2 * a1) / (a1 + a2);\n}\n \n \nbool intersect(db l1,db r1,db l2,db r2){\n\tif(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2); \n\treturn !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 );\n}\n \nbool isSS(P p1, P p2, P q1, P q2){\n\treturn intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) && \n\tcrossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1)\n\t\t\t* crossOp(q1,q2,p2) <= 0;\n}\n \nbool isSS_strict(P p1, P p2, P q1, P q2){\n\treturn crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1)\n\t\t\t* crossOp(q1,q2,p2) < 0;\n}\n \nbool isMiddle(db a, db m, db b) {\n\treturn sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);\n}\n \nbool isMiddle(P a, P m, P b) {\n\treturn isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);\n}\n \nbool onSeg(P p1, P p2, P q){\n\treturn crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);\n}\n \nbool onSeg_strict(P p1, P p2, P q){\n\treturn crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0;\n}\n \nP proj(P p1, P p2, P q) {\n\tP dir = p2 - p1;\n\treturn p1 + dir * (dir.dot(q - p1) / dir.abs2());\n}\n \nP reflect(P p1, P p2, P q){\n\treturn proj(p1,p2,q) * 2 - q;\n}\n \ndb nearest(P p1,P p2,P q){\n\tP h = proj(p1,p2,q);\n\tif(isMiddle(p1,h,p2))\n\t\treturn q.distTo(h);\n\treturn min(p1.distTo(q),p2.distTo(q));\n}\n \ndb disSS(P p1, P p2, P q1, P q2){\n\tif(isSS(p1,p2,q1,q2)) return 0;\n\treturn min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2)));\n}\n\nint contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside\n\tint n = ps.size(), ret = 0; \n\trep(i,0,n){\n\t\tP u=ps[i],v=ps[(i+1)%n];\n\t\tif(onSeg(u,v,p)) return 1;\n\t\tif(cmp(u.y,v.y)<=0) swap(u,v);\n\t\tif(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;\n\t\tret ^= crossOp(p,u,v) > 0;\n\t}\n\treturn ret*2;\n}\n\nconst int N=30;\nP s,t;\nvector<P> p,q;\ndb r1,r2,dis[N][N],diss[N];\nint n,m,g[2][N][N],vis[N];\n\nbool valid(vector<P> p,P s,P t) {\n\tint n=SZ(p);\n\trep(i,0,n) if (isSS_strict(p[i],p[(i+1)%n],s,t)) return 0;\n\tvector<P> cand; cand.pb(s); cand.pb(t);\n\trep(i,0,n) if (onSeg(s,t,p[i])&&(!onSeg(s,t,p[(i+n-1)%n])||!onSeg(s,t,p[(i+1)%n]))) cand.pb(p[i]);\n\tsort(all(cand));\n\tcand.erase(unique(all(cand)),cand.end());\n\trep(i,0,SZ(cand)-1) {\n\t\tP md=(cand[i]+cand[i+1])*0.5;\n\t\tif (contain(p,md)==0) return 0;\n\t}\n\treturn 1;\n}\ndb gao(vector<P> p,int d,P s,P t) {\n\tvector<P> q; q=p; q.pb(s); q.pb(t);\n\tint n=SZ(p);\n\trep(i,0,n+2) rep(j,0,n+2) dis[i][j]=(i==j)?0:1e10;\n\trep(i,0,n+2) rep(j,i+1,n+2) {\n\t\tif (i<n&&j<n) {\n\t\t\tif (g[d][i][j]) dis[i][j]=dis[j][i]=q[i].distTo(q[j]);\n\t\t} else if (valid(p,q[i],q[j])) dis[i][j]=dis[j][i]=q[i].distTo(q[j]);\n\t}\n\tn+=2;\n\trep(i,0,n) diss[i]=1e30,vis[i]=0; diss[n-2]=0;\n\trep(i,0,n) {\n\t\tint minp=-1; db minv=1e30;\n\t\trep(j,0,n) if (diss[j]<minv&&!vis[j]) minv=diss[j],minp=j;\n\t\tvis[minp]=1;\n\t\trep(j,0,n) diss[j]=min(diss[j],diss[minp]+dis[minp][j]);\n\t}\n\treturn diss[n-1];\n}\n\nint main() {\n\ts.read(); t.read();\n\tscanf(\"%d\",&n); n+=2;\n\tp.resize(n); p[0]=P(0,0); p[n-1]=P(0,1000);\n\trep(i,1,n-1) p[i].read();\n\tscanf(\"%d\",&m); m+=2;\n\tq.resize(m); q[0]=P(1000,0); q[m-1]=P(1000,1000);\n\trep(i,1,m-1) q[i].read();\n\trep(i,0,n) rep(j,i,n) g[0][i][j]=g[0][j][i]=valid(p,p[i],p[j]);\n\trep(i,0,m) rep(j,i,m) g[1][i][j]=g[1][j][i]=valid(q,q[i],q[j]);\n\tdb r1=1e30,r2=1e30;\n\trep(i,1,n-2) rep(j,1,m-2) r1=min(r1,disSS(p[i],p[i+1],q[j],q[j+1]));\n\trep(i,1,n-1) rep(j,1,m-1) {\n\t\tdb d1=p[i].distTo(q[j]);\n\t\tif (cmp(d1,r1)==0) {\n\t\t\tr2=min(r2,gao(p,0,s,p[i])+gao(q,1,t,q[j]));\n\t\t}\n\t\tif (j<m-2) {\n\t\t\td1=nearest(q[j],q[j+1],p[i]);\n\t\t\tif (cmp(d1,r1)==0) {\n\t\t\t\tP r=proj(q[j],q[j+1],p[i]);\n\t\t\t\tif (isMiddle(q[j],r,q[j+1])) r2=min(r2,gao(p,0,s,p[i])+gao(q,1,t,r));\n\t\t\t}\n\t\t}\n\t\tif (i<n-2) {\n\t\t\td1=nearest(p[i],p[i+1],q[j]);\n\t\t\tif (cmp(d1,r1)==0) {\n\t\t\t\tP r=proj(p[i],p[i+1],q[j]);\n\t\t\t\tif (isMiddle(p[i],r,p[i+1])) r2=min(r2,gao(p,0,s,r)+gao(q,1,t,q[j]));\n\t\t\t}\n\t\t}\n\t}\n\trep(i,1,n-2) rep(j,1,m-2) {\n\t\tdb d1=disSS(p[i],p[i+1],q[j],q[j+1]);\n\t\tif (cmp(d1,r1)>0) continue;\n\t\tif (sign((p[i+1]-p[i]).det(q[j+1]-q[j]))!=0) continue;\n\t\tP pl=p[i],pr=p[i+1];\n\t\tif (!isMiddle(q[j],proj(q[j],q[j+1],pl),q[j+1])) pl=proj(p[i],p[i+1],q[j]);\n\t\tif (!isMiddle(q[j],proj(q[j],q[j+1],pr),q[j+1])) pr=proj(p[i],p[i+1],q[j+1]);\n\t\tif (!isMiddle(p[i],pl,p[i+1])||!isMiddle(p[i],pr,p[i+1])) continue;\n\t\trep(it,0,40) {\n\t\t\tP fl=(pl+pl+pr)/3,fr=(pl+pr+pr)/3;\n\t\t\tdb vl=gao(p,0,s,fl)+gao(q,1,proj(q[j],q[j+1],fl),t);\n\t\t\tdb vr=gao(p,0,s,fr)+gao(q,1,proj(q[j],q[j+1],fr),t);\n\t\t\tr2=min(r2,min(vl,vr));\n\t\t\tif (vl>vr) pl=fl; else pr=fr;\n\t\t}\n\t}\n\tprintf(\"%.10f %.10f\\n\",(double)r1,(double)(r1+r2));\n}", "accuracy": 1, "time_ms": 750, "memory_kb": 3344, "score_of_the_acc": -0.4739, "final_rank": 6 }, { "submission_id": "aoj_2735_2748803", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\nconst ll mod=1000000007;\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\ntypedef long double db;\nconst db EPS = 1e-13;\n\ninline int sign(db a) { return a < -EPS ? -1 : a > EPS; }\n\ninline int cmp(db a, db b){ return sign(a-b); }\n\nstruct P {\n\tdb x, y;\n\tP() {}\n\tP(db _x, db _y) : x(_x), y(_y) {}\n\tP operator+(P p) { return {x + p.x, y + p.y}; }\n\tP operator-(P p) { return {x - p.x, y - p.y}; }\n\tP operator*(db d) { return {x * d, y * d}; }\n\tP operator/(db d) { return {x / d, y / d}; }\n \n\tbool operator<(P p) const { \n\t\tint c = cmp(x, p.x);\n\t\tif (c) return c == -1;\n\t\treturn cmp(y, p.y) == -1;\n\t}\n \n\tbool operator==(P o) const{\n\t\treturn cmp(x,o.x) == 0 && cmp(y,o.y) == 0;\n\t}\n \n\tdb dot(P p) { return x * p.x + y * p.y; }\n\tdb det(P p) { return x * p.y - y * p.x; }\n\t \n\tdb distTo(P p) { return (*this-p).abs(); }\n\tdb alpha() { return atan2(y, x); }\n\tvoid read() { cin>>x>>y; }\n\tvoid write() {cout<<\"(\"<<x<<\",\"<<y<<\")\"<<endl;}\n\tdb abs() { return sqrt(abs2());}\n\tdb abs2() { return x * x + y * y; }\n\tP rot90() { return P(-y,x);}\n\tP unit() { return *this/abs(); }\n\tint quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }\n\tP rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; }\n};\n \n#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))\n#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))\n \nbool chkLL(P p1, P p2, P q1, P q2) {\n\tdb a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n\treturn sign(a1+a2) != 0;\n}\n \nP isLL(P p1, P p2, P q1, P q2) {\n\tdb a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n\treturn (p1 * a2 + p2 * a1) / (a1 + a2);\n}\n \n \nbool intersect(db l1,db r1,db l2,db r2){\n\tif(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2); \n\treturn !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 );\n}\n \nbool isSS(P p1, P p2, P q1, P q2){\n\treturn intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) && \n\tcrossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1)\n\t\t\t* crossOp(q1,q2,p2) <= 0;\n}\n \nbool isSS_strict(P p1, P p2, P q1, P q2){\n\treturn crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1)\n\t\t\t* crossOp(q1,q2,p2) < 0;\n}\n \nbool isMiddle(db a, db m, db b) {\n\treturn sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);\n}\n \nbool isMiddle(P a, P m, P b) {\n\treturn isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);\n}\n \nbool onSeg(P p1, P p2, P q){\n\treturn crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);\n}\n \nbool onSeg_strict(P p1, P p2, P q){\n\treturn crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0;\n}\n \nP proj(P p1, P p2, P q) {\n\tP dir = p2 - p1;\n\treturn p1 + dir * (dir.dot(q - p1) / dir.abs2());\n}\n \nP reflect(P p1, P p2, P q){\n\treturn proj(p1,p2,q) * 2 - q;\n}\n \ndb nearest(P p1,P p2,P q){\n\tP h = proj(p1,p2,q);\n\tif(isMiddle(p1,h,p2))\n\t\treturn q.distTo(h);\n\treturn min(p1.distTo(q),p2.distTo(q));\n}\n \ndb disSS(P p1, P p2, P q1, P q2){\n\tif(isSS(p1,p2,q1,q2)) return 0;\n\treturn min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2)));\n}\n\nint contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside\n\tint n = ps.size(), ret = 0; \n\trep(i,0,n){\n\t\tP u=ps[i],v=ps[(i+1)%n];\n\t\tif(onSeg(u,v,p)) return 1;\n\t\tif(cmp(u.y,v.y)<=0) swap(u,v);\n\t\tif(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;\n\t\tret ^= crossOp(p,u,v) > 0;\n\t}\n\treturn ret*2;\n}\n\nconst int N=30;\nP s,t;\nvector<P> p,q;\ndb r1,r2,dis[N][N],diss[N];\nint n,m,g[2][N][N],vis[N];\n\nbool valid(vector<P> p,P s,P t) {\n\tint n=SZ(p);\n\trep(i,0,n) if (isSS_strict(p[i],p[(i+1)%n],s,t)) return 0;\n\tvector<P> cand; cand.pb(s); cand.pb(t);\n\trep(i,0,n) if (onSeg(s,t,p[i])) cand.pb(p[i]);\n\tsort(all(cand));\n\tcand.erase(unique(all(cand)),cand.end());\n\trep(i,0,SZ(cand)-1) {\n\t\tP md=(cand[i]+cand[i+1])*0.5;\n\t\tif (contain(p,md)==0) return 0;\n\t}\n\treturn 1;\n}\ndb gao(vector<P> p,int d,P s,P t) {\n\tvector<P> q; q=p; q.pb(s); q.pb(t);\n\tint n=SZ(p);\n\trep(i,0,n+2) rep(j,0,n+2) dis[i][j]=(i==j)?0:1e10;\n\trep(i,0,n+2) rep(j,i+1,n+2) {\n\t\tif (i<n&&j<n) {\n\t\t\tif (g[d][i][j]) dis[i][j]=dis[j][i]=q[i].distTo(q[j]);\n\t\t} else if (valid(p,q[i],q[j])) dis[i][j]=dis[j][i]=q[i].distTo(q[j]);\n\t}\n\tn+=2;\n\trep(i,0,n) diss[i]=1e30,vis[i]=0; diss[n-2]=0;\n\trep(i,0,n) {\n\t\tint minp=-1; db minv=1e30;\n\t\trep(j,0,n) if (diss[j]<minv&&!vis[j]) minv=diss[j],minp=j;\n\t\tvis[minp]=1;\n\t\trep(j,0,n) diss[j]=min(diss[j],diss[minp]+dis[minp][j]);\n\t}\n\treturn diss[n-1];\n}\n\nint main() {\n\ts.read(); t.read();\n\tscanf(\"%d\",&n); n+=2;\n\tp.resize(n); p[0]=P(0,0); p[n-1]=P(0,1000);\n\trep(i,1,n-1) p[i].read();\n\tscanf(\"%d\",&m); m+=2;\n\tq.resize(m); q[0]=P(1000,0); q[m-1]=P(1000,1000);\n\trep(i,1,m-1) q[i].read();\n\trep(i,0,n) rep(j,i,n) g[0][i][j]=g[0][j][i]=valid(p,p[i],p[j]);\n\trep(i,0,m) rep(j,i,m) g[1][i][j]=g[1][j][i]=valid(q,q[i],q[j]);\n\tdb r1=1e30,r2=1e30;\n\trep(i,1,n-2) rep(j,1,m-2) r1=min(r1,disSS(p[i],p[i+1],q[j],q[j+1]));\n\trep(i,1,n-1) rep(j,1,m-1) {\n\t\tdb d1=p[i].distTo(q[j]);\n\t\tif (cmp(d1,r1)==0) {\n\t\t\tr2=min(r2,gao(p,0,s,p[i])+gao(q,1,t,q[j]));\n\t\t}\n\t\tif (j<m-2) {\n\t\t\td1=nearest(q[j],q[j+1],p[i]);\n\t\t\tif (cmp(d1,r1)==0) {\n\t\t\t\tP r=proj(q[j],q[j+1],p[i]);\n\t\t\t\tif (isMiddle(q[j],r,q[j+1])) r2=min(r2,gao(p,0,s,p[i])+gao(q,1,t,r));\n\t\t\t}\n\t\t}\n\t\tif (i<n-2) {\n\t\t\td1=nearest(p[i],p[i+1],q[j]);\n\t\t\tif (cmp(d1,r1)==0) {\n\t\t\t\tP r=proj(p[i],p[i+1],q[j]);\n\t\t\t\tif (isMiddle(p[i],r,p[i+1])) r2=min(r2,gao(p,0,s,r)+gao(q,1,t,q[j]));\n\t\t\t}\n\t\t}\n\t}\n\trep(i,1,n-2) rep(j,1,m-2) {\n\t\tdb d1=disSS(p[i],p[i+1],q[j],q[j+1]);\n\t\tif (cmp(d1,r1)>0) continue;\n\t\tif (sign((p[i+1]-p[i]).det(q[j+1]-q[j]))!=0) continue;\n\t\tP pl=p[i],pr=p[i+1];\n\t\tif (!isMiddle(q[j],proj(q[j],q[j+1],pl),q[j+1])) pl=proj(p[i],p[i+1],q[j]);\n\t\tif (!isMiddle(q[j],proj(q[j],q[j+1],pr),q[j+1])) pr=proj(p[i],p[i+1],q[j+1]);\n\t\tif (!isMiddle(p[i],pl,p[i+1])||!isMiddle(p[i],pr,p[i+1])) continue;\n\t\trep(it,0,40) {\n\t\t\tP fl=(pl+pl+pr)/3,fr=(pl+pr+pr)/3;\n\t\t\tdb vl=gao(p,0,s,fl)+gao(q,1,proj(q[j],q[j+1],fl),t);\n\t\t\tdb vr=gao(p,0,s,fr)+gao(q,1,proj(q[j],q[j+1],fr),t);\n\t\t\tr2=min(r2,min(vl,vr));\n\t\t\tif (vl>vr) pl=fl; else pr=fr;\n\t\t}\n\t}\n\tprintf(\"%.10f %.10f\\n\",(double)r1,(double)(r1+r2));\n}", "accuracy": 1, "time_ms": 1130, "memory_kb": 3340, "score_of_the_acc": -0.5726, "final_rank": 7 }, { "submission_id": "aoj_2735_2748801", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\nconst ll mod=1000000007;\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\ntypedef long double db;\nconst db EPS = 1e-13;\n\ninline int sign(db a) { return a < -EPS ? -1 : a > EPS; }\n\ninline int cmp(db a, db b){ return sign(a-b); }\n\nstruct P {\n\tdb x, y;\n\tP() {}\n\tP(db _x, db _y) : x(_x), y(_y) {}\n\tP operator+(P p) { return {x + p.x, y + p.y}; }\n\tP operator-(P p) { return {x - p.x, y - p.y}; }\n\tP operator*(db d) { return {x * d, y * d}; }\n\tP operator/(db d) { return {x / d, y / d}; }\n \n\tbool operator<(P p) const { \n\t\tint c = cmp(x, p.x);\n\t\tif (c) return c == -1;\n\t\treturn cmp(y, p.y) == -1;\n\t}\n \n\tbool operator==(P o) const{\n\t\treturn cmp(x,o.x) == 0 && cmp(y,o.y) == 0;\n\t}\n \n\tdb dot(P p) { return x * p.x + y * p.y; }\n\tdb det(P p) { return x * p.y - y * p.x; }\n\t \n\tdb distTo(P p) { return (*this-p).abs(); }\n\tdb alpha() { return atan2(y, x); }\n\tvoid read() { cin>>x>>y; }\n\tvoid write() {cout<<\"(\"<<x<<\",\"<<y<<\")\"<<endl;}\n\tdb abs() { return sqrt(abs2());}\n\tdb abs2() { return x * x + y * y; }\n\tP rot90() { return P(-y,x);}\n\tP unit() { return *this/abs(); }\n\tint quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }\n\tP rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; }\n};\n \n#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))\n#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))\n \nbool chkLL(P p1, P p2, P q1, P q2) {\n\tdb a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n\treturn sign(a1+a2) != 0;\n}\n \nP isLL(P p1, P p2, P q1, P q2) {\n\tdb a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n\treturn (p1 * a2 + p2 * a1) / (a1 + a2);\n}\n \n \nbool intersect(db l1,db r1,db l2,db r2){\n\tif(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2); \n\treturn !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 );\n}\n \nbool isSS(P p1, P p2, P q1, P q2){\n\treturn intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) && \n\tcrossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1)\n\t\t\t* crossOp(q1,q2,p2) <= 0;\n}\n \nbool isSS_strict(P p1, P p2, P q1, P q2){\n\treturn crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1)\n\t\t\t* crossOp(q1,q2,p2) < 0;\n}\n \nbool isMiddle(db a, db m, db b) {\n\treturn sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);\n}\n \nbool isMiddle(P a, P m, P b) {\n\treturn isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);\n}\n \nbool onSeg(P p1, P p2, P q){\n\treturn crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);\n}\n \nbool onSeg_strict(P p1, P p2, P q){\n\treturn crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0;\n}\n \nP proj(P p1, P p2, P q) {\n\tP dir = p2 - p1;\n\treturn p1 + dir * (dir.dot(q - p1) / dir.abs2());\n}\n \nP reflect(P p1, P p2, P q){\n\treturn proj(p1,p2,q) * 2 - q;\n}\n \ndb nearest(P p1,P p2,P q){\n\tP h = proj(p1,p2,q);\n\tif(isMiddle(p1,h,p2))\n\t\treturn q.distTo(h);\n\treturn min(p1.distTo(q),p2.distTo(q));\n}\n \ndb disSS(P p1, P p2, P q1, P q2){\n\tif(isSS(p1,p2,q1,q2)) return 0;\n\treturn min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2)));\n}\n\nint contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside\n\tint n = ps.size(), ret = 0; \n\trep(i,0,n){\n\t\tP u=ps[i],v=ps[(i+1)%n];\n\t\tif(onSeg(u,v,p)) return 1;\n\t\tif(cmp(u.y,v.y)<=0) swap(u,v);\n\t\tif(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;\n\t\tret ^= crossOp(p,u,v) > 0;\n\t}\n\treturn ret*2;\n}\n\nconst int N=30;\nP s,t;\nvector<P> p,q;\ndb r1,r2,dis[N][N];\nint n,m,g[2][N][N];\n\nbool valid(vector<P> p,P s,P t) {\n\tint n=SZ(p);\n\trep(i,0,n) if (isSS_strict(p[i],p[(i+1)%n],s,t)) return 0;\n\tvector<P> cand; cand.pb(s); cand.pb(t);\n\trep(i,0,n) if (onSeg(s,t,p[i])) cand.pb(p[i]);\n\tsort(all(cand));\n\tcand.erase(unique(all(cand)),cand.end());\n\trep(i,0,SZ(cand)-1) {\n\t\tP md=(cand[i]+cand[i+1])*0.5;\n\t\tif (contain(p,md)==0) return 0;\n\t}\n\treturn 1;\n}\ndb gao(vector<P> p,int d,P s,P t) {\n\tvector<P> q; q=p; q.pb(s); q.pb(t);\n\tint n=SZ(p);\n\trep(i,0,n+2) rep(j,0,n+2) dis[i][j]=(i==j)?0:1e10;\n\trep(i,0,n+2) rep(j,i+1,n+2) {\n\t\tif (i<n&&j<n) {\n\t\t\tif (g[d][i][j]) dis[i][j]=dis[j][i]=q[i].distTo(q[j]);\n\t\t} else if (valid(p,q[i],q[j])) dis[i][j]=dis[j][i]=q[i].distTo(q[j]);\n\t}\n\trep(k,0,n+2) rep(i,0,n+2) rep(j,0,n+2) dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);\n\treturn dis[n][n+1];\n}\n\nint main() {\n\ts.read(); t.read();\n\tscanf(\"%d\",&n); n+=2;\n\tp.resize(n); p[0]=P(0,0); p[n-1]=P(0,1000);\n\trep(i,1,n-1) p[i].read();\n\tscanf(\"%d\",&m); m+=2;\n\tq.resize(m); q[0]=P(1000,0); \tq[m-1]=P(1000,1000);\n\trep(i,1,m-1) q[i].read();\n\trep(i,0,n) rep(j,i,n) g[0][i][j]=g[0][j][i]=valid(p,p[i],p[j]);\n\trep(i,0,m) rep(j,i,m) g[1][i][j]=g[1][j][i]=valid(q,q[i],q[j]);\n\tdb r1=1e30,r2=1e30;\n\trep(i,1,n-2) rep(j,1,m-2) r1=min(r1,disSS(p[i],p[i+1],q[j],q[j+1]));\n\trep(i,1,n-1) rep(j,1,m-1) {\n\t\tdb d1=p[i].distTo(q[j]);\n\t\tif (cmp(d1,r1)==0) {\n\t\t\tr2=min(r2,gao(p,0,s,p[i])+gao(q,1,t,q[j]));\n\t\t}\n\t\tif (j<m-2) {\n\t\t\td1=nearest(q[j],q[j+1],p[i]);\n\t\t\tif (cmp(d1,r1)==0) {\n\t\t\t\tP r=proj(q[j],q[j+1],p[i]);\n\t\t\t\tif (isMiddle(q[j],r,q[j+1])) r2=min(r2,gao(p,0,s,p[i])+gao(q,1,t,r));\n\t\t\t}\n\t\t}\n\t\tif (i<n-2) {\n\t\t\td1=nearest(p[i],p[i+1],q[j]);\n\t\t\tif (cmp(d1,r1)==0) {\n\t\t\t\tP r=proj(p[i],p[i+1],q[j]);\n\t\t\t\tif (isMiddle(p[i],r,p[i+1])) r2=min(r2,gao(p,0,s,r)+gao(q,1,t,q[j]));\n\t\t\t}\n\t\t}\n\t}\n\trep(i,1,n-2) rep(j,1,m-2) {\n\t\tdb d1=disSS(p[i],p[i+1],q[j],q[j+1]);\n\t\tif (cmp(d1,r1)>0) continue;\n\t\tif (sign((p[i+1]-p[i]).det(q[j+1]-q[j]))!=0) continue;\n\t\tP pl=p[i],pr=p[i+1];\n\t\tif (!isMiddle(q[j],proj(q[j],q[j+1],pl),q[j+1])) pl=proj(p[i],p[i+1],q[j]);\n\t\tif (!isMiddle(q[j],proj(q[j],q[j+1],pr),q[j+1])) pr=proj(p[i],p[i+1],q[j+1]);\n\t\tif (!isMiddle(p[i],pl,p[i+1])||!isMiddle(p[i],pr,p[i+1])) continue;\n\t\trep(it,0,100) {\n\t\t\tP fl=(pl+pl+pr)/3,fr=(pl+pr+pr)/3;\n\t\t\tdb vl=gao(p,0,s,fl)+gao(q,1,proj(q[j],q[j+1],fl),t);\n\t\t\tdb vr=gao(p,0,s,fr)+gao(q,1,proj(q[j],q[j+1],fr),t);\n\t\t\tr2=min(r2,min(vl,vr));\n\t\t\tif (vl>vr) pl=fl; else pr=fr;\n\t\t}\n\t}\n\tprintf(\"%.10f %.10f\\n\",(double)r1,(double)(r1+r2));\n}", "accuracy": 1, "time_ms": 3690, "memory_kb": 3344, "score_of_the_acc": -1.3163, "final_rank": 10 }, { "submission_id": "aoj_2735_2245100", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for(int i=(a);i<(n);i++)\n#define per(i,a,n) for(int i=(n)-1;i>=(a);i--)\n#define mp make_pair\n#define pb push_back\n\ntypedef long double db;\n\ntemplate<class T> inline void cmin(T&x,T c){if(c<x)x=c;}\ntemplate<class T> inline void cmax(T&x,T c){if(c>x)x=c;}\n \nconst db EPS = 1e-8;\n \ninline int sign(db a) {\n return a < -EPS ? -1 : a > EPS;\n}\n \ninline int cmp(db a, db b){\n return sign(a-b);\n}\n \nstruct P {\n db x, y;\n P() {}\n P(db _x, db _y) : x(_x), y(_y) {}\n P operator+(P p) { return P(x + p.x, y + p.y); }\n P operator-(P p) { return P(x - p.x, y - p.y); }\n P operator*(db d) { return P(x * d, y * d); }\n P operator/(db d) { return P(x / d, y / d); }\n bool operator<(P p) const { \n int c = cmp(x, p.x);\n if (c) return c == -1;\n return cmp(y, p.y) == -1;\n }\n db dot(P p) { return x * p.x + y * p.y; }\n db det(P p) { return x * p.y - y * p.x; }\n db distTo(P p) { return (*this-p).abs(); }\n db alpha() { return atan2(y, x); }\n void read() { cin>>x>>y; }\n db abs() { return sqrt(abs2());}\n db abs2() { return x * x + y * y; }\n P rot90() { return P(-y,x);}\n P unit() { return *this/abs(); }\n};\n \n#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))\n#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))\n\nP isLL(P p1, P p2, P q1, P q2) {\n db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n return (p1 * a2 + p2 * a1) / (a1 + a2);\n}\n\nbool crsLL(P p1, P p2, P q1, P q2){\n db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n return sign(a1+a2) != 0;\n}\n\nbool isMiddle(db a, db m, db b) {\n return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);\n}\n \nbool isMiddle(P a, P m, P b) {\n return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);\n}\n\nbool onSeg(P p1, P p2, P q){\n return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);\n}\n\nP vs,vt;\nint N,M;\nvector<P> W,E;\n\nint contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside\n int n = ps.size(), ret = 0; \n rep(i,0,n){\n P u=ps[i],v=ps[(i+1)%n];\n if(onSeg(u,v,p)) return 1;\n if(cmp(u.y,v.y)<=0) swap(u,v);\n if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;\n ret ^= crossOp(p,u,v) > 0;\n }\n return ret*2;\n}\n\nbool check(vector<P> ps, P s, P t){\n\tvector<P> important;\n\tint n=ps.size();\n\n\trep(i,0,n){\n\t\tP p1=ps[i],p2=ps[(i+1)%n];\n\t\tif(crsLL(p1,p2,s,t)){\n\t\t\tP q = isLL(p1,p2,s,t);\n\t\t\tif(isMiddle(s,q,t))\n\t\t\t\timportant.pb(q);\n\t\t}\n\t}\n\timportant.pb(s);\n\timportant.pb(t);\n\tsort(important.begin(), important.end());\n\n\trep(i,0,important.size() - 1){\n\t\tif((important[i] - important[i+1]).abs() > EPS){\n\t\t\tP p = (important[i] + important[i+1])/2;\n\t\t\tif(contain(ps,p) == 0) return 0;\n\t\t}\n\t}\n\n\treturn 1;\n}\n\ndb dijstra(vector<P> ps, P s, P t,int tp){\n\n\tstatic bool first[2] = {1,1};\n\tstatic bool can[2][30][30] = {};\n\tstatic db edge[2][30][30];\n\n\tvector<P> qs = ps;\n\n\tqs.pb(s);qs.pb(t);\n\n\tint n = qs.size();\n\n\tif(first[tp]){\n\t\trep(i,0,n) rep(j,0,i){\n\t\t\tcan[tp][i][j] = can[tp][j][i] = check(ps,qs[i],qs[j]);\n\t\t\tedge[tp][i][j] = edge[tp][j][i] = (qs[i] - qs[j]).abs();\n\t\t}\n\t\tfirst[tp] = 0;\n\t} else {\n\t\trep(i,n-2,n) rep(j,0,i){\n\t\t\tcan[tp][i][j] = can[tp][j][i] = check(ps,qs[i],qs[j]);\n\t\t\tedge[tp][i][j] = edge[tp][j][i] = (qs[i] - qs[j]).abs();\n\t\t}\n\t}\n\n\tdb dist[30] = {};\n\tbool used[30] = {};\n\trep(i,0,n) dist[i] = 1e100;\n\n\tdist[n-2] = 0;\n\n\trep(i,0,n){\n\t\tint u = -1;\n\t\trep(i,0,n) if(!used[i] && (u == -1 || dist[i] < dist[u])) u = i;\n\t\tused[u] = 1;\n\t\trep(i,0,n) if(can[tp][u][i]){\n\t\t\tcmin(dist[i],dist[u] + edge[tp][u][i]);\n\t\t}\n\t}\n\n\treturn dist[n-1];\n} \n\n\nP proj(P p1, P p2, P q) {\n P dir = p2 - p1;\n return p1 + dir * (dir.dot(q - p1) / dir.abs2());\n}\n\ndb nearest(P p1,P p2,P q){\n P h = proj(p1,p2,q);\n if(isMiddle(p1,h,p2))\n return q.distTo(h);\n return min(p1.distTo(q),p2.distTo(q));\n}\n\nP nearestP(P p1,P p2,P q){\n P h = proj(p1,p2,q);\n if(isMiddle(p1,h,p2))\n return h;\n if(p1.distTo(q) < p2.distTo(q))\n \treturn p1;\n else\n \treturn p2;\n}\n\ndb bridge,total;\n\nvoid update(db br,db tot){\n\tif(abs(br-bridge) <= 1e-14){\n\t\tcmin(total,tot);\n\t\treturn;\n\t}\n\tif(br < bridge){\n\t\tbridge = br;\n\t\ttotal = tot;\n\t}\n}\n\nP getP(P st, P dir, db dt){\n\treturn st + dir * (dt - st.dot(dir));\n}\n\nvoid solve(P w1,P w2,P e1,P e2){\n\t// w1 -- w2\n\t// e1 -- e2\n\n\t//four cases\n\trep(i,0,2){\n\t\tP me = i?w2:w1;\n\t\tP p = nearestP(e1,e2,me);\n\t\tupdate(p.distTo(me), dijstra(W,vs,me,0) + dijstra(E,p,vt,1));\n\t}\n\n\trep(i,0,2){\n\t\tP me = i?e2:e1;\n\t\tP p = nearestP(w1,w2,me);\n\t\tupdate(p.distTo(me), dijstra(W,vs,p,0) + dijstra(E,me,vt,1));\n\t}\n\n\t//a special case\n\tif(sign((w2-w1).det(e2-e1)) == 0){\n\t\tP dir = (e2-e1).unit();\n\t\tif(w2.dot(dir) < w1.dot(dir)) swap(w1,w2);\n\n\t\tdb l = max(e1.dot(dir),w1.dot(dir));\n\t\tdb r = min(e2.dot(dir),w2.dot(dir));\n\n\t\tif(cmp(l,r) >= 0) return;\n\n\t\tdb ret = getP(w1,dir,l).distTo(getP(e1,dir,l));\n\n\t\tif(ret > bridge + 1e-14) return;\n\n\t\tauto calc = [w1,e1,dir](db x){\n\t\t\tP pW = getP(w1,dir,x);\n\t\t\tP pE = getP(e1,dir,x);\n\t\t\treturn dijstra(W,vs,pW,0) + dijstra(E,pE,vt,1);\n\t\t};\n\n\t\trep(it,0,60){\n\t\t\tdb L = (l*2+r)/3, R = (l+2*r)/3;\n\n\t\t\tif(calc(L) < calc(R))\n\t\t\t\tr=R;\n\t\t\telse\n\t\t\t\tl=L;\n\t\t}\n\n\t\tupdate(ret, calc(l));\n\t}\n}\n\nint main(){\n\tvs.read();vt.read();\n\tcin>>N; W.resize(N); rep(i,0,N) W[i].read(); W.pb({0,1000}); W.pb({0,0});\n\n\n\tcin>>M; E.resize(M); rep(i,0,M) E[i].read(); E.pb({1000,1000}); E.pb({1000,0});\n\n\tbridge = 1e100; total = 1e100;\n\n\trep(i,0,W.size()) rep(j,0,E.size()) solve(W[i],W[(i+1)%W.size()],E[j],E[(j+1)%E.size()]);\n\n\tprintf(\"%0.10f %0.10f\\n\", (double)bridge, (double)(bridge + total));\n}", "accuracy": 1, "time_ms": 590, "memory_kb": 3296, "score_of_the_acc": -0.3056, "final_rank": 4 }, { "submission_id": "aoj_2735_2245060", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for(int i=(a);i<(n);i++)\n#define per(i,a,n) for(int i=(n)-1;i>=(a);i--)\n#define mp make_pair\n#define pb push_back\n\ntypedef long double db;\n\ntemplate<class T> inline void cmin(T&x,T c){if(c<x)x=c;}\ntemplate<class T> inline void cmax(T&x,T c){if(c>x)x=c;}\n \nconst db EPS = 1e-8;\n \ninline int sign(db a) {\n return a < -EPS ? -1 : a > EPS;\n}\n \ninline int cmp(db a, db b){\n return sign(a-b);\n}\n \nstruct P {\n db x, y;\n P() {}\n P(db _x, db _y) : x(_x), y(_y) {}\n P operator+(P p) { return P(x + p.x, y + p.y); }\n P operator-(P p) { return P(x - p.x, y - p.y); }\n P operator*(db d) { return P(x * d, y * d); }\n P operator/(db d) { return P(x / d, y / d); }\n bool operator<(P p) const { \n int c = cmp(x, p.x);\n if (c) return c == -1;\n return cmp(y, p.y) == -1;\n }\n db dot(P p) { return x * p.x + y * p.y; }\n db det(P p) { return x * p.y - y * p.x; }\n db distTo(P p) { return (*this-p).abs(); }\n db alpha() { return atan2(y, x); }\n void read() { cin>>x>>y; }\n db abs() { return sqrt(abs2());}\n db abs2() { return x * x + y * y; }\n P rot90() { return P(-y,x);}\n P unit() { return *this/abs(); }\n};\n \n#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))\n#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))\n\nP isLL(P p1, P p2, P q1, P q2) {\n db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n return (p1 * a2 + p2 * a1) / (a1 + a2);\n}\n\nbool crsLL(P p1, P p2, P q1, P q2){\n db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n return sign(a1+a2) != 0;\n}\n\nbool isMiddle(db a, db m, db b) {\n return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);\n}\n \nbool isMiddle(P a, P m, P b) {\n return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);\n}\n\nbool onSeg(P p1, P p2, P q){\n return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);\n}\n\nP vs,vt;\nint N,M;\nvector<P> W,E;\n\nint contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside\n int n = ps.size(), ret = 0; \n rep(i,0,n){\n P u=ps[i],v=ps[(i+1)%n];\n if(onSeg(u,v,p)) return 1;\n if(cmp(u.y,v.y)<=0) swap(u,v);\n if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;\n ret ^= crossOp(p,u,v) > 0;\n }\n return ret*2;\n}\n\nbool check(vector<P> ps, P s, P t){\n\tvector<P> important;\n\tint n=ps.size();\n\n\trep(i,0,n){\n\t\tP p1=ps[i],p2=ps[(i+1)%n];\n\t\tif(crsLL(p1,p2,s,t)){\n\t\t\tP q = isLL(p1,p2,s,t);\n\t\t\tif(isMiddle(s,q,t))\n\t\t\t\timportant.pb(q);\n\t\t}\n\t}\n\timportant.pb(s);\n\timportant.pb(t);\n\tsort(important.begin(), important.end());\n\n\trep(i,0,important.size() - 1){\n\t\tif((important[i] - important[i+1]).abs() > EPS){\n\t\t\tP p = (important[i] + important[i+1])/2;\n\t\t\tif(contain(ps,p) == 0) return 0;\n\t\t}\n\t}\n\n\treturn 1;\n}\n\ndb dijstra(vector<P> ps, P s, P t,int tp){\n\n\tstatic bool first[2] = {1,1};\n\tstatic bool can[2][30][30] = {};\n\tstatic db edge[2][30][30];\n\n\tvector<P> qs = ps;\n\n\tqs.pb(s);qs.pb(t);\n\n\tint n = qs.size();\n\n\tif(first[tp]){\n\t\trep(i,0,n) rep(j,0,i){\n\t\t\tcan[tp][i][j] = can[tp][j][i] = check(ps,qs[i],qs[j]);\n\t\t\tedge[tp][i][j] = edge[tp][j][i] = (qs[i] - qs[j]).abs();\n\t\t}\n\t\tfirst[tp] = 0;\n\t} else {\n\t\trep(i,n-2,n) rep(j,0,i){\n\t\t\tcan[tp][i][j] = can[tp][j][i] = check(ps,qs[i],qs[j]);\n\t\t\tedge[tp][i][j] = edge[tp][j][i] = (qs[i] - qs[j]).abs();\n\t\t}\n\t}\n\n\tdb dist[30] = {};\n\tbool used[30] = {};\n\trep(i,0,n) dist[i] = 1e100;\n\n\tdist[n-2] = 0;\n\n\trep(i,0,n){\n\t\tint u = -1;\n\t\trep(i,0,n) if(!used[i] && (u == -1 || dist[i] < dist[u])) u = i;\n\t\tused[u] = 1;\n\t\trep(i,0,n) if(can[tp][u][i]){\n\t\t\tcmin(dist[i],dist[u] + edge[tp][u][i]);\n\t\t}\n\t}\n\n\treturn dist[n-1];\n} \n\n\nP proj(P p1, P p2, P q) {\n P dir = p2 - p1;\n return p1 + dir * (dir.dot(q - p1) / dir.abs2());\n}\n\ndb nearest(P p1,P p2,P q){\n P h = proj(p1,p2,q);\n if(isMiddle(p1,h,p2))\n return q.distTo(h);\n return min(p1.distTo(q),p2.distTo(q));\n}\n\nP nearestP(P p1,P p2,P q){\n P h = proj(p1,p2,q);\n if(isMiddle(p1,h,p2))\n return h;\n if(p1.distTo(q) < p2.distTo(q))\n \treturn p1;\n else\n \treturn p2;\n}\n\ndb bridge,total;\n\nvoid update(db br,db tot){\n\tif(abs(br-bridge) <= 1e-14){\n\t\tcmin(total,tot);\n\t\treturn;\n\t}\n\tif(br < bridge){\n\t\tbridge = br;\n\t\ttotal = tot;\n\t}\n}\n\nP getP(P st, P dir, db dt){\n\treturn st + dir * (dt - st.dot(dir));\n}\n\nvoid solve(P w1,P w2,P e1,P e2){\n\t// w1 -- w2\n\t// e1 -- e2\n\n\t//four cases\n\trep(i,0,2){\n\t\tP me = i?w2:w1;\n\t\tP p = nearestP(e1,e2,me);\n\t\tupdate(p.distTo(me), dijstra(W,vs,me,0) + dijstra(E,p,vt,1));\n\t}\n\n\trep(i,0,2){\n\t\tP me = i?e2:e1;\n\t\tP p = nearestP(w1,w2,me);\n\t\tupdate(p.distTo(me), dijstra(W,vs,p,0) + dijstra(E,me,vt,1));\n\t}\n\n\t//a special case\n\tif(sign((w2-w1).det(e2-e1)) == 0){\n\t\tP dir = (e2-e1).unit();\n\t\tif(w2.dot(dir) < w1.dot(dir)) swap(w1,w2);\n\n\t\tdb l = max(e1.dot(dir),w1.dot(dir));\n\t\tdb r = min(e2.dot(dir),w2.dot(dir));\n\n\t\tif(cmp(l,r) >= 0) return;\n\n\t\tauto calc = [w1,e1,dir](db x){\n\t\t\tP pW = getP(w1,dir,x);\n\t\t\tP pE = getP(e1,dir,x);\n\t\t\treturn dijstra(W,vs,pW,0) + dijstra(E,pE,vt,1);\n\t\t};\n\n\t\trep(it,0,100){\n\t\t\tdb L = (l*2+r)/3, R = (l+2*r)/3;\n\n\t\t\tif(calc(L) < calc(R))\n\t\t\t\tr=R;\n\t\t\telse\n\t\t\t\tl=L;\n\t\t}\n\n\t\tupdate(getP(w1,dir,l).distTo(getP(e1,dir,l)), calc(l));\n\t}\n}\n\nint main(){\n\tvs.read();vt.read();\n\tcin>>N; W.resize(N); rep(i,0,N) W[i].read(); W.pb({0,1000}); W.pb({0,0});\n\n\n\tcin>>M; E.resize(M); rep(i,0,M) E[i].read(); E.pb({1000,1000}); E.pb({1000,0});\n\n\tbridge = 1e100; total = 1e100;\n\n\trep(i,0,W.size()) rep(j,0,E.size()) solve(W[i],W[(i+1)%W.size()],E[j],E[(j+1)%E.size()]);\n\n\tprintf(\"%0.10f %0.10f\\n\", (double)bridge, (double)(bridge + total));\n}", "accuracy": 1, "time_ms": 2080, "memory_kb": 3296, "score_of_the_acc": -0.7326, "final_rank": 8 }, { "submission_id": "aoj_2735_2245023", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for(int i=(a);i<(n);i++)\n#define per(i,a,n) for(int i=(n)-1;i>=(a);i--)\n#define mp make_pair\n#define pb push_back\n\ntypedef long double db;\n\ntemplate<class T> inline void cmin(T&x,T c){if(c<x)x=c;}\ntemplate<class T> inline void cmax(T&x,T c){if(c>x)x=c;}\n \nconst db EPS = 1e-8;\n \ninline int sign(db a) {\n return a < -EPS ? -1 : a > EPS;\n}\n \ninline int cmp(db a, db b){\n return sign(a-b);\n}\n \nstruct P {\n db x, y;\n P() {}\n P(db _x, db _y) : x(_x), y(_y) {}\n P operator+(P p) { return P(x + p.x, y + p.y); }\n P operator-(P p) { return P(x - p.x, y - p.y); }\n P operator*(db d) { return P(x * d, y * d); }\n P operator/(db d) { return P(x / d, y / d); }\n bool operator<(P p) const { \n int c = cmp(x, p.x);\n if (c) return c == -1;\n return cmp(y, p.y) == -1;\n }\n db dot(P p) { return x * p.x + y * p.y; }\n db det(P p) { return x * p.y - y * p.x; }\n db distTo(P p) { return (*this-p).abs(); }\n db alpha() { return atan2(y, x); }\n void read() { cin>>x>>y; }\n db abs() { return sqrt(abs2());}\n db abs2() { return x * x + y * y; }\n P rot90() { return P(-y,x);}\n P unit() { return *this/abs(); }\n};\n \n#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))\n#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))\n\nP isLL(P p1, P p2, P q1, P q2) {\n db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n return (p1 * a2 + p2 * a1) / (a1 + a2);\n}\n\nbool crsLL(P p1, P p2, P q1, P q2){\n db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);\n return sign(a1+a2) != 0;\n}\n\nbool isMiddle(db a, db m, db b) {\n return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);\n}\n \nbool isMiddle(P a, P m, P b) {\n return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);\n}\n\nbool onSeg(P p1, P p2, P q){\n return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);\n}\n\nP vs,vt;\nint N,M;\nvector<P> W,E;\n\nint contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside\n int n = ps.size(), ret = 0; \n rep(i,0,n){\n P u=ps[i],v=ps[(i+1)%n];\n if(onSeg(u,v,p)) return 1;\n if(cmp(u.y,v.y)<=0) swap(u,v);\n if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;\n ret ^= crossOp(p,u,v) > 0;\n }\n return ret*2;\n}\n\nbool check(vector<P> ps, P s, P t){\n\tvector<P> important;\n\tint n=ps.size();\n\n\trep(i,0,n){\n\t\tP p1=ps[i],p2=ps[(i+1)%n];\n\t\tif(crsLL(p1,p2,s,t)){\n\t\t\tP q = isLL(p1,p2,s,t);\n\t\t\tif(isMiddle(s,q,t))\n\t\t\t\timportant.pb(q);\n\t\t}\n\t}\n\timportant.pb(s);\n\timportant.pb(t);\n\tsort(important.begin(), important.end());\n\n\trep(i,0,important.size() - 1){\n\t\tif((important[i] - important[i+1]).abs() > EPS){\n\t\t\tP p = (important[i] + important[i+1])/2;\n\t\t\tif(contain(ps,p) == 0) return 0;\n\t\t}\n\t}\n\n\treturn 1;\n}\n\ndb dijstra(vector<P> ps, P s, P t){\n\tvector<P> qs = ps;\n\n\tqs.pb(s);qs.pb(t);\n\n\tint n = qs.size();\n\n\tbool can[30][30] = {};\n\tdb edge[30][30];\n\trep(i,0,n) rep(j,0,i){\n\t\tcan[i][j] = can[j][i] = check(ps,qs[i],qs[j]);\n\t\tedge[i][j] = edge[j][i] = (qs[i] - qs[j]).abs();\n\t}\n\n\tdb dist[30] = {};\n\tbool used[30] = {};\n\trep(i,0,n) dist[i] = 1e100;\n\n\tdist[n-2] = 0;\n\n\trep(i,0,n){\n\t\tint u = -1;\n\t\trep(i,0,n) if(!used[i] && (u == -1 || dist[i] < dist[u])) u = i;\n\t\tused[u] = 1;\n\t\trep(i,0,n) if(can[u][i]){\n\t\t\tcmin(dist[i],dist[u] + edge[u][i]);\n\t\t}\n\t}\n\n\treturn dist[n-1];\n} \n\n\nP proj(P p1, P p2, P q) {\n P dir = p2 - p1;\n return p1 + dir * (dir.dot(q - p1) / dir.abs2());\n}\n\ndb nearest(P p1,P p2,P q){\n P h = proj(p1,p2,q);\n if(isMiddle(p1,h,p2))\n return q.distTo(h);\n return min(p1.distTo(q),p2.distTo(q));\n}\n\nP nearestP(P p1,P p2,P q){\n P h = proj(p1,p2,q);\n if(isMiddle(p1,h,p2))\n return h;\n if(p1.distTo(q) < p2.distTo(q))\n \treturn p1;\n else\n \treturn p2;\n}\n\ndb bridge,total;\n\nvoid update(db br,db tot){\n\tif(abs(br-bridge) <= 1e-14){\n\t\tcmin(total,tot);\n\t\treturn;\n\t}\n\tif(br < bridge){\n\t\tbridge = br;\n\t\ttotal = tot;\n\t}\n}\n\nP getP(P st, P dir, db dt){\n\treturn st + dir * (dt - st.dot(dir));\n}\n\nvoid solve(P w1,P w2,P e1,P e2){\n\t// w1 -- w2\n\t// e1 -- e2\n\n\t//four cases\n\trep(i,0,2){\n\t\tP me = i?w2:w1;\n\t\tP p = nearestP(e1,e2,me);\n\t\tupdate(p.distTo(me), dijstra(W,vs,me) + dijstra(E,p,vt));\n\t}\n\n\trep(i,0,2){\n\t\tP me = i?e2:e1;\n\t\tP p = nearestP(w1,w2,me);\n\t\tupdate(p.distTo(me), dijstra(W,vs,p) + dijstra(E,me,vt));\n\t}\n\n\t//a special case\n\tif(sign((w2-w1).det(e2-e1)) == 0){\n\t\tP dir = (e2-e1).unit();\n\t\tif(w2.dot(dir) < w1.dot(dir)) swap(w1,w2);\n\n\t\tdb l = max(e1.dot(dir),w1.dot(dir));\n\t\tdb r = min(e2.dot(dir),w2.dot(dir));\n\n\t\tif(cmp(l,r) >= 0) return;\n\n\t\tauto calc = [w1,e1,dir](db x){\n\t\t\tP pW = getP(w1,dir,x);\n\t\t\tP pE = getP(e1,dir,x);\n\t\t\treturn dijstra(W,vs,pW) + dijstra(E,pE,vt);\n\t\t};\n\n\t\trep(it,0,100){\n\t\t\tdb L = (l*2+r)/3, R = (l+2*r)/3;\n\n\t\t\tif(calc(L) < calc(R))\n\t\t\t\tr=R;\n\t\t\telse\n\t\t\t\tl=L;\n\t\t}\n\n\t\tupdate(getP(w1,dir,l).distTo(getP(e1,dir,l)), calc(l));\n\t}\n}\n\nint main(){\n\tvs.read();vt.read();\n\tcin>>N; W.resize(N); rep(i,0,N) W[i].read(); W.pb({0,1000}); W.pb({0,0});\n\n\n\tcin>>M; E.resize(M); rep(i,0,M) E[i].read(); E.pb({1000,1000}); E.pb({1000,0});\n\n\tbridge = 1e100; total = 1e100;\n\n\trep(i,0,W.size()) rep(j,0,E.size()) solve(W[i],W[(i+1)%W.size()],E[i],E[(i+1)%E.size()]);\n\n\tprintf(\"%0.10f %0.10f\\n\", (double)bridge, (double)(bridge + total));\n}", "accuracy": 0.0392156862745098, "time_ms": 910, "memory_kb": 3220, "score_of_the_acc": -0.2034, "final_rank": 13 }, { "submission_id": "aoj_2735_2165187", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 30\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-8)\n#define Eps (1e-15)\n#define mod 1000000007\n#define pi acos(-1)\n#define phi (1.0+sqrt(5))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\nconst int dx[8]={1,0,-1,0,1,1,-1,-1};\nconst int dy[8]={0,1,0,-1,1,-1,1,-1};\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return equals(x,p.x) ? y-p.y<-eps : x-p.x<-eps; }\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Segment s,Segment t){\n return equals(cross(s.p1-s.p2,t.p1-t.p2),0.0);\n}\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0 &&\n ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;i++){\n Vector a=g[i]-p,b=g[(i+1)%n]-p;\n if(abs(cross(a,b))<eps && dot(a,b)<eps)return 1;\n if(a.y>b.y)swap(a,b);\n if(a.y<eps && eps<b.y && cross(a,b)>eps)x=!x;\n }\n if(x)return 2;\n return 0;\n}\n\nbool contains(Polygon p,Segment s){\n vector<pair<double,Point> > v;\n int n=p.size();\n v.push_back(make_pair(0,s.p1));\n v.push_back(make_pair(abs(s.p1-s.p2),s.p2));\n for(int i=0;i<n;i++){\n Segment e(p[i],p[(i+1)%n]);\n if(isParallel(s,e))continue;\n if(!intersect(s,e))continue;\n Point m=getCrossPointLL(s,e);\n v.push_back(make_pair(abs(m-s.p1),m));\n }\n sort(v.begin(),v.end());\n for(int i=0;i<v.size()-1;i++){\n Point m=v[i].s+(v[i+1].s-v[i].s)/2.0;\n if(contains(p,m)==0)return false;\n }\n return true;\n}\n\npair<Point,Point> closest_pair(Segment a,Segment b){\n pair<Point,Point> res(a.p1,b.p1);\n if(abs(a.p1-b.p2)<abs(res.f-res.s))res=mp(a.p1,b.p2);\n if(abs(a.p2-b.p1)<abs(res.f-res.s))res=mp(a.p2,b.p1);\n if(abs(a.p2-b.p2)<abs(res.f-res.s))res=mp(a.p2,b.p2);\n Point c;\n c=project(b,a.p1);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p1)<abs(res.f-res.s))res=mp(a.p1,c);\n c=project(b,a.p2);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p2)<abs(res.f-res.s))res=mp(a.p2,c);\n c=project(a,b.p1);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p1)<abs(res.f-res.s))res=mp(b.p1,c);\n c=project(a,b.p2);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p2)<abs(res.f-res.s))res=mp(b.p2,c);\n return res;\n}\n\nint n,m;\nPoint s,t;\nvector<Point> w,e;\nPolygon W,E,WE;\nvector<Point> vp[2];\nvector<pid> g[2][MAX];\n\nvoid add_edge(int ind,int to,int from,double cost){\n g[ind][to].pb(mp(from,cost));\n g[ind][from].pb(mp(to,cost));\n}\n\ndouble dijkstra(Point a){\n int ind=-1;\n Polygon p;\n if(contains(W,a)){ ind=0;p=W; }\n else { ind=1;p=E; }\n int start=vp[ind].size();\n g[ind][start].clear();\n FOR(i,0,vp[ind].size())\n if(contains(p,Segment(vp[ind][i],a)))\n g[ind][start].pb(mp(i,abs(a-vp[ind][i])));\n\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[start]=0;\n pq.push(mp(0,start));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]<u.f)continue;\n if(u.s==0)return d[u.s];\n\n FOR(i,0,g[ind][u.s].size()){\n int next=g[ind][u.s][i].f;\n double cost=g[ind][u.s][i].s+d[u.s];\n if(cost<d[next]){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return inf;\n}\n\nvoid make_graphs(){\n W.pb(Point(0,1000));\n W.pb(Point(0,0));\n FOR(i,0,n)W.pb(w[i]);\n E.pb(Point(1000,0));\n E.pb(Point(1000,1000));\n RFOR(i,m,0)E.pb(e[i]);\n\n vp[0].pb(s);\n FOR(i,0,W.size())vp[0].pb(W[i]);\n FOR(i,0,vp[0].size()){\n FOR(j,i+1,vp[0].size()){\n if(contains(W,Segment(vp[0][i],vp[0][j])))\n add_edge(0,i,j,abs(vp[0][i]-vp[0][j]));\n }\n }\n vp[1].pb(t);\n FOR(i,0,E.size())vp[1].pb(E[i]);\n FOR(i,0,vp[1].size()){\n FOR(j,i+1,vp[1].size()){\n if(contains(E,Segment(vp[1][i],vp[1][j])))\n add_edge(1,i,j,abs(vp[1][i]-vp[1][j]));\n }\n }\n}\n\npdd check(Segment a,Segment b){\n pdd res(inf,inf);\n if(a.p2.y<a.p1.y)return res;\n if(b.p2.y<b.p1.y)return res;\n if(isParallel(a,b)){\n Segment seg=a;\n Point c;\n bool flag=false;\n c=project(a,b.p1);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p1=c;flag=true; }\n c=project(a,b.p2);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p2=c;flag=true; }\n if(flag){\n Vector v=seg.p2-seg.p1;\n v=v/abs(v);\n double L=0,R=abs(seg.p1-seg.p2);\n FOR(k,0,50){\n double m1=(L*phi+R)/(1.0+phi);\n double m2=(L+R*phi)/(1.0+phi);\n Point p1,p2;\n p1=seg.p1+v*m1;\n p2=project(b,p1);\n double res1=dijkstra(p1)+dijkstra(p2);\n p1=seg.p1+v*m2;\n p2=project(b,p1);\n double res2=dijkstra(p1)+dijkstra(p2);\n if(res1<res2)R=m2;\n else L=m1;\n }\n Point p1=seg.p1+v*L,p2=project(b,p1);\n res.f=abs(p1-p2);\n res.s=dijkstra(seg.p1+v*L)+dijkstra(project(b,seg.p1+v*L));\n return res;\n }\n }\n pair<Point,Point> pp=closest_pair(a,b);\n res.f=abs(pp.f-pp.s);\n res.s=dijkstra(pp.f)+dijkstra(pp.s);\n return res;\n}\n\nbool comp(pdd a,pdd b){\n return fabs((a.f)-(b.f))<Eps ? b.s-a.s<-Eps : b.f-a.f<-Eps;\n}\n\nvoid solve(){\n make_graphs();\n pdd res(inf,inf);\n FOR(i,0,n-1){\n Segment s1(w[i],w[i+1]);\n FOR(j,0,m-1){\n Segment s2(e[j],e[j+1]);\n pdd tmp=check(s1,s2);\n if(comp(res,tmp))res=tmp;\n }\n }\n printf(\"%.10f %.10f\\n\",res.f,res.f+res.s);\n}\n\nint main()\n{\n cin>>s.x>>s.y>>t.x>>t.y;\n cin>>n;\n w.resize(n);\n FOR(i,0,n)cin>>w[i].x>>w[i].y;\n cin>>m;\n e.resize(m);\n FOR(i,0,m)cin>>e[i].x>>e[i].y;\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 3288, "score_of_the_acc": -0.205, "final_rank": 2 }, { "submission_id": "aoj_2735_2165177", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 30\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-8)\n#define Eps (1e-15)\n#define mod 1000000007\n#define pi acos(-1)\n#define phi (1.0+sqrt(5))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\nconst int dx[8]={1,0,-1,0,1,1,-1,-1};\nconst int dy[8]={0,1,0,-1,1,-1,1,-1};\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return equals(x,p.x) ? y-p.y<-eps : x-p.x<-eps; }\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Segment s,Segment t){\n return equals(cross(s.p1-s.p2,t.p1-t.p2),0.0);\n}\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0 &&\n ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;i++){\n Vector a=g[i]-p,b=g[(i+1)%n]-p;\n if(abs(cross(a,b))<eps && dot(a,b)<eps)return 1;\n if(a.y>b.y)swap(a,b);\n if(a.y<eps && eps<b.y && cross(a,b)>eps)x=!x;\n }\n if(x)return 2;\n return 0;\n}\n\nbool contains(Polygon p,Segment s){\n vector<pair<double,Point> > v;\n int n=p.size();\n v.push_back(make_pair(0,s.p1));\n v.push_back(make_pair(abs(s.p1-s.p2),s.p2));\n for(int i=0;i<n;i++){\n Segment e(p[i],p[(i+1)%n]);\n if(isParallel(s,e))continue;\n if(!intersect(s,e))continue;\n Point m=getCrossPointLL(s,e);\n v.push_back(make_pair(abs(m-s.p1),m));\n }\n sort(v.begin(),v.end());\n for(int i=0;i<v.size()-1;i++){\n Point m=v[i].s+(v[i+1].s-v[i].s)/2.0;\n if(contains(p,m)==0)return false;\n }\n return true;\n}\n\npair<Point,Point> closest_pair(Segment a,Segment b){\n pair<Point,Point> res(a.p1,b.p1);\n if(abs(a.p1-b.p2)<abs(res.f-res.s))res=mp(a.p1,b.p2);\n if(abs(a.p2-b.p1)<abs(res.f-res.s))res=mp(a.p2,b.p1);\n if(abs(a.p2-b.p2)<abs(res.f-res.s))res=mp(a.p2,b.p2);\n Point c;\n c=project(b,a.p1);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p1)<abs(res.f-res.s))res=mp(a.p1,c);\n c=project(b,a.p2);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p2)<abs(res.f-res.s))res=mp(a.p2,c);\n c=project(a,b.p1);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p1)<abs(res.f-res.s))res=mp(b.p1,c);\n c=project(a,b.p2);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p2)<abs(res.f-res.s))res=mp(b.p2,c);\n return res;\n}\n\nint n,m;\nPoint s,t;\nvector<Point> w,e;\nPolygon W,E,WE;\nvector<Point> vp[2];\nvector<pid> g[2][MAX];\n\nvoid add_edge(int ind,int to,int from,double cost){\n g[ind][to].pb(mp(from,cost));\n g[ind][from].pb(mp(to,cost));\n}\n\ndouble dijkstra(Point a){\n int ind=-1;\n Polygon p;\n if(contains(W,a)){ ind=0;p=W; }\n else { ind=1;p=E; }\n int start=vp[ind].size();\n g[ind][start].clear();\n FOR(i,0,vp[ind].size())\n if(contains(p,Segment(vp[ind][i],a)))\n g[ind][start].pb(mp(i,abs(a-vp[ind][i])));\n\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[start]=0;\n pq.push(mp(0,start));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]<u.f)continue;\n if(u.s==0)return d[u.s];\n\n FOR(i,0,g[ind][u.s].size()){\n int next=g[ind][u.s][i].f;\n double cost=g[ind][u.s][i].s+d[u.s];\n if(cost<d[next]){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return inf;\n}\n\nvoid make_graphs(){\n W.pb(Point(0,1000));\n W.pb(Point(0,0));\n FOR(i,0,n)W.pb(w[i]);\n E.pb(Point(1000,0));\n E.pb(Point(1000,1000));\n RFOR(i,m,0)E.pb(e[i]);\n\n vp[0].pb(s);\n FOR(i,0,W.size())vp[0].pb(W[i]);\n FOR(i,0,vp[0].size()){\n FOR(j,i+1,vp[0].size()){\n if(contains(W,Segment(vp[0][i],vp[0][j])))\n add_edge(0,i,j,abs(vp[0][i]-vp[0][j]));\n }\n }\n vp[1].pb(t);\n FOR(i,0,E.size())vp[1].pb(E[i]);\n FOR(i,0,vp[1].size()){\n FOR(j,i+1,vp[1].size()){\n if(contains(E,Segment(vp[1][i],vp[1][j])))\n add_edge(1,i,j,abs(vp[1][i]-vp[1][j]));\n }\n }\n}\n\npdd check(Segment a,Segment b){\n pdd res(inf,inf);\n if(isParallel(a,b)){\n Segment seg=a;\n Point c;\n bool flag=false;\n c=project(a,b.p1);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p1=c;flag=true; }\n c=project(a,b.p2);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p2=c;flag=true; }\n if(flag){\n Vector v=seg.p2-seg.p1;\n v=v/abs(v);\n double L=0,R=abs(seg.p1-seg.p2);\n FOR(k,0,50){\n double m1=(L*phi+R)/(1.0+phi);\n double m2=(L+R*phi)/(1.0+phi);\n Point p1,p2;\n p1=seg.p1+v*m1;\n p2=project(b,p1);\n double res1=dijkstra(p1)+dijkstra(p2);\n p1=seg.p1+v*m2;\n p2=project(b,p1);\n double res2=dijkstra(p1)+dijkstra(p2);\n if(res1<res2)R=m2;\n else L=m1;\n }\n Point p1=seg.p1+v*L,p2=project(b,p1);\n res.f=abs(p1-p2);\n res.s=dijkstra(seg.p1+v*L)+dijkstra(project(b,seg.p1+v*L));\n return res;\n }\n }\n pair<Point,Point> pp=closest_pair(a,b);\n res.f=abs(pp.f-pp.s);\n res.s=dijkstra(pp.f)+dijkstra(pp.s);\n return res;\n}\n\nbool comp(pdd a,pdd b){\n return fabs((a.f)-(b.f))<Eps ? b.s-a.s<-Eps : b.f-a.f<-Eps;\n}\n\nvoid solve(){\n make_graphs();\n pdd res(inf,inf);\n FOR(i,0,n-1){\n Segment s1(w[i],w[i+1]);\n FOR(j,0,m-1){\n Segment s2(e[j],e[j+1]);\n pdd tmp=check(s1,s2);\n if(comp(res,tmp))res=tmp;\n }\n }\n printf(\"%.10f %.10f\\n\",res.f,res.f+res.s);\n}\n\nint main()\n{\n cin>>s.x>>s.y>>t.x>>t.y;\n cin>>n;\n w.resize(n);\n FOR(i,0,n)cin>>w[i].x>>w[i].y;\n cin>>m;\n e.resize(m);\n FOR(i,0,m)cin>>e[i].x>>e[i].y;\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 3284, "score_of_the_acc": -0.1862, "final_rank": 1 }, { "submission_id": "aoj_2735_2165175", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 30\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-8)\n#define Eps (1e-15)\n#define mod 1000000007\n#define pi acos(-1)\n#define phi (1.0+sqrt(5))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\nconst int dx[8]={1,0,-1,0,1,1,-1,-1};\nconst int dy[8]={0,1,0,-1,1,-1,1,-1};\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return equals(x,p.x) ? y-p.y<-eps : x-p.x<-eps; }\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Segment s,Segment t){\n return equals(cross(s.p1-s.p2,t.p1-t.p2),0.0);\n}\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0 &&\n ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;i++){\n Vector a=g[i]-p,b=g[(i+1)%n]-p;\n if(abs(cross(a,b))<eps && dot(a,b)<eps)return 1;\n if(a.y>b.y)swap(a,b);\n if(a.y<eps && eps<b.y && cross(a,b)>eps)x=!x;\n }\n if(x)return 2;\n return 0;\n}\n\nbool contains(Polygon p,Segment s){\n vector<pair<double,Point> > v;\n int n=p.size();\n v.push_back(make_pair(0,s.p1));\n v.push_back(make_pair(abs(s.p1-s.p2),s.p2));\n for(int i=0;i<n;i++){\n Segment e(p[i],p[(i+1)%n]);\n if(isParallel(s,e))continue;\n if(!intersect(s,e))continue;\n Point m=getCrossPointLL(s,e);\n v.push_back(make_pair(abs(m-s.p1),m));\n }\n sort(v.begin(),v.end());\n for(int i=0;i<v.size()-1;i++){\n Point m=v[i].s+(v[i+1].s-v[i].s)/2.0;\n if(contains(p,m)==0)return false;\n }\n return true;\n}\n\npair<Point,Point> closest_pair(Segment a,Segment b){\n pair<Point,Point> res(a.p1,b.p1);\n if(abs(a.p1-b.p2)<abs(res.f-res.s))res=mp(a.p1,b.p2);\n if(abs(a.p2-b.p1)<abs(res.f-res.s))res=mp(a.p2,b.p1);\n if(abs(a.p2-b.p2)<abs(res.f-res.s))res=mp(a.p2,b.p2);\n Point c;\n c=project(b,a.p1);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p1)<abs(res.f-res.s))res=mp(a.p1,c);\n c=project(b,a.p2);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p2)<abs(res.f-res.s))res=mp(a.p2,c);\n c=project(a,b.p1);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p1)<abs(res.f-res.s))res=mp(b.p1,c);\n c=project(a,b.p2);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p2)<abs(res.f-res.s))res=mp(b.p2,c);\n return res;\n}\n\nint n,m;\nPoint s,t;\nvector<Point> w,e;\nPolygon W,E,WE;\nvector<Point> vp[2];\nvector<pid> g[2][MAX];\n\nvoid add_edge(int ind,int to,int from,double cost){\n g[ind][to].pb(mp(from,cost));\n g[ind][from].pb(mp(to,cost));\n}\n\ndouble dijkstra(Point a){\n int ind=-1;\n Polygon p;\n if(contains(W,a)){ ind=0;p=W; }\n else { ind=1;p=E; }\n int start=vp[ind].size();\n g[ind][start].clear();\n FOR(i,0,vp[ind].size())\n if(contains(p,Segment(vp[ind][i],a)))\n g[ind][start].pb(mp(i,abs(a-vp[ind][i])));\n\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[start]=0;\n pq.push(mp(0,start));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]<u.f)continue;\n if(u.s==0)return d[u.s];\n\n FOR(i,0,g[ind][u.s].size()){\n int next=g[ind][u.s][i].f;\n double cost=g[ind][u.s][i].s+d[u.s];\n if(cost<d[next]){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return inf;\n}\n\nvoid make_graphs(){\n W.pb(Point(0,1000));\n W.pb(Point(0,0));\n FOR(i,0,n)W.pb(w[i]);\n E.pb(Point(1000,0));\n E.pb(Point(1000,1000));\n RFOR(i,m,0)E.pb(e[i]);\n\n vp[0].pb(s);\n FOR(i,0,W.size())vp[0].pb(W[i]);\n FOR(i,0,vp[0].size()){\n FOR(j,i+1,vp[0].size()){\n if(contains(W,Segment(vp[0][i],vp[0][j])))\n add_edge(0,i,j,abs(vp[0][i]-vp[0][j]));\n }\n }\n vp[1].pb(t);\n FOR(i,0,E.size())vp[1].pb(E[i]);\n FOR(i,0,vp[1].size()){\n FOR(j,i+1,vp[1].size()){\n if(contains(E,Segment(vp[1][i],vp[1][j])))\n add_edge(1,i,j,abs(vp[1][i]-vp[1][j]));\n }\n }\n}\n\npdd check(Segment a,Segment b){\n pdd res(inf,inf);\n if(isParallel(a,b)){\n Segment seg=a;\n Point c;\n bool flag=false;\n c=project(a,b.p1);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p1=c;flag=true; }\n c=project(a,b.p2);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p2=c;flag=true; }\n if(flag){\n Vector v=seg.p2-seg.p1;\n v=v/abs(v);\n double L=0,R=abs(seg.p1-seg.p2);\n FOR(k,0,100){\n double m1=(L*phi+R)/(1.0+phi);\n double m2=(L+R*phi)/(1.0+phi);\n Point p1,p2;\n p1=seg.p1+v*m1;\n p2=project(b,p1);\n double res1=dijkstra(p1)+dijkstra(p2);\n p1=seg.p1+v*m2;\n p2=project(b,p1);\n double res2=dijkstra(p1)+dijkstra(p2);\n if(res1<res2)R=m2;\n else L=m1;\n }\n Point p1=seg.p1+v*L,p2=project(b,p1);\n res.f=abs(p1-p2);\n res.s=dijkstra(seg.p1+v*L)+dijkstra(project(b,seg.p1+v*L));\n return res;\n }\n }\n pair<Point,Point> pp=closest_pair(a,b);\n res.f=abs(pp.f-pp.s);\n res.s=dijkstra(pp.f)+dijkstra(pp.s);\n return res;\n}\n\nbool comp(pdd a,pdd b){\n return fabs((a.f)-(b.f))<Eps ? b.s-a.s<-Eps : b.f-a.f<-Eps;\n}\n\nvoid solve(){\n make_graphs();\n pdd res(inf,inf);\n FOR(i,0,n-1){\n Segment s1(w[i],w[i+1]);\n FOR(j,0,m-1){\n Segment s2(e[j],e[j+1]);\n pdd tmp=check(s1,s2);\n if(comp(res,tmp))res=tmp;\n }\n }\n printf(\"%.10f %.10f\\n\",res.f,res.f+res.s);\n}\n\nint main()\n{\n cin>>s.x>>s.y>>t.x>>t.y;\n cin>>n;\n w.resize(n);\n FOR(i,0,n)cin>>w[i].x>>w[i].y;\n cin>>m;\n e.resize(m);\n FOR(i,0,m)cin>>e[i].x>>e[i].y;\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 570, "memory_kb": 3284, "score_of_the_acc": -0.2693, "final_rank": 3 }, { "submission_id": "aoj_2735_2165170", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 30\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-8)\n#define Eps (1e-15)\n#define mod 1000000007\n#define pi acos(-1)\n#define phi (1.0+sqrt(5))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\nconst int dx[8]={1,0,-1,0,1,1,-1,-1};\nconst int dy[8]={0,1,0,-1,1,-1,1,-1};\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return equals(x,p.x) ? y-p.y<-eps : x-p.x<-eps; }\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Segment s,Segment t){\n return equals(cross(s.p1-s.p2,t.p1-t.p2),0.0);\n}\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0 &&\n ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;i++){\n Vector a=g[i]-p,b=g[(i+1)%n]-p;\n if(abs(cross(a,b))<eps && dot(a,b)<eps)return 1;\n if(a.y>b.y)swap(a,b);\n if(a.y<eps && eps<b.y && cross(a,b)>eps)x=!x;\n }\n if(x)return 2;\n return 0;\n}\n\nbool contains(Polygon p,Segment s){\n vector<pair<double,Point> > v;\n int n=p.size();\n v.push_back(make_pair(0,s.p1));\n v.push_back(make_pair(abs(s.p1-s.p2),s.p2));\n for(int i=0;i<n;i++){\n Segment e(p[i],p[(i+1)%n]);\n if(isParallel(s,e))continue;\n if(!intersect(s,e))continue;\n Point m=getCrossPointLL(s,e);\n v.push_back(make_pair(abs(m-s.p1),m));\n }\n sort(v.begin(),v.end());\n for(int i=0;i<v.size()-1;i++){\n Point m=v[i].s+(v[i+1].s-v[i].s)/2.0;\n if(contains(p,m)==0)return false;\n }\n return true;\n}\n\npair<Point,Point> closest_pair(Segment a,Segment b){\n pair<Point,Point> res(a.p1,b.p1);\n if(abs(a.p1-b.p2)<abs(res.f-res.s))res=mp(a.p1,b.p2);\n if(abs(a.p2-b.p1)<abs(res.f-res.s))res=mp(a.p2,b.p1);\n if(abs(a.p2-b.p2)<abs(res.f-res.s))res=mp(a.p2,b.p2);\n Point c;\n c=project(b,a.p1);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p1)<abs(res.f-res.s))res=mp(a.p1,c);\n c=project(b,a.p2);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p2)<abs(res.f-res.s))res=mp(a.p2,c);\n c=project(a,b.p1);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p1)<abs(res.f-res.s))res=mp(b.p1,c);\n c=project(a,b.p2);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p2)<abs(res.f-res.s))res=mp(b.p2,c);\n return res;\n}\n\nint n,m;\nPoint s,t;\nvector<Point> w,e;\nPolygon W,E,WE;\nvector<Point> vp[2];\nvector<pid> g[2][MAX];\n\nvoid add_edge(int ind,int to,int from,double cost){\n g[ind][to].pb(mp(from,cost));\n g[ind][from].pb(mp(to,cost));\n}\n\ndouble dijkstra(Point a){\n int ind=-1;\n Polygon p;\n if(contains(W,a)){ ind=0;p=W; }\n else { ind=1;p=E; }\n int start=vp[ind].size();\n g[ind][start].clear();\n FOR(i,0,vp[ind].size())\n if(contains(p,Segment(vp[ind][i],a)))\n g[ind][start].pb(mp(i,abs(a-vp[ind][i])));\n\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[start]=0;\n pq.push(mp(0,start));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]<u.f)continue;\n if(u.s==0)return d[u.s];\n\n FOR(i,0,g[ind][u.s].size()){\n int next=g[ind][u.s][i].f;\n double cost=g[ind][u.s][i].s+d[u.s];\n if(cost<d[next]){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return inf;\n}\n\nvoid make_graphs(){\n W.pb(Point(0,1000));\n W.pb(Point(0,0));\n FOR(i,0,n)W.pb(w[i]);\n E.pb(Point(1000,0));\n E.pb(Point(1000,1000));\n RFOR(i,m,0)E.pb(e[i]);\n\n vp[0].pb(s);\n FOR(i,0,W.size())vp[0].pb(W[i]);\n FOR(i,0,vp[0].size()){\n FOR(j,i+1,vp[0].size()){\n if(contains(W,Segment(vp[0][i],vp[0][j])))\n add_edge(0,i,j,abs(vp[0][i]-vp[0][j]));\n }\n }\n vp[1].pb(t);\n FOR(i,0,E.size())vp[1].pb(E[i]);\n FOR(i,0,vp[1].size()){\n FOR(j,i+1,vp[1].size()){\n if(contains(E,Segment(vp[1][i],vp[1][j])))\n add_edge(1,i,j,abs(vp[1][i]-vp[1][j]));\n }\n }\n}\n\npdd check(Segment a,Segment b){\n pdd res(inf,inf);\n if(isParallel(a,b)){\n Segment seg=a;\n Point c;\n bool flag=false;\n c=project(a,b.p1);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p1=c;flag=true; }\n c=project(a,b.p2);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p2=c;flag=true; }\n if(flag){\n Vector v=seg.p2-seg.p1;\n v=v/abs(v);\n double L=0,R=abs(seg.p1-seg.p2);\n FOR(k,0,200){\n double m1=(L*phi+R)/(1.0+phi);\n double m2=(L+R*phi)/(1.0+phi);\n Point p1,p2;\n p1=seg.p1+v*m1;\n p2=project(b,p1);\n double res1=dijkstra(p1)+dijkstra(p2);\n p1=seg.p1+v*m2;\n p2=project(b,p1);\n double res2=dijkstra(p1)+dijkstra(p2);\n if(res1<res2)R=m2;\n else L=m1;\n }\n Point p1=seg.p1+v*L,p2=project(b,p1);\n res.f=abs(p1-p2);\n res.s=dijkstra(seg.p1+v*L)+dijkstra(project(b,seg.p1+v*L));\n return res;\n }\n }\n pair<Point,Point> pp=closest_pair(a,b);\n res.f=abs(pp.f-pp.s);\n res.s=dijkstra(pp.f)+dijkstra(pp.s);\n return res;\n}\n\nbool comp(pdd a,pdd b){\n return fabs((a.f)-(b.f))<Eps ? b.s-a.s<-Eps : b.f-a.f<-Eps;\n}\n\nvoid solve(){\n make_graphs();\n pdd res(inf,inf);\n FOR(i,0,n-1){\n Segment s1(w[i],w[i+1]);\n FOR(j,0,m-1){\n Segment s2(e[j],e[j+1]);\n pdd tmp=check(s1,s2);\n if(comp(res,tmp))res=tmp;\n }\n }\n printf(\"%.10f %.10f\\n\",res.f,res.f+res.s);\n}\n\nint main()\n{\n cin>>s.x>>s.y>>t.x>>t.y;\n cin>>n;\n w.resize(n);\n FOR(i,0,n)cin>>w[i].x>>w[i].y;\n cin>>m;\n e.resize(m);\n FOR(i,0,m)cin>>e[i].x>>e[i].y;\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 1270, "memory_kb": 3284, "score_of_the_acc": -0.4699, "final_rank": 5 }, { "submission_id": "aoj_2735_2165166", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 30\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-8)\n#define Eps (1e-20)\n#define mod 1000000007\n#define pi acos(-1)\n#define phi (1.0+sqrt(5))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\nconst int dx[8]={1,0,-1,0,1,1,-1,-1};\nconst int dy[8]={0,1,0,-1,1,-1,1,-1};\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return equals(x,p.x) ? y-p.y<-eps : x-p.x<-eps; }\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Segment s,Segment t){\n return equals(cross(s.p1-s.p2,t.p1-t.p2),0.0);\n}\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0 &&\n ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;i++){\n Vector a=g[i]-p,b=g[(i+1)%n]-p;\n if(abs(cross(a,b))<eps && dot(a,b)<eps)return 1;\n if(a.y>b.y)swap(a,b);\n if(a.y<eps && eps<b.y && cross(a,b)>eps)x=!x;\n }\n if(x)return 2;\n return 0;\n}\n\nbool contains(Polygon p,Segment s){\n vector<pair<double,Point> > v;\n int n=p.size();\n v.push_back(make_pair(0,s.p1));\n v.push_back(make_pair(abs(s.p1-s.p2),s.p2));\n for(int i=0;i<n;i++){\n Segment e(p[i],p[(i+1)%n]);\n if(isParallel(s,e))continue;\n if(!intersect(s,e))continue;\n Point m=getCrossPointLL(s,e);\n v.push_back(make_pair(abs(m-s.p1),m));\n }\n sort(v.begin(),v.end());\n for(int i=0;i<v.size()-1;i++){\n Point m=v[i].s+(v[i+1].s-v[i].s)/2.0;\n if(contains(p,m)==0)return false;\n }\n return true;\n}\n\npair<Point,Point> closest_pair(Segment a,Segment b){\n pair<Point,Point> res(a.p1,b.p1);\n if(abs(a.p1-b.p2)<abs(res.f-res.s))res=mp(a.p1,b.p2);\n if(abs(a.p2-b.p1)<abs(res.f-res.s))res=mp(a.p2,b.p1);\n if(abs(a.p2-b.p2)<abs(res.f-res.s))res=mp(a.p2,b.p2);\n Point c;\n c=project(b,a.p1);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p1)<abs(res.f-res.s))res=mp(a.p1,c);\n c=project(b,a.p2);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p2)<abs(res.f-res.s))res=mp(a.p2,c);\n c=project(a,b.p1);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p1)<abs(res.f-res.s))res=mp(b.p1,c);\n c=project(a,b.p2);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p2)<abs(res.f-res.s))res=mp(b.p2,c);\n return res;\n}\n\nint n,m;\nPoint s,t;\nvector<Point> w,e;\nPolygon W,E,WE;\nvector<Point> vp[2];\nvector<pid> g[2][MAX];\n\nvoid add_edge(int ind,int to,int from,double cost){\n g[ind][to].pb(mp(from,cost));\n g[ind][from].pb(mp(to,cost));\n}\n\ndouble dijkstra(Point a){\n int ind=-1;\n Polygon p;\n if(contains(W,a)){ ind=0;p=W; }\n else { ind=1;p=E; }\n int start=vp[ind].size();\n g[ind][start].clear();\n FOR(i,0,vp[ind].size())\n if(contains(p,Segment(vp[ind][i],a)))\n g[ind][start].pb(mp(i,abs(a-vp[ind][i])));\n\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[start]=0;\n pq.push(mp(0,start));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]<u.f)continue;\n if(u.s==0)return d[u.s];\n\n FOR(i,0,g[ind][u.s].size()){\n int next=g[ind][u.s][i].f;\n double cost=g[ind][u.s][i].s+d[u.s];\n if(cost<d[next]){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return inf;\n}\n\nvoid make_graphs(){\n W.pb(Point(0,1000));\n W.pb(Point(0,0));\n FOR(i,0,n)W.pb(w[i]);\n E.pb(Point(1000,0));\n E.pb(Point(1000,1000));\n RFOR(i,m,0)E.pb(e[i]);\n\n vp[0].pb(s);\n FOR(i,0,W.size())vp[0].pb(W[i]);\n FOR(i,0,vp[0].size()){\n FOR(j,i+1,vp[0].size()){\n if(contains(W,Segment(vp[0][i],vp[0][j])))\n add_edge(0,i,j,abs(vp[0][i]-vp[0][j]));\n }\n }\n vp[1].pb(t);\n FOR(i,0,E.size())vp[1].pb(E[i]);\n FOR(i,0,vp[1].size()){\n FOR(j,i+1,vp[1].size()){\n if(contains(E,Segment(vp[1][i],vp[1][j])))\n add_edge(1,i,j,abs(vp[1][i]-vp[1][j]));\n }\n }\n}\n\npdd check(Segment a,Segment b){\n pdd res(inf,inf);\n// if(a.p1.y<a.p2.y)return res;\n// if(b.p1.y<b.p2.y)return res;\n if(isParallel(a,b)){\n Segment seg=a;\n Point c;\n bool flag=false;\n c=project(a,b.p1);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p1=c;flag=true; }\n c=project(a,b.p2);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p2=c;flag=true; }\n if(flag){\n Vector v=seg.p2-seg.p1;\n v=v/abs(v);\n double L=0,R=abs(seg.p1-seg.p2);\n FOR(k,0,200){\n double m1=(L*phi+R)/(1.0+phi);\n double m2=(L+R*phi)/(1.0+phi);\n Point p1,p2;\n p1=seg.p1+v*m1;\n p2=project(b,p1);\n double res1=dijkstra(p1)+dijkstra(p2);\n p1=seg.p1+v*m2;\n p2=project(b,p1);\n double res2=dijkstra(p1)+dijkstra(p2);\n if(res1<res2)R=m2;\n else L=m1;\n }\n Point p1=seg.p1+v*L,p2=project(b,p1);\n res.f=abs(p1-p2);\n res.s=dijkstra(seg.p1+v*L)+dijkstra(project(b,seg.p1+v*L));\n return res;\n }\n }\n pair<Point,Point> pp=closest_pair(a,b);\n res.f=abs(pp.f-pp.s);\n res.s=dijkstra(pp.f)+dijkstra(pp.s);\n return res;\n}\n\nbool comp(pdd a,pdd b){\n return fabs((a.f)-(b.f))<Eps ? b.s-a.s<-Eps : b.f-a.f<-Eps;\n}\n\nvoid solve(){\n make_graphs();\n pdd res(inf,inf);\n FOR(i,0,n-1){\n Segment s1(w[i],w[i+1]);\n FOR(j,0,m-1){\n Segment s2(e[j],e[j+1]);\n pdd tmp=check(s1,s2);\n if(comp(res,tmp))res=tmp;\n }\n }\n printf(\"%.10f %.10f\\n\",res.f,res.f+res.s);\n}\n\nint main()\n{\n cin>>s.x>>s.y>>t.x>>t.y;\n cin>>n;\n w.resize(n);\n FOR(i,0,n)cin>>w[i].x>>w[i].y;\n cin>>m;\n e.resize(m);\n FOR(i,0,m)cin>>e[i].x>>e[i].y;\n solve();\n return 0;\n}", "accuracy": 0.9019607843137255, "time_ms": 1120, "memory_kb": 3288, "score_of_the_acc": -0.4371, "final_rank": 11 }, { "submission_id": "aoj_2735_2165148", "code_snippet": "#include<bits/stdc++.h>\n#define MAX 30\n#define inf 1<<29\n#define linf 1e16\n#define eps (1e-10)\n#define mod 1000000007\n#define pi acos(-1)\n#define phi (1.0+sqrt(5))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\nconst int dx[8]={1,0,-1,0,1,1,-1,-1};\nconst int dy[8]={0,1,0,-1,1,-1,1,-1};\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ return equals(x,p.x) ? y-p.y<-eps : x-p.x<-eps; }\n bool operator==(Point p)const{ return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Segment s,Segment t){\n return equals(cross(s.p1-s.p2,t.p1-t.p2),0.0);\n}\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\nbool intersect(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4)<=0 &&\n ccw(p3,p4,p1)*ccw(p3,p4,p2)<=0);\n}\n\nbool intersect(Segment s1,Segment s2){\n return intersect(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nPoint getCrossPointLL(Line a,Line b){\n double A=cross(a.p2-a.p1,b.p2-b.p1);\n double B=cross(a.p2-a.p1,a.p2-b.p1);\n if(abs(A)<eps || abs(B)<eps)return b.p1;\n return b.p1+(b.p2-b.p1)*(B/A);\n}\n\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;i++){\n Vector a=g[i]-p,b=g[(i+1)%n]-p;\n if(abs(cross(a,b))<eps && dot(a,b)<eps)return 1;\n if(a.y>b.y)swap(a,b);\n if(a.y<eps && eps<b.y && cross(a,b)>eps)x=!x;\n }\n if(x)return 2;\n return 0;\n}\n\nbool contains(Polygon p,Segment s){\n vector<pair<double,Point> > v;\n int n=p.size();\n v.push_back(make_pair(0,s.p1));\n v.push_back(make_pair(abs(s.p1-s.p2),s.p2));\n for(int i=0;i<n;i++){\n Segment e(p[i],p[(i+1)%n]);\n if(isParallel(s,e))continue;\n if(!intersect(s,e))continue;\n Point m=getCrossPointLL(s,e);\n v.push_back(make_pair(abs(m-s.p1),m));\n }\n sort(v.begin(),v.end());\n for(int i=0;i<v.size()-1;i++){\n Point m=v[i].s+(v[i+1].s-v[i].s)/2.0;\n if(contains(p,m)==0)return false;\n }\n return true;\n}\n\npair<Point,Point> closest_pair(Segment a,Segment b){\n pair<Point,Point> res(a.p1,b.p1);\n if(abs(a.p1-b.p2)<abs(res.f-res.s))res=mp(a.p1,b.p2);\n if(abs(a.p2-b.p1)<abs(res.f-res.s))res=mp(a.p2,b.p1);\n if(abs(a.p2-b.p2)<abs(res.f-res.s))res=mp(a.p2,b.p2);\n Point c;\n c=project(b,a.p1);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p1)<abs(res.f-res.s))res=mp(a.p1,c);\n c=project(b,a.p2);\n if(ccw(b.p1,b.p2,c)==0 &&\n abs(c-a.p2)<abs(res.f-res.s))res=mp(a.p2,c);\n c=project(a,b.p1);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p1)<abs(res.f-res.s))res=mp(b.p1,c);\n c=project(a,b.p2);\n if(ccw(a.p1,a.p2,c)==0 &&\n abs(c-b.p2)<abs(res.f-res.s))res=mp(b.p2,c);\n return res;\n}\n\nint n,m;\nPoint s,t;\nvector<Point> w,e;\nPolygon W,E,WE;\nvector<Point> vp[2];\nvector<pid> g[2][MAX];\n\nvoid add_edge(int ind,int to,int from,double cost){\n g[ind][to].pb(mp(from,cost));\n g[ind][from].pb(mp(to,cost));\n}\n\ndouble dijkstra(Point a){\n int ind=-1;\n Polygon p;\n if(contains(W,a)){ ind=0;p=W; }\n else { ind=1;p=E; }\n int start=vp[ind].size();\n g[ind][start].clear();\n FOR(i,0,vp[ind].size())\n if(contains(p,Segment(vp[ind][i],a)))\n g[ind][start].pb(mp(i,abs(a-vp[ind][i])));\n\n double d[MAX];\n priority_queue<pdi,vector<pdi>,greater<pdi> > pq;\n fill(d,d+MAX,inf);\n d[start]=0;\n pq.push(mp(0,start));\n\n while(pq.size()){\n pdi u=pq.top();\n pq.pop();\n\n if(d[u.s]<u.f)continue;\n if(u.s==0)return d[u.s];\n\n FOR(i,0,g[ind][u.s].size()){\n int next=g[ind][u.s][i].f;\n double cost=g[ind][u.s][i].s+d[u.s];\n if(cost<d[next]){\n d[next]=cost;\n pq.push(mp(cost,next));\n }\n }\n }\n return inf;\n}\n\nvoid make_graphs(){\n W.pb(Point(0,1000));\n W.pb(Point(0,0));\n FOR(i,0,n)W.pb(w[i]);\n E.pb(Point(1000,0));\n E.pb(Point(1000,1000));\n RFOR(i,m,0)E.pb(e[i]);\n\n vp[0].pb(s);\n FOR(i,0,W.size())vp[0].pb(W[i]);\n FOR(i,0,vp[0].size()){\n FOR(j,i+1,vp[0].size()){\n if(contains(W,Segment(vp[0][i],vp[0][j])))\n add_edge(0,i,j,abs(vp[0][i]-vp[0][j]));\n }\n }\n vp[1].pb(t);\n FOR(i,0,E.size())vp[1].pb(E[i]);\n FOR(i,0,vp[1].size()){\n FOR(j,i+1,vp[1].size()){\n if(contains(E,Segment(vp[1][i],vp[1][j])))\n add_edge(1,i,j,abs(vp[1][i]-vp[1][j]));\n }\n }\n}\n\npdd check(Segment a,Segment b){\n pdd res(inf,inf);\n// if(a.p1.y<a.p2.y)return res;\n// if(b.p1.y<b.p2.y)return res;\n if(isParallel(a,b)){\n Segment seg=a;\n Point c;\n bool flag=false;\n c=project(a,b.p1);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p1=c;flag=true; }\n c=project(a,b.p2);\n if(ccw(seg.p1,seg.p2,c)==0){ seg.p2=c;flag=true; }\n if(flag){\n Vector v=seg.p2-seg.p1;\n v=v/abs(v);\n double L=0,R=abs(seg.p1-seg.p2);\n FOR(k,0,100){\n double m1=(L*phi+R)/(1.0+phi);\n double m2=(L+R*phi)/(1.0+phi);\n Point p1,p2;\n p1=seg.p1+v*m1;\n p2=project(b,p1);\n double res1=dijkstra(p1)+dijkstra(p2);\n p1=seg.p1+v*m2;\n p2=project(b,p1);\n double res2=dijkstra(p1)+dijkstra(p2);\n if(res1<res2)R=m2;\n else L=m1;\n }\n Point p1=seg.p1+v*L,p2=project(b,p1);\n res.f=abs(p1-p2);\n res.s=dijkstra(seg.p1+v*L)+dijkstra(project(b,seg.p1+v*L));\n return res;\n }\n }\n pair<Point,Point> pp=closest_pair(a,b);\n res.f=abs(pp.f-pp.s);\n res.s=dijkstra(pp.f)+dijkstra(pp.s);\n return res;\n}\n\nbool comp(pdd a,pdd b){\n return (equals(a.f,b.f) ? b.s-a.s<-eps : b.f-a.f<-eps);\n}\n\nvoid solve(){\n make_graphs();\n pdd res(inf,inf);\n FOR(i,0,n-1){\n Segment s1(w[i],w[i+1]);\n FOR(j,0,m-1){\n Segment s2(e[j],e[j+1]);\n pdd tmp=check(s1,s2);\n if(comp(res,tmp))res=tmp;\n }\n }\n printf(\"%.10f %.10f\\n\",res.f,res.f+res.s);\n}\n\nint main()\n{\n cin>>s.x>>s.y>>t.x>>t.y;\n cin>>n;\n w.resize(n);\n FOR(i,0,n)cin>>w[i].x>>w[i].y;\n cin>>m;\n e.resize(m);\n FOR(i,0,m)cin>>e[i].x>>e[i].y;\n solve();\n return 0;\n}", "accuracy": 0.47058823529411764, "time_ms": 560, "memory_kb": 3288, "score_of_the_acc": -0.2766, "final_rank": 12 } ]
aoj_2734_cpp
Donut Decoration Donut maker's morning is early. Mr. D, who is also called Mr. Donuts, is an awesome donut maker. Also today, he goes to his kitchen and prepares to make donuts before sunrise. In a twinkling, Mr. D finishes frying $N$ donuts with a practiced hand. But these donuts as they are must not be displayed in a showcase. Filling cream, dipping in chocolate, topping somehow cute, colorful things, etc., several decoration tasks are needed. There are $K$ tasks numbered 1 through $K$, and each of them must be done exactly once in the order $1, 2, ..., K$ to finish the donuts as items on sale. Instantly, Mr. D arranges the $N$ donuts in a row. He seems to intend to accomplish each decoration tasks sequentially at once. However, what in the world is he doing? Mr. D, who stayed up late at yesterday night, decorates only a part of the donuts in a consecutive interval for each task. It's clearly a mistake! Not only that, he does some tasks zero or several times, and the order of tasks is also disordered. The donuts which are not decorated by correct process cannot be provided as items on sale, so he should trash them. Fortunately, there are data recording a sequence of tasks he did. The data contain the following information: for each task, the consecutive interval $[l, r]$ of the decorated donuts and the ID $x$ of the task. Please write a program enumerating the number of the donuts which can be displayed in a showcase as items on sale for given recorded data. Input The input consists of a single test case. The test case is formatted as follows. $N$ $K$ $T$ $l_1$ $r_1$ $x_1$ ... $l_T$ $r_T$ $x_T$ The first line contains two integers $N$ and $K$, where $N$ ($1 \leq N \leq 200,000$) is the number of the donuts fried by Mr. D, and $K$ ($1 \leq K \leq 200,000$) is the number of decoration tasks should be applied to the donuts. The second line contains a single integer $T$ ($1 \leq T \leq 200,000$), which means the number of information about tasks Mr. D did. Each of next $T$ lines contains three integers $l_i$, $r_i$, and $x_i$ representing the $i$-th task Mr. D did: the $i$-th task was applied to the interval $[l_i, r_i]$ ($1 \leq l_i \leq r_i \leq N$) of the donuts inclusive, and has ID $x_i$ ($1 \leq x_i \leq K$). Output Output the number of the donuts that can be provided as items on sale. Sample Input 1 3 2 3 1 2 1 2 3 2 3 3 1 Output for the Sample Input 1 1 Sample Input 2 5 3 6 2 3 1 1 3 2 4 5 1 2 4 3 3 5 2 5 5 3 Output for the Sample Input 2 2 Sample Input 3 10 1 2 2 9 1 5 7 1 Output for the Sample Input 3 5
[ { "submission_id": "aoj_2734_10851292", "code_snippet": "#include<vector>\n#include<cstdio>\n#include<cstdlib> \n#include<cstring>\n#include<algorithm>\nusing namespace std;\n#define M 800010\n#define rep(i,x,y) for(int i=(x);i<=(y);i++)\n#define For(i,x,y) for(int i=(x);i<(y);i++)\ninline int read(){\n\tchar ch=getchar();int x=0,f=1;\n\twhile(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}\n\twhile('0'<=ch&&ch<='9'){x=x*10+ch-'0';ch=getchar();}\n\treturn x*f;\n}\nint n,k,T,q[M];\n\ninline void pushdown(int o){\n\tif(q[o]==0||q[o]==-2)return;\n\tif(q[2*o]!=-1)q[2*o]=q[o];\n\tif(q[2*o+1]!=-1)q[2*o+1]=q[o];\n}\n\ninline void add(int l,int r,int o,int x,int y,int z){\n\tif(x<=l&&r<=y){\n\t\tif(q[o]==z-1){q[o]=z;return;}\n\t\telse if(q[o]!=-2){q[o]=-1;return;}\n\t\tif(q[o]==-1)return;\n\t\tif(l==r){q[o]=-1;return;}int mid=(l+r)/2;pushdown(o);\n\t\tadd(l,mid,2*o,x,y,z);add(mid+1,r,2*o+1,x,y,z);\n\t\tif(q[2*o]==q[2*o+1])q[o]=q[2*o];\n\t\telse if(q[2*o]==-1) q[o]=q[2*o+1];\n\t\telse if(q[2*o+1]==-1) q[o]=q[2*o];\n\t\telse q[o]=-2;return;\n\t}\n\tint mid=(l+r)/2;pushdown(o);\n\tif(x<=mid&&q[2*o]!=-1)add(l,mid,2*o,x,y,z);\n\tif(y>mid&&q[2*o+1]!=-1)add(mid+1,r,2*o+1,x,y,z);\n\tif(q[2*o]==q[2*o+1])q[o]=q[2*o];\n\telse if(q[2*o]==-1) q[o]=q[2*o+1];\n\telse if(q[2*o+1]==-1) q[o]=q[2*o];\n\telse q[o]=-2;\n}\n\ninline int calc(int l,int r,int o){\n\tif(l==r){if(q[o]==k)return 1;return 0;}\n\tint mid=(l+r)/2;pushdown(o);\n\treturn calc(l,mid,2*o)+calc(mid+1,r,2*o+1);\n}\n\nint main(){\n\tscanf(\"%d\",&n);k=read(),T=read();while(T--){\n\t\t\tint l=read(),r=read(),x=read();\n\t\t\tadd(1,n,1,l,r,x);\n\t\t}printf(\"%d\\n\",calc(1,n,1));\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5048, "score_of_the_acc": -0.0476, "final_rank": 1 }, { "submission_id": "aoj_2734_10236526", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint Correct = 0;\nint Wrong = 0;\nset<pair<int, int>> Set;\n\nvoid Add(pair<int, int> r) {\n auto itr = Set.lower_bound(r);\n auto itrR = itr; pair<int, int> prvR = make_pair(-1, -1);\n auto itrL = itr; pair<int, int> prvL = make_pair(-1, -1);\n if (itrL != Set.begin()) { itrL--; prvL = (*itrL); }\n if (itrR != Set.end()) { prvR = (*itrR); }\n\n // Decrease\n if (prvL != make_pair(-1, -1) && prvR != make_pair(-1, -1)) {\n if ((prvR.second - prvL.second) == 1) Correct -= 1;\n else Wrong -= 1;\n }\n\n // Increase\n if (prvL != make_pair(-1, -1)) {\n if ((r.second - prvL.second) == 1) Correct += 1;\n else Wrong += 1;\n }\n if (prvR != make_pair(-1, -1)) {\n if ((prvR.second - r.second) == 1) Correct += 1;\n else Wrong += 1;\n }\n Set.insert(r);\n}\n\nvoid Delete(pair<int, int> r) {\n auto itr = Set.lower_bound(r);\n auto itrR = itr; pair<int, int> prvR = make_pair(-1, -1); itrR++;\n auto itrL = itr; pair<int, int> prvL = make_pair(-1, -1);\n if (itrL != Set.begin()) { itrL--; prvL = (*itrL); }\n if (itrR != Set.end()) { prvR = (*itrR); }\n\n // Increase\n if (prvL != make_pair(-1, -1) && prvR != make_pair(-1, -1)) {\n if ((prvR.second - prvL.second) == 1) Correct += 1;\n else Wrong += 1;\n }\n\n // Decrease\n if (prvL != make_pair(-1, -1)) {\n if ((r.second - prvL.second) == 1) Correct -= 1;\n else Wrong -= 1;\n }\n if (prvR != make_pair(-1, -1)) {\n if ((prvR.second - r.second) == 1) Correct -= 1;\n else Wrong -= 1;\n }\n Set.erase(r);\n}\n\nint main() {\n // Step 1. Input\n int N; cin >> N;\n int K; cin >> K;\n int T; cin >> T;\n vector<int> L(T, 0), R(T, 0), X(T, 0);\n for (int i = 0; i < T; i++) cin >> L[i] >> R[i] >> X[i];\n for (int i = 0; i < T; i++) L[i] -= 1;\n for (int i = 0; i < T; i++) R[i] -= 1;\n\n // Step 2. Solve Init\n vector<vector<pair<int, int>>> List(N + 1);\n for (int i = 0; i < T; i++) List[L[i] + 0].push_back(make_pair(i, +1));\n for (int i = 0; i < T; i++) List[R[i] + 1].push_back(make_pair(i, -1));\n\n // Step 3. Solve Main\n int Count = 0;\n for (int i = 0; i < N; i++) {\n for (pair<int, int> x : List[i]) {\n if (x.second == +1) Add(make_pair(x.first, X[x.first]));\n if (x.second == -1) Delete(make_pair(x.first, X[x.first]));\n }\n if (Correct == K - 1 && Wrong == 0 && Set.size() == K) Count += 1;\n // cerr << i << \" \" << Correct << \" \" << Wrong << endl;\n }\n cout << Count << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 23492, "score_of_the_acc": -1.4008, "final_rank": 14 }, { "submission_id": "aoj_2734_10210836", "code_snippet": "// AOJ #2734\n// Donut Decoration 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n \nconst int TREE_LEAF_COUNT = 1 << 18;\nconst int TREE_SIZE = 1 << 19;\nconst int INVALID_STATE = 100000000;\n\nvector< pair<int,int> > segmentTree(TREE_SIZE, make_pair(0, 0));\n\ninline void applyLazyUpdate(int nodeIndex, const pair<int,int>& updatePair) {\n if (updatePair.first == 0 && updatePair.second == 0)\n return;\n if (segmentTree[nodeIndex] == make_pair(0, 0))\n segmentTree[nodeIndex] = updatePair;\n else if (segmentTree[nodeIndex].second + 1 == updatePair.first)\n segmentTree[nodeIndex].second = updatePair.second;\n else segmentTree[nodeIndex] = make_pair(INVALID_STATE, INVALID_STATE);\n}\n\nvoid updateRange(int updateLeft, int updateRight, int task,\n int nodeIndex = 0, int nodeLeft = 0, int nodeRight = TREE_LEAF_COUNT) {\n if (updateRight <= nodeLeft || nodeRight <= updateLeft)\n return;\n if (updateLeft <= nodeLeft && nodeRight <= updateRight) {\n applyLazyUpdate(nodeIndex, make_pair(task, task));\n return;\n }\n applyLazyUpdate(nodeIndex * 2 + 1, segmentTree[nodeIndex]);\n applyLazyUpdate(nodeIndex * 2 + 2, segmentTree[nodeIndex]);\n segmentTree[nodeIndex] = make_pair(0, 0);\n \n int mid = (nodeLeft + nodeRight) / 2;\n updateRange(updateLeft, updateRight, task, nodeIndex * 2 + 1, nodeLeft, mid);\n updateRange(updateLeft, updateRight, task, nodeIndex * 2 + 2, mid, nodeRight);\n}\n\nvoid propagateLazy(int nodeIndex, int nodeLeft, int nodeRight) {\n if (nodeRight - nodeLeft == 1) return;\n applyLazyUpdate(nodeIndex * 2 + 1, segmentTree[nodeIndex]);\n applyLazyUpdate(nodeIndex * 2 + 2, segmentTree[nodeIndex]);\n segmentTree[nodeIndex] = make_pair(0, 0);\n \n int mid = (nodeLeft + nodeRight) / 2;\n propagateLazy(nodeIndex * 2 + 1, nodeLeft, mid);\n propagateLazy(nodeIndex * 2 + 2, mid, nodeRight);\n}\n\nint main(){\n int N = Cin(), K = Cin();\n int T = Cin();\n \n for (int i = 0; i < T; i++){\n int l = Cin()-1, r = Cin(), x = Cin();\n updateRange(l, r, x);\n }\n \n propagateLazy(0, 0, TREE_LEAF_COUNT);\n \n int validDonutCount = 0;\n std::function< pair<int,int>(int, int, int, int) > queryLeaf =\n [&](int pos, int nodeIndex, int nodeLeft, int nodeRight) -> pair<int,int> {\n if (nodeRight - nodeLeft == 1)\n return segmentTree[nodeIndex];\n int mid = (nodeLeft + nodeRight) / 2;\n if (pos < mid)\n return queryLeaf(pos, nodeIndex * 2 + 1, nodeLeft, mid);\n else return queryLeaf(pos, nodeIndex * 2 + 2, mid, nodeRight);\n };\n \n for (int i = 0; i < N; i++){\n pair<int,int> leafValue = queryLeaf(i, 0, 0, TREE_LEAF_COUNT);\n if (leafValue == make_pair(1, K)) validDonutCount++;\n }\n Cout(validDonutCount);\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 7144, "score_of_the_acc": -0.3447, "final_rank": 3 }, { "submission_id": "aoj_2734_10210833", "code_snippet": "// AOJ #2734\n// Donut Decoration 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n \nconst int TREE_LEAF_COUNT = 1 << 18;\nconst int TREE_SIZE = 1 << 19;\nconst int INVALID_STATE = 100000000;\n\nvector< pair<int,int> > segmentTree(TREE_SIZE, make_pair(0, 0));\n\nvoid applyLazyUpdate(int nodeIndex, const pair<int,int>& updatePair) {\n if (updatePair.first == 0 && updatePair.second == 0) return;\n if (segmentTree[nodeIndex] == make_pair(0, 0))\n segmentTree[nodeIndex] = updatePair;\n else if (segmentTree[nodeIndex].second + 1 == updatePair.first)\n segmentTree[nodeIndex].second = updatePair.second;\n else segmentTree[nodeIndex] = make_pair(INVALID_STATE, INVALID_STATE);\n}\n\nvoid updateRange(int updateLeft, int updateRight, int taskNumber,\n int nodeIndex = 0, int nodeLeft = 0, int nodeRight = TREE_LEAF_COUNT)\n{\n if (updateRight <= nodeLeft || nodeRight <= updateLeft) return;\n\n if (updateLeft <= nodeLeft && nodeRight <= updateRight) {\n applyLazyUpdate(nodeIndex, make_pair(taskNumber, taskNumber));\n return;\n }\n applyLazyUpdate(nodeIndex * 2 + 1, segmentTree[nodeIndex]);\n applyLazyUpdate(nodeIndex * 2 + 2, segmentTree[nodeIndex]);\n segmentTree[nodeIndex] = make_pair(0, 0);\n \n int mid = (nodeLeft + nodeRight) / 2;\n updateRange(updateLeft, updateRight, taskNumber, nodeIndex * 2 + 1, nodeLeft, mid);\n updateRange(updateLeft, updateRight, taskNumber, nodeIndex * 2 + 2, mid, nodeRight);\n}\n\nint main() {\n int N = Cin(), K = Cin();\n int T = Cin();\n \n for (int i = 0; i < T; i++){\n int l = Cin()-1, r = Cin(), x = Cin();\n updateRange(l, r, x);\n }\n \n for (int i = 0; i < N; i++) updateRange(i, i + 1, 0);\n \n int validDonutCount = 0;\n int leafStartIndex = TREE_LEAF_COUNT - 1;\n for (int i = 0; i < N; i++){\n int leafIndex = i + leafStartIndex;\n if (segmentTree[leafIndex] == make_pair(1, K))\n validDonutCount++;\n }\n Cout(validDonutCount);\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 7144, "score_of_the_acc": -0.4053, "final_rank": 4 }, { "submission_id": "aoj_2734_10005011", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(v) (v).begin(),(v).end()\n#define pb(a) push_back(a)\n#define rep(i, n) for(int i=0;i<n;i++)\n#define foa(e, v) for(auto&& e : v)\nusing ll = long long;\nconst ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);\n#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n, k;\n cin >> n >> k;\n\n set<pair<int, int>> st;\n st.insert({0, 0});\n st.insert({n, k + 1});\n\n\n vector<pair<int, int>> ngvec;\n\n int inf = 1 << 30;\n\n int q;\n cin >> q;\n rep(_, q) {\n int le, ri, x;\n cin >> le >> ri >> x;\n le --;\n \n {\n auto itr = st.upper_bound(make_pair(le, inf));\n itr --;\n int xp = itr->second;\n if(itr->first == le) itr = st.erase(itr);\n else itr = next(itr);\n int p = le;\n while(1) {\n if(itr->first < ri) {\n if(xp != x - 1) {\n \n ngvec.push_back({p, itr->first});\n }\n p = itr->first;\n xp = itr->second;\n itr = st.erase(itr);\n } else {\n if(xp != x - 1) {\n // if(p <= 4 and 4 < itr->first) {\n // cout << le << \" \" << ri << \" \" << x << \" \" << p << \" \" << itr->first << \" \" << xp << endl;\n // }\n ngvec.push_back({p, ri});\n }\n break;\n }\n }\n st.insert({le, x});\n if(st.lower_bound(make_pair(ri, -1))->first != ri) st.insert({ri, xp});\n }\n // for(auto [a, b] : st) {\n // cout << a << \" \" << b << endl;\n // }\n // cout << endl;\n }\n vector<int> cnt(n + 1, 0);\n for(auto [x, y] : ngvec) {\n cnt[x] ++;\n cnt[y] --;\n }\n rep(i, n) cnt[i + 1] += cnt[i];\n vector<int> ok(n + 1, 0);\n int p = -1, px = -1;\n \n for(auto [x, y] : st) {\n if(p != -1 and px == k) {\n for(int i = p; i < x; i ++) ok[i] = 1;\n }\n p = x;\n px = y;\n }\n // cout << cnt[4] << \" \" << ok[4] << endl;\n int ans = 0;\n rep(i, n) if(cnt[i] == 0 and ok[i]) {\n ans ++;\n // cout << i + 1 << \" \";\n }\n // cout << endl;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 9888, "score_of_the_acc": -0.3043, "final_rank": 2 }, { "submission_id": "aoj_2734_9957598", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\ntemplate <typename Monoid, typename Operator, auto mapping>\nstruct SegTreeLazy {\n using MonoidType = typename Monoid::Type;\n using OperatorType = typename Operator::Type;\n\n SegTreeLazy() = default;\n SegTreeLazy(const vector<MonoidType>& v) {\n n = 1, h = 0;\n while (n < (int)v.size()) {\n n *= 2;\n h++;\n }\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n for (int i = 0; i < (int)v.size(); i++) dat[i + n] = v[i];\n for (int i = n - 1; i > 0; i--) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n\n void set(int i, MonoidType x) {\n int p = i + n;\n for (int j = h; j > 0; j--) propagate(p >> j);\n i += n;\n dat[i] = x;\n while (i >>= 1) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n void apply(int l, int r, OperatorType x) {\n if (l == r) return;\n {\n int pl = l + n, pr = r + n;\n for (int i = h; i > 0; i--) propagate(pl >> i), propagate(pr >> i);\n }\n l += n, r += n;\n while (l < r) {\n if (l & 1) {\n lazy[l] = Operator::op(lazy[l], x);\n dat[l] = mapping(dat[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lazy[r] = Operator::op(lazy[r], x);\n dat[r] = mapping(dat[r], x);\n }\n l >>= 1, r >>= 1;\n }\n {\n int pl = l + n, pr = r + n;\n while (pl >>= 1) dat[pl] = Monoid::op(dat[pl << 1], dat[pl << 1 | 1]);\n while (pr >>= 1) dat[pr] = Monoid::op(dat[pr << 1], dat[pr << 1 | 1]);\n }\n }\n MonoidType fold(int l, int r) {\n if (l == r) return Monoid::id();\n MonoidType retl = Monoid::id(), retr = Monoid::id();\n {\n int pl = l + n, pr = r + n;\n for (int i = h; i > 0; i--) propagate(pl >> i), propagate(pr >> i);\n }\n l += n, r += n;\n while (l < r) {\n if (l & 1) retl = Monoid::op(retl, dat[l++]);\n if (r & 1) retr = Monoid::op(dat[--r], retr);\n l >>= 1, r >>= 1;\n }\n return Monoid::op(retl, retr);\n }\n\n int size() { return n; }\n MonoidType operator[](int i) { return fold(i, i + 1); }\n\nprivate:\n int n, h;\n vector<MonoidType> dat;\n vector<OperatorType> lazy;\n void propagate(int i) {\n if (i < n) {\n lazy[i << 1] = Operator::op(lazy[i << 1], lazy[i]);\n lazy[i << 1 | 1] = Operator::op(lazy[i << 1 | 1], lazy[i]);\n dat[i << 1] = mapping(dat[i << 1], lazy[i]);\n dat[i << 1 | 1] = mapping(dat[i << 1 | 1], lazy[i]);\n }\n lazy[i] = Operator::id();\n }\n};\n\nstruct Monoid {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& l, const Type& r) {\n if (l.first == -1) return r;\n return l;\n }\n};\n\nstruct Operator {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& prev, const Type& next) {\n if (prev.first == -1) return next;\n if (next.first == -1) return prev;\n if (prev.second == next.first) return {prev.first, next.second};\n return {-2, -2};\n }\n};\n\npair<int, int> mapping(const pair<int, int>& x, const pair<int, int>& f) {\n if (f.first == -1) return x;\n if (x.second == f.first) return {x.first, f.second};\n return {-2, -2};\n}\n\nint main() {\n int N, K, Q;\n cin >> N >> K >> Q;\n\n SegTreeLazy<Monoid, Operator, mapping> seg(vector<pair<int, int>>(N, {0, 1}));\n\n while (Q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n seg.apply(l, r, {x, x + 1});\n }\n\n int ans = 0;\n for (int i = 0; i < N; i++) {\n auto [f, s] = seg.fold(i, i + 1);\n if (f == 0 && s == K + 1) ans++;\n }\n\n cout << ans << endl;\n}", "accuracy": 0.8787878787878788, "time_ms": 230, "memory_kb": 13008, "score_of_the_acc": -0.9458, "final_rank": 17 }, { "submission_id": "aoj_2734_9957597", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\ntemplate <typename Monoid, typename Operator, auto mapping>\nstruct SegTreeLazy {\n using MonoidType = typename Monoid::Type;\n using OperatorType = typename Operator::Type;\n\n SegTreeLazy() = default;\n SegTreeLazy(const vector<MonoidType>& v) {\n n = 1, h = 1;\n while (n < (int)v.size()) {\n n *= 2;\n h++;\n }\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n for (int i = 0; i < (int)v.size(); i++) dat[i + n] = v[i];\n for (int i = n - 1; i > 0; i--) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n\n void set(int i, MonoidType x) {\n int p = i + n;\n for (int j = h; j > 0; j--) propagate(p >> j);\n i += n;\n dat[i] = x;\n while (i >>= 1) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n void apply(int l, int r, OperatorType x) {\n if (l == r) return;\n {\n int pl = l + n, pr = r + n - 1;\n for (int i = h; i > 0; i--) propagate(pl >> i), propagate(pr >> i);\n }\n l += n, r += n;\n while (l < r) {\n if (l & 1) {\n lazy[l] = Operator::op(lazy[l], x);\n dat[l] = mapping(dat[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lazy[r] = Operator::op(lazy[r], x);\n dat[r] = mapping(dat[r], x);\n }\n l >>= 1, r >>= 1;\n }\n {\n int pl = l + n, pr = r + n - 1;\n while (pl >>= 1) dat[pl] = Monoid::op(dat[pl << 1], dat[pl << 1 | 1]);\n while (pr >>= 1) dat[pr] = Monoid::op(dat[pr << 1], dat[pr << 1 | 1]);\n }\n }\n MonoidType fold(int l, int r) {\n if (l == r) return Monoid::id();\n MonoidType retl = Monoid::id(), retr = Monoid::id();\n {\n int pl = l + n, pr = r + n - 1;\n for (int i = h; i > 0; i--) propagate(pl >> i), propagate(pr >> i);\n }\n l += n, r += n;\n while (l < r) {\n if (l & 1) retl = Monoid::op(retl, dat[l++]);\n if (r & 1) retr = Monoid::op(dat[--r], retr);\n l >>= 1, r >>= 1;\n }\n return Monoid::op(retl, retr);\n }\n\n int size() { return n; }\n MonoidType operator[](int i) { return fold(i, i + 1); }\n\nprivate:\n int n, h;\n vector<MonoidType> dat;\n vector<OperatorType> lazy;\n void propagate(int i) {\n if (i < n) {\n lazy[i << 1] = Operator::op(lazy[i << 1], lazy[i]);\n lazy[i << 1 | 1] = Operator::op(lazy[i << 1 | 1], lazy[i]);\n dat[i << 1] = mapping(dat[i << 1], lazy[i]);\n dat[i << 1 | 1] = mapping(dat[i << 1 | 1], lazy[i]);\n }\n lazy[i] = Operator::id();\n }\n};\n\nstruct Monoid {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& l, const Type& r) {\n if (l.first == -1) return r;\n return l;\n }\n};\n\nstruct Operator {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& prev, const Type& next) {\n if (prev.first == -1) return next;\n if (next.first == -1) return prev;\n if (prev.second == next.first) return {prev.first, next.second};\n return {-2, -2};\n }\n};\n\npair<int, int> mapping(const pair<int, int>& x, const pair<int, int>& f) {\n if (f.first == -1) return x;\n if (x.second == f.first) return {x.first, f.second};\n return {-2, -2};\n}\n\nint main() {\n int N, K, Q;\n cin >> N >> K >> Q;\n\n SegTreeLazy<Monoid, Operator, mapping> seg(vector<pair<int, int>>(N, {0, 1}));\n\n while (Q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n seg.apply(l, r, {x, x + 1});\n }\n\n int ans = 0;\n for (int i = 0; i < N; i++) {\n auto [f, s] = seg.fold(i, i + 1);\n if (f == 0 && s == K + 1) ans++;\n }\n\n cout << ans << endl;\n}", "accuracy": 0.8787878787878788, "time_ms": 230, "memory_kb": 12940, "score_of_the_acc": -0.9431, "final_rank": 16 }, { "submission_id": "aoj_2734_9957592", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\ntemplate <typename Monoid, typename Operator, auto mapping>\nstruct SegTreeLazy {\n using MonoidType = typename Monoid::Type;\n using OperatorType = typename Operator::Type;\n\n SegTreeLazy() = default;\n SegTreeLazy(const vector<MonoidType>& v) {\n n = 1, h = 0;\n while (n < (int)v.size()) {\n n *= 2;\n h++;\n }\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n for (int i = 0; i < (int)v.size(); i++) dat[i + n] = v[i];\n for (int i = n - 1; i > 0; i--) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n\n void set(int i, MonoidType x) {\n int p = i + n;\n for (int j = h; j > 0; j--) propagate(p >> j);\n i += n;\n dat[i] = x;\n while (i >>= 1) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n void apply(int l, int r, OperatorType x) {\n if (l == r) return;\n {\n int pl = l + n, pr = r + n - 1;\n for (int i = h; i > 0; i--) propagate(pl >> i), propagate(pr >> i);\n }\n l += n, r += n;\n while (l < r) {\n if (l & 1) {\n lazy[l] = Operator::op(lazy[l], x);\n dat[l] = mapping(dat[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lazy[r] = Operator::op(lazy[r], x);\n dat[r] = mapping(dat[r], x);\n }\n l >>= 1, r >>= 1;\n }\n {\n int pl = l + n, pr = r + n - 1;\n while (pl >>= 1) {\n dat[pl] = Monoid::op(dat[pl << 1], dat[pl << 1 | 1]);\n }\n while (pr >>= 1) {\n dat[pr] = Monoid::op(dat[pr << 1], dat[pr << 1 | 1]);\n }\n }\n }\n MonoidType fold(int l, int r) {\n if (l == r) return Monoid::id();\n MonoidType retl = Monoid::id(), retr = Monoid::id();\n {\n int pl = l + n, pr = r + n - 1;\n for (int i = h; i > 0; i--) propagate(pl >> i), propagate(pr >> i);\n }\n l += n, r += n;\n while (l < r) {\n if (l & 1) retl = Monoid::op(retl, dat[l++]);\n if (r & 1) retr = Monoid::op(dat[--r], retr);\n l >>= 1, r >>= 1;\n }\n return Monoid::op(retl, retr);\n }\n\n int size() { return n; }\n MonoidType operator[](int i) { return fold(i, i + 1); }\n\nprivate:\n int n, h;\n vector<MonoidType> dat;\n vector<OperatorType> lazy;\n void propagate(int i) {\n if (i < n) {\n lazy[i << 1] = Operator::op(lazy[i << 1], lazy[i]);\n lazy[i << 1 | 1] = Operator::op(lazy[i << 1 | 1], lazy[i]);\n dat[i << 1] = mapping(dat[i << 1], lazy[i]);\n dat[i << 1 | 1] = mapping(dat[i << 1 | 1], lazy[i]);\n }\n lazy[i] = Operator::id();\n }\n};\n\nstruct Monoid {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& l, const Type& r) {\n if (l.first == -1) return r;\n return l;\n }\n};\n\nstruct Operator {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& prev, const Type& next) {\n if (prev.first == -1) return next;\n if (next.first == -1) return prev;\n if (prev.second == next.first) return {prev.first, next.second};\n return {-2, -2};\n }\n};\n\npair<int, int> mapping(const pair<int, int>& x, const pair<int, int>& f) {\n if (f.first == -1) return x;\n if (x.second == f.first) return {x.first, f.second};\n return {-2, -2};\n}\n\nint main() {\n int N, K, Q;\n cin >> N >> K >> Q;\n\n SegTreeLazy<Monoid, Operator, mapping> seg(vector<pair<int, int>>(N, {0, 1}));\n\n while (Q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n seg.apply(l, r, {x, x + 1});\n }\n\n int ans = 0;\n for (int i = 0; i < N; i++) {\n auto [f, s] = seg.fold(i, i + 1);\n if (f == 0 && s == K + 1) ans++;\n }\n\n cout << ans << endl;\n}", "accuracy": 0.8787878787878788, "time_ms": 230, "memory_kb": 13012, "score_of_the_acc": -0.946, "final_rank": 18 }, { "submission_id": "aoj_2734_9957559", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\ntemplate <typename Monoid, typename Operator, auto mapping>\nstruct SegTreeLazy {\n using MonoidType = typename Monoid::Type;\n using OperatorType = typename Operator::Type;\n\n SegTreeLazy() = default;\n SegTreeLazy(int n) {\n this->n = n;\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n }\n SegTreeLazy(const vector<MonoidType>& v) {\n this->n = v.size();\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n for (int i = 0; i < n; i++) dat[i + n] = v[i];\n for (int i = n - 1; i > 0; i--) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n\n void set(int i, MonoidType x) {\n generate_indices(i, i + 1);\n pushdown();\n i += n;\n dat[i] = x;\n while (i >>= 1) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n void apply(int l, int r, OperatorType x) {\n if (l == r) return;\n generate_indices(l, r);\n pushdown();\n l += n, r += n;\n while (l < r) {\n if (l & 1) {\n lazy[l] = Operator::op(lazy[l], x);\n dat[l] = mapping(dat[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lazy[r] = Operator::op(lazy[r], x);\n dat[r] = mapping(dat[r], x);\n }\n l >>= 1, r >>= 1;\n }\n pushup();\n }\n MonoidType fold(int l, int r) {\n if (l == r) return Monoid::id();\n generate_indices(l, r);\n pushdown();\n MonoidType retl = Monoid::id(), retr = Monoid::id();\n l += n, r += n;\n while (l < r) {\n if (l & 1) retl = Monoid::op(retl, dat[l++]);\n if (r & 1) retr = Monoid::op(dat[--r], retr);\n l >>= 1, r >>= 1;\n }\n return Monoid::op(retl, retr);\n }\n\n int size() { return n; }\n MonoidType operator[](int i) { return fold(i, i + 1); }\n\nprivate:\n int n;\n vector<MonoidType> dat;\n vector<OperatorType> lazy;\n vector<int> indices;\n\n void generate_indices(int l, int r) {\n indices.clear();\n l += n, r += n;\n {\n bool ok = false;\n while (l) {\n if (ok) indices.push_back(l);\n if (l & 1) ok = true;\n l /= 2;\n }\n }\n swap(l, r);\n {\n bool ok = false;\n while (l) {\n if (ok) indices.push_back(l);\n if (l & 1) ok = true;\n l /= 2;\n }\n }\n sort(indices.rbegin(), indices.rend());\n indices.erase(unique(indices.begin(), indices.end()), indices.end());\n }\n\n void propagate(int i) {\n if (i < n) {\n lazy[i << 1] = Operator::op(lazy[i << 1], lazy[i]);\n lazy[i << 1 | 1] = Operator::op(lazy[i << 1 | 1], lazy[i]);\n dat[i << 1] = mapping(dat[i << 1], lazy[i]);\n dat[i << 1 | 1] = mapping(dat[i << 1 | 1], lazy[i]);\n }\n lazy[i] = Operator::id();\n }\n void pushdown() {\n for (int j = (int)indices.size() - 1; j >= 0; j--) {\n int i = indices[j];\n propagate(i);\n }\n }\n void pushup() {\n for (int j = 0; j < (int)indices.size(); j++) {\n int i = indices[j];\n dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n }\n};\n\nstruct Monoid {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& l, const Type& r) {\n if (l.first == -1) return r;\n return l;\n }\n};\n\nstruct Operator {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& prev, const Type& next) {\n if (prev.first == -1) return next;\n if (next.first == -1) return prev;\n if (prev.second == next.first) return {prev.first, next.second};\n return {-2, -2};\n }\n};\n\npair<int, int> mapping(const pair<int, int>& x, const pair<int, int>& f) {\n if (f.first == -1) return x;\n if (x.second == f.first) return {x.first, f.second};\n return {-2, -2};\n}\n\nint main() {\n int N, K, Q;\n cin >> N >> K >> Q;\n\n SegTreeLazy<Monoid, Operator, mapping> seg(vector<pair<int, int>>(N, {0, 1}));\n\n while (Q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n seg.apply(l, r, {x, x + 1});\n }\n\n int ans = 0;\n for (int i = 0; i < N; i++) {\n auto [f, s] = seg.fold(i, i + 1);\n if (f == 0 && s == K + 1) ans++;\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 10940, "score_of_the_acc": -1.2257, "final_rank": 12 }, { "submission_id": "aoj_2734_9957556", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\ntemplate <typename Monoid, typename Operator, auto mapping>\nstruct SegTreeLazy {\n using MonoidType = typename Monoid::Type;\n using OperatorType = typename Operator::Type;\n\n SegTreeLazy() = default;\n SegTreeLazy(int n) {\n this->n = n;\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n }\n SegTreeLazy(const vector<MonoidType>& v) {\n this->n = v.size();\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n for (int i = 0; i < n; i++) dat[i + n] = v[i];\n for (int i = n - 1; i > 0; i--) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n\n void set(int i, MonoidType x) {\n generate_indices(i, i + 1);\n pushdown();\n i += n;\n dat[i] = x;\n while (i >>= 1) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n void apply(int l, int r, OperatorType x) {\n if (l == r) return;\n generate_indices(l, r);\n pushdown();\n l += n, r += n;\n while (l < r) {\n if (l & 1) {\n lazy[l] = Operator::op(lazy[l], x);\n dat[l] = mapping(dat[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lazy[r] = Operator::op(lazy[r], x);\n dat[r] = mapping(dat[r], x);\n }\n l >>= 1, r >>= 1;\n }\n pushup();\n }\n MonoidType fold(int l, int r) {\n if (l == r) return Monoid::id();\n generate_indices(l, r);\n pushdown();\n MonoidType retl = Monoid::id(), retr = Monoid::id();\n l += n, r += n;\n while (l < r) {\n if (l & 1) retl = Monoid::op(retl, dat[l++]);\n if (r & 1) retr = Monoid::op(dat[--r], retr);\n l >>= 1, r >>= 1;\n }\n return Monoid::op(retl, retr);\n }\n\n int size() { return n; }\n MonoidType operator[](int i) { return fold(i, i + 1); }\n\nprivate:\n int n;\n vector<MonoidType> dat;\n vector<OperatorType> lazy;\n vector<int> indices;\n\n void generate_indices(int l, int r) {\n indices.clear();\n l += n, r += n;\n while (l) {\n l >>= 1;\n indices.push_back(l);\n }\n while (r) {\n r >>= 1;\n indices.push_back(r);\n }\n sort(indices.rbegin(), indices.rend());\n indices.erase(unique(indices.begin(), indices.end()), indices.end());\n }\n\n void propagate(int i) {\n if (i < n) {\n lazy[i << 1] = Operator::op(lazy[i << 1], lazy[i]);\n lazy[i << 1 | 1] = Operator::op(lazy[i << 1 | 1], lazy[i]);\n dat[i << 1] = mapping(dat[i << 1], lazy[i]);\n dat[i << 1 | 1] = mapping(dat[i << 1 | 1], lazy[i]);\n }\n lazy[i] = Operator::id();\n }\n void pushdown() {\n for (int j = (int)indices.size() - 1; j >= 0; j--) {\n int i = indices[j];\n propagate(i);\n }\n }\n void pushup() {\n for (int j = 0; j < (int)indices.size(); j++) {\n int i = indices[j];\n dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n }\n};\n\nstruct Monoid {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& l, const Type& r) {\n if (l.first == -1) return r;\n return l;\n }\n};\n\nstruct Operator {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& prev, const Type& next) {\n if (prev.first == -1) return next;\n if (next.first == -1) return prev;\n if (prev.second == next.first) return {prev.first, next.second};\n return {-2, -2};\n }\n};\n\npair<int, int> mapping(const pair<int, int>& x, const pair<int, int>& f) {\n if (f.first == -1) return x;\n if (x.second == f.first) return {x.first, f.second};\n return {-2, -2};\n}\n\nint main() {\n int N, K, Q;\n cin >> N >> K >> Q;\n\n SegTreeLazy<Monoid, Operator, mapping> seg(vector<pair<int, int>>(N, {0, 1}));\n\n while (Q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n seg.apply(l, r, {x, x + 1});\n }\n\n int ans = 0;\n for (int i = 0; i < N; i++) {\n auto [f, s] = seg.fold(i, i + 1);\n if (f == 0 && s == K + 1) ans++;\n }\n\n cout << ans << endl;\n}", "accuracy": 0.8181818181818182, "time_ms": 290, "memory_kb": 10968, "score_of_the_acc": -1.045, "final_rank": 20 }, { "submission_id": "aoj_2734_9957552", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\ntemplate <typename Monoid, typename Operator, auto mapping>\nstruct SegTreeLazy {\n using MonoidType = typename Monoid::Type;\n using OperatorType = typename Operator::Type;\n\n SegTreeLazy() = default;\n SegTreeLazy(int n) {\n this->n = n;\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n }\n SegTreeLazy(const vector<MonoidType>& v) {\n this->n = v.size();\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n for (int i = 0; i < n; i++) dat[i + n] = v[i];\n for (int i = n - 1; i > 0; i--) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n\n void set(int i, MonoidType x) {\n generate_indices(i, i + 1);\n pushdown();\n i += n;\n dat[i] = x;\n while (i >>= 1) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n void apply(int l, int r, OperatorType x) {\n if (l == r) return;\n generate_indices(l, r);\n pushdown();\n l += n, r += n;\n while (l < r) {\n if (l & 1) {\n lazy[l] = Operator::op(lazy[l], x);\n dat[l] = mapping(dat[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lazy[r] = Operator::op(lazy[r], x);\n dat[r] = mapping(dat[r], x);\n }\n l >>= 1, r >>= 1;\n }\n pushup();\n }\n MonoidType fold(int l, int r) {\n if (l == r) return Monoid::id();\n generate_indices(l, r);\n pushdown();\n MonoidType retl = Monoid::id(), retr = Monoid::id();\n l += n, r += n;\n while (l < r) {\n if (l & 1) retl = Monoid::op(retl, dat[l++]);\n if (r & 1) retr = Monoid::op(dat[--r], retr);\n l >>= 1, r >>= 1;\n }\n return Monoid::op(retl, retr);\n }\n\n int size() { return n; }\n MonoidType operator[](int i) { return fold(i, i + 1); }\n\nprivate:\n int n;\n vector<MonoidType> dat;\n vector<OperatorType> lazy;\n vector<int> indices;\n\n void generate_indices(int l, int r) {\n indices.clear();\n l += n, r += n;\n while (l) {\n l >>= 1;\n indices.push_back(l);\n }\n while (r) {\n r >>= 1;\n indices.push_back(r);\n }\n }\n\n void propagate(int i) {\n if (i < n) {\n lazy[i << 1] = Operator::op(lazy[i << 1], lazy[i]);\n lazy[i << 1 | 1] = Operator::op(lazy[i << 1 | 1], lazy[i]);\n dat[i << 1] = mapping(dat[i << 1], lazy[i]);\n dat[i << 1 | 1] = mapping(dat[i << 1 | 1], lazy[i]);\n }\n lazy[i] = Operator::id();\n }\n void pushdown() {\n for (int j = (int)indices.size() - 1; j >= 0; j--) {\n int i = indices[j];\n propagate(i);\n }\n }\n void pushup() {\n for (int j = 0; j < (int)indices.size(); j++) {\n int i = indices[j];\n dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n }\n};\n\nstruct Monoid {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& l, const Type& r) {\n if (l.first == -1) return r;\n return l;\n }\n};\n\nstruct Operator {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& prev, const Type& next) {\n if (prev.first == -1) return next;\n if (next.first == -1) return prev;\n if (prev.second == next.first) return {prev.first, next.second};\n return {-2, -2};\n }\n};\n\npair<int, int> mapping(const pair<int, int>& x, const pair<int, int>& f) {\n if (f.first == -1) return x;\n if (x.second == f.first) return {x.first, f.second};\n return {-2, -2};\n}\n\nint main() {\n int N, K, Q;\n cin >> N >> K >> Q;\n\n SegTreeLazy<Monoid, Operator, mapping> seg(vector<pair<int, int>>(N, {0, 1}));\n\n while (Q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n seg.apply(l, r, {x, x + 1});\n }\n\n int ans = 0;\n for (int i = 0; i < N; i++) {\n auto [f, s] = seg.fold(i, i + 1);\n if (f == 0 && s == K + 1) ans++;\n }\n\n cout << ans << endl;\n}", "accuracy": 0.8181818181818182, "time_ms": 260, "memory_kb": 10964, "score_of_the_acc": -0.9539, "final_rank": 19 }, { "submission_id": "aoj_2734_9931495", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\ntemplate <typename Monoid, typename Operator, auto mapping>\nstruct SegTreeLazy {\n using MonoidType = typename Monoid::Type;\n using OperatorType = typename Operator::Type;\n\n SegTreeLazy() = default;\n SegTreeLazy(int n) {\n this->n = n;\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n }\n SegTreeLazy(const vector<MonoidType>& v) {\n this->n = v.size();\n dat.assign(n << 1, Monoid::id());\n lazy.assign(n << 1, Operator::id());\n for (int i = 0; i < n; i++) dat[i + n] = v[i];\n for (int i = n - 1; i > 0; i--) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n\n void set(int i, MonoidType x) {\n generate_indices(i, i + 1);\n pushdown();\n i += n;\n dat[i] = x;\n while (i >>= 1) dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n void apply(int l, int r, OperatorType x) {\n if (l == r) return;\n generate_indices(l, r);\n pushdown();\n l += n, r += n;\n while (l < r) {\n if (l & 1) {\n lazy[l] = Operator::op(lazy[l], x);\n dat[l] = mapping(dat[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lazy[r] = Operator::op(lazy[r], x);\n dat[r] = mapping(dat[r], x);\n }\n l >>= 1, r >>= 1;\n }\n pushup();\n }\n MonoidType fold(int l, int r) {\n if (l == r) return Monoid::id();\n generate_indices(l, r);\n pushdown();\n MonoidType retl = Monoid::id(), retr = Monoid::id();\n l += n, r += n;\n while (l < r) {\n if (l & 1) retl = Monoid::op(retl, dat[l++]);\n if (r & 1) retr = Monoid::op(dat[--r], retr);\n l >>= 1, r >>= 1;\n }\n return Monoid::op(retl, retr);\n }\n template <typename F>\n int find_right(int l, F f) {\n assert(f(Monoid::id()));\n if (l == n) return n;\n generate_indices(l, n);\n pushdown();\n l += n;\n int r = n + n;\n vector<int> cand_l, cand_r;\n while (l < r) {\n if (l & 1) cand_l.push_back(l++);\n if (r & 1) cand_r.push_back(--r);\n l >>= 1, r >>= 1;\n }\n vector<int> cand = cand_l;\n reverse(cand_r.begin(), cand_r.end());\n cand.insert(cand.end(), cand_r.begin(), cand_r.end());\n MonoidType val = Monoid::id();\n for (int i : cand) {\n if (f(Monoid::op(val, dat[i]))) {\n val = Monoid::op(val, dat[i]);\n } else {\n while (i < n) {\n propagate(i);\n i <<= 1;\n if (f(Monoid::op(val, dat[i]))) {\n val = Monoid::op(val, dat[i]);\n i |= 1;\n }\n }\n return i - n;\n }\n }\n return n;\n }\n template <typename F>\n int find_left(int r, F f) {\n assert(f(Monoid::id()));\n if (r == 0) return 0;\n generate_indices(0, r);\n pushdown();\n r += n;\n int l = n;\n vector<int> cand_l, cand_r;\n while (l < r) {\n if (l & 1) cand_l.push_back(l++);\n if (r & 1) cand_r.push_back(--r);\n l >>= 1, r >>= 1;\n }\n vector<int> cand = cand_r;\n reverse(cand_l.begin(), cand_l.end());\n cand.insert(cand.end(), cand_l.begin(), cand_l.end());\n MonoidType val = Monoid::id();\n for (int i : cand) {\n if (f(Monoid::op(dat[i], val))) {\n val = Monoid::op(dat[i], val);\n } else {\n while (i < n) {\n propagate(i);\n i = (i << 1) | 1;\n if (f(Monoid::op(dat[i], val))) {\n val = Monoid::op(dat[i], val);\n i ^= 1;\n }\n }\n return i - n + 1;\n }\n }\n return 0;\n }\n\n int size() { return n; }\n MonoidType operator[](int i) { return fold(i, i + 1); }\n\nprivate:\n int n;\n vector<MonoidType> dat;\n vector<OperatorType> lazy;\n vector<int> indices;\n void generate_indices(int l, int r) {\n indices.clear();\n l += n, r += n;\n int lm = (l / (l & -l)) >> 1, rm = (r / (r & -r)) >> 1;\n while (l < r) {\n if (l <= lm) indices.push_back(l);\n if (r <= rm) indices.push_back(r);\n l >>= 1, r >>= 1;\n }\n while (l) {\n indices.push_back(l);\n l >>= 1;\n }\n }\n void propagate(int i) {\n if (i < n) {\n lazy[i << 1] = Operator::op(lazy[i << 1], lazy[i]);\n lazy[i << 1 | 1] = Operator::op(lazy[i << 1 | 1], lazy[i]);\n dat[i << 1] = mapping(dat[i << 1], lazy[i]);\n dat[i << 1 | 1] = mapping(dat[i << 1 | 1], lazy[i]);\n }\n lazy[i] = Operator::id();\n }\n void pushdown() {\n for (int j = (int)indices.size() - 1; j >= 0; j--) {\n int i = indices[j];\n propagate(i);\n }\n }\n void pushup() {\n for (int j = 0; j < (int)indices.size(); j++) {\n int i = indices[j];\n dat[i] = Monoid::op(dat[i << 1], dat[i << 1 | 1]);\n }\n }\n};\n\nstruct Monoid {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& l, const Type& r) {\n if (l.first == -1) return r;\n return l;\n }\n};\n\nstruct Operator {\n using Type = pair<int, int>;\n static Type id() { return {-1, -1}; }\n static Type op(const Type& prev, const Type& next) {\n if (prev.first == -1) return next;\n if (next.first == -1) return prev;\n if (prev.second == next.first) return {prev.first, next.second};\n return {-2, -2};\n }\n};\n\npair<int, int> mapping(const pair<int, int>& x, const pair<int, int>& f) {\n if (f.first == -1) return x;\n if (x.second == f.first) return {x.first, f.second};\n return {-2, -2};\n}\n\n\nint main() {\n int N, K, Q;\n cin >> N >> K >> Q;\n\n SegTreeLazy<Monoid, Operator, mapping> seg(vector<pair<int, int>>(N, {0, 1}));\n\n while (Q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n seg.apply(l, r, {x, x + 1});\n }\n\n int ans = 0;\n for (int i = 0; i < N; i++) {\n auto [f, s] = seg.fold(i, i + 1);\n if (f == 0 && s == K + 1) ans++;\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 10964, "score_of_the_acc": -0.863, "final_rank": 7 }, { "submission_id": "aoj_2734_9741883", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\ntemplate <typename M, typename N, M (*f)(M, M), M (*g)(M, N), N (*h)(N, N),\n M (*m1)(), N (*n1)()>\nclass LazySegmentTree {\n int n, sz, height;\n vector<M> data;\n vector<N> lazy;\n void update(int k) {\n data[k] = f(data[k * 2], data[k * 2 + 1]);\n }\n void apply(int k, N x) {\n data[k] = g(data[k], x);\n if (k < sz)\n lazy[k] = h(lazy[k], x);\n }\n void down(int k) {\n apply(k * 2, lazy[k]);\n apply(k * 2 + 1, lazy[k]);\n lazy[k] = n1();\n }\n\n public:\n LazySegmentTree(int n = 0) : LazySegmentTree(vector<M>(n, m1())) {}\n LazySegmentTree(const vector<M> &a) : n(SZ(a)) {\n sz = 1, height = 0;\n while (sz < (int)a.size())\n sz <<= 1, height++;\n data.assign(2 * sz, m1());\n lazy.assign(sz, n1());\n rep(i, 0, a.size()) data[sz + i] = a[i];\n for (int i = sz - 1; i; i--)\n update(i);\n }\n M operator[](int k) const {\n k += sz;\n rrep(i, 1, height + 1) down(k >> i);\n return data[k];\n }\n vector<M> get() {\n rep(k, 1, sz) down(k);\n return {data.begin() + sz, data.begin() + sz + n};\n }\n void set(int k, M x) {\n k += sz;\n for (int i = height; i; i--)\n down(k >> i);\n data[k] = x;\n for (int i = 1; i <= height; i++)\n update(k >> i);\n }\n void update(int L, int R, N x) {\n if (L >= R)\n return;\n L += sz, R += sz;\n for (int i = height; i; i--) {\n if (((L >> i) << i) != L)\n down(L >> i);\n if (((R >> i) << i) != R)\n down((R - 1) >> i);\n }\n int lb = L, rb = R;\n while (L < R) {\n if (L & 1)\n apply(L++, x);\n if (R & 1)\n apply(--R, x);\n L >>= 1;\n R >>= 1;\n }\n L = lb, R = rb;\n for (int i = 1; i <= height; i++) {\n if (((L >> i) << i) != L)\n update(L >> i);\n if (((R >> i) << i) != R)\n update((R - 1) >> i);\n }\n }\n M query(int L, int R) {\n if (L >= R)\n return m1();\n L += sz, R += sz;\n for (int i = height; i; i--) {\n if (((L >> i) << i) != L)\n down(L >> i);\n if (((R >> i) << i) != R)\n down((R - 1) >> i);\n }\n M lb = m1(), rb = m1();\n while (L < R) {\n if (L & 1)\n lb = f(lb, data[L++]);\n if (R & 1)\n rb = f(data[--R], rb);\n L >>= 1;\n R >>= 1;\n }\n return f(lb, rb);\n }\n template <class F> int max_right(int L, F ch) {\n if (L == n)\n return n;\n L += sz;\n rrep(i, 1, height + 1) down(L >> i);\n M sum = m1();\n do {\n while (L % 2 == 0)\n L >>= 1;\n if (!ch(f(sum, data[L]))) {\n while (L < sz) {\n down(L);\n L <<= 1;\n if (ch(f(sum, data[L])))\n sum = f(sum, data[L++]);\n }\n return L - sz;\n }\n sum = f(sum, data[L++]);\n } while ((L & -L) != L);\n return n;\n }\n template <class F> int min_left(int R, F ch) {\n if (R == 0)\n return 0;\n R += sz;\n rrep(i, 1, height + 1) down((R - 1) >> i);\n M sum = m1();\n do {\n R--;\n while (R > 1 and (R & 1))\n R >>= 1;\n if (!ch(f(data[R], sum))) {\n while (R < sz) {\n down(R);\n R = (R * 2 + 1);\n if (ch(f(data[R], sum))) {\n sum = f(data[R--], sum);\n }\n }\n return R + 1 - sz;\n }\n sum = f(data[R], sum);\n } while ((R & -R) != R);\n return 0;\n }\n};\n\n/**\n * @brief Lazy Segment Tree\n */\n\npair<int,int> f(pair<int,int> A, pair<int,int> B) {\n return {A.first+B.first,A.second+B.second};\n}\n\npair<int,int> g(pair<int,int> A, pair<int,int> B) {\n if (B.first == -1) return A;\n if (A.second == B.first) return {A.first, B.second};\n return {-1,-1};\n}\n\npair<int,int> h(pair<int,int> A, pair<int,int> B) {\n if (A.first == -1) return B;\n if (B.first == -1) return A;\n if (A.second == B.first) return {A.first, B.second};\n return {-1,-1};\n}\n\npair<int,int> e1() {\n return {0,0};\n}\n\npair<int,int> e2() {\n return {-1,-1};\n}\n\nint main() {\n int N, M, Q;\n cin >> N >> M >> Q;\n LazySegmentTree<pair<int,int>,pair<int,int>,f,g,h,e1,e2> Seg(N);\n rep(i,0,N) Seg.set(i,{0,0});\n rep(i,0,Q) {\n int L, R, X;\n cin >> L >> R >> X;\n L--;\n Seg.update(L,R,{X-1,X});\n }\n int ANS = 0;\n rep(i,0,N) {\n pair<int,int> Ret = Seg.query(i,i+1);\n if (Ret.first == 0 && Ret.second == M) ANS++;\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 10784, "score_of_the_acc": -0.9466, "final_rank": 8 }, { "submission_id": "aoj_2734_9741882", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\ntemplate <typename M, typename N, M (*f)(M, M), M (*g)(M, N), N (*h)(N, N),\n M (*m1)(), N (*n1)()>\nclass LazySegmentTree {\n int n, sz, height;\n vector<M> data;\n vector<N> lazy;\n void update(int k) {\n data[k] = f(data[k * 2], data[k * 2 + 1]);\n }\n void apply(int k, N x) {\n data[k] = g(data[k], x);\n if (k < sz)\n lazy[k] = h(lazy[k], x);\n }\n void down(int k) {\n apply(k * 2, lazy[k]);\n apply(k * 2 + 1, lazy[k]);\n lazy[k] = n1();\n }\n\n public:\n LazySegmentTree(int n = 0) : LazySegmentTree(vector<M>(n, m1())) {}\n LazySegmentTree(const vector<M> &a) : n(SZ(a)) {\n sz = 1, height = 0;\n while (sz < (int)a.size())\n sz <<= 1, height++;\n data.assign(2 * sz, m1());\n lazy.assign(sz, n1());\n rep(i, 0, a.size()) data[sz + i] = a[i];\n for (int i = sz - 1; i; i--)\n update(i);\n }\n M operator[](int k) const {\n k += sz;\n rrep(i, 1, height + 1) down(k >> i);\n return data[k];\n }\n vector<M> get() {\n rep(k, 1, sz) down(k);\n return {data.begin() + sz, data.begin() + sz + n};\n }\n void set(int k, M x) {\n k += sz;\n for (int i = height; i; i--)\n down(k >> i);\n data[k] = x;\n for (int i = 1; i <= height; i++)\n update(k >> i);\n }\n void update(int L, int R, N x) {\n if (L >= R)\n return;\n L += sz, R += sz;\n for (int i = height; i; i--) {\n if (((L >> i) << i) != L)\n down(L >> i);\n if (((R >> i) << i) != R)\n down((R - 1) >> i);\n }\n int lb = L, rb = R;\n while (L < R) {\n if (L & 1)\n apply(L++, x);\n if (R & 1)\n apply(--R, x);\n L >>= 1;\n R >>= 1;\n }\n L = lb, R = rb;\n for (int i = 1; i <= height; i++) {\n if (((L >> i) << i) != L)\n update(L >> i);\n if (((R >> i) << i) != R)\n update((R - 1) >> i);\n }\n }\n M query(int L, int R) {\n if (L >= R)\n return m1();\n L += sz, R += sz;\n for (int i = height; i; i--) {\n if (((L >> i) << i) != L)\n down(L >> i);\n if (((R >> i) << i) != R)\n down((R - 1) >> i);\n }\n M lb = m1(), rb = m1();\n while (L < R) {\n if (L & 1)\n lb = f(lb, data[L++]);\n if (R & 1)\n rb = f(data[--R], rb);\n L >>= 1;\n R >>= 1;\n }\n return f(lb, rb);\n }\n template <class F> int max_right(int L, F ch) {\n if (L == n)\n return n;\n L += sz;\n rrep(i, 1, height + 1) down(L >> i);\n M sum = m1();\n do {\n while (L % 2 == 0)\n L >>= 1;\n if (!ch(f(sum, data[L]))) {\n while (L < sz) {\n down(L);\n L <<= 1;\n if (ch(f(sum, data[L])))\n sum = f(sum, data[L++]);\n }\n return L - sz;\n }\n sum = f(sum, data[L++]);\n } while ((L & -L) != L);\n return n;\n }\n template <class F> int min_left(int R, F ch) {\n if (R == 0)\n return 0;\n R += sz;\n rrep(i, 1, height + 1) down((R - 1) >> i);\n M sum = m1();\n do {\n R--;\n while (R > 1 and (R & 1))\n R >>= 1;\n if (!ch(f(data[R], sum))) {\n while (R < sz) {\n down(R);\n R = (R * 2 + 1);\n if (ch(f(data[R], sum))) {\n sum = f(data[R--], sum);\n }\n }\n return R + 1 - sz;\n }\n sum = f(data[R], sum);\n } while ((R & -R) != R);\n return 0;\n }\n};\n\n/**\n * @brief Lazy Segment Tree\n */\n\npair<int,int> f(pair<int,int> A, pair<int,int> B) {\n return {A.first+B.first,A.second+B.second};\n}\n\npair<int,int> g(pair<int,int> A, pair<int,int> B) {\n if (B.first == -1) return A;\n if (A.second == B.first) return {A.first, B.second};\n return {-1,-1};\n}\n\npair<int,int> h(pair<int,int> A, pair<int,int> B) {\n if (A.first == -1) return B;\n if (B.first == -1) return A;\n if (A.second == B.first) return {A.first, B.second};\n return {-2,-2};\n}\n\npair<int,int> e1() {\n return {0,0};\n}\n\npair<int,int> e2() {\n return {-1,-1};\n}\n\nint main() {\n int N, M, Q;\n cin >> N >> M >> Q;\n LazySegmentTree<pair<int,int>,pair<int,int>,f,g,h,e1,e2> Seg(N);\n rep(i,0,N) Seg.set(i,{0,0});\n rep(i,0,Q) {\n int L, R, X;\n cin >> L >> R >> X;\n L--;\n Seg.update(L,R,{X-1,X});\n }\n int ANS = 0;\n rep(i,0,N) {\n pair<int,int> Ret = Seg.query(i,i+1);\n if (Ret.first == 0 && Ret.second == M) ANS++;\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 10804, "score_of_the_acc": -0.9475, "final_rank": 9 }, { "submission_id": "aoj_2734_9711024", "code_snippet": "#include <set>\n#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nint main() {\n\t// step #1. input\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint N, K, T;\n\tcin >> N >> K >> T;\n\tvector<int> L(T), R(T), X(T);\n\tfor (int i = 0; i < T; i++) {\n\t\tcin >> L[i] >> R[i] >> X[i];\n\t\tL[i]--; X[i]--;\n\t}\n\t\n\t// step #2. preparation\n\tvector<vector<int> > gl(N + 1), gr(N + 1);\n\tfor (int i = 0; i < T; i++) {\n\t\tgl[L[i]].push_back(i);\n\t\tgr[R[i]].push_back(i);\n\t}\n\n\t// step #3. sweepline\n\tset<int> s;\n\tint last = 0, ans = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j : gr[i]) {\n\t\t\ts.erase(j);\n\t\t}\n\t\tfor (int j : gl[i]) {\n\t\t\tset<int>::iterator it = s.lower_bound(j);\n\t\t\tif (it != s.end()) {\n\t\t\t\tif (X[j] >= X[*it]) {\n\t\t\t\t\tlast = max(last, min(R[j], R[*it]));\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (it != s.begin()) {\n\t\t\t\tit--;\n\t\t\t\tif (X[j] <= X[*it]) {\n\t\t\t\t\tlast = max(last, min(R[j], R[*it]));\n\t\t\t\t}\n\t\t\t}\n\t\t\ts.insert(j);\n\t\t}\n\t\tans += int(last <= i && s.size() == K);\n\t}\n\n\t// step #4. output\n\tcout << ans << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 27784, "score_of_the_acc": -1.3019, "final_rank": 13 }, { "submission_id": "aoj_2734_8530368", "code_snippet": "#line 2 \"SPJ-Library/icpc/template.hpp\"\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n\n// ----------------- write from here -------------------\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rng(i, l, r) for(int i = int(l); i < int(r); i++)\n#define rep(i, n) rng(i, 0, n)\n#define sz(v) int(v.size())\n#define foa(s, v) for(auto &s : v)\n#define all(v) v.begin(), v.end()\ntemplate <class T>\nusing V = vector<T>;\n#line 2 \"a.cpp\"\n\nusing S = int;\nusing F = pair<int, int>;\nconstexpr S e = -1;\nS op(S a, S b) {\n\tif(a == -1 || b == -1) return a + b - (-1);\n\treturn a;\n}\nconst F id = make_pair(-1, -1);\nconst F ng = make_pair(-2, -2);\nS mapping(F f, S s) {\n\tif(f == ng) return -1;\n\tif(f == id) return s;\n\tif(f.first == s) return f.second;\n\treturn -1;\n}\nF composition(F g, F f) {\n\tif(f == ng || g == ng) return ng;\n\tif(f == id) return g;\n\tif(g == id) return f;\n\treturn f.second == g.first ? make_pair(f.first, g.second) : ng;\n}\n\n#line 3 \"SPJ-Library/icpc/lazy_segment_tree.hpp\"\n\n/* usage:\n\tusing S = ll;\n\tusing F = ll;\n\tconstexpr S e = -INF;\n\tS op(S a, S b) { return max(a, b); }\n\tconstexpr F id = 0LL;\n\t// f(g(x)) == (composition(f, g))(x)\n\tF composition(F f, F g) { return f + g; }\n\tS mapping(F f, S s) { return f + s; }\n*/\n\n/* require:\n\t- operator!= for `F` is defined\n\t- `op` and `composition` are both associative ( i.e. f(a, f(b, c)) == f(f(a, b), c) )\n\t- mapping(f, op(a, b)) == op(mapping(f, a), mapping(f, b))\n*/\n\nstruct node {\n\tnode *l = 0, *r = 0;\n\tll lo, hi;\n\tS val = e;\n\tF mapp = id;\n\n\t// usage:\n\t// \t\tnode* lst = new node(0, n);\n\t// \t\t...\n\t// \t\tdelete lst;\n\tnode(ll lo, ll hi) : lo(lo), hi(hi) {}\n\n\t// memory saving (optional)\n\t~node() {\n\t\tif(l) {\n\t\t\tdelete l;\n\t\t\tdelete r;\n\t\t}\n\t}\n\n\t// optional\n\t// usage:\n\t// \t\tnode* lst = new node(v, 0LL, ll(sz(v)));\n\tnode(V<S>& v, ll lo, ll hi) : lo(lo), hi(hi) {\n\t\tif(lo + 1 < hi) {\n\t\t\tll mid = lo + (hi - lo) / 2;\n\t\t\tl = new node(v, lo, mid);\n\t\t\tr = new node(v, mid, hi);\n\t\t\tval = op(l->val, r->val);\n\t\t} else\n\t\t\tval = v[lo];\n\t}\n\n\tvoid push() {\n\t\tif(!l) {\n\t\t\tll mid = lo + (hi - lo) / 2;\n\t\t\tl = new node(lo, mid), r = new node(mid, hi);\n\t\t}\n\t\tif(mapp != id) l->apply(lo, hi, mapp), r->apply(lo, hi, mapp), mapp = id;\n\t}\n\n\tvoid apply(ll L, ll R, F f) {\n\t\tif(R <= lo || hi <= L) return;\n\t\tif(L <= lo && hi <= R) {\n\t\t\tmapp = composition(f, mapp);\n\t\t\tval = mapping(f, val);\n\t\t\treturn;\n\t\t}\n\t\tpush(), l->apply(L, R, f), r->apply(L, R, f);\n\t\tval = op(l->val, r->val);\n\t}\n\n\tS prod(ll L, ll R) {\n\t\tif(R <= lo || hi <= L) return e;\n\t\tif(L <= lo && hi <= R) return val;\n\t\tpush();\n\t\treturn op(l->prod(L, R), r->prod(L, R));\n\t}\n\n\t// optional\n\tS get(ll idx) { return prod(idx, idx + 1); }\n\tS all_prod() { return val; }\n\n\tvoid set(ll pos, S s) {\n\t\tif(pos < lo || hi <= pos) return;\n\t\tif(lo + 1 == hi) {\n\t\t\tmapp = id;\n\t\t\tval = s;\n\t\t} else {\n\t\t\tpush(), l->set(pos, s), r->set(pos, s);\n\t\t\tval = op(l->val, r->val);\n\t\t}\n\t}\n};\n#line 26 \"a.cpp\"\n\nint n;\nvoid solve() {\n\tint k, t;\n\tcin >> k >> t;\n\n\tnode* lst = new node(0, n);\n\n\trep(i, n) lst->set(i, 0);\n\n\trep(j, t) {\n\t\tint l, r, x;\n\t\tcin >> l >> r >> x;\n\t\tl--;\n\t\tlst->apply(l, r, make_pair(x - 1, x));\n\t}\n\n\tint ans = 0;\n\trep(i, n) if(lst->get(i) == k) ans++;\n\n\tcout << ans << '\\n';\n\n\tdelete lst;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\twhile(cin >> n) solve();\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 28560, "score_of_the_acc": -1.6364, "final_rank": 15 }, { "submission_id": "aoj_2734_6516540", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=1167167167167167167;\nconst int INF=1050000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\nstruct seg_tree{\n\tint _n;\n\tint size;\n\tll _v;\n\tvector<pair<ll,ll>> seg;\n\tseg_tree(int n,ll v):_n(n),_v(v){\n\t\tsize=1;\n\t\twhile(size<n) size*=2;\n\t\tseg.resize(size*2);\n\t\tfor(int i=0;i<size*2;i++) seg[i]={1,0};\n\t}\n\tpair<ll,ll> op(pair<ll,ll> l,pair<ll,ll> r){\n\t\treturn {(l.first*r.first)%mod,((l.second*r.first)%mod+r.second)%mod};\n\t}\n\tvoid updata(int k){\n\t\tseg[k]=op(seg[k*2],seg[k*2+1]);\n\t}\n\tpair<ll,ll> query(int l,int r,int a,int b,int k){\n\t\tif(r<=a||b<=l) return {1,0};\n\t\tif(l<=a&&b<=r) return seg[k];\n\t\treturn op(query(l,r,a,(a+b)/2,k*2),query(l,r,(a+b)/2,b,k*2+1));\n\t}\n\tpair<ll,ll> calc(int l,int r){\n\t\treturn query(l,r,0,size,1);\n\t}\n\tvoid updata_ren(int ind){\n\t\tif(ind==1) return ;\n\t\tind/=2;\n\t\tupdata(ind);\n\t\tupdata_ren(ind);\n\t}\n\tvoid set(int ind,int v){\n\t\tind+=size;\n\t\tseg[ind]={_v,v};\n\t\tupdata_ren(ind);\n\t}\n\tvoid reset(int ind){\n\t\tind+=size;\n\t\tseg[ind]={1,0};\n\t\tupdata_ren(ind);\n\t}\n};\n\nvoid solve();\n// oddloop\nint main() {\n\tsolve();\n}\n\nvoid solve(){\n\tint N,K,T;\n\tcin>>N>>K>>T;\n\tll v=167;\n\tseg_tree seg(T,v);\n\tint ans=0;\n\tll val=0;\n\trep(i,K) val=(val*v+(i+1))%mod;\n\tvector<vector<pair<int,int>>> G(N+1);\n\trep(i,T){\n\t\tint l,r,x;\n\t\tcin>>l>>r>>x;\n\t\tG[l-1].push_back({i,x});\n\t\tG[r].push_back({i,-1});\n\t}\n\t//cout<<val<<\"\\n\";\n\trep(i,N+1){\n\t\tfor(auto x:G[i]){\n\t\t\tif(x.second==-1) seg.reset(x.first);\n\t\t\telse seg.set(x.first,x.second);\n\t\t}\n\t\tif(seg.seg[1].second==val) ans++;\n\t}\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 23224, "score_of_the_acc": -1.1475, "final_rank": 11 }, { "submission_id": "aoj_2734_6348704", "code_snippet": "#line 2 \"library/bits/stdc++.h\"\n\n// C\n#ifndef _GLIBCXX_NO_ASSERT\n#include <cassert>\n#endif\n#include <cctype>\n#include <cerrno>\n#include <cfloat>\n#include <ciso646>\n#include <climits>\n#include <clocale>\n#include <cmath>\n#include <csetjmp>\n#include <csignal>\n#include <cstdarg>\n#include <cstddef>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n#include <ctime>\n\n#if __cplusplus >= 201103L\n#include <ccomplex>\n#include <cfenv>\n#include <cinttypes>\n#include <cstdbool>\n#include <cstdint>\n#include <ctgmath>\n#include <cwchar>\n#include <cwctype>\n#endif\n\n// C++\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <deque>\n#include <exception>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <ios>\n#include <iosfwd>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <limits>\n#include <list>\n#include <locale>\n#include <map>\n#include <memory>\n#include <new>\n#include <numeric>\n#include <ostream>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <stack>\n#include <stdexcept>\n#include <streambuf>\n#include <string>\n#include <typeinfo>\n#include <utility>\n#include <valarray>\n#include <vector>\n\n#if __cplusplus >= 201103L\n#include <array>\n#include <atomic>\n#include <chrono>\n#include <condition_variable>\n#include <forward_list>\n#include <future>\n#include <initializer_list>\n#include <mutex>\n#include <random>\n#include <ratio>\n#include <regex>\n#include <scoped_allocator>\n#include <system_error>\n#include <thread>\n#include <tuple>\n#include <typeindex>\n#include <type_traits>\n#include <unordered_map>\n#include <unordered_set>\n#endif\n#line 2 \"Source.cpp\"\nusing namespace std;\n\n#define REP(a, b) for (long long a = 0; a < b; ++a)\n#define ll long long\n#define ld long double\n#define ALL(x) begin(x), end(x)\n\n#line 1 \"library/atcoder/lazysegtree.hpp\"\n\n\n\n#line 5 \"library/atcoder/lazysegtree.hpp\"\n#include <cassert>\n#line 8 \"library/atcoder/lazysegtree.hpp\"\n\n#line 1 \"library/atcoder/internal_bit.hpp\"\n\n\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#line 10 \"library/atcoder/lazysegtree.hpp\"\n\nnamespace atcoder {\n\ntemplate <class S,\n S (*op)(S, S),\n S (*e)(),\n class F,\n S (*mapping)(F, S),\n F (*composition)(F, F),\n F (*id)()>\nstruct lazy_segtree {\n public:\n lazy_segtree() : lazy_segtree(0) {}\n explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}\n explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n lz = std::vector<F>(size, id());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n return d[p];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return e();\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n S sml = e(), smr = e();\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n void apply(int p, F f) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = mapping(f, d[p]);\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n void apply(int l, int r, F f) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return;\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n\n template <bool (*g)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return g(x); });\n }\n template <class G> int max_right(int l, G g) {\n assert(0 <= l && l <= _n);\n assert(g(e()));\n if (l == _n) return _n;\n l += size;\n for (int i = log; i >= 1; i--) push(l >> i);\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < size) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*g)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return g(x); });\n }\n template <class G> int min_left(int r, G g) {\n assert(0 <= r && r <= _n);\n assert(g(e()));\n if (r == 0) return 0;\n r += size;\n for (int i = log; i >= 1; i--) push((r - 1) >> i);\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < size) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n std::vector<F> lz;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n void all_apply(int k, F f) {\n d[k] = mapping(f, d[k]);\n if (k < size) lz[k] = composition(f, lz[k]);\n }\n void push(int k) {\n all_apply(2 * k, lz[k]);\n all_apply(2 * k + 1, lz[k]);\n lz[k] = id();\n }\n};\n\n} // namespace atcoder\n\n\n#line 10 \"Source.cpp\"\n\npair<int, int> op(pair<int, int> a, pair<int, int> b)\n{\n if (a.first == -1)\n return b;\n return a;\n}\n\npair<int, int> e()\n{\n return {-1, -1};\n}\n\npair<int, int> mapping(pair<int, int> f, pair<int, int> x)\n{\n if (f.first == -1)\n return x;\n if (x.second == f.first)\n {\n return {x.first, f.second};\n }\n return {-2, -2};\n}\n\npair<int, int> composition(pair<int, int> f, pair<int, int> g)\n{\n swap(f, g);\n if (f.first == -1)\n return g;\n if (g.first == -1)\n return f;\n if (f.second == g.first)\n return {f.first, g.second};\n return {-2, -2};\n}\n\nvoid solve()\n{\n int n, k;\n cin >> n >> k;\n atcoder::lazy_segtree<pair<int, int>, op, e, pair<int, int>, mapping, composition, e> seg(n);\n REP(i, n)\n {\n seg.set(i, {0, 1});\n }\n int t;\n cin >> t;\n REP(i, t)\n {\n int a, b, c;\n cin >> a >> b >> c;\n seg.apply(a - 1, b, pair<int, int>{c, c + 1});\n /*\n REP(q, n)\n {\n seg.get(q);\n }\n */\n }\n int ans = 0;\n REP(i, n)\n {\n pair<int, int> now = seg.get(i);\n if (seg.get(i).first == 0 and seg.get(i).second == k + 1)\n {\n ans++;\n }\n }\n cout << ans << endl;\n}\n\n#undef int\nint main()\n{\n iostream::sync_with_stdio(false);\n cout << fixed << setprecision(100);\n solve();\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 10932, "score_of_the_acc": -0.7708, "final_rank": 5 }, { "submission_id": "aoj_2734_6025014", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr int SQRT = 512;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N, K, T;\n cin >> N >> K >> T;\n\n int sz = (N + SQRT - 1) / SQRT;\n vector<int> ok(N, 0), S_block(sz, -2), T_block(sz, -2);\n\n auto propagate = [&](int k) {\n if (S_block[k] == -2 and T_block[k] == -2) return;\n int L = k * SQRT, R = min(N, (k + 1) * SQRT);\n for (int i = L; i < R; i++) {\n if (S_block[k] == -1)\n ok[i] = -1;\n else\n ok[i] = (ok[i] == S_block[k] ? T_block[k] : -1);\n }\n S_block[k] = T_block[k] = -2;\n };\n auto update = [&](int l, int r, int x) {\n for (int k = 0; k < sz; k++) {\n int L = k * SQRT, R = min(N, (k + 1) * SQRT);\n if (R <= l or r <= L) continue;\n if (l <= L and R <= r) {\n if (S_block[k] == -2 and T_block[k] == -2)\n S_block[k] = x, T_block[k] = x + 1;\n else if (T_block[k] == x)\n T_block[k]++;\n else\n S_block[k] = T_block[k] = -1;\n } else {\n propagate(k);\n for (int i = max(L, l); i < min(R, r); i++) ok[i] = (ok[i] == x ? ok[i] + 1 : -1);\n }\n }\n };\n\n for (; T--;) {\n int l, r, x;\n cin >> l >> r >> x;\n update(--l, r, --x);\n }\n\n int ans = 0;\n for (int k = 0; k < sz; k++) propagate(k);\n for (int i = 0; i < N; i++) ans += (ok[i] == K);\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 3872, "score_of_the_acc": -1, "final_rank": 10 }, { "submission_id": "aoj_2734_6025011", "code_snippet": "#define LOCAL\n#include <bits/stdc++.h>\nusing namespace std;\n#pragma region Macros\ntypedef long long ll;\ntypedef __int128_t i128;\ntypedef unsigned int uint;\ntypedef unsigned long long ull;\n#define ALL(x) (x).begin(), (x).end()\n\ntemplate <typename T> istream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v) is >> x;\n return is;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T, typename U> ostream& operator<<(ostream& os, const unordered_map<T, U>& m) {\n os << '{';\n for (auto itr = m.begin(); itr != m.end();) {\n os << '(' << itr->first << ',' << itr->second << ')';\n if (++itr != m.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const multiset<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const unordered_set<T>& s) {\n os << '{';\n for (auto itr = s.begin(); itr != s.end();) {\n os << *itr;\n if (++itr != s.end()) os << ',';\n }\n os << '}';\n return os;\n}\ntemplate <typename T> ostream& operator<<(ostream& os, const deque<T>& v) {\n for (size_t i = 0; i < v.size(); i++) {\n os << v[i] << (i + 1 == v.size() ? \"\" : \" \");\n }\n return os;\n}\ntemplate <typename T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) {\n for (size_t i = 0; i < N; i++) {\n os << v[i] << (i + 1 == N ? \"\" : \" \");\n }\n return os;\n}\n\ntemplate <int i, typename T> void print_tuple(ostream&, const T&) {}\ntemplate <int i, typename T, typename H, class... Args> void print_tuple(ostream& os, const T& t) {\n if (i) os << ',';\n os << get<i>(t);\n print_tuple<i + 1, T, Args...>(os, t);\n}\ntemplate <typename... Args> ostream& operator<<(ostream& os, const tuple<Args...>& t) {\n os << '{';\n print_tuple<0, tuple<Args...>, Args...>(os, t);\n return os << '}';\n}\n\nvoid debug_out() { cerr << '\\n'; }\ntemplate <class Head, class... Tail> void debug_out(Head&& head, Tail&&... tail) {\n cerr << head;\n if (sizeof...(Tail) > 0) cerr << \", \";\n debug_out(move(tail)...);\n}\n#ifdef LOCAL\n#define debug(...) \\\n cerr << \" \"; \\\n cerr << #__VA_ARGS__ << \" :[\" << __LINE__ << \":\" << __FUNCTION__ << \"]\" << '\\n'; \\\n cerr << \" \"; \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...) void(0)\n#endif\n\ntemplate <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }\ntemplate <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }\n\nint topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }\nint topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }\nint botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }\nint botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }\nint popcount(signed t) { return __builtin_popcount(t); }\nint popcount(long long t) { return __builtin_popcountll(t); }\nbool ispow2(int i) { return i && (i & -i) == i; }\nlong long MSK(int n) { return (1LL << n) - 1; }\n\ntemplate <class T> T ceil(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <class T> T floor(T x, T y) {\n assert(y >= 1);\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\n\ntemplate <class T1, class T2> inline bool chmin(T1& a, T2 b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T1, class T2> inline bool chmax(T1& a, T2 b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T> void mkuni(vector<T>& v) {\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n}\ntemplate <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }\n#pragma endregion\n\nconst int INF = 1e9;\nconst long long IINF = 1e18;\nconst int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\nconst char dir[4] = {'D', 'R', 'U', 'L'};\nconst long long MOD = 1000000007;\n// const long long MOD = 998244353;\n\nconstexpr int SQRT = 512;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N, K, T;\n cin >> N >> K >> T;\n\n int sz = (N + SQRT - 1) / SQRT;\n vector<int> ok(N, 0), // 次の処理はどこからか\n S_block(sz, -2), // 各ブロックの処理の始点\n T_block(sz, -2); // 各ブロックの処理の終点\n\n auto propagate = [&](int k) {\n if (S_block[k] == -2 and T_block[k] == -2) return;\n int L = k * SQRT, R = min(N, (k + 1) * SQRT);\n for (int i = L; i < R; i++) {\n if (S_block[k] == -1)\n ok[i] = -1;\n else\n ok[i] = (ok[i] == S_block[k] ? T_block[k] : -1);\n }\n S_block[k] = T_block[k] = -2;\n };\n auto update = [&](int l, int r, int x) {\n for (int k = 0; k < sz; k++) {\n int L = k * SQRT, R = min(N, (k + 1) * SQRT);\n if (R <= l or r <= L) continue;\n if (l <= L and R <= r) {\n if (S_block[k] == -2 and T_block[k] == -2)\n S_block[k] = x, T_block[k] = x + 1;\n else if (T_block[k] == x)\n T_block[k]++;\n else\n S_block[k] = T_block[k] = -1;\n } else {\n propagate(k);\n for (int i = max(L, l); i < min(R, r); i++) ok[i] = (ok[i] == x ? ok[i] + 1 : -1);\n }\n }\n };\n\n for (; T--;) {\n int l, r, x;\n cin >> l >> r >> x;\n update(--l, r, --x);\n }\n\n int ans = 0;\n for (int k = 0; k < sz; k++) propagate(k);\n for (int i = 0; i < N; i++) ans += (ok[i] == K);\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 3872, "score_of_the_acc": -0.7879, "final_rank": 6 } ]
aoj_2732_cpp
Modern Announce Network Today, modern teenagers use SNS to communicate with each other. In a high school, $N$ students are using an SNS called ICPC (International Community for Programming Contest). Some pairs of these $N$ students are 'friends' on this SNS, and can send messages to each other. Among these $N$ students, $A$ first grade students, $B$ second grade students, and $C$ third grade students are members of the Programming Society. Note that there may be some students who are not the members of the Programming Society, so $A+B +C$ can be less than $N$. There are good relationships between members of the same grade in the Society. Thus, there is a chat group in the SNS for each grade, and the Society members of the same grade can communicate with each other instantly via their group chat. On the other hand, the relationships between any different grades are not so good, and there are no chat group for the entire Society and the entire high school. In order to broadcast a message to all the Society members on the SNS, the administrator of the Society came up with a method: the administrator tells the message to one of the $N$ students and have them spread the message on the SNS via the chat groups and their friends. (The administrator itself does not have an account for the SNS.) As the members of the same grade can broadcast the message by the chat group for the grade, we can assume that if one of a grade gets the message, all other members of that grade also get the message instantly. Therefore, if the message is told to at least one member of each grade, we can assume that the message is broadcasted to the all members of the Society on the SNS. Because it is bothering to communicate between friends, we want to minimize the number of communications between friends. What is the minimum number of communications between friends to broadcast a message to all the Society members? Who is the first person to whom the administrator should tell the message to achieve the minimum communications? Input The input consists of a single test case. The test case is formatted as follows: $N$ $A$ $B$ $C$ $a_1$ ... $a_A$ $b_1$ ... $b_B$ $c_1$ ... $c_C$ $M$ $x_1$ $y_1$ ... $x_M$ $y_M$ The first line contains four integers $N$, $A$, $B$, and $C$. $N$ ($3 \leq N \leq 10,000$) denotes the number of students in the SNS, and $A$, $B$ and $C$ ($1 \leq A,B,C \leq N$ and $A + B + C \leq N$) denote the number of members of the first, second, and third grade respectively. Each student on the SNS is represented by a unique numeric ID between 1 and $N$. The second line contains $A$ integers $a_1, ..., a_A$ ($1 \leq a_1, ..., a_A \leq N$), which are the IDs of members of the first grade. The third line contains $B$ integers $b_1, ..., b_B$ ($1 \leq b_1, ..., b_B \leq N$), which are the IDs of members of the second grade. The fourth line contains $C$ integers $c_1, ..., c_C$ ($1 \leq c_1, ... , c_C \leq N$), which are the IDs of members of the third grade. You can assume ...(truncated)
[ { "submission_id": "aoj_2732_10866710", "code_snippet": "#include <queue>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n#include <iostream>\n#include <algorithm>\ntypedef long long ll;\n#define rep(i, a, b) for (int i = a; i <= b; ++ i)\nconst int maxn = 10005, maxm = 2000005, inf = 1000000007; \nusing namespace std;\nbool vis[maxn];\nint n, N[5], bel[maxn], m, e, ter[maxm], nxt[maxm], lnk[maxn], w[maxm], dis[maxn][8], opt[maxn];\nvoid add(int x, int y, int z) { ter[++ e] = y, nxt[e] = lnk[x], lnk[x] = e, w[e] = z; }\nvoid spfa(int st) {\n\tint he = 0, ta = 0;\n\trep(i, 1, n) vis[i] = true;\n\trep(i, 1, n) if (dis[i][st] != inf) opt[++ ta] = i, vis[i] = false;\n\tfor ( ; he != ta; ) {\n\t\the = (he + 1) % maxn; int u = opt[he];\n\t\tfor (int i = lnk[u]; i; i = nxt[i]) {\n\t\t\tif (dis[u][st] + w[i] < dis[ter[i]][st]) {\n\t\t\tdis[ter[i]][st] = dis[u][st] + w[i];\n\t\t\tif (vis[ter[i]]) vis[ter[i]] = false, ta = (ta + 1) % maxn, opt[ta] = ter[i];\n\t\t}\n\t}\n\t\tvis[u] = true;\n\t}\n}\nint main() {\n\tscanf(\"%d%d%d%d\", &n, &N[1], &N[2], &N[3]); int x, las, y;\n\trep(col, 1, 3) {\n\t\tlas = 0;\n\t\trep(i, 1, N[col]) {\n\t\t\tscanf(\"%d\", &x), bel[x] = col;\n\t\t\tif (las) add(las, x, 0), add(x, las, 0);\n\t\t\tlas = x;\n\t\t}\n\t}\n\tscanf(\"%d\", &m);\n\trep(i, 1, m) scanf(\"%d%d\", &x, &y), add(x, y, 1), add(y, x, 1);\n\trep(i, 1, n) rep(j, 0, 7) dis[i][j] = inf;\n\trep(col, 1, 3) {\n\t\tint st = (1 << (col - 1));\n\t\trep(i, 1, n) if (bel[i] == col) dis[i][st] = 0;\n\t\tspfa(st);\n\t}\n\tint st = 3;\n\trep(i, 1, n) dis[i][st] = min(dis[i][1] + dis[i][2], inf);\n\tspfa(st);\n\tst = 5;\n\trep(i, 1, n) dis[i][st] = min(dis[i][1] + dis[i][4], inf);\n\tspfa(st);\n\tst = 6;\n\trep(i, 1, n) dis[i][st] = min(dis[i][2] + dis[i][4], inf);\n\tspfa(st);\n\tst = 7;\n\trep(i, 1, n) \n\t\tdis[i][st] = min(dis[i][st], min(dis[i][1] + dis[i][2], inf) + dis[i][4]),\n\t\tdis[i][st] = min(dis[i][st], dis[i][1] + dis[i][6]),\n\t\tdis[i][st] = min(dis[i][st], dis[i][2] + dis[i][5]),\n\t\tdis[i][st] = min(dis[i][st], dis[i][4] + dis[i][3]);\n\tspfa(st);\n\tint ans = inf, id = 0;\n\trep(i, 1, n) \n\t\tif (dis[i][7] < ans) {\n\t\t\tans = dis[i][7], id = i;\n\t\t}\n\tprintf(\"%d %d\\n\", ans, id); \n\treturn 0;\n}", "accuracy": 1, "time_ms": 800, "memory_kb": 21692, "score_of_the_acc": -1.8504, "final_rank": 12 }, { "submission_id": "aoj_2732_10689420", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nconst int N=10010,M=1000010;\nstruct Edge{int v,nxt;} e[M];\nint h[N],sum=0,n,m,a,b,c,sa,sb,sc,fa[N];\nint disa[N],disb[N],disc[N],disx[N];\nint ans1=N,ans2=N;\n\nvoid add_edge(int u,int v)\n{\n\te[++sum]=(Edge){v,h[u]};h[u]=sum;\n\te[++sum]=(Edge){u,h[v]};h[v]=sum;\n}\n\nint find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}\n\nvoid input()\n{\n\tscanf(\"%d%d%d%d\",&n,&a,&b,&c);\n\tfor(int i=1;i<=n;i++) fa[i]=i;\n\tscanf(\"%d\",&sa);\n\tfor(int i=1,x;i<a;i++)\n\t\tscanf(\"%d\",&x),fa[x]=find(sa);\n\tscanf(\"%d\",&sb);\n\tfor(int i=1,x;i<b;i++)\n\t\tscanf(\"%d\",&x),fa[x]=find(sb);\n\tscanf(\"%d\",&sc);\n\tfor(int i=1,x;i<c;i++)\n\t\tscanf(\"%d\",&x),fa[x]=find(sc);\n\tscanf(\"%d\",&m);\n\tfor(int i=1,u,v;i<=m;i++)\n\t{\n\t\tscanf(\"%d%d\",&u,&v);\n\t\tu=find(u);v=find(v);\n\t\tadd_edge(u,v);\n\t}\n}\n\nvoid bfs(int s,int *dis)\n{\n\tstatic bool vis[N];\n\tmemset(vis,0,sizeof(vis));\n\tmemset(dis,0x3f,sizeof(int)*(n+3));\n\tqueue<int> q;q.push(s);vis[s]=1;dis[s]=0;\n\twhile(!q.empty())\n\t{\n\t\tint u=q.front();q.pop();\n\t\tfor(int i=h[u];i;i=e[i].nxt)\n\t\t\tif(!vis[e[i].v]) vis[e[i].v]=1,dis[e[i].v]=dis[u]+1,q.push(e[i].v);\n\t}\n}\n\nint main()\n{\n\tinput();\n\tbfs(sa,disa);bfs(sb,disb);bfs(sc,disc);\n\tfor(int i=1;i<=n;i++)\n\t\tans1=min(ans1,disa[find(i)]+disb[find(i)]+disc[find(i)]);\n\tfor(int i=1;i<=n;i++)\n\t{\n\t\tif(fa[i]!=i) continue;\n\t\tif(disa[i]+disb[i]+disc[i]!=ans1) continue;\n\t\tbfs(i,disx);\n\t\tfor(int j=1;j<=min(ans2,n);j++)\n\t\t\tif(disx[j]+disa[j]==disx[sa]||disx[j]+disb[j]==disx[sb]||disx[j]+disc[j]==disx[sc])\n\t\t\t\tans2=min(ans2,j);\n\t\tif(ans2==1) break;\n\t}\n\tprintf(\"%d %d\\n\",ans1,ans2);\n\treturn 0;\n}", "accuracy": 0.1076923076923077, "time_ms": 40, "memory_kb": 9780, "score_of_the_acc": -0.1956, "final_rank": 18 }, { "submission_id": "aoj_2732_10689418", "code_snippet": "#include<bits/stdc++.h>\n#define maxn 100005\n#define maxm 2000005\n#define inf 1e8\n//#define eps 1e-9\n#define LL long long\nusing namespace std;\n\nchar cb[1<<15],*cs=cb,*ct=cb;\n#define getc() (cs==ct && (ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)\ntemplate<class T>inline void read(T &res){\n\tchar ch;bool f=0;\n\tfor(;!isdigit(ch=getc());) if(ch=='-') f=1;\n\tfor(res=ch-'0';isdigit(ch=getc());res=res*10+ch-'0');\n\t(f) && (res = -res);\n}\n\nint n,a,b,c,m,bl[maxn],A[4];\npair<int,int>ans;\n\nint info[maxn],Prev[maxm],to[maxm],cnt_e;\nvoid Node(int u,int v){ Prev[++cnt_e]=info[u],info[u]=cnt_e,to[cnt_e]=v; }\n\nint dis[4][maxn],mpt[4][maxn];\nbool vis[maxn];\n\nvoid Solve(int dis[maxn],int mpt[maxn],int S){\n\tfor(int i=1;i<=n;i++) mpt[i] = i , dis[i] = inf;\n\tdis[S] = 0;\n\tqueue<int>q;q.push(S);\n\tfor(int now;!q.empty();){\n\t\tnow = q.front() , q.pop();\n\t\tfor(int i=info[now];i;i=Prev[i]){\n\t\t\tif(dis[to[i]] > dis[now] + 1 || (dis[to[i]] == dis[now] + 1 && mpt[to[i]] > mpt[now])){\n\t\t\t\tdis[to[i]] = dis[now] + 1;\n\t\t\t\tmpt[to[i]] = min(mpt[to[i]] , mpt[now]);\n\t\t\t\tq.push(to[i]);\n\t\t\t}\n\t\t}\n\t}\n}\n\nint main(){\t\n\tscanf(\"%d%d%d%d\",&n,&a,&b,&c);\n\tfor(int i=1,x;i<=a;i++)\n\t\tscanf(\"%d\",&x),bl[x]=1,(!A[1]) && (A[1] = x);\n\tfor(int i=1,x;i<=b;i++)\n\t\tscanf(\"%d\",&x),bl[x]=2,(!A[2]) && (A[2] = x);\n\tfor(int i=1,x;i<=c;i++)\n\t\tscanf(\"%d\",&x),bl[x]=3,(!A[3]) && (A[3] = x);\n\tscanf(\"%d\",&m);\n\tfor(int i=1,x,y;i<=m;i++){\n\t\tscanf(\"%d%d\",&x,&y);\n\t\tif(bl[x]) x = A[bl[x]];\n\t\tif(bl[y]) y = A[bl[y]];\n\t\tNode(x,y),Node(y,x);\n\t}\n\tSolve(dis[1],mpt[1],A[1]);\n\tSolve(dis[2],mpt[2],A[2]);\n\tSolve(dis[3],mpt[3],A[3]);\n\tans = make_pair(inf,inf);\n\tfor(int i=1;i<=n;i++){\n//\t\tprintf(\"@%d %d %d\\n\",dis[1][i],dis[2][i] , dis[3][i]);\n//\t\tprintf(\"#%d %d %d\\n\",mpt[1][i],mpt[2][i] , mpt[3][i]);\n\t\tans = min(ans , make_pair(dis[1][i] + dis[2][i] + dis[3][i] , min(mpt[1][i] , min(mpt[2][i],mpt[3][i]))));\n\t}\n\tprintf(\"%d %d\\n\",ans.first,ans.second);\n}", "accuracy": 0.1076923076923077, "time_ms": 40, "memory_kb": 13868, "score_of_the_acc": -0.4291, "final_rank": 19 }, { "submission_id": "aoj_2732_10689415", "code_snippet": "#include <algorithm>\n#include <cstdio>\n#include <cstring>\nusing namespace std;\nstruct dir\n{\n\tint y,n;\n}a[1000010];\nint h[10010],map[10010],q[10010],l,r,k,dat[10010],f[10010],fa[10010],fl[10010],s,sab,sbc,sac,ans;\nint find(int x)\n{\n\tif (x==map[x])\n\t\treturn x;\n\telse\n\t\treturn map[x]=find(map[x]);\n}\nvoid make(int x, int y)\n{\n\ta[++k].y=y;\n\ta[k].n=h[x];\n\th[x]=k;\n\treturn;\n}\nvoid spfa(int x)\n{\n\tmemset(dat,0x7f,sizeof(dat));\n\tmemset(f,0,sizeof(f));\n\tl=r=f[x]=1;\n\tq[r++]=x;\n\tdat[x]=0;\n\tint k,y;\n\tfor (;l!=r;l%=10010)\n\t{\n\t\tfor (k=h[q[l]];k;k=a[k].n)\n\t\t{\n\t\t\ty=a[k].y;\n\t\t\tif (dat[y]>dat[q[l]]+1)\n\t\t\t{\n\t\t\t\tdat[y]=dat[q[l]]+1;\n\t\t\t\tif (!f[y])\n\t\t\t\t{\n\t\t\t\t\tq[r]=y;\n\t\t\t\t\tr++;\n\t\t\t\t\tr%=10010;\n\t\t\t\t\tf[y]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tf[q[l++]]=0;\n\t}\n\treturn;\n}\nvoid flag(int x)\n{\n\tf[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]+1)&&(!f[y])) flag(y);\n\t}\n\treturn;\n}\nvoid aflag(int x)\n{\n\tfl[++k]=x;\n\tfa[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]-1)&&(f[y])&&(!fa[y])) aflag(y);\n\t}\n\treturn;\n}\nint main()\n{\n\tint n,m,na,nb,nc,i,t,x;\n\tscanf(\"%d%d%d%d\",&n,&na,&nb,&nc);\n\tfor (i=1;i<=n;i++) map[i]=i;\n\tt=0;\n\tfor (i=1;i<=na;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tna=t;\n\tt=0;\n\tfor (i=1;i<=nb;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnb=t;\n\tt=0;\n\tfor (i=1;i<=nc;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnc=t;\n\tscanf(\"%d\",&m);\n\tfor (i=1;i<=m;i++)\n\t{\n\t\tscanf(\"%d%d\",&t,&x);\n\t\tt=find(t);\n\t\tx=find(x);\n\t\tif (t==x) continue;\n\t\tmake(t,x);\n\t\tmake(x,t);\n\t}\n/*\tspfa(na);\n\tsab=dat[nb];\n\tsac=dat[nc];\n\tspfa(nb);\n\tflag(nb);\n\taflag(na);\n\taflag(nb);\n\tsbc=dat[nc];\n\tif (sab+sbc==sac)\n\t\tprintf(\"%d\",sac);\n\telse if (sac+sbc==sab)\n\t\tprintf(\"%d\",sab);\n\telse if (sab+sac==sbc)\n\t\tprintf(\"%d\",sbc);\n\telse\n\t{\n\t\tprintf(\"%d\",(sab+sac+sbc)>>1);\n\t}\n\tprintf(\" %d\\n\",ans);*/\n\tspfa(na);\n\tif (dat[nb]>dat[nc]) swap(nb,nc);\n\tmemset(f,0,sizeof(f));\n\tk=0;\n\tflag(na);\n\taflag(nb);\n\ts=dat[nb];\n\tspfa(nc);\n\tans=t=0x7fffffff;\n\tfor (i=1;i<=k;i++)\n\t\tif (ans>dat[fl[i]])\n\t\t{\n\t\t\tans=dat[fl[i]];\n\t\t\tt=fl[i];\n\t\t}\n\t\telse if (ans==dat[fl[i]])\n\t\t\tt=min(t,fl[i]);\n \tprintf(\"%d \",s+ans);\n \tans=0x7fffffff;\n\tk=0;\n\tmemset(f,0,sizeof(f));\n\tflag(nc);\n\tmemset(fa,0,sizeof(fa));\n\taflag(t);\n\tsort(fl+1,fl+k+1);\n\tans=min(ans,fl[1]);\n\n\tspfa(nb);\n\tk=0;\n\tmemset(f,0,sizeof(f));\n\tflag(nb);\n\tmemset(fa,0,sizeof(fa));\n\taflag(t);\n\tsort(fl+1,fl+k+1);\n\tans=min(ans,fl[1]);\n\t\n\tspfa(na);\n\tk=0;\n\tmemset(f,0,sizeof(f));\n\tflag(na);\n\tmemset(fa,0,sizeof(fa));\n\taflag(t);\n\tsort(fl+1,fl+k+1);\n\tprintf(\"%d\\n\",min(ans,fl[1]));\n\treturn 0;\n}", "accuracy": 0.2, "time_ms": 80, "memory_kb": 9108, "score_of_the_acc": -0.2085, "final_rank": 16 }, { "submission_id": "aoj_2732_10689413", "code_snippet": "#include <algorithm>\n#include <cstdio>\n#include <cstring>\nusing namespace std;\nstruct dir\n{\n\tint y,n;\n}a[1000010];\nint h[10010],map[10010],q[10010],l,r,k,dat[10010],f[10010],fa[10010],fl[10010],s,sab,sbc,sac,ans;\nint find(int x)\n{\n\tif (x==map[x])\n\t\treturn x;\n\telse\n\t\treturn map[x]=find(map[x]);\n}\nvoid make(int x, int y)\n{\n\ta[++k].y=y;\n\ta[k].n=h[x];\n\th[x]=k;\n\treturn;\n}\nvoid spfa(int x)\n{\n\tmemset(dat,0x7f,sizeof(dat));\n\tmemset(f,0,sizeof(f));\n\tl=r=f[x]=1;\n\tq[r++]=x;\n\tdat[x]=0;\n\tint k,y;\n\tfor (;l!=r;l%=10010)\n\t{\n\t\tfor (k=h[q[l]];k;k=a[k].n)\n\t\t{\n\t\t\ty=a[k].y;\n\t\t\tif (dat[y]>dat[q[l]]+1)\n\t\t\t{\n\t\t\t\tdat[y]=dat[q[l]]+1;\n\t\t\t\tif (!f[y])\n\t\t\t\t{\n\t\t\t\t\tq[r]=y;\n\t\t\t\t\tr++;\n\t\t\t\t\tr%=10010;\n\t\t\t\t\tf[y]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tf[q[l++]]=0;\n\t}\n\treturn;\n}\nvoid flag(int x)\n{\n\tf[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]+1)&&(!f[y])) flag(y);\n\t}\n\treturn;\n}\nvoid aflag(int x)\n{\n\tfl[++k]=x;\n\tfa[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]-1)&&(f[y])&&(!fa[y])) aflag(y);\n\t}\n\treturn;\n}\nint main()\n{\n\tint n,m,na,nb,nc,i,t,x;\n\tscanf(\"%d%d%d%d\",&n,&na,&nb,&nc);\n\tfor (i=1;i<=n;i++) map[i]=i;\n\tt=0;\n\tfor (i=1;i<=na;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tna=t;\n\tt=0;\n\tfor (i=1;i<=nb;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnb=t;\n\tt=0;\n\tfor (i=1;i<=nc;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnc=t;\n\tscanf(\"%d\",&m);\n\tfor (i=1;i<=m;i++)\n\t{\n\t\tscanf(\"%d%d\",&t,&x);\n\t\tt=find(t);\n\t\tx=find(x);\n\t\tif (t==x) continue;\n\t\tmake(t,x);\n\t\tmake(x,t);\n\t}\n/*\tspfa(na);\n\tsab=dat[nb];\n\tsac=dat[nc];\n\tspfa(nb);\n\tflag(nb);\n\taflag(na);\n\taflag(nb);\n\tsbc=dat[nc];\n\tif (sab+sbc==sac)\n\t\tprintf(\"%d\",sac);\n\telse if (sac+sbc==sab)\n\t\tprintf(\"%d\",sab);\n\telse if (sab+sac==sbc)\n\t\tprintf(\"%d\",sbc);\n\telse\n\t{\n\t\tprintf(\"%d\",(sab+sac+sbc)>>1);\n\t}\n\tprintf(\" %d\\n\",ans);*/\n\tspfa(na);\n\tif (dat[nb]>dat[nc]) swap(nb,nc);\n\tmemset(f,0,sizeof(f));\n\tk=0;\n\tflag(na);\n\taflag(nb);\n\ts=dat[nb];\n\tspfa(nc);\n\tans=t=0x7fffffff;\n\tfor (i=1;i<=k;i++)\n\t\tif (ans>=dat[fl[i]])\n\t\t{\n\t\t\tans=dat[fl[i]];\n\t\t\tt=min(fl[i],t);\n\t\t}\n \tprintf(\"%d \",s+ans);\n\tsort(fl+1,fl+k+1);\n\tans=fl[1];\n\tk=0;\n\tmemset(f,0,sizeof(f));\n\tflag(nc);\n\tmemset(fa,0,sizeof(fa));\n\taflag(t);\n\tsort(fl+1,fl+k+1);\n\tprintf(\"%d\\n\",min(ans,fl[1]));\n\treturn 0;\n}", "accuracy": 0.2, "time_ms": 60, "memory_kb": 9084, "score_of_the_acc": -0.1815, "final_rank": 14 }, { "submission_id": "aoj_2732_10689401", "code_snippet": "#include <algorithm>\n#include <cstdio>\n#include <cstring>\nusing namespace std;\nstruct dir\n{\n\tint y,n;\n}a[1000010];\nint h[10010],map[10010],q[10010],l,r,k,dat[10010],f[10010],fa[10010],fl[10010],s,sab,sbc,sac,ans;\nint find(int x)\n{\n\tif (x==map[x])\n\t\treturn x;\n\telse\n\t\treturn map[x]=find(map[x]);\n}\nvoid make(int x, int y)\n{\n\ta[++k].y=y;\n\ta[k].n=h[x];\n\th[x]=k;\n\treturn;\n}\nvoid spfa(int x)\n{\n\tmemset(dat,0x7f,sizeof(dat));\n\tmemset(f,0,sizeof(f));\n\tl=r=f[x]=1;\n\tq[r++]=x;\n\tdat[x]=0;\n\tint k,y;\n\tfor (;l!=r;l%=10010)\n\t{\n\t\tfor (k=h[q[l]];k;k=a[k].n)\n\t\t{\n\t\t\ty=a[k].y;\n\t\t\tif (dat[y]>dat[q[l]]+1)\n\t\t\t{\n\t\t\t\tdat[y]=dat[q[l]]+1;\n\t\t\t\tif (!f[y])\n\t\t\t\t{\n\t\t\t\t\tq[r]=y;\n\t\t\t\t\tr++;\n\t\t\t\t\tr%=10010;\n\t\t\t\t\tf[y]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tf[q[l++]]=0;\n\t}\n\treturn;\n}\nvoid flag(int x)\n{\n\tf[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]+1)&&(!f[y])) flag(y);\n\t}\n\treturn;\n}\nvoid aflag(int x)\n{\n\tif (f[x]) fl[++k]=x;\n\tfa[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]-1)&&(f[y])&&(!fa[y])) aflag(y);\n\t}\n\treturn;\n}\nint main()\n{\n\tint n,m,na,nb,nc,i,t,x;\n\tscanf(\"%d%d%d%d\",&n,&na,&nb,&nc);\n\tfor (i=1;i<=n;i++) map[i]=i;\n\tt=0;\n\tfor (i=1;i<=na;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tna=t;\n\tt=0;\n\tfor (i=1;i<=nb;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnb=t;\n\tt=0;\n\tfor (i=1;i<=nc;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnc=t;\n\tscanf(\"%d\",&m);\n\tfor (i=1;i<=m;i++)\n\t{\n\t\tscanf(\"%d%d\",&t,&x);\n\t\tt=find(t);\n\t\tx=find(x);\n\t\tif (t==x) continue;\n\t\tmake(t,x);\n\t\tmake(x,t);\n\t}\n/*\tspfa(na);\n\tsab=dat[nb];\n\tsac=dat[nc];\n\tspfa(nb);\n\tflag(nb);\n\taflag(na);\n\taflag(nb);\n\tsbc=dat[nc];\n\tif (sab+sbc==sac)\n\t\tprintf(\"%d\",sac);\n\telse if (sac+sbc==sab)\n\t\tprintf(\"%d\",sab);\n\telse if (sab+sac==sbc)\n\t\tprintf(\"%d\",sbc);\n\telse\n\t{\n\t\tprintf(\"%d\",(sab+sac+sbc)>>1);\n\t}\n\tprintf(\" %d\\n\",ans);*/\n\tspfa(na);\n\tmemset(f,0,sizeof(f));\n\tk=0;\n\tflag(na);\n\taflag(nb);\n\ts=dat[nb];\n\tspfa(nc);\n\tmemset(f,0,sizeof(f));\n\tans=0x7fffffff;\n\tfor (i=1;i<=k;i++)\n\t\tif (ans>dat[fl[i]])\n\t\t{\n\t\t\tans=dat[fl[i]];\n\t\t\tt=fl[i];\n\t\t}\n \tprintf(\"%d \",s+ans);\n\tsort(fl+1,fl+k+1);\n\tans=fl[1];\n\tk=0;\n\tflag(nc);\n\taflag(t);\n\tsort(fl+1,fl+k+1);\n\tprintf(\"%d\\n\",min(ans,fl[1]));\n\treturn 0;\n}", "accuracy": 0.07692307692307693, "time_ms": 20, "memory_kb": 6804, "score_of_the_acc": 0, "final_rank": 20 }, { "submission_id": "aoj_2732_10689392", "code_snippet": "#include <algorithm>\n#include <cstdio>\n#include <cstring>\nusing namespace std;\nstruct dir\n{\n\tint y,n;\n}a[1000010];\nint h[10010],map[10010],q[10010],l,r,k,dat[10010],f[10010],fa[10010],fl[10010],s,sab,sbc,sac,ans;\nint find(int x)\n{\n\tif (x==map[x])\n\t\treturn x;\n\telse\n\t\treturn map[x]=find(map[x]);\n}\nvoid make(int x, int y)\n{\n\ta[++k].y=y;\n\ta[k].n=h[x];\n\th[x]=k;\n\treturn;\n}\nvoid spfa(int x)\n{\n\tmemset(dat,0x7f,sizeof(dat));\n\tmemset(f,0,sizeof(f));\n\tl=r=f[x]=1;\n\tq[r++]=x;\n\tdat[x]=0;\n\tint k,y;\n\tfor (;l!=r;l%=10010)\n\t{\n\t\tfor (k=h[q[l]];k;k=a[k].n)\n\t\t{\n\t\t\ty=a[k].y;\n\t\t\tif (dat[y]>dat[q[l]]+1)\n\t\t\t{\n\t\t\t\tdat[y]=dat[q[l]]+1;\n\t\t\t\tif (!f[y])\n\t\t\t\t{\n\t\t\t\t\tq[r]=y;\n\t\t\t\t\tr++;\n\t\t\t\t\tr%=10010;\n\t\t\t\t\tf[y]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tf[q[l++]]=0;\n\t}\n\treturn;\n}\nvoid flag(int x)\n{\n\tf[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]+1)&&(!f[y])) flag(y);\n\t}\n\treturn;\n}\nvoid aflag(int x)\n{\n\tfl[++k]=x;\n\tfa[x]=1;\n\tint k,y;\n\tfor (k=h[x];k;k=a[k].n)\n\t{\n\t\ty=a[k].y;\n\t\tif ((dat[y]==dat[x]-1)&&(f[y])&&(!fa[y])) aflag(y);\n\t}\n\treturn;\n}\nint main()\n{\n\tint n,m,na,nb,nc,i,t,x;\n\tscanf(\"%d%d%d%d\",&n,&na,&nb,&nc);\n\tfor (i=1;i<=n;i++) map[i]=i;\n\tt=0;\n\tfor (i=1;i<=na;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tna=t;\n\tt=0;\n\tfor (i=1;i<=nb;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnb=t;\n\tt=0;\n\tfor (i=1;i<=nc;i++)\n\t{\n\t\tscanf(\"%d\",&x);\n\t\tif (t)\n\t\t{\n\t\t\tmap[t]=map[x]=min(map[t],map[x]);\n\t\t\tt=map[t];\n\t\t}\n\t\telse\n\t\t\tt=x;\n\t}\n\tnc=t;\n\tscanf(\"%d\",&m);\n\tfor (i=1;i<=m;i++)\n\t{\n\t\tscanf(\"%d%d\",&t,&x);\n\t\tt=find(t);\n\t\tx=find(x);\n\t\tif (t==x) continue;\n\t\tmake(t,x);\n\t\tmake(x,t);\n\t}\n/*\tspfa(na);\n\tsab=dat[nb];\n\tsac=dat[nc];\n\tspfa(nb);\n\tflag(nb);\n\taflag(na);\n\taflag(nb);\n\tsbc=dat[nc];\n\tif (sab+sbc==sac)\n\t\tprintf(\"%d\",sac);\n\telse if (sac+sbc==sab)\n\t\tprintf(\"%d\",sab);\n\telse if (sab+sac==sbc)\n\t\tprintf(\"%d\",sbc);\n\telse\n\t{\n\t\tprintf(\"%d\",(sab+sac+sbc)>>1);\n\t}\n\tprintf(\" %d\\n\",ans);*/\n\tspfa(na);\n\tif (dat[nb]>dat[nc]) swap(nb,nc);\n\tmemset(f,0,sizeof(f));\n\tk=0;\n\tflag(na);\n\taflag(nb);\n\ts=dat[nb];\n\tspfa(nc);\n\tans=t=0x7fffffff;\n\tfor (i=1;i<=k;i++)\n\t\tif (ans>=dat[fl[i]])\n\t\t{\n\t\t\tans=dat[fl[i]];\n\t\t\tt=min(fl[i],t);\n\t\t}\n \tprintf(\"%d \",s+ans);\n\tsort(fl+1,fl+k+1);\n\tans=fl[1];\n\tk=0;\n\tmemset(f,0,sizeof(f));\n\tflag(nc);\n\tmemset(fa,0,sizeof(fa));\n\taflag(t);\n\tsort(fl+1,fl+k+1);\n\tprintf(\"%d\\n\",min(ans,fl[1]));\n\tspfa(nb);\n\tspfa(na);\n\tspfa(nc);\n\treturn 0;\n}", "accuracy": 0.2, "time_ms": 70, "memory_kb": 9084, "score_of_the_acc": -0.1943, "final_rank": 15 }, { "submission_id": "aoj_2732_10464888", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <cassert>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <numeric>\n#include <tuple>\n#include <ranges>\nnamespace ranges = std::ranges;\nnamespace views = std::views;\n// #include \"Src/Number/IntegerDivision.hpp\"\n// #include \"Src/Utility/BinarySearch.hpp\"\n// #include \"Src/Sequence/CompressedSequence.hpp\"\n// #include \"Src/Sequence/RunLengthEncoding.hpp\"\n// #include \"Src/Algebra/Group/AdditiveGroup.hpp\"\n// #include \"Src/DataStructure/FenwickTree/FenwickTree.hpp\"\n// #include \"Src/DataStructure/SegmentTree/SegmentTree.hpp\"\n// using namespace zawa;\n// #include \"atcoder/modint\"\n// using mint = atcoder::modint998244353;\n#include <queue>\nint N, M;\nstd::vector<std::pair<int, int>> g[100010 + 3];\nint main() {\n std::cin.tie(nullptr);\n std::cout.tie(nullptr);\n std::ios::sync_with_stdio(false);\n int n[3];\n std::cin >> N >> n[0] >> n[1] >> n[2];\n for (int j = 0 ; j < 3 ; j++) {\n for (int i = 0 ; i < n[j] ; i++) {\n int a;\n std::cin >> a;\n a--;\n g[a].push_back({N + j, 0});\n g[N + j].push_back({a, 0});\n }\n }\n std::cin >> M;\n for (int i = 0 ; i < M ; i++) {\n int u, v;\n std::cin >> u >> v;\n u--; v--;\n g[u].push_back({v, 1});\n g[v].push_back({u, 1});\n }\n const int INF = (int)1e9;\n std::vector dp(8, std::vector<int>(N + 3, INF));\n for (int i = 0 ; i < 3 ; i++) dp[1 << i][N + i] = 0;\n for (int b = 1 ; b < 8 ; b++) {\n for (int i = 0 ; i < N + 3 ; i++) {\n for (int msk = (b - 1) & b ; msk ; msk = (msk - 1) & b) {\n dp[b][i] = std::min(dp[b][i], dp[msk][i] + dp[b ^ msk][i]);\n }\n }\n using qt = std::pair<int, int>;\n std::priority_queue<qt, std::vector<qt>, std::greater<qt>> que;\n for (int i = 0 ; i < N + 3 ; i++) if (dp[b][i] < INF) que.push({dp[b][i], i});\n while (que.size()) {\n auto [d, v] = que.top();\n que.pop();\n if (d > dp[b][v]) continue;\n for (auto [x, w] : g[v]) if (dp[b][x] > d + w) {\n dp[b][x] = d + w;\n que.push({d + w, x});\n }\n }\n }\n assert(dp[7][N] == dp[7][N + 1] and dp[7][N + 1] == dp[7][N + 2]);\n int ans = N + 2;\n for (int i = N - 1 ; i >= 0 ; i--) if (dp[7][ans] >= dp[7][i]) ans = i;\n std::cout << dp[7][ans] << ' ' << ans + 1 << '\\n';\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 18048, "score_of_the_acc": -0.6807, "final_rank": 9 }, { "submission_id": "aoj_2732_10319536", "code_snippet": "// AOJ #2732 Modern Announce Network\n// 2025.3.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\ntypedef pair<int, int> pii;\n\nconst int INF = 100000000;\nconst int MAX = 10101;\n\nint N, A, B, C, M;\nint g1[MAX], g2[MAX], g3[MAX];\nvector<pii> adj[MAX];\n\nvoid dij(int s, vector<int> &d, vector<int> &mn) {\n priority_queue<pii, vector<pii>, greater<pii>> pq;\n for (int i = 1; i <= N; i++) mn[i] = i;\n d[s] = 0;\n pq.push({0, s});\n while (!pq.empty()) {\n auto [dist, cur] = pq.top();\n pq.pop();\n if (dist != d[cur]) continue;\n for (auto &e : adj[cur]) {\n int nxt = e.first, cost = e.second;\n if (d[nxt] > d[cur] + cost) {\n d[nxt] = d[cur] + cost;\n mn[nxt] = min(nxt, mn[cur]);\n pq.push({d[nxt], nxt});\n } else if (d[nxt] == d[cur] + cost) mn[nxt] = min(mn[nxt], mn[cur]);\n }\n }\n}\n\nint main() {\n ios_base::sync_with_stdio(0);\n cin.tie(0);\n\n cin >> N >> A >> B >> C;\n\n int sa, sb, sc;\n for (int i = 1; i <= A; i++) {\n cin >> g1[i];\n if (i == 1) sa = g1[i];\n else {\n int u = g1[i - 1], v = g1[i];\n adj[u].push_back({v, 0});\n adj[v].push_back({u, 0});\n }\n }\n for (int i = 1; i <= B; i++) {\n cin >> g2[i];\n if (i == 1) sb = g2[i];\n else {\n int u = g2[i - 1], v = g2[i];\n adj[u].push_back({v, 0});\n adj[v].push_back({u, 0});\n }\n }\n for (int i = 1; i <= C; i++) {\n cin >> g3[i];\n if (i == 1) sc = g3[i];\n else {\n int u = g3[i - 1], v = g3[i];\n adj[u].push_back({v, 0});\n adj[v].push_back({u, 0});\n }\n }\n\n cin >> M;\n for (int i = 0; i < M; i++) {\n int u, v;\n cin >> u >> v;\n adj[u].push_back({v, 1});\n adj[v].push_back({u, 1});\n }\n\n vector<int> d1(N+1, INF), d2(N+1, INF), d3(N+1, INF);\n vector<int> m1(N+1), m2(N+1), m3(N+1);\n dij(sa, d1, m1);\n dij(sb, d2, m2);\n dij(sc, d3, m3);\n\n pii ans = {INF, INF};\n for (int i = 1; i <= N; i++) ans = min(ans, {d1[i] + d2[i] + d3[i], i});\n\n int mn = ans.second;\n for (int i = 1; i <= N; i++) {\n if (d1[i] + d2[i] + d3[i] != ans.first) continue;\n mn = min({mn, m1[i], m2[i], m3[i]});\n }\n for (int i = 1; i <= A; i++) mn = min(mn, g1[i]);\n for (int i = 1; i <= B; i++) mn = min(mn, g2[i]);\n for (int i = 1; i <= C; i++) mn = min(mn, g3[i]);\n\n cout << ans.first << ' ' << mn << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 15400, "score_of_the_acc": -0.5423, "final_rank": 5 }, { "submission_id": "aoj_2732_10298048", "code_snippet": "// AOJ #2732 Modern Announce Network\n// 2025.3.14\n\n#include <bits/stdc++.h>\nusing namespace std;\nconst int INF = 1e9;\n \nstruct Node { int d, m; };\n \nvector<Node> bfs(int n, const vector<vector<int>> &adj, const vector<int> &src, int init) {\n vector<Node> dist(n+1, {INF, INF});\n deque<int> dq;\n for (int s : src) {\n dist[s] = {0, init};\n dq.push_back(s);\n }\n while(!dq.empty()){\n int u = dq.front(); dq.pop_front();\n for (int w : adj[u]) {\n int nd = dist[u].d + 1;\n int nm = min(dist[u].m, w);\n if(dist[w].d > nd || (dist[w].d == nd && dist[w].m > nm)){\n dist[w] = {nd, nm};\n dq.push_back(w);\n }\n }\n }\n return dist;\n}\n \npair<int,int> comb(const pair<int,int> &a, const pair<int,int> &b) {\n return {a.first + b.first, min(a.second, b.second)};\n}\n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N, A, B, C;\n cin >> N >> A >> B >> C;\n vector<int> g1(A), g2(B), g3(C);\n for (int i = 0; i < A; i++) cin >> g1[i];\n for (int i = 0; i < B; i++) cin >> g2[i];\n for (int i = 0; i < C; i++) cin >> g3[i];\n \n int M;\n cin >> M;\n vector<vector<int>> adj(N+1);\n for (int i = 0; i < M; i++){\n int u, v;\n cin >> u >> v;\n adj[u].push_back(v);\n adj[v].push_back(u);\n }\n for (int i = 1; i <= N; i++) sort(adj[i].begin(), adj[i].end());\n \n int min1 = *min_element(g1.begin(), g1.end());\n int min2 = *min_element(g2.begin(), g2.end());\n int min3 = *min_element(g3.begin(), g3.end());\n \n auto d1 = bfs(N, adj, g1, min1);\n auto d2 = bfs(N, adj, g2, min2);\n auto d3 = bfs(N, adj, g3, g3.empty()? INF: min3);\n \n vector<bool> soc(N+1, false);\n for (int x : g1) soc[x] = true;\n for (int x : g2) soc[x] = true;\n for (int x : g3) soc[x] = true;\n \n pair<int,int> cand12 = {INF, INF};\n for (int v : g2) {\n pair<int,int> cur = {d1[v].d, min(d1[v].m, v)};\n if(cur.first < cand12.first || (cur.first == cand12.first && cur.second < cand12.second))\n cand12 = cur;\n }\n pair<int,int> cand13 = {INF, INF};\n for (int v : g3) {\n pair<int,int> cur = {d1[v].d, min(d1[v].m, v)};\n if(cur.first < cand13.first || (cur.first == cand13.first && cur.second < cand13.second))\n cand13 = cur;\n }\n pair<int,int> cand23 = {INF, INF};\n for (int v : g3) {\n pair<int,int> cur = {d2[v].d, min(d2[v].m, v)};\n if(cur.first < cand23.first || (cur.first == cand23.first && cur.second < cand23.second))\n cand23 = cur;\n }\n \n pair<int,int> socCand = {INF, INF};\n socCand = min(socCand, comb(cand12, cand13));\n socCand = min(socCand, comb(cand12, cand23));\n socCand = min(socCand, comb(cand13, cand23));\n \n pair<int,int> nonCand = {INF, INF};\n for (int v = 1; v <= N; v++){\n if(!soc[v]){\n int cost = d1[v].d + d2[v].d + d3[v].d;\n int mn = min({d1[v].m, d2[v].m, d3[v].m, v});\n pair<int,int> cur = {cost, mn};\n if(cur.first < nonCand.first || (cur.first == nonCand.first && cur.second < nonCand.second))\n nonCand = cur;\n }\n }\n \n pair<int,int> ans;\n if(nonCand.first < socCand.first) ans = nonCand;\n else if(nonCand.first > socCand.first) ans = socCand;\n else ans = min(nonCand, socCand);\n cout << ans.first << \" \" << ans.second << endl;\n return 0;\n}", "accuracy": 0.4153846153846154, "time_ms": 70, "memory_kb": 9396, "score_of_the_acc": -0.2121, "final_rank": 13 }, { "submission_id": "aoj_2732_9790775", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint main() {\n int N, A, B, C;\n cin >> N >> A >> B >> C;\n vector<int> ID(N,-1);\n rep(i,0,A) {\n int X;\n cin >> X;\n X--;\n ID[X] = 0;\n }\n rep(i,0,B) {\n int X;\n cin >> X;\n X--;\n ID[X] = 1;\n }\n rep(i,0,C) {\n int X;\n cin >> X;\n X--;\n ID[X] = 2;\n }\n int Cur = 3;\n rep(i,0,N) {\n if (ID[i] == -1) {\n ID[i] = Cur;\n Cur++;\n }\n }\n N = Cur;\n vector<int> MinV(N,inf);\n rep(i,0,ID.size()) chmin(MinV[ID[i]],i);\n vector<vector<int>> G(N);\n int M;\n cin >> M;\n rep(i,0,M) {\n int X, Y;\n cin >> X >> Y;\n X--, Y--;\n X=ID[X],Y=ID[Y];\n if (X == Y) continue;\n G[X].push_back(Y);\n G[Y].push_back(X);\n }\n auto Dijkstra = [&](int S) -> vector<pair<int,int>> {\n vector<pair<int,int>> DP(N,{inf,inf});\n DP[S] = {0,MinV[S]};\n priority_queue<pair<pair<int,int>,int>,vector<pair<pair<int,int>,int>>,greater<pair<pair<int,int>,int>>> PQ;\n PQ.push({{0,MinV[S]},S});\n while(!PQ.empty()) {\n auto [P,V] = PQ.top();\n PQ.pop();\n if (DP[V] < P) continue;\n for (auto NV : G[V]) {\n if (chmin(DP[NV],{P.first+1,min(P.second,MinV[NV])})) {\n PQ.push({DP[NV],NV});\n }\n }\n }\n return DP;\n };\n vector<vector<pair<int,int>>> DPS(3);\n rep(i,0,3) DPS[i] = Dijkstra(i);\n pair<int,int> ANS = {inf,inf};\n rep(i,0,N) {\n int SUM = 0, MIN = inf;\n rep(j,0,3) {\n SUM += DPS[j][i].first;\n chmin(MIN,DPS[j][i].second);\n }\n chmin(ANS,{SUM,MIN});\n }\n cout << ANS.first << ' ' << ANS.second+1 << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 8228, "score_of_the_acc": -0.2224, "final_rank": 1 }, { "submission_id": "aoj_2732_6783717", "code_snippet": "#line 1 \"c.cpp\"\n/*\tauthor: Kite_kuma\n\tcreated: 2022.07.05 15:38:12 */\n\n#line 2 \"SPJ-Library/graph/graph.hpp\"\n#include <algorithm>\n#include <cassert>\n#include <deque>\n#include <iostream>\n#include <queue>\n#include <tuple>\n#include <vector>\n\n#pragma region graph\n\ntemplate <class cost_type = long long>\nclass graph {\n public:\n\tstruct edge {\n\t public:\n\t\tint from, to;\n\t\tcost_type cost;\n\t\tint id;\n\t\tedge() = default;\n\t\tedge(int from_, int to_, cost_type cost_ = 1, int id_ = -1) : from(from_), to(to_), cost(cost_), id(id_) {}\n\t\tbool operator<(const edge &a) const { return cost < a.cost; }\n\t\tbool operator>(const edge &a) const { return cost > a.cost; }\n\t\tfriend std::ostream &operator<<(std::ostream &s, const edge &a) {\n\t\t\ts << '(' << a.from << \" -> \" << a.to << \"), cost: \" << a.cost << \", id: \" << a.id;\n\t\t\treturn s;\n\t\t}\n\t};\n\n private:\n\tstd::vector<std::vector<edge>> edges;\n\tint next_edge_id = 0;\n\n public:\n\tinline const std::vector<edge> &operator[](int k) const { return edges[k]; }\n\tinline std::vector<edge> &operator[](int k) { return edges[k]; }\n\n\tint size() const { return int(edges.size()); }\n\tvoid resize(const int n) { edges.resize(n); }\n\tint edge_count() const { return next_edge_id; }\n\n\tfriend std::ostream &operator<<(std::ostream &s, const graph<cost_type> &g) {\n\t\tfor(const auto &adj : g.edges)\n\t\t\tfor(const auto &ed : adj) s << ed << '\\n';\n\t\treturn s;\n\t}\n\n\tgraph() = default;\n\tgraph(int n) : edges(n) {}\n\tgraph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); }\n\tconst cost_type INF = std::numeric_limits<cost_type>::max() / 3;\n\n\tvoid input(int e = -1, bool weight = false, bool directed = false, int idx = 1) {\n\t\tif(e == -1) e = size() - 1;\n\t\twhile(e--) {\n\t\t\tint u, v;\n\t\t\tstd::cin >> u >> v;\n\t\t\tcost_type cost = 1;\n\t\t\tif(weight) std::cin >> cost;\n\t\t\tadd_edge(u, v, cost, directed, idx);\n\t\t}\n\t}\n\n\tinline int add_edge(int u, int v, cost_type cost = 1, bool directed = false, int idx = 0) {\n\t\tu -= idx, v -= idx;\n\t\tedges[u].emplace_back(u, v, cost, next_edge_id);\n\t\tif(!directed && u != v) edges[v].emplace_back(v, u, cost, next_edge_id);\n\t\treturn next_edge_id++;\n\t}\n\n\t// Ο(V+E)\n\tstd::vector<cost_type> bfs(int s) const {\n\t\tstd::vector<cost_type> dist(size(), INF);\n\t\tstd::queue<int> que;\n\t\tdist[s] = 0;\n\t\tque.push(s);\n\t\twhile(!que.empty()) {\n\t\t\tint v = que.front();\n\t\t\tque.pop();\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] != INF) continue;\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tque.push(e.to);\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(V+E)\n\t// constraint: cost of each edge is zero or x (>= 0)\n\tstd::vector<cost_type> zero_one_bfs(int s) const {\n\t\tstd::vector<cost_type> dist(size(), INF);\n\t\tstd::deque<int> deq;\n\t\tdist[s] = 0;\n\t\tdeq.push_back(s);\n\t\twhile(!deq.empty()) {\n\t\t\tint v = deq.front();\n\t\t\tdeq.pop_front();\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] > dist[v] + e.cost) {\n\t\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\t\te.cost ? deq.push_back(e.to) : deq.push_front(e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο((E+V) lg E)\n\t// unreachable: INF\n\tstd::vector<cost_type> dijkstra(int s) const {\n\t\tstd::vector<cost_type> dist(size(), INF);\n\t\tconst auto compare = [](const std::pair<cost_type, int> &a, const std::pair<cost_type, int> &b) {\n\t\t\treturn a.first > b.first;\n\t\t};\n\t\tstd::priority_queue<std::pair<cost_type, int>, std::vector<std::pair<cost_type, int>>, decltype(compare)> que{compare};\n\t\tdist[s] = 0;\n\t\tque.emplace(0, s);\n\t\twhile(!que.empty()) {\n\t\t\tstd::pair<cost_type, int> p = que.top();\n\t\t\tque.pop();\n\t\t\tint v = p.second;\n\t\t\tif(dist[v] < p.first) continue;\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] > dist[v] + e.cost) {\n\t\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\t\tque.emplace(dist[e.to], e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(VE)\n\t// unreachable: INF\n\t// reachable via negative cycle: -INF\n\tstd::vector<cost_type> bellman_ford(int s) const {\n\t\tint n = size();\n\t\tstd::vector<cost_type> res(n, INF);\n\t\tres[s] = 0;\n\t\tfor(int loop = 0; loop < n - 1; loop++) {\n\t\t\tfor(int v = 0; v < n; v++) {\n\t\t\t\tif(res[v] == INF) continue;\n\t\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\t\tres[e.to] = std::min(res[e.to], res[v] + e.cost);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tstd::queue<int> que;\n\t\tstd::vector<int> chk(n);\n\t\tfor(int v = 0; v < n; v++) {\n\t\t\tif(res[v] == INF) continue;\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(res[e.to] > res[v] + e.cost and !chk[e.to]) {\n\t\t\t\t\tque.push(e.to);\n\t\t\t\t\tchk[e.to] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\twhile(!que.empty()) {\n\t\t\tint now = que.front();\n\t\t\tque.pop();\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(!chk[e.to]) {\n\t\t\t\t\tchk[e.to] = 1;\n\t\t\t\t\tque.push(e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tif(chk[i]) res[i] = -INF;\n\t\treturn res;\n\t}\n\n\t// Ο(V^3)\n\tstd::vector<std::vector<cost_type>> warshall_floyd() const {\n\t\tconst int n = size();\n\t\tstd::vector<std::vector<cost_type>> dist(n, std::vector<cost_type>(n, INF));\n\t\tfor(int i = 0; i < n; i++) dist[i][i] = 0;\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tfor(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost);\n\t\tfor(int k = 0; k < n; k++)\n\t\t\tfor(int i = 0; i < n; i++) {\n\t\t\t\tif(dist[i][k] == INF) continue;\n\t\t\t\tfor(int j = 0; j < n; j++) {\n\t\t\t\t\tif(dist[k][j] == INF) continue;\n\t\t\t\t\tdist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);\n\t\t\t\t}\n\t\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(V) (using DFS)\n\t// if a cycle exists, return {}\n\tstd::vector<int> topological_sort() const {\n\t\tstd::vector<int> res;\n\t\tstd::vector<int> used(size(), 0);\n\t\tbool not_DAG = false;\n\t\tauto dfs = [&](auto self, int k) -> void {\n\t\t\tif(not_DAG) return;\n\t\t\tif(used[k]) {\n\t\t\t\tif(used[k] == 1) not_DAG = true;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\tused[k] = 1;\n\t\t\tfor(auto &e : edges[k]) self(self, e.to);\n\t\t\tused[k] = 2;\n\t\t\tres.push_back(k);\n\t\t};\n\t\tfor(int i = 0; i < size(); i++) dfs(dfs, i);\n\t\tif(not_DAG) return std::vector<int>{};\n\t\tstd::reverse(res.begin(), res.end());\n\t\treturn res;\n\t}\n\n\tbool is_dag() const { return !topological_sort().empty(); }\n\n\t// Ο(V)\n\t// array of the distance to the most distant vertex\n\t// constraint: the graph is a tree\n\tstd::vector<cost_type> height() const {\n\t\tauto vec1 = bfs(0);\n\t\tint v1 = -1, v2 = -1;\n\t\tcost_type dia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec1[i]) dia = vec1[i], v1 = i;\n\t\tvec1 = bfs(v1);\n\t\tdia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec1[i]) dia = vec1[i], v2 = i;\n\t\tauto vec2 = bfs(v2);\n\t\tfor(int i = 0; i < int(size()); i++) {\n\t\t\tif(vec1[i] < vec2[i]) vec1[i] = vec2[i];\n\t\t}\n\t\treturn vec1;\n\t}\n\n\t// O(V+E)\n\t// vector<(int)(0 or 1)>\n\t// if it is not bipartite, return {}\n\tstd::vector<int> bipartite_grouping() const {\n\t\tstd::vector<int> colors(size(), -1);\n\t\tauto dfs = [&](auto self, int now, int col) -> bool {\n\t\t\tcolors[now] = col;\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(col == colors[e.to]) return false;\n\t\t\t\tif(colors[e.to] == -1 and !self(self, e.to, !col)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t};\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(colors[i] == -1 and !dfs(dfs, i, 0)) return std::vector<int>{};\n\t\treturn colors;\n\t}\n\n\tbool is_bipartite() const { return !bipartite_grouping().empty(); }\n\n\t// Ο(V+E)\n\t// (v1, v2, diameter)\n\tstd::tuple<int, int, cost_type> diameter() {\n\t\tstd::vector<cost_type> dist = bfs(0);\n\t\tauto it = std::max_element(dist.begin(), dist.end());\n\t\tconst int v = it - dist.begin();\n\t\tdist = bfs(v);\n\t\tit = std::max_element(dist.begin(), dist.end());\n\t\treturn std::make_tuple(v, int(it - dist.begin()), *it);\n\t}\n\n\t// Ο(V+E)\n\tstd::vector<int> subtree_size(const int root) {\n\t\tconst int n = size();\n\t\tstd::vector<int> ret(n, 1);\n\t\tauto dfs = [&](auto self, int now, int p = -1) -> void {\n\t\t\tfor(const auto &e : (*this)[now]) {\n\t\t\t\tif(e.to == p) continue;\n\t\t\t\tself(self, e.to, now);\n\t\t\t\tret[now] += ret[e.to];\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn ret;\n\t}\n\n\t// Ο(ElgE)\n\tcost_type prim() const {\n\t\tcost_type res = 0;\n\t\tstd::priority_queue<edge, std::vector<edge>, std::greater<edge>> que;\n\t\tfor(auto &e : edges[0]) que.push(e);\n\t\tstd::vector<int> chk(size());\n\t\tchk[0] = 1;\n\t\tint cnt = 1;\n\t\twhile(cnt < size()) {\n\t\t\tauto e = que.top();\n\t\t\tque.pop();\n\t\t\tif(chk[e.to]) continue;\n\t\t\tcnt++;\n\t\t\tres += e.cost;\n\t\t\tchk[e.to] = 1;\n\t\t\tfor(auto &e2 : edges[e.to]) que.push(e2);\n\t\t}\n\t\treturn res;\n\t}\n\n\t// Ο(ElgE)\n\tcost_type kruskal() const {\n\t\tstd::vector<std::tuple<int, int, cost_type>> eds;\n\t\tfor(const auto &adj : edges)\n\t\t\tfor(const auto &ed : adj) eds.emplace_back(ed.from, ed.to, ed.cost);\n\t\tstd::sort(eds.begin(), eds.end(), [](const std::tuple<int, int, cost_type> &a, const std::tuple<int, int, cost_type> &b) {\n\t\t\treturn std::get<2>(a) < std::get<2>(b);\n\t\t});\n\t\tstd::vector<int> uf_data(size(), -1);\n\t\tauto root = [&uf_data](auto self, int x) -> int {\n\t\t\tif(uf_data[x] < 0) return x;\n\t\t\treturn uf_data[x] = self(self, uf_data[x]);\n\t\t};\n\t\tauto unite = [&uf_data, &root](int u, int v) -> bool {\n\t\t\tu = root(root, u), v = root(root, v);\n\t\t\tif(u == v) return false;\n\t\t\tif(uf_data[u] > uf_data[v]) std::swap(u, v);\n\t\t\tuf_data[u] += uf_data[v];\n\t\t\tuf_data[v] = u;\n\t\t\treturn true;\n\t\t};\n\t\tcost_type ret = 0;\n\t\tfor(auto &e : eds)\n\t\t\tif(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e);\n\t\treturn ret;\n\t}\n\n\t// O(V)\n\tstd::vector<int> centroid() const {\n\t\tstd::vector<int> centroid, sz(size());\n\t\tauto dfs = [&](auto self, int now, int per) -> void {\n\t\t\tsz[now] = 1;\n\t\t\tbool is_centroid = true;\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(e.to != per) {\n\t\t\t\t\tself(self, e.to, now);\n\t\t\t\t\tsz[now] += sz[e.to];\n\t\t\t\t\tif(sz[e.to] > size() / 2) is_centroid = false;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(size() - sz[now] > size() / 2) is_centroid = false;\n\t\t\tif(is_centroid) centroid.push_back(now);\n\t\t};\n\t\tdfs(dfs, 0, -1);\n\t\treturn centroid;\n\t}\n\n\t// O(V+E)\n\t// bridge: (s, t) (s < t);\n\tstd::pair<std::vector<std::pair<int, int>>, std::vector<int>> bridges_and_articulations() const {\n\t\tstd::vector<int> order(size(), -1), low(size()), articulation;\n\t\tint order_next = 0;\n\t\tstd::vector<std::pair<int, int>> bridge;\n\t\tauto dfs = [&](auto self, int now, int par = -1) -> void {\n\t\t\tlow[now] = order[now] = order_next++;\n\t\t\tbool is_articulation = false;\n\t\t\tint cnt = 0;\n\t\t\tfor(auto &ed : edges[now]) {\n\t\t\t\tint &nxt = ed.to;\n\t\t\t\tif(nxt == par) continue;\n\t\t\t\tif(order[nxt] == -1) {\n\t\t\t\t\tcnt++;\n\t\t\t\t\tself(self, nxt, now);\n\t\t\t\t\tif(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt));\n\t\t\t\t\tif(order[now] <= low[nxt]) is_articulation = true;\n\t\t\t\t\tlow[now] = std::min(low[now], low[nxt]);\n\t\t\t\t} else if(order[now] > order[nxt]) {\n\t\t\t\t\tlow[now] = std::min(low[now], order[nxt]);\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(par == -1 and cnt < 2) is_articulation = false;\n\t\t\tif(is_articulation) articulation.push_back(now);\n\t\t\treturn;\n\t\t};\n\t\tfor(int i = 0; i < (int)size(); i++)\n\t\t\tif(order[i] == -1) dfs(dfs, i);\n\t\treturn std::make_pair(bridge, articulation);\n\t}\n\n\t// Ο(V+E)\n\t// directed graph from root to leaf\n\tgraph root_to_leaf(int root = 0) const {\n\t\tgraph res(size());\n\t\tstd::vector<int> chk(size(), 0);\n\t\tchk[root] = 1;\n\t\tauto dfs = [&](auto self, int now) -> void {\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(chk[e.to] == 1) continue;\n\t\t\t\tchk[e.to] = 1;\n\t\t\t\tres.add_edge(now, e.to, e.cost, 1, 0);\n\t\t\t\tself(self, e.to);\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn res;\n\t}\n\n\t// Ο(V+E)\n\t// directed graph from leaf to root\n\tgraph leaf_to_root(int root = 0) const {\n\t\tgraph res(size());\n\t\tstd::vector<int> chk(size(), 0);\n\t\tchk[root] = 1;\n\t\tauto dfs = [&](auto self, int now) -> void {\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(chk[e.to] == 1) continue;\n\t\t\t\tchk[e.to] = 1;\n\t\t\t\tres.add_edge(e.to, now, e.cost, 1, 0);\n\t\t\t\tself(self, e.to);\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn res;\n\t}\n\n\t// cost_type Chu_Liu_Edmonds(int root = 0) {}\n};\n#pragma endregion\n#line 2 \"SPJ-Library/template/kuma.hpp\"\n\n#line 2 \"SPJ-Library/template/basic_func.hpp\"\n\n#line 7 \"SPJ-Library/template/basic_func.hpp\"\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool flag = true) { std::cout << (flag ? \"Yes\" : \"No\") << '\\n'; }\nvoid YES(bool flag = true) { std::cout << (flag ? \"YES\" : \"NO\") << '\\n'; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(const T &x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(const Head &H, const Tail &... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T value) {\n\tfor(auto &a : v) a += value;\n\treturn;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\n// ceil(a / b);\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b);\n\tif(b < 0) {\n\t\ta *= -1;\n\t\tb *= -1;\n\t}\n\treturn least_upper_multiple(a, b) / b;\n}\n\nlong long pow_ll(long long a, long long n) {\n\tassert(n >= 0LL);\n\tif(n == 0) return 1LL;\n\tif(a == 0) return 0LL;\n\tif(a == 1) return 1LL;\n\tif(a == -1) return (n & 1LL) ? -1LL : 1LL;\n\tlong long res = 1;\n\twhile(n > 1LL) {\n\t\tif(n & 1LL) res *= a;\n\t\ta *= a;\n\t\tn >>= 1;\n\t}\n\treturn res * a;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, const long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn (int)std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn (int)std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(const std::vector<T> &a) {\n\tstd::vector<T> vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(const auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n#line 1 \"SPJ-Library/template/header.hpp\"\n#include <bits/stdc++.h>\n#line 2 \"SPJ-Library/template/io.hpp\"\n\n#line 4 \"SPJ-Library/template/io.hpp\"\n\n#line 8 \"SPJ-Library/template/debug.hpp\"\n\n#line 3 \"SPJ-Library/template/constants.hpp\"\n\nconstexpr int inf = 1000'000'000;\nconstexpr long long INF = 1'000'000'000'000'000'000LL;\nconstexpr int mod_1000000007 = 1000000007;\nconstexpr int mod_998244353 = 998244353;\nconst long double pi = acosl(-1.);\nconstexpr int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nconstexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n#line 10 \"SPJ-Library/template/debug.hpp\"\n\nnamespace viewer {\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p);\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p);\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p);\n\nvoid view(const long long &e);\n\nvoid view(const int &e);\n\ntemplate <typename T>\nvoid view(const T &e);\n\ntemplate <typename T>\nvoid view(const std::set<T> &s);\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s);\n\ntemplate <typename T>\nvoid view(const std::multiset<T> &s);\n\ntemplate <typename T>\nvoid view(const std::unordered_multiset<T> &s);\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v);\n\ntemplate <typename T, std::size_t ary_size>\nvoid view(const std::array<T, ary_size> &v);\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv);\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v);\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v);\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v);\n\ntemplate <typename map_type>\nvoid view_map_container(const map_type &m);\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m);\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m);\n\ntemplate <typename container_type>\nvoid view_container(const container_type &c, bool vertically = false) {\n\ttypename container_type::const_iterator begin = c.begin();\n\tconst typename container_type::const_iterator end = c.end();\n\tif(vertically) {\n\t\tstd::cerr << \"{\\n\";\n\t\twhile(begin != end) {\n\t\t\tstd::cerr << '\\t';\n\t\t\tview(*(begin++));\n\t\t\tif(begin != end) std::cerr << ',';\n\t\t\tstd::cerr << '\\n';\n\t\t}\n\t\tstd::cerr << '}';\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\twhile(begin != end) {\n\t\tview(*(begin++));\n\t\tif(begin != end) std::cerr << ',';\n\t\tstd::cerr << ' ';\n\t}\n\tstd::cerr << '}';\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << '(';\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << ')';\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << '(';\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << ')';\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << '(';\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << ')';\n}\n\nvoid view(const long long &e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int &e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T &e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::multiset<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_multiset<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tview_container(v);\n}\n\ntemplate <typename T, std::size_t ary_size>\nvoid view(const std::array<T, ary_size> &v) {\n\tview_container(v);\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tview_container(vv, true);\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tview_container(v, true);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tview_container(v, true);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tview_container(v, true);\n}\n\ntemplate <typename map_type>\nvoid view_map_container(const map_type &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(typename map_type::const_iterator it = m.begin(); it != m.end(); it++) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(it->first);\n\t\tstd::cerr << \"] : \";\n\t\tview(it->second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tview_map_container(m);\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tview_map_container(m);\n}\n\n} // namespace viewer\n\n// when compiling : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename T>\nvoid debug_out(const T &x) {\n\tviewer::view(x);\n}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(const Head &H, const Tail &... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"]\\n\"; \\\n\t} while(0)\n#else\n#define debug(...) (void(0))\n#endif\n#line 2 \"SPJ-Library/template/scanner.hpp\"\n\n#line 6 \"SPJ-Library/template/scanner.hpp\"\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n#line 7 \"SPJ-Library/template/io.hpp\"\n\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << ' ' << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(typename std::vector<T>::const_iterator it = v.begin(); it != v.end(); it++) {\n\t\tif(it != v.begin()) std::cerr << ' ';\n\t\tos << *it;\n\t}\n\treturn os;\n}\n\nstruct fast_io {\n\tfast_io() {\n\t\tstd::ios::sync_with_stdio(false);\n\t\tstd::cin.tie(nullptr);\n\t\tstd::cout << std::fixed << std::setprecision(15);\n\t\tsrand((unsigned)time(NULL));\n\t}\n} fast_io_;\n#line 2 \"SPJ-Library/template/macros.hpp\"\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define pcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n#line 7 \"SPJ-Library/template/kuma.hpp\"\n\nusing namespace std;\n#line 6 \"c.cpp\"\n\nvoid solve(int n) {\n\tVEC(int, szs, 3);\n\tvvi grps(3);\n\tvi groupnumber(n, -1);\n\trep(i, 3) {\n\t\trep(szs[i]) {\n\t\t\tint id;\n\t\t\tcin >> id;\n\t\t\tgrps[i].push_back(id - 1);\n\t\t\tgroupnumber[id - 1] = i;\n\t\t}\n\t}\n\tvi mins;\n\trep(i, 3) { mins.push_back(*min_element(all(grps[i]))); }\n\n\tvi newid(n);\n\trep(i, n) {\n\t\tif(groupnumber[i] == -1)\n\t\t\tnewid[i] = i;\n\t\telse {\n\t\t\tnewid[i] = mins[groupnumber[i]];\n\t\t}\n\t}\n\n\tint m;\n\tcin >> m;\n\tgraph<int> g(n);\n\trep(m) {\n\t\tint x, y;\n\t\tcin >> x >> y;\n\t\tx--;\n\t\ty--;\n\t\tx = newid[x];\n\t\ty = newid[y];\n\t\tif(x == y) continue;\n\t\tg.add_edge(x, y, 1, false, 0);\n\t};\n\n\tvvi dists(3);\n\tvvi minimal_idx(3);\n\n\tauto dist_grp_id = [&](int grp_id) {\n\t\tvector<int> idx_min(n, inf);\n\t\tvector<int> dist(n, n + 10);\n\t\tint grpmin = *min_element(all(grps[grp_id]));\n\t\tpqup<tuple<int, int, int>> q; // dist, id, vertex;\n\t\t\t\t\t\t\t\t\t // foa(start, grps[grp_id]) {\n\t\tconst int start = mins[grp_id];\n\t\tdist[start] = 0;\n\t\tidx_min[start] = grpmin;\n\t\tq.emplace(0, idx_min[start], start);\n\t\t// }\n\t\tauto update = [&](int nxt, int minidx, int d) {\n\t\t\tif(dist[nxt] > d) {\n\t\t\t\treturn true;\n\t\t\t}\n\t\t\treturn idx_min[nxt] > minidx && dist[nxt] == d;\n\t\t};\n\t\twhile(q.size()) {\n\t\t\tint d;\n\t\t\tint minidx;\n\t\t\tint now;\n\t\t\ttie(d, minidx, now) = q.top();\n\t\t\tq.pop();\n\t\t\tif(d > dist[now]) continue;\n\t\t\tif(minidx > idx_min[now]) continue;\n\t\t\tfoa(e, g[now]) {\n\t\t\t\tconst int to = e.to;\n\t\t\t\tif(update(to, min(minidx, to), d + 1)) {\n\t\t\t\t\tdist[to] = d + 1;\n\t\t\t\t\tidx_min[to] = min(minidx, to);\n\t\t\t\t\tq.emplace(dist[to], idx_min[to], to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tdists[grp_id] = dist;\n\t\tminimal_idx[grp_id] = idx_min;\n\t\treturn;\n\t};\n\n\trep(i, 3) { dist_grp_id(i); }\n\n\tint ans = n + 10;\n\tint dist_min = inf;\n\n\tdebug(dists);\n\tdebug(minimal_idx);\n\n\trep(mid, n) {\n\t\tint dsum = 0;\n\t\trep(i, 3) dsum += dists[i][mid];\n\t\tif(dist_min > dsum) {\n\t\t\tdist_min = dsum;\n\t\t\tans = inf;\n\t\t\trep(i, 3) chmin(ans, minimal_idx[i][mid]);\n\t\t} else if(dist_min == dsum) {\n\t\t\trep(i, 3) chmin(ans, minimal_idx[i][mid]);\n\t\t}\n\t}\n\n\tprint(dist_min, ans + 1);\n}\n\nint main() {\n\tint n;\n\twhile(cin >> n && n) {\n\t\tsolve(n);\n\t}\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 24312, "score_of_the_acc": -1.0513, "final_rank": 11 }, { "submission_id": "aoj_2732_6755753", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)\n#define all(x) begin(x), end(x)\ntemplate <typename T> bool chmax(T& a, const T& b) { return a < b ? (a = b, 1) : 0; }\ntemplate <typename T> bool chmin(T& a, const T& b) { return a > b ? (a = b, 1) : 0; }\n\nvector<pair<int, int>> bfs01(vector<vector<pair<int, int>>>& G, int s) {\n const int n = G.size();\n vector<pair<int, int>> dist(n, {1e9, -1});\n dist[s] = {0, s};\n deque<pair<pair<int, int>, int>> dq;\n dq.push_back({{0, s}, s});\n while (!dq.empty()) {\n auto [d, v] = dq.front();\n dq.pop_front();\n for (auto [u, w] : G[v]) {\n pair<int, int> nd(d.first + w, min(d.second, u));\n if (dist[u] > nd) {\n dist[u] = nd;\n if (w == 0) dq.push_front({nd, u});\n else dq.push_back({nd, u});\n }\n }\n }\n return dist;\n}\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin >> N;\n vector<int> S(3);\n for (auto& x : S) cin >> x;\n int m = N;\n vector<vector<pair<int, int>>> G(N+3);\n rep(k,0,3) {\n rep(_,0,S[k]) {\n int i;\n cin >> i;\n --i;\n chmin(m, i);\n G[i].push_back({N+k, 0});\n G[N+k].push_back({i, 0});\n }\n }\n int M;\n cin >> M;\n rep(_,0,M) {\n int x, y;\n cin >> x >> y;\n --x, --y;\n G[x].push_back({y, 1});\n G[y].push_back({x, 1});\n }\n vector<vector<pair<int, int>>> dist(3);\n rep(k,0,3) dist[k] = bfs01(G, N+k);\n pair<int, int> ans(1e9, 0);\n rep(i,0,N) {\n // cout << dist[0][i]+dist[1][i]+dist[2][i] << endl;\n int d = dist[0][i].first + dist[1][i].first + dist[2][i].first;\n int v = min({m, dist[0][i].second, dist[1][i].second, dist[2][i].second}) + 1;\n chmin(ans, {d, v});\n }\n cout << ans.first << \" \" << ans.second << endl;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 15376, "score_of_the_acc": -0.605, "final_rank": 8 }, { "submission_id": "aoj_2732_6337288", "code_snippet": "#include<bits/stdc++.h>\nusing ll = long long;\n#define var auto\nconst char newl = '\\n';\n\nusing namespace std;\n\ntemplate<typename T1, typename T2> inline void chmin(T1& a, T2 b) { if (a > b) a = b; }\ntemplate<typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; }\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n, ac, bc, cc;\n cin >> n >> ac >> bc >> cc;\n vector<vector<pair<int, int>>> g(n + 3);\n vector<int> a(ac), b(bc), c(cc);\n for (var&& item : a) {\n cin >> item; item--;\n g[n + 0].emplace_back(item, 0);\n g[item].emplace_back(n + 0, 0);\n }\n for (var&& item : b) {\n cin >> item; item--;\n g[n + 1].emplace_back(item, 0);\n g[item].emplace_back(n + 1, 0);\n }\n for (var&& item : c) {\n cin >> item; item--;\n g[n + 2].emplace_back(item, 0);\n g[item].emplace_back(n + 2, 0);\n }\n \n int m;\n cin >> m;\n for (int i = 0; i < m; i++) {\n int s, t;\n cin >> s >> t;\n s--; t--;\n g[s].emplace_back(t, 1);\n g[t].emplace_back(s, 1);\n }\n\n var calc = [&](int start) {\n vector<int> dist(n + 3, INT_MAX / 4);\n deque<pair<int, int>> q;\n q.emplace_front(start, 0);\n while (q.size()) {\n var [v, c] = q.front(); q.pop_front();\n if (dist[v] <= c) continue;\n dist[v] = c;\n for (var&& [adj, d] : g[v]) {\n if (dist[adj] <= c + d) continue;\n if (d == 0) q.emplace_front(adj, c + d);\n if (d == 1) q.emplace_back(adj, c + d);\n }\n }\n\n return dist;\n };\n\n vector<int> dist_a = calc(n + 0), dist_b = calc(n + 1), dist_c = calc(n + 2);\n\n vector v{ make_pair(n, dist_a), make_pair(n + 1, dist_b), make_pair(n + 2, dist_c) };\n \n int min_ind = -1;\n int cur_min = INT_MAX;\n for (int i = 0; i < n; i++) {\n vector<int> perm{ 0, 1, 2 };\n var val = INT_MAX;\n do\n {\n var& [a, av] = v[perm[0]];\n var& [b, bv] = v[perm[1]];\n var& [c, cv] = v[perm[2]];\n // \n // x-a-b-c\n // \n chmin(val, av[i] + bv[a] + cv[b]);\n //\n // x-a-b\n // |-c\n //\n chmin(val, av[i] + bv[a] + cv[a]);\n //\n // x--a-b\n // |-c\n //\n chmin(val, av[i] + bv[a] + cv[i]);\n //\n // |-a\n // x--b\n // |-c\n //\n chmin(val, av[i] + bv[i] + cv[i]);\n\n } while (next_permutation(perm.begin(), perm.end()));\n\n if (cur_min <= val) continue;\n cur_min = val;\n min_ind = i;\n }\n\n cout << cur_min << \" \" << (min_ind + 1) << endl;\n}", "accuracy": 0.2, "time_ms": 50, "memory_kb": 17752, "score_of_the_acc": -0.6638, "final_rank": 17 }, { "submission_id": "aoj_2732_6025317", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<int> idx(n);\n for(int i=0;i<n;i++){\n idx[i] = i;\n }\n vector<int> v(3);\n vector<int> sz(3);\n for(int i=0;i<3;i++){\n cin >> sz[i];\n }\n for(int _=0;_<3;_++){\n int m = sz[_];\n vector<int> c(m);\n for(int j=0;j<m;j++){\n cin >> c[j]; c[j]--;\n }\n sort(c.begin(), c.end());\n v[_] = c[0];\n for(int j:c){\n idx[j] = c[0];\n }\n }\n int m; cin >> m;\n vector<vector<int>> g(n);\n for(int i=0;i<m;i++){\n int x,y; cin >> x >> y;\n x--; y--;\n x = idx[x];\n y = idx[y];\n g[x].push_back(y);\n g[y].push_back(x);\n }\n vector<vector<int>> d(3,vector<int>(n,1e9));\n vector<vector<int>> mi(3,vector<int>(n));\n for(int i=0;i<n;i++){\n for(int j=0;j<3;j++){\n mi[j][i] = i;\n }\n }\n for(int i=0;i<3;i++){\n queue<int> q;\n d[i][v[i]] = 0;\n q.push(v[i]);\n while(q.size()){\n int s = q.front(); q.pop();\n for(int t:g[s]){\n if(d[i][t] > d[i][s]+1){\n d[i][t] = d[i][s]+1;\n mi[i][t] = min(mi[i][t],mi[i][s]);\n q.push(t);\n }\n else if(d[i][t] == d[i][s] + 1){\n mi[i][t] = min(mi[i][t],mi[i][s]);\n }\n }\n }\n }\n int res = 1e9, id = -1;\n for(int i=0;i<n;i++){\n if(idx[i] != i)continue;\n int sum = 0;\n for(int j=0;j<3;j++){\n sum += d[j][i];\n }\n if(sum < res){\n res = sum;\n id = min({mi[0][i],mi[1][i],mi[2][i]});\n }\n else if(sum == res){\n id = min(id, min({mi[0][i],mi[1][i],mi[2][i]}));\n }\n }\n cout << res << \" \" << id+1 << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 11132, "score_of_the_acc": -0.2857, "final_rank": 2 }, { "submission_id": "aoj_2732_6011560", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n#define POPCOUNT(x) __builtin_popcount(x)\ntemplate <typename T> void chmin(T &a, const T &b) { a = min(a, b); }\ntemplate <typename T> void chmax(T &a, const T &b) { a = max(a, b); }\n\nconst ll INF = 1LL << 60;\n\nstruct FastIO {\n FastIO() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n} fastiofastio;\n\nconst ll MOD = 1e9 + 7;\n\n// BEGIN CUT\nll modpow(ll x, ll y, ll m) {\n ll a = 1, p = x;\n while (y > 0) {\n if (y % 2 == 0) {\n p = (p * p) % m;\n y /= 2;\n } else {\n a = (a * p) % m;\n y--;\n }\n }\n return a;\n}\n// END CUT\n\nll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }\nll lcm(ll a, ll b) { return a / gcd(a, b) * b; }\n\nvector<int> G[100010];\nint group[100000];\nint idx[100010];\nint distA[100010], distB[100010], distC[100010];\nint min_idxA[100010], min_idxB[100010], min_idxC[100010];\n\nvoid bfs(int s, int *dist, int *min_idx) {\n fill(dist, dist + 100010, -1);\n dist[s] = 0;\n min_idx[s] = idx[s];\n queue<int> que;\n que.push(s);\n while (!que.empty()) {\n int now = que.front();\n que.pop();\n for (int to : G[now]) {\n if (dist[to] == -1) {\n dist[to] = dist[now] + 1;\n min_idx[to] = min(idx[to], min_idx[now]);\n que.push(to);\n } else if (dist[to] == dist[now] + 1) {\n min_idx[to] = min(min_idx[to], min_idx[now]);\n }\n }\n }\n}\n\nint main() {\n int N, A, B, C;\n cin >> N >> A >> B >> C;\n for (int i = 0; i <= N + 2; i++)\n idx[i] = i;\n memset(group, -1, sizeof(group));\n for (int i = 0; i < A; i++) {\n int a;\n cin >> a;\n a--;\n group[a] = N;\n chmin(idx[N], a);\n }\n for (int i = 0; i < B; i++) {\n int b;\n cin >> b;\n b--;\n group[b] = N + 1;\n chmin(idx[N + 1], b);\n }\n for (int i = 0; i < C; i++) {\n int c;\n cin >> c;\n c--;\n group[c] = N + 2;\n chmin(idx[N + 2], c);\n }\n int M;\n cin >> M;\n for (int i = 0; i < M; i++) {\n int x, y;\n cin >> x >> y;\n x--;\n y--;\n if (group[x] != -1)\n x = group[x];\n if (group[y] != -1)\n y = group[y];\n G[x].push_back(y);\n G[y].push_back(x);\n }\n bfs(N, distA, min_idxA);\n bfs(N + 1, distB, min_idxB);\n bfs(N + 2, distC, min_idxC);\n int ans = 1 << 30;\n int v = 1 << 30;\n for (int i = 0; i <= N + 2; i++) {\n if (distA[i] == -1 || distB[i] == -1 || distC[i] == -1)\n continue;\n int sum = distA[i] + distB[i] + distC[i];\n int x = min(min_idxA[i], min(min_idxB[i], min_idxC[i]));\n if (ans > sum) {\n ans = sum;\n v = x;\n } else if (ans == sum) {\n v = min(v, x);\n }\n }\n cout << ans << \" \" << v + 1 << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 13556, "score_of_the_acc": -0.4113, "final_rank": 3 }, { "submission_id": "aoj_2732_5981074", "code_snippet": "#pragma GCC tag(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 5050000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nint main(){\n int n; cin >> n;\n vl num(3); rep(i,3) cin >> num[i];\n vl node(n,-1);\n rep(i,3) rep(j,num[i]){\n int x; cin >> x; x--;\n node[x] = i;\n }\n vvl G(n+3);\n int m; cin >> m;\n rep(i,m){\n int u,v; cin >> u >> v; u--; v--;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n rep(i,n){\n if(node[i] != -1){\n G[i].push_back(n+node[i]);\n G[n+node[i]].push_back(i);\n }\n }\n vector<vpl> d(3,vpl(n+3,{inf,inf}));\n rep(i,3){\n priority_queue<pair<P,int>,vector<pair<P,int>>,greater<pair<P,int>>> pq;\n rep(j,n) if(node[j] == i){\n pq.emplace(P(0,j),j);\n d[i][j] = {0,j};\n }\n while(!pq.empty()){\n auto p = pq.top(); pq.pop();\n int u = p.second;\n if(d[i][u] < p.first) continue;\n for(auto v : G[u]){\n int c = u>=n || v>=n;\n if(chmin(d[i][v], P(d[i][u].first+1-c,min(d[i][u].second,v)))){\n pq.emplace(d[i][v],v);\n }\n }\n }\n }\n P ans = {inf,inf};\n rep(i,n+3){\n int s = 0, mn = inf;\n rep(j,3){\n s += d[j][i].first;\n chmin(mn,d[j][i].second);\n }\n chmin(ans,P(s,mn));\n }\n cout << ans.first << \" \" << ans.second+1 << \"\\n\";\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 16068, "score_of_the_acc": -0.683, "final_rank": 10 }, { "submission_id": "aoj_2732_5980515", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\n//constexpr long long MOD = 1000000007;\nconstexpr long long MOD = 998244353;\nconstexpr double EPS = 1e-8;\n\n//int N, M, K, T, H, W, L, R;\nlong long int N, M, K, T, H, W, L, R;\n\nstruct Node {\n\tint cost, mn, idx;\n\tNode(int cost, int mn, int idx) :cost(cost), mn(mn), idx(idx) {\n\n\t}\n\tbool operator<(const Node &n)const {\n\t\treturn make_pair(cost, mn) > make_pair(n.cost, n.mn);\n\t}\n};\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tcin >> N;\n\tvector<int>num(3);\n\tfor (auto& i : num)cin >> i;\n\tvector<vector<int>>v(3);\n\tfor (int i = 0; i < 3; i++) {\n\t\tv[i].resize(num[i]);\n\t\tfor (auto& j : v[i]) {\n\t\t\tcin >> j;\n\t\t\tj += 2;\n\t\t}\n\t}\n\tcin >> M;\n\tvector<vector<pair<int, int>>>edge(N + 3);\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> L >> R;\n\t\tL += 2;\n\t\tR += 2;\n\t\tedge[L].push_back({ R,1 });\n\t\tedge[R].push_back({ L,1 });\n\t}\n\tfor (int i = 0; i < 3; i++) {\n\t\tfor (auto j : v[i]) {\n\t\t\tedge[i].push_back({ j,0 });\n\t\t\tedge[j].push_back({ i,0 });\n\t\t}\n\t}\n\tvector<vector<pair<int, int>>>dis(3, vector<pair<int, int>>(N + 3, { MOD,0 }));\n\tfor (int i = 0; i < 3; i++) {\n\t\tpriority_queue<Node>PQ;\n\t\tfor (auto j : v[i]) {\n\t\t\tdis[i][j] = { 0,j };\n\t\t\tPQ.push(Node(0, j, j));\n\t\t}\n\t\twhile (!PQ.empty()) {\n\t\t\tauto box = PQ.top();\n\t\t\tPQ.pop();\n\t\t\tint cn = box.idx;\n\t\t\tfor (auto j : edge[cn]) {\n\t\t\t\tif (j.second == 1) {\n\t\t\t\t\tif (dis[i][j.first] > make_pair(dis[i][cn].first + 1, dis[i][cn].second)) {\n\t\t\t\t\t\tdis[i][j.first] = { dis[i][cn].first + 1,dis[i][cn].second };\n\t\t\t\t\t\tif (j.first >= 3) {\n\t\t\t\t\t\t\tdis[i][j.first].second = min(dis[i][j.first].second, j.first);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tPQ.push(Node(dis[i][j.first].first, dis[i][j.first].second, j.first));;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (dis[i][j.first] > make_pair(dis[i][cn].first + 0, dis[i][cn].second)) {\n\t\t\t\t\t\tdis[i][j.first] = { dis[i][cn].first + 0,dis[i][cn].second };\n\t\t\t\t\t\tif (j.first >= 3) {\n\t\t\t\t\t\t\tdis[i][j.first].second = min(dis[i][j.first].second, j.first);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tPQ.push(Node(dis[i][j.first].first, dis[i][j.first].second, j.first));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t//for (int i = 0; i < 3; i++) {\n\t//\tfor (auto j : dis[i]) {\n\t//\t\tcout << j.first << \"<->\" << j.second << \" \";\n\t//\t}\n\t//\tcout << endl;\n\t//}\n\tpair<int, int>ans = { MOD,-1 };\n\tfor (int i = 3; i < N+3; i++) {\n\t\tpair<int, int>c = { 0,MOD };\n\t\tfor (int j = 0; j < 3; j++) {\n\t\t\tc.first += dis[j][i].first;\n\t\t\tc.second = min(c.second, dis[j][i].second);\n\t\t}\n\t\t//cout << c.first << \" \" << c.second << endl;\n\t\tc.second = min(c.second, i);\n\t\tans = min(ans, c);\n\t}\n\tcout << ans.first << \" \" << ans.second - 2 << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 15584, "score_of_the_acc": -0.5528, "final_rank": 7 }, { "submission_id": "aoj_2732_5335755", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int INF = 100000;\nint main(){\n int N, A, B, C;\n cin >> N >> A >> B >> C;\n vector<int> a(A);\n for (int i = 0; i < A; i++){\n cin >> a[i];\n a[i]--;\n }\n vector<int> b(B);\n for (int i = 0; i < B; i++){\n cin >> b[i];\n b[i]--;\n }\n vector<int> c(C);\n for (int i = 0; i < C; i++){\n cin >> c[i];\n c[i]--;\n }\n int M;\n cin >> M;\n vector<int> x(M), y(M);\n for (int i = 0; i < M; i++){\n cin >> x[i] >> y[i];\n x[i]--;\n y[i]--;\n }\n vector<int> id(N, -1);\n for (int i = 0; i < A; i++){\n id[a[i]] = 0;\n }\n for (int i = 0; i < B; i++){\n id[b[i]] = 1;\n }\n for (int i = 0; i < C; i++){\n id[c[i]] = 2;\n }\n int cnt = 3;\n for (int i = 0; i < N; i++){\n if (id[i] == -1){\n id[i] = cnt;\n cnt++;\n }\n }\n vector<vector<int>> E(cnt);\n for (int i = 0; i < M; i++){\n x[i] = id[x[i]];\n y[i] = id[y[i]];\n E[x[i]].push_back(y[i]);\n E[y[i]].push_back(x[i]);\n }\n vector<vector<int>> bfs(3);\n vector<vector<int>> d(3, vector<int>(cnt, -1));\n for (int i = 0; i < 3; i++){\n d[i][i] = 0;\n queue<int> Q;\n Q.push(i);\n while (!Q.empty()){\n int v = Q.front();\n Q.pop();\n bfs[i].push_back(v);\n for (int w : E[v]){\n if (d[i][w] == -1){\n d[i][w] = d[i][v] + 1;\n Q.push(w);\n }\n }\n }\n }\n int mn = INF;\n for (int i = 0; i < cnt; i++){\n mn = min(mn, d[0][i] + d[1][i] + d[2][i]);\n }\n vector<bool> ok(cnt, false);\n for (int i = 0; i < cnt; i++){\n if (d[0][i] + d[1][i] + d[2][i] == mn){\n ok[i] = true;\n }\n }\n vector<bool> ok2(cnt, false);\n for (int i = 0; i < 3; i++){\n vector<bool> ok3 = ok;\n for (int j = cnt - 1; j >= 0; j--){\n int v = bfs[i][j];\n if (ok3[v]){\n for (int w : E[v]){\n if (d[i][w] == d[i][v] - 1){\n ok3[w] = true;\n }\n }\n }\n }\n for (int j = 0; j < cnt; j++){\n if (ok3[j]){\n ok2[j] = true;\n }\n }\n }\n int ans;\n for (int i = 0; i < N; i++){\n if (ok2[id[i]]){\n ans = i;\n break;\n }\n }\n cout << mn << ' ' << ans + 1 << endl;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 12712, "score_of_the_acc": -0.5426, "final_rank": 6 }, { "submission_id": "aoj_2732_5191740", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <deque>\n\n\ntemplate <typename T>\nstd::vector<T> unweighted_shortest_path(std::vector<std::vector<T>> &g_spmat, T st){\n std::vector<T> res(g_spmat.size(), 0x7f7f7f7f);\n std::deque<std::pair<T, T>> deq;\n deq.push_back(std::make_pair(0, st));\n\n while(!deq.empty()){\n auto x = deq.front();\n deq.pop_front();\n if(res[x.second] == 0x7f7f7f7f){\n for(auto pt: g_spmat[x.second]){\n if(res[pt] == 0x7f7f7f7f) deq.push_back(std::make_pair(1 + x.first, pt));\n }\n res[x.second] = x.first;\n }\n }\n return res;\n}\n\ntemplate <typename T>\nstd::vector<T> unweighted_shortest_path_exe(std::vector<std::vector<T>> &g_spmat, std::vector<T> &dist, T st){\n std::vector<T> res;\n std::vector<bool> nvisited(g_spmat.size(), true);\n std::deque<T> deq;\n deq.push_back(st);\n while(!deq.empty()){\n T ind = deq.front();\n deq.pop_front();\n if(nvisited[ind]){\n nvisited[ind] = false;\n res.push_back(ind);\n for(auto nx: g_spmat[ind]) if(dist[nx] < dist[ind]) deq.push_back(nx);\n }\n }\n return res;\n}\n\nint main(){\n int n, a, b, c, p;\n std::cin >> n >> a >> b >> c;\n std::vector<int> smi(3, 0x7f7f7f7f), s(n, -1);\n while(a--){\n std::cin >> p, p--;\n smi[0] = std::min(smi[0], p);\n s[p] = 0;\n }\n while(b--){\n std::cin >> p, p--;\n smi[1] = std::min(smi[1], p);\n s[p] = 1;\n }\n while(c--){\n std::cin >> p, p--;\n smi[2] = std::min(smi[2], p);\n s[p] = 2;\n }\n std::vector<std::vector<int>> gmat(n);\n std::cin >> p;\n while(p--){\n int x, y;\n std::cin >> x >> y;\n x--, y--;\n if(s[x] != -1) x = smi[s[x]];\n if(s[y] != -1) y = smi[s[y]];\n if(x == y) continue;\n\n gmat[x].push_back(y);\n gmat[y].push_back(x);\n }\n \n\n auto dista = unweighted_shortest_path(gmat, smi[0]);\n auto distb = unweighted_shortest_path(gmat, smi[1]);\n auto distc = unweighted_shortest_path(gmat, smi[2]);\n std::vector<int> dist(n, 0);\n for(int i = 0; i < n; i++){\n dist[i] = dista[i] + distb[i] + distc[i];\n if(dista[i] == 0x7f7f7f7f || distb[i] == 0x7f7f7f7f || distc[i] == 0x7f7f7f7f) dist[i] = 0x7f7f7f7f;\n }\n\n int ind = std::min_element(dist.begin(), dist.end()) - dist.begin();\n int resid = 0x7f7f7f7f;\n for(int i = 0; i < n; i++) if(dist[i] == dist[ind]){\n auto patha = unweighted_shortest_path_exe(gmat, dista, i);\n auto pathb = unweighted_shortest_path_exe(gmat, distb, i);\n auto pathc = unweighted_shortest_path_exe(gmat, distc, i);\n\n int tempa = *std::min_element(patha.begin(), patha.end());\n int tempb = *std::min_element(pathb.begin(), pathb.end());\n int tempc = *std::min_element(pathc.begin(), pathc.end());\n\n resid = std::min({resid, tempa, tempb, tempc});\n }\n std::cout << dist[ind] << \" \" << resid + 1 << \"\\n\";\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 11588, "score_of_the_acc": -0.4271, "final_rank": 4 } ]
aoj_2736_cpp
Longest Shortest Path You are given a directed graph and two nodes $s$ and $t$. The given graph may contain multiple edges between the same node pair but not self loops. Each edge $e$ has its initial length $d_e$ and the cost $c_e$. You can extend an edge by paying a cost. Formally, it costs $x \cdot c_e$ to change the length of an edge $e$ from $d_e$ to $d_e + x$. (Note that $x$ can be a non-integer.) Edges cannot be shortened. Your task is to maximize the length of the shortest path from node $s$ to node $t$ by lengthening some edges within cost $P$. You can assume that there is at least one path from $s$ to $t$. Input The input consists of a single test case formatted as follows. $N$ $M$ $P$ $s$ $t$ $v_1$ $u_1$ $d_1$ $c_1$ ... $v_M$ $u_M$ $d_M$ $c_M$ The first line contains five integers $N$, $M$, $P$, $s$, and $t$: $N$ ($2 \leq N \leq 200$) and $M$ ($1 \leq M \leq 2,000$) are the number of the nodes and the edges of the given graph respectively, $P$ ($0 \leq P \leq 10^6$) is the cost limit that you can pay, and $s$ and $t$ ($1 \leq s, t \leq N, s \ne t$) are the start and the end node of objective path respectively. Each of the following $M$ lines contains four integers $v_i$, $u_i$, $d_i$, and $c_i$, which mean there is an edge from $v_i$ to $u_i$ ($1 \leq v_i, u_i \leq N, v_i \ne u_i$) with the initial length $d_i$ ($1 \leq d_i \leq 10$) and the cost $c_i$ ($1 \leq c_i \leq 10$). Output Output the maximum length of the shortest path from node $s$ to node $t$ by lengthening some edges within cost $P$. The output can contain an absolute or a relative error no more than $10^{-6}$. Sample Input 1 3 2 3 1 3 1 2 2 1 2 3 1 2 Output for the Sample Input 1 6.0000000 Sample Input 2 3 3 2 1 3 1 2 1 1 2 3 1 1 1 3 1 1 Output for the Sample Input 2 2.5000000 Sample Input 3 3 4 5 1 3 1 2 1 2 2 3 1 1 1 3 3 2 1 3 4 1 Output for the Sample Input 3 4.2500000
[ { "submission_id": "aoj_2736_10854093", "code_snippet": "#include <stdio.h>\n#include <algorithm>\n#include <vector>\n#include <queue>\nusing namespace std;\n\nconst int non = 10000000;\n\nstruct edge {\n\tint x, y, f, c, r;\n};\nvector<edge> E[202];\n\nvoid add(int x, int y, int f, int c) {\n\tint p = E[x].size(), q = E[y].size();\n\tE[x].push_back({ x, y, f, c, q });\n\tE[y].push_back({ y, x, 0, -c, p });\n}\n\nint N, M, P, s, t;\nvector<int> last_dist;\n\nint spfa(){\n\tvector<int> dist(N, non), viax(N), viap(N);\n\tvector<bool> chk(N);\n\tpriority_queue<pair<int, int> > qu;\n\tqu.push({ 0, s }); dist[s] = 0;\n\twhile (!qu.empty()) {\n\t\tint c = -qu.top().first, x = qu.top().second; qu.pop();\n\t\tif (dist[x] < c) continue;\n\t\tint p = 0;\n\t\tfor (auto &e : E[x]) {\n\t\t\tif (e.f) {\n\t\t\t\tint y = e.y, nc = c + e.c + last_dist[y] - last_dist[x];\n\t\t\t\tif (dist[y] > nc) {\n\t\t\t\t\tqu.push({ -nc, y });\n\t\t\t\t\tdist[y] = nc;\n\t\t\t\t\tviax[y] = x;\n\t\t\t\t\tviap[y] = p;\n\t\t\t\t}\n\t\t\t}\n\t\t\tp++;\n\t\t}\n\t}\n\n\tif (dist[t] == non) return 0;\n\tint ret = dist[t] - last_dist[t] + last_dist[s];\n\tlast_dist = dist;\n\tint y = t;\n\twhile (y != s) {\n\t\tint x = viax[y];\n\t\tauto &e = E[x][viap[y]];\n\t\te.f--;\n\t\tE[y][e.r].f++;\n\t\ty = x;\n\t}\n\treturn ret;\n}\n\nint main(){\n\tscanf(\"%d %d %d %d %d\", &N, &M, &P, &s, &t);\n\ts--; t--;\n\n\tfor (int i = 0; i < M; i++) {\n\t\tint x, y, d, c;\n\t\tscanf(\"%d %d %d %d\", &x, &y, &d, &c); x--; y--;\n\t\tadd(x, y, c, d);\n\t}\n\n\tint sum = 0, flow = 0; double ans = 1e10;\n\tlast_dist = vector<int>(N, non);\n\twhile (1) {\n\t\tint now = spfa();\n\t\tif (now == 0) break;\n\t\tsum += now; flow++;\n\t\tans = min(ans, 1. * (sum + P) / flow);\n\t}\n\tprintf(\"%.12lf\\n\", ans);\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3144, "score_of_the_acc": -0.2554, "final_rank": 3 }, { "submission_id": "aoj_2736_6239904", "code_snippet": "#include<cstdio>\n#include<cstdlib>\n#include<algorithm>\nusing namespace std;\n\ninline char nc(){\n static char buf[100000],*p1=buf,*p2=buf;\n return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;\n}\ninline void read(int &x){\n char c=nc(),b=1;\n for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;\n for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;\n}\n\nconst int N=205;\nconst int M=2005;\n\nstruct edge{\n int u,v,w,f; int next;\n}G[M<<1];\nint head[N],inum=1;\ninline void add(int u,int v,int w,int f,int p){\n G[p].u=u; G[p].v=v; G[p].w=w; G[p].f=f; G[p].next=head[u]; head[u]=p;\n}\ninline void link(int u,int v,int w,int f){\n add(u,v,w,f,++inum); add(v,u,-w,0,++inum);\n}\n#define oo 1<<29\nint n,m,P;\nint S,T,Mincost;\nint Q[N*M],l,r;\nint dis[N],pre[N],ins[N];\n#define V G[p].v\ninline bool SPFA(){\n for (int i=1;i<=n;i++) dis[i]=oo,pre[i]=0,ins[i]=0;\n l=r=-1; Q[++r]=S,dis[S]=0,ins[S]=1;\n while (l<r){\n int u=Q[++l]; ins[u]=0;\n for (int p=head[u];p;p=G[p].next)\n if (G[p].f && dis[V]>dis[u]+G[p].w){\n dis[V]=dis[u]+G[p].w; pre[V]=p;\n if (!ins[V]) Q[++r]=V,ins[V]=1;\n }\n }\n if (dis[T]==oo) return 0;\n Mincost+=dis[T];\n for (int p=pre[T];p;p=pre[G[p].u])\n G[p].f--,G[p^1].f++;\n return 1;\n}\n\nint main(){\n int u,v,c,d;\n read(n); read(m); read(P); read(S); read(T);\n for (int i=1;i<=m;i++)\n read(u),read(v),read(d),read(c),link(u,v,d,c);\n double ans=1e20; int m=0;\n while (SPFA()){\n m++;\n ans=min(ans,(double)(Mincost+P)/m);\n }\n printf(\"%.10lf\\n\",ans);\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3092, "score_of_the_acc": -0.198, "final_rank": 2 }, { "submission_id": "aoj_2736_6234392", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int maxn = 210;\nconst int maxm = 4010;\nconst int INF = 0x3f3f3f3f;\nstruct Edge{\n int to,next,cap,flow,cost;\n}edge[maxm];\nint head[maxn],tol;\nint pre[maxn],dis[maxn];\nbool vis[maxm];\nint n,m,p;\nvoid init(){\n tol=0;\n for(int i=1;i<=n;++i) head[i]=-1;\n}\nvoid addedge(int u,int v,int cap,int cost){\n edge[tol].to=v;\n edge[tol].cap=cap;\n edge[tol].cost=cost;\n edge[tol].flow=0;\n edge[tol].next=head[u];\n head[u]=tol++;\n edge[tol].to=u;\n edge[tol].cap=0;\n edge[tol].cost=-cost;\n edge[tol].flow=0;\n edge[tol].next=head[v];\n head[v]=tol++;\n}\nbool spfa(int s,int t){\n queue<int> q;\n for(int i=1;i<=n;++i){\n dis[i]=INF; vis[i]=false; pre[i]=-1;\n }\n dis[s]=0; vis[s]=true;\n q.push(s);\n while (!q.empty()){\n int u = q.front(); q.pop();\n vis[u]=false;\n for(int i=head[u];i!=-1;i=edge[i].next){\n int v=edge[i].to;\n if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost){\n dis[v]=dis[u]+edge[i].cost;\n pre[v]=i;\n if(!vis[v]){\n vis[v]=true;\n q.push(v);\n }\n }\n }\n }\n if(pre[t]==-1) return false;\n else return true;\n}\ndouble minCostMaxflow(int s,int t){\n int flow=0,cost=0; double ans=INF;\n while (spfa(s,t)){\n int Min = INF;\n for(int i=pre[t];i!=-1;i=pre[edge[i^1].to]){\n if(Min>edge[i].cap-edge[i].flow)\n Min=edge[i].cap-edge[i].flow;\n }\n for(int i=pre[t];i!=-1;i=pre[edge[i^1].to]){\n edge[i].flow+=Min;\n edge[i^1].flow-=Min;\n cost+=edge[i].cost*Min;\n }\n flow+=Min;\n ans=min(ans,(1.0*cost+p)/flow);\n }\n return ans;\n}\n\nint s,t,u,v,d,c;\nint main(){\n scanf(\"%d %d %d %d %d\",&n,&m,&p,&s,&t); init();\n while(m--){\n scanf(\"%d %d %d %d\",&u,&v,&d,&c);\n addedge(u,v,c,d);\n }\n printf(\"%lf\\n\",minCostMaxflow(s,t));\nreturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3656, "score_of_the_acc": -0.7844, "final_rank": 10 }, { "submission_id": "aoj_2736_5988554", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing uint = unsigned int;\nusing ull = unsigned long long;\n#define rep(i,n) for(int i=0;i<int(n);i++)\n#define rep1(i,n) for(int i=1;i<=int(n);i++)\n#define per(i,n) for(int i=int(n)-1;i>=0;i--)\n#define per1(i,n) for(int i=int(n);i>0;i--)\n#define all(c) c.begin(),c.end()\n#define si(x) int(x.size())\n#define pb push_back\n#define eb emplace_back\n#define fs first\n#define sc second\ntemplate<class T> using V = vector<T>;\ntemplate<class T> using VV = vector<vector<T>>;\ntemplate<class T,class U> bool chmax(T& x, U y){\n\tif(x<y){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T,class U> bool chmin(T& x, U y){\n\tif(y<x){ x=y; return true; }\n\treturn false;\n}\ntemplate<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}\ntemplate<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}\ntemplate<class T>\nV<T> Vec(size_t a) {\n return V<T>(a);\n}\ntemplate<class T, class... Ts>\nauto Vec(size_t a, Ts... ts) {\n return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));\n}\ntemplate<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){\n\treturn o<<\"(\"<<p.fs<<\",\"<<p.sc<<\")\";\n}\ntemplate<class T> ostream& operator<<(ostream& o,const vector<T> &vc){\n\to<<\"{\";\n\tfor(const T& v:vc) o<<v<<\",\";\n\to<<\"}\";\n\treturn o;\n}\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }\n\n#ifdef LOCAL\n#define show(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\nvoid dmpr(ostream& os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" ~ \";\n\tdmpr(os,args...);\n}\n#define shows(...) cerr << \"LINE\" << __LINE__ << \" : \";dmpr(cerr,##__VA_ARGS__)\n#define dump(x) cerr << \"LINE\" << __LINE__ << \" : \" << #x << \" = {\"; \\\n\tfor(auto v: x) cerr << v << \",\"; cerr << \"}\" << endl;\n#else\n#define show(x) void(0)\n#define dump(x) void(0)\n#define shows(...) void(0)\n#endif\n\ntemplate<class D> D divFloor(D a, D b){\n\treturn a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);\n}\ntemplate<class D> D divCeil(D a, D b) {\n\treturn a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);\n}\nstruct MinCostFlow{\n\tusing C = ll;\t\t// capacity\n\tusing D = ll;\t\t// cost (distance)\n\tconst D inf = 1e18;\t// max distance\n\n\tstruct edge{\n\t\tint to;\n\t\tC cap;\n\t\tD cost;\n\t\tint rev;\n\t\tedge(int to_,C cap_, D cost_, int rev_):to(to_),cap(cap_),cost(cost_),rev(rev_){}\n\t};\n\t\n\tint N;\n\tVV<edge> G;\n\tV<D> h;\n\tV<D> dist;\n\tV<int> prevv,preve;\n\tMinCostFlow(int N_):N(N_){\n\t\tG.resize(N);\n\t\th.resize(N);\n\t\tdist.resize(N);\n\t\tprevv.resize(N);\n\t\tpreve.resize(N);\n\t}\n\n\tvoid add_edge(int from, int to, C cap, D cost){\n\t\tshow(cap);\n\t\tshow(cost);\n\t\tedge e1(to,cap,cost,(int)G[to].size());\n\t\tedge e2(from,0,-cost,(int)G[from].size());\n\t\tG[from].push_back(e1);\n\t\tG[to].push_back(e2);\n\t}\n\tD min_cost_flow(int s, int t, C f){\n\t\t// if G has negative edge && has no negative loop\n\t\t// Bellman Ford O(MN)\n\t\t// rep(v,N){\n\t\t// \tfor(auto& e: G[v]){\n\t\t// \t\tif(e.cap > 0) chmin(h[e.to],h[v]+e.cost);\n\t\t// \t}\n\t\t// }\n\t\t\n\t\tD res = 0;\n\t\th = V<D>(N);\n\t\twhile(f > 0){\n\t\t\tusing P = pair<D,int>;\n\t\t\tpriority_queue< P,vector<P>,greater<P> > que;\n\t\t\tdist = V<D>(N,inf);\n\t\t\tdist[s] = 0;\n\t\t\tque.push(P(0,s));\n\t\t\twhile(!que.empty()){\n\t\t\t\tP p = que.top();\n\t\t\t\tque.pop();\n\t\t\t\tint v = p.second;\n\t\t\t\tif(dist[v] < p.first) continue;\n\t\t\t\tfor(int i=0;i<(int)G[v].size();i++){\n\t\t\t\t\tedge &e = G[v][i];\n\t\t\t\t\tif(e.cap>0 && dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){\n\t\t\t\t\t\tdist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n\t\t\t\t\t\tprevv[e.to]=v;\n\t\t\t\t\t\tpreve[e.to]=i;\n\t\t\t\t\t\tque.push(P(dist[e.to],e.to));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(dist[t]==inf) return -1;\n\t\t\trep(v,N) h[v]+=dist[v];\n\t\t\tC d = f;\n\t\t\tfor(int v=t;v!=s;v=prevv[v]){\n\t\t\t\tchmin(d,G[prevv[v]][preve[v]].cap);\n\t\t\t}\n\t\t\tf -= d;\n\t\t\tres += d*h[t];\n\t\t\tfor(int v=t;v!=s;v=prevv[v]){\n\t\t\t\tedge &e=G[prevv[v]][preve[v]];\n\t\t\t\te.cap-=d;\n\t\t\t\tG[v][e.rev].cap+=d;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}\n\n\t/*\n\t\t流量を横軸に、コストを縦軸に取ったときのグラフ\n\t\t各線分の (dx,dy/dx) の vector を返す\n\t\tCF621 G \n\t*/\n\tV<pair<C,D>> min_cost_flow_slopes(int s, int t){\t\t// {(x,tan)}\n\t\tV<pair<C,D>> res;\n\t\th = V<D>(N);\n\t\twhile(true){\n\t\t\tusing P = pair<D,int>;\n\t\t\tpriority_queue< P,vector<P>,greater<P> > que;\n\t\t\tdist = V<D>(N,inf);\n\t\t\tdist[s] = 0;\n\t\t\tque.push(P(0,s));\n\t\t\twhile(!que.empty()){\n\t\t\t\tP p = que.top();\n\t\t\t\tque.pop();\n\t\t\t\tint v = p.second;\n\t\t\t\tif(dist[v] < p.first) continue;\n\t\t\t\tfor(int i=0;i<(int)G[v].size();i++){\n\t\t\t\t\tedge &e = G[v][i];\n\t\t\t\t\tif(e.cap>0 && dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){\n\t\t\t\t\t\tdist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n\t\t\t\t\t\tprevv[e.to]=v;\n\t\t\t\t\t\tpreve[e.to]=i;\n\t\t\t\t\t\tque.push(P(dist[e.to],e.to));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(dist[t]==inf) break;\n\t\t\trep(v,N) h[v]+=dist[v];\n\t\t\tC f = inf;\n\t\t\tfor(int v=t;v!=s;v=prevv[v]){\n\t\t\t\tchmin(f,G[prevv[v]][preve[v]].cap);\n\t\t\t}\n\t\t\tres.emplace_back(f,h[t]);\t\t\t\t// x, tan\n\t\t\tfor(int v=t;v!=s;v=prevv[v]){\n\t\t\t\tedge &e=G[prevv[v]][preve[v]];\n\t\t\t\te.cap-=f;\n\t\t\t\tG[v][e.rev].cap+=f;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}\n};\n\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\t\t//DON'T USE scanf/printf/puts !!\n\tcout << fixed << setprecision(20);\n\n\tint N,M;\n\tdouble C;\n\tint S,T;\n\tcin >> N >> M >> C >> S >> T; S--,T--;\n\tMinCostFlow MCF(N);\n\trep(i,M){\n\t\tint x,y,d,c; cin >> x >> y >> d >> c; x--,y--;\n\t\tMCF.add_edge(x,y,c,d);\n\t}\n\tauto f = MCF.min_cost_flow_slopes(S,T);\n\tdouble ans = 1e100;\n\tdouble x = 0, y = 0;\n\tfor(auto [dx,tan]: f){\n\t\tx += dx, y += dx*tan;\n\t\tchmin(ans,(y+C)/x);\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3864, "score_of_the_acc": -1.0021, "final_rank": 12 }, { "submission_id": "aoj_2736_4867981", "code_snippet": "#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2736\"\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct Precision{\n Precision(){\n cout<<fixed<<setprecision(12);\n }\n}precision_beet;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\n// O(F E log V)\ntemplate<typename Flow, typename Cost>\nstruct PrimalDual{\n struct Edge{\n int to;\n Flow cap;\n Cost cost;\n int rev;\n Edge(int to,Flow cap,Cost cost,int rev):\n to(to),cap(cap),cost(cost),rev(rev){}\n };\n\n vector<vector<Edge>> G;\n vector<Cost> h,dist;\n vector<int> prevv,preve;\n\n PrimalDual(int n):G(n),h(n),dist(n),prevv(n),preve(n){}\n\n void add_edge(int u,int v,Flow cap,Cost cost){\n int e=G[u].size();\n int r=(u==v?e+1:G[v].size());\n G[u].emplace_back(v,cap,cost,r);\n G[v].emplace_back(u,0,-cost,e);\n }\n\n void dijkstra(int s){\n struct P{\n Cost first;\n int second;\n P(Cost first,int second):first(first),second(second){}\n bool operator<(const P&a) const{return first>a.first;}\n };\n priority_queue<P> pq;\n\n dist[s]=0;\n pq.emplace(dist[s],s);\n while(!pq.empty()){\n P p=pq.top();pq.pop();\n int v=p.second;\n if(dist[v]<p.first) continue;\n for(int i=0;i<(int)G[v].size();i++){\n Edge &e=G[v][i];\n if(e.cap==0) continue;\n if(dist[v]+e.cost+h[v]-h[e.to]<dist[e.to]){\n dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to]=v;\n preve[e.to]=i;\n pq.emplace(dist[e.to],e.to);\n }\n }\n }\n }\n\n Cost res;\n\n bool build(int s,int t,Flow f){\n res=0;\n fill(h.begin(),h.end(),0);\n const Cost INF = numeric_limits<Cost>::max();\n while(f>0){\n fill(dist.begin(),dist.end(),INF);\n dijkstra(s);\n if(dist[t]==INF) return false;\n\n for(int v=0;v<(int)h.size();v++)\n if(dist[v]<INF) h[v]=h[v]+dist[v];\n\n Flow d=f;\n for(int v=t;v!=s;v=prevv[v])\n d=min(d,G[prevv[v]][preve[v]].cap);\n\n f-=d;\n res=res+h[t]*d;\n for(int v=t;v!=s;v=prevv[v]){\n Edge &e=G[prevv[v]][preve[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n return true;\n }\n\n Cost get_cost(){return res;}\n};\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned geocon2013_B(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n using D = double;\n\n int n;\n cin>>n;\n vector<D> xs(n),ys(n);\n for(int i=0;i<n;i++) cin>>xs[i]>>ys[i];\n\n vector<int> pos,neg;\n for(int i=0;i<n;i++){\n if(xs[i]>0) pos.emplace_back(i);\n if(xs[i]<0) neg.emplace_back(i);\n }\n\n int f=max(pos.size(),neg.size());\n if(f==0){\n cout<<0<<endl;\n return 0;\n }\n\n PrimalDual<int, D> G(n+3);\n int S=n,T=n+1,U=n+2;\n for(int z:pos) G.add_edge(S,z,1,0);\n for(int z:neg) G.add_edge(z,T,1,0);\n\n int dif=pos.size()-neg.size();\n if(dif>0){\n G.add_edge(U,T,dif,0);\n for(int p:pos)\n G.add_edge(p,U,1,abs(xs[p]));\n }\n if(dif<0){\n G.add_edge(S,U,-dif,0);\n for(int q:neg)\n G.add_edge(U,q,1,abs(xs[q]));\n }\n\n for(int p:pos)\n for(int q:neg)\n G.add_edge(p,q,1,\n min(hypot(xs[p]+xs[q],ys[p]-ys[q]),abs(xs[p])+abs(xs[q])));\n\n assert(G.build(S,T,f));\n cout<<fixed<<setprecision(12)<<G.get_cost()<<endl;\n return 0;\n}\n/*\n verified on 2020/09/24\n https://atcoder.jp/contests/geocon2013/tasks/geocon2013_b\n*/\n\nsigned main(){\n geocon2013_B();\n return 0;\n}\n#endif\n\n#undef call_from_test\n\n#define ERROR \"1e-6\"\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m,p,s,t;\n cin>>n>>m>>p>>s>>t;\n s--;t--;\n PrimalDual<int, int> G(n);\n for(int i=0;i<m;i++){\n int v,u,d,c;\n cin>>v>>u>>d>>c;\n v--;u--;\n G.add_edge(v,u,c,d);\n }\n\n using D = double;\n D ans=1e18;\n D sum=0,cnt=0;\n while(G.build(s,t,1)){\n sum+=G.get_cost();\n cnt+=1;\n chmin(ans,(sum+p)/cnt);\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3660, "score_of_the_acc": -0.7907, "final_rank": 11 }, { "submission_id": "aoj_2736_4247514", "code_snippet": "#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2736\"\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct Precision{\n Precision(){\n cout<<fixed<<setprecision(12);\n }\n}precision_beet;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename TF,typename TC>\nstruct PrimalDual{\n struct edge{\n int to;\n TF cap;\n TC cost;\n int rev;\n edge(){}\n edge(int to,TF cap,TC cost,int rev):\n to(to),cap(cap),cost(cost),rev(rev){}\n };\n\n static const TC INF;\n vector<vector<edge>> G;\n vector<TC> h,dist;\n vector<int> prevv,preve;\n\n PrimalDual(){}\n PrimalDual(int n):G(n),h(n),dist(n),prevv(n),preve(n){}\n\n void add_edge(int u,int v,TF cap,TC cost){\n G[u].emplace_back(v,cap,cost,G[v].size());\n G[v].emplace_back(u,0,-cost,G[u].size()-1);\n }\n\n void dijkstra(int s){\n struct P{\n TC first;\n int second;\n P(TC first,int second):first(first),second(second){}\n bool operator<(const P&a) const{return a.first<first;}\n };\n priority_queue<P> que;\n fill(dist.begin(),dist.end(),INF);\n\n dist[s]=0;\n que.emplace(dist[s],s);\n while(!que.empty()){\n P p=que.top();que.pop();\n int v=p.second;\n if(dist[v]<p.first) continue;\n for(int i=0;i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap==0) continue;\n if(dist[v]+e.cost+h[v]-h[e.to]<dist[e.to]){\n dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to]=v;\n preve[e.to]=i;\n que.emplace(dist[e.to],e.to);\n }\n }\n }\n }\n\n TC flow(int s,int t,TF f,int &ok){\n TC res=0;\n fill(h.begin(),h.end(),0);\n while(f>0){\n dijkstra(s);\n if(dist[t]==INF){\n ok=0;\n return res;\n }\n\n for(int v=0;v<(int)h.size();v++)\n if(dist[v]<INF) h[v]=h[v]+dist[v];\n\n TF d=f;\n for(int v=t;v!=s;v=prevv[v])\n d=min(d,G[prevv[v]][preve[v]].cap);\n\n f-=d;\n res=res+h[t]*d;\n for(int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n ok=1;\n return res;\n }\n};\ntemplate<typename TF, typename TC>\nconst TC PrimalDual<TF, TC>::INF = numeric_limits<TC>::max()/2;\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned geocon2013_B(){\n using D = double;\n\n int n;\n cin>>n;\n vector<D> xs(n),ys(n);\n for(int i=0;i<n;i++) cin>>xs[i]>>ys[i];\n\n vector<int> pos,neg;\n for(int i=0;i<n;i++){\n if(xs[i]>0) pos.emplace_back(i);\n if(xs[i]<0) neg.emplace_back(i);\n }\n\n int f=max(pos.size(),neg.size());\n if(f==0){\n cout<<0<<endl;\n return 0;\n }\n\n PrimalDual<int, D> G(n+3);\n int S=n,T=n+1,U=n+2;\n for(int z:pos) G.add_edge(S,z,1,0);\n for(int z:neg) G.add_edge(z,T,1,0);\n\n int dif=pos.size()-neg.size();\n if(dif>0){\n G.add_edge(U,T,dif,0);\n for(int p:pos)\n G.add_edge(p,U,1,abs(xs[p]));\n }\n if(dif<0){\n G.add_edge(S,U,-dif,0);\n for(int q:neg)\n G.add_edge(U,q,1,abs(xs[q]));\n }\n\n for(int p:pos)\n for(int q:neg)\n G.add_edge(p,q,1,\n min(hypot(xs[p]+xs[q],ys[p]-ys[q]),abs(xs[p])+abs(xs[q])));\n\n int ok=0;\n D ans=G.flow(S,T,f,ok);\n assert(ok);\n cout<<fixed<<setprecision(12)<<ans<<endl;\n return 0;\n}\n/*\n verified on 2019/12/17\n https://atcoder.jp/contests/geocon2013/tasks/geocon2013_b\n*/\n\nsigned main(){\n //geocon2013_B();\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n int n,m,p,s,t;\n cin>>n>>m>>p>>s>>t;\n s--;t--;\n PrimalDual<int, int> G(n);\n for(int i=0;i<m;i++){\n int v,u,d,c;\n cin>>v>>u>>d>>c;\n v--;u--;\n G.add_edge(v,u,c,d);\n }\n using D = double;\n D ans=1e18;\n D sum=0,cnt=0;\n int ok=1;\n while(1){\n sum+=G.flow(s,t,1,ok);\n cnt+=1;\n if(!ok) break;\n chmin(ans,(sum+p)/cnt);\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3436, "score_of_the_acc": -0.5584, "final_rank": 8 }, { "submission_id": "aoj_2736_4226915", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\nconst int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\ntemplate <typename T, typename U>\nstruct PrimalDual {\n using Pui = pair<U, int>;\n\n struct Edge {\n int dst, rev;\n T cap;\n U cost;\n Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {}\n };\n\n vector<vector<Edge> > graph;\n\n PrimalDual(int n, const T TINF, const U UINF) : n(n), TINF(TINF), UINF(UINF), graph(n), prev_v(n, -1), prev_e(n, -1), potential(n, 0), dist(n) {}\n\n void add_edge(int src, int dst, T cap, U cost) {\n has_negative_edge |= cost < 0;\n graph[src].emplace_back(dst, cap, cost, graph[dst].size());\n graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);\n }\n\n U minimum_cost_flow(int s, int t, T flow) {\n U res = 0;\n if (has_negative_edge) {\n bellman_ford(s);\n if (dist[t] == UINF) return UINF;\n res += calc(s, t, flow);\n }\n while (flow > 0) {\n dijkstra(s);\n if (dist[t] == UINF) return UINF;\n res += calc(s, t, flow);\n }\n return res;\n }\n\n U minimum_cost_flow(int s, int t) {\n U res = 0;\n bellman_ford(s);\n if (potential[t] >= 0 || dist[t] == UINF) return res;\n T tmp = TINF;\n res += calc(s, t, tmp);\n while (true) {\n dijkstra(s);\n if (potential[t] >= 0 || dist[t] == UINF) return res;\n res += calc(s, t, tmp);\n }\n }\n\n pair<T, U> min_cost_max_flow(int s, int t, T flow) {\n T mx = flow;\n U cost = 0;\n if (has_negative_edge) {\n bellman_ford(s);\n if (dist[t] == UINF) return {mx - flow, cost};\n cost += calc(s, t, flow);\n }\n while (flow > 0) {\n dijkstra(s);\n if (dist[t] == UINF) return {mx - flow, cost};\n cost += calc(s, t, flow);\n }\n return {mx - flow, cost};\n }\n\nprivate:\n int n;\n const T TINF;\n const U UINF;\n bool has_negative_edge = false;\n vector<int> prev_v, prev_e;\n vector<U> potential, dist;\n priority_queue<Pui, vector<Pui>, greater<Pui> > que;\n\n void bellman_ford(int s) {\n fill(ALL(dist), UINF);\n dist[s] = 0;\n bool is_updated = true;\n REP(step, n) {\n is_updated = false;\n REP(i, n) if (dist[i] != UINF) {\n REP(j, graph[i].size()) {\n Edge e = graph[i][j];\n if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {\n dist[e.dst] = dist[i] + e.cost;\n prev_v[e.dst] = i;\n prev_e[e.dst] = j;\n is_updated = true;\n }\n }\n }\n if (!is_updated) break;\n }\n assert(!is_updated);\n REP(i, n) {\n if (dist[i] != UINF) potential[i] += dist[i];\n }\n }\n\n void dijkstra(int s) {\n fill(ALL(dist), UINF);\n dist[s] = 0;\n que.emplace(0, s);\n while (!que.empty()) {\n Pui pr = que.top(); que.pop();\n int ver = pr.second;\n if (dist[ver] < pr.first) continue;\n REP(i, graph[ver].size()) {\n Edge e = graph[ver][i];\n U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst];\n if (e.cap > 0 && dist[e.dst] > nx) {\n dist[e.dst] = nx;\n prev_v[e.dst] = ver;\n prev_e[e.dst] = i;\n que.emplace(dist[e.dst], e.dst);\n }\n }\n }\n REP(i, n) {\n if (dist[i] != UINF) potential[i] += dist[i];\n }\n }\n\n U calc(int s, int t, T &flow) {\n T f = flow;\n for (int v = t; v != s; v = prev_v[v]) f = min(f, graph[prev_v[v]][prev_e[v]].cap);\n flow -= f;\n for (int v = t; v != s; v = prev_v[v]) {\n Edge &e = graph[prev_v[v]][prev_e[v]];\n e.cap -= f;\n graph[v][e.rev].cap += f;\n }\n return potential[t] * f;\n }\n};\n\nint main() {\n const ll M = 1000000000;\n int n, m, p, s, t; cin >> n >> m >> p >> s >> t; --s; --t;\n vector<int> v(m), u(m), d(m), c(m); REP(i, m) cin >> v[i] >> u[i] >> d[i] >> c[i], --v[i], --u[i];\n function<pair<double, bool>(double)> f = [&](double y) {\n ll Y = (ll)round(y * M);\n PrimalDual<ll, ll> pd(n, LINF, LINF);\n REP(i, m) pd.add_edge(v[i], u[i], Y * c[i], d[i]);\n ll res = pd.minimum_cost_flow(s, t, M);\n return res == LINF ? make_pair(1.0 * res, false) : make_pair(1.0 * res / M + y * p, true);\n };\n double lb = 0, ub = 1;\n REP(_, 80) {\n double mid1 = (lb + lb + ub) / 3, mid2 = (lb + ub + ub) / 3;\n pair<double, bool> f1 = f(mid1), f2 = f(mid2);\n if (!f1.second) {\n lb = mid1;\n } else if (!f2.second) {\n ub = mid2;\n } else if (f1.first < f2.first) {\n ub = mid2;\n } else {\n lb = mid1;\n }\n }\n cout << f(ub).first << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 6120, "memory_kb": 3544, "score_of_the_acc": -1.3198, "final_rank": 13 }, { "submission_id": "aoj_2736_4219674", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int maxn = 210;\nconst int maxm = 4010;\nconst int INF = 0x3f3f3f3f;\nstruct Edge{\n int to,next,cap,flow,cost;\n}edge[maxm];\nint head[maxn],tol;\nint pre[maxn],dis[maxn];\nbool vis[maxm];\nint n,m,p;\nvoid init(){\n tol=0;\n for(int i=1;i<=n;++i) head[i]=-1;\n}\nvoid addedge(int u,int v,int cap,int cost){\n edge[tol].to=v;\n edge[tol].cap=cap;\n edge[tol].cost=cost;\n edge[tol].flow=0;\n edge[tol].next=head[u];\n head[u]=tol++;\n edge[tol].to=u;\n edge[tol].cap=0;\n edge[tol].cost=-cost;\n edge[tol].flow=0;\n edge[tol].next=head[v];\n head[v]=tol++;\n}\nbool spfa(int s,int t){\n queue<int> q;\n for(int i=1;i<=n;++i){\n dis[i]=INF; vis[i]=false; pre[i]=-1;\n }\n dis[s]=0; vis[s]=true;\n q.push(s);\n while (!q.empty()){\n int u = q.front(); q.pop();\n vis[u]=false;\n for(int i=head[u];i!=-1;i=edge[i].next){\n int v=edge[i].to;\n if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost){\n dis[v]=dis[u]+edge[i].cost;\n pre[v]=i;\n if(!vis[v]){\n vis[v]=true;\n q.push(v);\n }\n }\n }\n }\n if(pre[t]==-1) return false;\n else return true;\n}\ndouble minCostMaxflow(int s,int t){\n int flow=0,cost=0; double ans=INF;\n while (spfa(s,t)){\n int Min = INF;\n for(int i=pre[t];i!=-1;i=pre[edge[i^1].to]){\n if(Min>edge[i].cap-edge[i].flow)\n Min=edge[i].cap-edge[i].flow;\n }\n for(int i=pre[t];i!=-1;i=pre[edge[i^1].to]){\n edge[i].flow+=Min;\n edge[i^1].flow-=Min;\n cost+=edge[i].cost*Min;\n }\n flow+=Min;\n ans=min(ans,(1.0*cost+p)/flow);\n }\n return ans;\n}\n\nint s,t,u,v,d,c;\nint main(){\n scanf(\"%d %d %d %d %d\",&n,&m,&p,&s,&t); init();\n while(m--){\n scanf(\"%d %d %d %d\",&u,&v,&d,&c);\n addedge(u,v,c,d);\n }\n printf(\"%lf\\n\",minCostMaxflow(s,t));\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3372, "score_of_the_acc": -0.4886, "final_rank": 5 }, { "submission_id": "aoj_2736_4188393", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nconst int INF = 0x3f3f3f3f;\nstruct Edge{\n\tint from, to, cap;\n\tint flow, cost;\n\tEdge(int u = 0, int v = 0, int c = 0, int f = 0, int o = 0):\n\t\tfrom(u), to(v), cap(c), flow(f), cost(o){}\n};\nstruct MCMF{\n\tint N, ver;\n\tvector<Edge> edges;\n\tvector< vector<int> > adj;\n\tvector<int> d, p, a, inq;\n\n\tMCMF(int Num): N(Num + 20), ver(Num), edges(0), adj(N), d(N), p(N), a(N), inq(N) { }\n\n\tinline void addEdge(int u, int v, int ca, int co){\n\t\tif(u == v) return;\n\t\tedges.emplace_back(u, v, ca, 0, co);\n\t\tadj[u].emplace_back(edges.size() - 1);\n\t\tedges.emplace_back(v, u, 0, 0, -co);\n\t\tadj[v].emplace_back(edges.size() - 1);\n\t}\n\n\tinline bool SPFA(int s, int t, int& flow, long long& cost){\n\t\tfill(d.begin(), d.end(), INF);\n\t\tfill(inq.begin(), inq.end(), 0);\n\t\td[s] = 0, inq[s] = 1, p[s] = 0, a[s] = 0x3f3f3f3f;\n\t\tqueue<int> q({s});\n\t\t\n\t\twhile(!q.empty()){\n\t\t\tint u = q.front(); q.pop();\n\t\t\tinq[u] = 0;\n\t\t\tfor(int i : adj[u]) {\n\t\t\t\tEdge &e = edges[i];\n\t\t\t\tif(e.cap > e.flow && d[e.to] > d[u] + e.cost){\n\t\t\t\t\td[e.to] = d[u] + e.cost;\n\t\t\t\t\tp[e.to] = i;\n\t\t\t\t\ta[e.to] = min(a[u], e.cap - e.flow);\n\t\t\t\t\tif(!inq[e.to]){\n\t\t\t\t\t\tq.push(e.to);\n\t\t\t\t\t\tinq[e.to] = 1;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif(d[t] >= 0x3f3f3f3f) return false;\n\t\tflow += a[t];\n\t\tcost += 1LL * d[t] * a[t];\n\t\tfor(int u = t; u != s; u = edges[p[u]].from){\n\t\t\tedges[p[u]].flow += a[t];\n\t\t\tedges[p[u] ^1].flow -= a[t];\n\t\t}\n\t\treturn true;\n\t}\n\tinline int minCostMaxFlow(int s, int t, ll& cost){\n\t\tint flow = 0; cost = 0;\n\t\twhile(SPFA(s, t, flow, cost)) continue;\n\t\treturn flow;\n\t}\n};\n\nint main() {\n int n, m, p, s, t;\n\tscanf(\"%d%d%d%d%d\", &n, &m, &p, &s, &t);\n\tMCMF mcmf(n);\n\tfor(int i = 1; i <= m; ++i){\n\t\tstatic int u, v, w, c;\n\t\tscanf(\"%d%d%d%d\", &u, &v, &w, &c);\n\t\tmcmf.addEdge(u, v, c, w);\n\t}\n double ans = 1e19;\n int flow = 0; ll cost = 0;\n while(mcmf.SPFA(s, t, flow, cost)) {\n ans = min(ans, (double)(cost + p) / double(flow));\n }\n printf(\"%.10f\\n\", ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3408, "score_of_the_acc": -0.525, "final_rank": 6 }, { "submission_id": "aoj_2736_4182177", "code_snippet": "#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2736\"\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct Precision{\n Precision(){\n cout<<fixed<<setprecision(12);\n }\n}precision_beet;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename TF,typename TC>\nstruct PrimalDual{\n struct edge{\n int to;\n TF cap;\n TC cost;\n int rev;\n edge(){}\n edge(int to,TF cap,TC cost,int rev):\n to(to),cap(cap),cost(cost),rev(rev){}\n };\n\n static const TC INF;\n vector<vector<edge>> G;\n vector<TC> h,dist;\n vector<int> prevv,preve;\n\n PrimalDual(){}\n PrimalDual(int n):G(n),h(n),dist(n),prevv(n),preve(n){}\n\n void add_edge(int u,int v,TF cap,TC cost){\n G[u].emplace_back(v,cap,cost,G[v].size());\n G[v].emplace_back(u,0,-cost,G[u].size()-1);\n }\n\n void dijkstra(int s){\n struct P{\n TC first;\n int second;\n P(TC first,int second):first(first),second(second){}\n bool operator<(const P&a) const{return a.first<first;}\n };\n priority_queue<P> que;\n fill(dist.begin(),dist.end(),INF);\n\n dist[s]=0;\n que.emplace(dist[s],s);\n while(!que.empty()){\n P p=que.top();que.pop();\n int v=p.second;\n if(dist[v]<p.first) continue;\n for(int i=0;i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap==0) continue;\n if(dist[v]+e.cost+h[v]-h[e.to]<dist[e.to]){\n dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to]=v;\n preve[e.to]=i;\n que.emplace(dist[e.to],e.to);\n }\n }\n }\n }\n\n TC flow(int s,int t,TF f,int &ok){\n TC res=0;\n fill(h.begin(),h.end(),0);\n while(f>0){\n dijkstra(s);\n if(dist[t]==INF){\n ok=0;\n return res;\n }\n\n for(int v=0;v<(int)h.size();v++)\n if(dist[v]<INF) h[v]=h[v]+dist[v];\n\n TF d=f;\n for(int v=t;v!=s;v=prevv[v])\n d=min(d,G[prevv[v]][preve[v]].cap);\n\n f-=d;\n res=res+h[t]*d;\n for(int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n ok=1;\n return res;\n }\n};\ntemplate<typename TF, typename TC>\nconst TC PrimalDual<TF, TC>::INF = numeric_limits<TC>::max()/2;\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned geocon2013_B(){\n using D = double;\n\n int n;\n cin>>n;\n vector<D> xs(n),ys(n);\n for(int i=0;i<n;i++) cin>>xs[i]>>ys[i];\n\n vector<int> pos,neg;\n for(int i=0;i<n;i++){\n if(xs[i]>0) pos.emplace_back(i);\n if(xs[i]<0) neg.emplace_back(i);\n }\n\n int f=max(pos.size(),neg.size());\n if(f==0){\n cout<<0<<endl;\n return 0;\n }\n\n PrimalDual<int, D> G(n+3);\n int S=n,T=n+1,U=n+2;\n for(int z:pos) G.add_edge(S,z,1,0);\n for(int z:neg) G.add_edge(z,T,1,0);\n\n int dif=pos.size()-neg.size();\n if(dif>0){\n G.add_edge(U,T,dif,0);\n for(int p:pos)\n G.add_edge(p,U,1,abs(xs[p]));\n }\n if(dif<0){\n G.add_edge(S,U,-dif,0);\n for(int q:neg)\n G.add_edge(U,q,1,abs(xs[q]));\n }\n\n for(int p:pos)\n for(int q:neg)\n G.add_edge(p,q,1,\n min(hypot(xs[p]+xs[q],ys[p]-ys[q]),abs(xs[p])+abs(xs[q])));\n\n int ok=0;\n D ans=G.flow(S,T,f,ok);\n assert(ok);\n cout<<fixed<<setprecision(12)<<ans<<endl;\n return 0;\n}\n/*\n verified on 2019/12/17\n https://atcoder.jp/contests/geocon2013/tasks/geocon2013_b\n*/\n\nsigned main(){\n //geocon2013_B();\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n int n,m,p,s,t;\n cin>>n>>m>>p>>s>>t;\n s--;t--;\n PrimalDual<int, int> G(n);\n for(int i=0;i<m;i++){\n int v,u,d,c;\n cin>>v>>u>>d>>c;\n v--;u--;\n G.add_edge(v,u,c,d);\n }\n using D = double;\n D ans=1e18;\n D sum=0,cnt=0;\n int ok=1;\n while(1){\n sum+=G.flow(s,t,1,ok);\n cnt+=1;\n if(!ok) break;\n chmin(ans,(sum+p)/cnt);\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3440, "score_of_the_acc": -0.5626, "final_rank": 9 }, { "submission_id": "aoj_2736_4182171", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename TF,typename TC>\nstruct PrimalDual{\n struct edge{\n int to;\n TF cap;\n TC cost;\n int rev;\n edge(){}\n edge(int to,TF cap,TC cost,int rev):\n to(to),cap(cap),cost(cost),rev(rev){}\n };\n\n static const TC INF;\n vector<vector<edge>> G;\n vector<TC> h,dist;\n vector<int> prevv,preve;\n\n PrimalDual(){}\n PrimalDual(int n):G(n),h(n),dist(n),prevv(n),preve(n){}\n\n void add_edge(int u,int v,TF cap,TC cost){\n G[u].emplace_back(v,cap,cost,G[v].size());\n G[v].emplace_back(u,0,-cost,G[u].size()-1);\n }\n\n void dijkstra(int s){\n struct P{\n TC first;\n int second;\n P(TC first,int second):first(first),second(second){}\n bool operator<(const P&a) const{return a.first<first;}\n };\n priority_queue<P> que;\n fill(dist.begin(),dist.end(),INF);\n\n dist[s]=0;\n que.emplace(dist[s],s);\n while(!que.empty()){\n P p=que.top();que.pop();\n int v=p.second;\n if(dist[v]<p.first) continue;\n for(int i=0;i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap==0) continue;\n if(dist[v]+e.cost+h[v]-h[e.to]<dist[e.to]){\n dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to]=v;\n preve[e.to]=i;\n que.emplace(dist[e.to],e.to);\n }\n }\n }\n }\n\n TC flow(int s,int t,TF f,int &ok){\n TC res=0;\n fill(h.begin(),h.end(),0);\n while(f>0){\n dijkstra(s);\n if(dist[t]==INF){\n ok=0;\n return res;\n }\n\n for(int v=0;v<(int)h.size();v++)\n if(dist[v]<INF) h[v]=h[v]+dist[v];\n\n TF d=f;\n for(int v=t;v!=s;v=prevv[v])\n d=min(d,G[prevv[v]][preve[v]].cap);\n\n f-=d;\n res=res+h[t]*d;\n for(int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n ok=1;\n return res;\n }\n};\ntemplate<typename TF, typename TC>\nconst TC PrimalDual<TF, TC>::INF = numeric_limits<TC>::max()/2;\n\n\nstruct Precision{\n Precision(){\n cout<<fixed<<setprecision(12);\n }\n}precision_beet;\n\n//INSERT ABOVE HERE\nsigned main(){\n int n,m,p,s,t;\n cin>>n>>m>>p>>s>>t;\n s--;t--;\n PrimalDual<int, int> G(n);\n for(int i=0;i<m;i++){\n int v,u,d,c;\n cin>>v>>u>>d>>c;\n v--;u--;\n G.add_edge(v,u,c,d);\n }\n using D = double;\n D ans=1e18;\n D sum=0,cnt=0;\n int ok=1;\n while(1){\n sum+=G.flow(s,t,1,ok);\n cnt+=1;\n if(!ok) break;\n chmin(ans,(sum+p)/cnt);\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3420, "score_of_the_acc": -0.5418, "final_rank": 7 }, { "submission_id": "aoj_2736_4048677", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename flow_t, typename cost_t >\nstruct edge {\n int src, to;\n flow_t low, high;\n cost_t cost;\n\n edge() = default;\n\n edge(int src, int to, flow_t high, cost_t cost) : src(src), to(to), low(0), high(high), cost(cost) {}\n\n edge(int src, int to, flow_t low, flow_t high, cost_t cost) : src(src), to(to), low(low), high(high), cost(cost) {}\n};\n\ntemplate< typename flow_t, typename cost_t, template< typename, typename > class MF >\ncost_t normalized_min_cost_flow(vector< flow_t > D, const vector< edge< flow_t, cost_t > > &E, cost_t NG = -1) {\n const int N = (int) D.size(), M = (int) E.size();\n MF< flow_t, cost_t > flow(N + 2);\n const int S = N, T = N + 1;\n\n cost_t sum = 0;\n for(auto &e : E) {\n if(e.cost < 0) {\n sum += e.cost * e.high;\n D[e.src] -= e.high;\n D[e.to] += e.high;\n flow.add_edge(e.to, e.src, e.high - e.low, -e.cost);\n } else {\n sum += e.cost * e.low;\n D[e.src] -= e.low;\n D[e.to] += e.low;\n flow.add_edge(e.src, e.to, e.high - e.low, e.cost);\n }\n }\n\n\n flow_t in = 0, out = 0;\n for(int i = 0; i < N; i++) {\n if(D[i] > 0) {\n flow.add_edge(S, i, D[i], flow_t(0));\n in += D[i];\n } else if(D[i] < 0) {\n flow.add_edge(i, T, -D[i], flow_t(0));\n out += -D[i];\n }\n }\n\n auto ret = flow.min_cost_flow(S, T, in);\n if(ret == -1) return NG;\n return ret + sum;\n}\n\ntemplate< typename flow_t, typename cost_t >\nstruct PrimalDual {\n const cost_t INF;\n\n struct edge {\n int to;\n flow_t cap;\n cost_t cost;\n int rev;\n bool isrev;\n };\n vector< vector< edge > > graph;\n vector< cost_t > potential, min_cost;\n vector< int > prevv, preve;\n\n PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}\n\n void add_edge(int from, int to, flow_t cap, cost_t cost) {\n graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});\n graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});\n }\n\n cost_t min_cost_flow(int s, int t, flow_t f) {\n int V = (int) graph.size();\n cost_t ret = 0;\n using Pi = pair< cost_t, int >;\n priority_queue< Pi, vector< Pi >, greater< Pi > > que;\n potential.assign(V, 0);\n preve.assign(V, -1);\n prevv.assign(V, -1);\n\n while(f > 0) {\n min_cost.assign(V, INF);\n que.emplace(0, s);\n min_cost[s] = 0;\n while(!que.empty()) {\n Pi p = que.top();\n que.pop();\n if(min_cost[p.second] < p.first) continue;\n for(int i = 0; i < graph[p.second].size(); i++) {\n edge &e = graph[p.second][i];\n cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];\n if(e.cap > 0 && min_cost[e.to] > nextCost) {\n min_cost[e.to] = nextCost;\n prevv[e.to] = p.second, preve[e.to] = i;\n que.emplace(min_cost[e.to], e.to);\n }\n }\n }\n if(min_cost[t] == INF) return -1;\n for(int v = 0; v < V; v++) potential[v] += min_cost[v];\n flow_t addflow = f;\n for(int v = t; v != s; v = prevv[v]) {\n addflow = min(addflow, graph[prevv[v]][preve[v]].cap);\n }\n f -= addflow;\n ret += addflow * potential[t];\n for(int v = t; v != s; v = prevv[v]) {\n edge &e = graph[prevv[v]][preve[v]];\n e.cap -= addflow;\n graph[v][e.rev].cap += addflow;\n }\n }\n return ret;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << rev_e.cap + e.cap << \")\" << endl;\n }\n }\n }\n};\n\n\nusing flow_t = double;\nusing cost_t = double;\n\nint main() {\n\n int N, M, P, S, T;\n cin >> N >> M >> P >> S >> T;\n --S, --T;\n vector< int > V(M), U(M), D(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> U[i] >> V[i] >> D[i] >> C[i];\n --U[i], --V[i];\n }\n\n auto check = [&](double lambda) {\n vector< flow_t > X(N);\n X[S] = -1.0;\n X[T] = 1.0;\n vector< edge< flow_t, cost_t > > E;\n for(int i = 0; i < M; i++) E.emplace_back(V[i], U[i], 0.0, C[i] * lambda, D[i]);\n return normalized_min_cost_flow< flow_t, cost_t, PrimalDual >(X, E, inf) + lambda * P;\n };\n double left = 0.0, right = 1.1;\n for(int i = 0; i < 60; i++) {\n double mid = (left + right) / 2.0;\n if(check(mid) >= 1e9) left = mid;\n else right = mid;\n }\n left = right;\n right = 1.1;\n for(int i = 0; i < 60; i++) {\n double a = (left * 2 + right) / 3;\n double b = (left + right * 2) / 3;\n if(check(a) < check(b)) right = b;\n else left = a;\n }\n cout << check(left) << endl;\n}", "accuracy": 1, "time_ms": 9360, "memory_kb": 3452, "score_of_the_acc": -1.5708, "final_rank": 14 }, { "submission_id": "aoj_2736_3936841", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define pb push_back\n#define all(v) (v).begin(),(v).end()\n#define fi first\n#define se second\ntypedef vector<int>vint;\ntypedef pair<int,int>pint;\ntypedef vector<pint>vpint;\n\ntemplate<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;}\ntemplate<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;}\n\ntemplate<class A,class B>\nostream& operator<<(ostream& ost,const pair<A,B>&p){\n\tost<<\"{\"<<p.first<<\",\"<<p.second<<\"}\";\n\treturn ost;\n}\n\ntemplate<class T>\nostream& operator<<(ostream& ost,const vector<T>&v){\n\tost<<\"{\";\n\tfor(int i=0;i<v.size();i++){\n\t\tif(i)ost<<\",\";\n\t\tost<<v[i];\n\t}\n\tost<<\"}\";\n\treturn ost;\n}\n\nstruct PrimalDual{\n using F=long long;\n const F INF=1ll<<50;\n \n struct Edge{\n int to;\n F cap,cost;\n int rev;\n Edge(int to,F cap,F cost,int rev):to(to),cap(cap),cost(cost),rev(rev){}\n };\n \n int n;\n vector<vector<Edge>>G;\n\n PrimalDual(int n):n(n),G(n){}\n\n void addEdge(int from,int to,F cap,F cost){\n G[from].push_back(Edge(to,cap,cost,G[to].size()));\n G[to].push_back(Edge(from,0,-cost,G[from].size()-1));\n }\n\n\n double solve(int s,int t,F P){\n F cur=0;\n\n vector<F>h(n);\n vector<int>prevv(n,-1),preve(n,-1);\n vector<F>dist(n);\n priority_queue<pair<F,int>,vector<pair<F,int>>,greater<pair<F,int>>>que;\n \n\t\tdouble ans=1e10;\n for(int z=1;;z++){\n fill(dist.begin(),dist.end(),INF);\n dist[s]=0;\n que.emplace(0,s); \n while(que.size()){\n F d;\n int v;\n tie(d,v)=que.top();\n que.pop();\n if(dist[v]<d)continue;\n for(int i=0;i<G[v].size();i++){\n Edge &e=G[v][i];\n F nd=dist[v]+e.cost+h[v]-h[e.to];\n if(e.cap>0&&dist[e.to]>nd){\n dist[e.to]=nd;\n prevv[e.to]=v;preve[e.to]=i;\n que.emplace(nd,e.to);\n }\n }\n }\n if(dist[t]==INF)break;\n for(int v=0;v<n;v++)h[v]+=dist[v];\n cur+=h[t];\n for(int v=t;v!=s;v=prevv[v]){\n Edge &e=G[prevv[v]][preve[v]];\n e.cap-=1;\n G[v][e.rev].cap+=1;\n }\n\t\t\tchmin(ans,1.0*(cur+P)/z);\n }\n\t\treturn ans;\n }\n};\n\n\n\nsigned main(){\n\tint N,M,P,S,T;\n\tcin>>N>>M>>P>>S>>T;\n\tS--;T--;\n\n\tPrimalDual pd(N);\n\trep(i,M){\n\t\tint u,v,d,c;\n\t\tcin>>u>>v>>d>>c;\n\t\tu--;v--;\n\t\tpd.addEdge(u,v,c,d);\n\t}\n\n\tprintf(\"%.20f\\n\",pd.solve(S,T,P));\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3360, "score_of_the_acc": -0.4804, "final_rank": 4 }, { "submission_id": "aoj_2736_2916846", "code_snippet": "#include <stdio.h>\n#include <algorithm>\n#include <vector>\n#include <queue>\nusing namespace std;\n\nconst int non = 10000000;\n\nstruct edge {\n\tint x, y, f, c, r;\n};\nvector<edge> E[202];\n\nvoid add(int x, int y, int f, int c) {\n\tint p = E[x].size(), q = E[y].size();\n\tE[x].push_back({ x, y, f, c, q });\n\tE[y].push_back({ y, x, 0, -c, p });\n}\n\nint N, M, P, s, t;\nvector<int> last_dist;\n\nint spfa(){\n\tvector<int> dist(N, non), viax(N), viap(N);\n\tvector<bool> chk(N);\n\tpriority_queue<pair<int, int> > qu;\n\tqu.push({ 0, s }); dist[s] = 0;\n\twhile (!qu.empty()) {\n\t\tint c = -qu.top().first, x = qu.top().second; qu.pop();\n\t\tif (dist[x] < c) continue;\n\t\tint p = 0;\n\t\tfor (auto &e : E[x]) {\n\t\t\tif (e.f) {\n\t\t\t\tint y = e.y, nc = c + e.c + last_dist[y] - last_dist[x];\n\t\t\t\tif (dist[y] > nc) {\n\t\t\t\t\tqu.push({ -nc, y });\n\t\t\t\t\tdist[y] = nc;\n\t\t\t\t\tviax[y] = x;\n\t\t\t\t\tviap[y] = p;\n\t\t\t\t}\n\t\t\t}\n\t\t\tp++;\n\t\t}\n\t}\n\n\tif (dist[t] == non) return 0;\n\tint ret = dist[t] - last_dist[t] + last_dist[s];\n\tlast_dist = dist;\n\tint y = t;\n\twhile (y != s) {\n\t\tint x = viax[y];\n\t\tauto &e = E[x][viap[y]];\n\t\te.f--;\n\t\tE[y][e.r].f++;\n\t\ty = x;\n\t}\n\treturn ret;\n}\n\nint main(){\n\tscanf(\"%d %d %d %d %d\", &N, &M, &P, &s, &t);\n\ts--; t--;\n\n\tfor (int i = 0; i < M; i++) {\n\t\tint x, y, d, c;\n\t\tscanf(\"%d %d %d %d\", &x, &y, &d, &c); x--; y--;\n\t\tadd(x, y, c, d);\n\t}\n\n\tint sum = 0, flow = 0; double ans = 1e10;\n\tlast_dist = vector<int>(N, non);\n\twhile (1) {\n\t\tint now = spfa();\n\t\tif (now == 0) break;\n\t\tsum += now; flow++;\n\t\tans = min(ans, 1. * (sum + P) / flow);\n\t}\n\tprintf(\"%.12lf\\n\", ans);\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 2904, "score_of_the_acc": -0.0064, "final_rank": 1 } ]
aoj_2740_cpp
C - みさわさんの根付き木 Problem Statement あなたは親友であるみさわさんの誕生日が近いことに気づき,根付きの二分木をプレゼントすることにした. ここで,根付きの二分木とは,以下のようなグラフ構造である.(図 1) 各頂点には,その頂点の親と呼ばれる頂点がちょうど 1 つだけ存在し,親と辺で結ばれている.ただし,根と呼ばれる 1 つの頂点のみ,例外的に親を持たない. 各頂点は,左の子と呼ばれる頂点をちょうど1つ持つか,あるいは持たない.左の子を持つ場合,左の子とは辺で結ばれており,左の子の親はその頂点である. 各頂点は,右の子と呼ばれる頂点をちょうど1つ持つか,あるいは持たない.右の子を持つ場合,右の子とは辺で結ばれており,右の子の親はその頂点である. 図 1. 2 つの根付きの二分木とその合成の例 あなたは手作りの品を贈りたいと考えたので,市販の根付きの二分木を 2 つ買ってきて重ね合わせて合成することで,さらによい根付きの二分木を 1 つ作ることにした. あなたが買ってきた 2 つの木の各頂点には非負の整数が書かれている. みさわさんは少ない頂点数で各数値が大きいような,コストパフォーマンスがよい木が好みなので,以下の手順に沿って新しい二分木を作ることにする. 2 つの二分木それぞれの根に書かれた整数の和を,新しい二分木の根に書く整数とする. どちらの二分木の根も左の子を持っている場合,それらを根とする二分木それぞれを合成した二分木を作り,新しい二分木の根の左の子とする.そうでない場合,新しい二分木の根は左の子を持たない. どちらの二分木の根も右の子を持っている場合,それらを根とする二分木それぞれを合成した二分木を作り,新しい二分木の根の右の子とする.そうでない場合,新しい二分木の根は右の子を持たない. あなたは実際に合成する作業を行う前に,できあがる根付きの二分木がどのようになるのか確かめることにした. 買ってきた 2 つの根付きの二分木の情報が与えられるので,上記の手順に従って合成される新しい根付きの二分木を求めるプログラムを作成せよ. ここで,根付きの二分木の情報は以下のような形式で文字列として表現するものとする. (左の子を表す文字列)[根に書かれた整数](右の子を表す文字列) 節点が存在しない木は空文字列とする.例えば図 1 の合成されてできた新しい根付きの二分木は (()[6]())[8](((()[4]())[7]())[9]()) のように書く. Input 入力は次の形式で表される. $A$ $B$ $A$,$B$ はそれぞれ買ってきた根付きの二分木の情報を表す文字列であり,長さは $7$ 以上 $1000$ 以下である. 与えられる情報は前述の形式に従っており,余計な空白文字等を含まない. また,節点が存在しない根付き木が入力されることはない. 各節点に書かれた整数は $0$ 以上 $1000$ 以下であると仮定してよい. ただし,出力の各節点に書かれる整数はこの範囲に収まらない場合もあることに注意せよ. Output 2 つの根付きの二分木を合成してできあがる新しい根付きの二分木の情報を 1 行で出力せよ.特に,行末の改行を除く余計な空白文字等を含まないよう注意せよ. Sample Input 1 ((()[8]())[2]())[5](((()[2]())[6](()[3]()))[1]()) (()[4]())[3](((()[2]())[1]())[8](()[3]())) Output for the Sample Input 1 (()[6]())[8](((()[4]())[7]())[9]()) Sample Input 2 (()[1]())[2](()[3]()) (()[1](()[2]()))[3]() Output for the Sample Input 2 (()[2]())[5]() Sample Input 3 (()[1]())[111]() ()[999](()[9]()) Output for the Sample Input 3 ()[1110]() Sample Input 4 (()[2](()[4]()))[8]((()[16]())[32](()[64]())) ((()[1]())[3]())[9](()[27](()[81]())) Output for the Sample Input 4 (()[5]())[17](()[59](()[145]())) Sample Input 5 ()[0]() ()[1000]() Output for the Sample Input 5 ()[1000]()
[ { "submission_id": "aoj_2740_3532990", "code_snippet": "#include <string>\n#include <iostream>\n#include <vector>\n\nusing namespace std;\n#define vec vector<int>\n\nconst int SIZE=10000000;\n\nvec Aar(SIZE,-1);\nvec Bar(SIZE,-1);\nvec Xar(SIZE,-1);\n\n\nvoid input(vec & ar,const string & str,int & i,int k)\n{\n if(str[i]=='(')\n {\n ++i;\n input(ar,str,i,2*k+1);\n }\n if(str[i]==')')\n {\n ++i;\n input(ar,str,i,(k-1)/2);\n return;\n }\n if(str[i]=='[')\n {\n ++i;\n int n=0;\n while(str[i]!=']')\n {\n n*=10;\n n+=(int)(str[i]-'0');\n ++i;\n }\n ++i;\n ar[k] = n;\n }\n if(str[i]=='(')\n {\n ++i;\n input(ar,str,i,2*k+2);\n }\n if(str[i]==')')\n {\n ++i;\n input(ar,str,i,(k-1)/2);\n return;\n }\n}\n\nvoid output(int k)\n{\n if(Xar[k]==-1)return;\n\n cout << \"(\";\n output(2*k+1);\n cout << \")\";\n\n cout << \"[\" << Xar[k] << \"]\";\n\n cout << \"(\";\n output(2*k+2);\n cout << \")\";\n}\n\nint main()\n{\n string A,B;\n cin >> A >> B;\n int si=0;\n input(Aar,A,si,0);\n si = 0;\n input(Bar,B,si,0); \n\n for(int i=0;i<SIZE;++i)\n {\n if(Aar[i]>=0 && Bar[i]>=0)\n {\n Xar[i]=Aar[i]+Bar[i];\n }\n }\n\n output(0);\n\n cout << endl;\n}", "accuracy": 0.8490566037735849, "time_ms": 30, "memory_kb": 119872, "score_of_the_acc": -0.7061, "final_rank": 7 }, { "submission_id": "aoj_2740_3001752", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define fi first\n#define se second\n#define repl(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define repr(i, a, b) for (int i = (int)(a - 1); i >= b; i--)\n#define rep(i, n) repl(i, 0, n)\n#define each(itr, v) for (auto itr : v)\n#define pb(s) push_back(s)\n#define all(x) (x).begin(), (x).end()\n#define dbg(x) cout << #x \" = \" << x << endl\n#define dbgv(i, a, v) \\\n rep(i, a) { cout << v[i] << ((i < a - 1) ? ' ' : '\\n'); }\n#define maxch(x, y) x = max(x, y)\n#define minch(x, y) x = min(x, y)\n#define uni(x) x.erase(unique(all(x)), x.end())\n#define exist(x, y) (find(all(x), y) != x.end())\n#define bcnt(x) bitset<32>(x).count()\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int, int> P;\n\n#define INF INT_MAX / 3\n\nint rp, rq, rans;\nint p[1010][1010][2], q[1010][1010][2], ans[2020][1010][2];\n\nint toArray(string s, int h, bool f) {\n if (s.size() == 0) return -1;\n int l = 1, i = 1;\n while (l > 0 && i < s.size()) {\n if (s[i] == '(')\n l++;\n else if (s[i] == ')')\n l--;\n i++;\n }\n int j = i + 1, r = 0;\n while ('0' <= s[j] && s[j] <= '9') {\n r = r * 10 + (s[j] - '0');\n j++;\n }\n if (f) {\n p[h][r][0] = toArray(s.substr(1, i - 2), h + 1, true);\n p[h][r][1] = toArray(s.substr(j + 2, s.size() - j - 3), h + 1, true);\n } else {\n q[h][r][0] = toArray(s.substr(1, i - 2), h + 1, false);\n q[h][r][1] = toArray(s.substr(j + 2, s.size() - j - 3), h + 1, false);\n }\n return r;\n}\n\nint combine(int a, int b, int h) {\n if (a != -1 && b != -1) {\n int r = a + b;\n ans[h][r][0] = combine(p[h][a][0], q[h][b][0], h + 1);\n ans[h][r][1] = combine(p[h][a][1], q[h][b][1], h + 1);\n return r;\n } else {\n return -1;\n }\n}\n\nstring toString(int r, int h) {\n if (r == -1) return \"\";\n string ret = \"(\";\n ret += toString(ans[h][r][0], h + 1);\n ret += \")[\" + to_string(r) + \"](\";\n ret += toString(ans[h][r][1], h + 1);\n return ret + \")\";\n}\n\nint main() {\n cin.sync_with_stdio(false);\n memset(p, -1, sizeof(p));\n memset(q, -1, sizeof(q));\n memset(ans, -1, sizeof(ans));\n string a, b;\n cin >> a >> b;\n rp = toArray(a, 0, true), rq = toArray(b, 0, false);\n rans = combine(rp, rq, 0);\n cout << toString(rans, 0) << endl;\n return 0;\n}", "accuracy": 0.09433962264150944, "time_ms": 10, "memory_kb": 35148, "score_of_the_acc": -0.0949, "final_rank": 10 }, { "submission_id": "aoj_2740_3001711", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define fi first\n#define se second\n#define repl(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define repr(i, a, b) for (int i = (int)(a - 1); i >= b; i--)\n#define rep(i, n) repl(i, 0, n)\n#define each(itr, v) for (auto itr : v)\n#define pb(s) push_back(s)\n#define all(x) (x).begin(), (x).end()\n#define dbg(x) cout << #x \" = \" << x << endl\n#define dbgv(i, a, v) \\\n rep(i, a) { cout << v[i] << ((i < a - 1) ? ' ' : '\\n'); }\n#define maxch(x, y) x = max(x, y)\n#define minch(x, y) x = min(x, y)\n#define uni(x) x.erase(unique(all(x)), x.end())\n#define exist(x, y) (find(all(x), y) != x.end())\n#define bcnt(x) bitset<32>(x).count()\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int, int> P;\n\n#define INF INT_MAX / 3\n\nint p[1010000], q[1010000], ans[1010000];\n\nvoid toArray(string s, int *array, int rnum) {\n if (s.size() == 0) return;\n int l = 1, i = 1;\n while (l > 0 && i < s.size()) {\n if (s[i] == '(')\n l++;\n else if (s[i] == ')')\n l--;\n i++;\n }\n int j = i + 1, r = 0;\n while ('0' <= s[j] && s[j] <= '9') {\n r = r * 10 + (s[j] - '0');\n j++;\n }\n array[rnum] = r;\n toArray(s.substr(1, i - 2), array, rnum * 2 + 1);\n toArray(s.substr(j + 2, s.size() - j - 3), array, rnum * 2 + 2);\n}\n\nstring toString(int *array, int rnum) {\n if (array[rnum] == -1) return \"\";\n string ret = \"(\";\n ret += toString(array, rnum * 2 + 1);\n ret += \")[\" + to_string(array[rnum]) + \"](\";\n ret += toString(array, rnum * 2 + 2);\n return ret + \")\";\n}\n\nint main() {\n cin.sync_with_stdio(false);\n memset(p, -1, sizeof(p));\n memset(q, -1, sizeof(q));\n memset(ans, -1, sizeof(ans));\n string a, b;\n cin >> a >> b;\n toArray(a, p, 0), toArray(b, q, 0);\n rep(i, 1010) {\n if (p[i] > -1 && q[i] > -1) ans[i] = p[i] + q[i];\n }\n cout << toString(ans, 0) << endl;\n return 0;\n}", "accuracy": 0.8490566037735849, "time_ms": 10, "memory_kb": 15128, "score_of_the_acc": -0.0095, "final_rank": 2 }, { "submission_id": "aoj_2740_2989193", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define max(a,b) ((a)>(b)?(a):(b))\n#define min(a,b) ((a)<(b)?(a):(b))\n\ntypedef long long LL;\n\nint const MAX=10000000;\n\nint T[2][MAX];\nint A[MAX];\n\nvoid decode(string s,int num,int ab){\n int i=0;\n int l=0,r=0;\n for(;;i++){\n if(s[i]=='(') l++;\n else if(s[i]==')') r++;\n if(l==r){\n if(i>1) decode(s.substr(1,i-1),num*2+1,ab);\n break;\n }\n }\n int tmp=i;\n for(;;i++){\n if(s[i]==']'){\n T[ab][num]=stoi(s.substr(tmp+2,i-1));\n break;\n }\n }\n if(i<s.length()-3) decode(s.substr(i+2,s.length()-4-i),num*2+2,ab);\n return;\n}\n\nstring encode(int num){\n if(A[num]>=0){\n return \"(\"+encode(num*2+1)+\")[\"+to_string(A[num])+\"](\"+encode(num*2+2)+\")\";\n }else{\n return \"\";\n }\n}\n\nvoid merge(int num){\n A[num]=T[0][num]+T[1][num];\n if(T[0][num*2+1]>=0&&T[1][num*2+1]>=0) merge(num*2+1);\n if(T[0][num*2+2]>=0&&T[1][num*2+2]>=0) merge(num*2+2);\n return;\n}\n\nint main(){\n string a,b;\n cin >> a >> b;\n for(int i=0;i<MAX;i++){\n T[0][i]=T[1][i]=A[i]=-1;\n }\n decode(a,0,0);\n decode(b,0,1);\n merge(0);\n // for(int i=0;i<50;i++){\n // cout << A[i] << \" \";\n // }\n // cout << endl;\n cout << encode(0) << endl;\n return 0;\n}", "accuracy": 0.09433962264150944, "time_ms": 40, "memory_kb": 120460, "score_of_the_acc": -0.8336, "final_rank": 17 }, { "submission_id": "aoj_2740_2875353", "code_snippet": "#include<bits/stdc++.h>\n\n#define INF 1e9\n#define llINF 1e18\n#define MOD 1e9+7\n#define pb push_back\n#define mp make_pair \n#define F first\n#define S second\n#define ll long long\nusing namespace std;\nstring s1,s2;ll kasai[2000000],isao[2000000],jcreation[2000000];\nbool visited[2000000],visited2[2000000];\n\nvoid dfs(int now,int cnt){\n visited[cnt]=true;\n if(now==s1.size()){\n return;\n }\n if(s1[now]=='('){\n if(visited[cnt*2+1])\n dfs(now+1,(cnt*2)+2);\n else\n dfs(now+1,(cnt*2)+1);\n }else if(s1[now]==')'){\n dfs(now+1,(cnt-1)/2);\n }else{\n now++;\n ll num=0;\n while(s1[now]>='0'&&s1[now]<='9'){\n num*=10;\n num+=s1[now]-'0';\n now++;\n }\n kasai[cnt]=num;\n dfs(now+1,cnt);\n }\n}\nvoid dfs2(int now,int cnt){\n visited2[cnt]=true;\n if(now==s2.size()){\n return;\n }\n if(s2[now]=='('){\n if(visited2[cnt*2+1])\n dfs2(now+1,(cnt*2)+2);\n else\n dfs2(now+1,(cnt*2)+1);\n }else if(s2[now]==')'){\n dfs2(now+1,(cnt-1)/2);\n }else{\n now++;\n ll num=0;\n while(s2[now]>='0'&&s2[now]<='9'){\n num*=10;\n num+=s2[now]-'0';\n now++;\n }\n isao[cnt]=num;\n dfs2(now+1,cnt);\n }\n}\nstring Stoi(int num){\n string s=\"\";\n while(num>0){\n s+=(char)((num%10)+'0');\n num/=10;\n }\n reverse(s.begin(),s.end());\n return s;\n}\nstring dfs3(int now){\n string ret=\"\";\n if(jcreation[now]==-1)return ret;\n ret=\"(\"+dfs3(2*now+1)+\")[\"+Stoi(jcreation[now])+\"](\"+dfs3(2*now+2)+\")\";\n return ret;\n}\nint main(){\n for(int i=0;i<2000000;i++){\n kasai[i]=-1;\n isao[i]=-1;\n jcreation[i]=-1;\n }\n cin>>s1>>s2;\n dfs(0,0);\n dfs2(0,0);\n for(int i=0;i<2000000;i++){\n // cout<<i<<\" \"<<kasai[i]<<\" \"<<isao[i]<<endl;\n if(isao[i]>=0&&kasai[i]>=0){\n (jcreation[i]=isao[i]+kasai[i]);\n }\n }\n cout<<dfs3(0)<<endl;\n return 0;\n}", "accuracy": 0.8490566037735849, "time_ms": 20, "memory_kb": 50100, "score_of_the_acc": -0.2836, "final_rank": 6 }, { "submission_id": "aoj_2740_2731396", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <cstdio>\n#include <functional>\n#include <numeric>\n#include <stack>\n#include <queue>\n#include <map>\n#include <set>\n#include <utility>\n#include <sstream>\n#include <complex>\n#include <fstream>\n#include <bitset>\n#include <time.h>\n#include <tuple>\n#include <iomanip>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\ntypedef vector<ll> V;\ntypedef complex<double> Point;\n\n#define PI acos(-1.0)\n#define EPS 1e-10\nconst ll INF = 1e12;\nconst ll MOD = 1e9 + 7;\n\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define rep(i,N) for(int i=0;i<(N);i++)\n#define ALL(s) (s).begin(),(s).end()\n#define EQ(a,b) (abs((a)-(b))<EPS)\n#define EQV(a,b) ( EQ((a).real(), (b).real()) && EQ((a).imag(), (b).imag()) )\n#define fi first\n#define se second\n#define N_SIZE (1LL << 20)\n#define NIL -1\n\nll sq(ll num) { return num*num; }\nll mod_pow(ll x, ll n) {\n\tif (n == 0)return 1;\n\tif (n == 1)return x%MOD;\n\tll res = sq(mod_pow(x, n / 2));\n\tres %= MOD;\n\tif (n % 2 == 1) {\n\t\tres *= x;\n\t\tres %= MOD;\n\t}\n\treturn res;\n}\nll mod_add(ll a, ll b) { return (a + b) % MOD; }\nll mod_sub(ll a, ll b) { return (a - b + MOD) % MOD; }\nll mod_mul(ll a, ll b) { return a*b % MOD; }\n\nstring s[2];\nll t[3][10000000];\nbool f[10000000];\n\nstring solve(int k) {\n\tif (t[2][k] == -1)return \"\";\n\tstring res = \"(\" + solve(2 * k + 1) + \")\";\n\tres += (\"[\" + to_string(t[2][k]) + \"]\");\n\treturn res + \"(\" + solve(2 * k + 2) + \")\";\n}\n\nint main() {\n\trep(i, 3)fill(t[i], t[i] + 10000000, -1);\n\tcin >> s[0] >> s[1];\n\trep(i, 2) {\n\t\tll k = 0;\n\t\tll num = 0;\n\t\tfill(f, f + 10000000, 0);\n\t\trep(j, s[i].size()) {\n\t\t\tif (s[i][j] == '(')k = 2 * k + 1 + f[k];\n\t\t\telse if (s[i][j] == ')')k = (k - 1) / 2;\n\t\t\telse if (s[i][j] == ']') {\n\t\t\t\tf[k] = 1;\n\t\t\t\tt[i][k] = num;\n\t\t\t\tnum = 0;\n\t\t\t}\n\t\t\telse if (s[i][j] >= '0'&&s[i][j] <= '9') {\n\t\t\t\tnum *= 10;\n\t\t\t\tnum += s[i][j] - '0';\n\t\t\t}\n\t\t}\n\t}\n\trep(i, 2) {\n\t\trep(j, 10000000) {\n\t\t\tif (t[0][j] != -1 && t[1][j] != -1) {\n\t\t\t\tt[2][j] = t[0][j] + t[1][j];\n\t\t\t}\n\t\t}\n\t}\n\t//rep(i, 20) {\n\t//\tcout << t[2][i] << \" \";\n\t//}\n\tcout << solve(0) << endl;\n}", "accuracy": 0.8490566037735849, "time_ms": 90, "memory_kb": 247452, "score_of_the_acc": -2, "final_rank": 8 }, { "submission_id": "aoj_2740_2731393", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <cstdio>\n#include <functional>\n#include <numeric>\n#include <stack>\n#include <queue>\n#include <map>\n#include <set>\n#include <utility>\n#include <sstream>\n#include <complex>\n#include <fstream>\n#include <bitset>\n#include <time.h>\n#include <tuple>\n#include <iomanip>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\ntypedef vector<ll> V;\ntypedef complex<double> Point;\n\n#define PI acos(-1.0)\n#define EPS 1e-10\nconst ll INF = 1e12;\nconst ll MOD = 1e9 + 7;\n\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define rep(i,N) for(int i=0;i<(N);i++)\n#define ALL(s) (s).begin(),(s).end()\n#define EQ(a,b) (abs((a)-(b))<EPS)\n#define EQV(a,b) ( EQ((a).real(), (b).real()) && EQ((a).imag(), (b).imag()) )\n#define fi first\n#define se second\n#define N_SIZE (1LL << 20)\n#define NIL -1\n\nll sq(ll num) { return num*num; }\nll mod_pow(ll x, ll n) {\n\tif (n == 0)return 1;\n\tif (n == 1)return x%MOD;\n\tll res = sq(mod_pow(x, n / 2));\n\tres %= MOD;\n\tif (n % 2 == 1) {\n\t\tres *= x;\n\t\tres %= MOD;\n\t}\n\treturn res;\n}\nll mod_add(ll a, ll b) { return (a + b) % MOD; }\nll mod_sub(ll a, ll b) { return (a - b + MOD) % MOD; }\nll mod_mul(ll a, ll b) { return a*b % MOD; }\n\nstring s[2];\nll t[3][1000000];\nbool f[1000000];\n\nstring solve(int k) {\n\tif (t[2][k] == -1)return \"\";\n\tstring res = \"(\" + solve(2 * k + 1) + \")\";\n\tres += (\"[\" + to_string(t[2][k]) + \"]\");\n\treturn res + \"(\" + solve(2 * k + 2) + \")\";\n}\n\nint main() {\n\trep(i, 3)fill(t[i], t[i] + 1000000, -1);\n\tcin >> s[0] >> s[1];\n\trep(i, 2) {\n\t\tll k = 0;\n\t\tll num = 0;\n\t\tfill(f, f + 1000000, 0);\n\t\trep(j, s[i].size()) {\n\t\t\tif (s[i][j] == '(')k = 2 * k + 1 + f[k];\n\t\t\telse if (s[i][j] == ')')k = (k - 1) / 2;\n\t\t\telse if (s[i][j] == ']') {\n\t\t\t\tf[k] = 1;\n\t\t\t\tt[i][k] = num;\n\t\t\t\tnum = 0;\n\t\t\t}\n\t\t\telse if (s[i][j] >= '0'&&s[i][j] <= '9') {\n\t\t\t\tnum *= 10;\n\t\t\t\tnum += s[i][j] - '0';\n\t\t\t}\n\t\t}\n\t}\n\trep(i, 2) {\n\t\trep(j, 1000000) {\n\t\t\tif (t[0][j] != -1 && t[1][j] != -1) {\n\t\t\t\tt[2][j] = t[0][j] + t[1][j];\n\t\t\t}\n\t\t}\n\t}\n\t//rep(i, 20) {\n\t//\tcout << t[2][i] << \" \";\n\t//}\n\tcout << solve(0) << endl;\n}", "accuracy": 0.8490566037735849, "time_ms": 10, "memory_kb": 27724, "score_of_the_acc": -0.0632, "final_rank": 4 }, { "submission_id": "aoj_2740_2499693", "code_snippet": "#include \"bits/stdc++.h\"\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2740&lang=jp\ntypedef long long ll;\n#define INF 1<<30\nusing namespace std;\n\nvoid check(int& i,int k, vector<int>& str,string& S) {\n\t/* \"(\" ~ )[x]( ~ ) */\n\tif (S[i] == '(') i++;\n\n\t/* ( \"~\" )[x]( ~ ) */\n\tif (S[i] == '(') {\n\t\tcheck(i, 2 * k + 1, str, S);\n\t}\n\n\t/* ( ~ \")\"[x]( ~ ) */\n\tif (S[i] == ')') i++;\n\n\t/* ( ~ )\"[x]\"( ~ ) */\n\ti++; // \"[\"\n\tstr[k] = 0;\n\twhile (S[i] != ']') {\n\t\tstr[k] = str[k] * 10 + (S[i] - '0');\n\t\ti++;\n\t}\n\ti++; // \"]\"\n\n\t/* ( ~ )[x]\"(\" ~ ) */\n\tif (S[i] == '(') i++;\n\n\t/* ( ~ )[x]( \"~\" )*/\n\tif (S[i] == '(') {\n\t\tcheck(i, 2 * k + 2, str, S);\n\t}\n\n\t/* ( ~ )[x]( ~ \")\"*/\n\tif (S[i] == ')') i++;\n}\n\n/* print answer method */\nvoid out(int k,vector<int>& Sum){\n\tcout << \"(\";\n\tif (Sum[2 * k + 1] != -1) {\n\t\tout(2 * k + 1, Sum);\n\t}\n\tcout << \")[\" << Sum[k] << \"](\";\n\tif (Sum[2 * k + 2] != -1) {\n\t\tout(2 * k + 2, Sum);\n\t}\n\tcout << \")\";\n}\n\nint main() {\n\tcin.tie(0); ios::sync_with_stdio(false);\n\t/* input */\n\tstring A, B; cin >> A >> B;\n\n\t/* initialize */\n\tint k = max(A.length(), B.length());\n\tvector<int> A_tree(k*k, -1), B_tree(k*k, -1),Sum_tree(k*k,-1);\n\n\t/* calc */\n\tint x = 0;\n\tcheck(x, 0, A_tree, A);\n\tx = 0;\n\tcheck(x, 0, B_tree, B);\n\n\tfor (int i = 0; i < (int)A_tree.size();i++) {\n\t\tif (A_tree[i] == -1 || B_tree[i] == -1) continue;\n\t\tSum_tree[i] = A_tree[i] + B_tree[i];\n\t}\n\n\t/*for (auto v : Sum_tree) {\n\t\tcout << v << \" \";\n\t}\n\tcout << endl;*/\n\n\t/* solve */\n\tout(0, Sum_tree);\n\tcout << endl;\n\n\treturn 0;\n}", "accuracy": 0.8490566037735849, "time_ms": 10, "memory_kb": 14780, "score_of_the_acc": -0.0081, "final_rank": 1 }, { "submission_id": "aoj_2740_2394276", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <string>\n#include <map>\nusing namespace std;\n\nvoid solve(string s, long long par, map<long long,int>& m) {\n\tint cnt = 0;\n\tint l = 1, r = 0;\n\tfor (int i = 1; i < s.size() - 1; i++) {\n\t\tif (s[i] == '(')cnt++;\n\t\telse if (s[i] == ')')cnt--;\n\n\t\tif (cnt == 0) {\n\t\t\tr = i;\n\t\t\tstring next = s.substr(l, r - l + 1);\n\n\t\t\tif (l == 1) {\n\t\t\t\tsolve(next, par * 2 + 1, m);\n\n\t\t\t\ti += 2;\n\n\t\t\t\tint l2 = i;\n\t\t\t\twhile (1) {\n\t\t\t\t\ti++;\n\t\t\t\t\tif (s[i] == ']') {\n\t\t\t\t\t\tm[par] = stoi(s.substr(l2, i - l2).data());\n\t\t\t\t\t\ti++;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tl = r = i;\n\t\t\t\ti--;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tsolve(next, par * 2 + 2,m);\n\t\t\t}\n\t\t}\n\t}\n}\n\nstring solve2(map<long long, int>& m , long long par) {\n\tstring s1, s2, s3;\n\n\tif (m.find(par) != m.end()) {\n\t\ts2 = to_string(m[par]);\n\t}\n\telse return \"\";\n\n\ts1 = solve2(m, par * 2 + 1);\n\ts3 = solve2(m, par * 2 + 2);\n\n\treturn \"(\" + s1 + \")\" + \"[\" + s2 + \"]\" + \"(\" + s3 + \")\";\n}\n\nint main()\n{\n\tstring s1, s2;\n\tcin >> s1 >> s2;\n\n\ts1.insert(s1.begin(), '(');\n\ts1.push_back(')');\n\ts2.insert(s2.begin(), '(');\n\ts2.push_back(')');\n\n\tmap<long long, int>a, b;\n\n\n\tsolve(s1, 0, a);\n\tsolve(s2, 0, b);\n\t\n\tmap<long long, int>c;\n\n\tfor (auto itr = a.begin(); itr != a.end(); itr++) {\n\t\tlong long p = itr->first;\n\t\tauto itr2 = b.find(p);\n\t\tif (itr2 != b.end()) {\n\t\t\tc[p] = itr->second + itr2->second;\n\t\t}\n\t}\n\n\tcout << solve2(c, 0) << endl;\n\n return 0;\n}", "accuracy": 0.8490566037735849, "time_ms": 10, "memory_kb": 22852, "score_of_the_acc": -0.0425, "final_rank": 3 }, { "submission_id": "aoj_2740_2394253", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <string>\n#include <map>\nusing namespace std;\n\nvoid solve(string s, int par, map<int,int>& m) {\n\tint cnt = 0;\n\tint l = 1, r = 0;\n\tfor (int i = 1; i < s.size() - 1; i++) {\n\t\tif (s[i] == '(')cnt++;\n\t\telse if (s[i] == ')')cnt--;\n\n\t\tif (cnt == 0) {\n\t\t\tr = i;\n\t\t\tstring next = s.substr(l, r - l + 1);\n\n\t\t\tif (l == 1) {\n\t\t\t\tsolve(next, par * 2 + 1, m);\n\n\t\t\t\ti += 2;\n\n\t\t\t\tint l2 = i;\n\t\t\t\twhile (1) {\n\t\t\t\t\ti++;\n\t\t\t\t\tif (s[i] == ']') {\n\t\t\t\t\t\tm[par] = stoi(s.substr(l2, i - l2).data());\n\t\t\t\t\t\ti++;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tl = r = i;\n\t\t\t\ti--;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tsolve(next, par * 2 + 2,m);\n\t\t\t}\n\t\t}\n\t}\n}\n\nstring solve2(map<int, int>& m ,int par) {\n\tstring s1, s2, s3;\n\n\tif (m.find(par) != m.end()) {\n\t\ts2 = to_string(m[par]);\n\t}\n\telse return \"\";\n\n\ts1 = solve2(m, par * 2 + 1);\n\ts3 = solve2(m, par * 2 + 2);\n\n\treturn \"(\" + s1 + \")\" + \"[\" + s2 + \"]\" + \"(\" + s3 + \")\";\n}\n\nint main()\n{\n\tstring s1, s2;\n\tcin >> s1 >> s2;\n\n\ts1.insert(s1.begin(), '(');\n\ts1.push_back(')');\n\ts2.insert(s2.begin(), '(');\n\ts2.push_back(')');\n\n\tmap<int, int>a, b;\n\n\n\tsolve(s1, 0, a);\n\tsolve(s2, 0, b);\n\t\n\tmap<int, int>c;\n\n\tfor (auto itr = a.begin(); itr != a.end(); itr++) {\n\t\tint p = itr->first;\n\t\tauto itr2 = b.find(p);\n\t\tif (itr2 != b.end()) {\n\t\t\tc[p] = itr->second + itr2->second;\n\t\t}\n\t}\n\n\tcout << solve2(c, 0) << endl;\n\n return 0;\n}", "accuracy": 0.8490566037735849, "time_ms": 20, "memory_kb": 22972, "score_of_the_acc": -0.168, "final_rank": 5 }, { "submission_id": "aoj_2740_2349474", "code_snippet": "#include <bits/stdc++.h>\n#define r(i,n) for(int i=0;i<n;i++)\nusing namespace std;\nstruct no{\n long int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nint n,p3,p4;\nstring s1[2];\nvector<long int>v[2];\nvoid v_make(int t){\n v[t].push_back('(');\n for(int i=0;i<s1[t].size();i++){\n if(!isdigit(s1[t][i]))v[t].push_back(s1[t][i]);\n else{\n int p=s1[t][i]-'0';\n while(isdigit(s1[t][i+1]))p*=10,p+=s1[t][++i]-'0';\n v[t].push_back(p+100);\n }\n }\n v[t].push_back(')');\n}\nnode con(int l,int r){if(r<=l+1)return NULL;\n node po=new no();\n int p=0,c=-1;\n for(int i=l+1;i<r;i++)\n if((char)v[n][i]=='(')p++;\n else if((char)v[n][i]==')')p--;\n else if(v[n][i]>=100&&!p){\n c=i;\n po->key=v[n][i]-100;\n break;\n }\n if(l+1!=c)po->left=con(l+1,c-1);\n if(r-1!=c)po->right=con(c+1,r-1);\n return po;\n}\nstring make_num(long int p){\n string t;\n while(p){\n t+=p%10+'0';\n p/=10;\n }\n reverse(t.begin(),t.end());\n return t;\n}\nstring init(node a,node b){\n string l,r,x=make_num(a->key+b->key);\n if(a->left!=NULL&&b->left!=NULL)\n l=init(a->left,b->left);\n if(a->right!=NULL&&b->right!=NULL)\n r=init(a->right,b->right);\n return \"(\"+l+\")[\"+x+\"](\"+r+\")\";\n}\nint main(){\n cin>>s1[0]>>s1[1];\n for(int j=0;j<2;j++)\n for(int i=0;i<(int)s1[j].size();i++)\n if(s1[j][i]=='('&&s1[j][i+1]==')')s1[j].erase(s1[j].begin()+i),s1[j].erase(s1[j].begin()+i);\n for(int j=0;j<2;j++)\n for(int i=0;i<(int)s1[j].size();i++)\n if(s1[j][i]=='['||s1[j][i]==']')s1[j].erase(s1[j].begin()+i);\n v_make(0);v_make(1);\n\n n=0;node a=con(0,v[n].size()-1);\n n=1;node b=con(0,v[n].size()-1);\n cout<<init(a,b)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 20, "memory_kb": 12888, "score_of_the_acc": -0.125, "final_rank": 11 }, { "submission_id": "aoj_2740_2349426", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nstruct no{\n long int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nint n;\nstring s1[2];\nvector<long int>v[2];\nvoid v_make(int t){\n v[t].push_back('(');\n for(int i=0;i<s1[t].size();i++){\n if(!isdigit(s1[t][i]))v[t].push_back(s1[t][i]);\n else{\n int p=s1[t][i]-'0';\n while(isdigit(s1[t][i+1]))p*=10,p+=s1[t][++i]-'0';\n v[t].push_back(p+100);\n }\n }\n v[t].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1;\n for(int i=l+1;i<r;i++)\n if((char)v[n][i]=='(')p++;\n else if((char)v[n][i]==')')p--;\n else if(v[n][i]>=100&&!p){\n c=i;\n po->key=v[n][i]-100;\n break;\n }\n if(l+1!=c)po->left=con(l+1,c-1);\n if(r-1!=c)po->right=con(c+1,r-1);\n return po;\n}\nstring make_num(long int p){\n string t;\n while(p){\n t+=p%10+'0';\n p/=10;\n }\n reverse(t.begin(),t.end());\n return t;\n}\nstring init(node a,node b){\n string l,r,x=make_num(a->key+b->key);\n if(a->left!=NULL&&b->left!=NULL)\n l=init(a->left,b->left);\n if(a->right!=NULL&&b->right!=NULL)\n r=init(a->right,b->right);\n return \"(\"+l+\")[\"+x+\"](\"+r+\")\";\n}\nint main(){\n cin>>s1[0]>>s1[1];\n for(int j=0;j<2;j++)\n for(int i=0;i<(int)s1[j].size()-1;i++)\n if(s1[j][i]=='('&&s1[j][i+1]==')')s1[j].erase(s1[j].begin()+i),s1[j].erase(s1[j].begin()+i);\n for(int j=0;j<2;j++)\n for(int i=0;i<(int)s1[j].size();i++)\n if(s1[j][i]=='['||s1[j][i]==']')s1[j].erase(s1[j].begin()+i);\n\n v_make(0);v_make(1);\n n=0;node a=con(0,v[n].size()-1);\n n=1;node b=con(0,v[n].size()-1);\n cout<<init(a,b)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 20, "memory_kb": 35600, "score_of_the_acc": -0.2218, "final_rank": 15 }, { "submission_id": "aoj_2740_2349420", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nstruct no{\n long int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nint n;\nstring s1[2];\nvector<long int>v[2];\nvoid v_make(int t){\n v[t].push_back('(');\n for(int i=0;i<s1[t].size();i++){\n if(!isdigit(s1[t][i]))v[t].push_back(s1[t][i]);\n else{\n int p=s1[t][i]-'0';\n while(isdigit(s1[t][i+1]))p*=10,p+=s1[t][++i]-'0';\n v[t].push_back(p+100);\n }\n }\n v[t].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1;\n for(int i=l+1;i<r;i++)\n if((char)v[n][i]=='(')p++;\n else if((char)v[n][i]==')')p--;\n else if(v[n][i]>=100&&!p){\n c=i;\n po->key=v[n][i]-100;\n break;\n }\n if(l+1!=c)po->left=con(l+1,c-1);\n if(r-1!=c)po->right=con(c+1,r-1);\n return po;\n}\nstring make_num(long int p){\n string t;\n while(p){\n t+=p%10+'0';\n p/=10;\n }\n reverse(t.begin(),t.end());\n return t;\n}\nstring init(node a,node b){\n string l,r,x=make_num(a->key+b->key);\n if(a->left!=NULL&&b->left!=NULL)\n l=init(a->left,b->left);\n if(a->right!=NULL&&b->right!=NULL)\n r=init(a->right,b->right);\n return \"(\"+l+\")[\"+x+\"](\"+r+\")\";\n}\nint main(){\n cin>>s1[0]>>s1[1];\n for(int j=0;j<2;j++)\n for(int i=0;i<(int)s1[j].size()-1;i++)\n if(s1[j][i]=='('&&s1[j][i+1]==')')s1[j].erase(s1[j].begin()+i),s1[j].erase(s1[j].begin()+i);\n for(int j=0;j<2;j++)\n for(int i=0;i<(int)s1[j].size()-1;i++)\n if(s1[j][i]=='['||s1[j][i]==']')s1[j].erase(s1[j].begin()+i);\n v_make(0);v_make(1);\n n=0;node a=con(0,v[n].size()-1);\n n=1;node b=con(0,v[n].size()-1);\n cout<<init(a,b)<<endl;\n}", "accuracy": 0.018867924528301886, "time_ms": 30, "memory_kb": 35756, "score_of_the_acc": -0.3475, "final_rank": 20 }, { "submission_id": "aoj_2740_2340915", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\nstruct no{\n int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nstring s,t;\nint n,x;\nvector<int>a[2];\nvoid mae(string q){\n a[n].push_back('(');\n for(int i=0;i<(int)q.size();i++)\n if(q[i]=='('&&q[i+1]==')')\n q.erase(q.begin()+i,q.begin()+i+2);\n for(int i=0;i<q.size();i++){\n if(q[i]=='['){\n int p=0;i++;\n while(isdigit(q[i]))p*=10,p+=q[i++]-'0';\n a[n].push_back(p+100);\n }\n else a[n].push_back(q[i]);\n }\n a[n].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1,o;\n for(int i=l+1;i<r;i++){\n if((char)a[n][i]=='(')p++;\n else if((char)a[n][i]==')')p--;\n else if(a[n][i]>=100&&!p){\n o=a[n][i]-100;\n c=i;\n break;\n }\n }//if(p){cout<<1;exit(0);}\n po->key=o;\n if(l+1!=c){\n //if(c-1>l+1)\n po->left=con(l+1,c-1);\n }\n if(r-1!=c){\n // if(r-1>c+1)\n po->right=con(c+1,r-1);\n }\n return po;\n}\nstring df(int q){\n if(!q)return \"0\";\n string y;\n while(q){\n y+=q%10+'0';\n q/=10;\n }\n reverse(y.begin(),y.end());\n return y;\n}\nstring init(node aa,node b){\n int t1=0,t2=0;\n string l,r,xx=df(aa->key+b->key);\n if(aa->left!=NULL&&b->left!=NULL)\n l=init(aa->left,b->left),t1++;\n if(aa->right!=NULL&&b->right!=NULL)\n r=init(aa->right,b->right),t2++;\n if(!t1&&!t2)return \"()[\"+xx+\"]()\";\n else if(t2&&!t1)return \"()[\"+xx+\"](\"+r+\")\";\n else if(t1&&!t2)return \"(\"+l+\")[\"+xx+\"]()\";\n else return \"(\"+l+\")[\"+xx+\"](\"+r+\")\";\n}\nmain(){\n string s1;\n cin>>s>>t;\n n=0;mae(s);\n n=1;mae(t);\n n=0;node p1=con(0,a[0].size()-1);\n n=1;node p2=con(0,a[1].size()-1);\n cout<<init(p1,p2)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 20, "memory_kb": 30156, "score_of_the_acc": -0.1986, "final_rank": 12 }, { "submission_id": "aoj_2740_2340911", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\nstruct no{\n int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nstring s,t;\nint n,x;\nvector<int>a[2];\nvoid mae(string q){\n a[n].push_back('(');\n for(int i=0;i<(int)q.size();i++)\n if(q[i]=='('&&q[i+1]==')')\n q.erase(q.begin()+i,q.begin()+i+2);\n for(int i=0;i<q.size();i++){\n if(q[i]=='['){\n int p=0;i++;\n while(isdigit(q[i]))p*=10,p+=q[i++]-'0';\n a[n].push_back(p+100);\n }\n else a[n].push_back(q[i]);\n }\n a[n].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1,o;\n for(int i=l+1;i<r;i++){\n if((char)a[n][i]=='(')p++;\n else if((char)a[n][i]==')')p--;\n else if(a[n][i]>=100&&!p){\n o=a[n][i]-100;\n c=i;\n break;\n }\n }\n po->key=o;\n if(l+1!=c){\n if(c-1>l+1)\n po->left=con(l+1,c-1);\n }\n if(r-1!=c){\n if(r-1>c+1)\n po->right=con(c+1,r-1);\n }\n return po;\n}\nstring df(int q){\n if(!q)return \"0\";\n string y;\n while(q){\n y+=q%10+'0';\n q/=10;\n }\n reverse(y.begin(),y.end());\n return y;\n}\nstring init(node aa,node b){\n int t1=0,t2=0;\n string l,r,xx=df(aa->key+b->key);\n if(aa->left!=NULL&&b->left!=NULL)\n l=init(aa->left,b->left),t1++;\n if(aa->right!=NULL&&b->right!=NULL)\n r=init(aa->right,b->right),t2++;\n if(!t1&&!t2)return \"()[\"+xx+\"]()\";\n else if(t2&&!t1)return \"()[\"+xx+\"](\"+r+\")\";\n else if(t1&&!t2)return \"(\"+l+\")[\"+xx+\"]()\";\n else return \"(\"+l+\")[\"+xx+\"](\"+r+\")\";\n}\nmain(){\n string s1;\n cin>>s>>t;\n n=0;mae(s);\n n=1;mae(t);\n n=0;node p1=con(0,a[0].size()-1);\n n=1;node p2=con(0,a[1].size()-1);\n cout<<init(p1,p2)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 80, "memory_kb": 43460, "score_of_the_acc": -1.0053, "final_rank": 18 }, { "submission_id": "aoj_2740_2340908", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\nstruct no{\n int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nstring s,t;\nint n,x;\nvector<int>a[2];\nvoid mae(string q){\n a[n].push_back('(');\n for(int i=0;i<(int)q.size();i++)\n if(q[i]=='('&&q[i+1]==')')\n q.erase(q.begin()+i,q.begin()+i+2),i--;\n for(int i=0;i<q.size();i++){\n if(q[i]=='['){\n int p=0;i++;\n while(isdigit(q[i]))p*=10,p+=q[i++]-'0';\n a[n].push_back(p+100);\n }\n else a[n].push_back(q[i]);\n }\n a[n].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1,o;\n for(int i=l+1;i<r;i++){\n if((char)a[n][i]=='(')p++;\n else if((char)a[n][i]==')')p--;\n else if(a[n][i]>=100&&!p){\n o=a[n][i]-100;\n c=i;\n break;\n }\n }\n po->key=o;\n if(l+1!=c){\n if(c-1>l+1)\n po->left=con(l+1,c-1);\n }\n if(r-1!=c){\n if(r-1>c+1)\n po->right=con(c+1,r-1);\n }\n return po;\n}\nstring df(int q){\n if(!q)return \"0\";\n string y;\n while(q){\n y+=q%10+'0';\n q/=10;\n }\n reverse(y.begin(),y.end());\n return y;\n}\nstring init(node aa,node b){\n int t1=0,t2=0;\n string l,r,xx=df(aa->key+b->key);\n if(aa->left!=NULL&&b->left!=NULL)\n l=init(aa->left,b->left),t1++;\n if(aa->right!=NULL&&b->right!=NULL)\n r=init(aa->right,b->right),t2++;\n if(!t1&&!t2)return \"()[\"+xx+\"]()\";\n else if(t2&&!t1)return \"()[\"+xx+\"](\"+r+\")\";\n else if(t1&&!t2)return \"(\"+l+\")[\"+xx+\"]()\";\n else return \"(\"+l+\")[\"+xx+\"](\"+r+\")\";\n}\nmain(){\n string s1;\n cin>>s>>t;\n n=0;mae(s);\n n=1;mae(t);\n n=0;node p1=con(0,a[0].size()-1);\n n=1;node p2=con(0,a[1].size()-1);\n cout<<init(p1,p2)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 90, "memory_kb": 43472, "score_of_the_acc": -1.1304, "final_rank": 19 }, { "submission_id": "aoj_2740_2340902", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\nstruct no{\n int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nstring s,t;\nint n,x;\nvector<int>a[2];\nvoid mae(string q){\n a[n].push_back('(');\n for(int i=0;i<(int)q.size();i++)\n if(q[i]=='('&&q[i+1]==')')\n q.erase(q.begin()+i,q.begin()+i+2),i--;\n for(int i=0;i<q.size();i++){\n if(q[i]=='['){\n int p=0;i++;\n while(isdigit(q[i]))p*=10,p+=q[i++]-'0';\n a[n].push_back(p+100);\n }\n else a[n].push_back(q[i]);\n }\n a[n].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1,o;if(r-l-1==0)exit(0);\n for(int i=l+1;i<r;i++){\n if((char)a[n][i]=='(')p++;\n else if((char)a[n][i]==')')p--;\n else if(a[n][i]>=100&&!p){\n o=a[n][i]-100;\n c=i;\n break;\n }\n }\n po->key=o;\n if(l+1!=c)po->left=con(l+1,c-1);\n if(r-1!=c)po->right=con(c+1,r-1);\n return po;\n}\nstring df(int q){\n if(!q)return \"0\";\n string y;\n while(q){\n y+=q%10+'0';\n q/=10;\n }\n reverse(y.begin(),y.end());\n return y;\n}\nstring init(node aa,node b){\n int t1=0,t2=0;\n string l,r,xx=df(aa->key+b->key);\n if(aa->left!=NULL&&b->left!=NULL)\n l=init(aa->left,b->left),t1++;\n if(aa->right!=NULL&&b->right!=NULL)\n r=init(aa->right,b->right),t2++;\n if(!t1&&!t2)return \"()[\"+xx+\"]()\";\n else if(t2&&!t1)return \"()[\"+xx+\"](\"+r+\")\";\n else if(t1&&!t2)return \"(\"+l+\")[\"+xx+\"]()\";\n else return \"(\"+l+\")[\"+xx+\"](\"+r+\")\";\n}\nmain(){\n string s1;\n cin>>s>>t;\n n=0;mae(s);\n n=1;mae(t);\n n=0;node p1=con(0,a[0].size()-1);\n n=1;node p2=con(0,a[1].size()-1);\n cout<<init(p1,p2)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 30, "memory_kb": 30264, "score_of_the_acc": -0.3241, "final_rank": 16 }, { "submission_id": "aoj_2740_2340900", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\nstruct no{\n int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nstring s,t;\nint n,x;\nvector<int>a[2];\nvoid mae(string q){\n a[n].push_back('(');\n for(int i=0;i<(int)q.size();i++)\n if(q[i]=='('&&q[i+1]==')')\n q.erase(q.begin()+i,q.begin()+i+2),i--;\n for(int i=0;i<q.size();i++){\n if(q[i]=='['){\n int p=0;i++;\n while(isdigit(q[i]))p*=10,p+=q[i++]-'0';\n a[n].push_back(p+100);\n }\n else a[n].push_back(q[i]);\n }\n a[n].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1,o;\n for(int i=l+1;i<r;i++){\n if((char)a[n][i]=='(')p++;\n else if((char)a[n][i]==')')p--;\n else if(a[n][i]>=100&&!p){\n o=a[n][i]-100;\n c=i;\n break;\n }\n }\n po->key=o;\n if(l+1!=c)po->left=con(l+1,c-1);\n if(r-1!=c)po->right=con(c+1,r-1);\n return po;\n}\nstring df(int q){\n if(!q)return \"0\";\n string y;\n while(q){\n y+=q%10+'0';\n q/=10;\n }\n reverse(y.begin(),y.end());\n return y;\n}\nstring init(node aa,node b){\n int t1=0,t2=0;\n string l,r,xx=df(aa->key+b->key);\n if(aa->left!=NULL&&b->left!=NULL)\n l=init(aa->left,b->left),t1++;\n if(aa->right!=NULL&&b->right!=NULL)\n r=init(aa->right,b->right),t2++;\n if(!t1&&!t2)return \"()[\"+xx+\"]()\";\n else if(t2&&!t1)return \"()[\"+xx+\"](\"+r+\")\";\n else if(t1&&!t2)return \"(\"+l+\")[\"+xx+\"]()\";\n else return \"(\"+l+\")[\"+xx+\"](\"+r+\")\";\n}\nmain(){\n string s1;\n cin>>s>>t;\n n=0;mae(s);\n n=1;mae(t);\n n=0;node p1=con(0,a[0].size()-1);\n n=1;node p2=con(0,a[1].size()-1);\n cout<<init(p1,p2)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 20, "memory_kb": 30164, "score_of_the_acc": -0.1987, "final_rank": 13 }, { "submission_id": "aoj_2740_2340892", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\nstruct no{\n int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nstring s,t;\nint n,x;\nvector<int>a[2];\nvoid mae(string q){\n a[n].push_back('(');\n for(int i=0;i<(int)q.size();i++)\n if(q[i]=='('&&q[i+1]==')')\n q.erase(q.begin()+i,q.begin()+i+2),i--;\n for(int i=0;i<q.size();i++){\n if(q[i]=='['){\n int p=0;i++;\n while(isdigit(q[i]))p*=10,p+=q[i++]-'0';\n a[n].push_back(p+100);\n }\n else a[n].push_back(q[i]);\n }\n a[n].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1,o;//if(l+1>=r+1){return NULL;}\n for(int i=l+1;i<r-1;i++){\n if((char)a[n][i]=='(')p++;\n else if((char)a[n][i]==')')p--;\n else if(a[n][i]>=100&&!p){\n o=a[n][i]-100;\n c=i;\n break;\n }\n }\n po->key=o;\n if(l+1!=c)po->left=con(l+1,c);\n if(r-1!=c+1)po->right=con(c+1,r-1);\n return po;\n}\nstring df(int q){\n if(!q)return \"0\";\n string y;\n while(q){\n y+=q%10+'0';\n q/=10;\n }\n reverse(y.begin(),y.end());\n return y;\n}\nstring init(node aa,node b){\n int t1=0,t2=0;\n string l,r,xx=df(aa->key+b->key);\n if(aa->left!=NULL&&b->left!=NULL)\n l=init(aa->left,b->left),t1++;\n if(aa->right!=NULL&&b->right!=NULL)\n r=init(aa->right,b->right),t2++;\n if(!t1&&!t2)return \"()[\"+xx+\"]()\";\n else if(t2&&!t1)return \"()[\"+xx+\"](\"+r+\")\";\n else if(t1&&!t2)return \"(\"+l+\")[\"+xx+\"]()\";\n else return \"(\"+l+\")[\"+xx+\"](\"+r+\")\";\n}\nmain(){\n string s1;\n cin>>s>>t;\n n=0;mae(s);\n n=1;mae(t);\n n=0;node p1=con(0,a[0].size());\n n=1;node p2=con(0,a[1].size());\n cout<<init(p1,p2)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 20, "memory_kb": 30244, "score_of_the_acc": -0.199, "final_rank": 14 }, { "submission_id": "aoj_2740_2340891", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\nstruct no{\n int key;\n no *left,*right;\n no(){left=right=NULL;}\n};\ntypedef no* node;\nstring s,t;\nint n,x;\nvector<int>a[2];\nvoid mae(string q){\n a[n].push_back('(');\n for(int i=0;i<(int)q.size();i++)\n if(q[i]=='('&&q[i+1]==')')\n q.erase(q.begin()+i,q.begin()+i+2),i--;\n for(int i=0;i<q.size();i++){\n if(q[i]=='['){\n int p=0;i++;\n while(isdigit(q[i]))p*=10,p+=q[i++]-'0';\n a[n].push_back(p+100);\n }\n else a[n].push_back(q[i]);\n }\n a[n].push_back(')');\n}\nnode con(int l,int r){\n node po=new no();\n int p=0,c=-1,o;//if(l+1>=r+1){cout<<1<<endl;exit(0);}\n for(int i=l+1;i<=r-1;i++){\n if((char)a[n][i]=='(')p++;\n else if((char)a[n][i]==')')p--;\n else if(a[n][i]>=100&&!p){\n o=a[n][i]-100;\n c=i;\n break;\n }\n }\n po->key=o;\n if(l+1!=c)po->left=con(l+1,c);\n if(r-1!=c+1)po->right=con(c+1,r-1);\n return po;\n}\nstring df(int q){\n if(!q)return \"0\";\n string y;\n while(q){\n y+=q%10+'0';\n q/=10;\n }\n reverse(y.begin(),y.end());\n return y;\n}\nstring init(node aa,node b){\n int t1=0,t2=0;\n string l,r,xx=df(aa->key+b->key);\n if(aa->left!=NULL&&b->left!=NULL)\n l=init(aa->left,b->left),t1++;\n if(aa->right!=NULL&&b->right!=NULL)\n r=init(aa->right,b->right),t2++;\n if(!t1&&!t2)return \"()[\"+xx+\"]()\";\n else if(t2&&!t1)return \"()[\"+xx+\"](\"+r+\")\";\n else if(t1&&!t2)return \"(\"+l+\")[\"+xx+\"]()\";\n else return \"(\"+l+\")[\"+xx+\"](\"+r+\")\";\n}\nmain(){\n string s1;\n cin>>s>>t;\n n=0;mae(s);\n n=1;mae(t);\n n=0;node p1=con(0,a[0].size());\n n=1;node p2=con(0,a[1].size());\n cout<<init(p1,p2)<<endl;\n}", "accuracy": 0.09433962264150944, "time_ms": 10, "memory_kb": 30148, "score_of_the_acc": -0.0736, "final_rank": 9 } ]
aoj_2733_cpp
Cube Dividing Pablo Cubarson is a well-known cubism artist. He is producing a new piece of work using a cuboid which consists of $A \times B \times C$ unit cubes. He plans to make a beautiful shape by removing $N$ units cubes from the cuboid. When he is about to begin the work, he has noticed that by the removal the cuboid may be divided into several parts disconnected to each other. It is against his aesthetics to divide a cuboid. So he wants to know how many parts are created in his plan. Your task is to calculate the number of connected components in the cuboid after removing the $N$ cubes. Two cubes are connected if they share one face. Input The input consists of a single test case. The test case is formatted as follows: $A$ $B$ $C$ $N$ $X_1$ $Y_1$ $Z_1$ ... $X_N$ $Y_N$ $Z_N$ The first line contains four integers $A$, $B$, $C$ and $N$. $A$, $B$ and $C$ ($1 \leq A,B,C \leq 10^6$) denote the size of the cuboid $-$ the cuboid has an $A$ unit width from left to right and a $B$ unit height from bottom to top, and a $C$ unit depth from front to back. $N$ ($0 \leq N \leq 20,000, N \leq A \times B \times C - 1$) denotes the number of the cubes removed in the Cubarson's plan. Each of the following $N$ lines contains three integers $X_i$ ($0 \leq X_i \leq A-1$), $Y_i$ ($0 \leq Y_i \leq B-1$) and $Z_i$ ($0 \leq Z_i \leq C - 1$). They denote that the cube located at the $X_i$-th position from the left, the $Y_i$-th from the bottom and the $Z_i$-th from the front will be removed in the plan. You may assume the given positions are distinct. Output Print the number of the connected components in the cuboid after removing the specified cubes. Sample Input 1 2 2 2 4 0 0 0 1 1 0 1 0 1 0 1 1 Output for the Sample Input 1 4 Sample Input 2 3 3 3 1 1 1 1 Output for the Sample Input 2 1 Sample Input 3 1 1 3 2 0 0 0 0 0 2 Output for the Sample Input 3 1
[ { "submission_id": "aoj_2733_10319512", "code_snippet": "// AOJ #2733 Cube Dividing\n// 2025.3.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\ntypedef pair<int, int> pi;\n\nconst int MAXN = 505;\nconst int dx[6] = {1, -1, 0, 0, 0, 0};\nconst int dy[6] = {0, 0, 1, -1, 0, 0};\nconst int dz[6] = {0, 0, 0, 0, 1, -1};\n\nstruct disj{\n\tint pa[1000005];\n\tvoid init(int n){\n\t\tiota(pa, pa + n + 1, 0);\n\t}\n\tint find(int x){\n\t\treturn pa[x] = (pa[x] == x ? x : find(pa[x]));\n\t}\n\tbool uni(int p, int q){\n\t\tp = find(p);\n\t\tq = find(q);\n\t\tif(p == q) return 0;\n\t\tpa[q] = p; return 1;\n\t}\n}disj;\n\nint getcmp(vector<tuple<int, int, int>> v){\n\tdisj.init(v.size());\n\tint ans = v.size();\n\tfor(int i=0; i<v.size(); i++){\n\t\tint x, y, z;\n\t\ttie(x, y, z) = v[i];\n\t\tfor(int j=0; j<6; j++){\n\t\t\tauto w = make_tuple(x + dx[j], y + dy[j], z + dz[j]);\n\t\t\tint pos = lower_bound(v.begin(), v.end(), w) - v.begin();\n\t\t\tif(pos < v.size() && v[pos] == w) ans-= disj.uni(i, pos);\n\t\t}\n\t}\n\treturn ans;\n}\n\nvector<int> pos[1000005];\n\nint main(){\n\tint a = Cin(), b = Cin(), c = Cin(), n = Cin();\n\n vector<tuple<int, int, int>> v, w;\n\tdisj.init(n);\n\n\tauto ok = [&](int x, int y, int z){\n\t\treturn 0 <= x && x < a && 0 <= y && y < b && 0 <= z && z < c;\n\t};\n\n\tfor(int i=0; i<n; i++){\n int x = Cin(), y = Cin(), z = Cin();\n\t\tv.emplace_back(x, y, z);\n\t}\n\tsort(v.begin(), v.end());\n\tfor(int i=0; i<v.size(); i++){\n\t\tint x, y, z;\n\t\ttie(x, y, z) = v[i];\n\t\tfor(int a=-1; a<=1; a++){\n\t\t\tfor(int b=-1; b<=1; b++){\n\t\t\t\tfor(int c=-1; c<=1; c++){\n\t\t\t\t\tauto pos = lower_bound(v.begin(), v.end(), make_tuple(x+a, y+b, c+z)) - v.begin();\n\t\t\t\t\tif(pos < v.size() && v[pos] == make_tuple(x+a, y+b, c+z)) disj.uni(i, pos);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor(int i=0; i<v.size(); i++){\n\t\tpos[disj.find(i)].push_back(i);\n\t}\n\tint ans = 1;\n\tfor(int i=0; i<v.size(); i++){\n\t\tif(pos[i].size()){\n\t\t\tvector<tuple<int, int, int>> tp;\n\t\t\tfor(auto &j : pos[i]){\n\t\t\t\tint x, y, z;\n\t\t\t\ttie(x, y, z) = v[j];\n\t\t\t\tfor(int dx=-1; dx<=1; dx++){\n\t\t\t\t\tfor(int dy=-1; dy<=1; dy++){\n\t\t\t\t\t\tfor(int dz=-1; dz<=1; dz++){\n\t\t\t\t\t\t\tauto p = make_tuple(x + dx, y + dy, z + dz);\n\t\t\t\t\t\t\tif(!binary_search(v.begin(), v.end(), p) && ok(get<0>(p), get<1>(p), get<2>(p))){\n\t\t\t\t\t\t\t\ttp.push_back(p);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tsort(tp.begin(), tp.end());\n\t\t\ttp.resize(unique(tp.begin(), tp.end()) - tp.begin());\n\t\t\tans += getcmp(tp) - 1;\n\t\t}\n\t}\n\tCout(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 34604, "score_of_the_acc": -0.1054, "final_rank": 3 }, { "submission_id": "aoj_2733_10319493", "code_snippet": "// AOJ #2733 Cube Dividing\n// 2025.3.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\ntypedef pair<int, int> pi;\n\nconst int MAXN = 505;\nconst int dx[6] = {1, -1, 0, 0, 0, 0};\nconst int dy[6] = {0, 0, 1, -1, 0, 0};\nconst int dz[6] = {0, 0, 0, 0, 1, -1};\n\nstruct disj{\n\tint pa[1000005];\n\tvoid init(int n){\n\t\tiota(pa, pa + n + 1, 0);\n\t}\n\tint find(int x){\n\t\treturn pa[x] = (pa[x] == x ? x : find(pa[x]));\n\t}\n\tbool uni(int p, int q){\n\t\tp = find(p);\n\t\tq = find(q);\n\t\tif(p == q) return 0;\n\t\tpa[q] = p; return 1;\n\t}\n}disj;\n\nint getcmp(vector<tuple<int, int, int>> v){\n\tdisj.init(v.size());\n\tint ans = v.size();\n\tfor(int i=0; i<v.size(); i++){\n\t\tint x, y, z;\n\t\ttie(x, y, z) = v[i];\n\t\tfor(int j=0; j<6; j++){\n\t\t\tauto w = make_tuple(x + dx[j], y + dy[j], z + dz[j]);\n\t\t\tint pos = lower_bound(v.begin(), v.end(), w) - v.begin();\n\t\t\tif(pos < v.size() && v[pos] == w) ans-= disj.uni(i, pos);\n\t\t}\n\t}\n\treturn ans;\n}\n\nint n, a, b, c;\nvector<int> pos[1000005];\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n\tvector<tuple<int, int, int>> v, w;\n\tcin >> a >> b >> c >> n;\n\tdisj.init(n);\n\tauto ok = [&](int x, int y, int z){\n\t\treturn 0 <= x && x < a && 0 <= y && y < b && 0 <= z && z < c;\n\t};\n\tfor(int i=0; i<n; i++){\n int x, y, z;\n\t\tcin >> x >> y >> z;\n\t\tv.emplace_back(x, y, z);\n\t}\n\tsort(v.begin(), v.end());\n\tfor(int i=0; i<v.size(); i++){\n\t\tint x, y, z;\n\t\ttie(x, y, z) = v[i];\n\t\tfor(int a=-1; a<=1; a++){\n\t\t\tfor(int b=-1; b<=1; b++){\n\t\t\t\tfor(int c=-1; c<=1; c++){\n\t\t\t\t\tauto pos = lower_bound(v.begin(), v.end(), make_tuple(x+a, y+b, c+z)) - v.begin();\n\t\t\t\t\tif(pos < v.size() && v[pos] == make_tuple(x+a, y+b, c+z)) disj.uni(i, pos);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor(int i=0; i<v.size(); i++){\n\t\tpos[disj.find(i)].push_back(i);\n\t}\n\tint ans = 1;\n\tfor(int i=0; i<v.size(); i++){\n\t\tif(pos[i].size()){\n\t\t\tvector<tuple<int, int, int>> tp;\n\t\t\tfor(auto &j : pos[i]){\n\t\t\t\tint x, y, z;\n\t\t\t\ttie(x, y, z) = v[j];\n\t\t\t\tfor(int dx=-1; dx<=1; dx++){\n\t\t\t\t\tfor(int dy=-1; dy<=1; dy++){\n\t\t\t\t\t\tfor(int dz=-1; dz<=1; dz++){\n\t\t\t\t\t\t\tauto p = make_tuple(x + dx, y + dy, z + dz);\n\t\t\t\t\t\t\tif(!binary_search(v.begin(), v.end(), p) && ok(get<0>(p), get<1>(p), get<2>(p))){\n\t\t\t\t\t\t\t\ttp.push_back(p);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tsort(tp.begin(), tp.end());\n\t\t\ttp.resize(unique(tp.begin(), tp.end()) - tp.begin());\n\t\t\tans += getcmp(tp) - 1;\n\t\t}\n\t}\n\tcout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 36060, "score_of_the_acc": -0.109, "final_rank": 4 }, { "submission_id": "aoj_2733_8371909", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct cell {\n\tint x, y, z;\n\tbool operator<(const cell& c) const {\n\t\treturn x != c.x ? x < c.x : y != c.y ? y < c.y : z < c.z;\n\t}\n\tbool operator==(const cell& c) const {\n\t\treturn x == c.x && y == c.y && z == c.z;\n\t}\n\tvoid twirl() {\n\t\tint t = x;\n\t\tx = y;\n\t\ty = z;\n\t\tz = t;\n\t}\n};\n\nint main() {\n\t// step #1. input\n\tint A, B, C, N;\n\tcin >> A >> B >> C >> N;\n\tvector<cell> P(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> P[i].x >> P[i].y >> P[i].z;\n\t}\n\n\t// step #2. enumerate all \"cells to be considered\"\n\tsort(P.begin(), P.end());\n\tauto fix = [&](const cell& c) -> cell {\n\t\treturn cell({max(min(c.x, A - 1), 0), max(min(c.y, B - 1), 0), max(min(c.z, C - 1), 0)});\n\t};\n\tint cnt = 0;\n\tvector<cell> V(N * 54);\n\tauto push = [&](const cell& c) -> void {\n\t\tif (!binary_search(P.begin(), P.end(), c)) {\n\t\t\tV[cnt++] = c;\n\t\t}\n\t};\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < 27; j++) {\n\t\t\tint a = j / 9, b = j / 3 % 3, c = j % 3;\n\t\t\tpush(fix(cell{P[i].x + (a - 1), P[i].y + (b - 1), P[i].z + (c - 1)}));\n\t\t\tpush(cell{a == 1 ? P[i].x : a == 0 ? 0 : A - 1, b == 1 ? P[i].y : b == 0 ? 0 : B - 1, c == 1 ? P[i].z : c == 0 ? 0 : C - 1});\n\t\t}\n\t}\n\tV.resize(cnt);\n\tsort(V.begin(), V.end());\n\tV.erase(unique(V.begin(), V.end()), V.end());\n\n\t// step #3. create graph to check connectivity\n\tint M = V.size();\n\tvector<vector<int> > G(M);\n\tvector<pair<cell, int> > D(N + M);\n\tfor (int i = 0; i < N + M; i++) {\n\t\tif (i < N) {\n\t\t\tD[i] = make_pair(P[i], -1);\n\t\t}\n\t\telse {\n\t\t\tD[i] = make_pair(V[i - N], i - N);\n\t\t}\n\t}\n\tfor (int i = 0; i < 3; i++) {\n\t\tsort(D.begin(), D.end());\n\t\tfor (int j = 1; j < N + M; j++) {\n\t\t\tif (D[j - 1].first.x == D[j].first.x && D[j - 1].first.y == D[j].first.y && D[j - 1].second != -1 && D[j].second != -1) {\n\t\t\t\tG[D[j - 1].second].push_back(D[j].second);\n\t\t\t\tG[D[j].second].push_back(D[j - 1].second);\n\t\t\t}\n\t\t}\n\t\tfor (int j = 0; j < N + M; j++) {\n\t\t\tD[j].first.twirl();\n\t\t}\n\t}\n\n\t// step #4. count connected components\n\tint ans = 0;\n\tvector<bool> vis(M, false);\n\tfor (int i = 0; i < M; i++) {\n\t\tif (!vis[i]) {\n\t\t\tvector<int> st = { i };\n\t\t\tvis[i] = true;\n\t\t\twhile (!st.empty()) {\n\t\t\t\tint u = st.back();\n\t\t\t\tst.pop_back();\n\t\t\t\tfor (int j : G[u]) {\n\t\t\t\t\tif (!vis[j]) {\n\t\t\t\t\t\tvis[j] = true;\n\t\t\t\t\t\tst.push_back(j);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tans += 1;\n\t\t}\n\t}\n\tif (N == 0) {\n\t\tans = 1;\n\t}\n\n\t// step #5. output\n\tcout << ans << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 430, "memory_kb": 88084, "score_of_the_acc": -0.4155, "final_rank": 5 }, { "submission_id": "aoj_2733_8371899", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct cell {\n\tint x, y, z;\n\tbool operator<(const cell& c) const {\n\t\treturn x != c.x ? x < c.x : y != c.y ? y < c.y : z < c.z;\n\t}\n\tbool operator==(const cell& c) const {\n\t\treturn x == c.x && y == c.y && z == c.z;\n\t}\n\tvoid twirl() {\n\t\tint t = x;\n\t\tx = y;\n\t\ty = z;\n\t\tz = t;\n\t}\n};\n\nint main() {\n\t// step #1. input\n\tint A, B, C, N;\n\tcin >> A >> B >> C >> N;\n\tvector<cell> P(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> P[i].x >> P[i].y >> P[i].z;\n\t}\n\n\t// step #2. enumerate all \"cells to be considered\"\n\tsort(P.begin(), P.end());\n\tauto fix = [&](const cell& c) -> cell {\n\t\treturn cell({max(min(c.x, A - 1), 0), max(min(c.y, B - 1), 0), max(min(c.z, C - 1), 0)});\n\t};\n\tint cnt = 0;\n\tvector<cell> V(N * 54);\n\tauto push = [&](const cell& c) -> void {\n\t\tif (!binary_search(P.begin(), P.end(), c)) {\n\t\t\tV[cnt++] = c;\n\t\t}\n\t};\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < 27; j++) {\n\t\t\tint a = j / 9, b = j / 3 % 3, c = j % 3;\n\t\t\tpush(fix(cell{P[i].x + (a - 1), P[i].y + (b - 1), P[i].z + (c - 1)}));\n\t\t\tpush(cell{a == 1 ? P[i].x : a == 0 ? 0 : A - 1, b == 1 ? P[i].y : b == 0 ? 0 : B - 1, c == 1 ? P[i].z : c == 0 ? 0 : C - 1});\n\t\t}\n\t}\n\tV.resize(cnt);\n\tsort(V.begin(), V.end());\n\tV.erase(unique(V.begin(), V.end()), V.end());\n\n\t// step #3. create graph to check connectivity\n\tint M = V.size();\n\tvector<vector<int> > G(M);\n\tvector<pair<cell, int> > D(N + M);\n\tfor (int i = 0; i < N + M; i++) {\n\t\tif (i < N) {\n\t\t\tD[i] = make_pair(P[i], -1);\n\t\t}\n\t\telse {\n\t\t\tD[i] = make_pair(V[i - N], i - N);\n\t\t}\n\t}\n\tfor (int i = 0; i < 3; i++) {\n\t\tsort(D.begin(), D.end());\n\t\tfor (int j = 1; j < N + M; j++) {\n\t\t\tif (D[j - 1].first.x == D[j].first.x && D[j - 1].first.y == D[j].first.y && D[j - 1].second != -1 && D[j].second != -1) {\n\t\t\t\tG[D[j - 1].second].push_back(D[j].second);\n\t\t\t\tG[D[j].second].push_back(D[j - 1].second);\n\t\t\t}\n\t\t}\n\t\tfor (int j = 0; j < N + M; j++) {\n\t\t\tD[j].first.twirl();\n\t\t}\n\t}\n\n\t// step #4. count connected components\n\tint ans = 0;\n\tvector<bool> vis(M, false);\n\tfor (int i = 0; i < M; i++) {\n\t\tif (!vis[i]) {\n\t\t\tvector<int> st = { i };\n\t\t\tvis[i] = true;\n\t\t\twhile (!st.empty()) {\n\t\t\t\tint u = st.back();\n\t\t\t\tst.pop_back();\n\t\t\t\tfor (int j : G[u]) {\n\t\t\t\t\tif (!vis[j]) {\n\t\t\t\t\t\tvis[j] = true;\n\t\t\t\t\t\tst.push_back(j);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tans += 1;\n\t\t}\n\t}\n\n\t// step #5. output\n\tcout << ans << endl;\n\n\treturn 0;\n}", "accuracy": 0.9696969696969697, "time_ms": 450, "memory_kb": 88080, "score_of_the_acc": -0.4271, "final_rank": 12 }, { "submission_id": "aoj_2733_6403553", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\n//constexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\t//if (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nbool operator<(modint a, modint b) { return a.n < b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\ntemplate<typename T>\nvoid addv(vector<T>& v, int loc, T val) {\n\tif (loc >= v.size())v.resize(loc + 1, 0);\n\tv[loc] += val;\n}\n/*const int mn = 100005;\nbool isp[mn];\nvector<int> ps;\nvoid init() {\n\tfill(isp + 2, isp + mn, true);\n\tfor (int i = 2; i < mn; i++) {\n\t\tif (!isp[i])continue;\n\t\tps.push_back(i);\n\t\tfor (int j = 2 * i; j < mn; j += i) {\n\t\t\tisp[j] = false;\n\t\t}\n\t}\n}*/\n\n//[,val)\ntemplate<typename T>\nauto prev_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\tif (res == st.begin())return st.end();\n\tres--; return res;\n}\n\n//[val,)\ntemplate<typename T>\nauto next_itr(set<T>& st, T val) {\n\tauto res = st.lower_bound(val);\n\treturn res;\n}\nusing mP = pair<modint, modint>;\n\n\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n//-----------------------------------------\n\nstruct uf {\nprivate:\n\tvector<int> par, ran;\npublic:\n\tuf(int n) {\n\t\tpar.resize(n, 0);\n\t\tran.resize(n, 0);\n\t\trep(i, n) {\n\t\t\tpar[i] = i;\n\t\t}\n\t}\n\tint find(int x) {\n\t\tif (par[x] == x)return x;\n\t\telse return par[x] = find(par[x]);\n\t}\n\tvoid unite(int x, int y) {\n\t\tx = find(x), y = find(y);\n\t\tif (x == y)return;\n\t\tif (ran[x] < ran[y]) {\n\t\t\tpar[x] = y;\n\t\t}\n\t\telse {\n\t\t\tpar[y] = x;\n\t\t\tif (ran[x] == ran[y])ran[x]++;\n\t\t}\n\t}\n\tbool same(int x, int y) {\n\t\treturn find(x) == find(y);\n\t}\n};\nvoid solve() {\n\tint a, b, c, n; cin >> a >> b >> c >> n;\n\tvector<vector<P>> vz(c);\n\tvector<vector<P>> vx(c);\n\tusing ar = array<int, 3>;\n\tvector<vector<vector<ar>>> vy(c);\n\trep(i, n) {\n\t\tint x, y, z; cin >> x >> y >> z;\n\t\tvz[z].push_back({ x,y });\n\t}\n\tint tmp = 0;\n\trep(i, c) {\n\t\tif (vz[i].empty()) {\n\t\t\tvx[i] = { { 0,a } };\n\t\t\tvy[i].push_back({ {{0,b,tmp}} });\n\t\t\ttmp++;\n\t\t\tcontinue;\n\t\t}\n\t\tsort(all(vz[i]));\n\t\tint le = 0;\n\t\trep(j, vz[i].size()) {\n\t\t\tif (le < vz[i][j].first) {\n\t\t\t\tvx[i].push_back({ le,vz[i][j].first });\n\t\t\t\tvy[i].push_back({ {0,b,tmp} });tmp++;\n\t\t\t}\n\t\t\tvx[i].push_back({ vz[i][j].first,vz[i][j].first + 1 });\n\t\t\tle = vz[i][j].first + 1;\n\t\t\tint l = j;\n\t\t\twhile (j + 1 < vz[i].size() && vz[i][j].first == vz[i][j + 1].first) {\n\t\t\t\tj++;\n\t\t\t}\n\t\t\tint loc = vy[i].size();\n\t\t\tvy[i].push_back({});\n\t\t\tint ly = 0;\n\t\t\tRep1(k, l, j) {\n\t\t\t\tint cy = vz[i][k].second;\n\t\t\t\tif (ly < cy) {\n\t\t\t\t\tvy[i][loc].push_back({ ly,cy,tmp }); tmp++;\n\t\t\t\t}\n\t\t\t\tly = cy + 1;\n\t\t\t}\n\t\t\tif (ly < b) {\n\t\t\t\tvy[i][loc].push_back({ ly,b,tmp }); tmp++;\n\t\t\t}\n\t\t}\n\t\tif (le < a) {\n\t\t\tvx[i].push_back({ le,a });\n\t\t\tvy[i].push_back({ {0,b,tmp} }); tmp++;\n\t\t}\n\t}\n\tuf u(tmp);\n\tvector<bool> exi(tmp);\n\t//same z\n\trep(i, c) {\n\t\trep(j, vx[i].size() - 1) {\n\t\t\tvector<ar>& lv = vy[i][j];\n\t\t\tvector<ar>& rv = vy[i][j + 1];\n\t\t\tint idl = 0, idr = 0;\n\t\t\twhile (idl < lv.size() && idr < rv.size()) {\n\t\t\t\tint le = max(lv[idl][0], rv[idr][0]);\n\t\t\t\tint ri = min(lv[idl][1], rv[idr][1]);\n\t\t\t\tif (le < ri) {\n\t\t\t\t\tu.unite(lv[idl][2], rv[idr][2]);\n\t\t\t\t}\n\t\t\t\tif (lv[idl][1] < rv[idr][1]) {\n\t\t\t\t\tidl++;\n\t\t\t\t}\n\t\t\t\telse idr++;\n\t\t\t}\n\t\t}\n\t}\n\t//another z\n\trep(i, c - 1) {\n\t\tint id1 = 0, id2 = 0;\n\t\twhile (id1 < vx[i].size() && id2 < vx[i+1].size()) {\n\t\t\tint lx = max(vx[i][id1].first, vx[i + 1][id2].first);\n\t\t\tint rx = min(vx[i][id1].second, vx[i + 1][id2].second);\n\t\t\tif (lx < rx) {\n\t\t\t\tvector<ar>& lv = vy[i][id1];\n\t\t\t\tvector<ar>& rv = vy[i + 1][id2];\n\t\t\t\tint idl = 0, idr = 0;\n\t\t\t\twhile (idl < lv.size() && idr < rv.size()) {\n\t\t\t\t\tint le = max(lv[idl][0], rv[idr][0]);\n\t\t\t\t\tint ri = min(lv[idl][1], rv[idr][1]);\n\t\t\t\t\tif (le < ri) {\n\t\t\t\t\t\tu.unite(lv[idl][2], rv[idr][2]);\n\t\t\t\t\t}\n\t\t\t\t\tif (lv[idl][1] < rv[idr][1]) {\n\t\t\t\t\t\tidl++;\n\t\t\t\t\t}\n\t\t\t\t\telse idr++;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (vx[i][id1].second < vx[i + 1][id2].second) {\n\t\t\t\tid1++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tid2++;\n\t\t\t}\n\t\t}\n\t}\n\trep(i, tmp)exi[u.find(i)] = true;\n\tint ans = 0; rep(i, tmp)if (exi[i])ans++;\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 172880, "score_of_the_acc": -0.4496, "final_rank": 6 }, { "submission_id": "aoj_2733_5896736", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main(){\n int A, B, C, N;\n cin >> A >> B >> C >> N;\n vector<int> X(N), Y(N), Z(N);\n for (int i = 0; i < N; i++){\n cin >> X[i] >> Y[i] >> Z[i];\n }\n vector<int> rx;\n rx.push_back(0);\n for (int i = 0; i < N; i++){\n rx.push_back(X[i]);\n if (X[i] < A - 1){\n rx.push_back(X[i] + 1);\n }\n }\n sort(rx.begin(), rx.end());\n rx.erase(unique(rx.begin(), rx.end()), rx.end());\n int A2 = rx.size();\n rx.push_back(A);\n for (int i = 0; i < N; i++){\n X[i] = lower_bound(rx.begin(), rx.end(), X[i]) - rx.begin();\n }\n vector<vector<int>> id(A2);\n for (int i = 0; i < N; i++){\n id[X[i]].push_back(i);\n }\n int V = 0;\n vector<pair<int, int>> E;\n vector<vector<int>> ry(A2);\n vector<int> B2(A2);\n vector<vector<vector<pair<int, int>>>> upd(A2);\n vector<vector<int>> uc(A2);\n for (int i = 0; i < A2; i++){\n ry[i].push_back(0);\n int cnt = id[i].size();\n for (int j = 0; j < cnt; j++){\n ry[i].push_back(Y[id[i][j]]);\n if (Y[id[i][j]] < B - 1){\n ry[i].push_back(Y[id[i][j]] + 1);\n }\n }\n sort(ry[i].begin(), ry[i].end());\n ry[i].erase(unique(ry[i].begin(), ry[i].end()), ry[i].end());\n B2[i] = ry[i].size();\n vector<vector<int>> id2(B2[i]);\n for (int j = 0; j < cnt; j++){\n int Y2 = lower_bound(ry[i].begin(), ry[i].end(), Y[id[i][j]]) - ry[i].begin();\n id2[Y2].push_back(id[i][j]);\n }\n upd[i].resize(B2[i]);\n for (int j = 0; j < B2[i]; j++){\n int cnt2 = id2[j].size();\n for (int k = 0; k < cnt2; k++){\n upd[i][j].push_back(make_pair(Z[id2[j][k]], -1));\n }\n vector<int> rz;\n rz.push_back(-1);\n rz.push_back(C);\n for (int k = 0; k < cnt2; k++){\n rz.push_back(Z[id2[j][k]]);\n }\n sort(rz.begin(), rz.end());\n int cnt3 = rz.size();\n for (int k = 0; k < cnt3 - 1; k++){\n if (rz[k + 1] - rz[k] > 1){\n upd[i][j].push_back(make_pair(rz[k] + 1, V));\n V++;\n }\n }\n }\n uc[i].resize(B2[i]);\n for (int j = 0; j < B2[i]; j++){\n uc[i][j] = upd[i][j].size();\n }\n for (int j = 0; j < B2[i] - 1; j++){\n vector<tuple<int, int, int>> upd2;\n for (int k = 0; k < 2; k++){\n for (int l = 0; l < uc[i][j + k]; l++){\n upd2.push_back(make_tuple(upd[i][j + k][l].first, k, upd[i][j + k][l].second));\n }\n }\n sort(upd2.begin(), upd2.end());\n int cnt2 = upd2.size();\n vector<int> c = {-1, -1};\n for (int k = 0; k < cnt2; k++){\n int t = get<0>(upd2[k]);\n int h = get<1>(upd2[k]);\n int v = get<2>(upd2[k]);\n c[h] = v;\n bool ok = true;\n if (k < cnt2 - 1){\n if (get<0>(upd2[k + 1]) == t){\n ok = false;\n }\n }\n if (ok){\n if (c[0] != -1 && c[1] != -1){\n E.push_back(make_pair(c[0], c[1]));\n }\n }\n }\n }\n }\n for (int i = 0; i < A2 - 1; i++){\n vector<int> ry2;\n for (int j = i; j <= i + 1; j++){\n for (int k = 0; k < B2[j]; k++){\n ry2.push_back(ry[j][k]);\n }\n }\n sort(ry2.begin(), ry2.end());\n ry2.erase(unique(ry2.begin(), ry2.end()), ry2.end());\n int cnt = ry2.size();\n for (int j = 0; j < cnt; j++){\n vector<int> yp(2);\n for (int k = 0; k < 2; k++){\n yp[k] = upper_bound(ry[i + k].begin(), ry[i + k].end(), ry2[j]) - ry[i + k].begin() - 1;\n }\n vector<tuple<int, int, int>> upd2;\n for (int k = 0; k < 2; k++){\n for (int l = 0; l < uc[i + k][yp[k]]; l++){\n upd2.push_back(make_tuple(upd[i + k][yp[k]][l].first, k, upd[i + k][yp[k]][l].second));\n }\n }\n sort(upd2.begin(), upd2.end());\n int cnt2 = upd2.size();\n vector<int> c = {-1, -1};\n for (int k = 0; k < cnt2; k++){\n int t = get<0>(upd2[k]);\n int h = get<1>(upd2[k]);\n int v = get<2>(upd2[k]);\n c[h] = v;\n bool ok = true;\n if (k < cnt2 - 1){\n if (get<0>(upd2[k + 1]) == t){\n ok = false;\n }\n }\n if (ok){\n if (c[0] != -1 && c[1] != -1){\n E.push_back(make_pair(c[0], c[1]));\n }\n }\n }\n }\n }\n int M = E.size();\n vector<vector<int>> E2(V);\n for (int i = 0; i < M; i++){\n int v = E[i].first;\n int w = E[i].second;\n E2[v].push_back(w);\n E2[w].push_back(v);\n }\n int ans = 0;\n vector<bool> used(V, false);\n for (int i = 0; i < V; i++){\n if (!used[i]){\n used[i] = true;\n ans++;\n queue<int> Q;\n Q.push(i);\n while (!Q.empty()){\n int v = Q.front();\n Q.pop();\n for (int w : E2[v]){\n if (!used[w]){\n used[w] = true;\n Q.push(w);\n }\n }\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 22872, "score_of_the_acc": -0.0363, "final_rank": 1 }, { "submission_id": "aoj_2733_3742043", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 1000005\ntypedef pair<int,int> P;\n\nstruct Info{\n\tInfo(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\tint x,y,z;\n};\n\nint N;\nint boss[NUM],height[NUM];\nint diff_x[3] = {-1,0,1},diff_y[3] = {-1,0,1},diff_z[3] = {-1,0,1};\nint X,Y,Z;\nint num_DEL,num_REMAIN;\nvector<Info> info,DEL_GROUP[NUM];\nvector<P> info_DELETE[NUM],info_REMAIN[NUM];\nmap<P,int> DELETE[NUM],REMAIN[NUM];\n\n\nbool rangeCheck(int x,int y, int z){\n\n\treturn x >= 0 && x <= X-1 && y >= 0 && y <= Y-1 && z >= 0 && z <= Z-1;\n}\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nint is_same(int x,int y){\n\treturn get_boss(x) == get_boss(y);\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[x] > height[y]){\n\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[x] < height[y]){\n\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[x] == height[y]\n\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nvoid init(int num){\n\n\tfor(int i = 0; i < num; i++){\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t}\n}\n\nbool is_DELETE(int x,int y,int z){\n\n\tauto at = DELETE[x].find(make_pair(y,z));\n\n\tif(at != DELETE[x].end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d %d\",&X,&Z,&Y,&num_DEL);\n\n\tint index_DELETE = 0;\n\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tint x,z,y;\n\n\t\tscanf(\"%d %d %d\",&x,&z,&y);\n\n\t\tDELETE[x][P(y,z)] = index_DELETE++;\n\t\tinfo_DELETE[x].push_back(P(y,z));\n\t\tinfo.push_back(Info(x,y,z));\n\t}\n\n\tinit(index_DELETE);\n\n\t//削除するキューブを連結させる\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tInfo tmp_info = info[i];\n\n\t\tfor(int a = 0; a < 3; a++){\n\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\tif(diff_x[a] == 0 && diff_y[b] == 0 && diff_z[c] == 0)continue;\n\n\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true && is_DELETE(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\tint from = i;\n\t\t\t\t\t\tint to = DELETE[adj_x][P(adj_y,adj_z)];\n\n\t\t\t\t\t\tunite(from,to);\n\t\t\t\t\t}\n\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tDEL_GROUP[get_boss(i)].push_back(Info(info[i]));\n\t}\n\n\n\tint ans = 1;\n\n\t//点連結させた、取り除くキューブ集団ごとに処理する\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tif(DEL_GROUP[i].size() == 0)continue;\n\n\t\tint index_REMAIN = 0;\n\t\tint min_x = BIG_NUM,max_x = -BIG_NUM;\n\n\t\tfor(int k = 0; k < DEL_GROUP[i].size(); k++){\n\n\t\t\tmin_x = min(min_x,DEL_GROUP[i][k].x);\n\t\t\tmax_x = max(max_x,DEL_GROUP[i][k].x);\n\t\t}\n\n\t\tmin_x = max(0,min_x-2);\n\t\tmax_x = min(X-1,max_x+2);\n\n\t\tfor(int k = min_x; k <= max_x; k++){\n\t\t\tREMAIN[k].clear();\n\t\t\tinfo_REMAIN[k].clear();\n\t\t}\n\n\t\tint L = BIG_NUM,R = -BIG_NUM;\n\n\t\tfor(int k = 0; k < DEL_GROUP[i].size(); k++){\n\n\t\t\tInfo tmp_info = DEL_GROUP[i][k];\n\n\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\tif(diff_x[a] == 0 && diff_y[b] == 0 && diff_z[c] == 0)continue;\n\n\t\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == false|| is_DELETE(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tauto at = REMAIN[adj_x].find(P(adj_y,adj_z));\n\t\t\t\t\t\tif(at != REMAIN[adj_x].end())continue;\n\n\t\t\t\t\t\tL = min(L,adj_x);\n\t\t\t\t\t\tR = max(R,adj_x);\n\t\t\t\t\t\tREMAIN[adj_x][P(adj_y,adj_z)] = index_REMAIN++;\n\t\t\t\t\t\tinfo_REMAIN[adj_x].push_back(P(adj_y,adj_z));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(index_REMAIN == 0)continue;\n\n\t\tinit(index_REMAIN);\n\n\t\t//REMAINを面連結させる\n\t\tfor(int x = L; x <= R;x++){\n\n\t\t\tif(info_REMAIN[x].size() == 0)continue;\n\n\t\t\tfor(int loop = 0; loop < info_REMAIN[x].size(); loop++){\n\n\t\t\t\tP tmp = info_REMAIN[x][loop];\n\n\t\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\t\tint count_zero = 0;\n\t\t\t\t\t\t\tif(diff_x[a] == 0)count_zero++;\n\t\t\t\t\t\t\tif(diff_y[b] == 0)count_zero++;\n\t\t\t\t\t\t\tif(diff_z[c] == 0)count_zero++;\n\n\t\t\t\t\t\t\tif(count_zero != 2)continue;\n\n\n\t\t\t\t\t\t\tint adj_x = x+diff_x[a];\n\t\t\t\t\t\t\tint adj_y = tmp.first+diff_y[b];\n\t\t\t\t\t\t\tint adj_z = tmp.second+diff_z[c];\n\n\t\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\t\tauto at = REMAIN[adj_x].find(P(adj_y,adj_z));\n\t\t\t\t\t\t\t\tif(at == REMAIN[adj_x].end())continue;\n\n\t\t\t\t\t\t\t\tint from = REMAIN[x][tmp];\n\t\t\t\t\t\t\t\tint to = REMAIN[adj_x][P(adj_y,adj_z)];\n\n\t\t\t\t\t\t\t\tunite(from,to);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tint num_group = 0;\n\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tif(k == get_boss(k)){\n\n\t\t\t\tnum_group++;\n\t\t\t}\n\t\t}\n\n\t\tans += num_group-1;\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 207740, "score_of_the_acc": -0.5811, "final_rank": 10 }, { "submission_id": "aoj_2733_3742040", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 1000005\ntypedef pair<int,int> P;\n\nstruct Info{\n\tInfo(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\tint x,y,z;\n};\n\nint N;\nint boss[NUM],height[NUM];\nint diff_x[3] = {-1,0,1},diff_y[3] = {-1,0,1},diff_z[3] = {-1,0,1};\nint X,Y,Z;\nint num_DEL,num_REMAIN;\nvector<Info> info,DEL_GROUP[NUM];\nvector<P> info_DELETE[NUM],info_REMAIN[NUM];\nmap<P,int> DELETE[NUM],REMAIN[NUM];\n\n\nbool rangeCheck(int x,int y, int z){\n\n\treturn x >= 0 && x <= X-1 && y >= 0 && y <= Y-1 && z >= 0 && z <= Z-1;\n}\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nint is_same(int x,int y){\n\treturn get_boss(x) == get_boss(y);\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[x] > height[y]){\n\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[x] < height[y]){\n\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[x] == height[y]\n\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nvoid init(int num){\n\n\tfor(int i = 0; i < num; i++){\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t}\n}\n\nbool is_DELETE(int x,int y,int z){\n\n\tauto at = DELETE[x].find(make_pair(y,z));\n\n\tif(at != DELETE[x].end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d %d\",&X,&Z,&Y,&num_DEL);\n\n\tint index_DELETE = 0;\n\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tint x,z,y;\n\n\t\tscanf(\"%d %d %d\",&x,&z,&y);\n\n\t\tDELETE[x][P(y,z)] = index_DELETE++;\n\t\tinfo_DELETE[x].push_back(P(y,z));\n\t\tinfo.push_back(Info(x,y,z));\n\t}\n\n\tinit(index_DELETE);\n\n\t//削除するキューブを連結させる\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tInfo tmp_info = info[i];\n\n\t\tfor(int a = 0; a < 3; a++){\n\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\tif(diff_x[a] == 0 && diff_y[b] == 0 && diff_z[c] == 0)continue;\n\n\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true && is_DELETE(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\tint from = i;\n\t\t\t\t\t\tint to = DELETE[adj_x][P(adj_y,adj_z)];\n\n\t\t\t\t\t\tunite(from,to);\n\t\t\t\t\t}\n\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tDEL_GROUP[get_boss(i)].push_back(Info(info[i]));\n\t}\n\n\n\tint ans = 1;\n\n\t//点連結させた、取り除くキューブ集団ごとに処理する\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tif(DEL_GROUP[i].size() == 0)continue;\n\n\t\tint index_REMAIN = 0;\n\t\tint min_x = BIG_NUM,max_x = -BIG_NUM;\n\n\t\tfor(int k = 0; k < DEL_GROUP[i].size(); k++){\n\n\t\t\tmin_x = min(min_x,DEL_GROUP[i][k].x);\n\t\t\tmax_x = max(max_x,DEL_GROUP[i][k].x);\n\t\t}\n\n\t\tmin_x = max(0,min_x-1);\n\t\tmax_x = min(X-1,max_x+1);\n\n\t\tfor(int k = min_x; k <= max_x; k++){\n\t\t\tREMAIN[k].clear();\n\t\t\tinfo_REMAIN[k].clear();\n\t\t}\n\n\t\tint L = BIG_NUM,R = -BIG_NUM;\n\n\t\tfor(int k = 0; k < DEL_GROUP[i].size(); k++){\n\n\t\t\tInfo tmp_info = DEL_GROUP[i][k];\n\n\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\tif(diff_x[a] == 0 && diff_y[b] == 0 && diff_z[c] == 0)continue;\n\n\t\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == false|| is_DELETE(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tauto at = REMAIN[adj_x].find(P(adj_y,adj_z));\n\t\t\t\t\t\tif(at != REMAIN[adj_x].end())continue;\n\n\t\t\t\t\t\tL = min(L,adj_x);\n\t\t\t\t\t\tR = max(R,adj_x);\n\t\t\t\t\t\tREMAIN[adj_x][P(adj_y,adj_z)] = index_REMAIN++;\n\t\t\t\t\t\tinfo_REMAIN[adj_x].push_back(P(adj_y,adj_z));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(index_REMAIN == 0)continue;\n\n\t\tinit(index_REMAIN);\n\n\t\t//REMAINを面連結させる\n\t\tfor(int x = L; x <= R;x++){\n\n\t\t\tif(info_REMAIN[x].size() == 0)continue;\n\n\t\t\tfor(int loop = 0; loop < info_REMAIN[x].size(); loop++){\n\n\t\t\t\tP tmp = info_REMAIN[x][loop];\n\n\t\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\t\tint count_zero = 0;\n\t\t\t\t\t\t\tif(diff_x[a] == 0)count_zero++;\n\t\t\t\t\t\t\tif(diff_y[b] == 0)count_zero++;\n\t\t\t\t\t\t\tif(diff_z[c] == 0)count_zero++;\n\n\t\t\t\t\t\t\tif(count_zero != 2)continue;\n\n\n\t\t\t\t\t\t\tint adj_x = x+diff_x[a];\n\t\t\t\t\t\t\tint adj_y = tmp.first+diff_y[b];\n\t\t\t\t\t\t\tint adj_z = tmp.second+diff_z[c];\n\n\t\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\t\tauto at = REMAIN[adj_x].find(P(adj_y,adj_z));\n\t\t\t\t\t\t\t\tif(at == REMAIN[adj_x].end())continue;\n\n\t\t\t\t\t\t\t\tint from = REMAIN[x][tmp];\n\t\t\t\t\t\t\t\tint to = REMAIN[adj_x][P(adj_y,adj_z)];\n\n\t\t\t\t\t\t\t\tunite(from,to);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tint num_group = 0;\n\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tif(k == get_boss(k)){\n\n\t\t\t\tnum_group++;\n\t\t\t}\n\t\t}\n\n\t\tans += num_group-1;\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.045454545454545456, "time_ms": 110, "memory_kb": 169532, "score_of_the_acc": -0.4298, "final_rank": 20 }, { "submission_id": "aoj_2733_3741453", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 1000000\n\nstruct Info{\n\tInfo(){\n\t\tx = y = z = 0;\n\t}\n\n\tInfo(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\tvoid set(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\n\tbool operator<(const struct Info &arg) const{\n\n\t\tif(x != arg.x){\n\n\t\t\treturn x < arg.x;\n\n\t\t}else if(y != arg.y){\n\n\t\t\treturn y < arg.y;\n\n\t\t}else{\n\n\t\t\treturn z < arg.z;\n\t\t}\n\t}\n\tbool operator==(const struct Info &arg) const{\n\n\t\treturn x == arg.x && y == arg.y && z == arg.z;\n\t}\n\n\tint x,y,z;\n};\n\nint N;\nint boss[NUM],height[NUM];\nint diff_x[3] = {-1,0,1},diff_y[3] = {-1,0,1},diff_z[3] = {-1,0,1};\nint X,Y,Z;\nint num_DEL,num_REMAIN;\nvector<int> DEL_GROUP[20000];\nvector<Info> info_DELETE,info_REMAIN;\nmap<Info,bool> DELETE,REMAIN;\n\n\nbool rangeCheck(int x,int y, int z){\n\n\treturn x >= 0 && x <= X-1 && y >= 0 && y <= Y-1 && z >= 0 && z <= Z-1;\n}\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nint is_same(int x,int y){\n\treturn get_boss(x) == get_boss(y);\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[x] > height[y]){\n\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[x] < height[y]){\n\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[x] == height[y]\n\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nbool is_DELETE(int x,int y,int z){\n\n\tInfo tmp_info;\n\ttmp_info.set(x,y,z);\n\n\tauto at = DELETE.find(tmp_info);\n\n\tif(at != DELETE.end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nbool is_REMAIN(int x,int y,int z){\n\n\tInfo tmp_info;\n\ttmp_info.set(x,y,z);\n\n\tauto at = REMAIN.find(tmp_info);\n\n\tif(at != REMAIN.end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d %d\",&X,&Y,&Z,&num_DEL);\n\n\tint index_DELETE = 0;\n\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tInfo tmp_info;\n\n\t\tscanf(\"%d %d %d\",&tmp_info.x,&tmp_info.y,&tmp_info.z);\n\n\t\tDELETE[tmp_info] = index_DELETE++;\n\t\tinfo_DELETE.push_back(tmp_info);\n\t}\n\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t}\n\n\t//取り除くキューブを点連結させて、グループに分ける\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tInfo tmp_info = info_DELETE[i];\n\n\t\tfor(int a = 0; a < 3; a++){\n\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\tif(diff_x[a] == 0 && diff_y[b] == 0 && diff_z[c] == 0)continue;\n\n\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true && is_DELETE(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\tInfo new_info;\n\t\t\t\t\t\tnew_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\t\tunite(i,DELETE[new_info]);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < index_DELETE;i++){\n\n\t\tDEL_GROUP[get_boss(i)].push_back(i);\n\t}\n\n\tint ans = 1;\n\n\t//点連結させた、取り除くキューブ集団ごとに処理する\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tif(DEL_GROUP[i].size() == 0)continue;\n\n\t\tREMAIN.clear();\n\t\tinfo_REMAIN.clear();\n\t\tint index_REMAIN = 0;\n\n\t\tfor(int k = 0; k < DEL_GROUP[i].size(); k++){\n\n\t\t\tInfo tmp_info = info_DELETE[DEL_GROUP[i][k]];\n\n\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\tif(diff_x[a] == 0 && diff_y[b] == 0 && diff_z[c] == 0)continue;\n\n\t\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == false|| is_DELETE(adj_x,adj_y,adj_z) == true\n\t\t\t\t\t\t\t\t|| is_REMAIN(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tInfo new_info;\n\t\t\t\t\t\tnew_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\t\tREMAIN[new_info] = index_REMAIN++;\n\t\t\t\t\t\tinfo_REMAIN.push_back(new_info);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tboss[k] = k;\n\t\t\theight[k] = 0;\n\t\t}\n\n\t\t//REMAINを面連結させる\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tInfo tmp_info = info_REMAIN[k];\n\n\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\tint count_zero = 0;\n\t\t\t\t\t\tif(diff_x[a] == 0)count_zero++;\n\t\t\t\t\t\tif(diff_y[b] == 0)count_zero++;\n\t\t\t\t\t\tif(diff_z[c] == 0)count_zero++;\n\n\t\t\t\t\t\tif(count_zero != 2)continue;\n\n\n\t\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true && is_REMAIN(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\tInfo adj_info;\n\t\t\t\t\t\t\tadj_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\t\t\tint adj_index = REMAIN[adj_info];\n\n\t\t\t\t\t\t\tunite(k,adj_index);\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tint num_group = 0;\n\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tif(k == get_boss(k)){\n\n\t\t\t\tnum_group++;\n\t\t\t}\n\t\t}\n\n\t\tans += num_group-1;\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.07575757575757576, "time_ms": 100, "memory_kb": 9488, "score_of_the_acc": -0.0324, "final_rank": 16 }, { "submission_id": "aoj_2733_3731744", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 1000000\n\nstruct Info{\n\tInfo(){\n\t\tx = y = z = 0;\n\t}\n\n\tInfo(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\tvoid set(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\n\tbool operator<(const struct Info &arg) const{\n\n\t\tif(x != arg.x){\n\n\t\t\treturn x < arg.x;\n\n\t\t}else if(y != arg.y){\n\n\t\t\treturn y < arg.y;\n\n\t\t}else{\n\n\t\t\treturn z < arg.z;\n\t\t}\n\t}\n\tbool operator==(const struct Info &arg) const{\n\n\t\treturn x == arg.x && y == arg.y && z == arg.z;\n\t}\n\n\tint x,y,z;\n};\n\nint N;\nint boss[NUM],height[NUM];\nint diff_x[3] = {-1,0,1},diff_y[3] = {-1,0,1},diff_z[3] = {-1,0,1};\nint X,Y,Z;\nint num_DEL,num_REMAIN;\nvector<int> DEL_GROUP[20000];\nvector<Info> info_DELETE,info_REMAIN;\nmap<Info,bool> DELETE,REMAIN;\n\n\nbool rangeCheck(int x,int y, int z){\n\n\treturn x >= 0 && x <= X-1 && y >= 0 && y <= Y-1 && z >= 0 && z <= Z-1;\n}\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nint is_same(int x,int y){\n\treturn get_boss(x) == get_boss(y);\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[x] > height[y]){\n\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[x] < height[y]){\n\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[x] == height[y]\n\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nbool is_DELETE(int x,int y,int z){\n\n\tInfo tmp_info;\n\ttmp_info.set(x,y,z);\n\n\tauto at = DELETE.find(tmp_info);\n\n\tif(at != DELETE.end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nbool is_REMAIN(int x,int y,int z){\n\n\tInfo tmp_info;\n\ttmp_info.set(x,y,z);\n\n\tauto at = REMAIN.find(tmp_info);\n\n\tif(at != REMAIN.end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d %d\",&X,&Y,&Z,&num_DEL);\n\n\tint index_DELETE = 0;\n\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tInfo tmp_info;\n\n\t\tscanf(\"%d %d %d\",&tmp_info.x,&tmp_info.y,&tmp_info.z);\n\n\t\tDELETE[tmp_info] = index_DELETE++;\n\t\tinfo_DELETE.push_back(tmp_info);\n\t}\n\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t}\n\n\t//取り除くキューブを点連結させて、グループに分ける\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tInfo tmp_info = info_DELETE[i];\n\n\t\tfor(int a = 0; a < 3; a++){\n\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true && is_DELETE(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\tInfo new_info;\n\t\t\t\t\t\tnew_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\t\tunite(i,DELETE[new_info]);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < index_DELETE;i++){\n\n\t\tDEL_GROUP[get_boss(i)].push_back(i);\n\t}\n\n\tint ans = 1;\n\n\t//点連結させた、取り除くキューブ集団ごとに処理する\n\tfor(int i = 0; i < index_DELETE; i++){\n\n\t\tif(DEL_GROUP[i].size() == 0)continue;\n\n\t\tREMAIN.clear();\n\t\tinfo_REMAIN.clear();\n\t\tint index_REMAIN = 0;\n\n\t\tfor(int k = 0; k < DEL_GROUP[i].size(); k++){\n\n\t\t\tInfo tmp_info = info_DELETE[DEL_GROUP[i][k]];\n\n\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == false|| is_DELETE(adj_x,adj_y,adj_z) == true\n\t\t\t\t\t\t\t\t|| is_REMAIN(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tInfo new_info;\n\t\t\t\t\t\tnew_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\t\tREMAIN[new_info] = index_REMAIN++;\n\t\t\t\t\t\tinfo_REMAIN.push_back(new_info);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tboss[k] = k;\n\t\t\theight[k] = 0;\n\t\t}\n\n\t\t//REMAINを面連結させる\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tInfo tmp_info = info_REMAIN[k];\n\n\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\t\tint count_zero = 0;\n\t\t\t\t\t\tif(diff_x[a] == 0)count_zero++;\n\t\t\t\t\t\tif(diff_y[b] == 0)count_zero++;\n\t\t\t\t\t\tif(diff_z[c] == 0)count_zero++;\n\n\t\t\t\t\t\tif(count_zero != 2)continue;\n\n\n\t\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true && is_REMAIN(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\t\tInfo adj_info;\n\t\t\t\t\t\t\tadj_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\t\t\tint adj_index = REMAIN[adj_info];\n\n\t\t\t\t\t\t\tunite(k,adj_index);\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tint num_group = 0;\n\n\t\tfor(int k = 0; k < index_REMAIN; k++){\n\n\t\t\tif(k == get_boss(k)){\n\n\t\t\t\tnum_group++;\n\t\t\t}\n\t\t}\n\n\t\tans += num_group-1;\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.07575757575757576, "time_ms": 160, "memory_kb": 14492, "score_of_the_acc": -0.0794, "final_rank": 18 }, { "submission_id": "aoj_2733_3731724", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 1000000\n\nstruct Info{\n\tInfo(){\n\t\tx = y = z = 0;\n\t}\n\n\tInfo(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\tvoid set(int arg_x,int arg_y,int arg_z){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t\tz = arg_z;\n\t}\n\n\tbool operator<(const struct Info &arg) const{\n\n\t\tif(x != arg.x){\n\n\t\t\treturn x < arg.x;\n\n\t\t}else if(y != arg.y){\n\n\t\t\treturn y < arg.y;\n\n\t\t}else{\n\n\t\t\treturn z < arg.z;\n\t\t}\n\t}\n\tbool operator==(const struct Info &arg) const{\n\n\t\treturn x == arg.x && y == arg.y && z == arg.z;\n\t}\n\n\tint x,y,z;\n};\n\nint N;\nint boss[NUM],height[NUM];\nint diff_x[3] = {-1,0,1},diff_y[3] = {-1,0,1},diff_z[3] = {-1,0,1};\nint X,Y,Z;\nint num_DEL,num_REMAIN;\nvector<Info> info_DELETE,info_REMAIN;\nmap<Info,bool> DELETE,REMAIN;\n\n\nbool rangeCheck(int x,int y, int z){\n\n\treturn x >= 0 && x <= X-1 && y >= 0 && y <= Y-1 && z >= 0 && z <= Z-1;\n}\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nint is_same(int x,int y){\n\treturn get_boss(x) == get_boss(y);\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[x] > height[y]){\n\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[x] < height[y]){\n\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[x] == height[y]\n\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nbool is_DELETE(int x,int y,int z){\n\n\tInfo tmp_info;\n\ttmp_info.set(x,y,z);\n\n\tauto at = DELETE.find(tmp_info);\n\n\tif(at != DELETE.end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nbool is_REMAIN(int x,int y,int z){\n\n\tInfo tmp_info;\n\ttmp_info.set(x,y,z);\n\n\tauto at = REMAIN.find(tmp_info);\n\n\tif(at != REMAIN.end()){\n\n\t\treturn true;\n\t}else{\n\n\t\treturn false;\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d %d %d\",&X,&Y,&Z,&num_DEL);\n\n\tint index_DELETE = 0;\n\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tInfo tmp_info;\n\n\t\tscanf(\"%d %d %d\",&tmp_info.x,&tmp_info.y,&tmp_info.z);\n\n\t\tDELETE[tmp_info] = index_DELETE++;\n\t\tinfo_DELETE.push_back(tmp_info);\n\t}\n\n\tint index_REMAIN = 0;\n\n\t//取り除くキューブに点で接する、取り除かれないキューブを調べる\n\tfor(int i = 0; i < num_DEL; i++){\n\n\t\tInfo tmp_info = info_DELETE[i];\n\n\t\tfor(int a = 0; a < 3; a++){\n\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == false || is_DELETE(adj_x,adj_y,adj_z) == true\n\t\t\t\t\t\t\t|| is_REMAIN(adj_x,adj_y,adj_z) == true)continue;\n\n\t\t\t\t\tInfo new_info;\n\t\t\t\t\tnew_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\tREMAIN[new_info] = index_REMAIN++;\n\t\t\t\t\tinfo_REMAIN.push_back(new_info);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t//取り除かれないキューブを、面連結でuniteする\n\tfor(int i = 0; i < index_REMAIN; i++){\n\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t}\n\n\tint count_zero;\n\n\tfor(int i = 0; i < index_REMAIN; i++){\n\n\t\tInfo tmp_info = info_REMAIN[i];\n\n\t\tfor(int a = 0; a < 3; a++){\n\t\t\tfor(int b = 0; b < 3; b++){\n\t\t\t\tfor(int c = 0; c < 3; c++){\n\n\t\t\t\t\tcount_zero = 0;\n\t\t\t\t\tif(diff_x[a] == 0)count_zero++;\n\t\t\t\t\tif(diff_y[b] == 0)count_zero++;\n\t\t\t\t\tif(diff_z[c] == 0)count_zero++;\n\n\t\t\t\t\tif(count_zero != 2)continue;\n\n\n\t\t\t\t\tint adj_x = tmp_info.x+diff_x[a];\n\t\t\t\t\tint adj_y = tmp_info.y+diff_y[b];\n\t\t\t\t\tint adj_z = tmp_info.z+diff_z[c];\n\n\t\t\t\t\tif(rangeCheck(adj_x,adj_y,adj_z) == true && is_REMAIN(adj_x,adj_y,adj_z) == true){\n\n\t\t\t\t\t\tInfo adj_info;\n\t\t\t\t\t\tadj_info.set(adj_x,adj_y,adj_z);\n\n\t\t\t\t\t\tint adj_index = REMAIN[adj_info];\n\n\t\t\t\t\t\tunite(i,adj_index);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tint ans = 0;\n\n\t//取り除かれないキューブのグループ数を数える\n\tfor(int i = 0; i < index_REMAIN; i++){\n\n\t\tif(get_boss(i) == i){\n\n\t\t\tans++;\n\t\t}\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.07575757575757576, "time_ms": 140, "memory_kb": 14560, "score_of_the_acc": -0.068, "final_rank": 17 }, { "submission_id": "aoj_2733_2744618", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n \nint A,B,C,N;\nconst int MAX = 20000*30;\nint d[MAX];\nvoid init(){ memset( d, -1, sizeof( d ) ); }\nint find(int a){ return d[a]<0?a:(d[a]=find(d[a])); }\nbool merge(int a, int b){\n a = find(a); b = find(b);\n if( a == b ) return false;\n if( d[a] > d[b] ) swap( a, b );\n d[a] += d[b]; d[b] = a;\n return true;\n}\nbool same(int a,int b){\n return find(a) == find(b);\n}\n \nstruct P3{\n int x,y,z;\n P3(){}\n P3(int x,int y,int z) : x(x),y(y),z(z) {}\n bool operator<(const P3& p) const {\n if( x == p.x )\n if( y == p.y )\n return z < p.z;\n else\n return y < p.y;\n else\n return x< p.x;\n }\n};\n \nint dx[]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1};\nint dy[]={ 1, 1, 1, 0, 0, 0, 1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1};\nint dz[]={ 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1};\nint mx[]={ 1,-1, 0, 0, 0, 0};\nint my[]={ 0, 0, 1,-1, 0, 0};\nint mz[]={ 0, 0, 0, 0, 1,-1};\nmap<P3,int> id;\nset<P3> umes;\nmap<int,set<int>> divi;\nint cnt;\nbool used[MAX];\nbool ume[MAX];\n \nbool outer(int x,int y, int z ){\n if( x < 0 || x >= A || y < 0 || y >= B || z < 0 || z >= C ) return true;\n return false;\n}\n \nbool check( int x,int y,int z, bool f = false ){\n if( id.count( P3( x, y, z ) ) == 0 ) return false;\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return false;\n if( f && !ume[ v ] ) return false;\n if( !f && ume[ v ] ) return false;\n return true;\n}\n \nvoid bfs(int x,int y,int z, bool f = false ){\n int v = id[P3(x,y,z)];\n if( used[v] ) return;\n queue<P3> q;\n q.push( P3(x,y,z) );\n used[ v ] = true;\n while( !q.empty() ){\n P3 p = q.front(); q.pop();\n x = p.x; y = p.y; z = p.z;\n v = id[ p ];\n int n = 6;\n if( f ) n = 27;\n for(int i=0;i<n;i++){\n int nx = x + dx[i], ny = y + dy[i], nz = z + dz[i];\n if(!f) nx = x + mx[i], ny = y + my[i], nz = z + mz[i];\n if( check( nx, ny, nz, f ) ) {\n int nv = id[ P3(nx,ny,nz) ];\n merge( v, nv );\n q.push( P3(nx,ny,nz) );\n used[ nv ] = true;\n }\n }\n }\n}\n \nint main(){\n cin >> A >> B >> C >> N;\n init();\n for(int i=0;i<N;i++){\n int x,y,z; cin >> x >> y >> z;\n for(int j=0;j<27;j++){\n int nx = x + dx[j], ny = y + dy[j], nz = z + dz[j];\n if( outer( nx, ny, nz ) ) continue;\n if( !id.count( P3( nx,ny,nz) ) ) \n id[ P3(nx,ny,nz) ] = cnt++; \n }\n umes.insert( P3(x,y,z) );\n ume[id[P3(x,y,z)]] = true;\n }\n \n for( auto it = id.begin(); it != id.end(); it++ ){\n P3 np = it->first;\n int v = it->second;\n if( ume[v] ) \n bfs( np.x, np.y, np.z, true );\n else\n bfs( np.x, np.y, np.z );\n }\n \n for( auto it = umes.begin(); it != umes.end(); it++ ){\n P3 p = *it;\n int v = find( id[p] );\n for(int i=0;i<27;i++){\n int nx = p.x + dx[i], ny = p.y + dy[i], nz = p.z + dz[i];\n if( id.count( P3(nx,ny,nz) ) == 0 ) continue;\n if( umes.count( P3( nx, ny, nz ) ) ) continue;\n divi[ v ].insert( find( id[ P3(nx,ny,nz) ] ) );\n }\n }\n \n int res = 1;\n for( auto it = divi.begin(); it != divi.end(); it++ ){\n res += it->second.size()-1;\n }\n cout << res << endl;\n \n}", "accuracy": 1, "time_ms": 850, "memory_kb": 43024, "score_of_the_acc": -0.548, "final_rank": 9 }, { "submission_id": "aoj_2733_2206895", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cmath>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <map>\n#include <set>\n#include <cassert>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\nconst ll mod=1000000007;\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\n// head\n\nstruct point {\n\tint x,y,z;\n\tpoint() {}\n\tpoint(int x,int y,int z):x(x),y(y),z(z){}\n};\nvector<point> vs;\nint a,b,c,n,x,y,z;\nmap<point,int> pt,del;\nbool operator < (const point &a,const point &b) {\n\treturn a.x<b.x||(a.x==b.x&&a.y<b.y)||(a.x==b.x&&a.y==b.y&&a.z<b.z);\n}\nbool valid(point p) {\n\treturn p.x>=0&&p.x<a&&p.y>=0&&p.y<b&&p.z>=0&&p.z<c;\n}\nvoid dfs(point p) {\n\tvs.pb(p); del[p]=1;\n\trep(dx,-1,2) rep(dy,-1,2) rep(dz,-1,2) {\n\t\tpoint q(p.x+dx,p.y+dy,p.z+dz);\n\t\tif (del.count(q)&&del[q]==0) dfs(q);\n\t\tif (valid(q)&&!del.count(q)) pt[q]=0;\n\t}\n}\nvoid dfs2(point p) {\n\tpt[p]=1;\n\trep(dx,-1,2) rep(dy,-1,2) rep(dz,-1,2) if (abs(dx)+abs(dy)+abs(dz)==1) {\n\t\tpoint q(p.x+dx,p.y+dy,p.z+dz);\n\t\tif (pt.count(q)&&pt[q]==0) dfs2(q);\n\t}\n}\n\nint main() {\n\tscanf(\"%d%d%d%d\",&a,&b,&c,&n);\n\trep(i,0,n) {\n\t\tscanf(\"%d%d%d\",&x,&y,&z);\n\t\tdel[point(x,y,z)]=0;\n\t}\n\tvector<point> d;\n\tfor (auto p:del) d.pb(p.fi);\n\tint ret=1;\n\tfor (auto p:d) if (del[p]==0) {\n\t\tpt.clear();\n\t\tdfs(p);\n\t\tret--;\n\t\tvector<point> vs;\n\t\tfor (auto q:pt) vs.pb(q.fi);\n\t\tfor (auto q:vs) if (pt[q]==0) {\n\t\t\tdfs2(q);\n\t\t\tret++;\n\t\t}\n\t}\n\tprintf(\"%d\\n\",ret);\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 8048, "score_of_the_acc": -0.0809, "final_rank": 2 }, { "submission_id": "aoj_2733_2206862", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cmath>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <map>\n#include <set>\n#include <cassert>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\nconst ll mod=1000000007;\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\n// head\n\nstruct point {\n\tint x,y,z;\n\tpoint() {}\n\tpoint(int x,int y,int z):x(x),y(y),z(z){}\n};\nvector<point> vs;\nint a,b,c,n,x,y,z;\nmap<point,int> pt;\nset<point> del;\nbool operator < (const point &a,const point &b) {\n\treturn a.x<b.x||(a.x==b.x&&a.y<b.y)||(a.x==b.x&&a.y==b.y&&a.z<b.z);\n}\nbool valid(point p) {\n\treturn p.x>=0&&p.x<a&&p.y>=0&&p.y<b&&p.z>=0&&p.z<c;\n}\nvoid dfs(point p) {\n\tvs.pb(p); pt[p]=1;\n\trep(dx,-1,2) rep(dy,-1,2) rep(dz,-1,2) {\n\t\tpoint q(p.x+dx,p.y+dy,p.z+dz);\n\t\tif (pt.count(q)&&pt[q]==0) dfs(q);\n\t}\n}\nvoid dfs2(point p) {\n\tpt[p]=2;\n\trep(dx,-1,2) rep(dy,-1,2) rep(dz,-1,2) if (abs(dx)+abs(dy)+abs(dz)==1) {\n\t\tpoint q(p.x+dx,p.y+dy,p.z+dz);\n\t\tif (pt.count(q)&&pt[q]==1) dfs2(q);\n\t}\n}\n\nint main() {\n\tscanf(\"%d%d%d%d\",&a,&b,&c,&n);\n\trep(i,0,n) {\n\t\tscanf(\"%d%d%d\",&x,&y,&z);\n\t\tdel.insert(point(x,y,z));\n\t\trep(dx,-1,2) rep(dy,-1,2) rep(dz,-1,2) {\n\t\t\tpoint p(x+dx,y+dy,z+dz);\n\t\t\tif (valid(p)) pt[p]=0;\n\t\t}\n\t}\n\tfor (auto p:del) pt.erase(p);\n\tvector<point> d;\n\tfor (auto p:pt) d.pb(p.fi);\n\tint ret=1;\n\tfor (auto p:d) if (pt[p]==0) {\n\t\tvs.clear();\n\t\tdfs(p);\n\t\tret--;\n\t\tfor (auto q:vs) if (pt[q]==1) {\n\t\t\tdfs2(p);\n\t\t\tret++;\n\t\t}\n\t}\n\tprintf(\"%d\\n\",ret);\n}", "accuracy": 0.06060606060606061, "time_ms": 390, "memory_kb": 25688, "score_of_the_acc": -0.2397, "final_rank": 19 }, { "submission_id": "aoj_2733_2047353", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int> P;\ntypedef pair<int, P > PP;\n#define MAX 10000000\nint cc=1;\nint A,B,C,N;\nset< PP > s;\nvector< PP > t;\n \nmap< P , set< P > > xy,yz,zx;\n \nint par[MAX],rak[MAX];\n \nvoid init(){\n for(int i=0;i<MAX;i++)\n par[i]=i,rak[i]=1;\n}\n \nint find(int x){\n if(par[x]==x)return x;\n return par[x]=find(par[x]);\n}\n \nvoid unite(int x,int y){\n x=find(x),y=find(y);\n if(x==y)return;\n if(rak[x]<rak[y])swap(x,y);\n par[y]=x;\n rak[x]+=rak[y];\n}\n \nvoid calc(map< P , set<P> > &mp){\n map< P , set<P> > :: iterator it;\n for(it=mp.begin();it!=mp.end();it++){\n set<P> :: iterator si=it->second.begin();\n set<P> :: iterator ti=it->second.end();\n set<P> :: iterator A=si,B;\n while(1){\n B=A;\n B++;\n if(B==ti)break;\n if(A->second>0&&B->second>0){\n unite(A->second,B->second);\n }\n A=B;\n }\n }\n}\n \nvoid add(int nx,int ny,int nz){\n if(nx<0||A<=nx||ny<0||B<=ny||nz<0||C<=nz)return;\n if(s.count(PP(nx,P(ny,nz))))return;\n s.insert( PP(nx,P(ny,nz)) );\n xy[ P(nx,ny) ].insert( P(nz,cc) );\n yz[ P(ny,nz) ].insert( P(nx,cc) );\n zx[ P(nz,nx) ].insert( P(ny,cc) ); \n cc++;\n}\n \nint main(){\n init();\n scanf(\"%d %d %d %d\",&A,&B,&C,&N);\n t.resize(N);\n \n for(int i=0;i<N;i++){\n int x,y,z;\n scanf(\"%d %d %d\",&x,&y,&z);\n s.insert( PP(x,P(y,z)) );\n t[i]=PP(x,P(y,z));\n \n xy[ P(x,y) ].insert( P(z,0) );\n yz[ P(y,z) ].insert( P(x,0) );\n zx[ P(z,x) ].insert( P(y,0) ); \n }\n \n \n add(0,0,0);\n \n \n for(int i=0;i<(int)t.size();i++){\n int x=t[i].first;\n int y=t[i].second.first;\n int z=t[i].second.second;\n \n for(int dx=-1;dx<=1;dx++){\n for(int dy=-1;dy<=1;dy++){\n for(int dz=-1;dz<=1;dz++){\n add(x+dx,y+dy,z+dz);\n \n add(x+dx,0,0);\n add(0,y+dy,0);\n add(0,0,z+dz);\n \n // add(x+dx,B-1,C-1);\n // add(A-1,y+dy,C-1);\n // add(A-1,B-1,z+dz);\n \n // add(x+dx,B-1,0);\n // add(A-1,y+dy,0);\n // add(A-1,0,z+dz);\n \n // add(x+dx,0,C-1);\n // add(0,y+dy,C-1);\n // add(0,B-1,z+dz);\n \n add(x+dx,y+dy,0);\n add(0,y+dy,z+dz);\n add(x+dx,0,z+dz);\n \n // add(x+dx,y+dy,C-1);\n // add(A-1,y+dy,z+dz);\n // add(x+dx,B-1,z+dz);\n }\n }\n }\n }\n \n \n calc(xy);\n calc(yz);\n calc(zx);\n \n int ans=0;\n for(int i=1;i<cc;i++)\n if(find(i)==i)ans++;\n \n printf(\"%d\\n\",ans);\n return 0;\n}", "accuracy": 1, "time_ms": 1780, "memory_kb": 416708, "score_of_the_acc": -2, "final_rank": 11 }, { "submission_id": "aoj_2733_2021257", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint A,B,C,N;\nconst int MAX = 20000*30;\nint d[MAX];\nvoid init(){ memset( d, -1, sizeof( d ) ); }\nint find(int a){ return d[a]<0?a:(d[a]=find(d[a])); }\nbool merge(int a, int b){\n a = find(a); b = find(b);\n if( a == b ) return false;\n if( d[a] > d[b] ) swap( a, b );\n d[a] += d[b]; d[b] = a;\n return true;\n}\nbool same(int a,int b){\n return find(a) == find(b);\n}\n\nstruct P3{\n int x,y,z;\n P3(){}\n P3(int x,int y,int z) : x(x),y(y),z(z) {}\n bool operator<(const P3& p) const {\n if( x == p.x )\n if( y == p.y )\n return z < p.z;\n else\n return y < p.y;\n else\n return x< p.x;\n }\n};\n\nint dx[]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1};\nint dy[]={ 1, 1, 1, 0, 0, 0, 1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1};\nint dz[]={ 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1};\nint mx[]={ 1,-1, 0, 0, 0, 0};\nint my[]={ 0, 0, 1,-1, 0, 0};\nint mz[]={ 0, 0, 0, 0, 1,-1};\nmap<P3,int> id;\nset<P3> umes;\nmap<int,set<int>> divi;\nint cnt;\nbool used[MAX];\nbool ume[MAX];\n\nbool outer(int x,int y, int z ){\n if( x < 0 || x >= A || y < 0 || y >= B || z < 0 || z >= C ) return true;\n return false;\n}\n\nbool check( int x,int y,int z, bool f = false ){\n if( id.count( P3( x, y, z ) ) == 0 ) return false;\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return false;\n if( f && !ume[ v ] ) return false;\n if( !f && ume[ v ] ) return false;\n return true;\n}\n\nvoid bfs(int x,int y,int z, bool f = false ){\n int v = id[P3(x,y,z)];\n if( used[v] ) return;\n queue<P3> q;\n q.push( P3(x,y,z) );\n used[ v ] = true;\n while( !q.empty() ){\n P3 p = q.front(); q.pop();\n x = p.x; y = p.y; z = p.z;\n v = id[ p ];\n int n = 6;\n if( f ) n = 27;\n for(int i=0;i<n;i++){\n int nx = x + dx[i], ny = y + dy[i], nz = z + dz[i];\n if(!f) nx = x + mx[i], ny = y + my[i], nz = z + mz[i];\n if( check( nx, ny, nz, f ) ) {\n int nv = id[ P3(nx,ny,nz) ];\n merge( v, nv );\n q.push( P3(nx,ny,nz) );\n used[ nv ] = true;\n }\n }\n }\n}\n\nint main(){\n cin >> A >> B >> C >> N;\n init();\n for(int i=0;i<N;i++){\n int x,y,z; cin >> x >> y >> z;\n for(int j=0;j<27;j++){\n int nx = x + dx[j], ny = y + dy[j], nz = z + dz[j];\n if( outer( nx, ny, nz ) ) continue;\n if( !id.count( P3( nx,ny,nz) ) ) \n id[ P3(nx,ny,nz) ] = cnt++; \n }\n umes.insert( P3(x,y,z) );\n ume[id[P3(x,y,z)]] = true;\n }\n \n for( auto it = id.begin(); it != id.end(); it++ ){\n P3 np = it->first;\n int v = it->second;\n if( ume[v] ) \n bfs( np.x, np.y, np.z, true );\n else\n bfs( np.x, np.y, np.z );\n }\n\n for( auto it = umes.begin(); it != umes.end(); it++ ){\n P3 p = *it;\n int v = find( id[p] );\n for(int i=0;i<27;i++){\n int nx = p.x + dx[i], ny = p.y + dy[i], nz = p.z + dz[i];\n if( id.count( P3(nx,ny,nz) ) == 0 ) continue;\n if( umes.count( P3( nx, ny, nz ) ) ) continue;\n divi[ v ].insert( find( id[ P3(nx,ny,nz) ] ) );\n }\n }\n\n int res = 1;\n for( auto it = divi.begin(); it != divi.end(); it++ ){\n res += it->second.size()-1;\n }\n cout << res << endl;\n \n}", "accuracy": 1, "time_ms": 820, "memory_kb": 43032, "score_of_the_acc": -0.5307, "final_rank": 7 }, { "submission_id": "aoj_2733_2021256", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint A,B,C,N;\nconst int MAX = 20000*30;\nint d[MAX];\nvoid init(){ memset( d, -1, sizeof( d ) ); }\nint find(int a){ return d[a]<0?a:(d[a]=find(d[a])); }\nbool merge(int a, int b){\n a = find(a); b = find(b);\n if( a == b ) return false;\n if( d[a] > d[b] ) swap( a, b );\n d[a] += d[b]; d[b] = a;\n return true;\n}\nbool same(int a,int b){\n return find(a) == find(b);\n}\n\nstruct P3{\n int x,y,z;\n P3(){}\n P3(int x,int y,int z) : x(x),y(y),z(z) {}\n bool operator<(const P3& p) const {\n if( x == p.x )\n if( y == p.y )\n return z < p.z;\n else\n return y < p.y;\n else\n return x< p.x;\n }\n};\n\nint dx[]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1};\nint dy[]={ 1, 1, 1, 0, 0, 0, 1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1};\nint dz[]={ 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1};\nint mx[]={ 1,-1, 0, 0, 0, 0};\nint my[]={ 0, 0, 1,-1, 0, 0};\nint mz[]={ 0, 0, 0, 0, 1,-1};\nmap<P3,int> id;\nset<P3> umes;\nmap<int,set<int>> divi;\nint cnt;\nbool used[MAX];\nbool ume[MAX];\n\nbool outer(int x,int y, int z ){\n if( x < 0 || x >= A || y < 0 || y >= B || z < 0 || z >= C ) return true;\n return false;\n}\n\nbool check( int x,int y,int z, bool f = false ){\n if( id.count( P3( x, y, z ) ) == 0 ) return false;\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return false;\n if( f && !ume[ v ] ) return false;\n if( !f && ume[ v ] ) return false;\n return true;\n}\n/*\nvoid dfs(int x,int y, int z, bool f = false){\n cout << x << \" \" << y << \" \" <<z << endl;\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return;\n used[ v ] = true;\n int n = 6;\n if( f ) n = 27;\n for(int i=0;i<n;i++){\n int nx = x + dx[i], ny = y + dy[i], nz = z + dz[i];\n if(!f) nx = x + mx[i], ny = y + my[i], nz = z + mz[i];\n if( check( nx, ny, nz, f ) ) {\n // cout << x << \" \" << y << \" \" << z << \" -> \" << nx << \" \" << ny << \" \" << nz << endl;\n // cout << \"merge \" << v << \" \"<< id[P3(nx,ny,nz)] << endl;\n merge( v, id[ P3(nx,ny,nz) ] );\n dfs( nx, ny, nz, f );\n }\n }\n}\n*/\nvoid bfs(int x,int y,int z, bool f = false ){\n int v = id[P3(x,y,z)];\n if( used[v] ) return;\n queue<P3> q;\n q.push( P3(x,y,z) );\n used[ v ] = true;\n while( !q.empty() ){\n P3 p = q.front(); q.pop();\n x = p.x; y = p.y; z = p.z;\n v = id[ p ];\n int n = 6;\n if( f ) n = 27;\n for(int i=0;i<n;i++){\n int nx = x + dx[i], ny = y + dy[i], nz = z + dz[i];\n if(!f) nx = x + mx[i], ny = y + my[i], nz = z + mz[i];\n if( check( nx, ny, nz, f ) ) {\n int nv = id[ P3(nx,ny,nz) ];\n merge( v, nv );\n q.push( P3(nx,ny,nz) );\n used[ nv ] = true;\n }\n }\n }\n}\n\nint main(){\n cin >> A >> B >> C >> N;\n init();\n for(int i=0;i<N;i++){\n int x,y,z; cin >> x >> y >> z;\n for(int j=0;j<27;j++){\n int nx = x + dx[j], ny = y + dy[j], nz = z + dz[j];\n if( outer( nx, ny, nz ) ) continue;\n if( !id.count( P3( nx,ny,nz) ) ) \n id[ P3(nx,ny,nz) ] = cnt++; \n }\n umes.insert( P3(x,y,z) );\n ume[id[P3(x,y,z)]] = true;\n }\n \n for( auto it = id.begin(); it != id.end(); it++ ){\n P3 np = it->first;\n int v = it->second;\n if( ume[v] ) \n bfs( np.x, np.y, np.z, true );\n else\n bfs( np.x, np.y, np.z );\n }\n\n for( auto it = umes.begin(); it != umes.end(); it++ ){\n P3 p = *it;\n int v = find( id[p] );\n for(int i=0;i<27;i++){\n int nx = p.x + dx[i], ny = p.y + dy[i], nz = p.z + dz[i];\n if( id.count( P3(nx,ny,nz) ) == 0 ) continue;\n if( umes.count( P3( nx, ny, nz ) ) ) continue;\n //cout << nx << \" \" << ny << \" \"<< nz << \" = \" << find(id[P3(nx,ny,nz)]) << \" <= \" << v << endl;\n divi[ v ].insert( find( id[ P3(nx,ny,nz) ] ) );\n }\n }\n\n int res = 1;\n for( auto it = divi.begin(); it != divi.end(); it++ ){\n res += it->second.size()-1;\n }\n cout << res << endl;\n \n}", "accuracy": 1, "time_ms": 830, "memory_kb": 42932, "score_of_the_acc": -0.5362, "final_rank": 8 }, { "submission_id": "aoj_2733_2021252", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint A,B,C,N;\nconst int MAX = 20000*30;\nint d[MAX];\nvoid init(){ memset( d, -1, sizeof( d ) ); }\nint find(int a){ return d[a]<0?a:(d[a]=find(d[a])); }\nbool merge(int a, int b){\n a = find(a); b = find(b);\n if( a == b ) return false;\n if( d[a] > d[b] ) swap( a, b );\n d[a] += d[b]; d[b] = a;\n return true;\n}\nbool same(int a,int b){\n return find(a) == find(b);\n}\n\nstruct P3{\n int x,y,z;\n P3(){}\n P3(int x,int y,int z) : x(x),y(y),z(z) {}\n bool operator<(const P3& p) const {\n if( x == p.x )\n if( y == p.y )\n return z < p.z;\n else\n return y < p.y;\n else\n return x< p.x;\n }\n};\n\nint dx[]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1};\nint dy[]={ 1, 1, 1, 0, 0, 0, 1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1};\nint dz[]={ 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1};\nint mx[]={ 1,-1, 0, 0, 0, 0};\nint my[]={ 0, 0, 1,-1, 0, 0};\nint mz[]={ 0, 0, 0, 0, 1,-1};\nmap<P3,int> id;\nset<P3> umes;\nmap<int,set<int>> divi;\nint cnt;\nbool used[MAX];\nbool ume[MAX];\n\nbool outer(int x,int y, int z ){\n if( x < 0 || x >= A || y < 0 || y >= B || z < 0 || z >= C ) return true;\n return false;\n}\n\nbool check( int x,int y,int z, bool f = false ){\n if( id.count( P3( x, y, z ) ) == 0 ) return false;\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return false;\n if( f && !ume[ v ] ) return false;\n if( !f && ume[ v ] ) return false;\n return true;\n}\n\nvoid dfs(int x,int y, int z, bool f = false){\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return;\n used[ v ] = true;\n int n = 6;\n if( f ) n = 27;\n for(int i=0;i<n;i++){\n int nx = x + dx[i], ny = y + dy[i], nz = z + dz[i];\n if(!f) nx = x + mx[i], ny = y + my[i], nz = z + mz[i];\n if( check( nx, ny, nz, f ) ) {\n // cout << x << \" \" << y << \" \" << z << \" -> \" << nx << \" \" << ny << \" \" << nz << endl;\n // cout << \"merge \" << v << \" \"<< id[P3(nx,ny,nz)] << endl;\n merge( v, id[ P3(nx,ny,nz) ] );\n dfs( nx, ny, nz, f );\n }\n }\n}\n\nint main(){\n cin >> A >> B >> C >> N;\n init();\n for(int i=0;i<N;i++){\n int x,y,z; cin >> x >> y >> z;\n for(int j=0;j<27;j++){\n int nx = x + dx[j], ny = y + dy[j], nz = z + dz[j];\n if( outer( nx, ny, nz ) ) continue;\n if( !id.count( P3( nx,ny,nz) ) ) \n id[ P3(nx,ny,nz) ] = cnt++; \n }\n umes.insert( P3(x,y,z) );\n ume[id[P3(x,y,z)]] = true;\n }\n\n \n for( auto it = id.begin(); it != id.end(); it++ ){\n P3 np = it->first;\n int v = it->second;\n if( ume[v] ) \n dfs( np.x, np.y, np.z, true );\n else\n dfs( np.x, np.y, np.z );\n }\n\n for( auto it = umes.begin(); it != umes.end(); it++ ){\n P3 p = *it;\n int v = find( id[p] );\n //cout << p.x << \" \" << p.y << \" \" << p.z << \" -> \" << v << endl;\n for(int i=0;i<27;i++){\n int nx = p.x + dx[i], ny = p.y + dy[i], nz = p.z + dz[i];\n if( id.count( P3(nx,ny,nz) ) == 0 ) continue;\n if( umes.count( P3( nx, ny, nz ) ) ) continue;\n //cout << nx << \" \" << ny << \" \"<< nz << \" = \" << id[P3(nx,ny,nz)] << \" <= \" << v << endl;\n divi[ v ].insert( find( id[ P3(nx,ny,nz) ] ) );\n }\n }\n\n int res = 1;\n for( auto it = divi.begin(); it != divi.end(); it++ ){\n res += it->second.size()-1;\n }\n cout << res << endl;\n \n}", "accuracy": 0.10606060606060606, "time_ms": 290, "memory_kb": 38648, "score_of_the_acc": -0.2136, "final_rank": 14 }, { "submission_id": "aoj_2733_2021251", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint A,B,C,N;\nconst int MAX = 20000*30;\nint d[MAX];\nvoid init(){ memset( d, -1, sizeof( d ) ); }\nint find(int a){ return d[a]<0?a:(d[a]=find(d[a])); }\nbool merge(int a, int b){\n a = find(a); b = find(b);\n if( a == b ) return false;\n if( d[a] > d[b] ) swap( a, b );\n d[a] += d[b]; d[b] = a;\n return true;\n}\nbool same(int a,int b){\n return find(a) == find(b);\n}\n\nstruct P3{\n int x,y,z;\n P3(){}\n P3(int x,int y,int z) : x(x),y(y),z(z) {}\n bool operator<(const P3& p) const {\n if( x == p.x )\n if( y == p.y )\n return z < p.z;\n else\n return y < p.y;\n else\n return x< p.x;\n }\n};\n\nint dx[]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1};\nint dy[]={ 1, 1, 1, 0, 0, 0, 1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1};\nint dz[]={ 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1};\nint mx[]={ 1,-1, 0, 0, 0, 0};\nint my[]={ 0, 0, 1,-1, 0, 0};\nint mz[]={ 0, 0, 0, 0, 1,-1};\nmap<P3,int> id;\nset<P3> umes;\nmap<int,set<int>> divi;\nint cnt;\nbool used[1000000];\nbool ume[1000000];\n\nbool outer(int x,int y, int z ){\n if( x < 0 || x >= A || y < 0 || y >= B || z < 0 || z >= C ) return true;\n return false;\n}\n\nbool check( int x,int y,int z, bool f = false ){\n if( outer( x, y, z ) ) return false;\n if( id.count( P3( x, y, z ) ) == 0 ) return false;\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return false;\n if( f && !ume[ v ] ) return false;\n if( !f && ume[ v ] ) return false;\n return true;\n}\n\nvoid dfs(int x,int y, int z, bool f = false){\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return;\n used[ v ] = true;\n int n = 6;\n if( f ) n = 27;\n for(int i=0;i<n;i++){\n int nx = x + dx[i], ny = y + dy[i], nz = z + dz[i];\n if(!f) nx = x + mx[i], ny = y + my[i], nz = z + mz[i];\n if( check( nx, ny, nz, f ) ) {\n // cout << x << \" \" << y << \" \" << z << \" -> \" << nx << \" \" << ny << \" \" << nz << endl;\n // cout << \"merge \" << v << \" \"<< id[P3(nx,ny,nz)] << endl;\n merge( v, id[ P3(nx,ny,nz) ] );\n dfs( nx, ny, nz, f );\n }\n }\n}\n\nint main(){\n cin >> A >> B >> C >> N;\n init();\n for(int i=0;i<N;i++){\n int x,y,z; cin >> x >> y >> z;\n for(int j=0;j<27;j++){\n int nx = x + dx[j], ny = y + dy[j], nz = z + dz[j];\n if( outer( nx, ny, nz ) ) continue;\n if( !id.count( P3( nx,ny,nz) ) ) \n id[ P3(nx,ny,nz) ] = cnt++; \n }\n umes.insert( P3(x,y,z) );\n ume[id[P3(x,y,z)]] = true;\n }\n\n \n for( auto it = id.begin(); it != id.end(); it++ ){\n P3 np = it->first;\n int id = it->second;\n if( ume[id] ) \n dfs( np.x, np.y, np.z, true );\n else\n dfs( np.x, np.y, np.z );\n }\n\n memset( used,0,sizeof( used ) );\n for( auto it = umes.begin(); it != umes.end(); it++ ){\n P3 p = *it;\n int v = find( id[p] );\n //cout << p.x << \" \" << p.y << \" \" << p.z << \" -> \" << v << endl;\n for(int i=0;i<27;i++){\n int nx = p.x + dx[i], ny = p.y + dy[i], nz = p.z + dz[i];\n if( id.count( P3(nx,ny,nz) ) == 0 ) continue;\n if( umes.count( P3( nx, ny, nz ) ) ) continue;\n //cout << nx << \" \" << ny << \" \"<< nz << \" = \" << id[P3(nx,ny,nz)] << \" <= \" << v << endl;\n divi[ v ].insert( find( id[ P3(nx,ny,nz) ] ) );\n }\n }\n\n int res = 1;\n for( auto it = divi.begin(); it != divi.end(); it++ ){\n res += it->second.size()-1;\n }\n cout << res << endl;\n \n}", "accuracy": 0.10606060606060606, "time_ms": 290, "memory_kb": 38708, "score_of_the_acc": -0.2138, "final_rank": 15 }, { "submission_id": "aoj_2733_2021249", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint A,B,C,N;\nconst int MAX = 20000*30;\nint d[MAX];\nvoid init(){ memset( d, -1, sizeof( d ) ); }\nint find(int a){ return d[a]<0?a:(d[a]=find(d[a])); }\nbool merge(int a, int b){\n a = find(a); b = find(b);\n if( a == b ) return false;\n if( d[a] > d[b] ) swap( a, b );\n d[a] += d[b]; d[b] = a;\n return true;\n}\nbool same(int a,int b){\n return find(a) == find(b);\n}\n\nstruct P3{\n int x,y,z;\n P3(){}\n P3(int x,int y,int z) : x(x),y(y),z(z) {}\n bool operator<(const P3& p) const {\n if( x == p.x )\n if( y == p.y )\n return z < p.z;\n else\n return y < p.y;\n else\n return x< p.x;\n }\n};\n\nint dx[]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1};\nint dy[]={ 1, 1, 1, 0, 0, 0, 1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1, 1, 1, 1, 0, 0, 0,-1,-1,-1};\nint dz[]={ 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1, 1, 0,-1};\nint mx[]={ 1,-1, 0, 0, 0, 0};\nint my[]={ 0, 0, 1,-1, 0, 0};\nint mz[]={ 0, 0, 0, 0, 1,-1};\nmap<P3,int> id;\nset<P3> umes;\nmap<int,set<int>> divi;\nint cnt;\nbitset<1000000> used;\nbitset<1000000> ume;\n\nbool outer(int x,int y, int z ){\n if( x < 0 || x >= A || y < 0 || y >= B || z < 0 || z >= C ) return true;\n return false;\n}\n\nbool check( int x,int y,int z, bool f = false ){\n if( outer( x, y, z ) ) return false;\n if( id.count( P3( x, y, z ) ) == 0 ) return false;\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return false;\n if( f && !ume[ v ] ) return false;\n if( !f && ume[ v ] ) return false;\n return true;\n}\n\nvoid dfs(int x,int y, int z, bool f = false){\n int v = id[ P3(x,y,z) ];\n if( used[ v ] ) return;\n used[ v ] = true;\n int n = 6;\n if( f ) n = 27;\n for(int i=0;i<n;i++){\n int nx = x + dx[i], ny = y + dy[i], nz = z + dz[i];\n if(!f) nx = x + mx[i], ny = y + my[i], nz = z + mz[i];\n if( check( nx, ny, nz, f ) ) {\n // cout << x << \" \" << y << \" \" << z << \" -> \" << nx << \" \" << ny << \" \" << nz << endl;\n // cout << \"merge \" << v << \" \"<< id[P3(nx,ny,nz)] << endl;\n merge( v, id[ P3(nx,ny,nz) ] );\n dfs( nx, ny, nz, f );\n }\n }\n}\n\nint main(){\n cin >> A >> B >> C >> N;\n init();\n used = ume = 0;\n for(int i=0;i<N;i++){\n int x,y,z; cin >> x >> y >> z;\n for(int j=0;j<27;j++){\n int nx = x + dx[j], ny = y + dy[j], nz = z + dz[j];\n if( outer( nx, ny, nz ) ) continue;\n if( !id.count( P3( nx,ny,nz) ) ) \n id[ P3(nx,ny,nz) ] = cnt++; \n }\n umes.insert( P3(x,y,z) );\n ume[id[P3(x,y,z)]] = true;\n }\n\n \n for( auto it = id.begin(); it != id.end(); it++ ){\n P3 np = it->first;\n int id = it->second;\n if( ume[id] ) \n dfs( np.x, np.y, np.z, true );\n else\n dfs( np.x, np.y, np.z );\n }\n \n used = 0;\n for( auto it = umes.begin(); it != umes.end(); it++ ){\n P3 p = *it;\n int v = find( id[p] );\n //cout << p.x << \" \" << p.y << \" \" << p.z << \" -> \" << v << endl;\n for(int i=0;i<27;i++){\n int nx = p.x + dx[i], ny = p.y + dy[i], nz = p.z + dz[i];\n if( id.count( P3(nx,ny,nz) ) == 0 ) continue;\n if( umes.count( P3( nx, ny, nz ) ) ) continue;\n //cout << nx << \" \" << ny << \" \"<< nz << \" = \" << id[P3(nx,ny,nz)] << \" <= \" << v << endl;\n divi[ v ].insert( find( id[ P3(nx,ny,nz) ] ) );\n }\n }\n\n int res = 1;\n for( auto it = divi.begin(); it != divi.end(); it++ ){\n res += it->second.size()-1;\n }\n cout << res << endl;\n \n}", "accuracy": 0.10606060606060606, "time_ms": 280, "memory_kb": 38472, "score_of_the_acc": -0.2074, "final_rank": 13 } ]
aoj_2741_cpp
D - インビジブル Problem Statement あなたは友達と" インビジブル "というカードゲームを遊ぼうとしている. このカードゲームでは," 得点カード "と" 妨害カード "という2種類のカードを使う. それぞれの得点カードには,正の値が書かれている.このカードゲームのルールは次の通りである. ゲームはプレイヤー1とプレイヤー2の2人のプレイヤーで行われる.ゲームはプレイヤー1のターンから始まる. 場には,1つのスタックと2つのデッキがある.スタックは,2人のプレイヤーが置いたカードからなる.また,それぞれのプレイヤーが持つデッキはそのプレイヤーが持つ得点カードと妨害カードからなる.プレイヤーは自分,もしくは相手デッキのカードの順番をいつでも確認できる.ゲームの開始時点ではスタックには1枚もカードはない. 2人のプレイヤーは交互に次の2つの行動のどちらかをちょうど1回行う. 自分のデッキの一番上のカードをスタックの一番上に置く.ただし,この行動は自分のデッキにカードが1枚も存在しない時には行うことができない. 自分のターンをパスする. プレイヤーがターンをパスした時,次の処理を行う. 各プレイヤーは次の2つの条件を満たすスタック中のすべての得点カードを得る.得た得点カードは場から取り除かれる. 自分がスタックにおいた得点カードである. 相手が置いたどの妨害カードよりも上にある (スタック中に相手の妨害カードが存在しないとき,プレイヤーは自分がスタックに置いたすべてのカードを得る). スタックのカードをすべて取り除く. もしスタックにカードがない状態で両プレイヤーが連続してパスした場合,ゲームを終了する. 各プレイヤーの最終的なスコアは,各プレイヤーが得た得点カードに書かれた数の総和である. 各プレイヤーは,自分のスコアから相手のスコアを引いた値を最大化するために最適な行動をとる. あなたの仕事は,与えられた各プレイヤーのデッキに対し,各プレイヤーが最適に行動したときのプレイヤー1のスコアとプレイヤー2のスコアの差を計算することである. Input 入力は次のような形式の単一テストケースからなる. $n$ $m$ $a_1$ $a_2$ $\dots$ $a_n$ $b_1$ $b_2$ $\dots$ $b_m$ 1行目は山札の枚数を表す正の整数 $n$, $m$ ($1 \le n, m \le 50$) からなる. 2行目は $n$ 個の整数からなり,$a_i$ はプレイヤー1のデッキの上から $i$ 番目のカードを表す ($1 \le i \le n$).$a_i$ は $1$ 以上,$1{,}000{,}000$ 以下,または $-1$ である. 3行目は $m$ 個の整数からなり,$b_j$ はプレイヤー2のデッキの上から $j$ 番目のカードを表す ($1 \le j \le m$).$b_j$ は $1$ 以上,$1{,}000{,}000$ 以下,または $-1$ である. $a_i$, $b_j$ が正の整数の時は得点カードを表し,$-1$ の時は妨害カードを表す. Output お互いのプレイヤーが最適に行動した時の (プレイヤー1のスコア) - (プレイヤー2のスコア) を出力せよ. Sample Input 1 2 2 100 -1 200 300 Output for the Sample Input 1 -100 Sample Input 2 3 5 10 30 -1 -1 90 20 10 -1 Output for the Sample Input 2 0 Sample Input 3 4 5 15 20 10 30 50 30 10 20 25 Output for the Sample Input 3 -60
[ { "submission_id": "aoj_2741_10946046", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\nconst int N = 52;\nconst int M = 102;\n\nint n, m;\nint a[N];\nint b[N];\n\nint dp[N][N][M][2][2][2];\nbool used[N][N][M][2][2][2];\n\nint f( int l , int r , int sz , int t , int turn, int pass ){\n if( l == n && r == m ){\n return 0;\n }\n if( used[l][r][sz][t][turn][pass] ){\n return dp[l][r][sz][t][turn][pass];\n }\n used[l][r][sz][t][turn][pass] = true;\n vpi card(0);\n int cl = l;\n int cr = r;\n int ct = t;\n REP( i , sz ){\n if( ct == 0 ){\n card.pb( a[cl++] , 0 );\n } else {\n card.pb( b[cr++] , 1 );\n }\n ct = 1 - ct;\n }\n int res;\n if( turn == 0 ){\n res = -INF;\n } else if( turn == 1 ){\n res = INF;\n } else {\n assert( false );\n }\n // put\n if( turn == 0 ){\n if( cl < n ){\n chmax( res , f( l , r , sz+1, t , 1 - turn , 0 ) );\n }\n } else if( turn == 1 ){\n if( cr < m ){\n chmin( res , f( l , r , sz+1, t , 1 - turn , 0 ) );\n }\n } else {\n assert( false );\n }\n // pass\n if( pass == 1 ){\n if( turn == 0 ){\n chmax( res , 0 );\n } else if( turn == 1 ){\n chmin( res , 0 );\n } else {\n assert( false );\n }\n } else {\n int pl = 0;\n int pr = 0;\n bool fl = false;\n bool fr = false;\n REVERSE( card );\n YYS( w , card ){\n if( w.fi == -1 ){\n if( w.se == 0 ){\n fr = true;\n } else if( w.se == 1 ){\n fl = true;\n } else {\n assert( false );\n }\n } else {\n if( w.se == 0 && !fl ){\n pl += w.fi;\n } else if( w.se == 1 && !fr ){\n pr += w.fi;\n }\n }\n }\n int npass = 0;\n if( sz == 0 ){\n npass = 1;\n }\n if( turn == 0 ){\n chmax( res , pl-pr+f( cl , cr , 0 , 1-turn , 1-turn , npass ) );\n } else {\n chmin( res , pl-pr+f( cl , cr , 0 , 1-turn , 1-turn , npass ) );\n }\n /*\n if( l == 0 && r == 0 && sz == 6 && t == 0 && turn == 0 && pass == 0 ){\n cout << res << endl;\n }\n */\n // cout << l << \" \" << r << \" \" << sz << \" \" << t << \" \" << turn << \" \" << res << \" \" << pl << \" \" << pr << endl;\n }\n return dp[l][r][sz][t][turn][pass] = res;\n}\n\nint main(){\n\n n = in();\n m = in();\n REP( i , n ){\n a[i] = in();\n }\n REP( i , m ){\n b[i] = in();\n }\n\n printf( \"%d\\n\" , f( 0 , 0 , 0 , 0 , 0 , 0 ) );\n \n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 14208, "score_of_the_acc": -0.1552, "final_rank": 4 }, { "submission_id": "aoj_2741_10668784", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG // 配列外参照のエラー\n// #endif\n\n// スタンダードライブラリ\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型関連\nusing ll = long long;\nusing lint = long long;\nusing pll = pair<ll, ll>;\nusing plll = tuple<ll, ll, ll>;\nusing pii = pair<int, int>;\nusing piii = tuple<ll, ll, ll>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vvvvi = vector<vector<vector<vector<int>>>>;\nusing vl = vector<ll>;\nusing vvl = vector<vector<ll>>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvvvl = vector<vector<vector<vector<ll>>>>;\n\ntemplate <class T> using prique = priority_queue<T>;\n\n// 型定数\nconstexpr ll mod = 998244353;\nconstexpr ll MOD = 1000000007;\nint INF32 = 2e9;\nll INF64 = 9e18;\n#define endl '\\n';\n\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\n\n/////////////////////////// print関連\ntemplate <typename T> void print(vector<T> A);\nvoid print();\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail);\nvoid print(string S);\ntemplate <typename T> void print(vector<vector<T>> &F);\n\ninline void Yes(bool f);\n\n///////////////////ここから//////////////////////\nbool solve() {\n int N, M;\n cin >> N >> M;\n vi A(N), B(M);\n for (int i = 0; i < N; i++) {\n cin >> A[i];\n }\n for (int i = 0; i < M; i++) {\n cin >> B[i];\n }\n\n\n map<array<int, 6>, ll> memo;\n auto rec = [&](auto rec, int i, int j, int a, int b, int f, int p) -> ll {\n array<int, 6> key = {i, j, a, b, f, p};\n if (memo.count(key)) {\n return memo[key];\n }\n if (p == 3) {\n return 0;\n }\n ll val = -INF64;\n\n if (f == 0) {\n if (i < N ) {\n ll score = 0, nval = 0;\n if (A[i] == -1) {\n nval = rec(rec, i + 1, j, a, j, 1, 0);\n } else {\n nval = rec(rec, i + 1, j, a, b, 1, 0);\n }\n\n val = max(val, score - nval);\n }\n ll score = 0, nval = 0;\n for (int k = a; k < i; k++) {\n if (A[k] != -1) {\n score += A[k];\n }\n }\n for (int k = b; k < j; k++) {\n if (B[k] != -1)\n nval += B[k];\n }\n\n nval += rec(rec, i, j, i, j, 1, p + 1);\n val = max(val, score - nval);\n\n } else {\n if (j < M ) {\n ll score = 0, nval = 0;\n if (B[j] == -1) {\n nval = rec(rec, i, j + 1, i, b, 0, 0);\n } else {\n nval = rec(rec, i, j + 1, a, b, 0, 0);\n }\n val = max(val, score - nval);\n }\n\n ll score = 0, nval = 0;\n for (int k = a; k < i; k++) {\n if (A[k] != -1) {\n nval += A[k];\n }\n }\n for (int k = b; k < j; k++) {\n if (B[k] != -1)\n score += B[k];\n }\n nval += rec(rec, i, j, i, j, 0, p + 1);\n\n val = max(val, score - nval);\n }\n memo[key] = val;\n\n return val;\n };\n\n print(rec(rec, 0, 0, 0, 0, 0, 0));\n\n return true;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n solve();\n}\n\n////////////////////print/////////////////////////\n// 1次元ベクトルを出力する\ntemplate <typename T> void print(vector<T> A) {\n if (A.size() == 0) {\n return;\n }\n for (size_t i = 0; i < A.size() - 1; i++) {\n cout << A[i] << ' ';\n }\n cout << A[A.size() - 1] << endl;\n return;\n}\n\n// 2次元ベクトルを出力する\ntemplate <typename T> void print(vector<vector<T>> &F) {\n for (size_t i = 0; i < F.size(); i++) {\n for (size_t j = 0; j < F[i].size(); j++) {\n cout << F[i][j];\n if (j < F[i].size() - 1) {\n cout << ' ';\n }\n }\n cout << endl;\n }\n}\n\n// 空白行を出力するprint\nvoid print() { cout << endl; }\n\n// 数値・文字列を空白区切りで出力する. print(a,b)など\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n cout << head;\n if (sizeof...(tail) != 0)\n cout << \" \";\n print(forward<Tail>(tail)...);\n}\n\nvoid print(string S) { cout << S << endl; }\n\n//////////////出力関連\n\ninline void Yes(bool f) {\n if (f) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 17920, "score_of_the_acc": -0.3602, "final_rank": 9 }, { "submission_id": "aoj_2741_10611478", "code_snippet": "// (⁠◕⁠ᴗ⁠◕⁠✿⁠)\n\n// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define rep(i, n) for (ll i = 0; i < (n); i++)\n#define srep(i, s, n) for (ll i = s; i < (n); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\nusing namespace std;\ntemplate<typename T> using vc = vector<T>;\ntemplate<typename T> using vv = vc<vc<T>>;\ntemplate<typename T> using vvv = vv<vc<T>>;\nusing vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;\nusing ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;\nusing ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nconst ld pi = 3.141592653589793;\nconst int inf = 0x3f3f3f3f;\nconst ll INF = 0x3f3f3f3f3f3f3f3f;\n// const ll mod = 1000000007;\nconst ll mod = 998244353;\ninline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }\n\n#define debug(var) do{std::cout << #var << \" : \\n\";view(var);}while(0)\ntemplate<typename T> void view(T e){cout << e << endl;}\ntemplate<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << \" \"; } cout << endl;}\ntemplate<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } }\n\nvvl A;\nunordered_map<string, ll> memo;\nll hash_(ll j1, ll j2, ll pass, ll get1, ll i1){\n return get1 * 100000ll + ((j1 * 50 + j2) * 5 + pass) * 2 + i1;\n}\nll f(int j1, int j2, int pass, ll get1, ll get2, int i1, int i2){\n ll hs = hash_(j1, j2, pass, get1, i1);\n string key = to_string(hs);\n while (len(key) < 18) key += 'x';\n key += to_string(get2);\n if (memo.count(key)) return memo[key];\n ll ret = -INF;\n // use\n if (j1 < len(A[i1])){\n if (A[i1][j1] == -1){\n ret = max(ret, -f(j2, j1 + 1, 0, 0, get1, i2, i1));\n }else{\n ret = max(ret, -f(j2, j1 + 1, 0, get2, get1 + A[i1][j1], i2, i1));\n }\n }\n // pass\n if (get1 + get2 == 0){\n if (pass == 3) ret = max(ret, 0ll);\n else ret = max(ret, -f(j2, j1, pass + 1, 0, 0, i2, i1));\n }else{\n ret = max(ret, get1 - get2 - f(j2, j1, 0, 0, 0, i2, i1));\n }\n return memo[key] = ret;\n}\nint main(){\n int N, M; cin >> N >> M;\n vl a(N); rep(i, N) cin >> a[i];\n vl b(M); rep(i, M) cin >> b[i];\n A.push_back(a);\n A.push_back(b);\n cout << f(0, 0, false, 0, 0, 0, 1) << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 23696, "score_of_the_acc": -0.2875, "final_rank": 5 }, { "submission_id": "aoj_2741_10561789", "code_snippet": "//#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h>\nusing namespace std;\n#define ll long long\n#define rep(i,n) for (ll i=0;i<(ll)n;i++)\n#define rrep(i,n) for (ll i=n-1;i>=(ll)0;i--)\n#define loop(i,m,n) for(ll i=m;i<=(ll)n;i++)\n#define rloop(i,m,n) for(ll i=m;i>=(ll)n;i--)\n#define vl vector<long long>\n#define vvl vector<vector<long long>>\n#define vdbg(a) rep(ii,a.size()){cout<<a[ii]<<\" \";}cout<<endl;\n#define vvdbg(a) rep(ii,a.size()){rep(jj,a[ii].size()){cout<<a[ii][jj]<<\" \";}cout<<endl;}\n#define setdbg(a) for(const auto & ii:a){cout<<ii<<\" \";}cout<<endl;\n#define inf 4000000000000000000LL\n#define mod 998244353LL\n#define eps 0.000000001\n//#define mod 1000000007LL\nrandom_device rnd;// 非決定的な乱数生成器\nmt19937 mt(rnd());// メルセンヌ・ツイスタの32ビット版、引数は初期シード\n\n//#include<boost/multiprecision/cpp_int.hpp>\n//#define bbi boost::multiprecision::cpp_int\n\n//#include<atcoder/lazysegtree>\n\n//√の値が整数かを調べる\nbool isSqrt(ll n) {\n\tif (n < 0) return false;\n\tll sqrtN = static_cast<ll>(sqrt(n));\n\treturn sqrtN * sqrtN == n;\n}\n\n//整数同士の累乗の計算をする。\nll power(ll A, ll B) {\n\tll result = 1;\n\tfor (ll i=0;i<B;i++){\n\t\tresult *= A;\n\t}\n\treturn result;\n}\n\n//素因数分解\nvector<ll> makePrime(ll n){\n\tvector<ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors.push_back(2);\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors.push_back(i);\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors.push_back(n);\n\t}\n\treturn factors;\n}\n\n//map形式で、nを素因数分解した値を返す\nmap<ll,ll> makeMapPrime(ll n){\n\tmap<ll,ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors[2]++;\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors[n]++;\n\t}\n\treturn factors;\n}\n\n// nのk乗をmodで割った余りを計算\nll power_mod(ll n, ll k){\n\tlong long result = 1;\n\twhile (k > 0){\n\t\tif ((k&1) ==1)result=(result*n)%mod;\n\t\tn=n*n%mod;\n\t\tk >>= 1;\n\t}\n\treturn result;\n}\n\n//mod mにおけるaの逆元を計算\nll modinv(ll a, ll m) {\n\tll b = m, u = 1, v = 0;\n\twhile (b) {\n\t\tll t = a / b;\n\t\ta -= t * b; swap(a, b);\n\t\tu -= t * v; swap(u, v);\n\t}\n\tu %= m; \n\tif (u < 0) u += m;\n\treturn u;\n}\n\n//場合の数 nCr を求める\nll ncr(ll n,ll r) {\n\tif(n<r)return 0;\n\tvvl dp(n+1,vl(r+1));\n\trep (i,n+1)dp[i][0] = 1;\n\trep (i,r+1)dp[i][i] = 1;\n\tloop (i,1,n){\n\t\tloop (j,1,min((ll)i-1,r)) {\n\t\t\t//nCr= n-1Cr-1 + n-1Cr\n\t\t\tdp[i][j] = dp[i-1][j-1] + dp[i-1][j];\n\t\t}\n\t}\n\treturn dp[n][r];\n}\n\n//受け取った文字列を、第2引数が0なら全て小文字に、1なら大文字に変換する関数\nstring cnvString(const string &str, int mode) {\n\tstring result = str;\n\tif (mode == 0) {\n\t\t// 小文字に変換\n\t\tfor (char &c : result) {\n\t\t\tc = tolower(c);\n\t\t}\n\t} else if (mode == 1) {\n\t\t// 大文字に変換\n\t\tfor (char &c : result) {\n\t\t\tc = toupper(c);\n\t\t}\n\t}\n\treturn result;\n}\n\n//第一引数で受け取った数を、第二引数で受け取った数の進数と見做して、第三引数の進数へ変換する。\nstring cnvBase(const string &str, ll from_base, ll to_base) {\n\tll num = 0;\n\t//小文字があったら大文字に変換\n\tstring num_str=cnvString(str,1);\n\t// 数値を10進数に変換\n\tfor (char digit : num_str) {\n\t\tnum = num * from_base + (isdigit(digit) ? digit - '0' : digit - 'A' + 10);\n\t}\n\tstring result;\n\t// 数値を目的の基数に変換\n\twhile (num > 0) {\n\t\tll remainder = num % to_base;\n\t\tresult.push_back(remainder < 10 ? remainder + '0' : remainder - 10 + 'A');\n\t\tnum /= to_base;\n\t}\n\t// 結果を逆順にして返す\n\treverse(result.begin(), result.end());\n\treturn result.empty() ? \"0\" : result;\n}\n\n//底がaの対数xを計算。ただし小数点は繰り上げ。\nll logax(ll a, ll x){\n\tif(x<=1)return 0;\n\tll result = 1;\n\tll power = 1;\n\twhile (power < (x+a-1) / a){\n\t\tpower *= a;\n\t\tresult++;\n\t}\n\treturn result;\n}\n\n//第一引数を第二引数で割った余りを計算、割る数はint範囲\nll bigmd(const string &num, int md) {\n\tll ans = 0;\n\tll SIZ = 9; //9桁のチャンク\n\tll base = 1000000000;//SIZ個の0\n\trep(i,(num.size()-1)/SIZ+1){\n\t\tll chunk = 0;\n\t\tll l = i*SIZ;\n\t\tll r = min((ll)num.size(),l+SIZ);\n\t\tif(r!=num.size()){\n\t\t\tans = (ans*base+stoll(num.substr(l,r-l)))%md;\n\t\t}else{\n\t\t\trep(i,r-l)ans*=10;\n\t\t\tans=(ans+stoll(num.substr(l,r-l)))%md;\n\t\t}\n\t}\n\treturn ans;\n}\n\n//受け取った2次元文字の外側に、文字pをコーティングする。\nvector<string> pad(vector<string> &s,char p){\n\tll h=s.size();\n\tll w=s[0].size();\n\tvector<string> res(h+2,string(w+2,p));\n\trep(i,h)rep(j,w)res[i+1][j+1]=s[i][j];\n\treturn res;\n}\n\n//ax+by=cの整数解を得る ただし、cはgcd(a,b)の倍数でない場合、0,0になる\npair<ll,ll> ex_euclid(ll a,ll b,ll c){\n\tif(a<0||b<0||c<0){\n\t\tpair<ll,ll>ans=ex_euclid(abs(a),abs(b),abs(c));\n\t\tif(a<0)ans.first*=-1;\n\t\tif(b<0)ans.second*=-1;\n\t\tif(c<0)ans.first*=-1,ans.second*=-1;\n\t\treturn ans;\n\t}\n\tif(c!=1){\n\t\tll d=gcd(a,b);\n\t\tif(c%d!=0)return make_pair(0,0);\n\t\tpair<ll,ll>ans = ex_euclid(a/d,b/d,1);\n\t\tans.first*=c/d;\n\t\tans.second*=c/d;\n\t\treturn ans;\n\t}\n\tif(a<b){\n\t\tpair<ll,ll>ans=ex_euclid(b,a,c);\n\t\tswap(ans.first,ans.second);\n\t\treturn ans;\n\t}\n\tif(a==1&&b==0)return make_pair(1,0);\n\telse if(b==0) return make_pair(0,0);\n\tll x,y;\n\ttie(x,y)=ex_euclid(b,a%b,c);\n\tpair<ll,ll> ans=make_pair(y,x-(a/b)*y);\n\treturn ans;\n}\n\n//オイラーのトーシェント関数。N以下のNと互いに素な物の数を返す。\nll euler(ll n){\n\tunordered_map<ll,ll> factors;\n\tll tmp=n;\n\twhile (tmp % 2 == 0) {\n\t\tfactors[2]++;\n\t\ttmp /= 2;\n\t}\n\tfor (ll i=3; i*i<=tmp;i+=2) {\n\t\twhile (tmp%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\ttmp/= i;\n\t\t}\n\t}\n\tif (tmp > 2)factors[tmp]++;\n\tll ans=1;\n\tfor(const auto & val:factors){\n\t\tans*=power(val.first,val.second-1)*(val.first-1);\n\t}\n\treturn ans;\n}\n\n// Union-Find\nstruct UnionFind {\n\tvector<int> par, siz;\n\tUnionFind(int n) : par(n, -1) , siz(n, 1) { }\n\t// 根を求める\n\tint root(int x) {\n\t\tif (par[x] == -1) return x;\n\t\telse return par[x] = root(par[x]);\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(int x, int y) {\n\t\treturn root(x) == root(y);\n\t}\n\t// x を含むグループと y を含むグループとを併合する\n\tbool unite(int x, int y) {\n\t\tx = root(x), y = root(y);\n\t\tif (x == y) return false; \n\t\tif (siz[x] < siz[y]) swap(x, y);\n\t\tpar[y] = x;\n\t\tsiz[x] += siz[y];\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズ\n\tint size(int x) {\n\t\treturn siz[root(x)];\n\t}\n};\n\n//重み付きUF\nstruct PotentialUnionFind {\n\tll n;\n\tvl par, siz, pot;\n\tPotentialUnionFind(ll N) : par(N,-1) , siz(N,1) , pot(N,0){n=N;}\n\t// 根を求める\n\tll root(ll x) {\n\t\tif (par[x] == -1) return x;\n\t\tll tmp = root(par[x]);\n\t\tpot[x] += pot[par[x]];\n\t\tpar[x] = tmp;\n\t\treturn par[x];\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(ll x, ll y) {\n\t\treturn root(x) == root(y);\n\t}\n\t//x よりいくつ大きい所に y があるか。根が一致しない場合は\"0\"\n\tll potential(ll x,ll y){\n\t\tif(root(x) != root(y)) return 0;\n\t\telse return pot[y]-pot[x];\n\t}\n\t//x より w だけ大きい状態として y を併合。\n\tbool unite(ll x, ll y, ll w) {\n\t\tll rx = root(x),ry = root(y);\n\t\tif (rx == ry) return false;\n\t\tw += pot[x]-pot[y];\n\t\tif (siz[rx] < siz[ry]) swap(rx, ry),w*=-1;\n\t\tpar[ry] = rx;\n\t\tsiz[rx] += siz[ry];\n\t\tsiz[ry] = 0;\n\t\tpot[ry] = w;\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズ\n\tll size(ll x) {\n\t\treturn siz[root(x)];\n\t}\n\t//小さい順にUnionFindグラフを調整、O(n log n)\n\tvoid regulation(){\n\t\tvvl r(n);\n\t\trep(i,n)r[root(i)].push_back(i);\n\t\trep(i,n){\n\t\t\tif(r[i].size()==0)continue;\n\t\t\tll mn = i;\n\t\t\trep(j,r[i].size())if(pot[mn]>pot[r[i][j]])mn=r[i][j];\n\t\t\tsiz[mn]=siz[i];\n\t\t\tsiz[i]=0;\n\t\t\tll tmp = pot[mn];\n\t\t\trep(j,r[i].size()){\n\t\t\t\tpot[r[i][j]]-=tmp;\n\t\t\t\tpar[r[i][j]] = mn;\n\t\t\t}\n\t\t\tpar[mn]=-1;\n\t\t}\n\t}\n\tvoid debug(){\n\t\trep(i,n)cout<<setw(4)<<left<<par[i]<<\" \";\n\t\tcout<<endl;\n\t\trep(i,n)cout<<setw(4)<<left<<pot[i]<<\" \";\n\t\tcout<<endl;\n\t}\n};\n\n//分離可能UnionFind、経路圧縮をしない。\nstruct CuttingFind{\n\tvector<int> par, siz;\n\tCuttingFind(int n) : par(n, -1) , siz(n, 1) { }\n\t// 根を求める\n\tint root(int x) {\n\t\tif (par[x] == -1) return x;\n\t\telse return root(par[x]);\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(int x, int y) {\n\t\treturn root(x) == root(y);\n\t}\n\t//根x と 根y のグループを併合する(お互い根ではない時、falseで何もしない)\n\tbool unite(int x, int y) {\n\t\tif (issame(x,y) || par[x] != -1 || par[y] != -1) {\n\t\t\tcout<<\"error\"<<endl;\n\t\t\treturn false;\n\t\t}\n\t\tif (siz[x] < siz[y]) swap(x, y);\n\t\tpar[y] = x;\n\t\tsiz[x] += siz[y];\n\t\treturn true;\n\t}\n\t//根の側から、その直系の子供を分離する。片方が根でもう片方が直系の子でなければならない。\n\tbool separate(int x,int y){\n\t\tif(par[y]==-1)swap(x,y);\n\t\tif(par[y]!=x||par[x]!=-1){\n\t\t\tcout<<\"error2\"<<endl;\n\t\t\treturn false;\n\t\t}\n\t\tsiz[x] -= siz[y];\n\t\tpar[y]=-1;\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズを求める\n\tint size(int x) {\n\t\treturn siz[root(x)];\n\t}\n};\n//セグ木,乗せる値の型が必要\ntemplate<typename T>\nstruct SegTree{\n\tll size;\n\tll tall;\n\tvector<T> data;\n\tfunction<T(T,T)> p;\n\t//セグ木に乗せる値の初期値をa配列にし、putの関数をセグ木に乗せる、dをデフォルト値に。\n\tSegTree(vector<T> a,function<T(T,T)> put,T d) : data(power(2,logax(2,a.size())+1)) {\n\t\tsize = data.size()/2;\n\t\ttall=logax(2,size)+1;\n\t\tp=put;\n\t\tll tmp=size;\n\t\tdata = vector<T>(size*2,d);\n\t\twhile(tmp!=0){\n\t\t\tif(tmp==size)rep(i,a.size())data[tmp+i]=a[i];\n\t\t\telse rep(i,tmp) data[tmp+i]=p(data[2*(tmp+i)],data[2*(tmp+i)+1]);\n\t\t\ttmp/=2;\n\t\t}\n\t}\n\t//更新、t番目の値をxにする。\n\tvoid update(ll t,T x){\n\t\tt+=size;\n\t\twhile(t!=0){\n\t\t\tif(t>=size)data[t]=x;\n\t\t\telse data[t]=p(data[2*t],data[2*t+1]);\n\t\t\tt/=2;\n\t\t}\n\t}\n\t//取得、l~r区間内の評価値を取得する。\n\tT get(ll l,ll r){\n\t\t//lとrが範囲外なら範囲内に正す\n\t\tl=max(0LL,l);\n\t\tr=min(r,size-1);\n\t\tr++;\n\t\tT ans=data[0];\n\t\tll pos=l+size;\n\t\tll wid=1;\n\t\t//出来る限り上に上げきる。\n\t\twhile(l+(wid*2)<=r){\n\t\t\twhile(l%(wid*2)==0&&l+(wid*2)<=r)pos/=2,wid*=2;\n\t\t\tans=p(ans,data[pos]);\n\t\t\tpos++;\n\t\t\tl+=wid;\n\t\t}\n\t\t//上げ終わったので今度は下げる\n\t\twhile(l!=r){\n\t\t\twhile(l+wid>r)pos*=2,wid/=2;\n\t\t\tans=p(ans,data[pos]);\n\t\t\tpos++;\n\t\t\tl+=wid;\n\t\t}\n\t\treturn ans;\n\t}\n\t//セグ木デバッグ用、丸ごと出力\n\tvoid print(){\n\t\trep(i,size)cout<<setw(7)<<left<<i;\n\t\tcout<<endl;\n\t\tll pos=size;\n\t\trep(i,tall){\n\t\t\trep(j,size){\n\t\t\t\tif(j%power(2,i)==0)cout<<setw(7)<<left<<data[pos],pos++;\n\t\t\t\telse cout<<\" \";\n\t\t\t}\n\t\t\tpos/=4;\n\t\t\tcout<<endl;\n\t\t}\n\t}\n};\n\n//グリッド問題等用\nvl dx={1,0,-1,0};\nvl dy={0,1,0,-1};\n\nll n,m;\nvl a,b;\n\nmap <vl,ll> memo;\n\nll dfs(vl dp){\n\tif(memo.count(dp))return memo[dp];\n\t//ゲームが終了する場合\n\tif(dp[1]==2){\n\t\tmemo[dp]=0;\n\t\treturn 0;\n\t}\n\n\t//自分の得点-相手の得点\n\tll tmp=-inf;\n\t\n\t//スキップする場合\n\tif(dp[2]==dp[4]&&dp[3]==dp[5]){\n\t\t//既にスタックがからな場合\n\t\tvl ndp={dp[0]^1,dp[1]+1,dp[2],dp[3],dp[2],dp[3]};\n\t\ttmp =max(tmp,-dfs(ndp));\n\t}else{\n\t\tvl ndp={dp[0]^1,0,dp[2],dp[3],dp[2],dp[3]};\n\t\t//4を2に詰める時のコスト\n\t\tll cost=0;\n\t\tloop(i,dp[4],dp[2]-1){\n\t\t\tif(a[i]!=-1)cost+=a[i];\n\t\t}\n\t\tloop(i,dp[5],dp[3]-1){\n\t\t\tif(b[i]!=-1)cost-=b[i];\n\t\t}\n\t\tif(dp[0]==1)cost*=-1;\n\t\ttmp =max(tmp,-dfs(ndp)+cost);\n\t}\n\n\t//出す場合\n\tif(dp[0]==0){\n\t\tif(dp[2]!=n){\n\t\t\tvl ndp={dp[0]^1,0,dp[2]+1,dp[3],dp[4],dp[5]};\n\t\t\tif(a[dp[2]]==-1)ndp[5]=ndp[3];\n\t\t\ttmp = max(tmp,-dfs(ndp));\n\t\t}\t\n\t}else{\n\t\tif(dp[3]!=m){\n\t\t\tvl ndp={dp[0]^1,0,dp[2],dp[3]+1,dp[4],dp[5]};\n\t\t\tif(b[dp[3]]==-1)ndp[4]=ndp[2];\n\t\t\ttmp = max(tmp,-dfs(ndp));\n\t\t}\t\n\t}\n\tmemo[dp]=tmp;\n\treturn tmp;\n}\n\n//メイン\nint main(){\n\tcin>>n>>m;\n\trep(i,n){\n\t\tll aa;\n\t\tcin>>aa;\n\t\ta.push_back(aa);\n\t}\n\trep(i,m){\n\t\tll bb;\n\t\tcin>>bb;\n\t\tb.push_back(bb);\n\t}\n\tcout<<dfs({0,0,0,0,0,0})<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 30336, "score_of_the_acc": -0.742, "final_rank": 16 }, { "submission_id": "aoj_2741_10489871", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <cstdint>\n#include <cstdio>\n#include <deque>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <limits>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <ranges>\n#include <regex>\n#include <set>\n#include <span>\n#include <sstream>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <vector>\n// #include <atcoder/dsu>\n\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)\n#define all(a) a.begin(), a.end()\nusing namespace std;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\ntemplate <class T1, class T2>\nstd::ostream &operator<<(std::ostream &out, const pair<T1, T2> &A) {\n\tcout << \"{\" << A.first << \",\" << A.second << \"}\";\n\treturn out;\n}\n\ntemplate <class T1, class T2>\nstd::ostream &operator<<(std::ostream &out, const map<T1, T2> &M) {\n\tfor (const auto &A : M) {\n\t\tcout << \"{\" << A.first << \",\" << A.second << \"}\";\n\t}\n\treturn out;\n}\n\ntemplate <class T1>\nstd::ostream &operator<<(std::ostream &out, const set<T1> &M) {\n\tcout << \"{\";\n\tfor (const auto &A : M) {\n\t\tcout << A << \", \";\n\t}\n\tcout << \"}\" << endl;\n\treturn out;\n}\n\ntemplate <class T1>\nstd::ostream &operator<<(std::ostream &out, const multiset<T1> &M) {\n\tcout << \"{\";\n\tfor (const auto &A : M) {\n\t\tcout << A << \", \";\n\t}\n\tcout << \"}\" << endl;\n\treturn out;\n}\n\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &out, const vector<T> &A) {\n\tfor (const T &a : A) {\n\t\tcout << a << \" \";\n\t}\n\treturn out;\n}\n\nvoid print() { cout << endl; }\n\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tcout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nstd::istream &operator>>(std::istream &in, vector<T> &A) {\n\tfor (T &a : A) {\n\t\tstd::cin >> a;\n\t}\n\treturn in;\n}\n\nusing ll = long long;\n// using mint = modint1000000007;\n// using PII = pair<int, int>;\n// using PLL = pair<ll, ll>;\n// using Graph = vector<vector<int>>;\nconstexpr int INF = numeric_limits<int>::max() / 2;\nconstexpr ll LINF = numeric_limits<ll>::max() / 2;\n\n// ランレングス圧縮\n// イテレータを受け取る\n// verify: https://atcoder.jp/contests/abc380/submissions/60002447\ntemplate <typename T, typename Iterator>\nvector<pair<T, int>> RLE(Iterator begin, Iterator end) {\n\tvector<pair<T, int>> res;\n\tfor (auto itr = begin; itr != end; ++itr) {\n\t\tif (res.empty() || res.back().first != *itr) {\n\t\t\tres.emplace_back(*itr, 1);\n\t\t} else {\n\t\t\tres.back().second++;\n\t\t}\n\t}\n\treturn res;\n}\n\n// 座標圧縮\n// unordered_mapが使えない場合はmapに変更しよう\n// https://atcoder.jp/contests/abc213/submissions/60002695\ntemplate <typename T>\nunordered_map<T, int> compress(vector<T> &X) {\n\tauto tmp = X;\n\tranges::sort(tmp);\n\ttmp.erase(unique(tmp.begin(), tmp.end()), tmp.end());\n\tunordered_map<T, int> res;\n\tfor (int i = 0; i < (int)tmp.size(); i++) {\n\t\tres[tmp[i]] = i;\n\t}\n\treturn res;\n}\n\nvector<int> A, B;\nint N, M;\n\nmap<tuple<int, int, int, int, int, int>, int> memo;\nint dfs(int a, int b, int sum_a, int sum_b, int pass, int turn = 0) {\n\tif (a == N && b == M && sum_a == 0 && sum_b == 0) {\n\t\treturn 0;\n\t}\n\tif (pass == 2) {\n\t\treturn 0;\n\t}\n\tif (memo.contains({a, b, sum_a, sum_b, pass, turn})) {\n\t\treturn memo[{a, b, sum_a, sum_b, pass, turn}];\n\t}\n\t// デッキの一番上がaやb\n\t// スタックの各合計値がsum_a,sum_b\n\t// aの手番\n\t// A[a]を使うか パスするか\n\tint mx = 0;\n\t// パスする場合\n\tif (sum_a == 0 && sum_b == 0) {\n\t\tmx = -dfs(b, a, 0, 0, pass + 1, 1 - turn) + sum_a - sum_b;\n\t} else {\n\t\tmx = -dfs(b, a, 0, 0, 0, 1 - turn) + sum_a - sum_b;\n\t}\n\t// A[a]を使う\n\tif (turn == 0) {\n\t\tif (a != N) {\n\t\t\tif (A[a] == -1) {\n\t\t\t\tchmax(mx, -dfs(b, a + 1, 0, sum_a, 0, 1 - turn));\n\t\t\t} else {\n\t\t\t\tchmax(mx, -dfs(b, a + 1, sum_b, sum_a + A[a], 0, 1 - turn));\n\t\t\t}\n\t\t}\n\t} else if (turn == 1) {\n\t\tif (a != M) {\n\t\t\tif (B[a] == -1) {\n\t\t\t\tchmax(mx, -dfs(b, a + 1, 0, sum_a, 0, 1 - turn));\n\t\t\t} else {\n\t\t\t\tchmax(mx, -dfs(b, a + 1, sum_b, sum_a + B[a], 0, 1 - turn));\n\t\t\t}\n\t\t}\n\t}\n\tmemo[{a, b, sum_a, sum_b, pass, turn}] = mx;\n\treturn mx;\n}\n\nvoid solve() {\n\t// ここからスタート\n\tcin >> N >> M;\n\trep(i, N) {\n\t\tint a;\n\t\tcin >> a;\n\t\tA.push_back(a);\n\t}\n\trep(i, M) {\n\t\tint a;\n\t\tcin >> a;\n\t\tB.push_back(a);\n\t}\n\tcout << dfs(0, 0, 0, 0, 0) << endl;\n}\n\nint main(void) {\n\tstd::cin.tie(0)->sync_with_stdio(0);\n\tsolve();\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 17920, "score_of_the_acc": -0.3602, "final_rank": 9 }, { "submission_id": "aoj_2741_9409254", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nstatic int DP[51][51][51][51][2][3];\nstatic bool Flag[51][51][51][51][2][3];\n\nint N, M;\nvector<int> A,B,ASUM,BSUM;\n\nvoid Change(int& A, int B, int C) {\n if (C == 0) chmax(A,B);\n else chmin(A,B);\n}\n\nint DFS(int I, int J, int K, int L, int B1, int B2) {\n if (Flag[I][J][K][L][B1][B2]) return DP[I][J][K][L][B1][B2];\n if (B1 == 0) { //sente\n if (I != N) { //tumu\n if (A[I] == -1) {\n Change(DP[I][J][K][L][B1][B2],DFS(I+1,J,K,J,1,0),0);\n }\n else {\n Change(DP[I][J][K][L][B1][B2],DFS(I+1,J,K,L,1,0),0);\n }\n }\n if (B2 == 2) { //Pass\n Change(DP[I][J][K][L][B1][B2],0,0);\n }\n else {\n Change(DP[I][J][K][L][B1][B2], DFS(I,J,I,J,1,B2+1)+ASUM[I]-ASUM[K]-BSUM[J]+BSUM[L],0);\n }\n }\n else {\n if (J != M) { //tumu\n if (B[J] == -1) {\n Change(DP[I][J][K][L][B1][B2],DFS(I,J+1,I,L,0,0),1);\n }\n else {\n Change(DP[I][J][K][L][B1][B2],DFS(I,J+1,K,L,0,0),1);\n }\n }\n if (B2 == 2) { //Pass\n Change(DP[I][J][K][L][B1][B2],0,1);\n }\n else {\n Change(DP[I][J][K][L][B1][B2], DFS(I,J,I,J,0,B2+1)+ASUM[I]-ASUM[K]-BSUM[J]+BSUM[L],1);\n }\n }\n Flag[I][J][K][L][B1][B2] = true;\n return DP[I][J][K][L][B1][B2];\n}\n\n\nint main() {\n cin >> N >> M;\n A.resize(N), B.resize(M), ASUM.resize(N+1), BSUM.resize(M+1);\n rep(i,0,N) cin >> A[i];\n rep(i,0,M) cin >> B[i];\n ASUM[0] = 0, BSUM[0] = 0;\n rep(i,0,N) ASUM[i+1] = ASUM[i] + max(A[i],0);\n rep(i,0,M) BSUM[i+1] = BSUM[i] + max(B[i],0);\n rep(i,0,N+1) rep(j,0,M+1) rep(k,0,N+1) rep(l,0,M+1) rep(m,0,2) rep(n,0,3) DP[i][j][k][l][m][n] = (m==0 ? -inf : inf), Flag[i][j][k][l][m][n] = false;\n cout << DFS(0,0,0,0,0,0) << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 201712, "score_of_the_acc": -0.8879, "final_rank": 18 }, { "submission_id": "aoj_2741_9344977", "code_snippet": "#include<iostream>\nusing namespace std;\nvoid chmax(int &a, int b){if(a<b)a=b;}\nvoid chmin(int &a, int b){if(a>b)a=b;}\nconst int INF=1<<30;\nint N,M,A[55],B[55];\nint SA[55],SB[55];\nint dp[55][55][55][55][2][2];\nint dfs(int la, int ra, int lb, int rb, int t, int p)\n{\n int &cur=dp[la][ra][lb][rb][t][p];\n if(cur!=INF)return cur;\n if(t)\n {\n int put=-INF;\n int pass=-INF;\n if(ra<N)chmax(put,dfs(la,ra+1,A[ra]==-1?rb:lb,rb,0,0));\n chmax(pass,p?0:(la==ra&&lb==rb)?dfs(la,ra,lb,rb,0,1):dfs(ra,ra,rb,rb,0,0)+(SA[ra]-SA[la])-(SB[rb]-SB[lb]));\n return cur=max(put,pass);\n }\n else\n {\n int put=INF;\n int pass=INF;\n if(rb<M)chmin(put,dfs(B[rb]==-1?ra:la,ra,lb,rb+1,1,0));\n chmin(pass,p?0:(la==ra&&lb==rb)?dfs(la,ra,lb,rb,1,1):dfs(ra,ra,rb,rb,1,0)+(SA[ra]-SA[la])-(SB[rb]-SB[lb]));\n return cur=min(put,pass);\n }\n}\nint main()\n{\n cin>>N>>M;\n for(int i=0;i<N;i++)\n {\n cin>>A[i];\n SA[i+1]=SA[i]+A[i]+(A[i]==-1?1:0);\n }\n for(int i=0;i<M;i++)\n {\n cin>>B[i];\n SB[i+1]=SB[i]+B[i]+(B[i]==-1?1:0);\n }\n for(int la=0;la<=N;la++)for(int ra=0;ra<=N;ra++)for(int lb=0;lb<=M;lb++)for(int rb=0;rb<=M;rb++)\n {\n for(int t=0;t<2;t++)for(int p=0;p<2;p++)dp[la][ra][lb][rb][t][p]=INF;\n }\n cout<<dfs(0,0,0,0,1,0)<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 136492, "score_of_the_acc": -0.4902, "final_rank": 13 }, { "submission_id": "aoj_2741_9343127", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nvoid chmax(int &a, int b){if(a<b)a=b;}\nvoid chmin(int &a, int b){if(a>b)a=b;}\nconst int INF=1<<30;\nint N,M,A[55],B[55];\nint SA[55],SB[55];\nint dp[55][55][55][55][2][2];\nint dfs(int la, int ra, int lb, int rb, bool turn, bool passed)\n{\n if(dp[la][ra][lb][rb][turn][passed]!=INF)return dp[la][ra][lb][rb][turn][passed];\n if(turn) // player 1\n {\n int put=-INF;\n { // put next card\n if(ra==N){}\n else\n {\n if(A[ra]==-1)chmax(put,dfs(la,ra+1,rb,rb,0,0));\n else chmax(put,dfs(la,ra+1,lb,rb,0,0));\n }\n }\n int pass=-INF;\n { // pass\n if(passed)\n {\n assert(la==ra&&lb==rb);\n chmax(pass,0);\n }\n else\n {\n if(la==ra&&lb==rb)\n {\n chmax(pass,dfs(la,ra,lb,rb,0,1));\n }\n else\n {\n chmax(pass,dfs(ra,ra,rb,rb,0,0)+(SA[ra]-SA[la])-(SB[rb]-SB[lb]));\n }\n }\n }\n return dp[la][ra][lb][rb][turn][passed]=max(put,pass);\n }\n else // player 2\n {\n int put=INF;\n { // put next card\n if(rb==M){}\n else\n {\n if(B[rb]==-1)chmin(put,dfs(ra,ra,lb,rb+1,1,0));\n else chmin(put,dfs(la,ra,lb,rb+1,1,0));\n }\n }\n int pass=INF;\n { // pass\n if(passed)\n {\n assert(la==ra&&lb==rb);\n chmin(pass,0);\n }\n else\n {\n if(la==ra&&lb==rb)\n {\n chmin(pass,dfs(la,ra,lb,rb,1,1));\n }\n else\n {\n chmin(pass,dfs(ra,ra,rb,rb,1,0)+(SA[ra]-SA[la])-(SB[rb]-SB[lb]));\n }\n }\n }\n return dp[la][ra][lb][rb][turn][passed]=min(put,pass);\n }\n}\nint main()\n{\n cin>>N>>M;\n for(int i=0;i<N;i++)\n {\n cin>>A[i];\n if(A[i]!=-1)SA[i+1]=SA[i]+A[i];\n else SA[i+1]=SA[i];\n }\n for(int i=0;i<M;i++)\n {\n cin>>B[i];\n if(B[i]!=-1)SB[i+1]=SB[i]+B[i];\n else SB[i+1]=SB[i];\n }\n for(int la=0;la<=N;la++)for(int ra=0;ra<=N;ra++)for(int lb=0;lb<=M;lb++)for(int rb=0;rb<=M;rb++)for(int t=0;t<2;t++)for(int p=0;p<2;p++)\n {\n dp[la][ra][lb][rb][t][p]=INF;\n }\n cout<<dfs(0,0,0,0,1,0)<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 136488, "score_of_the_acc": -0.4902, "final_rank": 12 }, { "submission_id": "aoj_2741_9343097", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++)\n#define all(A) A.begin(),A.end()\n\nvoid chmax(ll& p, ll q) { p = max(p, q); };\nvoid chmin(ll& p, ll q) { p = min(p, q); };\n\nconst ll mod = 998244353;\n\n\nvll A, B;\nvll SA, SB;\nll N, M;\n\nmap<tuple<ll, ll, ll, ll, ll, bool>, ll> MP;\n\n//Aをn枚,Bをm枚使用済み.\n//使用済みの上a枚はBの妨害より上. 逆もしかり.\n//pは前がパス, tはターン\nll dfs(ll n, ll m, ll a, ll b, ll p, bool t) {\n\n if (MP.count({ n,m,a,b,p,t }))return MP[{n, m, a, b, p, t}];\n\n if (t == 0) {\n ll res = -1e18;\n //pass\n {\n if (a == 0 && b == 0 && p == 1) {\n chmax(res, 0ll);\n }\n else if (a == 0 && b == 0) {\n chmax(res, dfs(n, m, 0, 0, 1, 1));\n }\n else chmax(res, a-b + dfs(n, m, 0, 0, 0, 1));\n }\n //stack\n if (n != N) {\n if (A[n] == -1) {\n chmax(res, dfs(n + 1, m, a, 0, 0, 1));\n }\n else {\n chmax(res, dfs(n + 1, m, a + A[n], b, 0, 1));\n }\n }\n MP[{n, m, a, b, p, t}] = res;\n return res;\n }\n else {\n ll res = 1e18;\n {\n if (a == 0 && b == 0 && p == 1) {\n chmin(res, 0ll);\n }\n else if (a == 0 && b == 0) {\n chmin(res, dfs(n, m, 0, 0, 1, 0));\n }\n else chmin(res, a-b + dfs(n, m, 0, 0, 0, 0));\n }\n\n if (m != M) {\n if (B[m] == -1) {\n chmin(res, dfs(n, m + 1, 0, b, 0, 0));\n }\n else {\n chmin(res, dfs(n, m + 1, a, b + B[m], 0, 0));\n }\n }\n MP[{n, m, a, b, p, t}] = res;\n return res;\n }\n\n}\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n cin >> N >> M;\n A.resize(N);\n SA.resize(N + 1, 0);\n B.resize(M);\n SB.resize(M + 1, 0);\n rep(i, N) {\n cin >> A[i];\n SA[i + 1] = SA[i] + A[i];\n }\n rep(i, M) {\n cin >> B[i];\n SB[i + 1] = SB[i] + B[i];\n }\n cout << dfs(0, 0, 0, 0, 0, 0) << endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 20704, "score_of_the_acc": -0.3711, "final_rank": 11 }, { "submission_id": "aoj_2741_9339946", "code_snippet": "#include <bits/stdc++.h>\n\nint N, M;\nlong long A[55], B[55];\nlong long dp[2][2][55][55][105];\nbool vis[2][2][55][55][105];\n\nconst long long INF{(long long)1e18};\n\nlong long score(int turn, int r1, int r2, int rs) {\n int n1{r1}, n2{r2};\n int cur{turn ^ 1};\n bool flag1{}, flag2{};\n long long res{};\n for (int i{} ; i < rs ; i++) {\n if (cur == 0) {\n assert(n1 < N);\n if (A[n1] == -1) flag1 = true;\n if (flag2 == false and A[n1] != -1) {\n res += A[n1];\n }\n n1++;\n }\n else {\n assert(n2 < M);\n if (B[n2] == -1) flag2 = true;\n if (flag1 == false and B[n2] != -1) {\n res -= B[n2];\n }\n n2++;\n }\n cur ^= 1;\n }\n if (rs == 0) assert(res == 0);\n //std::cout << turn << ' ' << r1 << ' ' << r2 << ' ' << rs << \" -> \" << res << std::endl;\n return res;\n}\n\nlong long rec(int turn, int pass, int r1, int r2, int rs) {\n if (vis[turn][pass][r1][r2][rs]) {\n return dp[turn][pass][r1][r2][rs];\n }\n vis[turn][pass][r1][r2][rs] = true;\n if (pass == 1) assert(rs == 0);\n if (turn == 0) {\n dp[turn][pass][r1][r2][rs] = -INF;\n if (r1 > 0) {\n dp[turn][pass][r1][r2][rs] = std::max(dp[turn][pass][r1][r2][rs], rec(turn ^ 1, 0, r1 - 1, r2, rs + 1));\n }\n long long val{score(turn, r1, r2, rs)};\n if (pass == 0) val += rec(turn ^ 1, (rs == 0), r1, r2, 0);\n else assert(rs == 0 and val == 0);\n dp[turn][pass][r1][r2][rs] = std::max(dp[turn][pass][r1][r2][rs], val);\n }\n else if (turn == 1) {\n dp[turn][pass][r1][r2][rs] = INF;\n if (r2 > 0) {\n dp[turn][pass][r1][r2][rs] = std::min(dp[turn][pass][r1][r2][rs], rec(turn ^ 1, 0, r1, r2 - 1, rs + 1));\n }\n long long val{score(turn, r1, r2, rs)};\n if (pass == 0) val += rec(turn ^ 1, (rs == 0), r1, r2, 0);\n else assert(rs == 0 and val == 0);\n dp[turn][pass][r1][r2][rs] = std::min(dp[turn][pass][r1][r2][rs], val);\n }\n else {\n assert(false);\n }\n //std::cout << turn << ' ' << pass << ' ' << r1 << ' ' << r2 << ' ' << rs << ' ' << dp[turn][pass][r1][r2][rs] << std::endl;\n return dp[turn][pass][r1][r2][rs];\n}\n\nint main() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n\n std::cin >> N >> M;\n for (int i{} ; i < N ; i++) {\n std::cin >> A[N - i - 1];\n }\n for (int i{} ; i < M ; i++) {\n std::cin >> B[M - i - 1];\n }\n //std::cout << rec(0, 0, 1, 4, 0) << '\\n';\n std::cout << rec(0, 0, N, M, 0) << '\\n';\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 14336, "score_of_the_acc": -0.0129, "final_rank": 2 }, { "submission_id": "aoj_2741_9262384", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define ll long long\n#define rep(i,n) for(ll i = 0;i < (ll)(n);i++)\n\nll INF = 1LL << 60;\n\n\nbool chmax(ll &a, ll b){\n if(a < b){\n a = b;\n return true;\n }else{\n return false;\n }\n}\n\nbool chmin(ll &a, ll b){\n if(a > b){\n a = b;\n return true;\n }else{\n return false;\n }\n}\n\nusing P = pair<ll,ll>;\n\nll clcscore(vector<P> &stk){\n ll ret = 0;\n\n bool aok = true,bok = true;\n for(ll i = stk.size()-1;i >= 0;i--){\n auto [cost,isa] = stk[i];\n if(isa){\n if(cost == -1){\n bok = false;\n }else if(aok)ret += cost;\n }else{\n if(cost == -1){\n aok = false;\n }else if(bok){\n ret -= cost;\n }\n }\n }\n return ret;\n}\n\n\nint main(){\n ll n,m;cin >> n >> m;\n vector<ll> a(n),b(m);\n rep(i,n)cin >> a[i];\n rep(i,m)cin >> b[i];\n\n map<tuple<ll,ll,ll,ll>,ll> mp;\n\n auto clcsta = [&](ll anxt,ll afin){\n return anxt * n + afin;\n };\n auto clcstb = [&](ll bnxt,ll bfin){\n return bnxt * m + bfin;\n };\n\n auto dfs = [&](auto dfs,ll isa,ll pas,ll sta,ll stb,vector<P> stk)->ll{\n if(mp.count({isa,pas,sta,stb})){\n return mp[{isa,pas,sta,stb}];\n }\n\n ll anxt = sta /n;\n ll afin = sta % n;\n ll bnxt = stb/m;\n ll bfin = stb % m;\n\n if(isa){\n ll ret = -INF;\n\n if(pas == 2){\n //passして終わり\n chmax(ret,0);\n }else{\n ll tmp = clcscore(stk);\n //pass\n vector<P> emp;\n tmp += dfs(dfs,0,pas+1,clcsta(anxt,anxt),clcstb(bnxt,bnxt),emp);\n chmax(ret,tmp);\n }\n\n if(anxt >= n)return mp[{isa,pas,sta,stb}] = ret;\n\n //追加\n stk.push_back({a[anxt],1});\n chmax(ret,dfs(dfs,0,0,clcsta(anxt+1,afin),stb,stk));\n\n return mp[{isa,pas,sta,stb}] = ret;\n\n }else{\n ll ret = INF;\n\n if(pas == 2){\n //passして終わり\n chmin(ret,0);\n }else{\n ll tmp = clcscore(stk);\n //pass\n vector<P> emp;\n tmp += dfs(dfs,1,pas+1,clcsta(anxt,anxt),clcstb(bnxt,bnxt),emp);\n chmin(ret,tmp);\n }\n\n if(bnxt >= m)return mp[{isa,pas,sta,stb}] = ret;\n\n //追加\n stk.push_back({b[bnxt],0});\n chmin(ret,dfs(dfs,1,0,sta,clcstb(bnxt+1,bfin),stk));\n\n return mp[{isa,pas,sta,stb}] = ret;\n\n }\n };\n vector<P> stk;\n cout << dfs(dfs,1,0,0,0,stk) << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 18920, "score_of_the_acc": -0.6022, "final_rank": 15 }, { "submission_id": "aoj_2741_9235103", "code_snippet": "#include <bits/stdc++.h>\n\nint solve() {\n const int INF = 1e9;\n int n, m;\n std::cin >> n >> m;\n if (n == 0) return 1;\n std::vector<int> a(n), b(m);\n for (int i = 0; i < n; i++) std::cin >> a[i];\n for (int i = 0; i < m; i++) std::cin >> b[i];\n\n std::vector<int> sum_a(n + 1), sum_b(m + 1);\n for (int i = 0; i < n; i++) sum_a[i + 1] = sum_a[i] + std::max(0, a[i]);\n for (int i = 0; i < m; i++) sum_b[i + 1] = sum_b[i] + std::max(0, b[i]);\n\n std::map<std::tuple<short, short, short, short, bool, bool>, int> memo;\n auto dfs = [&](auto self, short stack_a, short deck_a, short stack_b, short deck_b, bool pass, bool turn) -> int {\n std::tuple key = {stack_a, deck_a, stack_b, deck_b, pass, turn};\n if (memo.find(key) != memo.end()) return memo[key];\n if (turn) { // maximize\n int ans = -INF;\n // put\n if (deck_a < n) {\n if (a[deck_a] == -1) {\n ans = std::max(ans, self(self, stack_a, deck_a + 1, deck_b, deck_b, 0, false));\n } else {\n ans = std::max(ans, self(self, stack_a, deck_a + 1, stack_b, deck_b, 0, false));\n }\n }\n // pass\n if (pass) {\n ans = std::max(ans, 0);\n } else if (stack_a == deck_a && stack_b == deck_b) {\n ans = std::max(ans, self(self, deck_a, deck_a, deck_b, deck_b, true, false));\n } else {\n ans = std::max(ans, self(self, deck_a, deck_a, deck_b, deck_b, false, false) \n + (sum_a[deck_a] - sum_a[stack_a]) - (sum_b[deck_b] - sum_b[stack_b]));\n }\n return memo[key] = ans;\n } else { // minimize\n int ans = INF;\n // put\n if (deck_b < m) {\n if (b[deck_b] == -1) {\n ans = std::min(ans, self(self, deck_a, deck_a, stack_b, deck_b + 1, 0, true));\n } else {\n ans = std::min(ans, self(self, stack_a, deck_a, stack_b, deck_b + 1, 0, true));\n }\n }\n // pass\n if (pass) {\n ans = std::min(ans, 0);\n } else if (stack_a == deck_a && stack_b == deck_b) {\n ans = std::min(ans, self(self, deck_a, deck_a, deck_b, deck_b, true, true));\n } else {\n ans = std::min(ans, self(self, deck_a, deck_a, deck_b, deck_b, 0, true) \n + (sum_a[deck_a] - sum_a[stack_a]) - (sum_b[deck_b] - sum_b[stack_b]));\n }\n return memo[key] = ans;\n }\n };\n std::cout << dfs(dfs, 0, 0, 0, 0, 0, true) << '\\n';\n return 1;\n}\n\nint main() {\n while (!solve());\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14924, "score_of_the_acc": -0.3009, "final_rank": 6 }, { "submission_id": "aoj_2741_9187848", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int N, M;\n std::cin >> N >> M;\n std::vector<int> A(N), B(M);\n for (int i{} ; i < N ; i++) {\n std::cin >> A[i];\n }\n for (int i{} ; i < M ; i++) {\n std::cin >> B[i];\n }\n const int INF{(int)2e9};\n std::vector dp(2, std::vector(2, std::vector(N + 1, std::vector(M + 1, std::vector<int>(N + M + 1, INF)))));\n auto calc{[&](int turn, int n, int m, int stk) -> int {\n turn ^= 1;\n int res{};\n bool g1{}, g2{};\n while (stk--) {\n if (turn == 0) {\n assert(n >= 1);\n n--;\n if (A[n] == -1) g2 = true;\n if (g1 == false and A[n] != -1) res += A[n];\n }\n else if (turn == 1) {\n assert(m >= 1);\n m--;\n if (B[m] == -1) g1 = true;\n if (g2 == false and B[m] != -1) res -= B[m];\n }\n else {\n assert(false);\n }\n turn ^= 1;\n }\n return res;\n }};\n auto rec{[&](auto rec, int turn, int cnt, int n, int m, int stk) -> int {\n if (cnt == 2) return 0;\n if (dp[turn][cnt][n][m][stk] != INF) return dp[turn][cnt][n][m][stk];\n if (turn == 0) {\n dp[turn][cnt][n][m][stk] = -INF;\n if (n < N) {\n dp[turn][cnt][n][m][stk] = std::max(dp[turn][cnt][n][m][stk], \n rec(rec, turn ^ 1, 0, n + 1, m, stk + 1));\n }\n int val{};\n val += rec(rec, turn ^ 1, (stk == 0 ? cnt + 1 : 0), n, m, 0);\n val += calc(turn, n, m, stk);\n dp[turn][cnt][n][m][stk] = std::max(dp[turn][cnt][n][m][stk], val);\n }\n else if (turn == 1) {\n dp[turn][cnt][n][m][stk] = INF;\n if (m < M) {\n dp[turn][cnt][n][m][stk] = std::min(dp[turn][cnt][n][m][stk], \n rec(rec, turn ^ 1, 0, n, m + 1, stk + 1));\n }\n int val{};\n val += rec(rec, turn ^ 1, (stk == 0 ? cnt + 1 : 0), n, m, 0);\n val += calc(turn, n, m, stk);\n dp[turn][cnt][n][m][stk] = std::min(dp[turn][cnt][n][m][stk], val);\n }\n else {\n assert(false);\n }\n return dp[turn][cnt][n][m][stk];\n }};\n std::cout << rec(rec, 0, 0, 0, 0, 0) << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 11044, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2741_9172477", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing P = pair<int, int>;\n#define rep(i, a, b) for(int i = a; i < b; ++i)\n#define rrep(i, a, b) for(int i = a; i >= b; --i)\n// constexpr int inf = 4e18;\nconstexpr int inf = 1e9;\n\nint n, m;\nvector<int> a, b;\nvector<int> cum_a, cum_b;\nint memo[51][51][51][51][2][2][2];\n\nint cnt = 0;\nint dp(int i, int j, int k, int l, int p, int q, int r) {\n if(q == 1 && r == 1) {\n cerr << \"ERROR\" << endl;\n exit(0);\n }\n\n if(memo[i][j][k][l][p][q][r] != inf) {\n return memo[i][j][k][l][p][q][r];\n }\n int res;\n if(p == 0) {\n res = -inf;\n if(i > 0) {\n if(a[i] != -1) {\n res = max(res, dp(i - 1, j, k + 1, l, 1, 0, 1));\n } else {\n res = max(res, dp(i - 1, j, k + 1, 0, 1, 0, 1));\n }\n }\n\n if(q == 1 && r == 0) {\n res = max(res, 0);\n } else if(q == 0 && r == 0) {\n res = max(res, dp(i, j, k, l, 1, 1, 0));\n } else {\n // a[i+1] ~ a[i+k];\n int ca = cum_a[i + k] - cum_a[i];\n // b[j+1] ~ b[i+l];\n int cb = cum_b[j + l] - cum_b[j];\n res = max(res, dp(i, j, 0, 0, 1, 0, 0) + ca - cb);\n }\n } else {\n res = inf;\n if(j > 0) {\n if(b[j] != -1) {\n res = min(res, dp(i, j - 1, k, l + 1, 0, 0, 1));\n } else {\n res = min(res, dp(i, j - 1, 0, l + 1, 0, 0, 1));\n }\n }\n\n if(q == 1 && r == 0) {\n res = min(res, 0);\n } else if(q == 0 && r == 0) {\n res = min(res, dp(i, j, k, l, 0, 1, 0));\n } else {\n // a[i+1] ~ a[i+k];\n int ca = cum_a[i + k] - cum_a[i];\n // b[j+1] ~ b[i+l];\n int cb = cum_b[j + l] - cum_b[j];\n res = min(res, dp(i, j, 0, 0, 0, 0, 0) + ca - cb);\n }\n }\n // cerr << i << \" \" << j << \" \" << k << \" \" << l << \" \" << p << \" \" << q << \" \" << r << \"\\n\";\n memo[i][j][k][l][p][q][r] = res;\n // cerr << \"A:\" << i << \" \" << j << \" \" << k << \" \" << l << \" \" << p << \" \" << q << \" \" << r << \"\\n\";\n return res;\n}\n\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cin >> n >> m;\n a.resize(n + 1, 0);\n b.resize(m + 1, 0);\n rep(i, 1, n + 1) {\n cin >> a[n + 1 - i];\n }\n rep(i, 1, m + 1) {\n cin >> b[m + 1 - i];\n }\n cum_a.resize(n + 1, 0);\n cum_b.resize(m + 1, 0);\n rep(i, 1, n + 1) {\n if(a[i] != -1) {\n cum_a[i] = cum_a[i - 1] + a[i];\n } else {\n cum_a[i] = cum_a[i - 1];\n }\n }\n rep(i, 1, m + 1) {\n if(b[i] != -1) {\n cum_b[i] = cum_b[i - 1] + b[i];\n } else {\n cum_b[i] = cum_b[i - 1];\n }\n }\n\n rep(i, 0, n + 1) {\n rep(j, 0, m + 1) {\n rep(k, 0, n + 1) {\n rep(l, 0, m + 1) {\n rep(p, 0, 2) {\n rep(q, 0, 2) {\n rep(r, 0, 2) {\n memo[i][j][k][l][p][q][r] = inf;\n }\n }\n }\n }\n }\n }\n }\n\n // memo.resize(n + 1);\n // rep(i, 0, n + 1) {\n // memo[i].resize(m + 1);\n // rep(j, 0, m + 1) {\n // memo[i][j].resize(n + 1);\n // rep(k, 0, n + 1) {\n // memo[i][j][k].resize(m + 1);\n // rep(l, 0, m + 1) {\n // memo[i][j][k][l].resize(2);\n // rep(p, 0, 2) {\n // memo[i][j][k][l][p].resize(2);\n // rep(q, 0, 2) {\n // memo[i][j][k][l][p][q].resize(2, inf);\n // }\n // }\n // }\n // }\n // }\n // }\n // cerr << \"b\\n\";\n\n dp(n, m, 0, 0, 0, 0, 0);\n cout << memo[n][m][0][0][0][0][0] << \"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 214880, "score_of_the_acc": -0.8441, "final_rank": 17 }, { "submission_id": "aoj_2741_9029785", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nmap<pair<int,int>, int> memo[55][55][2][2];\n\nint main() {\n int n = in(), m = in();\n vector<int> a = in(n), b = in(m);\n\n auto dfs = [&](auto self, int i, int j, int turn, int pass, int Asum, int Bsum) -> int {\n if(memo[i][j][turn][pass].count({Asum, Bsum})) return memo[i][j][turn][pass][{Asum, Bsum}];\n if(turn) {\n int ans = -1e9;\n if(i != n) {\n if(a[i] == -1) {\n chmax(ans, - self(self, i + 1, j, turn ^ 1, 0, Asum, 0));\n } else {\n chmax(ans, - self(self, i + 1, j, turn ^ 1, 0, Asum + a[i], Bsum));\n }\n }\n\n if(pass) {\n chmax(ans, Asum - Bsum);\n } else {\n if(make_pair(Asum, Bsum) == make_pair(0, 0)) {\n chmax(ans, - self(self, i, j, turn ^ 1, 1, 0, 0));\n } else {\n chmax(ans, - self(self, i, j, turn ^ 1, 0, 0, 0) + Asum - Bsum);\n }\n }\n\n return memo[i][j][turn][pass][{Asum, Bsum}] = ans;\n } else {\n int ans = -1e9;\n if(j != m) {\n if(b[j] == -1) {\n chmax(ans, - self(self, i, j + 1, turn ^ 1, 0, 0, Bsum));\n } else {\n chmax(ans, - self(self, i, j + 1, turn ^ 1, 0, Asum, Bsum + b[j]));\n }\n }\n\n if(pass) {\n chmax(ans, Bsum - Asum);\n } else {\n if(make_pair(Asum, Bsum) == make_pair(0, 0)) {\n chmax(ans, - self(self, i, j, turn ^ 1, 1, 0, 0));\n } else {\n chmax(ans, - self(self, i, j, turn ^ 1, 0, 0, 0) + Bsum - Asum);\n }\n }\n\n return memo[i][j][turn][pass][{Asum, Bsum}] = ans;\n }\n };\n\n print(dfs(dfs, 0, 0, 1, 0, 0, 0));\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 15564, "score_of_the_acc": -0.0653, "final_rank": 3 }, { "submission_id": "aoj_2741_8028994", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,s,t) for (int i = (int)(s); i < (int)(t); ++i)\n#define all(x) (x).begin(), (x).end()\n\nint main(){\n int n,m;\n cin>>n>>m;\n vector<int> a(n),b(m);\n for(auto&x:a)cin>>x;\n for(auto&x:b)cin>>x;\n\n map<tuple<int,int,int,int,int,bool>, int> memo;\n\n auto calc_score = [&](int itaken, int jtaken, int istack, int jstack, int turn) {\n int t;\n if (istack < jstack) t = 1;\n else if (istack > jstack) t = 0;\n else if (turn == 0) t = 0;\n else t = 1;\n\n int ascore = 0, bscore = 0;\n rep(_,0,istack+jstack){\n if (t == 0) {\n if (a[itaken] == -1) {\n bscore = 0;\n } else {\n ascore += a[itaken];\n }\n ++itaken;\n } else {\n if (b[jtaken] == -1) {\n ascore = 0;\n } else {\n bscore += b[jtaken];\n }\n ++jtaken;\n }\n t ^= 1;\n }\n return ascore - bscore;\n };\n\n\n auto rec=[&](auto& rec, int itaken, int jtaken, int istack, int jstack, int turn, bool passed) -> int{\n if(memo.count({itaken,jtaken,istack,jstack,turn,passed})) return memo[{itaken,jtaken,istack,jstack,turn,passed}];\n\n int res;\n\n if (turn==0){\n res = -1e9;\n if (itaken+istack < n) {\n res=max(res, rec(rec, itaken, jtaken, istack+1, jstack, 1, false));\n }\n if (passed) {\n res=max(res, 0);\n }else{\n res=max(res, calc_score(itaken, jtaken, istack, jstack, turn) + rec(rec, itaken+istack, jtaken+jstack, 0, 0, 1, istack+jstack==0));\n }\n } else {\n res = 1e9;\n if (jtaken+jstack < m) {\n res=min(res, rec(rec, itaken, jtaken, istack, jstack+1, 0, false));\n }\n if (passed) {\n res=min(res, 0);\n }else{\n res=min(res, calc_score(itaken, jtaken, istack, jstack, turn) + rec(rec, itaken+istack, jtaken+jstack, 0, 0, 0, istack+jstack==0));\n }\n }\n\n return memo[{itaken,jtaken,istack,jstack,turn,passed}] = res;\n };\n\n\n cout<<rec(rec, 0, 0, 0, 0, 0, false)<<endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 17864, "score_of_the_acc": -0.3124, "final_rank": 7 }, { "submission_id": "aoj_2741_8028719", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing ll=long long;\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n,m;cin>>n>>m;\n vector<vector<ll>>card(2);\n for (int i = 0; i <n; ++i) {\n ll a;cin>>a;\n card[0].emplace_back(a);\n }\n for (int i = 0; i < m; ++i) {\n ll b;cin>>b;\n card[1].emplace_back(b);\n }\n map<array<int,6>,ll>dp;\n auto f=[&](auto f,int si,int i,int sj,int j,int p,int q)->ll{\n int p2=1-p;\n if(q==3)return 0LL;\n if(dp.count({si,i,sj,j,p,q}))return dp[{si,i,sj,j,p,q}];\n ll now=0;\n for (int k =si; k <i; ++k) {\n if(card[0][k]==-1)continue;\n now+=card[0][k];\n }\n for (int k =sj; k <j; ++k) {\n if(card[1][k]==-1)continue;\n now-=card[1][k];\n }\n ll pass_score=now+f(f,i,i,j,j,p2,q+1);\n ll play_score=pass_score;\n if(p==0){\n if(i!=n){\n if(card[p][i]==-1)play_score=f(f,si,i+1,j,j,p2,0);\n else play_score=f(f,si,i+1,sj,j,p2,0);\n }\n }\n else{\n if(j!=m){\n if(card[p][j]==-1)play_score=f(f,i,i,sj,j+1,p2,0);\n else play_score=f(f,si,i,sj,j+1,p2,0);\n }\n }\n ll ret;\n if(p==0)ret=max(pass_score,play_score);\n else ret=min(pass_score,play_score);\n return dp[{si,i,sj,j,p,q}]=ret;\n };\n cout<<f(f,0,0,0,0,0,0)<<\"\\n\";\n// cout<<dp[{0,0,0,0,0,0}]<<endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 17972, "score_of_the_acc": -0.3128, "final_rank": 8 }, { "submission_id": "aoj_2741_8028161", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing ll=long long;\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n,m;cin>>n>>m;\n vector<ll>a(n);\n vector<ll>b(m);\n for(auto &i:a)cin>>i;\n for(auto &i:b)cin>>i;\n map<array<int,6>,ll>dp;\n auto f=[&](auto f,int si,int i,int sj,int j,int p,int q)->ll{\n int p2=1-p;\n if(q==3)return 0LL;\n if(dp.count({si,i,sj,j,p,q}))return dp[{si,i,sj,j,p,q}];\n //先手ー後手の値を返す\n if(p==0){//先手番 maxにしたい\n //pass\n ll now=0;\n for (int k =si; k <i; ++k) {\n if(a[k]==-1)continue;\n now+=a[k];\n }\n for (int k =sj; k <j; ++k) {\n if(b[k]==-1)continue;\n now-=b[k];\n }\n ll ret;\n ret=now+f(f,i,i,j,j,p2,q+1);\n if(i!=n){\n if(a[i]==-1) {\n ret = max(ret, f(f, si, i +1,j,j,p2,0));\n }\n else{\n ret=max(ret,f(f,si,i+1,sj,j,p2,0));\n }\n }\n return dp[{si,i,sj,j,p,0}]=ret;\n }\n else{\n ll now=0;\n for (int k =si; k <i; ++k) {\n if(a[k]==-1)continue;\n now+=a[k];\n }\n for (int k =sj; k <j; ++k) {\n if(b[k]==-1)continue;\n now-=b[k];\n }\n ll ret;\n ret=now+f(f,i,i,j,j,p2,q+1);\n if(j!=m){\n if(b[j]==-1){\n ret=min(ret,f(f,i,i,sj,j+1,p2,0));\n }\n else{\n ret=min(ret,f(f,si,i,sj,j+1,p2,0));\n }\n }\n return dp[{si,i,sj,j,p,q}]=ret;\n }\n };\n cout<<f(f,0,0,0,0,0,0)<<\"\\n\";\n// cout<<dp[{0,0,0,0,0,0}]<<endl;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 17736, "score_of_the_acc": -0.5023, "final_rank": 14 }, { "submission_id": "aoj_2741_7969934", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = int;\n\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vvvvll = vector<vvvll>;\nusing vvvvvll = vector<vvvvll>;\nusing vvvvvvll = vector<vvvvvll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++) \n\nll N, M;\nvll A, B;\nvvvvvvll DP;\nll dfs(ll n, ll m, ll i, ll j, bool t,ll e) {\n \n if (DP[n][m][i][j][t][e] < 1e9) {\n return DP[n][m][i][j][t][e];\n }\n ll MA;\n if (t) {\n MA = -5e8;\n if (n < N) {\n if (A[n] == -1) {\n MA = max(MA, dfs(n + 1, m, i, m, !t,0));\n }\n else MA = max(MA, dfs(n+1, m, i, j, !t,0));\n }\n ll sa = 0;\n for (ll k = i; k < n; k++) {\n if(A[k]!=-1)sa += A[k];\n }\n for (ll k = j; k < m; k++) {\n if(B[k]!=-1)sa -= B[k];\n }\n if (e==1&&m==j&&n==i) {\n MA = max(MA,sa);\n }\n else if(m==j&&n==i){\n MA = max(MA, dfs(n, m, n, m, !t,1) + sa);\n }\n else MA = max(MA, dfs(n, m, n, m, !t,0) + sa);\n }\n else {\n MA = 5e8;\n if (m < M) {\n if (B[m] == -1) {\n MA = min(MA, dfs(n, m+1, n, j, !t, 0));\n }\n else MA = min(MA, dfs(n, m+1, i, j, !t,0));\n }\n ll sa = 0;\n for (ll k = i; k < n; k++) {\n if(A[k]!=-1)sa += A[k];\n }\n for (ll k = j; k < m; k++) {\n if(B[k]!=-1)sa -= B[k];\n }\n if (e==1&&m==j&&n==i) {\n MA = min(MA,sa);\n }\n else if(m==j&&n==i){\n MA = min(MA, dfs(n, m, n, m, !t,1) + sa);\n }\n else MA = min(MA, dfs(n, m, n, m, !t,0) + sa);\n }\n DP[n][m][i][j][t][e] = MA;\n return MA;\n}\n\nint main() {\n\n cin >> N >> M;\n A.resize(N);\n B.resize(M);\n rep(i, N)cin >> A[i];\n rep(i, M)cin >> B[i];\n\n DP.resize(N + 1, vvvvvll(M + 1));\n rep(n,N+1){\n rep(m,M+1){\n DP[n][m].assign(n+1,vvvll(m+1,vvll(2,vll(3,1e9))));\n }\n }\n\n cout << dfs(0, 0, 0, 0, 1,0) << endl;\n\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 266964, "score_of_the_acc": -2, "final_rank": 19 }, { "submission_id": "aoj_2741_7969833", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vvvvll = vector<vvvll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++) \n\nll N, M;\nvll A, B;\nvvvvll DP;\nll dfs(ll n, ll m, ll i, ll j, bool t,bool e) {\n \n if (DP[n][m][i][j] <= 1e17) {\n return DP[n][m][i][j];\n }\n ll MA;\n if (t) {\n MA = -1e17;\n if (n < N) {\n if (A[n] == -1) {\n MA = max(MA, dfs(n + 1, m, i, m, !t, 0));\n }\n else MA = max(MA, dfs(n+1, m, i, j, !t,0));\n }\n ll sa = 0;\n for (ll k = i; k < n; k++) {\n if(A[k]!=-1)sa += A[k];\n }\n for (ll k = j; k < m; k++) {\n if(B[k]!=-1)sa -= B[k];\n }\n if (e&&m==j&&n==i) {\n MA = max(MA,sa);\n }\n else if(m==j&&n==i){\n MA = max(MA, dfs(n, m, n, m, !t,1) + sa);\n }\n else MA = max(MA, dfs(n, m, n, m, !t,0) + sa);\n }\n else {\n MA = 1e17;\n if (m < M) {\n if (B[m] == -1) {\n MA = min(MA, dfs(n, m+1, n, j, !t, 0));\n }\n else MA = min(MA, dfs(n, m+1, i, j, !t,0));\n }\n ll sa = 0, sb = 0;\n for (ll k = i; k < n; k++) {\n if(A[k]!=-1)sa += A[k];\n }\n for (ll k = j; k < m; k++) {\n if(B[k]!=-1)sa -= B[k];\n }\n if (e&&m==j&&n==i) {\n MA = min(MA,sa);\n }\n else if(m==j&&n==i){\n MA = min(MA, dfs(n, m, n, m, !t,1) + sa);\n }\n else MA = min(MA, dfs(n, m, n, m, !t,0) + sa);\n }\n DP[n][m][i][j] = MA;\n return MA;\n}\n\nint main() {\n\n cin >> N >> M;\n A.resize(N);\n B.resize(M);\n rep(i, N)cin >> A[i];\n rep(i, M)cin >> B[i];\n\n DP.assign(N + 1, vvvll(M + 1, vvll(N + 1, vll(M + 1, 1e18))));\n\n cout << dfs(0, 0, 0, 0, 1,0) << endl;\n\n}", "accuracy": 0.8648648648648649, "time_ms": 20, "memory_kb": 61392, "score_of_the_acc": -0.2444, "final_rank": 20 } ]
aoj_2737_cpp
Optimal Tournament In 21XX, an annual programming contest "Japan Algorithmist GrandPrix (JAG)" has been one of the most popular mind sport events. You, the chairperson of JAG, are preparing this year's JAG competition. JAG is conducted as a knockout tournament. This year, $N$ contestants will compete in JAG. A tournament is represented as a binary tree having $N$ leaf nodes, to which the contestants are allocated one-to-one. In each match, two contestants compete. The winner proceeds to the next round, and the loser is eliminated from the tournament. The only contestant surviving over the other contestants is the champion. The final match corresponds to the root node of the binary tree. You know the strength of each contestant, $A_1,A_2, ..., A_N$, which is represented as an integer. When two contestants compete, the one having greater strength always wins. If their strengths are the same, the winner is determined randomly. In the past JAG, some audience complained that there were too many boring one-sided games. To make JAG more attractive, you want to find a good tournament configuration. Let's define the boringness of a match and a tournament. For a match in which the $i$-th contestant and the $j$-th contestant compete, we define the boringness of the match as the difference of the strength of the two contestants, $|A_i - A_j|$. And the boringness of a tournament is defined as the sum of the boringness of all matches in the tournament. Your purpose is to minimize the boringness of the tournament. You may consider any shape of the tournament, including unbalanced ones, under the constraint that the height of the tournament must be less than or equal to $K$. The height of the tournament is defined as the maximum number of the matches on the simple path from the root node to any of the leaf nodes of the binary tree. Figure K-1 shows two possible tournaments for Sample Input 1. The height of the left one is 2, and the height of the right one is 3. Write a program that calculates the minimum boringness of the tournament. Input The input consists of a single test case with the following format. $N$ $K$ $A_1$ $A_2$ ... $A_N$ The first line of the input contains two integers $N$ ($2 \leq N \leq 1,000$) and $K$ ($1 \leq K \leq 50$). You can assume that $N \leq 2^K$. The second line contains $N$ integers $A_1, A_2, ..., A_N$. $A_i$ ($1 \leq A_i \leq 100,000$) represents the strength of the $i$-th contestant. Output Output the minimum boringness value achieved by the optimal tournament configuration. Sample Input 1 4 3 1 3 4 7 Output for the Sample Input 1 6 Sample Input 2 5 3 1 3 4 7 9 Output for the Sample Input 2 10 Sample Input 3 18 7 67 64 52 18 39 92 84 66 19 64 1 66 35 34 45 2 79 34 Output for the Sample Input 3 114
[ { "submission_id": "aoj_2737_10867807", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int MAXN = 1005;\nconst int INF = 1e9;\nint n, K;\nint s[MAXN];\nint f[MAXN][MAXN][55], g[MAXN][MAXN][55];\n\nint main() {\n scanf(\"%d %d\", &n, &K);\n for (int i = 1; i <= n; i++)\n scanf(\"%d\", s + i);\n sort(s + 1, s + n + 1);\n\n for (int i = 1; i <= n; i++)\n for (int j = i; j <= n; j++)\n for (int k = 0; k <= K; k++)\n f[i][j][k] = INF;\n for (int i = 1; i <= n; i++)\n for (int j = 0; j <= K; j++)\n f[i][i][j] = 0, g[i][i][j] = i;\n\n for (int d = 1; d < n; d++)\n for (int i = 1; i + d <= n; i++) {\n int j = i + d;\n for (int k = 1; k <= K; k++) {\n f[i][j][k] = f[i][j][k - 1];\n g[i][j][k] = g[i][j][k - 1];\n for (int l = g[i][j - 1][k]; l <= min(j - 1, g[i + 1][j][k]); l++)\n if (f[i][j][k] > f[i][l][k - 1] + f[l + 1][j][k - 1] + s[j] - s[l]) {\n f[i][j][k] = f[i][l][k - 1] + f[l + 1][j][k - 1] + s[j] - s[l];\n g[i][j][k] = l;\n }\n }\n }\n printf(\"%d\\n\", f[1][n][K]);\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 425156, "score_of_the_acc": -0.9181, "final_rank": 8 }, { "submission_id": "aoj_2737_10852686", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n#include <algorithm>\n#define LL __int64\n\nusing namespace std;\n\nconst int Maxn=1e3+10,INF=1e9+10;\nint n,m,a[Maxn],f[Maxn][Maxn][60],p[Maxn],g[Maxn][Maxn][60];\n\nint main()\n{\n for (int i=2,j=1; i<=1000; i*=2,j++)\n {\n p[i]=j;\n for (int k=i+1; k<=min(1000,i*2-1); k++) p[k]=j+1;\n }\n for ( ; scanf(\"%d%d\",&n,&m)!=EOF; )\n {\n for (int i=1; i<=n; i++) scanf(\"%d\",&a[i]);\n sort(a+1,a+n+1);\n for (int i=1; i<=n; i++)\n for (int x=0; x<=m; x++) f[i][i][x]=0,g[i][i][x]=i;\n for (int len=2; len<=n; len++)\n for (int i=1; i<=n-len+1; i++)\n {\n int j=i+len-1;\n for (int x=0; x<=m; x++)\n {\n f[i][j][x]=INF;\n if (x<p[j-i+1]) continue;\n for (int k=g[i][j-1][x]; k<=g[i+1][j][x]; k++)\n {\n int u=f[i][k][x-1]+f[k+1][j][x-1]+a[j]-a[k];\n if (u<f[i][j][x]) f[i][j][x]=u,g[i][j][x]=k;\n }\n }\n for (int x=1; x<=m; x++) if (f[i][j][x-1]<f[i][j][x]) f[i][j][x]=f[i][j][x-1];\n }\n// for (int i=1; i<=n; i++)\n// {\n// for (int j=1; j<=n; j++) printf(\"%4d\",g[i][j][1]);\n// printf(\"\\n\");\n// }\n printf(\"%d\\n\",f[1][n][m]);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 465532, "score_of_the_acc": -1.0021, "final_rank": 11 }, { "submission_id": "aoj_2737_10760670", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 1005\n\nint N,K;\nll dp[2][SIZE][SIZE];\nll MID[2][SIZE][SIZE];\nll A[SIZE];\n\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&K);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lld\",&A[i]);\n\t}\n\n\tsort(A,A+N);\n\n\tint CURRENT = 0,NEXT = 1;\n\n\tfor(int left = 0; left <= N-1; left++){\n\t\tfor(int right = left; right <= N-1; right++){\n\n\t\t\tif(left == right){\n\n\t\t\t\tdp[CURRENT][left][right] = 0;\n\n\t\t\t}else{\n\n\t\t\t\tdp[CURRENT][left][right] = HUGE_NUM;\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans = HUGE_NUM;\n\tint right,L,R;\n\n\tfor(int height = 1; height <= K; height++){\n\n\t\tfor(int left = 0; left <= N-1; left++){\n\t\t\tfor(int right = left; right <= N-1; right++){\n\n\t\t\t\tif(left == right){\n\n\t\t\t\t\tMID[CURRENT][left][right] = left;\n\t\t\t\t\tdp[NEXT][left][right] = dp[CURRENT][left][right];\n\n\t\t\t\t}else{\n\n\t\t\t\t\tdp[NEXT][left][right] = HUGE_NUM;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tfor(int length = 2; length <= N; length++){\n\t\t\tfor(int left = 0; left+length-1 <= N-1; left++){\n\n\t\t\t\tright = left+length-1;\n\n\t\t\t\tL = MID[CURRENT][left][right-1];\n\t\t\t\tR = MID[CURRENT][left+1][right];\n\n\t\t\t\tfor(int mid = L; mid <= R; mid++){\n\n\t\t\t\t\tif(dp[NEXT][left][right] > dp[CURRENT][left][mid]+dp[CURRENT][mid+1][right]+(A[right]-A[mid])){\n\t\t\t\t\t\tdp[NEXT][left][right] = dp[CURRENT][left][mid]+dp[CURRENT][mid+1][right]+(A[right]-A[mid]);\n\t\t\t\t\t\tMID[CURRENT][left][right] = mid;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tans = min(ans,dp[NEXT][0][N-1]);\n\n\t\tswap(CURRENT,NEXT);\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 34528, "score_of_the_acc": -0.0386, "final_rank": 2 }, { "submission_id": "aoj_2737_10259459", "code_snippet": "// AOJ 2737 Optimal Tournament\n// 2025.3.2\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1e15;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nll dp[2][1001][1001];\n\nint main() {\n int N = Cin(), K = Cin();\n\n vector<ll> a(N);\n for (int i = 0; i < N; i++) a[i] = Cin();\n sort(a.begin(), a.end());\n\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) dp[0][i][j] = (i == j? 0: INF);\n }\n\n int s = 0, d = 1;\n for (int h = 1; h <= K; h++, s = d, d = !d) {\n for (int l = 1; l <= N; l++) {\n for (int i = 0; i+l-1 < N; i++) {\n int j = i+l-1;\n if(l == 1) dp[d][i][j] = 0;\n else {\n ll t = dp[s][i][j];\n for (int m = i; m < j; m++) {\n ll c = dp[s][i][m] + dp[s][m+1][j] + (a[j]-a[m]);\n t = min(t, c);\n }\n dp[d][i][j] = t;\n }\n }\n }\n }\n Cout(dp[s][0][N-1]);\n return 0;\n}", "accuracy": 1, "time_ms": 4870, "memory_kb": 18208, "score_of_the_acc": -0.9937, "final_rank": 9 }, { "submission_id": "aoj_2737_10259419", "code_snippet": "// AOJ 2737 Optimal Tournament\n// 2025.3.2\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1e15;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nll dp0[1001][1001], dp1[1001][1001];\n\nint main() {\n int N = Cin(), K = Cin();\n\n vector<ll> a(N);\n for (int i = 0; i < N; i++) a[i] = Cin();\n sort(a.begin(), a.end());\n\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) dp0[i][j] = (i == j? 0: INF);\n }\n\n for (int h = 1; h <= K; h++) {\n for (int l = 1; l <= N; l++) {\n for (int i = 0; i+l-1 < N; i++) {\n int j = i+l-1;\n if(l == 1) dp1[i][j] = 0;\n else {\n ll t = dp0[i][j];\n for (int m = i; m < j; m++) {\n ll c = dp0[i][m] + dp0[m+1][j] + (a[j]-a[m]);\n t = min(t, c);\n }\n dp1[i][j] = t;\n }\n }\n }\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) dp0[i][j] = dp1[i][j];\n }\n }\n Cout(dp0[0][N-1]);\n return 0;\n}", "accuracy": 1, "time_ms": 4900, "memory_kb": 18768, "score_of_the_acc": -1.0013, "final_rank": 10 }, { "submission_id": "aoj_2737_8023783", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(v) v.begin(), v.end()\n#define rng(i, l, r) for(int i = int(l); i < int(r); i++)\n#define rep(i, n) rng(i, 0, n)\n#define sz(v) int(v.size())\n#define foa(s, v) for(auto& s : v)\nint n, k;\nconstexpr ll INF = 1e18;\n\ntemplate <class T>\nbool chmin(T& a, T b) {\n\treturn a > b ? a = b, 1 : 0;\n}\n\ntemplate <class T>\nbool chmax(T& a, T b) {\n\treturn a < b ? a = b, 1 : 0;\n}\n\n#define debug(x) void(0)\n\ntemplate <class T>\nostream& operator<<(ostream& os, vector<T> vec) {\n\tos << \"{ \";\n\tfoa(row, vec) os << row << \", \";\n\tos << \"}\";\n\treturn os;\n}\n\ntemplate <class T>\nostream& operator<<(ostream& os, vector<vector<T>> vec) {\n\tos << \"{ \";\n\tfoa(row, vec) os << \"\\n\\t\" << row << \", \";\n\tos << \"\\n}\";\n\treturn os;\n}\n\nvoid solve() {\n\tvector<ll> a(n);\n\tfoa(c, a) cin >> c;\n\tsort(all(a));\n\n\tvector dp(n + 1, vector(n + 1, INF));\n\tvector mid(k + 1, vector(n + 1, vector<int>(n + 1)));\n\trep(left, n) { dp[left][left + 1] = 0LL; }\n\trep(lef, n) rng(right, lef + 1, n + 1) { mid.front()[lef][right] = lef + 1; }\n\n\t// rep(left, n - 1) dp[left][left + 2] = a[left + 1] - a[left];\n\n\trep(cut, k) {\n\t\tvector tmp = dp;\n\t\tmid[cut + 1] = mid[cut];\n\t\tauto& m = mid[cut+1];\n\n\t\trng(len, 2, n + 1) {\n\t\t\trep(lef, n) {\n\t\t\t\tint right = lef + len;\n\t\t\t\tif(right > n) break;\n\n\t\t\t\tfor(int j = m[lef][right - 1]; j <= m[lef + 1][right]; j++) {\n\t\t\t\t\tdebug(j);\n\t\t\t\t\tif(chmin(tmp[lef][right], dp[lef][j] + dp[j][right] + (a[right - 1] - a[j - 1]))) {\n\t\t\t\t\t\tm[lef][right] = j;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tswap(tmp, dp);\n\t}\n\n\tcout << dp[0][n] << endl;\n}\n\nint main() {\n\twhile(cin >> n >> k && n) solve();\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 184832, "score_of_the_acc": -0.4163, "final_rank": 6 }, { "submission_id": "aoj_2737_7154194", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=1005,INF=1<<28;\n\nint dp[53][MAX][MAX];\nint pos[53][MAX][MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N,K;cin>>N>>K;\n vector<int> A(N);\n for(int i=0;i<N;i++) cin>>A[i];\n sort(all(A));\n \n for(int t=0;t<=K;t++){\n for(int i=0;i<=N;i++){\n for(int j=0;j<=N;j++){\n dp[t][i][j]=INF;\n }\n dp[t][i][i+1]=0;\n pos[t][i][i+1]=i;\n }\n }\n \n for(int t=1;t<=K;t++){\n for(int len=2;len<=N;len++){\n for(int l=0;l<N;l++){\n int r=l+len;\n if(r>N) break;\n for(int m=pos[t][l][r-1];m<=pos[t][l+1][r];m++){\n if(m-l==0||r-m==0) continue;\n int co=dp[t-1][l][m]+dp[t-1][m][r]+A[r-1]-A[m-1];\n if(chmin(dp[t][l][r],co)){\n pos[t][l][r]=m;\n }\n }\n }\n }\n }\n \n cout<<dp[K][0][N]<<endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 408644, "score_of_the_acc": -0.877, "final_rank": 7 }, { "submission_id": "aoj_2737_5572285", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nconst int N=1005,inf=1e9;\nint n,k,a[N],dp[2][N][N],t[2][N][N];\nint main()\n{\n\tscanf(\"%d%d\",&n,&k);\n\tfor(int i=1;i<=n;i++)\n\t\tscanf(\"%d\",&a[i]);\n\tsort(a+1,a+n+1);\n\tfor(int l=1;l<=n;l++)\n\t\tfor(int r=1;r<=n;r++)\n\t\t\tdp[0][l][r]=inf;\n\tfor(int i=1;i<=n;i++)\n\t\tdp[0][i][i]=0;\n\tfor(int x=1;x<=k;x++)\n\t{\n\t\tint p=(x&1),q=(p^1);\n\t\tfor(int l=1;l<=n;l++)\n\t\t\tfor(int r=1;r<=n;r++)\n\t\t\t\tdp[p][l][r]=inf;\n\t\tfor(int h=1;h<=n;h++)\n\t\t{\n\t\t\tfor(int l=1;l+h-1<=n;l++)\n\t\t\t{\n\t\t\t\tint r=l+h-1;\n\t\t\t\tif(l==r)\n\t\t\t\t{\n\t\t\t\t\tdp[p][l][r]=0;\n\t\t\t\t\tt[p][l][r]=l;\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t\tt[p][l][r]=l;\n\t\t\t\tfor(int i=t[p][l][r-1];i<=t[p][l+1][r];i++)\n\t\t\t\t{\n\t\t\t\t\tint v=dp[q][l][i]+dp[q][i+1][r]+a[r]-a[i];\n\t\t\t\t\tif(v<dp[p][l][r])\n\t\t\t\t\t{\n\t\t\t\t\t\tdp[p][l][r]=v;\n\t\t\t\t\t\tt[p][l][r]=i;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%d\\n\",dp[k&1][1][n]);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 19216, "score_of_the_acc": -0.0023, "final_rank": 1 }, { "submission_id": "aoj_2737_2047355", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n \nint N,K;\nint dp[2][1001][1001];\nint dm[2][1001][1001];\nint a[1000];\n \nint main(){\n scanf(\"%d %d\",&N,&K);\n for(int i=0;i<N;i++)scanf(\"%d\",&a[i]);\n sort(a,a+N);\n fill( (int*)dp[0], (int*)dp[1], 1e9);\n int ans=1e9;\n for(int T=1;T<=K;T++){\n int t=T%2;\n int u=1-t;\n for(int i=0;i<N;i++){\n dp[0][i][i+1]=0;\n dp[1][i][i+1]=0;\n }\n for(int w=2;w<=N;w++){\n for(int i=0;i+w<=N;i++){\n int j=i+w;\n int si=i+1;\n int ti=j-1;\n if(w>2){\n si=dm[t][i][j-1];\n ti=dm[t][i+1][j];\n }\n dp[t][i][j]=1e9;\n for(int k=si;k<=ti;k++){\n if(dp[t][i][j] > dp[u][i][k]+dp[u][k][j]+a[j-1]-a[k-1]){\n dp[t][i][j]=dp[u][i][k]+dp[u][k][j]+a[j-1]-a[k-1];\n dm[t][i][j]=k;\n }\n }\n }\n }\n }\n printf(\"%d\\n\",dp[K%2][0][N]);\n return 0;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 18468, "score_of_the_acc": -0.0569, "final_rank": 4 }, { "submission_id": "aoj_2737_2026691", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint N,K;\nint dp[2][1001][1001];\nint dm[2][1001][1001];\nint a[1000];\n\nint main(){\n scanf(\"%d %d\",&N,&K);\n for(int i=0;i<N;i++)scanf(\"%d\",&a[i]);\n sort(a,a+N);\n fill( (int*)dp[0], (int*)dp[1], 1e9);\n int ans=1e9;\n for(int T=1;T<=K;T++){\n int t=T%2;\n int u=1-t;\n for(int i=0;i<N;i++){\n dp[0][i][i+1]=0;\n dp[1][i][i+1]=0;\n }\n for(int w=2;w<=N;w++){\n for(int i=0;i+w<=N;i++){\n int j=i+w;\n int si=i+1;\n int ti=j-1;\n if(w>2){\n si=dm[t][i][j-1];\n ti=dm[t][i+1][j];\n }\n dp[t][i][j]=1e9;\n for(int k=si;k<=ti;k++){\n if(dp[t][i][j] > dp[u][i][k]+dp[u][k][j]+a[j-1]-a[k-1]){\n dp[t][i][j]=dp[u][i][k]+dp[u][k][j]+a[j-1]-a[k-1];\n dm[t][i][j]=k;\n }\n }\n }\n }\n }\n printf(\"%d\\n\",dp[K%2][0][N]);\n return 0;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 18384, "score_of_the_acc": -0.0568, "final_rank": 3 }, { "submission_id": "aoj_2737_2026682", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint N,K;\nint dp[2][1001][1001];\nint dm[2][1001][1001];\n\nint a[1000];\n\nint main(){\n scanf(\"%d %d\",&N,&K);\n for(int i=0;i<N;i++)scanf(\"%d\",&a[i]);\n sort(a,a+N);\n \n fill( (int*)dp[0], (int*)dp[1], 1e9);\n\n\n int ans=1e9;\n \n for(int T=1;T<=K;T++){\n int t=T%2;\n int u=1-t;\n\n fill( (int*)dp[t], (int*)dp[t+1], 1e9);\n for(int i=0;i<N;i++){\n dp[0][i][i+1]=0;\n dp[1][i][i+1]=0;\n }\n \n for(int w=2;w<=N;w++){\n for(int i=0;i+w<=N;i++){\n int j=i+w;\n int si=i+1;\n int ti=j-1;\n\n if(w>2){\n si=dm[t][i][j-1];\n ti=dm[t][i+1][j];\n }\n \n for(int k=si;k<=ti;k++){\n if(dp[t][i][j] > dp[u][i][k]+dp[u][k][j]+a[j-1]-a[k-1]){\n dp[t][i][j]=dp[u][i][k]+dp[u][k][j]+a[j-1]-a[k-1];\n dm[t][i][j]=k;\n }\n }\n\n if(i==0&&j==N)ans=min(ans,dp[t][i][j]);\n }\n }\n }\n printf(\"%d\\n\",ans);\n return 0;\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 18552, "score_of_the_acc": -0.0613, "final_rank": 5 } ]
aoj_2742_cpp
E - 選挙活動 Problem Statement あなたは次回の選挙の候補者であるX氏の支援者である. X氏は駅前での街頭演説を予定しており,できるだけ多くの有権者に見てもらえる場所で演説しようと考えている. 駅前は $N$ 個の障害物と $M$ 人の有権者が存在している二次元平面として与えられる. 各障害物は多角形であらわされ,その多角形の内側の領域が障害物となる.多角形の辺上は障害物に含まれない. また,有権者は平面上の点としてあらわされる. ある有権者の位置とX氏の位置を結ぶ線分上に障害物が存在しないとき,その有権者はX氏を見ることができる. あなたの仕事は,駅前の障害物と有権者の情報をもとに,もっとも多くの有権者に見てもらえる地点を探すことだ. 最大で何人の有権者から見えるように演説することができるかを求めよ. Input 入力は以下のフォーマットで与えられる. $N$ $M$ $polygon_1$ $polygon_2$ $...$ $polygon_N$ $x_1$ $y_1$ $x_2$ $y_2$ $...$ $x_M$ $y_M$ データセットの最初の行は空白文字1つで区切られた2個の整数 $N$, $M$ からなる. $N$ $(1 \le N \le 5)$ は駅前にある障害物の個数であり,$M$ $(1 \le M \le 10)$ は駅前にいる有権者の数である. 続く行から $N$ 個の障害物の情報が与えられる.1つの障害物を表す入力は以下の形式で与えられる. $L$ $x_1$ $y_1$ $x_2$ $y_2$ $...$ $x_L$ $y_L$ 各障害物情報の最初の行はその障害物をあらわす多角形に含まれる頂点の数 $L$ である. その後の $L$ 行には多角形の頂点の座標を表す整数の組が反時計回りに記されている.なお,障害物を構成する頂点数の合計は $15$ 個以下となる. $N$ 個の障害物の情報の後に続く $M$ 行には有権者のいる座標を表す整数の組が与えられる. また,各テストケースは以下の条件を満たす: $ 0 \le |x_i|, |y_i| \le 20 $ 多角形の頂点または有権者のいる場所の座標はすべて互いに異なる. 多角形の頂点または有権者のいる場所の座標のうち3点が同一直線状に存在することはない. 2つの異なる多角形同士は交差を持たない. 各多角形は自己交差を持たない. 多角形の内部に有権者が存在することはない. Output 最大で何人の有権者が演説を見られるようになるかを1行に出力せよ. Sample Input 1 1 2 4 5 5 15 5 15 15 5 15 0 10 20 10 Output for the Sample Input 1 2 Sample Input 2 1 2 6 0 0 20 0 12 9 20 20 0 20 8 11 1 10 19 10 Output for the Sample Input 2 1 Sample Input 3 4 2 3 0 0 20 0 20 1 3 0 18 19 19 19 20 3 3 2 4 2 4 17 3 16 3 17 3 17 18 2 9 18 10 Output for the Sample Input 3 1 Sample Input 4 3 3 3 0 -2 -1 -3 -1 -6 3 2 2 3 2 4 3 3 -4 4 -4 5 -5 6 0 -3 3 3 -5 5 Output for the Sample Input 4 3 Sample Input 5 2 2 4 2 0 1 2 -1 2 -2 0 4 3 3 3 4 -3 4 -3 3 2 1 -2 1 Output for the Sample Input 5 2 Sample Input 6 1 1 4 1 1 -1 1 -1 -1 1 -1 0 2 Output for the Sample Input 6 1 各入力例の障害物および有権者の配置は,それぞれ以下の図のようになっている.
[ { "submission_id": "aoj_2742_10851262", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-8;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\n\n\n#define X real()\n#define Y imag()\n\n#define curr(P,i) P[i]\n#define next(P,i) P[(i+1)%P.size()]\n\ntypedef complex<ld> P;\ntypedef vector<P> Pol;\n\nnamespace std{\n template<class T> bool operator<(const complex<T> &a , const complex<T> &b ){\n return a.X == b.X ? a.Y < b.Y : a.X < b.X;\n }\n}\n\nconst ld PI = atan(1)*4.0;\n\nstruct L : public vector<P> {\n L( const P a , const P b ){\n pb( a ); pb( b );\n }\n L(){}\n};\n\nstruct C{\n P p; ld r;\n C( const P p , ld r ) : p(p) , r(r) {}\n C(){}\n};\n\ninline ld det( const P &a , const P &b ){\n return imag(conj(a)*b);\n}\ninline ld dot( const P &a , const P &b ){\n return real(conj(a)*b);\n}\n\ninline P unit( const P &a ){\n return a / abs( a );\n}\n\ninline ld arg( const P &p ){\n return atan2l( p.Y , p.X );\n}\n\ninline P ort( P a ){\n return P( -a.Y , a.X );\n}\n\ninline P mid( const P a , const P b ){\n return ( a + b ) * (ld)0.5;\n}\n\nld dtor( ld d ){\n return d * PI / 180.0;\n}\n\nint ccw( P a , P b , P c ){\n b -= a; c -= a;\n if( det( b , c ) > EPS ) return +1; // counter clockwise\n if( det( b , c ) < -EPS ) return -1; // clockwise\n if( dot( b , c ) < -EPS ) return +2; // c--a--b on line\n if( norm(b) < norm(c) - EPS ) return -2; // a--b--c on line\n return 0;\n}\n\nbool intersectLL( const L &l , const L &m ){\n return abs( det( l[1] - l[0] , m[1] - m[0] ) ) > EPS || abs( det( l[1] - l[0] , m[0] - l[0] ) ) < EPS;\n}\n\nbool parallel( const L l , const L m ){\n return abs( det( l[1] - l[0] , m[1] - m[0] ) ) < EPS;\n}\n\nbool intersectSP( const L &s , const P &p ){\n return abs( s[0] - p ) + abs( s[1] - p ) - abs( s[1] - s[0] ) < EPS;\n}\n\nbool intersectLP( const L l , const P p ){\n return abs( det( l[1] - p , l[0] - p ) ) < EPS;\n}\n\n// not including touch\nbool intersectSS( const L s , const L t ){\n return ccw( s[0] , s[1] , t[0] ) * ccw( s[0] , s[1] , t[1] ) < 0 && ccw( t[0] , t[1] , s[0] ) * ccw( t[0] , t[1] , s[1] ) < 0;\n}\n\nbool intersectLS( const L l , const L s ){\n return det( l[1] - l[0] , s[0] - l[0] ) * det( l[1] - l[0] , s[1] - l[0] ) < EPS;\n}\n\nP projection( const L &l , const P &p ){\n ld t = dot( p - l[0] , l[1] - l[0] ) / norm( l[1] - l[0] );\n return l[0] + t * ( l[1] - l[0] );\n}\n\nP symmetry( const L l , const P p ){\n P proj = projection( l , p );\n return proj + ( proj - p );\n}\n\nld distanceSP( const L &s , const P &p ){\n const P r = projection( s , p );\n if( intersectSP( s , r ) ) return abs( r - p );\n return min( abs( s[0] - p ) , abs( s[1] - p ) );\n}\n\nld distanceLP( const L &s , const P &p ){\n return abs( p - projection(s,p) );\n}\n\nld distanceSS( const L s , const L t ){\n if( intersectSS( s , t ) ) return 0;\n return min( min( distanceSP( s , t[0] ) , distanceSP( s , t[1] ) ) , min( distanceSP( t , s[0] ) , distanceSP( t , s[1] ) ) );\n}\n\nP crosspoint( const L &l , const L &m ){\n ld a = det( l[1] - l[0] , m[1] - m[0] );\n ld b = det( l[1] - l[0] , l[1] - m[0] );\n if( abs(a) < EPS && abs(a) < EPS ) return m[0];\n if( abs(a) < EPS ) assert(false);\n return m[0] + b / a * (m[1]-m[0]);\n}\n\nP rotate( P p , ld t ){\n return p * exp( t * P( 0 , 1 ) );\n}\n\nPol rotate( Pol pol , ld t ){\n YYS( p , pol ) p = rotate( p , t );\n return pol;\n}\n\nP rotate( P p , P c , ld t ){\n return rotate( p - c , t ) + c;\n}\n\nint getintersectCC( const C c , const C d ){\n ld di = abs( c.p - d.p );\n if( di < EPS && fabsl( c.r - d.r ) < EPS ) return -1; // same\n if( di < fabsl( c.r - d.r ) - EPS ) return 0; // completely inside\n if( di < fabsl( c.r - d.r ) + EPS ) return 1; // inscribed\n if( di < fabsl( c.r + d.r ) - EPS ) return 2; // intersect\n if( di < fabsl( c.r + d.r ) + EPS ) return 3; // outscribed\n return 4; // completely outside\n}\n\n// include touch\nbool intersectCC( const C c , const C d ){\n int res = getintersectCC( c , d );\n return 1 <= res && res <= 3;\n}\n\npair<P,P> crosspoint( const C c , const C d ){\n int res = getintersectCC( c , d );\n assert( 1 <= res && res <= 3 );\n if( res == 1 || res == 3 ){\n P p = c.p + unit( d.p - c.p ) * c.r;\n if( abs( d.p - p ) < d.r - EPS ) p = c.p + unit( c.p - d.p ) * c.r;\n return make_pair( p , p );\n }\n ld di = abs( c.p - d.p );\n ld a = acos(( c.r * c.r + di * di - d.r * d.r ) / ( 2 * c.r * di ));\n ld t = arg( d.p - c.p );\n return make_pair( c.p + rotate( P( c.r , 0 ) , t+a ) , c.p + rotate( P( c.r , 0 ) , t-a ) );\n}\n\nint intersectCL( const C &c , const L &l ){\n ld di = distanceLP( l , c.p );\n if( di < c.r - EPS ) return 1; // completely intersect\n if( di < c.r + EPS ) return 2; // touch\n return 0;\n}\n\npair<P,P> crosspoint( const C &c , const L &l ){\n assert( intersectCL( c , l ) );\n P pr = projection( l , c.p );\n P e = unit( l[0] - l[1] );\n ld base = sqrtl( c.r * c.r - norm( pr - c.p ) );\n return make_pair( pr + e * base , pr - e * base );\n}\n\nint containCP( const C &c , const P &p ){\n ld di = abs( c.p - p );\n if( di < c.r - EPS ) return 1; // completely inside\n if( di < c.r + EPS ) return 2; // touch\n return 0;\n}\n\npair<P,P> tangent_point( const C c , const P p ){\n return crosspoint( c , C( mid(c.p,p) , abs(p-c.p)/2 ) );\n}\n\npair<L,L> tangent( const C c , const P p ){\n pair<P,P> cp = tangent_point( c , p );\n return make_pair( L( p , cp.fi ) , L( p , cp.se ) );\n}\n\n// First : left , second : right\nvector<Pol> convex_cut( const Pol pol, L l ){\n vector<Pol> Q(2);\n REP( i , pol.size() ){\n P a = curr(pol,i), b = next(pol,i);\n if( ccw(l[0] , l[1] , a ) != -1 ) Q[0].pb( a );\n if( ccw(l[0] , l[1] , a ) != 1 ) Q[1].pb( a );\n if( ccw(l[0] , l[1] , a )*ccw(l[0] , l[1] , b ) < 0 ){\n Q[0].pb( crosspoint( L(a,b) , l ) );\n Q[1].pb( crosspoint( L(a,b) , l ) );\n }\n }\n return Q;\n}\n\nld area( const Pol &pol ){\n ld a = 0;\n REP( i , pol.size() ) a += det( curr(pol,i) , next(pol,i) );\n return a/2;\n}\n\nenum{ OUT , ON , IN };\nint contains( const Pol pol, const P p) {\n bool in = false;\n REP( i , SZ(pol) ){\n P a = curr(pol,i) - p, b = next(pol,i) - p;\n if (imag(a) > imag(b)) swap(a, b);\n if (imag(a) < EPS && EPS < imag(b))\n if( det(a, b) < -EPS) in = !in;\n if( abs( det( a , b ) ) < EPS && dot( a , b ) < EPS ) return ON;\n }\n return in ? IN : OUT;\n}\n\nP bisector( P a , P b ){\n P res = unit(a) + unit(b); // making diamond\n return unit( res );\n}\n\n\nL parp( const P p , const P q ){\n P md = mid( p , q );\n P d = rotate( unit( q - p ) , PI / 2 );\n return L( md , md + d );\n}\n\nP sym( const L l , const P p ){\n P pr = projection( l , p );\n return p + ld(2) * ( pr - p );\n}\n\n\nPol convex_hull( vector<P> ps ){\n int n = SZ(ps);\n int k = 0;\n SORT( ps );\n Pol ch( 2*n );\n for( int i = 0; i < n; ch[k++] = ps[i++] )\n while( k >= 2 && ccw( ch[k-2] , ch[k-1] , ps[i] ) <= 0 ) k--;\n for( int i = n-2, t = k+1; i >= 0; ch[k++] = ps[i--] )\n while( k >= t && ccw( ch[k-2] , ch[k-1] , ps[i] ) <= 0 ) k--;\n ch.resize( k-1 );\n return ch;\n}\n\n\nint n, m;\n\nPol pol[72];\n\nint it;\nL ls[1000];\n\nP p[72];\n\nvector<P> all;\n\nvector<P> cand;\n\nint main(){\n\n n = in();\n m = in();\n\n REP( i , n ){\n int a = in();\n REP( j , a ){\n int x = in();\n int y = in();\n pol[i].pb( P( x , y ) );\n all.pb( P( x , y ) );\n }\n }\n\n REP( i , m ){\n int x = in();\n int y = in();\n p[i] = P( x , y );\n all.pb( p[i] );\n }\n\n REP( i , SZ(all) ){\n REP( j , i ){\n ls[it++] = L( all[i] , all[j] );\n }\n }\n\n REP( i , it ){\n REP( j , i ){\n if( !parallel( ls[i] , ls[j] ) ){\n cand.pb( crosspoint( ls[i] , ls[j] ) );\n }\n }\n }\n\n int ans = 0;\n YYS( w , cand ){\n int cnt = 0;\n REP( i , m ){\n L l = L( w , p[i] );\n bool ok = true;\n REP( j , n ){\n REP( k , SZ(pol[j]) ){\n P cur = curr( pol[j] , k );\n P nex = next( pol[j] , k );\n L ll = L( cur , nex );\n if( intersectSS( l , ll ) ){\n ok = false;\n break;\n }\n }\n P nw = w + unit( p[i] - w ) * ( 3 * EPS );\n if( contains( pol[j] , nw ) ){\n ok = false;\n }\n if( !ok ){\n break;\n }\n }\n if( ok ){\n cnt++;\n }\n }\n chmax( ans , cnt );\n }\n\n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 860, "memory_kb": 5324, "score_of_the_acc": -1.0605, "final_rank": 15 }, { "submission_id": "aoj_2742_10565356", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing ld = long double;\n\nconst ld eps = 1e-9;\n\nstruct pt {\n ld x = 0;\n ld y = 0;\n\n pt operator-(const pt& o) const {\n return {x - o.x, y - o.y};\n }\n\n pt operator+(const pt& o) const {\n return {x + o.x, y + o.y};\n }\n\n pt operator*(ld coef) const {\n return {x * coef, y * coef};\n }\n\n ld vector_mul(const pt& o) const {\n return x * o.y - o.x * y;\n }\n};\n\noptional<pt> intersect_lines(pt a, pt b, pt c, pt d) {\n pt ab = b - a;\n pt cd = d - c;\n // [a + ab * t - c, cd] = 0\n // [a - c, cd] + t * [ab, cd] = 0\n // t = [cd, a - c] / [ab, cd]\n ld vm = ab.vector_mul(cd);\n if (abs(vm) < eps) return nullopt;\n ld t = cd.vector_mul(a - c) / vm;\n return a + ab * t;\n}\n\nbool are_segs_intersected(pt a, pt b, pt c, pt d) {\n ld vm1, vm2;\n vm1 = (b - a).vector_mul(c - a);\n vm2 = (b - a).vector_mul(d - a);\n if (vm1 < eps && vm2 < eps) return false;\n if (vm1 > -eps && vm2 > -eps) return false;\n vm1 = (d - c).vector_mul(a - c);\n vm2 = (d - c).vector_mul(b - c);\n if (vm1 < eps && vm2 < eps) return false;\n if (vm1 > -eps && vm2 > -eps) return false;\n return true;\n}\n\nsigned main() {\n\n#ifdef LOCAL\n freopen(\"input.txt\", \"r\", stdin);\n#endif\n\n ios_base::sync_with_stdio(0);\n cin.tie(0);\n cout.tie(0);\n\n int n, m;\n cin >> n >> m;\n\n vector<vector<pt>> Ps(n);\n for (int i = 0; i < n; ++i) {\n int sz;\n cin >> sz;\n Ps[i].resize(sz);\n for (pt& p : Ps[i]) cin >> p.x >> p.y;\n }\n\n vector<pt> a(m);\n for (pt& p : a) cin >> p.x >> p.y;\n\n vector<pt> all_pts;\n for (auto P : Ps) copy(P.begin(), P.end(), back_inserter(all_pts));\n\n {\n vector<pt> add_pts;\n for (pt A : a) {\n for (pt C : a) {\n for (pt B : all_pts) {\n for (pt D : all_pts) {\n if (auto I = intersect_lines(A, B, C, D); I.has_value()) {\n add_pts.push_back(I.value());\n }\n }\n }\n }\n }\n copy(add_pts.begin(), add_pts.end(), back_inserter(all_pts));\n }\n\n copy(a.begin(), a.end(), back_inserter(all_pts));\n\n auto check = [&](pt q, pt p) -> bool {\n for (auto P : Ps) {\n int sz = (int) P.size();\n for (int i = 0; i < sz; ++i) {\n int j = (i + 1) % sz;\n if (are_segs_intersected(q, p, P[i], P[j])) {\n return false;\n }\n }\n }\n return true;\n };\n\n int res = 0;\n for (pt q : all_pts) {\n int tmp = 0;\n for (pt p : a) {\n if (check(q, p)) {\n ++tmp;\n }\n }\n res = max(res, tmp);\n }\n cout << res << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5552, "score_of_the_acc": -1.004, "final_rank": 14 }, { "submission_id": "aoj_2742_10211935", "code_snippet": "// AOJ #2742\n// Campaign 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\nconst double EPS = 1e-9;\n \nstruct Point { double x, y; };\nstruct Line { Point origin, dir; };\n\nPoint operator+(const Point &a, const Point &b) { return {a.x+b.x, a.y+b.y}; }\nPoint operator-(const Point &a, const Point &b) { return {a.x-b.x, a.y-b.y}; }\nPoint operator*(const Point &a, double c) { return {a.x*c, a.y*c}; }\nPoint operator*(double c, const Point &a) { return {a.x*c, a.y*c}; }\nPoint operator/(const Point &a, double c) { return {a.x/c, a.y/c}; }\n \ndouble dot(const Point &a, const Point &b) {\n return a.x*b.x + a.y*b.y;\n}\n \ndouble cross(const Point &a, const Point &b) {\n return a.x*b.y - a.y*b.x;\n}\n \nbool nearlyEqual(double a, double b, double eps = EPS){\n return fabs(a-b) < eps;\n}\n \nbool onSegment(const Point &p, const Point &a, const Point &b) {\n if(fabs(cross(p - a, b - a)) > EPS) return false;\n if((p.x - a.x)*(p.x - b.x) > EPS) return false;\n if((p.y - a.y)*(p.y - b.y) > EPS) return false;\n return true;\n}\n \nbool pointInPolygon(const Point &p, const vector<Point> &poly) {\n bool inside = false;\n int n = poly.size();\n for (int i = 0; i < n; i++){\n Point A = poly[i], B = poly[(i+1)%n];\n if(onSegment(p, A, B)) return true;\n bool cond1 = (A.y > p.y) != (B.y > p.y);\n if(cond1){\n double xInt = A.x + (B.x - A.x)*(p.y - A.y)/(B.y - A.y);\n if(p.x < xInt) inside = !inside;\n }\n }\n return inside;\n}\n \nbool pointInPolygonStrict(const Point &p, const vector<Point> &poly) {\n int n = poly.size();\n for (int i = 0; i < n; i++){\n if(onSegment(p, poly[i], poly[(i+1)%n])) return false;\n }\n bool inside = false;\n for (int i = 0; i < n; i++){\n Point A = poly[i], B = poly[(i+1)%n];\n bool cond1 = (A.y > p.y) != (B.y > p.y);\n if(cond1){\n double xInt = A.x + (B.x - A.x)*(p.y - A.y)/(B.y - A.y);\n if(p.x < xInt) inside = !inside;\n }\n }\n return inside;\n}\n \nbool computeLineIntersection(const Point &p, const Point &r, const Point &q, const Point &s, Point &res) {\n double rxs = cross(r, s);\n if(fabs(rxs) < EPS) return false;\n double t = cross(q - p, s) / rxs;\n res = p + r * t;\n return true;\n}\n \nbool checkSegmentVisibilityForPoly(const Point &V, const Point &X, const vector<Point> &poly) {\n Point r = X - V;\n int n = poly.size();\n vector<double> ts;\n for (int i = 0; i < n; i++){\n Point A = poly[i], B = poly[(i+1)%n];\n Point seg = B - A;\n double rxs = cross(r, seg);\n if(fabs(rxs) < EPS) continue;\n double t_val = cross(A - V, seg) / rxs;\n double u_val = cross(A - V, r) / rxs;\n if(t_val > EPS && t_val < 1 - EPS && u_val > -EPS && u_val < 1 + EPS){\n ts.push_back(t_val);\n }\n }\n sort(ts.begin(), ts.end());\n vector<double> uniq;\n for(double val : ts){\n if(uniq.empty() || fabs(val - uniq.back()) > EPS)\n uniq.push_back(val);\n }\n double start = 0.0;\n for(double t_val : uniq){\n if(t_val - start > EPS){\n double mid = (start + t_val) / 2.0;\n Point midPoint = V + r * mid;\n if(pointInPolygonStrict(midPoint, poly)) return false;\n }\n start = t_val;\n }\n if(1.0 - start > EPS){\n double mid = (start + 1.0) / 2.0;\n Point midPoint = V + r * mid;\n if(pointInPolygonStrict(midPoint, poly)) return false;\n }\n return true;\n}\n \nbool checkSegmentVisibility(const Point &V, const Point &X, const vector<vector<Point>> &obstacles) {\n for(auto &poly : obstacles){\n if(!checkSegmentVisibilityForPoly(V, X, poly))\n return false;\n }\n return true;\n}\n \nbool inFreeSpace(const Point &p, const vector<vector<Point>> &obstacles) {\n for(auto &poly : obstacles){\n if(pointInPolygonStrict(p, poly)) return false;\n }\n return true;\n}\n \nint main() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N, M;\n cin >> N >> M;\n \n vector<vector<Point>> obstacles;\n vector<Point> allObstacleVertices;\n for (int i=0; i<N; i++){\n int L;\n cin >> L;\n vector<Point> poly(L);\n for (int j=0; j<L; j++) cin >> poly[j].x >> poly[j].y;\n obstacles.push_back(poly);\n for(auto &p : poly) allObstacleVertices.push_back(p);\n }\n \n vector<Point> voters(M);\n for (int i=0; i<M; i++) cin >> voters[i].x >> voters[i].y;\n \n vector<Point> candidates;\n for (auto &v : voters) candidates.push_back(v);\n for (auto &p : allObstacleVertices) candidates.push_back(p);\n \n struct LStruct { Point origin; Point dir; };\n vector<LStruct> lines;\n for (int i=0; i<M; i++){\n for (auto &obsV : allObstacleVertices) {\n if(nearlyEqual(voters[i].x, obsV.x) && nearlyEqual(voters[i].y, obsV.y))\n continue;\n LStruct L;\n L.origin = voters[i];\n L.dir = obsV - voters[i];\n lines.push_back(L);\n }\n }\n int Lsize = lines.size();\n for (int i = 0; i < Lsize; i++){\n for (int j = i+1; j < Lsize; j++){\n Point inter;\n if(computeLineIntersection(lines[i].origin, lines[i].dir,\n lines[j].origin, lines[j].dir, inter)){\n candidates.push_back(inter);\n }\n }\n }\n \n vector<Point> uniq;\n for (auto &p : candidates) {\n bool dup = false;\n for (auto &q : uniq) {\n if(nearlyEqual(p.x, q.x) && nearlyEqual(p.y, q.y)){\n dup = true; break;\n }\n }\n if(!dup) uniq.push_back(p);\n }\n candidates = uniq;\n \n int best = 0;\n for (auto &cand : candidates) {\n if(!inFreeSpace(cand, obstacles)) continue;\n int cnt = 0;\n for (auto &v : voters) {\n if(checkSegmentVisibility(v, cand, obstacles)) cnt++;\n }\n best = max(best, cnt);\n if(best == M) break;\n }\n cout << best << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3844, "score_of_the_acc": -0.2078, "final_rank": 9 }, { "submission_id": "aoj_2742_9555194", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nusing T = double;\nconst T eps = 1e-12;\nusing Point = complex<T>;\nusing Poly = vector<Point>;\n#define X real()\n#define Y imag()\ntemplate <typename T> inline bool eq(const T &a, const T &b) {\n return fabs(a - b) < eps;\n}\nbool cmp(const Point &a, const Point &b) {\n auto sub = [&](Point a) {\n return (a.Y < 0 ? -1 : (a.Y == 0 && a.X >= 0 ? 0 : 1));\n };\n if (sub(a) != sub(b))\n return sub(a) < sub(b);\n return a.Y * b.X < a.X * b.Y;\n}\nstruct Line {\n Point a, b, dir;\n Line() {}\n Line(Point _a, Point _b) : a(_a), b(_b), dir(b - a) {}\n Line(T A, T B, T C) {\n if (eq(A, .0)) {\n a = Point(0, C / B), b = Point(1 / C / B);\n } else if (eq(B, .0)) {\n a = Point(C / A, 0), b = Point(C / A, 1);\n } else {\n a = Point(0, C / B), b = Point(C / A, 0);\n }\n }\n};\nstruct Segment : Line {\n Segment() {}\n Segment(Point _a, Point _b) : Line(_a, _b) {}\n};\nstruct Circle {\n Point p;\n T r;\n Circle() {}\n Circle(Point _p, T _r) : p(_p), r(_r) {}\n};\n\nistream &operator>>(istream &is, Point &p) {\n T x, y;\n is >> x >> y;\n p = Point(x, y);\n return is;\n}\nostream &operator<<(ostream &os, Point &p) {\n os << fixed << setprecision(12) << p.X << ' ' << p.Y;\n return os;\n}\nPoint unit(const Point &a) {\n return a / abs(a);\n}\nT dot(const Point &a, const Point &b) {\n return a.X * b.X + a.Y * b.Y;\n}\nT cross(const Point &a, const Point &b) {\n return a.X * b.Y - a.Y * b.X;\n}\nPoint rot(const Point &a, const T &theta) {\n return Point(cos(theta) * a.X - sin(theta) * a.Y,\n sin(theta) * a.X + cos(theta) * a.Y);\n}\nPoint rot90(const Point &a) {\n return Point(-a.Y, a.X);\n}\nT arg(const Point &a, const Point &b, const Point &c) {\n double ret = acos(dot(a - b, c - b) / abs(a - b) / abs(c - b));\n if (cross(a - b, c - b) < 0)\n ret = -ret;\n return ret;\n}\n\nPoint Projection(const Line &l, const Point &p) {\n T t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\nPoint Projection(const Segment &l, const Point &p) {\n T t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\nPoint Reflection(const Line &l, const Point &p) {\n return p + (Projection(l, p) - p) * 2.;\n}\nint ccw(const Point &a, Point b, Point c) {\n b -= a;\n c -= a;\n if (cross(b, c) > eps)\n return 1; // ccw\n\n if (cross(b, c) < -eps)\n return -1; // cw\n\n if (dot(b, c) < 0)\n return 2; // c,a,b\n\n if (norm(b) < norm(c))\n return -2; // a,b,c\n\n return 0; // a,c,b\n\n}\nbool isOrthogonal(const Line &a, const Line &b) {\n return eq(dot(a.b - a.a, b.b - b.a), .0);\n}\nbool isParallel(const Line &a, const Line &b) {\n return eq(cross(a.b - a.a, b.b - b.a), .0);\n}\nbool isIntersect(const Segment &a, const Segment &b) {\n return ccw(a.a, a.b, b.a) * ccw(a.a, a.b, b.b) < 0 and\n ccw(b.a, b.b, a.a) * ccw(b.a, b.b, a.b) < 0;\n}\nint isIntersect(const Circle &a, const Circle &b) {\n T d = abs(a.p - b.p);\n if (d > a.r + b.r + eps)\n return 4;\n if (eq(d, a.r + b.r))\n return 3;\n if (eq(d, abs(a.r - b.r)))\n return 1;\n if (d < abs(a.r - b.r) - eps)\n return 0;\n return 2;\n}\nT Dist(const Line &a, const Point &b) {\n Point c = Projection(a, b);\n return abs(c - b);\n}\nT Dist(const Segment &a, const Point &b) {\n if (dot(a.b - a.a, b - a.a) < eps)\n return abs(b - a.a);\n if (dot(a.a - a.b, b - a.b) < eps)\n return abs(b - a.b);\n return abs(cross(a.b - a.a, b - a.a)) / abs(a.b - a.a);\n}\nT Dist(const Segment &a, const Segment &b) {\n if (isIntersect(a, b))\n return .0;\n T res = min({Dist(a, b.a), Dist(a, b.b), Dist(b, a.a), Dist(b, a.b)});\n return res;\n}\nPoint Intersection(const Line &a, const Line &b) {\n T d1 = cross(a.b - a.a, b.b - b.a);\n T d2 = cross(a.b - a.a, a.b - b.a);\n if (eq(d1, 0.) and eq(d2, 0.))\n return b.a;\n return b.a + (b.b - b.a) * (d2 / d1);\n}\nPoly Intersection(const Circle &a, const Line &b) {\n Poly res;\n T d = Dist(b, a.p);\n if (d > a.r + eps)\n return res;\n Point h = Projection(b, a.p);\n if (eq(d, a.r)) {\n res.push_back(h);\n return res;\n }\n Point e = unit(b.b - b.a);\n T ph = sqrt(a.r * a.r - d * d);\n res.push_back(h - e * ph);\n res.push_back(h + e * ph);\n return res;\n}\nPoly Intersection(const Circle &a, const Segment &b) {\n Line c(b.a, b.b);\n Poly sub = Intersection(a, c);\n double xmi = min(b.a.X, b.b.X), xma = max(b.a.X, b.b.X);\n double ymi = min(b.a.Y, b.b.Y), yma = max(b.a.Y, b.b.Y);\n Poly res;\n rep(i, 0, sub.size()) {\n if (xmi <= sub[i].X + eps and sub[i].X - eps <= xma and\n ymi <= sub[i].Y + eps and sub[i].Y - eps <= yma) {\n res.push_back(sub[i]);\n }\n }\n return res;\n}\nPoly Intersection(const Circle &a, const Circle &b) {\n Poly res;\n int mode = isIntersect(a, b);\n T d = abs(a.p - b.p);\n if (mode == 4 or mode == 0)\n return res;\n if (mode == 3) {\n T t = a.r / (a.r + b.r);\n res.push_back(a.p + (b.p - a.p) * t);\n return res;\n }\n if (mode == 1) {\n if (b.r < a.r - eps) {\n res.push_back(a.p + (b.p - a.p) * (a.r / d));\n } else {\n res.push_back(b.p + (a.p - b.p) * (b.r / d));\n }\n return res;\n }\n T rc = (a.r * a.r + d * d - b.r * b.r) / d / 2.;\n T rs = sqrt(a.r * a.r - rc * rc);\n if (a.r - abs(rc) < eps)\n rs = 0;\n Point e = unit(b.p - a.p);\n res.push_back(a.p + rc * e + rs * e * Point(0, 1));\n res.push_back(a.p + rc * e + rs * e * Point(0, -1));\n return res;\n}\nPoly HalfplaneIntersection(vector<Line> &H) {\n sort(ALL(H), [&](Line &l1, Line &l2) { return cmp(l1.dir, l2.dir); });\n auto outside = [&](Line &L, Point p) -> bool {\n return cross(L.dir, p - L.a) < -eps;\n };\n deque<Line> deq;\n int sz = 0;\n rep(i, 0, SZ(H)) {\n while (sz > 1 and\n outside(H[i], Intersection(deq[sz - 1], deq[sz - 2]))) {\n deq.pop_back();\n sz--;\n }\n while (sz > 1 and outside(H[i], Intersection(deq[0], deq[1]))) {\n deq.pop_front();\n sz--;\n }\n if (sz > 0 and fabs(cross(H[i].dir, deq[sz - 1].dir)) < eps) {\n if (dot(H[i].dir, deq[sz - 1].dir) < 0) {\n return {};\n }\n if (outside(H[i], deq[sz - 1].a)) {\n deq.pop_back();\n sz--;\n } else\n continue;\n }\n deq.push_back(H[i]);\n sz++;\n }\n\n while (sz > 2 and outside(deq[0], Intersection(deq[sz - 1], deq[sz - 2]))) {\n deq.pop_back();\n sz--;\n }\n while (sz > 2 and outside(deq[sz - 1], Intersection(deq[0], deq[1]))) {\n deq.pop_front();\n sz--;\n }\n if (sz < 3)\n return {};\n deq.push_back(deq.front());\n Poly ret;\n rep(i, 0, sz) ret.push_back(Intersection(deq[i], deq[i + 1]));\n return ret;\n}\n\nT Area(const Poly &a) {\n T res = 0;\n int n = a.size();\n rep(i, 0, n) res += cross(a[i], a[(i + 1) % n]);\n return fabs(res / 2.);\n}\nT Area(const Poly &a, const Circle &b) {\n int n = a.size();\n if (n < 3)\n return .0;\n auto rec = [&](auto self, const Circle &c, const Point &p1,\n const Point &p2) {\n Point va = c.p - p1, vb = c.p - p2;\n T f = cross(va, vb), res = .0;\n if (eq(f, .0))\n return res;\n if (max(abs(va), abs(vb)) < c.r + eps)\n return f;\n if (Dist(Segment(p1, p2), c.p) > c.r - eps)\n return c.r * c.r * arg(vb * conj(va));\n auto u = Intersection(c, Segment(p1, p2));\n Poly sub;\n sub.push_back(p1);\n for (auto &x : u)\n sub.push_back(x);\n sub.push_back(p2);\n rep(i, 0, sub.size() - 1) res += self(self, c, sub[i], sub[i + 1]);\n return res;\n };\n T res = .0;\n rep(i, 0, n) res += rec(rec, b, a[i], a[(i + 1) % n]);\n return fabs(res / 2.);\n}\nT Area(const Circle &a, const Circle &b) {\n T d = abs(a.p - b.p);\n if (d >= a.r + b.r - eps)\n return .0;\n if (d <= abs(a.r - b.r) + eps) {\n T r = min(a.r, b.r);\n return M_PI * r * r;\n }\n T ath = acos((a.r * a.r + d * d - b.r * b.r) / d / a.r / 2.);\n T res = a.r * a.r * (ath - sin(ath * 2) / 2.);\n T bth = acos((b.r * b.r + d * d - a.r * a.r) / d / b.r / 2.);\n res += b.r * b.r * (bth - sin(bth * 2) / 2.);\n return fabs(res);\n}\nbool isConvex(const Poly &a) {\n int n = a.size();\n int cur, pre, nxt;\n rep(i, 0, n) {\n pre = (i - 1 + n) % n;\n nxt = (i + 1) % n;\n cur = i;\n if (ccw(a[pre], a[cur], a[nxt]) == -1)\n return 0;\n }\n return 1;\n}\nint isContained(const Poly &a,\n const Point &b) { // 0:not contain,1:on edge,2:contain\n\n bool res = 0;\n int n = a.size();\n rep(i, 0, n) {\n Point p = a[i] - b, q = a[(i + 1) % n] - b;\n if (p.Y > q.Y)\n swap(p, q);\n if (p.Y < eps and eps < q.Y and cross(p, q) > eps)\n res ^= 1;\n if (eq(cross(p, q), .0) and dot(p, q) < eps)\n return 1;\n }\n return (res ? 2 : 0);\n}\nPoly ConvexHull(Poly &a) {\n sort(ALL(a), [](const Point &p, const Point &q) {\n return (eq(p.Y, q.Y) ? p.X < q.X : p.Y < q.Y);\n });\n a.erase(unique(ALL(a)), a.end());\n int n = a.size(), k = 0;\n Poly res(n * 2);\n for (int i = 0; i < n; res[k++] = a[i++]) {\n while (k >= 2 and\n cross(res[k - 1] - res[k - 2], a[i] - res[k - 1]) < eps)\n k--;\n }\n for (int i = n - 2, t = k + 1; i >= 0; res[k++] = a[i--]) {\n while (k >= t and\n cross(res[k - 1] - res[k - 2], a[i] - res[k - 1]) < eps)\n k--;\n }\n res.resize(k - 1);\n return res;\n}\nT Diam(const Poly &a) {\n int n = a.size();\n int x = 0, y = 0;\n rep(i, 1, n) {\n if (a[i].Y > a[x].Y)\n x = i;\n if (a[i].Y < a[y].Y)\n y = i;\n }\n T res = abs(a[x] - a[y]);\n int i = x, j = y;\n do {\n if (cross(a[(i + 1) % n] - a[i], a[(j + 1) % n] - a[j]) < 0)\n i = (i + 1) % n;\n else\n j = (j + 1) % n;\n chmax(res, abs(a[i] - a[j]));\n } while (i != x or j != y);\n return res;\n}\nPoly Cut(const Poly &a, const Line &l) {\n int n = a.size();\n Poly res;\n rep(i, 0, n) {\n Point p = a[i], q = a[(i + 1) % n];\n if (ccw(l.a, l.b, p) != -1)\n res.push_back(p);\n if (ccw(l.a, l.b, p) * ccw(l.a, l.b, q) < 0)\n res.push_back(Intersection(Line(p, q), l));\n }\n return res;\n}\n\nT Closest(Poly &a) {\n int n = a.size();\n if (n <= 1)\n return 0;\n sort(ALL(a), [&](Point a, Point b) {\n return (eq(a.X, b.X) ? a.Y < b.Y : a.X < b.X);\n });\n Poly buf(n);\n auto rec = [&](auto self, int lb, int rb) -> T {\n if (rb - lb <= 1)\n return (T)INF;\n int mid = (lb + rb) >> 1;\n auto x = a[mid].X;\n T res = min(self(self, lb, mid), self(self, mid, rb));\n inplace_merge(a.begin() + lb, a.begin() + mid, a.begin() + rb,\n [&](auto p, auto q) { return p.Y < q.Y; });\n int ptr = 0;\n rep(i, lb, rb) {\n if (abs(a[i].X - x) >= res)\n continue;\n rep(j, 0, ptr) {\n auto sub = a[i] - buf[ptr - 1 - j];\n if (sub.Y >= res)\n break;\n chmin(res, abs(sub));\n }\n buf[ptr++] = a[i];\n }\n return res;\n };\n return rec(rec, 0, n);\n}\n\nCircle Incircle(const Point &a, const Point &b, const Point &c) {\n T A = abs(b - c), B = abs(c - a), C = abs(a - b);\n Point p(A * a.X + B * b.X + C * c.X, A * a.Y + B * b.Y + C * c.Y);\n p /= (A + B + C);\n T r = Dist(Line(a, b), p);\n return Circle(p, r);\n}\nCircle Circumcircle(const Point &a, const Point &b, const Point &c) {\n Line l1((a + b) / 2., (a + b) / 2. + (b - a) * Point(0, 1));\n Line l2((b + c) / 2., (b + c) / 2. + (c - b) * Point(0, 1));\n Point p = Intersection(l1, l2);\n return Circle(p, abs(p - a));\n}\nPoly tangent(const Point &a, const Circle &b) {\n return Intersection(b, Circle(a, sqrt(norm(b.p - a) - b.r * b.r)));\n}\nvector<Line> tangent(const Circle &a, const Circle &b) {\n vector<Line> res;\n T d = abs(a.p - b.p);\n if (eq(d, 0.))\n return res;\n Point u = unit(b.p - a.p);\n Point v = u * Point(0, 1);\n for (int t : {-1, 1}) {\n T h = (a.r + b.r * t) / d;\n if (eq(h * h, 1.)) {\n res.push_back(Line(a.p + (h > 0 ? u : -u) * a.r,\n a.p + (h > 0 ? u : -u) * a.r + v));\n } else if (1 > h * h) {\n Point U = u * h, V = v * sqrt(1 - h * h);\n res.push_back(Line(a.p + (U + V) * a.r, b.p - (U + V) * (b.r * t)));\n res.push_back(Line(a.p + (U - V) * a.r, b.p - (U - V) * (b.r * t)));\n }\n }\n return res;\n}\n\n/**\n * @brief Geometry\n */\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<Poly> V(N);\n vector<Segment> Seg;\n vector<Point> P(M);\n rep(i,0,N) {\n int L;\n cin >> L;\n rep(j,0,L) {\n double PX, PY;\n cin >> PX >> PY;\n V[i].push_back(Point{PX,PY});\n }\n rep(j,0,L) {\n Seg.push_back(Segment(V[i][j],V[i][(j+1)%L]));\n }\n }\n rep(i,0,M) {\n double PX, PY;\n cin >> PX >> PY;\n P[i] = Point(PX,PY);\n }\n vector<Line> L;\n rep(i,0,N) {\n for (Point p : V[i]) {\n rep(j,0,M) {\n L.push_back(Line(p,P[j]));\n }\n }\n }\n int ANS = 0;\n for (Line L1 : L) {\n for (Line L2 : L) {\n if (isParallel(L1,L2)) continue;\n Point Cand = Intersection(L1,L2);\n int COUNT = 0;\n rep(i,0,M) {\n bool flag = true;\n Segment S1(Cand,P[i]);\n for (Segment S2 : Seg) {\n if (isIntersect(S1,S2)) flag = false;\n }\n if (flag) COUNT++;\n }\n chmax(ANS, COUNT);\n }\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3652, "score_of_the_acc": -0.1121, "final_rank": 3 }, { "submission_id": "aoj_2742_9376016", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n\nusing ll = long long;\nusing i64 = long long;\nusing pll = pair<ll,ll>;\nusing plll = pair<pll,ll>;\nusing pii =pair<int,int>;\n\nconstexpr ll mod = 1000000007;\n\nint dx[4]={1,0,-1,0};\nint dy[4]={0,1,0,-1};\nint dX[4]={1,0,-1,0};\nint dY[4]={0,-1,0,1};\n\n\n\n//library\n\n#define equals(a,b) (fabs((a)-(b))<EPS)\n\nconst double EPS = 1e-10;\nconst double PI = asinl(1) * 2;\n\nstruct Point{\n double x,y;\n Point(){}\n Point(double x,double y):x(x),y(y){}\n Point operator+(Point p) {return Point(x+p.x,y+p.y);}\n Point operator-(Point p) {return Point(x-p.x,y-p.y);}\n Point operator*(double k){return Point(x*k,y*k);}\n Point operator/(double k){return Point(x/k,y/k);}\n double norm(){return x*x+y*y;}\n double abs(){return sqrt(norm());}\n\n bool operator<(const Point &p) const{\n return x!=p.x?x<p.x:y<p.y;\n //grid-point only\n //return !equals(x,p.x)?x<p.x:!equals(y,p.y)?y<p.y:0;\n }\n\n bool operator==(const Point &p) const{\n return fabs(x-p.x)<EPS and fabs(y-p.y)<EPS;\n }\n};\n\nbool sort_x(Point a,Point b){\n return a.x!=b.x?a.x<b.x:a.y<b.y;\n}\n\nbool sort_y(Point a,Point b){\n return a.y!=b.y?a.y<b.y:a.x<b.x;\n}\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Segment{\n Point p1,p2;\n Segment(){}\n Segment(Point p1, Point p2):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\nstruct Circle{\n Point c;\n double r;\n Circle(){}\n Circle(Point c,double r):c(c),r(r){}\n};\n\ndouble norm(Vector a){\n return a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n return sqrt(norm(a));\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x+a.y*b.y;\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\nPoint orth(Point p){return Point(-p.y,p.x);}\n\nbool isOrthogonal(Vector a,Vector b){\n return equals(dot(a,b),0.0);\n}\n\nbool isOrthogonal(Point a1,Point a2,Point b1,Point b2){\n return isOrthogonal(a1-a2,b1-b2);\n}\n\nbool isOrthogonal(Segment s1,Segment s2){\n return equals(dot(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Point a1,Point a2,Point b1,Point b2){\n return isParallel(a1-a2,b1-b2);\n}\n\nbool isParallel(Segment s1,Segment s2){\n return equals(cross(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nPoint project(Segment s,Point p){\n Vector base=s.p2-s.p1;\n double r=dot(p-s.p1,base)/norm(base);\n return s.p1+base*r;\n}\n\nPoint reflect(Segment s,Point p){\n return p+(project(s,p)-p)*2.0;\n}\n\ndouble arg(Vector p){\n return atan2(p.y,p.x);\n}\n\nVector polar(double a,double r){\n return Point(cos(r)*a,sin(r)*a);\n}\n\n// COUNTER CLOCKWISE\nstatic const int CCW_COUNTER_CLOCKWISE = 1;\nstatic const int CCW_CLOCKWISE = -1;\nstatic const int CCW_ONLINE_BACK = 2;\nstatic const int CCW_ONLINE_FRONT = -2;\nstatic const int CCW_ON_SEGMENT = 0;\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a = p1-p0;\n Vector b = p2-p0;\n if(cross(a,b) > EPS) return CCW_COUNTER_CLOCKWISE;\n if(cross(a,b) < -EPS) return CCW_CLOCKWISE;\n if(dot(a,b) < -EPS) return CCW_ONLINE_BACK;\n if(a.norm()<b.norm()) return CCW_ONLINE_FRONT;\n return CCW_ON_SEGMENT;\n}\n\nbool intersectSS(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4) <= 0 and\n ccw(p3,p4,p1)*ccw(p3,p4,p2) <= 0 );\n}\n\nbool intersectSS(Segment s1,Segment s2){\n return intersectSS(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nbool intersectPS(Polygon p,Segment l){\n int n=p.size();\n for(int i=0;i<n;++i)\n if(intersectSS(Segment(p[i],p[(i+1)%n]),l)) return 1;\n return 0;\n}\n\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n\ndouble getDistanceSP(Segment s,Point p){\n if(dot(s.p2-s.p1,p-s.p1) < 0.0 ) return abs(p-s.p1);\n if(dot(s.p1-s.p2,p-s.p2) < 0.0 ) return abs(p-s.p2);\n return getDistanceLP(s,p);\n}\n\ndouble getDistanceSS(Segment s1,Segment s2){\n if(intersectSS(s1,s2)) return 0.0;\n return min(\n min(getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2)),\n min(getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2)));\n}\n\n// intercsect of circles\nstatic const int ICC_SEPERATE = 4;\nstatic const int ICC_CIRCUMSCRIBE = 3;\nstatic const int ICC_INTERSECT = 2;\nstatic const int ICC_INSCRIBE = 1;\nstatic const int ICC_CONTAIN = 0;\n\nint intersectCC(Circle c1,Circle c2){\n if(c1.r<c2.r) swap(c1,c2);\n double d=abs(c1.c-c2.c);\n double r=c1.r+c2.r;\n if(equals(d,r)) return ICC_CIRCUMSCRIBE;\n if(d>r) return ICC_SEPERATE;\n if(equals(d+c2.r,c1.r)) return ICC_INSCRIBE;\n if(d+c2.r<c1.r) return ICC_CONTAIN;\n return ICC_INTERSECT;\n}\n\nbool intersectSC(Segment s,Circle c){\n return getDistanceSP(s,c.c)<=c.r;\n}\n\nint intersectCS(Circle c,Segment s){\n if(norm(project(s,c.c)-c.c)-c.r*c.r>EPS) return 0;\n double d1=abs(c.c-s.p1),d2=abs(c.c-s.p2);\n if(d1<c.r+EPS and d2<c.r+EPS) return 0;\n if((d1<c.r-EPS and d2>c.r+EPS)\n or (d1>c.r+EPS and d2<c.r-EPS)) return 1;\n Point h=project(s,c.c);\n if(dot(s.p1-h,s.p2-h)<0) return 2;\n return 0;\n}\n\nPoint getCrossPointSS(Segment s1,Segment s2){\n for(int k=0;k<2;++k){\n if(getDistanceSP(s1,s2.p1)<EPS) return s2.p1;\n if(getDistanceSP(s1,s2.p2)<EPS) return s2.p2;\n swap(s1,s2);\n }\n Vector base=s2.p2-s2.p1;\n double d1=fabs(cross(base,s1.p1-s2.p1));\n double d2=fabs(cross(base,s1.p2-s2.p1));\n double t=d1/(d1+d2);\n return s1.p1+(s1.p2-s1.p1)*t;\n}\n\nPoint getCrossPointLL(Line l1,Line l2){\n double a=cross(l1.p2-l1.p1,l2.p2-l2.p1);\n double b=cross(l1.p2-l1.p1,l1.p2-l2.p1);\n if(fabs(a)<EPS and fabs(b)<EPS) return l2.p1;\n return l2.p1+(l2.p2-l2.p1)*(b/a);\n}\n\nPolygon getCrossPointCL(Circle c,Line l){\n Polygon ps;\n Point pr=project(l,c.c);\n Vector e=(l.p2-l.p1)/abs(l.p2-l.p1);\n if(equals(getDistanceLP(l,c.c),c.r)){\n ps.emplace_back(pr);\n return ps;\n }\n double base=sqrt(c.r*c.r-norm(pr-c.c));\n ps.emplace_back(pr+e*base);\n ps.emplace_back(pr-e*base);\n return ps;\n}\n\nPolygon getCrossPointCS(Circle c,Segment s){\n Line l(s);\n Polygon res=getCrossPointCL(c,l);\n if(intersectCS(c,s)==2) return res;\n if(res.size()>1u){\n if(dot(l.p1-res[0],l.p2-res[0])>0) swap(res[0],res[1]);\n res.pop_back();\n }\n return res;\n}\n\n\nPolygon getCrossPointCC(Circle c1,Circle c2){\n Polygon p(2);\n double d=abs(c1.c-c2.c);\n double a=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));\n double t=arg(c2.c-c1.c);\n p[0]=c1.c+polar(c1.r,t+a);\n p[1]=c1.c+polar(c1.r,t-a);\n return p;\n}\n\n// IN:2 ON:1 OUT:0\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;++i){\n Point a=g[i]-p,b=g[(i+1)%n]-p;\n if(fabs(cross(a,b)) < EPS and dot(a,b) < EPS) return 1;\n if(a.y>b.y) swap(a,b);\n if(a.y < EPS and EPS < b.y and cross(a,b) > EPS )\n x = !x;\n }\n return (x?2:0);\n}\n\n// BEGIN IGNORE\nPolygon andrewScan(Polygon s){\n Polygon u,l;\n if(s.size()<3) return s;\n sort(s.begin(),s.end());\n u.push_back(s[0]);\n u.push_back(s[1]);\n l.push_back(s[s.size()-1]);\n l.push_back(s[s.size()-2]);\n for(int i=2;i<(int)s.size();++i){\n for(int n=u.size();\n n>=2 and ccw(u[n-2],u[n-1],s[i])!=CCW_CLOCKWISE;\n n--){\n u.pop_back();\n }\n u.push_back(s[i]);\n }\n for(int i=s.size()-3;i>=0;i--){\n for(int n=l.size();\n n>=2 and ccw(l[n-2],l[n-1],s[i])!=CCW_CLOCKWISE;\n n--){\n l.pop_back();\n }\n l.push_back(s[i]);\n }\n reverse(l.begin(),l.end());\n for(int i=u.size()-2;i>=1;i--) l.push_back(u[i]);\n return l;\n}\n// END IGNORE\n\nPolygon convex_hull(Polygon ps){\n int n=ps.size();\n sort(ps.begin(),ps.end(),sort_y);\n int k=0;\n Polygon qs(n*2);\n for(int i=0;i<n;++i){\n while(k>1 and cross(qs[k-1]-qs[k-2],ps[i]-qs[k-1])<0)\n k--;\n qs[k++]=ps[i];\n }\n for(int i=n-2,t=k;i>=0;i--){\n while(k>t and cross(qs[k-1]-qs[k-2],ps[i]-qs[k-1])<0)\n k--;\n qs[k++]=ps[i];\n }\n qs.resize(k-1);\n return qs;\n}\n\ndouble diameter(Polygon s){\n Polygon p=s;\n int n=p.size();\n if(n==2) return abs(p[0]-p[1]);\n int i=0,j=0;\n for(int k=0;k<n;++k){\n if(p[i]<p[k]) i=k;\n if(!(p[j]<p[k])) j=k;\n }\n double res=0;\n int si=i,sj=j;\n while(i!=sj or j!=si){\n res=max(res,abs(p[i]-p[j]));\n if(cross(p[(i+1)%n]-p[i],p[(j+1)%n]-p[j])<0.0){\n i=(i+1)%n;\n }else{\n j=(j+1)%n;\n }\n }\n return res;\n}\n\nbool isConvex(Polygon p){\n bool f=1;\n int n=p.size();\n for(int i=0;i<n;++i){\n int t=ccw(p[(i+n-1)%n],p[i],p[(i+1)%n]);\n f&=t!=CCW_CLOCKWISE;\n }\n return f;\n}\n\ndouble area(Polygon s){\n double res=0;\n for(int i=0;i<(int)s.size();++i){\n res+=cross(s[i],s[(i+1)%s.size()])/2.0;\n }\n return res;\n}\n\ndouble area(Circle c1,Circle c2){\n double d=abs(c1.c-c2.c);\n if(c1.r+c2.r<=d+EPS) return 0;\n if(d<=fabs(c1.r-c2.r)){\n double r=min(c1.r,c2.r);\n return PI*r*r;\n }\n double res=0;\n for(int k=0;k<2;++k){\n double rc=(d*d+c1.r*c1.r-c2.r*c2.r)/(2*d*c1.r);\n double th=acosl(rc)*2;\n res+=(th-sinl(th))*c1.r*c1.r/2;\n swap(c1,c2);\n }\n return res;\n}\n\nPolygon convexCut(Polygon p,Line l){\n Polygon q;\n for(int i=0;i<(int)p.size();++i){\n Point a=p[i],b=p[(i+1)%p.size()];\n if(ccw(l.p1,l.p2,a)!=-1) q.push_back(a);\n if(ccw(l.p1,l.p2,a)*ccw(l.p1,l.p2,b)<0)\n q.push_back(getCrossPointLL(Line(a,b),l));\n }\n return q;\n}\n\nLine bisector(Point p1,Point p2){\n Circle c1=Circle(p1,abs(p1-p2)),c2=Circle(p2,abs(p1-p2));\n Polygon p=getCrossPointCC(c1,c2);\n if(cross(p2-p1,p[0]-p1)>0) swap(p[0],p[1]);\n return Line(p[0],p[1]);\n}\n\nVector translate(Vector v,double theta){\n Vector res;\n res.x=cos(theta)*v.x-sin(theta)*v.y;\n res.y=sin(theta)*v.x+cos(theta)*v.y;\n return res;\n}\n\nvector<Line> corner(Line l1,Line l2){\n vector<Line> res;\n if(isParallel(l1,l2)){\n double d=getDistanceLP(l1,l2.p1)/2.0;\n Vector v1=l1.p2-l1.p1;\n v1=v1/v1.abs()*d;\n Point p=l2.p1+translate(v1,90.0*(PI/180.0));\n double d1=getDistanceLP(l1,p);\n double d2=getDistanceLP(l2,p);\n if(fabs(d1-d2)>d){\n p=l2.p1+translate(v1,-90.0*(PI/180.0));\n }\n res.push_back(Line(p,p+v1));\n }else{\n Point p=getCrossPointLL(l1,l2);\n Vector v1=l1.p2-l1.p1,v2=l2.p2-l2.p1;\n v1=v1/v1.abs();\n v2=v2/v2.abs();\n res.push_back(Line(p,p+(v1+v2)));\n res.push_back(\n Line(p,p+translate(v1+v2,90.0*(PI/180.0))));\n }\n return res;\n}\n\nPolygon tangent(Circle c1,Point p2){\n Circle c2=Circle(p2,sqrt(norm(c1.c-p2)-c1.r*c1.r));\n Polygon p=getCrossPointCC(c1,c2);\n sort(p.begin(),p.end());\n return p;\n}\n\nvector<Line> tangent(Circle c1,Circle c2){\n vector<Line> ls;\n if(c1.r<c2.r) swap(c1,c2);\n double g=norm(c1.c-c2.c);\n if(equals(g,0)) return ls;\n Point u=(c2.c-c1.c)/sqrt(g);\n Point v=orth(u);\n for(int s=1;s>=-1;s-=2){\n double h=(c1.r+s*c2.r)/sqrt(g);\n if(equals(1-h*h,0)){\n ls.emplace_back(c1.c+u*c1.r,c1.c+(u+v)*c1.r);\n }else if(1-h*h>0){\n Point uu=u*h,vv=v*sqrt(1-h*h);\n ls.emplace_back(\n c1.c+(uu+vv)*c1.r,c2.c-(uu+vv)*c2.r*s);\n ls.emplace_back(\n c1.c+(uu-vv)*c1.r,c2.c-(uu-vv)*c2.r*s);\n }\n }\n\n return ls;\n}\n\ndouble closest_pair(Polygon &a,int l=0,int r=-1){\n if(r<0){\n r=a.size();\n sort(a.begin(),a.end(),sort_x);\n }\n if(r-l<=1) return abs(a[0]-a[1]);\n int m=(l+r)>>1;\n double x=a[m].x;\n double d=min(closest_pair(a,l,m),closest_pair(a,m,r));\n inplace_merge(a.begin()+l,a.begin()+m,a.begin()+r,sort_y);\n\n Polygon b;\n for(int i=l;i<r;++i){\n if(fabs(a[i].x-x)>=d) continue;\n for(int j=0;j<(int)b.size();++j){\n double dy=a[i].y-next(b.rbegin(),j)->y;\n if(dy>=d) break;\n d=min(d,abs(a[i]-*next(b.rbegin(),j)));\n }\n b.emplace_back(a[i]);\n }\n return d;\n}\n\nvector<vector<int>>\nsegmentArrangement(vector<Segment> &ss, Polygon &ps){\n int n=ss.size();\n for(int i=0;i<n;++i){\n ps.emplace_back(ss[i].p1);\n ps.emplace_back(ss[i].p2);\n for(int j=i+1;j<n;++j)\n if(intersectSS(ss[i],ss[j]))\n ps.emplace_back(getCrossPointSS(ss[i],ss[j]));\n }\n sort(ps.begin(),ps.end());\n ps.erase(unique(ps.begin(),ps.end()),ps.end());\n\n vector<vector<int> > G(ps.size());\n for(int i=0;i<n;++i){\n vector<pair<double,int> > ls;\n for(int j=0;j<(int)ps.size();++j)\n if(getDistanceSP(ss[i],ps[j])<EPS)\n ls.emplace_back(make_pair(norm(ss[i].p1-ps[j]),j));\n\n sort(ls.begin(),ls.end());\n for(int j=0;j+1<(int)ls.size();++j){\n int a=ls[j].second,b=ls[j+1].second;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n }\n for(auto &v:G){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n }\n return G;\n}\n\nstruct EndPoint{\n Point p;\n int seg,st;\n EndPoint(){}\n EndPoint(Point p,int seg,int st):p(p),seg(seg),st(st){}\n bool operator<(const EndPoint &ep)const{\n if(p.y==ep.p.y) return st<ep.st;\n return p.y<ep.p.y;\n }\n};\n\nint manhattan_intersection(\n vector<Segment> ss,const int INF){\n const int BTM = 0;\n const int LFT = 1;\n const int RGH = 2;\n const int TOP = 3;\n\n int n=ss.size();\n vector<EndPoint> ep;\n for(int i=0;i<n;++i){\n if(ss[i].p1.y==ss[i].p2.y){\n if(ss[i].p1.x>ss[i].p2.x) swap(ss[i].p1,ss[i].p2);\n ep.emplace_back(ss[i].p1,i,LFT);\n ep.emplace_back(ss[i].p2,i,RGH);\n }else{\n if(ss[i].p1.y>ss[i].p2.y) swap(ss[i].p1,ss[i].p2);\n ep.emplace_back(ss[i].p1,i,BTM);\n ep.emplace_back(ss[i].p2,i,TOP);\n }\n }\n sort(ep.begin(),ep.end());\n\n set<int> bt;\n bt.insert(INF);\n\n int cnt=0;\n for(int i=0;i<n*2;++i){\n if(ep[i].st==TOP){\n bt.erase(ep[i].p.x);\n }else if(ep[i].st==BTM){\n bt.emplace(ep[i].p.x);\n }else if(ep[i].st==LFT){\n auto b=bt.lower_bound(ss[ep[i].seg].p1.x);\n auto e=bt.upper_bound(ss[ep[i].seg].p2.x);\n cnt+=distance(b,e);\n }\n }\n\n return cnt;\n}\n\ndouble area(Polygon ps,Circle c){\n if(ps.size()<3u) return 0;\n function<double(Circle, Point, Point)> dfs=\n [&](Circle c,Point a,Point b){\n Vector va=c.c-a,vb=c.c-b;\n double f=cross(va,vb),res=0;\n if(equals(f,0.0)) return res;\n if(max(abs(va),abs(vb))<c.r+EPS) return f;\n Vector d(dot(va,vb),cross(va,vb));\n if(getDistanceSP(Segment(a,b),c.c)>c.r-EPS)\n return c.r*c.r*atan2(d.y,d.x);\n auto u=getCrossPointCS(c,Segment(a,b));\n if(u.empty()) return res;\n if(u.size()>1u and dot(u[1]-u[0],a-u[0])>0)\n swap(u[0],u[1]);\n u.emplace(u.begin(),a);\n u.emplace_back(b);\n for(int i=1;i<(int)u.size();++i)\n res+=dfs(c,u[i-1],u[i]);\n return res;\n };\n double res=0;\n for(int i=0;i<(int)ps.size();++i)\n res+=dfs(c,ps[i],ps[(i+1)%ps.size()]);\n return res/2;\n}\n//end\n\n\n\n\nusing Graph =vector<vector<int>>;\n\nint main(){\n int n,m;\n cin>>n>>m;\n vector<Segment> S;\n \n for (int i=0; i<n; i++){\n int l;\n cin>>l;\n vector<pii> P(l);\n for (int i=0; i<l; i++){\n cin>>P[i].first>>P[i].second;\n }\n for (int i=0; i<l; i++){\n Point p1(P[i].first,P[i].second);\n Point p2(P[(i+1)%l].first,P[(i+1)%l].second);\n S.push_back(Segment(p1,p2));\n }\n\n }\n vector<pii>People(m);\n for (int i=0; i<m; i++){\n cin>>People[i].first>>People[i].second;\n }\n\n int h=500;\n int ans=0;\n for (int x=-h; x<=h; x++ ){\n for (int y=-h; y<=h; y++){\n Point p0(x,y);\n int sans=0;\n for (int i=0; i<m; i++){\n Point pp(People[i].first,People[i].second);\n bool f=true;\n Segment s={p0,pp};\n for (auto t: S){\n if (intersectSS(s,t)){\n auto p3=getCrossPointSS(s,t);\n if (p3==t.p1 || p3==t.p2 || p3==s.p1 || p3==s.p2)continue;\n f=false;\n break;\n }\n }\n if (f)sans++;\n \n }\n ans=max(ans,sans);\n }\n }\n cout<<ans<<endl;\n\n\n\n}", "accuracy": 1, "time_ms": 920, "memory_kb": 3492, "score_of_the_acc": -0.2163, "final_rank": 10 }, { "submission_id": "aoj_2742_9376011", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n\nusing ll = long long;\nusing i64 = long long;\nusing pll = pair<ll,ll>;\nusing plll = pair<pll,ll>;\nusing pii =pair<int,int>;\n\nconstexpr ll mod = 1000000007;\n\nint dx[4]={1,0,-1,0};\nint dy[4]={0,1,0,-1};\nint dX[4]={1,0,-1,0};\nint dY[4]={0,-1,0,1};\n\n\n\n//library\n\n#define equals(a,b) (fabs((a)-(b))<EPS)\n\nconst double EPS = 1e-10;\nconst double PI = asinl(1) * 2;\n\nstruct Point{\n double x,y;\n Point(){}\n Point(double x,double y):x(x),y(y){}\n Point operator+(Point p) {return Point(x+p.x,y+p.y);}\n Point operator-(Point p) {return Point(x-p.x,y-p.y);}\n Point operator*(double k){return Point(x*k,y*k);}\n Point operator/(double k){return Point(x/k,y/k);}\n double norm(){return x*x+y*y;}\n double abs(){return sqrt(norm());}\n\n bool operator<(const Point &p) const{\n return x!=p.x?x<p.x:y<p.y;\n //grid-point only\n //return !equals(x,p.x)?x<p.x:!equals(y,p.y)?y<p.y:0;\n }\n\n bool operator==(const Point &p) const{\n return fabs(x-p.x)<EPS and fabs(y-p.y)<EPS;\n }\n};\n\nbool sort_x(Point a,Point b){\n return a.x!=b.x?a.x<b.x:a.y<b.y;\n}\n\nbool sort_y(Point a,Point b){\n return a.y!=b.y?a.y<b.y:a.x<b.x;\n}\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Segment{\n Point p1,p2;\n Segment(){}\n Segment(Point p1, Point p2):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\nstruct Circle{\n Point c;\n double r;\n Circle(){}\n Circle(Point c,double r):c(c),r(r){}\n};\n\ndouble norm(Vector a){\n return a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n return sqrt(norm(a));\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x+a.y*b.y;\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\nPoint orth(Point p){return Point(-p.y,p.x);}\n\nbool isOrthogonal(Vector a,Vector b){\n return equals(dot(a,b),0.0);\n}\n\nbool isOrthogonal(Point a1,Point a2,Point b1,Point b2){\n return isOrthogonal(a1-a2,b1-b2);\n}\n\nbool isOrthogonal(Segment s1,Segment s2){\n return equals(dot(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Point a1,Point a2,Point b1,Point b2){\n return isParallel(a1-a2,b1-b2);\n}\n\nbool isParallel(Segment s1,Segment s2){\n return equals(cross(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nPoint project(Segment s,Point p){\n Vector base=s.p2-s.p1;\n double r=dot(p-s.p1,base)/norm(base);\n return s.p1+base*r;\n}\n\nPoint reflect(Segment s,Point p){\n return p+(project(s,p)-p)*2.0;\n}\n\ndouble arg(Vector p){\n return atan2(p.y,p.x);\n}\n\nVector polar(double a,double r){\n return Point(cos(r)*a,sin(r)*a);\n}\n\n// COUNTER CLOCKWISE\nstatic const int CCW_COUNTER_CLOCKWISE = 1;\nstatic const int CCW_CLOCKWISE = -1;\nstatic const int CCW_ONLINE_BACK = 2;\nstatic const int CCW_ONLINE_FRONT = -2;\nstatic const int CCW_ON_SEGMENT = 0;\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a = p1-p0;\n Vector b = p2-p0;\n if(cross(a,b) > EPS) return CCW_COUNTER_CLOCKWISE;\n if(cross(a,b) < -EPS) return CCW_CLOCKWISE;\n if(dot(a,b) < -EPS) return CCW_ONLINE_BACK;\n if(a.norm()<b.norm()) return CCW_ONLINE_FRONT;\n return CCW_ON_SEGMENT;\n}\n\nbool intersectSS(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4) <= 0 and\n ccw(p3,p4,p1)*ccw(p3,p4,p2) <= 0 );\n}\n\nbool intersectSS(Segment s1,Segment s2){\n return intersectSS(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nbool intersectPS(Polygon p,Segment l){\n int n=p.size();\n for(int i=0;i<n;++i)\n if(intersectSS(Segment(p[i],p[(i+1)%n]),l)) return 1;\n return 0;\n}\n\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n\ndouble getDistanceSP(Segment s,Point p){\n if(dot(s.p2-s.p1,p-s.p1) < 0.0 ) return abs(p-s.p1);\n if(dot(s.p1-s.p2,p-s.p2) < 0.0 ) return abs(p-s.p2);\n return getDistanceLP(s,p);\n}\n\ndouble getDistanceSS(Segment s1,Segment s2){\n if(intersectSS(s1,s2)) return 0.0;\n return min(\n min(getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2)),\n min(getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2)));\n}\n\n// intercsect of circles\nstatic const int ICC_SEPERATE = 4;\nstatic const int ICC_CIRCUMSCRIBE = 3;\nstatic const int ICC_INTERSECT = 2;\nstatic const int ICC_INSCRIBE = 1;\nstatic const int ICC_CONTAIN = 0;\n\nint intersectCC(Circle c1,Circle c2){\n if(c1.r<c2.r) swap(c1,c2);\n double d=abs(c1.c-c2.c);\n double r=c1.r+c2.r;\n if(equals(d,r)) return ICC_CIRCUMSCRIBE;\n if(d>r) return ICC_SEPERATE;\n if(equals(d+c2.r,c1.r)) return ICC_INSCRIBE;\n if(d+c2.r<c1.r) return ICC_CONTAIN;\n return ICC_INTERSECT;\n}\n\nbool intersectSC(Segment s,Circle c){\n return getDistanceSP(s,c.c)<=c.r;\n}\n\nint intersectCS(Circle c,Segment s){\n if(norm(project(s,c.c)-c.c)-c.r*c.r>EPS) return 0;\n double d1=abs(c.c-s.p1),d2=abs(c.c-s.p2);\n if(d1<c.r+EPS and d2<c.r+EPS) return 0;\n if((d1<c.r-EPS and d2>c.r+EPS)\n or (d1>c.r+EPS and d2<c.r-EPS)) return 1;\n Point h=project(s,c.c);\n if(dot(s.p1-h,s.p2-h)<0) return 2;\n return 0;\n}\n\nPoint getCrossPointSS(Segment s1,Segment s2){\n for(int k=0;k<2;++k){\n if(getDistanceSP(s1,s2.p1)<EPS) return s2.p1;\n if(getDistanceSP(s1,s2.p2)<EPS) return s2.p2;\n swap(s1,s2);\n }\n Vector base=s2.p2-s2.p1;\n double d1=fabs(cross(base,s1.p1-s2.p1));\n double d2=fabs(cross(base,s1.p2-s2.p1));\n double t=d1/(d1+d2);\n return s1.p1+(s1.p2-s1.p1)*t;\n}\n\nPoint getCrossPointLL(Line l1,Line l2){\n double a=cross(l1.p2-l1.p1,l2.p2-l2.p1);\n double b=cross(l1.p2-l1.p1,l1.p2-l2.p1);\n if(fabs(a)<EPS and fabs(b)<EPS) return l2.p1;\n return l2.p1+(l2.p2-l2.p1)*(b/a);\n}\n\nPolygon getCrossPointCL(Circle c,Line l){\n Polygon ps;\n Point pr=project(l,c.c);\n Vector e=(l.p2-l.p1)/abs(l.p2-l.p1);\n if(equals(getDistanceLP(l,c.c),c.r)){\n ps.emplace_back(pr);\n return ps;\n }\n double base=sqrt(c.r*c.r-norm(pr-c.c));\n ps.emplace_back(pr+e*base);\n ps.emplace_back(pr-e*base);\n return ps;\n}\n\nPolygon getCrossPointCS(Circle c,Segment s){\n Line l(s);\n Polygon res=getCrossPointCL(c,l);\n if(intersectCS(c,s)==2) return res;\n if(res.size()>1u){\n if(dot(l.p1-res[0],l.p2-res[0])>0) swap(res[0],res[1]);\n res.pop_back();\n }\n return res;\n}\n\n\nPolygon getCrossPointCC(Circle c1,Circle c2){\n Polygon p(2);\n double d=abs(c1.c-c2.c);\n double a=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));\n double t=arg(c2.c-c1.c);\n p[0]=c1.c+polar(c1.r,t+a);\n p[1]=c1.c+polar(c1.r,t-a);\n return p;\n}\n\n// IN:2 ON:1 OUT:0\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;++i){\n Point a=g[i]-p,b=g[(i+1)%n]-p;\n if(fabs(cross(a,b)) < EPS and dot(a,b) < EPS) return 1;\n if(a.y>b.y) swap(a,b);\n if(a.y < EPS and EPS < b.y and cross(a,b) > EPS )\n x = !x;\n }\n return (x?2:0);\n}\n\n// BEGIN IGNORE\nPolygon andrewScan(Polygon s){\n Polygon u,l;\n if(s.size()<3) return s;\n sort(s.begin(),s.end());\n u.push_back(s[0]);\n u.push_back(s[1]);\n l.push_back(s[s.size()-1]);\n l.push_back(s[s.size()-2]);\n for(int i=2;i<(int)s.size();++i){\n for(int n=u.size();\n n>=2 and ccw(u[n-2],u[n-1],s[i])!=CCW_CLOCKWISE;\n n--){\n u.pop_back();\n }\n u.push_back(s[i]);\n }\n for(int i=s.size()-3;i>=0;i--){\n for(int n=l.size();\n n>=2 and ccw(l[n-2],l[n-1],s[i])!=CCW_CLOCKWISE;\n n--){\n l.pop_back();\n }\n l.push_back(s[i]);\n }\n reverse(l.begin(),l.end());\n for(int i=u.size()-2;i>=1;i--) l.push_back(u[i]);\n return l;\n}\n// END IGNORE\n\nPolygon convex_hull(Polygon ps){\n int n=ps.size();\n sort(ps.begin(),ps.end(),sort_y);\n int k=0;\n Polygon qs(n*2);\n for(int i=0;i<n;++i){\n while(k>1 and cross(qs[k-1]-qs[k-2],ps[i]-qs[k-1])<0)\n k--;\n qs[k++]=ps[i];\n }\n for(int i=n-2,t=k;i>=0;i--){\n while(k>t and cross(qs[k-1]-qs[k-2],ps[i]-qs[k-1])<0)\n k--;\n qs[k++]=ps[i];\n }\n qs.resize(k-1);\n return qs;\n}\n\ndouble diameter(Polygon s){\n Polygon p=s;\n int n=p.size();\n if(n==2) return abs(p[0]-p[1]);\n int i=0,j=0;\n for(int k=0;k<n;++k){\n if(p[i]<p[k]) i=k;\n if(!(p[j]<p[k])) j=k;\n }\n double res=0;\n int si=i,sj=j;\n while(i!=sj or j!=si){\n res=max(res,abs(p[i]-p[j]));\n if(cross(p[(i+1)%n]-p[i],p[(j+1)%n]-p[j])<0.0){\n i=(i+1)%n;\n }else{\n j=(j+1)%n;\n }\n }\n return res;\n}\n\nbool isConvex(Polygon p){\n bool f=1;\n int n=p.size();\n for(int i=0;i<n;++i){\n int t=ccw(p[(i+n-1)%n],p[i],p[(i+1)%n]);\n f&=t!=CCW_CLOCKWISE;\n }\n return f;\n}\n\ndouble area(Polygon s){\n double res=0;\n for(int i=0;i<(int)s.size();++i){\n res+=cross(s[i],s[(i+1)%s.size()])/2.0;\n }\n return res;\n}\n\ndouble area(Circle c1,Circle c2){\n double d=abs(c1.c-c2.c);\n if(c1.r+c2.r<=d+EPS) return 0;\n if(d<=fabs(c1.r-c2.r)){\n double r=min(c1.r,c2.r);\n return PI*r*r;\n }\n double res=0;\n for(int k=0;k<2;++k){\n double rc=(d*d+c1.r*c1.r-c2.r*c2.r)/(2*d*c1.r);\n double th=acosl(rc)*2;\n res+=(th-sinl(th))*c1.r*c1.r/2;\n swap(c1,c2);\n }\n return res;\n}\n\nPolygon convexCut(Polygon p,Line l){\n Polygon q;\n for(int i=0;i<(int)p.size();++i){\n Point a=p[i],b=p[(i+1)%p.size()];\n if(ccw(l.p1,l.p2,a)!=-1) q.push_back(a);\n if(ccw(l.p1,l.p2,a)*ccw(l.p1,l.p2,b)<0)\n q.push_back(getCrossPointLL(Line(a,b),l));\n }\n return q;\n}\n\nLine bisector(Point p1,Point p2){\n Circle c1=Circle(p1,abs(p1-p2)),c2=Circle(p2,abs(p1-p2));\n Polygon p=getCrossPointCC(c1,c2);\n if(cross(p2-p1,p[0]-p1)>0) swap(p[0],p[1]);\n return Line(p[0],p[1]);\n}\n\nVector translate(Vector v,double theta){\n Vector res;\n res.x=cos(theta)*v.x-sin(theta)*v.y;\n res.y=sin(theta)*v.x+cos(theta)*v.y;\n return res;\n}\n\nvector<Line> corner(Line l1,Line l2){\n vector<Line> res;\n if(isParallel(l1,l2)){\n double d=getDistanceLP(l1,l2.p1)/2.0;\n Vector v1=l1.p2-l1.p1;\n v1=v1/v1.abs()*d;\n Point p=l2.p1+translate(v1,90.0*(PI/180.0));\n double d1=getDistanceLP(l1,p);\n double d2=getDistanceLP(l2,p);\n if(fabs(d1-d2)>d){\n p=l2.p1+translate(v1,-90.0*(PI/180.0));\n }\n res.push_back(Line(p,p+v1));\n }else{\n Point p=getCrossPointLL(l1,l2);\n Vector v1=l1.p2-l1.p1,v2=l2.p2-l2.p1;\n v1=v1/v1.abs();\n v2=v2/v2.abs();\n res.push_back(Line(p,p+(v1+v2)));\n res.push_back(\n Line(p,p+translate(v1+v2,90.0*(PI/180.0))));\n }\n return res;\n}\n\nPolygon tangent(Circle c1,Point p2){\n Circle c2=Circle(p2,sqrt(norm(c1.c-p2)-c1.r*c1.r));\n Polygon p=getCrossPointCC(c1,c2);\n sort(p.begin(),p.end());\n return p;\n}\n\nvector<Line> tangent(Circle c1,Circle c2){\n vector<Line> ls;\n if(c1.r<c2.r) swap(c1,c2);\n double g=norm(c1.c-c2.c);\n if(equals(g,0)) return ls;\n Point u=(c2.c-c1.c)/sqrt(g);\n Point v=orth(u);\n for(int s=1;s>=-1;s-=2){\n double h=(c1.r+s*c2.r)/sqrt(g);\n if(equals(1-h*h,0)){\n ls.emplace_back(c1.c+u*c1.r,c1.c+(u+v)*c1.r);\n }else if(1-h*h>0){\n Point uu=u*h,vv=v*sqrt(1-h*h);\n ls.emplace_back(\n c1.c+(uu+vv)*c1.r,c2.c-(uu+vv)*c2.r*s);\n ls.emplace_back(\n c1.c+(uu-vv)*c1.r,c2.c-(uu-vv)*c2.r*s);\n }\n }\n\n return ls;\n}\n\ndouble closest_pair(Polygon &a,int l=0,int r=-1){\n if(r<0){\n r=a.size();\n sort(a.begin(),a.end(),sort_x);\n }\n if(r-l<=1) return abs(a[0]-a[1]);\n int m=(l+r)>>1;\n double x=a[m].x;\n double d=min(closest_pair(a,l,m),closest_pair(a,m,r));\n inplace_merge(a.begin()+l,a.begin()+m,a.begin()+r,sort_y);\n\n Polygon b;\n for(int i=l;i<r;++i){\n if(fabs(a[i].x-x)>=d) continue;\n for(int j=0;j<(int)b.size();++j){\n double dy=a[i].y-next(b.rbegin(),j)->y;\n if(dy>=d) break;\n d=min(d,abs(a[i]-*next(b.rbegin(),j)));\n }\n b.emplace_back(a[i]);\n }\n return d;\n}\n\nvector<vector<int>>\nsegmentArrangement(vector<Segment> &ss, Polygon &ps){\n int n=ss.size();\n for(int i=0;i<n;++i){\n ps.emplace_back(ss[i].p1);\n ps.emplace_back(ss[i].p2);\n for(int j=i+1;j<n;++j)\n if(intersectSS(ss[i],ss[j]))\n ps.emplace_back(getCrossPointSS(ss[i],ss[j]));\n }\n sort(ps.begin(),ps.end());\n ps.erase(unique(ps.begin(),ps.end()),ps.end());\n\n vector<vector<int> > G(ps.size());\n for(int i=0;i<n;++i){\n vector<pair<double,int> > ls;\n for(int j=0;j<(int)ps.size();++j)\n if(getDistanceSP(ss[i],ps[j])<EPS)\n ls.emplace_back(make_pair(norm(ss[i].p1-ps[j]),j));\n\n sort(ls.begin(),ls.end());\n for(int j=0;j+1<(int)ls.size();++j){\n int a=ls[j].second,b=ls[j+1].second;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n }\n for(auto &v:G){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n }\n return G;\n}\n\nstruct EndPoint{\n Point p;\n int seg,st;\n EndPoint(){}\n EndPoint(Point p,int seg,int st):p(p),seg(seg),st(st){}\n bool operator<(const EndPoint &ep)const{\n if(p.y==ep.p.y) return st<ep.st;\n return p.y<ep.p.y;\n }\n};\n\nint manhattan_intersection(\n vector<Segment> ss,const int INF){\n const int BTM = 0;\n const int LFT = 1;\n const int RGH = 2;\n const int TOP = 3;\n\n int n=ss.size();\n vector<EndPoint> ep;\n for(int i=0;i<n;++i){\n if(ss[i].p1.y==ss[i].p2.y){\n if(ss[i].p1.x>ss[i].p2.x) swap(ss[i].p1,ss[i].p2);\n ep.emplace_back(ss[i].p1,i,LFT);\n ep.emplace_back(ss[i].p2,i,RGH);\n }else{\n if(ss[i].p1.y>ss[i].p2.y) swap(ss[i].p1,ss[i].p2);\n ep.emplace_back(ss[i].p1,i,BTM);\n ep.emplace_back(ss[i].p2,i,TOP);\n }\n }\n sort(ep.begin(),ep.end());\n\n set<int> bt;\n bt.insert(INF);\n\n int cnt=0;\n for(int i=0;i<n*2;++i){\n if(ep[i].st==TOP){\n bt.erase(ep[i].p.x);\n }else if(ep[i].st==BTM){\n bt.emplace(ep[i].p.x);\n }else if(ep[i].st==LFT){\n auto b=bt.lower_bound(ss[ep[i].seg].p1.x);\n auto e=bt.upper_bound(ss[ep[i].seg].p2.x);\n cnt+=distance(b,e);\n }\n }\n\n return cnt;\n}\n\ndouble area(Polygon ps,Circle c){\n if(ps.size()<3u) return 0;\n function<double(Circle, Point, Point)> dfs=\n [&](Circle c,Point a,Point b){\n Vector va=c.c-a,vb=c.c-b;\n double f=cross(va,vb),res=0;\n if(equals(f,0.0)) return res;\n if(max(abs(va),abs(vb))<c.r+EPS) return f;\n Vector d(dot(va,vb),cross(va,vb));\n if(getDistanceSP(Segment(a,b),c.c)>c.r-EPS)\n return c.r*c.r*atan2(d.y,d.x);\n auto u=getCrossPointCS(c,Segment(a,b));\n if(u.empty()) return res;\n if(u.size()>1u and dot(u[1]-u[0],a-u[0])>0)\n swap(u[0],u[1]);\n u.emplace(u.begin(),a);\n u.emplace_back(b);\n for(int i=1;i<(int)u.size();++i)\n res+=dfs(c,u[i-1],u[i]);\n return res;\n };\n double res=0;\n for(int i=0;i<(int)ps.size();++i)\n res+=dfs(c,ps[i],ps[(i+1)%ps.size()]);\n return res/2;\n}\n//end\n\n\n\n\nusing Graph =vector<vector<int>>;\n\nint main(){\n int n,m;\n cin>>n>>m;\n vector<Segment> S;\n \n for (int i=0; i<n; i++){\n int l;\n cin>>l;\n vector<pii> P(l);\n for (int i=0; i<l; i++){\n cin>>P[i].first>>P[i].second;\n }\n for (int i=0; i<l; i++){\n Point p1(P[i].first,P[i].second);\n Point p2(P[(i+1)%l].first,P[(i+1)%l].second);\n S.push_back(Segment(p1,p2));\n }\n\n }\n vector<pii>People(m);\n for (int i=0; i<m; i++){\n cin>>People[i].first>>People[i].second;\n }\n\n int h=500;\n int ans=0;\n for (int x=-h; x<=h; x++ ){\n for (int y=-h; y<=h; y++){\n Point p0(x,y);\n int sans=0;\n for (int i=0; i<m; i++){\n Point pp(People[i].first,People[i].second);\n bool f=true;\n Segment s={p0,pp};\n for (auto t: S){\n if (intersectSS(s,t)){\n auto p3=getCrossPointSS(s,t);\n if (p3==t.p1 || p3==t.p2)continue;\n f=false;\n break;\n }\n }\n if (f)sans++;\n \n }\n ans=max(ans,sans);\n }\n }\n cout<<ans<<endl;\n\n\n\n}", "accuracy": 0.08695652173913043, "time_ms": 170, "memory_kb": 3412, "score_of_the_acc": -0.0298, "final_rank": 17 }, { "submission_id": "aoj_2742_9375478", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n\nusing ll = long long;\nusing i64 = long long;\nusing pll = pair<ll,ll>;\nusing plll = pair<pll,ll>;\nusing pii =pair<int,int>;\n\nconstexpr ll mod = 1000000007;\n\nint dx[4]={1,0,-1,0};\nint dy[4]={0,1,0,-1};\nint dX[4]={1,0,-1,0};\nint dY[4]={0,-1,0,1};\n\n\n\n//library\n\n#define equals(a,b) (fabs((a)-(b))<EPS)\n\nconst double EPS = 1e-10;\nconst double PI = asinl(1) * 2;\n\nstruct Point{\n double x,y;\n Point(){}\n Point(double x,double y):x(x),y(y){}\n Point operator+(Point p) {return Point(x+p.x,y+p.y);}\n Point operator-(Point p) {return Point(x-p.x,y-p.y);}\n Point operator*(double k){return Point(x*k,y*k);}\n Point operator/(double k){return Point(x/k,y/k);}\n double norm(){return x*x+y*y;}\n double abs(){return sqrt(norm());}\n\n bool operator<(const Point &p) const{\n return x!=p.x?x<p.x:y<p.y;\n //grid-point only\n //return !equals(x,p.x)?x<p.x:!equals(y,p.y)?y<p.y:0;\n }\n\n bool operator==(const Point &p) const{\n return fabs(x-p.x)<EPS and fabs(y-p.y)<EPS;\n }\n};\n\nbool sort_x(Point a,Point b){\n return a.x!=b.x?a.x<b.x:a.y<b.y;\n}\n\nbool sort_y(Point a,Point b){\n return a.y!=b.y?a.y<b.y:a.x<b.x;\n}\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Segment{\n Point p1,p2;\n Segment(){}\n Segment(Point p1, Point p2):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\nstruct Circle{\n Point c;\n double r;\n Circle(){}\n Circle(Point c,double r):c(c),r(r){}\n};\n\ndouble norm(Vector a){\n return a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n return sqrt(norm(a));\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x+a.y*b.y;\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\nPoint orth(Point p){return Point(-p.y,p.x);}\n\nbool isOrthogonal(Vector a,Vector b){\n return equals(dot(a,b),0.0);\n}\n\nbool isOrthogonal(Point a1,Point a2,Point b1,Point b2){\n return isOrthogonal(a1-a2,b1-b2);\n}\n\nbool isOrthogonal(Segment s1,Segment s2){\n return equals(dot(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nbool isParallel(Vector a,Vector b){\n return equals(cross(a,b),0.0);\n}\n\nbool isParallel(Point a1,Point a2,Point b1,Point b2){\n return isParallel(a1-a2,b1-b2);\n}\n\nbool isParallel(Segment s1,Segment s2){\n return equals(cross(s1.p2-s1.p1,s2.p2-s2.p1),0.0);\n}\n\nPoint project(Segment s,Point p){\n Vector base=s.p2-s.p1;\n double r=dot(p-s.p1,base)/norm(base);\n return s.p1+base*r;\n}\n\nPoint reflect(Segment s,Point p){\n return p+(project(s,p)-p)*2.0;\n}\n\ndouble arg(Vector p){\n return atan2(p.y,p.x);\n}\n\nVector polar(double a,double r){\n return Point(cos(r)*a,sin(r)*a);\n}\n\n// COUNTER CLOCKWISE\nstatic const int CCW_COUNTER_CLOCKWISE = 1;\nstatic const int CCW_CLOCKWISE = -1;\nstatic const int CCW_ONLINE_BACK = 2;\nstatic const int CCW_ONLINE_FRONT = -2;\nstatic const int CCW_ON_SEGMENT = 0;\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a = p1-p0;\n Vector b = p2-p0;\n if(cross(a,b) > EPS) return CCW_COUNTER_CLOCKWISE;\n if(cross(a,b) < -EPS) return CCW_CLOCKWISE;\n if(dot(a,b) < -EPS) return CCW_ONLINE_BACK;\n if(a.norm()<b.norm()) return CCW_ONLINE_FRONT;\n return CCW_ON_SEGMENT;\n}\n\nbool intersectSS(Point p1,Point p2,Point p3,Point p4){\n return (ccw(p1,p2,p3)*ccw(p1,p2,p4) <= 0 and\n ccw(p3,p4,p1)*ccw(p3,p4,p2) <= 0 );\n}\n\nbool intersectSS(Segment s1,Segment s2){\n return intersectSS(s1.p1,s1.p2,s2.p1,s2.p2);\n}\n\nbool intersectPS(Polygon p,Segment l){\n int n=p.size();\n for(int i=0;i<n;++i)\n if(intersectSS(Segment(p[i],p[(i+1)%n]),l)) return 1;\n return 0;\n}\n\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n\ndouble getDistanceSP(Segment s,Point p){\n if(dot(s.p2-s.p1,p-s.p1) < 0.0 ) return abs(p-s.p1);\n if(dot(s.p1-s.p2,p-s.p2) < 0.0 ) return abs(p-s.p2);\n return getDistanceLP(s,p);\n}\n\ndouble getDistanceSS(Segment s1,Segment s2){\n if(intersectSS(s1,s2)) return 0.0;\n return min(\n min(getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2)),\n min(getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2)));\n}\n\n// intercsect of circles\nstatic const int ICC_SEPERATE = 4;\nstatic const int ICC_CIRCUMSCRIBE = 3;\nstatic const int ICC_INTERSECT = 2;\nstatic const int ICC_INSCRIBE = 1;\nstatic const int ICC_CONTAIN = 0;\n\nint intersectCC(Circle c1,Circle c2){\n if(c1.r<c2.r) swap(c1,c2);\n double d=abs(c1.c-c2.c);\n double r=c1.r+c2.r;\n if(equals(d,r)) return ICC_CIRCUMSCRIBE;\n if(d>r) return ICC_SEPERATE;\n if(equals(d+c2.r,c1.r)) return ICC_INSCRIBE;\n if(d+c2.r<c1.r) return ICC_CONTAIN;\n return ICC_INTERSECT;\n}\n\nbool intersectSC(Segment s,Circle c){\n return getDistanceSP(s,c.c)<=c.r;\n}\n\nint intersectCS(Circle c,Segment s){\n if(norm(project(s,c.c)-c.c)-c.r*c.r>EPS) return 0;\n double d1=abs(c.c-s.p1),d2=abs(c.c-s.p2);\n if(d1<c.r+EPS and d2<c.r+EPS) return 0;\n if((d1<c.r-EPS and d2>c.r+EPS)\n or (d1>c.r+EPS and d2<c.r-EPS)) return 1;\n Point h=project(s,c.c);\n if(dot(s.p1-h,s.p2-h)<0) return 2;\n return 0;\n}\n\nPoint getCrossPointSS(Segment s1,Segment s2){\n for(int k=0;k<2;++k){\n if(getDistanceSP(s1,s2.p1)<EPS) return s2.p1;\n if(getDistanceSP(s1,s2.p2)<EPS) return s2.p2;\n swap(s1,s2);\n }\n Vector base=s2.p2-s2.p1;\n double d1=fabs(cross(base,s1.p1-s2.p1));\n double d2=fabs(cross(base,s1.p2-s2.p1));\n double t=d1/(d1+d2);\n return s1.p1+(s1.p2-s1.p1)*t;\n}\n\nPoint getCrossPointLL(Line l1,Line l2){\n double a=cross(l1.p2-l1.p1,l2.p2-l2.p1);\n double b=cross(l1.p2-l1.p1,l1.p2-l2.p1);\n if(fabs(a)<EPS and fabs(b)<EPS) return l2.p1;\n return l2.p1+(l2.p2-l2.p1)*(b/a);\n}\n\nPolygon getCrossPointCL(Circle c,Line l){\n Polygon ps;\n Point pr=project(l,c.c);\n Vector e=(l.p2-l.p1)/abs(l.p2-l.p1);\n if(equals(getDistanceLP(l,c.c),c.r)){\n ps.emplace_back(pr);\n return ps;\n }\n double base=sqrt(c.r*c.r-norm(pr-c.c));\n ps.emplace_back(pr+e*base);\n ps.emplace_back(pr-e*base);\n return ps;\n}\n\nPolygon getCrossPointCS(Circle c,Segment s){\n Line l(s);\n Polygon res=getCrossPointCL(c,l);\n if(intersectCS(c,s)==2) return res;\n if(res.size()>1u){\n if(dot(l.p1-res[0],l.p2-res[0])>0) swap(res[0],res[1]);\n res.pop_back();\n }\n return res;\n}\n\n\nPolygon getCrossPointCC(Circle c1,Circle c2){\n Polygon p(2);\n double d=abs(c1.c-c2.c);\n double a=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));\n double t=arg(c2.c-c1.c);\n p[0]=c1.c+polar(c1.r,t+a);\n p[1]=c1.c+polar(c1.r,t-a);\n return p;\n}\n\n// IN:2 ON:1 OUT:0\nint contains(Polygon g,Point p){\n int n=g.size();\n bool x=false;\n for(int i=0;i<n;++i){\n Point a=g[i]-p,b=g[(i+1)%n]-p;\n if(fabs(cross(a,b)) < EPS and dot(a,b) < EPS) return 1;\n if(a.y>b.y) swap(a,b);\n if(a.y < EPS and EPS < b.y and cross(a,b) > EPS )\n x = !x;\n }\n return (x?2:0);\n}\n\n// BEGIN IGNORE\nPolygon andrewScan(Polygon s){\n Polygon u,l;\n if(s.size()<3) return s;\n sort(s.begin(),s.end());\n u.push_back(s[0]);\n u.push_back(s[1]);\n l.push_back(s[s.size()-1]);\n l.push_back(s[s.size()-2]);\n for(int i=2;i<(int)s.size();++i){\n for(int n=u.size();\n n>=2 and ccw(u[n-2],u[n-1],s[i])!=CCW_CLOCKWISE;\n n--){\n u.pop_back();\n }\n u.push_back(s[i]);\n }\n for(int i=s.size()-3;i>=0;i--){\n for(int n=l.size();\n n>=2 and ccw(l[n-2],l[n-1],s[i])!=CCW_CLOCKWISE;\n n--){\n l.pop_back();\n }\n l.push_back(s[i]);\n }\n reverse(l.begin(),l.end());\n for(int i=u.size()-2;i>=1;i--) l.push_back(u[i]);\n return l;\n}\n// END IGNORE\n\nPolygon convex_hull(Polygon ps){\n int n=ps.size();\n sort(ps.begin(),ps.end(),sort_y);\n int k=0;\n Polygon qs(n*2);\n for(int i=0;i<n;++i){\n while(k>1 and cross(qs[k-1]-qs[k-2],ps[i]-qs[k-1])<0)\n k--;\n qs[k++]=ps[i];\n }\n for(int i=n-2,t=k;i>=0;i--){\n while(k>t and cross(qs[k-1]-qs[k-2],ps[i]-qs[k-1])<0)\n k--;\n qs[k++]=ps[i];\n }\n qs.resize(k-1);\n return qs;\n}\n\ndouble diameter(Polygon s){\n Polygon p=s;\n int n=p.size();\n if(n==2) return abs(p[0]-p[1]);\n int i=0,j=0;\n for(int k=0;k<n;++k){\n if(p[i]<p[k]) i=k;\n if(!(p[j]<p[k])) j=k;\n }\n double res=0;\n int si=i,sj=j;\n while(i!=sj or j!=si){\n res=max(res,abs(p[i]-p[j]));\n if(cross(p[(i+1)%n]-p[i],p[(j+1)%n]-p[j])<0.0){\n i=(i+1)%n;\n }else{\n j=(j+1)%n;\n }\n }\n return res;\n}\n\nbool isConvex(Polygon p){\n bool f=1;\n int n=p.size();\n for(int i=0;i<n;++i){\n int t=ccw(p[(i+n-1)%n],p[i],p[(i+1)%n]);\n f&=t!=CCW_CLOCKWISE;\n }\n return f;\n}\n\ndouble area(Polygon s){\n double res=0;\n for(int i=0;i<(int)s.size();++i){\n res+=cross(s[i],s[(i+1)%s.size()])/2.0;\n }\n return res;\n}\n\ndouble area(Circle c1,Circle c2){\n double d=abs(c1.c-c2.c);\n if(c1.r+c2.r<=d+EPS) return 0;\n if(d<=fabs(c1.r-c2.r)){\n double r=min(c1.r,c2.r);\n return PI*r*r;\n }\n double res=0;\n for(int k=0;k<2;++k){\n double rc=(d*d+c1.r*c1.r-c2.r*c2.r)/(2*d*c1.r);\n double th=acosl(rc)*2;\n res+=(th-sinl(th))*c1.r*c1.r/2;\n swap(c1,c2);\n }\n return res;\n}\n\nPolygon convexCut(Polygon p,Line l){\n Polygon q;\n for(int i=0;i<(int)p.size();++i){\n Point a=p[i],b=p[(i+1)%p.size()];\n if(ccw(l.p1,l.p2,a)!=-1) q.push_back(a);\n if(ccw(l.p1,l.p2,a)*ccw(l.p1,l.p2,b)<0)\n q.push_back(getCrossPointLL(Line(a,b),l));\n }\n return q;\n}\n\nLine bisector(Point p1,Point p2){\n Circle c1=Circle(p1,abs(p1-p2)),c2=Circle(p2,abs(p1-p2));\n Polygon p=getCrossPointCC(c1,c2);\n if(cross(p2-p1,p[0]-p1)>0) swap(p[0],p[1]);\n return Line(p[0],p[1]);\n}\n\nVector translate(Vector v,double theta){\n Vector res;\n res.x=cos(theta)*v.x-sin(theta)*v.y;\n res.y=sin(theta)*v.x+cos(theta)*v.y;\n return res;\n}\n\nvector<Line> corner(Line l1,Line l2){\n vector<Line> res;\n if(isParallel(l1,l2)){\n double d=getDistanceLP(l1,l2.p1)/2.0;\n Vector v1=l1.p2-l1.p1;\n v1=v1/v1.abs()*d;\n Point p=l2.p1+translate(v1,90.0*(PI/180.0));\n double d1=getDistanceLP(l1,p);\n double d2=getDistanceLP(l2,p);\n if(fabs(d1-d2)>d){\n p=l2.p1+translate(v1,-90.0*(PI/180.0));\n }\n res.push_back(Line(p,p+v1));\n }else{\n Point p=getCrossPointLL(l1,l2);\n Vector v1=l1.p2-l1.p1,v2=l2.p2-l2.p1;\n v1=v1/v1.abs();\n v2=v2/v2.abs();\n res.push_back(Line(p,p+(v1+v2)));\n res.push_back(\n Line(p,p+translate(v1+v2,90.0*(PI/180.0))));\n }\n return res;\n}\n\nPolygon tangent(Circle c1,Point p2){\n Circle c2=Circle(p2,sqrt(norm(c1.c-p2)-c1.r*c1.r));\n Polygon p=getCrossPointCC(c1,c2);\n sort(p.begin(),p.end());\n return p;\n}\n\nvector<Line> tangent(Circle c1,Circle c2){\n vector<Line> ls;\n if(c1.r<c2.r) swap(c1,c2);\n double g=norm(c1.c-c2.c);\n if(equals(g,0)) return ls;\n Point u=(c2.c-c1.c)/sqrt(g);\n Point v=orth(u);\n for(int s=1;s>=-1;s-=2){\n double h=(c1.r+s*c2.r)/sqrt(g);\n if(equals(1-h*h,0)){\n ls.emplace_back(c1.c+u*c1.r,c1.c+(u+v)*c1.r);\n }else if(1-h*h>0){\n Point uu=u*h,vv=v*sqrt(1-h*h);\n ls.emplace_back(\n c1.c+(uu+vv)*c1.r,c2.c-(uu+vv)*c2.r*s);\n ls.emplace_back(\n c1.c+(uu-vv)*c1.r,c2.c-(uu-vv)*c2.r*s);\n }\n }\n\n return ls;\n}\n\ndouble closest_pair(Polygon &a,int l=0,int r=-1){\n if(r<0){\n r=a.size();\n sort(a.begin(),a.end(),sort_x);\n }\n if(r-l<=1) return abs(a[0]-a[1]);\n int m=(l+r)>>1;\n double x=a[m].x;\n double d=min(closest_pair(a,l,m),closest_pair(a,m,r));\n inplace_merge(a.begin()+l,a.begin()+m,a.begin()+r,sort_y);\n\n Polygon b;\n for(int i=l;i<r;++i){\n if(fabs(a[i].x-x)>=d) continue;\n for(int j=0;j<(int)b.size();++j){\n double dy=a[i].y-next(b.rbegin(),j)->y;\n if(dy>=d) break;\n d=min(d,abs(a[i]-*next(b.rbegin(),j)));\n }\n b.emplace_back(a[i]);\n }\n return d;\n}\n\nvector<vector<int>>\nsegmentArrangement(vector<Segment> &ss, Polygon &ps){\n int n=ss.size();\n for(int i=0;i<n;++i){\n ps.emplace_back(ss[i].p1);\n ps.emplace_back(ss[i].p2);\n for(int j=i+1;j<n;++j)\n if(intersectSS(ss[i],ss[j]))\n ps.emplace_back(getCrossPointSS(ss[i],ss[j]));\n }\n sort(ps.begin(),ps.end());\n ps.erase(unique(ps.begin(),ps.end()),ps.end());\n\n vector<vector<int> > G(ps.size());\n for(int i=0;i<n;++i){\n vector<pair<double,int> > ls;\n for(int j=0;j<(int)ps.size();++j)\n if(getDistanceSP(ss[i],ps[j])<EPS)\n ls.emplace_back(make_pair(norm(ss[i].p1-ps[j]),j));\n\n sort(ls.begin(),ls.end());\n for(int j=0;j+1<(int)ls.size();++j){\n int a=ls[j].second,b=ls[j+1].second;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n }\n for(auto &v:G){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n }\n return G;\n}\n\nstruct EndPoint{\n Point p;\n int seg,st;\n EndPoint(){}\n EndPoint(Point p,int seg,int st):p(p),seg(seg),st(st){}\n bool operator<(const EndPoint &ep)const{\n if(p.y==ep.p.y) return st<ep.st;\n return p.y<ep.p.y;\n }\n};\n\nint manhattan_intersection(\n vector<Segment> ss,const int INF){\n const int BTM = 0;\n const int LFT = 1;\n const int RGH = 2;\n const int TOP = 3;\n\n int n=ss.size();\n vector<EndPoint> ep;\n for(int i=0;i<n;++i){\n if(ss[i].p1.y==ss[i].p2.y){\n if(ss[i].p1.x>ss[i].p2.x) swap(ss[i].p1,ss[i].p2);\n ep.emplace_back(ss[i].p1,i,LFT);\n ep.emplace_back(ss[i].p2,i,RGH);\n }else{\n if(ss[i].p1.y>ss[i].p2.y) swap(ss[i].p1,ss[i].p2);\n ep.emplace_back(ss[i].p1,i,BTM);\n ep.emplace_back(ss[i].p2,i,TOP);\n }\n }\n sort(ep.begin(),ep.end());\n\n set<int> bt;\n bt.insert(INF);\n\n int cnt=0;\n for(int i=0;i<n*2;++i){\n if(ep[i].st==TOP){\n bt.erase(ep[i].p.x);\n }else if(ep[i].st==BTM){\n bt.emplace(ep[i].p.x);\n }else if(ep[i].st==LFT){\n auto b=bt.lower_bound(ss[ep[i].seg].p1.x);\n auto e=bt.upper_bound(ss[ep[i].seg].p2.x);\n cnt+=distance(b,e);\n }\n }\n\n return cnt;\n}\n\ndouble area(Polygon ps,Circle c){\n if(ps.size()<3u) return 0;\n function<double(Circle, Point, Point)> dfs=\n [&](Circle c,Point a,Point b){\n Vector va=c.c-a,vb=c.c-b;\n double f=cross(va,vb),res=0;\n if(equals(f,0.0)) return res;\n if(max(abs(va),abs(vb))<c.r+EPS) return f;\n Vector d(dot(va,vb),cross(va,vb));\n if(getDistanceSP(Segment(a,b),c.c)>c.r-EPS)\n return c.r*c.r*atan2(d.y,d.x);\n auto u=getCrossPointCS(c,Segment(a,b));\n if(u.empty()) return res;\n if(u.size()>1u and dot(u[1]-u[0],a-u[0])>0)\n swap(u[0],u[1]);\n u.emplace(u.begin(),a);\n u.emplace_back(b);\n for(int i=1;i<(int)u.size();++i)\n res+=dfs(c,u[i-1],u[i]);\n return res;\n };\n double res=0;\n for(int i=0;i<(int)ps.size();++i)\n res+=dfs(c,ps[i],ps[(i+1)%ps.size()]);\n return res/2;\n}\n//end\n\n\n\n\nusing Graph =vector<vector<int>>;\n\nint main(){\n int n,m;\n cin>>n>>m;\n vector<Segment> S;\n for (int i=0; i<n; i++){\n int l;\n cin>>l;\n vector<pii> P(l);\n for (int i=0; i<l; i++){\n cin>>P[i].first>>P[i].second;\n }\n for (int i=0; i<l; i++){\n Point p1(P[i].first,P[i].second);\n Point p2(P[(i+1)%l].first,P[(i+1)%l].second);\n S.push_back(Segment(p1,p2));\n }\n\n }\n vector<pii>People(m);\n for (int i=0; i<m; i++){\n cin>>People[i].first>>People[i].second;\n }\n\n int h=500;\n int ans=0;\n for (int x=-h; x<=h; x++ ){\n for (int y=-h; y<=h; y++){\n Point p0(x,y);\n int sans=0;\n for (int i=0; i<m; i++){\n Point pp(People[i].first,People[i].second);\n bool f=true;\n Segment s={p0,pp};\n for (auto t: S){\n if (intersectSS(s,t)){\n f=false;\n break;\n }\n }\n if (f)sans++;\n \n }\n ans=max(ans,sans);\n }\n }\n cout<<ans<<endl;\n\n\n\n}", "accuracy": 0.06521739130434782, "time_ms": 130, "memory_kb": 3412, "score_of_the_acc": -0.0219, "final_rank": 18 }, { "submission_id": "aoj_2742_9343156", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++)\n#define all(A) A.begin(),A.end()\n\n// void chmax(ll& p, ll q) { p = max(p, q); };\n// void chmin(ll& p, ll q) { p = min(p, q); };\n\nconst ll mod = 998244353;\n\n\nusing ll = long long;\nconst int INF = 1000000000;\nconst ll LINF = 1001002003004005006ll;\nint dx[] = { 1,0,-1,0 }, dy[] = { 0,1,0,-1 };\n// ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}\ntemplate<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; }return false; }\ntemplate<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return true; }return false; }\n#define ALL(A) A.begin(),A.end()\n\nstruct IOSetup {\n IOSetup() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n }\n} iosetup;\n\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 == (int)v.size() ? \"\" : \" \");\n return os;\n}\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v)is >> x;\n return is;\n}\n\n#line 1 \"Geometry/template.cpp\"\n// Real\nusing Real = double;\nconst Real EPS = 1e-6;\nconst Real pi = acosl(-1);\n\n// Point\nusing Point = complex<Real>;\nistream& operator>>(istream& is, Point& p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\nostream& operator<<(ostream& os, Point& p) {\n return os << fixed << setprecision(12) << p.real() << ' ' << p.imag();\n}\ninline bool eq(Real a, Real b) {\n return fabs(a - b) < EPS;\n}\nPoint operator*(const Point& p, const Real& d) {\n return Point(real(p) * d, imag(p) * d);\n}\n\n// Line\nstruct Line {\n Point p1, p2;\n Line() = default;\n Line(Point p1, Point p2) :p1(p1), p2(p2) {}\n //Ax + By = C\n Line(Real A, Real B, Real C) {\n if (eq(A, 0)) p1 = Point(0, C / B), p2 = Point(1, C / B);\n else if (eq(B, 0))p1 = Point(C / A, 0), p2 = Point(C / A, 1);\n else p1 = Point(0, C / B), p2 = Point(C / A, 0);\n }\n};\n\n// Segment\nstruct Segment :Line {\n Segment() = default;\n Segment(Point p1, Point p2) :Line(p1, p2) {}\n};\nstruct Circle {\n Point center;\n Real r;\n Circle() = default;\n Circle(Point center, Real r) :center(center), r(r) {}\n};\n\n// Polygon\nusing Polygon = vector<Point>;\n#line 1 \"Geometry/Rotate.cpp\"\nPoint rotate(Real theta, Point p) {\n return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p));\n}\n#line 1 \"Geometry/Dot.cpp\"\n// Dot\nReal dot(Point a, Point b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\n#line 1 \"Geometry/Cross.cpp\"\n// Cross\nReal cross(Point a, Point b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\n#line 1 \"Geometry/CounterClockWise.cpp\"\n// ccw (counter clockwise) (Requires: cross, dot)\n//https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_1_C\nint ccw(Point a, Point b, Point c) {\n b -= a; c -= a;\n if (cross(b, c) > EPS) return 1;//COUNTER CLOCKWISE\n else if (cross(b, c) < -EPS) return -1;//CLOCKWISE\n else if (dot(b, c) < 0) return 2;//c--a--b ONLINE BACK\n else if (norm(b) < norm(c)) return -2;//a--b--c ONLINE FRONT\n else return 0;//a--c--b ON SEGMENT\n}\n#line 1 \"Geometry/Projection.cpp\"\n// Projection (Requires: dot)\nPoint projection(Line l, Point p) {\n // ベクトルl乗に点pからおろした垂線の足\n Real k = dot(l.p1 - l.p2, p - l.p1) / norm(l.p1 - l.p2);\n return l.p1 + (l.p1 - l.p2) * k;\n}\nPoint projection(Segment l, Point p) {\n Real k = dot(l.p1 - l.p2, p - l.p1) / norm(l.p1 - l.p2);\n return l.p1 + (l.p1 - l.p2) * k;\n}\n#line 1 \"Geometry/Intersect.cpp\"\n// Intersect (Requires : ccw, Dots, Cross, Projection)\nbool intersect(Line l, Point p) {\n return abs(ccw(l.p1, l.p2, p)) != 1;\n}\n//直線の交差判定,外積\nbool intersect(Line l1, Line l2) {\n return abs(cross(l1.p2 - l1.p1, l2.p2 - l2.p1)) > EPS || abs(cross(l1.p2 - l1.p1, l2.p2 - l1.p1)) < EPS;\n}\n//線分に点が乗るかの判定,ccw\nbool intersect(Segment s, Point p) {\n return ccw(s.p1, s.p2, p) == 0;\n}\n//直線と線分の交差判定\nbool intersect(Line l, Segment s) {\n return cross(l.p2 - l.p1, s.p1 - l.p1) * cross(l.p2 - l.p1, s.p2 - l.p1) < EPS;\n}\n//円と直線の交差判定\nbool intersect(Circle c, Line l) {\n return abs(c.center - projection(l, c.center)) <= c.r + EPS;\n}\n//円上かどうか,内部かどうかではない\nbool intersect(Circle c, Point p) {\n return abs(abs(p - c.center) - c.r) < EPS;\n}\n//線分と線分の交差判定\nbool intersect(Segment s, Segment t) {\n return ccw(s.p1, s.p2, t.p1) * ccw(s.p1, s.p2, t.p2) <= -EPS && ccw(t.p1, t.p2, s.p1) * ccw(t.p1, t.p2, s.p2) <= -EPS;\n}\n//線分と円の交差判定,交点の個数を返す\nint intersect(Circle c, Segment l) {\n Point h = projection(l, c.center);\n //直線まるっと円の外側\n if (norm(h - c.center) - c.r * c.r > EPS) return 0;\n Real d1 = abs(c.center - l.p1), d2 = abs(c.center - l.p2);\n //線分が円内\n if (d1 < c.r + EPS && d2 < c.r + EPS) return 0;\n if ((d1<c.r - EPS && d2>c.r + EPS) || (d2<c.r - EPS && d1>c.r + EPS)) return 1;\n //円の外部にまるまるはみ出ていないか\n if (dot(l.p1 - h, l.p2 - h) < 0) return 2;\n return 0;\n}\n//円と円の位置関係,共通接線の個数を返す\nint intersect(Circle c1, Circle c2) {\n if (c1.r < c2.r) swap(c1, c2);\n Real d = abs(c1.center - c2.center);\n //2円が離れている\n if (c1.r + c2.r < d) return 4;\n //2円が外接する\n if (eq(c1.r + c2.r, d)) return 3;\n //2円が交わる\n if (c1.r - c2.r < d) return 2;\n //円が内接する\n if (eq(c1.r - c2.r, d)) return 1;\n //内包\n return 0;\n}\n#line 1 \"Geometry/Distance.cpp\"\n// Distance (Requires: Projection, Intersect)\nReal dis(Point a, Point b) {\n return abs(a - b);\n}\nReal dis(Line l, Point p) {\n return abs(p - projection(l, p));\n}\nReal dis(Segment s, Point p) {\n Point r = projection(s, p);\n if (intersect(s, r)) return abs(r - p);\n return min(abs(s.p1 - p), abs(s.p2 - p));\n}\nReal dis(Segment a, Segment b) {\n if (intersect(a, b)) return 0;\n return min({ dis(a,b.p1),dis(a,b.p2),dis(b,a.p1),dis(b,a.p2) });\n}\nReal dis(Polygon a, Polygon b) {\n Real ret = -10;\n int n = (int)a.size(), m = (int)b.size();\n for (int i = 0; i < n; i++)for (int j = 0; j < m; j++) {\n Real d = dis(Segment(a[i], a[(i + 1) % n]), Segment(b[j], b[(j + 1) % m]));\n if (ret < 0) ret = d;\n else ret = min(ret, d);\n }\n return ret;\n}\nReal dis(Polygon poly, Point p) {\n Real ret = -10;\n int n = (int)poly.size();\n for (int i = 0; i < n; i++) {\n Real d = dis(Segment(poly[i], poly[(i + 1) % n]), p);\n if (ret < 0) ret = d;\n else ret = min(ret, d);\n }\n return ret;\n}\n#line 1 \"Geometry/CrossPoint.cpp\"\n//intersectをチェックすること\n//v\nPoint crosspoint(Line l, Line m) {\n Real A = cross(m.p2 - m.p1, m.p1 - l.p1);\n Real B = cross(m.p2 - m.p1, l.p2 - l.p1);\n if (eq(A, 0) && eq(B, 0)) return l.p1;\n if (eq(B, 0)) throw \"NAI\";\n return l.p1 + A / B * (l.p2 - l.p1);\n}\nPoint crosspoint(Segment l, Segment m) {\n return crosspoint(Line(l), Line(m));\n}\nvector<Point> crosspoint(Circle c, Line l) {\n vector<Point> ret;\n Point h = projection(l, c.center);\n Real d = sqrt(c.r * c.r - norm(h - c.center));\n Point e = (l.p2 - l.p1) * (1 / abs(l.p2 - l.p1));\n if (c.r * c.r + EPS < norm(h - c.center)) return ret;\n if (eq(dis(l, c.center), c.r)) {\n ret.push_back(h);\n return ret;\n }\n ret.push_back(h + e * d); ret.push_back(h - e * d);\n return ret;\n}\n//要verify,\nvector<Point> crosspoint(Circle c, Segment s) {\n Line l = Line(s.p1, s.p2);\n int ko = intersect(c, s);\n if (ko == 2) return crosspoint(c, l);\n vector<Point> ret;\n if (ko == 0) return ret;\n ret = crosspoint(c, l);\n if (ret.size() == 1) return ret;\n vector<Point> rret;\n //交点で挟める方を返す\n if (dot(s.p1 - ret[0], s.p2 - ret[0]) < 0) rret.push_back(ret[0]);\n else rret.push_back(ret[1]);\n return rret;\n}\n//v\nvector<Point> crosspoint(Circle c1, Circle c2) {\n vector<Point> ret;\n int isec = intersect(c1, c2);\n if (isec == 0 || isec == 4) return ret;\n Real d = abs(c1.center - c2.center);\n Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n Real t = atan2(c2.center.imag() - c1.center.imag(), c2.center.real() - c1.center.real());\n ret.push_back(c1.center + Point(cos(t + a) * c1.r, sin(t + a) * c1.r));\n ret.push_back(c1.center + Point(cos(t - a) * c1.r, sin(t - a) * c1.r));\n return ret;\n}\n#line 1 \"Geometry/Angle.cpp\"\n// angle of a-b-c\nReal get_smaller_angle(Point a, Point b, Point c) {\n Point v = a - b, w = c - b;\n auto A = atan2(imag(v), real(v));\n auto B = atan2(imag(w), real(w));\n if (A > B) swap(A, B);\n Real res = B - A;\n return min(res, pi * 2.0 - res);\n}\n#line 1 \"Geometry/InscribedCircle.cpp\"\n// 内接円\nCircle inscribed_circle(Point a, Point b, Point c) {\n Real A, B;\n {\n Point t = c - a;\n t *= conj(b - a);\n t /= norm(b - a);\n A = atan2(imag(t), real(t));\n }\n {\n Point t = a - b;\n t *= conj(c - b);\n t /= norm(c - b);\n B = atan2(imag(t), real(t));\n }\n Line Amid = Line(a, a + rotate(A * 0.5, b - a)), Bmid = Line(b, b + rotate(B * 0.5, c - b));\n auto center = crosspoint(Amid, Bmid);\n auto h = projection(Line(a, b), center);\n return Circle(center, dis(h, center));\n}\n#line 1 \"Geometry/CircumscribedCircle.cpp\"\n// 外接円\nCircle circumscribed_circle(Point a, Point b, Point c) {\n Line orth_ab((a + b) * 0.5, (a + b) * 0.5 + Point(-imag(b - a), real(b - a)));\n Line orth_bc((b + c) * 0.5, (b + c) * 0.5 + Point(-imag(c - b), real(c - b)));\n Point center = crosspoint(orth_ab, orth_bc);\n Real r = dis(a, center);\n return Circle(center, r);\n}\n#line 1 \"Geometry/Tangent.cpp\"\n//v\n//点pから引いた円cの接線の接点を返す\nvector<Point> tangent(Circle c, Point p) {\n return crosspoint(c, Circle(p, sqrt(norm(c.center - p) - c.r * c.r)));\n}\n//v\n//二円の共通接線,Lineの2点は接点を表す\nvector<Line> tangent(Circle c1, Circle c2) {\n vector<Line> ret;\n if (c1.r < c2.r) swap(c1, c2);\n Real g = norm(c1.center - c2.center);\n if (eq(g, 0)) return ret;\n Point u = (c2.center - c1.center) / sqrt(g);\n Point v = rotate(pi * 0.5, u);\n for (int s : {-1, 1}) {\n Real h = (c1.r + s * c2.r) / sqrt(g);\n if (eq(1 - h * h, 0)) {\n ret.push_back(Line(c1.center + u * c1.r, c1.center + (u + v) * c1.r));\n }\n else if (1 - h * h > 0) {\n Point uu = u * h, vv = v * sqrt(1 - h * h);\n ret.push_back(Line(c1.center + (uu + vv) * c1.r, c2.center - (uu + vv) * c2.r * s));\n ret.push_back(Line(c1.center + (uu - vv) * c1.r, c2.center - (uu - vv) * c2.r * s));\n }\n }\n return ret;\n}\n#line 1 \"Geometry/Contain.cpp\"\n// out 0, on 1, in 2\nint contains(Polygon poly, Point p) {\n int res = 0;\n int n = (int)poly.size();\n for (int i = 0; i < n; i++) {\n Point a = poly[i] - p, b = poly[(i + 1) % n] - p;\n if (imag(a) > imag(b)) swap(a, b);\n if (imag(a) <= 0 && 0 < imag(b) && cross(a, b) < 0) res ^= 1;\n if (eq(cross(a, b), 0) && (dot(a, b) < 0 || eq(dot(a, b), 0))) return 1;\n }\n if (res) res = 2;\n return res;\n}\n#line 1 \"Geometry/MinimumBoundingCircle.cpp\"\n//最小包含円を返す 計算量は期待値O(n)\n/*\nCircle MinimumBoundingCircle(vector<Point> v){\n int n=v.size();\n //ランダムシャッフル.いぢわるされたくないもんだ\n mt19937 mt(time(0));\n shuffle(v.begin(),v.end(),mt);\n Circle ret(0,0);\n\n auto make_circle2=[&](Point a,Point b){\n return Circle((a+b)*0.5,dis(a,b)/2);\n };\n\n auto make_circle3=[&](Point A,Point B,Point C){\n Point cent=circumscribed_circle(A,B,C).center;\n return Circle(cent,dis(cent,A));\n };\n\n auto isIn=[&](Point a){\n return dis(ret.center,a)<ret.r+EPS;\n };\n\n ret=make_circle2(v[0],v[1]);\n for(int i=2;i<n;i++){\n //v[i]が円に入っていないなら\n if(!isIn(v[i])){\n //円内にないなら点v[i]は必ず円周上に来る\n ret=make_circle2(v[0],v[i]);\n for(int j=1;j<i;j++){\n if(!isIn(v[j])){\n //この時iとjが円周上を考える\n ret=make_circle2(v[i],v[j]);\n //最後の1点の決定\n for(int k=0;k<j;k++)if(!isIn(v[k])) ret=make_circle3(v[i],v[j],v[k]);\n }\n }\n }\n }\n return ret;\n}*/\n#line 1 \"Geometry/ClosestPair.cpp\"\n// 最近点対\n// O(NlogN)\nReal closest_pair(vector<Point> ps) {\n sort(ALL(ps), [&](Point a, Point b) {\n return real(a) < real(b);\n });\n function<Real(int, int)> rec = [&](int l, int r) {\n if (r - l <= 1) return (Real)1e18;\n int m = (l + r) / 2;\n Real x = real(ps[m]);\n Real ret = min(rec(l, m), rec(m, r));\n inplace_merge(begin(ps) + l, begin(ps) + m, begin(ps) + r, [&](Point a, Point b) {\n return imag(a) < imag(b);\n });\n // 分割を跨いで最小距離があるか調べる\n vector<Point> b;\n for (int i = l; i < r; i++) {\n if (abs(real(ps[i]) - x) >= ret) continue;\n for (int j = (int)b.size() - 1; j >= 0; j--) {\n if (abs(imag(ps[i] - b[j])) >= ret) break;\n ret = min(ret, abs(ps[i] - b[j]));\n }\n b.push_back(ps[i]);\n }\n return ret;\n };\n return rec(0, (int)ps.size());\n}\n#line 1 \"Geometry/Convex.cpp\"\n// 凸多角形系統\n// 凸多角形の頂点は反時計周りに訪れる順序\n// v\n// 頂点は反時計周りに訪れる順序,時計回りとなるような3点があるとfalse\nbool is_convex(const vector<Point>& ps) {\n int n = (int)ps.size();\n for (int i = 0; i < n; i++)if (ccw(ps[(i + n - 1) % n], ps[i], ps[(i + 1) % n]) == -1)return false;\n return true;\n}\n\n// 凸包,あんまりよくわかってない.直線状に頂点をのせない場合(↑),のせる場合(↓)\nvector<Point> convex_hull(vector<Point> p) {\n int n = (int)p.size(), k = 0;\n if (n <= 2)return p;\n sort(begin(p), end(p), [](Point a, Point b) {\n return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);\n });\n vector<Point>ch(2 * n);\n for (int i = 0; i < n; ch[k++] = p[i++]) {\n // while(k>=2 and cross(ch[k-1]-ch[k-2],p[i]-ch[k-1])<EPS)k--;\n while (k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0)k--;\n }\n for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n // while(k>=t and cross(ch[k-1]-ch[k-2],p[i]-ch[k-1])<EPS)k--;\n while (k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0)k--;\n }\n ch.resize(k - 1);\n return ch;\n}\n\nvector<Point> crosspoint(Polygon poly, Circle c) {\n int n = (int)poly.size();\n vector<Point> ret;\n rep(i, n) {\n Segment seg = Segment(poly[i], poly[(i + 1) % n]);\n auto ps = crosspoint(c, seg);\n for (auto& p : ps) ret.push_back(p);\n }\n return ret;\n}\n\n\n\n\n#line 18 \"Geometry/include.cpp\"\n\nReal get(Point a, Point b, Point c) {\n a -= b;\n c -= b;\n Real ret = atan2(real(c), imag(c)) - atan2(real(a), imag(a));\n while (ret > pi * 2) ret -= pi * 2;\n while (ret < 0) ret += pi * 2;\n return ret;\n}\n\n/*\naを中心とし,bをradだけ回すような扇と\npolyの交差判定\n\npolyとa-bの交差判定は行わない\n*/\nbool cross(Polygon& poly, Point a, Point b, Real rad) {\n int n = (int)poly.size();\n Real l = dis(a, b);\n Point v = rotate(rad, b - a) / l;\n // 多角形の返上に棒が載っている時,常にaで交差判定がtrueになるんじゃないか?\n // EPSだけズラしてみた.わからない\n Segment abrot = Segment(a + v * EPS, a + v * l);\n rep(i, n) {\n Segment seg = Segment(poly[i], poly[(i + 1) % n]);\n\n if (intersect(seg, abrot)) return true;\n auto h = projection(seg, a);\n auto hr = get(b, a, h);\n if (hr <= rad) return true;\n }\n return false;\n}\n\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N,M;\n cin>>N>>M;\n\n vector<Polygon> P(N);\n rep(i,N){\n ll L;\n cin>>L;\n vector<Point> U(L);\n rep(_,L){\n double x,y;\n cin>>x>>y;\n U[_]={x,y};\n }\n P[i]=U;\n }\n vector<Point> H(M);\n rep(_,M){\n double x,y;\n cin>>x>>y;\n H[_]={x,y};\n }\n ll an=0;\n vector<Line> S;\n rep(i,M)rep(j,N){\n for(auto u:P[j]){\n S.push_back(Line(H[i],u));\n }\n }\n ll SN=S.size();\n rep(i,SN)rep(j,SN){\n if(intersect(S[i],S[j])){\n Point CCP=crosspoint(S[i],S[j]);\n\n \n rep(j,11){\n ll res=M;\n Point CP=CCP;\n if(j!=10){\n Point ER={0.1*cos(pi*double(j)/5.0),0.1*sin(pi*double(j)/5.0)};\n CP+=ER;\n }\n rep(m,M){\n bool OK=1;\n rep(n,N){\n \n rep(k,P[n].size()){\n if(intersect(Segment(H[m],CP),Segment(P[n][k],P[n][(k+1)%ll(P[n].size())])))OK=0;\n }\n \n }\n if(!OK)res--;\n }\n chmax(an,res);\n }\n \n }\n }\n\n cout<<an<<endl;\n}", "accuracy": 1, "time_ms": 570, "memory_kb": 3844, "score_of_the_acc": -0.3112, "final_rank": 12 }, { "submission_id": "aoj_2742_9343148", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++)\n#define all(A) A.begin(),A.end()\n\n// void chmax(ll& p, ll q) { p = max(p, q); };\n// void chmin(ll& p, ll q) { p = min(p, q); };\n\nconst ll mod = 998244353;\n\n\nusing ll = long long;\nconst int INF = 1000000000;\nconst ll LINF = 1001002003004005006ll;\nint dx[] = { 1,0,-1,0 }, dy[] = { 0,1,0,-1 };\n// ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}\ntemplate<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; }return false; }\ntemplate<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return true; }return false; }\n#define ALL(A) A.begin(),A.end()\n\nstruct IOSetup {\n IOSetup() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n }\n} iosetup;\n\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 == (int)v.size() ? \"\" : \" \");\n return os;\n}\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v)is >> x;\n return is;\n}\n\n#line 1 \"Geometry/template.cpp\"\n// Real\nusing Real = double;\nconst Real EPS = 1e-6;\nconst Real pi = acosl(-1);\n\n// Point\nusing Point = complex<Real>;\nistream& operator>>(istream& is, Point& p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\nostream& operator<<(ostream& os, Point& p) {\n return os << fixed << setprecision(12) << p.real() << ' ' << p.imag();\n}\ninline bool eq(Real a, Real b) {\n return fabs(a - b) < EPS;\n}\nPoint operator*(const Point& p, const Real& d) {\n return Point(real(p) * d, imag(p) * d);\n}\n\n// Line\nstruct Line {\n Point p1, p2;\n Line() = default;\n Line(Point p1, Point p2) :p1(p1), p2(p2) {}\n //Ax + By = C\n Line(Real A, Real B, Real C) {\n if (eq(A, 0)) p1 = Point(0, C / B), p2 = Point(1, C / B);\n else if (eq(B, 0))p1 = Point(C / A, 0), p2 = Point(C / A, 1);\n else p1 = Point(0, C / B), p2 = Point(C / A, 0);\n }\n};\n\n// Segment\nstruct Segment :Line {\n Segment() = default;\n Segment(Point p1, Point p2) :Line(p1, p2) {}\n};\nstruct Circle {\n Point center;\n Real r;\n Circle() = default;\n Circle(Point center, Real r) :center(center), r(r) {}\n};\n\n// Polygon\nusing Polygon = vector<Point>;\n#line 1 \"Geometry/Rotate.cpp\"\nPoint rotate(Real theta, Point p) {\n return Point(cos(theta) * real(p) - sin(theta) * imag(p), sin(theta) * real(p) + cos(theta) * imag(p));\n}\n#line 1 \"Geometry/Dot.cpp\"\n// Dot\nReal dot(Point a, Point b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\n#line 1 \"Geometry/Cross.cpp\"\n// Cross\nReal cross(Point a, Point b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\n#line 1 \"Geometry/CounterClockWise.cpp\"\n// ccw (counter clockwise) (Requires: cross, dot)\n//https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_1_C\nint ccw(Point a, Point b, Point c) {\n b -= a; c -= a;\n if (cross(b, c) > EPS) return 1;//COUNTER CLOCKWISE\n else if (cross(b, c) < -EPS) return -1;//CLOCKWISE\n else if (dot(b, c) < 0) return 2;//c--a--b ONLINE BACK\n else if (norm(b) < norm(c)) return -2;//a--b--c ONLINE FRONT\n else return 0;//a--c--b ON SEGMENT\n}\n#line 1 \"Geometry/Projection.cpp\"\n// Projection (Requires: dot)\nPoint projection(Line l, Point p) {\n // ベクトルl乗に点pからおろした垂線の足\n Real k = dot(l.p1 - l.p2, p - l.p1) / norm(l.p1 - l.p2);\n return l.p1 + (l.p1 - l.p2) * k;\n}\nPoint projection(Segment l, Point p) {\n Real k = dot(l.p1 - l.p2, p - l.p1) / norm(l.p1 - l.p2);\n return l.p1 + (l.p1 - l.p2) * k;\n}\n#line 1 \"Geometry/Intersect.cpp\"\n// Intersect (Requires : ccw, Dots, Cross, Projection)\nbool intersect(Line l, Point p) {\n return abs(ccw(l.p1, l.p2, p)) != 1;\n}\n//直線の交差判定,外積\nbool intersect(Line l1, Line l2) {\n return abs(cross(l1.p2 - l1.p1, l2.p2 - l2.p1)) > EPS || abs(cross(l1.p2 - l1.p1, l2.p2 - l1.p1)) < EPS;\n}\n//線分に点が乗るかの判定,ccw\nbool intersect(Segment s, Point p) {\n return ccw(s.p1, s.p2, p) == 0;\n}\n//直線と線分の交差判定\nbool intersect(Line l, Segment s) {\n return cross(l.p2 - l.p1, s.p1 - l.p1) * cross(l.p2 - l.p1, s.p2 - l.p1) < EPS;\n}\n//円と直線の交差判定\nbool intersect(Circle c, Line l) {\n return abs(c.center - projection(l, c.center)) <= c.r + EPS;\n}\n//円上かどうか,内部かどうかではない\nbool intersect(Circle c, Point p) {\n return abs(abs(p - c.center) - c.r) < EPS;\n}\n//線分と線分の交差判定\nbool intersect(Segment s, Segment t) {\n return ccw(s.p1, s.p2, t.p1) * ccw(s.p1, s.p2, t.p2) <= -EPS && ccw(t.p1, t.p2, s.p1) * ccw(t.p1, t.p2, s.p2) <= -EPS;\n}\n//線分と円の交差判定,交点の個数を返す\nint intersect(Circle c, Segment l) {\n Point h = projection(l, c.center);\n //直線まるっと円の外側\n if (norm(h - c.center) - c.r * c.r > EPS) return 0;\n Real d1 = abs(c.center - l.p1), d2 = abs(c.center - l.p2);\n //線分が円内\n if (d1 < c.r + EPS && d2 < c.r + EPS) return 0;\n if ((d1<c.r - EPS && d2>c.r + EPS) || (d2<c.r - EPS && d1>c.r + EPS)) return 1;\n //円の外部にまるまるはみ出ていないか\n if (dot(l.p1 - h, l.p2 - h) < 0) return 2;\n return 0;\n}\n//円と円の位置関係,共通接線の個数を返す\nint intersect(Circle c1, Circle c2) {\n if (c1.r < c2.r) swap(c1, c2);\n Real d = abs(c1.center - c2.center);\n //2円が離れている\n if (c1.r + c2.r < d) return 4;\n //2円が外接する\n if (eq(c1.r + c2.r, d)) return 3;\n //2円が交わる\n if (c1.r - c2.r < d) return 2;\n //円が内接する\n if (eq(c1.r - c2.r, d)) return 1;\n //内包\n return 0;\n}\n#line 1 \"Geometry/Distance.cpp\"\n// Distance (Requires: Projection, Intersect)\nReal dis(Point a, Point b) {\n return abs(a - b);\n}\nReal dis(Line l, Point p) {\n return abs(p - projection(l, p));\n}\nReal dis(Segment s, Point p) {\n Point r = projection(s, p);\n if (intersect(s, r)) return abs(r - p);\n return min(abs(s.p1 - p), abs(s.p2 - p));\n}\nReal dis(Segment a, Segment b) {\n if (intersect(a, b)) return 0;\n return min({ dis(a,b.p1),dis(a,b.p2),dis(b,a.p1),dis(b,a.p2) });\n}\nReal dis(Polygon a, Polygon b) {\n Real ret = -10;\n int n = (int)a.size(), m = (int)b.size();\n for (int i = 0; i < n; i++)for (int j = 0; j < m; j++) {\n Real d = dis(Segment(a[i], a[(i + 1) % n]), Segment(b[j], b[(j + 1) % m]));\n if (ret < 0) ret = d;\n else ret = min(ret, d);\n }\n return ret;\n}\nReal dis(Polygon poly, Point p) {\n Real ret = -10;\n int n = (int)poly.size();\n for (int i = 0; i < n; i++) {\n Real d = dis(Segment(poly[i], poly[(i + 1) % n]), p);\n if (ret < 0) ret = d;\n else ret = min(ret, d);\n }\n return ret;\n}\n#line 1 \"Geometry/CrossPoint.cpp\"\n//intersectをチェックすること\n//v\nPoint crosspoint(Line l, Line m) {\n Real A = cross(m.p2 - m.p1, m.p1 - l.p1);\n Real B = cross(m.p2 - m.p1, l.p2 - l.p1);\n if (eq(A, 0) && eq(B, 0)) return l.p1;\n if (eq(B, 0)) throw \"NAI\";\n return l.p1 + A / B * (l.p2 - l.p1);\n}\nPoint crosspoint(Segment l, Segment m) {\n return crosspoint(Line(l), Line(m));\n}\nvector<Point> crosspoint(Circle c, Line l) {\n vector<Point> ret;\n Point h = projection(l, c.center);\n Real d = sqrt(c.r * c.r - norm(h - c.center));\n Point e = (l.p2 - l.p1) * (1 / abs(l.p2 - l.p1));\n if (c.r * c.r + EPS < norm(h - c.center)) return ret;\n if (eq(dis(l, c.center), c.r)) {\n ret.push_back(h);\n return ret;\n }\n ret.push_back(h + e * d); ret.push_back(h - e * d);\n return ret;\n}\n//要verify,\nvector<Point> crosspoint(Circle c, Segment s) {\n Line l = Line(s.p1, s.p2);\n int ko = intersect(c, s);\n if (ko == 2) return crosspoint(c, l);\n vector<Point> ret;\n if (ko == 0) return ret;\n ret = crosspoint(c, l);\n if (ret.size() == 1) return ret;\n vector<Point> rret;\n //交点で挟める方を返す\n if (dot(s.p1 - ret[0], s.p2 - ret[0]) < 0) rret.push_back(ret[0]);\n else rret.push_back(ret[1]);\n return rret;\n}\n//v\nvector<Point> crosspoint(Circle c1, Circle c2) {\n vector<Point> ret;\n int isec = intersect(c1, c2);\n if (isec == 0 || isec == 4) return ret;\n Real d = abs(c1.center - c2.center);\n Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n Real t = atan2(c2.center.imag() - c1.center.imag(), c2.center.real() - c1.center.real());\n ret.push_back(c1.center + Point(cos(t + a) * c1.r, sin(t + a) * c1.r));\n ret.push_back(c1.center + Point(cos(t - a) * c1.r, sin(t - a) * c1.r));\n return ret;\n}\n#line 1 \"Geometry/Angle.cpp\"\n// angle of a-b-c\nReal get_smaller_angle(Point a, Point b, Point c) {\n Point v = a - b, w = c - b;\n auto A = atan2(imag(v), real(v));\n auto B = atan2(imag(w), real(w));\n if (A > B) swap(A, B);\n Real res = B - A;\n return min(res, pi * 2.0 - res);\n}\n#line 1 \"Geometry/InscribedCircle.cpp\"\n// 内接円\nCircle inscribed_circle(Point a, Point b, Point c) {\n Real A, B;\n {\n Point t = c - a;\n t *= conj(b - a);\n t /= norm(b - a);\n A = atan2(imag(t), real(t));\n }\n {\n Point t = a - b;\n t *= conj(c - b);\n t /= norm(c - b);\n B = atan2(imag(t), real(t));\n }\n Line Amid = Line(a, a + rotate(A * 0.5, b - a)), Bmid = Line(b, b + rotate(B * 0.5, c - b));\n auto center = crosspoint(Amid, Bmid);\n auto h = projection(Line(a, b), center);\n return Circle(center, dis(h, center));\n}\n#line 1 \"Geometry/CircumscribedCircle.cpp\"\n// 外接円\nCircle circumscribed_circle(Point a, Point b, Point c) {\n Line orth_ab((a + b) * 0.5, (a + b) * 0.5 + Point(-imag(b - a), real(b - a)));\n Line orth_bc((b + c) * 0.5, (b + c) * 0.5 + Point(-imag(c - b), real(c - b)));\n Point center = crosspoint(orth_ab, orth_bc);\n Real r = dis(a, center);\n return Circle(center, r);\n}\n#line 1 \"Geometry/Tangent.cpp\"\n//v\n//点pから引いた円cの接線の接点を返す\nvector<Point> tangent(Circle c, Point p) {\n return crosspoint(c, Circle(p, sqrt(norm(c.center - p) - c.r * c.r)));\n}\n//v\n//二円の共通接線,Lineの2点は接点を表す\nvector<Line> tangent(Circle c1, Circle c2) {\n vector<Line> ret;\n if (c1.r < c2.r) swap(c1, c2);\n Real g = norm(c1.center - c2.center);\n if (eq(g, 0)) return ret;\n Point u = (c2.center - c1.center) / sqrt(g);\n Point v = rotate(pi * 0.5, u);\n for (int s : {-1, 1}) {\n Real h = (c1.r + s * c2.r) / sqrt(g);\n if (eq(1 - h * h, 0)) {\n ret.push_back(Line(c1.center + u * c1.r, c1.center + (u + v) * c1.r));\n }\n else if (1 - h * h > 0) {\n Point uu = u * h, vv = v * sqrt(1 - h * h);\n ret.push_back(Line(c1.center + (uu + vv) * c1.r, c2.center - (uu + vv) * c2.r * s));\n ret.push_back(Line(c1.center + (uu - vv) * c1.r, c2.center - (uu - vv) * c2.r * s));\n }\n }\n return ret;\n}\n#line 1 \"Geometry/Contain.cpp\"\n// out 0, on 1, in 2\nint contains(Polygon poly, Point p) {\n int res = 0;\n int n = (int)poly.size();\n for (int i = 0; i < n; i++) {\n Point a = poly[i] - p, b = poly[(i + 1) % n] - p;\n if (imag(a) > imag(b)) swap(a, b);\n if (imag(a) <= 0 && 0 < imag(b) && cross(a, b) < 0) res ^= 1;\n if (eq(cross(a, b), 0) && (dot(a, b) < 0 || eq(dot(a, b), 0))) return 1;\n }\n if (res) res = 2;\n return res;\n}\n#line 1 \"Geometry/MinimumBoundingCircle.cpp\"\n//最小包含円を返す 計算量は期待値O(n)\n/*\nCircle MinimumBoundingCircle(vector<Point> v){\n int n=v.size();\n //ランダムシャッフル.いぢわるされたくないもんだ\n mt19937 mt(time(0));\n shuffle(v.begin(),v.end(),mt);\n Circle ret(0,0);\n\n auto make_circle2=[&](Point a,Point b){\n return Circle((a+b)*0.5,dis(a,b)/2);\n };\n\n auto make_circle3=[&](Point A,Point B,Point C){\n Point cent=circumscribed_circle(A,B,C).center;\n return Circle(cent,dis(cent,A));\n };\n\n auto isIn=[&](Point a){\n return dis(ret.center,a)<ret.r+EPS;\n };\n\n ret=make_circle2(v[0],v[1]);\n for(int i=2;i<n;i++){\n //v[i]が円に入っていないなら\n if(!isIn(v[i])){\n //円内にないなら点v[i]は必ず円周上に来る\n ret=make_circle2(v[0],v[i]);\n for(int j=1;j<i;j++){\n if(!isIn(v[j])){\n //この時iとjが円周上を考える\n ret=make_circle2(v[i],v[j]);\n //最後の1点の決定\n for(int k=0;k<j;k++)if(!isIn(v[k])) ret=make_circle3(v[i],v[j],v[k]);\n }\n }\n }\n }\n return ret;\n}*/\n#line 1 \"Geometry/ClosestPair.cpp\"\n// 最近点対\n// O(NlogN)\nReal closest_pair(vector<Point> ps) {\n sort(ALL(ps), [&](Point a, Point b) {\n return real(a) < real(b);\n });\n function<Real(int, int)> rec = [&](int l, int r) {\n if (r - l <= 1) return (Real)1e18;\n int m = (l + r) / 2;\n Real x = real(ps[m]);\n Real ret = min(rec(l, m), rec(m, r));\n inplace_merge(begin(ps) + l, begin(ps) + m, begin(ps) + r, [&](Point a, Point b) {\n return imag(a) < imag(b);\n });\n // 分割を跨いで最小距離があるか調べる\n vector<Point> b;\n for (int i = l; i < r; i++) {\n if (abs(real(ps[i]) - x) >= ret) continue;\n for (int j = (int)b.size() - 1; j >= 0; j--) {\n if (abs(imag(ps[i] - b[j])) >= ret) break;\n ret = min(ret, abs(ps[i] - b[j]));\n }\n b.push_back(ps[i]);\n }\n return ret;\n };\n return rec(0, (int)ps.size());\n}\n#line 1 \"Geometry/Convex.cpp\"\n// 凸多角形系統\n// 凸多角形の頂点は反時計周りに訪れる順序\n// v\n// 頂点は反時計周りに訪れる順序,時計回りとなるような3点があるとfalse\nbool is_convex(const vector<Point>& ps) {\n int n = (int)ps.size();\n for (int i = 0; i < n; i++)if (ccw(ps[(i + n - 1) % n], ps[i], ps[(i + 1) % n]) == -1)return false;\n return true;\n}\n\n// 凸包,あんまりよくわかってない.直線状に頂点をのせない場合(↑),のせる場合(↓)\nvector<Point> convex_hull(vector<Point> p) {\n int n = (int)p.size(), k = 0;\n if (n <= 2)return p;\n sort(begin(p), end(p), [](Point a, Point b) {\n return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);\n });\n vector<Point>ch(2 * n);\n for (int i = 0; i < n; ch[k++] = p[i++]) {\n // while(k>=2 and cross(ch[k-1]-ch[k-2],p[i]-ch[k-1])<EPS)k--;\n while (k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0)k--;\n }\n for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n // while(k>=t and cross(ch[k-1]-ch[k-2],p[i]-ch[k-1])<EPS)k--;\n while (k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0)k--;\n }\n ch.resize(k - 1);\n return ch;\n}\n\nvector<Point> crosspoint(Polygon poly, Circle c) {\n int n = (int)poly.size();\n vector<Point> ret;\n rep(i, n) {\n Segment seg = Segment(poly[i], poly[(i + 1) % n]);\n auto ps = crosspoint(c, seg);\n for (auto& p : ps) ret.push_back(p);\n }\n return ret;\n}\n\n\n\n\n#line 18 \"Geometry/include.cpp\"\n\nReal get(Point a, Point b, Point c) {\n a -= b;\n c -= b;\n Real ret = atan2(real(c), imag(c)) - atan2(real(a), imag(a));\n while (ret > pi * 2) ret -= pi * 2;\n while (ret < 0) ret += pi * 2;\n return ret;\n}\n\n/*\naを中心とし,bをradだけ回すような扇と\npolyの交差判定\n\npolyとa-bの交差判定は行わない\n*/\nbool cross(Polygon& poly, Point a, Point b, Real rad) {\n int n = (int)poly.size();\n Real l = dis(a, b);\n Point v = rotate(rad, b - a) / l;\n // 多角形の返上に棒が載っている時,常にaで交差判定がtrueになるんじゃないか?\n // EPSだけズラしてみた.わからない\n Segment abrot = Segment(a + v * EPS, a + v * l);\n rep(i, n) {\n Segment seg = Segment(poly[i], poly[(i + 1) % n]);\n\n if (intersect(seg, abrot)) return true;\n auto h = projection(seg, a);\n auto hr = get(b, a, h);\n if (hr <= rad) return true;\n }\n return false;\n}\n\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N,M;\n cin>>N>>M;\n\n vector<Polygon> P(N);\n rep(i,N){\n ll L;\n cin>>L;\n vector<Point> U(L);\n rep(_,L){\n double x,y;\n cin>>x>>y;\n U[_]={x,y};\n }\n P[i]=U;\n }\n vector<Point> H(M);\n rep(_,M){\n double x,y;\n cin>>x>>y;\n H[_]={x,y};\n }\n ll an=0;\n vector<Line> S;\n rep(i,M)rep(j,N){\n for(auto u:P[j]){\n S.push_back(Line(H[i],u));\n }\n }\n ll SN=S.size();\n rep(i,SN)rep(j,SN){\n if(intersect(S[i],S[j])){\n Point CCP=crosspoint(S[i],S[j]);\n\n \n rep(j,11){\n ll res=M;\n Point CP=CCP;\n if(j!=10){\n Point ER={0.1*cos(pi*double(j)/5.0),0.1*sin(pi*double(j)/5.0)};\n CP+=ER;\n }\n rep(m,M){\n rep(n,N){\n bool OK=1;\n rep(k,P[n].size()){\n if(intersect(Segment(H[m],CP),Segment(P[n][k],P[n][(k+1)%ll(P[n].size())])))OK=0;\n }\n if(!OK)res--;\n }\n }\n chmax(an,res);\n }\n \n }\n }\n\n cout<<an<<endl;\n}", "accuracy": 0.43478260869565216, "time_ms": 560, "memory_kb": 3836, "score_of_the_acc": -0.3055, "final_rank": 16 }, { "submission_id": "aoj_2742_9207128", "code_snippet": "#include <bits/stdc++.h>\n\nusing Point = std::pair<long double, long double>;\nusing Segment = std::pair<Point, Point>;\nusing Line = std::pair<Point, Point>;\nusing Polygon = std::vector<Point>;\n\nconstexpr long double EPS{(long double)1e-12};\n\nPoint operator+(const Point& l, const Point& r) {\n return Point{ l.first + r.first, l.second + r.second };\n}\n\nPoint operator-(const Point& l, const Point& r) {\n return Point{ l.first - r.first, l.second - r.second };\n}\n\nPoint operator*(const Point& p, long double k) {\n return Point{ p.first * k, p.second * k };\n}\n\nlong double Cross(const Point& l, const Point& r) {\n return l.first * r.second - l.second * r.first;\n}\n\nlong double Dot(const Point& l, const Point& r) {\n return l.first * r.first + l.second * r.second;\n}\n\nbool Zero(long double v) {\n return std::abs(v) < EPS;\n}\n\nbool Intersetct(const Line& l, const Line& r) {\n if (!Zero(Cross(l.second - l.first, r.second - r.first))) {\n return true;\n }\n else if (!Zero(Cross(l.second - l.first, r.first - l.first))) {\n return false;\n }\n else {\n return true;\n }\n}\n\nPoint CrossPoint(const Line& l, const Line& r) {\n assert(Intersetct(l, r));\n return l.first + (l.second - l.first) * (Cross(r.first - l.first, l.second - l.first) / Cross(l.second - l.first, r.second - r.first));\n}\n\nenum RELATION {\n ONLINE_FRONT = -2,\n CLOCKWISE,\n ON_SEGMENT,\n COUNTER_CLOCKWISE,\n ONLINE_BACK\n};\n\nRELATION Relation(const Point& p0, const Point& p1, const Point& p2) {\n Point a{p1 - p0}, b{p2 - p0};\n if (Cross(a, b) > EPS) return COUNTER_CLOCKWISE;\n if (Cross(a, b) < -EPS) return CLOCKWISE;\n if (Dot(a, b) < -EPS) return ONLINE_BACK;\n if (Dot(b, b) - Dot(a, a) > EPS) ONLINE_FRONT;\n return ON_SEGMENT;\n}\n\nbool Straddle(const Segment& l, const Segment& r) {\n return Relation(l.first, l.second, r.first) * Relation(l.first, l.second, r.second) <= 0;\n}\n\nbool IntersectSegment(const Segment& l, const Segment& r) {\n return Straddle(l, r) and Straddle(r, l);\n}\n\nstd::ostream& operator<<(std::ostream& os, const Point& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\n\nbool Intersect(const Polygon& P, const Segment& s) {\n bool res{};\n for (int i{} ; i < (int)P.size() ; i++) {\n Segment t{P[i], P[i + 1 == (int)P.size() ? 0 : i + 1]};\n // std::cout << \"seg is \" << t.first << ' ' << t.second << std::endl;\n if (Relation(s.first, t.first, s.second) == ON_SEGMENT) continue;\n if (Relation(s.first, t.second, s.second) == ON_SEGMENT) continue;\n if (Relation(t.first, s.first, t.second) == ON_SEGMENT) continue;\n if (Relation(t.first, s.second, t.second) == ON_SEGMENT) continue;\n // std::cout << \"not haji\" << std::endl;\n if (IntersectSegment(s, t)) {\n res = true;\n // std::cout << \"intersect!\" << std::endl;\n }\n }\n return res;\n}\n\nint main() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n\n int N, M;\n std::cin >> N >> M;\n std::vector<Polygon> P(N);\n for (int i{} ; i < N ; i++) {\n int L;\n std::cin >> L;\n for (int j{} ; j < L ; j++) {\n long double x, y;\n std::cin >> x >> y;\n P[i].emplace_back(x, y);\n }\n }\n std::vector<Point> Q(M);\n for (auto& [x, y] : Q) {\n std::cin >> x >> y;\n }\n std::vector<Point> cond;\n for (int i{} ; i < M ; i++) {\n for (int j{i + 1} ; j < M ; j++) {\n for (const auto& poly1 : P) {\n for (const auto& poly2 : P) {\n for (const auto& p1 : poly1) {\n for (const auto& p2 : poly2) {\n Line l1{Q[i], p1};\n Line l2{Q[j], p2};\n if (!Intersetct(l1, l2)) continue;\n cond.push_back(CrossPoint(l1, l2));\n }\n }\n }\n }\n }\n }\n // cond.clear();\n // cond.emplace_back(0.0, 3.0);\n int ans{1};\n for (const auto& c : cond) {\n // if (-1.1 <= c.first and c.first <= 1.1 and 1.9 <= c.second and c.second <= 3.1) {\n // std::cout << c.first << ',' << c.second << std::endl;\n // }\n int val{};\n for (const auto& q : Q) {\n Segment seg{c, q};\n // std::cout << \"I have \" << seg.first << ' ' << seg.second << std::endl;\n bool ok{true};\n for (const auto& p : P) {\n // std::cout << \"check\" << std::endl;\n ok &= !Intersect(p, seg);\n }\n if (ok) val++;\n }\n // if (val == 2) {\n // std::cout << c.first << ',' << c.second << std::endl;\n // }\n ans = std::max(ans, val);\n }\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3836, "score_of_the_acc": -0.2021, "final_rank": 7 }, { "submission_id": "aoj_2742_9172349", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nusing Real = long double;\nconst Real EPS = 1e-6, PI = acos(Real(-1.0));\nint sign(const Real& r) {\n if(r <= -EPS) return -1;\n if(r >= +EPS) return +1;\n return 0;\n}\nbool eq(const Real& a, const Real& b) {\n return sign(a - b) == 0;\n}\nusing Point = complex<Real>;\nistream& operator>>(istream& is, Point& p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\nostream& operator<<(ostream& os, const Point& p) {\n return os << p.real() << ' ' << p.imag();\n}\nReal dot(const Point& p1, const Point& p2) {\n return (conj(p1) * p2).real();\n}\nReal cross(const Point& p1, const Point& p2) {\n return (conj(p1) * p2).imag();\n}\nint ccw(const Point& a, Point b, Point c) {\n b -= a;\n c -= a;\n if(sign(cross(b, c)) == 1) return 1;\n if(sign(cross(b, c)) == -1) return -1;\n if(sign(dot(b, c)) == -1) return +2;\n if(norm(b) < norm(c)) return -2;\n return 0;\n}\nstruct Line {\n Point a, b;\n Line() = default;\n Line(const Point& a, const Point& b)\n : a(a), b(b) {}\n};\nusing Segment = Line;\nbool is_intersect_ll(const Line& l1, const Line& l2) {\n if(!eq(cross(l1.b - l1.a, l2.b - l2.a), 0.0)) return true;\n return eq(cross(l1.b - l1.a, l2.b - l1.a), 0.0);\n}\nbool is_intersect_ss(const Segment& s1, const Segment& s2) {\n if(ccw(s1.a, s1.b, s2.a) * ccw(s1.a, s1.b, s2.b) > 0) return false;\n return ccw(s2.a, s2.b, s1.a) * ccw(s2.a, s2.b, s1.b) <= 0;\n}\nvector<Point> intersection_ll(const Line& l1, const Line& l2) {\n vector<Point> res;\n if(!is_intersect_ll(l1, l2)) return res;\n Real a = cross(l1.b - l1.a, l2.b - l2.a);\n Real b = cross(l1.b - l1.a, l1.b - l2.a);\n if(eq(a, 0.0) and eq(b, 0.0)) {\n res.push_back(l2.a);\n } else {\n res.push_back(l2.a + (l2.b - l2.a) * b / a);\n }\n return res;\n}\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n int n, m;\n cin >> n >> m;\n vector<vector<Point>> poly(n);\n rep(i, 0, n) {\n int l;\n cin >> l;\n poly[i].resize(l);\n rep(j, 0, l) {\n cin >> poly[i][j];\n }\n }\n vector<Point> ps(m);\n rep(i, 0, m) {\n cin >> ps[i];\n }\n int ans = 1;\n rep(i1, 0, m) {\n rep(i2, i1 + 1, m) {\n rep(j1, 0, n) {\n rep(k1, 0, (int)poly[j1].size()) {\n rep(j2, 0, n) {\n rep(k2, 0, (int)poly[j2].size()) {\n Line l1 = Line(ps[i1], poly[j1][k1]);\n Line l2 = Line(ps[i2], poly[j2][k2]);\n vector<Point> inter = intersection_ll(l1, l2);\n if(inter.empty()) continue;\n Point cand = inter[0];\n int cnt = 0;\n rep(i, 0, m) {\n Point dir1 = (ps[i] - cand) * EPS;\n Segment seg1 = Segment(cand + dir1, ps[i] - dir1);\n bool flag = true;\n rep(j, 0, n) {\n rep(k, 0, (int)poly[j].size()) {\n Point dir2 = (poly[j][(k + 1) % poly[j].size()] - poly[j][k]) * EPS;\n Segment seg2 = Segment(poly[j][k] + dir2, poly[j][(k + 1) % poly[j].size()] - dir2);\n if(is_intersect_ss(seg1, seg2)) {\n flag = false;\n }\n }\n }\n if(flag) {\n cnt++;\n }\n }\n ans = max(ans, cnt);\n }\n }\n }\n }\n }\n }\n cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3572, "score_of_the_acc": -0.0887, "final_rank": 2 }, { "submission_id": "aoj_2742_9092864", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ld = long double;\n\n/*-- library --*/\n\nusing Real = long double;\nusing Point = complex<Real>;\nconst Real EPS = 1e-9, PI = acos(-1);\n\ninline bool eq(Real a, Real b) {\n return fabs(b - a) < EPS;\n}\n\n\nostream &operator<<(ostream &os, Point &p) {\n return os << fixed << setprecision(10) << p.real() << \" \" << p.imag();\n}\n\n// a-b-c の角度 (有向角)\nReal get_angle(const Point &a, const Point &b, const Point &c) {\n const Point v(b - a), w(c - b);\n Real alpha = arg(v), beta = arg(w);\n Real theta = (- beta + alpha + PI);\n if (theta < 0) theta += 2 * PI;\n if (theta > 2 * PI) theta -= 2 * PI;\n return theta;\n}\n\nstruct Line {\n Point a, b;\n\n Line() = default;\n\n Line(Point a, Point b) : a(a), b(b) {}\n\n Line(Real A, Real B, Real C) // Ax + By = C\n {\n if (eq(A, 0)) a = Point(0, C / B), b = Point(1, C / B);\n else if (eq(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1);\n else a = Point(0, C / B), b = Point(C / A, 0);\n }\n\n friend ostream &operator<<(ostream &os, Line &p) { return os << p.a << \" to \" << p.b; }\n\n friend istream &operator>>(istream &is, Line &a) { return is >> a.a >> a.b; }\n};\n\nstruct Segment : Line {\n Segment() = default;\n\n Segment(Point a, Point b) : Line(a, b) {}\n};\n\n\nusing Points = vector<Point>;\nusing Polygon = vector<Point>;\nusing Segments = vector<Segment>;\nusing Lines = vector<Line>;\n\n\n\nReal cross(const Point &a, const Point &b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\n\nReal dot(const Point &a, const Point &b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\n\n\n// 平行判定\nbool parallel(const Line &a, const Line &b) {\n return eq(cross(a.b - a.a, b.b - b.a), 0.0);\n}\n\n// 点の回転方向\nint ccw(const Point &a, Point b, Point c) {\n b = b - a, c = c - a;\n if (cross(b, c) > EPS) return +1; // \"COUNTER_CLOCKWISE\"\n if (cross(b, c) < -EPS) return -1; // \"CLOCKWISE\"\n if (dot(b, c) < 0) return +2; // \"ONLINE_BACK\"\n if (norm(b) < norm(c)) return -2; // \"ONLINE_FRONT\"\n return 0; // \"ON_SEGMENT\"\n}\n\nbool intersect(const Segment &s, const Segment &t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n\nPoint crosspoint(const Line &l, const Line &m) {\n Real A = cross(l.b - l.a, m.b - m.a);\n Real B = cross(l.b - l.a, l.b - m.a);\n if (eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a;\n return m.a + (m.b - m.a) * B / A;\n}\nPoint crosspoint(const Segment &l, const Segment &m) {\n return crosspoint(Line(l), Line(m));\n}\n\nvoid solve()\n{\n ll N, M; cin >> N >> M;\n \n vector< Polygon > col(N);\n \n for (int i = 0; i < N; ++i)\n {\n ll L; cin >> L;\n for (int j = 0; j < L; ++j)\n {\n ll x, y; cin >> x >> y;\n col[i].emplace_back(Point(x, y));\n }\n }\n \n vector< Point > human(M);\n for (int i = 0; i < M; ++i)\n {\n ll x, y; cin >> x >> y;\n human[i] = Point(x, y);\n }\n \n Segments seg;\n for (int i = 0; i < N; ++i)\n {\n ll L = col[i].size();\n for (int j = 0; j < L; ++j)\n {\n Segment hoge(col[i][j], col[i][(j+1)%L]);\n seg.emplace_back(hoge);\n \n for (int k = 0; k < M; ++k)\n {\n Segment huga(col[i][j], human[k]);\n seg.emplace_back(huga);\n }\n }\n }\n \n \n vector< Polygon > mincol(N);\n for (int i = 0; i < N; ++i)\n {\n ll L = col[i].size();\n \n for (int j = 0; j < L; ++j)\n {\n int pj = (j - 1 + L) % L;\n int nj = (j + 1) % L;\n \n Point dir = (col[i][pj] - col[i][j]) + (col[i][nj] - col[i][j]);\n Real angle = get_angle(col[i][pj], col[i][j], col[i][nj]);\n if (angle > PI) dir *= -1;\n \n dir /= abs(dir);\n Point q = col[i][j] + dir * Point(0.01, 0);\n mincol[i].emplace_back(q);\n }\n }\n \n // for (int i = 0; i < N; ++i)\n // {\n // ll L = col[i].size();\n // cout << L << endl;\n // for (auto p : mincol[i])\n // {\n // cout << p << endl;\n // }\n // }\n \n vector< Point > kouho;\n ll siz = seg.size();\n for (int i = 0; i < siz; ++i)\n {\n for (int j = i+1; j < siz; ++j)\n {\n if (parallel(Line(seg[i]), Line(seg[j]))) continue;\n Point p = crosspoint(seg[i], seg[j]);\n kouho.emplace_back(p);\n }\n }\n \n ll res = 0;\n for (const Point &p : kouho)\n {\n ll tmp = 0;\n for (int i = 0; i < M; ++i)\n {\n Point q = human[i];\n \n Segment eye(p, q);\n bool seen = true;\n \n for (int j = 0; j < N; ++j)\n {\n ll L = col[j].size();\n for (int k = 0; k < L; ++k)\n {\n Segment hoge(mincol[j][k], mincol[j][(k+1)%L]);\n seen &= !intersect(eye, hoge);\n }\n }\n \n if (seen) tmp++;\n else ;\n }\n \n // if (tmp == 2)\n // {\n // cout << p << endl;\n // }\n \n if (res < tmp) res = tmp;\n }\n cout << res << endl;\n \n return;\n}\n\nint main()\n{\n solve();\n \n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3884, "score_of_the_acc": -0.2265, "final_rank": 11 }, { "submission_id": "aoj_2742_9026223", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\ntemplate < class T > struct point {\n T x, y;\n point() : x(0), y(0) {}\n point(T x, T y) : x(x), y(y) {}\n point(std::pair< T, T > p) : x(p.first), y(p.second) {}\n point& operator+=(const point& p) { x += p.x, y += p.y; return *this; }\n point& operator-=(const point& p) { x -= p.x, y -= p.y; return *this; }\n point& operator*=(const T r) { x *= r, y *= r; return *this; }\n point& operator/=(const T r) { x /= r, y /= r; return *this; }\n point operator+(const point& p) const { return point(*this) += p; }\n point operator-(const point& p) const { return point(*this) -= p; }\n point operator*(const T r) const { return point(*this) *= r; }\n point operator/(const T r) const { return point(*this) /= r; }\n point operator-() const { return {-x, -y}; }\n bool operator==(const point& p) const { return x == p.x and y == p.y; }\n bool operator!=(const point& p) const { return x != p.x or y != p.y; }\n bool operator<(const point& p) const { return x == p.x ? y < p.y : x < p.x; }\n point< T > rot(double theta) {\n static_assert(is_floating_point_v< T >);\n double cos_ = std::cos(theta), sin_ = std::sin(theta);\n return {cos_ * x - sin_ * y, sin_ * x + cos_ * y};\n }\n};\ntemplate < class T > istream& operator>>(istream& is, point< T >& p) { return is >> p.x >> p.y; }\ntemplate < class T > ostream& operator<<(ostream& os, point< T >& p) { return os << p.x << \" \" << p.y; }\ntemplate < class T > T dot(const point< T >& a, const point< T >& b) { return a.x * b.x + a.y * b.y; }\ntemplate < class T > T det(const point< T >& a, const point< T >& b) { return a.x * b.y - a.y * b.x; }\ntemplate < class T > T norm(const point< T >& p) { return p.x * p.x + p.y * p.y; }\ntemplate < class T > double abs(const point< T >& p) { return std::sqrt(norm(p)); }\ntemplate < class T > double angle(const point< T >& p) { return std::atan2(p.y, p.x); }\ntemplate < class T > int sign(const T x) {\n T e = (is_integral_v< T > ? 1 : 1e-8);\n if(x <= -e) return -1;\n if(x >= +e) return +1;\n return 0;\n}\ntemplate < class T > bool equals(const T& a, const T& b) { return sign(a - b) == 0; }\ntemplate < class T > int ccw(const point< T >& a, point< T > b, point< T > c) {\n b -= a, c -= a;\n if(sign(det(b, c)) == +1) return +1; // counter clockwise\n if(sign(det(b, c)) == -1) return -1; // clockwise\n if(sign(dot(b, c)) == -1) return +2; // c-a-b\n if(norm(b) < norm(c)) return -2; // a-b-c\n return 0; // a-c-b\n}\n\ntemplate < class T > struct line {\n point< T > a, b;\n line() {}\n line(point< T > a, point< T > b) : a(a), b(b) {}\n};\ntemplate < class T > point< T > projection(const line< T >& l, const point< T >& p) {\n static_assert(is_floating_point_v< T >);\n return l.a + (l.a - l.b) * dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n}\ntemplate < class T > point< T > reflection(const line< T >& l, const point< T >& p) {\n static_assert(is_floating_point_v< T >);\n return p + (projection(l, p) - p) * T(2);\n}\ntemplate < class T > bool orthogonal(const line< T >& a, const line< T >& b) { return equals(dot(a.b - a.a, b.b - b.a), T(0)); }\ntemplate < class T > bool parallel (const line< T >& a, const line< T >& b) { return equals(det(a.b - a.a, b.b - b.a), T(0)); }\ntemplate < class T > point< T > cross_point_ll(const line< T >& l, const line< T >& m) {\n static_assert(is_floating_point_v< T >);\n T A = det(l.b - l.a, m.b - m.a);\n T B = det(l.b - l.a, l.b - m.a);\n if(equals(abs(A), T(0)) and equals(abs(B), T(0))) return m.a;\n return m.a + (m.b - m.a) * B / A;\n}\n\ntemplate < class T > using segment = line< T >;\ntemplate < class T > bool intersect_ss(const segment< T >& s, const segment< T >& t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) < 0 and ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) < 0;\n}\ntemplate < class T > double distance_sp(const segment< T >& s, const point< T >& p) {\n static_assert(is_floating_point_v< T >);\n point r = projection(s, p);\n if(ccw(s.a, s.b, r) == 0) return abs(r - p);\n return std::min(abs(s.a - p), abs(s.b - p));\n}\ntemplate < class T > double distance_ss(const segment< T >& a, const segment< T >& b) {\n if(intersect_ss(a, b)) return 0;\n return std::min({ distance_sp(a, b.a), distance_sp(a, b.b), distance_sp(b, a.a), distance_sp(b, a.b) });\n}\n\ntemplate < class T > using polygon = std::vector< point< T > >;\ntemplate < class T > T area2(const polygon< T >& p) {\n T s = 0;\n int n = p.size();\n for(int i = 0; i < n; i++) s += det(p[i], p[(i + 1) % n]);\n return s;\n}\ntemplate < class T > T area(const polygon< T >& p) { return area2(p) / T(2); }\n\ntemplate < class T > bool is_convex(const polygon< T >& p) {\n int n = p.size();\n for(int i = 0; i < n; i++) if(ccw(p[(i - 1 + n) % n], p[i], p[(i + 1) % n]) == -1) return false;\n return true;\n}\ntemplate < class T > int contains(const polygon< T >& g, const point< T >& p) {\n int n = g.size();\n bool in = false;\n for(int i = 0; i < n; i++) {\n point a = g[i] - p, b = g[(i + 1) % n] - p;\n if(sign(a.y - b.y) == +1) std::swap(a, b);\n if(sign(a.y) <= 0 and sign(b.y) ==+1 and sign(det(a, b)) == -1) in = !in;\n if(sign(det(a, b)) == 0 and sign(dot(a, b)) <= 0) return 1; // ON\n }\n return in ? 2 : 0;\n}\ntemplate < class T > polygon< T > convex_cut(const polygon< T >& p, const line< T >& l) {\n int n = p.size();\n polygon< T > res;\n for(int i = 0; i < n; i++) {\n point now = p[i], nxt = p[(i + 1) % n];\n if(ccw(l.a, l.b, now) != -1) res.push_back(now);\n if(ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) res.push_back(cross_point_ll(line(now, nxt), l));\n }\n return res;\n}\ntemplate < class T > polygon< T > convex_hull(polygon< T >& p) {\n int n = p.size(), k = 0;\n if(n <= 2) return p;\n std::sort(p.begin(), p.end());\n polygon< T > ch(n + n);\n for(int i = 0; i < n; ch[k++] = p[i++])\n while(k >= 2 and sign(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) == -1) k--;\n for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--])\n while(k >= t and sign(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) == -1) k--;\n ch.resize(k - 1);\n return ch;\n}\ntemplate < class T > T diameter2(const polygon< T >& p) {\n static_assert(is_floating_point_v< T >);\n int n = p.size(), is = 0, js = 0;\n for(int i = 1; i < n; i++) {\n if(sign(p[i].y - p[is].y) == +1) is = i;\n if(sign(p[i].y - p[js].y) == -1) js = i;\n }\n T dist_max = norm(p[is] - p[js]);\n int maxi = is, i = is, maxj = js, j = js;\n do {\n if(sign(det(p[(i + 1) % n] - p[i], p[(j + 1) % n] - p[j])) >= 0) j = (j + 1) % n; else i = (i + 1) % n;\n if(norm(p[i] - p[j]) > dist_max) {\n dist_max = norm(p[i] - p[j]);\n maxi = i, maxj = j;\n }\n } while(i != is or j != js);\n return dist_max;\n}\ntemplate < class T > double diameter(const polygon< T >& p) {\n static_assert(is_floating_point_v< T >);\n return std::sqrt(diameter2(p));\n}\n\ntemplate < class T > struct circle {\n point< T > p;\n T r;\n circle() = default;\n circle(point< T > p, T r) : p(p), r(r) {}\n};\ntemplate < class T > istream& operator>>(istream& is, circle< T >& c) { return is >> c.p >> c.r; }\ntemplate < class T > int intersect_cc(circle< T > c1, circle< T > c2) {\n if(c1.r < c2.r) std::swap(c1, c2);\n T d = abs(c1.p - c2.p);\n if(sign(c1.r + c2.r - d) == -1) return 4;\n if(equals(c1.r + c2.r, d)) return 3;\n if(sign(c1.r - c2.r - d) == -1) return 2;\n if(equals(c1.r - c2.r, d)) return 1;\n return 0;\n}\ntemplate < class T > std::pair<point< T >, point< T >> cross_point_cc(const circle< T >& c1, const circle< T >& c2) {\n T d = abs(c1.p - c2.p);\n T a = std::acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n T t = angle(c2.p - c1.p);\n point< T > p1 = c1.p + point< T >(std::cos(t + a), std::sin(t + a)) * c1.r;\n point< T > p2 = c1.p + point< T >(std::cos(t - a), std::sin(t - a)) * c1.r;\n return {p1, p2};\n}\n\nint main() {\n int N = in(), M = in();\n vector<polygon<f64>> P(N);\n vector<point<f64>> ps;\n for(int i : rep(N)) {\n int L = in();\n P[i] = in(L);\n ps.insert(ps.end(), P[i].begin(), P[i].end());\n }\n vector<point<f64>> Q = in(M);\n\n int ans = 1;\n const int K = ps.size();\n for(int pi : rep(K)) for(int pj : rep(K)) {\n for(int qi : rep(M)) for(int qj : rep(M)) {\n line<f64> li(ps[pi], Q[qi]);\n line<f64> lj(ps[pj], Q[qj]);\n if(parallel(li, lj)) continue;\n point<f64> X = cross_point_ll(li, lj);\n\n int cnt = 0;\n for(int i : rep(M)) {\n segment<f64> s(X, Q[i]);\n bool ok = [&] {\n for(int i : rep(N)) {\n const int L = P[i].size();\n for(int k : rep(L)) {\n segment<f64> p(P[i][k], P[i][(k + 1) % L]);\n if(intersect_ss(s, p)) return false;\n }\n }\n return true;\n }();\n if(ok) cnt++;\n }\n chmax(ans, cnt);\n }\n }\n\n print(ans);\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3540, "score_of_the_acc": -0.0638, "final_rank": 1 }, { "submission_id": "aoj_2742_8428236", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst long double EPS = 1.0e-9L;\nconst long double PI = 3.14159265358979L;\n\n// ============================================================= Geometry Library =============================================================\nstruct Point {\n long double px, py;\n};\n\nPoint operator+(const Point &a1, const Point &a2) {\n return Point{ a1.px + a2.px, a1.py + a2.py };\n}\n\nPoint operator-(const Point &a1, const Point &a2) {\n return Point{ a1.px - a2.px, a1.py - a2.py };\n}\n\nPoint operator*(const Point &a1, const long double &a2) {\n return Point{ a1.px * a2, a1.py * a2 };\n}\n\nlong double crs(Point a1, Point a2) {\n return a1.px * a2.py - a1.py * a2.px;\n}\n\nbool parallel(Point a1, Point a2) {\n if (fabs(crs(a1, a2)) < EPS) return true;\n return false;\n}\n\nPoint cross_point(Point a1, Point a2, Point b1, Point b2) {\n long double v1 = crs(a2 - a1, b1 - a1);\n long double v2 = crs(a2 - a1, b2 - a1);\n long double wari = (0.0L - v1) / (v2 - v1);\n return b1 + (b2 - b1) * wari;\n}\n\nbool intersect(Point a1, Point a2, Point b1, Point b2) {\n long double v1 = crs(a2 - a1, b1 - a1);\n long double v2 = crs(a2 - a1, b2 - a1);\n long double w1 = crs(b2 - b1, a1 - b1);\n long double w2 = crs(b2 - b1, a2 - b1);\n int cnt = 0;\n if (v1 > +EPS && v2 < -EPS) cnt += 1;\n if (v2 > +EPS && v1 < -EPS) cnt += 1;\n if (w1 > +EPS && w2 < -EPS) cnt += 1;\n if (w2 > +EPS && w1 < -EPS) cnt += 1;\n if (cnt == 2) return true;\n return false;\n}\n\n// ============================================================= Main Part =============================================================\nint N; vector<Point> Poly[19], Poly2[19];\nint M; Point U[19];\n\nvector<Point> Small(vector<Point> G) {\n vector<Point> Return;\n for (int i = 0; i < (int)G.size(); i++) {\n Point v1 = G[(i + G.size() - 1) % G.size()];\n Point v2 = G[i];\n Point v3 = G[(i + 1) % G.size()];\n long double angle1 = atan2l((v2 - v1).py, (v2 - v1).px);\n long double angle2 = atan2l((v3 - v2).py, (v3 - v2).px); if (angle1 > angle2) angle2 += 2.0L * PI;\n long double base = (angle1 + angle2 + PI) / 2.0L;\n Point H = G[i] + Point{ 1.0e-7L * cos(base), 1.0e-7L * sin(base) };\n Return.push_back(H);\n }\n return Return;\n}\n\nbool check(Point S, Point T) {\n for (int i = 1; i <= N; i++) {\n for (int j = 0; j < Poly2[i].size(); j++) {\n Point J1 = Poly2[i][j];\n Point J2 = Poly2[i][(j + 1) % Poly2[i].size()];\n bool ret = intersect(S, T, J1, J2);\n if (ret == true) return false;\n }\n }\n return true;\n}\n\nint main() {\n // Step 1. Input\n cin >> N >> M;\n for (int i = 1; i <= N; i++) {\n int cnt; cin >> cnt;\n Poly[i].resize(cnt);\n for (int j = 0; j < cnt; j++) cin >> Poly[i][j].px >> Poly[i][j].py;\n }\n for (int i = 1; i <= M; i++) cin >> U[i].px >> U[i].py;\n\n // Step 2. Get Little-bit Small Polygon\n for (int i = 1; i <= N; i++) {\n Poly2[i] = Small(Poly[i]);\n }\n\n // Step 3. Enumerate Line\n vector<pair<Point, Point>> CandLine;\n vector<Point> CandPoint;\n for (int i = 1; i <= N; i++) {\n for (Point base : Poly[i]) {\n CandPoint.push_back(base);\n for (int j = 1; j <= M; j++) CandLine.push_back(make_pair(U[j], base));\n }\n }\n \n // Step 4. Enumerate Point\n for (int i = 0; i < (int)CandLine.size(); i++) {\n for (int j = i + 1; j < (int)CandLine.size(); j++) {\n Point p1 = CandLine[i].first;\n Point p2 = CandLine[i].second;\n Point q1 = CandLine[j].first;\n Point q2 = CandLine[j].second;\n if (parallel(p2 - p1, q2 - q1) == true) continue;\n Point v = cross_point(p1, p2, q1, q2);\n CandPoint.push_back(v);\n }\n }\n\n // Step 5. Get Answer\n int Answer = 0;\n for (int i = 0; i < CandPoint.size(); i++) {\n int cnt = 0;\n for (int j = 1; j <= M; j++) {\n bool ret = check(CandPoint[i], U[j]);\n if (ret == true) cnt += 1;\n }\n // cout << \"! \" << CandPoint[i].px << \" \" << CandPoint[i].py << \" \" << cnt << endl;\n Answer = max(Answer, cnt);\n }\n\n // Step 6. Output\n cout << Answer << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4340, "score_of_the_acc": -0.4336, "final_rank": 13 }, { "submission_id": "aoj_2742_7822107", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> using V = vector<T>;\n\ntemplate <class T> ostream& operator<<(ostream& os, const V<T>& v) {\n os << \"[ \";\n for (auto &vi : v) os << vi << \", \";\n return os << \"]\";\n}\n\ntemplate <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n return os << \"{ \" << p.first << \", \" << p.second << \"}\";\n}\n\n#ifdef LOCAL\n#define show(x) cerr << __LINE__ << \" : \" << #x << \" = \" << x << endl;\n#else\n#define show(x) true\n#endif\n\ntemplate <typename T> struct Point {\n static T EPS;\n static constexpr T PI = 3.1415926535'8979323846'2643383279L;\n static void set_eps(const T& e) { EPS = e; }\n T x, y;\n Point(const T x = T(0), const T y = T(0)) : x(x), y(y) {}\n Point& operator+=(const Point& p) {\n x += p.x;\n y += p.y;\n return *this;\n }\n Point& operator-=(const Point& p) {\n x -= p.x;\n y -= p.y;\n return *this;\n }\n Point& operator*=(const T& k) {\n x *= k;\n y *= k;\n return *this;\n }\n friend Point operator+(const Point& a, const Point& b) { return Point(a) += b; }\n friend Point operator-(const Point& a, const Point& b) { return Point(a) -= b; }\n friend Point operator*(const Point& p, const T& k) { return Point(p) *= k; }\n friend istream& operator>>(istream& is, Point& p) { return is >> p.x >> p.y; }\n friend ostream& operator<<(ostream& os, const Point& p) { return os << \"(\" << p.x << \", \" << p.y << \")\"; }\n};\n\ntemplate <typename T> inline int sign(const T& x) { return x < -Point<T>::EPS ? -1 : x > Point<T>::EPS ? 1 : 0; }\ntemplate <typename T> inline bool equal(const T& a, const T& b) { return sign(a - b) == 0; }\n\ntemplate <typename T> inline bool equal(const Point<T>& a, const Point<T>& b) { return equal(a.x, b.x) and equal(a.y, b.y); }\ntemplate <typename T> inline T dot(const Point<T>& a, const Point<T>& b) { return a.x * b.x + a.y * b.y; }\ntemplate <typename T> inline T cross(const Point<T>& a, const Point<T>& b) { return a.x * b.y - a.y * b.x; }\ntemplate <typename T> inline T norm(const Point<T>& p) { return p.x * p.x + p.y * p.y; }\n\ntemplate <> double Point<double>::EPS = 1e-9;\n\ntemplate <typename T> struct Line {\n Point<T> a, b;\n\n Line() = default;\n\n Line(const Point<T>& a, const Point<T>& b) : a(a), b(b) {}\n};\n\ntemplate <typename T> struct Segment : Line<T> {\n Segment() = default;\n\n Segment(const Point<T>& a, const Point<T>& b) : Line<T>(a, b) {}\n};\n\nconstexpr int COUNTER_CLOCKWISE = 1;\nconstexpr int CLOCKWISE = -1;\nconstexpr int ONLINE_BACK = 2;\nconstexpr int ONLINE_FRONT = -2;\nconstexpr int ON_SEGMENT = 0;\n\ntemplate <typename T> int ccw(const Point<T>& a, Point<T> b, Point<T> c) {\n b = b - a, c = c - a;\n if (sign(cross(b, c)) == 1) return COUNTER_CLOCKWISE;\n if (sign(cross(b, c)) == -1) return CLOCKWISE;\n if (sign(dot(b, c)) == -1) return ONLINE_BACK;\n if (norm(b) < norm(c)) return ONLINE_FRONT;\n return ON_SEGMENT;\n}\n\ntemplate <typename T> bool is_intersect_ll(const Line<T>& l1, const Line<T>& l2) {\n Point base = l1.b - l1.a;\n T d12 = cross(base, l2.b - l2.a);\n T d1 = cross(base, l1.b - l2.a);\n if (sign(d12) == 0) {\n if (sign(d1) == 0) {\n return true;\n } else {\n return false;\n }\n }\n return true;\n}\n\ntemplate <typename T> Point<T> cross_point_ll(const Line<T>& l1, const Line<T>& l2) {\n Point base = l1.b - l1.a;\n T d12 = cross(base, l2.b - l2.a);\n T d1 = cross(base, l1.b - l2.a);\n if (sign(d12) == 0) {\n if (sign(d1) == 0) {\n return l2.a;\n } else {\n assert(false);\n }\n }\n return l2.a + (l2.b - l2.a) * (d1 / d12);\n}\n\ntemplate <typename T> inline bool is_intersect_ss(const Segment<T>& s1, const Segment<T>& s2) {\n return ccw(s1.a, s1.b, s2.a) * ccw(s1.a, s1.b, s2.b) < 0 and ccw(s2.a, s2.b, s1.a) * ccw(s2.a, s2.b, s1.b) < 0;\n}\n\nint main() {\n int N, M;\n cin >> N >> M;\n using D = double;\n using P = Point<D>;\n vector<vector<P>> ps(N);\n vector<P> pv;\n REP(i, N) {\n int L;\n cin >> L;\n REP(j, L) {\n P p;\n cin >> p;\n ps[i].push_back(p);\n pv.push_back(p);\n }\n }\n vector<P> xy(M);\n REP(i, M) cin >> xy[i];\n vector<P> can;\n for (auto& pc1 : xy) {\n for (auto& pc2 : xy) {\n for (auto& pv1 : pv) {\n for (auto& pv2 : pv) {\n if (equal(pc1, pc2) and equal(pv1, pv2)) continue;\n if (!is_intersect_ll(Line<D>(pc1, pv1), Line<D>(pc2, pv2))) continue;\n auto cp = cross_point_ll(Line<D>(pc1, pv1), Line<D>(pc2, pv2));\n can.push_back(cp);\n }\n }\n }\n }\n int ans = 1;\n for (auto& cp : can) {\n int cnt = 0;\n for (auto& cc : xy) {\n int ok = 1;\n for (auto& poly : ps) {\n int K = int(poly.size());\n REP(i, K) {\n if (is_intersect_ss(Segment<D>(cp, cc), Segment<D>(poly[i], poly[(i + 1) % K]))) {\n ok = 0;\n }\n }\n }\n cnt += ok;\n }\n ans = max(ans, cnt);\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3848, "score_of_the_acc": -0.2057, "final_rank": 8 }, { "submission_id": "aoj_2742_7700797", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)\n#define rrep(i,s,n) for (int i = (int)(n)-1; i >= (int)(s); i--)\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nconst int INF = 1001001001;\n\ntemplate<typename T> bool chmin(T &a, const T &b){\n if (a <= b) return false;\n a = b;\n return true;\n}\ntemplate<typename T> bool chmax(T &a, const T &b){\n if (a >= b) return false;\n a = b;\n return true;\n}\n\n\nusing pdd = pair<ld,ld>;\nconst ld c1 = cosl(0.001);\nconst ld s1 = sinl(0.001);\nconst ld eps = 1e-7;\n\nld det(pdd pa, pdd pb){\n return pa.first * pb.second - pa.second * pb.first;\n}\nint isp(pdd pa, pdd pb, pdd pc){\n pdd d = pdd(pb.first - pa.first, pb.second - pa.second);\n pdd e = pdd(pc.first - pa.first, pc.second - pa.second);\n ld x = det(d, e);\n if (abs(x) < eps) return 0;\n if(x < 0) return -1;\n if(x > 0) return 1;\n return 0;\n}\nbool crosss(pdd pa, pdd pb, pdd pc, pdd pd){\n return isp(pa,pb,pc) * isp(pa,pb,pd) < 0 && isp(pc,pd,pa) * isp(pc,pd,pb) < 0;\n}\n\nvoid rot(pdd &a){\n ld nx = a.first * c1 - a.second * s1;\n ld ny = a.first * s1 + a.second * c1;\n a = pdd(nx,ny);\n}\n\nint main(){\n int n, m; cin >> n >> m;\n vector<vector<pdd>> a(n);\n rep(i,0,n){\n int l; cin >> l;\n a[i].resize(l);\n rep(j,0,l){\n ld x, y; cin >> x >> y;\n a[i][j] = pdd(x,y);\n }\n }\n vector<pdd> b(m);\n rep(i,0,m){\n ld x, y; cin >> x >> y;\n b[i] = pdd(x,y);\n }\n rep(i,0,n){\n for (auto &p : a[i]) rot(p);\n }\n rep(j,0,m) rot(b[j]);\n vector<pdd> lines;\n rep(i,0,n) for (auto p : a[i]) rep(j,0,m){\n ld r = (p.second - b[j].second) / (p.first - b[j].first);\n ld d = b[j].second - b[j].first * r;\n lines.emplace_back(r,d);\n }\n vector<pdd> ps;\n int siz = lines.size();\n rep(i,0,siz-1) rep(j,i+1,siz){\n ld r1 = lines[i].first, d1 = lines[i].second;\n ld r2 = lines[j].first, d2 = lines[j].second;\n if (abs(r1-r2) < eps) continue;\n ld x = (d2-d1) / (r1-r2);\n ld y = r1*x+d1;\n ps.emplace_back(x,y);\n }\n siz = ps.size();\n int ans = 0;\n rep(i,0,siz){\n int cnt = 0;\n rep(j,0,m){\n bool ok = true;\n rep(k,0,n){\n int sk = a[k].size();\n rep(l,0,sk){\n pdd a0 = a[k][l], b0 = a[k][(l+1)%sk];\n if (crosss(a0,b0,ps[i],b[j])) ok = false;\n }\n }\n if (ok) cnt++;\n }\n chmax(ans,cnt);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3828, "score_of_the_acc": -0.1964, "final_rank": 5 }, { "submission_id": "aoj_2742_7668971", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing i32 = int;\nusing pii = pair<i32, i32>;\nstruct line {\n\tpii a, b;\n\tline(pii a, pii b) : a(a), b(b) {}\n};\n\npii diff(pii a, const pii& b) {\n\ta.first -= b.first;\n\ta.second -= b.second;\n\treturn a;\n}\n\ni32 cross(const pii& a, const pii& b) {\n\treturn a.first * b.second - a.second * b.first;\n}\n\ni32 dot(const pii& a, const pii& b) {\n\treturn a.first * b.first + a.second * b.second;\n}\n\ni32 sgn(i32 v) {\n\treturn (v < 0 ? -1 : (v == 0 ? 0 : 1));\n}\n\ni32 norm(const pii& a) {\n\treturn a.first * a.first + a.second + a.second;\n}\n\ni32 ccw(const pii& a, const pii& b) {\n\ti32 outer = sgn(cross(a, b));\n\tif (outer == 1) return 1;\n\tif (outer == -1) return -1;\n\tif (sgn(dot(a, b)) == -1) return 2;\n\tif (norm(a) < norm(b)) return -2;\n\treturn 0;\n}\n\nbool intersect(const line& l1, const line& l2) {\n\tpii a = diff(l1.b, l1.a), b = diff(l2.b, l2.a);\n\treturn ccw(a, diff(l2.a, l1.a)) * ccw(a, diff(l2.b, l1.a)) <= 0\n\t\tand\n\t\tccw(b, diff(l1.a, l2.a)) * ccw(b, diff(l1.b, l2.a)) <= 0;\n}\n\nvoid input(pair<i32, i32>& p) {\n\tcin >> p.first >> p.second;\n\tp.first *= 50;\n\tp.second *= 50;\n}\n\nint main() {\n\ti32 n, m; cin >> n >> m;\n\tvector<vector<pii>> B(n);\n\tfor (i32 i = 0 ; i < n ; i++) {\n\t\ti32 L; cin >> L;\n\t\tB[i] = vector(L, pii());\n\t\tfor (auto& p : B[i]) input(p);\n\t}\n\tvector P(m, pii());\n\tfor (auto& p : P) input(p);\n\ti32 ans = 1;\n\tfor (i32 i = -2000 ; i <= 2000 ; i++) {\n\t\tfor (i32 j = -2000 ; j <= 2000 ; j++) {\n\t\t\ti32 v = 0;\n\t\t\tfor (i32 k = 0 ; k < m ; k++) {\n\t\t\t\tbool ok = true;\n\t\t\t\tconst line p(pair(i, j), P[k]);\n\t\t\t\tfor (i32 bi = 0 ; bi < n ; bi++) {\n\t\t\t\t\tfor (i32 bj = 0 ; bj < (i32)B[bi].size() ; bj++) {\n\t\t\t\t\t\tconst line q(B[bi][bj], B[bi][(bj + 1) % B[bi].size()]);\n\t\t\t\t\t\tok &= !intersect(p, q);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tv += ok;\n\t\t\t}\n\t\t\tans = max(ans, v);\n\t\t}\n\t}\n\tcout << ans << endl;\n}", "accuracy": 0.06521739130434782, "time_ms": 5050, "memory_kb": 3444, "score_of_the_acc": -1.015, "final_rank": 20 }, { "submission_id": "aoj_2742_7668959", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// {{{ Templates\n\n// clang-format off\n\n// Macros\n#define over_load_(_1,_2,_3,_4,NAME,...) NAME\n#define rep(...) over_load_(__VA_ARGS__, rep4, rep3, rep2)(__VA_ARGS__)\n#define rep2(i, r) for ( int i = 0; i < static_cast<int>(r); (i) += 1)\n#define rep3(i, l, r) for ( int i = static_cast<int>(l); i < static_cast<int>(r); (i) += 1)\n#define rep4(i, l, r, stride) for ( int i = static_cast<int>(l); i < static_cast<int>(r); (i) += (stride))\n#define rrep(...) over_load_(__VA_ARGS__, rrep4, rrep3, rrep2)(__VA_ARGS__)\n#define rrep2(i, r) for ( int i = static_cast<int>(r) - 1; i >= 0; (i) -= 1)\n#define rrep3(i, l, r) for ( int i = static_cast<int>(r) - 1; i >= static_cast<int>(l); (i) -= 1)\n#define rrep4(i, l, r, stride) for ( int i = static_cast<int>(r) - 1; i >= static_cast<int>(l); (i) -= (stride))\n#define len(x) (static_cast<int>((x).size()))\n#define whole(f, x, ...) ([&](decltype((x)) container) { return (f)( begin(container), end(container), ## __VA_ARGS__); })(x)\n#define rwhole(f, x, ...) ([&](decltype((x)) container) { return (f)( rbegin(container), rend(container), ## __VA_ARGS__); })(x)\n#define debug(...) debug_function(#__VA_ARGS__, __VA_ARGS__)\n\n// Operators\ntemplate <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p) { os << \"(\" << p.first << \",\" << p.second << \")\"; return os; }\ntemplate <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &v) { bool is_first = true; for (auto x: v) { os << (is_first ? \"\" : \" \") << x; is_first = false; } return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, queue<T> v) { bool is_first = true; while (!v.empty()) { os << (is_first?\"\":\" \")<<v.front(); v.pop(); is_first = false; } return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, stack<T> v) { bool is_first = true; while (!v.empty()) { os << (is_first?\"\":\" \") << v.top(); v.pop(); is_first=false; } return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { rep (i, len(v)) os << v[i] << (i == len(v) - 1 ? \"\" : \" \"); return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<vector<T>> &v) { for (const auto &vec: v) { os << vec << '\\n'; } return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const deque<T> &v) { rep (i, len(v)) os << v[i] << (i == len(v) - 1 ? \"\" : \" \"); return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &v) { bool is_first = true; for (T x: v) { os << (is_first ? \"\" : \" \") << x; is_first = false; } return os; }\ntemplate <typename T> istream &operator>>(istream &is, vector<T> &v) { for (T &in: v) { is >> in; } return is; }\n\n// For debug macro\nint find_comma_not_bracketed(string_view s){ stack<char> bs; string lbs = \"({[\", rbs = \")}]\"; for (size_t i = 0; i < s.size(); i++) { if (lbs.find(s[i]) != string::npos) bs.push(s[i]); if (rbs.find(s[i]) != string::npos and !bs.empty()) bs.pop(); if (s[i] == ',' and bs.empty()) return i; } return s.size(); }\ntemplate <typename T, typename... Ts> void debug_function(string_view name, const T &a, Ts &&...rest) { int end = find_comma_not_bracketed(name); cerr << name.substr(0, end) << \":\" << a; if constexpr (sizeof...(rest) == 0) { cerr << '\\n'; } else { cerr << ' '; debug_function(name.substr(name.find_first_not_of(' ', end + 1)), forward<Ts>(rest)...); } }\n\n// Functions\ntemplate <typename T> vector<T> make_vector(size_t a, T b) { return vector<T>(a, b); }\ntemplate <typename... Ts> auto make_vector(size_t a, Ts... ts) { return vector<decltype(make_vector(ts...))>(a, make_vector(ts...)); }\ntemplate <typename T1, typename T2> inline bool chmax(T1 &a, T2 b) { return a < b and (a = b, true); }\ntemplate <typename T1, typename T2> inline bool chmin(T1 &a, T2 b) { return a > b and (a = b, true); }\n\n// Structs\nstruct IoSetup { IoSetup(int x = 15) { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(x); cerr << fixed << setprecision(x); } } iosetup;\n\n// Type aliases\nusing ull = unsigned long long;\nusing ll = long long;\nusing pll = pair<ll, ll>;\nusing pii = pair<int, int>;\n\n// Literals\nconstexpr ll INF64 = INT64_MAX / 2;\nconstexpr int INF32 = INT32_MAX / 2;\nconstexpr int dy[] = { 0, 1, -1, 0, -1, 1, -1, 1 };\nconstexpr int dx[] = { 1, 0, 0, -1, -1, -1, 1, 1 };\nconstexpr int mod998244353 = 998244353;\nconstexpr int mod1000000007 = static_cast<int>(1e9) + 7;\nconstexpr char newl = '\\n';\n\n// clang-format on\n\n// }}} Templates\n\nusing Real = double;\nusing Point = complex<Real>;\nconst Real EPS = 1e-8, PI = acos(-1);\n\ninline bool eq(Real a, Real b) {\n return fabs(b - a) < EPS;\n}\n\nPoint operator*(const Point &p, const Real &d) {\n return Point(real(p) * d, imag(p) * d);\n}\n\nistream &operator>>(istream &is, Point &p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\n\nostream &operator<<(ostream &os, Point &p) {\n return os << fixed << setprecision(10) << p.real() << \" \" << p.imag();\n}\n\n// 点 p を反時計回りに theta 回転\nPoint rotate(Real theta, const Point &p) {\n return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag());\n}\n\nReal radian_to_degree(Real r) {\n return (r * 180.0 / PI);\n}\n\nReal degree_to_radian(Real d) {\n return (d * PI / 180.0);\n}\n\n// a-b-c の角度のうち小さい方を返す\nReal get_angle(const Point &a, const Point &b, const Point &c) {\n const Point v(b - a), w(c - b);\n Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());\n if (alpha > beta)\n swap(alpha, beta);\n Real theta = (beta - alpha);\n return min(theta, 2 * acos(-1) - theta);\n}\n\nnamespace std {\n bool operator<(const Point &a, const Point &b) {\n return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();\n }\n} // namespace std\n\n\nstruct Line {\n Point a, b;\n\n Line() = default;\n\n Line(Point a, Point b): a(a), b(b) {}\n\n Line(Real A, Real B, Real C) // Ax + By = C\n {\n if (eq(A, 0))\n a = Point(0, C / B), b = Point(1, C / B);\n else if (eq(B, 0))\n b = Point(C / A, 0), b = Point(C / A, 1);\n else\n a = Point(0, C / B), b = Point(C / A, 0);\n }\n\n friend ostream &operator<<(ostream &os, Line &p) {\n return os << p.a << \" to \" << p.b;\n }\n\n friend istream &operator>>(istream &is, Line &a) {\n return is >> a.a >> a.b;\n }\n};\n\nstruct Segment: Line {\n Segment() = default;\n\n Segment(Point a, Point b): Line(a, b) {}\n};\n\nstruct Circle {\n Point p;\n Real r;\n\n Circle() = default;\n\n Circle(Point p, Real r): p(p), r(r) {}\n};\n\nusing Points = vector<Point>;\nusing Polygon = vector<Point>;\nusing Segments = vector<Segment>;\nusing Lines = vector<Line>;\nusing Circles = vector<Circle>;\n\nReal cross(const Point &a, const Point &b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\n\nReal dot(const Point &a, const Point &b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C\n// 点の回転方向\nint ccw(const Point &a, Point b, Point c) {\n b = b - a, c = c - a;\n if (cross(b, c) > EPS)\n return +1; // \"COUNTER_CLOCKWISE\"\n if (cross(b, c) < -EPS)\n return -1; // \"CLOCKWISE\"\n if (dot(b, c) < 0)\n return +2; // \"ONLINE_BACK\"\n if (norm(b) < norm(c))\n return -2; // \"ONLINE_FRONT\"\n return 0; // \"ON_SEGMENT\"\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\n// 平行判定\nbool parallel(const Line &a, const Line &b) {\n return eq(cross(a.b - a.a, b.b - b.a), 0.0);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\n// 垂直判定\nbool orthogonal(const Line &a, const Line &b) {\n return eq(dot(a.a - a.b, b.a - b.b), 0.0);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A\n// 射影\n// 直線 l に p から垂線を引いた交点を求める\nPoint projection(const Line &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\nPoint projection(const Segment &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B\n// 反射\n// 直線 l を対称軸として点 p と線対称にある点を求める\nPoint reflection(const Line &l, const Point &p) {\n return p + (projection(l, p) - p) * 2.0;\n}\n\nbool intersect(const Line &l, const Point &p) {\n return abs(ccw(l.a, l.b, p)) != 1;\n}\n\nbool intersect(const Line &l, const Line &m) {\n return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS;\n}\n\nbool intersect(const Segment &s, const Point &p) {\n return ccw(s.a, s.b, p) == 0;\n}\n\nbool intersect(const Line &l, const Segment &s) {\n return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS;\n}\n\nReal distance(const Line &l, const Point &p);\n\nbool intersect(const Circle &c, const Line &l) {\n return distance(l, c.p) <= c.r + EPS;\n}\n\nbool intersect(const Circle &c, const Point &p) {\n return abs(abs(p - c.p) - c.r) < EPS;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B\nbool intersect(const Segment &s, const Segment &t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\nint intersect(const Circle &c, const Segment &l) {\n if (norm(projection(l, c.p) - c.p) - c.r * c.r > EPS)\n return 0;\n auto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b);\n if (d1 < c.r + EPS && d2 < c.r + EPS)\n return 0;\n if (d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS)\n return 1;\n const Point h = projection(l, c.p);\n if (dot(l.a - h, l.b - h) < 0)\n return 2;\n return 0;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A&lang=jp\nint intersect(Circle c1, Circle c2) {\n if (c1.r < c2.r)\n swap(c1, c2);\n Real d = abs(c1.p - c2.p);\n if (c1.r + c2.r < d)\n return 4;\n if (eq(c1.r + c2.r, d))\n return 3;\n if (c1.r - c2.r < d)\n return 2;\n if (eq(c1.r - c2.r, d))\n return 1;\n return 0;\n}\n\nReal distance(const Point &a, const Point &b) {\n return abs(a - b);\n}\n\nReal distance(const Line &l, const Point &p) {\n return abs(p - projection(l, p));\n}\n\nReal distance(const Line &l, const Line &m) {\n return intersect(l, m) ? 0 : distance(l, m.a);\n}\n\nReal distance(const Segment &s, const Point &p) {\n Point r = projection(s, p);\n if (intersect(s, r))\n return abs(r - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D\nReal distance(const Segment &a, const Segment &b) {\n if (intersect(a, b))\n return 0;\n return min({ distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b) });\n}\n\nReal distance(const Line &l, const Segment &s) {\n if (intersect(l, s))\n return 0;\n return min(distance(l, s.a), distance(l, s.b));\n}\n\nPoint crosspoint(const Line &l, const Line &m) {\n Real A = cross(l.b - l.a, m.b - m.a);\n Real B = cross(l.b - l.a, l.b - m.a);\n if (eq(abs(A), 0.0) && eq(abs(B), 0.0))\n return m.a;\n return m.a + (m.b - m.a) * B / A;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C\nPoint crosspoint(const Segment &l, const Segment &m) {\n return crosspoint(Line(l), Line(m));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D\npair<Point, Point> crosspoint(const Circle &c, const Line l) {\n Point pr = projection(l, c.p);\n Point e = (l.b - l.a) / abs(l.b - l.a);\n if (eq(distance(l, c.p), c.r))\n return { pr, pr };\n double base = sqrt(c.r * c.r - norm(pr - c.p));\n return { pr - e * base, pr + e * base };\n}\n\npair<Point, Point> crosspoint(const Circle &c, const Segment &l) {\n Line aa = Line(l.a, l.b);\n if (intersect(c, l) == 2)\n return crosspoint(c, aa);\n auto ret = crosspoint(c, aa);\n if (dot(l.a - ret.first, l.b - ret.first) < 0)\n ret.second = ret.first;\n else\n ret.first = ret.second;\n return ret;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E\npair<Point, Point> crosspoint(const Circle &c1, const Circle &c2) {\n Real d = abs(c1.p - c2.p);\n Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());\n Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);\n Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);\n return { p1, p2 };\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F\n// 点 p を通る円 c の接線\npair<Point, Point> tangent(const Circle &c1, const Point &p2) {\n return crosspoint(c1, Circle(p2, sqrt(norm(c1.p - p2) - c1.r * c1.r)));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G\n// 円 c1, c2 の共通接線\nLines tangent(Circle c1, Circle c2) {\n Lines ret;\n if (c1.r < c2.r)\n swap(c1, c2);\n Real g = norm(c1.p - c2.p);\n if (eq(g, 0))\n return ret;\n Point u = (c2.p - c1.p) / sqrt(g);\n Point v = rotate(PI * 0.5, u);\n for (int s: { -1, 1 }) {\n Real h = (c1.r + s * c2.r) / sqrt(g);\n if (eq(1 - h * h, 0)) {\n ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r);\n } else if (1 - h * h > 0) {\n Point uu = u * h, vv = v * sqrt(1 - h * h);\n ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s);\n ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s);\n }\n }\n return ret;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B\n// 凸性判定\nbool is_convex(const Polygon &p) {\n int n = (int)p.size();\n for (int i = 0; i < n; i++) {\n if (ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1)\n return false;\n }\n return true;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_A\n// 凸包\nPolygon convex_hull(Polygon &p) {\n int n = (int)p.size(), k = 0;\n if (n <= 2)\n return p;\n sort(p.begin(), p.end());\n vector<Point> ch(2 * n);\n for (int i = 0; i < n; ch[k++] = p[i++]) {\n while (k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS)\n --k;\n }\n for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n while (k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS)\n --k;\n }\n ch.resize(k - 1);\n return ch;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C\n// 多角形と点の包含判定\nenum { OUT, ON, IN };\n\nint contains(const Polygon &Q, const Point &p) {\n bool in = false;\n for (int i = 0; i < Q.size(); i++) {\n Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;\n if (a.imag() > b.imag())\n swap(a, b);\n if (a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0)\n in = !in;\n if (cross(a, b) == 0 && dot(a, b) <= 0)\n return ON;\n }\n return in ? IN : OUT;\n}\n\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033\n// 線分の重複除去\nvoid merge_segments(vector<Segment> &segs) {\n auto merge_if_able = [](Segment &s1, const Segment &s2) {\n if (abs(cross(s1.b - s1.a, s2.b - s2.a)) > EPS)\n return false;\n if (ccw(s1.a, s2.a, s1.b) == 1 || ccw(s1.a, s2.a, s1.b) == -1)\n return false;\n if (ccw(s1.a, s1.b, s2.a) == -2 || ccw(s2.a, s2.b, s1.a) == -2)\n return false;\n s1 = Segment(min(s1.a, s2.a), max(s1.b, s2.b));\n return true;\n };\n\n for (int i = 0; i < segs.size(); i++) {\n if (segs[i].b < segs[i].a)\n swap(segs[i].a, segs[i].b);\n }\n for (int i = 0; i < segs.size(); i++) {\n for (int j = i + 1; j < segs.size(); j++) {\n if (merge_if_able(segs[i], segs[j])) {\n segs[j--] = segs.back(), segs.pop_back();\n }\n }\n }\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033\n// 線分アレンジメント\n// 任意の2線分の交点を頂点としたグラフを構築する\nvector<vector<int>> segment_arrangement(vector<Segment> &segs, vector<Point> &ps) {\n vector<vector<int>> g;\n int N = (int)segs.size();\n for (int i = 0; i < N; i++) {\n ps.emplace_back(segs[i].a);\n ps.emplace_back(segs[i].b);\n for (int j = i + 1; j < N; j++) {\n const Point p1 = segs[i].b - segs[i].a;\n const Point p2 = segs[j].b - segs[j].a;\n if (cross(p1, p2) == 0)\n continue;\n if (intersect(segs[i], segs[j])) {\n ps.emplace_back(crosspoint(segs[i], segs[j]));\n }\n }\n }\n sort(begin(ps), end(ps));\n ps.erase(unique(begin(ps), end(ps)), end(ps));\n\n int M = (int)ps.size();\n g.resize(M);\n for (int i = 0; i < N; i++) {\n vector<int> vec;\n for (int j = 0; j < M; j++) {\n if (intersect(segs[i], ps[j])) {\n vec.emplace_back(j);\n }\n }\n for (int j = 1; j < vec.size(); j++) {\n g[vec[j - 1]].push_back(vec[j]);\n g[vec[j]].push_back(vec[j - 1]);\n }\n }\n return (g);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C\n// 凸多角形の切断\n// 直線 l.a-l.b で切断しその左側にできる凸多角形を返す\nPolygon convex_cut(const Polygon &U, Line l) {\n Polygon ret;\n for (int i = 0; i < U.size(); i++) {\n Point now = U[i], nxt = U[(i + 1) % U.size()];\n if (ccw(l.a, l.b, now) != -1)\n ret.push_back(now);\n if (ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) {\n ret.push_back(crosspoint(Line(now, nxt), l));\n }\n }\n return (ret);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A\n// 多角形の面積\nReal area(const Polygon &p) {\n Real A = 0;\n for (int i = 0; i < p.size(); ++i) {\n A += cross(p[i], p[(i + 1) % p.size()]);\n }\n return A * 0.5;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H\n// 円と多角形の共通部分の面積\nReal area(const Polygon &p, const Circle &c) {\n if (p.size() < 3)\n return 0.0;\n function<Real(Circle, Point, Point)> cross_area = [&](const Circle &c, const Point &a, const Point &b) {\n Point va = c.p - a, vb = c.p - b;\n Real f = cross(va, vb), ret = 0.0;\n if (eq(f, 0.0))\n return ret;\n if (max(abs(va), abs(vb)) < c.r + EPS)\n return f;\n if (distance(Segment(a, b), c.p) > c.r - EPS)\n return c.r * c.r * arg(vb * conj(va));\n auto u = crosspoint(c, Segment(a, b));\n vector<Point> tot{ a, u.first, u.second, b };\n for (int i = 0; i + 1 < tot.size(); i++) {\n ret += cross_area(c, tot[i], tot[i + 1]);\n }\n return ret;\n };\n Real A = 0;\n for (int i = 0; i < p.size(); i++) {\n A += cross_area(c, p[i], p[(i + 1) % p.size()]);\n }\n return A;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B\n// 凸多角形の直径(最遠頂点対間距離)\nReal convex_diameter(const Polygon &p) {\n int N = (int)p.size();\n int is = 0, js = 0;\n for (int i = 1; i < N; i++) {\n if (p[i].imag() > p[is].imag())\n is = i;\n if (p[i].imag() < p[js].imag())\n js = i;\n }\n Real maxdis = norm(p[is] - p[js]);\n\n int maxi, maxj, i, j;\n i = maxi = is;\n j = maxj = js;\n do {\n if (cross(p[(i + 1) % N] - p[i], p[(j + 1) % N] - p[j]) >= 0) {\n j = (j + 1) % N;\n } else {\n i = (i + 1) % N;\n }\n if (norm(p[i] - p[j]) > maxdis) {\n maxdis = norm(p[i] - p[j]);\n maxi = i;\n maxj = j;\n }\n } while (i != is || j != js);\n return sqrt(maxdis);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_5_A\n// 最近点対\nReal closest_pair(Points ps) {\n if (ps.size() <= 1)\n throw(0);\n sort(begin(ps), end(ps));\n\n auto compare_y = [&](const Point &a, const Point &b) {\n return imag(a) < imag(b);\n };\n vector<Point> beet(ps.size());\n const Real INF = 1e18;\n\n function<Real(int, int)> rec = [&](int left, int right) {\n if (right - left <= 1)\n return INF;\n int mid = (left + right) >> 1;\n auto x = real(ps[mid]);\n auto ret = min(rec(left, mid), rec(mid, right));\n inplace_merge(begin(ps) + left, begin(ps) + mid, begin(ps) + right, compare_y);\n int ptr = 0;\n for (int i = left; i < right; i++) {\n if (abs(real(ps[i]) - x) >= ret)\n continue;\n for (int j = 0; j < ptr; j++) {\n auto luz = ps[i] - beet[ptr - j - 1];\n if (imag(luz) >= ret)\n break;\n ret = min(ret, abs(luz));\n }\n beet[ptr++] = ps[i];\n }\n return ret;\n };\n return rec(0, (int)ps.size());\n}\n\n\nint main() {\n int n, m;\n cin >> n >> m;\n\n vector<Polygon> pols(n);\n rep(i, n) {\n int l;\n cin >> l;\n\n Points ps(l);\n for (auto &p: ps) {\n cin >> p;\n }\n\n pols[i] = ps;\n }\n\n Points ps(m);\n for (auto &p: ps) {\n cin >> p;\n }\n\n vector<Segments> pol_segs(n);\n rep(i, n) {\n rep(j, len(pols[i]) - 1) {\n pol_segs[i].emplace_back(pols[i][j], pols[i][j + 1]);\n }\n }\n\n int ans = 0;\n\n constexpr int lim = 2000;\n for (int x = -lim; x <= lim; x++) {\n for (int y = -lim; y <= lim; y++) {\n Point me = Point(x / 100.0, y / 100.0);\n\n Segments segs;\n segs.reserve(ps.size());\n\n for (const auto &p: ps) {\n segs.emplace_back(me, p);\n }\n\n int sum = 0;\n\n for (const auto &s1: segs) {\n bool is_intersect = false;\n rep(i, pol_segs.size()) {\n for (const auto &s2: pol_segs[i]) {\n if (intersect(s1, s2)) {\n is_intersect = true;\n goto EXIT;\n }\n }\n }\n\n EXIT:\n if (not is_intersect) {\n sum++;\n }\n }\n\n if (chmax(ans, sum)) {\n // debug(x, y, ans);\n }\n }\n }\n\n cout << ans << newl;\n}", "accuracy": 0.06521739130434782, "time_ms": 1630, "memory_kb": 3520, "score_of_the_acc": -0.3705, "final_rank": 19 }, { "submission_id": "aoj_2742_7668879", "code_snippet": "namespace luz {\n\n template < typename T1, typename T2 >\n inline bool chmax(T1 &a, T2 b) {\n return a < b and (a = b, true);\n }\n\n template < typename T1, typename T2 >\n inline bool chmin(T1 &a, T2 b) {\n return a > b and (a = b, true);\n }\n\n} // namespace luz\n\n#include <iostream>\n\nnamespace luz {\n\n void set_fast_ios() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n }\n\n} // namespace luz\n\n#include <cstddef>\n#include <cstdint>\n\nnamespace luz {\n\n using isize = std::ptrdiff_t;\n using usize = std::size_t;\n\n using i32 = std::int32_t;\n using i64 = std::int64_t;\n using u32 = std::uint32_t;\n using u64 = std::uint64_t;\n\n} // namespace luz\n\nnamespace luz {\n\n template < typename T = i64 >\n T input() {\n T tmp;\n std::cin >> tmp;\n return tmp;\n }\n\n} // namespace luz\n\n#include <iomanip>\n\nnamespace luz {\n\n void io_set(usize precision) {\n std::cout << std::fixed << std::setprecision(precision);\n std::cerr << std::fixed << std::setprecision(precision);\n }\n\n} // namespace luz\n\n#include <vector>\n\nnamespace luz {\n\n template < typename T >\n std::vector< T > make_vector(usize a, T b) {\n return std::vector< T >(a, b);\n }\n\n template < typename... Ts >\n auto make_vector(usize a, Ts... ts) {\n return std::vector< decltype(make_vector(ts...)) >(\n a, make_vector(ts...));\n }\n\n} // namespace luz\n\n#include <utility>\n\nnamespace luz {\n\n template < typename T1, typename T2 >\n std::ostream &operator<<(std::ostream &os, std::pair< T1, T2 > p) {\n os << \"(\" << p.first << \", \" << p.second << \")\";\n return os;\n }\n\n template < typename T1, typename T2 >\n std::istream &operator>>(std::istream &is, std::pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n }\n\n} // namespace luz\n\n#include <algorithm>\n\nnamespace luz {\n\n struct rep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept: i(i) {}\n void operator++() noexcept {\n ++i;\n }\n constexpr usize operator*() const noexcept {\n return i;\n }\n constexpr bool operator!=(const itr x) const noexcept {\n return i != x.i;\n }\n };\n const itr f, l;\n constexpr rep(const usize f, const usize l) noexcept\n : f(std::min(f, l)),\n l(l) {}\n constexpr auto begin() const noexcept {\n return f;\n }\n constexpr auto end() const noexcept {\n return l;\n }\n };\n\n struct rrep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept: i(i) {}\n void operator++() noexcept {\n --i;\n }\n constexpr usize operator*() const noexcept {\n return i;\n }\n constexpr bool operator!=(const itr x) const noexcept {\n return i != x.i;\n }\n };\n const itr f, l;\n constexpr rrep(const usize f, const usize l) noexcept\n : f(l - 1),\n l(std::min(f, l) - 1) {}\n constexpr auto begin() const noexcept {\n return f;\n }\n constexpr auto end() const noexcept {\n return l;\n }\n };\n\n} // namespace luz\n\nnamespace luz {\n\n template < typename T >\n std::ostream &operator<<(std::ostream &os,\n const std::vector< T > vs) {\n for (usize i: rep(0, vs.size())) {\n os << vs[i] << (i + 1 != vs.size() ? \" \" : \"\");\n }\n return os;\n }\n\n template < typename T >\n std::istream &operator>>(std::istream &is, std::vector< T > &vs) {\n for (T &v: vs) {\n is >> v;\n }\n return is;\n }\n\n} // namespace luz\n\n#include <complex>\n#include <cmath>\n#include <istream>\n#include <ostream>\n\n// base\nnamespace geometry {\n using namespace std;\n using real_number = long double;\n\n const real_number PI = acosl(-1);\n\n inline static real_number &eps() {\n static real_number EPS = 1e-10;\n return EPS;\n }\n\n static void set_eps(real_number EPS) {\n eps() = EPS;\n }\n\n inline int sign(real_number r) {\n set_eps(1e-10);\n if (r < -eps()) return -1;\n if (r > +eps()) return +1;\n return 0;\n }\n\n inline bool equals(real_number r1, real_number r2) {\n return sign(r1 - r2) == 0;\n }\n}\n\n// point\nnamespace geometry {\n using point = complex< real_number >;\n using points = vector< point >;\n\n istream &operator>>(istream &is, point &p) {\n real_number x, y;\n is >> x >> y;\n p = point(x, y);\n return is;\n }\n\n ostream &operator<<(ostream &os, const point &p) {\n return os << p.real() << \" \" << p.imag();\n }\n\n point operator*(const point &p, const real_number &k) {\n return point(p.real() * k, p.imag() * k);\n }\n\n point rotate(const real_number &theta, const point &p) {\n return point(cos(theta) * p.real() + sin(-theta) * p.imag(),\n sin(theta) * p.real() + cos(-theta) * p.imag());\n }\n\n bool equals(const point &a, const point &b) {\n return equals(a.real(), b.real()) and equals(a.imag(), b.imag());\n }\n}\n\nusing geometry::operator>>;\nusing geometry::operator<<;\n\n// polygon\nnamespace geometry {\n using polygon = vector< point >;\n using polygons = vector< polygon >;\n}\n\n// line \nnamespace geometry {\n struct line {\n point a, b;\n\n line() = default;\n line(point a, point b) : a(a), b(b) {}\n };\n\n using lines = vector< line >;\n}\n\n// segment\nnamespace geometry {\n struct segment : line {\n segment() = default;\n using line::line;\n };\n\n using segments = vector< segment >;\n}\n\n// product\nnamespace geometry {\n real_number cross(const point &a, const point &b) {\n return a.real() * b.imag() - a.imag() * b.real();\n }\n\n real_number dot(const point &a, const point &b) {\n return a.real() * b.real() + a.imag() * b.imag();\n }\n}\n\n// ccw\nnamespace geometry {\n constexpr int COUNTER_CLOCKWISE = +1;\n constexpr int CLOCKWISE = -1;\n constexpr int ONLINE_BACK = +2; // c-a-b\n constexpr int ONLINE_FRONT = -2; // a-b-c\n constexpr int ON_SEGMENT = 0; // a-c-b\n int ccw(const point &a, point b, point c) {\n b = b - a, c = c - a;\n if (sign(cross(b, c)) == +1) return COUNTER_CLOCKWISE;\n if (sign(cross(b, c)) == -1) return CLOCKWISE;\n if (sign(dot(b, c)) == -1) return ONLINE_BACK;\n if (norm(b) < norm(c)) return ONLINE_FRONT;\n return ON_SEGMENT;\n }\n}\n\n// intersect\nnamespace geometry {\n bool is_intersect(const segment &s1, const segment &s2) {\n return ccw(s1.a, s1.b, s2.a) * ccw(s1.a, s1.b, s2.b) <= 0 &&\n ccw(s2.a, s2.b, s1.a) * ccw(s2.a, s2.b, s1.b) <= 0;\n }\n}\n\n// parallel\nnamespace geometry {\n bool is_parallel(const line &l1, const line &l2) {\n return equals(cross(l1.b - l1.a, l2.b - l2.a), 0);\n }\n}\n\n// cross point\nnamespace geometry {\n point cross_point_ll(const line &l1, const line &l2) {\n real_number a = cross(l1.b - l1.a, l2.b - l2.a);\n real_number b = cross(l1.b - l1.a, l1.b - l2.a);\n if (equals(a, 0) && equals(b, 0)) return l2.a;\n return l2.a + (l2.b - l2.a) * b / a;\n }\n}\n\nusing namespace geometry;\n\nnamespace luz {\n\n void main_() {\n usize n = input(), m = input();\n if (m == 1) {\n std::cout << 1 << std::endl;\n return;\n }\n\n segments segs;\n points vs;\n\n for (usize _: rep(0, n)) {\n usize l = input();\n polygon poly;\n\n while (l--) {\n real_number x, y;\n std::cin >> x >> y;\n poly.emplace_back(x, y);\n vs.emplace_back(x, y);\n }\n\n for (usize i: rep(1, poly.size() + 1)) {\n segs.emplace_back(poly[i - 1], poly[i % poly.size()]);\n }\n }\n\n points people;\n for (usize _: rep(0, m)) {\n real_number x, y;\n std::cin >> x >> y;\n people.emplace_back(x, y);\n }\n\n points pts;\n\n {\n lines ls;\n for (auto &p1: vs) for (auto &p2: people) {\n ls.emplace_back(p1, p2);\n }\n\n for (usize i: rep(0, ls.size())) for (usize j: rep(0, i)) {\n auto &l1 = ls[i], &l2 = ls[j];\n if (is_parallel(l1, l2)) continue;\n pts.emplace_back(cross_point_ll(l1, l2));\n }\n }\n\n auto count = [&](point p) {\n usize res = 0;\n for (auto &pt: people) {\n if (equals(pt, p)) {\n res++;\n continue;\n }\n\n segment s1(p, pt);\n\n bool f = true;\n usize cnt_v = 0;\n for (auto &s2: segs) {\n if (not is_intersect(s1, s2)) continue;\n\n auto cs = cross_point_ll(s1, s2);\n if (equals(s1.a, cs) or equals(s1.b, cs)) continue;\n if (equals(s2.a, cs) or equals(s2.b, cs)) continue;\n\n f = false;\n }\n if (cnt_v == 2) f = false;\n\n if (f) res++;\n }\n\n return res;\n };\n\n usize ans = 0;\n for (auto &p: pts) {\n if (chmax(ans, count(p))) {\n // std::cerr << p << std::endl;\n }\n }\n\n std::cout << ans << std::endl;\n }\n\n} // namespace luz\n\nint main() {\n luz::set_fast_ios();\n luz::io_set(15);\n\n luz::main_();\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3836, "score_of_the_acc": -0.2001, "final_rank": 6 }, { "submission_id": "aoj_2742_6794576", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <cstddef>\n#include <cstdint>\n#include <cstdlib>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <limits>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <optional>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <type_traits>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <vector>\n\n/* macro */\n\n#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)\n#define rrep(i, a, n) for (int i = ((int)(n - 1)); i >= (int)(a); i--)\n#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)\n#define RRep(i, a, n) for (i64 i = ((i64)(n - i64(1))); i >= (i64)(a); i--)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define Bit(n) (1LL << (n))\n\n/* macro end */\n\n/* template */\n\nnamespace ebi {\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() { std::cerr << std::endl; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cout << \" :\";\n debug_out(t...);\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {\n return os >> pa.first >> pa.second;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T>\nstd::istream &operator>>(std::istream &os, std::vector<T> &vec) {\n for (T &e : vec) std::cin >> e;\n return os;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {\n if (opt) {\n os << opt.value();\n } else {\n os << \"invalid value\";\n }\n return os;\n}\n\nusing std::size_t;\nusing i32 = std::int32_t;\nusing u32 = std::uint32_t;\nusing i64 = std::int64_t;\nusing u64 = std::uint64_t;\n\ntemplate <class T, T init>\nauto make_vector(int n) {\n return std::vector<T>(n, init);\n}\n\ntemplate <class T, T init, typename Head, typename... Tail>\nauto make_vector(Head n, Tail... ts) {\n return std::vector(n, make_vector<T, init>(ts...));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\nT pow(T x, i64 n) {\n T res = 1;\n while (n > 0) {\n if (n & 1) res = res * x;\n x = x * x;\n n >>= 1;\n }\n return res;\n}\n\ntemplate <class T>\nT mod_pow(T x, i64 n, i64 mod) {\n T res = 1;\n while (n > 0) {\n if (n & 1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n}\n\ntemplate <class T>\nT scan() {\n T val;\n std::cin >> val;\n return val;\n}\n\ntemplate <class T>\nstruct Edge {\n int to;\n T cost;\n Edge(int _to, T _cost = 1) : to(_to), cost(_cost) {}\n};\n\ntemplate <class T>\nstruct Graph : std::vector<std::vector<Edge<T>>> {\n using std::vector<std::vector<Edge<T>>>::vector;\n void add_edge(int u, int v, T w, bool directed = false) {\n (*this)[u].emplace_back(v, w);\n if (directed) return;\n (*this)[v].emplace_back(u, w);\n }\n};\n\nstruct graph : std::vector<std::vector<int>> {\n using std::vector<std::vector<int>>::vector;\n void add_edge(int u, int v, bool directed = false) {\n (*this)[u].emplace_back(v);\n if (directed) return;\n (*this)[v].emplace_back(u);\n }\n};\n\nconstexpr i64 LNF = std::numeric_limits<i64>::max() / 4;\n\nconstexpr int INF = std::numeric_limits<int>::max() / 2;\n\nconst std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};\nconst std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};\n\n} // namespace ebi\n\nnamespace ebi {\n\nconstexpr long double EPS = 1e-7;\n\nconst long double PI = std::acos(-1);\n\nnamespace internal {\n\nint sgn(long double a) { return (a < -EPS) ? -1 : (a > EPS) ? 1 : 0; }\n\nlong double add(long double a, long double b) {\n if (std::abs(a + b) < EPS * (std::abs(a) + std::abs(b))) return 0;\n return a + b;\n}\n\n} // namespace internal\n\nlong double arg_to_radian(long double arg) {\n return PI * arg / (long double)(180);\n}\n\nstruct point {\n long double x, y;\n\n point() = default;\n\n point(long double x, long double y) : x(x), y(y) {}\n\n point &operator+=(const point rhs) noexcept {\n x = internal::add(x, rhs.x);\n y = internal::add(y, rhs.y);\n return *this;\n }\n\n point &operator-=(const point rhs) noexcept {\n x = internal::add(x, -rhs.x);\n y = internal::add(y, -rhs.y);\n return *this;\n }\n\n point &operator*=(const point rhs) noexcept {\n long double _x = internal::add(x * rhs.x, -y * rhs.y);\n long double _y = internal::add(x * rhs.y, y * rhs.x);\n x = _x;\n y = _y;\n return *this;\n }\n\n point &operator*=(const long double k) noexcept {\n x *= k;\n y *= k;\n return *this;\n }\n\n point &operator/=(const long double k) {\n assert(internal::sgn(k) != 0);\n x /= k;\n y /= k;\n return *this;\n }\n\n point operator+(const point &rhs) const noexcept {\n return point(*this) += rhs;\n }\n\n point operator-(const point &rhs) const noexcept {\n return point(*this) -= rhs;\n }\n\n point operator*(const point &rhs) const noexcept {\n return point(*this) *= rhs;\n }\n\n point operator*(const long double rhs) const noexcept {\n return point(*this) *= rhs;\n }\n\n point operator/(const long double rhs) const { return point(*this) /= rhs; }\n\n point operator-() const noexcept { return point(0, 0) - *this; }\n\n long double abs() const noexcept {\n return std::sqrt(internal::add(x * x, y * y));\n }\n\n long double dot(const point rhs) const noexcept {\n return internal::add(x * rhs.x, y * rhs.y);\n }\n\n long double det(const point rhs) const noexcept {\n return internal::add(x * rhs.y, -y * rhs.x);\n }\n\n // arctan(y/x) (単位はラジアン)\n\n long double arg() const { return std::atan2(y, x); }\n\n // x昇順, その後y昇順\n\n bool operator<(const point &rhs) const noexcept {\n if (internal::sgn(x - rhs.x)) return internal::sgn(x - rhs.x) < 0;\n return internal::sgn(y - rhs.y) < 0;\n }\n\n bool operator==(const point &rhs) const noexcept {\n if (internal::sgn(x - rhs.x) == 0 && internal::sgn(y - rhs.y) == 0)\n return true;\n else\n return false;\n }\n};\n\nstd::ostream &operator<<(std::ostream &os, const point &a) {\n return os << a.x << \" \" << a.y;\n}\n\nstd::istream &operator>>(std::istream &os, point &a) {\n return os >> a.x >> a.y;\n}\n\npoint conj(const point &a) { return point(a.x, -a.y); }\n\n// 点a をang(ラジアン)回転する\n\npoint rot(const point &a, long double ang) {\n return point(std::cos(ang) * a.x - std::sin(ang) * a.y,\n std::sin(ang) * a.x + std::cos(ang) * a.y);\n}\n\npoint rot90(const point &a) { return point(-a.y, a.x); }\n\nlong double dot(const point &a, const point &b) { return a.dot(b); }\n\nlong double det(const point &a, const point &b) { return a.det(b); }\n\nlong double abs(const point &a) { return a.abs(); }\n\nlong double norm(const point &a) { return internal::add(a.x * a.x, a.y * a.y); }\n\nint isp(const point &a, const point &b, const point &c) {\n int flag = internal::sgn(det(b - a, c - a));\n if (flag == 0) {\n if (internal::sgn(dot(b - a, c - a)) < 0) return -2;\n if (internal::sgn(dot(a - b, c - b)) < 0) return +2;\n }\n return flag;\n}\n\n// 分割統治で最近点対を求める O(N log N)\n\nlong double closest_pair(std::vector<point> p) {\n std::sort(p.begin(), p.end());\n int n = p.size();\n auto f = [&](auto &&self, int l, int r) -> long double {\n if (r - l == 1) {\n return 1e9;\n }\n int mid = (l + r) / 2;\n long double x = p[mid].x;\n long double d = std::min(self(self, l, mid), self(self, mid, r));\n std::vector<point> b;\n b.reserve(r - l);\n int j = mid;\n for (int i = l; i < mid; i++) {\n while (j < r && p[j].y <= p[i].y) {\n b.emplace_back(p[j++]);\n }\n b.emplace_back(p[i]);\n }\n while (j < r) {\n b.emplace_back(p[j++]);\n }\n for (int i = 0; i < r - l; i++) {\n p[l + i] = b[i];\n }\n b.clear();\n for (int i = l; i < r; i++) {\n if (std::abs(p[i].x - x) >= d) continue;\n for (int j = int(b.size()) - 1; j >= 0; j--) {\n if (p[i].y - b[j].y >= d) break;\n d = std::min(d, abs(p[i] - b[j]));\n }\n b.emplace_back(p[i]);\n }\n return d;\n };\n return f(f, 0, n);\n}\n\n// ∠ABCを求める(ラジアン)\n\nlong double angle(const point &A, const point &B, const point &C) {\n long double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();\n long double cos =\n internal::add(internal::add(a * a, c * c), -b * b) / (2.0 * c * a);\n return std::acos(cos);\n}\n\nvoid arg_sort(std::vector<point> &a) {\n int n = a.size();\n std::vector ps(4, std::vector<point>());\n auto idx = [](point v) -> int {\n if (v.y >= 0)\n return (v.x >= 0) ? 0 : 1;\n else\n return (v.x >= 0) ? 3 : 2;\n };\n for (auto p : a) {\n assert(!(p.x == 0 && p.y == 0));\n ps[idx(p)].emplace_back(p);\n }\n a.clear();\n a.reserve(n);\n for (int i = 0; i < 4; i++) {\n std::sort(ps[i].begin(), ps[i].end(), [](point &p1, point &p2) -> bool {\n int flag = internal::sgn(internal::add(p1.x * p2.y, -p2.x * p1.y));\n return flag == 0 ? (norm(p1) < norm(p2)) : flag > 0;\n });\n for (auto &p : ps[i]) a.emplace_back(p);\n }\n return;\n}\n\ntemplate <class T>\nvoid arg_sort_ll(std::vector<std::pair<T, T>> &a) {\n using Point = std::pair<T, T>;\n int n = a.size();\n std::vector ps(4, std::vector<Point>());\n auto idx = [](Point v) -> int {\n if (v.second >= 0)\n return (v.first >= 0) ? 0 : 1;\n else\n return (v.first >= 0) ? 3 : 2;\n };\n for (auto p : a) {\n assert(!(p.first == 0 && p.second == 0));\n ps[idx(p)].emplace_back(p);\n }\n a.clear();\n a.reserve(n);\n for (int i = 0; i < 4; i++) {\n std::sort(ps[i].begin(), ps[i].end(), [](Point &p1, Point &p2) -> bool {\n T flag = p1.first * p2.second - p2.first * p1.second;\n return flag == 0 ? (p1.first * p1.first + p1.second * p1.second <\n p2.first * p2.first + p2.second * p2.second)\n : flag > 0;\n });\n for (auto &p : ps[i]) a.emplace_back(p);\n }\n return;\n}\n\n} // namespace ebi\n\nnamespace ebi {\n\nstruct line {\n point a, b;\n\n line(long double x1, long double y1, long double x2, long double y2)\n : a(x1, y1), b(x2, y2) {}\n\n line(const point &a, const point &b) : a(a), b(b) {}\n\n point proj(const point &p) const {\n return a + (b - a) * (dot(b - a, p - a) / norm(b - a));\n }\n\n point relf(const point &p) const { return proj(p) * double(2) - p; }\n\n long double distance(const point &c) const {\n return std::abs(det(c - a, b - a) / abs(b - a));\n }\n};\n\nint intersection(const line &a, const line &b) {\n if (internal::sgn(det(a.b - a.a, b.a - b.b)) != 0) {\n if (internal::sgn(dot(a.b - a.a, b.b - b.a)) == 0) { // 垂直\n return 1;\n }\n return 0; // 交差\n } else if (internal::sgn(det(a.b - a.a, b.a - a.a)) != 0) { // 平行\n return 2;\n } else { // 同一直線\n return 3;\n }\n}\n\npoint cross_point(const point &a, const point &b, const point &c,\n const point &d) {\n return a + (b - a) * det(c - a, d - c) / det(b - a, d - c);\n}\n\n// 交点があるか確認する!\npoint cross_point(const line &s, const line &t) {\n assert(intersection(s, t) < 2);\n return s.a +\n (s.b - s.a) * det(t.a - s.a, t.b - t.a) / det(s.b - s.a, t.b - t.a);\n}\n\n// 直線aと点cの距離\nlong double distance(const line &a, const point &c) {\n return std::abs(det(c - a.a, a.b - a.a) / abs(a.b - a.a));\n}\n\nlong double distance(const line &a, const line &b) {\n if (intersection(a, b) < 2) {\n return 0;\n } else {\n return distance(a, b.a);\n }\n}\n\n} // namespace ebi\n\nnamespace ebi {\n\nstruct line_segment {\n point a, b;\n\n line_segment() = default;\n\n line_segment(long double x1, long double y1, long double x2, long double y2)\n : a(x1, y1), b(x2, y2) {}\n\n line_segment(const point &a, const point &b) : a(a), b(b) {}\n};\n\n// 線分ab, cd が交わるか判定\nbool intersection_line_segment(const point &a, const point &b, const point &c,\n const point &d) {\n if (internal::sgn(isp(a, b, c) * isp(a, b, d)) <= 0 &&\n internal::sgn(isp(c, d, a) * isp(c, d, b)) <= 0) {\n return true;\n }\n return false;\n}\n\n// 線分ab, cd が交わるか判定\nbool intersection(const line_segment &a, const line_segment &b) {\n return intersection_line_segment(a.a, a.b, b.a, b.b);\n}\n\nbool intersection(const line &a, const line_segment &b) {\n if (internal::sgn(det(a.b - a.a, b.a - a.a)) *\n internal::sgn(det(a.b - a.a, b.b - a.a)) <\n 0) {\n return true;\n } else {\n return false;\n }\n}\n\npoint cross_point(const line_segment &s, const line_segment &t) {\n assert(intersection(s, t));\n return s.a +\n (s.b - s.a) * det(t.a - s.a, t.b - t.a) / det(s.b - s.a, t.b - t.a);\n}\n\nlong double distance(const line_segment &a, const point &c) {\n if (internal::sgn(dot(a.b - a.a, c - a.a)) < 0) {\n return abs(c - a.a);\n } else if (internal::sgn(dot(a.a - a.b, c - a.b)) < 0) {\n return abs(c - a.b);\n } else {\n return std::abs(det(c - a.a, a.b - a.a) / abs(a.b - a.a));\n }\n}\n\nlong double distance(const line_segment &a, const line_segment &b) {\n if (intersection(a, b)) {\n return 0;\n } else {\n return std::min(std::min(distance(a, b.a), distance(a, b.b)),\n std::min(distance(b, a.a), distance(b, a.b)));\n }\n}\n\nlong double distance(const line &a, const line_segment &b) {\n if (intersection(a, b)) {\n return 0;\n } else {\n return std::min(distance(a, b.a), distance(a, b.b));\n }\n}\n\n} // namespace ebi\n\nnamespace ebi {\n\nvoid main_() {\n int n, m;\n std::cin >> n >> m;\n std::vector<std::vector<point>> polies(n);\n rep(i, 0, n) {\n int l;\n std::cin >> l;\n polies[i].resize(l);\n std::cin >> polies[i];\n }\n std::vector<point> people(m);\n std::cin >> people;\n std::vector<line> ls;\n for (const auto &poly : polies) {\n for (const auto &p : poly) {\n for (const auto &human : people) {\n ls.emplace_back(p, human);\n }\n }\n }\n auto calc_ang = [&](point a, point b, point c) -> long double {\n long double cos = dot((a-b), (c-b)) / (abs(a-b) * abs(c-b));\n long double sin = det((a-b), (c-b)) / (abs(a-b) * abs(c-b));\n return std::atan2(sin, cos);\n };\n int ans = 0;\n auto check = [&](const std::vector<point> &poly, point p) -> bool {\n long double ret = 0;\n int sz = poly.size();\n rep(i,0,sz) {\n if(internal::sgn(distance(line_segment(poly[i], poly[(i+1)%sz]), p)) == 0) {\n return true;\n }\n }\n rep(i, 0, sz) { ret += calc_ang(poly[i], p, poly[(i + 1) % sz]); }\n if (internal::sgn(ret) == 0) {\n return true;\n }\n return false;\n };\n for (auto l1 : ls) {\n for (auto l2 : ls) {\n if (intersection(l1, l2) >= 2) continue;\n point p = cross_point(l1, l2);\n int ret = 0;\n {\n bool flag = true;\n for (const auto &poly : polies) {\n if (!check(poly, p)) {\n flag = false;\n break;\n }\n }\n if(!flag) {\n continue;\n }\n }\n for (const auto &human : people) {\n line_segment l(p, human);\n bool flag = true;\n for (const auto &poly : polies) {\n if (!flag) break;\n int sz = poly.size();\n rep(i, 0, sz) {\n line_segment lp(poly[i], poly[(i + 1) % sz]);\n if (intersection(l, lp)) {\n point cross = cross_point(l, lp);\n if (cross == poly[i] || cross == poly[(i + 1) % sz] || cross == p)\n continue;\n else {\n flag = false;\n break;\n }\n }\n }\n }\n if (flag) ret++;\n }\n chmax(ans, ret);\n }\n }\n std::cout << ans << '\\n';\n}\n\n} // namespace ebi\n\nint main() {\n std::cout << std::fixed << std::setprecision(15);\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n int t = 1;\n // std::cin >> t;\n while (t--) {\n ebi::main_();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 3632, "score_of_the_acc": -0.1326, "final_rank": 4 } ]
aoj_2750_cpp
百人一首 百人一首は日本の伝統的なゲームである. このゲームでは N 枚のカードが用いられ,それぞれのカードには1つの文字列が書かれている.細かいルールは省略するが, A君は N 枚のカードに書かれている文字列を何らかの順序でそれぞれちょうど1回ずつ読むことになった. 百人一首ではその接頭辞が非常に重要である.百人一首で使用される文字列として接頭辞は似ている言葉が多く, 連続して似たような文字列を読むとA君も混乱してしまう. そこでA君は,連続する二つのカードの文字列の接頭辞ができるだけ異なるように,カードを並べ替えようと考えた. A君の目標は,「山札の読みやすさ」と呼ばれる指標を最小化するような山札を求めることである.ここで山札とは,この百人一首で読まれる N 枚のカードを並べ替えたものを指す.山札の読みやすさとは,山札内にある隣接したカードの類似度の総和を言う.2 枚のカードの類似度はそれらに書かれた文字列どうしの最長共通接頭辞の長さとして定義される.なお,文字列 t と u の最長共通接頭辞とは, t と u 両方の接頭辞であるような文字列のうち,最長のものを指す. 例えば,2 枚のカードに書かれた文字列がそれぞれ " jag " と " japan " であれば,これらのカードの類似度は 2 である.一方," wan " と " nyan " であれば類似度は 0 である. ところで,「山札の読みやすさ」が最小となる山札は複数存在するかもしれない.A君は,最小解としてありうる山札のうち,辞書順最小の山札を求めたい.ここで,山札 P と Q について P が辞書順で小さいとは,ある正の整数 i が存在して,1 番目から i-1 番目のカードまではそれぞれ同一のカードであり,かつ i 番目のカードの文字列は辞書順において山札 P のカードのほうが小さいことを言う. あなたの仕事は,「山札の読みやすさ」を最小にするような山札の中で,辞書順最小となるものを求めることである. Input 入力は複数のデータセットからなる. 各データセットは次の形式で表される. N s 1 ... s N 1行目にはカードの枚数を表す整数 N ( 1 ≤ N ≤ 100,000 ) が与えられる. 続く N 行にはカードに書かれた1文字以上の文字列が書かれてあり, 1行は英小文字のみで構成される.また,同一セット内において,各 s i は互いに異なることが保証されている. さらに, s i の長さの合計は 400,000 以下であることが保証されている. 入力の終わりは, 1つのゼロからなる行で示す. Output 各データセットについて,「山札の読みやすさ」が最小となる山札の中で辞書順最小の山札の情報を, N 行に出力せよ.具体的には,そのような山札の i 番目のカードに書かれた文字列を, i 行目に出力することになる. Sample Input 3 icpc icfp topcoder 4 apple application appointment acmicpc 3 a aa aaa 4 a aza azb b 0 Output for Sample Input icfp topcoder icpc apple acmicpc application appointment aa a aaa a aza b azb 辞書順の定義に注意すること.今回の定義では,文字列を連結した時に辞書順最小になるということを意味するわけではない.例えば,3番目の入力例では [aaa,a,aa] も「山札の読みやすさ」が最小となる解の一つであり,連結すれば同じ文字列になるため,辞書順最小の解に見えるかもしれない.しかしながら,今回の定義では先頭の文字列 "aa" と "aaa" が優先的に比較されるため,辞書順最小の解は [aa,a,aaa] となる.
[ { "submission_id": "aoj_2750_7136839", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nint main(){\n int n;\n while(cin >> n && n!=0){\n vector<string> s(n);\n for(int i=0;i<n;i++)cin >> s[i];\n sort(s.begin(),s.end());\n vector<int> lcp(n-1);\n for(int i=0;i<n-1;i++){\n for(int j=0;j<min(s[i].size(),s[i+1].size());j++){\n if(s[i][j]==s[i+1][j])lcp[i] = j + 1;\n else break;\n }\n }\n int mx = 0;\n for(int i=0;i<n-1;i++)mx = max(mx,lcp[i]);\n int ok = 0, ng = mx+1;\n while(ng-ok>1){\n int mid = (ok+ng)/2;\n int len = 1, left = 0;\n for(int i=0;i<n-1;i++){\n if(lcp[i] < mid) left = i+1;\n else len = max(len,i+2 - left);\n }\n if(len > n/2) ok = mid;\n else ng = mid;\n }\n int L = 0,R = n;\n for(int i=0;i<n-1;i++){\n if(lcp[i] < ok){\n if((i+1-L)>n/2){\n R = i+1;\n break;\n }\n L = i+1;\n }\n }\n vector<queue<int> > p(29);\n for(int i=0;i<n;i++){\n if(i<L)p[0].push(i);\n else if(i>=R)p[28].push(i);\n else if(s[i].size()==ok)p[1].push(i);\n else p[s[i][ok]-'a' + 2].push(i);\n }\n vector<int> c(29);\n for(int i=0;i<29;i++)c[i] = p[i].size();\n vector<int> res(n);\n vector<int> type(n);\n bool strict = false;\n for(int i=0;i<n;i++){\n if(i!=0&&type[i-1]!=0&&type[i-1]!=28&&(n-i)%2==0&&accumulate(c.begin()+1,c.begin()+28,0) == (n-i)/2) strict = true;\n for(int j=0;j<29;j++){\n if(c[j]==0)continue;\n if(i==0&&j==0)continue;\n if(i!=0&& type[i-1]==j)continue;\n if(i!=0&& (type[i-1]==0||type[i-1]==28) && j==0)continue;\n if(strict){\n if((n-i)%2==0 && (0<j && j<28))continue;\n if((n-i)%2==1 && (j==0))continue;\n }\n c[j]--;\n bool flag = true;\n for(int k=1;k<28;k++)if(c[k] > (n-i)/2) flag = false; \n if(flag){\n res[i] = p[j].front();\n type[i] = j;\n p[j].pop();\n break;\n }\n c[j]++;\n }\n }\n for(int i=0;i<n;i++)cout << s[res[i]] << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 5216, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2750_4883282", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n\nclass Trie {\npublic:\n\tstruct Node {\n\t\tNode *next[26];\n\t\tint sub;\n bool flag;\n int id;\n int priority;\n\t\tNode() : sub(0),flag(false),id(-1),priority(0){\n\t\t\tfor(int i = 0; i < 26; i++){\n\t\t\t\tnext[i] = nullptr;\n\t\t\t}\n\t\t}\n\t};\n\tNode* root;\n\tTrie(){\n\t\troot = new Node();\n\t}\n\t//Trie木にxを加える\n\tvoid add(string& s,int id) {\n\t\tNode *curr = root;\n\t\tfor(int i = 0; i < (int)s.size(); i++){\n\t\t\tint y = s[i] - 'a';\n\t\t\tif (!curr->next[y]) {\n\t\t\t\tcurr->next[y] = new Node();\n\t\t\t}\n\t\t\tcurr->sub++;\n\t\t\tcurr = curr->next[y];\n\t\t}\n\t\tcurr->sub++;\n curr->flag = 1;\n curr->id = id;\n\t}\n void init(Node *curr,int &p){\n if(curr->flag){\n curr->priority = p;\n p--;\n }\n for(int i = 0; i < 26; i++){\n\t\t\tif(curr->next[i]){\n init(curr->next[i],p);\n }\n\t\t}\n }\n //何らかのクエリ\n void dfs(Node *curr,priority_queue<pair<int,int > >&res){\n if(curr->flag){\n res.push({curr->priority,curr->id});\n }\n for(int i = 0; i < 26; i++){\n\t\t\tif(curr->next[i]){\n dfs(curr->next[i],res);\n }\n\t\t}\n }\n\tvector<int> query(Node *curr,priority_queue<pair<int,int> > &s) {\n int tt = 0;\n if(curr->flag){\n tt++;\n }\n vector<int> p(26);\n for(int i = 0; i < 26; i++){\n\t\t\tif(curr->next[i]){\n p[i] = curr->next[i]->sub;\n }\n\t\t}\n int sm = 0;\n for(int i=0;i<26;i++){\n sm += p[i];\n }\n int nxt = -1;\n for(int i=0;i<26;i++){\n if(p[i] > ((int)s.size()+sm-p[i]+tt)){\n nxt = i;\n }\n }\n if(nxt==-1){\n vector<priority_queue<pair<int,int> > > pq(28);\n for(int i = 0; i < 26; i++){\n if(curr->next[i]&&i!=nxt){\n dfs(curr->next[i],pq[i]);\n }\n }\n pq[26] = s;\n if(tt==1){\n pq[27].push(make_pair(curr->priority,curr->id));\n }\n vector<int> res;\n int now = 26;\n while(1){\n bool flag = 1;\n for(int i=0;i<28;i++){\n if(pq[i].size()!=0)flag = 0;\n }\n if(flag)break;\n priority_queue<pair<int,int> > ok;\n for(int i=0;i<28;i++){\n if(i==now)continue;\n if(pq[i].size()==0)continue;\n int mx = 0;\n int ss = 0;\n for(int j=0;j<28;j++){\n ss += pq[j].size();\n if(j==i)continue;\n mx = max(mx,(int)pq[j].size());\n \n }\n if(mx > ss - 1 - mx+1 || (i!=26&&pq[26].size() > ss - 1 - pq[26].size())){\n\n }else{\n ok.push(make_pair(pq[i].top().first,i));\n }\n }\n auto x = ok.top();\n int iii = x.second;\n now = iii;\n res.push_back(pq[iii].top().second);\n pq[iii].pop();\n }\n return res;\n }else{\n if(curr->flag){\n s.push(make_pair(curr->priority,curr->id));\n }\n for(int i = 0; i < 26; i++){\n if(curr->next[i]&&i!=nxt){\n dfs(curr->next[i],s);\n }\n }\n return query(curr->next[nxt],s);\n }\n\t}\n\tvector<int> query() {\n int p = 10000000;\n init(root,p);\n priority_queue<pair<int,int> > pq;\n return query(root,pq);\n\t}\n};\n\nint main(){\n int n;\n while(cin>> n &&n!=0){\n Trie t;\n string s;\n vector<string>S;\n rep(i,n){\n cin >> s;\n S.push_back(s);\n t.add(s,i);\n }\n if(n==2){\n if(S[0]<S[1]){\n cout << S[0] << \"\\n\";\n cout << S[1] << \"\\n\";\n }else{\n\n cout << S[1] << \"\\n\";\n cout << S[0] << \"\\n\";\n }\n continue;\n }\n vector<int> res = t.query();\n rep(i,n){\n cout << S[res[i]] << \"\\n\";\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 99076, "score_of_the_acc": -2, "final_rank": 4 }, { "submission_id": "aoj_2750_4870972", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\nint N;\nint num_T[27],work_T[27];\nint rest_T[27];\nint num_V[26],work_V[26],rest_V[26];\nint index_T[27],index_V[26];\nvector<string> T[27];\nvector<string> OTHER;\nvector<string> V[26];\nvector<string> input;\n\nint calc_common_len(string A,string B){\n\n\tint ret = 0;\n\tint tmp_len = min(A.length(),B.length());\n\n\tfor(int i = 0; i < tmp_len; i++){\n\t\tif(A[i] != B[i])break;\n\t\tret++;\n\t}\n\treturn ret;\n}\n\n//過半数文字列なし\nvoid func_not(){\n\n\tfor(int i = 0; i < 26; i++){\n\n\t\tnum_V[i] = 0;\n\t\tindex_V[i] = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tnum_V[input[i][0]-'a']++;\n\t\tV[input[i][0]-'a'].push_back(input[i]);\n\t}\n\n\tint pre = -1;\n\tint maximum,num_rest = N;\n\n\tfor(int i = 0; i < 26; i++){\n\n\t\trest_V[i] = num_V[i];\n\t}\n\n\t//多分コスト0でクリア可(まずは遇番目に昇順に並べ(0が先頭)、次に奇番目に昇順に並べる)\n\tfor(int loop = 1; loop <= N; loop++){\n\t\tfor(int i = 0; i < 26; i++){\n\t\t\tif(i == pre || index_V[i] == num_V[i])continue; //同グループ連続はコストが発生するので不可\n\n\t\t\tif(num_rest == 1){ //★★注意★★\n\t\t\t\tprintf(\"%s\\n\",V[i][index_V[i]].c_str());\n\t\t\t\treturn;\n\t\t\t}\n\n\t\t\tfor(int k = 0; k < 26; k++){\n\n\t\t\t\twork_V[k] = rest_V[k];\n\t\t\t}\n\n\t\t\twork_V[i]--;\n\t\t\tint work_num_rest = num_rest-1;\n\n\n\t\t\t/*\n\t\t\t * グループiの残数が1減った結果、過半数に達するグループが現れて、\n\t\t\t * そのグループが隣接せざるを得なくなったら不可\n\t\t\t * */\n\t\t\tmaximum = -1;\n\n\t\t\tfor(int k = 0; k < 26; k++){\n\n\t\t\t\tmaximum = max(maximum,work_V[k]);\n\t\t\t}\n\n\t\t\tif(work_num_rest%2 == 0){\n\n\t\t\t\tif(maximum > work_num_rest/2){ //隣接せざるを得なくなるので不可\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\n\t\t\t}else{ //隣接せざるを得なくなるので不可\n\n\t\t\t\tif(maximum > (work_num_rest+1)/2){\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tprintf(\"%s\\n\",V[i][index_V[i]].c_str());\n\t\t\tindex_V[i]++;\n\t\t\trest_V[i]--;\n\t\t\tpre = i;\n\n\t\t\tbreak;\n\t\t}\n\t\tnum_rest--;\n\t}\n}\n\nvoid func(){\n\n\tfor(int i = 0; i < 27; i++){\n\n\t\tT[i].clear();\n\t}\n\tOTHER.clear();\n\tfor(int i = 0; i < 26; i++){\n\n\t\tV[i].clear();\n\t}\n\tinput.clear();\n\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tstring tmp_str;\n\t\tcin >> tmp_str;\n\n\t\tinput.push_back(tmp_str);\n\t}\n\n\tsort(input.begin(),input.end());\n\n\tint max_len = -1,start_index;\n\tstring COMMON;\n\n\tint add = N/2;\n\n\t//過半数文字があるか調べる\n\tfor(int i = 0; i+add <= N-1; i++){\n\n\t\tint tmp = calc_common_len(input[i],input[i+add]);\n\t\tif(tmp == 0)continue;\n\n\t\tif(max_len < tmp){\n\t\t\tmax_len = tmp;\n\t\t\tstart_index = i;\n\t\t\tCOMMON = input[i].substr(0,max_len);\n\t\t}\n\t}\n\n\tif(max_len == -1){\n\n\t\tfunc_not();\n\t\treturn;\n\t}\n\n\t//COMMONを接頭辞として持つ範囲を求める\n\tint tail = start_index+add;\n\twhile(true){\n\n\t\tif(tail+1 == N)break;\n\n\t\tint tmp = calc_common_len(COMMON,input[tail+1]);\n\n\t\tif(tmp == max_len){\n\n\t\t\ttail++;\n\n\t\t}else{\n\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tint num_OTHER = 0;\n\tint index_OTHER = 0;\n\n\tfor(int i = 0; i < 27; i++){ //0:空白文字 (1~26):'a'を1とし、'z':26まで\n\n\t\tnum_T[i] = 0;\n\t\tindex_T[i] = 0;\n\t}\n\n\tfor(int i = 0; i < start_index; i++){\n\n\t\tOTHER.push_back(input[i]);\n\t\tnum_OTHER++;\n\t}\n\tfor(int i = tail+1; i < N; i++){\n\n\t\tOTHER.push_back(input[i]);\n\t\tnum_OTHER++;\n\t}\n\n\t//COMMONのグループは、さらに子グループを調べる\n\tfor(int i = start_index; i <= tail; i++){\n\n\t\tif(input[i].length() == COMMON.length()){\n\n\t\t\tnum_T[0]++;\n\t\t\tT[0].push_back(COMMON);\n\n\t\t}else{\n\n\t\t\tint ch = (input[i][COMMON.length()]-'a')+1;\n\t\t\tnum_T[ch]++;\n\t\t\tT[ch].push_back(input[i]);\n\t\t}\n\t}\n\n\tint adj_rest = 0; //COMMONグループを隣接せざるを得ない回数\n\tint num_COMMON = N-num_OTHER;\n\n\tif(N%2 == 0){\n\n\t\tif(num_COMMON-N/2 > 0){\n\n\t\t\tadj_rest = 2*(num_COMMON-N/2)-1;\n\t\t}\n\n\t}else{\n\n\t\tif(num_COMMON-(N+1)/2 > 0){\n\n\t\t\tadj_rest = 2*(num_COMMON-(N+1)/2);\n\t\t}\n\t}\n\n\tif(adj_rest == 0){ //ぴったり交互に配置できる場合[★Nは奇数であるはず★]\n\n\t\t//COMMON,OTHERともに昇順に出力すれば良い\n\t\tfor(int loop = 1; loop <= N; loop++){\n\t\t\tif(loop%2 == 1){\n\n\t\t\t\tfor(int i = 0; i < 27; i++){\n\t\t\t\t\tif(index_T[i] == num_T[i])continue;\n\n\t\t\t\t\tprintf(\"%s\\n\",T[i][index_T[i]].c_str());\n\t\t\t\t\tindex_T[i]++;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}else{\n\n\t\t\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\t\t\tindex_OTHER++;\n\t\t\t}\n\t\t}\n\t\treturn;\n\t}\n\n\tint pre = -2; //OTHERなら-1,COMMONなら0~26\n\tstring min_str;\n\n\tint num_rest = N;\n\n\tint rest_OTHER = num_OTHER;\n\tfor(int i = 0; i < 27; i++){\n\n\t\trest_T[i] = num_T[i];\n\t}\n\n\tbool out_FLG;\n\n\tfor(int loop = 1; loop <= N; loop++){\n\n\t\tmin_str = \"}\";\n\t\tout_FLG = false;\n\n\t\tif(pre != -1 && index_OTHER < num_OTHER){ //その他の中で辞書順最小のもの\n\n\t\t\tif(num_rest == 1){\n\n\t\t\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\t\t\treturn;\n\t\t\t}\n\n\t\t\tint work_num_rest = num_rest-1;\n\n\t\t\tint calc_must_adj; //COMMONが隣り合わなければいけない回数\n\n\t\t\t/*\n\t\t\t * 過半数文字の文字長が伸びる可能性あり、また隣接せざるを得ない回数が増える可能性あり\n\t\t\t * */\n\n\t\t\tif(work_num_rest%2 == 0){\n\n\t\t\t\tcalc_must_adj = 2*(num_COMMON-(work_num_rest)/2)-1;\n\n\t\t\t}else{\n\n\t\t\t\tcalc_must_adj = 2*(num_COMMON-(work_num_rest+1)/2);\n\t\t\t}\n\n\t\t\tif(calc_must_adj == adj_rest){ //隣接せざるを得ない回数が増えない場合\n\n\t\t\t\tint maximum = -1,max_index;\n\t\t\t\tfor(int k = 0; k < 27; k++){\n\n\t\t\t\t\tif(maximum < rest_T[k]){\n\t\t\t\t\t\tmaximum = rest_T[k];\n\t\t\t\t\t\tmax_index = k;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(max_index == 0 || (work_num_rest%2 == 0 && maximum <= work_num_rest/2) ||\n\t\t\t\t\t\t(work_num_rest%2 == 1 && maximum <= (work_num_rest+1)/2)){ //過半数文字が伸びない、または伸びても隣接しなければOK\n\n\t\t\t\t\tmin_str = OTHER[index_OTHER];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(adj_rest == 0 && pre >= 0){ //もう隣接しない状態で、前回がCOMMONグループ\n\n\t\t\t//OTHERを出力\n\t\t\tpre = -1;\n\t\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\t\tindex_OTHER++;\n\t\t\trest_OTHER--;\n\t\t\tnum_rest--;\n\n\t\t\tcontinue;\n\t\t}\n\n\t\tif(num_COMMON > 0){\n\n\t\t\tfor(int i = 0; i < 27; i++){ //辞書順でみる\n\t\t\t\tif(index_T[i] == num_T[i] || i == pre)continue;\n\n\t\t\t\tif(num_rest == 1){ //★★注意★★\n\n\t\t\t\t\tprintf(\"%s\\n\",T[i][index_T[i]].c_str());\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\tfor(int k = 0; k < 27; k++){\n\n\t\t\t\t\twork_T[k] = rest_T[k];\n\t\t\t\t}\n\n\t\t\t\twork_T[i]--;\n\n\t\t\t\tint work_num_rest = num_rest-1;\n\t\t\t\tint maximum = -1,max_index;\n\n\t\t\t\tfor(int k = 0; k < 27; k++){\n\n\t\t\t\t\tif(maximum < work_T[k]){\n\t\t\t\t\t\tmaximum = work_T[k];\n\t\t\t\t\t\tmax_index = k;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tbool FLG = true;\n\n\t\t\t\tif(max_index > 0){ //★過半数文字長が伸び、かつ隣接せざるを得ないなら不可★\n\n\t\t\t\t\tif(work_num_rest%2 == 0 && maximum > work_num_rest/2){\n\n\t\t\t\t\t\tFLG = false; //コスト増なので不可\n\n\t\t\t\t\t}else if(work_num_rest%2 == 1 && maximum > (work_num_rest+1)/2){\n\n\t\t\t\t\t\tFLG = false; //コスト増なので不可\n\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tif(T[i][index_T[i]] < min_str){\n\n\t\t\t\t\t\tif(pre >= 0){\n\n\t\t\t\t\t\t\tadj_rest--; //隣接せざるを得ない回数\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tpre = i;\n\t\t\t\t\t\tprintf(\"%s\\n\",T[i][index_T[i]].c_str());\n\t\t\t\t\t\tout_FLG = true;\n\t\t\t\t\t\tindex_T[i]++;\n\t\t\t\t\t\trest_T[i]--;\n\t\t\t\t\t\tnum_COMMON--;\n\t\t\t\t\t\tnum_rest--;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(out_FLG)continue;\n\n\t\t//OTHERを出力\n\t\tpre = -1;\n\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\tindex_OTHER++;\n\t\trest_OTHER--;\n\t\tnum_rest--;\n\t}\n}\n\nint main(){\n\n\twhile(true){\n\t\tscanf(\"%d\",&N);\n\t\tif(N == 0)break;\n\n\t\tfunc();\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 6432, "score_of_the_acc": -0.3463, "final_rank": 2 }, { "submission_id": "aoj_2750_4870934", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\nint N;\nint num_T[27],work_T[27];\nint rest_T[27];\nint num_V[26],work_V[26],rest_V[26];\nint index_T[27],index_V[26];\nvector<string> T[27];\nvector<string> OTHER;\nvector<string> V[26];\nvector<string> input;\n\nint calc_common_len(string A,string B){\n\n\tint ret = 0;\n\tint tmp_len = min(A.length(),B.length());\n\n\tfor(int i = 0; i < tmp_len; i++){\n\t\tif(A[i] != B[i])break;\n\t\tret++;\n\t}\n\treturn ret;\n}\n\n//過半数文字列なし\nvoid func_not(){\n\n\tfor(int i = 0; i < 26; i++){\n\n\t\tnum_V[i] = 0;\n\t\tindex_V[i] = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tnum_V[input[i][0]-'a']++;\n\t\tV[input[i][0]-'a'].push_back(input[i]);\n\t}\n\n\tint pre = -1;\n\tint maximum,num_rest = N;\n\n\tfor(int i = 0; i < 26; i++){\n\n\t\trest_V[i] = num_V[i];\n\t}\n\n\t//多分コスト0でクリア可\n\tfor(int loop = 1; loop <= N; loop++){\n\t\tfor(int i = 0; i < 26; i++){\n\t\t\tif(i == pre || index_V[i] == num_V[i])continue; //同グループ連続はコストが発生するので不可\n\n\t\t\tif(num_rest == 1){\n\t\t\t\tprintf(\"%s\\n\",V[i][index_V[i]].c_str());\n\t\t\t\treturn;\n\t\t\t}\n\n\t\t\tfor(int k = 0; k < 26; k++){\n\n\t\t\t\twork_V[k] = rest_V[k];\n\t\t\t}\n\n\t\t\twork_V[i]--;\n\t\t\tint work_num_rest = num_rest-1;\n\n\n\t\t\t/*\n\t\t\t * グループiの残数が1減った結果、過半数に達するグループが現れて、\n\t\t\t * そのグループが隣接せざるを得なくなったら不可\n\t\t\t * */\n\t\t\tmaximum = -1;\n\t\t\tint max_id;\n\n\t\t\tfor(int k = 0; k < 26; k++){\n\n\t\t\t\tif(maximum < work_V[k]){\n\t\t\t\t\tmaximum = work_V[k];\n\t\t\t\t\tmax_id = k;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(work_num_rest%2 == 0){\n\n\t\t\t\tif(maximum > work_num_rest/2){ //隣接せざるを得なくなるので不可\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\n\t\t\t}else{ //隣接せざるを得なくなるので不可\n\n\t\t\t\tif(maximum > (work_num_rest+1)/2){\n\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tprintf(\"%s\\n\",V[i][index_V[i]].c_str());\n\t\t\tindex_V[i]++;\n\t\t\trest_V[i]--;\n\t\t\tpre = i;\n\n\t\t\tbreak;\n\t\t}\n\t\tnum_rest--;\n\t}\n}\n\nvoid func(){\n\n\tfor(int i = 0; i < 27; i++){\n\n\t\tT[i].clear();\n\t}\n\tOTHER.clear();\n\tfor(int i = 0; i < 26; i++){\n\n\t\tV[i].clear();\n\t}\n\tinput.clear();\n\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tstring tmp_str;\n\t\tcin >> tmp_str;\n\n\t\tinput.push_back(tmp_str);\n\t}\n\n\tsort(input.begin(),input.end());\n\n\tint max_len = -1,start_index;\n\tstring COMMON;\n\n\tint add = N/2;\n\n\tfor(int i = 0; i+add <= N-1; i++){\n\n\t\tint tmp = calc_common_len(input[i],input[i+add]);\n\t\tif(tmp == 0)continue;\n\n\t\tif(max_len < tmp){\n\t\t\tmax_len = tmp;\n\t\t\tstart_index = i;\n\t\t\tCOMMON = input[i].substr(0,max_len);\n\t\t}\n\t}\n\n\tif(max_len == -1){\n\n\t\tfunc_not();\n\t\treturn;\n\t}\n\n\t//COMMONを接頭辞として持つ範囲を求める\n\tint tail = start_index+add;\n\twhile(true){\n\n\t\tif(tail+1 == N)break;\n\n\t\tint tmp = calc_common_len(COMMON,input[tail+1]);\n\n\t\tif(tmp == max_len){\n\n\t\t\ttail++;\n\n\t\t}else{\n\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tint num_OTHER = 0;\n\tint index_OTHER = 0;\n\n\tfor(int i = 0; i < 27; i++){ //0:空白文字 (1~26):'a'を1とし、'z':26まで\n\n\t\tnum_T[i] = 0;\n\t\tindex_T[i] = 0;\n\t}\n\n\tfor(int i = 0; i < start_index; i++){\n\n\t\tOTHER.push_back(input[i]);\n\t\tnum_OTHER++;\n\t}\n\tfor(int i = tail+1; i < N; i++){\n\n\t\tOTHER.push_back(input[i]);\n\t\tnum_OTHER++;\n\t}\n\n\t//COMMONのグループは、さらに子グループを調べる\n\tfor(int i = start_index; i <= tail; i++){\n\n\t\tif(input[i].length() == COMMON.length()){\n\n\t\t\tnum_T[0]++;\n\t\t\tT[0].push_back(COMMON);\n\n\t\t}else{\n\n\t\t\tint ch = (input[i][COMMON.length()]-'a')+1;\n\t\t\tnum_T[ch]++;\n\t\t\tT[ch].push_back(input[i]);\n\t\t}\n\t}\n\n\tint adj_rest = 0; //COMMONグループを隣接せざるを得ない回数\n\tint num_COMMON = N-num_OTHER;\n\n\tif(N%2 == 0){\n\n\t\tif(num_COMMON-N/2 > 0){\n\n\t\t\tadj_rest = 2*(num_COMMON-N/2)-1;\n\n\t\t}\n\n\t}else{\n\n\t\tif(num_COMMON-(N+1)/2 > 0){\n\n\t\t\tadj_rest = 2*(num_COMMON-(N+1)/2);\n\t\t}\n\t}\n\n\tif(adj_rest == 0){ //ぴったり交互に配置できる場合[★Nは奇数であるはず★]\n\n\t\t//COMMON,OTHERともに昇順に出力すれば良い\n\n\t\tfor(int loop = 1; loop <= N; loop++){\n\t\t\tif(loop%2 == 1){\n\n\t\t\t\tfor(int i = 0; i < 27; i++){\n\t\t\t\t\tif(index_T[i] == num_T[i])continue;\n\n\t\t\t\t\tprintf(\"%s\\n\",T[i][index_T[i]].c_str());\n\t\t\t\t\tindex_T[i]++;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}else{\n\n\t\t\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\t\t\tindex_OTHER++;\n\t\t\t}\n\t\t}\n\t\treturn;\n\t}\n\n\t/*printf(\"COMMON:%s adj_rest:%d\\n\",COMMON.c_str(),adj_rest);\n\tprintf(\"num_OTHER:%d\\n\",num_OTHER);\n\tfor(int i = 0; i < 27; i++){\n\n\t\tprintf(\"T[%d]:%d\\n\",i,num_T[i]);\n\t}*/\n\n\t//return;\n\n\tint pre = -2; //OTHERなら-1,COMMONなら0~26\n\tstring min_str;\n\n\tint num_rest = N;\n\n\tint rest_OTHER = num_OTHER;\n\tfor(int i = 0; i < 27; i++){\n\n\t\trest_T[i] = num_T[i];\n\t}\n\n\tbool out_FLG;\n\n\t/*for(int i = 0; i < num_OTHER; i++){\n\n\t\tprintf(\"OTHER %d:%s\\n\",i,OTHER[i].c_str());\n\t}\n\n\tprintf(\"COMMON:%s\\n\",COMMON.c_str());\n\n\tprintf(\"adj_rest:%d num_OTHER:%d\\n\",adj_rest,num_OTHER);\n\tprintf(\"\\n\\n\");*/\n\n\tfor(int loop = 1; loop <= N; loop++){\n\n\t\t//printf(\"\\n\");\n\n\t\tmin_str = \"}\";\n\t\tout_FLG = false;\n\n\t\tif(pre != -1 && index_OTHER < num_OTHER){ //その他の中で辞書順最小のもの\n\n\t\t\tif(num_rest == 1){\n\n\t\t\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\t\t\treturn;\n\t\t\t}\n\n\t\t\tint work_num_rest = num_rest-1;\n\n\t\t\tint calc_must_adj; //COMMONが隣り合わなければいけない回数\n\n\t\t\t/*\n\t\t\t * COMMONの文字数が伸びる可能性あり、また隣接せざるを得ない回数が増える可能性あり\n\t\t\t * */\n\n\t\t\tif(work_num_rest%2 == 0){\n\n\t\t\t\tcalc_must_adj = 2*(num_COMMON-(work_num_rest)/2)-1;\n\n\t\t\t}else{\n\n\t\t\t\tcalc_must_adj = 2*(num_COMMON-(work_num_rest+1)/2);\n\t\t\t}\n\n\t\t\tif(calc_must_adj == adj_rest){ //隣接せざるを得ない回数が増えない場合\n\n\t\t\t\tint maximum = -1,max_index;\n\t\t\t\tfor(int k = 0; k < 27; k++){\n\n\t\t\t\t\tif(maximum < rest_T[k]){\n\t\t\t\t\t\tmaximum = rest_T[k];\n\t\t\t\t\t\tmax_index = k;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t//printf(\"maximum:%d max_index:%d work_num_rest:%d\\n\",maximum,max_index,work_num_rest);\n\n\t\t\t\tif(max_index == 0 || (work_num_rest%2 == 0 && maximum <= work_num_rest/2) ||\n\t\t\t\t\t\t(work_num_rest%2 == 1 && maximum <= (work_num_rest+1)/2)){ //過半数文字が伸びない、または伸びても隣接しなければOK\n\n\t\t\t\t\t//printf(\"過半数文字が伸びない\\n\");\n\t\t\t\t\tmin_str = OTHER[index_OTHER];\n\t\t\t\t}else{\n\n\t\t\t\t\t//printf(\"過半数文字が伸びる\\n\");\n\t\t\t\t}\n\t\t\t}else{\n\n\t\t\t\t//printf(\"adj_restが増える\\n\");\n\t\t\t}\n\t\t}\n\n\t\tif(adj_rest == 0 && pre >= 0){ //もう隣接しない状態で、前回がCOMMONグループ\n\n\t\t\t//printf(\"もう隣接しない\\n\");\n\n\t\t\t//OTHERを出力\n\t\t\tpre = -1;\n\t\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\t\tindex_OTHER++;\n\t\t\trest_OTHER--;\n\t\t\tnum_rest--;\n\n\t\t\tcontinue;\n\t\t}\n\n\t\tif(num_COMMON > 0){\n\n\t\t\tfor(int i = 0; i < 27; i++){ //辞書順でみる\n\t\t\t\tif(index_T[i] == num_T[i] || i == pre)continue;\n\n\t\t\t\tif(num_rest == 1){\n\n\t\t\t\t\tprintf(\"%s\\n\",T[i][index_T[i]].c_str());\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\tfor(int k = 0; k < 27; k++){\n\n\t\t\t\t\twork_T[k] = rest_T[k];\n\t\t\t\t}\n\n\t\t\t\twork_T[i]--;\n\n\t\t\t\tint work_num_rest = num_rest-1;\n\t\t\t\tint maximum = -1,max_index;\n\n\t\t\t\tfor(int k = 0; k < 27; k++){\n\n\t\t\t\t\tif(maximum < work_T[k]){\n\t\t\t\t\t\tmaximum = work_T[k];\n\t\t\t\t\t\tmax_index = k;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tbool FLG = true;\n\n\t\t\t\t//printf(\"i:%d maximum:%d num_rest:%d\\n\",i,maximum,num_rest);\n\n\t\t\t\tif(max_index > 0){ //COMMONの文字が伸びた\n\n\t\t\t\t\tif(work_num_rest%2 == 0 && maximum > work_num_rest/2){\n\t\t\t\t\t\t//printf(\"のびた\\n\");\n\t\t\t\t\t\tFLG = false; //コスト増なので不可\n\n\t\t\t\t\t}else if(work_num_rest%2 == 1 && maximum > (work_num_rest+1)/2){\n\t\t\t\t\t\t//printf(\"のびた\\n\");\n\t\t\t\t\t\tFLG = false; //コスト増なので不可\n\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(FLG){\n\n\t\t\t\t\tif(T[i][index_T[i]] < min_str){\n\n\t\t\t\t\t\t//printf(\"COMMON出力\\n\");\n\n\t\t\t\t\t\tif(pre >= 0){\n\n\t\t\t\t\t\t\tadj_rest--; //隣接せざるを得ない回数\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tpre = i;\n\t\t\t\t\t\tprintf(\"%s\\n\",T[i][index_T[i]].c_str());\n\t\t\t\t\t\tout_FLG = true;\n\t\t\t\t\t\tindex_T[i]++;\n\t\t\t\t\t\trest_T[i]--;\n\t\t\t\t\t\tnum_COMMON--;\n\t\t\t\t\t\tnum_rest--;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(out_FLG)continue;\n\n\t\t//OTHERを出力\n\t\tpre = -1;\n\t\t//printf(\"OHTER出力\\n\");\n\t\tprintf(\"%s\\n\",OTHER[index_OTHER].c_str());\n\t\tindex_OTHER++;\n\t\trest_OTHER--;\n\t\tnum_rest--;\n\t}\n}\n\nint main(){\n\n\twhile(true){\n\t\tscanf(\"%d\",&N);\n\t\tif(N == 0)break;\n\n\t\tfunc();\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 6572, "score_of_the_acc": -0.3478, "final_rank": 3 } ]
aoj_2743_cpp
F - 土地相続 Problem Statement ある $N$ 人の兄弟は親の遺産相続の話し合いをしていた. 彼らの親の残した莫大な遺産の中には広大な土地も含まれていた. その土地は南北に $H$ km, 東西に $W$ km に広がる長方形の形をしている. この土地は 1 km 四方の区画単位で管理されており, 土地の北端から $i$ 〜 $i+1$ km かつ西端から $j$ 〜 $j+1$ km の範囲にある 1 km 四方の区画を区画 $(i, j)$ と呼ぶ. ($i$, $j$ は $0 \leq i < H$, $0 \leq j < W$ を満たす整数である.) 土地の価格は区画ごとに決まっており,区画 $(i, j)$ の価格は $a_{i, j}$ で表される. 兄弟は次のように土地を分けて相続することにした. $N$ 人の兄弟それぞれが区画をいくつか選び相続する. 各兄弟が相続する土地が 1 つの長方形を成すように区画を選ばなければならない. $N$ 人の兄弟が相続する土地は重なってはならない. 誰も相続しない区画があってもよい.誰も相続しない区画は放棄される. ある人が相続する土地の範囲に含まれる区画の価格の和をその土地の価格と呼ぶ. 兄弟は,各々が相続する土地の価格がなるべく公平になるように土地を分けたい. あなたの仕事は, $N$ 人の中で相続する土地の価格が 最も低い人の土地の価格を最大にするような土地の分け方を考えることである. そのように土地を分けた時の,相続する土地の価格が最も低い人の土地の価格を答えるプログラムを作成せよ. Input 入力は以下のような形式で与えられる. $H$ $W$ $N$ $a_{0,0}$ $a_{0,1}$ ... $a_{0,W-1}$ ... $a_{H-1,0}$ $a_{H-1,1}$ ... $a_{H-1,W-1}$ $H$, $W$ $(2 \leq H,W \leq 200)$ は遺産の土地の南北の長さと東西の長さをそれぞれ表す. $N$ $(2 \leq N \leq 4)$ は土地を相続する兄弟の人数を表す. $a_{i, j}$ $(0 \leq a_{i,j} \leq 10^4)$ は区画 $(i, j)$ の価格を表す. Output 相続する土地の価格が最も低い人の土地の価格を最大にするように分けた時の, 最も低い土地の価格を 1 行で出力せよ. Sample Input 1 3 3 2 1 2 2 3 1 0 0 4 3 Output for the Sample Input 1 7 図のように分けるのが最適である. Sample Input 2 3 3 2 0 1 0 1 1 1 0 1 0 Output for the Sample Input 2 1 Sample Input 3 2 5 3 8 3 0 5 6 2 5 2 5 2 Output for the Sample Input 3 11 Sample Input 4 3 3 4 3 3 4 3 3 4 3 3 4 Output for the Sample Input 4 7 Sample Input 5 4 4 4 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 1 Output for the Sample Input 5 7
[ { "submission_id": "aoj_2743_10493832", "code_snippet": "// AOJ 2743 Land Inheritance\n// 2025.5.16\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) {\n\tint i; char b[30];\n\tif (!n) pc('0');\n\telse {\n\t\ti = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nint H, W, N;\nll S[201][201];\nll A[200][200];\nunordered_map<ull, ll> dp;\n\ninline ll sumRect(int lx, int ly, int rx, int ry) {\n return S[rx][ry] - S[lx][ry] - S[rx][ly] + S[lx][ly];\n}\n\nll rec(int n, int lx, int ly, int rx, int ry) {\n ull key = ((ull)n << 32)\n | ((ull)lx << 24)\n | ((ull)ly << 16)\n | ((ull)rx << 8)\n | (ull)ry;\n auto it = dp.find(key);\n if (it != dp.end()) return it->second;\n\n ll ans = 0;\n if (n == 2) {\n ll total = sumRect(lx, ly, rx, ry);\n {\n int ok = lx, ng = rx;\n while (ng - ok > 1) {\n int md = (ok + ng) >> 1;\n if (sumRect(lx, ly, md, ry) * 2 < total) ok = md;\n else ng = md;\n }\n ans = max(ans, min(sumRect(lx, ly, ok, ry), sumRect(ok, ly, rx, ry)));\n ans = max(ans, min(sumRect(lx, ly, ok+1, ry), sumRect(ok+1, ly, rx, ry)));\n }\n {\n int ok = ly, ng = ry;\n while (ng - ok > 1) {\n int md = (ok + ng) >> 1;\n if (sumRect(lx, ly, rx, md) * 2 < total) ok = md;\n else ng = md;\n }\n ans = max(ans, min(sumRect(lx, ly, rx, ok), sumRect(lx, ok, rx, ry)));\n ans = max(ans, min(sumRect(lx, ly, rx, ok+1), sumRect(lx, ok+1, rx, ry)));\n }\n } else if (n == 3) {\n for (int x = lx + 1; x < rx; x++) {\n ll s1 = sumRect(lx, ly, x, ry);\n ll s2 = rec(2, x, ly, rx, ry);\n ans = max(ans, min(s1, s2));\n s1 = sumRect(x, ly, rx, ry);\n s2 = rec(2, lx, ly, x, ry);\n ans = max(ans, min(s1, s2));\n }\n for (int y = ly + 1; y < ry; y++) {\n ll s1 = sumRect(lx, ly, rx, y);\n ll s2 = rec(2, lx, y, rx, ry);\n ans = max(ans, min(s1, s2));\n s1 = sumRect(lx, y, rx, ry);\n s2 = rec(2, lx, ly, rx, y);\n ans = max(ans, min(s1, s2));\n }\n } else {\n for (int x = lx + 1; x < rx; x++) {\n ll s1 = sumRect(lx, ly, x, ry);\n ll s2 = rec(3, x, ly, rx, ry);\n ans = max(ans, min(s1, s2));\n s1 = sumRect(x, ly, rx, ry);\n s2 = rec(3, lx, ly, x, ry);\n ans = max(ans, min(s1, s2));\n ll r1 = rec(2, lx, ly, x, ry);\n ll r2 = rec(2, x, ly, rx, ry);\n ans = max(ans, min(r1, r2));\n }\n for (int y = ly + 1; y < ry; y++) {\n ll s1 = sumRect(lx, ly, rx, y);\n ll s2 = rec(3, lx, y, rx, ry);\n ans = max(ans, min(s1, s2));\n s1 = sumRect(lx, y, rx, ry);\n s2 = rec(3, lx, ly, rx, y);\n ans = max(ans, min(s1, s2));\n ll r1 = rec(2, lx, ly, rx, y);\n ll r2 = rec(2, lx, y, rx, ry);\n ans = max(ans, min(r1, r2));\n }\n ll ok = 0, ng = sumRect(lx, ly, rx, ry) + 1;\n while (ng - ok > 1) {\n ll md = (ok + ng) >> 1;\n bool make = false;\n for (int x = lx + 1; x < rx && !make; x++) {\n int bx = lx, tx = x, by = ly, ty = ly;\n while (ty <= ry && sumRect(bx, by, tx, ty) < md) ty++;\n if (ty > ry) continue;\n int mm = ty;\n bx = lx; tx = lx; by = ty; ty = ry;\n while (tx <= rx && sumRect(bx, by, tx, ty) < md) tx++;\n if (tx > rx) continue;\n by = ry; ty = ry; bx = max(x, tx); tx = rx;\n while (by >= ly && sumRect(bx, by, tx, ty) < md) by--;\n if (by < ly) continue;\n by = min(by, mm);\n if (sumRect(x, ly, rx, by) < md) continue;\n make = true;\n }\n for (int y = ly + 1; y < ry && !make; y++) {\n int bx = lx, tx = lx, by = ly, ty = y;\n while (tx <= rx && sumRect(bx, by, tx, ty) < md) tx++;\n if (tx > rx) continue;\n int mm = tx;\n by = ly; ty = ly; bx = tx; tx = rx;\n while (ty <= ry && sumRect(bx, by, tx, ty) < md) ty++;\n if (ty > ry) continue;\n bx = rx; tx = rx; by = max(y, ty); ty = ry;\n while (bx >= lx && sumRect(bx, by, tx, ty) < md) bx--;\n if (bx < lx) continue;\n bx = min(bx, mm);\n if (sumRect(lx, y, bx, ry) < md) continue;\n make = true;\n }\n if (make) ok = md; else ng = md;\n }\n ans = max(ans, ok);\n }\n return dp[key] = ans;\n}\n\nint main(){\n H = Cin(), W = Cin(), N = Cin();\n\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n cin >> A[i][j];\n S[i+1][j+1] = A[i][j];\n }\n }\n for(int i=0;i<=H;i++){\n for(int j=0;j<=W;j++){\n if(i>0) S[i][j] += S[i-1][j];\n if(j>0) S[i][j] += S[i][j-1];\n if(i>0&&j>0) S[i][j] -= S[i-1][j-1];\n }\n }\n dp.reserve(65536);\n Cout(rec(N, 0, 0, H, W));\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 12168, "score_of_the_acc": -0.6775, "final_rank": 4 }, { "submission_id": "aoj_2743_10240675", "code_snippet": "// AOJ #2743 Land Inheritance\n// 2025.2.23\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nint H, W, N;\nvector<vector<int>> grid;\nvector<vector<int>> ps;\n\nvoid pre(){\n ps.assign(H+1, vector<int>(W+1, 0));\n for (int i = 0; i < H; i++){\n for (int j = 0; j < W; j++){\n ps[i+1][j+1] = grid[i][j] + ps[i][j+1] + ps[i+1][j] - ps[i][j];\n }\n }\n}\n\nint rect(int r1, int c1, int r2, int c2){\n return ps[r2][c2] - ps[r1][c2] - ps[r2][c1] + ps[r1][c1];\n}\n\nbool check1(int T, int r1, int c1, int r2, int c2){\n return rect(r1, c1, r2, c2) >= T;\n}\n\nbool check2(int T, int r1, int c1, int r2, int c2){\n for (int r = r1+1; r < r2; r++)\n if(rect(r1, c1, r, c2) >= T && rect(r, c1, r2, c2) >= T) return true;\n\n for (int c = c1+1; c < c2; c++)\n if(rect(r1, c1, r2, c) >= T && rect(r1, c, r2, c2) >= T) return true;\n\n return false;\n}\n\nbool check3(int T, int r1, int c1, int r2, int c2){\n for (int rA = r1+1; rA <= r2-2; rA++){\n if(rect(r1, c1, rA, c2) < T) continue;\n for (int rB = rA+1; rB <= r2-1; rB++){\n if(rect(rA, c1, rB, c2) < T) continue;\n if(rect(rB, c1, r2, c2) >= T) return true;\n }\n }\n for (int cA = c1+1; cA <= c2-2; cA++){\n if(rect(r1, c1, r2, cA) < T) continue;\n for (int cB = cA+1; cB <= c2-1; cB++){\n if(rect(r1, cA, r2, cB) < T) continue;\n if(rect(r1, cB, r2, c2) >= T) return true;\n }\n }\n for (int r = r1+1; r < r2; r++){\n if(rect(r1, c1, r, c2) < T) continue;\n for (int c = c1+1; c < c2; c++){\n if(rect(r, c1, r2, c) >= T && rect(r, c, r2, c2) >= T)\n return true;\n }\n }\n for (int r = r1+1; r < r2; r++){\n if(rect(r, c1, r2, c2) < T) continue;\n for (int c = c1+1; c < c2; c++){\n if(rect(r1, c1, r, c) >= T && rect(r1, c, r, c2) >= T)\n return true;\n }\n }\n for (int c = c1+1; c < c2; c++){\n if(rect(r1, c1, r2, c) < T) continue;\n for (int r = r1+1; r < r2; r++){\n if(rect(r1, c, r, c2) >= T && rect(r, c, r2, c2) >= T)\n return true;\n }\n }\n for (int c = c1+1; c < c2; c++){\n if(rect(r1, c, r2, c2) < T) continue;\n for (int r = r1+1; r < r2; r++){\n if(rect(r1, c1, r, c) >= T && rect(r, c1, r2, c) >= T)\n return true;\n }\n }\n return false;\n}\n\nbool check4(int T, int r1, int c1, int r2, int c2){\n for (int rA = r1+1; rA <= r2-3; rA++){\n if(rect(r1, c1, rA, c2) < T) continue;\n for (int rB = rA+1; rB <= r2-2; rB++){\n if(rect(rA, c1, rB, c2) < T) continue;\n for (int rC = rB+1; rC <= r2-1; rC++){\n if(rect(rB, c1, rC, c2) < T) continue;\n if(rect(rC, c1, r2, c2) >= T) return true;\n }\n }\n }\n for (int cA = c1+1; cA <= c2-3; cA++){\n if(rect(r1, c1, r2, cA) < T) continue;\n for (int cB = cA+1; cB <= c2-2; cB++){\n if(rect(r1, cA, r2, cB) < T) continue;\n for (int cC = cB+1; cC <= c2-1; cC++){\n if(rect(r1, cB, r2, cC) < T) continue;\n if(rect(r1, cC, r2, c2) >= T) return true;\n }\n }\n }\n for (int r = r1+1; r < r2; r++){\n for (int cTop = c1+1; cTop < c2; cTop++){\n if(rect(r1, c1, r, cTop) < T) continue;\n if(rect(r1, cTop, r, c2) < T) continue;\n for (int cBot = c1+1; cBot < c2; cBot++){\n if(rect(r, c1, r2, cBot) < T) continue;\n if(rect(r, cBot, r2, c2) < T) continue;\n return true;\n }\n }\n }\n for (int c = c1+1; c < c2; c++){\n for (int rLeft = r1+1; rLeft < r2; rLeft++){\n if(rect(r1, c1, rLeft, c) < T) continue;\n if(rect(rLeft, c1, r2, c) < T) continue;\n for (int rRight = r1+1; rRight < r2; rRight++){\n if(rect(r1, c, rRight, c2) < T) continue;\n if(rect(rRight, c, r2, c2) < T) continue;\n return true;\n }\n }\n }\n for (int r = r1+1; r < r2; r++){\n if(rect(r1, c1, r, c2) < T) continue;\n if(check3(T, r, c1, r2, c2)) return true;\n }\n for (int r = r1+1; r < r2; r++){\n if(rect(r, c1, r2, c2) < T) continue;\n if(check3(T, r1, c1, r, c2)) return true;\n }\n for (int c = c1+1; c < c2; c++){\n if(rect(r1, c1, r2, c) < T) continue;\n if(check3(T, r1, c, r2, c2)) return true;\n }\n for (int c = c1+1; c < c2; c++){\n if(rect(r1, c, r2, c2) < T) continue;\n if(check3(T, r1, c1, r2, c)) return true;\n }\n return false;\n}\n\nbool check(int T){\n if(N == 1) return check1(T, 0, 0, H, W);\n if(N == 2) return check2(T, 0, 0, H, W);\n if(N == 3) return check3(T, 0, 0, H, W);\n if(N == 4) return check4(T, 0, 0, H, W);\n return false;\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n cin >> H >> W >> N;\n grid.assign(H, vector<int>(W, 0));\n int total = 0;\n for (int i = 0; i < H; i++){\n for (int j = 0; j < W; j++){\n cin >> grid[i][j];\n total += grid[i][j];\n }\n }\n pre();\n\n int lo = 0, hi = total, ans = 0;\n while(lo <= hi){\n int mid = (lo + hi) / 2;\n if(check(mid)){\n ans = mid;\n lo = mid + 1;\n } else hi = mid - 1;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.8181818181818182, "time_ms": 280, "memory_kb": 3768, "score_of_the_acc": -0.0851, "final_rank": 11 }, { "submission_id": "aoj_2743_9343537", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint H, W, N, K;\nlong long a[205][205];\nlong long c[205][205];\n\nlong long f(int u, int d, int l, int r) {\n return c[d + 1][r + 1] + c[u][l] - c[d + 1][l] - c[u][r + 1];\n}\n\nint bin_ho(int u, int d, int l, int r) {\n assert(u < d);\n if(u + 1 == d) return u;\n int ok = u, ng = d;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, k, l, r) < f(k + 1, d, l, r)) ok = k;\n else ng = k;\n }\n if(ng == d) return ok;\n const long long val_ok = min(f(u, ok, l, r), f(ok + 1, d, l, r));\n const long long val_ng = min(f(u, ng, l, r), f(ng + 1, d, l, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nint bin_ve(int u, int d, int l, int r) {\n assert(l < r);\n if(l + 1 == r) return l;\n int ok = l, ng = r;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, d, l, k) < f(u, d, k + 1, r)) ok = k;\n else ng = k;\n }\n if(ng == r) return ok;\n const long long val_ok = min(f(u, d, l, ok), f(u, d, ok + 1, r));\n const long long val_ng = min(f(u, d, l, ng), f(u, d, ng + 1, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nlong long div_opt(int u, int d, int l, int r) {\n long long ret = 0;\n if(u < d) {\n const int m = bin_ho(u, d, l, r);\n ret = max(ret, min(f(u, m, l, r), f(m + 1, d, l, r)));\n }\n if(l < r) {\n const int m = bin_ve(u, d, l, r);\n ret = max(ret, min(f(u, d, l, m), f(u, d, m + 1, r)));\n }\n return ret;\n}\n\nvoid rotate()\n{\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n c[i][j] = 0;\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[W - 1 - j][i] = a[i][j];\n }\n }\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n swap(H, W);\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n a[i][j] = c[i][j];\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[i + 1][j + 1] = a[i][j];\n }\n }\n for(int i = 0; i <= H; i++) {\n for(int j = 1; j <= W; j++) {\n c[i][j] += c[i][j - 1];\n }\n }\n for(int j = 0; j <= W; j++) {\n for(int i = 1; i <= H; i++) {\n c[i][j] += c[i - 1][j];\n }\n }\n}\n\nint main() {\n cin >> H >> W >> N;\n K = max(H, W);\n for(int i = 0; i <= K; i++) {\n for(int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n for(int i = 0; i < H; i++) {\n for(int j = 0; j < W; j++) {\n cin >> a[i][j];\n }\n }\n long long ans = 0;\n if(N == 2) {\n rotate();\n for(int i = 0; i < H - 1; i++) {\n ans = max(ans, min(f(0, i, 0, W - 1), f(i + 1, H - 1, 0, W - 1)));\n }\n for(int j = 0; j < W - 1; j++) {\n ans = max(ans, min(f(0, H - 1, 0, j), f(0, H - 1, j + 1, W - 1)));\n }\n cout << ans << endl;\n return 0;\n }\n for(int _t = 0; _t < 4; _t++) {\n rotate();\n // 横2本\n for(int i = 0; i < H; i++) {\n for(int j = i + 1; j + 1 < H; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, j, 0, W - 1)));\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(j + 1, k, 0, W - 1)));\n }\n }\n }\n // 縦横\n for(int i = 0; i < H; i++) {\n for(int j = 0; j + 1 < W; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, 0, j)));\n }\n {\n const long long val_org = min(f(i + 1, k, 0, j), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, j + 1, W - 1)));\n }\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 0.8181818181818182, "time_ms": 60, "memory_kb": 4092, "score_of_the_acc": -0.0661, "final_rank": 9 }, { "submission_id": "aoj_2743_9343530", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint H, W, N, K;\nlong long a[205][205];\nlong long c[205][205];\n\nlong long f(int u, int d, int l, int r) {\n return c[d + 1][r + 1] + c[u][l] - c[d + 1][l] - c[u][r + 1];\n}\n\nint bin_ho(int u, int d, int l, int r) {\n assert(u < d);\n if(u + 1 == d) return u;\n int ok = u, ng = d;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, k, l, r) < f(k + 1, d, l, r)) ok = k;\n else ng = k;\n }\n if(ng == d) return ok;\n const long long val_ok = min(f(u, ok, l, r), f(ok + 1, d, l, r));\n const long long val_ng = min(f(u, ng, l, r), f(ng + 1, d, l, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nint bin_ve(int u, int d, int l, int r) {\n assert(l < r);\n if(l + 1 == r) return l;\n int ok = l, ng = r;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, d, l, k) < f(u, d, k + 1, r)) ok = k;\n else ng = k;\n }\n if(ng == r) return ok;\n const long long val_ok = min(f(u, d, l, ok), f(u, d, ok + 1, r));\n const long long val_ng = min(f(u, d, l, ng), f(u, d, ng + 1, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nlong long div_opt(int u, int d, int l, int r) {\n long long ret = 0;\n if(u < d) {\n const int m = bin_ho(u, d, l, r);\n ret = max(ret, min(f(u, m, l, r), f(m + 1, d, l, r)));\n }\n if(l < r) {\n const int m = bin_ve(u, d, l, r);\n ret = max(ret, min(f(u, d, l, m), f(u, d, m + 1, r)));\n }\n return ret;\n}\n\nvoid rotate()\n{\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n c[i][j] = 0;\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[W - 1 - j][i] = a[i][j];\n }\n }\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n swap(H, W);\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n a[i][j] = c[i][j];\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[i + 1][j + 1] = a[i][j];\n }\n }\n for(int i = 0; i <= H; i++) {\n for(int j = 1; j <= W; j++) {\n c[i][j] += c[i][j - 1];\n }\n }\n for(int j = 0; j <= W; j++) {\n for(int i = 1; i <= H; i++) {\n c[i][j] += c[i - 1][j];\n }\n }\n}\n\nint main() {\n cin >> H >> W >> N;\n K = max(H, W);\n for(int i = 0; i <= K; i++) {\n for(int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n for(int i = 0; i < H; i++) {\n for(int j = 0; j < W; j++) {\n cin >> a[i][j];\n }\n }\n long long ans = 0;\n if(N == 2) {\n rotate();\n for(int i = 0; i < H - 1; i++) {\n ans = max(ans, min(f(0, i, 0, W - 1), f(i + 1, H - 1, 0, W - 1)));\n }\n for(int j = 0; j < W - 1; j++) {\n ans = max(ans, min(f(0, H - 1, 0, j), f(0, H - 1, j + 1, W - 1)));\n }\n cout << ans << endl;\n return 0;\n }\n for(int _t = 0; _t < 4; _t++) {\n rotate();\n // 横2本\n for(int i = 0; i < H; i++) {\n for(int j = i + 1; j + 1 < H; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, j, 0, W - 1)));\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(j + 1, k, 0, W - 1)));\n }\n }\n }\n // 縦横\n for(int i = 0; i < H; i++) {\n for(int j = 0; j < W - 1; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, 0, j)));\n }\n {\n const long long val_org = min(f(i + 1, k, 0, j), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, j + 1, W - 1)));\n }\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 0.8181818181818182, "time_ms": 60, "memory_kb": 4096, "score_of_the_acc": -0.0664, "final_rank": 10 }, { "submission_id": "aoj_2743_9343515", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint H, W, N, K;\nlong long a[205][205];\nlong long c[205][205];\n\nlong long f(int u, int d, int l, int r) {\n return c[d + 1][r + 1] + c[u][l] - c[d + 1][l] - c[u][r + 1];\n}\n\nint bin_ho(int u, int d, int l, int r) {\n assert(u < d);\n if(u + 1 == d) return u;\n int ok = u, ng = d;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, k, l, r) < f(k + 1, d, l, r)) ok = k;\n else ng = k;\n }\n if(ng == d) return ok;\n const long long val_ok = min(f(u, ok, l, r), f(ok + 1, d, l, r));\n const long long val_ng = min(f(u, ng, l, r), f(ng + 1, d, l, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nint bin_ve(int u, int d, int l, int r) {\n assert(l < r);\n if(l + 1 == r) return l;\n int ok = l, ng = r;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, d, l, k) < f(u, d, k + 1, r)) ok = k;\n else ng = k;\n }\n if(ng == r) return ok;\n const long long val_ok = min(f(u, d, l, ok), f(u, d, ok + 1, r));\n const long long val_ng = min(f(u, d, l, ng), f(u, d, ng + 1, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nlong long div_opt(int u, int d, int l, int r) {\n long long ret = 0;\n if(u < d) {\n const int m = bin_ho(u, d, l, r);\n ret = max(ret, min(f(u, m, l, r), f(m + 1, d, l, r)));\n }\n if(l < r) {\n const int m = bin_ve(u, d, l, r);\n ret = max(ret, min(f(u, d, l, m), f(u, d, m + 1, r)));\n }\n return ret;\n}\n\nvoid rotate()\n{\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n c[i][j] = 0;\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[W - 1 - j][i] = a[i][j];\n }\n }\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n swap(H, W);\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n a[i][j] = c[i][j];\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[i + 1][j + 1] = a[i][j];\n }\n }\n for(int i = 0; i <= H; i++) {\n for(int j = 1; j <= W; j++) {\n c[i][j] += c[i][j - 1];\n }\n }\n for(int j = 0; j <= W; j++) {\n for(int i = 1; i <= H; i++) {\n c[i][j] += c[i - 1][j];\n }\n }\n}\n\nint main() {\n cin >> H >> W >> N;\n K = max(H, W);\n for(int i = 0; i <= K; i++) {\n for(int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n for(int i = 0; i < H; i++) {\n for(int j = 0; j < W; j++) {\n cin >> a[i][j];\n }\n }\n long long ans = 0;\n if(N == 2) {\n rotate();\n for(int i = 0; i < H - 1; i++) {\n ans = max(ans, min(f(0, i, 0, W - 1), f(i + 1, H - 1, 0, W - 1)));\n }\n for(int j = 0; j < W - 1; j++) {\n ans = max(ans, min(f(0, H - 1, 0, j), f(0, H - 1, j + 1, W - 1)));\n }\n cout << ans << endl;\n return 0;\n }\n for(int _t = 0; _t < 4; _t++) {\n rotate();\n // 横2本\n for(int i = 0; i < H; i++) {\n for(int j = i + 1; j + 1 < H; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, j, 0, W - 1)));\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(j + 1, k, 0, W - 1)));\n }\n }\n }\n // 縦横\n for(int i = 0; i < H; i++) {\n for(int j = 0; j < W - 1; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, 0, j)));\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, j + 1, W - 1)));\n }\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 0.32727272727272727, "time_ms": 50, "memory_kb": 4088, "score_of_the_acc": -0.0639, "final_rank": 18 }, { "submission_id": "aoj_2743_9343510", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint H, W, N, K;\nlong long a[205][205];\nlong long c[205][205];\n\nlong long f(int u, int d, int l, int r) {\n return c[d + 1][r + 1] + c[u][l] - c[d + 1][l] - c[u][r + 1];\n}\n\nint bin_ho(int u, int d, int l, int r) {\n assert(u < d);\n if(u + 1 == d) return u;\n int ok = u, ng = d;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, k, l, r) < f(k + 1, d, l, r)) ok = k;\n else ng = k;\n }\n if(ng == d) return ok;\n const long long val_ok = min(f(u, ok, l, r), f(ok + 1, d, l, r));\n const long long val_ng = min(f(u, ng, l, r), f(ng + 1, d, l, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nint bin_ve(int u, int d, int l, int r) {\n assert(l < r);\n if(l + 1 == r) return l;\n int ok = l, ng = r;\n while(ok + 1 < ng) {\n int k = (ok + ng) / 2;\n if(f(u, d, l, k) < f(u, d, k + 1, r)) ok = k;\n else ng = k;\n }\n if(ng == r) return ok;\n const long long val_ok = min(f(u, d, l, ok), f(u, d, ok + 1, r));\n const long long val_ng = min(f(u, d, l, ng), f(u, d, ng + 1, r));\n return (val_ok > val_ng ? ok : ng);\n}\n\nlong long div_opt(int u, int d, int l, int r) {\n long long ret = 0;\n if(u < d) {\n const int m = bin_ho(u, d, l, r);\n ret = max(ret, min(f(u, m, l, r), f(m + 1, d, l, r)));\n }\n if(l < r) {\n const int m = bin_ve(u, d, l, r);\n ret = max(ret, min(f(u, d, l, m), f(u, d, m + 1, r)));\n }\n return ret;\n}\n\nvoid rotate()\n{\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n c[i][j] = 0;\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[W - 1 - j][i] = a[i][j];\n }\n }\n for (int i = 0; i <= K; i++) {\n for (int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n swap(H, W);\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n a[i][j] = c[i][j];\n }\n }\n for (int i = 0; i < H; i++) {\n for (int j = 0; j < W; j++) {\n c[i + 1][j + 1] = a[i][j];\n }\n }\n for(int i = 0; i <= H; i++) {\n for(int j = 1; j <= W; j++) {\n c[i][j] += c[i][j - 1];\n }\n }\n for(int j = 0; j <= W; j++) {\n for(int i = 1; i <= H; i++) {\n c[i][j] += c[i - 1][j];\n }\n }\n}\n\nint main() {\n cin >> H >> W >> N;\n K = max(H, W);\n for(int i = 0; i <= K; i++) {\n for(int j = 0; j <= K; j++) {\n a[i][j] = 0;\n }\n }\n for(int i = 0; i < H; i++) {\n for(int j = 0; j < W; j++) {\n cin >> a[i][j];\n }\n }\n long long ans = 0;\n if(N == 2) {\n rotate();\n for(int i = 0; i < H - 1; i++) {\n ans = max(ans, min(f(0, i, 0, W - 1), f(i + 1, H - 1, 0, W - 1)));\n }\n for(int j = 0; j < W - 1; j++) {\n ans = max(ans, min(f(0, H - 1, 0, j), f(0, H - 1, j + 1, W - 1)));\n }\n cout << ans << endl;\n return 0;\n }\n for(int _t = 0; _t < 4; _t++) {\n rotate();\n // 横2本\n for(int i = 0; i < H; i++) {\n for(int j = i + 1; j + 1 < H; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(j + 1, k, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, j, 0, W - 1)));\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(j + 1, k, 0, W - 1)));\n }\n }\n }\n // 縦横\n for(int i = 0; i < H; i++) {\n for(int j = 0; j < W - 1; j++) {\n const int k = H - 1;\n if(N == 3) {\n const long long cur = min(f(0, i, 0, W - 1), min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1)));\n ans = max(ans, cur);\n continue;\n }\n {\n const long long val_org = min(f(i + 1, k, 0, j), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(0, i, 0, W - 1)));\n }\n {\n const long long val_org = min(f(0, i, 0, W - 1), f(i + 1, k, j + 1, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, 0, j)));\n }\n {\n const long long val_org = min(f(i + 1, j, 0, W - 1), f(0, i, 0, W - 1));\n ans = max(ans, min(val_org, div_opt(i + 1, k, j + 1, W - 1)));\n }\n }\n }\n }\n cout << ans << endl;\n}\n\n// int main() {\n// int H, W, N;\n// cin >> H >> W >> N;\n// for(int i = 0; i <= max(H, W); i++) {\n// for(int j = 0; j <= max(H, W); j++) {\n// a[i][j] = 0;\n// }\n// }\n// for(int i = 1; i <= H; i++) {\n// for(int j = 1; j <= W; j++) {\n// cin >> a[i][j];\n// }\n// }\n// for(int i = 0; i <= H; i++) {\n// for(int j = 1; j <= W; j++) {\n// a[i][j] += a[i][j - 1];\n// }\n// }\n// for(int j = 0; j <= W; j++) {\n// for(int i = 1; i <= H; i++) {\n// a[i][j] += a[i - 1][j];\n// }\n// }\n// auto bin = [&](int u, int d, int l, long long x) -> int {\n// if(f(u, d, l, l) >= x) return l;\n// if(f(u, d, l, W - 1) < x) return -1;\n// int ng = l, ok = W - 1;\n// while(ng + 1 < ok) {\n// int mid = (ng + ok) / 2;\n// if(f(u, d, l, mid) < x) ng = mid;\n// else ok = mid;\n// }\n// return ok;\n// };\n// auto dfs = [&](auto dfs, int pre, int rem, int cnt_ok, long long x) -> bool {\n// bool ret = false;\n// for(int cur = pre + 1; cur < H; cur++) {\n// int l = 0;\n// int cnt_plus = 0;\n// while(cnt_plus + cnt_ok < N) {\n// l = bin(pre + 1, cur, l, x);\n// if(l == -1) break;\n// cnt_plus++;\n// l++;\n// }\n// if(cnt_ok + cnt_plus == N) { ret = true; break; }\n// if(dfs(dfs, cur, rem - cnt_plus, cnt_ok + cnt_plus, x)) { ret = true; break; }\n// }\n// return ret;\n// };\n// long long ans = 0;\n// for(int _t = 0; _t < 4; _t++) {\n \n// long long ok = 0LL, ng = 1LL << 30;\n// while(ok + 1 < ng) {\n// long long x = (ok + ng) / 2;\n// if(dfs(dfs, -1, N - 1, 0, x)) ok = x;\n// else ng = x;\n// }\n// ans = max(ans, ok);\n// }\n// cout << ans << endl;\n// }", "accuracy": 0.32727272727272727, "time_ms": 60, "memory_kb": 4068, "score_of_the_acc": -0.0643, "final_rank": 19 }, { "submission_id": "aoj_2743_9343339", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define ll long long\n#define elif else if\n#define vi vector<int>\n#define vll vector<ll>\n#define vvi vector<vi>\n#define pii pair<int,int>\n\n\n#define repname(a, b, c, d, e, ...) e\n#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)\n#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)\n#define rep1(i, x) for (int i = 0; i < (x); ++i)\n#define rep2(i, l, r) for (int i = (l); i < (r); ++i)\n#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))\n\n\n\n\n\nstruct ScalarInput {\n template<class T>\n operator T(){\n T ret;\n cin >> ret;\n return ret;\n }\n};\nstruct VectorInput {\n size_t n;\n VectorInput(size_t n): n(n) {}\n template<class T>\n operator vector<T>(){\n vector<T> ret(n);\n for(T &x : ret) cin >> x;\n return ret;\n }\n};\nScalarInput input(){ return ScalarInput(); }\nVectorInput input(size_t n){ return VectorInput(n); }\n\ntemplate<typename T>\nvoid print(vector<T> a){\n for(int i=0;i<a.size();i++){\n cout<<a[i]<<\" \\n\"[i+1==a.size()];\n }\n}\n\ntemplate<class T>\nvoid print(T x){\n cout << x << '\\n';\n}\n \ntemplate <class Head, class... Tail>\nvoid print(Head&& head, Tail&&... tail){\n cout << head << ' ';\n print(forward<Tail>(tail)...);\n}\n\ntemplate< class T >\nstruct CumulativeSum2D {\n vector< vector< T > > data;\n\n CumulativeSum2D(int W, int H) : data(W + 1, vector< int >(H + 1, 0)) {}\n\n void add(int x, int y, T z) {\n ++x, ++y;\n if(x >= data.size() || y >= data[0].size()) return;\n data[x][y] += z;\n }\n\n void build() {\n for(int i = 1; i < data.size(); i++) {\n for(int j = 1; j < data[i].size(); j++) {\n data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];\n }\n }\n }\n\n T query(int sx, int sy, int gx, int gy) {\n return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);\n }\n};\n\nint H,W;\n\nll ID(ll xL,ll xR,ll yL,ll yR,ll k){\n return (((xL*200+xR)*200+yL)*200+yR)*5+k;\n\n}\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int H,W,N;\n cin>>H>>W>>N;\n vector<vector<int>>A(H,vector<int>(W));\n rep(x,H)rep(y,W){\n cin>>A[x][y];\n }\n\n CumulativeSum2D<int>C(H,W);\n rep(x,H)rep(y,W){\n C.add(x,y,A[x][y]);\n }\n C.build();\n\n map<ll,int>memo;\n\n auto calc=[&](auto calc,int xL,int xR,int yL,int yR,int k){\n if(k==1){\n return C.query(xL,yL,xR,yR);\n }\n ll id=ID(xL,xR,yL,yR,k);\n if(memo.count(id)){\n return memo[id];\n }\n\n int ans=-(1<<30);\n\n rep(x_mid,xL+1,xR){\n rep(i,1,k){\n int j=k-i;\n int res=calc(calc,xL,x_mid,yL,yR,i);\n int res2=calc(calc,x_mid,xR,yL,yR,j);\n ans=max(ans,min(res,res2));\n }\n }\n rep(y_mid,yL+1,yR){\n rep(i,1,k){\n int j=k-i;\n int res=calc(calc,xL,xR,yL,y_mid,i);\n int res2=calc(calc,xL,xR,y_mid,yR,j);\n ans=max(ans,min(res,res2));\n }\n }\n memo[id]=ans;\n return ans;\n };\n\n int ans=calc(calc,0,H,0,W,N);\n\n if(N==4){\n CumulativeSum2D<int>C2(H,W);\n rep(x,H)rep(y,W){\n C2.add(x,W-1-y,A[x][y]);\n }\n C2.build();\n\n int res1,res2,res3,res4,res;\n rep(x1,1,H){\n //cerr<<x1<<endl;\n rep(x2,x1+1,H){\n rep(y1,1,W){\n rep(y2,y1+1,W){\n res1=C.query(0,0,x1,y2);\n res2=C.query(x1,0,H,y1);\n res3=C.query(x2,y1,H,W);\n res4=C.query(0,y2,x2,W);\n //print(res1,res2,res3,res4);\n \n res=min(res1,res2);\n res=min(res,res3);\n res=min(res,res4);\n ans=max(ans,res);\n\n res1=C2.query(0,0,x1,y2);\n res2=C2.query(x1,0,H,y1);\n res3=C2.query(x2,y1,H,W);\n res4=C2.query(0,y2,x2,W);\n //print(res1,res2,res3,res4);\n \n \n res=min(res1,res2);\n res=min(res,res3);\n res=min(res,res4);\n ans=max(ans,res);\n }\n }\n }\n }\n }\n print(ans);\n}", "accuracy": 1, "time_ms": 1330, "memory_kb": 16400, "score_of_the_acc": -1.256, "final_rank": 7 }, { "submission_id": "aoj_2743_9343318", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define ll long long\n#define elif else if\n#define vi vector<int>\n#define vll vector<ll>\n#define vvi vector<vi>\n#define pii pair<int,int>\n\n\n#define repname(a, b, c, d, e, ...) e\n#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)\n#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)\n#define rep1(i, x) for (int i = 0; i < (x); ++i)\n#define rep2(i, l, r) for (int i = (l); i < (r); ++i)\n#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))\n\n\n\n\n\nstruct ScalarInput {\n template<class T>\n operator T(){\n T ret;\n cin >> ret;\n return ret;\n }\n};\nstruct VectorInput {\n size_t n;\n VectorInput(size_t n): n(n) {}\n template<class T>\n operator vector<T>(){\n vector<T> ret(n);\n for(T &x : ret) cin >> x;\n return ret;\n }\n};\nScalarInput input(){ return ScalarInput(); }\nVectorInput input(size_t n){ return VectorInput(n); }\n\ntemplate<typename T>\nvoid print(vector<T> a){\n for(int i=0;i<a.size();i++){\n cout<<a[i]<<\" \\n\"[i+1==a.size()];\n }\n}\n\ntemplate<class T>\nvoid print(T x){\n cout << x << '\\n';\n}\n \ntemplate <class Head, class... Tail>\nvoid print(Head&& head, Tail&&... tail){\n cout << head << ' ';\n print(forward<Tail>(tail)...);\n}\n\ntemplate< class T >\nstruct CumulativeSum2D {\n vector< vector< T > > data;\n\n CumulativeSum2D(int W, int H) : data(W + 1, vector< int >(H + 1, 0)) {}\n\n void add(int x, int y, T z) {\n ++x, ++y;\n if(x >= data.size() || y >= data[0].size()) return;\n data[x][y] += z;\n }\n\n void build() {\n for(int i = 1; i < data.size(); i++) {\n for(int j = 1; j < data[i].size(); j++) {\n data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];\n }\n }\n }\n\n T query(int sx, int sy, int gx, int gy) {\n return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);\n }\n};\n\nint H,W;\n\nll ID(ll xL,ll xR,ll yL,ll yR,ll k){\n return (((xL*200+xR)*200+yL)*200+yR)*5+k;\n\n}\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int H,W,N;\n cin>>H>>W>>N;\n vector<vector<int>>A(H,vector<int>(W));\n rep(x,H)rep(y,W){\n cin>>A[x][y];\n }\n\n CumulativeSum2D<int>C(H,W);\n rep(x,H)rep(y,W){\n C.add(x,y,A[x][y]);\n }\n C.build();\n\n map<ll,int>memo;\n\n auto calc=[&](auto calc,int xL,int xR,int yL,int yR,int k){\n if(k==1){\n return C.query(xL,yL,xR,yR);\n }\n ll id=ID(xL,xR,yL,yR,k);\n if(memo.count(id)){\n return memo[id];\n }\n\n int ans=-(1<<30);\n\n rep(x_mid,xL+1,xR){\n rep(i,1,k){\n int j=k-i;\n int res=calc(calc,xL,x_mid,yL,yR,i);\n int res2=calc(calc,x_mid,xR,yL,yR,j);\n ans=max(ans,min(res,res2));\n }\n }\n rep(y_mid,yL+1,yR){\n rep(i,1,k){\n int j=k-i;\n int res=calc(calc,xL,xR,yL,y_mid,i);\n int res2=calc(calc,xL,xR,y_mid,yR,j);\n ans=max(ans,min(res,res2));\n }\n }\n memo[id]=ans;\n return ans;\n };\n\n int ans=calc(calc,0,H,0,W,N);\n\n if(N==4){\n CumulativeSum2D<int>C2(H,W);\n rep(x,H)rep(y,W){\n C2.add(H-1-x,y,A[x][y]);\n }\n C2.build();\n\n int res1,res2,res3,res4,res;\n rep(x1,1,H){\n //cerr<<x1<<endl;\n rep(x2,x1+1,H){\n rep(y1,1,W){\n rep(y2,y1+1,W){\n res1=C.query(0,0,x1,y2);\n res2=C.query(x1,0,H,y1);\n res3=C.query(x2,y1,H,W);\n res4=C.query(0,y2,x2,H);\n //print(res1,res2,res3,res4);\n \n res=min(res1,res2);\n res=min(res,res3);\n res=min(res,res4);\n ans=max(ans,res);\n\n res1=C2.query(0,0,x1,y2);\n res2=C2.query(x1,0,H,y1);\n res3=C2.query(x2,y1,H,W);\n res4=C2.query(0,y2,x2,H);\n //print(res1,res2,res3,res4);\n \n \n res=min(res1,res2);\n res=min(res,res3);\n res=min(res,res4);\n ans=max(ans,res);\n }\n }\n }\n }\n }\n print(ans);\n}", "accuracy": 0.8181818181818182, "time_ms": 1310, "memory_kb": 16280, "score_of_the_acc": -1.2428, "final_rank": 15 }, { "submission_id": "aoj_2743_9343280", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++)\n#define all(A) A.begin(),A.end()\n\nvoid chmax(ll& p, ll q) { p = max(p, q); };\nvoid chmin(ll& p, ll q) { p = min(p, q); };\n\nconst ll mod = 998244353;\n\n\nvvll SA;\n\nll area(ll Y, ll X, ll y, ll x) {\n return SA[Y + 1][X + 1] + SA[y][x] - SA[Y + 1][x] - SA[y][X + 1];\n}\n\n//[y,x]*[Y*X]をn分割. 隙間なく. n<=3\nll maxarea(ll Y,ll X,ll y,ll x,ll n){\n if(n==1){\n //O(1)\n return area(Y,X,y,x);\n }\n if(n==2){\n //O(N)\n ll an=0;\n for(ll h=y;h<Y;h++){\n chmax(an,min(area(Y,X,h+1,x),area(h,X,y,x)));\n }\n for(ll w=x;w<X;w++){\n chmax(an,min(area(Y,X,y,w+1),area(Y,w,y,x)));\n }\n return an;\n }\n if(n==3){\n ll an=0;\n for(ll h=y;h<Y;h++){\n chmax(an,min(area(Y,X,h+1,x),maxarea(h,X,y,x,2)));\n chmax(an,min(maxarea(Y,X,h+1,x,2),area(h,X,y,x)));\n }\n for(ll w=x;w<X;w++){\n chmax(an,min(area(Y,X,y,w+1),maxarea(Y,w,y,x,2)));\n chmax(an,min(maxarea(Y,X,y,w+1,2),area(Y,w,y,x)));\n }\n return an;\n }\n if(n==4){\n ll an=0;\n for(ll h=y;h<Y;h++){\n chmax(an,min(area(Y,X,h+1,x),maxarea(h,X,y,x,3)));\n chmax(an,min(maxarea(Y,X,h+1,x,2),maxarea(h,X,y,x,2)));\n chmax(an,min(maxarea(Y,X,h+1,x,3),area(h,X,y,x)));\n }\n for(ll w=x;w<X;w++){\n chmax(an,min(area(Y,X,y,w+1),maxarea(Y,w,y,x,3)));\n chmax(an,min(maxarea(Y,X,y,w+1,2),maxarea(Y,w,y,x,2)));\n chmax(an,min(maxarea(Y,X,y,w+1,3),area(Y,w,y,x)));\n }\n return an;\n }\n return 0;\n}\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll H, W, N;\n cin >> H >> W >> N;\n vvll A(H, vll(W));\n SA.assign(H + 1, vll(W + 1, 0));\n rep(h, H)rep(w, W) {\n cin >> A[h][w];\n SA[h + 1][w + 1] = A[h][w];\n }\n rep(h, H + 1)rep(w, W)SA[h][w + 1] += SA[h][w];\n rep(h, H)rep(w, W + 1)SA[h + 1][w] += SA[h][w];\n ll an = 0;\n if (N == 4) {\n rep(h1, H - 1)rep(h2, h1+1) {\n rep(w1, W - 1)rep(w2, w1+1) {\n if (min(h2, w2) == 0)continue;\n //[h2,h1]*[w2,w1]を取らない\n ll res = min(\n { area(h1,w2 - 1,0,0),area(H - 1,w1,h1 + 1,0),area(H - 1,W - 1,h2,w1 + 1),area(h2 - 1,W - 1,0,w2) }\n );\n chmax(res, min(\n { area(h2 - 1,w1,0,0),area(H - 1,w2 - 1,h2,0),area(H - 1,W - 1,h1 + 1,w2),area(h1,W - 1,0,w1 + 1) }\n )\n );\n chmax(an, res);\n }\n }\n chmax(an,maxarea(H-1,W-1,0,0,4));\n }\n if(N==2){\n cout<<maxarea(H-1,W-1,0,0,2)<<endl;\n return 0;\n }\n if(N==3){\n cout<<maxarea(H-1,W-1,0,0,3)<<endl;\n return 0;\n }\n\n\n\n\n\n\n cout << an << endl;\n}", "accuracy": 1, "time_ms": 5080, "memory_kb": 3880, "score_of_the_acc": -1.046, "final_rank": 6 }, { "submission_id": "aoj_2743_9201059", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int H, W, N;\n std::cin >> H >> W >> N;\n std::vector A(H, std::vector<int>(W));\n for (auto& a : A) for (auto& x : a) std::cin >> x;\n std::vector S(H + 1, std::vector<int>(W + 1));\n for (int i{1} ; i <= H ; i++) {\n for (int j{1} ; j <= W ; j++) {\n S[i][j] = S[i - 1][j] + S[i][j - 1] - S[i - 1][j - 1] + A[i - 1][j - 1];\n }\n }\n auto f{[&](int up, int dn, int l, int r) -> int {\n int res{};\n for (auto v : { up, dn, l, r }) {\n res = res * 200 + v;\n }\n return res;\n }};\n auto calc1{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n return S[dn][r] - S[dn][l] - S[up][r] + S[up][l];\n }};\n std::unordered_map<int, int> dp2;\n auto calc2{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp2.find(index) != dp2.end()) return dp2[index];\n if ((dn - up) * (r - l) < 2) return dp2[index] = -1;\n int res{-1}; \n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc1(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp2[index] = res;\n }};\n std::unordered_map<int, int> dp3;\n auto calc3{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp3.find(index) != dp3.end()) return dp3[index];\n if ((dn - up) * (r - l) < 3) return dp3[index] = -1;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc2(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc2(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return dp3[index] = res;\n }};\n auto calc4{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n assert((dn - up) * (r - l) >= 4);\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc3(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc3(m, dn, l, r)));\n res = std::max(res, std::min(calc2(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc3(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc3(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return res;\n }};\n \n if (N == 2) {\n std::cout << calc2(0, H, 0, W) << '\\n';\n }\n else if (N == 3) {\n std::cout << calc3(0, H, 0, W) << '\\n';\n }\n else if (N == 4) {\n int res{calc4(0, H, 0, W)};\n for (int i{1} ; i < H ; i++) {\n for (int j{1} ; j < W ; j++) {\n if (calc1(0, i, 0, j) <= res) continue;\n for (int k{1} ; k < W ; k++) {\n if (calc1(i, H, 0, k) <= res) continue;\n if (j < k) {\n for (int l{1} ; l < i ; l++) {\n res = std::max(res, \n std::min({ calc1(0, i, 0, j), calc1(i, H, 0, k), calc1(l, H, k, W), calc1(0, l, j, W) }));\n }\n }\n if (j > k) {\n for (int l{i + 1} ; l < H ; l++) {\n res = std::max(res, \n std::min({ calc1(0, i, 0, j), calc1(i, H, 0, k), calc1(l, H, k, W), calc1(0, l, j, W) }));\n }\n }\n }\n }\n }\n std::cout << res << '\\n';\n }\n else {\n assert(false);\n }\n}", "accuracy": 1, "time_ms": 820, "memory_kb": 11296, "score_of_the_acc": -0.7659, "final_rank": 5 }, { "submission_id": "aoj_2743_9201043", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int H, W, N;\n std::cin >> H >> W >> N;\n std::vector A(H, std::vector<int>(W));\n for (auto& a : A) for (auto& x : a) std::cin >> x;\n std::vector S(H + 1, std::vector<int>(W + 1));\n for (int i{1} ; i <= H ; i++) {\n for (int j{1} ; j <= W ; j++) {\n S[i][j] = S[i - 1][j] + S[i][j - 1] - S[i - 1][j - 1] + A[i - 1][j - 1];\n }\n }\n auto f{[&](int up, int dn, int l, int r) -> int {\n int res{};\n for (auto v : { up, dn, l, r }) {\n res = res * 200 + v;\n }\n return res;\n }};\n auto calc1{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n return S[dn][r] - S[dn][l] - S[up][r] + S[up][l];\n }};\n std::unordered_map<int, int> dp2;\n auto calc2{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp2.find(index) != dp2.end()) return dp2[index];\n if ((dn - up) * (r - l) < 2) return dp2[index] = -1;\n int res{-1}; \n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc1(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp2[index] = res;\n }};\n std::unordered_map<int, int> dp3;\n auto calc3{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp3.find(index) != dp3.end()) return dp3[index];\n if ((dn - up) * (r - l) < 3) return dp3[index] = -1;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc2(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc2(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return dp3[index] = res;\n }};\n auto calc4{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n assert((dn - up) * (r - l) >= 4);\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc3(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc3(m, dn, l, r)));\n res = std::max(res, std::min(calc2(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc3(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc3(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return res;\n }};\n \n if (N == 2) {\n std::cout << calc2(0, H, 0, W) << '\\n';\n }\n else if (N == 3) {\n std::cout << calc3(0, H, 0, W) << '\\n';\n }\n else if (N == 4) {\n int res{calc4(0, H, 0, W)};\n for (int i{1} ; i < H ; i++) {\n for (int j{1} ; j < W ; j++) {\n if (calc1(0, i, 0, j) <= res) continue;\n for (int k{1} ; k < H ; k++) {\n if (calc1(0, k, j, W) <= res) continue;\n for (int l{1} ; l < W ; l++) {\n res = std::max(res, \n std::min({ calc1(0, i, 0, j), calc1(i, H, 0, l), calc1(k, H, l, W), calc1(0, k, std::max(j, l), W) }));\n // if (res > 7620) {\n // std::cout << res << std::endl;\n // std::cout << 0 << ' ' << i << ' ' << 0 << ' ' << j << ' ' << calc1(0, i, 0, j) << ' ' << std::endl;\n // std::cout << i << ' ' << H << ' ' << 0 << ' ' << l << ' ' << calc1(i, H, 0, l) << ' ' << std::endl;\n // std::cout << k << ' ' << H << ' ' << l << ' ' << W << ' ' << calc1(k, H, l, W) << std::endl;\n // std::cout << 0 << ' ' << k << ' ' << j << ' ' << W << ' ' << calc1(0, k, j, W) << std::endl;\n // exit(0);\n // }\n }\n }\n }\n }\n std::cout << res << '\\n';\n }\n else {\n assert(false);\n }\n}", "accuracy": 0.4909090909090909, "time_ms": 590, "memory_kb": 11240, "score_of_the_acc": -0.716, "final_rank": 16 }, { "submission_id": "aoj_2743_9201035", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int H, W, N;\n std::cin >> H >> W >> N;\n std::vector A(H, std::vector<int>(W));\n for (auto& a : A) for (auto& x : a) std::cin >> x;\n std::vector S(H + 1, std::vector<int>(W + 1));\n for (int i{1} ; i <= H ; i++) {\n for (int j{1} ; j <= W ; j++) {\n S[i][j] = S[i - 1][j] + S[i][j - 1] - S[i - 1][j - 1] + A[i - 1][j - 1];\n }\n }\n auto f{[&](int up, int dn, int l, int r) -> int {\n int res{};\n for (auto v : { up, dn, l, r }) {\n res = res * 200 + v;\n }\n return res;\n }};\n auto calc1{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n return S[dn][r] - S[dn][l] - S[up][r] + S[up][l];\n }};\n std::unordered_map<int, int> dp2;\n auto calc2{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp2.find(index) != dp2.end()) return dp2[index];\n if ((dn - up) * (r - l) < 2) return dp2[index] = -1;\n int res{-1}; \n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc1(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp2[index] = res;\n }};\n std::unordered_map<int, int> dp3;\n auto calc3{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp3.find(index) != dp3.end()) return dp3[index];\n if ((dn - up) * (r - l) < 3) return dp3[index] = -1;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc2(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc2(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return dp3[index] = res;\n }};\n auto calc4{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n assert((dn - up) * (r - l) >= 4);\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc3(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc3(m, dn, l, r)));\n res = std::max(res, std::min(calc2(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc3(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc3(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return res;\n }};\n \n if (N == 2) {\n std::cout << calc2(0, H, 0, W) << '\\n';\n }\n else if (N == 3) {\n std::cout << calc3(0, H, 0, W) << '\\n';\n }\n else if (N == 4) {\n int res{calc4(0, H, 0, W)};\n for (int i{1} ; i < H ; i++) {\n for (int j{1} ; j < W ; j++) {\n if (calc1(0, i, 0, j) <= res) continue;\n for (int k{1} ; k < H ; k++) {\n if (calc1(0, k, j, W) <= res) continue;\n for (int l{1} ; l < W ; l++) {\n res = std::max(res, \n std::min({ calc1(0, i, 0, j), calc1(i, H, 0, l), calc1(k, H, l, W), calc1(0, k, j, W) }));\n }\n }\n }\n }\n std::cout << res << '\\n';\n }\n else {\n assert(false);\n }\n}", "accuracy": 0.36363636363636365, "time_ms": 480, "memory_kb": 11184, "score_of_the_acc": -0.6899, "final_rank": 17 }, { "submission_id": "aoj_2743_9197394", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int H, W, N;\n std::cin >> H >> W >> N;\n std::vector A(H, std::vector<int>(W));\n for (auto& a : A) for (auto& x : a) std::cin >> x;\n std::vector S(H + 1, std::vector<int>(W + 1));\n for (int i{1} ; i <= H ; i++) {\n for (int j{1} ; j <= W ; j++) {\n S[i][j] = S[i - 1][j] + S[i][j - 1] - S[i - 1][j - 1] + A[i - 1][j - 1];\n }\n }\n auto f{[&](int up, int dn, int l, int r) -> int {\n int res{};\n for (auto v : { up, dn, l, r }) {\n res = res * 200 + v;\n }\n return res;\n }};\n auto calc1{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n return S[dn][r] - S[dn][l] - S[up][r] + S[up][l];\n }};\n std::unordered_map<int, int> dp2;\n auto calc2{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp2.find(index) != dp2.end()) return dp2[index];\n if ((dn - up) * (r - l) < 2) return dp2[index] = -1;\n int res{-1}; \n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc1(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp2[index] = res;\n }};\n std::unordered_map<int, int> dp3;\n auto calc3{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n int index{f(up, dn, l, r)};\n if (dp3.find(index) != dp3.end()) return dp3[index];\n if ((dn - up) * (r - l) < 3) return dp3[index] = -1;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc2(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc2(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return dp3[index] = res;\n }};\n auto calc4{[&](int up, int dn, int l, int r) -> int {\n assert(0 <= up and up < dn and dn <= H);\n assert(0 <= l and l < r and r <= W);\n assert((dn - up) * (r - l) >= 4);\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc3(up, m, l, r), calc1(m, dn, l, r)));\n res = std::max(res, std::min(calc1(up, m, l, r), calc3(m, dn, l, r)));\n res = std::max(res, std::min(calc2(up, m, l, r), calc2(m, dn, l, r)));\n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc3(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc1(up, dn, l, m), calc3(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return res;\n }};\n \n if (N == 2) {\n std::cout << calc2(0, H, 0, W) << '\\n';\n }\n else if (N == 3) {\n std::cout << calc3(0, H, 0, W) << '\\n';\n }\n else if (N == 4) {\n int res{calc4(0, H, 0, W)};\n // for (int i{1} ; i < H ; i++) {\n // for (int j{1} ; j < W ; j++) {\n // if (calc1(0, i, 0, j) <= res) continue;\n // for (int k{1} ; k < H ; k++) {\n // if (calc1(0, k, j, W) <= res) continue;\n // for (int l{1} ; l < W ; l++) {\n // res = std::max(res, \n // std::min({ calc1(0, i, 0, j), calc1(i, H, 0, l), calc1(k, H, l, W), calc1(0, k, j, W) }));\n // }\n // }\n // }\n // }\n std::cout << res << '\\n';\n }\n else {\n assert(false);\n }\n}", "accuracy": 0.8181818181818182, "time_ms": 90, "memory_kb": 11316, "score_of_the_acc": -0.6225, "final_rank": 14 }, { "submission_id": "aoj_2743_9194025", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int H, W, N;\n std::cin >> H >> W >> N;\n std::vector A(H, std::vector<int>(W));\n for (int i{} ; i < H ; i++) {\n for (int j{} ; j < W ; j++) {\n std::cin >> A[i][j];\n }\n }\n std::vector S(H + 1, std::vector<int>(W + 1));\n for (int i{1} ; i <= H ; i++) {\n for (int j{1} ; j <= W ; j++) {\n S[i][j] = -S[i - 1][j - 1] + S[i - 1][j] + S[i][j - 1] + A[i - 1][j - 1];\n }\n }\n // for (int i{} ; i <= H ; i++) {\n // for (int j{} ; j <= W ; j++) {\n // std::cout << S[i][j] << ' ';\n // }\n // std::cout << std::endl;\n // }\n auto f{[&](int i, int j, int k, int l) -> int {\n int res{};\n for (auto v : { i, j, k, l }) {\n res = res * 200 + v;\n }\n return res;\n }};\n auto calc1{[&](int up, int dn, int l, int r) -> int {\n assert(up < dn and l < r);\n return S[dn][r] - S[dn][l] - S[up][r] + S[up][l];\n }};\n std::unordered_map<int, int> dp2;\n auto calc2{[&](int up, int dn, int l, int r) -> int {\n auto it{dp2.find(f(up, dn, l, r))};\n if (it != dp2.end()) return it->second;\n if ((dn - up) * (r - l) < 2) return dp2[f(up, dn, l, r)] = -1;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc1(m, dn, l, r))); \n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp2[f(up, dn, l, r)] = res;\n }};\n std::unordered_map<int, int> dp3;\n auto calc3{[&](int up, int dn, int l, int r) -> int {\n auto it{dp3.find(f(up, dn, l, r))};\n if (it != dp3.end()) return it->second;\n if ((dn - up) * (r - l) < 3) return dp3[f(up, dn, l, r)] = -1;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc2(m, dn, l, r))); \n res = std::max(res, std::min(calc2(up, m, l, r), calc1(m, dn, l, r))); \n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc2(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp3[f(up, dn, l, r)] = res;\n }};\n std::unordered_map<int, int> dp4;\n auto calc4{[&](int up, int dn, int l, int r) -> int {\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc3(m, dn, l, r))); \n res = std::max(res, std::min(calc3(up, m, l, r), calc1(m, dn, l, r))); \n res = std::max(res, std::min(calc2(up, m, l, r), calc2(m, dn, l, r))); \n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc3(up, dn, m, r)));\n res = std::max(res, std::min(calc3(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return res;\n }};\n if (N == 2) {\n std::cout << calc2(0, H, 0, W) << '\\n';\n }\n else if (N == 3) {\n std::cout << calc3(0, H, 0, W) << '\\n';\n }\n else if (N == 4) {\n std::cout << calc4(0, H, 0, W) << '\\n';\n }\n else {\n assert(false);\n }\n}", "accuracy": 0.8181818181818182, "time_ms": 80, "memory_kb": 11316, "score_of_the_acc": -0.6206, "final_rank": 13 }, { "submission_id": "aoj_2743_9194011", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int H, W, N;\n std::cin >> H >> W >> N;\n std::vector A(H, std::vector<int>(W));\n for (int i{} ; i < H ; i++) {\n for (int j{} ; j < W ; j++) {\n std::cin >> A[i][j];\n }\n }\n std::vector S(H + 1, std::vector<int>(W + 1));\n for (int i{1} ; i <= H ; i++) {\n for (int j{1} ; j <= W ; j++) {\n S[i][j] = -S[i - 1][j - 1] + S[i - 1][j] + S[i][j - 1] + A[i - 1][j - 1];\n }\n }\n // for (int i{} ; i <= H ; i++) {\n // for (int j{} ; j <= W ; j++) {\n // std::cout << S[i][j] << ' ';\n // }\n // std::cout << std::endl;\n // }\n auto f{[&](int i, int j, int k, int l) -> int {\n int res{};\n for (auto v : { i, j, k, l }) {\n res = res * 200 + v;\n }\n return res;\n }};\n auto calc1{[&](int up, int dn, int l, int r) -> int {\n assert(up <= dn and l <= r);\n return S[dn][r] - S[dn][l] - S[up][r] + S[up][l];\n }};\n std::unordered_map<int, int> dp2;\n auto calc2{[&](int up, int dn, int l, int r) -> int {\n auto it{dp2.find(f(up, dn, l, r))};\n if (it != dp2.end()) return it->second;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc1(m, dn, l, r))); \n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp2[f(up, dn, l, r)] = res;\n }};\n std::unordered_map<int, int> dp3;\n auto calc3{[&](int up, int dn, int l, int r) -> int {\n auto it{dp3.find(f(up, dn, l, r))};\n if (it != dp3.end()) return it->second;\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc2(m, dn, l, r))); \n res = std::max(res, std::min(calc2(up, m, l, r), calc1(m, dn, l, r))); \n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc2(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc1(up, dn, m, r)));\n }\n return dp3[f(up, dn, l, r)] = res;\n }};\n std::unordered_map<int, int> dp4;\n auto calc4{[&](int up, int dn, int l, int r) -> int {\n int res{-1};\n for (int m{up + 1} ; m < dn ; m++) {\n res = std::max(res, std::min(calc1(up, m, l, r), calc3(m, dn, l, r))); \n res = std::max(res, std::min(calc3(up, m, l, r), calc1(m, dn, l, r))); \n res = std::max(res, std::min(calc2(up, m, l, r), calc2(m, dn, l, r))); \n }\n for (int m{l + 1} ; m < r ; m++) {\n res = std::max(res, std::min(calc1(up, dn, l, m), calc3(up, dn, m, r)));\n res = std::max(res, std::min(calc3(up, dn, l, m), calc1(up, dn, m, r)));\n res = std::max(res, std::min(calc2(up, dn, l, m), calc2(up, dn, m, r)));\n }\n return res;\n }};\n if (N == 2) {\n std::cout << calc2(0, H, 0, W) << '\\n';\n }\n else if (N == 3) {\n std::cout << calc3(0, H, 0, W) << '\\n';\n }\n else if (N == 4) {\n std::cout << calc4(0, H, 0, W) << '\\n';\n }\n else {\n assert(false);\n }\n}", "accuracy": 0.8181818181818182, "time_ms": 80, "memory_kb": 11192, "score_of_the_acc": -0.6111, "final_rank": 12 }, { "submission_id": "aoj_2743_9172233", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\ntemplate <typename T>\nstruct CumlativeSum2D {\n CumlativeSum2D(int H, int W)\n : h(H), w(W), data(H + 1, vector<T>(W + 1, 0)) {}\n\n void add(int i, int j, T x) {\n data[i + 1][j + 1] += x;\n }\n void init() {\n for(int i = 1; i < (int)data.size(); ++i) {\n for(int j = 1; j < (int)data[i].size(); ++j) {\n data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];\n }\n }\n }\n inline T sum(int li, int lj, int ri, int rj) {\n return data[ri][rj] - data[li][rj] - data[ri][lj] + data[li][lj];\n }\n T get(int i, int j) {\n return data[i + 1][j + 1] - data[i][j + 1] - data[i + 1][j] + data[i][j];\n }\n\n private:\n int h, w;\n vector<vector<T>> data;\n};\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n int H, W, N;\n cin >> H >> W >> N;\n CumlativeSum2D<int> cum(H, W);\n rep(i, 0, H) {\n rep(j, 0, W) {\n int a;\n cin >> a;\n cum.add(i, j, a);\n }\n }\n cum.init();\n auto func = [&](auto& func, int lh, int lw, int rh, int rw, int n) -> int {\n int res = 0;\n if(n == 2) {\n rep(i, lh + 1, rh) {\n res = max(res, min(cum.sum(lh, lw, i, rw), cum.sum(i, lw, rh, rw)));\n }\n rep(i, lw + 1, rw) {\n res = max(res, min(cum.sum(lh, lw, rh, i), cum.sum(lh, i, rh, rw)));\n }\n } else if(n == 3) {\n rep(i, lh + 1, rh) {\n res = max(res, min(cum.sum(lh, lw, i, rw), func(func, i, lw, rh, rw, n - 1)));\n res = max(res, min(cum.sum(i, lw, rh, rw), func(func, lh, lw, i, rw, n - 1)));\n }\n rep(i, lw + 1, rw) {\n res = max(res, min(cum.sum(lh, lw, rh, i), func(func, lh, i, rh, rw, n - 1)));\n res = max(res, min(cum.sum(lh, i, rh, rw), func(func, lh, lw, rh, i, n - 1)));\n }\n } else if(n == 4) {\n rep(i, lh + 1, rh) {\n res = max(res, min(cum.sum(lh, lw, i, rw), func(func, i, lw, rh, rw, n - 1)));\n res = max(res, min(cum.sum(i, lw, rh, rw), func(func, lh, lw, i, rw, n - 1)));\n }\n rep(i, lw + 1, rw) {\n res = max(res, min(cum.sum(lh, lw, rh, i), func(func, lh, i, rh, rw, n - 1)));\n res = max(res, min(cum.sum(lh, i, rh, rw), func(func, lh, lw, rh, i, n - 1)));\n }\n rep(i, lh + 1, rh) {\n rep(j, lw + 1, rw) {\n rep(k, lh + 1, i + 1) {\n rep(l, lh + 1, j + 1) {\n res = max(res, min({cum.sum(lh, lw, i, l), cum.sum(i, lw, rh, j), cum.sum(k, j, rh, rw), cum.sum(lh, l, k, rw)}));\n }\n }\n }\n }\n rep(i, lh + 1, rh) {\n rep(j, lw + 1, rw) {\n rep(k, i, rh) {\n rep(l, j, rw) {\n res = max(res, min({cum.sum(lh, lw, i, l), cum.sum(i, lw, rh, j), cum.sum(k, j, rh, rw), cum.sum(lh, l, k, rw)}));\n }\n }\n }\n }\n } else {\n assert(0);\n }\n return res;\n };\n cout << func(func, 0, 0, H, W, N) << '\\n';\n}", "accuracy": 1, "time_ms": 2800, "memory_kb": 3596, "score_of_the_acc": -0.572, "final_rank": 2 }, { "submission_id": "aoj_2743_9092950", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma GCC (\"avx2\")\n#pragma GCC (\"O3\")\n#pragma GCC (\"unroll-loops\")\n\ntemplate<class T>\nbool chmax(T &a, const T &b) {if (a < b) {a = b; return 1;} return 0;}\n\nusing ll = long long;\n\nll solve1(int x0, int y0, int x1, int y1, const vector<vector<ll>> &A, const vector<vector<ll>> &S)\n{\n return S[x1][y1] - S[x1][y0] - S[x0][y1] + S[x0][y0];\n}\n\nll solve2(int x0, int y0, int x1, int y1, const vector<vector<ll>> &A, const vector<vector<ll>> &S)\n{\n ll H = A.size(), W = A[0].size();\n \n ll ret = 0;\n for (int h0 = x0; h0 <= x1; ++h0)\n {\n ll a = solve1(x0, y0, h0, y1, A, S);\n ll b = solve1(h0, y0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n for (int w0 = y0; w0 <= y1; ++w0)\n {\n ll a = solve1(x0, y0, x1, w0, A, S);\n ll b = solve1(x0, w0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n \n return ret;\n}\n\nll solve3(int x0, int y0, int x1, int y1, const vector<vector<ll>> &A, const vector<vector<ll>> &S)\n{\n ll H = A.size(), W = A[0].size();\n \n \n ll ret = 0;\n for (int h0 = x0; h0 <= x1; ++h0)\n {\n {\n ll a = solve1(x0, y0, h0, y1, A, S);\n ll b = solve2(h0, y0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n {\n ll a = solve2(x0, y0, h0, y1, A, S);\n ll b = solve1(h0, y0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n }\n \n for (int w0 = y0; w0 <= y1; ++w0)\n {\n {\n ll a = solve1(x0, y0, x1, w0, A, S);\n ll b = solve2(x0, w0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n {\n ll a = solve2(x0, y0, x1, w0, A, S);\n ll b = solve1(x0, w0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n }\n \n return ret;\n}\n\nll solve4(int x0, int y0, int x1, int y1, const vector<vector<ll>> &A, const vector<vector<ll>> &S)\n{\n ll H = A.size(), W = A[0].size();\n \n \n ll ret = 0;\n for (int h0 = x0; h0 <= x1; ++h0)\n {\n {\n ll a = solve1(x0, y0, h0, y1, A, S);\n ll b = solve3(h0, y0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n {\n ll a = solve2(x0, y0, h0, y1, A, S);\n ll b = solve2(h0, y0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n {\n ll a = solve3(x0, y0, h0, y1, A, S);\n ll b = solve1(h0, y0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n }\n \n for (int w0 = y0; w0 <= y1; ++w0)\n {\n {\n ll a = solve1(x0, y0, x1, w0, A, S);\n ll b = solve3(x0, w0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n {\n ll a = solve2(x0, y0, x1, w0, A, S);\n ll b = solve2(x0, w0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n {\n ll a = solve3(x0, y0, x1, w0, A, S);\n ll b = solve1(x0, w0, x1, y1, A, S);\n chmax(ret, min({a, b}));\n }\n }\n \n for (int h0 = x0; h0 <= x1; ++h0)\n {\n for (int h1 = h0; h1 <= x1; ++h1)\n {\n for (int w0 = y0; w0 <= y1; ++w0)\n {\n for (int w1 = w0; w1 <= y1; ++w1)\n {\n {\n ll a = solve1(x0, y0, h0, w1, A, S);\n ll b = solve1(h0, y0, x1, w0, A, S);\n ll c = solve1(h1, w0, x1, y1, A, S);\n ll d = solve1(x0, w1, h1, y1, A, S);\n chmax(ret, min({a, b, c, d}));\n }\n {\n ll a = solve1(x0, y0, h1, w0, A, S);\n ll b = solve1(h1, y0, x1, w1, A, S);\n ll c = solve1(h0, w1, x1, y1, A, S);\n ll d = solve1(x0, w0, h0, y1, A, S);\n chmax(ret, min({a, b, c, d}));\n }\n }\n }\n }\n }\n \n \n return ret;\n}\n\nvoid solve()\n{\n ll H, W, N; cin >> H >> W >> N;\n \n vector<vector<ll>> A(H, vector<ll>(W));\n for (int i = 0; i < H; ++i)\n {\n for (int j = 0; j < W; ++j) cin >> A[i][j];\n }\n \n vector<vector<ll>> S(H+1, vector<ll>(W+1, 0));\n for (int i = 0; i < H; ++i)\n {\n for (int j = 0; j < W; ++j)\n {\n S[i+1][j+1] = S[i][j+1] + S[i+1][j] - S[i][j] + A[i][j];\n }\n }\n \n \n ll res = 0;\n if (N == 2)\n {\n res = solve2(0, 0, H, W, A, S);\n }\n else if (N == 3)\n {\n res = solve3(0, 0, H, W, A, S);\n }\n else\n {\n res = solve4(0, 0, H, W, A, S);\n }\n \n cout << res << endl;\n \n return;\n}\n\nint main()\n{\n solve();\n \n return 0;\n}", "accuracy": 1, "time_ms": 2840, "memory_kb": 4120, "score_of_the_acc": -0.6199, "final_rank": 3 }, { "submission_id": "aoj_2743_9092085", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\ntemplate < class T > vector< T >& operator++(vector< T >& a) { for(T& x : a) x++; return a; }\ntemplate < class T > vector< T >& operator--(vector< T >& a) { for(T& x : a) x--; return a; }\ntemplate < class T > vector< T > operator++(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x++; return res; }\ntemplate < class T > vector< T > operator--(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x--; return res; }\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nint main() {\n int H = in(), W = in(), N = in();\n vector<vector<int>> A = in(H, W);\n vector S(H + 1, vector(W + 1, 0));\n for(int i : rep(H)) for(int j : rep(W)) S[i + 1][j + 1] = A[i][j];\n for(int i : rep(H)) for(int j : rep(W + 1)) S[i + 1][j] += S[i][j];\n for(int i : rep(H + 1)) for(int j : rep(W)) S[i][j + 1] += S[i][j];\n auto F1 = [&](int xL, int xR, int yL, int yR) -> int {\n return S[xR][yR] - S[xL][yR] - S[xR][yL] + S[xL][yL]; \n };\n\n auto F2 = [&](int xL, int xR, int yL, int yR) -> int {\n int ans = 0;\n for(int xM : rep(xL + 1, xR)) chmax(ans, min(F1(xL, xM, yL, yR), F1(xM, xR, yL, yR)));\n for(int yM : rep(yL + 1, yR)) chmax(ans, min(F1(xL, xR, yL, yM), F1(xL, xR, yM, yR)));\n return ans;\n };\n\n auto F3 = [&](int xL, int xR, int yL, int yR) -> int {\n int ans = 0;\n for(int xM : rep(xL + 1, xR)) {\n chmax(ans, min(F1(xL, xM, yL, yR), F2(xM, xR, yL, yR)));\n chmax(ans, min(F2(xL, xM, yL, yR), F1(xM, xR, yL, yR)));\n }\n for(int yM : rep(yL + 1, yR)) {\n chmax(ans, min(F1(xL, xR, yL, yM), F2(xL, xR, yM, yR)));\n chmax(ans, min(F2(xL, xR, yL, yM), F1(xL, xR, yM, yR)));\n }\n return ans;\n };\n\n auto F4 = [&](int xL, int xR, int yL, int yR) -> int {\n int ans = 0;\n for(int xM : rep(xL + 1, xR)) {\n chmax(ans, min(F1(xL, xM, yL, yR), F3(xM, xR, yL, yR)));\n chmax(ans, min(F3(xL, xM, yL, yR), F1(xM, xR, yL, yR)));\n chmax(ans, min(F2(xL, xM, yL, yR), F2(xM, xR, yL, yR)));\n }\n for(int yM : rep(yL + 1, yR)) {\n chmax(ans, min(F1(xL, xR, yL, yM), F3(xL, xR, yM, yR)));\n chmax(ans, min(F3(xL, xR, yL, yM), F1(xL, xR, yM, yR)));\n chmax(ans, min(F2(xL, xR, yL, yM), F2(xL, xR, yM, yR)));\n }\n for(int xLL : rep(xL + 1, xR)) for(int xRR : rep(xLL + 1, xR)) {\n for(int yLL : rep(yL + 1, yR)) for(int yRR : rep(yLL + 1, yR)) {\n chmax(ans, min({F1(xL, xLL, yL, yRR), F1(xL, xRR, yRR, yR), F1(xRR, xR, yLL, yR), F1(xLL, xR, yL, yLL)}));\n chmax(ans, min({F1(xL, xRR, yL, yLL), F1(xRR, xR, yL, yRR), F1(xLL, xR, yRR, yR), F1(xL, xLL, yLL, yR)}));\n }\n }\n return ans;\n };\n\n if(N == 2) return print(F2(0, H, 0, W));\n if(N == 3) return print(F3(0, H, 0, W));\n if(N == 4) return print(F4(0, H, 0, W));\n}", "accuracy": 1, "time_ms": 2230, "memory_kb": 3772, "score_of_the_acc": -0.4723, "final_rank": 1 }, { "submission_id": "aoj_2743_9092074", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\ntemplate < class T > vector< T >& operator++(vector< T >& a) { for(T& x : a) x++; return a; }\ntemplate < class T > vector< T >& operator--(vector< T >& a) { for(T& x : a) x--; return a; }\ntemplate < class T > vector< T > operator++(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x++; return res; }\ntemplate < class T > vector< T > operator--(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x--; return res; }\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nint main() {\n int H = in(), W = in(), N = in();\n vector<vector<int>> A = in(H, W);\n vector S(H + 1, vector(W + 1, 0));\n for(int i : rep(H)) for(int j : rep(W)) S[i + 1][j + 1] = A[i][j];\n for(int i : rep(H)) for(int j : rep(W + 1)) S[i + 1][j] += S[i][j];\n for(int i : rep(H + 1)) for(int j : rep(W)) S[i][j + 1] += S[i][j];\n auto F1 = [&](int xL, int xR, int yL, int yR) -> int {\n return S[xR][yR] - S[xL][yR] - S[xR][yL] + S[xL][yL]; \n };\n\n auto F2 = [&](int xL, int xR, int yL, int yR) -> int {\n int ans = 0;\n for(int xM : rep(xL + 1, xR)) chmax(ans, min(F1(xL, xM, yL, yR), F1(xM, xR, yL, yR)));\n for(int yM : rep(yL + 1, yR)) chmax(ans, min(F1(xL, xR, yL, yM), F1(xL, xR, yM, yR)));\n return ans;\n };\n\n auto F3 = [&](int xL, int xR, int yL, int yR) -> int {\n int ans = 0;\n for(int xM : rep(xL + 1, xR)) {\n chmax(ans, min(F1(xL, xM, yL, yR), F2(xM, xR, yL, yR)));\n chmax(ans, min(F2(xL, xM, yL, yR), F1(xM, xR, yL, yR)));\n }\n for(int yM : rep(yL + 1, yR)) {\n chmax(ans, min(F1(xL, xR, yL, yM), F2(xL, xR, yM, yR)));\n chmax(ans, min(F2(xL, xR, yL, yM), F1(xL, xR, yM, yR)));\n }\n return ans;\n };\n\n auto F4 = [&](int xL, int xR, int yL, int yR) -> int {\n int ans = 0;\n const int W = yR - yL;\n for(int xM : rep(xL + 1, xR)) {\n chmax(ans, min(F1(xL, xM, yL, yR), F3(xM, xR, yL, yR)));\n chmax(ans, min(F3(xL, xM, yL, yR), F1(xM, xR, yL, yR)));\n chmax(ans, min(F2(xL, xM, yL, yR), F2(xM, xR, yL, yR)));\n }\n for(int yM : rep(yL + 1, yR)) {\n chmax(ans, min(F1(xL, xR, yL, yM), F3(xL, xR, yM, yR)));\n chmax(ans, min(F3(xL, xR, yL, yM), F1(xL, xR, yM, yR)));\n chmax(ans, min(F2(xL, xR, yL, yM), F2(xL, xR, yM, yR)));\n }\n for(int xLL : rep(xL + 1, H)) for(int xRR : rep(xLL + 1, H)) {\n for(int yLL : rep(yL + 1, W)) for(int yRR : rep(yLL + 1, W)) {\n chmax(ans, min({F1(xL, xLL, yL, yRR), F1(xL, xRR, yLL, yR), F1(xRR, xR, yLL, yR), F1(xLL, xR, yL, yRR)}));\n chmax(ans, min({F1(xL, xRR, yL, yLL), F1(xRR, xR, yL, yRR), F1(xLL, xR, yRR, yR), F1(xL, xLL, yLL, yR)}));\n }\n }\n return ans;\n };\n\n if(N == 2) return print(F2(0, H, 0, W));\n if(N == 3) return print(F3(0, H, 0, W));\n if(N == 4) return print(F4(0, H, 0, W));\n}", "accuracy": 0.23636363636363636, "time_ms": 2070, "memory_kb": 3692, "score_of_the_acc": -0.4345, "final_rank": 20 }, { "submission_id": "aoj_2743_8416823", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2743.cc: Land Inheritance\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_H = 200;\nconst int MAX_W = 200;\n\n/* typedef */\n\n/* global variables */\n\nint as[MAX_H][MAX_W], ass[MAX_H + 1][MAX_W + 1];\n\n/* subroutines */\n\nint area(int i0, int j0, int i1, int j1) {\n return ass[i0][j0] - ass[i1][j0] - ass[i0][j1] + ass[i1][j1];\n}\n\nint check2(int i0, int j0, int i1, int j1) {\n int maxs = 0;\n for (int i = i0 + 1; i < i1; i++)\n maxs = max(maxs, min(area(i0, j0, i, j1), area(i, j0, i1, j1)));\n for (int j = j0 + 1; j < j1; j++)\n maxs = max(maxs, min(area(i0, j0, i1, j), area(i0, j, i1, j1)));\n return maxs;\n}\n\nint check3(int i0, int j0, int i1, int j1) {\n int maxs = 0;\n for (int i = i0 + 1; i < i1; i++) {\n int a0 = area(i0, j0, i, j1), a1 = area(i, j0, i1, j1);\n maxs = max(maxs, min(a0, check2(i, j0, i1, j1)));\n maxs = max(maxs, min(a1, check2(i0, j0, i, j1)));\n }\n for (int j = j0 + 1; j < j1; j++) {\n int a0 = area(i0, j0, i1, j), a1 = area(i0, j, i1, j1);\n maxs = max(maxs, min(a0, check2(i0, j, i1, j1)));\n maxs = max(maxs, min(a1, check2(i0, j0, i1, j)));\n }\n return maxs;\n}\n\nint check4(int i0, int j0, int i1, int j1) {\n int maxs = 0;\n for (int i = i0 + 1; i < i1; i++) {\n int a0 = area(i0, j0, i, j1), a1 = area(i, j0, i1, j1);\n maxs = max(maxs, min(a0, check3(i, j0, i1, j1)));\n maxs = max(maxs, min(a1, check3(i0, j0, i, j1)));\n maxs = max(maxs, min(check2(i0, j0, i, j1), check2(i, j0, i1, j1)));\n }\n for (int j = j0 + 1; j < j1; j++) {\n int a0 = area(i0, j0, i1, j), a1 = area(i0, j, i1, j1);\n maxs = max(maxs, min(a0, check3(i0, j, i1, j1)));\n maxs = max(maxs, min(a1, check3(i0, j0, i1, j)));\n maxs = max(maxs, min(check2(i0, j0, i1, j), check2(i0, j, i1, j1)));\n }\n \n return maxs;\n}\n\n/* main */\n\nint main() {\n int h, w, n;\n scanf(\"%d%d%d\", &h, &w, &n);\n for (int i = 0; i < h; i++)\n for (int j = 0; j < w; j++) {\n scanf(\"%d\", as[i] + j);\n ass[i + 1][j + 1] =\n\tas[i][j] + ass[i + 1][j] + ass[i][j + 1] - ass[i][j];\n }\n\n int maxs = 0;\n if (n == 2) {\n maxs = check2(0, 0, h, w);\n }\n else if (n == 3) {\n maxs = check3(0, 0, h, w);\n }\n else if (n == 4) {\n maxs = check4(0, 0, h, w);\n }\n\n printf(\"%d\\n\", maxs);\n\n return 0;\n}", "accuracy": 0.8181818181818182, "time_ms": 100, "memory_kb": 3276, "score_of_the_acc": -0.0119, "final_rank": 8 } ]
aoj_2744_cpp
G - リングと紐 Problem Statement 芸術家のみさわさんは新しい作品を作ろうとしている. 新しい作品の材料として,みさわさんは金属の輪と白黒2色の紐を大量に用意した. みさわさんは,異なる 2 つの輪をいずれかの色の紐で結ぶことを繰り返すことによって作品を作ることが出来る. 1 つの輪を複数の輪と繋ぐことも可能であるが,それぞれの輪のペアを結ぶ紐は高々 1 本である. みさわさんは,せっかく作品を作るからにはよい作品を作りたいと考えた. みさわさんの考える「よい作品」とは,以下のように定義されるものである. 1 つの輪は 1 つのよい作品である. 2 つのよい作品を用意したとき,それらに含まれている紐で繋がれていない輪のペア全てを白い紐で繋いだものは, 1 つのよい作品である.(図1. 操作1) よい作品の白い紐を黒い紐に,黒い紐を白い紐にすべて入れ替えたものはよい作品である.(図1. 操作2) 以上で定義されたもののみがよい作品である. 図 1 はよい作品の一例である. 図 1. よい作品の例 以上の条件を満たすような渾身の「よい作品」を作り上げたみさわさんは,この作品に含まれる 0 個以上の輪を選び,それらを天井から吊るして展示することにした. このとき,なるべく黒い紐が映えるように展示したい. すなわち,天井から吊るされている輪とそれ以外の輪の間を繋ぐ黒い紐の本数が最大になるようにしたい. そのように展示した時の,天井から吊るされている輪とそれ以外の輪の間を繋ぐ黒い紐の本数を求めよ. Input 入力は以下の形式で与えられる. $N$ $M$ $u_1$ $v_1$ ... $u_M$ $v_M$ $N$ $(1 \leq N \leq 5000)$ は作品に含まれる輪の数である. $M$ $(1 \leq M \leq 100000)$ は作品に含まれる黒い紐の本数である. $u_i$, $v_i$ ($1 \leq u_i, v_i \leq N$)は $i$ 番目の黒い紐が $u_i$ 番目の輪と $v_i$ 番目の輪を繋いでいることを表す. 入力で指定されなかった輪のペアに関しては白い紐で繋がれている. 入力で与えられる作品は「よい作品」であることが保証されている. Output 天井から吊るされている輪とそれ以外の輪の間を繋ぐ黒い紐の本数の最大値を求めよ. Sample Input 1 5 4 1 2 2 3 3 1 4 5 Output for the Sample Input 1 3 Sample Input 2 6 5 1 2 1 3 1 4 1 5 3 4 Output for the Sample Input 2 4 Sample Input 3 5 8 2 5 5 4 1 3 1 5 4 1 2 4 3 4 3 2 Output for the Sample Input 3 6
[ { "submission_id": "aoj_2744_9731980", "code_snippet": "#line 1 \"library/Template/template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n#line 2 \"library/Utility/fastio.hpp\"\n#include <unistd.h>\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n#line 3 \"sol.cpp\"\n\n#line 2 \"library/DataStructure/unionfind.hpp\"\n\nstruct UnionFind{\n vector<int> par; int n;\n UnionFind(){}\n UnionFind(int _n):par(_n,-1),n(_n){}\n int root(int x){return par[x]<0?x:par[x]=root(par[x]);}\n bool same(int x,int y){return root(x)==root(y);}\n int size(int x){return -par[root(x)];}\n bool unite(int x,int y){\n x=root(x),y=root(y); if(x==y)return false;\n if(size(x)>size(y))swap(x,y);\n par[y]+=par[x]; par[x]=y; n--; return true;\n }\n};\n\n/**\n * @brief Union Find\n */\n#line 5 \"sol.cpp\"\n\nint main() {\n int n, m;\n read(n, m);\n vector g(n, vector<int>(n));\n rep(_, 0, m) {\n int x, y;\n read(x, y);\n x--, y--;\n g[x][y] = g[y][x] = 1;\n }\n\n auto rec = [&](auto &rec, vector<int> &vs) -> vector<int> {\n if (SZ(vs) <= 1)\n return vector<int>(SZ(vs) + 1);\n int sz = SZ(vs);\n UnionFind uni(sz);\n rep(i, 0, sz) rep(j, 0, sz) if (g[vs[i]][vs[j]]) {\n uni.unite(i, j);\n }\n if (uni.n == 1) {\n UnionFind uni2(sz);\n rep(i, 0, sz) rep(j, 0, sz) if (!g[vs[i]][vs[j]]) {\n uni2.unite(i, j);\n }\n map<int, vector<int>> grp;\n rep(i, 0, sz) grp[uni2.root(i)].push_back(vs[i]);\n vector<int> ret(1);\n for (auto &[_, nv] : grp) {\n auto add = rec(rec, nv);\n vector<int> nxt(SZ(ret) + SZ(add) - 1);\n int A = SZ(ret) - 1, B = SZ(add) - 1;\n rep(i, 0, SZ(ret)) rep(j, 0, SZ(add)) chmax(\n nxt[i + j], ret[i] + add[j] + (i + j) * ((A + B) - i - j) -\n i * (A - i) - j * (B - j));\n swap(ret, nxt);\n }\n return ret;\n } else {\n map<int, vector<int>> grp;\n rep(i, 0, sz) grp[uni.root(i)].push_back(vs[i]);\n vector<int> ret(1);\n for (auto &[_, nv] : grp) {\n auto add = rec(rec, nv);\n vector<int> nxt(SZ(ret) + SZ(add) - 1);\n rep(i, 0, SZ(ret)) rep(j, 0, SZ(add))\n chmax(nxt[i + j], ret[i] + add[j]);\n swap(ret, nxt);\n }\n return ret;\n }\n };\n\n vector<int> init(n);\n iota(ALL(init), 0);\n auto dp = rec(rec, init);\n print(MAX(dp));\n return 0;\n}", "accuracy": 1, "time_ms": 600, "memory_kb": 104528, "score_of_the_acc": -0.3621, "final_rank": 9 }, { "submission_id": "aoj_2744_9542182", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nstruct dsu {\n public:\n dsu() : _n(0) {}\n dsu(int n) : _n(n), parent_or_size(n, -1) {}\n\n int merge(int a, int b) {\n assert(0 <= a && a < _n);\n assert(0 <= b && b < _n);\n int x = leader(a), y = leader(b);\n if (x == y) return x;\n if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);\n parent_or_size[x] += parent_or_size[y];\n parent_or_size[y] = x;\n return x;\n }\n\n bool same(int a, int b) {\n assert(0 <= a && a < _n);\n assert(0 <= b && b < _n);\n return leader(a) == leader(b);\n }\n\n int leader(int a) {\n assert(0 <= a && a < _n);\n if (parent_or_size[a] < 0) return a;\n return parent_or_size[a] = leader(parent_or_size[a]);\n }\n\n int size(int a) {\n assert(0 <= a && a < _n);\n return -parent_or_size[leader(a)];\n }\n\n std::vector<std::vector<int>> groups() {\n std::vector<int> leader_buf(_n), group_size(_n);\n for (int i = 0; i < _n; i++) {\n leader_buf[i] = leader(i);\n group_size[leader_buf[i]]++;\n }\n std::vector<std::vector<int>> result(_n);\n for (int i = 0; i < _n; i++) {\n result[i].reserve(group_size[i]);\n }\n for (int i = 0; i < _n; i++) {\n result[leader_buf[i]].push_back(i);\n }\n result.erase(\n std::remove_if(result.begin(), result.end(),\n [&](const std::vector<int>& v) { return v.empty(); }),\n result.end());\n return result;\n }\n\n private:\n int _n;\n // root node: -1 * component size\n // otherwise: parent\n std::vector<int> parent_or_size;\n};\n\nstatic bool G[5000][5000] = {};\n\nvector<int> DFS(vector<int>& V) {\n if (V.size() == 0) return {0};\n if (V.size() == 1) return {0,0};\n int N = V.size();\n vector<int> A = {0};\n dsu UF(N);\n rep(i,0,N) rep(j,0,N) if (G[V[i]][V[j]]) UF.merge(i,j);\n if (UF.size(0) != N) {\n vector<vector<int>> NV(N);\n rep(i,0,N) NV[UF.leader(i)].push_back(V[i]);\n rep(i,0,N) {\n if (NV[i].empty()) continue;\n vector<int> B = DFS(NV[i]);\n vector<int> C(A.size() + B.size() - 1,0);\n rep(j,0,A.size()) rep(k,0,B.size()) chmax(C[j+k],A[j]+B[k]);\n A = C;\n }\n return A;\n }\n else {\n dsu UF2(N);\n rep(i,0,N) rep(j,0,N) if (!G[V[i]][V[j]]) UF2.merge(i,j);\n vector<vector<int>> NV(N);\n rep(i,0,N) NV[UF2.leader(i)].push_back(V[i]);\n rep(i,0,N) {\n if (NV[i].empty()) continue;\n vector<int> B = DFS(NV[i]);\n vector<int> C(A.size() + B.size() - 1,0);\n rep(j,0,A.size()) rep(k,0,B.size()) chmax(C[j+k],A[j]+B[k]+j*((int)B.size()-1-k)+k*((int)A.size()-1-j));\n A = C;\n }\n return A;\n }\n}\n\nint main() {\n int N, M;\n cin >> N >> M;\n rep(i,0,M) {\n int X, Y;\n cin >> X >> Y;\n X--, Y--;\n G[X][Y] = G[Y][X] = true;\n }\n vector<int> V(N);\n iota(ALL(V),0);\n vector<int> ANS = DFS(V);\n int MAX = 0;\n rep(i,0,N+1) chmax(MAX, ANS[i]);\n cout << MAX << endl;\n}", "accuracy": 1, "time_ms": 560, "memory_kb": 34624, "score_of_the_acc": -0.1579, "final_rank": 2 }, { "submission_id": "aoj_2744_9542181", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nstruct dsu {\n public:\n dsu() : _n(0) {}\n dsu(int n) : _n(n), parent_or_size(n, -1) {}\n\n int merge(int a, int b) {\n assert(0 <= a && a < _n);\n assert(0 <= b && b < _n);\n int x = leader(a), y = leader(b);\n if (x == y) return x;\n if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);\n parent_or_size[x] += parent_or_size[y];\n parent_or_size[y] = x;\n return x;\n }\n\n bool same(int a, int b) {\n assert(0 <= a && a < _n);\n assert(0 <= b && b < _n);\n return leader(a) == leader(b);\n }\n\n int leader(int a) {\n assert(0 <= a && a < _n);\n if (parent_or_size[a] < 0) return a;\n return parent_or_size[a] = leader(parent_or_size[a]);\n }\n\n int size(int a) {\n assert(0 <= a && a < _n);\n return -parent_or_size[leader(a)];\n }\n\n std::vector<std::vector<int>> groups() {\n std::vector<int> leader_buf(_n), group_size(_n);\n for (int i = 0; i < _n; i++) {\n leader_buf[i] = leader(i);\n group_size[leader_buf[i]]++;\n }\n std::vector<std::vector<int>> result(_n);\n for (int i = 0; i < _n; i++) {\n result[i].reserve(group_size[i]);\n }\n for (int i = 0; i < _n; i++) {\n result[leader_buf[i]].push_back(i);\n }\n result.erase(\n std::remove_if(result.begin(), result.end(),\n [&](const std::vector<int>& v) { return v.empty(); }),\n result.end());\n return result;\n }\n\n private:\n int _n;\n // root node: -1 * component size\n // otherwise: parent\n std::vector<int> parent_or_size;\n};\n\nstatic bool G[5000][5000] = {};\n\nvector<int> DFS(vector<int>& V) {\n if (V.size() == 0) return {0};\n if (V.size() == 1) return {0,0};\n int N = V.size();\n vector<int> A = {0};\n dsu UF(N);\n rep(i,0,N) rep(j,0,N) if (G[V[i]][V[j]]) UF.merge(i,j);\n if (UF.size(0) != N) {\n vector<vector<int>> NV(N);\n rep(i,0,N) NV[UF.leader(i)].push_back(V[i]);\n rep(i,0,N) {\n if (NV[i].empty()) continue;\n vector<int> B = DFS(NV[i]);\n vector<int> C(A.size() + B.size() - 1,0);\n rep(j,0,A.size()) rep(k,0,B.size()) chmax(C[j+k],A[j]+B[k]);\n swap(A,C);\n }\n return A;\n }\n else {\n dsu UF2(N);\n rep(i,0,N) rep(j,0,N) if (!G[V[i]][V[j]]) UF2.merge(i,j);\n vector<vector<int>> NV(N);\n rep(i,0,N) NV[UF2.leader(i)].push_back(V[i]);\n rep(i,0,N) {\n if (NV[i].empty()) continue;\n vector<int> B = DFS(NV[i]);\n vector<int> C(A.size() + B.size() - 1,0);\n rep(j,0,A.size()) rep(k,0,B.size()) chmax(C[j+k],A[j]+B[k]+j*((int)B.size()-1-k)+k*((int)A.size()-1-j));\n swap(A,C);\n }\n return A;\n }\n}\n\nint main() {\n int N, M;\n cin >> N >> M;\n rep(i,0,M) {\n int X, Y;\n cin >> X >> Y;\n X--, Y--;\n G[X][Y] = G[Y][X] = true;\n }\n vector<int> V(N);\n iota(ALL(V),0);\n vector<int> ANS = DFS(V);\n int MAX = 0;\n rep(i,0,N+1) chmax(MAX, ANS[i]);\n cout << MAX << endl;\n}", "accuracy": 1, "time_ms": 580, "memory_kb": 34552, "score_of_the_acc": -0.1604, "final_rank": 4 }, { "submission_id": "aoj_2744_9373766", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct UnionFind\n{\n int n;\n vector<int> par;\n \n UnionFind() = default;\n UnionFind(int _n) : n(_n), par(_n)\n {\n for (int i = 0; i < n; ++i) par[i] = i;\n }\n \n int root(int x)\n {\n if (par[x] == x) return x;\n else return par[x] = root(par[x]); \n }\n \n void merge(int x, int y)\n {\n int rx = root(x), ry = root(y);\n par[ry] = rx;\n return;\n }\n \n vector<vector<int>> group()\n {\n int siz = 0;\n vector<int> seen(n, -1);\n vector<vector<int>> ret(n);\n for (int i = 0; i < n; ++i)\n {\n int ri = root(i);\n if (seen[ri] == -1) seen[ri] = siz++;\n ret[seen[ri]].emplace_back(i);\n }\n ret.resize(siz);\n return ret;\n }\n};\n\ntemplate<class T>\nbool chmax(T &a, const T &b) {if (a < b) {a = b; return 1;} return 0;}\n\nvector<int> dfs(bool isblack, vector<int> &ids, const vector<vector<bool>> &color)\n{\n int N = color.size(), siz = ids.size();\n \n if (siz <= 1)\n {\n vector<int> ret(siz + 1, 0);\n return ret;\n }\n \n UnionFind uf(siz);\n for (int i = 0; i < siz; ++i)\n {\n int idi = ids[i];\n for (int j = 0; j < siz; ++j)\n {\n int idj = ids[j];\n if (i == j) continue;\n if (color[idi][idj] != isblack) uf.merge(i, j);\n }\n }\n \n vector<vector<int>> group = uf.group();\n // cout << -1 << \" \" << isblack << endl;\n // for (auto id : ids) cout << id << \" \";\n // cout << endl;\n // for (auto g : group)\n // {\n // for (auto v : g) cout << v << \" \";\n // cout << endl;\n // }\n \n assert(group.size() > 1);\n \n vector<int> ret{0};\n for (auto g : group)\n {\n vector<int> gid;\n for (auto v : g) gid.emplace_back(ids[v]);\n vector<int> vec = dfs(!isblack, gid, color);\n int s0 = (int)ret.size() - 1;\n int s1 = (int)vec.size() - 1;\n // cout << s0 << \" \" << s1 << \" \" << g.size() << endl;\n \n vector<int> nret(s0 + s1 + 1, 0);\n for (int c0 = 0; c0 <= s0; ++c0)\n {\n for (int c1 = 0; c1 <= s1; ++c1)\n {\n int tmp = ret[c0] + vec[c1];\n if (isblack) tmp += c0 * (s1 - c1) + c1 * (s0 - c0);\n chmax(nret[c0 + c1], tmp);\n }\n }\n \n swap(ret, nret);\n }\n \n assert((int)ret.size() == siz + 1);\n \n return ret;\n}\n\nvoid solve()\n{\n int N, M; cin >> N >> M;\n vector<vector<bool>> color(N, vector<bool>(N, false));\n UnionFind uf(N);\n for (int i = 0; i < M; ++i)\n {\n int u, v; cin >> u >> v;\n u--, v--;\n color[u][v] = color[v][u] = true;\n uf.merge(u, v);\n }\n \n vector<int> al(N);\n iota(al.begin(), al.end(), 0);\n \n vector<int> ret;\n if (uf.group().size() == 1) ret = dfs(true, al, color);\n else ret = dfs(false, al, color);\n \n int res = *max_element(ret.begin(), ret.end());\n cout << res << endl;\n \n return;\n}\n\nint main()\n{\n solve();\n \n return 0;\n}", "accuracy": 1, "time_ms": 490, "memory_kb": 14968, "score_of_the_acc": -0.0927, "final_rank": 1 }, { "submission_id": "aoj_2744_9344275", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define ll long long\n#define elif else if\n#define vi vector<int>\n#define vll vector<ll>\n#define vvi vector<vi>\n#define pii pair<int,int>\n\n\n#define repname(a, b, c, d, e, ...) e\n#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)\n#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)\n#define rep1(i, x) for (int i = 0; i < (x); ++i)\n#define rep2(i, l, r) for (int i = (l); i < (r); ++i)\n#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))\n\n\n\n\n\nstruct ScalarInput {\n template<class T>\n operator T(){\n T ret;\n cin >> ret;\n return ret;\n }\n};\nstruct VectorInput {\n size_t n;\n VectorInput(size_t n): n(n) {}\n template<class T>\n operator vector<T>(){\n vector<T> ret(n);\n for(T &x : ret) cin >> x;\n return ret;\n }\n};\nScalarInput input(){ return ScalarInput(); }\nVectorInput input(size_t n){ return VectorInput(n); }\n\ntemplate<typename T>\nvoid print(vector<T> a){\n for(int i=0;i<a.size();i++){\n cout<<a[i]<<\" \\n\"[i+1==a.size()];\n }\n}\n\ntemplate<class T>\nvoid print(T x){\n cout << x << '\\n';\n}\n \ntemplate <class Head, class... Tail>\nvoid print(Head&& head, Tail&&... tail){\n cout << head << ' ';\n print(forward<Tail>(tail)...);\n}\n\ndouble stop_watch(struct timespec start_time) {\n // 経過時間を秒単位で返す.\n struct timespec end_time;\n clock_gettime(CLOCK_REALTIME, &end_time);\n long long int sec = end_time.tv_sec - start_time.tv_sec;\n long long int nsec = end_time.tv_nsec - start_time.tv_nsec;\n return (double)sec + (double)nsec / (1000 * 1000 * 1000);\n}\n\ndouble randdouble(double l, double r) {\n // l以上r以下の実数を返す.\n return l + (r-l) * (double)rand() / RAND_MAX;\n}\n\nint randint(int l, int r) {\n // l以上r以下の整数を返す.\n return l + rand()%(r-l+1);\n}\n\n\n#include <algorithm>\n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\nstruct dsu {\n public:\n dsu() : _n(0) {}\n explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}\n\n int merge(int a, int b) {\n assert(0 <= a && a < _n);\n assert(0 <= b && b < _n);\n int x = leader(a), y = leader(b);\n if (x == y) return x;\n if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);\n parent_or_size[x] += parent_or_size[y];\n parent_or_size[y] = x;\n return x;\n }\n\n bool same(int a, int b) {\n assert(0 <= a && a < _n);\n assert(0 <= b && b < _n);\n return leader(a) == leader(b);\n }\n\n int leader(int a) {\n assert(0 <= a && a < _n);\n if (parent_or_size[a] < 0) return a;\n return parent_or_size[a] = leader(parent_or_size[a]);\n }\n\n int size(int a) {\n assert(0 <= a && a < _n);\n return -parent_or_size[leader(a)];\n }\n\n std::vector<std::vector<int>> groups() {\n std::vector<int> leader_buf(_n), group_size(_n);\n for (int i = 0; i < _n; i++) {\n leader_buf[i] = leader(i);\n group_size[leader_buf[i]]++;\n }\n std::vector<std::vector<int>> result(_n);\n for (int i = 0; i < _n; i++) {\n result[i].reserve(group_size[i]);\n }\n for (int i = 0; i < _n; i++) {\n result[leader_buf[i]].push_back(i);\n }\n result.erase(\n std::remove_if(result.begin(), result.end(),\n [&](const std::vector<int>& v) { return v.empty(); }),\n result.end());\n return result;\n }\n\n private:\n int _n;\n std::vector<int> parent_or_size;\n};\n\n} // namespace atcoder\n\nusing namespace atcoder;\n\nint calc_small(int n,vector<pair<int,int>>&edges){\n int ans=0;\n rep(bit,(1<<n)){\n int cnt=0;\n for(auto [u,v]:edges){\n if(((bit>>u)&1)!=((bit>>v)&1)){\n cnt++;\n }\n }\n ans=max(cnt,ans);\n }\n return ans;\n}\n\ndouble SA_start,SA_end;\ndouble T0=5;\ndouble T1=0.1;\ndouble get_temp(double Time){\n return T0+(Time-SA_start)*(T0-T1)/(SA_start-SA_end);\n}\n\n\nint calc_big(int n,vector<vector<int>>&edge,double Time_Limit){\n int ans=0;\n int loop=3;\n rep(loop){\n struct timespec start_time;\n clock_gettime(CLOCK_REALTIME, &start_time);\n\n vector<int>col(n,0);\n int cnt=0;\n SA_start=0;\n SA_end=Time_Limit/loop;\n while(true){\n double now_time=stop_watch(start_time);\n if(now_time>SA_end)break;\n double temp=get_temp(now_time);\n int v=randint(0,n-1);\n int diff=0;\n for(auto u:edge[v]){\n if(col[u]!=col[v])diff--;\n else diff++;\n }\n if(diff>-10*temp&&randdouble(0,1)<exp(min(0.0,diff/temp))){\n cnt+=diff;\n ans=max(ans,cnt);\n col[v]^=1;\n }\n }\n }\n return ans;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int n,m;\n cin>>n>>m;\n vector<vector<int>>edge(n);\n dsu uf(n);\n rep(i,m){\n int u,v;\n cin>>u>>v;\n u--;\n v--;\n edge[u].push_back(v);\n edge[v].push_back(u);\n uf.merge(u,v);\n }\n\n int ans=0;\n vector<int>id(n,0);\n\n vector<vector<vector<int>>>rem_gragh;\n int sum_rem_size=0;\n for(auto g:uf.groups()){\n if(g.size()!=1){\n int sz=g.size();\n rep(i,sz)id[g[i]]=i;\n if(sz<=15){\n vector<pair<int,int>>edges;\n for(auto v:g){\n for(auto u:edge[v]){\n if(v<u)edges.push_back({id[v],id[u]});\n }\n }\n ans+=calc_small(sz,edges);\n }\n else{\n sum_rem_size+=sz;\n vector<vector<int>>E(sz);\n for(auto v:g){\n for(auto u:edge[v]){\n E[id[v]].push_back(id[u]);\n }\n }\n rem_gragh.push_back(E);\n }\n }\n }\n if(sum_rem_size==0){\n print(ans);\n exit(0);\n }\n for(auto G:rem_gragh){\n double Time_Limit=7/(double)sum_rem_size*G.size();\n ans+=calc_big(G.size(),G,Time_Limit);\n }\n print(ans);\n}", "accuracy": 1, "time_ms": 7000, "memory_kb": 7692, "score_of_the_acc": -0.9332, "final_rank": 12 }, { "submission_id": "aoj_2744_9343498", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define ll long long\n#define elif else if\n#define vi vector<int>\n#define vll vector<ll>\n#define vvi vector<vi>\n#define pii pair<int,int>\n\n\n#define repname(a, b, c, d, e, ...) e\n#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)\n#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)\n#define rep1(i, x) for (int i = 0; i < (x); ++i)\n#define rep2(i, l, r) for (int i = (l); i < (r); ++i)\n#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))\n\n\n\n\n\nstruct ScalarInput {\n template<class T>\n operator T(){\n T ret;\n cin >> ret;\n return ret;\n }\n};\nstruct VectorInput {\n size_t n;\n VectorInput(size_t n): n(n) {}\n template<class T>\n operator vector<T>(){\n vector<T> ret(n);\n for(T &x : ret) cin >> x;\n return ret;\n }\n};\nScalarInput input(){ return ScalarInput(); }\nVectorInput input(size_t n){ return VectorInput(n); }\n\ntemplate<typename T>\nvoid print(vector<T> a){\n for(int i=0;i<a.size();i++){\n cout<<a[i]<<\" \\n\"[i+1==a.size()];\n }\n}\n\ntemplate<class T>\nvoid print(T x){\n cout << x << '\\n';\n}\n \ntemplate <class Head, class... Tail>\nvoid print(Head&& head, Tail&&... tail){\n cout << head << ' ';\n print(forward<Tail>(tail)...);\n}\n\ndouble stop_watch(struct timespec start_time) {\n // 経過時間を秒単位で返す.\n struct timespec end_time;\n clock_gettime(CLOCK_REALTIME, &end_time);\n long long int sec = end_time.tv_sec - start_time.tv_sec;\n long long int nsec = end_time.tv_nsec - start_time.tv_nsec;\n return (double)sec + (double)nsec / (1000 * 1000 * 1000);\n}\n\ndouble randdouble(double l, double r) {\n // l以上r以下の実数を返す.\n return l + (r-l) * (double)rand() / RAND_MAX;\n}\n\nint randint(int l, int r) {\n // l以上r以下の整数を返す.\n return l + rand()%(r-l+1);\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int n,m;\n cin>>n>>m;\n vector<vector<int>>edge(n);\n rep(i,m){\n int u,v;\n cin>>u>>v;\n u--;\n v--;\n edge[u].push_back(v);\n edge[v].push_back(u);\n }\n\n int ans=0;\n rep(8){\n struct timespec start_time;\n clock_gettime(CLOCK_REALTIME, &start_time);\n\n vector<int>col(n,0);\n int cnt=0;\n while(stop_watch(start_time)<0.95){\n int v=randint(0,n-1);\n int diff=0;\n for(auto u:edge[v]){\n if(col[u]!=col[v])diff--;\n else diff++;\n }\n if(diff>=0){\n cnt+=diff;\n ans=max(ans,cnt);\n col[v]^=1;\n }\n }\n }\n print(ans);\n}", "accuracy": 0.5789473684210527, "time_ms": 7590, "memory_kb": 3756, "score_of_the_acc": -1, "final_rank": 20 }, { "submission_id": "aoj_2744_9087861", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=5005,INF=15<<26;\n\nint N,M;\nbool hen[MAX][MAX];\n\nstruct UF{\n int n;\n vector<int> par,size,edge;\n \n void init(int n_){\n n=n_;\n par.assign(n,-1);\n size.assign(n,1);\n edge.assign(n,0);\n \n for(int i=0;i<n;i++){\n par[i]=i;\n }\n }\n \n int root(int a){\n if(par[a]==a) return a;\n else return par[a]=root(par[a]);\n }\n \n void unite(int a,int b){\n edge[root(a)]++;\n if(root(a)!=root(b)){\n size[root(a)]+=size[root(b)];\n edge[root(a)]+=edge[root(b)];\n par[root(b)]=root(a);\n }\n }\n \n bool check(int a,int b){\n return root(a)==root(b);\n }\n};\n\nvector<int> solve(vector<int> V,vector<pair<int,int>> E){\n if(si(V)==0) return {0};\n if(si(V)==1) return {0,0};\n \n vector<int> id(N);\n for(int i=0;i<si(V);i++){\n id[V[i]]=i;\n }\n \n UF uf;uf.init(si(V));\n \n for(auto [a,b]:E){\n uf.unite(id[a],id[b]);\n }\n \n if(uf.size[uf.root(0)]!=si(V)){\n vector<vector<int>> pos(si(V));\n vector<vector<pair<int,int>>> EE(si(V));\n for(int a:V){\n pos[uf.root(id[a])].push_back(a);\n }\n for(auto [a,b]:E){\n EE[uf.root(id[a])].push_back(mp(a,b));\n }\n vector<int> res={0};\n for(int i=0;i<si(V);i++){\n if(si(pos[i])==0) continue;\n auto Z=solve(pos[i],EE[i]);\n vector<int> nex(si(res)+si(Z)-1);\n for(int a=0;a<si(res);a++){\n for(int b=0;b<si(Z);b++){\n chmax(nex[a+b],res[a]+Z[b]);\n }\n }\n res=nex;\n }\n return res;\n }else{\n uf.init(si(V));\n \n for(int a:V){\n for(int b:V){\n if(a==b) continue;\n if(!hen[a][b]){\n uf.unite(id[a],id[b]);\n }\n }\n }\n \n vector<vector<int>> pos(si(V));\n vector<vector<pair<int,int>>> EE(si(V));\n for(int a:V){\n pos[uf.root(id[a])].push_back(a);\n }\n for(auto [a,b]:E){\n if(uf.check(id[a],id[b])){\n EE[uf.root(id[a])].push_back(mp(a,b));\n }\n }\n vector<int> res={0};\n for(int i=0;i<si(V);i++){\n if(si(pos[i])==0) continue;\n auto Z=solve(pos[i],EE[i]);\n vector<int> nex(si(res)+si(Z)-1);\n for(int a=0;a<si(res);a++){\n for(int b=0;b<si(Z);b++){\n chmax(nex[a+b],res[a]+Z[b]+a*(si(Z)-1-b)+(si(res)-1-a)*b);\n }\n }\n res=nex;\n }\n return res;\n }\n}\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n cin>>N>>M;\n vector<pair<int,int>> E(M);\n for(int i=0;i<M;i++){\n int a,b;cin>>a>>b;a--;b--;\n hen[a][b]=hen[b][a]=true;\n E[i]=mp(a,b);\n }\n vector<int> V(N);iota(all(V),0);\n auto res=solve(V,E);\n \n cout<<*max_element(all(res))<<endl;\n}", "accuracy": 1, "time_ms": 650, "memory_kb": 355196, "score_of_the_acc": -1.082, "final_rank": 13 }, { "submission_id": "aoj_2744_7830986", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n\nstruct ComplementBFS {\n static constexpr int unreachable = -1;\n\n ComplementBFS(int n = 0) : n(n), g(n) {}\n template <typename Edges>\n ComplementBFS(int n, const Edges &edges) : ComplementBFS(n) {\n for (const auto &[u, v] : edges) add_edge(u, v);\n }\n ComplementBFS(const std::vector<std::vector<int>>& g) : n(g.size()), g(g) {}\n\n void add_edge(int u, int v) {\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n std::vector<int> distance(const std::vector<int>& src) const {\n std::vector<int> s = [&] {\n std::vector<int8_t> is_src(n);\n for (int v : src) is_src[v] = true;\n std::vector<int> s;\n for (int i = 0; i < n; ++i) if (not is_src[i]) s.push_back(i);\n return s;\n }();\n\n std::vector<int> dist(n, unreachable);\n for (int v : src) dist[v] = 0;\n\n std::vector<int8_t> adj(n);\n std::deque<int> dq(src.begin(), src.end());\n while (dq.size()) {\n int u = dq.front();\n dq.pop_front();\n for (int v : g[u]) adj[v] = true;\n std::size_t nsiz = std::partition(s.begin(), s.end(), [&adj](int v) { return adj[v]; }) - s.begin();\n for (; s.size() > nsiz; s.pop_back()) {\n int v = s.back();\n dist[v] = dist[u] + 1, dq.push_back(v);\n }\n for (int v : g[u]) adj[v] = false;\n }\n return dist;\n }\n std::vector<int> distance(int s) const {\n return distance(std::vector<int>{ s });\n }\n\n std::vector<std::vector<int>> connected_components() const {\n std::vector<std::vector<int>> res;\n\n std::vector<int8_t> vis(n, false);\n\n std::vector<int> s(n);\n std::iota(s.begin(), s.end(), 0);\n\n std::vector<int8_t> adj(n);\n for (int i = 0; i < n; ++i) if (not vis[i]) {\n s.erase(std::find(s.begin(), s.end(), i));\n auto& cmp = res.emplace_back();\n std::deque<int> dq{ i };\n while (dq.size()) {\n int u = dq.front();\n dq.pop_front();\n cmp.push_back(u);\n vis[u] = true;\n for (int v : g[u]) adj[v] = true;\n auto it = std::partition(s.begin(), s.end(), [&adj](int v) { return adj[v]; });\n std::move(it, s.end(), std::back_inserter(dq));\n s.erase(it, s.end());\n for (int v : g[u]) adj[v] = false;\n }\n }\n return res;\n }\nprivate:\n int n;\n std::vector<std::vector<int>> g;\n};\n\nstruct BFS {\n static constexpr int unreachable = -1;\n\n BFS(int n = 0) : n(n), g(n) {}\n template <typename Edges>\n BFS(int n, const Edges& edges) : BFS(n) { for (const auto& [u, v] : edges) add_edge(u, v);}\n BFS(const vector<vector<int>>& g) : n(g.size()), g(g) {}\n\n void add_edge(int u, int v) {\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n vector<int> bfs(const vector<int>& src) const {\n vector<int> dist(n, unreachable);\n queue<int> q;\n for (int v : src) {\n dist[v] = 0;\n q.push(v);\n }\n while (q.size()) {\n int u = q.front();\n q.pop();\n for (int v : g[u]) if (dist[v] == unreachable) {\n dist[v] = dist[u] + 1;\n q.push(v);\n }\n }\n return dist;\n }\n vector<int> bfs(int s) const { return bfs(vector<int>{ s });}\n\n vector<vector<int>> connected_components() const {\n vector<vector<int>> res;\n vector<int8_t> vis(n, false);\n for (int i = 0; i < n; ++i) if (not exchange(vis[i], true)) {\n auto& cmp = res.emplace_back();\n queue<int> q;\n q.push(i);\n while (q.size()) {\n int u = q.front();\n q.pop();\n cmp.push_back(u);\n for (int v : g[u]) if (not exchange(vis[v], true)) {\n q.push(v);\n }\n }\n }\n return res;\n }\nprivate:\n int n;\n vector<vector<int>> g;\n};\n\nint main() {\n\tios::sync_with_stdio(false); cin.tie(nullptr);\n int n, m;\n std::cin >> n >> m;\n\n std::vector<std::vector<int>> g(n);\n for (int i = 0; i < m; ++i) {\n int u, v;\n std::cin >> u >> v;\n --u, --v;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n std::vector<int> res = [rec = [](auto rec, const std::vector<std::vector<int>> &g) -> std::vector<int> {\n const int n = g.size();\n if (n == 1) return { 0, 0 };\n auto cmps = BFS{g}.connected_components();\n if (cmps.size() == 1) {\n auto ccmps = ComplementBFS{g}.connected_components();\n assert(ccmps.size() != 1);\n std::vector<int> pd { 0 };\n std::vector<int8_t> in(n);\n std::vector<int> idx(n);\n for (const auto &cmp : ccmps) {\n const int siz = cmp.size();\n for (int i = 0; i < siz; ++i) {\n idx[cmp[i]] = i;\n }\n std::vector<std::vector<int>> h(siz);\n for (int v : cmp) in[v] = true;\n for (int u : cmp) for (int v : g[u]) if (in[v]) {\n h[idx[u]].push_back(idx[v]);\n }\n for (int v : cmp) in[v] = false;\n std::vector<int> val = rec(rec, h);\n const int l = pd.size() - 1, r = val.size() - 1;\n std::vector<int> dp(l + r + 1);\n for (int i = 0; i <= l; ++i) {\n for (int j = 0; j <= r; ++j) {\n dp[i + j] = std::max(dp[i + j], pd[i] + val[j] + i * (r - j) + (l - i) * j);\n }\n }\n pd.swap(dp);\n }\n return pd;\n } else {\n std::vector<int> pd{ 0 };\n std::vector<int> idx(n);\n for (const auto &cmp : cmps) {\n const int siz = cmp.size();\n for (int i = 0; i < siz; ++i) idx[cmp[i]] = i;\n std::vector<std::vector<int>> h(siz);\n for (int u : cmp) for (int v : g[u]) {\n h[idx[u]].push_back(idx[v]);\n }\n std::vector<int> val = rec(rec, h);\n const int l = pd.size() - 1, r = val.size() - 1;\n std::vector<int> dp(l + r + 1);\n for (int i = 0; i <= l; ++i) {\n for (int j = 0; j <= r; ++j) {\n dp[i + j] = std::max(dp[i + j], pd[i] + val[j]);\n }\n }\n pd.swap(dp);\n }\n return pd;\n }\n }, &g]{ return rec(rec, g); }();\n\n std::cout << *std::max_element(res.begin(), res.end()) << std::endl;\n\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 249108, "score_of_the_acc": -0.7259, "final_rank": 10 }, { "submission_id": "aoj_2744_7105064", "code_snippet": "#include <cassert>\n#include <iostream>\n\n#include <algorithm>\n#include <cstdint>\n#include <deque>\n#include <numeric>\n#include <utility>\n#include <vector>\n\nnamespace suisen {\n struct BFS {\n static constexpr int unreachable = -1;\n\n BFS(int n = 0) : n(n), g(n) {}\n template <typename Edges>\n BFS(int n, const Edges& edges) : BFS(n) {\n for (const auto& [u, v] : edges) add_edge(u, v);\n }\n BFS(const std::vector<std::vector<int>>& g) : n(g.size()), g(g) {}\n\n void add_edge(int u, int v) {\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n std::vector<int> distance(const std::vector<int>& src) const {\n std::vector<int> dist(n, unreachable);\n for (int v : dist) dist[v] = 0;\n\n std::deque<int> dq(src.begin(), src.end());\n while (dq.size()) {\n int u = dq.front();\n dq.pop_front();\n for (int v : g[u]) if (dist[v] == unreachable) {\n dist[v] = dist[u] + 1;\n dq.push_back(v);\n }\n }\n return dist;\n }\n std::vector<int> distance(int s) const {\n return distance(std::vector<int>{ s });\n }\n\n std::vector<std::vector<int>> connected_components() const {\n std::vector<std::vector<int>> res;\n\n std::vector<int8_t> vis(n, false);\n\n for (int i = 0; i < n; ++i) if (not std::exchange(vis[i], true)) {\n auto& cmp = res.emplace_back();\n std::deque<int> dq{ i };\n while (dq.size()) {\n int u = dq.front();\n dq.pop_front();\n cmp.push_back(u);\n for (int v : g[u]) if (not std::exchange(vis[v], true)) {\n dq.push_back(v);\n }\n }\n }\n return res;\n }\n private:\n int n;\n std::vector<std::vector<int>> g;\n };\n} // namespace suisen\n\nnamespace suisen {\n struct ComplementGraphBFS {\n static constexpr int unreachable = -1;\n\n ComplementGraphBFS(int n = 0) : n(n), g(n) {}\n template <typename Edges>\n ComplementGraphBFS(int n, const Edges &edges) : ComplementGraphBFS(n) {\n for (const auto &[u, v] : edges) add_edge(u, v);\n }\n ComplementGraphBFS(const std::vector<std::vector<int>>& g) : n(g.size()), g(g) {}\n\n void add_edge(int u, int v) {\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n std::vector<int> distance(const std::vector<int>& src) const {\n std::vector<int> s = [&] {\n std::vector<int8_t> is_src(n);\n for (int v : src) is_src[v] = true;\n std::vector<int> s;\n for (int i = 0; i < n; ++i) if (not is_src[i]) s.push_back(i);\n return s;\n }();\n\n std::vector<int> dist(n, unreachable);\n for (int v : dist) dist[v] = 0;\n\n std::vector<int8_t> adj(n);\n std::deque<int> dq(src.begin(), src.end());\n while (dq.size()) {\n int u = dq.front();\n dq.pop_front();\n for (int v : g[u]) adj[v] = true;\n std::size_t nsiz = std::partition(s.begin(), s.end(), [&adj](int v) { return adj[v]; }) - s.begin();\n for (; s.size() > nsiz; s.pop_back()) {\n int v = s.back();\n dist[v] = dist[u] + 1, dq.push_back(v);\n }\n for (int v : g[u]) adj[v] = false;\n }\n return dist;\n }\n std::vector<int> distance(int s) const {\n return distance(std::vector<int>{ s });\n }\n\n std::vector<std::vector<int>> connected_components() const {\n std::vector<std::vector<int>> res;\n\n std::vector<int8_t> vis(n, false);\n\n std::vector<int> s(n);\n std::iota(s.begin(), s.end(), 0);\n\n std::vector<int8_t> adj(n);\n for (int i = 0; i < n; ++i) if (not vis[i]) {\n s.erase(std::find(s.begin(), s.end(), i));\n auto& cmp = res.emplace_back();\n std::deque<int> dq{ i };\n while (dq.size()) {\n int u = dq.front();\n dq.pop_front();\n cmp.push_back(u);\n vis[u] = true;\n for (int v : g[u]) adj[v] = true;\n auto it = std::partition(s.begin(), s.end(), [&adj](int v) { return adj[v]; });\n std::move(it, s.end(), std::back_inserter(dq));\n s.erase(it, s.end());\n for (int v : g[u]) adj[v] = false;\n }\n }\n return res;\n }\n private:\n int n;\n std::vector<std::vector<int>> g;\n };\n} // namespace suisen\n\nint main() {\n int n, m;\n std::cin >> n >> m;\n\n std::vector<std::vector<int>> g(n);\n for (int i = 0; i < m; ++i) {\n int u, v;\n std::cin >> u >> v;\n --u, --v;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n std::vector<int> res = [rec = [](auto rec, const std::vector<std::vector<int>> &g) -> std::vector<int> {\n const int n = g.size();\n if (n == 1) return { 0, 0 };\n auto cmps = suisen::BFS{g}.connected_components();\n if (cmps.size() == 1) {\n auto ccmps = suisen::ComplementGraphBFS{g}.connected_components();\n assert(ccmps.size() != 1);\n std::vector<int> pd { 0 };\n std::vector<int8_t> in(n);\n std::vector<int> idx(n);\n for (const auto &cmp : ccmps) {\n const int siz = cmp.size();\n for (int i = 0; i < siz; ++i) {\n idx[cmp[i]] = i;\n }\n std::vector<std::vector<int>> h(siz);\n for (int v : cmp) in[v] = true;\n for (int u : cmp) for (int v : g[u]) if (in[v]) {\n h[idx[u]].push_back(idx[v]);\n }\n for (int v : cmp) in[v] = false;\n std::vector<int> val = rec(rec, h);\n const int l = pd.size() - 1, r = val.size() - 1;\n std::vector<int> dp(l + r + 1);\n for (int i = 0; i <= l; ++i) {\n for (int j = 0; j <= r; ++j) {\n dp[i + j] = std::max(dp[i + j], pd[i] + val[j] + i * (r - j) + (l - i) * j);\n }\n }\n pd.swap(dp);\n }\n return pd;\n } else {\n std::vector<int> pd{ 0 };\n std::vector<int> idx(n);\n for (const auto &cmp : cmps) {\n const int siz = cmp.size();\n for (int i = 0; i < siz; ++i) idx[cmp[i]] = i;\n std::vector<std::vector<int>> h(siz);\n for (int u : cmp) for (int v : g[u]) {\n h[idx[u]].push_back(idx[v]);\n }\n std::vector<int> val = rec(rec, h);\n const int l = pd.size() - 1, r = val.size() - 1;\n std::vector<int> dp(l + r + 1);\n for (int i = 0; i <= l; ++i) {\n for (int j = 0; j <= r; ++j) {\n dp[i + j] = std::max(dp[i + j], pd[i] + val[j]);\n }\n }\n pd.swap(dp);\n }\n return pd;\n }\n }, &g]{ return rec(rec, g); }();\n\n std::cout << *std::max_element(res.begin(), res.end()) << std::endl;\n\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 249252, "score_of_the_acc": -0.7276, "final_rank": 11 }, { "submission_id": "aoj_2744_6794562", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (int i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n/*\nnamespace po167{\nstruct UFtree\n{\n\tint ind;\n\tint _n;\n\tstd::vector<int> wei;\n\tstd::vector<int> q;\n\tint component;\n\tUFtree(int n):ind(0),_n(n),wei(n),component(n),par(n){\n\t\tfor(int i=0;i<n;i++){\n\t\t\twei[i]=1,par[i]=i;\n\t\t}\n\t}\n\tvoid intialize(){\n\t\tfor(auto x:q){\n\t\t\twei[root(x)]=1;\n\t\t\tpar[x]=x;\n\t\t}\n\t\tcomponent=(int)par.size();\n\t\tq={};\n\t}\n\tvoid back(){\n\t\tind--;\n\t\tint a=q[ind];\n\t\twei[par[a]]-=wei[a];\n\t\tpar[a]=a;\n\t}\n\t//根っこを返す\n\tint root(int a){\n\t\tassert(0<=a&&a<_n);\n\t\tif(a==par[a]) return a;\n\t\treturn root(par[a]);\n\t}\n\t//trueなら1,falseなら0\n\tint same(int a,int b){\n\t\tassert(0<=a&&a<_n);\n\t\tassert(0<=b&&b<_n);\n\t\tif(root(a)==root(b)) return 1;\n\t\telse return 0;\n\t}\n\t//a,bが違う根っこの元なら結合する,結合したらtrueを返す\n\tbool unite(int a,int b){\n\t\ta=root(a),b=root(b);\n\t\tif(a==b) return false;\n\t\tif(wei[a]<wei[b]) std::swap(a,b);\n\t\tpar[b]=a;\n\t\tif(ind==(int)(q.size())) q.push_back(b);\n\t\telse q[ind]=b;\n\t\tind++;\n\t\twei[a]+=wei[b];\n\t\tcomponent--;\n\t\treturn true;\n\t}\n\tprivate:\n\tstd::vector<int> par;\n};\n}\nusing po167::UFtree;\n*/\n\nnamespace po167{\nstruct UFtree\n{\n\tint _n;\n\tstd::vector<int> wei;\n\tstd::vector<int> q;\n\tint component;\n\tUFtree(int n):_n(n),wei(n),component(n),par(n){\n\t\tfor(int i=0;i<n;i++){\n\t\t\twei[i]=1,par[i]=i;\n\t\t}\n\t}\n\tvoid intialize(){\n\t\tfor(auto x:q){\n\t\t\twei[root(x)]=1;\n\t\t\tpar[x]=x;\n\t\t}\n\t\tcomponent=(int)par.size();\n\t\tq={};\n\t}\n\t//根っこを返す\n\tint root(int a){\n\t\tassert(0<=a&&a<_n);\n\t\tif(a==par[a]) return a;\n\t\treturn par[a]=root(par[a]);\n\t}\n\t//trueなら1,falseなら0\n\tint same(int a,int b){\n\t\tassert(0<=a&&a<_n);\n\t\tassert(0<=b&&b<_n);\n\t\tif(root(a)==root(b)) return 1;\n\t\telse return 0;\n\t}\n\t//a,bが違う根っこの元なら結合する,結合したらtrueを返す\n\tbool unite(int a,int b){\n\t\ta=root(a),b=root(b);\n\t\tif(a==b) return false;\n\t\tif(wei[a]<wei[b]) std::swap(a,b);\n\t\tpar[b]=a;\n\t\tq.push_back(b);\n\t\twei[a]+=wei[b];\n\t\tcomponent--;\n\t\treturn true;\n\t}\n\tprivate:\n\tstd::vector<int> par;\n};\n}\nusing po167::UFtree;\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\nvoid solve(){\n\tint N,M;\n\tcin>>N>>M;\n\tvector<vector<int>> G(N,vector<int>(N));\n\trep(i,M){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\ta--,b--;\n\t\tG[a][b]=1;\n\t\tG[b][a]=1;\n\t}\n\trep(i,N) G[i][i]=-1;\n\tUFtree T(N);\n\tauto f=[&](auto self,vector<int> p,int c)->vector<int>{\n\t\tif((int)(p.size()==1)) return {0,0};\n\t\tfor(auto x:p) for(auto y:p){\n\t\t\tif(G[x][y]==c) T.unite(x,y);\n\t\t}\n\t\tmap<int,vector<int>> m;\n\t\tfor(auto x:p){\n\t\t\tm[T.root(x)].push_back(x);\n\t\t}\n\t\tT.intialize();\n\t\tvector<int> ans={0};\n\t\tfor(auto x:m){\n\t\t\tvector<int> q=self(self,x.second,c^1);\n\t\t\tvector<int> n_ans((int)(ans.size()+q.size())-1);\n\t\t\trep(i,(int)(ans.size())) rep(j,(int)q.size()){\n\t\t\t\tint val=ans[i]+q[j];\n\t\t\t\tif(c==0) val+=i*((int)q.size()-j-1)+((int)(ans.size())-i-1)*j;\n\t\t\t\tchmax(n_ans[i+j],val);\n\t\t\t}\n\t\t\tswap(ans,n_ans);\n\t\t}/*\n\t\tcout<<\"#\\n\";\n\t\tvec_out(p);\n\t\tvec_out(ans);*/\n\t\treturn ans;\n\t};\n\tvector<int> in;\n\trep(i,N) in.push_back(i);\n\tauto v=f(f,in,0);\n\tint ans=0;\n\tfor(auto x:v) chmax(ans,x);\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 490, "memory_kb": 104684, "score_of_the_acc": -0.348, "final_rank": 5 }, { "submission_id": "aoj_2744_4882636", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 5005\n\nstruct Info{\n\tvoid set(int arg_minimum,int arg_maximum){\n\t\tminimum = arg_minimum;\n\t\tmaximum = arg_maximum;\n\t}\n\tint minimum,maximum;\n};\n\nint N,E;\nbool table[SIZE][SIZE];\nint boss[SIZE],height[SIZE],num_member[SIZE];\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[boss_x] > height[boss_y]){\n\n\t\tnum_member[boss_x] += num_member[boss_y];\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[boss_x] < height[boss_y]){\n\n\t\tnum_member[boss_y] += num_member[boss_x];\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[boss_x] == height[boss_y]\n\n\t\tnum_member[boss_x] += num_member[boss_y];\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nvoid init(int num){\n\n\tfor(int i = 0; i < num; i++){\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t\tnum_member[i] = 1;\n\t}\n}\n\nvector<Info> get_info(int size){\n\n\tvector<Info> ret(size);\n\n\tfor(int i = 0; i < size; i++){\n\n\t\tret[i].set(0,0);\n\t}\n\n\treturn ret;\n}\n\nvector<Info> func(vector<Info> A,vector<Info> B){\n\n\tint num_all = A.size()+B.size()-1;\n\n\tvector<Info> ret(num_all);\n\tfor(int i = 0; i < num_all; i++){\n\n\t\tret[i].set(BIG_NUM,-BIG_NUM);\n\t}\n\n\tfor(int i = 0; i < A.size(); i++){\n\t\tfor(int k = 0; k < B.size(); k++){\n\n\t\t\tret[i+k].minimum = min(ret[i+k].minimum,A[i].minimum+B[k].minimum);\n\t\t\tret[i+k].maximum = max(ret[i+k].maximum,A[i].maximum+B[k].maximum);\n\t\t}\n\t}\n\n\treturn ret;\n}\n\nvector<Info> func_rev(vector<Info> A,vector<Info> B){\n\n\tint num_all = A.size()+B.size()-1;\n\tint tmp_num = (int)(A.size()+B.size());\n\n\tvector<Info> ret(num_all);\n\n\tfor(int i = 0; i < num_all; i++){\n\n\t\tret[i].set(BIG_NUM,-BIG_NUM);\n\t}\n\n\tfor(int i = 0; i < A.size(); i++){\n\t\tfor(int k = 0; k < B.size(); k++){\n\n\t\t\tret[i+k].minimum = min(ret[i+k].minimum,(i+k)*(tmp_num-2-(i+k))-(A[i].maximum+B[k].maximum));\n\t\t\tret[i+k].maximum = max(ret[i+k].maximum,(i+k)*(tmp_num-2-(i+k))-(A[i].minimum+B[k].minimum));\n\t\t}\n\t}\n\n\treturn ret;\n}\n\n\nvector<Info> recursive(vector<int> V,bool reversed){\n\n\tint NUM = V.size();\n\n\tif(NUM == 1){\n\n\t\treturn get_info(2);\n\t}\n\n\tinit(NUM);\n\n\tfor(int i = 0; i < NUM-1; i++){\n\t\tfor(int k = i+1; k < NUM; k++){\n\t\t\tif((!reversed&&table[V[i]][V[k]])||(reversed&&!table[V[i]][V[k]])){\n\n\t\t\t\tunite(i,k);\n\t\t\t}\n\t\t}\n\t}\n\n\tint maximum = -1;\n\tfor(int i = 0; i < NUM; i++){\n\n\t\tmaximum = max(maximum,num_member[get_boss(i)]);\n\t}\n\n\tvector<int> WORK[NUM];\n\n\n\tif(maximum == NUM){\n\n\t\tinit(NUM);\n\n\t\tfor(int i = 0; i < NUM-1; i++){\n\t\t\tfor(int k = i+1; k < NUM; k++){\n\t\t\t\tif((!reversed&&!table[V[i]][V[k]])||(reversed&&table[V[i]][V[k]])){\n\n\t\t\t\t\tunite(i,k);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tint count = 0;\n\t\tint another = 0;\n\n\t\tfor(int i = 0; i < NUM; i++){\n\t\t\tif(num_member[get_boss(i)] == 1){\n\n\t\t\t\tcount++;\n\t\t\t}else{\n\n\t\t\t\tWORK[get_boss(i)].push_back(V[i]);\n\t\t\t\tanother++;\n\t\t\t}\n\t\t}\n\n\t\tif(another > 0){\n\n\t\t\tvector<Info> ret = get_info(1);\n\n\t\t\tfor(int i = 0; i < NUM; i++){\n\t\t\t\tif(WORK[i].size() == 0)continue;\n\n\t\t\t\tret = func(ret,recursive(WORK[i],not reversed));\n\t\t\t}\n\n\t\t\treturn func_rev(ret,get_info(count+1));\n\n\t\t}else{\n\n\t\t\tvector<Info> ret = get_info(count+1);\n\n\t\t\treturn func_rev(ret,get_info(1));\n\t\t}\n\n\t}else{\n\n\t\tint count = 0;\n\n\t\tfor(int i = 0; i < NUM; i++){\n\t\t\tif(num_member[get_boss(i)] == 1){\n\n\t\t\t\tcount++;\n\t\t\t}else{\n\n\t\t\t\tWORK[get_boss(i)].push_back(V[i]);\n\t\t\t}\n\t\t}\n\n\t\tvector<Info> ret = get_info(count+1);\n\n\t\tfor(int i = 0; i < NUM; i++){\n\t\t\tif(WORK[i].size() == 0)continue;\n\n\t\t\tret = func(ret,recursive(WORK[i],reversed));\n\t\t}\n\n\t\treturn ret;\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&E);\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < N; k++){\n\n\t\t\ttable[i][k] = false;\n\t\t}\n\t}\n\n\tinit(N);\n\n\tint from,to;\n\tfor(int i = 0; i < E; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\t\ttable[from][to] = true;\n\t\ttable[to][from] = true;\n\n\t\tunite(from,to);\n\t}\n\n\tvector<int> first_V;\n\tfor(int i = 0; i < N; i++){\n\n\t\tfirst_V.push_back(i);\n\t}\n\n\tvector<Info> ret = recursive(first_V,false);\n\n\tint ans = -1;\n\tfor(int i = 0; i < N; i++){\n\n\t\tans = max(ans,ret[i].maximum);\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 580, "memory_kb": 34068, "score_of_the_acc": -0.159, "final_rank": 3 }, { "submission_id": "aoj_2744_4786623", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=0;\nint dp[MAX * 2][MAX]={};\nint len[MAX * 2]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n rmv(find(nxt.begin(),nxt.end(),r)-nxt.begin());\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 122920, "score_of_the_acc": -0.3602, "final_rank": 6 }, { "submission_id": "aoj_2744_4786608", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=0;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n rmv(find(nxt.begin(),nxt.end(),r)-nxt.begin());\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 0.5789473684210527, "time_ms": 30, "memory_kb": 68960, "score_of_the_acc": -0.1855, "final_rank": 14 }, { "submission_id": "aoj_2744_4786607", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=1;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n rmv(find(nxt.begin(),nxt.end(),r)-nxt.begin());\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 123044, "score_of_the_acc": -0.3606, "final_rank": 8 }, { "submission_id": "aoj_2744_4786598", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=1;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n assert(count(nxt.begin(),nxt.end(),r)==1);\n {\n int num=0;\n for(int k=0;k<(int)nxt.size();k++)\n if(nxt[k]==r) rmv(k),num++,k--;\n assert(num==1);\n }\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n // assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n if(0){\n for(int i=0;i<(int)C.size();i++)\n for(int j=0;j<i;j++)\n for(int x:C[i])\n for(int y:C[j])\n assert(exist==es[x][y]);\n }\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n assert(idx==1);\n // assert(len[idx]==n);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 122992, "score_of_the_acc": -0.3604, "final_rank": 7 }, { "submission_id": "aoj_2744_4786592", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=0;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n assert(count(nxt.begin(),nxt.end(),r)==1);\n {\n int num=0;\n for(int k=0;k<(int)nxt.size();k++)\n if(nxt[k]==r) rmv(k),num++,k--;\n assert(num==1);\n }\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n // assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n if(0){\n for(int i=0;i<(int)C.size();i++)\n for(int j=0;j<i;j++)\n for(int x:C[i])\n for(int y:C[j])\n assert(exist==es[x][y]);\n }\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n assert(len[idx]<=n);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 0.5789473684210527, "time_ms": 40, "memory_kb": 69028, "score_of_the_acc": -0.1871, "final_rank": 16 }, { "submission_id": "aoj_2744_4786591", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=0;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n assert(count(nxt.begin(),nxt.end(),r)==1);\n {\n int num=0;\n for(int k=0;k<(int)nxt.size();k++)\n if(nxt[k]==r) rmv(k),num++,k--;\n assert(num==1);\n }\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n // assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n if(0){\n for(int i=0;i<(int)C.size();i++)\n for(int j=0;j<i;j++)\n for(int x:C[i])\n for(int y:C[j])\n assert(exist==es[x][y]);\n }\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n assert(len[idx]==n);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 0.5789473684210527, "time_ms": 40, "memory_kb": 68988, "score_of_the_acc": -0.1869, "final_rank": 15 }, { "submission_id": "aoj_2744_4786585", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=0;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n assert(count(nxt.begin(),nxt.end(),r)==1);\n {\n int num=0;\n for(int k=0;k<(int)nxt.size();k++)\n if(nxt[k]==r) rmv(k),num++,k--;\n assert(num==1);\n }\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n // assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n if(0){\n for(int i=0;i<(int)C.size();i++)\n for(int j=0;j<i;j++)\n for(int x:C[i])\n for(int y:C[j])\n assert(exist==es[x][y]);\n }\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n// assert(len[idx]==n);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 0.5789473684210527, "time_ms": 40, "memory_kb": 69144, "score_of_the_acc": -0.1874, "final_rank": 19 }, { "submission_id": "aoj_2744_4786583", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=0;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n assert(count(nxt.begin(),nxt.end(),r)==1);\n for(int k=0;k<(int)nxt.size();k++)\n if(nxt[k]==r) rmv(k);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n // assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n if(0){\n for(int i=0;i<(int)C.size();i++)\n for(int j=0;j<i;j++)\n for(int x:C[i])\n for(int y:C[j])\n assert(exist==es[x][y]);\n }\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n// assert(len[idx]==n);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 0.5789473684210527, "time_ms": 40, "memory_kb": 69072, "score_of_the_acc": -0.1872, "final_rank": 18 }, { "submission_id": "aoj_2744_4786580", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nvector<int> identity(int n){\n vector<int> ord(n);\n iota(ord.begin(),ord.end(),0);\n return ord;\n}\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint es[MAX][MAX]={};\n\nint cur=0;\nint dp[MAX][MAX]={};\n\nvector<int> G[MAX];\nint blg[MAX]={};\nint len[MAX]={};\nint used[MAX]={};\n\nint dfs(vector<int> vs){\n int idx=cur++;\n len[idx]=vs.size();\n\n if(vs.size()==1){\n dp[idx][0]=dp[idx][1]=0;\n return idx;\n }\n\n vector<vector<int>> C;\n queue<int> que;\n auto push=[&](int v){\n if(used[v]) return;\n used[v]=1;\n que.emplace(v);\n C.back().emplace_back(v);\n };\n\n // check connectivity\n {\n // black\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G[v]){\n if(blg[u]!=blg[v]) continue;\n push(u);\n }\n }\n };\n\n for(int v:vs) blg[v]=idx,used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n for(int v:vs) blg[v]=-1;\n }\n\n if(C.size()==1){\n C.clear();\n\n vector<int> nxt=vs;\n auto rmv=[&](int k){\n assert(0<=k and k<(int)nxt.size());\n if(nxt[k]!=nxt.back()) swap(nxt[k],nxt.back());\n nxt.pop_back();\n };\n\n // white\n auto bfs=[&](int r){\n C.emplace_back();\n push(r);\n for(int k=0;k<(int)nxt.size();k++)\n if(nxt[k]==r) rmv(k);\n\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int k=0;k<(int)nxt.size();k++){\n int u=nxt[k];\n if(es[v][u]) continue;\n push(u);\n rmv(k);\n k--;\n }\n }\n };\n\n for(int v:vs) used[v]=0;\n for(int v:vs) if(!used[v]) bfs(v);\n\n // assert(C.size()!=1);\n }\n\n vector<int> I;\n for(auto cs:C)\n I.emplace_back(dfs(cs));\n\n int exist=es[C[0][0]][C[1][0]];\n if(0){\n for(int i=0;i<(int)C.size();i++)\n for(int j=0;j<i;j++)\n for(int x:C[i])\n for(int y:C[j])\n assert(exist==es[x][y]);\n }\n\n int sz=0;\n dp[idx][0]=0;\n for(int pos:I){\n int nx=len[pos];\n vector<int> tmp(sz+nx+1,0);\n for(int i=0;i<=sz;i++){\n for(int j=0;j<=nx;j++){\n int way=exist*(i*(nx-j)+j*(sz-i));\n chmax(tmp[i+j],dp[idx][i]+dp[pos][j]+way);\n }\n }\n sz+=nx;\n for(int i=0;i<=sz;i++) dp[idx][i]=tmp[i];\n }\n\n return idx;\n}\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n es[u][v]=es[v][u]=1;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n memset(blg,-1,sizeof(blg));\n\n auto vs=identity(n);\n int idx=dfs(vs);\n// assert(len[idx]==n);\n\n int ans=0;\n for(int i=0;i<=n;i++) chmax(ans,dp[idx][i]);\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 0.5789473684210527, "time_ms": 40, "memory_kb": 69068, "score_of_the_acc": -0.1872, "final_rank": 17 } ]
aoj_2757_cpp
F : 卵 / Eggs 問題文 1 か月前のことである. 小学生の肉西君は夏休みの宿題をやっていなかった. そこで自由研究は家にあった卵の強度を調べることにした. この研究において,卵を高さ H から落としても割れず, 高さ H+1 から落とすと割れるとき, その卵の強度は H であると定義する. ここで H は非負整数であり,非負整数以外の高さから落とすことは無いとする. 肉西くんは卵を 1 つ落下させる実験を行う. 実験の結果は割れるか割れないかのいずれかである. また,卵の強度は全て同じである.つまり,どの卵を用いても実験の結果は同じである. 肉西くんは高さ 1 から N までの整数の高さの段からなる階段と, 強度が不明な E 個の卵を用意した. 高さ 0 では割れず,高さ N+1 では割れるということは既にわかっている. 肉西くんは各段と同じ高さから地面に向かって落とし,その度に卵が割れたか割れなかったかを調べる. このとき割れた卵は二度と使えないが,割れなかった場合は再利用できる. この実験を卵が残っている限り続けることができる. 何度か実験を繰り返し,上に定めた H が求まったとき,卵の強度が求まったとする. 夏休み終了まで後数日しか無い. 最小の回数で実験を終わらせないと間に合わない. そこで,肉西くんの兄であるあなたは,卵の強度を知るために 落とす回数が少なくなるように最適な方法をとった場合に 必要な実験回数の最大値を求めるプログラムを書くことにした. 入力 T N_1 E_1 … N_T E_T 1 つのファイルに複数のテストケースが含まれる. 1 行目に整数 T が与えられる. 1+i 行目に i 番目のテストケース E_i, N_i が与えられる 制約 整数である 1 ≤ T ≤ 1000 1 ≤ N_i ≤ 10^{18} 1 ≤ E_i ≤ 50 出力が 50 を超えるような入力は含まれない 出力 i 番目のテストケースに対する答えを i 行目に出力せよ. 全体で T 行にわたる. サンプル サンプル入力1 3 5 1 5 2 1 2 サンプル出力1 5 3 1 1 つ目の場合 卵が 1 つしかないため 1 段目から順に落としていくしかない 2 つ目の場合 まず 2 段目から落とす 2 段目から落として割れた場合 1 段目から落とす 2 段目から落として割れなかった場合 4 段目から落とす 1 段目から落として割れた場合実験終了 1 段目から落として割れなかった場合実験終了 4 段目から落として割れた場合 3 段目から落とす 4 段目から落として割れなかった場合 5 段目から落とす 3 段目から落として割れた場合実験終了 3 段目から落として割れなかった場合実験終了 5 段目から落として割れた場合実験終了 5 段目から落として割れなかった場合実験終了 3 つ目の場合 1 段目から落として実験終了
[ { "submission_id": "aoj_2757_3355114", "code_snippet": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nlong long Q, dp[60][200009], A[2000009];\n\nvoid init() {\n\tfor (int i = 1; i <= 2000000; i++) {\n\t\tlong long V1 = A[i - 1] + 1;\n\t\tlong long V2 = 1LL * i * (i - 1) / 2LL + 1;\n\t\tA[i] = V1 + V2 - 1; if (A[i] >= (1LL << 61)) A[i] = (1LL << 61);\n\t}\n\tfor (int i = 1; i <= 200000; i++) {\n\t\tlong long V1 = dp[4][i - 1] + 1;\n\t\tlong long V2 = A[i - 1] + 1;\n\t\tdp[4][i] = V1 + V2 - 1; if (dp[4][i] >= (1LL << 61)) dp[4][i] = (1LL << 61);\n\t}\n\tfor (int i = 5; i < 60; i++) {\n\t\tfor (int j = 1; j < 200000; j++) {\n\t\t\tlong long V1 = dp[i][j - 1] + 1;\n\t\t\tlong long V2 = dp[i - 1][j - 1] + 1;\n\t\t\tdp[i][j] = V1 + V2 - 1; if (dp[i][j] >= (1LL << 61)) dp[i][j] = (1LL << 61);\n\t\t}\n\t}\n}\n\nlong long score(long long x, long long y) {\n\t// x 個の卵で y 回の操作\n\tif (x == 1) return y;\n\tif (x == 2) {\n\t\tif (y >= 2000000000) return (1LL << 61);\n\t\treturn y * (y + 1) / 2;\n\t}\n\tif (x == 3) {\n\t\tif (y >= 2000000) return (1LL << 61);\n\t\treturn A[y];\n\t}\n\tif (y >= 200000) return (1LL << 61);\n\treturn dp[x][y];\n}\n\nint main() {\n\tcin >> Q; init();\n\tfor (int i = 1; i <= Q; i++) {\n\t\tlong long N, E; cin >> N >> E;\n\t\t\n\t\tlong long L = 1, R = (1LL << 60), M, minx = (1LL << 60);\n\t\tfor (int j = 1; j <= 80; j++) {\n\t\t\tM = (L + R) / 2;\n\t\t\tif (score(E, M) >= N) { R = M; minx = min(minx, M); }\n\t\t\telse L = M;\n\t\t}\n\t\tcout << minx << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 106236, "score_of_the_acc": -1.1429, "final_rank": 3 }, { "submission_id": "aoj_2757_1519858", "code_snippet": "#include <cstdio>\n#include <iostream>\n#include <sstream>\n#include <fstream>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <string>\n#include <vector>\n#include <list>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <bitset>\n#include <numeric>\n#include <limits>\n#include <climits>\n#include <cfloat>\n#include <functional>\nusing namespace std;\n\nconst long long INF = LLONG_MAX / 2;\n\nint main()\n{\n int t;\n cin >> t;\n\n while(--t >= 0){\n long long n;\n int e;\n cin >> n >> e;\n\n vector<vector<long long> > dp(51, vector<long long>(e+1, 0));\n for(int i=1; i<=50; ++i){\n for(int j=1; j<=e; ++j){\n dp[i][j] = dp[i-1][j] + dp[i-1][j-1] + 1;\n dp[i][j] = min(dp[i][j], INF);\n }\n }\n\n int ans = 0;\n while(dp[ans][e] < n)\n ++ ans;\n cout << ans << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1248, "score_of_the_acc": -0.0005, "final_rank": 1 }, { "submission_id": "aoj_2757_1519781", "code_snippet": "#include <string>\n#include <vector>\n#include <algorithm>\n#include <numeric>\n#include <set>\n#include <map>\n#include <queue>\n#include <iostream>\n#include <sstream>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstring>\n#include <cctype>\n#include <cassert>\n#include <limits>\n#include <functional>\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))\n#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))\n#if defined(_MSC_VER) || __cplusplus > 199711L\n#define aut(r,v) auto r = (v)\n#else\n#define aut(r,v) __typeof(v) r = (v)\n#endif\n#define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)\n#define all(o) (o).begin(), (o).end()\n#define pb(x) push_back(x)\n#define mp(x,y) make_pair((x),(y))\n#define mset(m,v) memset(m,v,sizeof(m))\n#define INF 0x3f3f3f3f\n#define INFL 0x3f3f3f3f3f3f3f3fLL\nusing namespace std;\ntypedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll;\ntemplate<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }\ntemplate<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; }\n\n\ntemplate<typename T>T gcd(T x, T y){if(y==0)return x;else return gcd(y,x%y);}\n\nlong long nCr_saturated(long long n, long long k) {\n\tif(k > n) return 0;\n\tif(k > n / 2) k = n - k;\n\tif(k == 0) return 1;\n\tlong long r = 1;\n\tfor(int j = 1; j <= k; j ++) {\n\t\tll a = n - k + j; int b = j;\n\t\t{\tint g = gcd((int)((n - k) % j), j);\n\t\t\ta /= g, b /= g;\n\t\t}\n\t\tr /= b;\n\t\tif(r * 1. * a > 2e18)\n\t\t\treturn (long long)1e18 + 1;\n\t\tr *= a;\n\t}\n\treturn min(r, (long long)1e18 + 1);\n}\n\nlong long solve(long long k, long long n) {\n\tif(k == 1) return n - 1;\n\tif(n == 1) return 0;\n\tint r = 0, i = 0; long long x = n - 1;\n\twhile(true) {\n\t\tlong long t = 0;\n\t\tfor(int j = 0; j < k && j <= r; j ++) {\n\t\t\tt += nCr_saturated(r, j);\n\t\t\tif(t >= x) break;\n\t\t}\n\t\tif(t >= x) break;\n\t\tx -= t;\n\t\t++ r;\n\t}\n\treturn r + 1;\n}\n\nint main() {\n//\trer(n, 0, 100) rer(k, 0, n)\n//\t\tcerr << n << \", \" << k << \": \" << nCr_saturated(n, k) << endl;\n\tint T;\n\tscanf(\"%d\", &T);\n\trep(ii, T) {\n\t\tlong long N, E;\n\t\tscanf(\"%lld%lld\", &N, &E);\n\t\tlong long ans = solve(E, N + 1);\n\t\tprintf(\"%lld\\n\", ans);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 360, "memory_kb": 1192, "score_of_the_acc": -1, "final_rank": 2 } ]
aoj_2748_cpp
夏合宿の朝は早い JAG夏合宿の朝は早い. 正確にはそこまで早くないが,早いと感じる参加者が多いという. 例年合宿の会場となる施設では,退去時に参加者がシーツの回収や掃除をしなければならない. 1 つの部屋でも退去が遅れると,来年以降の施設の利用に関わるため,参加者は一人たりとも寝坊してはならない. そうは言っても皆人間,寝坊することもある. しかし,起きた人が連絡先を知っている人にモーニングコールをすることで,一人も寝坊しないよう努めることができるはずだ. JAG夏合宿の運営を任されたあなたは,寝坊を絶対に防ぐ手を打つための前準備として,どのくらいの確率で全員がきちんと起きられるのかを調べることにした. 準備としてまず,各参加者の寝坊する確率と,各々が連絡先を知っている人のリストを入手した. ここで,部屋は個室であるため,各々が寝坊するか否かは,他の参加者が寝坊するか否かとは独立である. 起きた人は必ずすべての知っている連絡先にモーニングコールをすること,また,モーニングコールを受けた人は必ず起きることを仮定するとき,全員がきちんと起きられる確率をこれらの情報から計算せよ. Input 入力は複数のデータセットからなる. 各データセットは次の形式で表される. N p 1 m 1 a (1,1) ... a (1, m 1 ) ... p N m N a (N,1) ... a (N, m N ) N は参加者の数であり,100 を越えない正の整数である. p i は i 番目の参加者の寝坊する確率であり,小数点以下 2 桁以内の 0 以上 1 以下の実数である. m i は i 番目の参加者が知っている連絡先の数であり,0 以上 N 以下の整数である. a (i, j) は i 番目の参加者が知っている j 番目の連絡先が a (i, j) 番目の参加者のものであることを表す. a (i, j) は N を越えない正の整数である. 入力の終わりは,1 つのゼロからなる行で示す. Output 各データセットについて,全員が起床できる確率を 1 行に出力せよ.出力には 0.00001 以上の誤差を含んではならない. Sample Input 2 0.60 1 2 0.60 0 2 0.60 1 2 0.60 1 1 5 0.10 1 2 0.20 1 3 0.30 1 4 0.40 1 5 0.50 1 1 5 0.10 0 0.20 1 1 0.30 1 1 0.40 1 1 0.50 1 1 5 0.10 4 2 3 4 5 0.20 0 0.30 0 0.40 0 0.50 0 4 0.10 1 2 0.20 0 0.30 1 4 0.40 1 3 5 0.10 0 0.20 0 0.30 0 0.40 0 0.50 0 0 Output for Sample Input 0.400000000 0.640000000 0.998800000 0.168000000 0.900000000 0.792000000 0.151200000
[ { "submission_id": "aoj_2748_10648019", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG // 配列外参照のエラー\n// #endif\n\n// スタンダードライブラリ\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型関連\nusing ll = long long;\nusing lint = long long;\nusing pll = pair<ll, ll>;\nusing plll = tuple<ll, ll, ll>;\nusing pii = pair<int, int>;\nusing piii = tuple<ll, ll, ll>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vvvvi = vector<vector<vector<vector<int>>>>;\nusing vl = vector<ll>;\nusing vvl = vector<vector<ll>>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvvvl = vector<vector<vector<vector<ll>>>>;\n\ntemplate <class T> using prique = priority_queue<T>;\n\n// 型定数\nconstexpr ll mod = 998244353;\nconstexpr ll MOD = 1000000007;\nint INF32 = 1e9;\nll INF64 = 9e18;\n#define endl '\\n';\n\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\n\n/////////////////////////// print関連\ntemplate <typename T> void print(vector<T> A);\nvoid print();\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail);\nvoid print(string S);\ntemplate <typename T> void print(vector<vector<T>> &F);\n\ninline void Yes(bool f);\n\n///////////////////ここから//////////////////////\nbool solve() {\n\n int N;\n cin >> N;\n if (N == 0) {\n return false;\n }\n vector<double> P(N);\n vector<vector<int>> E(N, vector<int>(N, INF32));\n for (int i = 0; i < N; i++) {\n double p;\n cin >> p;\n P[i] = p;\n int m;\n cin >> m;\n for (int j = 0; j < m; j++) {\n int v;\n cin >> v;\n v--;\n E[i][v] = 1;\n }\n }\n for (int k = 0; k < N; k++) {\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n E[i][j]=min(E[i][j],E[i][k]+E[k][j]);\n }\n }\n }\n \n vector<vector<int>> G(N);\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n if (E[i][j] != INF32 && E[j][i] != INF32) {\n G[i].push_back(j);\n G[j].push_back(i);\n }\n }\n }\n\n vector<int> dist(N, -1);\n vector<vector<int>> c2v;\n unordered_set<int> se;\n auto bfs = [&](int sv, int color) {\n queue<int> que;\n vector<int> lis;\n que.emplace(sv);\n dist[sv]=color;\n se.insert(color);\n while (!que.empty()) {\n int v = que.front();\n lis.push_back(v);\n que.pop();\n for (auto nv : G[v]) {\n if (dist[nv] != -1) {\n continue;\n }\n dist[nv] = color;\n que.push(nv);\n }\n }\n c2v.push_back(lis);\n };\n\n int n=0;\n for (int i = 0; i < N; i++) {\n if (dist[i] == -1) {\n bfs(i, n);\n n++;\n }\n }\n\n \n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n if (E[i][j] != INF32 && E[j][i] == INF32) {\n se.erase(dist[j]);\n }\n }\n }\n\n double ans=1;\n for (auto V : se) {\n \n double neru=1;\n for (auto v : c2v[V]) {\n neru*=P[v];\n }\n ans*=1.0-neru;\n }\n cout<<fixed<<setprecision(10);\n cout<<ans<<endl;\n \n\n\n return true;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n while (solve())\n ;\n}\n\n////////////////////print/////////////////////////\n// 1次元ベクトルを出力する\ntemplate <typename T> void print(vector<T> A) {\n if (A.size() == 0) {\n return;\n }\n for (size_t i = 0; i < A.size() - 1; i++) {\n cout << A[i] << ' ';\n }\n cout << A[A.size() - 1] << endl;\n return;\n}\n\n// 2次元ベクトルを出力する\ntemplate <typename T> void print(vector<vector<T>> &F) {\n for (size_t i = 0; i < F.size(); i++) {\n for (size_t j = 0; j < F[i].size(); j++) {\n cout << F[i][j];\n if (j < F[i].size() - 1) {\n cout << ' ';\n }\n }\n cout << endl;\n }\n}\n\n// 空白行を出力するprint\nvoid print() { cout << endl; }\n\n// 数値・文字列を空白区切りで出力する. print(a,b)など\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n cout << head;\n if (sizeof...(tail) != 0)\n cout << \" \";\n print(forward<Tail>(tail)...);\n}\n\nvoid print(string S) { cout << S << endl; }\n\n//////////////出力関連\n\ninline void Yes(bool f) {\n if (f) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3968, "score_of_the_acc": -0.0718, "final_rank": 18 }, { "submission_id": "aoj_2748_8010531", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nstruct UnionFind {\n vector<int> par, siz;\n UnionFind(int n) : par(n,-1), siz(n,1) {}\n int find(int x){\n if (par[x] == -1) return x;\n else{\n par[x] = find(par[x]);\n return par[x];\n }\n }\n bool same(int x, int y){\n return find(x) == find(y);\n }\n int size(int x){\n return siz[find(x)];\n }\n void merge(int x, int y){\n x = find(x);\n y = find(y);\n if (x == y) return;\n if (siz[x] < siz[y]) swap(x,y);\n siz[x] += siz[y];\n par[y] = x;\n }\n};\n\nbool solve(){\n int N;\n cin>>N;\n if(N==0)return false;\n vector<double>P(N);\n vector<vector<int>>G(N);\n for(int i=0;i<N;i++){\n cin>>P[i];\n int m;\n cin>>m;\n for(int j=0;j<m;j++){\n int a;\n cin>>a;\n a--;\n G[i].push_back(a);\n }\n }\n vector flag(N,vector<bool>(N));\n for(int s=0;s<N;s++){\n queue<int>q;\n q.push(s);\n flag[s][s]=true;\n while(q.size()){\n int x=q.front();\n q.pop();\n for(auto i:G[x]){\n if(!flag[s][i]){\n flag[s][i]=true;\n q.push(i);\n }\n }\n }\n }\n UnionFind uf(N);\n for(int i=0;i<N;i++){\n for(int j=0;j<N;j++){\n if(flag[i][j]&&flag[j][i]){\n uf.merge(i,j);\n }\n }\n }\n vector<bool>flag2(N);\n vector<vector<int>>group(N);\n vector<int>V;\n for(int i=0;i<N;i++){\n int l=uf.find(i);\n group[l].push_back(i);\n if(!flag2[l]){\n flag2[l]=true;\n V.push_back(l);\n }\n }\n vector<int>in(N);\n for(int i=0;i<(int)V.size();i++)for(int j=0;j<(int)V.size();j++){\n if(i==j)continue;\n if(flag[V[i]][V[j]])in[V[j]]++;\n if(flag[V[j]][V[i]])in[V[i]]++;\n }\n double ans=1.0;\n for(int k=0;k<(int)V.size();k++){\n int i=V[k];\n if(in[i]==0){\n double q=1;\n for(auto j:group[i]){\n q*=P[j];\n }\n ans*=1.0-q;\n }\n }\n cout<<ans<<\"\\n\";\n return true;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout<<fixed<<setprecision(12);\n while(1){\n if(!solve()){\n return 0;\n }\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3616, "score_of_the_acc": -0.0431, "final_rank": 13 }, { "submission_id": "aoj_2748_7851003", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing i64 = long long;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\n\n\nbool solve(){\n int n;\n cin >> n;\n if(n == 0){\n return false;\n }\n vector<double> p(n);\n vector<int> m(n);\n vector<vector<int>> edges(n), rev(n);\n for (int i = 0; i < n; ++i) {\n cin >> p[i] >> m[i];\n edges[i].resize(m[i]);\n for (int j = 0; j < m[i]; ++j) {\n cin >> edges[i][j];\n --edges[i][j];\n rev[edges[i][j]].emplace_back(i);\n }\n }\n vector<bitset<100>> bs(n);\n for(int i = 0; i < n; ++i){\n queue<int> que;\n que.emplace(i);\n bitset<100> come;\n come.set(i);\n que.push(i);\n while(!que.empty()){\n int x = que.front();\n que.pop();\n for(auto y : rev[x]){\n if(!come[y]){\n come[y] = true;\n que.emplace(y);\n }\n }\n }\n bs[i] = come;\n }\n map<string, vector<int>> component;\n for(int i = 0; i < n; ++i){\n string s = bs[i].to_string();\n component[s].emplace_back(i);\n }\n vector<vector<int>> cons(component.size());\n vector<int> inv(n);\n int idx = 0;\n for(auto [k, v] : component){\n cons[idx] = v;\n for(auto x : v) {\n inv[x] = idx;\n }\n ++idx;\n }\n vector<vector<int>> group_edges(cons.size());\n vector<set<int>> group_edges_rev(cons.size());\n for (int i = 0; i < cons.size(); ++i) {\n for(auto x : cons[i]){\n /*\n for(auto y : edges[x]) {\n group_edges[i].emplace_back(inv[y]);\n }*/\n for(auto y : rev[x]){\n if(inv[y] != i) {\n group_edges_rev[i].emplace(inv[y]);\n }\n }\n }\n }\n /*\n for (int i = 0; i < cons.size(); ++i) {\n sort(group_edges[i].begin(), group_edges[i].end());\n group_edges[i].erase(unique(group_edges[i].begin(), group_edges[i].end()), group_edges[i].end());\n }\n */\n\n /*\n for(auto v : cons){\n for(auto x : v){\n cout << x << \" \";\n }\n cout << endl;\n }\n cout << endl;\n return true;\n */\n\n double prob = 1.0;\n for (int i = 0; i < cons.size(); ++i) {\n if(group_edges_rev[i].empty()){\n double p2 = 1.0;\n for (auto x : cons[i]){\n p2 *= p[x];\n }\n prob *= 1.0 - p2;\n }\n }\n printf(\"%.10lf\\n\", prob);\n\n return true;\n}\n\nsigned main(){\n while(solve());\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3748, "score_of_the_acc": -0.0539, "final_rank": 14 }, { "submission_id": "aoj_2748_7000579", "code_snippet": "#include <stdio.h>\n#include <vector>\nusing namespace std;\n\ndouble prob[128], sprob[128];\nint reach[128][128], scc[128], vis[128];\nvector<int> ed[128], rsed[128];\n\nint main(void) {\n int n, m, x, scc_cnt;\n double res;\n while (1) {\n scanf(\"%d\", &n);\n if (n == 0) break;\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= n; j++) reach[i][j] = 0;\n scc[i] = 0;\n ed[i].clear();\n rsed[i].clear();\n vis[i] = 0;\n sprob[i] = 0;\n }\n scc_cnt = 0;\n for (int i = 1; i <= n; i++) {\n scanf(\"%lf %d\", &prob[i], &m);\n prob[i] = 1.0 - prob[i];\n for (int j = 0; j < m; j++) {\n scanf(\"%d\", &x);\n ed[i].push_back(x);\n reach[i][x] = 1;\n }\n }\n for (int k = 1; k <= n; k++) {\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= n; j++) reach[i][j] |= (reach[i][k] & reach[k][j]);\n }\n }\n\n for (int i = 1; i <= n; i++) {\n if (scc[i] > 0) continue;\n scc[i] = ++scc_cnt;\n for (int j = 1; j <= n; j++) {\n if (reach[i][j] && reach[j][i]) scc[j] = scc_cnt;\n }\n }\n\n for (int i = 1; i <= n; i++) {\n for (int j : ed[i]) {\n if (scc[i] != scc[j]) {\n rsed[scc[j]].push_back(scc[i]);\n }\n }\n }\n\n for (int i = 1; i <= scc_cnt; i++) {\n sprob[i] = 1.0;\n for (int j = 1; j <= n; j++) {\n if (scc[j] != i) continue;\n sprob[i] *= (1.0 - prob[j]);\n }\n sprob[i] = 1.0 - sprob[i];\n }\n\n res = 1.0;\n for (int i = 1; i <= scc_cnt; i++) {\n if (rsed[i].size() == 0) res *= sprob[i];\n }\n printf(\"%.9f\\n\", res);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3088, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2748_6541240", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=1167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (int i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\nint N,M;\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\twhile(cin>>N,N) solve();\n}\n\nvoid solve(){\n\tvector<ld> pro(N);\n\tvector<vector<int>> G(N);\n\trep(i,N){\n\t\tcin>>pro[i];\n\t\tint k;\n\t\tcin>>k;\n\t\trep(j,k){\n\t\t\tint a;\n\t\t\tcin>>a;\n\t\t\ta--;\n\t\t\tG[i].push_back(a);\n\t\t}\n\t}\n\tvector<vector<bool>> H(N,vector<bool>(N));\n\trep(i,N){\n\t\tH[i][i]=1;\n\t\tvector<int> order={i};\n\t\tint ind=0;\n\t\twhile((int)(order.size())!=ind){\n\t\t\tint a=order[ind];\n\t\t\tfor(auto x:G[a]){\n\t\t\t\tif(!H[i][x]){\n\t\t\t\t\tH[i][x]=1;\n\t\t\t\t\torder.push_back(x);\n\t\t\t\t}\n\t\t\t}\n\t\t\tind++;\n\t\t}\n\t}\n\tvector<bool> seen(N);\n\trep(i,N){\n\t\trep(j,N){\n\t\t\tint J=3;\n\t\t\trep(k,N){\n\t\t\t\tif(H[i][k]&!H[j][k]) J&=1;\n\t\t\t\tif(H[j][k]&!H[i][k]) J&=2;\n\t\t\t}\n\t\t\tif(J==2) seen[i]=1;\n\t\t}\n\t}\n\tld ans=1;\n\trep(i,N){\n\t\tif(seen[i]) continue;\n\t\tld tmp=1;\n\t\trep(j,N){\n\t\t\tif(seen[j]) continue;\n\t\t\trep(k,N){\n\t\t\t\tif(H[i][k]^H[j][k]) break;\n\t\t\t\tif(k==N-1){\n\t\t\t\t\ttmp*=pro[j];\n\t\t\t\t\tseen[j]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tans=(ans*(1-tmp));\n\t}\n\tcout<<fixed<<setprecision((18))<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3612, "score_of_the_acc": -0.0557, "final_rank": 16 }, { "submission_id": "aoj_2748_5294366", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\ntemplate< typename G >\nstruct StronglyConnectedComponents {\n const G &g;\n G gg, rg;\n vector< int > comp, order, used;\n\n StronglyConnectedComponents(G &g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {\n for(int i = 0; i < g.size(); i++) {\n for(auto e : g[i]) {\n gg[i].emplace_back((int) e);\n rg[(int) e].emplace_back(i);\n }\n }\n }\n\n int operator[](int k) {\n return comp[k];\n }\n\n void dfs(int idx) {\n if(used[idx]) return;\n used[idx] = true;\n for(int to : gg[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(int to : rg[idx]) rdfs(to, cnt);\n }\n\n int build(G &t) {\n for(int i = 0; i < gg.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n\n t.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &to : g[i]) {\n int x = comp[i], y = comp[to];\n if(x == y) continue;\n t[x].push_back(y);\n }\n }\n return ptr;\n }\n};\n\nint main(){\n //cin.tie(nullptr);\n //ios::sync_with_stdio(false);\n while(1){\n int n; cin >> n;\n if(!n) break;\n vd p(n);\n vvl g(n), h;\n rep(i,n){\n cin >> p[i];\n int m; cin >> m;\n rep(j,m){\n int a; cin >> a; a--;\n g[i].push_back(a);\n }\n }\n StronglyConnectedComponents<vvl> scc(g);\n int k = scc.build(h);\n vl indeg(k,0);\n rep(i,k){\n sort(all(h[i]));\n h[i].erase(unique(all(h[i])), h[i].end());\n for(auto v : h[i]) indeg[v]++;\n }\n vd P(k,1.0);\n rep(i,n) P[scc[i]] *= p[i];\n rep(i,k) P[i] = 1 - P[i];\n double ans = 1;\n rep(i,k){\n if(indeg[i] == 0) ans *= P[i];\n }\n cout << fixed << setprecision(10) << ans << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3400, "score_of_the_acc": -0.0255, "final_rank": 8 }, { "submission_id": "aoj_2748_5200213", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i,n) for(int i=0;i<(n);i++)\n#define ALL(v) v.begin(),v.end()\n\nstruct SCC{\n vector<vector<int>> G,R,T,C;\n //G:元のグラフ R:Gの逆辺グラフ T:DAG C[i]:SCC後の頂点iに属しているGの頂点集合\n vector<int> vs,used,blg;\n //blg[v]:元のグラフで頂点vがSCC後に属している頂点の名前\n SCC(){}\n SCC(int n):G(n),R(n),used(n),blg(n){}\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n R[v].emplace_back(u);\n }\n inline void dfs(int v){\n used[v]=1;\n for(int u:G[v])if(!used[u])dfs(u);\n vs.emplace_back(v);\n }\n inline void rdfs(int v,int k){\n used[v]=1;\n blg[v]=k;\n C[k].emplace_back(v);\n for(int u:R[v])if(!used[u])rdfs(u,k);\n }\n int build(){//DAGのサイズを返す\n int n=G.size();\n for(int v=0;v<n;v++)if(!used[v])dfs(v);\n fill(used.begin(),used.end(),0);\n int k=0;\n for(int i=n-1;i>=0;i--)\n if(!used[vs[i]]){\n T.emplace_back();\n C.emplace_back();\n rdfs(vs[i],k++);\n }\n for(int v=0;v<n;v++)\n for(int u:G[v])\n if(blg[v]!=blg[u])\n T[blg[v]].push_back(blg[u]);\n for(int i=0;i<k;i++){\n sort(T[i].begin(),T[i].end());\n T[i].erase(unique(T[i].begin(),T[i].end()),T[i].end());\n }\n return k;\n }\n int operator[](int k) const{return blg[k];}\n};\nusing ld=long double;\n\nsigned main(){\n int n;\n while(cin>>n,n){\n SCC g(n);\n vector<ld> p(n);\n REP(i,n){\n cin>>p[i];\n int m;cin>>m;\n while(m--){\n int a;cin>>a;a--;\n g.add_edge(i,a);\n }\n }\n int k=g.build();\n vector<ld> v(k,1);\n REP(i,n)v[g[i]]*=p[i];\n REP(i,n)for(int q:g.G[i])if(g[i]!=g[q])v[g[q]]=0;\n ld ans=1;\n REP(i,k)ans*=1-v[i];\n cout<<fixed<<setprecision(12)<<ans<<endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3428, "score_of_the_acc": -0.0277, "final_rank": 10 }, { "submission_id": "aoj_2748_4971736", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nclass Scc\n{\npublic:\n int N;\n vector<vector<int>> G, rG;\n vector<int> vs;\n vector<bool> used;\n vector<int> cmp;\n vector<double> p, pp;\n\n Scc(vector<vector<int>> _G, vector<double> _p) : G(_G), p(_p)\n {\n N = G.size();\n rG.resize(N, vector<int>());\n for (int i = 0; i < G.size(); i++)\n {\n for (auto nv : G[i])\n {\n rG[nv].push_back(i);\n }\n }\n used.resize(N);\n cmp.resize(N);\n }\n\n void dfs(int v)\n {\n used[v] = true;\n for (auto nv : G[v])\n {\n if (!used[nv])\n dfs(nv);\n }\n vs.push_back(v);\n }\n\n void rdfs(int v, int k)\n {\n used[v] = true;\n cmp[v] = k;\n for (auto nv : rG[v])\n {\n if (!used[nv])\n rdfs(nv, k);\n }\n }\n\n int scc()\n {\n fill(used.begin(), used.end(), false);\n for (int v = 0; v < N; v++)\n {\n if (!used[v])\n dfs(v);\n }\n fill(used.begin(), used.end(), false);\n int k = 0;\n for (int i = N - 1; i >= 0; i--)\n {\n if (!used[vs[i]])\n rdfs(vs[i], k++);\n }\n return k;\n }\n\n double solve()\n {\n int k = scc();\n vector<vector<int>> g(k, vector<int>());\n pp.resize(k, 1.0);\n vector<int> in(k);\n for (int i = 0; i < N; i++)\n {\n pp[cmp[i]] *= p[i];\n }\n for (int i = 0; i < N; i++)\n {\n for (auto nv : G[i])\n {\n if (cmp[i] == cmp[nv])\n continue;\n g[cmp[i]].push_back(cmp[nv]);\n in[cmp[nv]]++;\n }\n }\n double ret = 1.0;\n for (int i = 0; i < k; i++)\n {\n if (in[i] == 0)\n {\n ret *= (1.0 - pp[i]);\n }\n }\n\n return ret;\n }\n};\n\nint main()\n{\n int N;\n while (cin >> N, N)\n {\n vector<double> p(N);\n vector<vector<int>> G(N, vector<int>());\n for (int i = 0; i < N; i++)\n {\n cin >> p[i];\n int m;\n cin >> m;\n for (int j = 0; j < m; j++)\n {\n int d;\n cin >> d;\n d--;\n G[i].push_back(d);\n }\n }\n Scc Scc(G, p);\n cout << fixed << setprecision(10) << Scc.solve() << endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3372, "score_of_the_acc": -0.0232, "final_rank": 5 }, { "submission_id": "aoj_2748_4970703", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<cstdio>\n#include<cmath>\n#include<cctype>\n#include<math.h>\n#include<string>\n#include<string.h>\n#include<stack>\n#include<queue>\n#include<vector>\n#include<utility>\n#include<set>\n#include<map>\n#include<stdlib.h>\n#include<iomanip>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n#define EPS 0.0000000001\n#define INF 1e9\n#define MOD 1000000007\n#define rep(i,n) for(i=0;i<(n);i++)\n#define loop(i,a,n) for(i=a;i<(n);i++)\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\n\ntypedef vector<int> vi;\ntypedef vector<string> vs;\ntypedef pair<int,int> pii;\n\n#define MAX_N 100\n\nint reached[MAX_N][MAX_N]={};\n\n\nint parent[MAX_N];\nint ran[MAX_N];\n\nvoid init(int n)\n{\n int i;\n rep(i,n){\n parent[i]=i;\n ran[i]=0;\n }\n}\n\nint find(int x)\n{\n if(parent[x]==x)\n return x;\n else\n return parent[x]=find(parent[x]);\n}\n\nvoid unite(int x,int y)\n{\n x=find(x);\n y=find(y);\n if(x==y)return;\n\n if(ran[x]<ran[y])\n parent[x]=y;\n else{\n parent[y]=x;\n if(ran[x]==ran[y])ran[x]++;\n }\n}\n\nvoid dfs(int s, int v, vector<vi> g){\n reached[s][v]++;\n int i;\n rep(i,g[v].size())\n if(reached[s][g[v][i]]==0)dfs(s,g[v][i],g);\n\n}\n\nint main(void) {\n int i,j;\n while(1){\n int n;\n cin>>n;\n if(n==0)break;\n vector<vi> g(n);\n vector<double> p(n);\n rep(i,n){\n cin>>p[i];\n int m;\n cin>>m;\n rep(j,m){\n\tint a;\n\tcin>>a;\n\ta--;\n\tg[i].push_back(a);\t\n }\n }\n\n rep(i,n)rep(j,n)reached[i][j]=0;\n\n rep(i,n)dfs(i,i,g); //reached[i][j]を埋める\n\n init(100);//UF\n\n rep(i,n)loop(j,i+1,n)\n if(reached[i][j] && reached[j][i])unite(i,j);//UF\n\n double ans=1;\n\n int q;\n rep(q,n){\n bool c=true;//qに到達可能なものがない\n double tmp=1;//強連結成分qの全体の確率\n\n rep(i,n)if(find(parent[i])==q){//iがqに属する場合\n\n\ttmp*=p[i];\n\n\t//jがiと異なる強連結成分に属し、jがiに到達可能の場合\n\trep(j,n)if(find(parent[i])!=find(parent[j]) && reached[j][i]){\n\t c=false;\n\t}\n\n }\n\n if(c && fabs(tmp-1)>EPS) ans*=1-tmp;\n \n }\n\n cout<<shosu(10)<<ans<<endl;\n\n }\n}", "accuracy": 1, "time_ms": 780, "memory_kb": 7540, "score_of_the_acc": -1.3633, "final_rank": 20 }, { "submission_id": "aoj_2748_4965798", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#include <algorithm>\n\n#include <algorithm>\n#include <utility>\n#include <vector>\n\nnamespace atcoder {\n namespace internal {\n\n template<class E> struct csr {\n std::vector<int> start;\n std::vector<E> elist;\n csr(int n, const std::vector<std::pair<int, E>> &edges)\n : start(n + 1), elist(edges.size()) {\n for (auto e : edges) {\n start[e.first + 1]++;\n }\n for (int i = 1; i <= n; i++) {\n start[i] += start[i - 1];\n }\n auto counter = start;\n for (auto e : edges) {\n elist[counter[e.first]++] = e.second;\n }\n }\n };\n\n// Reference:\n// R. Tarjan,\n// Depth-First Search and Linear Graph Algorithms\n struct scc_graph {\n public:\n scc_graph(int n) : _n(n) {}\n\n int num_vertices() { return _n; }\n\n void add_edge(int from, int to) { edges.push_back({from, {to}}); }\n\n // @return pair of (# of scc, scc id)\n std::pair<int, std::vector<int>> scc_ids() {\n auto g = csr<edge>(_n, edges);\n int now_ord = 0, group_num = 0;\n std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);\n visited.reserve(_n);\n auto dfs = [&](auto self, int v) -> void {\n low[v] = ord[v] = now_ord++;\n visited.push_back(v);\n for (int i = g.start[v]; i < g.start[v + 1]; i++) {\n auto to = g.elist[i].to;\n if (ord[to] == -1) {\n self(self, to);\n low[v] = std::min(low[v], low[to]);\n } else {\n low[v] = std::min(low[v], ord[to]);\n }\n }\n if (low[v] == ord[v]) {\n while (true) {\n int u = visited.back();\n visited.pop_back();\n ord[u] = _n;\n ids[u] = group_num;\n if (u == v) { break; }\n }\n group_num++;\n }\n };\n for (int i = 0; i < _n; i++) {\n if (ord[i] == -1) { dfs(dfs, i); }\n }\n for (auto &x : ids) {\n x = group_num - 1 - x;\n }\n return {group_num, ids};\n }\n\n std::vector<std::vector<int>> scc() {\n auto ids = scc_ids();\n int group_num = ids.first;\n std::vector<int> counts(group_num);\n for (auto x : ids.second) { counts[x]++; }\n std::vector<std::vector<int>> groups(ids.first);\n for (int i = 0; i < group_num; i++) {\n groups[i].reserve(counts[i]);\n }\n for (int i = 0; i < _n; i++) {\n groups[ids.second[i]].push_back(i);\n }\n return groups;\n }\n\n private:\n int _n;\n struct edge {\n int to;\n };\n std::vector<std::pair<int, edge>> edges;\n };\n\n } // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\n struct scc_graph {\n public:\n scc_graph() : internal(0) {}\n scc_graph(int n) : internal(n) {}\n\n void add_edge(int from, int to) {\n int n = internal.num_vertices();\n assert(0 <= from && from < n);\n assert(0 <= to && to < n);\n internal.add_edge(from, to);\n }\n\n std::vector<std::vector<int>> scc() { return internal.scc(); }\n\n private:\n internal::scc_graph internal;\n };\n\n} // namespace atcoder\n\nusing namespace atcoder;\n\n#define int long long\n#define rep(i, n) for (int i = 0; i < (int) (n); i++)\n#define reps(i, n) for (int i = 1; i <= (int) (n); i++)\n#define all(a) (a).begin(), (a).end()\n#define uniq(a) (a).erase(unique(all(a)), (a).end())\n#define bit(n) (1LL << (n))\n#define dump(a) cerr << #a \" = \" << (a) << endl\nusing vint = vector<int>;\nusing pint = pair<int, int>;\nusing vpint = vector<pint>;\ntemplate<typename T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nconstexpr double PI = 3.1415926535897932384626433832795028;\nconstexpr int DY[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};\nconstexpr int DX[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};\nint sign(int a) { return (a > 0) - (a < 0); }\nint cdiv(int a, int b) { return (a - 1 + b) / b; }\ntemplate<typename T> void fin(T a) {\n cout << a << endl;\n exit(0);\n}\ntemplate<typename T> T sq(T a) { return a * a; }\ntemplate<typename T, typename U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> bool chmin(T &a, const U &b) {\n if (b < a) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &a) {\n os << \"(\" << a.first << \", \" << a.second << \")\";\n return os;\n}\ntemplate<typename T, typename U, typename V> ostream &operator<<(ostream &os, const tuple<T, U, V> &a) {\n os << \"(\" << get<0>(a) << \", \" << get<1>(a) << \", \" << get<2>(a) << \")\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const vector<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const deque<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const set<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const multiset<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\nstruct setup {\n static constexpr int PREC = 20;\n setup() {\n cout << fixed << setprecision(PREC);\n cerr << fixed << setprecision(PREC);\n };\n} setup;\n\nsigned main() {\n while (true) {\n int N;\n cin >> N;\n if (N == 0) { break; }\n scc_graph g(N);\n vector adj(N, vint());\n vector<double> p(N);\n rep(i, N) {\n cin >> p[i];\n int m;\n cin >> m;\n rep(j, m) {\n int to;\n cin >> to, to--;\n adj[i].emplace_back(to);\n g.add_edge(i, to);\n }\n }\n auto res = g.scc();\n map<int, int> mp;\n rep(i, res.size()) {\n for (int v:res[i]) {\n mp[v] = i;\n }\n }\n vint active(res.size(), 1);\n rep(i, N) {\n for (int to:adj[i]) {\n if (mp[i] != mp[to]) { active[mp[to]] = 0; }\n }\n }\n double ans = 1;\n rep(i, res.size()) {\n if (!active[i]) { continue; }\n double cur = 1;\n for (int v:res[i]) { cur *= p[v]; }\n ans *= 1 - cur;\n }\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3748, "score_of_the_acc": -0.0539, "final_rank": 14 }, { "submission_id": "aoj_2748_4957299", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#include <algorithm>\n\n#include <algorithm>\n#include <utility>\n#include <vector>\n\nnamespace atcoder {\n namespace internal {\n\n template<class E> struct csr {\n std::vector<int> start;\n std::vector<E> elist;\n csr(int n, const std::vector<std::pair<int, E>> &edges)\n : start(n + 1), elist(edges.size()) {\n for (auto e : edges) {\n start[e.first + 1]++;\n }\n for (int i = 1; i <= n; i++) {\n start[i] += start[i - 1];\n }\n auto counter = start;\n for (auto e : edges) {\n elist[counter[e.first]++] = e.second;\n }\n }\n };\n\n// Reference:\n// R. Tarjan,\n// Depth-First Search and Linear Graph Algorithms\n struct scc_graph {\n public:\n scc_graph(int n) : _n(n) {}\n\n int num_vertices() { return _n; }\n\n void add_edge(int from, int to) { edges.push_back({from, {to}}); }\n\n // @return pair of (# of scc, scc id)\n std::pair<int, std::vector<int>> scc_ids() {\n auto g = csr<edge>(_n, edges);\n int now_ord = 0, group_num = 0;\n std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);\n visited.reserve(_n);\n auto dfs = [&](auto self, int v) -> void {\n low[v] = ord[v] = now_ord++;\n visited.push_back(v);\n for (int i = g.start[v]; i < g.start[v + 1]; i++) {\n auto to = g.elist[i].to;\n if (ord[to] == -1) {\n self(self, to);\n low[v] = std::min(low[v], low[to]);\n } else {\n low[v] = std::min(low[v], ord[to]);\n }\n }\n if (low[v] == ord[v]) {\n while (true) {\n int u = visited.back();\n visited.pop_back();\n ord[u] = _n;\n ids[u] = group_num;\n if (u == v) { break; }\n }\n group_num++;\n }\n };\n for (int i = 0; i < _n; i++) {\n if (ord[i] == -1) { dfs(dfs, i); }\n }\n for (auto &x : ids) {\n x = group_num - 1 - x;\n }\n return {group_num, ids};\n }\n\n std::vector<std::vector<int>> scc() {\n auto ids = scc_ids();\n int group_num = ids.first;\n std::vector<int> counts(group_num);\n for (auto x : ids.second) { counts[x]++; }\n std::vector<std::vector<int>> groups(ids.first);\n for (int i = 0; i < group_num; i++) {\n groups[i].reserve(counts[i]);\n }\n for (int i = 0; i < _n; i++) {\n groups[ids.second[i]].push_back(i);\n }\n return groups;\n }\n\n private:\n int _n;\n struct edge {\n int to;\n };\n std::vector<std::pair<int, edge>> edges;\n };\n\n } // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\n struct scc_graph {\n public:\n scc_graph() : internal(0) {}\n scc_graph(int n) : internal(n) {}\n\n void add_edge(int from, int to) {\n int n = internal.num_vertices();\n assert(0 <= from && from < n);\n assert(0 <= to && to < n);\n internal.add_edge(from, to);\n }\n\n std::vector<std::vector<int>> scc() { return internal.scc(); }\n\n private:\n internal::scc_graph internal;\n };\n\n} // namespace atcoder\n\nusing namespace atcoder;\n\n#define int long long\n#define rep(i, n) for (int i = 0; i < (int) (n); i++)\n#define reps(i, n) for (int i = 1; i <= (int) (n); i++)\n#define all(a) (a).begin(), (a).end()\n#define uniq(a) (a).erase(unique(all(a)), (a).end())\n#define bit(n) (1LL << (n))\n#define dump(a) cerr << #a \" = \" << (a) << endl\nusing vint = vector<int>;\nusing pint = pair<int, int>;\nusing vpint = vector<pint>;\ntemplate<typename T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nconstexpr double PI = 3.1415926535897932384626433832795028;\nconstexpr int DY[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};\nconstexpr int DX[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};\nint sign(int a) { return (a > 0) - (a < 0); }\nint cdiv(int a, int b) { return (a - 1 + b) / b; }\ntemplate<typename T> void fin(T a) {\n cout << a << endl;\n exit(0);\n}\ntemplate<typename T> T sq(T a) { return a * a; }\ntemplate<typename T, typename U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> bool chmin(T &a, const U &b) {\n if (b < a) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &a) {\n os << \"(\" << a.first << \", \" << a.second << \")\";\n return os;\n}\ntemplate<typename T, typename U, typename V> ostream &operator<<(ostream &os, const tuple<T, U, V> &a) {\n os << \"(\" << get<0>(a) << \", \" << get<1>(a) << \", \" << get<2>(a) << \")\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const vector<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const deque<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const set<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const multiset<T> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &a) {\n os << \"{\";\n for (auto itr = a.begin(); itr != a.end(); itr++) {\n os << *itr << (next(itr) != a.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\nstruct setup {\n static constexpr int PREC = 20;\n setup() {\n cout << fixed << setprecision(PREC);\n cerr << fixed << setprecision(PREC);\n };\n} setup;\n\nsigned main() {\n while (true) {\n int N;\n cin >> N;\n if (N == 0) { break; }\n scc_graph g(N);\n vector adj(N, vint());\n vector<double> p(N);\n rep(i, N) {\n cin >> p[i];\n int m;\n cin >> m;\n rep(j, m) {\n int to;\n cin >> to, to--;\n adj[i].emplace_back(to);\n g.add_edge(i, to);\n }\n }\n auto res = g.scc();\n map<int, int> mp;\n rep(i, res.size()) {\n for (int v:res[i]) {\n mp[v] = i;\n }\n }\n vint active(res.size(), 1);\n rep(i, N) {\n for (int to:adj[i]) {\n if (mp[i] != mp[to]) { active[mp[to]] = 0; }\n }\n }\n double ans = 1;\n rep(i, res.size()) {\n if (!active[i]) { continue; }\n double cur = 1;\n for (int v:res[i]) { cur *= p[v]; }\n ans *= 1 - cur;\n }\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3816, "score_of_the_acc": -0.0594, "final_rank": 17 }, { "submission_id": "aoj_2748_4882975", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n\nclass SCC{\nprivate:\n const int V;\n vector<vector<int> > G;\n vector<int> ord,low;\n stack<int> st;\n void dfs(int u,int &tm){\n ord[u] = low[u] = tm++;\n st.push(u);\n for(int v:G[u]){\n if(ord[v] < 0){\n dfs(v,tm);\n low[u] = min(low[u],low[v]);\n }else if(cmp[v] < 0){\n low[u] = min(low[u],ord[v]);\n }\n }\n if(ord[u]==low[u]){\n while(true){\n int v = st.top();\n st.pop();\n cmp[v] = cnt;\n if(v==u)break;\n }\n ++cnt;\n }\n }\npublic:\n vector<vector<int> > graph;\n vector<int> cmp;\n int cnt;\n SCC(int node_size):V(node_size),G(V),ord(V,-1),low(V),cmp(V,-1),cnt(0){}\n void add_edge(int from,int to){\n G[from].push_back(to);\n }\n int solve(){\n int tm = 0;\n rep(i,V){\n if(ord[i]<0) dfs(i,tm);\n }\n rep(i,V){\n cmp[i] = cnt-1-cmp[i];\n }\n return cnt;\n }\n void make_graph(){\n graph.resize(cnt);\n rep(i,V){\n for(int j:G[i]){\n if(cmp[i]!=cmp[j]){\n graph[cmp[i]].push_back(cmp[j]);\n }\n }\n }\n }\n};\nvoid dfs(vector<vector<int> > &g,vector<bool>&flag,int id){\n for(auto x:g[id]){\n flag[x] = 1;\n dfs(g,flag,x);\n }\n}\nint main(){\n int n;\n while(cin >> n && n!=0){\n SCC scc(n);\n vector<double> p(n);\n rep(i,n){\n cin >> p[i];\n p[i] = 1.0-p[i];\n int s;\n cin >> s;\n rep(j,s){\n int a;\n cin >> a;\n a--;\n scc.add_edge(i,a);\n }\n }\n int m = scc.solve();\n vector<int> cmp = scc.cmp;\n vector<double> P(m,1.0);\n rep(i,n){\n P[cmp[i]] *= (1.0-p[i]);\n }\n rep(i,m){\n P[i] = 1.0-P[i];\n // cerr << P[i] << endl;\n }\n scc.make_graph();\n auto G = scc.graph;\n vector<bool> flag(m);\n double res = 1.0;\n rep(i,m){\n if(!flag[i]){\n res *= P[i];\n dfs(G,flag,i);\n }\n }\n cout << setprecision(20) << fixed << res << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3336, "score_of_the_acc": -0.0202, "final_rank": 2 }, { "submission_id": "aoj_2748_4882775", "code_snippet": "#include <algorithm>\n#include <cassert>\n#include <iostream>\n#include <vector>\n#include <set>\n\nstd::vector<int> scc_decompose(const std::vector<std::vector<int>>& G){\n int n = G.size();\n std::vector<int> P;\n {\n std::vector<int> visited(n,false);\n auto dfs = [&](auto dfs, int v) -> void {\n visited[v] = true;\n for(auto v_ : G[v]){\n if(visited[v_]) continue;\n dfs(dfs,v_);\n }\n P.push_back(v);\n };\n for(int i = 0; i < n; ++i){\n if(visited[i]) continue;\n dfs(dfs,i);\n }\n reverse(P.begin(), P.end());\n }\n std::vector<std::vector<int>> G_rev(n);\n for(int i = 0; i < n; ++i){\n for(auto j : G[i])\n G_rev[j].push_back(i);\n }\n std::vector<int> A(n,-1);\n int t = 0;\n auto dfs = [&](auto dfs, int v) -> void {\n A[v] = t;\n for(auto v_ : G_rev[v]){\n if(A[v_] >= 0) continue;\n dfs(dfs,v_);\n }\n };\n for(auto v : P){\n if(A[v] >= 0) continue;\n dfs(dfs,v);\n ++t;\n }\n return A;\n}\n\n#include <algorithm>\n#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <set>\nusing namespace std;\n\nbool solve(){\n int N;\n cin >> N;\n if(!N) return false;\n vector<double> P(N);\n vector<vector<int>> G(N);\n vector<pair<int,int>> E;\n for(int i = 0; i < N; ++i){\n cin >> P[i];\n int m;\n cin >> m;\n for(int j = 0; j < m; ++j){\n int v;\n cin >> v;\n --v;\n G[i].emplace_back(v);\n }\n }\n vector<int> A = scc_decompose(G);\n int n = *max_element(A.begin(), A.end()) + 1;\n vector<double> Q(n,1);\n for(int i = 0; i < N; ++i){\n Q[A[i]] *= P[i];\n }\n vector<set<int>> D(n);\n for(int i = 0; i < N; ++i){\n for(auto v : G[i]){\n if(A[v] == A[i]) continue;\n D[A[v]].emplace(A[i]);\n }\n }\n double ans = 1;\n for(int i = 0; i < n; ++i){\n if(D[i].size()) continue;\n\n ans *= 1 - Q[i];\n }\n cout << setprecision(12) << fixed << ans << '\\n';\n return true;\n}\n\nint main(){\n while(solve());\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3336, "score_of_the_acc": -0.0202, "final_rank": 2 }, { "submission_id": "aoj_2748_4775293", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nstruct strongly_connected_components{\n vector<vector<int>> scc;\n vector<int> c;\n void dfs1(vector<vector<int>> &E, vector<bool> &used, vector<int> &t, int v){\n for (int w : E[v]){\n if (!used[w]){\n used[w] = true;\n dfs1(E, used, t, w);\n }\n }\n t.push_back(v);\n }\n void dfs2(vector<vector<int>> &E, vector<bool> &used, int v){\n scc.back().push_back(v);\n for (int w : E[v]){\n if (!used[w]){\n used[w] = true;\n dfs2(E, used, w);\n }\n }\n }\n strongly_connected_components(vector<vector<int>> G){\n int V = G.size();\n vector<vector<int>> E1(V), E2(V);\n for (int i = 0; i < V; i++){\n for (int j : G[i]){\n E1[i].push_back(j);\n E2[j].push_back(i);\n }\n }\n vector<bool> used(V, false);\n vector<int> t;\n for (int i = 0; i < V; i++){\n if (!used[i]){\n used[i] = true;\n dfs1(E1, used, t, i);\n }\n }\n reverse(t.begin(), t.end());\n vector<bool> used2(V, false);\n for (int i = 0; i < V; i++){\n if (!used2[t[i]]){\n used2[t[i]] = true;\n scc.push_back(vector<int>());\n dfs2(E2, used2, t[i]);\n }\n }\n c = vector<int>(V);\n int sz = scc.size();\n for (int i = 0; i < sz; i++){\n for (int j : scc[i]){\n c[j] = i;\n }\n }\n }\n int size(){\n return scc.size();\n }\n int operator [](int k){\n return c[k];\n }\n};\nint main(){\n cout << fixed << setprecision(9);\n while (1){\n int N;\n cin >> N;\n if (N == 0){\n break;\n }\n vector<double> p(N);\n vector<vector<int>> E(N);\n for (int i = 0; i < N; i++){\n cin >> p[i];\n int m;\n cin >> m;\n for (int j = 0; j < m; j++){\n int a;\n cin >> a;\n a--;\n E[i].push_back(a);\n }\n }\n strongly_connected_components S(E);\n int sz = S.size();\n vector<bool> ok(sz, false);\n vector<double> q(sz, 1);\n for (int i = 0; i < N; i++){\n for (int j : E[i]){\n if (S[i] != S[j]){\n ok[S[j]] = true;\n }\n }\n q[S[i]] *= p[i];\n }\n double ans = 1;\n for (int i = 0; i < sz; i++){\n if (!ok[i]){\n ans *= 1 - q[i];\n }\n }\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3396, "score_of_the_acc": -0.0251, "final_rank": 6 }, { "submission_id": "aoj_2748_4460664", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <vector>\n#include <cfloat>\n#include <cstring>\n#include <cmath>\n#include <utility>\nusing namespace std;\nusing llong = long long;\n\nllong n;\ndouble p[105];\nvector<vector<int>> g;\nvector<vector<int>> rg;\nvector<int> vs;\nint cmp[105];\nbool used[105];\ndouble pp[105];\ndouble mem[105];\nint indeg[105];\n\n//--- @see ant p.286\nvoid dfs(int v) {\n used[v] = true;\n for (int i = 0; i < g[v].size(); i++) {\n if (!used[g[v][i]]) dfs(g[v][i]);\n }\n vs.push_back(v);\n}\n\nvoid rdfs(int v, int k) {\n used[v] = true;\n cmp[v] = k;\n for (int i = 0; i < rg[v].size(); i++) {\n if (!used[rg[v][i]]) rdfs(rg[v][i], k);\n }\n}\n\nint scc() {\n memset(used, 0, sizeof(used));\n vs.clear();\n for (int v = 1; v <= n; v++) {\n if (!used[v]) dfs(v);\n }\n memset(used, 0, sizeof(used));\n int k = 0;\n for (int i = vs.size() - 1; i >= 0; i--) {\n if (!used[vs[i]]) rdfs(vs[i], k++);\n }\n return k;\n}\n//===\n\ndouble solve() {\n int m = scc();\n\n for (int i = 1; i <= n; i++) {\n pp[cmp[i]] *= p[i];\n }\n\n for (int i = 1; i <= n; i++) {\n for (auto u:g[i]) {\n if (cmp[i] != cmp[u]) indeg[cmp[u]]++;\n }\n }\n\n double ans = 1;\n for (int i = 0; i < m; i++) {\n if (indeg[i] == 0) ans *= (1 - pp[i]);\n }\n\n return ans;\n}\n\nint main() {\n while (cin >> n, n) {\n g.clear(); rg.clear();\n g.resize(n + 1); rg.resize(n + 1);\n for (int i = 0; i < 105; i++) pp[i] = 1;\n for (int i = 0; i < 105; i++) indeg[i] = 0;\n \n for (int i = 1; i <= n; i++) {\n llong m;\n llong a;\n cin >> p[i];\n cin >> m;\n for (int j = 0; j < m; j++) {\n cin >> a;\n g[i].push_back(a);\n rg[a].push_back(i);\n }\n }\n\n printf(\"%.*lf\\n\", DBL_DIG, solve());\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3396, "score_of_the_acc": -0.0251, "final_rank": 6 }, { "submission_id": "aoj_2748_4460390", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n#define INFS (1LL<<28)\n#define DEKAI 1000000007\n#define INF 1000000007\n//#define MOD 1000000007\n#define lp(i,n) for(int i=0;i<n;i++)\n#define lps(i,n) for(int i=1;i<=n;i++)\n#define all(c) begin(c), end(c)\n\n//#define int long long \n\nnamespace {\n\t#define __DECLARE__(C) \\\n\t template <typename T> \\\n\tstd::ostream &operator<<(std::ostream &, const C<T> &);\n\n\t#define __DECLAREM__(C) \\\n\t template <typename T, typename U> \\\n\tstd::ostream &operator<<(std::ostream &, const C<T, U> &);\n\n\t__DECLARE__(std::vector)\n\t__DECLARE__(std::deque)\n\t__DECLARE__(std::set)\n\t__DECLARE__(std::stack)\n\t__DECLARE__(std::queue)\n\t__DECLARE__(std::priority_queue)\n\t__DECLARE__(std::unordered_set)\n\t__DECLAREM__(std::map)\n\t__DECLAREM__(std::unordered_map)\n\n\ttemplate <typename T, typename U>\n\tstd::ostream &operator<<(std::ostream &, const std::pair<T, U> &);\n\ttemplate <typename... T>\n\tstd::ostream &operator<<(std::ostream &, const std::tuple<T...> &);\n\ttemplate <typename T, std::size_t N>\n\tstd::ostream &operator<<(std::ostream &, const std::array<T, N> &);\n\n\ttemplate <typename Tuple, std::size_t N>\n\tstruct __TuplePrinter__ {\n\t\tstatic void print(std::ostream &os, const Tuple &t) {\n\t\t\t__TuplePrinter__<Tuple, N - 1>::print(os, t);\n\t\t\tos << \", \" << std::get<N - 1>(t);\n\t\t}\n\t};\n\n\ttemplate <typename Tuple>\n\tstruct __TuplePrinter__<Tuple, 1> {\n\t\tstatic void print(std::ostream &os, const Tuple &t) { os << std::get<0>(t); }\n\t};\n\n\ttemplate <typename... T>\n\tstd::ostream &operator<<(std::ostream &os, const std::tuple<T...> &t) {\n\t\tos << '(';\n\t\t__TuplePrinter__<decltype(t), sizeof...(T)>::print(os, t);\n\t\tos << ')';\n\t\treturn os;\n\t}\n\n\ttemplate <typename T, typename U>\n\tstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &v) {\n\t\treturn os << '(' << v.first << \", \" << v.second << ')';\n\t}\n\n\t#define __INNER__ \\\n\tos << '['; \\\n\tfor (auto it = begin(c); it != end(c);) { \\\n\t\tos << *it; \\\n\t\tos << (++it != end(c) ? \", \" : \"\"); \\\n\t} \\\n\treturn os << ']';\n\n\ttemplate <typename T, std::size_t N>\n\tstd::ostream &operator<<(std::ostream &os, const std::array<T, N> &c) {\n\t\t__INNER__\n\t}\n\n\t#define __DEFINE__(C) \\\n\t template <typename T> \\\n\tstd::ostream &operator<<(std::ostream &os, const C<T> &c) { \\\n\t\t__INNER__ \\\n\t}\n\n\t#define __DEFINEM__(C) \\\n\t template <typename T, typename U> \\\n\tstd::ostream &operator<<(std::ostream &os, const C<T, U> &c) { \\\n\t\t__INNER__ \\\n\t}\n\n\t#define __DEFINEW__(C, M1, M2) \\\n\t template <typename T> \\\n\tstd::ostream &operator<<(std::ostream &os, const C<T> &c) { \\\n\t\tstd::deque<T> v; \\\n\t\tfor (auto d = c; !d.empty(); d.pop()) v.M1(d.M2()); \\\n\t\t\treturn os << v; \\\n\t}\n\n\t__DEFINE__(std::vector)\n\t__DEFINE__(std::deque)\n\t__DEFINE__(std::set)\n\t__DEFINEW__(std::stack, push_front, top)\n\t__DEFINEW__(std::queue, push_back, front)\n\t__DEFINEW__(std::priority_queue, push_front, top)\n\t__DEFINE__(std::unordered_set)\n\t__DEFINEM__(std::map)\n\t__DEFINEM__(std::unordered_map)\n}\n\n#define pii pair<int,int>\n#define ll long long\ninline ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }\ninline ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }\n\n// modint \ntemplate <signed M, unsigned T>\nstruct mod_int {\n\tconstexpr static signed MODULO = M;\n\tconstexpr static unsigned TABLE_SIZE = T;\n\n\tsigned x;\n\n\tmod_int() : x(0) {}\n\n\tmod_int(long long y) : x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {}\n\n\tmod_int(int y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {}\n\n\tmod_int &operator+=(const mod_int &rhs) {\n\t\tif ((x += rhs.x) >= MODULO) x -= MODULO;\n\t\treturn *this;\n\t}\n\n\tmod_int &operator-=(const mod_int &rhs) {\n\t\tif ((x += MODULO - rhs.x) >= MODULO) x -= MODULO;\n\t\treturn *this;\n\t}\n\n\tmod_int &operator*=(const mod_int &rhs) {\n\t\tx = static_cast<signed>(1LL * x * rhs.x % MODULO);\n\t\treturn *this;\n\t}\n\n\tmod_int &operator/=(const mod_int &rhs) {\n\t\tx = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO);\n\t\treturn *this;\n\t}\n\n\tmod_int operator-() const { return mod_int(-x); }\n\n\tmod_int operator+(const mod_int &rhs) const { return mod_int(*this) += rhs; }\n\n\tmod_int operator-(const mod_int &rhs) const { return mod_int(*this) -= rhs; }\n\n\tmod_int operator*(const mod_int &rhs) const { return mod_int(*this) *= rhs; }\n\n\tmod_int operator/(const mod_int &rhs) const { return mod_int(*this) /= rhs; }\n\n\tbool operator<(const mod_int &rhs) const { return x < rhs.x; }\n\n\tmod_int inv() const {\n\t\tassert(x != 0);\n\t\tif (x <= static_cast<signed>(TABLE_SIZE)) {\n\t\t\tif (_inv[1].x == 0) prepare();\n\t\t\treturn _inv[x];\n\t\t} else {\n\t\t\tsigned a = x, b = MODULO, u = 1, v = 0, t;\n\t\t\twhile (b) {\n\t\t\t\tt = a / b;\n\t\t\t\ta -= t * b;\n\t\t\t\tstd::swap(a, b);\n\t\t\t\tu -= t * v;\n\t\t\t\tstd::swap(u, v);\n\t\t\t}\n\t\t\treturn mod_int(u);\n\t\t}\n\t}\n\n\tmod_int pow(long long t) const {\n\t\tassert(!(x == 0 && t == 0));\n\t\tmod_int e = *this, res = mod_int(1);\n\t\tfor (; t; e *= e, t >>= 1)\n\t\t\tif (t & 1) res *= e;\n\t\treturn res;\n\t}\n\n\tmod_int fact() {\n\t\tif (_fact[0].x == 0) prepare();\n\t\treturn _fact[x];\n\t}\n\n\tmod_int inv_fact() {\n\t\tif (_fact[0].x == 0) prepare();\n\t\treturn _inv_fact[x];\n\t}\n\n\tmod_int choose(mod_int y) {\n\t\tassert(y.x <= x);\n\t\treturn this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact();\n\t}\n\n\tstatic mod_int _inv[TABLE_SIZE + 1];\n\n\tstatic mod_int _fact[TABLE_SIZE + 1];\n\n\tstatic mod_int _inv_fact[TABLE_SIZE + 1];\n\n\tstatic void prepare() {\n\t\t_inv[1] = 1;\n\t\tfor (int i = 2; i <= (int)TABLE_SIZE; ++i) {\n\t\t\t_inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO;\n\t\t}\n\t\t_fact[0] = 1;\n\t\tfor (unsigned i = 1; i <= TABLE_SIZE; ++i) {\n\t\t\t_fact[i] = _fact[i - 1] * int(i);\n\t\t}\n\t\t_inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv();\n\t\tfor (int i = (int)TABLE_SIZE - 1; i >= 0; --i) {\n\t\t\t_inv_fact[i] = _inv_fact[i + 1] * (i + 1);\n\t\t}\n\t}\n};\n\ntemplate <int M, unsigned F>\nstd::ostream &operator<<(std::ostream &os, const mod_int<M, F> &rhs) {\n\treturn os << rhs.x;\n}\n\ntemplate <int M, unsigned F>\nstd::istream &operator>>(std::istream &is, mod_int<M, F> &rhs) {\n\tlong long s;\n\tis >> s;\n\trhs = mod_int<M, F>(s);\n\treturn is;\n}\n\ntemplate <int M, unsigned F>\nmod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1];\n\ntemplate <int M, unsigned F>\nmod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1];\n\ntemplate <int M, unsigned F>\nmod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1];\n\ntemplate <int M, unsigned F>\nbool operator==(const mod_int<M, F> &lhs, const mod_int<M, F> &rhs) {\n\treturn lhs.x == rhs.x;\n}\n\ntemplate <int M, unsigned F>\nbool operator!=(const mod_int<M, F> &lhs, const mod_int<M, F> &rhs) {\n\treturn !(lhs == rhs);\n}\n\nconst int MF = 1000010;\nconst int MOD = 1000000007;\n\nusing mint = mod_int<MOD, MF>;\n\nmint binom(int n, int r) { return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r); }\n\nmint fact(int n) { return mint(n).fact(); }\n\nmint inv_fact(int n) { return mint(n).inv_fact(); }\nconst ll mod = 1000000007;\nconst int MAX_N = 10000; // 400MB\n// const int MAX_N = 1024; // 4MB\n// nCr % mod\n\n//#define int long long\n#define double long double \n\ninline ll gcds(ll a, ll b) { return b ? gcds(b, a % b) : a; }\ninline ll lcms(ll a, ll b) { return a / gcd(a, b) * b; }\n\n#define RK 200000000000\n#define LK 300000000000\n#define PL 400000000000\n#define MI 500000000000\n#define KA 600000000000\n\n\nusing Weight = int;\nusing Flow = int;\nstruct Edge {\n int src, dst;\n Weight weight;\n Flow cap;\n Edge() : src(0), dst(0), weight(0) {}\n Edge(int s, int d, Weight w) : src(s), dst(d), weight(w) {}\n};\nusing Edges = std::vector<Edge>;\nusing Graph = std::vector<Edges>;\nusing Array = std::vector<Weight>;\nusing Matrix = std::vector<Array>;\n\nvoid add_edge(Graph &g, int a, int b, Weight w = 1) {\n g[a].emplace_back(a, b, w);\n g[b].emplace_back(b, a, w);\n}\nvoid add_arc(Graph &g, int a, int b, Weight w = 1) { g[a].emplace_back(a, b, w); }\n\nstd::vector<int> kosaraju(const Graph &g) {\n int n = g.size(), sz = 0;\n Graph rg(n);\n std::vector<int> stk, cmp(n, -1), added(n), visited(n), ord(n);\n for (auto &es : g) {\n for (auto e : es) {\n std::swap(e.src, e.dst);\n rg[e.src].emplace_back(e);\n }\n sz += es.size();\n }\n stk.resize(n + sz);\n sz = 0;\n for (int i = 0; i < n; i++) {\n if (visited[i]) continue;\n int s = 0;\n stk[s++] = i;\n while (s != 0) {\n int v = stk[s - 1];\n visited[v] = true;\n bool pushed = false;\n for (auto &e : g[v]) {\n int dst = e.dst;\n if (!visited[dst]) {\n stk[s++] = dst;\n pushed = true;\n }\n }\n if (pushed) continue;\n int t = stk[s - 1];\n if (!added[t]) {\n added[t] = true;\n ord[n - ++sz] = t;\n }\n --s;\n }\n }\n int k = 0;\n for (int &u : ord) {\n if (cmp[u] != -1) continue;\n int s = 0;\n stk[s++] = u;\n while (s != 0) {\n int v = stk[--s];\n cmp[v] = k;\n for (auto &e : rg[v]) {\n int d = e.dst;\n if (cmp[d] == -1) stk[s++] = d;\n }\n }\n ++k;\n }\n return cmp;\n}\n\n\nsigned main(){\n\twhile(1){\n\t\tint n;\n\t\tcin>>n;\n\t\tGraph g(n);\n\t\tif(n==0)break;\n\n\t\tvector<bool> check(n,false);\n\t\tvector<double> p(n);\n\t\tvector<vector<int>> revg(n);\n\n\t\tlp(i,n){\n\t\t\tcin>>p[i];\n\t\t\tint m;\n\t\t\tcin>>m;\n\t\t\tlp(j,m){\n\t\t\t\tint a;\n\t\t\t\tcin>>a;\n\t\t\t\trevg[a-1].push_back(i);\n\t\t\t\tadd_arc(g,i,a-1);\n\t\t\t\tcheck[a-1]=true;\n\t\t\t}\n\t\t}\n\n\t\tvector<int> cmp=kosaraju(g);\n\t\tint maxin=0;\n\t\tlp(i,cmp.size()){\n\t\t\tmaxin=max(cmp[i],maxin);\n\t\t}\n\t\tvector<bool> checks(maxin+1,true);\n\t\tlp(i,n){\n\t\t\tlp(j,revg[i].size()){\n\t\t\t\tint now = i;\n\t\t\t\tint to=revg[i][j];\n\t\t\t\tif(cmp[now]!=cmp[to]){\n\t\t\t\t\tchecks[cmp[now]]=false;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\n\n\t\tdouble ans=1;\n\t\tlp(i,checks.size()){\n\t\t\tdouble base=1;\n\t\t\tif(checks[i]){\n\t\t\t\tlp(j,cmp.size()){\n\t\t\t\t\tif(i==cmp[j]){\n\t\t\t\t\t\tbase*=p[j];\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tans*=1-base;\n\t\t\t}\n\t\t}\n\t\tcout<<fixed<<setprecision(15)<<ans<<endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 15344, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_2748_4367203", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <stack>\n\nstruct SCC {\n int N, p;\n std::vector<std::vector<int> > g, gr, g2i, t, tr;\n std::vector<bool> visited;\n std::vector<int> i2g;\n std::stack<int> order;\n\n SCC(){}\n SCC(int n){init(n);}\n void init(int n){\n N = n;\n g.clear();\n g.resize(N);\n gr.clear();\n gr.resize(N);\n visited.resize(N);\n i2g.resize(N);\n }\n void add_edge(int u, int v) {\n g[u].emplace_back(v);\n gr[v].emplace_back(u);\n }\n\n void dfs(int x) {\n if (visited[x]) return;\n visited[x] = true;\n for (int i : g[x]) dfs(i);\n order.push(x);\n }\n\n void rdfs(int x, int k) {\n if (visited[x]) return;\n visited[x] = true;\n i2g[x] = k;\n for (int i : gr[x]) rdfs(i, k);\n }\n\n void build() {\n std::fill(visited.begin(), visited.end(), false);\n std::fill(i2g.begin(), i2g.end(), -1);\n for (int i = 0; i < N; i++) dfs(i);\n p = 0;\n std::fill(visited.begin(), visited.end(), false);\n while (!order.empty()) {\n int idx = order.top();\n order.pop();\n if(!visited[idx]) rdfs(idx, p++);\n }\n g2i.clear();\n g2i.resize(p);\n for(int i=0;i<N;i++){\n g2i[i2g[i]].push_back(i);\n }\n t.resize(p);\n tr.resize(p);\n for(int i=0;i<N;i++){\n for (auto &to : g[i]) {\n int x = i2g[i], y = i2g[to];\n if (x == y) continue;\n t[x].push_back(y);\n tr[y].push_back(x);\n }\n }\n for(int i=0;i<p;i++){\n sort(t[i].begin(), t[i].end());\n t[i].erase(unique(t[i].begin(), t[i].end()),t[i].end());\n sort(tr[i].begin(), tr[i].end());\n tr[i].erase(unique(tr[i].begin(), tr[i].end()),tr[i].end());\n }\n }\n int count() const {return p;}\n int operator[](int k) const {return i2g[k];}\n};\n\nstruct TwoSAT {\n int N;\n SCC scc;\n std::vector<int> v;\n TwoSAT() = default;\n TwoSAT(int n):N(n),scc(n*2){}\n void init(int n){\n N = n;\n scc.init(N*2);\n }\n int neg(int a){return (a+N)%(N*2);}\n void add_edge(int a, int b){\n scc.add_edge(a, b);\n }\n void add_if(int a, int b){\n // a -> b <=> !b -> !a\n add_edge(a,b);\n add_edge(neg(b), neg(a));\n }\n void add_iff(int a, int b){\n // (a <=> b) <=> a -> b and b -> a\n add_if(a, b);\n add_if(b, a);\n }\n void add_or(int a, int b){\n // a or b <=> !a -> b and !b -> a\n add_if(neg(a), b);\n }\n void add_nand(int a, int b){\n // a nand b <=> a -> !b and b -> !a\n add_if(a, neg(b));\n }\n void add_xor(int a, int b){\n add_nand(a, b);\n add_or(a, b);\n }\n void set_true(int a){\n // a <=> !a -> a\n add_edge(neg(a), a);\n }\n void set_false(int a){\n // !a <=> a -> !a\n add_edge(a, neg(a));\n }\n bool build(){\n scc.build();\n bool ok = true;\n for(int i=0;i<N;i++){\n ok &= scc.i2g[i] != scc.i2g[neg(i)];\n }\n if(ok){\n for(int i=0;i<N;i++){\n v.push_back(scc[i] > scc[neg(i)]);\n }\n }\n return ok;\n }\n int operator[](int k) const {return v[k];};\n};\n\n\nint main() {\n while (1) {\n int N;\n double p[100];\n std::cin >> N;\n if (N == 0) break;\n SCC G(N);\n for(int i=0; i<N; i++) {\n std::cin >> p[i];\n int m;\n std::cin >> m;\n for(int j=0; j<m; j++) {\n int a;\n std::cin >> a;\n a--;\n G.add_edge(i, a);\n }\n }\n G.build();\n double ans = 1;\n for (int i=0; i<G.count(); i++) {\n if (G.tr[i].empty()) {\n double q = 1;\n for (int idx : G.g2i[i]) {\n q *= p[idx];\n }\n ans *= (1 - q);\n }\n }\n printf(\"%.8lf\\n\", ans);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3348, "score_of_the_acc": -0.0212, "final_rank": 4 }, { "submission_id": "aoj_2748_4206280", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(x) (x).begin(),(x).end()\n#define YES() printf(\"YES\\n\")\n#define NO() printf(\"NO\\n\")\n#define isYES(x) printf(\"%s\\n\",(x) ? \"YES\" : \"NO\")\n#define Yes() printf(\"Yes\\n\")\n#define No() printf(\"No\\n\")\n#define isYes(x) printf(\"%s\\n\",(x) ? \"Yes\" : \"No\")\n#define isIn(x,y,h,w) (x >= 0 && x < h && y >= 0 && y < w)\n\n#define int long long\n//using ll = long long;\nusing P = pair<int,int>;\n\nostream &operator<<(ostream &os,const P &p){ return os << \"(\" << p.first << \",\" << p.second << \")\"; }\n\ntemplate<class T> T &chmin(T &a,const T &b){ return a = min(a,b); }\ntemplate<class T> T &chmax(T &a,const T &b){ return a = max(a,b); }\n \nconst int INF=1e+18;\nconst double EPS=1e-9;\nconst int MOD=1000000007;\n\nconst int dx[]={1,0,-1,0},dy[]={0,-1,0,1};\n\ntemplate<class T>\nstruct Edge{\n\tint from,to;\n\tT cost;\n\tEdge(int to,T cost) : to(to),cost(cost){}\n\tEdge(int from,int to,T cost) : from(from),to(to),cost(cost){}\n\toperator int() const noexcept { return to; }\n};\n\ntemplate<class T>\nusing WeightedGraph = vector<vector<Edge<T>>>;\nusing Graph = vector<vector<int>>;\ntemplate<class T>\nusing Matrix = vector<vector<T>>;\n\ntemplate<class T>\nstruct SCC{\n\tT g;\n\tGraph G,rG,nG;\n\tvector<vector<int>> scc;\n\tvector<int> cmp,used,vs;\n\n\tint operator[](int i) const{ return cmp[i]; }\n\t\n\tSCC(T g) : g(g),G(g.size()),rG(g.size()),cmp(g.size(),-1),used(g.size()){\n\t\tfor(int i = 0;i < g.size();i++){\n\t\t\tfor(const auto &e : g[i]){\n\t\t\t\tG[i].push_back((int)e);\n\t\t\t\trG[(int)e].push_back(i);\n\t\t\t}\n\t\t}\n\t}\n\n\tvoid dfs(int v){\n\t\tused[v] = true;\n\t\tfor(int to : G[v]) if(!used[to]) dfs(to);\n\t\tvs.push_back(v);\n\t}\n\n\tvoid rdfs(int v,int cnt){\n\t\tscc[cnt].push_back(v);\n\t\tcmp[v] = cnt;\n\t\tfor(int to : rG[v]) if(cmp[to] == -1) rdfs(to,cnt);\n\t}\n\n\tvoid build(){\n\t\tint n = g.size(),cnt = 0;\n\t\tfor(int i = 0;i < n;i++) if(!used[i]) dfs(i);\n\t\treverse(vs.begin(),vs.end());\n\t\tfor(int v : vs){\n\t\t\tif(cmp[v] == -1){\n\t\t\t\tscc.emplace_back();\n\t\t\t\trdfs(v,cnt++);\n\t\t\t}\n\t\t}\n\t\tnG.resize(cnt);\n\t\tfor(int i = 0;i < n;i++){\n\t\t\tfor(const auto &e : g[i]){\n\t\t\t\tint u = cmp[i],v = cmp[(int)e];\n\t\t\t\tif(u != v) nG[u].push_back(v);\n\t\t\t}\n\t\t}\n\t\tfor(int i = 0;i < cnt;i++){\n\t\t\tsort(nG[i].begin(),nG[i].end());\n\t\t\tnG[i].erase(unique(nG[i].begin(),nG[i].end()),nG[i].end());\n\t\t}\n\t}\n};\n\nint n;\n\nvoid solve(){\n\tGraph G(n);\n\tdouble p[110];\n\tfor(int i = 0;i < n;i++){\n\t\tint m;\n\t\tcin >> p[i] >> m;\n\t\tfor(int j = 0;j < m;j++){\n\t\t\tint a;\n\t\t\tcin >> a; a--;\n\t\t\tG[i].push_back(a);\n\t\t}\n\t}\n\tSCC<Graph> scc(G);\n\tscc.build();\n\tint in[110] = {};\n\tfor(int i = 0;i < scc.nG.size();i++){\n\t\tfor(int to : scc.nG[i]) in[to]++;\n\t}\n\tdouble ans = 1;\n\tfor(int i = 0;i < scc.nG.size();i++){\n\t\tif(!in[i]){\n\t\t\tdouble tmp = 1;\n\t\t\tfor(int v : scc.scc[i]) tmp *= p[v];\n\t\t\tans *= 1.0 - tmp;\n\t\t}\n\t}\n\tprintf(\"%.14lf\\n\",ans);\n}\n\nsigned main(){\n\twhile(cin >> n,n) solve();\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3456, "score_of_the_acc": -0.03, "final_rank": 12 }, { "submission_id": "aoj_2748_4083733", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct Strongly_Connected_Component {\n int vsize;\n vector<vector<int>> G, reverseG;\n vector<int> vs, cmp;\n vector<bool> used;\n Strongly_Connected_Component(int newv = 1) {\n vsize = newv;\n G.resize(vsize);\n reverseG.resize(vsize);\n used.resize(vsize, 0);\n cmp.resize(vsize);\n }\n\n bool add(int from, int to) {\n G[from].push_back(to);\n reverseG[to].push_back(from);\n return 1;\n }\n void dfs(int v) {\n used[v] = true;\n int gvsize = G[v].size();\n for(int i = 0; i < gvsize; ++i)\n if(!used[G[v][i]]) dfs(G[v][i]);\n vs.push_back(v);\n }\n void rdfs(int v, int k) {\n used[v] = true;\n cmp[v] = k;\n int rgvsize = reverseG[v].size();\n for(int i = 0; i < rgvsize; ++i)\n if(!used[reverseG[v][i]]) rdfs(reverseG[v][i], k);\n }\n int solve() {\n used.assign(vsize, 0);\n vs.clear();\n for(int v = 0; v < vsize; ++v)\n if(!used[v]) dfs(v);\n used.assign(vsize, 0);\n int k = 0;\n for(int i = (int)vs.size() - 1; i >= 0; --i)\n if(!used[vs[i]]) rdfs(vs[i], k++);\n return k;\n }\n bool issame(int l, int r) { return cmp[l] == cmp[r]; }\n};\n\nlong long n;\nvector<long double> p, afterp;\nvector<vector<bool>> a;\nStrongly_Connected_Component scc;\n\nlong double solve();\n\nint main() {\n cout << fixed << setprecision(10);\n while(1) {\n cin >> n;\n if(n == 0) break;\n p.resize(n);\n scc = Strongly_Connected_Component(n);\n a.assign(n, vector<bool>(n, 0));\n for(int i = 0; i < n; ++i) {\n int m, to;\n cin >> p[i] >> m;\n for(int j = 0; j < m; ++j) {\n cin >> to;\n scc.add(i, --to);\n a[i][to] = 1;\n }\n }\n cout << solve() << endl;\n }\n return 0;\n}\n\nlong double solve() {\n long double res = 1;\n int apsize = scc.solve();\n afterp.assign(apsize, 1.0);\n for(int i = 0; i < n; ++i) afterp[scc.cmp[i]] *= p[i];\n for(int i = 0; i < apsize; ++i) {\n bool ch = 1;\n for(int j = 0; j < n; ++j)\n if(scc.cmp[j] == i)\n for(int l = 0; l < n; ++l)\n if(scc.cmp[l] != i && a[l][j]) ch = 0;\n if(ch) res *= 1.0 - afterp[i];\n }\n return res;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3436, "score_of_the_acc": -0.0284, "final_rank": 11 }, { "submission_id": "aoj_2748_3736718", "code_snippet": "#include <bits/stdc++.h>\n#define ll long long\nusing namespace std;\n\nusing UnWightedGraph = vector<vector<int> >;\ntemplate <typename G>\nstruct StronglyConnectedComponents {\n const G &g;\n UnWightedGraph gg, rg;\n vector<int> comp, order, used;\n StronglyConnectedComponents(G &g)\n : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {\n for (int i = 0; i < g.size(); i++) {\n for (auto e : g[i]) {\n gg[i].push_back((int)e);\n rg[(int)e].push_back(i);\n }\n }\n }\n int operator[](int k) { return comp[k]; }\n\n void dfs(int idx) {\n if (used[idx]) return;\n used[idx] = true;\n for (int to : gg[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if (comp[idx] != -1) return;\n comp[idx] = cnt;\n for (int to : rg[idx]) rdfs(to, cnt);\n }\n\n void build(UnWightedGraph &t) {\n for (int i = 0; i < gg.size(); i++) dfs(i);\n reverse(order.begin(), order.end());\n int ptr = 0;\n for (int i : order) {\n if (comp[i] == -1) rdfs(i, ptr), ptr++;\n }\n t.resize(ptr);\n for (int i = 0; i < g.size(); i++) {\n for (auto &to : g[i]) {\n int x = comp[i], y = comp[to];\n if (x == y) continue;\n t[x].push_back(y);\n }\n }\n }\n};\n\nint main() {\n int n, m;\n while (cin >> n, n) {\n vector<double> p(n);\n UnWightedGraph g(n), buff;\n for (int i = 0; i < n; i++) {\n cin >> p[i] >> m;\n for (int j = 0; j < m; j++) {\n int a;\n cin >> a;\n a--;\n g[i].push_back(a);\n }\n }\n StronglyConnectedComponents<UnWightedGraph> scc(g);\n scc.build(buff);\n int k = buff.size();\n vector<bool> root(k, true);\n for (int i = 0; i < n; i++) {\n for (int j : g[i]) {\n if (scc[i] != scc[j]) root[scc[j]] = false;\n }\n }\n double ans = 1.0;\n for (int i = 0; i < k; i++) {\n if (root[i]) {\n double q = 1.0;\n for (int j = 0; j < n; j++) {\n if (scc[j] == i) {\n q *= p[j];\n }\n }\n ans *= 1 - q;\n }\n }\n cout << fixed << setprecision(10) << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3408, "score_of_the_acc": -0.0261, "final_rank": 9 } ]
aoj_2747_cpp
カーテン もうすぐ夏がやってくる.あなたは夏に向けて部屋の模様替えをすることにした.今年の夏はとても日差しが強いことが予想されており,まぶしいのが苦手なあなたには辛い季節になりそうだ.そこで,あなたは部屋の明るさを調節するために,部屋の窓にカーテンを取り付けようと考えた. 取り付けるカーテンは長方形であり,辺が地面に対して垂直,もしくは平行であるように取り付ける.また,あなたの部屋の窓は非常に特殊な形をしており,各辺が地面に平行または垂直であるような N 角形で表される.そのため,カーテンを取り付けたときにカーテンに覆われていない窓の面積がどのくらいになるのかを求めるのは難しい.部屋の明るさを調節するためにも,カーテンを取り付ける位置を決めた時にどのくらい窓が覆えるかを知ることは重要である.そこで,あなたは窓とカーテンの設置位置と形状が与えられたときに,カーテンに覆われていない窓の面積を求めるプログラムを作ることにした. 例として次のような窓とカーテンの設置の仕方を考える.この場合はカーテンに隠れていない窓の面積は 8 となる.この例はサンプル入力の 3 ケース目に対応する. Input 入力は複数データセットからなる. 各データセットは次の形式で与えられる. N x 1 y 1 : : x N y N a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 最初の行には窓の持つ頂点数を表す整数 N が与えられる ( 4 ≤ N ≤ 100 ).続く N 行には窓の相異なる頂点のx座標を表す整数 x i とy座標を表す整数 y i が与えられる ( -20,000 ≤ x i , y i ≤ 20,000, 1 ≤ i ≤ N ).ここで,y軸の正の向きはx軸の正の向きから90度分反時計回りに回転させた方向とする.さらに,続く 4 行にはカーテンの相異なる頂点のx座標を表す整数 a j と y座標を表す整数 b j が与えられる ( -20,000 ≤ a j , b j ≤ 20,000, 1 ≤ j ≤ 4 ).窓,カーテンともに,それぞれの頂点は反時計回り順に与えられる.また,窓,カーテンを表す図形はそれぞれ自己交差がない図形である. 入力の終わりは1つの 0 からなる行で示す. Output 各データセットについて,カーテンに覆われていない窓の面積を 1 行に出力せよ.ただし,面積は必ず整数値になることに注意せよ. Sample Input 4 0 0 10 0 10 10 0 10 0 0 5 0 5 10 0 10 6 0 0 10 0 10 5 5 5 5 10 0 10 2 0 8 0 8 10 2 10 12 1 1 1 3 -1 3 -1 1 -3 1 -3 -1 -1 -1 -1 -3 1 -3 1 -1 3 -1 3 1 2 2 -2 2 -2 -2 2 -2 4 20000 20000 -20000 20000 -20000 -20000 20000 -20000 1000 1000 -1000 1000 -1000 -1000 1000 -1000 4 1000 1000 -1000 1000 -1000 -1000 1000 -1000 20000 20000 -20000 20000 -20000 -20000 20000 -20000 4 0 0 10 0 10 10 0 10 20 0 30 0 30 10 20 10 0 Output for Sample Input 50 30 8 1596000000 0 100
[ { "submission_id": "aoj_2747_10683663", "code_snippet": "#include <bits/stdc++.h>\n#include <unordered_map>\n#include <stdlib.h>\nusing namespace std;\n#define rep(i, a, n) for(ll i = a; i < n; i++)\n#define rrep(i, a, n) for(ll i = a; i >= n; i--)\n#define ll long long\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define all(x) (x).begin(), (x).end()\n//constexpr ll MOD = 1000000007;\nconstexpr ll MOD = 998244353;\nconstexpr int IINF = 1001001001;\nconstexpr ll INF = 1LL<<60;\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\n\nll gcd(ll a, ll b){\n if(a%b == 0){\n return b;\n }else{\n return gcd(b, a%b);\n }\n}\n\nll lcm(ll a, ll b){\n return a*b / gcd(a, b);\n}\n\nll powMod(ll x, ll n) {\n if (n == 0) return 1 % MOD;\n ll val = powMod(x, n / 2);\n val *= val;\n val %= MOD;\n if (n % 2 == 1) val *= x;\n return val % MOD;\n}\n\ntemplate <class T, T (*op)(T, T), T (*e)(), class F, T (*mapping)(F, T), F (*composition)(F, F), F (*id)()> \nclass LazySegmentTree {\n ll _n, size, log;\n vector<T> d;\n vector<F> lz;\n\n void update(ll k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n\n void all_apply(ll k, F f){\n d[k] = mapping(f, d[k]);\n if (k < size) lz[k] = composition(f, lz[k]);\n }\n\n void push(ll k){\n all_apply(2*k, lz[k]);\n all_apply(2*k+1, lz[k]);\n lz[k] = id();\n }\n\npublic:\n LazySegmentTree() : LazySegmentTree(0) {}\n explicit LazySegmentTree(ll n) : LazySegmentTree(vector<T>(n, e())) {} // explicit で明示的に型を指定する\n explicit LazySegmentTree(const vector<T> &v) : _n(int(v.size())) {\n // sizeは_nを超える最小の2のべき乗\n size = 1;\n while(size < _n) size *= 2, log++; \n\n // log は木の高さ(sizeの桁数)\n log = 0;\n while (!(size & (1 << log))) log++;\n\n d = vector<T>(2*size, e());\n lz = vector<F>(size, id());\n\n for(ll i = 0; i < _n; i++) d[size+i] = v[i];\n for(ll i = size-1; i >= 1; i--){\n update(i);\n }\n }\n\n void set(ll p, T x){\n assert(0 <= p && p < _n);\n p += size;\n for(ll i = log; i >= 1; i--) push(p >> i);\n d[p] = x;\n for(ll i = 1; i <= log; i++) update(p >> i);\n }\n\n T get(ll p) {\n assert(0 <= p && p < _n);\n p += size;\n for(ll i = log; i >= 1; i--) push(p >> i);\n return d[p];\n }\n\n\n T prod(ll l, ll r) {\n assert(0 <= l && l <= r && r <= _n);\n if(l == r) return e();\n\n l += size;\n r += size;\n\n for(ll i = log; i >= 1; i--){\n if(((l >> i) << i) != l) push(l >> i);\n if(((r >> i) << i) != r) push((r-1) >> i);\n }\n \n T sml = e(), smr = e();\n while(l < r){\n if(l&1) sml = op(sml, d[l++]);\n if(r&1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n T all_prod() {return d[1]; }\n\n void apply(ll p, F f){\n assert(0 <= p && p < _n);\n p += size;\n for(ll i = log; i >= 1; i--) push(p >> i); \n d[p] = mapping(f, d[p]);\n for(ll i = 1; i <= log; i++) update(p >> i);\n }\n\n void apply(ll l, ll r, F f){\n assert(0 <= l && l <= r && r <= _n);\n if(l == r) return;\n\n l += size;\n r += size;\n\n for(ll i = log; i >= 1; i--){\n if(((l >> i) << i) != l) push(l >> i);\n if(((r >> i) << i) != r) push((r-1) >> i);\n }\n\n {\n ll l2 = l, r2 = r;\n while(l < r){\n if(l&1) all_apply(l++, f);\n if(r&1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n for(ll i = 1; i <= log; i++){\n if(((l >> i) << i) != l) update(l >> i);\n if(((r >> i) << i) != r) update((r-1) >> i);\n }\n }\n\n // f(op(a[l], a[l + 1], ..., a[r - 1])) = trueとなる最大のr\n template <bool (*g)(T)> ll max_right(ll l) {\n return max_right(l, [](T x) { return g(x); });\n }\n template <class G> ll max_right(ll l, G g) {\n assert(0 <= l && l <= _n);\n assert(g(e()));\n if (l == _n) return _n;\n l += size;\n for (ll i = log; i >= 1; i--) push(l >> i);\n T sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < size) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n // f(op(a[l], a[l + 1], ..., a[r - 1])) = trueとなる最小のl\n template <bool (*g)(T)> ll min_left(ll r) {\n return min_left(r, [](T x) { return g(x); });\n }\n template <class G> ll min_left(ll r, G g) {\n assert(0 <= r && r <= _n);\n assert(g(e()));\n if (r == 0) return 0;\n r += size;\n for (ll i = log; i >= 1; i--) push((r - 1) >> i);\n T sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < size) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n};\n\n//区間加算・区間和取得\nstruct S{\n long long value;\n ll size;\n};\nusing F = long long;\n\nS op(S a, S b){ return {a.value+b.value, a.size+b.size}; }\nS e(){ return {0, 0}; }\nS mapping(F f, S x){ return {x.value + f*x.size, x.size}; }\nF composition(F f, F g){ return f+g; }\nF id(){ return 0; }\n// ll n;\n// vector<S> v(n, {0, 1});\n// LazySegmentTree<S, op, e, F, mapping, composition, id> seg(v);\n\nstruct Pos{\n ll x, y;\n};\n\nint main() {\n while(true){\n ll n; cin >> n;\n if(n == 0) break;\n vector<Pos> vec(n+1);\n rep(i,0,n){\n ll x, y; cin >> x >> y;\n vec[i] = {x,y};\n }\n vec[n] = vec[0];\n ll x1 = INF, x2 = -INF, y1 = INF, y2 = -INF;\n rep(i,0,4){\n ll a, b; cin >> a >> b;\n chmin(x1, a);\n chmin(y1, b);\n chmax(x2, a);\n chmax(y2, b);\n }\n vector<tuple<ll,ll,ll,ll>> event;\n ll b = 20000;\n rep(i,0,n){\n if(vec[i].y > vec[i+1].y){\n event.push_back({vec[i].x, 1, vec[i+1].y+b, vec[i].y+b});\n }\n if(vec[i].y < vec[i+1].y){\n event.push_back({vec[i].x, -1, vec[i].y+b, vec[i+1].y+b});\n }\n }\n event.push_back({x1,1,y1+b,y1+b});\n event.push_back({x2,-1,y1+b,y1+b});\n sort(all(event));\n vector<S> v(b*2+1,{0,1});\n LazySegmentTree<S,op,e,F,mapping,composition,id> seg(v);\n ll ans = 0;\n ll pre = -INF;\n for(auto [x,p,yl,yr]: event){\n if(pre != -INF){\n ans += seg.all_prod().value*(x-pre);\n if(x1 < x && x <= x2){\n ans -= seg.prod(y1+b,y2+b).value*(x-pre);\n }\n }\n seg.apply(yl,yr,p);\n pre = x;\n }\n\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6612, "score_of_the_acc": -0.0331, "final_rank": 10 }, { "submission_id": "aoj_2747_10582810", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing P = pair<int, int>;\nusing PP = pair<int, P>;\nusing PLL = pair<ll, ll>;\nusing PPLL = pair<ll, PLL>;\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rrep(i, n) for(ll i = n - 1; i >= 0; --i)\n#define loop(i, a, b) for(ll i = a; i <= b; ++i)\n#define all(v) v.begin(), v.end()\n#define nC2(n) n * (n - 1) / 2\nconstexpr ll INF = 9009009009009009009LL;\nconstexpr int INF32 = 2002002002;\nconstexpr ll MOD = 998244353;\nconstexpr ll MOD107 = 1000000007;\n\n// Linear Algebra ////////////////////////////////////////////////\nconst double Rad2Deg = 180.0 / M_PI;\nconst double Deg2Rad = M_PI / 180.0;\n//////////////////////////////////////////////////////////////////\n\nint dx[8] = {0, 1, 0, -1, 1, 1, -1, -1};\nint dy[8] = {1, 0, -1, 0, 1, -1, 1, -1};\n\ntemplate <class T>\ninline bool chmax(T &a, const T &b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmin(T &a, const T &b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\ntemplate <typename Container,\n typename = std::enable_if_t<\n !std::is_same_v<Container, std::string> &&\n std::is_convertible_v<decltype(std::declval<Container>().begin()),\n typename Container::iterator>>>\nostream &operator<<(ostream &os, const Container &container) {\n auto it = container.begin();\n auto end = container.end();\n\n if (it != end) {\n os << *it;\n ++it;\n }\n\tfor (; it != end; ++it) {\n\t\tos << \" \" << *it;\n\t}\n return os;\n}\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (size_t i = 0; i < v.size(); ++i) {\n os << v[i];\n if (i != v.size() - 1) os << \" \";\n }\n return os;\n}\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<vector<T>>& vv) {\n\tfor (size_t i = 0; i < vv.size(); ++i) {\n\t\tos << vv[i];\n\t\tif (i != vv.size() - 1) os << \"\\n\";\n }\n return os;\n}\ntemplate <typename T>\nistream& operator>>(istream& is, vector<T>& v) {\n\tassert(v.size() > 0);\n\tfor (size_t i = 0; i < v.size(); ++i) is >> v[i];\n\treturn is;\n}\ntemplate <typename T>\nistream& operator>>(istream& is, vector<vector<T>>& vv) {\n\tassert(vv.size() > 0);\n\tfor (size_t i = 0; i < vv.size(); ++i) is >> vv[i];\n\treturn is;\n}\n\nstruct phash {\n\ttemplate<class T1, class T2>\n inline size_t operator()(const pair<T1, T2> & p) const {\n auto h1 = hash<T1>()(p.first);\n auto h2 = hash<T2>()(p.second);\n\n\t\tsize_t seed = h1 + h2; \n\t\th1 = ((h1 >> 16) ^ h1) * 0x45d9f3b;\n h1 = ((h1 >> 16) ^ h1) * 0x45d9f3b;\n h1 = (h1 >> 16) ^ h1;\n seed ^= h1 + 0x9e3779b9 + (seed << 6) + (seed >> 2);\n\t\th2 = ((h2 >> 16) ^ h2) * 0x45d9f3b;\n h2 = ((h2 >> 16) ^ h2) * 0x45d9f3b;\n h2 = (h2 >> 16) ^ h2;\n seed ^= h2 + 0x9e3779b9 + (seed << 6) + (seed >> 2);\n return seed;\n }\n};\n\n\n\n\n\nint solve() {\n\tll n;\n\tcin >> n;\n\tif (n == 0)\n\t\treturn 1;\n\n\tvector<PLL> vert(n);\n\trep(i, n)\n\t{\n\t\tcin >> vert[i].first >> vert[i].second;\n\t\tvert[i].first += 2 * 1e4;\n\t\tvert[i].second += 2 * 1e4;\n\t}\n\tvector<PLL> cur_vert(4);\n\trep(i, 4) {\n\t\t cin >> cur_vert[i].first >> cur_vert[i].second;\n\t\t cur_vert[i].first += 2 * 1e4;\n\t\t cur_vert[i].second += 2 * 1e4;\n\t}\n\n\tvvll bound(4 * 1e4 + 10, vll());\n\trep(i, n) {\n\t\tauto [x, y] = vert[i];\n\t\tauto [nx, ny] = vert[(i + 1) % n];\n\t\tif (x == nx)\n\t\t\tcontinue;\n\t\tif (nx < x)\n\t\t\tswap(x, nx);\n\t\tloop(j, x, nx - 1) {\n\t\t\tbound[j].push_back(y);\n\t\t}\n\t}\n\n\tvvll curtain(4 * 1e4 + 10, vll());\n\trep(i, 4) {\n\t\tauto [x, y] = cur_vert[i];\n\t\tauto [nx, ny] = cur_vert[(i + 1) % 4];\n\t\tif (x == nx)\n\t\t\tcontinue;\n\t\tif (nx < x)\n\t\t\tswap(x, nx);\n\t\tloop(j, x, nx - 1) {\n\t\t\tcurtain[j].push_back(y);\n\t\t}\n\t}\n\n\tll ans = 0;\n\trep(i, bound.size()) {\n\t\tassert(bound[i].size() % 2 == 0);\n\t\tassert(curtain[i].size() == 2 || curtain[i].size() == 0);\n\t\tsort(all(bound[i]));\n\t\tsort(all(curtain[i]));\n\t\trep(j, bound[i].size() / 2) {\n\t\t\tll idx = 2 * j;\n\t\t\tif (curtain[i].size() == 2) {\n\t\t\t\tll mn = curtain[i][0];\n\t\t\t\tll mx = curtain[i][1];\n\t\t\t\tans += abs(min(bound[i][idx], mn) - min(bound[i][idx + 1], mn));\n\t\t\t\tans += abs(max(bound[i][idx], mx) - max(bound[i][idx + 1], mx));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tans += abs(bound[i][idx] - bound[i][idx + 1]);\n\t\t\t}\n\t\t}\n\t}\n\n\tcout << ans << \"\\n\";\n\n\treturn 0;\n}\n\nint main() {\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\n\twhile (!solve()) {}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 26760, "score_of_the_acc": -0.2772, "final_rank": 17 }, { "submission_id": "aoj_2747_9350834", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)\n#define rrep(i,start,end) for (long long i = start;i >= (long long)(end);i--)\n#define repn(i,end) for(long long i = 0; i <= (long long)(end); i++)\n#define reps(i,start,end) for(long long i = start; i < (long long)(end); i++)\n#define repsn(i,start,end) for(long long i = start; i <= (long long)(end); i++)\n#define each(p,a) for(auto &p:a)\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\ntypedef vector<long long> vll;\ntypedef vector<pair<long long ,long long>> vpll;\ntypedef vector<vector<long long>> vvll;\ntypedef set<ll> sll;\ntypedef map<long long , long long> mpll;\ntypedef pair<long long ,long long> pll;\ntypedef tuple<long long , long long , long long> tpl3;\n#define LL(...) ll __VA_ARGS__; input(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__; input(__VA_ARGS__)\n#define Str(...) string __VA_ARGS__; input(__VA_ARGS__)\n#define Ch(...) char __VA_ARGS__; input(__VA_ARGS__)\n#define all(a) (a).begin(),(a).end()\n#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );\n#define sz(x) (int)x.size()\n// << std::fixed << std::setprecision(10)\nconst ll INF = 1LL << 60;\nconst ld EPS = 1e-9;\n \ninline ll lfloor(ll x,ll m){return (x - ((x % m+ m)%m))/m;}\ninline ll positive_mod(ll a,ll m){return (a % m + m)%m;}\ninline ll popcnt(ull a){ return __builtin_popcountll(a);}\ntemplate<class T> bool chmin(T& a, T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T> bool chmax(T& a, T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> std::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T> std::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\ntemplate<typename T1, typename T2>std::ostream &operator<< (std::ostream &os, std::pair<T1,T2> p){os << \"{\" << p.first << \",\" << p.second << \"}\";return os;}\ntemplate<class... T>void input(T&... a){(cin >> ... >> a);}\nvoid print(){cout << endl;}\ntemplate<class T, class... Ts>void print(const T& a, const Ts&... b){cout << a;((cout << ' ' << b), ...);cout << endl;}\ntemplate<class T> void pspace(const T& a){ cout << a << ' ';}\nvoid perr(){cerr << endl;}\ntemplate<class T, class... Ts>void perr(const T& a, const Ts&... b){cerr << a;((cerr << ' ' << b), ...);cerr << endl;}\nvoid yes(bool i = true){ return print(i?\"yes\":\"no\"); }\nvoid Yes(bool i = true){ return print(i?\"Yes\":\"No\"); }\nvoid YES(bool i = true){ return print(i?\"YES\":\"NO\"); }\ntemplate <class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v) e++;return v;}\ntemplate <class T> vector<T> operator++(vector<T> &v, signed) {auto res = v;for(auto &e : v) e++;return res;}\ntemplate <class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v) e--;return v;}\ntemplate <class T> vector<T> operator--(vector<T> &v, signed) {auto res = v;for(auto &e : v) e--;return res;}\n//grid探索用\nvector<ll> _ta = {0,0,1,-1,1,1,-1,-1};\nvector<ll> _yo = {1,-1,0,0,1,-1,1,-1};\nbool isin(ll now_i,ll now_j,ll h,ll w){return (0<=now_i && now_i < h && 0 <= now_j && now_j < w);}\n \nll lpow(ll x,ll n){ll ans = 1;while(n >0){if(n & 1)ans *= x;x *= x;n >>= 1;}return ans;}\nll Modlpow(ll x,ll n,ll m){ll ans = 1;ll a = x%m;while(n >0){if(n & 1){ans *= a;ans%= m;}a *= a;a %= m;n >>= 1;}return ans;} \nconst ll MOD9 = 998244353LL;\nconst ll MOD10 = 1000000007LL;\n\n// for AOJ or ICPC or etc..\n// 全部が0だったらtrueを返す\ntemplate<class Tp> bool zero (const Tp &x) {return x == 0;}\ntemplate<class Tp, class... Args> bool zero (const Tp &x, const Args& ...args) {return zero(x) and zero(args...);}\n\n\n//参考 https://github.com/saphmitchy/deliair-lib\n// 型名\n// R:Real, P:Point, L:Line, S:Segment, C:Circle, VP:vector<Point>\n\n#define X(p) real(p)\n#define Y(p) imag(p)\n\nusing R = ld;\nusing P = complex<R>;\nusing VP = vector<P>;\n\n//const R EPS = 1e-9; // ここは適宜調節する,いつものやつから消す\nconst R pi = acos(-1.0);\n\nint sgn(R a) {\n return (a < -EPS) ? -1 : (a > EPS) ? 1 : 0;\n} // 符号関数\n\nbool eq(R a, R b) {//実数の一致判定\n return sgn(b - a) == 0;\n}\n\nP operator*(P p, R d) {//ベクトルのd倍\n return P(X(p) * d, Y(p) * d);\n}\n\nP operator/(P p, R d) {//ベクトルの1/d倍\n return p * (1 / d);\n}\n\nistream &operator>>(istream &is, P &p) {\n // R a, b; // 入力が小数\n int a, b; // 入力が整数\n is >> a >> b;\n p = P(a, b);\n return is;\n}\n\nostream &operator<<(ostream &os, P p) {\n return os << X(p) << ' ' << Y(p);\n}\n\nR getarg(P b,P a){//ベクトルbはベクトルaを何radian回転させる必要があるか\n assert(sgn(abs(a)) != 0);//長さが0はだめ\n return arg(b/a);\n}\n\nbool cp_x(P p, P q) {//ベクトルの比較x軸で比較->y軸で比較\n if (!eq(X(p), X(q)))\n return X(p) < X(q);\n return Y(p) < Y(q);\n}\n\nbool cp_y(P p, P q) {//ベクトルの比較y軸で比較->x軸で比較\n if (!eq(Y(p), Y(q)))\n return Y(p) < Y(q);\n return X(p) < X(q);\n}\n\nstruct L {//直線ab\n P a, b;\n L() {}\n L(P a, P b) : a(a), b(b) {}\n\n // 入出力(必要なら)\n friend ostream &operator<<(ostream &os, L &l) {\n return os << l.a << ' ' << l.b;\n }\n friend istream &operator>>(istream &is, L &l) {\n return is >> l.a >> l.b;\n }\n};\n\nstruct S : L {//線分ab\n S() {}\n S(P a, P b) : L(a, b) {}\n};\n\nstruct C {//中心p 半径rの円\n P p;\n R r;\n C() {}\n C(P p, R r) : p(p), r(r) {}\n};\n\nP rot(P p, R t) {//ベクトルの回転\n return p * P(cos(t), sin(t));\n}\n\n//2つのベクトルの内積\nR dot(P p, P q) {\n return X(p) * X(q) + Y(p) * Y(q);\n}\n\n//2つのベクトルの外積\nR det(P p, P q) {\n return X(p) * Y(q) - Y(p) * X(q);\n}\n\n// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C&lang=jp\nint ccw(P a, P b, P c) { // 線分 ab に対する c の位置関係 \n b -= a, c -= a;//ベクトルab,ベクトルacにした\n if (sgn(det(b, c)) == 1)//外積右ねじ正\n return +1; // COUNTER_CLOCKWISE a,b,cが反時計回り\n if (sgn(det(b, c)) == -1)\n return -1; // CLOCKWISE\n if (dot(b, c) < 0.0)\n return +2; // ONLINE_BACK\n if (norm(b) < norm(c))\n return -2; // ONLINE_FRONT\n return 0; // ON_SEGMENT\n}\n\nbool para(L a, L b) { // 平行判定\n return eq(det(a.b - a.a, b.b - b.a), 0.0);\n}\n\nbool orth(L a, L b) { // 垂直判定\n return eq(dot(a.b - a.a, b.b - b.a), 0.0);\n}\n\nP proj(L l, P p) { // 垂線の足\n R t = dot(p - l.a, l.b - l.a) / norm(l.b - l.a);\n return l.a + (l.b - l.a) * t;\n}\n\n// これいる?\n// P proj(S s, P p) {\n// R t = dot(p - s.a, s.b - s.a) / norm(s.b - s.a);\n// return s.a + (s.b - s.a) * t;\n// }\n\nP refl(L l, P p) { // 線対称の位置にある点\n return p + (proj(l, p) - p) * 2.0;\n}\n\nbool inter(L l, P p) { // 交点を持つか判定\n return abs(ccw(l.a, l.b, p)) != 1;\n}\n\nbool inter(S s, P p) {\n return ccw(s.a, s.b, p) == 0;\n}\n\nbool inter(L l, L m) {\n if (!eq(det(l.b - l.a, m.b - m.a), 0.0))\n return true;\n return eq(det(l.b - l.a, m.b - l.a), 0.0);\n}\n\nbool inter(L l, S s) {\n return sgn(det(l.b - l.a, s.a - l.a) * det(l.b - l.a, s.b - l.a)) <= 0;\n}\n\nbool inter(S s, L l) {\n return inter(l, s);\n}\n\nbool inter(S s, S t) {\n if (ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) > 0)\n return false;\n return ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\nR dist(P p, P q) {\n return abs(q - p);\n}\n\nR dist(L l, P p) {\n return abs(p - P(proj(l, p)));\n}\n\nR dist(S s, P p) {\n P h = proj(s, p);\n if (inter(s, h))\n return abs(h - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\n\nR dist(L l, L m) {\n return inter(l, m) ? 0.0 : dist(l, m.a);\n}\n\nR dist(S s, S t) {\n if (inter(s, t))\n return 0.0;\n return min({dist(s, t.a), dist(s, t.b), dist(t, s.a), dist(t, s.b)});\n}\n\nR dist(L l, S s) {\n if (inter(l, s))\n return 0.0;\n return min(dist(l, s.a), dist(l, s.b));\n}\n\nR dist(S s, L l) {\n return dist(l, s);\n}\n\nbool inter(C c, L l) {\n return sgn(c.r - dist(l, c.p)) >= 0;\n}\n\nbool inter(C c, P p) {\n return eq(abs(p - c.p), c.r);\n}\n\n// 共通接線の本数\n// 交点なし:4\n// 外接:3\n// 2点で交わる:2\n// 内接:1\n// 一方がもう一方を内包:0\nint inter(C c1, C c2) {\n if (c1.r < c2.r)\n swap(c1, c2);\n R d = abs(c1.p - c2.p);\n int a = sgn(d - c1.r - c2.r);\n if (a >= 0)\n return 3 + a;\n return 1 + sgn(d - c1.r + c2.r);\n}\n\nVP crosspoint(L l, L m) {\n VP ret;\n if (!inter(l, m))\n return ret;\n R A = det(l.b - l.a, m.b - m.a);\n R B = det(l.b - l.a, l.b - m.a);\n if (eq(A, 0.0) && eq(B, 0.0)) {\n ret.emplace_back(m.a);\n } else {\n ret.emplace_back(m.a + (m.b - m.a) * B / A);\n }\n return ret;\n}\n\nVP crosspoint(S s, S t) {\n return inter(s, t) ? crosspoint(L(s), L(t)) : VP();\n}\n\nVP crosspoint(C c, L l) {//円と直線の交点\n P h = proj(l, c.p);\n P e = (l.b - l.a) / abs(l.b - l.a);\n VP ret;\n if (!inter(c, l))\n return ret;\n if (eq(dist(l, c.p), c.r)) {\n ret.emplace_back(h);\n } else {\n R b = sqrt(c.r * c.r - norm(h - c.p));\n ret.push_back(h + e * b), ret.push_back(h - e * b);\n }\n return ret;\n}\n\nVP crosspoint(C c, S s) {//円と線分の交点\n P h = proj(s, c.p);\n P e = (s.b - s.a) / abs(s.b - s.a);\n VP ret;\n if (!inter(c, s))\n return ret;\n if (eq(dist(s, c.p), c.r)) {\n ret.emplace_back(h);\n } else {\n R b = sqrt(c.r * c.r - norm(h - c.p));\n if(ccw(s.a,s.b,h - e * b) == 0){//s.aに近い方から線分上なら追加する\n ret.push_back(h - e * b);\n }\n if(ccw(s.a,s.b,h + e * b)==0){\n ret.push_back(h + e * b);\n }\n }\n return ret;\n}\n\nVP crosspoint(C c1, C c2) {//2つの円の交わる点\n R d = abs(c1.p - c2.p);\n R a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n R t = atan2(Y(c2.p) - Y(c1.p), X(c2.p) - X(c1.p));\n VP ret;\n if (inter(c1, c2) % 4 == 0) // 交わらないとき\n return ret;\n if (eq(a, 0.0)) {\n ret.emplace_back(P(c1.p + rot(P(c1.r, 0.0), t)));\n } else {\n P p1 = c1.p + rot(P(c1.r, 0.0), t + a);\n P p2 = c1.p + rot(P(c1.r, 0.0), t - a);\n ret.emplace_back(p1), ret.emplace_back(p2);\n }\n return ret;\n}\n\nVP cut(VP p, L l, bool border = true) { // 直線が多角形に切り取られる区間\n int n = sz(p);\n p.emplace_back(p[0]), p.emplace_back(p[1]);\n VP ret;\n rep(i, n) {\n if (!eq(dist(l, p[i]), 0) && !eq(dist(l, p[i + 1]), 0)) {\n S s(p[i], p[i + 1]);\n if (eq(dist(l, s), 0)) {\n auto res = crosspoint(l, s);\n ret.emplace_back(res[0]);\n }\n }\n if (eq(dist(l, p[i + 1]), 0)) {\n if ((eq(dist(l, p[i]), 0) || eq(dist(l, p[i + 2]), 0)) && !border)\n continue;\n S s(p[i], p[i + 2]);\n if (eq(dist(l, s), 0))\n ret.emplace_back(p[i + 1]);\n }\n }\n return ret;\n}\n\nVP rectangle(S s, R r) { // sを軸とした幅rの長方形\n P d = (s.a - s.b) * P(0, 1);\n d *= r / sqrt(norm(d));\n return VP{s.a + d, s.a - d, s.b - d, s.b + d};\n}\n\nL vertical_bisector(P p, P q) { // 垂直二等分線\n L l;\n l.a = (p + q) * 0.5;\n l.b = l.a + rot(q - p, pi * 0.5);\n return l;\n}\n\nL angle_bisector(P a,P b,P c){//角abcの二等分線(角bの2等分線)\n L l;\n l.a = b;\n R ang = atan2(Y(c-b),X(c-b)) - atan2(Y(a-b),X(a-b));//なす角\n ang/=2.0;\n l.b = l.a + rot(a-b,ang);\n return l;\n}\n\nC Apollonius(P p, P q, R a, R b) { // アポロニウスの円\n P p1 = (p * b + q * a) / (a + b), p2 = (-p * b + q * a) / (a - b);\n C c;\n c.p = (p1 + p2) * 0.5;\n c.r = abs(p1 - p2) * 0.5;\n return c;\n}\n\nR area(VP p) { // 多角形の面積\n R ret = 0.0;\n int n = sz(p);\n rep(i, n) ret += det(p[i], p[(i + 1) % n]);\n return abs(ret * 0.5);\n}\n\nint in_polygon(VP p, P q) { // IN:2, ON:1, OUT:0\n int n = sz(p);\n int ret = 0;\n rep(i, n) {\n P a = p[i] - q, b = p[(i + 1) % n] - q;\n if (eq(det(a, b), 0.0) && sgn(dot(a, b)) <= 0)\n return 1;\n if (Y(a) > Y(b))\n swap(a, b);\n if (sgn(Y(a)) <= 0 && sgn(Y(b)) == 1 && sgn(det(a, b)) == 1)\n ret ^= 2;\n }\n return ret;\n}\n\nVP tangent(C c, P p) { // 点 p を通る円 c の接線と c の接点\n return crosspoint(c, C(p, sqrt(norm(p - c.p) - c.r * c.r)));\n}\n\nvector<L> tangent(C c1, C c2) { // 共通接線\n vector<L> ret;\n if (c1.r < c2.r)\n swap(c1, c2);\n R r = abs(c2.p - c1.p);\n if (eq(r, 0.0))\n return ret;\n P u = (c2.p - c1.p) / r;\n P v = rot(u, pi * 0.5);\n for (R s : {1.0, -1.0}) {\n R h = (c1.r + c2.r * s) / r;\n if (eq(abs(h), 1.0)) {\n ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r);\n } else if (abs(h) < 1.0) {\n P uu = u * h, vv = v * sqrt(1.0 - h * h);\n ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s);\n ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s);\n }\n }\n return ret;\n}\n\nVP convex_hull(VP p) { // 凸包\n sort(all(p), cp_x);\n p.erase(unique(all(p)), end(p));\n int n = sz(p), k = 0;\n if (n == 1)\n return p;\n VP ch(2 * n);\n for (int i = 0; i < n; ch[k++] = p[i++]) {\n while (k >= 2 && sgn(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) <= 0)\n k--;\n }\n for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n while (k >= t && sgn(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) <= 0)\n k--;\n }\n ch.resize(k - 1);\n return ch;\n}\n\nR closest_pair(VP p) { // 最近点対の距離\n if (sz(p) <= 1)\n return 1e18;\n sort(all(p), cp_x);\n VP memo(sz(p));\n\n function<R(int, int)> rec = [&](int l, int r) {\n if (r - l <= 1)\n return R(1e18);\n int m = (l + r) >> 1;\n R x = X(p[m]);\n R ret = min(rec(l, m), rec(m, r));\n inplace_merge(p.begin() + l, p.begin() + m, p.begin() + r, cp_y);\n int cnt = 0;\n reps(i, l, r) {\n if (abs(X(p[i]) - x) >= ret)\n continue;\n rep(j, cnt) {\n P d = p[i] - memo[cnt - j - 1];\n if (Y(d) >= ret)\n break;\n chmin(ret, abs(d));\n }\n memo[cnt++] = p[i];\n }\n return ret;\n };\n\n return rec(0, sz(p));\n}\n\nR farthest_pair(VP p) {//最遠点対の距離\n VP ps = convex_hull(p);\n ll n = ps.size();\n if(n == 2){//凸包が潰れてる\n return dist(ps[0],ps[1]);\n }\n ll i = 0,j = 0;\n rep(k,n){//x軸方向に最も遠い点対を求める\n if(cp_x(ps[k],ps[i]))i = k;\n if(cp_x(ps[j],ps[k]))j = k;\n }\n R ret = 0;\n ll si = i,sj = j;\n while(i != sj || j != si){//180度反転しきるまで\n ret = max(ret,dist(ps[i],ps[j]));\n if(det(ps[(i+1)%n] - ps[i],ps[(j+1)%n]-ps[j]) < 0){\n i = (i + 1) % n;\n }else{\n j = (j + 1) % n;\n }\n }\n return ret;\n}\n\n// 原点, 点 a, 点 b とで囲まれる領域の面積 (三角形 ver と扇型 ver)\nR calc_element(P a, P b, R cr,bool triangle){\n if(triangle)return det(a,b)/2;\n else{\n P tmp = b * (P(X(a),-Y(a)));\n R ang = atan2(Y(tmp),X(tmp));\n return cr * cr * ang/2;\n }\n}\n\n// 円 C と、三角形 ((0, 0), ia, ib) との共通部分の面積\nR common_area(C c, P ia,P ib){\n P a = ia - c.p , b = ib - c.p;\n if(eq(abs(a-b),0))return 0;\n bool isin_a = (sgn(c.r - abs(a))>= 0);\n bool isin_b = (sgn(c.r - abs(b))>= 0);\n if(isin_a && isin_b)return calc_element(a,b,c.r,true);//aもbも円の中\n\n C oc(P(0,0),c.r);\n S seg(a,b);\n VP cr = crosspoint(oc,seg);\n if(cr.empty())return calc_element(a,b,c.r,false);\n P s = cr[0],t = cr.back();\n return calc_element(s,t,c.r,true) + calc_element(a,s,c.r,isin_a) + calc_element(t,b,c.r,isin_b);\n\n}\n\n\nR common_area(C c, VP vp){// 円cと多角形の共通部分の面積\n R ret = 0;\n ll n = vp.size();\n rep(i,n){\n ret += common_area(c,vp[i],vp[(i+1)%n]);\n }\n return ret;\n}\n\nR common_area(C p, C q) {// 円と円の共通部分の面積\n R d = abs(p.p - q.p);\n if (d >= p.r + q.r - EPS) return 0;\n else if (d <= abs(p.r - q.r) + EPS) return min(p.r, q.r) * min(p.r, q.r) * pi;\n R pcos = (p.r*p.r + d*d - q.r*q.r) / (p.r*d*2);\n R pang = acosl(pcos);\n R parea = p.r*p.r*pang - p.r*p.r*sin(pang*2)/2;\n R qcos = (q.r*q.r + d*d - p.r*p.r) / (q.r*d*2);\n R qang = acosl(qcos);\n R qarea = q.r*q.r*qang - q.r*q.r*sin(qang*2)/2;\n return parea + qarea;\n}\n\nvector<VP> divisions(vector<L> lf, R lim = 1e9) {\n vector<L> ls;\n each(l, lf) {\n bool ok = true;\n each(m, ls) {\n if (para(l, m) & inter(l, m.a)) {\n ok = false;\n break;\n }\n }\n if (ok)\n ls.emplace_back(l);\n }\n VP lc{P(-lim, -lim), P(lim, -lim), P(lim, lim), P(-lim, lim)};\n rep(i, 4) ls.emplace_back(lc[i], lc[(i + 1) % 4]);\n int m = sz(ls);\n VP ps;\n vector<vector<int>> lp(m);\n rep(i, m) {\n reps(j, i + 1, m) {\n each(p, crosspoint(ls[i], ls[j])) {\n if (max(abs(X(p)), abs(Y(p))) < lim + EPS) {\n lp[i].emplace_back(sz(ps)), lp[j].emplace_back(sz(ps));\n ps.emplace_back(p);\n }\n }\n }\n }\n int n = sz(ps);\n vector<int> id(n, -1), to;\n vector<R> rg;\n vector<vector<pair<R, int>>> li(n);\n rep(i, m) {\n sort(all(lp[i]), [&ps](int a, int b) { return cp_x(ps[a], ps[b]); });\n vector<int> q;\n rep(j, sz(lp[i])) {\n int me = id[lp[i][j]], st = j;\n auto np = ps[lp[i][j]];\n while (j + 1 < sz(lp[i])) {\n if (abs(ps[lp[i][j + 1]] - np) < EPS) {\n j++;\n if (id[lp[i][j]] != -1)\n me = id[lp[i][j]];\n } else\n break;\n }\n if (me == -1)\n me = lp[i][st];\n reps(k, st, j + 1) id[lp[i][k]] = me;\n q.emplace_back(me);\n }\n rep(i, sz(q) - 1) {\n P d = ps[q[i + 1]] - ps[q[i]];\n R s = atan2(Y(d), X(d)), t = atan2(-Y(d), -X(d));\n int x = q[i], y = q[i + 1];\n li[x].emplace_back(s, sz(to));\n li[x].emplace_back(s + pi * 2, sz(to));\n to.emplace_back(y), rg.emplace_back(t);\n li[y].emplace_back(t, sz(to));\n li[y].emplace_back(t + pi * 2, sz(to));\n to.emplace_back(x), rg.emplace_back(s);\n }\n }\n rep(i, n) sort(all(li[i]));\n vector<bool> u(sz(to), false);\n vector<VP> ret;\n rep(i, n) {\n each(l, li[i]) {\n int ns = l.second;\n if (u[ns])\n continue;\n VP nv;\n int no = ns;\n bool ok = true;\n while (1) {\n if (sz(nv) > 1) {\n P x = nv[sz(nv) - 2], y = nv[sz(nv) - 1], z = ps[to[no]];\n int c = ccw(x, y, z);\n if (c == 1)\n ok = false;\n if (c != -1)\n nv.pop_back();\n }\n nv.emplace_back(ps[to[no]]);\n u[no] = true;\n no = upper_bound(all(li[to[no]]), pair(rg[no] + EPS, -1))->second;\n if (no == ns)\n break;\n }\n if (ok)\n ret.emplace_back(nv);\n }\n }\n return ret;\n}\n//ref https://github.com/drken1215/algorithm/blob/master/Geometry/arg_sort.cpp\n//verify https://atcoder.jp/contests/abc139/submissions/me\n//点列を偏角ソート\nvoid arg_sort(VP &v){\n //原点=0,(pi,2pi] = -1 (0pi,pi] = 1\n auto sign = [&](const P &p){\n if(sgn(X(p)) == 0 && sgn(Y(p)) == 0){\n return 0;\n }else if(sgn(Y(p)) == -1 || (sgn(Y(p)) == 0 && sgn(X(p)) == 1)){\n return -1;\n }else{\n return 1;\n }\n };\n auto cp = [&](const P &p,const P &q){\n if(sign(p) != sign(q)){\n return sign(p) < sign(q);\n }else{//外積>0で判定\n //同じ向きのときは未定義必要に応じて決める\n return X(p) * Y(q) - Y(p) * X(q) > 0;\n }\n };\n sort(v.begin(),v.end(),cp);\n}\n\n\n// 変数をちゃんと全部受け取る!\nvoid solve(ll n){\n vpll xy(n);\n vll xord,yord;\n rep(i,n){\n LL(x,y);\n xord.push_back(x);\n yord.push_back(y);\n xy[i] = {x,y};\n }\n vpll ab(4);\n rep(i,4){\n LL(x,y);\n ab[i] = {x,y};\n xord.push_back(x);\n yord.push_back(y);\n }\n sort(all(xord));sort(all(yord));\n auto xidx = [&](ll vx){\n return lower_bound(all(xord),vx) - xord.begin();\n };\n auto yidx = [&](ll vy){\n return lower_bound(all(yord),vy) - yord.begin();\n };\n\n VP vp(n);\n rep(i,n){\n vp[i] = P(xidx(xy[i].first),yidx(xy[i].second));\n }\n VP sq(4);\n rep(i,4){\n sq[i] = P(xidx(ab[i].first),yidx(ab[i].second));\n }\n ll ans = 0;\n rep(i,xord.size()-1)rep(j,yord.size()-1){\n R x0 = i, x1 = i+1;\n R y0 = j, y1 = j+1;\n R xmid = (x0 + x1)/2,ymid = (y0+ y1)/2;\n if(in_polygon(vp,P(xmid,ymid)) == 2 && in_polygon(sq,P(xmid,ymid)) == 0){\n ans += (xord[i+1] - xord[i]) *(yord[j+1] - yord[j]);\n }\n }\n cout << ans << endl;\n\n}\n \nint main(){\n ios::sync_with_stdio(false);cin.tie(nullptr);\n while(true){\n LL(n);//変数数調整\n if(zero(n))break;\n solve(n);\n }\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3464, "score_of_the_acc": -0.0251, "final_rank": 9 }, { "submission_id": "aoj_2747_9235123", "code_snippet": "#include <bits/stdc++.h>\n\nstruct BIT {\n int n;\n std::vector<long long> data;\n BIT() {}\n BIT(int n): n(n), data(n + 1) {};\n void add(int i, long long v) {\n for (i++; i <= n; i += i & -i) data[i] += v;\n }\n long long sum(int i) {\n long long res{};\n for (; i > 0; i -= i & -i) res += data[i];\n return res;\n }\n long long sum(int l, int r) {\n return sum(r) - sum(l);\n }\n};\n\nstruct BIT2 {\n BIT nor, spe;\n BIT2() {}\n BIT2(int n): nor(n), spe(n) {}\n void add(int i, long long v) {\n nor.add(i, v);\n }\n void add(int l, int r, long long v) {\n nor.add(l, -v * l);\n nor.add(r, v * r);\n spe.add(l, v);\n spe.add(r, -v);\n }\n long long sum(int i) {\n return nor.sum(i) + i * spe.sum(i);\n }\n long long sum(int l, int r) {\n return sum(r) - sum(l);\n }\n long long get(int i) {\n return sum(i, i + 1);\n }\n};\n\nint solve() {\n const int OFFSET = 20000;\n int n;\n std::cin >> n;\n if (n == 0) return 1;\n std::vector<std::pair<int, int>> ps;\n for (int i = 0; i < n; i++) {\n int x, y;\n std::cin >> x >> y;\n x += OFFSET;\n y += OFFSET;\n ps.emplace_back(x, y);\n }\n std::vector<std::vector<std::tuple<int, int, int>>> querys(2 * OFFSET + 1);\n for (int i = 0; i < n; i++) {\n auto lhs = ps[i];\n auto rhs = ps[(i + 1) % n];\n if (lhs.first == rhs.first) {\n if (lhs.second < rhs.second) {\n querys[lhs.first].emplace_back(lhs.second, rhs.second, -1);\n } else {\n querys[lhs.first].emplace_back(rhs.second, lhs.second, +1);\n }\n }\n }\n\n std::pair<int, int> x_interval = {};\n std::pair<int, int> y_interval = {};\n {\n const int INF = 1e9;\n int min_x = INF;\n int max_x = -1;\n int min_y = INF;\n int max_y = -1;\n for (int i = 0; i < 4; i++) {\n int x, y;\n std::cin >> x >> y;\n x += OFFSET;\n y += OFFSET;\n min_x = std::min(min_x, x);\n max_x = std::max(max_x, x);\n min_y = std::min(min_y, y);\n max_y = std::max(max_y, y);\n }\n x_interval = {min_x + 1, max_x + 1};\n y_interval = {min_y, max_y};\n }\n\n BIT2 bit(2 * OFFSET + 1);\n\n long long ans = 0;\n for (int i = 0; i < 2 * OFFSET + 1; i++) {\n if (x_interval.first <= i && i < x_interval.second) {\n ans += bit.sum(0, y_interval.first);\n ans += bit.sum(y_interval.second, 2 * OFFSET + 1);\n } else {\n ans += bit.sum(0, 2 * OFFSET + 1);\n }\n for (auto [l, r, v]: querys[i]) {\n bit.add(l, r, v);\n }\n }\n std::cout << ans << '\\n';\n\n return 0;\n}\n\nint main() {\n while (!solve());\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5244, "score_of_the_acc": -0.0215, "final_rank": 7 }, { "submission_id": "aoj_2747_9191906", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nusing Real = long double;\nconst Real EPS = 1e-8, PI = acos(Real(-1.0));\nint sign(const Real& r) {\n if(r <= -EPS) return -1;\n if(r >= +EPS) return +1;\n return 0;\n}\nbool eq(const Real& a, const Real& b) {\n return sign(a - b) == 0;\n}\nusing Point = complex<Real>;\nistream& operator>>(istream& is, Point& p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\nostream& operator<<(ostream& os, const Point& p) {\n return os << p.real() << ' ' << p.imag();\n}\nReal cross(const Point& p1, const Point& p2) {\n return (conj(p1) * p2).imag();\n}\nReal area(const vector<Point>& polygon) {\n Real res = 0.0;\n int n = polygon.size();\n rep(i, 0, n) {\n res += cross(polygon[i], polygon[(i + 1) % n]);\n }\n return abs(res * 0.5);\n}\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n while(1) {\n int n;\n cin >> n;\n if(n == 0) break;\n vector<Point> window(n);\n rep(i, 0, n) {\n cin >> window[i];\n }\n vector<Point> curtain(4);\n Real xmin = inf, xmax = -inf, ymin = inf, ymax = -inf;\n rep(i, 0, 4) {\n cin >> curtain[i];\n xmin = min(xmin, curtain[i].real());\n xmax = max(xmax, curtain[i].real());\n ymin = min(ymin, curtain[i].imag());\n ymax = max(ymax, curtain[i].imag());\n }\n Real res = area(window);\n // cout << round(res) << ' ';\n rep(x, round(xmin), round(xmax)) {\n vector<Real> p;\n rep(i, 0, n) {\n if(eq(window[i].real(), window[(i + 1) % n].real())) continue;\n if(min(window[i].real(), window[(i + 1) % n].real()) <= x and x < max(window[i].real(), window[(i + 1) % n].real())) {\n p.push_back(window[i].imag());\n }\n }\n sort(p.begin(), p.end());\n // for(int i = 0; i < (int)p.size(); ++i) {\n // cout << p[i] << \" \\n\"[i + 1 == (int)p.size()];\n // }\n for(int i = 1; i < (int)p.size(); i += 2) {\n if(p[i] <= ymin) continue;\n if(p[i - 1] >= ymax) continue;\n res -= min(p[i], ymax) - max(p[i - 1], ymin);\n }\n }\n ll ans = round(res);\n cout << ans << '\\n';\n }\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 3584, "score_of_the_acc": -0.0759, "final_rank": 16 }, { "submission_id": "aoj_2747_9102908", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define all(a) a.begin(),a.end()\nusing ll=long long;\ntemplate<typename T>\nbool chmax(T &a,T b){\n if(a<b){\n a=b;\n return true;\n }\n return false;\n}\ntemplate<typename T>\nbool chmin(T &a,T b){\n if(a>b){\n a=b;\n return true;\n }\n return false;\n}\nstruct S{\n int sz;\n int mn;\n int cnt;\n};\nS op(S x,S y){\n S ret;\n ret.sz=x.sz+y.sz;\n ret.mn=min(x.mn,y.mn);\n ret.cnt=0;\n if(ret.mn==x.mn)ret.cnt+=x.cnt;\n if(ret.mn==y.mn)ret.cnt+=y.cnt;\n return ret;\n}\nS e(){return {0,(int)1e9,0};}\nS mapping(int f,S x){\n x.mn+=f;\n return x;\n}\nint composition(int f,int g){return f+g;}\nint id(){return 0;}\nstruct lazy_segtree{\n int n,z,log2n;\n vector<S>dat;\n vector<int>lazy;\n lazy_segtree(vector<S>d){\n z=1;\n n=d.size();\n log2n=0;\n while(z<n)z<<=1,log2n++;\n dat.resize(z*2,e());\n lazy.resize(z*2,id());\n for(int i=z;i<z+n;i++)dat[i]=d[i-z];\n for(int i=z-1;i>=1;i--)dat[i]=op(dat[i*2],dat[i*2+1]);\n }\n S prod(int l,int r){\n l+=z,r+=z;\n for(int i=log2n;i>=1;i--){\n if(((l>>i)<<i)!=l)push(l>>i);\n if(((r>>i)<<i)!=r)push(r>>i);\n }\n S ret=e();\n while(l<r){\n if(l&1)ret=op(ret,dat[l++]);\n if(r&1)ret=op(ret,dat[--r]);\n l>>=1,r>>=1;\n }\n return ret;\n }\n void apply(int l,int r,int f){\n l+=z,r+=z;\n for(int i=log2n;i>=1;i--){\n if(((l>>i)<<i)!=l)push(l>>i);\n if(((r>>i)<<i)!=r)push((r-1)>>i);\n }\n int l2=l,r2=r;\n while(l<r){\n if(l&1)allapply(l++,f);\n if(r&1)allapply(--r,f);\n l>>=1,r>>=1;\n }\n l=l2,r=r2;\n for(int i=1;i<=log2n;i++){\n if(((l>>i)<<i)!=l)upd(l>>i);\n if(((r>>i)<<i)!=r)upd((r-1)>>i);\n }\n }\n void upd(int i){dat[i]=op(dat[i*2],dat[i*2+1]);}\n void allapply(int k,int f){\n dat[k]=mapping(f,dat[k]);\n if(k<z)lazy[k]=composition(f,lazy[k]);\n }\n void push(int i){\n allapply(i*2,lazy[i]);\n allapply(i*2+1,lazy[i]);\n lazy[i]=id();\n }\n S all_prod(){return dat[1];}\n};\nint main(){\n while(true){\n int n;\n cin>>n;\n if(n==0)break;\n vector<pair<int,int>>a(n);\n int mnx=1e9,mxx=-1e9,mny=1e9,mxy=-1e9;\n rep(i,n){\n cin>>a[i].first>>a[i].second;\n chmin(mnx,a[i].first);\n chmax(mxx,a[i].first);\n chmin(mny,a[i].second);\n chmax(mxy,a[i].second);\n }\n vector<pair<int,int>>car(4);\n rep(i,4){\n cin>>car[i].first>>car[i].second;\n chmin(mnx,car[i].first);\n chmax(mxx,car[i].first);\n chmin(mny,car[i].second);\n chmax(mxy,car[i].second);\n }\n rep(i,n){\n a[i].first-=mnx;\n a[i].second-=mny;\n }\n rep(i,4){\n car[i].first-=mnx;\n car[i].second-=mny;\n }\n mxx-=mnx;\n mxy-=mny;\n vector<vector<pair<int,int>>>dir(mxy+1);\n rep(i,n-1){\n if(a[i].second==a[i+1].second){\n int l=a[i].first,r=a[i+1].first;\n if(l>r)swap(l,r);\n dir[a[i].second].push_back({l,r});\n }\n }\n if(a[0].second==a[n-1].second){\n int l=a[0].first,r=a[n-1].first;\n if(l>r)swap(l,r);\n dir[a[0].second].push_back({l,r});\n }\n vector<S>dat(mxx);\n rep(i,mxx)dat[i]={1,0,1};\n lazy_segtree seg(dat);\n ll ans=0;\n sort(all(car));\n rep(i,mxy+1){\n for(auto [l,r]:dir[i]){\n S now=seg.prod(l,r);\n if(now.mn==0)seg.apply(l,r,1);\n else seg.apply(l,r,-1);\n }\n if(car[0].second<=i&&i<car[3].second){\n S left=seg.prod(0,car[0].first);\n S right=seg.prod(car[3].first,mxx);\n ans+=car[0].first;\n ans+=mxx-car[3].first;\n if(left.mn==0)ans-=left.cnt;\n if(right.mn==0)ans-=right.cnt;\n }\n else{\n S al=seg.all_prod();\n ans+=mxx;\n if(al.mn==0)ans-=al.cnt;\n }\n }\n S ed=seg.all_prod();\n cout<<ans<<endl;\n }\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 7336, "score_of_the_acc": -0.0641, "final_rank": 14 }, { "submission_id": "aoj_2747_9083022", "code_snippet": "// (⁠◕⁠ᴗ⁠◕⁠✿⁠)\n\n// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define rep(i, n) for (ll i = 0; i < (n); i++)\n#define srep(i, s, n) for (ll i = s; i < (n); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\nusing namespace std;\ntemplate<typename T> using vc = vector<T>;\ntemplate<typename T> using vv = vc<vc<T>>;\ntemplate<typename T> using vvv = vv<vc<T>>;\nusing vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;\nusing ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;\nusing ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nconst ld pi = 3.141592653589793;\nconst int inf = 0x3f3f3f3f;\nconst ll INF = 0x3f3f3f3f3f3f3f3f;\n// const ll mod = 1000000007;\nconst ll mod = 998244353;\ninline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }\n\n#define debug(var) do{std::cout << #var << \" : \\n\";view(var);}while(0)\ntemplate<typename T> void view(T e){cout << e << endl;}\ntemplate<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << \" \"; } cout << endl;}\ntemplate<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } }\n\nstruct S {\n long long zero, one;\n};\n\nusing F = bool;\n\nS op(S l, S r) {\n return S{\n l.zero + r.zero,\n l.one + r.one,\n };\n}\n\nS e() { return S{1, 0}; }\n\nS mapping(F l, S r) {\n if (!l) return r;\n return S{r.one, r.zero};\n}\n\nF composition(F l, F r) { return (l && !r) || (!l && r); }\n\nF id() { return false; }\n\n\ntemplate <class S,\n S (*op)(S, S),\n S (*e)(),\n class F,\n S (*mapping)(F, S),\n F (*composition)(F, F),\n F (*id)()>\nstruct lazy_segtree {\n public:\n lazy_segtree() : lazy_segtree(0) {}\n lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}\n lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = 0;\n while ((1 << log) < _n) log++;\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n lz = std::vector<F>(size, id());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n return d[p];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return e();\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push(r >> i);\n }\n\n S sml = e(), smr = e();\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n void apply(int p, F f) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = mapping(f, d[p]);\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n void apply(int l, int r, F f) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return;\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n\n template <bool (*g)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return g(x); });\n }\n template <class G> int max_right(int l, G g) {\n assert(0 <= l && l <= _n);\n assert(g(e()));\n if (l == _n) return _n;\n l += size;\n for (int i = log; i >= 1; i--) push(l >> i);\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < size) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*g)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return g(x); });\n }\n template <class G> int min_left(int r, G g) {\n assert(0 <= r && r <= _n);\n assert(g(e()));\n if (r == 0) return 0;\n r += size;\n for (int i = log; i >= 1; i--) push((r - 1) >> i);\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < size) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n std::vector<F> lz;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n void all_apply(int k, F f) {\n d[k] = mapping(f, d[k]);\n if (k < size) lz[k] = composition(f, lz[k]);\n }\n void push(int k) {\n all_apply(2 * k, lz[k]);\n all_apply(2 * k + 1, lz[k]);\n lz[k] = id();\n }\n};\n\nll solve(int N){\n vvi point(40040);\n rep(i, N){\n int x, y; cin >> x >> y; x += 20000, y += 20000;\n point[x].push_back(y);\n }\n int lx = inf, rx = -inf, ly = inf, ry = -inf;\n rep(i, 4){\n int a, b; cin >> a >> b; a += 20000, b += 20000;\n lx = min(lx, a);\n rx = max(rx, a);\n ly = min(ly, b);\n ry = max(ry, b);\n }\n lazy_segtree<S, op, e, F, mapping, composition, id> seg(40040);\n ll wind = 0, dif = 0;\n rep(i, 40040){\n sort(all(point[i]));\n for (int j = 0; j < len(point[i]); j += 2) seg.apply(point[i][j], point[i][j + 1], true);\n wind += seg.all_prod().one;\n if (lx <= i && i < rx) dif += seg.prod(ly, ry).one;\n }\n // cout << wind << \" \" << dif << endl;\n return wind - dif;\n}\n\nint main(){\n vc<ll> ans;\n while (true){\n int N; cin >> N;\n if (N == 0) break;\n ans.push_back(solve(N));\n }\n for (auto x : ans) cout << x << endl;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 7224, "score_of_the_acc": -0.0716, "final_rank": 15 }, { "submission_id": "aoj_2747_9002160", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\ntemplate < class T > struct point {\n T x, y;\n point() : x(0), y(0) {}\n point(T x, T y) : x(x), y(y) {}\n point(std::pair< T, T > p) : x(p.first), y(p.second) {}\n point& operator+=(const point& p) { x += p.x, y += p.y; return *this; }\n point& operator-=(const point& p) { x -= p.x, y -= p.y; return *this; }\n point& operator*=(const T r) { x *= r, y *= r; return *this; }\n point& operator/=(const T r) { x /= r, y /= r; return *this; }\n point operator+(const point& p) const { return point(*this) += p; }\n point operator-(const point& p) const { return point(*this) -= p; }\n point operator*(const T r) const { return point(*this) *= r; }\n point operator/(const T r) const { return point(*this) /= r; }\n point operator-() const { return {-x, -y}; }\n bool operator==(const point& p) const { return x == p.x and y == p.y; }\n bool operator!=(const point& p) const { return x != p.x or y != p.y; }\n bool operator<(const point& p) const { return x == p.x ? y < p.y : x < p.x; }\n point< T > rot(double theta) {\n static_assert(is_floating_point_v< T >);\n double cos_ = std::cos(theta), sin_ = std::sin(theta);\n return {cos_ * x - sin_ * y, sin_ * x + cos_ * y};\n }\n};\ntemplate < class T > istream& operator>>(istream& is, point< T >& p) { return is >> p.x >> p.y; }\ntemplate < class T > ostream& operator<<(ostream& os, point< T >& p) { return os << p.x << \" \" << p.y; }\ntemplate < class T > T dot(const point< T >& a, const point< T >& b) { return a.x * b.x + a.y * b.y; }\ntemplate < class T > T det(const point< T >& a, const point< T >& b) { return a.x * b.y - a.y * b.x; }\ntemplate < class T > T norm(const point< T >& p) { return p.x * p.x + p.y * p.y; }\ntemplate < class T > double abs(const point< T >& p) { return std::sqrt(norm(p)); }\ntemplate < class T > double angle(const point< T >& p) { return std::atan2(p.y, p.x); }\ntemplate < class T > int sign(const T x) {\n T e = (is_integral_v< T > ? 1 : 1e-8);\n if(x <= -e) return -1;\n if(x >= +e) return +1;\n return 0;\n}\ntemplate < class T > bool equals(const T& a, const T& b) { return sign(a - b) == 0; }\ntemplate < class T > int ccw(const point< T >& a, point< T > b, point< T > c) {\n b -= a, c -= a;\n if(sign(det(b, c)) == +1) return +1; // counter clockwise\n if(sign(det(b, c)) == -1) return -1; // clockwise\n if(sign(dot(b, c)) == -1) return +2; // c-a-b\n if(norm(b) < norm(c)) return -2; // a-b-c\n return 0; // a-c-b\n}\n\ntemplate < class T > struct line {\n point< T > a, b;\n line() {}\n line(point< T > a, point< T > b) : a(a), b(b) {}\n};\ntemplate < class T > point< T > projection(const line< T >& l, const point< T >& p) {\n static_assert(is_floating_point_v< T >);\n return l.a + (l.a - l.b) * dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n}\ntemplate < class T > point< T > reflection(const line< T >& l, const point< T >& p) {\n static_assert(is_floating_point_v< T >);\n return p + (projection(l, p) - p) * T(2);\n}\ntemplate < class T > bool orthogonal(const line< T >& a, const line< T >& b) { return equals(dot(a.b - a.a, b.b - b.a), T(0)); }\ntemplate < class T > bool parallel (const line< T >& a, const line< T >& b) { return equals(det(a.b - a.a, b.b - b.a), T(0)); }\ntemplate < class T > point< T > cross_point_ll(const line< T >& l, const line< T >& m) {\n static_assert(is_floating_point_v< T >);\n T A = det(l.b - l.a, m.b - m.a);\n T B = det(l.b - l.a, l.b - m.a);\n if(equals(abs(A), T(0)) and equals(abs(B), T(0))) return m.a;\n return m.a + (m.b - m.a) * B / A;\n}\n\ntemplate < class T > using segment = line< T >;\ntemplate < class T > bool intersect_ss(const segment< T >& s, const segment< T >& t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 and ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\ntemplate < class T > double distance_sp(const segment< T >& s, const point< T >& p) {\n static_assert(is_floating_point_v< T >);\n point r = projection(s, p);\n if(ccw(s.a, s.b, r) == 0) return abs(r - p);\n return std::min(abs(s.a - p), abs(s.b - p));\n}\ntemplate < class T > double distance_ss(const segment< T >& a, const segment< T >& b) {\n if(intersect_ss(a, b)) return 0;\n return std::min({ distance_sp(a, b.a), distance_sp(a, b.b), distance_sp(b, a.a), distance_sp(b, a.b) });\n}\n\ntemplate < class T > using polygon = std::vector< point< T > >;\ntemplate < class T > T area2(const polygon< T >& p) {\n T s = 0;\n int n = p.size();\n for(int i = 0; i < n; i++) s += det(p[i], p[(i + 1) % n]);\n return s;\n}\ntemplate < class T > T area(const polygon< T >& p) { return area2(p) / T(2); }\n\ntemplate < class T > bool is_convex(const polygon< T >& p) {\n int n = p.size();\n for(int i = 0; i < n; i++) if(ccw(p[(i - 1 + n) % n], p[i], p[(i + 1) % n]) == -1) return false;\n return true;\n}\ntemplate < class T > int contains(const polygon< T >& g, const point< T >& p) {\n int n = g.size();\n bool in = false;\n for(int i = 0; i < n; i++) {\n point a = g[i] - p, b = g[(i + 1) % n] - p;\n if(sign(a.y - b.y) == +1) std::swap(a, b);\n if(sign(a.y) <= 0 and sign(b.y) ==+1 and sign(det(a, b)) == -1) in = !in;\n if(sign(det(a, b)) == 0 and sign(dot(a, b)) <= 0) return 1; // ON\n }\n return in ? 2 : 0;\n}\ntemplate < class T > polygon< T > convex_cut(const polygon< T >& p, const line< T >& l) {\n int n = p.size();\n polygon< T > res;\n for(int i = 0; i < n; i++) {\n point now = p[i], nxt = p[(i + 1) % n];\n if(ccw(l.a, l.b, now) != -1) res.push_back(now);\n if(ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) res.push_back(cross_point_ll(line(now, nxt), l));\n }\n return res;\n}\ntemplate < class T > polygon< T > convex_hull(polygon< T >& p) {\n int n = p.size(), k = 0;\n if(n <= 2) return p;\n std::sort(p.begin(), p.end());\n polygon< T > ch(n + n);\n for(int i = 0; i < n; ch[k++] = p[i++])\n while(k >= 2 and sign(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) == -1) k--;\n for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--])\n while(k >= t and sign(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) == -1) k--;\n ch.resize(k - 1);\n return ch;\n}\ntemplate < class T > T diameter2(const polygon< T >& p) {\n static_assert(is_floating_point_v< T >);\n int n = p.size(), is = 0, js = 0;\n for(int i = 1; i < n; i++) {\n if(sign(p[i].y - p[is].y) == +1) is = i;\n if(sign(p[i].y - p[js].y) == -1) js = i;\n }\n T dist_max = norm(p[is] - p[js]);\n int maxi = is, i = is, maxj = js, j = js;\n do {\n if(sign(det(p[(i + 1) % n] - p[i], p[(j + 1) % n] - p[j])) >= 0) j = (j + 1) % n; else i = (i + 1) % n;\n if(norm(p[i] - p[j]) > dist_max) {\n dist_max = norm(p[i] - p[j]);\n maxi = i, maxj = j;\n }\n } while(i != is or j != js);\n return dist_max;\n}\ntemplate < class T > double diameter(const polygon< T >& p) {\n static_assert(is_floating_point_v< T >);\n return std::sqrt(diameter2(p));\n}\n\ntemplate < class T > struct circle {\n point< T > p;\n T r;\n circle() = default;\n circle(point< T > p, T r) : p(p), r(r) {}\n};\ntemplate < class T > istream& operator>>(istream& is, circle< T >& c) { return is >> c.p >> c.r; }\ntemplate < class T > int intersect_cc(circle< T > c1, circle< T > c2) {\n if(c1.r < c2.r) std::swap(c1, c2);\n T d = abs(c1.p - c2.p);\n if(sign(c1.r + c2.r - d) == -1) return 4;\n if(equals(c1.r + c2.r, d)) return 3;\n if(sign(c1.r - c2.r - d) == -1) return 2;\n if(equals(c1.r - c2.r, d)) return 1;\n return 0;\n}\ntemplate < class T > std::pair<point< T >, point< T >> cross_point_cc(const circle< T >& c1, const circle< T >& c2) {\n T d = abs(c1.p - c2.p);\n T a = std::acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n T t = angle(c2.p - c1.p);\n point< T > p1 = c1.p + point< T >(std::cos(t + a), std::sin(t + a)) * c1.r;\n point< T > p2 = c1.p + point< T >(std::cos(t - a), std::sin(t - a)) * c1.r;\n return {p1, p2};\n}\n\nint solve(int N) {\n vector<point<f64>> p(N);\n for(int i : rep(N)) p[i] = in();\n vector<point<f64>> q(4);\n for(int i : rep(4)) q[i] = in();\n\n vector<int> X, Y;\n for(int i : rep(N)) X.push_back(p[i].x), Y.push_back(p[i].y);\n for(int i : rep(N)) X.push_back(q[i].x), Y.push_back(q[i].y);\n unique(X);\n unique(Y);\n\n auto contain = [&](vector<point<f64>>& a, segment<f64> b) {\n int cnt = 0;\n const int n = a.size();\n for(int i : rep(n)) {\n if(intersect_ss(segment<f64>(a[i], a[(i + 1) % n]), b)) cnt++;\n }\n return cnt % 2 == 1;\n };\n\n int ans = 0;\n for(int xi = 0; xi + 1 < int(X.size()); xi++) {\n for(int yi = 0; yi + 1 < int(Y.size()); yi++) {\n segment<f64> s(point<f64>(X[xi] + 0.5, Y[yi] + 0.5), point<f64>(X[xi] + 0.5, -30000.0));\n if(contain(p, s) and !contain(q, s)) ans += (X[xi + 1] - X[xi]) * (Y[yi + 1] - Y[yi]);\n }\n }\n return ans;\n}\n\nint main() {\n while(true) {\n int N = in();\n if(N == 0) return 0;\n print(solve(N));\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3380, "score_of_the_acc": -0.0027, "final_rank": 2 }, { "submission_id": "aoj_2747_8530528", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int M=20'000;\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n while(1){\n int N;\n cin>>N;\n if(N==0)return 0;\n vector<int>X(N),Y(N);\n for(int i=0;i<N;i++)cin>>X[i]>>Y[i];\n vector<vector<int>>V(2*M+1);\n for(int i=0;i<N;i++){\n if(X[i]==X[(i+1)%N]){\n if(Y[i]<Y[(i+1)%N]){\n for(int y=Y[i];y<Y[(i+1)%N];y++){\n V[y+M].push_back(X[i]);\n }\n }else{\n for(int y=Y[i]-1;y>=Y[(i+1)%N];y--){\n V[y+M].push_back(X[i]);\n }\n }\n }\n }\n int xmin=M,xmax=-M,ymin=M,ymax=-M;\n for(int i=0;i<4;i++){\n int a,b;\n cin>>a>>b;\n xmin=min(xmin,a);\n xmax=max(xmax,a);\n ymin=min(ymin,b);\n ymax=max(ymax,b);\n }\n long long ans=0;\n for(int y=0;y<2*M+1;y++){\n sort(V[y].begin(),V[y].end());\n for(int i=0;i<(int)V[y].size();i+=2){\n ans+=V[y][i+1]-V[y][i];\n }\n }\n for(int y=ymin+M;y<ymax+M;y++){\n for(int i=0;i<(int)V[y].size();i+=2){\n if(V[y][i+1]<=xmin||V[y][i]>=xmax)continue;\n ans-=min(xmax,V[y][i+1])-max(xmin,V[y][i]);\n }\n }\n cout<<ans<<\"\\n\";\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5708, "score_of_the_acc": -0.0391, "final_rank": 11 }, { "submission_id": "aoj_2747_7988942", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nvoid rotate90(int &x, int &y) {\n y *= -1;\n swap(x, y);\n}\nbool solve() {\n int N;\n cin >> N;\n if( N == 0 ) return false;\n vector<int> x(N), y(N), a(4), b(4);\n for( int i = 0; i < N; i++ ) {\n cin >> x[i] >> y[i];\n }\n for( int i = 0; i < 4; i++ ) {\n cin >> a[i] >> b[i];\n }\n while( y[0] <= y[1] ) {\n for( int i = 0; i < N; i++ ) {\n rotate90(x[i], y[i]);\n }\n for( int i = 0; i < 4; i++ ) {\n rotate90(a[i], b[i]);\n }\n }\n // cout << \"=====\" << endl;\n // for( int i = 0; i < N; i++ ) {\n // cout << x[i] << \" \" << y[i] << endl;\n // }\n // for( int i = 0; i < 4; i++ ) {\n // cout << a[i] << \" \" << b[i] << endl;\n // }\n // cout << \"=====\" << endl;\n int INF = 20001, CL = INF, CR = -INF, CU = -INF, CD = INF;\n for( int i = 0; i < 4; i++ ) {\n CL = min(CL, a[i]);\n CR = max(CR, a[i]);\n CU = max(CU, b[i]);\n CD = min(CD, b[i]);\n }\n // cout << CU << \" \" << CD << endl;\n vector<tuple<int, int, int, int>> event;\n event.push_back(make_tuple(CL, 0, 0, 0));\n event.push_back(make_tuple(CR, 0, 0, 0));\n for( int i = 0; i+1 < N; i+=2 ) {\n if( y[i] > y[i+1] ) {\n event.push_back(make_tuple(x[i], y[i+1], y[i], 1));\n }else {\n event.push_back(make_tuple(x[i], y[i], y[i+1], -1));\n }\n }\n int ans = 0, L = 2*INF+5;\n vector<int> v(L), v_sum(L);\n auto ADD = [&](int l, int r, int s) -> void {\n for( int i = l; i < r; i++ ) {\n v[i+INF] += s;\n }\n for( int i = 1; i < L; i++ ) {\n v_sum[i] = v[i]+v_sum[i-1];\n }\n };\n auto SUM = [&](int l, int r) -> int {\n return v_sum[r+INF-1]-v_sum[l+INF-1];\n };\n bool is_covered = false;\n sort(event.begin(), event.end());\n // for( auto [x, yl, yr, s] : event ) cout << x << \" \" << yl << \" \" << yr << \" \" << s << endl;\n for( int i = 0; i < event.size()-1; i++ ) {\n // cout << ans << endl;\n auto [xl, yl, yr, s] = event[i];\n auto [xr, _yl, _yr, _s] = event[i+1];\n if( s == 0 ) {\n is_covered = !is_covered;\n }\n ADD(yl, yr, s);\n // cout << SUM(-3, 3) <<\" \" << SUM(-2, 2) << endl;\n // for( int j = -10; j <= 10; j++ ) cout << v[j+INF];\n // cout << endl;\n // cout << is_covered << \" \" << v_sum.back() << \" \" << SUM(CD, CU) << endl;\n if( is_covered ) ans += (v_sum.back()-SUM(CD, CU))*(xr-xl);\n else ans += v_sum.back()*(xr-xl);\n }\n cout << ans << endl;\n return true;\n}\nint main(){\n while( solve() == true ) {}\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3580, "score_of_the_acc": -0.0112, "final_rank": 5 }, { "submission_id": "aoj_2747_7899617", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing pll = pair<ll, ll>;\nusing ld = long double;\nconstexpr ll INF = (1LL << 60);\n#define rep(i, n) for (ll i = 0; i < ll(n); i++)\n#define all(v) std::begin(v), std::end(v)\n#define first fs\n#define second sc\n#define vec(a, T) \\\n using v##a = vector<T>; \\\n using vv##a = vector<v##a>; \\\n using vvv##a = vector<vv##a>\nvec(ll, ll);\nvec(pll, pll);\nvec(ld, ld);\nvec(b, bool);\n\ntemplate <class T>\nbool chmin(T& a, T b) {\n return a > b && (a = b, true);\n}\ntemplate <class T>\nbool chmax(T& a, T b) {\n return a < b && (a = b, true);\n}\n\nint main(){\n\n \n while(true){\n ll n;\n cin >> n;\n if(n == 0) break;\n\n vpll pos;\n rep(i,n){\n ll x,y;\n cin >> x >> y;\n pos.emplace_back(x,y);\n }\n\n ll clx = INF, crx = -INF,cly = INF,cry = -INF;\n rep(i,4){\n ll x,y;\n cin >> x >> y;\n chmin(clx,x);\n chmax(crx,x);\n chmin(cly, y);\n chmax(cry, y);\n }\n\n vector<array<ll,3>> segments;\n rep(i,n){\n auto [x,y] = pos[i];\n auto [nx,ny] = pos[(i+1)%n];\n if(x != nx) continue;\n segments.emplace_back(array<ll, 3>({min(y, ny), max(y, ny), x}));\n }\n sort(all(segments));\n\n ll segmentsidx = 0;\n priority_queue<pll, vpll, greater<pll>> pq;\n\n ll ans = 0;\n rep(i,40001){\n ll y = i - 20000; //[y,y+1)について考える\n\n while(segmentsidx < segments.size() && segments[segmentsidx][0] <= y){\n pq.emplace(segments[segmentsidx][2], segmentsidx);\n segmentsidx++;\n }\n queue<pll> buff;\n while(!pq.empty()){\n auto [x,idx] = pq.top();\n pq.pop();\n if(segments[idx][1] <= y) continue;\n buff.emplace(x,idx);\n }\n\n while(!buff.empty()){\n auto [lx,lidx] = buff.front();\n buff.pop();\n\n assert(!buff.empty());\n auto [rx,ridx] = buff.front();\n buff.pop();\n\n //ここに面積を求める処理を書く(考える窓の区間は [lx,rx], カーテンの区間は [clx, crx] )\n if(y < cly || cry <= y){ //y座標に関してカーテンの範囲外\n ans += rx-lx; // [lx,rx) x [y,y+1)\n // cerr << \"1 : \" << y << \" \" << rx - lx - 1 << endl;\n }\n else if(rx <= clx || crx <= lx){ //x座標に関してカーテンの範囲外\n ans += rx-lx; // [lx,rx) x [y,y+1)\n // cerr << \"2 : \" << y << \" \" << rx - lx - 1 << endl;\n }\n else if(lx <= clx && crx <= rx){ //窓の区間がカーテンの区間を完全に含んでいる場合\n ans += (rx-lx)-(crx-clx); // [lx,rx) x [y,y+1) - [clx,crx) x [y,y+1)\n // cerr << \"3 : \" << y << \" \"\n // << (rx - lx - 1) - (crx - clx - 1) << endl;\n }\n else if(lx <= clx && clx <= rx){ //カーテンの区間の一部分が窓の区間と共通部分を持つ場合1\n ans += clx-lx; // [lx,clx) x [y,y+1)\n // cerr << \"4 : \" << y << \" \"\n // << min(clx, rx) - max(crx, lx) + 1 << endl;\n }\n else if(lx < crx && crx <= rx){ //カーテンの区間の一部分が窓の区間と共通部分を持つ場合2\n ans += rx-crx;\n }\n else{\n assert(clx <= lx && rx <= crx);\n }\n pq.emplace(lx,lidx);\n pq.emplace(rx,ridx);\n }\n\n }\n\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3332, "score_of_the_acc": -0.0108, "final_rank": 4 }, { "submission_id": "aoj_2747_7848308", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing Pt = pair<int, int>;\n\nconst int INF = 1e9;\n\nint n;\nvector<Pt> curtain, window;\n\ntuple<int, int, int, int> getMinMax(const vector<Pt>& points) {\n int y0 = INF, y1 = -INF;\n int x0 = INF, x1 = -INF;\n for (auto& [x, y] : points) {\n y0 = min(y0, y);\n y1 = max(y1, y);\n x0 = min(x0, x);\n x1 = max(x1, x);\n }\n return {x0, y0, x1, y1};\n}\n\nint getArea(const vector<Pt>& points) {\n auto [x0p, y0p, x1p, y1p] = getMinMax(points);\n auto [x0q, y0q, x1q, y1q] = getMinMax(curtain);\n int x0 = max(x0p, x0q);\n int x1 = min(x1p, x1q);\n int y0 = max(y0p, y0q);\n int y1 = min(y1p, y1q);\n // printf(\"window: (%d, %d) -> (%d, %d)\\n\", x0p, y0p, x1p, y1p);\n // printf(\"shared: (%d, %d) -> (%d, %d)\\n\", x0, y0, x1, y1);\n return (x1p - x0p) * (y1p - y0p) - max(0, x1 - x0) * max(0, y1 - y0);\n}\n\nint main() {\n while (cin >> n) {\n if (n == 0) {\n break;\n }\n window.resize(n);\n int minY = INF, maxY = -INF;\n for (auto& [x, y] : window) {\n cin >> x >> y;\n minY = min(minY, y);\n maxY = max(maxY, y);\n }\n curtain.resize(4);\n for (auto& [x, y] : curtain) {\n cin >> x >> y;\n }\n vector<tuple<int, int, int>> lines;\n for (int i = 0; i < n; ++i) {\n auto& [x0, y0] = window[i];\n auto& [x1, y1] = window[(i + 1) % n];\n if (x0 == x1) {\n lines.emplace_back(x0, min(y0, y1), max(y0, y1));\n }\n }\n int ans = 0;\n for (int i = minY; i < maxY; ++i) {\n int y0 = i, y1 = i + 1;\n vector<int> cur;\n for (auto& [x, ya, yb] : lines) {\n if (ya <= y0 && yb >= y1) {\n cur.push_back(x);\n }\n }\n sort(begin(cur), end(cur));\n // printf(\"[%d - %d]:\", y0, y1);\n // for (auto& j : cur) {\n // cout << \" \" << j;\n // }\n // cout << '\\n';\n for (int j = 1; j < (int)cur.size(); j += 2) {\n int prev = cur[j - 1];\n int next = cur[j];\n int add = getArea({\n {prev, y0},\n {next, y0},\n {next, y1},\n {prev, y1}\n });\n // printf(\"area(%d, %d) = %d\\n\", prev, next, add);\n ans += add;\n }\n }\n cout << ans << '\\n';\n }\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3328, "score_of_the_acc": -0.0194, "final_rank": 6 }, { "submission_id": "aoj_2747_6781136", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\nll func(int n){\n map<int,map<int,int>> m;\n vector<pii> line(n);\n foreach(i,line)i=in<pii>();\n rep(i,n){\n pii from = line[i];\n pii to = line[(i+1)%n];\n if(from.first==to.first)continue;\n int add = from.first < to.first ? 1 : -1;\n int y = from.second;\n rep(i,min(from.first,to.first),max(from.first,to.first)){\n m[i][y] += add;\n }\n }\n {\n int n = 4;\n vector<pii> line(n);\n foreach(i,line)i=in<pii>();\n rep(i,n){\n pii from = line[i];\n pii to = line[(i+1)%n];\n if(from.first==to.first)continue;\n int add = from.first > to.first ? 1 : -1;\n int y = from.second;\n rep(i,min(from.first,to.first),max(from.first,to.first)){\n m[i][y] += add;\n }\n }\n }\n ll res = 0;\n foreach(i,m){\n int sum = 0;\n int last = 0;\n foreach(j,i.second){\n if(sum>0){\n res += j.first - last;\n }\n last = j.first;\n sum += j.second;\n }\n }\n return res;\n}\n\nint main(){\n while(true){\n int n = in();\n if(n==0)break;\n println(func(n));\n }\n return 0;\n}", "accuracy": 1, "time_ms": 3240, "memory_kb": 102492, "score_of_the_acc": -1.6961, "final_rank": 20 }, { "submission_id": "aoj_2747_5990590", "code_snippet": "// #pragma comment(linker, \"/stack:200000000\")\n\n#include <bits/stdc++.h>\n\n#include <limits>\n#include <type_traits>\n\nnamespace suisen {\n// ! utility\ntemplate <typename ...Types>\nusing constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;\ntemplate <bool cond_v, typename Then, typename OrElse>\nconstexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {\n if constexpr (cond_v) {\n return std::forward<Then>(then);\n } else {\n return std::forward<OrElse>(or_else);\n }\n}\n\n// ! function\ntemplate <typename ReturnType, typename Callable, typename ...Args>\nusing is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;\ntemplate <typename F, typename T>\nusing is_uni_op = is_same_as_invoke_result<T, F, T>;\ntemplate <typename F, typename T>\nusing is_bin_op = is_same_as_invoke_result<T, F, T, T>;\n\ntemplate <typename Comparator, typename T>\nusing is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;\n\n// ! integral\ntemplate <typename T, typename = constraints_t<std::is_integral<T>>>\nconstexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;\ntemplate <typename T, unsigned int n>\nstruct is_nbit { static constexpr bool value = bit_num<T> == n; };\ntemplate <typename T, unsigned int n>\nstatic constexpr bool is_nbit_v = is_nbit<T, n>::value;\n\n// ?\ntemplate <typename T>\nstruct safely_multipliable {};\ntemplate <>\nstruct safely_multipliable<int> { using type = long long; };\ntemplate <>\nstruct safely_multipliable<long long> { using type = __int128_t; };\ntemplate <>\nstruct safely_multipliable<float> { using type = float; };\ntemplate <>\nstruct safely_multipliable<double> { using type = double; };\ntemplate <>\nstruct safely_multipliable<long double> { using type = long double; };\ntemplate <typename T>\nusing safely_multipliable_t = typename safely_multipliable<T>::type;\n\n} // namespace suisen\n\n// ! type aliases\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nusing ll = long long;\nusing uint = unsigned int;\nusing ull = unsigned long long;\n\ntemplate <typename T> using vec = std::vector<T>;\ntemplate <typename T> using vec2 = vec<vec <T>>;\ntemplate <typename T> using vec3 = vec<vec2<T>>;\ntemplate <typename T> using vec4 = vec<vec3<T>>;\n\ntemplate <typename T>\nusing pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <typename T, typename U>\nusing umap = std::unordered_map<T, U>;\n\n// ! macros (capital: internal macro)\n#define OVERLOAD2(_1,_2,name,...) name\n#define OVERLOAD3(_1,_2,_3,name,...) name\n#define OVERLOAD4(_1,_2,_3,_4,name,...) name\n\n#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))\n#define REP3(i,l,r) REP4(i,l,r,1)\n#define REP2(i,n) REP3(i,0,n)\n#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))\n#define REPINF2(i,l) REPINF3(i,l,1)\n#define REPINF1(i) REPINF2(i,0)\n#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))\n#define RREP3(i,l,r) RREP4(i,l,r,1)\n#define RREP2(i,n) RREP3(i,0,n)\n\n#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)\n#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)\n#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)\n\n#define CAT_I(a, b) a##b\n#define CAT(a, b) CAT_I(a, b)\n#define UNIQVAR(tag) CAT(tag, __LINE__)\n#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)\n\n#define all(iterable) (iterable).begin(), (iterable).end()\n#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)\n\n// ! I/O utilities\n\n// pair\ntemplate <typename T, typename U>\nstd::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {\n return out << a.first << ' ' << a.second;\n}\n// tuple\ntemplate <unsigned int N = 0, typename ...Args>\nstd::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {\n if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {\n return out;\n } else {\n out << std::get<N>(a);\n if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {\n out << ' ';\n }\n return operator<<<N + 1>(out, a);\n }\n}\n// vector\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {\n for (auto it = a.begin(); it != a.end();) {\n out << *it;\n if (++it != a.end()) out << ' ';\n }\n return out;\n}\ninline void print() { std::cout << '\\n'; }\ntemplate <typename Head, typename... Tail>\ninline void print(const Head &head, const Tail &...tails) {\n std::cout << head;\n if (sizeof...(tails)) std::cout << ' ';\n print(tails...);\n}\ntemplate <typename Iterable>\nauto print_all(const Iterable& v, std::string sep = \" \", std::string end = \"\\n\") -> decltype(std::cout << *v.begin(), void()) {\n for (auto it = v.begin(); it != v.end();) {\n std::cout << *it;\n if (++it != v.end()) std::cout << sep;\n }\n std::cout << end;\n}\n\n// pair\ntemplate <typename T, typename U>\nstd::istream& operator>>(std::istream& in, std::pair<T, U> &a) {\n return in >> a.first >> a.second;\n}\n// tuple\ntemplate <unsigned int N = 0, typename ...Args>\nstd::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {\n if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {\n return in;\n } else {\n return operator>><N + 1>(in >> std::get<N>(a), a);\n }\n}\n// vector\ntemplate <typename T>\nstd::istream& operator>>(std::istream& in, std::vector<T> &a) {\n for (auto it = a.begin(); it != a.end(); ++it) in >> *it;\n return in;\n}\ntemplate <typename ...Args>\nvoid read(Args &...args) {\n ( std::cin >> ... >> args );\n}\n\n// ! integral utilities\n\n// Returns pow(-1, n)\ntemplate <typename T>\nconstexpr inline int pow_m1(T n) {\n return -(n & 1) | 1;\n}\n// Returns pow(-1, n)\ntemplate <>\nconstexpr inline int pow_m1<bool>(bool n) {\n return -int(n) | 1;\n}\n\n// Returns floor(x / y)\ntemplate <typename T>\nconstexpr inline T fld(const T x, const T y) {\n return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;\n}\ntemplate <typename T>\nconstexpr inline T cld(const T x, const T y) {\n return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;\n}\n\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcount(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcountll(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }\ntemplate <typename T>\nconstexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }\ntemplate <typename T>\nconstexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }\ntemplate <typename T>\nconstexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }\ntemplate <typename T>\nconstexpr inline int parity(const T x) { return popcount(x) & 1; }\n\nstruct all_subset {\n struct all_subset_iter {\n const int s; int t;\n constexpr all_subset_iter(int s) : s(s), t(s + 1) {}\n constexpr auto operator*() const { return t; }\n constexpr auto operator++() {}\n constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }\n };\n int s;\n constexpr all_subset(int s) : s(s) {}\n constexpr auto begin() { return all_subset_iter(s); }\n constexpr auto end() { return nullptr; }\n};\n\n// ! container\n\ntemplate <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>\nauto priqueue_comp(const Comparator comparator) {\n return std::priority_queue<T, std::vector<T>, Comparator>(comparator);\n}\n\ntemplate <typename Iterable>\nauto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {\n return iterable.size();\n}\n\ntemplate <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>\nauto generate_vector(int n, Gen generator) {\n std::vector<T> v(n);\n for (int i = 0; i < n; ++i) v[i] = generator(i);\n return v;\n}\n\ntemplate <typename T>\nvoid sort_unique_erase(std::vector<T> &a) {\n std::sort(a.begin(), a.end());\n a.erase(std::unique(a.begin(), a.end()), a.end());\n}\n\n// ! other utilities\n\n// x <- min(x, y). returns true iff `x` has chenged.\ntemplate <typename T>\ninline bool chmin(T &x, const T &y) {\n if (y >= x) return false;\n x = y;\n return true;\n}\n// x <- max(x, y). returns true iff `x` has chenged.\ntemplate <typename T>\ninline bool chmax(T &x, const T &y) {\n if (y <= x) return false;\n x = y;\n return true;\n}\n\nnamespace suisen {}\nusing namespace suisen;\nusing namespace std;\n\nstruct io_setup {\n io_setup(int precision = 20) {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(precision);\n }\n} io_setup_ {};\n\n// ! code from here\n\n#include <algorithm>\n#include <cassert>\n#include <iostream>\n#include <vector>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nconstexpr int bsf_constexpr(unsigned int n) {\n int x = 0;\n while (!(n & (1 << x))) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\nnamespace atcoder {\n\ntemplate <class S,\n S (*op)(S, S),\n S (*e)(),\n class F,\n S (*mapping)(F, S),\n F (*composition)(F, F),\n F (*id)()>\nstruct lazy_segtree {\n public:\n lazy_segtree() : lazy_segtree(0) {}\n explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}\n explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n lz = std::vector<F>(size, id());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n return d[p];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return e();\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n S sml = e(), smr = e();\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n void apply(int p, F f) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = mapping(f, d[p]);\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n void apply(int l, int r, F f) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return;\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n\n template <bool (*g)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return g(x); });\n }\n template <class G> int max_right(int l, G g) {\n assert(0 <= l && l <= _n);\n assert(g(e()));\n if (l == _n) return _n;\n l += size;\n for (int i = log; i >= 1; i--) push(l >> i);\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < size) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*g)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return g(x); });\n }\n template <class G> int min_left(int r, G g) {\n assert(0 <= r && r <= _n);\n assert(g(e()));\n if (r == 0) return 0;\n r += size;\n for (int i = log; i >= 1; i--) push((r - 1) >> i);\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < size) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n std::vector<F> lz;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n void all_apply(int k, F f) {\n d[k] = mapping(f, d[k]);\n if (k < size) lz[k] = composition(f, lz[k]);\n }\n void push(int k) {\n all_apply(2 * k, lz[k]);\n all_apply(2 * k + 1, lz[k]);\n lz[k] = id();\n }\n};\n\n} // namespace atcoder\n\nusing S = pair<int, int>;\nusing F = bool;\n\nS op(S x, S y) {\n return S { x.first + y.first, x.second + y.second };\n}\nS e() {\n return S { 0, 0 };\n}\nS mapping(F f, S x) {\n int num = f ? x.second - x.first : x.first;\n return S { num, x.second };\n}\nF composition(F f, F g) {\n return f ^ g;\n}\nF id() {\n return 0;\n}\n\nusing Point = pair<int, int>;\n\nconstexpr int B = 20000;\nconstexpr int M = 2 * B + 10;\n\nint main() {\n while (true) {\n input(int, n);\n if (n == 0) break;\n\n vector<Point> poly(n);\n read(poly);\n for (auto &[x, y] : poly) x += B, y += B;\n\n vector<vector<pair<int, int>>> vert(M);\n rep(i, n) {\n int j = (i + 1) % n;\n auto [xi, yi] = poly[i];\n auto [xj, yj] = poly[j];\n if (xi == xj) {\n vert[xi].emplace_back(min(yi, yj), max(yi, yj));\n }\n }\n\n vector<Point> rect(4);\n read(rect);\n for (auto &[x, y] : rect) x += B, y += B;\n\n auto [qxl, qxr] = minmax({ rect[0].first, rect[1].first, rect[2].first, rect[3].first });\n auto [qyl, qyr] = minmax({ rect[0].second, rect[1].second, rect[2].second, rect[3].second });\n\n atcoder::lazy_segtree<S, op, e, F, mapping, composition, id> seg(vector<S>(M, { 0, 1 }));\n\n long long area = 0, covered = 0;\n rep(x, M) {\n for (const auto &[l, r] : vert[x]) {\n seg.apply(l, r, 1);\n }\n area += seg.all_prod().first;\n if (qxl <= x and x < qxr) {\n covered += seg.prod(qyl, qyr).first;\n }\n }\n print(area - covered);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 5900, "score_of_the_acc": -0.0561, "final_rank": 12 }, { "submission_id": "aoj_2747_5829868", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\n\n#include <algorithm>\n#include <cassert>\n#include <iostream>\n#include <vector>\n\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\nconstexpr int bsf_constexpr(unsigned int n) {\n int x = 0;\n while (!(n & (1 << x))) x++;\n return x;\n}\n\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace atcoder {\n\ntemplate <class S,\n S (*op)(S, S),\n S (*e)(),\n class F,\n S (*mapping)(F, S),\n F (*composition)(F, F),\n F (*id)()>\nstruct lazy_segtree {\n public:\n lazy_segtree() : lazy_segtree(0) {}\n explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}\n explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n lz = std::vector<F>(size, id());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n return d[p];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return e();\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n S sml = e(), smr = e();\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n void apply(int p, F f) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = mapping(f, d[p]);\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n void apply(int l, int r, F f) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return;\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n\n template <bool (*g)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return g(x); });\n }\n template <class G> int max_right(int l, G g) {\n assert(0 <= l && l <= _n);\n assert(g(e()));\n if (l == _n) return _n;\n l += size;\n for (int i = log; i >= 1; i--) push(l >> i);\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < size) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*g)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return g(x); });\n }\n template <class G> int min_left(int r, G g) {\n assert(0 <= r && r <= _n);\n assert(g(e()));\n if (r == 0) return 0;\n r += size;\n for (int i = log; i >= 1; i--) push((r - 1) >> i);\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < size) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n std::vector<F> lz;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n void all_apply(int k, F f) {\n d[k] = mapping(f, d[k]);\n if (k < size) lz[k] = composition(f, lz[k]);\n }\n void push(int k) {\n all_apply(2 * k, lz[k]);\n all_apply(2 * k + 1, lz[k]);\n lz[k] = id();\n }\n};\n\n} // namespace atcoder\n\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n \nvoid debug_out() { std::cerr << std::endl; }\n \ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cout << \" :\";\n debug_out(t...);\n}\n\n#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)\n\nusing i64 = std::int64_t;\n\nconstexpr int max = 20010;\n\nconstexpr int sz = 40020;\n\nstruct S{\n long long value;\n int size;\n};\nusing F = long long;\n\nS op(S a, S b){ return {a.value+b.value, a.size+b.size}; }\nS e(){ return {0, 0}; }\nS mapping(F f, S x){ return {x.value + f*x.size, x.size}; }\nF composition(F f, F g){ return f+g; }\nF id(){ return 0; }\n\nint main() {\n int n;\n while(std::cin >> n, n > 0) {\n std::vector<std::pair<int,int>> xy(n);\n for(auto &[x, y]: xy) {\n std::cin >> x >> y;\n x += max;\n y += max;\n }\n std::vector ret(sz, std::vector<std::pair<int,int>>());\n rep(i,0,n) {\n const auto &[x, y] = xy[i];\n const auto &[nx, ny] = xy[(i+1)%n];\n if(x != nx) continue;\n ret[x].emplace_back(y, ny);\n }\n std::vector<std::pair<int,int>> p(4);\n for(auto &[x,y]: p) {\n std::cin >> x >> y;\n x += max;\n y += max;\n }\n std::sort(p.begin(), p.end());\n int l = p[0].first;\n int r = p[2].first;\n int low = std::min(p[0].second, p[1].second);\n int high = std::max(p[0].second, p[1].second);\n atcoder::lazy_segtree<S, op, e, F, mapping, composition, id> seg(std::vector<S>(sz, {0, 1}));\n i64 ans = 0;\n rep(i,0,sz) {\n for(auto &[y, ny]: ret[i]) {\n if(y < ny) {\n seg.apply(y, ny, -1);\n }\n else {\n seg.apply(ny, y, 1);\n }\n }\n ans += seg.all_prod().value;\n if(l <= i && i < r) {\n ans -= seg.prod(low, high).value;\n }\n }\n std::cout << ans << '\\n';\n }\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 7732, "score_of_the_acc": -0.0617, "final_rank": 13 }, { "submission_id": "aoj_2747_5779814", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 25000000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\ntemplate<typename T> struct BIT{\n vector<T> dat;\n ll sz;\n //all 1-indexed\n BIT(ll sz) : sz(sz){\n dat.assign(++sz, 0);\n }\n\n T sum(ll k){\n T ret = 0;\n for(++k; k > 0; k -= k & -k) ret += dat[k];\n return (ret);\n }\n\n void add(ll k, T x){\n for(++k; k < dat.size(); k += k & -k) dat[k] += x;\n }\n \n ll get(T k){\n if(k <= 0) return 0; \n ll ret = 0;\n int n = 1; while(n < sz) n *= 2;\n for(int i=n/2; i>0; i/=2){\n if(ret+i < sz && dat[ret+i] < k){\n k -= dat[ret+i];\n ret += i;\n }\n }\n return ret;\n }\n};\n\ntemplate<typename T> struct range_BIT{\n vector<BIT<T>> bit;\n int sz;\n\n range_BIT(int sz) : sz(sz) {\n rep(j,2) bit.push_back(BIT<T>(sz));\n }\n\n void add(int l, int r, T x){\n bit[0].add(l,-x*(l-1));\n bit[0].add(r+1,x*r);\n bit[1].add(l,x);\n bit[1].add(r+1,-x);\n }\n\n T sum(int k){\n return bit[0].sum(k) + bit[1].sum(k) * k;\n }\n};\n\n\nint main(){\n while(1){\n vector<vpl> addx(40404), subx(40404);\n range_BIT<int> bit(40404);\n int n; cin >> n;\n if(!n) break;\n vl x(n), y(n);\n vpl a(4);\n rep(i,n){\n cin >> x[i] >> y[i];\n x[i] += 20000, y[i] += 20000;\n }\n rep(i,4){\n cin >> a[i].first >> a[i].second;\n a[i].first += 20000, a[i].second += 20000;\n }\n sort(all(a));\n rep(i,n){\n int a = y[i], b = y[(i+1)%n];\n if(a > b){\n addx[x[i]].emplace_back(b,a);\n }else if(a < b){\n subx[x[i]].emplace_back(a,b);\n }\n }\n ll ans = 0;\n rep(x,40404){\n for(auto p : addx[x]){\n bit.add(p.first, p.second-1, 1);\n }\n for(auto p : subx[x]){\n bit.add(p.first, p.second-1, -1);\n }\n ans += bit.sum(40202);\n if(a[0].first <= x && x < a[3].first){\n ans -= bit.sum(a[3].second-1) - bit.sum(a[0].second-1);\n }\n }\n cout << ans << endl;\n \n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5472, "score_of_the_acc": -0.0238, "final_rank": 8 }, { "submission_id": "aoj_2747_5318254", "code_snippet": "#include <iostream>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <utility>\n#include <tuple>\n#include <cmath>\n#include <numeric>\n#include <set>\n#include <map>\n#include <array>\n#include <complex>\n#include <iomanip>\n#include <cassert>\n#include <bitset>\nusing ll = long long;\nusing std::cin;\nusing std::cout;\nusing std::endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\nconst int inf = (int)1e9 + 7;\nconst long long INF = 1LL << 60;\n\nnamespace KKT89\n{\n template<typename T>\n struct Compress {\n std::vector<T> v;\n Compress() {}\n Compress(std::vector<T> _v) :v(_v) { build(); }\n \n void add(T x) {\n v.emplace_back(x);\n }\n \n void build() {\n std::sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n }\n \n int get(T x) {\n return std::lower_bound(v.begin(), v.end(), x) - v.begin();\n }\n \n T& operator[](int i) { return v[i]; }\n \n \n int size() {\n return (int)v.size();\n }\n };\n}\n\n#include <cmath>\n#include <iostream>\n#include <complex>\n#include <vector>\n#include <cmath>\nnamespace geometry\n{\n using Real = double;\n const Real EPS = 1e-8;\n const Real PI = std::acos((Real)(-1));\n\n inline int sign(const Real &r) {\n return r <= -EPS ? -1 : r >= EPS ? 1 : 0;\n }\n\n inline bool equals(const Real &a, const Real &b) {\n return sign(a - b) == 0;\n }\n\n using Point = std::complex<Real>;\n\n Point operator*(const Point &p, const Real &d) {\n return Point(p.real() * d, p.imag() * d);\n }\n\n // rotate point p counterclockwise by theta rad\n Point rotate(Real theta, const Point &p) {\n return Point(std::cos(theta) * p.real() - std::sin(theta) * p.imag(), std::sin(theta) * p.real() + std::cos(theta) * p.imag());\n }\n\n Real cross(const Point &a, const Point &b) {\n return a.real() * b.imag() - a.imag() * b.real();\n }\n\n Real dot(const Point &a, const Point &b) {\n return a.real() * b.real() + a.imag() * b.imag();\n }\n\n bool compare_x(const Point &a, const Point &b) {\n return equals(a.real(), b.real()) ? a.imag() < b.imag() : a.real() < b.real();\n }\n\n bool compare_y(const Point &a, const Point &b) {\n return equals(a.imag(), b.imag()) ? a.real() < b.real() : a.imag() < b.imag();\n }\n \n using Points = std::vector<Point>;\n using Polygon = std::vector<Point>;\n struct Line {\n Point a, b;\n\n Line() = default;\n\n Line(const Point &a, const Point &b) : a(a), b(b) {}\n\n Line(const Real &A, const Real &B, const Real &C) { // Ax+By=C\n if(equals(A, 0)) {\n assert(!equals(B, 0));\n a = Point(0, C / B);\n b = Point(1, C / B);\n } else if(equals(B, 0)) {\n a = Point(C / A, 0);\n b = Point(C / A, 1);\n } else {\n a = Point(0, C / B);\n b = Point(C / A, 0);\n }\n }\n };\n\n using Lines = std::vector<Line>;\n bool is_parallel(const Line &a, const Line &b)\n {\n return equals(cross(a.b - a.a, b.b - b.a), 0.0);\n }\n bool is_intersect_ll(const Line &l, const Line &m)\n {\n Real A = cross(l.b - l.a, m.b - m.a);\n Real B = cross(l.b - l.a, l.b - m.a);\n if(equals(std::abs<Real>(A), 0) && equals(std::abs<Real>(B), 0)) return true;\n return !is_parallel(l, m);\n }\n struct Segment : Line\n {\n Segment() = default;\n using Line::Line;\n };\n constexpr int COUNTER_CLOCKWISE = +1;\n constexpr int CLOCKWISE = -1;\n constexpr int ONLINE_BACK = +2; // c-a-b\n constexpr int ONLINE_FRONT = -2; // a-b-c\n constexpr int ON_SEGMENT = 0; // a-c-b\n int ccw(const Point &a, Point b, Point c) {\n b = b - a, c = c - a;\n if(sign(cross(b, c)) == +1) return COUNTER_CLOCKWISE;\n if(sign(cross(b, c)) == -1) return CLOCKWISE;\n if(sign(dot(b, c)) == -1) return ONLINE_BACK;\n if(std::norm(b) < std::norm(c)) return ONLINE_FRONT;\n return ON_SEGMENT;\n }\n using Segments = std::vector<Segment>;\n bool is_intersect_ss(const Segment &s, const Segment &t) \n {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n }\n Polygon convex_hull(Polygon &p, bool strict = true) {\n int n = (int)p.size(), k = 0;\n if(n <= 2) return p;\n std::sort(p.begin(), p.end(), compare_x);\n std::vector<Point> ch(2 * n);\n auto check = [&](int i) {\n return sign(cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) <= -1 + strict;\n };\n for(int i = 0; i < n; ch[k++] = p[i++]) {\n while(k >= 2 && check(i)) --k;\n }\n for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n while(k >= t && check(i)) --k;\n }\n ch.resize(k - 1);\n return ch;\n }\n}\nvoid solve()\n{\n int n; cin >> n; if(n == 0) exit(0);\n KKT89::Compress<int> cx, cy;\n std::vector<int> x(n), y(n);\n for (int i = 0; i < n; ++i)\n {\n cin >> x[i] >> y[i];\n for (int kkt = -1; kkt <= 1; ++kkt)\n {\n cx.add(x[i] + kkt);\n cy.add(y[i] + kkt);\n }\n\n }\n std::vector<int> tx(4), ty(4);\n for (int i = 0; i < 4; ++i)\n {\n cin >> tx[i] >> ty[i];\n for (int kkt = -1; kkt <= 1; ++kkt)\n {\n cx.add(tx[i] + kkt);\n cy.add(ty[i] + kkt);\n }\n }\n int lf = *std::min_element(tx.begin(), tx.end());\n int rg = *std::max_element(tx.begin(), tx.end());\n int up = *std::max_element(ty.begin(), ty.end());\n int dw = *std::min_element(ty.begin(), ty.end());\n cx.build();\n cy.build();\n ll res = 0.0;\n for (int i = 0; i + 1 < cx.size(); ++i)\n {\n for (int j = 0; j + 1 < cy.size(); ++j)\n {\n double p = (cx[i] + cx[i + 1]) / 2.0;\n double q = (cy[j] + cy[j + 1]) / 2.0;\n if(lf <= cx[i] and cx[i] < rg and dw <= cy[j] and cy[j] < up)\n continue;\n int cnt = 0;\n geometry::Segment s1(geometry::Point(p, q), geometry::Point(p, inf));\n for (int s = 0; s < n; ++s)\n {\n const int t = (s + 1) % n;\n geometry::Segment s2(geometry::Point(x[s], y[s]), geometry::Point(x[t], y[t])); \n if(geometry::is_intersect_ss(s1, s2))\n cnt ^= 1;\n }\n if(cnt & 1)\n res += 1LL * (cx[i + 1] - cx[i]) * (cy[j + 1] - cy[j]);\n }\n }\n cout << res << \"\\n\";\n}\nint main()\n{\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n\n int kkt = 89;\n //cin >> kkt;\n while(kkt)\n {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3492, "score_of_the_acc": -0.0017, "final_rank": 1 }, { "submission_id": "aoj_2747_4962834", "code_snippet": "// I SELL YOU...! \n#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<functional>\n#include<queue>\n#include<chrono>\n#include<iomanip>\n#include<map>\n#include<set>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll,ll>;\nusing TP = tuple<ll,ll,ll>;\nvoid init_io(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(18);\n}\nconst ll BASE = 20500;\nconst ll MAX = BASE*2;\nvector<ll> a(4),b(4);\nvoid turn_ab(){\n for(int i=2;i<4;i++){\n if(b[0]==b[i]){\n swap(a[1],a[i]);\n swap(b[1],b[i]);\n break;\n }\n }\n if(b[0]>b[2]){\n swap(b[0],b[2]);\n swap(a[0],a[2]);\n swap(b[1],b[3]);\n swap(a[1],a[3]);\n }\n if(a[0]>a[1]){\n swap(a[0],a[1]);\n swap(b[0],b[1]);\n }\n if(a[2]>a[3]){\n swap(a[2],a[3]);\n swap(b[2],b[3]);\n }\n}\nll calc_sq(const set<ll>& st,int y){\n vector<ll> vx(st.begin(),st.end());\n ll n = st.size();\n ll res = 0;\n if(n==0) return 0;\n //cout << y-BASE<<endl;\n for(int i=0;i<n;i+=2){\n ll l = vx[i],r=vx[i+1];\n ll add = vx[i+1]-vx[i];\n if(b[0]<y&&y<=b[2]){\n if(vx[i]<=a[0]&&a[1]<=vx[i+1]){\n add = vx[i+1]-vx[i] - (a[1]-a[0]);\n }else{\n if(a[0]<=l&&l<=a[1]){\n l = a[1];\n }\n if(a[0]<=r&&r<=a[1]){\n r = a[0];\n }\n add = max(0ll,r-l);\n }\n }\n res += add;\n //cout << vx[i]-BASE<<\" \"<<vx[i+1]-BASE<<add<<endl;\n }\n return res;\n}\nvoid solve(){\n ll n;\n cin >> n;\n if(n==0) return;\n vector<ll> x(n),y(n);\n vector<vector<ll>> x_pt(MAX,vector<ll>());\n for(int i=0;i<n;i++){\n cin >> x[i] >> y[i];\n x[i] += BASE;\n y[i] += BASE;\n x_pt[y[i]].push_back(x[i]);\n }\n for(int i=0;i<4;i++){\n cin >> a[i] >> b[i];\n a[i] += BASE;\n b[i] += BASE;\n }\n turn_ab();\n ll ans = 0;\n set<ll> pre_x,next_x;\n for(int i=MAX-1;i>=0;i--){\n sort(x_pt[i].begin(),x_pt[i].end());\n ll m = x_pt[i].size();\n set<ll> lost;\n for(int j=0;j<m;j++){\n auto itr = pre_x.find(x_pt[i][j]);\n ll idx = distance(pre_x.begin(),itr);\n if(idx==(ll)pre_x.size()){\n next_x.insert(x_pt[i][j]);\n }else{\n ll nxt;\n if(j%2==0){\n nxt = x_pt[i][j+1];\n }else{\n nxt = x_pt[i][j-1];\n }\n if(pre_x.find(nxt)==pre_x.end()){\n next_x.insert(nxt);\n }else{\n lost.insert(nxt);\n }\n lost.insert(x_pt[i][j]);\n }\n }\n for(auto v:pre_x){\n if(lost.find(v)==lost.end())\n next_x.insert(v);\n }\n ans += calc_sq(next_x,i);\n pre_x = next_x;\n next_x.clear();\n }\n cout << ans << endl;\n solve();\n}\nsigned main(){\n init_io();\n solve();\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 51428, "score_of_the_acc": -0.5109, "final_rank": 18 }, { "submission_id": "aoj_2747_4883150", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int xoff = 20000;\nint n;\nint xl, xu, yl, yu;\nvector<tuple<int, int, int>> vtcl;\n\nvoid solve() {\n int ans = 0;\n\n for (int y = -20000; y < 20000; y++) {\n if (y >= yl and y < yu) {\n vector<int> ls, us;\n for (auto &&[x, a, b] : vtcl) {\n if (y < a || b <= y) continue;\n if (x < xl) {\n ls.push_back(x);\n } else if (x > xu) {\n us.push_back(x);\n }\n }\n\n sort(begin(ls), end(ls));\n bool flag = false;\n for (int x : ls) {\n if (flag)\n ans += x;\n else\n ans -= x;\n flag ^= 1;\n }\n if (flag) ans += xl;\n\n sort(rbegin(us), rend(us));\n flag = false;\n for (int x : us) {\n if (flag)\n ans -= x;\n else\n ans += x;\n flag ^= 1;\n }\n if (flag) ans -= xu;\n\n } else {\n vector<int> xs;\n for (auto &&[x, a, b] : vtcl) {\n if (y < a || b <= y) continue;\n xs.push_back(x);\n }\n\n sort(begin(xs), end(xs));\n bool flag = false;\n for (int x : xs) {\n if (flag)\n ans += x;\n else\n ans -= x;\n flag ^= 1;\n }\n }\n }\n\n cout << ans << \"\\n\";\n}\n\nint main() {\n while (1) {\n cin >> n;\n if (!n) break;\n vtcl.clear();\n vector<pair<int, int>> vs(n);\n for (auto &&[x, y] : vs) {\n cin >> x >> y;\n x += xoff;\n }\n for (int i = 0; i < n; i++) {\n int pi = i ? i - 1 : n - 1;\n auto [px, py] = vs[pi];\n auto [x, y] = vs[i];\n if (y == py) {\n continue;\n }\n if (y > py) swap(y, py);\n vtcl.emplace_back(x, y, py);\n }\n\n //\n xl = yl = xoff * 2;\n xu = 0, yu = -xoff;\n for (auto i = 0; i != 4; ++i) {\n int x, y;\n cin >> x >> y;\n x += xoff;\n xl = min(xl, x);\n yl = min(yl, y);\n xu = max(xu, x);\n yu = max(yu, y);\n }\n solve();\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3440, "score_of_the_acc": -0.0098, "final_rank": 3 }, { "submission_id": "aoj_2747_4638100", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing P = pair<int, int>;\nconst double eps = 1e-8;\nconst ll MOD = 1000000007;\nconst int INF = INT_MAX / 2;\nconst ll LINF = LLONG_MAX / 2;\ntemplate <typename T1, typename T2>\nbool chmax(T1 &a, const T2 &b) {\n if(a < b) {a = b; return true;}\n return false;\n}\ntemplate <typename T1, typename T2>\nbool chmin(T1 &a, const T2 &b) {\n if(a > b) {a = b; return true;}\n return false;\n}\ntemplate<typename T1, typename T2>\nostream& operator<<(ostream &os, const pair<T1, T2> p) {\n os << p.first << \":\" << p.second;\n return os;\n}\ntemplate<class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n for(int i=0;i<((int)(v.size()));++i) {\n if(i) os << \" \";\n os << v[i];\n }\n return os;\n}\nbool solve() {\n int n; cin >> n;\n if(n == 0) return false;\n vector<P> p(n);\n for(int i=0;i<(n);++i) {\n cin >> p[i].first >> p[i].second;\n }\n vector<P> carten(4);\n int u = -INF, d = INF, l = INF, r = -INF;\n for(int i=0;i<(4);++i) {\n int x, y;\n cin >> x >> y;\n chmin(l, x);\n chmax(r, x);\n chmin(d, y);\n chmax(u, y);\n }\n l += 20000;\n r += 20000;\n u += 20000;\n d += 20000;\n vector<pair<int, bitset<40002>>> v;\n for(int i=0;i<(n);++i) {\n P p1 = p[i];\n P p2 = p[(i+1)%n];\n if(p1.first == p2.first) {\n bitset<40002> now;\n int mi = p1.second, ma = p2.second;\n if(mi > ma) swap(mi, ma);\n mi += 20000;\n ma += 20000;\n for(int j=(mi);j<(ma);++j) {\n now[j] = 1;\n }\n v.emplace_back(make_pair(p1.first + 20000, now));\n }\n }\n sort(v.rbegin(), v.rend(), [](pair<int, bitset<40002>> a, pair<int, bitset<40002>> b){return a.first < b.first;});\n bitset<40002> bs(0), tmp(0);\n for(int i=(d);i<(u);++i) {\n tmp[i] = 1;\n }\n int mask = 0;\n int area = 0;\n for(int i=0;i<(40002);++i) {\n while(!v.empty() && v.back().first == i) {\n bs ^= v.back().second;\n v.pop_back();\n }\n if(l <= i && i < r) {\n mask += (bs & tmp).count();\n }\n area += bs.count();\n }\n cout << area - mask << endl;\n return true;\n}\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n while(solve()) {}\n}", "accuracy": 1, "time_ms": 4650, "memory_kb": 3436, "score_of_the_acc": -1.0011, "final_rank": 19 } ]
aoj_2749_cpp
ぼくのかんがえたさいきょうのおふとん あなたは新生活に備え,おふとんを N 枚買った. i 番目のおふとんは s i のぬくもり供給力をもつ. これから M 日間の気温の予測から, j 日目には d j のぬくもり需要が予想される. ぬくもりが足りなくても多すぎても快適さが損なわれるので, j 日目に掛けているおふとんのぬくもり供給力の総和と d j の差の絶対値を j 日目の不快度と呼ぶことにする. この M 日分の不快度の合計ができるだけ少なくなるようにしたい. ところで,あなたの部屋は残念ながらとても狭く,ベッドと押入れしかない. そのため,ベッドにおふとんを 1 枚増やすには,そのとき押入れの一番上にあるおふとんをベッドの一番上に乗せるしかない. 逆に,ベッドのおふとんを 1 枚減らすには,そのときベッドの一番上にあるおふとんを押入れの一番上に置くしかない. また,1 日に動かせるおふとんの枚数に制限は無いが,一度に 1 枚ずつしか動かすことができない. さて,あなたはこれから買ってきたおふとんを押入れにしまう予定である. このときに限り,おふとんを好きな順序で押入れにしまうことができる. どのようにおふとんを押入れに収納し,その後,日々どのようにおふとんを出し入れすれば,快適に毎日を過ごせるだろうか. M 日間の不快度の和を最小化するとき,その和の値を求めよ. なお,一度も使われないおふとんがあってもよく,おふとんを一枚も使わない日があってもよい. Input 入力は複数のデータセットからなる. 各データセットは以下の形式である. N M s 1 s 2 ... s N d 1 d 2 ... d M データセットの 1 行目には,おふとんの枚数 N と,気温が予測されている日数 M を表す整数がスペース区切りで与えられる. 2 行目には N 個の整数 s 1 , s 2 , ..., s N がスペース区切りで与えられ, s i は i 番のおふとんのぬくもり供給力を表す. 3 行目には M 個の整数 d 1 , d 2 , ..., d M がスペース区切りで与えられ, d j は j 日目のぬくもり需要を表す. これらの整数は, 1 ≤ N ≤ 15 , 1≤ M ≤ 100 , 1 ≤ s i , d j ≤ 1,000,000 を満たす. 入力の終わりは N = M = 0 のデータセットで表される. このデータセットについて出力を行ってはならない. Output 各データセットについて, M 日間の不快度の和の最小値を 1 行に出力せよ. Sample Input 1 1 5 6 1 1 5 2 1 1 20 5 4 1 2 4 5 9 8 4 3 3 5 2 1 10 4 7 5 5 2 2 2 2 2 1 3 5 7 9 2 5 2 5 2 5 2 5 2 0 0 Output for Sample Input 1 2 5 1 1 5 4 5 つ目のケースについては,上から 5, 2, 3, 1 と押入れに置き,1 日目は 3 枚取り出し |10 - (5 + 2 + 3)| = 0,2 日目は 2 枚しまい |4 - 5| = 1,3 日目は 1 枚取り出し |7 - (5+2)| = 0 で,合計 0 + 1 + 0 = 1 となる.
[ { "submission_id": "aoj_2749_10848993", "code_snippet": "#include <bits/stdc++.h>\n \n#define FOR(i,a,b) for( ll i = (a); i < (ll)(b); i++ )\n#define REP(i,n) FOR(i,0,n)\n#define YYS(x,arr) for(auto& x:arr)\n#define ALL(x) (x).begin(),(x).end()\n#define SORT(x) sort( (x).begin(),(x).end() )\n#define REVERSE(x) reverse( (x).begin(),(x).end() )\n#define UNIQUE(x) (x).erase( unique( ALL( (x) ) ) , (x).end() )\n#define PW(x) (1LL<<(x))\n#define SZ(x) ((ll)(x).size())\n#define SHOW(x) cout << #x << \" = \" << x << endl\n#define SHOWA(x,n) for( int yui = 0; yui < n; yui++ ){ cout << x[yui] << \" \"; } cout << endl\n\n#define pb emplace_back\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long double ld;\ntypedef long long int ll;\ntypedef pair<int,int> pi;\ntypedef pair<ll,ll> pl;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<bool> vb;\ntypedef vector<ld> vd;\ntypedef vector<pi> vpi;\ntypedef vector<pl> vpl;\ntypedef vector<vpl> gr;\ntypedef vector<vl> ml;\ntypedef vector<vd> md;\ntypedef vector<vi> mi;\n \nconst ll INF = (ll)1e9 + 10;\nconst ll INFLL = (ll)1e18 + 10;\nconst ld EPS = 1e-12;\nconst ll MOD = 1e9+7;\n \ntemplate<class T> T &chmin( T &a , const T &b ){ return a = min(a,b); }\ntemplate<class T> T &chmax( T &a , const T &b ){ return a = max(a,b); }\ntemplate<class T> inline T sq( T a ){ return a * a; }\n\nll in(){ long long int x; scanf( \"%lld\" , &x ); return x; }\nchar yuyushiki[1000010]; string stin(){ scanf( \"%s\" , yuyushiki ); return yuyushiki; }\n\n// head\n\nint n, m;\n\nint a[15];\nint b[110];\n\nint w[PW(15)];\n\nint dp[PW(15)][110];\n\nint main(){\n\n while( 1 ){\n n = in();\n m = in();\n if( n == 0 && m == 0 ){\n break;\n }\n REP( i , n ){\n a[i] = in();\n }\n REP( i , m ){\n b[i] = in();\n }\n sort( b , b + m );\n REP( i , PW(n) ){\n w[i] = 0;\n REP( j , n ){\n if( i & PW(j) ){\n w[i] += a[j];\n }\n }\n }\n REP( i , PW(n) ){\n REP( j , m+1 ){\n dp[i][j] = INF;\n }\n }\n dp[0][0] = 0;\n REP( i , PW(n) ){\n REP( j , m+1 ){\n if( j < m ){\n chmin( dp[i][j+1] , dp[i][j] + abs( w[i] - b[j] ) );\n }\n REP( k , n ){\n chmin( dp[i|PW(k)][j] , dp[i][j] );\n }\n }\n }\n printf( \"%d\\n\" , dp[PW(n)-1][m] );\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 510, "memory_kb": 17792, "score_of_the_acc": -0.1314, "final_rank": 12 }, { "submission_id": "aoj_2749_10684036", "code_snippet": "#include <bits/stdc++.h>\n#include <unordered_map>\n#include <stdlib.h>\nusing namespace std;\n#define rep(i, a, n) for(ll i = a; i < n; i++)\n#define rrep(i, a, n) for(ll i = a; i >= n; i--)\n#define ll long long\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define all(x) (x).begin(), (x).end()\n//constexpr ll MOD = 1000000007;\nconstexpr ll MOD = 998244353;\nconstexpr int IINF = 1001001001;\nconstexpr ll INF = 1LL<<60;\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\nint main(){\n while(true){\n int n, m; cin >> n >> m;\n if(n == 0) break;\n vector<int> s(n), d(m);\n rep(i, 0, n) cin >> s[i];\n vector<ll> sum(1<<n);\n rep(i, 0, 1<<n){\n rep(j, 0, n){\n if((i>>j)&1){\n sum[i] += s[j];\n }\n }\n }\n\n rep(i, 0, m) cin >> d[i];\n sort(s.begin(), s.end());\n sort(d.begin(), d.end());\n vector<ll> dp(1<<n, IINF);\n dp[0] = 0;\n rep(i, 0, m){\n vector<ll> ndp(1<<n, INF);\n rep(j, 0, 1<<n){\n rep(k, 0, n){\n if(!((j>>k)&1)){\n chmin(dp[j+(1<<k)], dp[j]);\n }\n }\n }\n rep(j, 0, 1<<n){\n chmin(ndp[j], dp[j]+abs(sum[j]-d[i]));\n // rep(k, 0, n){\n // if(!((j>>k)&1)){\n // chmin(ndp[j+(1<<k)], dp[j]+abs(sum[j+(1<<k)]-d[i]));\n // }\n // }\n }\n swap(dp, ndp);\n }\n\n ll ans = INF;\n rep(i, 0, 1<<n) chmin(ans, dp[i]);\n cout << ans << endl;\n \n }\n\n\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 1510, "memory_kb": 4224, "score_of_the_acc": -0.3232, "final_rank": 15 }, { "submission_id": "aoj_2749_10683750", "code_snippet": "#include <bits/stdc++.h>\n#include <unordered_map>\n#include <stdlib.h>\nusing namespace std;\n#define rep(i, a, n) for(ll i = a; i < n; i++)\n#define rrep(i, a, n) for(ll i = a; i >= n; i--)\n#define ll long long\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define all(x) (x).begin(), (x).end()\n//constexpr ll MOD = 1000000007;\nconstexpr ll MOD = 998244353;\nconstexpr int IINF = 1001001001;\nconstexpr ll INF = 1LL<<60;\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\n\nll gcd(ll a, ll b){\n if(a%b == 0){\n return b;\n }else{\n return gcd(b, a%b);\n }\n}\n\nll lcm(ll a, ll b){\n return a*b / gcd(a, b);\n}\n\nll powMod(ll x, ll n) {\n if (n == 0) return 1 % MOD;\n ll val = powMod(x, n / 2);\n val *= val;\n val %= MOD;\n if (n % 2 == 1) val *= x;\n return val % MOD;\n}\n\nint main() {\n while(true){\n ll n, m; cin >> n >> m;\n if(n*m == 0) break;\n vector<ll> s(n), d(m);\n rep(i,0,n) cin >> s[i];\n rep(i,0,m) cin >> d[i];\n sort(all(s));\n sort(all(d));\n vector<ll> dp(1LL<<n,INF);\n vector<ll> sum(1LL<<n,0);\n rep(i,0,1LL<<n){\n rep(j,0,n) if(i>>j&1) sum[i] += s[j];\n }\n dp[0] = 0;\n rep(i,0,m){\n vector<ll> ndp(1LL<<n,INF);\n rep(bit,0,1LL<<n){\n rep(j,0,n){\n if(bit>>j&1) continue;\n chmin(dp[bit^(1LL<<j)], dp[bit]);\n }\n }\n rep(bit,0,1LL<<n){\n chmin(ndp[bit], dp[bit]+abs(d[i]-sum[bit]));\n }\n rep(bit,0,1LL<<n){\n rep(j,0,n){\n if(bit>>j&1) continue;\n chmin(ndp[bit^(1LL<<j)], ndp[bit]);\n }\n }\n swap(dp,ndp);\n }\n cout << dp[(1LL<<n)-1] << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 2900, "memory_kb": 4224, "score_of_the_acc": -0.6376, "final_rank": 18 }, { "submission_id": "aoj_2749_10683672", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <queue>\n#include <algorithm>\n#include <cstdlib>\n#include <cmath>\n#include <stack>\n#include <set>\n#include <unordered_set>\n#include <map>\n#include <iomanip>\n#include <unordered_map>\n#include <functional>\n#include <atcoder/all>\nusing namespace std;\nusing namespace atcoder;\nusing pii = pair<int, int>;\nusing vi = vector<int>;\nusing vii = vector<pii>;\nusing ll = long long;\nusing pll = pair<ll, ll>;\nusing vl = vector<ll>;\nusing vll = vector<pll>;\nusing mint = modint998244353;\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\nint main() {\n while(1) {\n ll n,m;\n cin >> n >> m;\n if(n==0 && m==0) break;\n vl s(n),t(m);\n for(int i=0; i<n; i++) cin >> s[i];\n for(int i=0; i<m; i++) cin >> t[i];\n\n sort(t.begin(),t.end());\n vector<vl> dp((1<<n), vl(m+1,1e18));\n vl sum(1<<n);\n for(int S=0; S<(1<<n); S++) {\n ll tmp = 0;\n for(int i=0; i<n; i++) {\n if(S & (1<<i)) tmp += s[i];\n }\n sum[S] = tmp;\n }\n // 経過日数0日\n for(int S=0; S<(1<<n); S++) dp[S][0] = 0;\n // 布団0枚\n for(int i=0; i<m; i++) {\n dp[0][i+1] = min(dp[0][i]+t[i],dp[0][i+1]);\n }\n\n for(int S=0; S<(1<<n); S++) {\n for(int i=0; i<n; i++) {\n if(S & (1<<n)) continue;\n for(int j=0; j<m; j++) {\n dp[S|(1<<i)][j+1] = min({dp[S|(1<<i)][j]+abs(t[j]-sum[S|(1<<i)]),dp[S][j+1],dp[S|(1<<i)][j+1]});\n }\n }\n }\n cout << dp[(1<<n)-1][m] << endl;\n }\n}", "accuracy": 1, "time_ms": 580, "memory_kb": 30496, "score_of_the_acc": -0.1796, "final_rank": 14 }, { "submission_id": "aoj_2749_10650473", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG // 配列外参照のエラー\n// #endif\n\n// スタンダードライブラリ\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型関連\nusing ll = long long;\nusing lint = long long;\nusing pll = pair<ll, ll>;\nusing plll = tuple<ll, ll, ll>;\nusing pii = pair<int, int>;\nusing piii = tuple<ll, ll, ll>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vvvvi = vector<vector<vector<vector<int>>>>;\nusing vl = vector<ll>;\nusing vvl = vector<vector<ll>>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvvvl = vector<vector<vector<vector<ll>>>>;\n\ntemplate <class T> using prique = priority_queue<T>;\n\n// 型定数\nconstexpr ll mod = 998244353;\nconstexpr ll MOD = 1000000007;\nint INF32 = 2e9;\nll INF64 = 1e18;\n#define endl '\\n';\n\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\n\n/////////////////////////// print関連\ntemplate <typename T> void print(vector<T> A);\nvoid print();\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail);\nvoid print(string S);\ntemplate <typename T> void print(vector<vector<T>> &F);\n\ninline void Yes(bool f);\n\n///////////////////ここから//////////////////////\nbool solve() {\n\n int N, M;\n cin >> N >> M;\n if (N == 0) {\n return false;\n }\n vector<int> A(N);\n for (int i = 0; i < N; i++) {\n cin >> A[i];\n }\n vector<int> D(M);\n for (int j = 0; j < M; j++) {\n cin >> D[j];\n }\n sort(D.begin(),D.end());\n\n vector<ll> Nuku(1 << N);\n for (int S = 0; S < (1 << N); S++) {\n ll n = 0;\n for (int i = 0; i < N; i++) {\n if (S & (1 << i)) {\n n += A[i];\n }\n }\n Nuku[S] = n;\n }\n\n vvl dp(M * N + 1, vl(1 << N, INF64));\n for (int S = 0; S < (1 << N); S++) {\n dp[0][S] = 0;\n }\n\n vvi nex_S(1 << N);\n for (int S = 0; S < (1 << N); S++) {\n nex_S[S].emplace_back(S);\n for (int i = 0; i < N; i++) {\n if (S & (1 << i)) {\n continue;\n }\n nex_S[S].emplace_back(S|(1<<i));\n\n }\n }\n\n for (int i = 0; i < M * N; i++) {\n for (int S = 0; S < (1 << N); S++) {\n for (auto nS : nex_S[S]) {\n ll cost =\n (i + 1) % N == 0 ? abs(D[(i + 1) / N - 1] - Nuku[nS]) : 0;\n dp[i + 1][nS] = min(dp[i + 1][nS], dp[i][S] + cost);\n }\n }\n }\n ll ans = INF64;\n for (int S = 0; S < (1 << N); S++) {\n ans = min(ans, dp[M * N][S]);\n }\n print(ans);\n\n return true;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n while (solve())\n ;\n}\n\n////////////////////print/////////////////////////\n// 1次元ベクトルを出力する\ntemplate <typename T> void print(vector<T> A) {\n if (A.size() == 0) {\n return;\n }\n for (size_t i = 0; i < A.size() - 1; i++) {\n cout << A[i] << ' ';\n }\n cout << A[A.size() - 1] << endl;\n return;\n}\n\n// 2次元ベクトルを出力する\ntemplate <typename T> void print(vector<vector<T>> &F) {\n for (size_t i = 0; i < F.size(); i++) {\n for (size_t j = 0; j < F[i].size(); j++) {\n cout << F[i][j];\n if (j < F[i].size() - 1) {\n cout << ' ';\n }\n }\n cout << endl;\n }\n}\n\n// 空白行を出力するprint\nvoid print() { cout << endl; }\n\n// 数値・文字列を空白区切りで出力する. print(a,b)など\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n cout << head;\n if (sizeof...(tail) != 0)\n cout << \" \";\n print(forward<Tail>(tail)...);\n}\n\nvoid print(string S) { cout << S << endl; }\n\n//////////////出力関連\n\ninline void Yes(bool f) {\n if (f) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 4510, "memory_kb": 396676, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_2749_10643045", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#include <atcoder/all>\nusing namespace atcoder;\n\nusing ll = long long;\nusing mint = modint998244353;\n\nvoid chmin(int &x, int y) {\n if(x > y) x = y;\n}\n\nbool solve() {\n int N, M;\n cin >> N >> M;\n if(N == 0) return false;\n vector<int> S(N), D(M);\n for(int &x : S) cin >> x;\n for(int &x : D) cin >> x;\n\n vector<int> V(1 << N);\n for(int s = 0; s < 1 << N; ++s) {\n for(int i = 0; i < N; ++i) {\n V[s] += S[i] * ((s >> i) & 1);\n }\n }\n\n const int INF = 1 << 30;\n vector dp(M + 1, vector<int>(1 << N, INF));\n dp[0][0] = 0;\n sort(D.begin(), D.end());\n for(int i = 0; i < M; ++i) {\n for(int s = 0; s < 1 << N; ++s) {\n chmin(dp[i + 1][s], dp[i][s] + abs(D[i] - V[s]));\n for(int j = 0; j < N; ++j) chmin(dp[i][s | (1 << j)], dp[i][s]);\n }\n }\n\n cout << *min_element(dp[M].begin(), dp[M].end()) << endl;\n return true;\n}\n\nint main() {\n while(solve());\n}", "accuracy": 1, "time_ms": 530, "memory_kb": 16992, "score_of_the_acc": -0.1339, "final_rank": 13 }, { "submission_id": "aoj_2749_10583102", "code_snippet": "//#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h>\nusing namespace std;\n#define ll long long\n#define rep(i,n) for (ll i=0;i<(ll)n;i++)\n#define rrep(i,n) for (ll i=n-1;i>=(ll)0;i--)\n#define loop(i,m,n) for(ll i=m;i<=(ll)n;i++)\n#define rloop(i,m,n) for(ll i=m;i>=(ll)n;i--)\n#define vl vector<long long>\n#define vvl vector<vector<long long>>\n#define vdbg(a) rep(ii,a.size()){cout<<a[ii]<<\" \";}cout<<endl;\n#define vvdbg(a) rep(ii,a.size()){rep(jj,a[ii].size()){cout<<a[ii][jj]<<\" \";}cout<<endl;}\n#define setdbg(a) for(const auto & ii:a){cout<<ii<<\" \";}cout<<endl;\n#define inf 4000000000000000000LL\n#define mod 998244353LL\n#define eps 0.000000001\n//#define mod 1000000007LL\nrandom_device rnd;// 非決定的な乱数生成器\nmt19937 mt(rnd());// メルセンヌ・ツイスタの32ビット版、引数は初期シード\n\n//#include<boost/multiprecision/cpp_int.hpp>\n//#define bbi boost::multiprecision::cpp_int\n\n//#include<atcoder/lazysegtree>\n\n//√の値が整数かを調べる\nbool isSqrt(ll n) {\n\tif (n < 0) return false;\n\tll sqrtN = static_cast<ll>(sqrt(n));\n\treturn sqrtN * sqrtN == n;\n}\n\n//整数同士の累乗の計算をする。\nll power(ll A, ll B) {\n\tll result = 1;\n\tfor (ll i=0;i<B;i++){\n\t\tresult *= A;\n\t}\n\treturn result;\n}\n\n//素因数分解\nvector<ll> makePrime(ll n){\n\tvector<ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors.push_back(2);\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors.push_back(i);\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors.push_back(n);\n\t}\n\treturn factors;\n}\n\n//map形式で、nを素因数分解した値を返す\nmap<ll,ll> makeMapPrime(ll n){\n\tmap<ll,ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors[2]++;\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors[n]++;\n\t}\n\treturn factors;\n}\n\n// nのk乗をmodで割った余りを計算\nll power_mod(ll n, ll k){\n\tlong long result = 1;\n\twhile (k > 0){\n\t\tif ((k&1) ==1)result=(result*n)%mod;\n\t\tn=n*n%mod;\n\t\tk >>= 1;\n\t}\n\treturn result;\n}\n\n//mod mにおけるaの逆元を計算\nll modinv(ll a, ll m) {\n\tll b = m, u = 1, v = 0;\n\twhile (b) {\n\t\tll t = a / b;\n\t\ta -= t * b; swap(a, b);\n\t\tu -= t * v; swap(u, v);\n\t}\n\tu %= m; \n\tif (u < 0) u += m;\n\treturn u;\n}\n\n//場合の数 nCr を求める\nll ncr(ll n,ll r) {\n\tif(n<r)return 0;\n\tvvl dp(n+1,vl(r+1));\n\trep (i,n+1)dp[i][0] = 1;\n\trep (i,r+1)dp[i][i] = 1;\n\tloop (i,1,n){\n\t\tloop (j,1,min((ll)i-1,r)) {\n\t\t\t//nCr= n-1Cr-1 + n-1Cr\n\t\t\tdp[i][j] = dp[i-1][j-1] + dp[i-1][j];\n\t\t}\n\t}\n\treturn dp[n][r];\n}\n\n//受け取った文字列を、第2引数が0なら全て小文字に、1なら大文字に変換する関数\nstring cnvString(const string &str, int mode) {\n\tstring result = str;\n\tif (mode == 0) {\n\t\t// 小文字に変換\n\t\tfor (char &c : result) {\n\t\t\tc = tolower(c);\n\t\t}\n\t} else if (mode == 1) {\n\t\t// 大文字に変換\n\t\tfor (char &c : result) {\n\t\t\tc = toupper(c);\n\t\t}\n\t}\n\treturn result;\n}\n\n//第一引数で受け取った数を、第二引数で受け取った数の進数と見做して、第三引数の進数へ変換する。\nstring cnvBase(const string &str, ll from_base, ll to_base) {\n\tll num = 0;\n\t//小文字があったら大文字に変換\n\tstring num_str=cnvString(str,1);\n\t// 数値を10進数に変換\n\tfor (char digit : num_str) {\n\t\tnum = num * from_base + (isdigit(digit) ? digit - '0' : digit - 'A' + 10);\n\t}\n\tstring result;\n\t// 数値を目的の基数に変換\n\twhile (num > 0) {\n\t\tll remainder = num % to_base;\n\t\tresult.push_back(remainder < 10 ? remainder + '0' : remainder - 10 + 'A');\n\t\tnum /= to_base;\n\t}\n\t// 結果を逆順にして返す\n\treverse(result.begin(), result.end());\n\treturn result.empty() ? \"0\" : result;\n}\n\n//底がaの対数xを計算。ただし小数点は繰り上げ。\nll logax(ll a, ll x){\n\tif(x<=1)return 0;\n\tll result = 1;\n\tll power = 1;\n\twhile (power < (x+a-1) / a){\n\t\tpower *= a;\n\t\tresult++;\n\t}\n\treturn result;\n}\n\n//第一引数を第二引数で割った余りを計算、割る数はint範囲\nll bigmd(const string &num, int md) {\n\tll ans = 0;\n\tll SIZ = 9; //9桁のチャンク\n\tll base = 1000000000;//SIZ個の0\n\trep(i,(num.size()-1)/SIZ+1){\n\t\tll chunk = 0;\n\t\tll l = i*SIZ;\n\t\tll r = min((ll)num.size(),l+SIZ);\n\t\tif(r!=num.size()){\n\t\t\tans = (ans*base+stoll(num.substr(l,r-l)))%md;\n\t\t}else{\n\t\t\trep(i,r-l)ans*=10;\n\t\t\tans=(ans+stoll(num.substr(l,r-l)))%md;\n\t\t}\n\t}\n\treturn ans;\n}\n\n//受け取った2次元文字の外側に、文字pをコーティングする。\nvector<string> pad(vector<string> &s,char p){\n\tll h=s.size();\n\tll w=s[0].size();\n\tvector<string> res(h+2,string(w+2,p));\n\trep(i,h)rep(j,w)res[i+1][j+1]=s[i][j];\n\treturn res;\n}\n\n//ax+by=cの整数解を得る ただし、cはgcd(a,b)の倍数でない場合、0,0になる\npair<ll,ll> ex_euclid(ll a,ll b,ll c){\n\tif(a<0||b<0||c<0){\n\t\tpair<ll,ll>ans=ex_euclid(abs(a),abs(b),abs(c));\n\t\tif(a<0)ans.first*=-1;\n\t\tif(b<0)ans.second*=-1;\n\t\tif(c<0)ans.first*=-1,ans.second*=-1;\n\t\treturn ans;\n\t}\n\tif(c!=1){\n\t\tll d=gcd(a,b);\n\t\tif(c%d!=0)return make_pair(0,0);\n\t\tpair<ll,ll>ans = ex_euclid(a/d,b/d,1);\n\t\tans.first*=c/d;\n\t\tans.second*=c/d;\n\t\treturn ans;\n\t}\n\tif(a<b){\n\t\tpair<ll,ll>ans=ex_euclid(b,a,c);\n\t\tswap(ans.first,ans.second);\n\t\treturn ans;\n\t}\n\tif(a==1&&b==0)return make_pair(1,0);\n\telse if(b==0) return make_pair(0,0);\n\tll x,y;\n\ttie(x,y)=ex_euclid(b,a%b,c);\n\tpair<ll,ll> ans=make_pair(y,x-(a/b)*y);\n\treturn ans;\n}\n\n//オイラーのトーシェント関数。N以下のNと互いに素な物の数を返す。\nll euler(ll n){\n\tunordered_map<ll,ll> factors;\n\tll tmp=n;\n\twhile (tmp % 2 == 0) {\n\t\tfactors[2]++;\n\t\ttmp /= 2;\n\t}\n\tfor (ll i=3; i*i<=tmp;i+=2) {\n\t\twhile (tmp%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\ttmp/= i;\n\t\t}\n\t}\n\tif (tmp > 2)factors[tmp]++;\n\tll ans=1;\n\tfor(const auto & val:factors){\n\t\tans*=power(val.first,val.second-1)*(val.first-1);\n\t}\n\treturn ans;\n}\n\n// Union-Find\nstruct UnionFind {\n\tvector<int> par, siz;\n\tUnionFind(int n) : par(n, -1) , siz(n, 1) { }\n\t// 根を求める\n\tint root(int x) {\n\t\tif (par[x] == -1) return x;\n\t\telse return par[x] = root(par[x]);\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(int x, int y) {\n\t\treturn root(x) == root(y);\n\t}\n\t// x を含むグループと y を含むグループとを併合する\n\tbool unite(int x, int y) {\n\t\tx = root(x), y = root(y);\n\t\tif (x == y) return false; \n\t\tif (siz[x] < siz[y]) swap(x, y);\n\t\tpar[y] = x;\n\t\tsiz[x] += siz[y];\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズ\n\tint size(int x) {\n\t\treturn siz[root(x)];\n\t}\n};\n\n//重み付きUF\nstruct PotentialUnionFind {\n\tll n;\n\tvl par, siz, pot;\n\tPotentialUnionFind(ll N) : par(N,-1) , siz(N,1) , pot(N,0){n=N;}\n\t// 根を求める\n\tll root(ll x) {\n\t\tif (par[x] == -1) return x;\n\t\tll tmp = root(par[x]);\n\t\tpot[x] += pot[par[x]];\n\t\tpar[x] = tmp;\n\t\treturn par[x];\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(ll x, ll y) {\n\t\treturn root(x) == root(y);\n\t}\n\t//x よりいくつ大きい所に y があるか。根が一致しない場合は\"0\"\n\tll potential(ll x,ll y){\n\t\tif(root(x) != root(y)) return 0;\n\t\telse return pot[y]-pot[x];\n\t}\n\t//x より w だけ大きい状態として y を併合。\n\tbool unite(ll x, ll y, ll w) {\n\t\tll rx = root(x),ry = root(y);\n\t\tif (rx == ry) return false;\n\t\tw += pot[x]-pot[y];\n\t\tif (siz[rx] < siz[ry]) swap(rx, ry),w*=-1;\n\t\tpar[ry] = rx;\n\t\tsiz[rx] += siz[ry];\n\t\tsiz[ry] = 0;\n\t\tpot[ry] = w;\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズ\n\tll size(ll x) {\n\t\treturn siz[root(x)];\n\t}\n\t//小さい順にUnionFindグラフを調整、O(n log n)\n\tvoid regulation(){\n\t\tvvl r(n);\n\t\trep(i,n)r[root(i)].push_back(i);\n\t\trep(i,n){\n\t\t\tif(r[i].size()==0)continue;\n\t\t\tll mn = i;\n\t\t\trep(j,r[i].size())if(pot[mn]>pot[r[i][j]])mn=r[i][j];\n\t\t\tsiz[mn]=siz[i];\n\t\t\tsiz[i]=0;\n\t\t\tll tmp = pot[mn];\n\t\t\trep(j,r[i].size()){\n\t\t\t\tpot[r[i][j]]-=tmp;\n\t\t\t\tpar[r[i][j]] = mn;\n\t\t\t}\n\t\t\tpar[mn]=-1;\n\t\t}\n\t}\n\tvoid debug(){\n\t\trep(i,n)cout<<setw(4)<<left<<par[i]<<\" \";\n\t\tcout<<endl;\n\t\trep(i,n)cout<<setw(4)<<left<<pot[i]<<\" \";\n\t\tcout<<endl;\n\t}\n};\n\n//分離可能UnionFind、経路圧縮をしない。\nstruct CuttingFind{\n\tvector<int> par, siz;\n\tCuttingFind(int n) : par(n, -1) , siz(n, 1) { }\n\t// 根を求める\n\tint root(int x) {\n\t\tif (par[x] == -1) return x;\n\t\telse return root(par[x]);\n\t}\n\t// x と y が同じグループに属するかどうか (根が一致するかどうか)\n\tbool issame(int x, int y) {\n\t\treturn root(x) == root(y);\n\t}\n\t//根x と 根y のグループを併合する(お互い根ではない時、falseで何もしない)\n\tbool unite(int x, int y) {\n\t\tif (issame(x,y) || par[x] != -1 || par[y] != -1) {\n\t\t\tcout<<\"error\"<<endl;\n\t\t\treturn false;\n\t\t}\n\t\tif (siz[x] < siz[y]) swap(x, y);\n\t\tpar[y] = x;\n\t\tsiz[x] += siz[y];\n\t\treturn true;\n\t}\n\t//根の側から、その直系の子供を分離する。片方が根でもう片方が直系の子でなければならない。\n\tbool separate(int x,int y){\n\t\tif(par[y]==-1)swap(x,y);\n\t\tif(par[y]!=x||par[x]!=-1){\n\t\t\tcout<<\"error2\"<<endl;\n\t\t\treturn false;\n\t\t}\n\t\tsiz[x] -= siz[y];\n\t\tpar[y]=-1;\n\t\treturn true;\n\t}\n\t// x を含むグループのサイズを求める\n\tint size(int x) {\n\t\treturn siz[root(x)];\n\t}\n};\n//セグ木,乗せる値の型が必要\ntemplate<typename T>\nstruct SegTree{\n\tll size;\n\tll tall;\n\tvector<T> data;\n\tfunction<T(T,T)> p;\n\t//セグ木に乗せる値の初期値をa配列にし、putの関数をセグ木に乗せる、dをデフォルト値に。\n\tSegTree(vector<T> a,function<T(T,T)> put,T d) : data(power(2,logax(2,a.size())+1)) {\n\t\tsize = data.size()/2;\n\t\ttall=logax(2,size)+1;\n\t\tp=put;\n\t\tll tmp=size;\n\t\tdata = vector<T>(size*2,d);\n\t\twhile(tmp!=0){\n\t\t\tif(tmp==size)rep(i,a.size())data[tmp+i]=a[i];\n\t\t\telse rep(i,tmp) data[tmp+i]=p(data[2*(tmp+i)],data[2*(tmp+i)+1]);\n\t\t\ttmp/=2;\n\t\t}\n\t}\n\t//更新、t番目の値をxにする。\n\tvoid update(ll t,T x){\n\t\tt+=size;\n\t\twhile(t!=0){\n\t\t\tif(t>=size)data[t]=x;\n\t\t\telse data[t]=p(data[2*t],data[2*t+1]);\n\t\t\tt/=2;\n\t\t}\n\t}\n\t//取得、l~r区間内の評価値を取得する。\n\tT get(ll l,ll r){\n\t\t//lとrが範囲外なら範囲内に正す\n\t\tl=max(0LL,l);\n\t\tr=min(r,size-1);\n\t\tr++;\n\t\tT ans=data[0];\n\t\tll pos=l+size;\n\t\tll wid=1;\n\t\t//出来る限り上に上げきる。\n\t\twhile(l+(wid*2)<=r){\n\t\t\twhile(l%(wid*2)==0&&l+(wid*2)<=r)pos/=2,wid*=2;\n\t\t\tans=p(ans,data[pos]);\n\t\t\tpos++;\n\t\t\tl+=wid;\n\t\t}\n\t\t//上げ終わったので今度は下げる\n\t\twhile(l!=r){\n\t\t\twhile(l+wid>r)pos*=2,wid/=2;\n\t\t\tans=p(ans,data[pos]);\n\t\t\tpos++;\n\t\t\tl+=wid;\n\t\t}\n\t\treturn ans;\n\t}\n\t//セグ木デバッグ用、丸ごと出力\n\tvoid print(){\n\t\trep(i,size)cout<<setw(7)<<left<<i;\n\t\tcout<<endl;\n\t\tll pos=size;\n\t\trep(i,tall){\n\t\t\trep(j,size){\n\t\t\t\tif(j%power(2,i)==0)cout<<setw(7)<<left<<data[pos],pos++;\n\t\t\t\telse cout<<\" \";\n\t\t\t}\n\t\t\tpos/=4;\n\t\t\tcout<<endl;\n\t\t}\n\t}\n};\n\n//グリッド問題等用\nvl dx={1,0,-1,0};\nvl dy={0,1,0,-1};\n\n\nll solve(){\n\tll n,m;\n\tcin>>n>>m;\n\tif(n==0&&m==0){return 1;}\n\tvl s(n),d(m);\n\trep(i,n)cin>>s[i];\n\trep(i,m)cin>>d[i];\n\tsort(d.begin(),d.end());\n\n\tvvl dp(m+1,vl(1<<n,inf));\n\tdp[0][0]=0;\n\trep(i,m){\n\t\trep(j,1<<n){\n\t\t\t//上方向へのゼータ変換\n\t\t\trep(k,n){\n\t\t\t\tif(((1LL<<k)&j)==0){\n\t\t\t\t\tdp[i][j+(1LL<<k)]=min(dp[i][j],dp[i][j+(1LL<<k)]);\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t//jの部分列を列挙\n\t\t\tll b=j;\n\t\t\tll nukumori=0;\n\t\t\trep(k,n){\n\t\t\t\tif((1LL<<k)&j){\n\t\t\t\t\tnukumori+=s[k];\n\t\t\t\t}\n\t\t\t}\n\t\t\tll tmp=abs(nukumori-d[i]);\n\t\t\tdp[i+1][j]=min(dp[i][j]+tmp,dp[i+1][j]);\n\n\t\t\t\n\t\t}\n\t}\n\tll ans=inf;\n\trep(i,1<<n){\n\t\tans=min(ans,dp[m][i]);\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}\n\n//メイン\nint main(){\n\twhile(solve()==0);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 2890, "memory_kb": 30044, "score_of_the_acc": -0.7011, "final_rank": 19 }, { "submission_id": "aoj_2749_10512544", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define all(...) std::begin(__VA_ARGS__), std::end(__VA_ARGS__)\n#define rall(...) std::rbegin(__VA_ARGS__), std::rend(__VA_ARGS__)\n#define OVERLOAD_REP(_1, _2, _3, _4, name, ...) name\n#define REP1(n) for(ll i=0;i<(n);i++)\n#define REP2(i, n) for (ll i=0;i<(n);i++)\n#define REP3(i, a, n) for (ll i=a;i<(n);i++)\n#define REP4(i, a, b, n) for(ll i=a;i<(n);i+=b)\n#define rep(...) OVERLOAD_REP(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)\n#define OVERLOAD_RREP(_1, _2, _3, _4, name, ...) name\n#define RREP1(n) for(ll i=(n)-1;i>=0;i--)\n#define RREP2(i, n) for(ll i=(n)-1;i>=0;i--)\n#define RREP3(i, a, n) for(ll i=(n)-1;i>=(a);i--)\n#define RREP4(i, a, b, n) for(ll i=(n)-1;i>=(a);i-=(b))\n#define rrep(...) OVERLOAD_RREP(__VA_ARGS__, RREP4, RREP3, RREP2, RREP1)(__VA_ARGS__)\n#define uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define len(n) (long long)(n).size()\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vs = vector<string>;\nusing vvs = vector<vs>;\nusing vvvs = vector<vvs>;\nusing vld = vector<ld>;\nusing vvld = vector<vld>;\nusing vvvld = vector<vvld>;\nusing vc = vector<char>;\nusing vvc = vector<vc>;\nusing vvvc = vector<vvc>;\nusing pll = pair<ll,ll>;\nusing vpll = vector<pll>;\nusing vvpll = vector<vpll>;\n\nll intpow(ll a,ll b){\n ll ans = 1;\n while (b){\n if (b & 1){\n ans *= a;\n }\n a *= a;\n b /= 2;\n }\n return ans;\n}\nll modpow(ll a,ll b,ll c){\n ll ans = 1;\n while (b){\n if (b & 1){\n ans *= a;\n ans %= c;\n }\n a *= a;\n a %= c;\n b >>= 1;\n }\n return ans;\n}\n\ntemplate<class... T>\nvoid input(T&... a){\n (cin >> ... >> a);\n}\n\n#define INT(...) int __VA_ARGS__; input(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__; input(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__; input(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__; input(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__; input(__VA_ARGS__)\n#define CHA(...) char __VA_ARGS__; input(__VA_ARGS__)\n#define VLL(name,length) vll name(length);rep(i,length){cin >> name[i];}\n#define VVLL(name,h,w) vvll name(h,vll(w));rep(i,h)rep(j,w){cin >> name[i][j];}\n#define VVVLL(name,a,b,c) vvvll name(a,vvll(b,vll(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];}\n#define VI(name,length) vi name(length);rep(i,length){cin >> name[i];}\n#define VVI(name,h,w) vvi name(h,vi(w));rep(i,h)rep(j,w){cin >> name[i][j];}\n#define VVVI(name,a,b,c) vvvi name(a,vvll(b,vi(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];}\n#define VLD(name,length) vld name(length);rep(i,length){cin >> name[i];}\n#define VVLD(name,h,w) vvld name(h,vld(w));rep(i,h)rep(j,w){cin >> name[i][j];}\n#define VVVLD(name,a,b,c) vvvld name(a,vvld(b,vld(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];}\n#define VC(name,length) vc name(length);rep(i,length){cin >> name[i];}\n#define VVC(name,h,w) vvc name(h,vc(w));rep(i,h)rep(j,w){cin >> name[i][j];}\n#define VVVC(name,a,b,c) vvvc name(a,vvc(b,vc(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];}\n#define VS(name,length) vs name(length);rep(i,length){cin >> name[i];}\n#define VVS(name,h,w) vvs name(h,vs(w));rep(i,h)rep(j,w){cin >> name[i][j];}\n#define VVVS(name,a,b,c) vvvs name(a,vvs(b,vs(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];}\n#define PLL(name) pll name;cin>>name.first>>name.second;\n#define VPLL(name,length) vpll name(length);rep(i,length){cin>>name[i].first>>name[i].second;}\n\nvoid print(){cout << \"\\n\";}\n\ntemplate <typename T1, typename T2>\nstd::ostream& operator<<(std::ostream& os, const std::pair<T1, T2>& p) {\n os << \"(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\n\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& os, const std::vector<T>& vec) {\n os << \"[\";\n for (size_t i = 0; i < vec.size(); ++i) {\n os << vec[i];\n if (i + 1 < vec.size()) os << \", \";\n }\n os << \"]\";\n return os;\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream& operator<<(std::ostream& os, const std::vector<std::pair<T1, T2>>& a) {\n os << \"[\";\n for (size_t j = 0; j < a.size(); ++j) {\n os << \"(\" << a[j].first << \", \" << a[j].second << \")\";\n\t\tif (j + 1 < a.size()) os << \", \";\n }\n\tos << \"]\";\n return os;\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream& operator<<(std::ostream& os, const std::vector<std::vector<std::pair<T1, T2>>>& mat) {\n\tos << \"[\";\n for (size_t i = 0; i < mat.size(); ++i) {\n\t\tos << \"[\";\n for (size_t j = 0; j < mat[i].size(); ++j) {\n os << \"(\" << mat[i][j].first << \", \" << mat[i][j].second << \")\";\n\t\t\tif (j + 1 < mat[i].size()) os << \", \";\n }\n\t\tos << \"]\";\n\t\tif (i + 1 < mat.size()) os << \", \";\n }\n\tos << \"]\";\n return os;\n}\n\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& os, const std::set<T>& s) {\n os << \"{\";\n bool first = true;\n for (const auto& x : s) {\n if (!first) os << \", \";\n os << x;\n first = false;\n }\n os << \"}\";\n return os;\n}\n\ntemplate <typename K, typename V>\nstd::ostream& operator<<(std::ostream& os, const std::map<K, V>& m) {\n os << \"{\";\n bool first = true;\n for (const auto& [key, val] : m) {\n if (!first) os << \", \";\n os << key << \": \" << val;\n first = false;\n }\n os << \"}\";\n return os;\n}\n\ntemplate<class T, class... Ts>\nvoid print(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\\n';}\n\nvoid write(){cout << \"\\n\";}\ntemplate<class T, class... Ts>\nvoid write(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\\n';}\nvoid write(vll x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vvll x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vi x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vvi x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vvvi x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << \" \";}else if(j!=len(x[i])-1){cout << \" | \";}else{cout << '\\n';}}}\nvoid write(vld x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vvld x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vvvld x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << \" \";}else if(j!=len(x[i])-1){cout << \" | \";}else{cout << '\\n';}}}\nvoid write(vc x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vvc x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << \"\";}else{cout << '\\n';}}}\nvoid write(vvvc x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << \" \";}else if(j!=len(x[i])-1){cout << \" | \";}else{cout << '\\n';}}}\nvoid write(vs x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << \"\\n\";}else{cout << '\\n';}}}\nvoid write(vvs x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << \" \";}else{cout << '\\n';}}}\nvoid write(vvvs x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << \" \";}else if(j!=len(x[i])-1){cout << \" | \";}else{cout << '\\n';}}}\nvoid write(pll x){cout << x.first << ' ' << x.second << '\\n';}\nvoid write(vpll x){rep(i,len(x)){cout << x[i].first << ' ' << x[i].second << '\\n';}}\nvoid write(vvpll x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j].first << ' ' << x[i][j].second;if(j!=len(x[i])-1){cout << \" \";}else{cout << '\\n';}}}\n\ntemplate <typename T>\nT sum(const std::vector<T>& v) {\n return std::accumulate(v.begin(), v.end(), T(0));\n}\n\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > T(b)){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < T(b)){ a = b; return 1; } return 0; }\n\nint main(){\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n while(1){\n LL(n,m);\n if(n + m == 0){break;}\n VLL(s,n);\n VLL(d,m);\n vll dp(1<<n,1LL<<60);\n ll x = sum(d);\n dp[0] = x;\n auto f = [&](ll p, ll v){\n ll temp = 0;\n rep(j,m){\n if(d[j] >= p){\n temp -= d[j] - p;\n temp += min(abs(d[j]-p),abs(d[j]-v));\n }\n }\n return temp;\n };\n rep(i,(1LL<<n)){\n ll p = 0;\n rep(j,n){\n if(((i >> j) & 1) == 1){\n p += s[j];\n }\n }\n rep(j,n){\n if(((i >> j) & 1) == 1){continue;}\n chmin(dp[i | (1<<j)],dp[i] + f(p,p+s[j]));\n }\n }\n write(dp.back());\n }\n \n}", "accuracy": 1, "time_ms": 230, "memory_kb": 3820, "score_of_the_acc": -0.0325, "final_rank": 3 }, { "submission_id": "aoj_2749_10211981", "code_snippet": "// AOJ #2749\n// The Most Powerful Bed 2025.2.11\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n \nvector<ll> demands;\nvector<ll> pref;\n \nll costInterval(ll L, ll R) {\n int i = int(lower_bound(demands.begin(), demands.end(), L) - demands.begin());\n int j = int(upper_bound(demands.begin(), demands.end(), R) - demands.begin());\n if(i >= j) return 0;\n ll mid = (L + R) / 2;\n int k = int(lower_bound(demands.begin() + i, demands.begin() + j, mid+1) - demands.begin());\n int cntLeft = k - i;\n ll sumLeft = pref[k] - pref[i];\n ll costLeft = sumLeft - (ll)cntLeft * L;\n int cntRight = j - k;\n ll sumRight = pref[j] - pref[k];\n ll costRight = (ll)cntRight * R - sumRight;\n return costLeft + costRight;\n}\n \nint N;\nvector<ll> s;\nvector<ll> maskSum;\nll Ttotal;\nvector<ll> dpMemo;\n \nll dp(int mask) {\n int full = (1 << N) - 1;\n if(mask == full) return costInterval(maskSum[mask], Ttotal);\n if(dpMemo[mask] != -1) return dpMemo[mask];\n ll current = maskSum[mask];\n ll best = LLONG_MAX;\n for(int i = 0; i < N; i++){\n if(!(mask & (1 << i))){\n ll nextVal = current + s[i];\n ll cand = costInterval(current, nextVal) + dp(mask | (1 << i));\n best = min(best, cand);\n }\n }\n dpMemo[mask] = best;\n return best;\n}\n \nint main() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n while(true){\n int M;\n cin >> N >> M;\n if(N == 0) break;\n \n s.resize(N);\n Ttotal = 0;\n for (int i = 0; i < N; i++){\n cin >> s[i];\n Ttotal += s[i];\n }\n \n vector<ll> d(M);\n for (int j = 0; j < M; j++) cin >> d[j];\n \n vector<ll> dLE, dGT;\n for (int j = 0; j < M; j++){\n if(d[j] <= Ttotal) dLE.push_back(d[j]);\n else dGT.push_back(d[j]);\n }\n \n sort(dLE.begin(), dLE.end());\n demands = dLE;\n pref.resize(demands.size()+1);\n pref[0] = 0;\n for (size_t i = 0; i < demands.size(); i++)\n pref[i+1] = pref[i] + demands[i];\n \n ll extra = 0;\n for (ll val : dGT) extra += (val - Ttotal);\n \n int totalStates = 1 << N;\n maskSum.assign(totalStates, 0);\n for(int mask = 0; mask < totalStates; mask++){\n ll sumVal = 0;\n for(int i = 0; i < N; i++)\n if(mask & (1 << i)) sumVal += s[i];\n maskSum[mask] = sumVal;\n }\n dpMemo.assign(totalStates, -1);\n ll ans = dp(0) + extra;\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3544, "score_of_the_acc": -0.007, "final_rank": 2 }, { "submission_id": "aoj_2749_10096907", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n#define sz(x) (int)x.size()\n\n\nsigned main() {\n ios_base::sync_with_stdio(0);\n cin.tie(0);\n int n, m;\n while(cin >> n >> m){\n if (!n && !m)break;\n vector<int>s(n), d(m);\n for (auto &x : s)cin >> x;\n for (auto &x : d)cin >> x;\n\n int dp[1 << n], sum[1 << n];\n memset(dp, 0, sizeof(dp));\n for (int mask = 0; mask < (1 << n); mask++){\n sum[mask] = 0;\n for (int i = 0; i < n; i++){\n if ((mask >> i) & 1)\n sum[mask] += s[i];\n }\n }\n\n sort(d.begin(), d.end());\n for (int i = 0; i < m; i++){\n for (int mask = 0; mask < (1 << n); mask++){\n for (int j = 0; j < n; j++){\n int nmask = mask | (1 << j);\n dp[nmask] = min(dp[mask], dp[nmask]);\n }\n dp[mask] += abs(sum[mask] - d[i]);\n }\n }\n cout << *min_element(dp, dp + (1 << n)) << \"\\n\";\n }\n \n return 0;\n}", "accuracy": 1, "time_ms": 590, "memory_kb": 3956, "score_of_the_acc": -0.1143, "final_rank": 11 }, { "submission_id": "aoj_2749_9431217", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\ntemplate <unsigned mod = 1000000007> struct fp {\n unsigned v;\n static constexpr int get_mod() {\n return mod;\n }\n constexpr unsigned inv() const {\n assert(v != 0);\n int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0;\n while (y > 0) {\n t = x / y;\n x -= t * y, p -= t * q;\n tmp = x, x = y, y = tmp;\n tmp = p, p = q, q = tmp;\n }\n if (p < 0)\n p += mod;\n return p;\n }\n constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {}\n fp operator-() const {\n return fp() - *this;\n }\n fp pow(ull t) {\n fp res = 1, b = *this;\n while (t) {\n if (t & 1)\n res *= b;\n b *= b;\n t >>= 1;\n }\n return res;\n }\n fp &operator+=(const fp &x) {\n if ((v += x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator-=(const fp &x) {\n if ((v += mod - x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator*=(const fp &x) {\n v = ull(v) * x.v % mod;\n return *this;\n }\n fp &operator/=(const fp &x) {\n v = ull(v) * x.inv() % mod;\n return *this;\n }\n fp operator+(const fp &x) const {\n return fp(*this) += x;\n }\n fp operator-(const fp &x) const {\n return fp(*this) -= x;\n }\n fp operator*(const fp &x) const {\n return fp(*this) *= x;\n }\n fp operator/(const fp &x) const {\n return fp(*this) /= x;\n }\n bool operator==(const fp &x) const {\n return v == x.v;\n }\n bool operator!=(const fp &x) const {\n return v != x.v;\n }\n friend istream &operator>>(istream &is, fp &x) {\n return is >> x.v;\n }\n friend ostream &operator<<(ostream &os, const fp &x) {\n return os << x.v;\n }\n};\n\ntemplate <unsigned mod> void rd(fp<mod> &x) {\n fastio::rd(x.v);\n}\ntemplate <unsigned mod> void wt(fp<mod> x) {\n fastio::wt(x.v);\n}\n\ntemplate <typename T> T Inv(ll n) {\n static const int md = T::get_mod();\n static vector<T> buf({0, 1});\n assert(n > 0);\n n %= md;\n while (SZ(buf) <= n) {\n int k = SZ(buf), q = (md + k - 1) / k;\n buf.push_back(buf[k * q - md] * q);\n }\n return buf[n];\n}\n\ntemplate <typename T> T Fact(ll n, bool inv = 0) {\n static const int md = T::get_mod();\n static vector<T> buf({1, 1}), ibuf({1, 1});\n assert(n >= 0 and n < md);\n while (SZ(buf) <= n) {\n buf.push_back(buf.back() * SZ(buf));\n ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf)));\n }\n return inv ? ibuf[n] : buf[n];\n}\n\ntemplate <typename T> T nPr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nCr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nHr(int n, int r, bool inv = 0) {\n return nCr<T>(n + r - 1, r, inv);\n}\n\n/**\n * @brief Modint\n */\n\nint main() {\nwhile(1) {\n int N, M;\n cin >> N >> M;\n if (N == 0 && M == 0) return 0;\n vector<int> S(N), D(M);\n rep(i,0,N) cin >> S[i];\n rep(i,0,M) cin >> D[i];\n vector<int> SUM(1<<N,0), DP(1<<N, inf);\n rep(i,0,1<<N) {\n rep(j,0,N) {\n if ((i & (1<<j)) == (1<<j)) SUM[i] += S[j];\n }\n }\n DP[0] = 0;\n rep(i,0,1<<N) {\n rep(j,0,N) {\n if ((i & (1<<j)) == 0) {\n int COUNT = DP[i];\n rep(k,0,M) {\n if (SUM[i] <= D[k] && D[k] <= SUM[i | (1<<j)]) COUNT += min(D[k]-SUM[i], SUM[i | (1<<j)] - D[k]);\n }\n chmin(DP[i | (1<<j)], COUNT);\n }\n }\n }\n int ANS = DP[(1<<N)-1];\n rep(i,0,M) {\n if (SUM[(1<<N)-1]<D[i]) ANS += D[i]-SUM[(1<<N)-1];\n }\n cout << ANS << endl;\n}\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 3684, "score_of_the_acc": -0.0684, "final_rank": 9 }, { "submission_id": "aoj_2749_9408488", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)\n#define rrep(i,start,end) for (long long i = start;i >= (long long)(end);i--)\n#define repn(i,end) for(long long i = 0; i <= (long long)(end); i++)\n#define reps(i,start,end) for(long long i = start; i < (long long)(end); i++)\n#define repsn(i,start,end) for(long long i = start; i <= (long long)(end); i++)\n#define each(p,a) for(auto &p:a)\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\ntypedef vector<long long> vll;\ntypedef vector<pair<long long ,long long>> vpll;\ntypedef vector<vector<long long>> vvll;\ntypedef set<ll> sll;\ntypedef map<long long , long long> mpll;\ntypedef pair<long long ,long long> pll;\ntypedef tuple<long long , long long , long long> tpl3;\n#define LL(...) ll __VA_ARGS__; input(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__; input(__VA_ARGS__)\n#define Str(...) string __VA_ARGS__; input(__VA_ARGS__)\n#define Ch(...) char __VA_ARGS__; input(__VA_ARGS__)\n#define all(a) (a).begin(),(a).end()\n#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );\n#define sz(x) (int)x.size()\n// << std::fixed << std::setprecision(10)\nconst ll INF = 1LL << 60;\nconst ld EPS = 1e-9;\n \ninline ll lfloor(ll x,ll m){return (x - ((x % m+ m)%m))/m;}\ninline ll positive_mod(ll a,ll m){return (a % m + m)%m;}\ninline ll popcnt(ull a){ return __builtin_popcountll(a);}\ntemplate<class T> bool chmin(T& a, T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T> bool chmax(T& a, T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> std::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T> std::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\ntemplate<typename T1, typename T2>std::ostream &operator<< (std::ostream &os, std::pair<T1,T2> p){os << \"{\" << p.first << \",\" << p.second << \"}\";return os;}\ntemplate<class... T>void input(T&... a){(cin >> ... >> a);}\nvoid print(){cout << endl;}\ntemplate<class T, class... Ts>void print(const T& a, const Ts&... b){cout << a;((cout << ' ' << b), ...);cout << endl;}\ntemplate<class T> void pspace(const T& a){ cout << a << ' ';}\nvoid perr(){cerr << endl;}\ntemplate<class T, class... Ts>void perr(const T& a, const Ts&... b){cerr << a;((cerr << ' ' << b), ...);cerr << endl;}\nvoid yes(bool i = true){ return print(i?\"yes\":\"no\"); }\nvoid Yes(bool i = true){ return print(i?\"Yes\":\"No\"); }\nvoid YES(bool i = true){ return print(i?\"YES\":\"NO\"); }\ntemplate <class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v) e++;return v;}\ntemplate <class T> vector<T> operator++(vector<T> &v, signed) {auto res = v;for(auto &e : v) e++;return res;}\ntemplate <class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v) e--;return v;}\ntemplate <class T> vector<T> operator--(vector<T> &v, signed) {auto res = v;for(auto &e : v) e--;return res;}\n//grid探索用\nvector<ll> _ta = {0,0,1,-1,1,1,-1,-1};\nvector<ll> _yo = {1,-1,0,0,1,-1,1,-1};\nbool isin(ll now_i,ll now_j,ll h,ll w){return (0<=now_i && now_i < h && 0 <= now_j && now_j < w);}\n \nll lpow(ll x,ll n){ll ans = 1;while(n >0){if(n & 1)ans *= x;x *= x;n >>= 1;}return ans;}\nll Modlpow(ll x,ll n,ll m){ll ans = 1;ll a = x%m;while(n >0){if(n & 1){ans *= a;ans%= m;}a *= a;a %= m;n >>= 1;}return ans;} \nconst ll MOD9 = 998244353LL;\nconst ll MOD10 = 1000000007LL;\n\n// for AOJ or ICPC or etc..\n// 全部が0だったらtrueを返す\ntemplate<class Tp> bool zero (const Tp &x) {return x == 0;}\ntemplate<class Tp, class... Args> bool zero (const Tp &x, const Args& ...args) {return zero(x) and zero(args...);}\n\n\n// 変数をちゃんと全部受け取る!\nvoid solve(ll n,ll m){\n vll s(n),d(m);\n cin >> s >> d;\n sort(all(d));\n vll sum(1 << n);\n rep(i,1 << n){\n ll sm = 0;\n rep(j,n){\n if(i >> j & 1){\n sm += s[j];\n }\n }\n sum[i] = sm;\n }\n vvll dp(m+1,vector<ll>(1 << n,INF));\n rep(i,1 << n){\n dp[0][i] = 0;\n }\n rep(i,m){\n rep(j,1 << n){\n if(dp[i][j] == INF)continue;\n chmin(dp[i+1][j],dp[i][j] + abs(sum[j]-d[i]));\n rep(k,n){\n if(~j >> k & 1){\n chmin(dp[i+1][j+(1<<k)],dp[i][j] + abs(sum[j+(1<<k)]-d[i]));\n chmin(dp[i][j+(1<<k)],dp[i][j]);\n }\n }\n }\n }\n // rep(i,m+1){\n // rep(j,1 << n){\n // cout << dp[i][j] << \" \";\n // }\n // cout << endl;\n // }\n ll ans = accumulate(all(d),0LL);\n rep(i,1 << n){\n chmin(ans,dp[m][i]);\n }\n cout << ans << endl;\n}\n \nint main(){\n ios::sync_with_stdio(false);cin.tie(nullptr);\n while(true){\n LL(n,m);//変数数調整\n if(zero(n,m))break;\n solve(n,m);\n }\n}", "accuracy": 1, "time_ms": 1680, "memory_kb": 29952, "score_of_the_acc": -0.4271, "final_rank": 17 }, { "submission_id": "aoj_2749_9379243", "code_snippet": "#if 1\n// clang-format off\n#include <bits/stdc++.h>\n\nusing namespace std;\nusing uint = unsigned int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing lf = long double;\nusing pll = pair<ll, ll>;\n#define vec vector\ntemplate <class T> using v = vector<T>;\ntemplate <class T> using vv = v<v<T>>;\ntemplate <class T> using vvv = v<vv<T>>;\nusing vl = v<ll>;\nusing vvl = vv<ll>;\nusing vvvl = vvv<ll>;\nusing vpl = v<pll>;\nusing vs = v<string>;\nusing vb = v<bool>;\nusing vvb = v<vb>;\nusing vvvb = v<vvb>;\ntemplate<class T> using PQ = priority_queue<T, v<T>, greater<T>>;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\n\n#define FOR(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)\n#define rep(i, N) for (ll i = 0; i < (ll)(N); i++)\n#define rep1(i, N) for (ll i = 1; i <= (ll)(N); i++)\n#define rrep(i, N) for (ll i = N - 1; i >= 0; i--)\n#define rrep1(i, N) for (ll i = N; i > 0; i--)\n#define fore(i, a) for (auto &i : a)\n#define fs first\n#define sc second\n#define eb emplace_back\n#define pb push_back\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define UNIQUE(x) (x).erase(unique((x).begin(), (x).end()), (x).end());\n#define YES(x) cout << ((x) ? \"YES\\n\" : \"NO\\n\");\n#define Yes(x) cout << ((x) ? \"Yes\\n\" : \"No\\n\");\n#define yes(x) cout << ((x) ? \"yes\\n\" : \"no\\n\");\ntemplate <class T, class U> void chmin(T &t, const U &u) { if (t > u) t = u; }\ntemplate <class T, class U> void chmax(T &t, const U &u) { if (t < u) t = u; }\ntemplate <class T> T min(const v<T> &lis) { return *min_element(all(lis)); }\ntemplate <class T> T max(v<T> &lis) { return *max_element(all(lis)); }\nconst int inf = (1 << 30);\nconst ll infl = (1LL << 60);\nconst ll mod93 = 998244353;\nconst ll mod17 = 1000000007;\nint popcnt(uint x) { return __builtin_popcount(x); }\nint popcnt(ull x) { return __builtin_popcountll(x); }\n// 桁数\nint bsr(uint x) { return 31 - __builtin_clz(x); }\nint bsr(ull x) { return 63 - __builtin_clzll(x); }\n// 2で割れる回数\nint bsf(uint x) { return __builtin_ctz(x); }\nint bsf(ull x) { return __builtin_ctzll(x); }\n\ntemplate <class T, class S> istream &operator>>(istream &is, pair<T, S> &x) { return is >> x.first >> x.second; }\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &x) { return os << x.first << \" \" << x.second; }\ntemplate <class T> istream &operator>>(istream &is, vector<T> &x) { for (auto &y : x) is >> y; return is; }\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &x) {\n for (size_t i = 0, size = x.size(); i < size; i++)\n os << x[i] << (i == size - 1 ? \"\" : \" \");\n return os;\n}\n\nll rand_int(ll l, ll r) { // [l, r]\n static random_device rd;\n static mt19937 gen(rd());\n return uniform_int_distribution<ll>(l, r)(gen);\n}\n\n// #include <boost/multiprecision/cpp_int.hpp>\n// using cpp_int = boost::multiprecision::cpp_int;\n\n// clang-format on\n#endif\n\n// #define _GLIBCXX_DEBUG\n\nstruct Solver {\n void solve(ll n, ll m) {\n vl s(n), d(m);\n cin >> s >> d;\n sort(all(d));\n ll k = 1 << n;\n vl sum(k);\n rep(i, k) {\n rep(j, n) {\n if ((i >> j) & 1) sum[i] += s[j];\n }\n }\n vl dp(k);\n rep(i, m) {\n rep(j, k) {\n dp[j] += abs(d[i] - sum[j]);\n }\n rep(j, k) {\n rep(l, n)\n chmin(dp[j|(1<<l)], dp[j]);\n }\n }\n cout << dp[k - 1] << \"\\n\";\n }\n};\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n\n ll t = 1;\n // cin >> t;\n while (t) {\n ll n, m;\n cin >> n >> m;\n if (n == 0 && m == 0) break;\n Solver solver;\n solver.solve(n, m);\n }\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 3568, "score_of_the_acc": -0.093, "final_rank": 10 }, { "submission_id": "aoj_2749_9339774", "code_snippet": "#include <bits/stdc++.h>\n\nbool solve() {\n int N, M;\n std::cin >> N >> M;\n if (N == 0 and M == 0) return false;\n std::vector<int> S(N);\n for (auto& s : S) std::cin >> s;\n std::vector<int> D(M);\n for (auto& d : D) std::cin >> d;\n std::sort(D.begin(), D.end());\n std::vector<int> sum(1 << N);\n for (int bit{} ; bit < (1 << N) ; bit++) {\n for (int i{} ; i < N ; i++) if (bit & (1 << i)) {\n sum[bit] += S[i];\n }\n }\n\n const long long INF{(long long)1e18};\n std::vector<long long> dp(1 << N, INF);\n dp[0] = std::accumulate(D.begin(), D.end(), 0LL);\n for (int bit{} ; bit < (1 << N) ; bit++) {\n assert(dp[bit] < INF);\n int low{(int)std::distance(D.begin(), std::upper_bound(D.begin(), D.end(), sum[bit]))};\n for (int i{} ; i < N ; i++) {\n if (bit & (1 << i)) continue;\n int nextbit{bit | (1 << i)};\n long long cost{dp[bit]};\n for (int j{low} ; j < M ; j++) {\n assert(D[j] > sum[bit]);\n cost -= D[j] - sum[bit];\n }\n //std::cout << bit << ' ' << dp[bit] << ' ' << cost << std::endl;\n assert(cost >= 0);\n for (int j{low} ; j < M ; j++) {\n cost += std::min(std::abs(D[j] - sum[bit]), std::abs(D[j] - sum[nextbit]));\n }\n dp[nextbit] = std::min(dp[nextbit], cost);\n }\n }\n std::cout << *std::min_element(dp.begin(), dp.end()) << '\\n';\n return true;\n}\n\nint main() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n\n while (solve()) ;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 3780, "score_of_the_acc": -0.0505, "final_rank": 6 }, { "submission_id": "aoj_2749_9323112", "code_snippet": "#include<iostream>\n#include<algorithm>\nusing namespace std;\nint N,M,A[15],D[100],S[1<<15];\nint dp[1<<15];\nbool solve()\n{\n cin>>N>>M;\n if(N==0&&M==0)return 0;\n for(int i=0;i<N;i++)cin>>A[i];\n for(int i=0;i<M;i++)cin>>D[i];\n sort(D,D+M);\n for(int i=0;i<1<<N;i++)\n {\n S[i]=0;\n for(int j=0;j<N;j++)if(i>>j&1)S[i]+=A[j];\n }\n for(int i=0;i<1<<N;i++)dp[i]=1<<30;\n dp[0]=0;\n for(int k=0;k<M;k++)dp[0]+=D[k];\n for(int i=1;i<1<<N;i++)\n {\n for(int j=0;j<N;j++)if(i>>j&1)\n {\n int pre=i^(1<<j);\n int add=0;\n for(int k=0;k<M;k++)if(D[k]>=S[pre])\n {\n add-=D[k]-S[pre];\n add+=min(abs(D[k]-S[pre]),abs(D[k]-S[i]));\n }\n dp[i]=min(dp[i],dp[pre]+add);\n }\n }\n cout<<dp[(1<<N)-1]<<'\\n';\n return 1;\n}\nint main(){while(solve()){}}", "accuracy": 1, "time_ms": 260, "memory_kb": 3616, "score_of_the_acc": -0.0388, "final_rank": 5 }, { "submission_id": "aoj_2749_9247386", "code_snippet": "#include <bits/stdc++.h>\n\nint solve() {\n int n, m;\n std::cin >> n >> m;\n if (n == 0) return 1;\n std::vector<int> s(n), t(m);\n for (int i = 0; i < n; i++) std::cin >> s[i];\n for (int i = 0; i < m; i++) std::cin >> t[i];\n std::vector<int> sum(1 << n);\n for (int i = 0; i < (1 << n); i++) {\n for (int j = 0; j < n; j++) {\n if (i & (1 << j)) {\n sum[i] += s[j];\n }\n }\n }\n std::sort(t.begin(), t.end());\n std::vector<int> dp(1 << n);\n for (int i = 0; i < m; i++) {\n std::vector<int> ndp(1 << n);\n for (int j = 0; j < (1 << n); j++) {\n ndp[j] = dp[j] + std::abs(t[i] - sum[j]);\n }\n for (int j = 0; j < n; j++) {\n for (int k = 0; k < (1 << n); k++) {\n if ((k & (1 << j)) == 0) {\n ndp[k | (1 << j)] = std::min(ndp[k | (1 << j)], ndp[k]);\n }\n }\n }\n dp = std::move(ndp);\n }\n std::cout << *std::min_element(dp.begin(), dp.end()) << '\\n';\n return 0;\n}\n\nint main() {\n while (!solve());\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 3556, "score_of_the_acc": -0.0658, "final_rank": 8 }, { "submission_id": "aoj_2749_9192335", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nusing Real = long double;\nconst Real EPS = 1e-8, PI = acos(Real(-1.0));\nint sign(const Real& r) {\n if(r <= -EPS) return -1;\n if(r >= +EPS) return +1;\n return 0;\n}\nbool eq(const Real& a, const Real& b) {\n return sign(a - b) == 0;\n}\nusing Point = complex<Real>;\nistream& operator>>(istream& is, Point& p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\nostream& operator<<(ostream& os, const Point& p) {\n return os << p.real() << ' ' << p.imag();\n}\nReal cross(const Point& p1, const Point& p2) {\n return (conj(p1) * p2).imag();\n}\nReal area(const vector<Point>& polygon) {\n Real res = 0.0;\n int n = polygon.size();\n rep(i, 0, n) {\n res += cross(polygon[i], polygon[(i + 1) % n]);\n }\n return abs(res * 0.5);\n}\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n while(1) {\n ll n,m;cin>>n>>m;\n if(n == 0 && m == 0) {\n break;\n }\n vector<ll> s(n);rep(i,0,n)cin>>s[i];\n vector<ll> d(m);rep(i,0,m)cin>>d[i];\n d.push_back(0);\n sort(d.begin(), d.end());\n \n ll N = (1LL << n);\n vector<vector<ll>> dp(m+1, vector<ll>(N, inf));\n dp[0][0] = 0;\n\n vector<ll> sum_s(N, 0);\n rep(i,0,N){\n rep(j,0,n){\n if((i>>j)&1) {\n sum_s[i] += s[j];\n }\n }\n }\n\n rep(i,0,m){\n vector<ll> sub_min(N, inf);\n rep(j,0,N){\n sub_min[j] = dp[i][j];\n rep(k,0,n){\n if((j>>k)&1) {\n sub_min[j] = min(sub_min[j], sub_min[j - (1LL << k)]);\n }\n }\n }\n\n rep(j,0,N){\n dp[i+1][j] = min(dp[i+1][j], sub_min[j] + abs(sum_s[j] - d[i+1]));\n // for(ll k = 0; k <= j; k = (k+1) & j) {\n // dp[i+1][j] = min(dp[i+1][j], dp[i][k] + abs(sum_s[j] - d[i+1]));\n // if (k == j)break;\n // }\n }\n }\n ll ans = inf;\n rep(j,0,N){\n ans = min(ans, dp[m][j]);\n }\n cout << ans << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 1460, "memory_kb": 29908, "score_of_the_acc": -0.3772, "final_rank": 16 }, { "submission_id": "aoj_2749_9002176", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nint solve(int N, int M) {\n vector<int> s = in(N), d = in(M);\n\n vector<int> dp(1 << N, 1e9);\n dp[0] = sum_of<int>(d);\n for(int S : rep(1 << N)) {\n int sum = 0;\n for(int i : rep(N)) if(S & (1 << i)) sum += s[i];\n for(int i : rep(N)) if(!(S & (1 << i))) {\n int score = dp[S];\n for(int j : rep(M)) {\n if(sum <= d[j]) {\n score -= abs(sum - d[j]);\n score += min(abs(sum - d[j]), abs(sum + s[i] - d[j]));\n }\n }\n chmin(dp[S | (1 << i)], score);\n }\n }\n\n return dp[(1 << N) - 1];\n}\n\nint main() {\n while(true) {\n int N = in(), M = in();\n if(make_pair(N, M) == make_pair(0, 0)) return 0;\n print(solve(N, M));\n }\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 3504, "score_of_the_acc": -0.0363, "final_rank": 4 }, { "submission_id": "aoj_2749_8306593", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate<class T>\nbool chmin(T &a, const T &b) {if (a > b) {a = b; return 1;} return 0;}\n\nusing ll = long long;\n\nbool is_end = false;\n\nconst ll INF = 1e18;\nll dp[1<<15];\n\nvoid init()\n{\n\tfor (int i = 0; i < (1<<15); ++i)\n\t{\n\t\tdp[i] = INF;\n\t}\n\t\n\treturn;\n}\n\nvoid calc()\n{\n\tll N, M; cin >> N >> M;\n\tif (N == 0) {is_end = true; return;}\n\t\n\tvector<ll> S(N), D(M);\n\tfor (int i = 0; i < N; ++i) {cin >> S[i];}\n\tfor (int i = 0; i < M; ++i) {cin >> D[i];}\n\tsort(D.begin(), D.end());\n\t\n\tinit();\n\tdp[0] = 0;\n\tfor (int bit = 1; bit < (1<<N); ++bit)\n\t{\n\t\tll sum = 0;\n\t\tfor (int i = 0; i < N; ++i)\n\t\t{\n\t\t\tsum += (bit & (1<<i) ? S[i] : 0);\n\t\t}\n\t\t\n\t\tfor (int lst = 0; lst < N; ++lst)\n\t\t{\n\t\t\tif (!(bit & (1<<lst))) {continue;}\n\t\t\t\n\t\t\tint pbit = bit ^ (1<<lst);\n\t\t\tll psum = sum - S[lst];\n\t\t\tauto itr = lower_bound(D.begin(), D.end(), psum);\n\t\t\t\n\t\t\tll diff = 0;\n\t\t\twhile (itr != D.end() && *itr < sum)\n\t\t\t{\n\t\t\t\tll d = *itr;\n\t\t\t\tdiff += min(abs(d - psum), abs(sum - d));\n\t\t\t\titr++;\n\t\t\t}\n\t\t\tchmin(dp[bit], dp[pbit] + diff);\n\t\t}\t\t\n\t}\n\t\n\tll res = dp[(1<<N)-1];\n\tll sum = accumulate(S.begin(), S.end(), 0LL);\n\tfor (int i = 0; i < M; ++i)\n\t{\n\t\tres += max(0LL, D[i] - sum);\n\t}\n\tcout << res << endl;\n\t\n\treturn;\n}\n\nint main()\n{\n\twhile (!is_end)\n\t{\n\t\tcalc();\n\t}\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3476, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2749_8294207", "code_snippet": "#include <vector>\n#include <iostream>\nusing namespace std;\n\nint main() {\n\twhile (true) {\n\t\tint N, M;\n\t\tcin >> N >> M;\n\t\tif (N == 0 && M == 0) {\n\t\t\tbreak;\n\t\t}\n\t\tvector<int> S(N), D(M);\n\t\tfor (int i = 0; i < N; i++) {\n\t\t\tcin >> S[i];\n\t\t}\n\t\tfor (int i = 0; i < M; i++) {\n\t\t\tcin >> D[i];\n\t\t}\n\t\tconst int INF = 2012345678;\n\t\tvector<int> dp(1 << N, INF);\n\t\tdp[0] = 0;\n\t\tfor (int i = 0; i < (1 << N); i++) {\n\t\t\tint cr = 0;\n\t\t\tfor (int j = 0; j < N; j++) {\n\t\t\t\tcr += S[j] * ((i >> j) & 1);\n\t\t\t}\n\t\t\tfor (int j = 0; j < N; j++) {\n\t\t\t\tif (((i >> j) & 1) == 1) {\n\t\t\t\t\tint cl = cr - S[j];\n\t\t\t\t\tint delta = 0;\n\t\t\t\t\tfor (int k = 0; k < M; k++) {\n\t\t\t\t\t\tif (cl < D[k] && D[k] <= cr) {\n\t\t\t\t\t\t\tdelta += min(D[k] - cl, cr - D[k]);\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\tdp[i] = min(dp[i], dp[i ^ (1 << j)] + delta);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint total = 0;\n\t\tfor (int i = 0; i < N; i++) {\n\t\t\ttotal += S[i];\n\t\t}\n\t\tint finals = 0;\n\t\tfor (int i = 0; i < M; i++) {\n\t\t\tif (D[i] > total) {\n\t\t\t\tfinals += D[i] - total;\n\t\t\t}\n\t\t}\n\t\tint answer = dp[(1 << N) - 1] + finals;\n\t\tcout << answer << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 3548, "score_of_the_acc": -0.059, "final_rank": 7 } ]
aoj_2751_cpp
野球観戦 先日,あなたの競技プログラミング仲間であるOさんは野球観戦に出かけた. 観戦した試合は,チームXとチームYの合計 4 試合の対戦だったが,一方的な展開となり,全試合でチームXが勝利した. しかも,4 試合を通じたXの合計得点は 33 点だったのに対し,Yの合計得点はたったの 4 点だった. あまりに一方的な内容のため,試合内容への興味が薄れてしまったOさんは,試合を観戦している間も競技プログラミングの作問ネタをついつい考えてしまっていた. その甲斐もあって,Oさんは以下のような問題を思いついた. 野球チームXとYが対戦し,Xが勝った試合数,Yが勝った試合数,引き分けの試合数がそれぞれ A, B, C 試合だったとする. また,全 A+B+C 試合を通じたX,Yの総得点は,それぞれ S X 点, S Y 点だったとする.得点は全て 0 以上の整数である. XとYが合計 A+B+C 試合対戦したとき,全試合の結果としてこのような条件を満たす各試合のスコアの並びは何通り有り得るだろうか? ここで,ある試合で勝利する条件は,その試合における得点が,相手チームの得点よりも多いことであり,等しい場合は引き分けとなる. また,各試合のスコアの並びを求める際,対戦した全試合の結果を比べた時,XとYの得点の組み合わせが同じでも,その順序が異なれば区別する必要がある. 例えば,XとYが 2 試合対戦した結果,共に 1 勝ずつし,引き分けが無く,XとYの総得点が共に 1 点ずつだったとする. この場合,各試合におけるX,Yの得点を (Xの得点) - (Yの得点) という表記で表し,合計 2 試合の結果を並べると,以下の 2 通りが与えられた条件を満たす. 1 - 0, 0 - 1 0 - 1, 1 - 0 試合の順序を区別して数えるので,これらは区別される. あなたにはこの答えを求めるプログラムを作って欲しい. ただし,求める数はとても大きい数になり得るため,求める数を 1,000,000,007 で割った余りを答えるようにして欲しい. Input 入力は複数のデータセットからなる. 各データセットは 1 行からなり,次の形式で表される. A B C S X S Y ここで, A はチームXの勝利数, B はチームYの勝利数, C は引き分けの試合数, S X はチームXの総得点, S Y はチームYの総得点を表す. A, B, C, S X , S Y は全て 0 以上 1,000,000 以下の整数であり,かつ 0 < A+B+C を満たす. 入力の終わりは,5 つのゼロからなる行で示される. Output 各データセットについて,与えられた条件を満たす場合の数を 1,000,000,007 で割った余りのみからなる行を 1 行で出力せよ. Sample Input 1 1 0 1 1 0 0 2 3 2 4 0 0 33 4 5 4 2 20 25 4726 87361 2742 23497 162843 328324 420923 12782 834286 538297 0 0 0 0 0 Output for Sample Input 2 0 114660 512095631 673703234 166259450
[ { "submission_id": "aoj_2751_10855496", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\n\nll mod = 1000000007;\n\nll kai[3000010];\nll inv_kai[3000010];\n\nll beki(ll x, ll a)\n{\n\tif(x==0) return 0;\n\tif(a==0) return 1;\n\tif(a==1) return x;\n\tll tmp=beki(x, a/2);\n\ttmp=tmp*tmp%mod;\n\tif(a%2==0) return tmp;\n\telse return tmp*x%mod;\n}\n\nll inv(ll x)\n{\n\treturn beki(x, mod-2);\n}\n\nll cb(ll s, ll t)\n{\n\tif(s==t) return 1;\n\tif(t==-1) return 0;\n\tll tmp=kai[(int)s];\n\ttmp=(tmp*inv_kai[(int)t])%mod;\n\treturn tmp*inv_kai[(int)s-(int)t]%mod;\n}\n\nint main() {\n\tkai[0]=1;\n\tinv_kai[0]=1;\n\tfor(int i=1; i<=3000005; i++)\n\t{\n\t\tkai[i]=kai[i-1]*(ll)i%mod;\n\t\tinv_kai[i]=inv(kai[i]);\n\t}\n\t//cout << \"aaaaaaa\" << cb(0, 0) << endl;\n\twhile (true) {\n\t\tll a, b, c, sx, sy;\n\t\tcin >> a >> b >> c >> sx >> sy;\n\t\tif(a+b+c==0) break;\n\n\t\tll ans=0;\n\t\tfor(ll x=a; x<=sx; x++)\n\t\t{\n\t\t\tll y=sy-(sx-x);\n\t\t\tif(y>=b)\n\t\t\t{\n\t\t\t\tll tmp=1;\n\t\t\t\ttmp=(tmp*cb(x-1, a-1))%mod;\n\t\t\t\ttmp=(tmp*cb(y-1, b-1))%mod;\n\t\t\t\ttmp=(tmp*cb(sx-x+a+b+c-1, a+b+c-1))%mod;\n\t\t\t\tans=(ans+tmp)%mod;\n\t\t\t}\n\t\t}\n\t\tans=(ans*cb(a+b+c, a))%mod;\n\t\tcout << ans*cb(b+c, b)%mod << endl;\n\t}\n}", "accuracy": 1, "time_ms": 1680, "memory_kb": 50216, "score_of_the_acc": -0.7225, "final_rank": 17 }, { "submission_id": "aoj_2751_10851586", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<ll, ll> P;\n\n#define each(i,a) for (auto&& i : a)\n#define FOR(i,a,b) for (ll i=(a),__last_##i=(b);i<__last_##i;i++)\n#define RFOR(i,a,b) for (ll i=(b)-1,__last_##i=(a);i>=__last_##i;i--)\n#define REP(i,n) FOR(i,0,n)\n#define RREP(i,n) RFOR(i,0,n)\n#define __GET_MACRO3(_1, _2, _3, NAME, ...) NAME\n#define rep(...) __GET_MACRO3(__VA_ARGS__, FOR, REP)(__VA_ARGS__)\n#define rrep(...) __GET_MACRO3(__VA_ARGS__, RFOR, RREP)(__VA_ARGS__)\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define chmin(x,v) x = min(x, v)\n#define chmax(x,v) x = max(x, v)\n\nconst ll linf = 1e18;\nconst int inf = 1e9;\nconst double eps = 1e-12;\nconst double pi = acos(-1);\n\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& vec) {\n each(x,vec) is >> x;\n return is;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector<T>& vec) {\n rep(i,vec.size()) {\n if (i) os << \" \";\n os << vec[i];\n }\n return os;\n}\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector< vector<T> >& vec) {\n rep(i,vec.size()) {\n if (i) os << endl;\n os << vec[i];\n }\n return os;\n}\nconst ll mod = 1000000007;\nll mul(ll a, ll b) {\n return a * b % mod;\n}\nll add(ll a, ll b) {\n return (a + b) % mod;\n}\nll sub(ll a, ll b) {\n return (a - b + mod) % mod;\n}\nll power(ll x, ll n) {\n ll res = 1;\n for (ll i = 1; i <= n; i <<= 1) {\n if (i & n) res = mul(res, x);\n x = mul(x, x);\n }\n return res;\n}\nll inv(ll n) {\n return power(n, mod-2);\n}\nll divi(ll a, ll b) {\n return mul(a, inv(b));\n}\nvector<ll> fact;\nvoid init_fact(ll n) {\n fact.assign(n+1, 1);\n FOR(i, 1, fact.size()) {\n fact[i] = mul(fact[i-1], i);\n }\n}\n\nll comb(ll n, ll r) {\n if (r < 0) return 0;\n assert(r >= 0);\n if (r > n) return 0;\n return divi(fact[n], mul(fact[r], fact[n-r]));\n}\n\nll H(ll n, ll r) {\n if (n + r == 0) return 1;\n return comb(n+r-1, n);\n}\n\n// f(n, m) := 正整数をm個使ってnを構成する場合の数\nll f(ll n, ll m) {\n if (m < n) return 0;\n return H(m-n, n);\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n ll A, B, C, Sx, Sy;\n init_fact(4000000);\n while (cin >> A >> B >> C >> Sx >> Sy, A || B || C || Sx || Sy) {\n ll ans = 0;\n // Sx - Sy\n rep(a, 0, Sx+1) {\n ll da = 1;\n ll b = a - (Sx - Sy);\n if (b < 0) continue;\n // cout << f(A, a) << \" \" << f(B, -b) << \" \" <<\n ans = add(ans, mul(mul(f(A, a), f(B, b)), H(Sx-a, A+B+C)));\n }\n ans = mul(ans, mul(comb(A+B+C, A), comb(B+C, B)));\n cout << ans << endl;\n }\n // cout << f(0, 0) << endl;\n // cout << f(4, 29) << endl;\n}", "accuracy": 1, "time_ms": 2570, "memory_kb": 34024, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_2751_10683924", "code_snippet": "#include <bits/stdc++.h>\n#include <atcoder/all>\nusing namespace std;\nusing namespace atcoder;\n#define rep(i,t,n) for(long long i=t;i<n;i++)\n#define rep2(i,A) for(auto &i:A)\n#define Sort(a) sort(a.begin(),a.end())\n#define rSort(a,n,m) sort(a.begin()+n,a.begin()+m+1)\n#define Reverse(a) reverse(a.begin(),a.end())\n#define rReverse(a,n,m) reverse(a.begin()+n,a.begin()+m+1)\n#define MOD1 998244353LL\n#define MOD2 1000000007LL\n#define sign(i) -1*pow(-1,i)\n#define vi(A,N,i) vector<long long> A(N,i)\n#define vd(A,N,i) vector<double> A(N,i)\n#define vc(A,N,i) vector<char> A(N,i)\n#define vs(A,N,i) vector<string> A(N,i)\n#define vb(A,N,i) vector<bool> A(N,i)\n#define vp(A,N,i) vector<Pair> A(N,{i,i})\n#define vvi(A,N,M,i) vector<vector<long long>> A(N,vector<long long>(M,i))\n#define vvp(A,N,M,i) vector<vector<Pair>> A(N,vector<Pair>(M,{i,i}))\n#define vvd(A,N,M,i) vector<vector<double>> A(N,vector<double>(M,i))\n#define vvc(A,N,M,i) vector<vector<char>> A(N,vector<char>(M,i))\n#define vvb(A,N,M,i) vector<vector<bool>> A(N,vector<bool>(M,i))\n#define vvs(A,N,M,i) vector<vector<string>> A(N,vector<string>(M,i))\n#define vvvi(A,N,M,L,i) vector<vector<vector<ll>>> A(N,vector<vector<ll>>(M,vector<ll>(L,i)))\n#define vvvs(A,N,M,L,i) vector<vector<vector<string>>> A(N,vector<vector<string>>(M,vector<string>(L,i)))\n#define ll long long\n#define INF ((1LL<<62)-(1LL<<31))\n#define ALL(a) (a).begin(),(a).end()\n\nusing VVi=vector<vector<ll>>;\nusing Pair=pair<ll,ll>;\nusing graphi=vector<vector<ll>>;\nusing graphp=vector<vector<Pair>>;\nstruct Plane{\n ll x;\n ll y;\n};\nstruct Path{\n ll cost;\n ll to;\n};\ntemplate<typename T>\nvoid CIN(vector<T> &A){\n rep(i,0,(ll)A.size()){\n cin>>A[i];\n }\n return;\n}\nstruct ThreePlane{\n ll x,y,z;\n ThreePlane(ll X=0,ll Y=0,ll Z=0):x(X),y(Y),z(Z){}\n bool operator<(const ThreePlane& other) const {\n return x<other.x;\n }\n bool operator<=(const ThreePlane& other) const {\n return x<=other.x;\n }\n bool operator>(const ThreePlane& other) const {\n return x>other.x;\n }\n bool operator>=(const ThreePlane& other) const {\n return x>=other.x;\n }\n};\nstruct FourPlane{\n ll dist;\n ll x;\n ll y;\n ll stat;\n};\nstruct Fraction{\n ll p,q,r;\n Fraction(ll P = 0, ll Q = 1,ll R = 1): p(P), q(Q),r(R){}\n bool operator<(const Fraction &other)const{\n if(p*other.q != other.p*q){\n return p*other.q < other.p*q;\n }else{\n return r>other.r;\n }\n \n }\n};\n\nll GCD(ll a,ll b){\n if(b==0)return a;\n return GCD(b,a%b);\n}\npair<long long, long long> extGCD(long long a, long long b) {// ax+by=1 solver\n if (b == 0) return make_pair(1, 0);\n long long x,y;\n tie(y,x)=extGCD(b,a%b);\n y-=a/b*x;\n return make_pair(x,y);\n}\nll SQRT(ll a){\n ll low,high,mid;\n low=0;\n high=1LL<<31;\n while(high-low!=1){\n mid=(low+high)/2;\n if(mid*mid<=a){\n low=mid;\n }else{\n high=mid;\n }\n }\n return low;\n}\nstring strmin(string x,string y){\n ll minlength=min((int)x.size(),(int)y.size());\n rep(i,0,minlength){\n if(x[i]>y[i])return y;\n if(x[i]<y[i])return x;\n }\n if((int)x.size()>(int)y.size())return y;\n return x;\n}\nll LCS(string x,string y){\n ll xsize=(ll)x.size();\n ll ysize=(ll)y.size();\n vvi(dp,xsize+1,ysize+1,0);\n rep(i,1,xsize+1){\n rep(j,1,ysize+1){\n if(x[i-1]==y[j-1])dp[i][j]=max(max(dp[i-1][j-1]+1,dp[i][j-1]),dp[i-1][j]);\n else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);\n }\n }\n return dp[xsize][ysize];\n}\nll Factorial(ll n,ll mod){\n ll a=1;\n if(n>=mod)return 0;\n rep(i,1,n+1){\n a*=i;\n a%=mod;\n }\n return a;\n}\nll Combination(ll n,ll k,ll mod){\n if(n<k)return 0;\n ll a=Factorial(n,mod);\n ll b=inv_mod(Factorial(k,mod),mod);\n ll c=inv_mod(Factorial(n-k,mod),mod);\n a*=b;\n a%=mod;\n a*=c;\n a%=mod;\n return a;\n}\nvector<pair<char,long long>> RLE(string x,char s=' ',long long a=0,vector<pair<char,long long>> res={}){\n for(auto i:x){\n if(s==i){\n a++;\n }else{\n if(s!=' ')res.push_back({s,a});\n s=i,a=1;\n }\n }\n res.push_back({s,a});\n return res;\n}\nvector<pair<ll,long long>> RLEll(vector<ll> x,ll s=-INF,long long a=0,vector<pair<ll,long long>> res={}){\n for(auto i:x){\n if(s==i){\n a++;\n }else{\n if(s!=-INF)res.push_back({s,a});\n s=i,a=1;\n }\n }\n res.push_back({s,a});\n return res;\n}\nvector<ll> cu1d(vector<ll> A){\n ll cu1=A.size();\n vector<ll> res(cu1+1,0);\n rep(i,0,cu1)res[i+1]=A[i];\n rep(i,1,cu1+1)res[i]+=res[i-1];\n return res;\n}\nvector<vector<ll>> cu2d(vector<vector<ll>> A){\n ll cu1=A.size(),cu2=A[0].size();\n vector<vector<ll>> res(cu1+1,vector<ll>(cu2+1,0));\n rep(i,0,cu1)rep(j,0,cu2)res[i+1][j+1]=A[i][j];\n rep(i,1,cu1+1)rep(j,0,cu2+1)res[i][j]+=res[i-1][j];\n rep(j,0,cu1+1)rep(i,1,cu2+1)res[j][i]+=res[j][i-1];\n return res;\n}\nll LIS(vector<ll> A){\n ll a=(ll)A.size();\n vector<ll> result(a,INF);\n ll answer=0;\n rep(i,0,a){\n ll ok=-1;\n ll ng=a;\n while(ng-ok!=1){\n ll mid=(ok+ng)/2;\n if(A[i]<=result[mid])ng=mid;\n else ok=mid;\n }\n result[ok+1]=A[i];\n answer=max(answer,ok+2);\n }\n return answer;\n}\nvector<ll> zaatu(vector<ll> A){\n vector<ll> B=A;\n Sort(B);\n B.erase(unique(ALL(B)),end(B));\n vector<ll> res;\n transform(ALL(A),back_inserter(res),[&](const ll &x){\n return lower_bound(ALL(B),x)-begin(B);\n });\n return res;\n}\nvector<string> trim(vector<string> A){\n bool frag=0;\n char s='#';\n ll h=(ll)A.size();\n ll w=(ll)A[0].size();\n ll a=-1,b=h,c=-1,d=w;\n for(ll i=0;i<h;i++){\n for(ll j=0;j<w;j++)if(A[i][j]==s)frag=1;\n if(frag)break;\n a=i;\n }\n frag=0;\n for(ll i=h-1;i>=0;i--){\n for(ll j=0;j<w;j++)if(A[i][j]==s)frag=1;\n if(frag)break;\n b=i;\n }\n frag=0;\n for(ll i=0;i<w;i++){\n for(ll j=0;j<h;j++)if(A[j][i]==s)frag=1;\n if(frag)break;\n c=i;\n }\n frag=0;\n for(ll i=w-1;i>=0;i--){\n for(ll j=0;j<h;j++)if(A[j][i]==s)frag=1;\n if(frag)break;\n d=i;\n }\n vector<string> B(b-a-1,\"\");\n for(ll i=a+1;i<b;i++)for(ll j=c+1;j<d;j++)B[i-a-1]+=A[i][j];\n return B;\n}\nchar to_upper(char &s){\n if('a'<=s){\n s-=32;\n }\n return s;\n}\nchar to_lower(char &s){\n if(s<='Z'){\n s+=32;\n }\n return s;\n}\nvector<vector<ll>> Warshall(vector<vector<ll>> A){\n ll a=A.size();\n rep(k,0,a)rep(i,0,a)rep(j,0,a)A[i][j]=min(A[i][j],A[i][k]+A[k][j]);\n return A;\n}\n\nll bit_ceil(ll n) {\n ll x = 1;\n while (x < (ll)(n)) x *= 2;\n return x;\n}\nint countr_zero(ll n){\n ll res=0;\n while(n%2==0){\n res++;\n n>>=1;\n }\n return res;\n}\nvector<string> make_grid(ll H,ll W,char filler='#'){\n vector<string> res(H+2);\n string st=\"\";\n rep(i,0,W+2)st+=filler;\n res[0]=res[H+1]=st;\n string st2;\n rep(i,1,H+1){\n cin>>st2;\n res[i]=filler+st2+filler;\n }\n return res;\n}\nstruct binC{\n long long mod;\n vector<long long>fact;\n vector<long long>inv;\n vector<long long>fact_inv;\n binC(long long mod):mod(mod){\n fact.resize(5050505);\n inv.resize(5050505);\n fact_inv.resize(5050505);\n fact[0]=fact[1]=1;\n fact_inv[0]=fact_inv[1]=1;\n inv[1]=1;\n rep(i,2,5050505){\n fact[i]=fact[i-1]*i%mod;\n inv[i]=mod-inv[mod%i]*(mod/i)%mod;\n fact_inv[i]=fact_inv[i-1]*inv[i]%mod;\n }\n }\n ll C(ll n,ll k){\n if(k<0||n<k)return 0;\n return fact[n]*(fact_inv[k]*fact_inv[n-k]%mod)%mod;\n }\n};\nstruct rolling_hash {\n vector<ll> data;\n ll size;\n static const ll mod=385870579LL;\n static const ll base=258324359LL;\n ll base_inv=inv_mod(base,mod);\n static ll ie(){return 0LL;}\n static ll operat(ll a,ll b){return (a+b)%mod;}\n segtree<ll,operat,ie>seg;\n vector<ll>ofset;\n vector<ll>power;\n void init(){\n ofset[0]=1LL;\n rep(idx,1,size){\n ofset[idx]=ofset[idx-1]*base_inv;\n ofset[idx]=ofset[idx]%mod;\n }\n power[0]=1LL;\n rep(idx,1,size){\n power[idx]=power[idx-1]*base;\n power[idx]=power[idx]%mod;\n }\n }\n rolling_hash(ll n) : data(n), size(n), seg(n), ofset(n), power(n) {\n init();\n rep(idx,0,size){\n data[idx]=0;\n }\n \n }\n rolling_hash(const string& str) : data(str.size()), size(str.size()), seg(str.size()), ofset(str.size()), power(str.size()) {\n init();\n rep(idx,0,size){\n data[idx]=str[idx];\n seg.set(idx,str[idx]*power[idx]%mod);\n }\n \n }\n rolling_hash(const vector<ll>& vec) : data(vec), size(vec.size()), seg(vec), ofset(vec.size()), power(vec.size()) {\n init();\n rep(idx,0,size){\n data[idx]=vec[idx];\n seg.set(idx,vec[idx]*power[idx]%mod);\n }\n }\n void set(ll i,ll a){\n data[i]=a;\n seg.set(i,a*power[i]%mod);\n }\n ll get(ll idx){\n return data[idx];\n }\n ll value(ll l,ll r){\n return seg.prod(l,r)*ofset[l]%mod;\n }\n};\nll inversion(vector<ll>A){\n ll res=0;\n ll siz=0;\n rep(i,0,(ll)A.size())siz=max(siz,A[i]);\n fenwick_tree<ll>FT(siz);\n rep(i,0,A.size()){\n res+=FT.sum(A[i],siz);\n FT.add(A[i],1);\n }\n return res;\n}\nvector<ll>argsort(vector<ll>&A){\n vector<Pair>B((ll)A.size());\n rep(i,0,(ll)A.size())B[i]={A[i],i};\n stable_sort(B.begin(),B.end());\n vector<ll>res((ll)A.size());\n rep(i,0,(ll)A.size())res[i]=B[i].second;\n return res;\n}\n\n//Warshall rep(k,0,a)rep(i,0,a)rep(j,0,a)A[i][j]=min(A[i][j],A[i][k]+A[k][j]);\n// long long a,b,c,d,e,f,g,h,ans=0;\n// string w,x=\"\",y=\"\",z=\"\";\n// char s,t,u;\n// bool frag=false,frag1=false,frag2=false;\n// vector<ll> X={1,0,-1,0},Y={0,1,0,-1};\n\nint main(){\n binC BINC(MOD2);\n \n vector<long long>fact;\n vector<long long>inv;\n vector<long long>fact_inv;\n fact.resize(5050505);\n inv.resize(5050505);\n fact_inv.resize(5050505);\n fact[0]=fact[1]=1;\n fact_inv[0]=fact_inv[1]=1;\n inv[1]=1;\n rep(i,2,5050505){\n fact[i]=fact[i-1]*i%MOD2;\n inv[i]=MOD2-inv[MOD2%i]*(MOD2/i)%MOD2;\n fact_inv[i]=fact_inv[i-1]*inv[i]%MOD2;\n }\n \n while(1){\n ll ans=0;\n ll A,B,C,X,Y;\n cin>>A>>B>>C>>X>>Y;\n if(A+B+C+X+Y==0)break;\n \n if(A==0){\n swap(A,B);\n swap(X,Y);\n }\n if(A==0){\n if(X!=Y){\n cout<<0<<endl;\n }else{\n ll e=1;\n e*=BINC.C(X+C-1,C-1);\n e%=MOD2;\n ans+=e;\n ans*=fact[A+B+C];\n ans%=MOD2;\n ans*=fact_inv[A];\n ans%=MOD2;\n ans*=fact_inv[B];\n ans%=MOD2;\n ans*=fact_inv[C];\n ans%=MOD2;\n cout<<ans<<endl;\n }\n }\n else if(B==0){\n ll e=1;\n X-=A;\n ll f=X-Y;\n if(f<0)cout<<0<<endl;\n else{\n e*=BINC.C(f+A-1,A-1);\n e%=MOD2;\n e*=BINC.C(Y+A+B+C-1,A+B+C-1);\n e%=MOD2;\n ans+=e;\n ans*=fact[A+B+C];\n ans%=MOD2;\n ans*=fact_inv[A];\n ans%=MOD2;\n ans*=fact_inv[B];\n ans%=MOD2;\n ans*=fact_inv[C];\n ans%=MOD2;\n cout<<ans<<endl;\n }\n }else{\n // cerr<<\"A\"<<endl;\n rep(i,0,X+1){\n ll e=1;\n if(A>i)continue;\n // cerr<<i<<endl;\n e*=BINC.C(i-1,A-1);\n // cerr<<i-1<<\" \"<<A-1<<endl;\n e%=MOD2;\n ll f=Y-(X-i);\n e*=BINC.C(f-1,B-1);\n // cerr<<f-1<<\" \"<<B-1<<endl;\n e%=MOD2;\n \n e*=BINC.C((X-i)+(A+B+C-1),A+B+C-1);\n // cerr<<(X-i)+(A+B+C-1)<<\" \"<<A+B+C-1<<endl;\n e%=MOD2;\n ans+=e;\n ans%=MOD2;\n }\n ans*=fact[A+B+C];\n ans%=MOD2;\n ans*=fact_inv[A];\n ans%=MOD2;\n ans*=fact_inv[B];\n ans%=MOD2;\n ans*=fact_inv[C];\n ans%=MOD2;\n cout<<ans<<endl;\n }\n }\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 240208, "score_of_the_acc": -1.064, "final_rank": 20 }, { "submission_id": "aoj_2751_10683852", "code_snippet": "#include <bits/stdc++.h>\n#include <unordered_map>\n#include <stdlib.h>\nusing namespace std;\n#define rep(i, a, n) for(ll i = a; i < n; i++)\n#define rrep(i, a, n) for(ll i = a; i >= n; i--)\n#define ll long long\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define all(x) (x).begin(), (x).end()\nconstexpr ll MOD = 1000000007;\n// constexpr ll MOD = 998244353;\nconstexpr int IINF = 1001001001;\nconstexpr ll INF = 1LL<<60;\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\n\nll gcd(ll a, ll b){\n if(a%b == 0){\n return b;\n }else{\n return gcd(b, a%b);\n }\n}\n\nll lcm(ll a, ll b){\n return a*b / gcd(a, b);\n}\n\nll powMod(ll x, ll n) {\n if (n == 0) return 1 % MOD;\n ll val = powMod(x, n / 2);\n val *= val;\n val %= MOD;\n if (n % 2 == 1) val *= x;\n return val % MOD;\n}\n\nll maxnum=5000005;\nvector<ll> fac(maxnum), inv(maxnum), finv(maxnum);\nvoid init_fac(){\n fac[0] = fac[1] = 1;\n inv[1] = 1;\n finv[0] = finv[1] = 1;\n rep(i, 2, maxnum){\n fac[i] = fac[i-1]*i%MOD;\n inv[i] = MOD-MOD/i*inv[MOD%i]%MOD;\n finv[i] = finv[i-1]*inv[i]%MOD;\n }\n}\nll nCr(ll n, ll r){\n if(n < 0 or n-r < 0 or r < 0) return 0;\n return fac[n]*(finv[n-r]*finv[r]%MOD)%MOD;\n}\nll nHr(ll n, ll r){\n return nCr(n+r-1, r);\n}\n\ntemplate<int MOD> struct ModInt {\n\tstatic const int Mod = MOD; unsigned x; ModInt() : x(0) { }\n\tModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }\n\tModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }\n\tint get() const { return (int)x; }\n\tModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }\n\tModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }\n\tModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }\n\tModInt &operator/=(ModInt that) { return *this *= that.inverse(); }\n\tModInt operator+(ModInt that) const { return ModInt(*this) += that; }\n\tModInt operator-(ModInt that) const { return ModInt(*this) -= that; }\n\tModInt operator*(ModInt that) const { return ModInt(*this) *= that; }\n\tModInt operator/(ModInt that) const { return ModInt(*this) /= that; }\n\tModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;\n\t\twhile (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }\n\t\treturn ModInt(u); }\n\tbool operator==(ModInt that) const { return x == that.x; }\n\tbool operator!=(ModInt that) const { return x != that.x; }\n\tModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }\n};\ntemplate<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };\ntemplate<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {\n\tModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }\ntypedef ModInt<MOD> mint;\n\nint main() {\n init_fac();\n while(true){\n ll a, b, c, sx, sy; cin >> a >> b >> c >> sx >> sy;\n ll n = a+b+c;\n if(n == 0) break;\n {\n if(sx > sy){\n swap(sx,sy);\n swap(a,b);\n }\n }\n mint ans = 0;\n rep(i,0,sx+1){\n if(sx-i < a || sy-i < b) continue;\n if(a == 0 && sx-i > 0) continue;\n if(b == 0 && sy-i > 0) continue;\n mint cnt = nCr(i+n-1,n-1);\n if(a > 0)cnt *= nCr(sx-i-a+a-1,a-1);\n if(b > 0)cnt *= nCr(sy-i-b+b-1,b-1);\n ans += cnt;\n }\n ans *= nCr(n,a);\n ans *= nCr(n-a,b);\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 120512, "score_of_the_acc": -0.4395, "final_rank": 14 }, { "submission_id": "aoj_2751_9468902", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\ntemplate <unsigned mod = 1000000007> struct fp {\n unsigned v;\n static constexpr int get_mod() {\n return mod;\n }\n constexpr unsigned inv() const {\n assert(v != 0);\n int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0;\n while (y > 0) {\n t = x / y;\n x -= t * y, p -= t * q;\n tmp = x, x = y, y = tmp;\n tmp = p, p = q, q = tmp;\n }\n if (p < 0)\n p += mod;\n return p;\n }\n constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {}\n fp operator-() const {\n return fp() - *this;\n }\n fp pow(ull t) {\n fp res = 1, b = *this;\n while (t) {\n if (t & 1)\n res *= b;\n b *= b;\n t >>= 1;\n }\n return res;\n }\n fp &operator+=(const fp &x) {\n if ((v += x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator-=(const fp &x) {\n if ((v += mod - x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator*=(const fp &x) {\n v = ull(v) * x.v % mod;\n return *this;\n }\n fp &operator/=(const fp &x) {\n v = ull(v) * x.inv() % mod;\n return *this;\n }\n fp operator+(const fp &x) const {\n return fp(*this) += x;\n }\n fp operator-(const fp &x) const {\n return fp(*this) -= x;\n }\n fp operator*(const fp &x) const {\n return fp(*this) *= x;\n }\n fp operator/(const fp &x) const {\n return fp(*this) /= x;\n }\n bool operator==(const fp &x) const {\n return v == x.v;\n }\n bool operator!=(const fp &x) const {\n return v != x.v;\n }\n friend istream &operator>>(istream &is, fp &x) {\n return is >> x.v;\n }\n friend ostream &operator<<(ostream &os, const fp &x) {\n return os << x.v;\n }\n};\n\ntemplate <unsigned mod> void rd(fp<mod> &x) {\n fastio::rd(x.v);\n}\ntemplate <unsigned mod> void wt(fp<mod> x) {\n fastio::wt(x.v);\n}\n\ntemplate <typename T> T Inv(ll n) {\n static const int md = T::get_mod();\n static vector<T> buf({0, 1});\n assert(n > 0);\n n %= md;\n while (SZ(buf) <= n) {\n int k = SZ(buf), q = (md + k - 1) / k;\n buf.push_back(buf[k * q - md] * q);\n }\n return buf[n];\n}\n\ntemplate <typename T> T Fact(ll n, bool inv = 0) {\n static const int md = T::get_mod();\n static vector<T> buf({1, 1}), ibuf({1, 1});\n assert(n >= 0 and n < md);\n while (SZ(buf) <= n) {\n buf.push_back(buf.back() * SZ(buf));\n ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf)));\n }\n return inv ? ibuf[n] : buf[n];\n}\n\ntemplate <typename T> T nPr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nCr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nHr(int n, int r, bool inv = 0) {\n if (n == 0 && r == 0) return 1;\n return nCr<T>(n + r - 1, r, inv);\n}\n\n/**\n * @brief Modint\n */\n\nusing Fp = fp<1000000007>;\n\nint main() {\nwhile(1) {\n ll A, B, C, SX, SY;\n cin >> A >> B >> C >> SX >> SY;\n if (A == 0 && B == 0 && C == 0) return 0;\n SX -= A, SY -= B;\n if (SX < 0 || SY < 0) {\n cout << 0 << endl;\n continue;\n }\n Fp M = Fact<Fp>(A+B+C)*Fact<Fp>(A,true)*Fact<Fp>(B,true)*Fact<Fp>(C,true);\n Fp ANS = 0;\n for (ll k = 0; k <= SX && k <= SY; k++) {\n ANS += nHr<Fp>(A+B+C,k)*nHr<Fp>(A,SX-k)*nHr<Fp>(B,SY-k);\n }\n cout << M * ANS << endl;\n}\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 43744, "score_of_the_acc": -0.1151, "final_rank": 2 }, { "submission_id": "aoj_2751_9374315", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\ntemplate < class T > vector< T >& operator++(vector< T >& a) { for(T& x : a) x++; return a; }\ntemplate < class T > vector< T >& operator--(vector< T >& a) { for(T& x : a) x--; return a; }\ntemplate < class T > vector< T > operator++(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x++; return res; }\ntemplate < class T > vector< T > operator--(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x--; return res; }\n\n} // namespace macro\n\nusing namespace macro;\n#line 2 \"cp-library/src/number/modint.hpp\"\nstruct modinfo { uint mod, root, isprime; };\ntemplate < modinfo const &ref >\nstruct modint {\n static constexpr uint const &mod = ref.mod;\n static constexpr uint const &root = ref.root;\n static constexpr uint const &isprime = ref.isprime;\n uint v = 0;\n constexpr modint& s(uint v) { this->v = v < mod ? v : v - mod; return *this; }\n constexpr modint(ll v = 0) { s(v % mod + mod); }\n modint operator-() const { return modint() - *this; }\n modint& operator+=(const modint& rhs) { return s(v + rhs.v); }\n modint& operator-=(const modint& rhs) { return s(v + mod - rhs.v); }\n modint& operator*=(const modint& rhs) { v = ull(v) * rhs.v % mod; return *this; }\n modint& operator/=(const modint& rhs) { return *this *= inv(rhs); }\n modint operator+(const modint& rhs) const { return modint(*this) += rhs; }\n modint operator-(const modint& rhs) const { return modint(*this) -= rhs; }\n modint operator*(const modint& rhs) const { return modint(*this) *= rhs; }\n modint operator/(const modint& rhs) const { return modint(*this) /= rhs; }\n friend modint pow(modint x, ll n) { modint res(1); while(n > 0) { if(n & 1) res *= x; x *= x; n >>= 1; } return res; }\n friend modint inv(modint v) {\n if(isprime) {\n return pow(v, mod - 2);\n } else {\n ll a = v.v, b = modint::mod, x = 1, y = 0, t;\n while(b > 0) { t = a / b; swap(a -= t * b, b); swap(x -= t * y, y); }\n return modint(x);\n }\n }\n friend modint operator+(int x, const modint& y) { return modint(x) + y; }\n friend modint operator-(int x, const modint& y) { return modint(x) - y; }\n friend modint operator*(int x, const modint& y) { return modint(x) * y; }\n friend modint operator/(int x, const modint& y) { return modint(x) / y; }\n friend istream& operator>>(istream& is, modint& m) { ll x; is >> x; m = modint(x); return is; }\n friend ostream& operator<<(ostream& os, const modint& m) { return os << m.v; }\n bool operator==(const modint& r) const { return v == r.v; }\n bool operator!=(const modint& r) const { return v != r.v; }\n static uint get_mod() { return mod; }\n static int is_prime() { return isprime; }\n};\nconstexpr modinfo base998244353 { 998244353, 3, 1 };\nconstexpr modinfo base1000000007 { 1000000007, 0, 1 };\nusing mint998244353 = modint< base998244353 >;\nusing mint1000000007 = modint< base1000000007 >;\n#line 3 \"cp-library/src/number/binom_mod.hpp\"\n\ntemplate < class mint >\nmint fact(int n) {\n assert(0 <= n);\n assert(mint::is_prime());\n static const uint mod = mint::get_mod();\n static std::vector<mint> data = {1, 1};\n while(int(data.size()) <= n) {\n int i = data.size();\n data.push_back(data.back() * i);\n }\n return data[n];\n}\n\ntemplate < class mint >\nmint inv(int n) {\n assert(0 <= n);\n assert(mint::is_prime());\n static const uint mod = mint::get_mod();\n static std::vector<mint> data = {1, 1};\n while(int(data.size()) <= n) {\n int i = data.size();\n data.push_back(- data[mod % i] * (mod / i));\n }\n return data[n];\n}\n\ntemplate < class mint >\nmint fact_inv(int n) {\n assert(0 <= n);\n assert(mint::is_prime());\n static const uint mod = mint::get_mod();\n static std::vector<mint> data = {1, 1};\n while(int(data.size()) <= n) {\n int i = data.size();\n data.push_back(data.back() * inv<mint>(i));\n }\n return data[n];\n}\n\ntemplate < class mint >\nmint comb(int n, int k) {\n if(k < 0 or n < k) return 0;\n return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);\n}\n\ntemplate < class mint >\nmint perm(int n, int k) {\n return fact<mint>(n) * fact_inv<mint>(n - k);\n}\n\ntemplate < class mint >\nmint homo(int n, int k) {\n return comb<mint>(n + k - 1, k);\n}\n\ntemplate < class mint > struct power {\n mint a;\n std::vector<mint> data = {1};\n power() {}\n power(const mint a) : a(a) {}\n // a^n\n mint get(const int n) {\n assert(0 <= n);\n while(int(data.size()) <= n)\n data.push_back(data.back() * a);\n return data[n];\n }\n};\n#line 5 \"B.cpp\"\n\nusing mint = mint1000000007;\nmint solve(int A, int B, int C, int Sx, int Sy) {\n mint ans = 0;\n auto f = [&](int e, int i) {\n if(e == 0) return mint(i == 0);\n return comb<mint>(i + e - 1, i);\n };\n for(int n = 0; n + A <= Sx and n + B <= Sy; n++) {\n mint now = 1;\n now *= f(A + B + C, n);\n now *= f(A, Sx - (n + A));\n now *= f(B, Sy - (n + B));\n ans += now;\n }\n return ans * fact<mint>(A + B + C) * fact_inv<mint>(A) * fact_inv<mint>(B) * fact_inv<mint>(C);\n}\n\nint main() {\n while(true) {\n int A = in(), B = in(), C = in(), Sx = in(), Sy = in();\n if(make_tuple(A, B, C, Sx, Sy) == make_tuple(0, 0, 0, 0, 0)) return 0;\n print(solve(A, B, C, Sx, Sy));\n }\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 49468, "score_of_the_acc": -0.1229, "final_rank": 3 }, { "submission_id": "aoj_2751_9349638", "code_snippet": "#include<bits/stdc++.h>\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\n\n#include <utility>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n unsigned int umod() const { return _m; }\n\n unsigned int mul(unsigned int a, unsigned int b) const {\n\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned long long y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\n\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\nunsigned long long floor_sum_unsigned(unsigned long long n,\n unsigned long long m,\n unsigned long long a,\n unsigned long long b) {\n unsigned long long ans = 0;\n while (true) {\n if (a >= m) {\n ans += n * (n - 1) / 2 * (a / m);\n a %= m;\n }\n if (b >= m) {\n ans += n * (b / m);\n b %= m;\n }\n\n unsigned long long y_max = a * n + b;\n if (y_max < m) break;\n n = (unsigned long long)(y_max / m);\n b = (unsigned long long)(y_max % m);\n std::swap(m, a);\n }\n return ans;\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt(998244353);\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\nusing namespace std;\nusing mint=atcoder::modint1000000007;\ntemplate<typename mint>\nstruct combination\n{\n combination(int n=0):inner_fac(1,1),inner_finv(1,1){init(n);}\n mint fac(int n)\n {\n init(n);\n return inner_fac[n];\n }\n mint finv(int n)\n {\n init(n);\n return inner_finv[n];\n }\n mint inv(int n)\n {\n if(n==0)return 0;\n init(n);\n return inner_fac[n-1]*inner_finv[n];\n }\n mint C(int n, int r)\n {\n if(r<0)return 0;\n if(n<0)\n {\n n=-n;\n mint res=C(n-1+r,r);\n if(r&1)res=-res;\n return res;\n }\n if(n<r)return 0;\n if(n<bound)\n {\n init(n);\n return inner_fac[n]*inner_finv[n-r]*inner_finv[r];\n }\n init(r);\n mint res=1;\n for(int i=0;i<r;i++)res*=(n-i);\n return res*inner_finv[r];\n }\n mint P(int n, int r)\n {\n if(n<0||r<0||n<r)return 0;\n if(n<bound)\n {\n init(n);\n return inner_fac[n]*inner_finv[n-r];\n }\n mint res=1;\n for(int i=0;i<r;i++)res*=(n-i);\n return res;\n }\n mint H(int n, int r)\n {\n return C(n-1+r,r);\n }\nprivate:\n const int bound=1<<25;\n vector<mint>inner_fac,inner_finv;\n void init(int n)\n {\n int sz=inner_fac.size();\n if(sz>n)return;\n n=min(max(n,2*sz),bound);\n inner_fac.resize(n+1);\n inner_finv.resize(n+1);\n for(int i=sz;i<=n;i++)inner_fac[i]=inner_fac[i-1]*i;\n inner_finv[n]=inner_fac[n].inv();\n for(int i=n;i>sz;i--)inner_finv[i-1]=inner_finv[i]*i;\n }\n};\ncombination<mint>C;\nbool solve()\n{\n int A,B,D,X,Y;\n cin>>A>>B>>D>>X>>Y;\n if(A==0&&B==0&&D==0&&X==0&&Y==0)return 0;\n mint ans=0;\n for(int a=A;a<=X;a++)\n {\n int b=Y-X+a;\n ans+=C.H(A,a-A)*C.H(B,b-B)*C.H(A+B+D,X-a);\n }\n ans*=C.C(A+B+D,A)*C.C(B+D,B);\n cout<<ans.val()<<endl;\n return 1;\n}\nint main(){while(solve()){}}", "accuracy": 1, "time_ms": 150, "memory_kb": 52784, "score_of_the_acc": -0.123, "final_rank": 4 }, { "submission_id": "aoj_2751_9343311", "code_snippet": "#include<bits/stdc++.h>\n\n\n#include <utility>\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m < 2^31`\n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\nusing namespace atcoder;\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++)\n#define all(A) A.begin(),A.end()\n\nvoid chmax(ll& p, ll q) { p = max(p, q); };\nvoid chmin(ll& p, ll q) { p = min(p, q); };\n\n\n\nusing mint = modint1000000007;\nusing vm = vector<mint>;\nusing vvm = vector<vm>;\nusing vvvm = vector<vvm>;\n\n\nvector<mint> fact, factinv, inv, factK;\nll mod = 1000000007;\nvoid prenCkModp(ll n) {\n fact.resize(n + 5);\n factinv.resize(n + 5);\n inv.resize(n + 5);\n fact[0] = fact[1] = 1;\n factinv[0] = factinv[1] = 1;\n inv[1] = 1;\n for (ll i = 2; i < n + 5; i++) {\n fact[i] = (fact[i - 1] * i);\n inv[i] = (mod - ((inv[mod % i] * (mod / i))));\n factinv[i] = (factinv[i - 1] * inv[i]);\n }\n}\nmint nCk(ll n, ll k) {\n if (n < k || k < 0) return 0;\n return (fact[n] * ((factinv[k] * factinv[n - k])));\n}\n\nvoid solve(ll A, ll B, ll C, ll SX, ll SY) {\n mint an = 0;\n //Xが勝った試合の勝ち越し総和がx点\n for (ll x = A; x <= SX; x++) {\n ll y = SY - SX + x;\n if (y<B || y>SY)continue;\n mint res = 1;\n if(x>0)res *= nCk(x - 1, A - 1);\n if(y>0)res *= nCk(y - 1, B - 1);\n if(SX!=x)res *= nCk(SX - x + A + B + C - 1, A + B + C - 1);\n an += res;\n }\n an *= fact[A + B + C];\n an *= factinv[A];\n an *= factinv[B];\n an *= factinv[C];\n cout << an.val() << endl;\n}\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n prenCkModp(5e6);\n ll A, B, C, X, Y;\n while (cin >> A >> B >> C >> X >> Y) {\n if (A + B + C + X + Y == 0)return 0;\n solve(A, B, C, X, Y);\n }\n\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 61600, "score_of_the_acc": -0.1577, "final_rank": 5 }, { "submission_id": "aoj_2751_9230987", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n\nll mod_pow(ll x, ll n, ll mod)\n{\n ll xx = x % mod;\n ll ret = 1;\n while (n)\n {\n if (n & 1)\n {\n ret *= xx;\n ret %= mod;\n }\n xx = xx * xx % mod;\n n >>= 1;\n }\n \n return ret;\n}\n\nconst ll nmax = 5e6;\nconst ll MOD = 1e9 + 7;\n\nll fact[nmax], inv_fact[nmax];\n\nll mod_comb(ll n, ll r, ll mod)\n{\n // check 0 <= r <= n\n if (r < 0 || n < r) return 0;\n \n ll ret = inv_fact[n-r] * inv_fact[r] % mod;\n ret *= fact[n];\n ret %= mod;\n \n return ret;\n}\n\nvoid init()\n{\n for (int i = 0; i < nmax; ++i)\n {\n if (i == 0) fact[i] = 1;\n else fact[i] = fact[i-1] * i % MOD;\n }\n inv_fact[nmax - 1] = mod_pow(fact[nmax - 1], MOD - 2, MOD);\n for (int i = nmax - 2; i >= 0; --i)\n {\n inv_fact[i] = inv_fact[i+1] * (i + 1) % MOD;\n }\n \n return;\n}\n\n\nbool is_end = false;\n\nvoid solve()\n{\n ll A, B, C, X, Y; cin >> A >> B >> C >> X >> Y;\n ll N = A + B + C;\n \n if (N == 0 && X == 0 && Y == 0)\n {\n is_end = true;\n return;\n }\n \n ll res = 0;\n ll kmax = min(X - A, Y - B);\n // cout << kmax << endl;\n \n for (int k = 0; k <= kmax; ++k)\n {\n ll draw = mod_comb(N - 1 + k, N - 1, MOD);\n ll x = mod_comb(X - k - 1, A - 1, MOD);\n if (A == 0 && X - k == 0) x = 1;\n \n ll y = mod_comb(Y - k - 1, B - 1, MOD);\n if (B == 0 && Y - k == 0) y = 1;\n \n ll tmp = draw * x % MOD;\n tmp *= y;\n tmp %= MOD;\n \n res += tmp;\n res %= MOD;\n \n // cout << k << \" \" << tmp << endl;\n }\n \n {\n ll mult = fact[A + B + C];\n mult *= inv_fact[A];\n mult %= MOD;\n mult *= inv_fact[B];\n mult %= MOD;\n mult *= inv_fact[C];\n mult %= MOD;\n \n res *= mult;\n res %= MOD;\n }\n \n cout << res << endl;\n \n return;\n}\n\nint main()\n{\n init();\n while (!is_end)\n {\n solve();\n }\n \n return 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 81568, "score_of_the_acc": -0.3026, "final_rank": 12 }, { "submission_id": "aoj_2751_9192643", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nconstexpr ll mod = 1000000007;\nll pow_mod(ll x, ll n) {\n x %= mod;\n if(x < 0) x += mod;\n ll res = 1;\n while(n > 0) {\n if(n & 1) res = res * x % mod;\n x = x * x % mod;\n n >>= 1;\n }\n return res;\n}\nll inv_mod(ll x) {\n return pow_mod(x, mod - 2);\n}\n\nint main(void) {\n cin.tie(0);\n ios::sync_with_stdio(0);\n constexpr int MAX = 6000000;\n vector<ll> fact(MAX), ifact(MAX);\n fact[0] = 1;\n rep(i, 1, MAX) fact[i] = (fact[i - 1] * i) % mod;\n ifact[MAX - 1] = inv_mod(fact[MAX - 1]);\n rrep(i, MAX - 1, 1) ifact[i - 1] = (ifact[i] * i) % mod;\n auto comb = [&](int n, int r) -> ll {\n if(n < 0 or n < r or r < 0) return 0;\n return ((fact[n] * ifact[n - r]) % mod * ifact[r]) % mod;\n };\n auto solve = [&](auto& solve, ll a, ll b, ll c, ll sx, ll sy) -> ll {\n if(a == 0 && b == 0) {\n if(sx != sy) return 0;\n return comb(sx + c - 1, c - 1);\n }\n if(a == 0) {\n return solve(solve, b, a, c, sy, sx);\n }\n if(b == 0) {\n ll term1 = comb(a + c, c);\n ll term2 = comb(sy + a + c - 1, a + c - 1);\n ll term3 = comb(sx - sy - 1, a - 1);\n return (((term1 * term2) % mod) * term3) % mod;\n }\n\n return 0;\n };\n while(1) {\n ll a, b, c, sx, sy;\n cin >> a >> b >> c >> sx >> sy;\n if(a == 0 and b == 0 and c == 0 and sx == 0 and sy == 0) break;\n if(a == 0 or b == 0) {\n cout << solve(solve, a, b, c, sx, sy) << '\\n';\n continue;\n }\n ll ans = 0;\n rep(z, 0, min(sx - a, sy - b) + 1) {\n ans = (ans + comb(a + b + c, a) % mod * comb(b + c, b) % mod * comb(sx - z - 1, a - 1) % mod * comb(sy - z - 1, b - 1) % mod * comb(z + a + b + c - 1, a + b + c - 1) % mod) % mod;\n }\n cout << ans << '\\n';\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 96812, "score_of_the_acc": -0.3285, "final_rank": 13 }, { "submission_id": "aoj_2751_7997769", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\n\nconst ll mod = 1e9 + 7;\nvector<ll> fact, factinv, inv;\nvoid prenCkmodp(ll n) {\n fact.resize(n + 5);\n factinv.resize(n + 5);\n inv.resize(n + 5);\n fact[0] = fact[1] = factinv[0] = factinv[1] = inv[1] = 1;\n for (ll i = 2; i < n + 5; i++) {\n fact[i] = (fact[i - 1] * i) % mod;\n inv[i] = ((mod - (inv[mod % i] * (mod / i)) % mod) + mod) % mod;\n factinv[i] = (factinv[i - 1] * inv[i]) % mod;\n }\n}\nll nCk(ll n, ll k) {\n if (n < k || k < 0)return 0;\n return (fact[n] * ((factinv[k] * factinv[n - k]) % mod)) % mod;\n}\n\nint main() {\n\n prenCkmodp(6e6);\n\n while (1) {\n ll A, B, C, X, Y;\n cin >> A >> B >> C >> X >> Y;\n ll S = A + B + C;\n if (S == 0)return 0;\n ll an = 0;\n for (ll D = 0; D <= S+X+Y; D++) {\n ll E = X - Y - D;\n if(E>0)continue;\n ll res = nCk(S - 1 + Y + E, S - 1);\n res%=mod;\n ll fes = nCk(abs(E) - 1, B - 1);\n if(abs(E)==B&&B==0)fes=1;\n fes%=mod;\n ll ges = nCk(D - 1, A - 1);\n if(D==A&&D==0)ges=1;\n ges%=mod;\n an += ((res * fes) % mod) * ges;\n an %= mod;\n }\n an *= fact[A + B + C];\n an %= mod;\n an *= factinv[A];\n an %= mod;\n an *= factinv[B];\n an %= mod;\n an *= factinv[C];\n an %= mod;\n cout << an << endl;\n }\n}", "accuracy": 1, "time_ms": 1030, "memory_kb": 143560, "score_of_the_acc": -0.9153, "final_rank": 18 }, { "submission_id": "aoj_2751_7861451", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> using V = vector<T>;\n\ntemplate <class T> ostream& operator<<(ostream& os, const V<T>& v) {\n os << \"[ \";\n for (auto& vi : v) os << vi << \", \";\n return os << \"]\";\n}\n\ntemplate <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n return os << \"{ \" << p.first << \", \" << p.second << \" }\";\n}\n\n#ifdef LOCAL\n#define show(x) cerr << __LINE__ << \" : \" << #x << \" = \" << x << endl;\n#else\n#define show(x) true\n#endif\n\nusing i64 = long long;\ntemplate <i64 MD> struct modint {\n using M = modint<MD>;\n i64 a;\n modint(const i64 x = 0) : a((x % MD + MD) % MD) {}\n M& s(i64 v) {\n a = v < MD ? v : v - MD;\n return *this;\n }\n i64 value() const { return a; }\n M inv() const { return this->pow(MD - 2); }\n M pow(i64 r) const {\n M ans(1);\n M x = *this;\n while (r) {\n if (r & 1) ans *= x;\n x *= x;\n r >>= 1;\n }\n return ans;\n }\n M& operator+=(M r) { return s(a + r.a); }\n M& operator-=(M r) { return s(a + MD - r.a); }\n M& operator*=(M r) { return s(a * r.a % MD); }\n M& operator/=(M r) { return *this *= r.inv(); }\n M operator+(M r) const { return M(*this) += r; }\n M operator-(M r) const { return M(*this) -= r; }\n M operator*(M r) const { return M(*this) *= r; }\n M operator/(M r) const { return M(*this) /= r; }\n M operator-() const { return M(0) - M(*this); }\n};\n\nusing fp = modint<1000000007>;\n\ntemplate <class T> struct Binomial {\n V<T> f, g;\n\n Binomial(const int n = 0) {\n f.resize(n);\n g.resize(n);\n f[0] = g[0] = 1;\n for (int i = 1; i < n; i++) f[i] = f[i - 1] * T(i);\n g[n - 1] = T(1) / f[n - 1];\n for (int i = n - 2; i >= 1; i--) g[i] = g[i + 1] * T(i + 1);\n }\n\n T C(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n return f[N] * g[N - K] * g[K];\n }\n\n T P(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n return f[N] * g[N - K];\n }\n\n T C_naive(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n T res(1);\n K = min(K, N - K);\n for (int i = 1; i <= K; i++) {\n res *= N--;\n res /= i;\n }\n return res;\n }\n};\n\nostream& operator<<(ostream& os, const fp p) {\n return os << p.value();\n}\n\nvoid solve(long long A, long long B, long long C, long long Sx, long long Sy, Binomial<fp>& binom) {\n fp ans = 0;\n long long d = Sx - Sy;\n long long n = A + B + C;\n for (long long x = max(0LL, d); x <= Sx; x++) {\n long long y = x - d;\n long long s = Sx - x;\n if (x < A or y < B or s < 0) continue;\n if (A == 0 and x > 0) continue;\n if (B == 0 and y > 0) continue;\n fp cur = binom.C(s + n - 1, n - 1);\n if (A != 0) cur *= binom.C(x - 1, A - 1);\n if (B != 0) cur *= binom.C(y - 1, B - 1);\n ans += cur;\n }\n ans *= binom.C(n, A) * binom.C(n - A, B);\n cout << ans << '\\n';\n}\n\nint main() {\n Binomial<fp> binom(4000000);\n long long A, B, C, Sx, Sy;\n while (cin >> A >> B >> C >> Sx >> Sy, !(A == 0 and B == 0 and C == 0 and Sx == 0 and Sy == 0)) {\n solve(A, B, C, Sx, Sy, binom);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 65376, "score_of_the_acc": -0.1601, "final_rank": 6 }, { "submission_id": "aoj_2751_7861438", "code_snippet": "#define PROBLEM \"https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2751\"\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class T> ostream& operator<<(ostream& os, const V<T>& v) {\n os << \"[ \";\n for (auto& vi : v) os << vi << \", \";\n return os << \"]\";\n}\n\n#ifdef LOCAL\n#define show(x) cerr << __LINE__ << \" : \" << #x << \" = \" << x << endl;\n#else\n#define show(x) true\n#endif\n\nusing uint = unsigned int;\nusing ull = unsigned long long;\n\n// g++ -g -fsanitize=undefined,address -DLOCAL -std=gnu++17\n\n// https://onlinejudge.u-aizu.ac.jp/problems/3331\n\nusing uint = unsigned int;\nusing ull = unsigned long long;\ntemplate <uint MD> struct Modint {\n using M = Modint;\n const static M G;\n uint v;\n Modint(ll val = 0) { set_v(val % MD + MD); }\n M& set_v(uint val) {\n v = (val < MD) ? val : val - MD;\n return *this;\n }\n explicit operator bool() const { return v != 0; }\n M operator-() const { return M() - *this; }\n M operator+(const M& r) const { return M().set_v(v + r.v); }\n M operator-(const M& r) const { return M().set_v(v + MD - r.v); }\n M operator*(const M& r) const { return M().set_v(ull(v) * r.v % MD); }\n M operator/(const M& r) const { return *this * r.inv(); }\n M& operator+=(const M& r) { return *this = *this + r; }\n M& operator-=(const M& r) { return *this = *this - r; }\n M& operator*=(const M& r) { return *this = *this * r; }\n M& operator/=(const M& r) { return *this = *this / r; }\n bool operator==(const M& r) const { return v == r.v; }\n M pow(ll n) const {\n M x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n M inv() const { return pow(MD - 2); }\n friend ostream& operator<<(ostream& os, const M& r) { return os << r.v; }\n};\n// using mint = Modint<998244353>;\n// template<> const mint mint::G = mint(3);\n\ntemplate <class T> struct Binomial {\n V<T> f, g;\n\n Binomial(const int n = 0) {\n f.resize(n);\n g.resize(n);\n f[0] = g[0] = 1;\n for (int i = 1; i < n; i++) f[i] = f[i - 1] * T(i);\n g[n - 1] = T(1) / f[n - 1];\n for (int i = n - 2; i >= 1; i--) g[i] = g[i + 1] * T(i + 1);\n }\n\n T C(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n return f[N] * g[N - K] * g[K];\n }\n\n T P(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n return f[N] * g[N - K];\n }\n\n T C_naive(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n T res(1);\n K = min(K, N - K);\n for (int i = 1; i <= K; i++) {\n res *= N--;\n res /= i;\n }\n return res;\n }\n};\n\nusing fp = Modint<1000000007>;\n\nvoid solve(long long A, long long B, long long C, long long Sx, long long Sy, Binomial<fp>& binom) {\n fp ans = 0;\n long long d = Sx - Sy;\n long long n = A + B + C;\n for (long long x = max(0LL, d); x <= Sx; x++) {\n long long y = x - d;\n long long s = Sx - x;\n if (x < A or y < B or s < 0) continue;\n if (A == 0 and x > 0) continue;\n if (B == 0 and y > 0) continue;\n fp cur = binom.C(s + n - 1, n - 1);\n if (A != 0) cur *= binom.C(x - 1, A - 1);\n if (B != 0) cur *= binom.C(y - 1, B - 1);\n ans += cur;\n }\n ans *= binom.C(n, A) * binom.C(n - A, B);\n cout << ans << '\\n';\n}\n\nint main() {\n Binomial<fp> binom(4000000);\n long long A, B, C, Sx, Sy;\n while (cin >> A >> B >> C >> Sx >> Sy, !(A == 0 and B == 0 and C == 0 and Sx == 0 and Sy == 0)) {\n solve(A, B, C, Sx, Sy, binom);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 34248, "score_of_the_acc": -0.0011, "final_rank": 1 }, { "submission_id": "aoj_2751_7861424", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n#define REP(i, n) for (int i = 0; i < (n); i++)\ntemplate <class T> using V = vector<T>;\n\ntemplate <class T> ostream& operator<<(ostream& os, const V<T>& v) {\n os << \"[ \";\n for (auto& vi : v) os << vi << \", \";\n return os << \"]\";\n}\n\ntemplate <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) {\n return os << \"{ \" << p.first << \", \" << p.second << \" }\";\n}\n\n#ifdef LOCAL\n#define show(x) cerr << __LINE__ << \" : \" << #x << \" = \" << x << endl;\n#else\n#define show(x) true\n#endif\n\nusing i64 = long long;\ntemplate <i64 MD> struct modint {\n using M = modint<MD>;\n i64 a;\n modint(const i64 x = 0) : a((x % MD + MD) % MD) {}\n M& s(i64 v) {\n a = v < MD ? v : v - MD;\n return *this;\n }\n i64 value() const { return a; }\n M inv() const { return this->pow(MD - 2); }\n M pow(i64 r) const {\n M ans(1);\n M x = *this;\n while (r) {\n if (r & 1) ans *= x;\n x *= x;\n r >>= 1;\n }\n return ans;\n }\n M& operator+=(M r) { return s(a + r.a); }\n M& operator-=(M r) { return s(a + MD - r.a); }\n M& operator*=(M r) { return s(a * r.a % MD); }\n M& operator/=(M r) { return *this *= r.inv(); }\n M operator+(M r) const { return M(*this) += r; }\n M operator-(M r) const { return M(*this) -= r; }\n M operator*(M r) const { return M(*this) *= r; }\n M operator/(M r) const { return M(*this) /= r; }\n M operator-() const { return M(0) - M(*this); }\n};\n\nusing fp = modint<1000000007>;\n\ntemplate <class T> struct Binomial {\n V<T> f, g;\n\n Binomial(const int n = 0) {\n f.resize(n);\n g.resize(n);\n f[0] = g[0] = 1;\n for (int i = 1; i < n; i++) f[i] = f[i - 1] * T(i);\n g[n - 1] = T(1) / f[n - 1];\n for (int i = n - 2; i >= 1; i--) g[i] = g[i + 1] * T(i + 1);\n }\n\n T C(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n return f[N] * g[N - K] * g[K];\n }\n\n T P(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n return f[N] * g[N - K];\n }\n\n T C_naive(int N, int K) {\n if (N < 0 or K < 0 or N < K) return 0;\n T res(1);\n K = min(K, N - K);\n for (int i = 1; i <= K; i++) {\n res *= N--;\n res /= i;\n }\n return res;\n }\n};\n\nostream& operator<<(ostream& os, const fp p) {\n return os << p.value();\n}\n\nvoid solve(long long A, long long B, long long C, long long Sx, long long Sy, Binomial<fp>& binom) {\n fp ans = 0;\n long long d = Sx - Sy;\n long long n = A + B + C;\n for (long long x = max(0LL, d); x <= Sx; x++) {\n long long y = x - d;\n long long s = Sx - x;\n if (x < A or y < B or s < 0) continue;\n if (A == 0 and x > 0) continue;\n if (B == 0 and y > 0) continue;\n fp cur = binom.C(s + n - 1, n - 1);\n if (A != 0) cur *= binom.C(x - 1, A - 1);\n if (B != 0) cur *= binom.C(y - 1, B - 1);\n ans += cur;\n }\n ans *= binom.C(n, A) * binom.C(n - A, B);\n cout << ans << '\\n';\n}\n\nint main() {\n Binomial<fp> binom(4000000);\n long long A, B, C, Sx, Sy;\n while (cin >> A >> B >> C >> Sx >> Sy, !(A == 0 and B == 0 and C == 0 and Sx == 0 and Sy == 0)) {\n solve(A, B, C, Sx, Sy, binom);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 65392, "score_of_the_acc": -0.1601, "final_rank": 7 }, { "submission_id": "aoj_2751_7851201", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing i64 = long long;\nusing ll = long long;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing pii = pair<int, int>;\n\nvoid out(vi &a) {\n for (int i = 0; i < a.size(); i++) {\n cout << a[i] << \" \\n\"[i + 1 == a.size()];\n }\n}\n\nconstexpr i64 mod = 1e9 + 7;\n\ni64 inv(i64 x){\n i64 k = mod - 2;\n i64 res = 1, tmp = x;\n while(k){\n if(k&1){\n res = res * tmp % mod;\n }\n tmp = tmp * tmp % mod;\n k >>= 1;\n }\n return res;\n}\n\nstruct Enumeration{\n using M = long long;\n vector<M> fact, finv, invs;\n Enumeration(){}\n void init(int n){\n int m = fact.size();\n if(n < m){\n return;\n }\n fact.resize(n+1, 1);\n finv.resize(n+1,1);\n invs.resize(n+1,1);\n if(m==0){\n m=1;\n }\n for(int i=m; i <= n; ++i){\n fact[i] = (fact[i - 1] * i) % mod;\n }\n finv[n] = inv(fact[n]);\n for(int i = n; i >= m; i--){\n finv[i-1]=finv[i]*i%mod;\n }\n for(int i = m; i <= n; ++i){\n invs[i] = finv[i] * fact[i-1] % mod;\n }\n }\n M C(int n, int k){\n if(n<k||k<0)return 0;\n init(n);\n // cout << \"ncr: \" << n << \" \"<< k << \" \" << fact[n] * finv[n-k]%mod << endl;\n return fact[n]*finv[n-k]%mod*finv[k]%mod;\n }\n M H(int n, int k){\n if(n<0||k<0)return 0;\n if(!n&&!k){\n return 1;\n }\n init(n+k);\n return C(n+k-1, k);\n }\n};\n\nbool solve() {\n int a, b, c, sx, sy;\n cin >> a >> b >> c >> sx >> sy;\n if(a + b + c == 0){\n return false;\n }\n\n // must be (sx < sy)\n if(sx > sy){\n swap(sx, sy);\n swap(a, b);\n }\n i64 ans = 0;\n Enumeration enu;\n for(int e = 0;; ++e){\n int x = sx - e;\n int y = sy - e;\n if(x < a || y < b){\n break;\n }\n // cout << e << \" \" << x << \" \" << y << endl;\n i64 val = 1;\n val *= enu.H(a + b + c, e);\n\n // cout << a + b + c << \" \" << e << \": \" << enu.H(a + b + c, e) << endl;\n\n val %= mod;\n val *= enu.C(a + b + c, a);\n val %= mod;\n val *= enu.C(b + c, b);\n val %= mod;\n\n val *= enu.H(a, x - a);\n val %= mod;\n val *= enu.H(b, y - b);\n val %= mod;\n\n ans += val;\n ans %= mod;\n }\n cout << ans << endl;\n\n return true;\n}\n\nsigned main(){\n while(solve());\n}", "accuracy": 1, "time_ms": 1040, "memory_kb": 91388, "score_of_the_acc": -0.6662, "final_rank": 16 }, { "submission_id": "aoj_2751_7738308", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <cstddef>\n#include <cstdint>\n#include <cstdlib>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <limits>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <optional>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <type_traits>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <vector>\n\n#define rep(i,s,n) for(int i = int(s); i < int(n); i++)\n#define rrep(i,s,n) for(int i = int(n) - 1; i >= s; i--)\n#define all(a) a.begin(), a.end()\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n\nusing namespace std;\n\ntemplate<class T>\nbool chmin(T &a, T &b) {\n if(a <= b) return false;\n a = b;\n return true;\n}\n\ntemplate<class T>\nbool chmax(T &a, T &b) {\n if(a >= b) return false;\n a = b;\n return true;\n}\n\nconst ll mod = 1'000'000'007;\nconst int mx = 4'000'100;\nll fact[mx], ifact[mx];\n\nll modpow(ll x, ll n){\n if (n == 0) return 1;\n x %= mod;\n ll res = modpow(x,n/2);\n res = res * res % mod;\n if (n % 2 == 1) res = res * x % mod;\\\n return res;\n}\n\nll nhr(int n, int r){\n if (r == 0){\n if (n == 0) return 1;\n return 0;\n }\n if (n < 0 || r < 0) return 0;\n return (fact[n+r-1] * ifact[n] % mod) * ifact[r-1] % mod;\n}\n\nint main() {\n fact[0] = 1;\n for (ll n = 1; n < mx; n++){\n fact[n] = fact[n-1] * n % mod;\n }\n ifact[mx-1] = modpow(fact[mx-1],mod-2);\n for (ll n = mx-1; n >= 1; n--){\n ifact[n-1] = ifact[n] * n % mod;\n }\n while(true){\n int a, b, c, sx, sy; cin >> a >> b >> c >> sx >> sy;\n if (a == 0 && b == 0 && c == 0) break;\n ll ans = 0;\n for (int p = 0; p <= min(sx,sy); p++){\n int x = sx-p-a, y = sy-p-b; //cout << x << \" \" << a << \" \" << y << \" \" << b << endl;\n ll cur = nhr(x,a) * nhr(y,b) % mod;\n cur = cur * nhr(p,a+b+c) % mod;\n ans += cur;\n }\n ans %= mod; //cout << ans << endl;\n ll tmp1 = fact[a+b+c] * ifact[a] % mod;\n ll tmp2 = ifact[b] * ifact[c] % mod;\n ans *= tmp1 * tmp2 % mod;\n ans %= mod;\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 65828, "score_of_the_acc": -0.1943, "final_rank": 10 }, { "submission_id": "aoj_2751_7140117", "code_snippet": "#include<bits/stdc++.h>\n#define int ll\n#define rep(i, N) for(int i = 0; i < (int)(N); ++i)\n#define rep1(i, N) for(int i = 1; i <= (int)(N); ++i)\n#define per(i, N) for(int i = (N)-1; i >= 0; --i)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bit(n, k) ((n) >> (k))\n#define pcnt(n) (__builtin_popcount(n))\n#define TakAo(ans) ans ? cout << \"Takahashi\\n\" : cout << \"Aoki\\n\"\n#define YesNo(ans) ans ? cout << \"Yes\\n\" : cout << \"No\\n\"\n#define endl '\\n'\n#define fi first\n#define se second\n#define mkpr make_pair\n#define mktpl make_tuple\n#define eb emplace_back\n\nusing namespace std;\nusing ll = int64_t;\nusing ull = uint64_t;\nusing ld = long double;\nusing point = struct{ ll x, y; };\nusing pointld = struct{ ld x, y; };\nusing State = string::const_iterator;\ntemplate<class T> using max_heap = priority_queue<T>;\ntemplate<class T> using min_heap = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vec<vec<T>>;\ntemplate<class T> using vvvec = vec<vvec<T>>;\ntemplate<class T> using vvvvec = vvec<vvec<T>>;\n\nconstexpr ld EPS = 1e-10;\nconstexpr int INF = 1001001001;\nconstexpr ll LINF = 1001001001001001001ll;\nconstexpr ll MOD = (0) ? 998244353 : 1e9+7;\nconstexpr int NIL = -1;\nconstexpr int pm[2] = {1, -1};\nconstexpr int dy[4] = {0, 1, 0, -1};\nconstexpr int dx[4] = {1, 0, -1, 0};\n\nll cel(ll a, ll b){ return (a + b - 1) / b;}\nll Gcd(ll a, ll b){ return b ? Gcd(b, a % b) : abs(a);}\ntemplate<class T> T powi(T x, ll exp){\n return exp > 0 ? (exp & 1 ? x : 1) * powi(x * x, exp >> 1) : x / x;\n}\nll modpow(ll x, ll exp, ll mod){\n x %= mod;\n return exp > 0 ? (exp & 1 ? x : 1) * modpow(x * x, exp >> 1, mod) % mod : 1;\n}\ntemplate<class T> bool chmin(T &a, T b){ return a > b ? (a = b, true) : 0;}\ntemplate<class T> bool chmax(T &a, T b){ return a < b ? (a = b, true) : 0;}\n\nusing Pair = pair<ll, ll>;\nusing Tpl = tuple<int, int, int>;\n\nclass Combination{\n int max_val; // (2^n)-2\n vector<ll> fact_, invf_;\n\n void build(int n){\n int prev_val = max_val;\n while(max_val < n) max_val = (max_val << 1) | 2;\n fact_.resize(max_val + 1);\n invf_.resize(max_val + 1);\n for(int i = prev_val + 1; i <= max_val; i++){\n fact_[i] = fact_[i-1] * i % MOD;\n }\n invf_[max_val] = 1;\n for(ll x = fact_[max_val], k = MOD-2; k > 0; k >>= 1){\n if(k & 1) invf_[max_val] = invf_[max_val] * x % MOD;\n x = x * x % MOD;\n }\n for(int i = max_val; i > prev_val + 1; i--){\n invf_[i-1] = invf_[i] * i % MOD;\n }\n }\n bool check(int n){\n if(n < 0) return false;\n if(n > max_val) build(n);\n return true;\n }\n bool check(int n, int r){\n if(n < r || r < 0) return false;\n if(n > max_val) build(n);\n return true;\n }\n\n public:\n Combination() : max_val(0), fact_(1, 1), invf_(1, 1) {}\n Combination(int N) : max_val(0), fact_(1, 1), invf_(1, 1) {build(N);}\n int fact(int n){\n check(n);\n return fact_[n];\n }\n int invf(int n){\n check(n);\n return invf_[n];\n }\n int nPr(int n, int r){\n check(n, r);\n return fact_[n] * invf_[n-r] % MOD;\n }\n int nCr(int n, int r){\n check(n, r);\n return fact_[n] * invf_[n-r] % MOD * invf_[r] % MOD;\n }\n};\n\nvoid Main(){\n Combination comb(4e6+10);\n while(1){\n ll A, B, C, SX, SY;\n cin >> A >> B >> C >> SX >> SY;\n if(A + B + C == 0) break;\n\n ll ans = comb.nCr(A + B + C, A) * comb.nCr(B + C, B) % MOD;\n ll val = 0;\n\n for(ll scr = 0; scr <= max(SX, SY); scr++){\n // 2\n ll val2 = comb.nCr(scr + A + B + C - 1, scr);\n\n // 3\n if(A == 0 && SX - scr) continue;\n if(B == 0 && SY - scr) continue;\n\n if(SX - scr < A || SY - scr < B) continue;\n\n ll val3 = A ? comb.nCr(SX - scr - 1, A - 1) : 1;\n val3 = B ? val3 * comb.nCr(SY - scr - 1, B - 1) % MOD : val3;\n\n val2 = val2 * val3 % MOD;\n\n val = (val + val2) % MOD;\n }\n\n cout << ans * val % MOD << endl;\n }\n}\n \nsigned main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n Main();\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 68512, "score_of_the_acc": -0.1873, "final_rank": 8 }, { "submission_id": "aoj_2751_6757365", "code_snippet": "#include<bits/stdc++.h>\n#define int ll\n#define rep(i, N) for(int i = 0; i < (int)(N); ++i)\n#define rep1(i, N) for(int i = 1; i <= (int)(N); ++i)\n#define per(i, N) for(int i = (N)-1; i >= 0; --i)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bit(n, k) ((n) >> (k))\n#define pcnt(n) (__builtin_popcount(n))\n#define TakAo(ans) ans ? cout << \"Takahashi\\n\" : cout << \"Aoki\\n\"\n#define YesNo(ans) ans ? cout << \"Yes\\n\" : cout << \"No\\n\"\n#define endl '\\n'\n#define fi first\n#define se second\n#define mkpr make_pair\n#define mktpl make_tuple\n#define eb emplace_back\n\nusing namespace std;\nusing ll = int64_t;\nusing ull = uint64_t;\nusing ld = long double;\nusing point = struct{ ll x, y; };\nusing pointld = struct{ ld x, y; };\nusing State = string::const_iterator;\ntemplate<class T> using max_heap = priority_queue<T>;\ntemplate<class T> using min_heap = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vec<vec<T>>;\ntemplate<class T> using vvvec = vec<vvec<T>>;\ntemplate<class T> using vvvvec = vvec<vvec<T>>;\n\nconstexpr ld EPS = 1e-10;\nconstexpr int INF = 1001001001;\nconstexpr ll LINF = 1001001001001001001ll;\nconstexpr ll MOD = (0) ? 998244353 : 1e9+7;\nconstexpr int NIL = -1;\nconstexpr int pm[2] = {1, -1};\nconstexpr int dy[4] = {0, 1, 0, -1};\nconstexpr int dx[4] = {1, 0, -1, 0};\n\nll cel(ll a, ll b){ return (a + b - 1) / b;}\nll Gcd(ll a, ll b){ return b ? Gcd(b, a % b) : abs(a);}\ntemplate<class T> T powi(T x, ll exp){\n return exp > 0 ? (exp & 1 ? x : 1) * powi(x * x, exp >> 1) : x / x;\n}\nll modpow(ll x, ll exp, ll mod){\n x %= mod;\n return exp > 0 ? (exp & 1 ? x : 1) * modpow(x * x, exp >> 1, mod) % mod : 1;\n}\ntemplate<class T> bool chmin(T &a, T b){ return a > b ? (a = b, true) : 0;}\ntemplate<class T> bool chmax(T &a, T b){ return a < b ? (a = b, true) : 0;}\n\nusing Pair = pair<ll, ll>;\nusing Tpl = tuple<int, int, int>;\n\nclass Combination{\n int max_val; // (2^n)-2\n vector<ll> fact_, invf_;\n\n void build(int n){\n int prev_val = max_val;\n while(max_val < n) max_val = (max_val << 1) | 2;\n fact_.resize(max_val + 1);\n invf_.resize(max_val + 1);\n for(int i = prev_val + 1; i <= max_val; i++){\n fact_[i] = fact_[i-1] * i % MOD;\n }\n invf_[max_val] = 1;\n for(ll x = fact_[max_val], k = MOD-2; k > 0; k >>= 1){\n if(k & 1) invf_[max_val] = invf_[max_val] * x % MOD;\n x = x * x % MOD;\n }\n for(int i = max_val; i > prev_val + 1; i--){\n invf_[i-1] = invf_[i] * i % MOD;\n }\n }\n bool check(int n){\n if(n < 0) return false;\n if(n > max_val) build(n);\n return true;\n }\n bool check(int n, int r){\n if(n < r || r < 0) return false;\n if(n > max_val) build(n);\n return true;\n }\n\n public:\n Combination() : max_val(0), fact_(1, 1), invf_(1, 1) {}\n Combination(int N) : max_val(0), fact_(1, 1), invf_(1, 1) {build(N);}\n int fact(int n){\n check(n);\n return fact_[n];\n }\n int invf(int n){\n check(n);\n return invf_[n];\n }\n int nPr(int n, int r){\n check(n, r);\n return fact_[n] * invf_[n-r] % MOD;\n }\n int nCr(int n, int r){\n check(n, r);\n return fact_[n] * invf_[n-r] % MOD * invf_[r] % MOD;\n }\n};\n\nvoid Main(){\n Combination comb(4e6+10);\n while(1){\n ll A, B, C, SX, SY;\n cin >> A >> B >> C >> SX >> SY;\n if(A + B + C == 0) break;\n\n ll ans = comb.nCr(A + B + C, A) * comb.nCr(B + C, B) % MOD;\n ll val = 0;\n\n for(ll scr = 0; scr <= max(SX, SY); scr++){\n // 2\n ll val2 = comb.nCr(scr + A + B + C - 1, scr);\n\n // 3\n if(A == 0 && SX - scr) continue;\n if(B == 0 && SY - scr) continue;\n\n if(SX - scr < A || SY - scr < B) continue;\n\n ll val3 = A ? comb.nCr(SX - scr - 1, A - 1) : 1;\n val3 = B ? val3 * comb.nCr(SY - scr - 1, B - 1) % MOD : val3;\n\n val2 = val2 * val3 % MOD;\n\n val = (val + val2) % MOD;\n }\n\n cout << ans * val % MOD << endl;\n }\n}\n \nsigned main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n Main();\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 68600, "score_of_the_acc": -0.1877, "final_rank": 9 }, { "submission_id": "aoj_2751_6757224", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nconst ll MOD = (ll)1e9+7;\n//const ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\n\ntemplate<long long mod>\nclass modint{\n\tpublic:\n\t\tlong long x;\n\t\tmodint(long long a){x=a%mod;if(x<0)x+=mod;}\n\t\tmodint(){x=0;}\n\n\t\tmodint pow(long long a){\n\t\t\tmodint res(1), b(x);\n\t\t\twhile(a){\n\t\t\t\tif(a&1)res*=b;\n\t\t\t\tb*=b;\n\t\t\t\ta>>=1;\n\t\t\t}\n\t\t\treturn res;\n\t\t}\n\n\t\tmodint inv(){return pow(mod-2);}\n\n\t\tmodint& operator+=(modint a){x=(x+a.x)%mod;return *this;}\n\t\tmodint& operator-=(modint a){x=x-a.x;if(x<0)x+=mod;return *this;}\n\t\tmodint& operator*=(modint a){x=x*a.x%mod;return *this;}\n\t\tmodint& operator/=(modint a){x=x*a.inv().x%mod;return *this;}\n\n\t\tmodint operator+(modint a){return modint(x)+=a;}\n\t\tmodint operator-(modint a){return modint(x)-=a;}\n\t\tmodint operator*(modint a){return modint(x)*=a;}\n\t\tmodint operator/(modint a){return modint(x)/=a;}\n\n\t\tmodint operator-(){return modint(x);}\n\n\t\tbool operator==(const modint a){return x == a.x;}\n\t\tbool operator<(const modint a){return x < a.x;}\n\t\tbool operator>(const modint a){return x > a.x;}\n};\n\ntemplate<long long mod>\nostream& operator<<(ostream& os, const modint<mod>& a){\n\tos << a.x;\n\treturn os;\n}\n\nusing mint = modint<MOD>;\n\nmint factorial(int n){\n if(n < 0)return 0;\n if(n <= 1)return 1;\n static vector<mint> memo(2,1);\n while(memo.size() <= n){\n mint add = memo.back() * memo.size();\n memo.emplace_back(add);\n }\n return memo[n];\n}\n\nmint combination(int a,int b){\n return factorial(a) / (factorial(a-b) * factorial(b));\n}\n\nmint func(int a,int b,int c,int x,int y){\n mint mul = 1;\n mul *= factorial(a+b+c);\n mul /= factorial(a);\n mul /= factorial(b);\n mul /= factorial(c);\n mint res = 0;\n rep(remind,max(x,y)+10){\n int overx = x - remind;\n int overy = y - remind;\n if(overx < a)continue;\n if(overy < b)continue;\n if(a==0 and overx)continue;\n if(b==0 and overy)continue;\n mint add = 1;\n if(a){\n add *= combination(overx-1,a-1);\n }\n if(b){\n add *= combination(overy-1,b-1);\n }\n add *= combination(remind+a+b+c-1,a+b+c-1);\n res += add;\n }\n res *= mul;\n return res;\n}\n\nint main(){\n while(true){\n int a = in();\n int b = in();\n int c = in();\n int x = in();\n int y = in();\n if(a==0 and b==0 and c==0 and x==0 and y==0)break;\n println(func(a,b,c,x,y));\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1280, "memory_kb": 37664, "score_of_the_acc": -0.5017, "final_rank": 15 }, { "submission_id": "aoj_2751_6724805", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/modint>\nusing namespace std;\n// using namespace atcoder;\nconst long long MOD = 1000000007;\nconst long long N = 4000400;\nlong long fact[N];\nlong long invfact[N];\n\nlong long modpow(long long a, long long b){\n\tlong long ret = 1;\n\twhile(b > 0){\n\t\tif(b & 1){\n\t\t\tret *= a;\n\t\t\tret %= MOD;\n\t\t}\n\t\ta *= a;\n\t\ta %= MOD;\n\t\tb >>= 1;\n\t}\n\treturn ret;\n}\n\nvoid init(){\n\tfact[0] = 1;\n\tfor(int i = 1; i < N; i++){\n\t\tfact[i] = fact[i - 1] * i % MOD;\n\t}\n\tinvfact[N - 1] = modpow(fact[N - 1], MOD - 2);\n\tfor(int i = N - 2; i >= 0; i--){\n\t\tinvfact[i] =invfact[i + 1] * (i + 1) % MOD;\n\t}\n}\n\nlong long nCk(int n, int k){\n\tif(k < 0 || k > n) return 0;\n\treturn (fact[n] * invfact[k] % MOD) * invfact[n - k] % MOD;\n}\n\nlong long nHk(int n, int k){\n\tif(n == 0 && k == 0) return 1;\n\treturn nCk(n + k - 1, k);\n}\n\nvoid solve(){\n\tinit();\n\twhile(1){\n\t\tint a, b, c, sx, sy;\n\t\tcin >> a >> b >> c >> sx >> sy;\n\t\tif(a + b + c == 0) return;\n\t\tint abc = a + b + c;\n\t\tlong long ans = 0;\n\t\tfor(int cc = 0; cc <= min(sx, sy); cc++){\n\t\t\tlong long tmp = nHk(abc, cc);\n\t\t\ttmp *= nHk(a, sx - cc - a) * nHk(b, sy - cc - b) % MOD;\n\t\t\tans += tmp % MOD;\n\t\t\tans %= MOD;\n\t\t}\n\t\tans *= nCk(abc, a) * nCk(b + c, b) % MOD;\n\t\tans %= MOD;\n\t\tcout << ans << \"\\n\";\n\t}\n}\n\nint main(){\n cin.tie(0)->sync_with_stdio(0);\n int t;\n t = 1;\n // cin >> t;\n while(t--) solve();\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 65944, "score_of_the_acc": -0.2068, "final_rank": 11 } ]
aoj_2754_cpp
C : 壺 / Pots 問題文 ここに N 個の不思議な形の壺がある. i 番目の壺は K_i 個の直円柱を下から順に鉛直に繋げた形状である. 繋がっている順番は変えることができない. A 氏は体積 M の水を持っている. この水をそれぞれの壺に好きな量ずつに分けて注ぐ. 水が全く入っていない壺が存在しても構わない. また,全ての壺が水で満たされたとき,それ以上水を注ぐ事はできない.それぞれの壺の水面の高さの総和の最大値を求めよ. 入力 N \ M K_1 \ S_{11} \ H_{11} \ … \ S_{1 K_1} \ H_{1 K_1} K_2 \ S_{21} \ H_{21} \ … \ S_{2 K_2} \ H_{2 K_2} … K_N \ S_{N1} \ H_{N1} \ … \ S_{N K_N} \ H_{N K_N} 1 行目に N, M が, 1+i 行目には i 番目の壺の情報が入力される. K_i は直円柱の数であり, S_{ij}, H_{ij} はそれぞれ壺を構成する下から j 番目の直円柱の底面積と高さである. 制約 整数である 1 ≤ N ≤ 200 1 ≤ M ≤ 200 1 ≤ K_i ≤ 20 1 ≤ S_{ij} ≤ 20 1 ≤ H_{ij} ≤ 20 出力 答えを 1 行で出力せよ. 0.00001 以下の絶対誤差を含んでも良い. サンプル サンプル入力1 2 15 2 3 3 7 2 2 7 1 1 4 サンプル出力1 6.33333333 サンプル入力2 2 14 1 2 4 2 5 2 1 4 サンプル出力2 6 サンプル 1, 2 の入出力を図示すると次のようになる. サンプル入力3 2 25 4 8 9 1 9 6 5 2 8 4 1 7 4 4 1 6 4 3 サンプル出力3 13
[ { "submission_id": "aoj_2754_10850464", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define FOR(i,s,t )for(int i = s; i <t ; i++)\nusing LL = long long; using ll = LL;\nusing PLL = pair<LL, LL>; using pll = PLL;\nusing PII = pair<int, int>; using pii = PII;\n#define SZ(a) (int)a.size()\n#define ALL(a) a.begin(),a.end()\n#define SORT(a) sort(ALL(a))\nusing VI = vector<int>;\nusing VVI = vector<VI>;\n#define debug(x) cout<<#x<<\":=\"<<x\ndouble f(int k, int m, VI &S, VI &T) {\n\t// kth Sに,m L いれるときの高さ\n\tint left = m;\n\tdouble ret = 0;\n\tFOR(i, 0, SZ(S)) {\n\t\tdouble Cap = S[i] * T[i];\n\t\tif (left > Cap) {\n\t\t\tret += T[i];\n\t\t\tleft -= Cap;\n\t\t}\n\t\telse {\n\t\t\tret += left*1.0 / S[i];\n\t\t\tleft = 0;\n\t\t\tbreak;\n\t\t}\n\t}\n\treturn ret;\n}\n\n\nvoid solve() {\n\tint N, M; cin >> N >> M;\n\n\tVI K(N);\n\tVVI S(N), T(N);\n\tFOR(i, 0, N) {\n\t\tcin >> K[i];\n\t\tS[i] = vector<int>(K[i]);\n\t\tT[i] = vector<int>(K[i]);\n\t\tFOR(j, 0, K[i]) {\n\t\t\tcin >> S[i][j] >> T[i][j];\n\t\t}\n\t}\n\tdouble dp[202][202];\n\tfill(*dp, *dp + 102 * 102, 0);\n\n\tFOR(i, 0, N) {\n\t\tFOR(base, 0, M+1) {\n\t\t\tFOR(add, 0, M+1) {\n\t\t\t\tif (base + add <= M)\n\t\t\t\t\tdp[i + 1][base + add] = max(dp[i + 1][base + add], dp[i][base] + f(i, add, S[i], T[i]));\n\t\t\t\t//cout << i << \",add=\" << add<<\", \"; debug(f(i, add, S[i], T[i])) << endl;\n\t\t\t}\n\t\t}\n\t}\n\tcout <<fixed<<setprecision(10)<< dp[N][M] << endl;\n\n}\n\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\tsolve();\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3876, "score_of_the_acc": -0.1363, "final_rank": 8 }, { "submission_id": "aoj_2754_9756005", "code_snippet": "#include<iostream>\n#include<algorithm>\n\nusing namespace std;\n\nint main(){\n int N,M;\n cin>>N>>M;\n double dp[223][223];\n fill(dp[0],dp[223],-1e9);\n dp[0][0]=0;\n for(int i=0;i<N;i++){\n int K;\n cin>>K;\n int S[22],H[22];\n for(int j=0;j<K;j++){\n cin>>S[j]>>H[j];\n }\n for(int j=0;j<=M;j++){\n int x=0;\n int t=0;\n int h=0;\n for(int k=0;k+j<=M;k++){\n\tif(x==K){\n\t dp[i+1][j+k]=max(dp[i+1][j+k],dp[i][j]+h);\n\t break;\n\t}\n\tdp[i+1][j+k]=max(dp[i+1][j+k],dp[i][j]+h+t*1./S[x]);\n\tt++;\n\tif(t==H[x]*S[x]){\n\t t=0;\n\t h+=H[x];\n\t x++;\n\t}\n }\n }\n }\n cout<<fixed<<*max_element(dp[0],dp[223])<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3692, "score_of_the_acc": -0.0831, "final_rank": 4 }, { "submission_id": "aoj_2754_9233672", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n#define ll long long\n\nconst double eps = 1e-6;\n\nint main(){\n int n; cin >> n;\n int m; cin >> m;\n vector<int> k(n);\n vector s(n, vector<double>());\n vector h(n, vector<double>());\n for(int i = 0; i < n; i++){\n cin >> k[i];\n for(int j = 0; j < k[i]; j++){\n int s_, h_; cin >> s_ >> h_;\n s[i].push_back(s_);\n h[i].push_back(h_);\n }\n }\n vector best(n, vector<double>(m+1, -1e10));\n auto calc = [&](int u, double v) -> double {\n double res = 0;\n int i = 0;\n while(v > eps && i < k[u]){\n if(v > s[u][i]*h[u][i]){\n res += h[u][i];\n v -= h[u][i]*s[u][i];\n } else {\n double height = v / s[u][i];\n res += height;\n v = 0;\n }\n i++;\n }\n // cout << v << \" \" << res << '\\n';\n if(v > eps) return -1e10;\n else return res;\n };\n\n for(int v = 0; v < m+1; v++){\n best[0][v] = calc(0, v);\n }\n for(int i = 1; i < n; i++){\n for(int v1 = 0; v1 < m+1; v1++){\n for(int v2 = 0; v2 <= v1; v2++){\n best[i][v1] = max(best[i][v1] ,calc(i, v2) + best[i-1][v1-v2]);\n // cout << v1 << \" \" << v2 << \" \" << best[i-1][v1-v2] << \" \" << calc(i, v2) << '\\n';\n }\n }\n }\n\n // cout << calc(0, 4) << \"\\n\";\n\n // for(int i = 0; i < m+1; i++){\n // cout << best[0][i] << '\\n';\n // }\n\n cout << fixed << setprecision(10) << best[n-1][m] << '\\n';\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3800, "score_of_the_acc": -0.1143, "final_rank": 7 }, { "submission_id": "aoj_2754_9233522", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nusing ld=long double;\nusing pll=pair<ll,ll>;\nusing vll=vector<ll>;\nusing vpll=vector<pll>;\nusing vvll=vector<vll>;\nusing vvld=vector<vector<ld>>;\nusing vvpll=vector<vpll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\nconst ll INF=(1LL<<61)-1;\nvoid vout(vector<ld> a){\n rep(i,(ll)a.size()-1)cout<<a[i]<<\" \";\n cout<<a[a.size()-1]<<endl;\n}\ntemplate<class T>bool chmax(T&a,const T&b){if(a<b){a=b;return 1;}return 0;}\n\nint main(){\n ll n,m;\n cin>>n>>m;\n vvpll v(n);\n rep(i,n){\n ll k;\n cin>>k;\n rep(j,k){\n ll s,h;\n cin>>s>>h;\n v[i].push_back({s,h});\n }\n }\n\n vvld h(n);\n rep(i,n)h[i].resize(m+1);\n rep(i,n){\n ll hight=0;\n ll water=0;\n rep(j,(ll)v[i].size()){\n water+=v[i][j].first*v[i][j].second;\n if(water>m)break;\n hight+=v[i][j].second;\n h[i][water]=hight;\n }\n ll x=0;\n for(ll j=1;j<=m;j++){\n if(h[i][j]==0){\n if(x>=(ll)v[i].size())h[i][j]=h[i][j-1];\n else h[i][j]=h[i][j-1]+(ld)1/v[i][x].first;\n }\n else x++;\n }\n }\n // rep(i,n)vout(h[i]);\n\n vvld dp=h;\n rep(i,n-1){\n rep(j,m+1){\n rep(k,m+1){\n if(j>=k)chmax(dp[i+1][j],dp[i][j-k]+h[i+1][k]);\n }\n }\n }\n cout<<fixed<<setprecision(10);\n cout<<dp[n-1][m]<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4448, "score_of_the_acc": -0.3014, "final_rank": 11 }, { "submission_id": "aoj_2754_9233215", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (ll i = s; i < (ll)(t); i++)\n#define rrep(i, s, t) for(ll i = (ll)(t) - 1; i >= (ll)(s); i--)\n#define all(x) begin(x), end(x)\n#define TT template<typename T>\nTT using vec = vector<T>;\nTT using minheap = priority_queue<T, vector<T>, greater<T>>;\nTT using maxheap = priority_queue<T>;\n\nstruct io_setup {\n io_setup() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n }\n} io_setup;\n\n\nTT bool chmin(T &x, T y) { return x > y ? (x = y, true) : false; }\nTT bool chmax(T &x, T y) { return x < y ? (x = y, true) : false; }\n\nTT int LB(vector<T>& v, T x) { return lower_bound(all(v), x) - begin(v);}\nTT int UB(vector<T>& v, T x) { return upper_bound(all(v), x) - begin(v);}\n\nconst int inf = 1001001001;\nconst ll INF = 2002002002002002002;\n\n\nstruct dsu {\n using vi = vector<int>; \n using vvi = vector<vector<int>>;\n private:\n vi par;\n vi sz;\n int cc;\n vi es;\n\n public:\n\n dsu(int n) {\n par.resize(n);\n sz.resize(n, 1);\n es.resize(n, 0);\n cc = n;\n rep(i, 0, n) {\n par[i] = i;\n }\n }\n \n int leader(int u) {\n if (par[u] != u) {\n return par[u] = leader(par[u]);\n } \n return u;\n }\n \n bool same(int a, int b) {\n return leader(a) == leader(b);\n }\n \n bool merge(int a, int b) {\n a = leader(a), b = leader(b);\n if(sz[a] < sz[b]) swap(a, b);\n\n if(a == b) {\n ++es[a];\n return false;\n }\n else {\n cc--;\n par[b] = leader(a);\n sz[a] += sz[b];\n es[a] += es[b] + 1;\n return true;\n }\n }\n\n int size(int u) {\n return sz[leader(u)];\n }\n\n \n int componentcnt() {\n return cc;\n }\n\n\n \n int edgecnt(int u) {\n return es[leader(u)];\n }\n\n vvi groups() {\n int n = par.size();\n vvi ms(n);\n rep(v, 0, n) {\n ms[leader(v)].push_back(v);\n }\n\n vvi res;\n rep(i, 0, n) if(ms[i].size() > 0) {\n res.push_back(ms[i]);\n }\n\n return res;\n }\n\n};\n\n/*\n@brief dsu\n@docs doc/dsu.md\n*/\n\nint main() {\n\tll N, M;\n\tcin >> N >> M;\n\n\tvec<ll> K(N);\n\tvec<vec<ll>> S(N);\n\tvec<vec<ll>> H(N);\n\n\trep(i, 0, N) {\n\t\tcin >> K[i];\n\t\tS[i].resize(K[i]);\n\t\tH[i].resize(K[i]);\n\t\trep(j, 0, K[i]) cin >> S[i][j] >> H[i][j];\n\t}\n\n\tvec<double> dp(M+1, -inf);\n\tdp[M] = 0;\n\n\tauto cal = [&](ll id, ll T) {\n\t\tdouble res = 0;\n\n\t\trep(i, 0, K[id]) if(T > 0) {\n\t\t\tll use = min(T, S[id][i] * H[id][i]);\n\t\t\tif(use == S[id][i] * H[id][i]) {\n\t\t\t\tT -= use;\n\t\t\t\tres += H[id][i];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tres += double(T)/S[id][i];\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t};\n\n\trep(ti, 0, N) {\n\t\tvec<double> pre(M+1, -inf);\n\t\tswap(dp, pre);\n\t\trep(l, 0, M+1) {\n\t\t\trep(use, 0, l+1) {\n\t\t\t\tll nl = l - use;\n\t\t\t\tchmax(dp[nl], pre[l] + cal(ti,use));\n\t\t\t}\n\t\t}\n\t}\n\n\tcout << dp[0] << endl;\n\t\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3640, "score_of_the_acc": -0.0681, "final_rank": 3 }, { "submission_id": "aoj_2754_9233125", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,a,b) for(ll i = a; i < b; i++)\n#define all(a) (a).begin(), (a).end()\nusing ld = long double;\n\nint main(){\n ll n,m;\n cin >> n >> m;\n\n vector<vector<ld>> dp(n+1,vector<ld>(m+1, 0));\n\n rep(i,1,n+1){\n int K;\n cin >> K;\n vector<ld> s(K),h(K);\n rep(j,0,K) cin >> s[j] >> h[j];\n vector<ld> p(m+1,0);\n p[0] = 0;\n int nw = 0;\n rep(j,0,K){\n rep(k, 0, s[j] * h[j] + 1){\n if(nw + k < m+1) p[nw + k] = p[nw] + (ld)k / s[j];\n }\n nw += s[j] * h[j];\n }\n \n rep(j, 1, m+1) {\n p[j] = max(p[j], p[j-1]);\n }\n rep(j,0,m+1){\n rep(k,0,j+1){\n dp[i][j] = max(dp[i][j], dp[i-1][j-k] + p[k]);\n }\n }\n }\n\n cout << fixed << setprecision(10);\n cout << dp[n][m] << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4100, "score_of_the_acc": -0.2009, "final_rank": 10 }, { "submission_id": "aoj_2754_9233103", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\nusing ll = long long;\nusing ld = long double;\nconst ll INF = (1ll<<61) - 1;\ntemplate<class T> bool chmax(T &a,T b){\n if(a<b){\n a=b;\n return true;\n }\n return false;\n}\n\ntemplate<class T> bool chmin(T &a,T b){\n if(a>b){\n a=b;\n return true;\n }\n return false;\n}\n#define all(p) p.begin(),p.end()\n\n\nint main(){\n int N,M;\n cin>>N>>M;\n vector<ld> dp(M+1);\n rep(rop,0,N){\n int K;\n cin>>K;\n vector<int> S(K),H(K);\n rep(i,0,K) cin>>S[i]>>H[i];\n vector<ld> p(M+1);\n int ind=0;\n int Y=0;\n int X=0;\n rep(i,1,M+1){\n if(ind==K){\n p[i]=Y;\n }\n else{\n if(X+S[ind]*H[ind]==i){\n X=i;\n Y+=H[ind++];\n p[i]=Y;\n }\n else{\n p[i]=Y+((ld)(i-X))/(ld)(S[ind]);\n }\n }\n //cout<<i<<\" \"<<p[i]<<endl;\n }\n vector<ld> n_dp(M+1);\n rep(i,0,M+1) rep(j,i,M+1){\n chmax(n_dp[j],dp[i]+p[j-i]);\n }\n swap(n_dp,dp);\n }\n cout<<fixed<<setprecision(20)<<dp[M]<<\"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3584, "score_of_the_acc": -0.052, "final_rank": 1 }, { "submission_id": "aoj_2754_4917767", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n\n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(), (a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SQ(a) ((a) * (a))\n#define EACH(i, c) for (typeof((c).begin()) i = (c).begin(); i != (c).end(); ++i)\n#define EXIST(s, e) ((s).find(e) != (s).end())\n#define SORT(c) sort((c).begin(), (c).end())\n\n//repetition\n//------------------------------------------\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define MOD 1000000007\n\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n\n#define chmin(x, y) x = min(x, y)\n#define chmax(x, y) x = max(x, y)\nconst double EPS = 1e-11, PI = acos(-1);\n//ここから編集\nll modPow(ll x, ll n, ll mod = MOD){\n ll res = 1;\n while(n){\n if(n&1) res = (res * x)%mod;\n \n res %= mod;\n x = x * x %mod;\n n >>= 1;\n }\n return res;\n}\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n \n int n, m;\n cin >> n >> m;\n \n vector<int> K(n);\n vector<vector<int>> S(n), H(n);\n REP(i,n){\n cin >> K[i];\n S[i].resize(K[i]);\n H[i].resize(K[i]);\n for(int j=0; j<K[i]; j++){\n cin >> S[i][j] >> H[i][j];\n }\n }\n double ans = 0.0;\n for(int i=0; i<n; i++){\n /* 最終的な高さがdoubleになるものを固定する */\n\n vector<vector<int>> dp(n+1, vector<int>(m+1,-1));\n dp[0][0] = 0;\n for(int j=0; j<n; j++){\n if(i == j) {\n for(int k=0; k<=m; k++){\n dp[j+1][k] = max(dp[j+1][k], dp[j][k]);\n }\n }else{\n for(int k=0; k<=m; k++){\n int sum = 0;\n int va = 0;\n for(int l=0; l<K[j]; l++){\n int s = S[j][l], h = H[j][l];\n va += s*h;\n sum += h;\n if(k-va >= 0 && dp[j][k-va] != -1){\n dp[j+1][k] = max(dp[j+1][k], dp[j][k-va] + sum);\n }\n dp[j+1][k] = max(dp[j+1][k], dp[j][k]);\n }\n }\n }\n \n }\n\n\n for(int j=0; j<=m; j++){\n if(dp[n][j] == -1) continue; \n int sum = 0;\n int va = 0;\n double nokori = m-j;\n for(int k=0; k<K[i]; k++){\n int s = S[i][k], h = H[i][k];\n va += s*h;\n sum += h;\n \n if(nokori >= va){\n ans = max(ans, (double)(dp[n][j] + sum));\n\n }else{\n double newnokori = nokori - (va-s*h);\n //cout << newnokori << endl;\n ans = max(ans, (double)dp[n][j] + newnokori/(double)s + (double)(sum-h));\n break;\n }\n }\n }\n \n }cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3448, "score_of_the_acc": -0.9294, "final_rank": 13 }, { "submission_id": "aoj_2754_3553098", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\n#define int long long int\nconst int INF = 1001001001001001LL;\nconst int MOD = 1000000007;\n\ndouble s[210][22];\ndouble h[210][22];\n\nsigned main(){\n \n double n, m; cin >> n >> m;\n vector<int> k(n);\n \n for(int i = 0; i < n; i++){\n cin >> k[i];\n for(int j = 0; j < k[i]; j++){\n cin >> s[i][j] >> h[i][j];\n }\n }\n \n double ans = 0.0;\n\n for(int ii = 0; ii < n; ii++){\n\n vector<vector<double> > dp(n + 1, vector<double> (m + 1, -1.0));\n dp[0][0] = 0.0;\n for(int i = 0; i < n; i++){\n \n if(ii == i){\n for(int j = 0; j <= m; j++) dp[i + 1][j] = dp[i][j];\n continue;\n }\n\n\n for(int j = 0; j <= m; j++){\n if(dp[i][j] < 0.0) continue;\n\n int nj = j;\n dp[i + 1][nj] = max(dp[i + 1][nj], dp[i][j]);\n double val = 0.0;\n for(int l = 0; l < k[i]; l++){\n // とるぜ\n nj += s[i][l] * h[i][l];\n val += h[i][l];\n if(nj <= m) dp[i + 1][nj] = max(dp[i + 1][nj], dp[i][j] + val); \n }\n }\n }\n \n for(int j = 0; j <= m; j++){\n \n double rest = m - j;\n double high = 0.0;\n\n for(int l = 0; l < k[ii]; l++){\n if(rest >= s[ii][l] * h[ii][l]){\n rest -= s[ii][l] * h[ii][l];\n high += h[ii][l];\n }else{\n high += rest / s[ii][l];\n break;\n }\n }\n \n if(dp[n][j] != -1.0) ans = max(ans, dp[n][j] + high);\n }\n\n }\n\n printf(\"%.10f\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3488, "score_of_the_acc": -1.0242, "final_rank": 15 }, { "submission_id": "aoj_2754_3553097", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <iomanip>\nusing namespace std;\n\nint main(){\n\tint n,m;\n\tcin >> n >> m;\n\tvector<vector<double> > hei(n);\n\tfor(int i=0; i<n; i++){\n\t\tint k;\n\t\tcin >> k;\n\t\thei[i].push_back(0);\n\t\tfor(int j=0; j<k; j++){\n\t\t\tint s,h;\n\t\t\tcin >> s >> h;\n\t\t\tfor(int d=0; d<s*h; d++){\n\t\t\t\thei[i].push_back(hei[i].back()+(double)1/s);\n\t\t\t}\n\t\t}\n\t}\n\n\tvector<double> dp(m+1, 0);\n\tfor(int i=0; i<n; i++){\n\t\tauto ndp = dp;\n\t\tfor(int j=1; j<(int)hei[i].size(); j++){\n\t\t\tfor(int k=m; k>=0; k--){\n\t\t\t\tif(k+j > m) continue;\n\t\t\t\tndp[k+j] = max(ndp[k+j], dp[k]+hei[i][j]); \n\t\t\t}\n\t\t}\n\t\tdp = ndp;\n\t}\n\tcout << fixed << setprecision(10);\n\tcout << *max_element(dp.begin(), dp.end()) << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5304, "score_of_the_acc": -0.6318, "final_rank": 12 }, { "submission_id": "aoj_2754_2917802", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\nconst int INF = 1e9;\nconst ll LINF = 1e18;\ntemplate<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << \"(\" << o.first << \",\" << o.second << \")\"; return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << \" \";} return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }\ntemplate<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << \"{ \"; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << \":\" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << \", \"; } out << \" }\"; return out; }\n\n/*\n <url:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2754>\n 問題文============================================================\n =================================================================\n 解説=============================================================\n ================================================================\n */\n\ndouble clac(int n,int add,vector<int>& S,vector<int>& H){\n double ret = 0;\n int sz = (int)S.size();\n for(int i = 0; i < sz;i++){\n int V = S[i]*H[i];\n if(add >= V){\n ret += H[i];\n add -= V;\n }else{\n ret += H[i]*add/(double)V;\n break;\n }\n }\n return ret;\n}\ndouble solve(){\n double res = 0;\n int N,M; cin >> N >> M;\n vector<int> K(N);\n vector<vector<int>> S(N),H(N);\n for(int i = 0; i < N;i++){\n cin >> K[i];\n S[i].resize(K[i]); H[i].resize(K[i]);\n for(int j = 0; j < K[i];j++){\n cin >> S[i][j] >> H[i][j];\n }\n }\n \n vector<vector<double>> dp(N+1,vector<double>(M+1,0));\n for(int i = 0; i < N;i++){\n for(int j = 0; j <= M;j++){\n for(int k = 0; k <= M; k++){\n if(j + k > M)continue;\n dp[i+1][j+k] = max(dp[i+1][j+k],dp[i][j] + clac(i,k,S[i],H[i]));\n }\n }\n }\n res = dp[N][M];\n return res;\n}\nint main(void) {\n cin.tie(0); ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(12) << solve() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3420, "score_of_the_acc": -0.088, "final_rank": 6 }, { "submission_id": "aoj_2754_2659273", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nstruct Data{\n\tint S,H,V_ruiseki,H_ruiseki;\n};\n\nstruct Info{\n\tint K;\n\tData data[20];\n};\n\ndouble dp[201][201];\n\nint main(){\n\n\tint N,M;\n\tscanf(\"%d %d\",&N,&M);\n\n\tInfo info[N];\n\tint V_sum,H_sum,all_V_sum = 0,all_H_sum = 0;\n\n\tfor(int i = 0; i < N; i++){\n\t\tscanf(\"%d\",&info[i].K);\n\t\tV_sum = 0;\n\t\tH_sum = 0;\n\n\t\tfor(int a = 0; a < info[i].K; a++){\n\t\t\tscanf(\"%d %d\",&info[i].data[a].S,&info[i].data[a].H);\n\t\t\tall_V_sum += info[i].data[a].S*info[i].data[a].H;\n\t\t\tall_H_sum += info[i].data[a].H;\n\t\t\tV_sum += info[i].data[a].S*info[i].data[a].H;\n\t\t\tH_sum += info[i].data[a].H;\n\t\t\tinfo[i].data[a].V_ruiseki = V_sum;\n\t\t\tinfo[i].data[a].H_ruiseki = H_sum;\n\t\t}\n\t}\n\n\tif(all_V_sum <= M){\n\t\tprintf(\"%d\\n\",all_H_sum);\n\t\treturn 0;\n\t}\n\n\tfor(int i = 0; i <= N; i++){\n\t\tfor(int k = 0; k <= M; k++)dp[i][k] = -1.0;\n\t}\n\n\tdp[0][M] = 0.0;\n\n\tdouble height;\n\tint next_rest,num;\n\n\tfor(int pot = 0; pot < N; pot++){\n\t\tfor(int rest = 0; rest <= M; rest++){\n\t\t\tif(dp[pot][rest] == -1.0)continue;\n\t\t\tfor(int water = 0; water <= rest; water++){\n\n\t\t\t\tfor(num = 0; num < info[pot].K; num++){\n\t\t\t\t\tif(info[pot].data[num].V_ruiseki > water){\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(num == info[pot].K){\n\t\t\t\t\theight = (double)info[pot].data[info[pot].K-1].H_ruiseki;\n\t\t\t\t\tnext_rest = water-info[pot].data[info[pot].K-1].V_ruiseki;\n\t\t\t\t\tdp[pot+1][next_rest] = max(dp[pot+1][next_rest],dp[pot][rest]+height);\n\t\t\t\t}else{\n\n\t\t\t\t\tif(num == 0){\n\t\t\t\t\t\theight = (double)water/(double)info[pot].data[num].S;\n\t\t\t\t\t}else{\n\t\t\t\t\t\theight = (double)info[pot].data[num-1].H_ruiseki+(double)(water-info[pot].data[num-1].V_ruiseki)/(double)info[pot].data[num].S;\n\t\t\t\t\t}\n\t\t\t\t\tdp[pot+1][rest-water] = max(dp[pot+1][rest-water],dp[pot][rest]+height);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tprintf(\"%.10lf\\n\",dp[N][0]);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3596, "score_of_the_acc": -0.0554, "final_rank": 2 }, { "submission_id": "aoj_2754_2260564", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define int long long\nint n,m;\nint k[202];\nint s[202][22],h[202][22];\ndouble c[202][202];\nint ma[202];\ndouble memo[202][202];\ndouble dfs(int p,int x){\n if(memo[p][x]>=0) return memo[p][x];\n if(p==n) return 0; \n double res=0;\n for(int i=0;i<=min(x,ma[p]);i++){\n res=max(res,dfs(p+1,x-i)+c[p][i]);\n }\n //cout<<p<<\" \"<<x<<\" \"<<res<<endl;\n return memo[p][x]=res;\n}\nsigned main(){\n cin>>n>>m;\n for(int i=0;i<n;i++){\n cin>>k[i];\n for(int j=0;j<k[i];j++){\n cin>>s[i][j]>>h[i][j];\n }\n }\n for(int i=0;i<n;i++){\n ma[i]=0;\n for(int j=0;j<k[i];j++) ma[i]+=s[i][j]*h[i][j];\n for(int j=0;j<=ma[i];j++){\n queue<int> q;\n for(int r=0;r<k[i];r++)\n\tfor(int l=0;l<h[i][r];l++) \n\t q.push(s[i][r]);\n double tmp=0;\n int x=0;\n while(!q.empty()){\n\tint p=q.front();q.pop();\n\tif(x+p>j){\n\t tmp+=(double)(j-x)/p;\n\t break;\n\t}\n\tx+=p;\n\ttmp+=1;\n }\n //cout<<i<<\" \"<<j<<\" \"<<ma[i]<<\" \"<<tmp<<endl;\n c[i][j]=tmp;\n }\n }\n for(int i=0;i<202;i++)\n for(int j=0;j<202;j++)\n memo[i][j]=-1;\n printf(\"%.12f\\n\",dfs(0,m));\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 3952, "score_of_the_acc": -0.9915, "final_rank": 14 }, { "submission_id": "aoj_2754_2260513", "code_snippet": "#include<bits/stdc++.h>\n#define N 205\n#define W 21\nusing namespace std;\n\nint n,m;\nint dp[N][N][W];\n\nint main(){\n \n cin>>n>>m;\n \n int k,s,h;\n vector<int> v[N];\n \n for(int i=0;i<n;i++){\n cin>>k;\n \n for(int j=0;j<k;j++){\n cin>>s>>h;\n for(int l=0;l<h;l++)\n\tv[i].push_back(s);\n }\n }\n \n memset(dp,-1,sizeof(dp));\n dp[0][0][0]=0;\n \n for(int i=0;i<n;i++){\n \n for(int j=0;j<=m;j++){\n \n for(int l=0;l<W;l++){\n\tif(dp[i][j][l]==-1)continue;\n\t\n\tint sum=0;\n\tfor(int x=0;x<v[i].size();x++){\n\t \n\t sum+=v[i][x];\n\t int w=l;\n\t \n\t if(x<v[i].size()-1){\n\t if(!l)w=v[i][x+1];\n\t else w=min(l,v[i][x+1]);\n\t }\n\t \n\t if(j+sum<=m)dp[i+1][j+sum][w]=max(dp[i+1][j+sum][w],dp[i][j][l]+x+1);\n\t \n\t}\n\tdp[i+1][j][l]=max(dp[i+1][j][l],dp[i][j][l]);\n\t\n }\n \n }\n \n }\n\n double ans=0;\n for(int i=0;i<=m;i++){\n for(int j=0;j<W;j++){\n \n if(dp[n][i][j]==-1)continue;\n \n if(j&&1.0*m-i<=j)ans=max(ans,dp[n][i][j]+(1.0*m-i)/j);\n else ans=max(ans,1.0*dp[n][i][j]);\n }\n }\n\n printf(\"%.8f\\n\",ans);\n \n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 6868, "score_of_the_acc": -1.75, "final_rank": 17 }, { "submission_id": "aoj_2754_2260504", "code_snippet": "#include<bits/stdc++.h>\n#define N 205\n#define W 21\nusing namespace std;\n\nint n,m;\nint dp[N][N][W];\n\nint main(){\n \n cin>>n>>m;\n \n int k,s,h;\n vector<int> v[N];\n \n for(int i=0;i<n;i++){\n cin>>k;\n \n for(int j=0;j<k;j++){\n cin>>s>>h;\n for(int l=0;l<h;l++)\n\tv[i].push_back(s);\n }\n }\n \n memset(dp,-1,sizeof(dp));\n dp[0][0][0]=0;\n \n for(int i=0;i<n;i++){\n \n for(int j=0;j<=m;j++){\n \n for(int l=0;l<W;l++){\n\tif(dp[i][j][l]==-1)continue;\n\t\n\tint sum=0;\n\tfor(int x=0;x<v[i].size();x++){\n\t \n\t sum+=v[i][x];\n\t int w=l;\n\t \n\t if(x<v[i].size()-1){\n\t if(!l)w=v[i][x+1];\n\t else w=min(l,v[i][x+1]);\n\t }\n\t \n\t if(j+sum<=m)dp[i+1][j+sum][w]=max(dp[i+1][j+sum][w],dp[i][j][l]+x+1);\n\t \n\t}\n\tdp[i+1][j][l]=max(dp[i+1][j][l],dp[i][j][l]);\n\t\n }\n \n }\n \n }\n\n double ans=0;\n for(int i=0;i<=m;i++){\n for(int j=0;j<W;j++){\n \n if(dp[n][i][j]==-1)continue;\n \n if(j&&1.0*m-i<=j*j)ans=max(ans,dp[n][i][j]+(1.0*m-i)/j);\n else ans=max(ans,1.0*dp[n][i][j]);\n }\n }\n\n printf(\"%.8f\\n\",ans);\n \n return 0;\n}", "accuracy": 0.19298245614035087, "time_ms": 50, "memory_kb": 6764, "score_of_the_acc": -1.3033, "final_rank": 19 }, { "submission_id": "aoj_2754_2260483", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nstruct Pot{\n int S;\n int H;\n Pot():S(0),H(0){}\n Pot(int S, int H):S(S),H(H){}\n};\n\ndouble height(const int idx, const int water_, const vector< vector< Pot > >& P){\n double res = 0.0;\n double water = (double)water_;\n vector<Pot> p = P[idx];\n\n for(int i = 0; i < p.size(); i++){\n Pot pot = p[i];\n int pot_size = p[i].S * p[i].H;\n if(water >= pot_size){\n res += p[i].H;\n water -= pot_size;\n }else{\n res += water / p[i].S;\n break;\n }\n }\n return res;\n}\n\nint main(void){\n ios::sync_with_stdio(false);\n cin.tie(0);\n int N, M; cin >> N >> M;\n vector< vector< Pot > > P(N);\n for(int i = 0; i < N; i++){\n int K; cin >> K;\n for(int j = 0; j < K; j++){\n int S, H; cin >> S >> H;\n P[i].push_back( Pot(S, H) );\n }\n }\n\n double dp[N+1][M+1];\n for(int i = 0; i <= N; i++) for(int j = 0; j <= M; j++) dp[i][j] = -5000;\n\n for(int j = 0; j <= M; j++){\n dp[0][M-j] = height(0, j, P);\n //cout << dp[0][j] << endl;\n }\n\n for(int i = 1; i < N; i++){\n for(int j = M; j >= 0; j--){\n for(int k = 0; k <= j; k++){\n dp[i][j-k] = max(dp[i][j-k], dp[i-1][j] + height(i, k, P));\n }\n }\n }\n\n //cout << dp[1][1] << endl;\n double ans = 0;\n for(int j = 0; j <= M; j++){\n ans = max(ans, dp[N-1][j]);\n }\n cout << fixed << setprecision(10) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3588, "score_of_the_acc": -1.0531, "final_rank": 16 }, { "submission_id": "aoj_2754_2260416", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define int long long\nint n,m;\nint k[22];\nint s[202][22],h[202][22];\ndouble c[202][202];\nint ma[202];\ndouble memo[202][202];\ndouble dfs(int p,int x){\n if(memo[p][x]>=0) return memo[p][x];\n if(p==n) return 0; \n double res=0;\n for(int i=0;i<=min(x,ma[p]);i++){\n res=max(res,dfs(p+1,x-i)+c[p][i]);\n }\n //cout<<p<<\" \"<<x<<\" \"<<res<<endl;\n return memo[p][x]=res;\n}\nsigned main(){\n cin>>n>>m;\n for(int i=0;i<n;i++){\n cin>>k[i];\n for(int j=0;j<k[i];j++){\n cin>>s[i][j]>>h[i][j];\n }\n }\n for(int i=0;i<n;i++){\n ma[i]=0;\n for(int j=0;j<k[i];j++) ma[i]+=s[i][j]*h[i][j];\n for(int j=0;j<=ma[i];j++){\n queue<int> q;\n for(int r=0;r<k[i];r++)\n\tfor(int l=0;l<h[i][r];l++) \n\t q.push(s[i][r]);\n double tmp=0;\n int x=0;\n while(!q.empty()){\n\tint p=q.front();q.pop();\n\tif(x+p>j){\n\t tmp+=(double)(j-x)/p;\n\t break;\n\t}\n\tx+=p;\n\ttmp+=1;\n }\n //cout<<i<<\" \"<<j<<\" \"<<ma[i]<<\" \"<<tmp<<endl;\n c[i][j]=tmp;\n }\n }\n for(int i=0;i<202;i++)\n for(int j=0;j<202;j++)\n memo[i][j]=-1;\n printf(\"%.12f\\n\",dfs(0,m));\n return 0;\n}", "accuracy": 0.08771929824561403, "time_ms": 10, "memory_kb": 3528, "score_of_the_acc": -0.0358, "final_rank": 20 }, { "submission_id": "aoj_2754_2098604", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n//#define int long long\n#define DBG 0\n#define dump(o) if(DBG){cerr<<#o<<\" \"<<o<<endl;}\n#define dumpc(o) if(DBG){cerr<<#o; for(auto &e:(o))cerr<<\" \"<<e;cerr<<endl;}\n#define rep(i,a,b) for(int i=(a);i<(b);i++)\n#define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--)\n#define each(it,c) for(auto it=(c).begin();it!=(c).end();it++)\n#define all(c) c.begin(),c.end()\nconst int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f;\nconst int MOD = (int)(1e9 + 7);\n\nclass Pot {\npublic:\n\tvector<double> S, H;\n\tdouble f(double k) {\n\t\tdouble ret = 0;\n\t\tdumpc(S);\n\t\tdumpc(H);\n\t\trep(i, 0, S.size()) {\n\t\t\tif (k == 0)break;\n\t\t\tdouble h = min(k / S[i], H[i]);\n\t\t\tdump(h);\n\t\t\tk -= h*S[i];\n\t\t\tdump(k);\n\t\t\tret += h;\n\t\t\tdump(ret);\n\t\t}\n\t\treturn ret;\n\t}\n};\n\n#define MAX_N 210\n#define MAX_M 210\ndouble dp[MAX_N][MAX_M] = {};\nvector<Pot> Pots;\ndouble dfs(int i, int j) {\n\tif (i == 0)return 0;\n\tif (dp[i][j] != -1)return dp[i][j];\n\trep(k, 0, j + 1) {\n\t\tdump(i - 1);\n\t\tdump(k);\n\t\tdump(Pots[i - 1].f(k));\n\t\tdp[i][j] = max(dfs(i - 1, j - k) + Pots[i - 1].f(k), dp[i][j]);\n\t}\n\tdump(i);\n\tdump(j);\n\tdump(dp[i][j]);\n\treturn dp[i][j];\n}\n\nsigned main() {\n\tcout << fixed << setprecision(8);\n\tfill(dp[0], dp[MAX_N], -1);\n\tint N, M; cin >> N >> M;\n\tPots.resize(N);\n\trep(i, 0, N) {\n\t\tint K; cin >> K;\n\t\trep(j, 0, K) {\n\t\t\tdouble S, H; cin >> S >> H;\n\t\t\tPots[i].S.emplace_back(S);\n\t\t\tPots[i].H.emplace_back(H);\n\t\t}\n\t}\n\tcout << dfs(N, M) << endl;\n\tif(DBG)rep(i, 0, N + 1) {\n\t\tcout << dp[i][0];\n\t\trep(j, 1, M+1) { cout << \" \" << dp[i][j]; }\n\t\tcout << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3680, "score_of_the_acc": -0.163, "final_rank": 9 }, { "submission_id": "aoj_2754_2098601", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n//#define int long long\n#define DBG 0\n#define dump(o) if(DBG){cerr<<#o<<\" \"<<o<<endl;}\n#define dumpc(o) if(DBG){cerr<<#o; for(auto &e:(o))cerr<<\" \"<<e;cerr<<endl;}\n#define rep(i,a,b) for(int i=(a);i<(b);i++)\n#define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--)\n#define each(it,c) for(auto it=(c).begin();it!=(c).end();it++)\n#define all(c) c.begin(),c.end()\nconst int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f;\nconst int MOD = (int)(1e9 + 7);\n\nclass Pot {\npublic:\n\tvector<double> S, H;\n\tdouble f(double k) {\n\t\tdouble ret = 0;\n\t\tdumpc(S);\n\t\tdumpc(H);\n\t\trep(i, 0, S.size()) {\n\t\t\tif (k == 0)break;\n\t\t\tdouble h = min(k / S[i], H[i]);\n\t\t\tdump(h);\n\t\t\tk -= h*S[i];\n\t\t\tdump(k);\n\t\t\tret += h;\n\t\t\tdump(ret);\n\t\t}\n\t\treturn ret;\n\t}\n};\n\n#define MAX_N 210\n#define MAX_M 210\ndouble dp[MAX_N][MAX_M] = {};\nvector<Pot> Pots;\ndouble dfs(int i, int j) {\n\tif (i == 0)return 0;\n\tif (dp[i][j] != -1)return dp[i][j];\n\trep(k, 0, j + 1) {\n\t\tdump(i - 1);\n\t\tdump(k);\n\t\tdump(Pots[i - 1].f(k));\n\t\tdp[i][j] = max(dfs(i - 1, j - k) + Pots[i - 1].f(k), dp[i][j]);\n\t}\n\tdump(i);\n\tdump(j);\n\tdump(dp[i][j]);\n\treturn dp[i][j];\n}\n\nsigned main() {\n\tfill(dp[0], dp[MAX_N], -1);\n\tint N, M; cin >> N >> M;\n\tPots.resize(N);\n\trep(i, 0, N) {\n\t\tint K; cin >> K;\n\t\trep(j, 0, K) {\n\t\t\tdouble S, H; cin >> S >> H;\n\t\t\tPots[i].S.emplace_back(S);\n\t\t\tPots[i].H.emplace_back(H);\n\t\t}\n\t}\n\tcout << dfs(N, M) << endl;\n\tif(DBG)rep(i, 0, N + 1) {\n\t\tcout << dp[i][0];\n\t\trep(j, 1, M+1) { cout << \" \" << dp[i][j]; }\n\t\tcout << endl;\n\t}\n\treturn 0;\n}", "accuracy": 0.19298245614035087, "time_ms": 10, "memory_kb": 3604, "score_of_the_acc": -0.0577, "final_rank": 18 }, { "submission_id": "aoj_2754_2055376", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\n//// < \"d:\\d_download\\visual studio 2015\\projects\\programing_contest_c++\\debug\\a.txt\" > \"d:\\d_download\\visual studio 2015\\projects\\programing_contest_c++\\debug\\b.txt\"\n\nld getheight(const vector<pair<int, int>>&pot, ld water) {\n\tld h = 0;\n\tfor (int i = 0; i < pot.size(); ++i) {\n\t\tif (water > pot[i].first*pot[i].second) {\n\t\t\th += pot[i].second;\n\t\t\twater -= pot[i].first*pot[i].second;\n\t\t}\n\t\telse {\n\t\t\treturn h + water / pot[i].first;\n\t\t}\n\t}\n\treturn h;\n}\n\nint main() {\n\tint N;ld M; cin >> N >> M;\n\tvector<vector<pair<int, int>>>pots;\n\tfor (int i = 0; i < N; ++i) {\n\t\tint K; cin >> K;\n\t\tvector<pair<int, int>>pot;\n\t\tfor (int j = 0; j < K; ++j) {\n\t\t\tint s, h; cin >> s >> h;\n\t\t\tpot.push_back(make_pair(s, h));\n\n\t\t}\n\t\tpots.emplace_back(pot);\n\t}\n\tvector<vector<ld>>dp(N + 1, vector<ld>(M + 1));\n\tfor (int i = 0; i < N; ++i) {\n\t\tconst vector<pair<int, int>>apot(pots[i]);\n\t\tfor (int j = 0; j <= M; ++j) {\n\n\t\t\tfor (int use = 0; use <= M - j; ++use) {\n\t\t\t\tdp[i + 1][j + use] = max(dp[i][j] + getheight(apot, use), dp[i + 1][j + use]);\n\t\t\t}\n\t\t}\n\t}\n\tcout << setprecision(10) << fixed << dp[N][M] << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3404, "score_of_the_acc": -0.0833, "final_rank": 5 } ]
aoj_2761_cpp
D: みゃんぱすーれつ - Myampus Sequence - 物語 みゃんぱすー. ウチ,田舎の分校に通う小学一年生なん. あんなー,今日の授業はプログラミングだったん. みんな苦戦してたけど,まっつんのにぃにぃ,凄い勢いでタイピングしてたん. さすが中三なんなー. にぃにぃ,プログラムが完成してどこか行ってしまったん. そんで,画面見たら,色んな数列が出力されてたん. だんだん出力と同じような数列を書きたくなったん,ウチ,出力テキストに同じような数列をいくつも書き加えてたん. そしたら,にぃにぃが戻ってきて,すごい怒られたん. ウチ,にぃにぃの声初めて聞いたから,びっくりしたん. でな,にぃにぃに謝ってプログラムを見せてもらったん. プログラムが出力してたん,「みゃんぱすーれつ」いうん. 数列がみゃんぱすーれつか調べて,にぃにぃの機嫌を直したいん. でも,ウチ,プログラミング初めてなん,教えてほしいのん. 問題 N 個の整数からなる数列と M 個の関数からなるプログラムが与えられる.プログラムが開始されると 1 番目の関数を呼び出し,この関数の処理が終了すると,プログラムは終了する.また, i ( 1 ≤ i ≤ M ) 番目の関数は,次のどちらか一方の処理を行い,関数の処理を終了する. 整数 a_i を出力する. b_i ( 1 ≤ b_i ≤ M ) 番目の関数を呼び出し,呼び出した関数の処理が終了したら, c_i ( 1 ≤ c_i ≤ M ) 番目の関数を呼び出し,呼び出した関数の処理の終了を待つ. どちらの処理を行うかは,処理の度にランダムに決定される.つまり,プログラムが開始されると1個の数列を出力して終了する.ここで,プログラムが出力する数列としてあり得るものを「みゃんぱすーれつ」と定義する. 与えられた数列がみゃんぱすーれつか判定せよ. 入力形式 入力は次の形式で与えられる. N x_1 ... x_N M a_1 b_1 c_1 ... a_M b_M c_M 1行目に,判定すべき数列の長さ N が与えられる. 2行目に,判定すべき整数列 x_1 , x_2 , ..., x_N が順に与えられる. 3行目に,関数の個数 M が与えられる. i + 3 ( 1 ≤ i ≤ M ) 行目に, i 番目の関数の情報を表す a_i , b_i , c_i が順に与えられる. 入力は次の制約を満たす. 1 ≤ N ≤ 100 i = 1, ... , N に対して, x_i は 0 ≤ x_i ≤ 9 を満たす整数 1 ≤ M ≤ 10 i = 1, ... , M に対して, a_i は 0 ≤ a_i ≤ 9 を満たす整数 i = 1, ... , M に対して, b_i は 1 ≤ b_i ≤ M を満たす整数 i = 1, ... , M に対して, c_i は 1 ≤ c_i ≤ M を満たす整数 出力形式 与えれた数列がみゃんぱすーれつの場合には “Yes” と出力し,数列がみゃんぱすーれつではない場合には “No” と出力せよ.また,出力の最後に改行せよ. 入力例1 3 3 5 3 3 5 2 3 3 3 1 7 1 2 出力例1 Yes 次のようにプログラムが動作すると,与えられた数列を生成します. プログラムが関数 1 を呼び出す. 関数 1 が関数 2 と関数 3 を順に呼び出す. 関数 2 が 3 を出力する. 関数 3 が関数 1 と関数 2 を順に呼び出す. 関数 1 が 5 を出力する. 関数 2 が 3 を出力する. 入力例2 10 9 9 9 9 9 9 9 9 9 9 4 6 2 3 7 3 1 8 1 2 9 2 1 出力例2 No どのような処理を行っても,関数 4 を呼び出すことがないので, 9 を出力することができません.そのため, 9 を含む数列を出力することはできません. 入力例3 2 2 4 4 1 2 3 2 1 1 3 4 1 4 1 1 出力例3 No このプログラムは, 2, 4, 1 のように, 2, 4 を含む数列を生成することがありますが, 2, 4 自体を生成することはありません.
[ { "submission_id": "aoj_2761_3000665", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint N, M;\nint x[110], a[15], b[15], c[15];\nint dp[15][110][110];\n\nint solve(int idx, int l, int r) {\n assert(r - l > 0);\n\n int val = dp[idx][l][r];\n if(val >= 0) return val;\n\n val = 0;\n if(r - l == 1) {\n val = (x[l] == a[idx]);\n return dp[idx][l][r] = val;\n }\n else {\n // split\n for(int k=l+1; k<r; k++) {\n int vl = solve(b[idx], l, k);\n int vr = solve(c[idx], k, r);\n val |= (vl && vr);\n }\n }\n return dp[idx][l][r] = val;\n}\n\nint main() {\n cin >> N;\n for(int i=0; i<N; i++) {\n cin >> x[i];\n }\n\n cin >> M;\n for(int i=0; i<M; i++) {\n cin >> a[i] >> b[i] >> c[i];\n b[i]--; c[i]--;\n }\n \n memset(dp, -1, sizeof(dp));\n cout << (solve(0, 0, N) ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3816, "score_of_the_acc": -0.3464, "final_rank": 10 }, { "submission_id": "aoj_2761_2884657", "code_snippet": "#include <bits/stdc++.h>\n#define show(x) cerr << #x << \" = \" << x << endl\nusing namespace std;\ntemplate <typename Functor>\nstruct fix_type\n{\n Functor functor;\n template <typename... Args>\n decltype(auto) operator()(Args&&... args) const& { return functor(functor, std::forward<Args>(args)...); }\n};\ntemplate <typename Functor>\nfix_type<typename std::decay<Functor>::type> fix(Functor&& functor) { return {std::forward<Functor>(functor)}; }\nint main()\n{\n int N;\n cin >> N;\n vector<int> x(N);\n for (int i = 0; i < N; i++) { cin >> x[i]; }\n int M;\n cin >> M;\n vector<vector<int>> to(M, vector<int>(2));\n vector<int> num(M);\n for (int i = 0; i < M; i++) {\n cin >> num[i] >> to[i][0] >> to[i][1];\n to[i][0]--, to[i][1]--;\n }\n using P = pair<int, vector<int>>;\n map<P, bool> memo;\n auto f = fix([&](auto&& self, const int node, const vector<int>& arr) -> bool {\n if (memo.find({node, arr}) != memo.end()) { return memo[{node, arr}]; }\n const int sz = arr.size();\n if (sz == 1) { return memo[{node, arr}] = (arr[0] == num[node]); }\n const int c1 = to[node][0], c2 = to[node][1];\n for (int i = 1; i <= sz - 1; i++) {\n if (self(self, c1, vector<int>{arr.begin(), arr.begin() + i}) and self(self, c2, vector<int>{arr.begin() + i, arr.end()})) { return memo[{node, arr}] = true; }\n }\n return memo[{node, arr}] = false;\n });\n cout << (f(0, x) ? \"Yes\" : \"No\") << endl;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 8472, "score_of_the_acc": -1.1685, "final_rank": 12 }, { "submission_id": "aoj_2761_2620352", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nstruct Info{\n\tint a,b,c;\n};\n\nstruct Data{\n\tstack<int> FUNC;\n\tint sequence[100],index;\n};\n\nint N,M;\nint table[101];\nbool FLG;\nInfo info[10];\n\n\nvoid recursive(Data data){\n\n\tif(FLG)return;\n\tint rest = N-data.index;\n\n\tif(rest == 0){\n\t\tif(data.FUNC.size() == 0){\n\t\t\tFLG = true;\n\t\t}\n\t\treturn;\n\t}\n\n\tif(data.FUNC.size() == 0){\n\t\treturn;\n\t}\n\n\n\tint current_func = data.FUNC.top();\n\tdata.FUNC.pop();\n\tint work_table[data.FUNC.size()],index;\n\tfor(index = 0; data.FUNC.empty() == false; index++){\n\t\twork_table[index] = data.FUNC.top();\n\t\tdata.FUNC.pop();\n\t}\n\n\tif(info[current_func].a == table[data.index]){\n\t\tData next_data;\n\t\tfor(int i = 0; i < data.index; i++){\n\t\t\tnext_data.sequence[i] = data.sequence[i];\n\t\t}\n\t\tnext_data.sequence[data.index] = info[current_func].a;\n\t\tnext_data.index = data.index+1;\n\t\tfor(int i = index-1; i >= 0; i--){\n\t\t\tnext_data.FUNC.push(work_table[i]);\n\t\t}\n\t\trecursive(next_data);\n\t}\n\n\tif(rest >= data.index+index+1){\n\t\tData next_data;\n\t\tfor(int i = 0; i < data.index; i++){\n\t\t\tnext_data.sequence[i] = data.sequence[i];\n\t\t}\n\t\tnext_data.index = data.index;\n\t\tfor(int i = index-1; i >= 0; i--){\n\t\t\tnext_data.FUNC.push(work_table[i]);\n\t\t}\n\t\tnext_data.FUNC.push(info[current_func].c);\n\t\tnext_data.FUNC.push(info[current_func].b);\n\t\trecursive(next_data);\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\tfor(int i = 0; i < N; i++)scanf(\"%d\",&table[i]);\n\n\tscanf(\"%d\",&M);\n\tfor(int i = 0; i < M; i++){\n\t\tscanf(\"%d %d %d\",&info[i].a,&info[i].b,&info[i].c);\n\t\tinfo[i].b--;\n\t\tinfo[i].c--;\n\t}\n\n\tFLG = false;\n\n\tData first;\n\tfirst.FUNC.push(0);\n\tfirst.index = 0;\n\n\trecursive(first);\n\n\tif(FLG){\n\t\tprintf(\"Yes\\n\");\n\t}else{\n\t\tprintf(\"No\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 0.18309859154929578, "time_ms": 1790, "memory_kb": 3352, "score_of_the_acc": -1.2813, "final_rank": 13 }, { "submission_id": "aoj_2761_2552357", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nint n,m;\nint x[100],a[10],b[10],c[10];\n\nint dp[101][101][10];\nint dfs(int l, int r, int f)\n{\n if(dp[l][r][f]>=0) return dp[l][r][f];\n\n if(r-l==1) return (x[l]==a[f]);\n\n int ret = 0;\n for(int i=l+1; i<r; ++i) ret |= dfs(l,i,b[f])&dfs(i,r,c[f]);\n\n return dp[l][r][f]=ret;\n}\n\nint main()\n{\n cin >>n;\n rep(i,n) cin >>x[i];\n cin >>m;\n rep(i,m)\n {\n cin >>a[i] >>b[i] >>c[i];\n --b[i];\n --c[i];\n }\n\n memset(dp,-1,sizeof(dp));\n string ans = \"No\";\n if(dfs(0,n,0)==1) ans = \"Yes\";\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3616, "score_of_the_acc": -0.3184, "final_rank": 9 }, { "submission_id": "aoj_2761_2140305", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N, M;\nint x[100];\nint a[10], b[10], c[10];\n\nint dp[100][101][10];\n\nint rec(int l, int r, int myan)\n{\n if(~dp[l][r][myan]) return (dp[l][r][myan]);\n if(l + 1 == r) return (x[l] == a[myan]);\n bool ret = false;\n for(int m = l + 1; m < r && !ret; m++)\n ret |= rec(l, m, b[myan]) & rec(m, r, c[myan]);\n return (dp[l][r][myan] = ret);\n}\n\n\nint main()\n{\n cin >> N;\n for(int i = 0; i < N; i++) {\n cin >> x[i];\n }\n cin >> M;\n for(int i = 0; i < M; i++) {\n cin >> a[i] >> b[i] >> c[i];\n --b[i];\n --c[i];\n }\n memset(dp, -1, sizeof(dp));\n if(rec(0, N, 0)) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3484, "score_of_the_acc": -0.2998, "final_rank": 7 }, { "submission_id": "aoj_2761_2127460", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb push_back\n#define INF (1e9+1)\n//#define INF (1LL<<59)\n\nint main(){\n\tint n;\n\tcin>>n;\n\tvector<int> v(n);\n\trep(i,n)cin>>v[i];\n\t\n\tint m;\n\tcin>>m;\n\tvector<int> mp(m);\n\tvector<pii> call(m);\n\trep(i,m){\n\t\tint b,c;\n\t\tcin>>mp[i]>>b>>c;\n\t\tb--,c--;\n\t\tcall[i] = pii(b,c);\n\t}\n\t\n\tbool dp[100][100][10];\n\tmemset(dp,0,sizeof(dp));\n\t\n\trep(i,n){\n\t\trep(j,mp.size()){\n\t\t\tif(v[i]==mp[j]){\n\t\t\t\tdp[i][i][j]=true;\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int width = 2; width<=n; width++){\n\t\tfor(int l = 0; l<n; l++){\n\t\t\tint r = l+width-1;\n\t\t\tif(r>=n)continue;\n\t\t\tfor(int i=0;i<m;i++){\n\t\t\t\tint x,y;\n\t\t\t\ttie(x,y) = call[i];\n\t\t\t\tfor(int p=l; p<=r-1; p++){\n\t\t\t\t\tdp[l][r][i] |= (dp[l][p][x] & dp[p+1][r][y]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tif(dp[0][n-1][0])cout<<\"Yes\"<<endl;\n\telse cout<<\"No\"<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3184, "score_of_the_acc": -0.2577, "final_rank": 6 }, { "submission_id": "aoj_2761_2019596", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N, M;\nint x[100];\nint memo[110][110][10];\nint a[10], b[10], c[10];\n\nint rec(int L, int R, int m)\n{\n if (R - L == 0) {\n\treturn (x[L] == a[m] ? 1 : 2);\n }\n int &res = memo[L][R][m];\n if (res > 0) return res;\n res = 2;\n for (int i = L; i <= R; i++) {\n\tint d = rec(L, i, b[m]);\n\tint e = rec(i + 1, R, c[m]);\n\tif (d == 1 && e == 1) {\n\t res = 1;\n\t break;\n\t}\n }\n return res;\n}\n\nint main()\n{\n cin >> N;\n for (int i = 0; i < N; i++) {\n\tcin >> x[i];\n }\n cin >> M;\n for (int i = 0; i < M; i++) {\n\tcin >> a[i] >> b[i] >> c[i];\n\tb[i]--; c[i]--;\n }\n memset(memo, 0, sizeof(memo));\n cout << (rec(0, N - 1, 0) == 1 ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3580, "score_of_the_acc": -0.3133, "final_rank": 8 }, { "submission_id": "aoj_2761_1523577", "code_snippet": "#include <cstdio>\n#include <iostream>\n#include <sstream>\n#include <fstream>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <string>\n#include <vector>\n#include <list>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <bitset>\n#include <numeric>\n#include <limits>\n#include <climits>\n#include <cfloat>\n#include <functional>\nusing namespace std;\n\nvector<int> x;\nvector<int> a, b, c;\nvector<vector<vector<int> > > memo;\n\nbool solve(int i, int j, int f)\n{\n if(i == j)\n return x[i] == a[f];\n if(memo[i][j][f] != -1)\n return memo[i][j][f] == 1;\n\n for(int k=i; k<j; ++k){\n if(solve(i, k, b[f]) && solve(k+1, j, c[f])){\n memo[i][j][f] = 1;\n return true;\n }\n }\n\n memo[i][j][f] = 0;\n return false;\n}\n\nint main()\n{\n int n;\n cin >> n;\n x.resize(n);\n for(int i=0; i<n; ++i)\n cin >> x[i];\n\n int m;\n cin >> m;\n a = b = c = vector<int>(m);\n for(int i=0; i<m; ++i){\n cin >> a[i] >> b[i] >> c[i];\n -- b[i];\n -- c[i];\n }\n\n memo.assign(n, vector<vector<int> >(n, vector<int>(m, -1)));\n if(solve(0, n-1, 0))\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1924, "score_of_the_acc": -0.0809, "final_rank": 4 }, { "submission_id": "aoj_2761_1522940", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct data{\n int a, b, c;\n};\n\n\nint n, m;\nvector<int> v;\nvector<data> dv;\n\nbool solve(){\n vector<int> va[11][11];\n bool dp[110][110][11];\n\n\n memset(dp,0,sizeof(dp));\n // for(int i=0;i<n;i++){\n // for(int j=0;j<n;j++){\n // for(int k=0;k<m;k++){\n // dp[i][j][k] = false;\n // }\n // }\n // }\n\n for(int i=0;i<n;i++){\n for(int j=0;j<m;j++){\n if(dv[j].a == v[i]) {\n dp[i][i][j] = true;\n }\n }\n }\n\n for(int i=0;i<m;i++){\n va[dv[i].b][dv[i].c].push_back(i);\n }\n\n for(int kk=1;kk<n;kk++){\n for(int i=0;i<n-1;i++){\n int k = i + kk;\n if(i + kk >= n) break;\n for(int j=i;j<i+kk;j++){\n for(int g=0;g<m;g++){\n for(int h=0;h<m;h++){\n if(dp[i][j][g] && dp[j+1][k][h]){\n for(int ii=0;ii<va[g][h].size();ii++){\n dp[i][k][va[g][h][ii]] = true;\n }\n }\n }\n }\n }\n }\n }\n\n return dp[0][n-1][0];\n}\n\nint main(){\n int a, b, c;\n while(cin >> n){\n v.clear();\n dv.clear();\n for(int i=0;i<n;i++){\n cin >> a;\n v.push_back(a);\n }\n cin >> m;\n for(int i=0;i<m;i++){\n cin >> a >> b >> c;\n b--; c--;\n dv.push_back((data){a, b, c});\n }\n cout << (solve() ? \"Yes\" : \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 1348, "score_of_the_acc": -0.0112, "final_rank": 1 }, { "submission_id": "aoj_2761_1522775", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define dump(...) cout<<\"# \"<<#__VA_ARGS__<<'='<<(__VA_ARGS__)<<endl\n#define repi(i,a,b) for(int i=int(a);i<int(b);i++)\n#define peri(i,a,b) for(int i=int(b);i-->int(a);)\n#define rep(i,n) repi(i,0,n)\n#define per(i,n) peri(i,0,n)\n#define all(c) begin(c),end(c)\n#define mp make_pair\n#define mt make_tuple\n\ntypedef unsigned int uint;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef vector<int> vi;\ntypedef vector<vi> vvi;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<double> vd;\ntypedef vector<vd> vvd;\ntypedef vector<string> vs;\n\ntemplate<typename T1,typename T2>\nostream& operator<<(ostream& os,const pair<T1,T2>& p){\n\treturn os<<'('<<p.first<<','<<p.second<<')';\n}\n\ntemplate<typename Tuple>\nvoid print_tuple(ostream&,const Tuple&){}\ntemplate<typename Car,typename... Cdr,typename Tuple>\nvoid print_tuple(ostream& os,const Tuple& t){\n\tprint_tuple<Cdr...>(os,t);\n\tos<<(sizeof...(Cdr)?\",\":\"\")<<get<sizeof...(Cdr)>(t);\n}\ntemplate<typename... Args>\nostream& operator<<(ostream& os,const tuple<Args...>& t){\n\tprint_tuple<Args...>(os<<'(',t);\n\treturn os<<')';\n}\n\ntemplate<typename Ch,typename Tr,typename C>\nbasic_ostream<Ch,Tr>& operator<<(basic_ostream<Ch,Tr>& os,const C& c){\n\tos<<'[';\n\tfor(auto i=begin(c);i!=end(c);++i)\n\t\tos<<(i==begin(c)?\"\":\" \")<<*i;\n\treturn os<<']';\n}\n\nconstexpr int INF=1e9;\nconstexpr int MOD=1e9+7;\nconstexpr double EPS=1e-9;\n\nint solve(int i,int l,int r,const vi& xs,const vi& as,const vi& bs,const vi& cs,vector<vvi>& memo)\n{\n\tif(memo[i][l][r]!=-1) return memo[i][l][r];\n\tif(r-l==1)\n\t\treturn memo[i][l][r]=(as[i]==xs[l]);\n\trepi(p,l+1,r)\n\t\tif(solve(bs[i],l,p,xs,as,bs,cs,memo) && solve(cs[i],p,r,xs,as,bs,cs,memo))\n\t\t\treturn memo[i][l][r]=true;\n\treturn memo[i][l][r]=false;\n}\n\nint main()\n{\n\tfor(int n;cin>>n && n;){\n\t\tvi xs(n);\n\t\trep(i,n) cin>>xs[i];\n\t\tint m; cin>>m;\n\t\tvi as(m),bs(m),cs(m);\n\t\trep(i,m) cin>>as[i]>>bs[i]>>cs[i],bs[i]--,cs[i]--;\n\t\tvector<vvi> memo(m,vvi(n+1,vi(n+1,-1)));\n\t\tcout<<(solve(0,0,n,xs,as,bs,cs,memo)?\"Yes\":\"No\")<<endl;\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1524, "score_of_the_acc": -0.0247, "final_rank": 2 }, { "submission_id": "aoj_2761_1522750", "code_snippet": "#include<bits/stdc++.h>\n#define REP(x,y,z) for(int x=y;x<=z;x++)\n#define FORD(x,y,z) for(int x=y;x>=z;x--)\n#define MSET(x,y) memset(x,y,sizeof(x))\n#define FOR(x,y) for(__typeof(y.begin()) x=y.begin();x!=y.end();x++)\n#define F first\n#define S second\n#define MP make_pair\n#define PB push_back\n#define SZ size()\n#define M 105\nvoid RI(){}\ntemplate<typename... T>\nvoid RI( int& head, T&... tail ) {\n scanf(\"%d\",&head);\n RI(tail...);\n}\nusing namespace std;\ntypedef long long LL;\nint n,m,in[M],a[M],b[M],c[M];\nint dp[M][M][M];\nint go(int x,int l,int r)\n{\n\tint &res = dp[x][l][r];\n\tif(res!=-1) return res;\n\tif(l==r)\n\t{\n\t\tif(a[x]==in[l]) res=1;\n\t\telse res=0;\n\t\treturn res;\n\t}\n\n\tres = 0;\n\tint rx,ry;\n\t//[l,i] [i+1,r]\n\tREP(i,l,r-1)\n\t{\n\t\trx = go(b[x], l, i);\n\t\try = go(c[x], i+1, r);\n\t\tif(rx && ry)\n\t\t{\n\t\t\tres=1;\n\t\t\tbreak;\n\t\t}\n\t}\n\treturn res;\n}\nint main()\n{\n\tRI(n);\n\tREP(i,1,n) RI(in[i]);\n\tRI(m);\n\tREP(i,1,m) RI(a[i], b[i], c[i]);\n\tMSET(dp, -1);\n\t//\n\t//\n\t\n\tputs(go(1,1,n) ? \"Yes\":\"No\");\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5692, "score_of_the_acc": -0.6154, "final_rank": 11 }, { "submission_id": "aoj_2761_1522688", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint x[101],a[10],b[10],c[10],u[101][101][10];\n\nint dfs(int l, int r, int k) {\n if(u[l][r][k]!=-1) return u[l][r][k];\n if(l==r) return x[l]==a[k];\n int f=0;\n\n \n for(int i=l; i<r; i++) {\n f|=dfs(l,i,b[k])&dfs(i+1,r,c[k]);\n }\n u[l][r][k]=f;\n return f;\n}\n\nint main() {\n int n;\n cin >> n;\n for(int i=0; i<n; i++) {\n cin >> x[i];\n for(int j=0; j<n; j++) {\n for(int k=0; k<10; k++) u[i][j][k]=-1;\n }\n }\n int m;\n cin >> m;\n for(int i=0; i<m; i++) {\n cin >> a[i] >> b[i] >> c[i];\n b[i]--;\n c[i]--;\n }\n u[0][n-1][0]=dfs(0,n-1,0);\n if(u[0][n-1][0]) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 1564, "score_of_the_acc": -0.0359, "final_rank": 3 }, { "submission_id": "aoj_2761_1522659", "code_snippet": "#define _USE_MATH_DEFINES\n#include <algorithm>\n#include <cstdio>\n#include <functional>\n#include <iostream>\n#include <cfloat>\n#include <climits>\n#include <cstdlib>\n#include <cstring>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <random>\n#include <set>\n#include <sstream>\n#include <stack>\n#include <string>\n#include <time.h>\n#include <vector>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int, int> i_i;\ntypedef pair<ll, int> ll_i;\ntypedef pair<double, int> d_i;\ntypedef pair<ll, ll> ll_ll;\ntypedef pair<double, double> d_d;\nstruct edge { int u, v; ll w; };\n\nll MOD = 1000000007;\nll _MOD = 1000000009;\nint INF = INT_MAX / 2;\ndouble EPS = 1e-10;\n\nbool f(int l, int r, int j, vector<int>& x, vector<int>& a, vector<int>& b, vector<int>& c, vector<vector<vector<int> > >& memo) {\n\tif (memo[l][r][j] != -1) return memo[l][r][j];\n\tif (r - l == 1 && x[l] == a[j]) return memo[l][r][j] = 1;\n\tfor (int m = l + 1; m <= r - 1; m++)\n\t\tif (f(l, m, b[j], x, a, b, c, memo) && f(m, r, c[j], x, a, b, c, memo))\n\t\t\treturn memo[l][r][j] = 1;\n\treturn memo[l][r][j] = 0;\n}\n\nint main() {\n\tint N; cin >> N;\n\tvector<int> x(N);\n\tfor (int i = 0; i < N; i++)\n\t\tcin >> x[i];\n\tint M; cin >> M;\n\tvector<int> a(M), b(M), c(M);\n\tfor (int j = 0; j < M; j++) {\n\t\tcin >> a[j] >> b[j] >> c[j];\n\t\tb[j]--; c[j]--;\n\t}\n\tvector<vector<vector<int> > > memo(N + 1, vector<vector<int> >(N + 1, vector<int>(M, -1)));\n\tcout << (f(0, N, 0, x, a, b, c, memo) ? \"Yes\" : \"No\") << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1932, "score_of_the_acc": -0.082, "final_rank": 5 } ]
aoj_2756_cpp
E : 台風 / Typhoon 問題文 南北方向に H ,東西方向に W の大きさの町がある. 町には一辺の長さが 1 の正方形の区画に隙間なく整備されており,全ての区画に 1 軒ずつ家が建っている. この町のある区画の上空で台風が発生し,被害を与えた後,ある区画の上空で温帯低気圧に変化した. 変化した後は被害を与えない. 下図のように,台風は高さ 3 , 幅 3 の正方形であり, ★のついたマスを中心と呼ぶことにする.台風は 8 近傍に区画単位で移動する. つまり,台風の中心は辺または頂点を共有する区画(現在の区画を含む)に移るように,全体を伴って移動する. ただし,町の外に台風がはみ出ることはなく, 台風の中心は,下の図の網掛けのように,北から 0 番目と H − 1 番目,西から 0 番目と W − 1 番目の区間は通らないように移動する. 家は台風が一度上空に来ると,以下のように被害の程度が変化する. 損壊ナシ → 一部損壊 → 半壊 → 全壊 → 跡形ナシ だが,幸い跡形ナシとなった家は無かったようだ. 各家の被害の状況が与えられるので,台風が発生した地点と,温帯低気圧に変化した地点を求めよ. ただし,発生した区画を北から s_i 番目,西から s_j 番目, 温帯低気圧に変化した区画を北から t_i 番目,西から t_j 番目とすると, 2 つの地点は 10000 t_i + t_j ≤ 10000 s_i + s_j を満たすように定まる. 入力 H \ W D_{11} \ … \ D_{1W} D_{21} \ … \ D_{2W} … D_{H1} \ … \ D_{HW} D_{ij} は北から i 番目, 西から j 番目の家の被害の程度を以下のように表す整数である. 0 : 損壊ナシ 1 : 一部損壊 2 : 半壊 3 : 全壊 制約 整数である 入力は答えが一意に定まるようなもののみ与えられる 3 ≤ H,W ≤ 500 0 ≤ D_{ij} ≤ 3 出力 答えを以下のように 1 行で出力せよ. s_i \ s_j \ t_i \ t_j サンプル サンプル入力1 7 5 0 0 0 0 0 0 1 1 1 0 0 2 2 2 0 0 3 3 3 0 0 2 2 2 0 0 1 1 1 0 0 0 0 0 0 サンプル出力1 4 2 2 2 サンプル入力2 6 6 0 0 0 1 1 1 0 0 0 2 2 2 0 0 1 3 3 2 1 2 3 3 2 1 1 2 3 2 1 0 1 2 2 1 0 0 サンプル出力2 4 1 1 4 サンプル入力3 4 4 2 2 2 0 2 2 2 0 2 2 2 0 0 0 0 0 サンプル出力3 1 1 1 1
[ { "submission_id": "aoj_2756_10853236", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define FOR(i,s,t )for(int i = s; i <t ; i++)\nusing LL = long long; using ll = LL;\nusing PLL = pair<LL, LL>; using pll = PLL;\nusing PII = pair<int, int>; using pii = PII;\n#define SZ(a) (int)a.size()\n#define ALL(a) a.begin(),a.end()\n#define SORT(a) sort(ALL(a))\nusing VI = vector<int>;\nusing VVI = vector<VI>;\n#define debug(x) cout<<#x<<\":=\"<<x<<endl;\n\nvoid solve() {\n\tint H, W; cin >> H >> W;\n\tVVI m(H, VI(W));\n\tFOR(i, 0, H) {\n\t\tFOR(j, 0, W) {\n\t\t\tcin >> m[i][j];\n\t\t}\n\t}\n\n\tVVI cent(H + 10, VI(W + 10, 0));\n\tFOR(i, 0, H) {\n\t\tFOR(j, 0, W) {\n\t\t\tif (m[i][j]) {\n\t\t\t\tcent[i + 1][j + 1] = 1;\n\t\t\t\tint x = m[i][j];\n\t\t\t\tfor (int k = 0; k < 2 + 1; k++) {\n\t\t\t\t\tfor (int l = 0; l < 2 + 1; l++) {\n\t\t\t\t\t\tm[i+k][j+l] -= x;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tvector<PII>pos;\n\tFOR(i, 0, H) {\n\t\tFOR(j, 0, W) {\n\t\t\tif (cent[i][j]) {\n\t\t\t\tint cnt = 0;\n\t\t\t\tfor (int k = -1; k < 2 ; k++) {\n\t\t\t\t\tfor (int l = -1; l < 2; l++) {\n\t\t\t\t\t\tif (cent[i + k][j + l])cnt++;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif (cnt == 1) {\n\t\t\t\t\tpos.push_back(PII(i, j));\n\t\t\t\t}\n\t\t\t\telse if (cnt == 2) {\n\t\t\t\t\tpos.push_back(PII(i, j));\n\t\t\t\t}\n\t\t\t\telse if (cnt == 3) {\n\t\t\t\t\t// nashi\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\t// nasi\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tSORT(pos);\n\tPII s, t;\n\ts = pos.back(), t = pos.front();\n\tcout << s.first << \" \" << s.second << \" \" << t.first << \" \" << t.second << endl;;\n}\n\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\tsolve();\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5192, "score_of_the_acc": -0.3252, "final_rank": 4 }, { "submission_id": "aoj_2756_10709086", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int h, w;\n cin >> h >> w;\n vector<vector<int>> damage(h, vector<int>(w));\n for (int i = 0; i < h; i++) {\n for (int j = 0; j < w; j++) {\n cin >> damage[i][j];\n }\n }\n\n // Compute differences along rows\n for (int i = 0; i < h; i++) {\n for (int j = 0; j + 2 < w; j++) {\n damage[i][j + 1] -= damage[i][j];\n damage[i][j + 2] -= damage[i][j];\n }\n }\n\n // Compute differences along columns\n for (int i = 0; i + 2 < h; i++) {\n for (int j = 0; j < w; j++) {\n damage[i + 1][j] -= damage[i][j];\n damage[i + 2][j] -= damage[i][j];\n }\n }\n\n vector<int> dx = {1, 1, 1, 0, 0, -1, -1, -1};\n vector<int> dy = {1, 0, -1, 1, -1, 1, 0, -1};\n\n pair<int,int> start = {-1, -1}, endp = {-1, -1};\n for (int i = 0; i < h; i++) {\n for (int j = 0; j < w; j++) {\n if (damage[i][j] != 0) {\n int neighbors = 0;\n for (int k = 0; k < 8; k++) {\n int ni = i + dx[k];\n int nj = j + dy[k];\n if (ni < 0 || ni >= h || nj < 0 || nj >= w) continue;\n neighbors += damage[ni][nj];\n }\n if (neighbors <= 1) {\n if (start.first == -1) {\n start = {i + 1, j + 1};\n endp = start;\n } else {\n endp = {i + 1, j + 1};\n }\n }\n }\n }\n }\n\n if (make_pair(start.first, start.second) < make_pair(endp.first, endp.second)) {\n swap(start, endp);\n }\n\n cout << start.first << \" \" << start.second << \" \";\n cout << endp.first << \" \" << endp.second << \"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4140, "score_of_the_acc": -0.0049, "final_rank": 1 }, { "submission_id": "aoj_2756_10259557", "code_snippet": "// AOJ #2756 Typhoon\n// 2025.3.2\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int h,w; cin >> h >> w;\n vector<vector<int>> D(h, vector<int>(w));\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++) cin >> D[i][j];\n }\n\n vector<vector<int>> X(h, vector<int>(w,0));\n for (int i = 1; i <= h-2; i++){\n for (int j = 1; j <= w-2; j++){\n bool can = true;\n for(int di=-1;di<=1;di++){\n for(int dj=-1;dj<=1;dj++){\n if(D[i+di][j+dj] <= 0) { can = false; break; }\n }\n if(!can) break;\n }\n if(can){\n X[i][j] = 1;\n for(int di=-1;di<=1;di++){\n for(int dj=-1;dj<=1;dj++) D[i+di][j+dj]--;\n }\n }\n }\n }\n\n vector<pair<int,int>> P;\n for(int i=1;i<=h-2;i++){\n for(int j=1;j<=w-2;j++){\n if(X[i][j]==1) P.push_back({i,j});\n }\n }\n\n int n = P.size();\n vector<vector<int>> adj(n);\n for (int i=0;i<n;i++){\n for (int j=i+1;j<n;j++){\n int r1 = P[i].first, c1 = P[i].second;\n int r2 = P[j].first, c2 = P[j].second;\n if(abs(r1-r2)<=1 && abs(c1-c2)<=1){\n adj[i].push_back(j);\n adj[j].push_back(i);\n }\n }\n }\n vector<int> ends;\n for (int i=0;i<n;i++){\n if(n==1 || adj[i].size()==1) ends.push_back(i);\n }\n\n pair<int,int> s,t;\n if(ends.size()==1) s = P[ends[0]], t = P[ends[0]];\n else {\n pair<int,int> a = P[ends[0]], b = P[ends[1]];\n if(a.first*10000+a.second > b.first*10000+b.second) s = a, t = b;\n else s = b, t = a;\n }\n cout << s.first << \" \" << s.second << \" \" << t.first << \" \" << t.second << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5496, "score_of_the_acc": -0.4178, "final_rank": 5 }, { "submission_id": "aoj_2756_9233717", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#define rep(i,n) for(ll i=0;i<(n);++i)\n#define ALL(x) x.begin(),x.end()\n#define BACK(x) x.rbegin(),x.rend()\n#define MOD1 1000000007\n#define MOD2 998244353\n#define MOD1_BASE 131\n#define INF (LLONG_MAX / 2)\n#define FLOAT_ANS setprecision(30)\n#define TORAD(x) (x*acos(-1)/180.0)\n#define TODEG(x) (x*180/acos(-1))\n#define GET_VALUENAME(value) # value\n\nusing namespace std;\nusing ll = long long;\nusing LL = __int128_t;\nusing ull = unsigned long long;\n\ntemplate<typename T> // T:重み\nusing p_que = priority_queue<T,vector<T>,greater<T>>;\n\ntemplate<typename T>\nbool chmin(T& a,T b){if(a>b){a=b;return true;}return false;}\n\ntemplate<typename T>\nbool chmax(T& a,T b){if(a<b){a=b;return true;}return false;}\n\nll modpow(ll a, ll n, ll mod) {ll res=1;while (n>0) {if(n&1)res=(res*(a%mod))%mod;a=((a%mod)*(a%mod))%mod;n>>=1;}return res;}\n\ntemplate<typename T>\nvoid RotateVec2(vector<vector<T>>&v){ll h=v.size();ll w=v[0].size();vector<vector<T>>t(w,vector<T>(h));rep(i,h){rep(j,w){t[j][h-i-1]=v[i][j];}}v=t;}\n\ntemplate<class T>\nbool InRange(T x, T mn, T mx){return (mn <= x && x <= mx);}\n\ntemplate<typename T>\nvector<T>&merged(vector<T>&a,vector<T>&b) {vector<T>res;merge(a.begin(),a.end(),b.begin(),b.end(),back_inserter(res));return res;}\n\nstruct UnionFind{\n vector<ll>tree;\n UnionFind(ll x):tree(x, -1){}\n ll root(ll x){if(tree[x]<0) return x;return tree[x]=root(tree[x]);}\n bool same(ll x,ll y){return root(x)==root(y);}\n ll size(ll x){return -tree[root(x)];}\n void unite(ll x,ll y){x=root(x),y=root(y);if(x==y)return;if(size(x)<size(y))swap(x,y);tree[x]+=tree[y];tree[y]=x;}\n};\n\ntemplate<class T>\nstruct SegTree{\n ll n;T e;vector<T>tree,lazy;function<T(T,T)>f,add;\n SegTree(ll n_,function<T(T,T)>f_,T e_=0,function<T(T,T)>add_=[](T next,T old){return next;}):e(e_),f(f_),add(add_){ll x=1;while(x<n_)x*=2;n=x;tree.assign(n*2,e);lazy.assign(n*2,e);}\n void eval(T k) {if (lazy[k] == e) return;if (k < n-1){lazy[k*2+1]=lazy[k*2+1]=lazy[k];}tree[k]=lazy[k], lazy[k]=e;}\n void update(ll idx,T x){update(idx, idx+1, x);}\n void update(ll a, ll b, ll x) { update(a, b, x, 0, n, 0); }\n void update(ll a, ll b, ll x, ll l, ll r, ll k) {eval(k);if (a <= l and r <= b) {lazy[k] = x;eval(k);}else if (a < r and l < b) {update(a, b, x, l, (l+r)/2, k*2+1);update(a, b, x, (l+r)/2, r, k*2+1);tree[k] = f(tree[k*2+1], tree[k*2+2]);}}\n T query(ll x,ll y){return query_sub(x,y,0,n,0);}\n T query_sub(ll x,ll y,ll l,ll r,ll k){eval(k);if(r<=x||y<=l)return e;if(x<=l&&r<=y)return tree[k];T c1=query_sub(x,y,l,(l+r)/2,k*2+1);T c2=query_sub(x,y,(l+r)/2,r,k*2+2);return f(c1,c2);}\n T get(ll idx){return tree[idx+n-1];}\n};\n\ntemplate<std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\npublic:\n u64 a;\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus)+Modulus)%Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept {return modint(*this) += rhs;}\n constexpr modint operator-(const modint rhs) const noexcept {return modint(*this) -= rhs;}\n constexpr modint operator*(const modint rhs) const noexcept {return modint(*this) *= rhs;}\n constexpr modint operator/(const modint rhs) const noexcept {return modint(*this) /= rhs;}\n constexpr modint &operator+=(const modint rhs) noexcept {a += rhs.a;if (a >= Modulus) {a -= Modulus;}return *this;}\n constexpr modint &operator-=(const modint rhs) noexcept {if (a < rhs.a) {a += Modulus;}a -= rhs.a;return *this;}\n constexpr modint &operator*=(const modint rhs) noexcept {a = a * rhs.a % Modulus;return *this;}\n constexpr modint &operator/=(modint rhs) noexcept {u64 exp = Modulus - 2;while (exp) {if (exp % 2) {*this *= rhs;}rhs *= rhs;exp /= 2;}return *this;}\n constexpr modint &operator=(u64 x){ a = x % Modulus; return *this; }\n};\n\ntemplate<class T=ll>\nstruct Vector2D {\n T x, y;\n Vector2D():x(0),y(0) {}\n Vector2D(T x_, T y_):x(x_),y(y_) {}\n\n double length() const { return sqrt((double)x*x+y*y); };\n T lengthp() const { return x*x+y*y; };\n bool inrange(const Vector2D a, const Vector2D b) { return (InRange(x, a.x, b.x) and InRange(y, a.y, b.y)); }\n Vector2D yx() { return Vector2D{ y, x }; }\n Vector2D operator-(const Vector2D a) const { return Vector2D(*this) -= a; }\n Vector2D operator+(const Vector2D a) const { return Vector2D(*this) += a; }\n T operator*(const Vector2D a) const { return x*a.x+y*a.y; }\n Vector2D operator*(const T a) const { return Vector2D(*this) *= a; }\n Vector2D operator/(const T a) const { return Vector2D(*this) /= a; }\n Vector2D &operator+=(const Vector2D a) { x += a.x; y += a.y; return *this; }\n Vector2D &operator-=(const Vector2D a) { x -= a.x; y -= a.y; return *this; }\n Vector2D &operator-=(const T a) { x -= a; y -= a; return *this; }\n Vector2D &operator*=(const T a) { x *= a; y *= a; return *this; }\n Vector2D &operator/=(const T a) { x /= a; y /= a; return *this; }\n friend ostream& operator<< (ostream& stream, const Vector2D<>& x);\n bool operator==(const Vector2D a) const { return (x==a.x and y==a.y); }\n bool operator!=(const Vector2D a) const { return not (x==a.x and y==a.y); }\n bool operator>(const Vector2D a) const { return a < *this; }\n bool operator<(const Vector2D a) const \n {\n // return make_pair(x,y) < make_pair(a.x, a.y);\n return x*10000+y<a.x*10000+a.y;\n }\n};\n\nostream& operator<< (ostream& stream, const Vector2D<ll>& x) {\n string s = \"(\" + to_string(x.x) + \", \" + to_string(x.y) + \")\";\n stream << s;\n return stream;\n}\n\nll popcount(ll x) { ll res = 0; while(x) {res+=x%2;x>>=1;} return res; }\n\n// debug kit\nvoid print() { cout << endl; }\ntemplate<class T>\nvoid print_(vector<T>x) { for(auto i : x) cout << i << \" \"; }\ntemplate<class T>\nvoid print_(T x) { cout << x << \" \"; }\n#ifdef ONLINE_JUDGE \ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) {}\ntemplate<class T>\nvoid debug(T value) {}\n#else\ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) { print_(head); print(args...); }\ntemplate<class T>\nvoid debug(T value) { print((string)\"\\\"\"+GET_VALUENAME(value)+\"\\\": \", value); }\n#endif\n\n// MAIN PROGRAM ------------\n\nusing mint = modint<MOD1>;\nusing Vec2 = Vector2D<ll>;\nconst Vec2 Angle[] = {{0,1}, {0,-1}, {-1,0}, {1,0}};\n\nint main() {\n ll h, w;\n cin >> h >> w;\n vector<vector<ll>>s(h, vector<ll>(w));\n vector<Vec2>edge;\n rep(i, h) rep(j, w) cin >> s[i][j];\n rep(i, h) rep(j, w-2)\n {\n if (s[i][j] * s[i][j+1] * s[i][j+2] == 1) \n {\n if (i==0 or s[i-1][j+1]==0) edge.push_back(Vec2{i+1, j+1});\n else edge.push_back(Vec2{i-1, j+1});\n }\n }\n rep(i, h-2) rep(j, w)\n {\n if (s[i][j] * s[i+1][j] * s[i+2][j] == 1)\n {\n if (j==0 or s[i+1][j-1]==0) edge.push_back(Vec2{i+1, j+1});\n else edge.push_back(Vec2{i+1, j-1});\n }\n }\n sort(BACK(edge));\n\n auto raw = edge;\n\n edge.erase(unique(ALL(edge)), edge.end());\n\n if (edge.size() == 0 or edge.size() > 2)\n {\n rep(i_, h-2) rep(j_, w-2)\n {\n ll i = i_+1, j = j_+1;\n ll t = s[i][j];\n rep(x, 3) rep(y, 3) t *= s[i+x-1][j+y-1];\n if (t != 0)\n {\n cout << i << \" \" << j << \" \" << i << \" \" << j << endl;\n return 0;\n }\n }\n }\n if (edge.size() == 1)\n {\n if (raw.size() != edge.size())\n {\n for (auto angle : { Vec2{-1,-1},Vec2{-1, 1},Vec2{ 1,-1},Vec2{ 1, 1}, })\n {\n auto a = edge[0]+angle;\n if (not a.inrange({0,0},{h-1,w-1})) continue;\n if (s[a.x][a.y] != 1) \n {\n edge.push_back(a);\n break;\n }\n }\n sort(ALL(edge));\n cout << edge[1].x << \" \" << edge[1].y << \" \" << edge[0].x << \" \" << edge[0].y << endl;\n return 0;\n }\n else\n {\n for (auto angle : { Vec2{ 0,-1},Vec2{ 0, 1},Vec2{ 1, 0},Vec2{ -1, 0}, })\n {\n auto a = edge[0]+angle;\n if (not a.inrange({0,0},{h-1,w-1})) continue;\n if (s[a.x][a.y] == 1) \n {\n edge.push_back(edge[0]-angle);\n break;\n }\n }\n sort(ALL(edge));\n cout << edge[1].x << \" \" << edge[1].y << \" \" << edge[0].x << \" \" << edge[0].y << endl;\n return 0;\n }\n }\n if (edge.size() == 2)\n {\n cout << edge[0].x << \" \" << edge[0].y << \" \" << edge[1].x << \" \" << edge[1].y << endl;\n }\n}", "accuracy": 0.16666666666666666, "time_ms": 20, "memory_kb": 5332, "score_of_the_acc": -0.5678, "final_rank": 18 }, { "submission_id": "aoj_2756_9233712", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#define rep(i,n) for(ll i=0;i<(n);++i)\n#define ALL(x) x.begin(),x.end()\n#define BACK(x) x.rbegin(),x.rend()\n#define MOD1 1000000007\n#define MOD2 998244353\n#define MOD1_BASE 131\n#define INF (LLONG_MAX / 2)\n#define FLOAT_ANS setprecision(30)\n#define TORAD(x) (x*acos(-1)/180.0)\n#define TODEG(x) (x*180/acos(-1))\n#define GET_VALUENAME(value) # value\n\nusing namespace std;\nusing ll = long long;\nusing LL = __int128_t;\nusing ull = unsigned long long;\n\ntemplate<typename T> // T:重み\nusing p_que = priority_queue<T,vector<T>,greater<T>>;\n\ntemplate<typename T>\nbool chmin(T& a,T b){if(a>b){a=b;return true;}return false;}\n\ntemplate<typename T>\nbool chmax(T& a,T b){if(a<b){a=b;return true;}return false;}\n\nll modpow(ll a, ll n, ll mod) {ll res=1;while (n>0) {if(n&1)res=(res*(a%mod))%mod;a=((a%mod)*(a%mod))%mod;n>>=1;}return res;}\n\ntemplate<typename T>\nvoid RotateVec2(vector<vector<T>>&v){ll h=v.size();ll w=v[0].size();vector<vector<T>>t(w,vector<T>(h));rep(i,h){rep(j,w){t[j][h-i-1]=v[i][j];}}v=t;}\n\ntemplate<class T>\nbool InRange(T x, T mn, T mx){return (mn <= x && x <= mx);}\n\ntemplate<typename T>\nvector<T>&merged(vector<T>&a,vector<T>&b) {vector<T>res;merge(a.begin(),a.end(),b.begin(),b.end(),back_inserter(res));return res;}\n\nstruct UnionFind{\n vector<ll>tree;\n UnionFind(ll x):tree(x, -1){}\n ll root(ll x){if(tree[x]<0) return x;return tree[x]=root(tree[x]);}\n bool same(ll x,ll y){return root(x)==root(y);}\n ll size(ll x){return -tree[root(x)];}\n void unite(ll x,ll y){x=root(x),y=root(y);if(x==y)return;if(size(x)<size(y))swap(x,y);tree[x]+=tree[y];tree[y]=x;}\n};\n\ntemplate<class T>\nstruct SegTree{\n ll n;T e;vector<T>tree,lazy;function<T(T,T)>f,add;\n SegTree(ll n_,function<T(T,T)>f_,T e_=0,function<T(T,T)>add_=[](T next,T old){return next;}):e(e_),f(f_),add(add_){ll x=1;while(x<n_)x*=2;n=x;tree.assign(n*2,e);lazy.assign(n*2,e);}\n void eval(T k) {if (lazy[k] == e) return;if (k < n-1){lazy[k*2+1]=lazy[k*2+1]=lazy[k];}tree[k]=lazy[k], lazy[k]=e;}\n void update(ll idx,T x){update(idx, idx+1, x);}\n void update(ll a, ll b, ll x) { update(a, b, x, 0, n, 0); }\n void update(ll a, ll b, ll x, ll l, ll r, ll k) {eval(k);if (a <= l and r <= b) {lazy[k] = x;eval(k);}else if (a < r and l < b) {update(a, b, x, l, (l+r)/2, k*2+1);update(a, b, x, (l+r)/2, r, k*2+1);tree[k] = f(tree[k*2+1], tree[k*2+2]);}}\n T query(ll x,ll y){return query_sub(x,y,0,n,0);}\n T query_sub(ll x,ll y,ll l,ll r,ll k){eval(k);if(r<=x||y<=l)return e;if(x<=l&&r<=y)return tree[k];T c1=query_sub(x,y,l,(l+r)/2,k*2+1);T c2=query_sub(x,y,(l+r)/2,r,k*2+2);return f(c1,c2);}\n T get(ll idx){return tree[idx+n-1];}\n};\n\ntemplate<std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\npublic:\n u64 a;\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus)+Modulus)%Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept {return modint(*this) += rhs;}\n constexpr modint operator-(const modint rhs) const noexcept {return modint(*this) -= rhs;}\n constexpr modint operator*(const modint rhs) const noexcept {return modint(*this) *= rhs;}\n constexpr modint operator/(const modint rhs) const noexcept {return modint(*this) /= rhs;}\n constexpr modint &operator+=(const modint rhs) noexcept {a += rhs.a;if (a >= Modulus) {a -= Modulus;}return *this;}\n constexpr modint &operator-=(const modint rhs) noexcept {if (a < rhs.a) {a += Modulus;}a -= rhs.a;return *this;}\n constexpr modint &operator*=(const modint rhs) noexcept {a = a * rhs.a % Modulus;return *this;}\n constexpr modint &operator/=(modint rhs) noexcept {u64 exp = Modulus - 2;while (exp) {if (exp % 2) {*this *= rhs;}rhs *= rhs;exp /= 2;}return *this;}\n constexpr modint &operator=(u64 x){ a = x % Modulus; return *this; }\n};\n\ntemplate<class T=ll>\nstruct Vector2D {\n T x, y;\n Vector2D():x(0),y(0) {}\n Vector2D(T x_, T y_):x(x_),y(y_) {}\n\n double length() const { return sqrt((double)x*x+y*y); };\n T lengthp() const { return x*x+y*y; };\n bool inrange(const Vector2D a, const Vector2D b) { return (InRange(x, a.x, b.x) and InRange(y, a.y, b.y)); }\n Vector2D yx() { return Vector2D{ y, x }; }\n Vector2D operator-(const Vector2D a) const { return Vector2D(*this) -= a; }\n Vector2D operator+(const Vector2D a) const { return Vector2D(*this) += a; }\n T operator*(const Vector2D a) const { return x*a.x+y*a.y; }\n Vector2D operator*(const T a) const { return Vector2D(*this) *= a; }\n Vector2D operator/(const T a) const { return Vector2D(*this) /= a; }\n Vector2D &operator+=(const Vector2D a) { x += a.x; y += a.y; return *this; }\n Vector2D &operator-=(const Vector2D a) { x -= a.x; y -= a.y; return *this; }\n Vector2D &operator-=(const T a) { x -= a; y -= a; return *this; }\n Vector2D &operator*=(const T a) { x *= a; y *= a; return *this; }\n Vector2D &operator/=(const T a) { x /= a; y /= a; return *this; }\n friend ostream& operator<< (ostream& stream, const Vector2D<>& x);\n bool operator==(const Vector2D a) const { return (x==a.x and y==a.y); }\n bool operator!=(const Vector2D a) const { return not (x==a.x and y==a.y); }\n bool operator>(const Vector2D a) const { return a < *this; }\n bool operator<(const Vector2D a) const \n {\n // return make_pair(x,y) < make_pair(a.x, a.y);\n return x*10000+y<a.x*10000+a.y;\n }\n};\n\nostream& operator<< (ostream& stream, const Vector2D<ll>& x) {\n string s = \"(\" + to_string(x.x) + \", \" + to_string(x.y) + \")\";\n stream << s;\n return stream;\n}\n\nll popcount(ll x) { ll res = 0; while(x) {res+=x%2;x>>=1;} return res; }\n\n// debug kit\nvoid print() { cout << endl; }\ntemplate<class T>\nvoid print_(vector<T>x) { for(auto i : x) cout << i << \" \"; }\ntemplate<class T>\nvoid print_(T x) { cout << x << \" \"; }\n#ifdef ONLINE_JUDGE \ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) {}\ntemplate<class T>\nvoid debug(T value) {}\n#else\ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) { print_(head); print(args...); }\ntemplate<class T>\nvoid debug(T value) { print((string)\"\\\"\"+GET_VALUENAME(value)+\"\\\": \", value); }\n#endif\n\n// MAIN PROGRAM ------------\n\nusing mint = modint<MOD1>;\nusing Vec2 = Vector2D<ll>;\nconst Vec2 Angle[] = {{0,1}, {0,-1}, {-1,0}, {1,0}};\n\nint main() {\n ll h, w;\n cin >> h >> w;\n vector<vector<ll>>s(h, vector<ll>(w));\n vector<Vec2>edge;\n rep(i, h) rep(j, w) cin >> s[i][j];\n rep(i, h) rep(j, w-2)\n {\n if (s[i][j] * s[i][j+1] * s[i][j+2] == 1) \n {\n if (i==0 or s[i-1][j+1]==0) edge.push_back(Vec2{i+1, j+1});\n else edge.push_back(Vec2{i-1, j+1});\n }\n }\n rep(i, h-2) rep(j, w)\n {\n if (s[i][j] * s[i+1][j] * s[i+2][j] == 1)\n {\n if (j==0 or s[i+1][j-1]==0) edge.push_back(Vec2{i+1, j+1});\n else edge.push_back(Vec2{i+1, j-1});\n }\n }\n sort(BACK(edge));\n\n auto raw = edge;\n\n edge.erase(unique(ALL(edge)), edge.end());\n\n if (edge.size() == 0)\n {\n rep(i_, h-2) rep(j_, w-2)\n {\n ll i = i_+1, j = j_+1;\n ll t = 1;\n rep(x, 3) rep(y, 3) t *= s[i+x-1][j+y-1];\n if (t != 0)\n {\n cout << i << \" \" << j << \" \" << i << \" \" << j << endl;\n return 0;\n }\n }\n }\n if (edge.size() == 1)\n {\n if (raw.size() != edge.size())\n {\n for (auto angle : { Vec2{-1,-1},Vec2{-1, 1},Vec2{ 1,-1},Vec2{ 1, 1}, })\n {\n auto a = edge[0]+angle;\n if (not a.inrange({0,0},{h-1,w-1})) continue;\n if (s[a.x][a.y] != 1) \n {\n edge.push_back(a);\n break;\n }\n }\n sort(ALL(edge));\n cout << edge[1].x << \" \" << edge[1].y << \" \" << edge[0].x << \" \" << edge[0].y << endl;\n return 0;\n }\n else\n {\n for (auto angle : { Vec2{ 0,-1},Vec2{ 0, 1},Vec2{ 1, 0},Vec2{ -1, 0}, })\n {\n auto a = edge[0]+angle;\n if (not a.inrange({0,0},{h-1,w-1})) continue;\n if (s[a.x][a.y] == 1) \n {\n edge.push_back(edge[0]-angle);\n break;\n }\n }\n sort(ALL(edge));\n cout << edge[1].x << \" \" << edge[1].y << \" \" << edge[0].x << \" \" << edge[0].y << endl;\n return 0;\n }\n }\n if (edge.size() == 2)\n {\n cout << edge[0].x << \" \" << edge[0].y << \" \" << edge[1].x << \" \" << edge[1].y << endl;\n }\n}", "accuracy": 0.16666666666666666, "time_ms": 20, "memory_kb": 5112, "score_of_the_acc": -0.5009, "final_rank": 16 }, { "submission_id": "aoj_2756_9233705", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#define rep(i,n) for(ll i=0;i<(n);++i)\n#define ALL(x) x.begin(),x.end()\n#define BACK(x) x.rbegin(),x.rend()\n#define MOD1 1000000007\n#define MOD2 998244353\n#define MOD1_BASE 131\n#define INF (LLONG_MAX / 2)\n#define FLOAT_ANS setprecision(30)\n#define TORAD(x) (x*acos(-1)/180.0)\n#define TODEG(x) (x*180/acos(-1))\n#define GET_VALUENAME(value) # value\n\nusing namespace std;\nusing ll = long long;\nusing LL = __int128_t;\nusing ull = unsigned long long;\n\ntemplate<typename T> // T:重み\nusing p_que = priority_queue<T,vector<T>,greater<T>>;\n\ntemplate<typename T>\nbool chmin(T& a,T b){if(a>b){a=b;return true;}return false;}\n\ntemplate<typename T>\nbool chmax(T& a,T b){if(a<b){a=b;return true;}return false;}\n\nll modpow(ll a, ll n, ll mod) {ll res=1;while (n>0) {if(n&1)res=(res*(a%mod))%mod;a=((a%mod)*(a%mod))%mod;n>>=1;}return res;}\n\ntemplate<typename T>\nvoid RotateVec2(vector<vector<T>>&v){ll h=v.size();ll w=v[0].size();vector<vector<T>>t(w,vector<T>(h));rep(i,h){rep(j,w){t[j][h-i-1]=v[i][j];}}v=t;}\n\ntemplate<class T>\nbool InRange(T x, T mn, T mx){return (mn <= x && x <= mx);}\n\ntemplate<typename T>\nvector<T>&merged(vector<T>&a,vector<T>&b) {vector<T>res;merge(a.begin(),a.end(),b.begin(),b.end(),back_inserter(res));return res;}\n\nstruct UnionFind{\n vector<ll>tree;\n UnionFind(ll x):tree(x, -1){}\n ll root(ll x){if(tree[x]<0) return x;return tree[x]=root(tree[x]);}\n bool same(ll x,ll y){return root(x)==root(y);}\n ll size(ll x){return -tree[root(x)];}\n void unite(ll x,ll y){x=root(x),y=root(y);if(x==y)return;if(size(x)<size(y))swap(x,y);tree[x]+=tree[y];tree[y]=x;}\n};\n\ntemplate<class T>\nstruct SegTree{\n ll n;T e;vector<T>tree,lazy;function<T(T,T)>f,add;\n SegTree(ll n_,function<T(T,T)>f_,T e_=0,function<T(T,T)>add_=[](T next,T old){return next;}):e(e_),f(f_),add(add_){ll x=1;while(x<n_)x*=2;n=x;tree.assign(n*2,e);lazy.assign(n*2,e);}\n void eval(T k) {if (lazy[k] == e) return;if (k < n-1){lazy[k*2+1]=lazy[k*2+1]=lazy[k];}tree[k]=lazy[k], lazy[k]=e;}\n void update(ll idx,T x){update(idx, idx+1, x);}\n void update(ll a, ll b, ll x) { update(a, b, x, 0, n, 0); }\n void update(ll a, ll b, ll x, ll l, ll r, ll k) {eval(k);if (a <= l and r <= b) {lazy[k] = x;eval(k);}else if (a < r and l < b) {update(a, b, x, l, (l+r)/2, k*2+1);update(a, b, x, (l+r)/2, r, k*2+1);tree[k] = f(tree[k*2+1], tree[k*2+2]);}}\n T query(ll x,ll y){return query_sub(x,y,0,n,0);}\n T query_sub(ll x,ll y,ll l,ll r,ll k){eval(k);if(r<=x||y<=l)return e;if(x<=l&&r<=y)return tree[k];T c1=query_sub(x,y,l,(l+r)/2,k*2+1);T c2=query_sub(x,y,(l+r)/2,r,k*2+2);return f(c1,c2);}\n T get(ll idx){return tree[idx+n-1];}\n};\n\ntemplate<std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\npublic:\n u64 a;\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus)+Modulus)%Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept {return modint(*this) += rhs;}\n constexpr modint operator-(const modint rhs) const noexcept {return modint(*this) -= rhs;}\n constexpr modint operator*(const modint rhs) const noexcept {return modint(*this) *= rhs;}\n constexpr modint operator/(const modint rhs) const noexcept {return modint(*this) /= rhs;}\n constexpr modint &operator+=(const modint rhs) noexcept {a += rhs.a;if (a >= Modulus) {a -= Modulus;}return *this;}\n constexpr modint &operator-=(const modint rhs) noexcept {if (a < rhs.a) {a += Modulus;}a -= rhs.a;return *this;}\n constexpr modint &operator*=(const modint rhs) noexcept {a = a * rhs.a % Modulus;return *this;}\n constexpr modint &operator/=(modint rhs) noexcept {u64 exp = Modulus - 2;while (exp) {if (exp % 2) {*this *= rhs;}rhs *= rhs;exp /= 2;}return *this;}\n constexpr modint &operator=(u64 x){ a = x % Modulus; return *this; }\n};\n\ntemplate<class T=ll>\nstruct Vector2D {\n T x, y;\n Vector2D():x(0),y(0) {}\n Vector2D(T x_, T y_):x(x_),y(y_) {}\n\n double length() const { return sqrt((double)x*x+y*y); };\n T lengthp() const { return x*x+y*y; };\n bool inrange(const Vector2D a, const Vector2D b) { return (InRange(x, a.x, b.x) and InRange(y, a.y, b.y)); }\n Vector2D yx() { return Vector2D{ y, x }; }\n Vector2D operator-(const Vector2D a) const { return Vector2D(*this) -= a; }\n Vector2D operator+(const Vector2D a) const { return Vector2D(*this) += a; }\n T operator*(const Vector2D a) const { return x*a.x+y*a.y; }\n Vector2D operator*(const T a) const { return Vector2D(*this) *= a; }\n Vector2D operator/(const T a) const { return Vector2D(*this) /= a; }\n Vector2D &operator+=(const Vector2D a) { x += a.x; y += a.y; return *this; }\n Vector2D &operator-=(const Vector2D a) { x -= a.x; y -= a.y; return *this; }\n Vector2D &operator-=(const T a) { x -= a; y -= a; return *this; }\n Vector2D &operator*=(const T a) { x *= a; y *= a; return *this; }\n Vector2D &operator/=(const T a) { x /= a; y /= a; return *this; }\n friend ostream& operator<< (ostream& stream, const Vector2D<>& x);\n bool operator==(const Vector2D a) const { return (x==a.x and y==a.y); }\n bool operator!=(const Vector2D a) const { return not (x==a.x and y==a.y); }\n bool operator>(const Vector2D a) const { return a < *this; }\n bool operator<(const Vector2D a) const \n {\n return make_pair(x,y) < make_pair(a.x, a.y);\n // return x*a.y < y*a.x;\n }\n};\n\nostream& operator<< (ostream& stream, const Vector2D<ll>& x) {\n string s = \"(\" + to_string(x.x) + \", \" + to_string(x.y) + \")\";\n stream << s;\n return stream;\n}\n\nll popcount(ll x) { ll res = 0; while(x) {res+=x%2;x>>=1;} return res; }\n\n// debug kit\nvoid print() { cout << endl; }\ntemplate<class T>\nvoid print_(vector<T>x) { for(auto i : x) cout << i << \" \"; }\ntemplate<class T>\nvoid print_(T x) { cout << x << \" \"; }\n#ifdef ONLINE_JUDGE \ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) {}\ntemplate<class T>\nvoid debug(T value) {}\n#else\ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) { print_(head); print(args...); }\ntemplate<class T>\nvoid debug(T value) { print((string)\"\\\"\"+GET_VALUENAME(value)+\"\\\": \", value); }\n#endif\n\n// MAIN PROGRAM ------------\n\nusing mint = modint<MOD1>;\nusing Vec2 = Vector2D<ll>;\nconst Vec2 Angle[] = {{0,1}, {0,-1}, {-1,0}, {1,0}};\n\nint main() {\n ll h, w;\n cin >> h >> w;\n vector<vector<ll>>s(h, vector<ll>(w));\n vector<Vec2>edge;\n rep(i, h) rep(j, w) cin >> s[i][j];\n rep(i, h) rep(j, w-2)\n {\n if (s[i][j] * s[i][j+1] * s[i][j+2] == 1) \n {\n if (i==0 or s[i-1][j+1]==0) edge.push_back(Vec2{i+1, j+1});\n else edge.push_back(Vec2{i-1, j+1});\n }\n }\n rep(i, h-2) rep(j, w)\n {\n if (s[i][j] * s[i+1][j] * s[i+2][j] == 1)\n {\n if (j==0 or s[i+1][j-1]==0) edge.push_back(Vec2{i+1, j+1});\n else edge.push_back(Vec2{i+1, j-1});\n }\n }\n sort(BACK(edge));\n\n auto raw = edge;\n\n edge.erase(unique(ALL(edge)), edge.end());\n\n if (edge.size() == 0)\n {\n rep(i_, h-2) rep(j_, w-2)\n {\n ll i = i_+1, j = j_+1;\n ll t = 1;\n rep(x, 3) rep(y, 3) t *= s[i+x-1][j+y-1];\n if (t != 0)\n {\n cout << i << \" \" << j << \" \" << i << \" \" << j << endl;\n return 0;\n }\n }\n }\n if (edge.size() == 1)\n {\n if (raw.size() != edge.size())\n {\n for (auto angle : { Vec2{-1,-1},Vec2{-1, 1},Vec2{ 1,-1},Vec2{ 1, 1}, })\n {\n auto a = edge[0]+angle;\n if (not a.inrange({0,0},{h-1,w-1})) continue;\n if (s[a.x][a.y] != 1) \n {\n edge.push_back(a);\n break;\n }\n }\n sort(ALL(edge));\n cout << edge[1].x << \" \" << edge[1].y << \" \" << edge[0].x << \" \" << edge[0].y << endl;\n return 0;\n }\n else\n {\n for (auto angle : { Vec2{ 0,-1},Vec2{ 0, 1},Vec2{ 1, 0},Vec2{ -1, 0}, })\n {\n auto a = edge[0]+angle;\n if (not a.inrange({0,0},{h-1,w-1})) continue;\n if (s[a.x][a.y] == 1) \n {\n edge.push_back(edge[0]-angle);\n break;\n }\n }\n sort(ALL(edge));\n cout << edge[1].x << \" \" << edge[1].y << \" \" << edge[0].x << \" \" << edge[0].y << endl;\n return 0;\n }\n }\n if (edge.size() == 2)\n {\n cout << edge[0].x << \" \" << edge[0].y << \" \" << edge[1].x << \" \" << edge[1].y << endl;\n }\n}", "accuracy": 0.16666666666666666, "time_ms": 10, "memory_kb": 5052, "score_of_the_acc": -0.2826, "final_rank": 14 }, { "submission_id": "aoj_2756_9233699", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\nll h, w, sum = 0;\nvector<vector<ll>> s;\n\nbool isValid(ll x, ll y){\n if (1 <= x and x < h - 1 and 1 <= y and y <= h - 1) return true;\n return false;\n}\nbool isTyph(ll x, ll y){\n if (!isValid(x, y)) return false;\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (s[x + k][y + l] == 0) return false;\n }\n }\n return true;\n}\nvoid addTyph(ll x, ll y, ll a){\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n s[x + k][y + l] += a;\n }\n }\n sum += 9 * a;\n}\nP dfs(ll x, ll y, ll c){\n if(c == 0){\n if(!isTyph(x, y)){\n return P(-1, -1);\n }\n addTyph(x, y, -1);\n P res = dfs(x, y, 1);\n addTyph(x, y, 1);\n return res;\n }\n if (sum == 0) return P(x, y);\n if (c >= 3) return P(-1, -1);\n P res = P(-1, -1);\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (!isTyph(x + k, y + l)) continue;\n addTyph(x + k, y + l, -1);\n P nres = dfs(x + k, y + l, c + 1);\n if (nres != P(-1, -1)) res = nres;\n addTyph(x + k, y + l, 1);\n }\n }\n return res;\n}\nint main(){\n cin >> h >> w;\n s.resize(h);\n REP(i, h){\n REP(j, w){\n ll a;\n cin >> a;\n s[i].push_back(a);\n sum += a;\n }\n }\n //全探索, 3回まで\n FOR(i, 1, h - 1){\n FOR(j, 1, w - 1){\n P res = dfs(i, j, 0);\n if(res != P(-1, -1)){\n if(i * 10000 + j >=res.first * 10000 + res.second ) cout << i << \" \" << j << \" \" << res.first << \" \" << res.second << endl;\n else cout << res.first << \" \" << res.second <<\" \" <<i << \" \" << j<< endl;\n return 0;\n }\n }\n }\n vector<P> ans;\n FOR(i, 1, h - 1){\n FOR(j, 1, w - 1){\n if (s[i][j] != 2) continue;\n ll c0 = 0, c1 = 0, c3 = 0;\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (s[i + k][j + l] == 0)c0++;\n if (s[i + k][j + l] == 1)c1++;\n if (s[i + k][j + l] == 3)c3++;\n\n }\n }\n if (c1 >= 1 and c3 >= 1 and c0 == 0) ans.push_back(P(i, j));\n }\n }\n sort(ALL(ans));\n cout << ans[1].first << \" \" << ans[1].second << \" \" << ans[0].first<< \" \" << ans[0].second << endl;\n}", "accuracy": 0.16666666666666666, "time_ms": 20, "memory_kb": 5340, "score_of_the_acc": -0.5703, "final_rank": 19 }, { "submission_id": "aoj_2756_9233675", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\nll h, w, sum = 0;\nvector<vector<ll>> s;\n\nbool isValid(ll x, ll y){\n if (1 <= x and x < h - 1 and 1 <= y and y <= h - 1) return true;\n return false;\n}\nbool isTyph(ll x, ll y){\n if (!isValid(x, y)) return false;\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (s[x + k][y + l] == 0) return false;\n }\n }\n return true;\n}\nvoid addTyph(ll x, ll y, ll a){\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n s[x + k][y + l] += a;\n }\n }\n sum += 9 * a;\n}\nP dfs(ll x, ll y, ll c){\n if(c == 0){\n if(!isTyph(x, y)){\n return P(-1, -1);\n }\n addTyph(x, y, -1);\n P res = dfs(x, y, 1);\n addTyph(x, y, 1);\n return res;\n }\n if (sum == 0) return P(x, y);\n if (c >= 3) return P(-1, -1);\n P res = P(-1, -1);\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (!isTyph(x + k, y + l)) continue;\n addTyph(x + k, y + l, -1);\n P nres = dfs(x + k, y + l, c + 1);\n if (nres != P(-1, -1)) res = nres;\n addTyph(x + k, y + l, 1);\n }\n }\n return res;\n}\nint main(){\n cin >> h >> w;\n s.resize(h);\n REP(i, h){\n REP(j, w){\n ll a;\n cin >> a;\n s[i].push_back(a);\n sum += a;\n }\n }\n //全探索, 3回まで\n FOR(i, 1, h - 1){\n FOR(j, 1, w - 1){\n P res = dfs(i, j, 0);\n if(res != P(-1, -1)){\n if(i * 10000 + j >=res.first * 10000 + res.second ) cout << i << \" \" << j << \" \" << res.first << \" \" << res.second << endl;\n else cout << res.first << \" \" << res.second <<\" \" <<i << \" \" << j<< endl;\n return 0;\n }\n }\n }\n vector<P> ans;\n FOR(i, 1, h - 1){\n FOR(j, 1, w - 1){\n if (s[i][j] != 2) continue;\n ll c0 = 0, c1 = 0, c3 = 0;\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (s[i + k][j + l] == 0)c0++;\n if (s[i + k][j + l] == 1)c1++;\n if (s[i + k][j + l] == 3)c3++;\n\n }\n }\n if (c3 >= 1 and c0 == 0) ans.push_back(P(i, j));\n }\n }\n sort(ALL(ans));\n cout << ans[1].first << \" \" << ans[1].second << \" \" << ans[0].first<< \" \" << ans[0].second << endl;\n}", "accuracy": 0.16666666666666666, "time_ms": 20, "memory_kb": 5164, "score_of_the_acc": -0.5167, "final_rank": 17 }, { "submission_id": "aoj_2756_9233657", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\nll h, w, sum = 0;\nvector<vector<ll>> s;\n\nbool isValid(ll x, ll y){\n if (1 <= x and x < h - 1 and 1 <= y and y <= h - 1) return true;\n return false;\n}\nbool isTyph(ll x, ll y){\n if (!isValid(x, y)) return false;\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (s[x + k][y + l] == 0) return false;\n }\n }\n return true;\n}\nvoid addTyph(ll x, ll y, ll a){\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n s[x + k][y + l] += a;\n }\n }\n sum += 9 * a;\n}\nP dfs(ll x, ll y, ll c){\n if(c == 0){\n if(!isTyph(x, y)){\n return P(-1, -1);\n }\n addTyph(x, y, -1);\n P res = dfs(x, y, 1);\n addTyph(x, y, 1);\n return res;\n }\n if (sum == 0) return P(x, y);\n if (c >= 3) return P(-1, -1);\n P res = P(-1, -1);\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (!isTyph(x + k, y + l)) continue;\n addTyph(x + k, y + l, -1);\n P nres = dfs(x + k, y + l, c + 1);\n if (nres != P(-1, -1)) res = nres;\n addTyph(x + k, y + l, 1);\n }\n }\n return res;\n}\nint main(){\n cin >> h >> w;\n s.resize(h);\n REP(i, h){\n REP(j, w){\n ll a;\n cin >> a;\n s[i].push_back(a);\n sum += a;\n }\n }\n //全探索, 3回まで\n FOR(i, 1, h - 1){\n FOR(j, 1, w - 1){\n P res = dfs(i, j, 0);\n if(res != P(-1, -1)){\n if(i * 10000 + j >=res.first * 10000 + res.second ) cout << i << \" \" << j << \" \" << res.first << \" \" << res.second << endl;\n else cout << res.first << \" \" << res.second <<\" \" <<i << \" \" << j<< endl;\n return 0;\n }\n }\n }\n vector<P> ans;\n FOR(i, 1, h - 1){\n FOR(j, 1, w - 1){\n if (s[i][j] != 2) continue;\n ll c0 = 0, c1 = 0, c3 = 0;\n FOR(k, -1, 2){\n FOR(l, -1, 2){\n if (s[i + k][j + l] == 0)c0++;\n if (s[i + k][j + l] == 1)c1++;\n if (s[i + k][j + l] == 3)c3++;\n\n }\n }\n if (c1 >= 3 and c3 >= 1 and c0 == 0) ans.push_back(P(i, j));\n }\n }\n sort(ALL(ans));\n cout << ans[1].first << \" \" << ans[1].second << \" \" << ans[0].first<< \" \" << ans[0].second << endl;\n}", "accuracy": 0.16666666666666666, "time_ms": 20, "memory_kb": 5368, "score_of_the_acc": -0.5788, "final_rank": 20 }, { "submission_id": "aoj_2756_9233649", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\nusing ll = long long;\nusing ld = long double;\nconst ll INF = (1ll<<61) - 1;\ntemplate<class T> bool chmax(T &a,T b){\n if(a<b){\n a=b;\n return true;\n }\n return false;\n}\n\ntemplate<class T> bool chmin(T &a,T b){\n if(a>b){\n a=b;\n return true;\n }\n return false;\n}\n#define all(p) p.begin(),p.end()\n\n\n\nint main(){\n int H,W;\n cin>>H>>W;\n vector A(H+1,vector<ll>(W+1));\n rep(i,0,H) rep(j,0,W) cin>>A[i][j];\n vector B(H+1,vector<ll>(W+1));\n rep(i,0,H) rep(j,0,W-1) B[i][j+1]=A[i][j+1]-A[i][j];\n rep(i,0,H) B[i][0]=A[i][0];\n swap(A,B);\n rep(i,0,H) rep(j,0,W) B[i][j]=0;\n rep(i,0,H-1) rep(j,0,W) B[i+1][j]=A[i+1][j]-A[i][j];\n rep(j,0,W) B[0][j]=A[0][j];\n swap(A,B);\n rep(i,0,H+1) rep(j,0,W+1) B[i][j]=0;\n\n rep(i,0,H) rep(j,0,W) if(A[i][j]){\n B[i][j]=A[i][j];\n A[i][j+3]+=A[i][j];\n }\n swap(A,B);\n rep(i,0,H+1) rep(j,0,W+1) B[i][j]=0;\n\n rep(i,0,H) rep(j,0,W) if(A[i][j]){\n B[i][j]=A[i][j];\n A[i+3][j]+=A[i][j];\n }\n swap(A,B);\n rep(i,0,H) rep(j,0,W) B[i][j]=0;\n\n vector<pair<int,int>> s;\n vector<int> dx={1,-1,0,0,1,1,-1,-1},dy={0,0,1,-1,1,-1,-1,1};\n rep(i,0,H) rep(j,0,W) if(A[i][j]){\n int x=0;\n rep(k,0,8){\n int a=i+dx[k],b=j+dy[k];\n if(min(a,b)==-1) continue;\n x+=A[a][b];\n }\n if(x<2) s.push_back({i+1,j+1});\n }\n if(int(s.size())==1){\n cout<<s[0].first<<\" \"<<s[0].second<<\" \"<<s[0].first<<\" \"<<s[0].second<<\"\\n\";\n }\n else{\n if(s[0]<s[1]) swap(s[0],s[1]);\n cout<<s[0].first<<\" \"<<s[0].second<<\" \"<<s[1].first<<\" \"<<s[1].second<<\"\\n\";\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7408, "score_of_the_acc": -1.2, "final_rank": 8 }, { "submission_id": "aoj_2756_9233536", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,a,b) for(ll i = a; i < b; i++)\n#define all(a) (a).begin(), (a).end()\n\nint main(){\n int h,w;\n cin >> h >> w;\n vector<vector<int>> a(h, vector<int>(w));\n vector<vector<int>> b(h, vector<int>(w,0));\n rep(i,0,h){\n rep(j,0,w){\n cin >> a[i][j];\n }\n }\n\n rep(i,0,h-2){\n rep(j,0,w-2){\n while(a[i][j] > 0){\n rep(k,0,3){\n rep(l,0,3){\n a[i+k][j+l]--;\n }\n }\n b[i+1][j+1]++;\n }\n }\n }\n\n vector<pair<int,int>> kouho;\n vector<pair<int,int>> s;\n\n rep(i,1,h-1){\n rep(j,1,w-1){\n int res = 0;\n rep(k,-1,2){\n rep(l,-1,2){\n if(k == 0 && l == 0) continue;\n if(b[i+k][j+l] == 0){\n res++;\n }\n }\n }\n if(b[i][j] && res >= 6){\n if(res == 6)kouho.push_back({i,j});\n else s.push_back({i,j});\n }\n }\n }\n\n while(s.size() < 2 && kouho.size() > 0){\n s.push_back(kouho.back());\n kouho.pop_back();\n }\n while(s.size() < 2){\n s.push_back(s.back());\n }\n\n sort(all(s));\n swap(s[0],s[1]);\n\n cout << s[0].first << \" \" << s[0].second << \" \" << s[1].first << \" \" << s[1].second << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5456, "score_of_the_acc": -0.6056, "final_rank": 6 }, { "submission_id": "aoj_2756_3919305", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\n//int N,M,K,L,R,H,W;\nlong long int N,M,K,L,R,H,W;\n\nconstexpr long long int MOD=1000000007;\n//constexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n//constexpr long long int MOD=998244353;\n\n\nint main(){\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tcin>>H>>W;\n\tvector<vector<int>>v(H,vector<int>(W));\n\tfor(auto &i:v)for(auto &j:i)cin>>j;\n\tvector<vector<int>>visited(H,vector<int>(W));\n\tfor(int i=0;i<H-2;i++){\n\t\tfor(int j=0;j<W-2;j++){\n\t\t\twhile(v[i][j]){\n\t\t\t\tvisited[i+1][j+1]++;\n\t\t\t\tfor(int k=0;k<3;k++){\n\t\t\t\t\tfor(int l=0;l<3;l++){\n\t\t\t\t\t\tv[i+k][j+l]--;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvector<pair<int,int>>two;\n\tvector<pair<int,int>>one;\n\tfor(int i=0;i<H;i++){\n\t\tfor(int j=0;j<W;j++){\n\t\t\tif(!visited[i][j])continue;\n\t\t\tif(visited[i][j]==1){\n\t\t\t\tint sum=0;\n\t\t\t\tfor(int k=-1;k<=1;k++){\n\t\t\t\t\tfor(int l=-1;l<=1;l++){\n\t\t\t\t\t\tsum+=visited[i+k][j+l];\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(sum<3){\n\t\t\t\t\tone.push_back({i,j});\n\t\t\t\t}\n\t\t\t}\n\t\t\telse{\n\t\t\t\ttwo.push_back({i,j});\n\t\t\t}\n\t\t}\n\t}\n\tvector<pair<int,int>>ans;\n\tfor(auto i:one)ans.push_back(i);\n\tfor(auto i:two)ans.push_back(i);\n\tif(ans.size()==1&&!two.empty()){\n\t\tans.push_back(two[0]);\n\t}\n\tsort(ans.begin(),ans.end());\n\tcout<<ans[1].first<<\" \"<<ans[1].second<<\" \"<<ans[0].first<<\" \"<<ans[0].second<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4972, "score_of_the_acc": -0.2582, "final_rank": 2 }, { "submission_id": "aoj_2756_3553255", "code_snippet": "#include <bits/stdc++.h>\n\n#define ALL(a) (a).begin(), (a).end()\n#define llong long long\n\nusing namespace std;\n\nusing ARRAY = vector<int>;\nusing CONTAINER = vector<ARRAY>;\nusing POS = pair<size_t, size_t>;\n\nint dx[] = {-1,0,1,-1,0,1,-1,0,1};\nint dy[] = {1,1,1,0,0,0,-1,-1,-1};\n\nbool isMatch(const CONTAINER &m, size_t h, size_t w){\n\tvector<vector<vector<bool>>> f({ {{1,1,0}, {1,0,0}, {0,0,0}} });\n\tfor(auto e : f){\n\t\tbool flag = true;\n\t\tfor(size_t i = 0; i < 9; i++){\n\t\t\tif(e[1+dx[i]][1+dy[i]]){\n\t\t\t\tif(m[h+dx[i]][w+dy[i]] != 0){\n\t\t\t\t\tflag = false;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\t/*\n\t\t\telse{\n\t\t\t\tif(m[h+dx[i]][w+dy[j]] == 0){\n\t\t\t\t\tflag = false;\n\t\t\t\t\ti = j = (size_t)1e9;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\t*/\n\t\t}\n\t\tif(flag){\n//\t\t\tcerr << h << \":\" << w << endl;\n\t\t\treturn true;\n\t\t}\n\t}\n\treturn false;\n}\n\nvoid reduce(CONTAINER &m, size_t h, size_t w){\n\tfor(size_t i = 0; i < 9; i++){\n\t\tm[h+dx[i]][w+dy[i]] -= 1;\n\t}\n//\tcerr << \"pass\" << endl;\n}\n\t\t\t\nbool isSwipe(const CONTAINER &m){\n\tfor(auto a : m)for(auto e : a)\n\t\tif(e != 0)return false;\n\treturn true;\n}\n\nsigned main(){\n\tsize_t h,w; cin >> h >> w;\n\tCONTAINER m(h+2, ARRAY(w+2,0));\n\tCONTAINER p(m);\n\n\tfor(size_t i = 1; i <= h; i++)for(size_t j = 1; j <= w; j++)cin >> m[i][j];\n//\tfor(auto a : m){for(auto e : a)cerr << e << \" \";cerr << endl;}\n\n\twhile(!isSwipe(m)){\n\t\tfor(size_t i = 1; i <= h; i++){\n\t\t\tfor(size_t j = 1; j <= w; j++){\n\t\t\t\tif(m[i][j] > 0 && isMatch(m,i,j)){\n\t\t\t\t\tsize_t r = i+1, c = j+1;\n\t\t\t\t\tp[r][c] += 1;\n\t\t\t\t\treduce(m, r, c);\n//\t\t\t\t\tfor(auto a : m){for(auto e : a)cerr << e << \" \";cerr << endl;}\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n//\tfor(auto a : p){for(auto e : a)cerr << e << \" \";cerr << endl;}\n\tvector<POS> ans;\n\t{\n\t\tint acc = 0;\n\t\tfor(auto a : p)for(auto e : a)if(e > 0)acc++;\n\t\tif(acc == 1){\n\t\tfor(size_t i = 1; i <= h; i++){\n\t\t\tfor(size_t j = 1; j <= w; j++){\n\t\t\t\tif(p[i][j] > 0){\n\t\t\t\t\tcout << (i-1) << \" \" << (j-1) << \" \";\n\t\t\t\t\tcout << (i-1) << \" \" << (j-1) << endl;\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t}\n\t}\n\t\t\t\n\tfor(size_t i = 1; i <= h; i++){\n\t\tfor(size_t j = 1; j <= w; j++){\n\t\t\tif(p[i][j] > 0){\n\t\t\t\tint acc = 0;\n\t\t\t\tfor(size_t k = 0; k < 9; k++){\n\t\t\t\t\tif(p[i+dx[k]][j+dy[k]] > 0)acc++;\n\t\t\t\t}\n\t\t\t\tif(acc == 2)ans.push_back({i,j});\n\t\t\t}\n\t\t}\n\t}\n\tif(ans[0].first*10000 + ans[0].second < ans[1].first*10000 + ans[1].second){\n\t\tswap(ans[0], ans[1]);\n\t}\n\tcout << (ans[0].first-1) << \" \" << (ans[0].second-1) << \" \";\n\tcout << (ans[1].first-1) << \" \" << (ans[1].second-1) << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4976, "score_of_the_acc": -1.2594, "final_rank": 9 }, { "submission_id": "aoj_2756_3553195", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <vector>\n#include <algorithm>\n#include <string>\n#include <utility>\n#include <tuple>\n\nconstexpr size_t m1 = -1;\nconstexpr size_t di[] = {m1, m1, m1, 0, 0, 1, 1, 1};\nconstexpr size_t dj[] = {m1, 0, 1, m1, 1, m1, 0, 1};\n\nint main() {\n size_t h, w;\n scanf(\"%zu %zu\", &h, &w);\n\n std::vector<std::vector<int>> s(h, std::vector<int>(w));\n for (auto& si: s)\n for (auto& sij: si)\n scanf(\"%d\", &sij);\n\n std::vector<std::vector<size_t>> t(h, std::vector<size_t>(w));\n\n for (size_t i = 1; i+1 < h; ++i)\n for (size_t j = 1; j+1 < w; ++j) {\n int c;\n do {\n c = 0;\n for (int k = 0; k < 8; ++k) {\n size_t ni = i + di[k];\n size_t nj = j + dj[k];\n if (s[ni][nj] > 0) ++c;\n }\n if (c < 8) break;\n ++t[i][j];\n for (int k = 0; k < 8; ++k) {\n size_t ni = i + di[k];\n size_t nj = j + dj[k];\n --s[ni][nj];\n }\n break;\n } while (c == 8);\n }\n\n std::vector<std::pair<size_t, size_t>> res;\n for (size_t i = 1; i+1 < h; ++i)\n for (size_t j = 1; j+1 < w; ++j) {\n if (!t[i][j]) continue;\n int c = 0;\n for (int k = 0; k < 8; ++k) {\n size_t ni = i + di[k];\n size_t nj = j + dj[k];\n if (t[ni][nj] > 0) ++c;\n }\n if (c <= 1) res.emplace_back(i, j);\n }\n\n // if (res.size() > 1)\n // if (res[0] < res[1]) std::swap(res[0], res[1]);\n\n size_t si, sj, ti, tj;\n std::tie(si, sj) = res.front();\n std::tie(ti, tj) = res.back();\n\n if (!(10000*ti + tj <= 10000*si + sj)) {\n std::swap(si, ti);\n std::swap(sj, tj);\n }\n\n printf(\"%zu %zu %zu %zu\\n\", si, sj, ti, tj);\n}", "accuracy": 0.375, "time_ms": 10, "memory_kb": 5348, "score_of_the_acc": -0.3727, "final_rank": 10 }, { "submission_id": "aoj_2756_3553177", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <vector>\n#include <algorithm>\n#include <string>\n#include <utility>\n#include <tuple>\n\nconstexpr size_t m1 = -1;\nconstexpr size_t di[] = {m1, m1, m1, 0, 0, 1, 1, 1};\nconstexpr size_t dj[] = {m1, 0, 1, m1, 1, m1, 0, 1};\n\nint main() {\n size_t h, w;\n scanf(\"%zu %zu\", &h, &w);\n\n std::vector<std::vector<int>> s(h, std::vector<int>(w));\n for (auto& si: s)\n for (auto& sij: si)\n scanf(\"%d\", &sij);\n\n std::vector<std::vector<size_t>> t(h, std::vector<size_t>(w));\n\n for (size_t i = 1; i+1 < h; ++i)\n for (size_t j = 1; j+1 < w; ++j) {\n int c;\n do {\n c = 0;\n for (int k = 0; k < 8; ++k) {\n size_t ni = i + di[k];\n size_t nj = j + dj[k];\n if (s[ni][nj] > 0) ++c;\n }\n if (c < 8) break;\n ++t[i][j];\n for (int k = 0; k < 8; ++k) {\n size_t ni = i + di[k];\n size_t nj = j + dj[k];\n --s[ni][nj];\n }\n // fprintf(stderr, \"+ (%zu, %zu)\\n\", i, j);\n } while (c == 8);\n }\n\n std::vector<std::pair<size_t, size_t>> res;\n for (size_t i = 1; i+1 < h; ++i)\n for (size_t j = 1; j+1 < w; ++j) {\n if (!t[i][j]) continue;\n int c = 0;\n for (int k = 0; k < 8; ++k) {\n size_t ni = i + di[k];\n size_t nj = j + dj[k];\n if (t[ni][nj] > 0) ++c;\n }\n // fprintf(stderr, \"(%zu, %zu): %d\\n\", i, j, c);\n if (c <= 1) res.emplace_back(i, j);\n }\n\n if (res.size() > 1)\n if (res[0] < res[1]) std::swap(res[0], res[1]);\n\n size_t si, sj, ti, tj;\n std::tie(si, sj) = res.front();\n std::tie(ti, tj) = res.back();\n\n printf(\"%zu %zu %zu %zu\\n\", si, sj, ti, tj);\n}", "accuracy": 0.16666666666666666, "time_ms": 10, "memory_kb": 5188, "score_of_the_acc": -0.324, "final_rank": 15 }, { "submission_id": "aoj_2756_3355059", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n#pragma warning (disable: 4996)\n\nint H, W, A[515][515]; bool used[515][515];\nint dx[8] = { -1, -1, -1, 0, 0, 1, 1, 1 };\nint dy[8] = { -1, 0, 1, -1, 1, -1, 0, 1 };\nvector<pair<int, int>>vec; pair<int, int>C;\n\nbool isOK(int px, int py) {\n\tif (px <= 0 || py <= 0 || px >= H - 1 || py >= W - 1) return false;\n\tif (A[px][py] <= 1) return false;\n\tfor (int i = 0; i < 8; i++) {\n\t\tif (A[px + dx[i]][py + dy[i]] == 0) return false;\n\t}\n\treturn true;\n}\n\nint main() {\n\t//FILE *in = freopen(\"in1.txt\", \"r\", stdin);\n\tcin >> H >> W;\n\tfor (int i = 0; i < H; i++) {\n\t\tfor (int j = 0; j < W; j++) cin >> A[i][j];\n\t}\n\tfor (int i = 1; i < H - 1; i++) {\n\t\tfor (int j = 1; j < W - 1; j++) {\n\t\t\tint cnt = 0, R[4] = { 0, 0, 0, 0 };\n\t\t\tfor (int k = 0; k < 8; k++) {\n\t\t\t\tif (isOK(i + dx[k], j + dy[k]) == true) cnt++;\n\t\t\t\tR[A[i + dx[k]][j + dy[k]]]++;\n\t\t\t}\n\t\t\tif (isOK(i, j) == 0) cnt = 0;\n\t\t\tif (cnt == 1 && A[i][j] == 2 && R[3] <= 3 && R[0] == 0) vec.push_back(make_pair(i, j));\n\t\t\tif (R[0] == 0) C = make_pair(i, j);\n\t\t}\n\t}\n\n\tsort(vec.begin(), vec.end());\n\treverse(vec.begin(), vec.end());\n\n\tif (vec.size() == 0) cout << C.first << \" \" << C.second << \" \" << C.first << \" \" << C.second << endl;\n\tif (vec.size() == 1) cout << vec[0].first << \" \" << vec[0].second << \" \" << vec[0].first << \" \" << vec[0].second << endl;\n\tif (vec.size() == 2) cout << vec[0].first << \" \" << vec[0].second << \" \" << vec[1].first << \" \" << vec[1].second << endl;\n\treturn 0;\n}", "accuracy": 0.2916666666666667, "time_ms": 30, "memory_kb": 4124, "score_of_the_acc": -0.4, "final_rank": 11 }, { "submission_id": "aoj_2756_3354985", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint H, W, A[515][515]; bool used[515][515];\nint dx[8] = { -1, -1, -1, 0, 0, 1, 1, 1 };\nint dy[8] = { -1, 0, 1, -1, 1, -1, 0, 1 };\n\nint main() {\n\tcin >> H >> W;\n\tfor (int i = 0; i < H; i++) {\n\t\tfor (int j = 0; j < W; j++) cin >> A[i][j];\n\t}\n\tfor (int i = 1; i < H - 1; i++) {\n\t\tfor (int j = 1; j < W - 1; j++) {\n\t\t\tint cnt = 0;\n\t\t\tfor (int k = 0; k < 8; k++) {\n\t\t\t\tif (A[i + dx[k]][j + dy[k]] == 0) cnt++;\n\t\t\t}\n\t\t\tif (cnt == 0 && A[i][j] >= 1) used[i][j] = true;\n\t\t}\n\t}\n\tvector<pair<int, int>>vec;\n\tfor (int i = 1; i < H - 1; i++) {\n\t\tfor (int j = 1; j < W - 1; j++) {\n\t\t\tif (used[i][j] == false) continue;\n\t\t\tint cnt = 0;\n\t\t\tfor (int k = 0; k < 8; k++) {\n\t\t\t\tif (used[i + dx[k]][j + dy[k]] == true) cnt++;\n\t\t\t}\n\t\t\tif (cnt == 0) { vec.push_back(make_pair(i, j)); vec.push_back(make_pair(i, j)); }\n\t\t\tif (cnt == 1) { vec.push_back(make_pair(i, j)); }\n\t\t}\n\t}\n\tsort(vec.begin(), vec.end());\n\n\tcout << vec[1].first << \" \" << vec[1].second << \" \" << vec[0].first << \" \" << vec[0].second << endl;\n\treturn 0;\n}", "accuracy": 0.25, "time_ms": 30, "memory_kb": 4288, "score_of_the_acc": -0.4499, "final_rank": 12 }, { "submission_id": "aoj_2756_2917880", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\nconst int INF = 1e9;\nconst ll LINF = 1e18;\ntemplate<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << \"(\" << o.first << \",\" << o.second << \")\"; return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << \" \";} return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }\ntemplate<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << \"{ \"; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << \":\" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << \", \"; } out << \" }\"; return out; }\n\n/*\n <url:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2756>\n 問題文============================================================\n =================================================================\n 解説=============================================================\n \n ================================================================\n */\n\nvector<int> solve(){\n vector<int> res;\n int H,W; cin >> H >> W;\n vector<vector<int>> D(H,vector<int>(W));\n for(auto& vec:D) for(auto& in:vec) cin >> in;\n vector<vector<int>> couho(H,vector<int>(W,0));\n for(int i = 0; i < H; i++){\n for(int j = 0; j < W;j++){\n if(D[i][j] == 0) continue;\n if(D[i][j] != 0){\n int cost = D[i][j];\n for(int k = 0; k < 3;k++){\n for(int l = 0; l < 3;l++){\n D[i+k][j+l] -= cost;\n }\n }\n couho[i+1][j+1]++;\n }\n }\n }\n vector<pii> loc;\n for(int i = 0; i < H;i++){\n for(int j = 0; j < W;j++){\n if(couho[i][j]){\n int cnt = 0;\n for(int k = -1; k <= 1; k++){\n for(int l = -1; l <= 1; l++){\n if(couho[i+k][j+l]) cnt++;\n }\n }\n if(cnt <= 2){\n loc.push_back({i,j});\n }\n }\n }\n }\n sort(loc.rbegin(),loc.rend());\n res = vector<int>{loc.begin()->first,loc.begin()->second,loc.rbegin()->first,loc.rbegin()->second};\n return res;\n}\nint main(void) {\n cin.tie(0); ios_base::sync_with_stdio(false);\n cout << solve() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4984, "score_of_the_acc": -0.2619, "final_rank": 3 }, { "submission_id": "aoj_2756_2917865", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\nconst int INF = 1e9;\nconst ll LINF = 1e18;\ntemplate<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << \"(\" << o.first << \",\" << o.second << \")\"; return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << \" \";} return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }\ntemplate<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << \"{ \"; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << \":\" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << \", \"; } out << \" }\"; return out; }\n\n/*\n <url:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2756>\n 問題文============================================================\n =================================================================\n 解説=============================================================\n \n ================================================================\n */\n\nvector<int> solve(){\n vector<int> res;\n int H,W; cin >> H >> W;\n vector<vector<int>> D(H,vector<int>(W));\n for(auto& vec:D) for(auto& in:vec) cin >> in;\n vector<vector<int>> couho(H,vector<int>(W,0));\n for(int i = 0; i < H; i++){\n for(int j = 0; j < W;j++){\n if(D[i][j] == 0) continue;\n if(D[i][j] != 0){\n int cost = D[i][j];\n for(int k = 0; k < 3;k++){\n for(int l = 0; l < 3;l++){\n D[i+k][j+l] -= cost;\n }\n }\n couho[i+1][j+1]++;\n }\n }\n }\n [&](){\n for(int i = H-1; i >= 0; i--){\n for(int j = 0; j < W;j++){\n if(couho[i][j]){\n res.push_back(i);\n res.push_back(j);\n return;\n }\n }\n }\n }();\n [&](){\n for(int i = 0; i < H; i++){\n for(int j = W-1; j >= 0;j--){\n if(couho[i][j]){\n res.push_back(i);\n res.push_back(j);\n return;\n }\n }\n }\n }();\n return res;\n}\nint main(void) {\n cin.tie(0); ios_base::sync_with_stdio(false);\n cout << solve() << endl;\n return 0;\n}", "accuracy": 0.16666666666666666, "time_ms": 10, "memory_kb": 4980, "score_of_the_acc": -0.2607, "final_rank": 13 }, { "submission_id": "aoj_2756_2721960", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\nstruct Info{\n\tInfo(int arg_row,int arg_col){\n\t\trow = arg_row;\n\t\tcol = arg_col;\n\t}\n\tint row,col;\n};\n\nint H,W;\nint table[500][500],calc[500][500],adj_count[500][500];\nint diff_row[8] = {-1,-1,-1,0,0,1,1,1},diff_col[8] = {-1,0,1,-1,1,-1,0,1};\n\n\nbool rangeCheck(int row,int col){\n\tif(row >= 0 && row <= H-1 && col >= 0 && col <= W-1)return true;\n\telse{\n\t\treturn false;\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d\",&H,&W);\n\tfor(int row = 0; row < H; row++){\n\t\tfor(int col = 0; col < W; col++)scanf(\"%d\",&table[row][col]);\n\t}\n\n\tfor(int row = 0; row < H; row++){\n\t\tfor(int col = 0; col < W; col++){\n\t\t\tcalc[row][col] = 0;\n\t\t}\n\t}\n\n\tint adj_sum,adj_row,adj_col;\n\n\tfor(int row = 0; row <= H-2; row++){\n\t\tfor(int col = 0; col <= W-2; col++){\n\n\t\t\tadj_sum = 0;\n\t\t\tfor(int i = 0; i < 8; i++){\n\t\t\t\tadj_row = row+diff_row[i];\n\t\t\t\tadj_col = col+diff_col[i];\n\t\t\t\tif(rangeCheck(adj_row,adj_col) == false)continue;\n\n\t\t\t\tadj_sum += calc[adj_row][adj_col];\n\t\t\t}\n\n\t\t\tcalc[row+1][col+1] = table[row][col]-(calc[row][col]+adj_sum);\n\t\t}\n\t}\n\n\tfor(int row = 0; row < H; row++){\n\t\tfor(int col = 0; col < W; col++)adj_count[row][col] = 0;\n\t}\n\n\tvector<Info> ANS;\n\tint count;\n\n\tfor(int row = 0; row < H; row++){\n\t\tfor(int col = 0; col < W; col++){\n\t\t\tif(calc[row][col] == 0)continue;\n\n\t\t\tcount = 0;\n\t\t\tfor(int i = 0; i < 8; i++){\n\t\t\t\tadj_row = row+diff_row[i];\n\t\t\t\tadj_col = col+diff_col[i];\n\n\t\t\t\tif(rangeCheck(adj_row,adj_col) == false || calc[adj_row][adj_col] == 0)continue;\n\n\t\t\t\tcount++;\n\t\t\t\tif(count >= 2)break;\n\t\t\t}\n\t\t\tif(count <= 1)ANS.push_back(Info(row,col));\n\t\t}\n\t}\n\n\tif(ANS.size() == 1){\n\t\tprintf(\"%d %d %d %d\\n\",ANS[0].row,ANS[0].col,ANS[0].row,ANS[0].col);\n\t\treturn 0;\n\t}\n\n\tif(10000*ANS[1].row+ANS[1].col > 10000*ANS[0].row+ANS[0].col)swap(ANS[0],ANS[1]);\n\n\tprintf(\"%d %d %d %d\\n\",ANS[0].row,ANS[0].col,ANS[1].row,ANS[1].col);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6156, "score_of_the_acc": -0.8188, "final_rank": 7 } ]
aoj_2765_cpp
A: 秤 / Steelyard 問題文 情太くんは長さ $2L$ の棒を使って下の図のような秤を作った. 棒には等間隔に $2L+1$ 個の穴があけられ,左から順に $-L, -L+1, \cdots, -1, 0, 1, \cdots, L-1, L$ という番号が付けられている.そして $0$ 番の穴の場所を天井から紐で吊るしてある. 情太くんは,秤の穴に $N$ 個のおもりを吊るした.$i$ 番目のおもりを吊るした穴の番号は $x_i$ で,おもりの重さは $w_i$ である.おもりが $1$ つも吊るされない穴や,複数のおもりが吊るされる穴も存在しうる. 情太くんが吊るしたおもりによっては,秤が傾いているかもしれない.姉の立子さんは,追加でいくつかの重りを吊るすことで秤を水平にしたい (おもりの座標と重さ積の総和が $0$ になるとき秤は水平になる).条件を満たすおもりの吊るし方を $1$ つ出力しなさい.候補が複数ある場合はどれを出力してもよい. 入力 $L$ $N$ $x_1 \ w_1$ $\vdots$ $x_N \ w_N$ 入力の制約 $1 \leq L \leq 30$ $1 \leq N \leq 30$ $|x_i| \leq L$ $1 \leq w_i \leq 30$ 全て整数 出力 答えは次のような形式で出力せよ. $1$ 行目の $N’$ は立子さんが吊るしたおもりの数である. $1+i$ 行目の $x_i’, w_i’$ は,それぞれ立子さんが吊るしたおもりの位置と重さである. $N'$ $x_1' \ w_1'$ $\vdots$ $x_N' \ w_N'$ 出力の制約 立子さんが追加で吊り下げるおもりは,以下の条件を満たす必要がある. $0 \leq N' \leq 50000$ $|x_i'| \leq L$ $1 \leq w_i' \leq 50000$ 全て整数 サンプル サンプル入力1 3 3 1 1 2 1 3 1 サンプル出力1 1 -3 2 他にも,例えば以下のような出力も正解として扱われる. 2 -3 1 -3 1 これらを図示すると次のようになる. サンプル入力2 3 3 1 1 0 2 -1 3 サンプル出力2 1 2 1 サンプル入力3 10 4 1 2 2 3 -7 1 -1 1 サンプル出力3 0 秤は最初から釣り合っていることもある.
[ { "submission_id": "aoj_2765_4968352", "code_snippet": "#include <iostream>\n#include <vector>\nusing namespace std;\n\n\nint main(void){\n long long L,N;\n long long weight=0;\n\n cin >> L >> N;\n for(int i=0;i<N;i++){\n long long x,w;\n cin >> x >> w;\n weight += x*w;\n }\n\n if(weight==0){\n cout << 0 << endl;\n }else if(weight>0){\n cout << weight << endl;\n for(int i=0;i<weight;i++){\n cout << -1 << \" \" << 1 << endl;\n }\n }else{\n cout << -weight << endl;\n for(int i=0;i<-weight;i++){\n cout << 1 << \" \" << 1 << endl;\n }\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3440, "score_of_the_acc": -1, "final_rank": 4 }, { "submission_id": "aoj_2765_3373309", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<cstdio>\n#include<cmath>\n#include<cctype>\n#include<math.h>\n#include<string>\n#include<string.h>\n#include<stack>\n#include<queue>\n#include<vector>\n#include<utility>\n#include<set>\n#include<map>\n#include<stdlib.h>\n#include<iomanip>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n#define EPS 0.0000000001\n#define INF 1e9\n#define LINF (ll)INF*INF\n#define MOD 1000000007\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define loop(i,a,n) for(int i=a;i<(n);i++)\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\n\n#define int ll //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\ntypedef vector<int> vi;\ntypedef vector<string> vs;\ntypedef pair<int,int> pii;\ntypedef vector<pii> vp;\n\nint gcd(int a, int b){\n if(b==0) return a;\n return gcd(b,a%b);\n}\nint lcm(int a, int b){\n return a/gcd(a,b)*b;\n}\n\nsigned main(void) {\n int l,n;\n cin >> l >> n;\n int t = 0;\n rep(i,n){\n int x,w;\n cin >> x >> w;\n t += x*w;\n }\n t *= -1;\n if(t > 0){\n cout << t << endl;\n rep(i,t)cout << \"1 1\" << endl;\n }else{\n cout << abs(t) << endl;\n rep(i,abs(t))cout << \"-1 1\" << endl;\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3104, "score_of_the_acc": -0.8526, "final_rank": 2 }, { "submission_id": "aoj_2765_2057614", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\n//// < \"d:\\d_download\\visual studio 2015\\projects\\programing_contest_c++\\debug\\a.txt\" > \"d:\\d_download\\visual studio 2015\\projects\\programing_contest_c++\\debug\\b.txt\"\n\n\nint main() {\n\tint L, N; cin >> L >> N;\n\tint sum = 0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tint x, w; cin >> x >> w;\n\t\tsum += x*w;\n\t}\n\tvector<pair<int, int>>anss;\n\t\n\t\tif (sum > 0) {\n\t\t\tfor (int i = 0; i < sum; ++i) {\n\t\t\t\tanss.push_back(make_pair(-1, 1));\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tfor (int i = 0; i < -sum; ++i) {\n\t\t\t\tanss.push_back(make_pair(1, 1));\n\t\t\t}\n\t\t\tsum = -sum;\n\t\t}\n\t\n\tcout << sum << endl;\n\tfor (int i = 0; i < anss.size(); ++i) {\n\t\tcout << anss[i].first << \" \" << anss[i].second << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3248, "score_of_the_acc": -0.9158, "final_rank": 3 }, { "submission_id": "aoj_2765_1720743", "code_snippet": "#include<iostream>\nusing namespace std;\n\nint abs(int a){\n return ((a > 0) ? (a) : (-a));\n}\n\nint main(){\n int L;\n int N;\n int sum=0;\n cin>>L>>N;\n for(int i=0;i<N;i++){\n int x,w;\n cin>>x>>w;\n sum += x*w;\n }\n int sign=((sum > 0)?(-1):(1));\n cout<<abs(sum)<<endl;\n for(int i=0,size=abs(sum);i<size;i++){\n cout<<sign<<' '<<1<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 1160, "score_of_the_acc": -1, "final_rank": 4 }, { "submission_id": "aoj_2765_1692297", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<n;++i)\n#define FOR(i,a,b) for(int i=a;i<=b;++i)\n#define LL long long\n#define Fi first\n#define Se second\nusing namespace std;\nstatic const LL INF = 1LL<<61LL;\ntypedef pair<int,int> PII;\n\n//PII V[100];\nint N,L;\nint Le,Ri;\nint x,w;\n\nint main(){\n cin>>L>>N;\n rep(i,N){\n cin>>x>>w;\n if(x>0)Ri+=abs(x*w);\n else if(x<0)Le+=abs(x*w);\n else if(x==0)continue;\n }\n if(Le<Ri){\n cout<<Ri-Le<<endl;\n rep(i,Ri-Le){\n cout<<-1<<\" \"<<1<<endl;\n }\n }\n else if(Le>Ri){\n cout<<Le-Ri<<endl;\n rep(i,Le-Ri){\n cout<<1<<\" \"<<1<<endl;\n }\n }\n else cout<<0<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 1160, "score_of_the_acc": -0.3333, "final_rank": 1 } ]
aoj_2760_cpp
C: 買い出し - Shopping - 物語 磯野の姉であるサゾエさんは,『あれ』や『あれ』で遊んでいる磯野と中島のために夕食を作ってあげることにしました.あいにく,冷蔵庫には食材が残り僅かしか無く,サゾエさんは買い出しに行くことにしました.幾つか食材を買おうとしているサゾエさんですが,大変陽気であるため一度に一品のみレジで会計してしまいます.このままでは遊んでいた磯野と中島が買い物を終える前に帰ってきてしまい,夕食を準備することが出来ないかもしれません.そこで,サゾエさんの友人であるあなたは,サゾエさんのためにサゾエさんの買い物にかかる最小の時間を求めてください. 問題 とあるスーパーに N 個のレジがあり,それぞれ 1 〜 N までの番号がついている. また,客が M 人居て,それぞれ 1 〜 M までの番号がついている. i 番目の客は,時刻 a_i に c_i 番目のレジに並び,会計に b_i の時間がかかる.1人の客は一度だけ会計をする. ここで,ある客が並んだレジに既に人が並んでいる場合,その客は既に並んでいる人全員の会計が終了した後に会計をする. i 番目の客と, i+1 番目の客が同じレジに並んでいたとすると, i 番目の客の会計開始時刻が t であった場合, i 番目の客の会計終了時刻は t+b_i , i+1 番目の客の会計開始時刻は t+b_i ,そして, i+1 番目の客の会計終了時刻は, t+b_i+b_{i+1} となる. サゾエさんは1人の客である.しかし,サゾエさんは例外的に K 回会計をする.また,会計にかかる時間は0,すなわちサゾエさんの会計開始時刻を t とすると,会計終了時刻は t となり,次の客の会計開始時刻は t となる.その後,サゾエさんが再度レジに並ぶ際,会計終了時刻 t から品定めにかかる時間 D だけ経ってから並ばなければいけない.つまり,再度レジに並ぶことができる時刻は t+D となる. また,サゾエさんは時刻 S にスーパーにやって来る.そして,時刻 S から D だけ経った時刻 S+D に,初めてサゾエさんはレジに並ぶことが出来る. N , M , K , D , S と, 1 番目〜 M 番目までの客の情報がそれぞれ与えられるので,サゾエさんがスーパーに来てから最後の会計を終えるまでにかかる時間の最小値を求めよ.この時,異なる2人の客が同じ時刻に同じレジに並ぶことは無いとし,サゾエさんとほかの人が同時にレジに並ぼうとした場合,サゾエさんは常にほかの客に順番を譲ることとする. 入力形式 入力は次の形式で与えられる. N M K D S a_1 b_1 c_1 ... a_M b_M c_M 1行目にスーパーにあるレジの数 N ( 1 ≤ N ≤ 10^{15} ),訪れる客の数 M ( 1 ≤ M ≤ 10^5 ),サゾエさんがレジを回る回数 K ( 1 ≤ K ≤ 10^4 ),サゾエさんの品定めにかかる時間 D ( 1 ≤ D ≤ 10^4 ),サゾエさんがスーパーに来る時刻 S ( 1 ≤ S ≤ 10^4 )が空白区切りで与えられる. 続く M 行に訪れる客の情報が与えられる. M 行のうち, i ( 1 ≤ i ≤ M )行目には, i 番目の客がレジに来る時刻 a_i ( 1 ≤ a_i ≤ 10^4 ),会計にかかる時間 b_i ( 1 ≤ b_i ≤ 10^4 ),やって来るレジの番号 c_i ( 1 ≤ c_i ≤ N )が空白区切りで与えられる.ここで 2 ≤ M の時,全ての i ( 1 ≤ i ≤ M−1 )について, a_i ≤ a_{i+1} が成立する. なお,入力が非常に大きくなる場合があるため,入力の受け取りには高速な関数を用いることを推奨する. 出力形式 サゾエさんがスーパーに来てから最後の会計を終えるまでにかかる時間の最小値を1行で出力せよ. 入力例1 3 9 3 2 3 1 2 3 1 1 2 2 3 1 3 4 2 4 1 3 4 1 1 5 1 1 6 2 3 7 2 2 出力例1 6 時間5にレジ3,時間7にレジ1,時間9にレジ2に並ぶ. サゾエさんの入店時間が時間3なので初めてレジに並んでから時間6で3回の会計が終了する. また,時間9に並ぶレジはレジ1,もしくはレジ3でも最適解になる 入力例2 3 9 3 1 3 1 2 3 1 1 2 2 3 1 3 4 2 4 1 3 4 1 1 5 1 1 6 2 3 7 2 2 出力例2 5 入力例3 1 3 3 2 1 1 1 1 2 2 1 3 2 1 出力例3 9
[ { "submission_id": "aoj_2760_10401979", "code_snippet": "// AOJ #2760 Shopping\n// 2025.4.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0, c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nll Cinll() {\n\tll n = 0, c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nstruct C { int a, b; ll c; };\n\nint main(){\n ll N = Cinll();\n int M = Cin(), K = Cin(), D = Cin(), S = Cin();\n\n vector<C> v(M);\n unordered_set<ll> used;\n used.reserve(M);\n for(int i = 0; i < M; i++){\n v[i].a = Cin(), v[i].b = Cin(), v[i].c = Cin();\n used.insert(v[i].c);\n }\n if ((ll)used.size() < N) {\n cout << (ll)K * D << endl;\n return 0;\n }\n\n sort(v.begin(), v.end(), [](auto &x, auto &y){ return x.a < y.a; });\n\n vector<ll> f(N+1, 0);\n multiset<pair<ll,ll>> st;\n for (ll j = 1; j <= N; j++) st.insert({0, j});\n\n int idx = 0;\n ll t = S + D;\n ll last = 0;\n\n for (int i = 0; i < K; i++){\n while (idx < M && v[idx].a <= t) {\n int a = v[idx].a, b = v[idx].b;\n ll c = v[idx].c;\n auto it = st.find({f[c], c});\n st.erase(it);\n ll nf = max(f[c], (ll)a) + b;\n f[c] = nf;\n st.insert({nf, c});\n idx++;\n }\n\n auto it = st.begin();\n ll free_t = it->first;\n ll reg = it->second;\n\n if (free_t <= t) {\n last = t;\n st.erase(it);\n f[reg] = t;\n st.insert({t, reg});\n } else last = free_t;\n t = last + D;\n }\n cout << (last - S) << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 15076, "score_of_the_acc": -0.4014, "final_rank": 3 }, { "submission_id": "aoj_2760_10259919", "code_snippet": "// AOJ #2760 Shopping\n// 2025.3.2\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nll Cinll() { // 整数の入力\n\tll n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct Cust { int a, b; };\n\nstruct Reg {\n vector<Cust> v;\n int ptr;\n ll st;\n Reg() : ptr(0), st(0) {}\n};\n\nll proc(Reg &r, ll t) {\n while(r.ptr < (int)r.v.size() && r.v[r.ptr].a <= t){\n r.st = max(r.st, (ll)r.v[r.ptr].a) + r.v[r.ptr].b;\n r.ptr++;\n }\n return max(t, r.st);\n}\n\nint main(){\n ll N = Cinll();\n int M = Cin(), K = Cin(), D = Cin(), S = Cin();\n unordered_map<ll, vector<Cust>> mp;\n mp.reserve(M*2);\n for (int i = 0; i < M; i++){\n int a = Cin(), b = Cin(); ll c = Cinll();\n mp[c].push_back({a, b});\n }\n if(N > (int)mp.size()){\n Cout((ll)K * D);\n return 0;\n }\n\n vector<Reg> Rg;\n for(auto &p : mp){\n auto &vec = p.second;\n sort(vec.begin(), vec.end(), [](const Cust &c1, const Cust &c2){\n return c1.a < c2.a;\n });\n Reg r;\n r.v = move(vec);\n Rg.push_back(move(r));\n }\n int R = Rg.size();\n\n ll jt = S + D;\n vector<ll> dp(R, 0);\n for (int r = 0; r < R; r++) dp[r] = proc(Rg[r], jt);\n\n for (int i = 2; i <= K; i++){\n ll m = LLONG_MAX, s = LLONG_MAX;\n int im = -1;\n for (int r = 0; r < R; r++){\n if(dp[r] < m){\n s = m;\n m = dp[r];\n im = r;\n } else if(dp[r] < s) s = dp[r];\n }\n vector<ll> ndp(R, 0);\n for (int r = 0; r < R; r++){\n ll base = ( (R==1 || r != im) ? m : s ) + D;\n ndp[r] = proc(Rg[r], base);\n }\n dp.swap(ndp);\n }\n ll t = *min_element(dp.begin(), dp.end());\n cout << t - S << endl;\n return 0;\n}", "accuracy": 0.6428571428571429, "time_ms": 10, "memory_kb": 11464, "score_of_the_acc": -0.096, "final_rank": 11 }, { "submission_id": "aoj_2760_9814697", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <algorithm>\n#include <random>\n#include <cassert>\n#include <bitset>\n#include <numeric>\n#include <queue>\n#include <unordered_map>\n#include <climits>\n#include <array>\n#include <memory>\n#include <iomanip>\n#include <stack>\n#include <set>\n#include <map>\n\n\n\nint main() {\n\tlong long int n;\n\tint m, k, d, s; std::cin >> n >> m >> k >> d >> s;\n\tstd::vector<std::tuple<int, int, long long int>> customer(m);\n\tfor (auto& [a, b, c] : customer) {\n\t\tstd::cin >> a >> b >> c;\n\t}\n\n\tstd::unordered_map<long long int, int> endTime;\n\tconst auto comparator = [](const std::pair<int, long long int>& a, const std::pair<int, long long int>& b) {return a.first > b.first; };\n\tstd::priority_queue<std::pair<int, long long int>, std::vector<std::pair<int, long long int>>, decltype(comparator)> queue(comparator);\n\tfor (const auto& [a, b, c] : customer) {\n\t\tendTime[c] = 0;\n\t\tqueue.emplace(0, c);\n\t}\n\tif (endTime.size() < n) {\n\t\tendTime[-1] = 0;\n\t\tqueue.emplace(0, -1);\n\t}\n\tint count{ 0 };\n\tint next{ s + d };\n\tfor (const auto [a, b, c] : customer) {\n\t\twhile (a > next && count < k) {\n\t\t\twhile (endTime[queue.top().second] != queue.top().first) {\n\t\t\t\tqueue.pop();\n\t\t\t}\n\t\t\tconst auto time{ std::max(next, queue.top().first) };\n\t\t\t++count;\n\t\t\tnext = time + d;\n\t\t}\n\t\tconst auto start{ std::max(a, endTime[c]) };\n\t\tconst auto end{ start + b };\n\t\tendTime[c] = end;\n\t\tqueue.emplace(end, c);\n\t}\n\tfor (; count < k; ++count) {\n\t\twhile (endTime[queue.top().second] != queue.top().first) {\n\t\t\tqueue.pop();\n\t\t}\n\t\tconst auto time{ std::max(next, queue.top().first) };\n\t\tnext = time + d;\n\t}\n\tconst auto result{ next - d - s };\n\tstd::cout << result << '\\n';\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 13988, "score_of_the_acc": -0.5514, "final_rank": 5 }, { "submission_id": "aoj_2760_8318909", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nclass RangeMin {\npublic:\n\tint size_ = 1;\n\tvector<long long> dat;\n\n\tvoid init(int sz) {\n\t\tsize_ = 1;\n\t\twhile (size_ <= sz) size_ *= 2;\n\t\tdat.resize(size_ * 2, 0);\n\t}\n\n\tvoid update(int pos, long long x) {\n\t\tpos += size_;\n\t\tdat[pos] = x;\n\t\twhile (pos >= 2) {\n\t\t\tpos >>= 1;\n\t\t\tdat[pos] = min(dat[pos * 2], dat[pos * 2 + 1]);\n\t\t}\n\t}\n\n\tlong long query_(int l, int r, int a, int b, int u) {\n\t\tif (l <= a && b <= r) return dat[u];\n\t\tif (r <= a || b <= l) return (1LL << 60);\n\t\tlong long v1 = query_(l, r, a, (a + b) / 2, u * 2);\n\t\tlong long v2 = query_(l, r, (a + b) / 2, b, u * 2 + 1);\n\t\treturn min(v1, v2);\n\t}\n\n\tlong long query(int l, int r) {\n\t\treturn query_(l, r, 0, size_, 1);\n\t}\n};\n\nlong long N;\nlong long M, A[1 << 18], B[1 << 18], C[1 << 18];\nlong long K;\nlong long D;\nlong long S;\nlong long Time[1 << 18];\nint bar = 1;\n\nint main() {\n\t// Step 1. Input\n\tcin >> N >> M >> K >> D >> S;\n\tfor (int i = 1; i <= M; i++) cin >> A[i] >> B[i] >> C[i];\n\n\t// Step 2. Compression\n\tvector<long long> Zahyou;\n\tfor (int i = 1; i <= M; i++) Zahyou.push_back(C[i]);\n\tsort(Zahyou.begin(), Zahyou.end());\n\tZahyou.erase(unique(Zahyou.begin(), Zahyou.end()), Zahyou.end());\n\tif ((long long)Zahyou.size() < N) Zahyou.push_back(N + 1);\n\tfor (int i = 1; i <= M; i++) C[i] = lower_bound(Zahyou.begin(), Zahyou.end(), C[i]) - Zahyou.begin();\n\n\t// Step 3. Simulation\n\tRangeMin Z; Z.init(Zahyou.size() + 2);\n\tlong long CurrentTime = S + D;\n\tfor (int i = 1; i <= K; i++) {\n\t\twhile (bar <= M && A[bar] <= CurrentTime) {\n\t\t\tTime[C[bar]] = max(Time[C[bar]], A[bar]) + B[bar];\n\t\t\tZ.update(C[bar], Time[C[bar]]);\n\t\t\tbar += 1;\n\t\t}\n\t\tlong long FinishTime = Z.query(0, Zahyou.size());\n\t\tCurrentTime = max(CurrentTime, FinishTime) + D;\n\t}\n\n\t// Step 4. Output\n\tcout << CurrentTime - D - S << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 12960, "score_of_the_acc": -0.5356, "final_rank": 4 }, { "submission_id": "aoj_2760_4549587", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)\n#define ll long long\n#define pp pair<ll,ll>\n#define ld long double\n#define all(a) (a).begin(),(a).end()\n#define mk make_pair\nll MOD=998244353;\nint inf=1000001000;\nll INF=1e18+5;\nll mod=INF;\n\nint main() {\n ll n;\n cin >> n;\n int mm,k,d,s;\n cin >> mm >> k >> d >> s;\n vector<pair<ll,pair<ll,ll>>> a(mm);\n rep(i,mm){\n cin >> a[i].first >> a[i].second.first >> a[i].second.second;\n }\n ll cc=0;\n map<ll,int> m;\n set<ll> ss;\n priority_queue<pp,vector<pp>,greater<pp>> q;\n priority_queue<pp,vector<pp>,greater<pp>> qq;\n rep(i,mm){\n m[a[i].second.second]=0;\n qq.push(mk(a[i].first,i));\n if (ss.find(a[i].second.second)==ss.end()){\n q.push(mk(0,a[i].second.second));\n cc++;\n ss.insert(a[i].second.second);\n }\n }\n if (cc<n){\n cout << d*k << endl;\n return 0;\n }\n qq.push(mk(s+d,INF));\n int y=1,ans;\n bool r=true;\n while(true){\n if (!r) break;\n ll f=qq.top().first,g=qq.top().second;\n qq.pop();\n if (g==INF){\n while(true){\n ll ff=q.top().first,gg=q.top().second;\n q.pop();\n if (m[gg]!=ff) continue;\n if (y==k) {\n r=false;\n ans=max(f+d,ff+d);\n }\n y++;\n // cout << ff << \" \" << f << endl;\n // cout << max(f+d,ff+d) << endl;\n qq.push(mk(max(f+d,ff+d),INF));\n break;\n }\n }\n else {\n m[a[g].second.second]=max(m[a[g].second.second]+a[g].second.first,f+a[g].second.first);\n q.push(mk(m[a[g].second.second],a[g].second.second));\n }\n }\n cout << ans-s-d << endl;\n}", "accuracy": 0.6428571428571429, "time_ms": 120, "memory_kb": 17364, "score_of_the_acc": -1.1032, "final_rank": 13 }, { "submission_id": "aoj_2760_4549542", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)\n#define ll long long\n#define pp pair<ll,ll>\n#define ld long double\n#define all(a) (a).begin(),(a).end()\n#define mk make_pair\nll MOD=998244353;\nint inf=1000001000;\nll INF=1e18+5;\nll mod=INF;\n\nint main() {\n ll n;\n cin >> n;\n int mm,k,d,s;\n cin >> mm >> k >> d >> s;\n vector<pair<ll,pair<ll,ll>>> a(mm);\n rep(i,mm){\n cin >> a[i].first >> a[i].second.first >> a[i].second.second;\n }\n ll cc=0;\n map<ll,int> m;\n set<ll> ss;\n priority_queue<pp,vector<pp>,greater<pp>> q;\n priority_queue<pp,vector<pp>,greater<pp>> qq;\n rep(i,mm){\n m[a[i].second.second]=0;\n qq.push(mk(a[i].first,i));\n if (ss.find(a[i].second.second)==ss.end()){\n q.push(mk(0,a[i].second.second));\n cc++;\n ss.insert(a[i].second.second);\n }\n }\n if (cc<n){\n cout << s+d*k << endl;\n return 0;\n }\n qq.push(mk(s+d,INF));\n int y=1,ans;\n bool r=true;\n while(true){\n if (!r) break;\n ll f=qq.top().first,g=qq.top().second;\n qq.pop();\n if (g==INF){\n while(true){\n ll ff=q.top().first,gg=q.top().second;\n q.pop();\n if (m[gg]!=ff) continue;\n if (y==k) {\n r=false;\n ans=max(f+d,ff+d);\n }\n y++;\n qq.push(mk(max(f+d,ff+d),INF));\n break;\n }\n }\n else {\n m[a[g].second.second]=max(m[a[g].second.second]+a[g].second.first,f+a[g].second.first);\n q.push(mk(m[a[g].second.second],a[g].second.second));\n }\n }\n cout << ans-s-d << endl;\n}", "accuracy": 0.07142857142857142, "time_ms": 10, "memory_kb": 5216, "score_of_the_acc": 0, "final_rank": 19 }, { "submission_id": "aoj_2760_4549474", "code_snippet": "#include <bits/stdc++.h>\n\ntemplate <typename T,typename E>\nstruct LazySegmentTree{\nprivate:\n typedef std::function<T(T,T)> F;\n typedef std::function<T(T,E)> G;\n typedef std::function<E(E,E)> H;\n typedef std::function<E(E,int)> P;\n int n;\n F cal;//function for merge\n G upd;//function for update\n H ecal;//function for evaluate\n P rcal;//function for range calculate\n std::vector<T> init;\n T initv;\n E opinit;\n std::vector<T> node;\n std::vector<E> lazy;\npublic:\n explicit LazySegmentTree(//特定の要素で初期化する場合\n int sz,\n F cal,\n G upd,\n H ecal,\n P rcal=[](E a,int b){return a;},\n T initv=std::numeric_limits<long long>::max(),\n E opinit=0\n ):\n cal(cal),\n upd(upd),\n ecal(ecal),\n rcal(rcal),\n initv(initv),\n opinit(opinit)\n {\n n=1;\n while(n<sz)n=n*2;\n node.resize(static_cast<unsigned int>(2 * n - 1), initv);\n for (int i = 0; i <sz ; ++i) node[i+n-1]=(T)0;\n for (int i = n-2; i >= 0 ; --i) node[i]=cal(node[2*i+1],node[2*i+2]);\n\n lazy.resize(static_cast<unsigned int>(2 * n - 1), opinit);\n for (int i = 0; i <sz ; ++i) lazy[i+n-1]=opinit;\n for (int i = n-2; i >= 0 ; --i) lazy[i]=ecal(lazy[2*i+1],lazy[2*i+2]);\n }\n\n void update(int p,int q,E val,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n eval(k,r-l);\n if(r<=p||l>=q)return;\n if(p<=l&&r<=q){\n lazy[k]=ecal(lazy[k],val);\n eval(k,r-l);\n }\n else{\n update(p,q,val,2*k+1,l,(l+r)/2);\n update(p,q,val,2*k+2,(l+r)/2,r);\n node[k]=cal(node[2*k+1],node[2*k+2]);\n }\n }\n\n T query(int p,int q,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n if(r<=p||l>=q)return initv;\n\n eval(k,r-l);\n if(p<=l&&r<=q)return node[k];\n T vl=query(p,q,2*k+1,l,(l+r)/2);\n T vr=query(p,q,2*k+2,(l+r)/2,r);\n return cal(vl,vr);\n }\n\n void eval(int k,int len){//k:0-indexed\n if(lazy[k]==opinit)return;\n node[k]=upd(node[k],rcal(lazy[k],len));\n if(k<n-1){\n lazy[2*k+1]=ecal(lazy[2*k+1],lazy[k]);\n lazy[2*k+2]=ecal(lazy[2*k+2],lazy[k]);\n }\n lazy[k]=opinit;\n }\n};\n\nusing namespace std;\nusing ll = long long;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n,m,k,d,s;\n cin>>n>>m>>k>>d>>s;\n vector<pair<ll,pair<ll,ll>>> data;\n int ind=0;\n map<ll,int> zatu;\n for(int i = 0;i < m;++i) {\n ll a,b,c;\n cin>>a>>b>>c;\n if(zatu.find(c)==zatu.end()){\n zatu[c]=ind;\n ++ind;\n }\n data.emplace_back(a,make_pair(b,c));\n }\n if(ind<n){\n zatu[-1]=ind;\n ++ind;\n }\n sort(data.begin(),data.end());\n\n LazySegmentTree<ll,ll> st(\n ind,\n [](ll a,ll b)->ll{return min(a,b);},\n [](ll a,ll b)->ll{return max(a-b,0LL);},\n [](ll a,ll b)->ll{return a+b;}\n );\n\n ll szt=s+d;\n ll pszt=0;\n while(k>0&&szt<data[0].first){\n --k;\n szt+=d;\n }\n\n st.update(zatu[data[0].second.second],zatu[data[0].second.second]+1,-data[0].second.first);\n pszt=data[0].first;\n for(int i = 1;i < m;++i) {\n while(k>0&&szt<data[i].first){\n --k;\n st.update(0,ind,szt-pszt);\n pszt=szt;\n szt+=st.query(0,ind);\n szt+=d;\n }\n if(k<=0)break;\n\n st.update(0,ind,data[i].first-pszt);\n st.update(zatu[data[i].second.second],zatu[data[i].second.second]+1,-data[i].second.first);\n pszt=data[i].first;\n }\n while(k>0){\n --k;\n st.update(0,ind,szt-pszt);\n pszt=szt;\n szt+=st.query(0,ind);\n szt+=d;\n }\n\n cout<<szt-d-s<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 15408, "score_of_the_acc": -0.9899, "final_rank": 8 }, { "submission_id": "aoj_2760_4549469", "code_snippet": "#include <bits/stdc++.h>\n\ntemplate <typename T,typename E>\nstruct LazySegmentTree{\nprivate:\n typedef std::function<T(T,T)> F;\n typedef std::function<T(T,E)> G;\n typedef std::function<E(E,E)> H;\n typedef std::function<E(E,int)> P;\n int n;\n F cal;//function for merge\n G upd;//function for update\n H ecal;//function for evaluate\n P rcal;//function for range calculate\n std::vector<T> init;\n T initv;\n E opinit;\n std::vector<T> node;\n std::vector<E> lazy;\npublic:\n explicit LazySegmentTree(//特定の要素で初期化する場合\n int sz,\n F cal,\n G upd,\n H ecal,\n P rcal=[](E a,int b){return a;},\n T initv=std::numeric_limits<long long>::max(),\n E opinit=0\n ):\n cal(cal),\n upd(upd),\n ecal(ecal),\n rcal(rcal),\n initv(initv),\n opinit(opinit)\n {\n n=1;\n while(n<sz)n=n*2;\n node.resize(static_cast<unsigned int>(2 * n - 1), initv);\n for (int i = 0; i <sz ; ++i) node[i+n-1]=(T)0;\n for (int i = n-2; i >= 0 ; --i) node[i]=cal(node[2*i+1],node[2*i+2]);\n\n lazy.resize(static_cast<unsigned int>(2 * n - 1), opinit);\n for (int i = 0; i <sz ; ++i) lazy[i+n-1]=opinit;\n for (int i = n-2; i >= 0 ; --i) lazy[i]=ecal(lazy[2*i+1],lazy[2*i+2]);\n }\n\n void update(int p,int q,E val,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n eval(k,r-l);\n if(r<=p||l>=q)return;\n if(p<=l&&r<=q){\n lazy[k]=ecal(lazy[k],val);\n eval(k,r-l);\n }\n else{\n update(p,q,val,2*k+1,l,(l+r)/2);\n update(p,q,val,2*k+2,(l+r)/2,r);\n node[k]=cal(node[2*k+1],node[2*k+2]);\n }\n }\n\n T query(int p,int q,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n if(r<=p||l>=q)return initv;\n\n eval(k,r-l);\n if(p<=l&&r<=q)return node[k];\n T vl=query(p,q,2*k+1,l,(l+r)/2);\n T vr=query(p,q,2*k+2,(l+r)/2,r);\n return cal(vl,vr);\n }\n\n void eval(int k,int len){//k:0-indexed\n if(lazy[k]==opinit)return;\n node[k]=upd(node[k],rcal(lazy[k],len));\n if(k<n-1){\n lazy[2*k+1]=ecal(lazy[2*k+1],lazy[k]);\n lazy[2*k+2]=ecal(lazy[2*k+2],lazy[k]);\n }\n lazy[k]=opinit;\n }\n};\n\nusing namespace std;\nusing ll = long long;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n,m,k,d,s;\n cin>>n>>m>>k>>d>>s;\n vector<pair<ll,pair<ll,ll>>> data;\n int ind=0;\n map<ll,int> zatu;\n for(int i = 0;i < m;++i) {\n ll a,b,c;\n cin>>a>>b>>c;\n if(zatu.find(c)==zatu.end()){\n zatu[c]=ind;\n ++ind;\n }\n data.emplace_back(a,make_pair(b,c));\n }\n sort(data.begin(),data.end());\n\n LazySegmentTree<ll,ll> st(\n ind,\n [](ll a,ll b)->ll{return min(a,b);},\n [](ll a,ll b)->ll{return max(a-b,0LL);},\n [](ll a,ll b)->ll{return a+b;}\n );\n\n ll szt=s+d;\n ll pszt=0;\n while(k>0&&szt<data[0].first){\n --k;\n szt+=d;\n }\n\n st.update(zatu[data[0].second.second],zatu[data[0].second.second]+1,-data[0].second.first);\n pszt=data[0].first;\n for(int i = 1;i < m;++i) {\n while(k>0&&szt<data[i].first){\n --k;\n st.update(0,ind,szt-pszt);\n pszt=szt;\n szt+=st.query(0,ind);\n szt+=d;\n }\n if(k<=0)break;\n\n st.update(0,ind,data[i].first-pszt);\n st.update(zatu[data[i].second.second],zatu[data[i].second.second]+1,-data[i].second.first);\n pszt=data[i].first;\n }\n while(k>0){\n --k;\n st.update(0,ind,szt-pszt);\n pszt=szt;\n szt+=st.query(0,ind);\n szt+=d;\n }\n\n cout<<szt-d-s<<endl;\n\n return 0;\n}", "accuracy": 0.7380952380952381, "time_ms": 120, "memory_kb": 14708, "score_of_the_acc": -1.0624, "final_rank": 10 }, { "submission_id": "aoj_2760_4549448", "code_snippet": "#include <bits/stdc++.h>\n\ntemplate <typename T,typename E>\nstruct LazySegmentTree{\nprivate:\n typedef std::function<T(T,T)> F;\n typedef std::function<T(T,E)> G;\n typedef std::function<E(E,E)> H;\n typedef std::function<E(E,int)> P;\n int n;\n F cal;//function for merge\n G upd;//function for update\n H ecal;//function for evaluate\n P rcal;//function for range calculate\n std::vector<T> init;\n T initv;\n E opinit;\n std::vector<T> node;\n std::vector<E> lazy;\npublic:\n explicit LazySegmentTree(//特定の要素で初期化する場合\n int sz,\n F cal,\n G upd,\n H ecal,\n P rcal=[](E a,int b){return a*b;},\n T initv=std::numeric_limits<long long>::max(),\n E opinit=0\n ):\n cal(cal),\n upd(upd),\n ecal(ecal),\n rcal(rcal),\n initv(initv),\n opinit(opinit)\n {\n n=1;\n while(n<sz)n=n*2;\n node.resize(static_cast<unsigned int>(2 * n - 1), initv);\n for (int i = 0; i <sz ; ++i) node[i+n-1]=(T)0;\n for (int i = n-2; i >= 0 ; --i) node[i]=cal(node[2*i+1],node[2*i+2]);\n\n lazy.resize(static_cast<unsigned int>(2 * n - 1), opinit);\n for (int i = 0; i <sz ; ++i) lazy[i+n-1]=opinit;\n for (int i = n-2; i >= 0 ; --i) lazy[i]=ecal(lazy[2*i+1],lazy[2*i+2]);\n }\n\n void update(int p,int q,E val,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n eval(k,r-l);\n if(r<=p||l>=q)return;\n if(p<=l&&r<=q){\n lazy[k]=ecal(lazy[k],val);\n eval(k,r-l);\n }\n else{\n update(p,q,val,2*k+1,l,(l+r)/2);\n update(p,q,val,2*k+2,(l+r)/2,r);\n node[k]=cal(node[2*k+1],node[2*k+2]);\n }\n }\n\n T query(int p,int q,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n if(r<=p||l>=q)return initv;\n\n eval(k,r-l);\n if(p<=l&&r<=q)return node[k];\n T vl=query(p,q,2*k+1,l,(l+r)/2);\n T vr=query(p,q,2*k+2,(l+r)/2,r);\n return cal(vl,vr);\n }\n\n void eval(int k,int len){//k:0-indexed\n if(lazy[k]==opinit)return;\n node[k]=upd(node[k],rcal(lazy[k],len));\n if(k<n-1){\n lazy[2*k+1]=ecal(lazy[2*k+1],lazy[k]);\n lazy[2*k+2]=ecal(lazy[2*k+2],lazy[k]);\n }\n lazy[k]=opinit;\n }\n};\n\nusing namespace std;\nusing ll = long long;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n,m,k,d,s;\n cin>>n>>m>>k>>d>>s;\n vector<pair<ll,pair<ll,ll>>> data;\n int ind=0;\n map<ll,int> zatu;\n for(int i = 0;i < m;++i) {\n ll a,b,c;\n cin>>a>>b>>c;\n if(zatu.find(c)==zatu.end()){\n zatu[c]=ind;\n ++ind;\n }\n data.emplace_back(a,make_pair(b,c));\n }\n sort(data.begin(),data.end());\n\n LazySegmentTree<ll,ll> st(\n ind,\n [](ll a,ll b)->ll{return min(a,b);},\n [](ll a,ll b)->ll{return max(a-b,0LL);},\n [](ll a,ll b)->ll{return a+b;}\n );\n\n ll szt=s+d;\n ll pszt=0;\n while(k>0&&szt<data[0].first){\n --k;\n szt+=d;\n }\n\n st.update(zatu[data[0].second.second],zatu[data[0].second.second]+1,-data[0].second.first);\n pszt=data[0].first;\n for(int i = 1;i < m;++i) {\n while(k>0&&szt<data[i].first){\n --k;\n st.update(0,ind,szt-pszt);\n pszt=szt;\n szt+=st.query(0,ind);\n szt+=d;\n }\n if(k<=0)break;\n\n st.update(0,ind,data[i].first-pszt);\n st.update(zatu[data[i].second.second],zatu[data[i].second.second]+1,-data[i].second.first);\n pszt=data[i].first;\n }\n while(k>0){\n --k;\n st.update(0,ind,szt-pszt);\n pszt=szt;\n szt+=st.query(0,ind);\n szt+=d;\n }\n\n cout<<szt-d-s<<endl;\n\n return 0;\n}", "accuracy": 0.6428571428571429, "time_ms": 110, "memory_kb": 14548, "score_of_the_acc": -0.9766, "final_rank": 12 }, { "submission_id": "aoj_2760_4549425", "code_snippet": "#include <bits/stdc++.h>\n\ntemplate <typename T,typename E>\nstruct LazySegmentTree{\nprivate:\n typedef std::function<T(T,T)> F;\n typedef std::function<T(T,E)> G;\n typedef std::function<E(E,E)> H;\n typedef std::function<E(E,int)> P;\n int n;\n F cal;//function for merge\n G upd;//function for update\n H ecal;//function for evaluate\n P rcal;//function for range calculate\n std::vector<T> init;\n T initv;\n E opinit;\n std::vector<T> node;\n std::vector<E> lazy;\npublic:\n explicit LazySegmentTree(//特定の要素で初期化する場合\n int sz,\n F cal,\n G upd,\n H ecal,\n P rcal=[](E a,int b){return a*b;},\n T initv=std::numeric_limits<long long>::max(),\n E opinit=0\n ):\n cal(cal),\n upd(upd),\n ecal(ecal),\n rcal(rcal),\n initv(initv),\n opinit(opinit)\n {\n n=1;\n while(n<sz)n=n*2;\n node.resize(static_cast<unsigned int>(2 * n - 1), initv);\n for (int i = 0; i <sz ; ++i) node[i+n-1]=(T)0;\n for (int i = n-2; i >= 0 ; --i) node[i]=cal(node[2*i+1],node[2*i+2]);\n\n lazy.resize(static_cast<unsigned int>(2 * n - 1), opinit);\n for (int i = 0; i <sz ; ++i) lazy[i+n-1]=opinit;\n for (int i = n-2; i >= 0 ; --i) lazy[i]=ecal(lazy[2*i+1],lazy[2*i+2]);\n }\n\n void update(int p,int q,E val,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n eval(k,r-l);\n if(r<=p||l>=q)return;\n if(p<=l&&r<=q){\n lazy[k]=ecal(lazy[k],val);\n eval(k,r-l);\n }\n else{\n update(p,q,val,2*k+1,l,(l+r)/2);\n update(p,q,val,2*k+2,(l+r)/2,r);\n node[k]=cal(node[2*k+1],node[2*k+2]);\n }\n }\n\n T query(int p,int q,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n if(r<=p||l>=q)return initv;\n\n eval(k,r-l);\n if(p<=l&&r<=q)return node[k];\n T vl=query(p,q,2*k+1,l,(l+r)/2);\n T vr=query(p,q,2*k+2,(l+r)/2,r);\n return cal(vl,vr);\n }\n\n void eval(int k,int len){//k:0-indexed\n if(lazy[k]==opinit)return;\n node[k]=upd(node[k],rcal(lazy[k],len));\n if(k<n-1){\n lazy[2*k+1]=ecal(lazy[2*k+1],lazy[k]);\n lazy[2*k+2]=ecal(lazy[2*k+2],lazy[k]);\n }\n lazy[k]=opinit;\n }\n};\n\nusing namespace std;\nusing ll = long long;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n,m,k,d,s;\n cin>>n>>m>>k>>d>>s;\n vector<pair<ll,pair<ll,ll>>> data;\n int ind=0;\n map<ll,int> zatu;\n for(int i = 0;i < m;++i) {\n ll a,b,c;\n cin>>a>>b>>c;\n if(zatu.find(c)==zatu.end()){\n zatu[c]=ind;\n ++ind;\n }\n data.emplace_back(a,make_pair(b,c));\n }\n sort(data.begin(),data.end());\n\n LazySegmentTree<ll,ll> st(\n ind,\n [](ll a,ll b)->ll{return min(a,b);},\n [](ll a,ll b)->ll{return max(a-b,0LL);},\n [](ll a,ll b)->ll{return a+b;}\n );\n\n ll szt=s+d;\n\n while(k>0&&szt<data[0].first){\n --k;\n szt+=d;\n }\n\n st.update(zatu[data[0].second.second],zatu[data[0].second.second]+1,-data[0].second.first);\n\n for(int i = 1;i < m;++i) {\n while(k>0&&szt<data[i].first){\n --k;\n st.update(0,ind,szt-data[i-1].first);\n szt+=st.query(0,ind);\n szt+=d;\n }\n if(k<=0)break;\n\n st.update(0,ind,data[i].first-data[i-1].first);\n st.update(zatu[data[i].second.second],zatu[data[i].second.second]+1,-data[i].second.first);\n }\n ll pszt=data[m-1].first;\n while(k>0){\n --k;\n st.update(0,ind,szt-pszt);\n pszt=szt;\n szt+=st.query(0,ind);\n szt+=d;\n }\n\n cout<<szt-d-s<<endl;\n\n return 0;\n}", "accuracy": 0.40476190476190477, "time_ms": 110, "memory_kb": 14564, "score_of_the_acc": -0.9769, "final_rank": 16 }, { "submission_id": "aoj_2760_4549409", "code_snippet": "#include <bits/stdc++.h>\n\ntemplate <typename T,typename E>\nstruct LazySegmentTree{\nprivate:\n typedef std::function<T(T,T)> F;\n typedef std::function<T(T,E)> G;\n typedef std::function<E(E,E)> H;\n typedef std::function<E(E,int)> P;\n int n;\n F cal;//function for merge\n G upd;//function for update\n H ecal;//function for evaluate\n P rcal;//function for range calculate\n std::vector<T> init;\n T initv;\n E opinit;\n std::vector<T> node;\n std::vector<E> lazy;\npublic:\n explicit LazySegmentTree(//特定の要素で初期化する場合\n int sz,\n F cal,\n G upd,\n H ecal,\n P rcal=[](E a,int b){return a*b;},\n T initv=std::numeric_limits<long long>::max(),\n E opinit=0\n ):\n cal(cal),\n upd(upd),\n ecal(ecal),\n rcal(rcal),\n initv(initv),\n opinit(opinit)\n {\n n=1;\n while(n<sz)n=n*2;\n node.resize(static_cast<unsigned int>(2 * n - 1), initv);\n for (int i = 0; i <sz ; ++i) node[i+n-1]=(T)0;\n for (int i = n-2; i >= 0 ; --i) node[i]=cal(node[2*i+1],node[2*i+2]);\n\n lazy.resize(static_cast<unsigned int>(2 * n - 1), opinit);\n for (int i = 0; i <sz ; ++i) lazy[i+n-1]=opinit;\n for (int i = n-2; i >= 0 ; --i) lazy[i]=ecal(lazy[2*i+1],lazy[2*i+2]);\n }\n\n void update(int p,int q,E val,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n eval(k,r-l);\n if(r<=p||l>=q)return;\n if(p<=l&&r<=q){\n lazy[k]=ecal(lazy[k],val);\n eval(k,r-l);\n }\n else{\n update(p,q,val,2*k+1,l,(l+r)/2);\n update(p,q,val,2*k+2,(l+r)/2,r);\n node[k]=cal(node[2*k+1],node[2*k+2]);\n }\n }\n\n T query(int p,int q,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n if(r<=p||l>=q)return initv;\n\n eval(k,r-l);\n if(p<=l&&r<=q)return node[k];\n T vl=query(p,q,2*k+1,l,(l+r)/2);\n T vr=query(p,q,2*k+2,(l+r)/2,r);\n return cal(vl,vr);\n }\n\n void eval(int k,int len){//k:0-indexed\n if(lazy[k]==opinit)return;\n node[k]=upd(node[k],rcal(lazy[k],len));\n if(k<n-1){\n lazy[2*k+1]=ecal(lazy[2*k+1],lazy[k]);\n lazy[2*k+2]=ecal(lazy[2*k+2],lazy[k]);\n }\n lazy[k]=opinit;\n }\n};\n\nusing namespace std;\nusing ll = long long;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n,m,k,d,s;\n cin>>n>>m>>k>>d>>s;\n vector<pair<ll,pair<ll,ll>>> data;\n int ind=0;\n map<ll,int> zatu;\n for(int i = 0;i < m;++i) {\n ll a,b,c;\n cin>>a>>b>>c;\n if(zatu.find(c)==zatu.end()){\n zatu[c]=ind;\n ++ind;\n }\n data.emplace_back(a,make_pair(b,c));\n }\n sort(data.begin(),data.end());\n\n LazySegmentTree<ll,ll> st(\n ind,\n [](ll a,ll b)->ll{return min(a,b);},\n [](ll a,ll b)->ll{return max(a-b,0LL);},\n [](ll a,ll b)->ll{return a+b;}\n );\n\n ll szt=s+d;\n\n while(k>0&&szt<data[0].first){\n --k;\n szt+=d;\n }\n\n st.update(zatu[data[0].second.second],zatu[data[0].second.second]+1,-data[0].second.first);\n\n for(int i = 1;i < m;++i) {\n while(k>0&&szt<data[i].first){\n --k;\n st.update(0,ind,szt-data[i-1].first);\n szt+=st.query(0,ind);\n szt+=d;\n\n }\n if(k<=0)break;\n\n st.update(0,ind,data[i].first-data[i-1].first);\n st.update(zatu[data[i].second.second],zatu[data[i].second.second]+1,-data[i].second.first);\n }\n while(k>0){\n --k;\n st.update(0,ind,szt-data[m-1].first);\n szt+=st.query(0,ind);\n szt+=d;\n }\n\n cout<<szt-d-s<<endl;\n\n return 0;\n}", "accuracy": 0.40476190476190477, "time_ms": 110, "memory_kb": 14664, "score_of_the_acc": -0.9784, "final_rank": 17 }, { "submission_id": "aoj_2760_4549386", "code_snippet": "#include <bits/stdc++.h>\n\ntemplate <typename T,typename E>\nstruct LazySegmentTree{\nprivate:\n typedef std::function<T(T,T)> F;\n typedef std::function<T(T,E)> G;\n typedef std::function<E(E,E)> H;\n typedef std::function<E(E,int)> P;\n int n;\n F cal;//function for merge\n G upd;//function for update\n H ecal;//function for evaluate\n P rcal;//function for range calculate\n std::vector<T> init;\n T initv;\n E opinit;\n std::vector<T> node;\n std::vector<E> lazy;\npublic:\n explicit LazySegmentTree(//特定の要素で初期化する場合\n int sz,\n F cal,\n G upd,\n H ecal,\n P rcal=[](E a,int b){return a*b;},\n T initv=std::numeric_limits<long long>::max(),\n E opinit=0\n ):\n cal(cal),\n upd(upd),\n ecal(ecal),\n rcal(rcal),\n initv(initv),\n opinit(opinit)\n {\n n=1;\n while(n<sz)n=n*2;\n node.resize(static_cast<unsigned int>(2 * n - 1), initv);\n for (int i = 0; i <sz ; ++i) node[i+n-1]=(T)0;\n for (int i = n-2; i >= 0 ; --i) node[i]=cal(node[2*i+1],node[2*i+2]);\n\n lazy.resize(static_cast<unsigned int>(2 * n - 1), opinit);\n for (int i = 0; i <sz ; ++i) lazy[i+n-1]=opinit;\n for (int i = n-2; i >= 0 ; --i) lazy[i]=ecal(lazy[2*i+1],lazy[2*i+2]);\n }\n\n void update(int p,int q,E val,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n eval(k,r-l);\n if(r<=p||l>=q)return;\n if(p<=l&&r<=q){\n lazy[k]=ecal(lazy[k],val);\n eval(k,r-l);\n }\n else{\n update(p,q,val,2*k+1,l,(l+r)/2);\n update(p,q,val,2*k+2,(l+r)/2,r);\n node[k]=cal(node[2*k+1],node[2*k+2]);\n }\n }\n\n T query(int p,int q,int k=0,int l=0,int r=-1){//[p,q):0-indexed\n if(r<0)r=n;\n if(r<=p||l>=q)return initv;\n\n eval(k,r-l);\n if(p<=l&&r<=q)return node[k];\n T vl=query(p,q,2*k+1,l,(l+r)/2);\n T vr=query(p,q,2*k+2,(l+r)/2,r);\n return cal(vl,vr);\n }\n\n void eval(int k,int len){//k:0-indexed\n if(lazy[k]==opinit)return;\n node[k]=upd(node[k],rcal(lazy[k],len));\n if(k<n-1){\n lazy[2*k+1]=ecal(lazy[2*k+1],lazy[k]);\n lazy[2*k+2]=ecal(lazy[2*k+2],lazy[k]);\n }\n lazy[k]=opinit;\n }\n};\n\nusing namespace std;\nusing ll = long long;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n,m,k,d,s;\n cin>>n>>m>>k>>d>>s;\n vector<pair<ll,pair<ll,ll>>> data;\n int ind=0;\n map<ll,int> zatu;\n for(int i = 0;i < m;++i) {\n ll a,b,c;\n cin>>a>>b>>c;\n if(zatu.find(c)==zatu.end()){\n zatu[c]=ind;\n ++ind;\n }\n data.emplace_back(a,make_pair(b,c));\n }\n sort(data.begin(),data.end());\n\n LazySegmentTree<ll,ll> st(\n ind,\n [](ll a,ll b)->ll{return min(a,b);},\n [](ll a,ll b)->ll{return max(a-b,0LL);},\n [](ll a,ll b)->ll{return a+b;}\n );\n\n ll szt=s;\n\n while(k>0&&szt<data[0].first){\n --k;\n szt+=d;\n }\n\n st.update(zatu[data[0].second.second],zatu[data[0].second.second]+1,-data[0].second.first);\n\n for(int i = 1;i < m;++i) {\n while(k>0&&szt<data[i].first){\n --k;\n st.update(0,ind,szt-data[i-1].first);\n szt+=st.query(0,ind);\n szt+=d;\n\n }\n if(k<=0)break;\n\n st.update(0,ind,data[i].first-data[i-1].first);\n st.update(zatu[data[i].second.second],zatu[data[i].second.second]+1,-data[i].second.first);\n }\n\n while(k>0){\n --k;\n st.update(0,ind,szt-data[m-1].first);\n szt+=st.query(0,ind);\n szt+=d;\n }\n\n cout<<szt-k-s<<endl;\n\n return 0;\n}", "accuracy": 0.38095238095238093, "time_ms": 120, "memory_kb": 14588, "score_of_the_acc": -1.0606, "final_rank": 18 }, { "submission_id": "aoj_2760_3717436", "code_snippet": "#include \"iostream\"\n#include \"random\"\n#include \"string\"\n#include \"bitset\"\n#include \"algorithm\"\n#include \"map\"\n#include \"queue\"\n#include \"list\"\n#include \"set\"\n#include \"climits\"\n#include \"iomanip\"\n#include \"stack\"\n#include \"functional\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n\nusing namespace std;\nusing ll = long long int;\nusing PII = pair<ll, ll>;\n\nint a[100001];\nint b[100001];\nlong long int c[100001];\n\nint main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\tlong long int N, M, K, D, S;\n\tcin >> N >> M >> K >> D >> S;\n\tint minus = S;\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> a[i] >> b[i] >> c[i];\n\t}\n\tmap<long long int, int>m;\n\tset<pair<int, long long int>>s;\n\tint index = 0;\n\twhile (K) {\n\t\twhile (index < M&&a[index] <= S + D) {\n\t\t\tauto it = s.find({ m[c[index]], c[index] });\n\t\t\tif (it != s.end()) {\n\t\t\t\ts.erase(it);\n\t\t\t}\n\t\t\ts.insert({ max(a[index],m[c[index]]) + b[index],c[index] });\n\t\t\tm[c[index]] = max(a[index], m[c[index]]) + b[index];\n\t\t\tindex++;\n\t\t}\n\t\tif (m.size() != N) {\n\t\t\tS += D;\n\t\t}\n\t\telse {\n\t\t\tif (s.empty()) {\n\t\t\t\tS += D;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tauto box = *s.begin();\n\t\t\t\tS = max(box.first, (int)S + (int)D);\n\t\t\t}\n\t\t}\n\t\tK--;\n\t}\n\tcout << S - minus << endl;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 16696, "score_of_the_acc": -0.9263, "final_rank": 7 }, { "submission_id": "aoj_2760_3254904", "code_snippet": "#include <queue>\n#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\tlong long N;\n\tint M, K, D, S;\n\tcin >> N >> M >> K >> D >> S;\n\tvector<int> A(M), B(M); vector<long long> PreC(M);\n\tfor (int i = 0; i < M; ++i) {\n\t\tcin >> A[i] >> B[i] >> PreC[i];\n\t}\n\tvector<long long> SC = PreC;\n\tsort(SC.begin(), SC.end());\n\tSC.erase(unique(SC.begin(), SC.end()), SC.end());\n\tvector<int> C(M);\n\tfor (int i = 0; i < M; ++i) {\n\t\tC[i] = lower_bound(SC.begin(), SC.end(), PreC[i]) - SC.begin();\n\t}\n\tN = min(N, (long long)(SC.size() + 1));\n\tvector<int> wait(N);\n\tpriority_queue<pair<int, int> > que;\n\tfor (int i = 0; i < N; ++i) {\n\t\tque.push(make_pair(0, i));\n\t}\n\tint firstS = S, lastS = -1;\n\tfor (int i = 0; i < M; ++i) {\n\t\twhile (S + D < A[i] && K > 0) {\n\t\t\twhile (-que.top().first != wait[que.top().second]) que.pop();\n\t\t\tpair<int, int> u = que.top();\n\t\t\tS = max(S + D, -u.first);\n\t\t\t--K;\n\t\t\tif (K == 0) lastS = S;\n\t\t}\n\t\twait[C[i]] = max(wait[C[i]], A[i]) + B[i];\n\t\tque.push(make_pair(-wait[C[i]], C[i]));\n\t}\n\twhile (K > 0) {\n\t\twhile (-que.top().first != wait[que.top().second]) que.pop();\n\t\tpair<int, int> u = que.top();\n\t\tS = max(S + D, -u.first);\n\t\t--K;\n\t\tif (K == 0) lastS = S;\n\t}\n\tcout << lastS - firstS << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 8064, "score_of_the_acc": -0.2104, "final_rank": 2 }, { "submission_id": "aoj_2760_3001653", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <cctype>\n#include <climits>\n#include <cinttypes>\n#include <set>\n#include <map>\n#include <algorithm>\n#include <vector>\n#include <utility>\n\n#define fprintf(...) void(0)\n\nint main() {\n uintmax_t N;\n size_t M;\n int K, D, S;\n scanf(\"%ju %zu %d %d %d\", &N, &M, &K, &D, &S);\n\n if (N > M)\n return !printf(\"%jd\\n\", intmax_t(K)*D);\n\n std::map<intmax_t, std::vector<std::pair<int, int>>> regi;\n std::set<intmax_t> used;\n for (size_t i=0; i<M; ++i) {\n int a, b;\n intmax_t c;\n scanf(\"%d %d %jd\", &a, &b, &c);\n regi[c].emplace_back(a, a+b);\n used.emplace(c);\n }\n if (used.size() < N)\n return !printf(\"%jd\\n\", intmax_t(K)*D);\n\n std::set<std::pair<int, int>> tsurai;\n for (const auto &pp: regi) {\n std::vector<std::pair<int, int>> cur;\n int P=0;\n int last=0;\n for (const auto &p: pp.second) {\n int s=p.first, e=p.second;\n if (P+last <= s) {\n cur.emplace_back(P+last, s);\n P = 0;\n } else {\n P -= s-last;\n }\n\n P += e-s;\n last = s;\n }\n cur.emplace_back(last+P, INT_MAX);\n for (const auto &p: cur)\n tsurai.insert(p);\n }\n\n std::vector<std::pair<int, int>> disjoint;\n for (const auto &p: tsurai) {\n fprintf(stderr, \"- [%d, %d)\\n\", p.first, p.second);\n if (disjoint.empty()) {\n disjoint.push_back(p);\n continue;\n }\n if (p.first <= disjoint.back().second) {\n disjoint.back().second = std::max(disjoint.back().second, p.second);\n } else {\n disjoint.push_back(p);\n }\n }\n\n for (const auto &p: disjoint) {\n fprintf(stderr, \"[%d, %d)\\n\", p.first, p.second);\n }\n\n auto it=disjoint.cbegin();\n int SS=S;\n for (int i=0; i<K; ++i) {\n S += D;\n while (it->second <= S) ++it;\n \n fprintf(stderr, \"+ [%d, %d)\\n\", it->first, it->second);\n fprintf(stderr, \"> %d\\n\", S);\n S = std::max(S, it->first);\n fprintf(stderr, \"< %d\\n\", S);\n }\n printf(\"%d\\n\", S-SS);\n}", "accuracy": 0.40476190476190477, "time_ms": 70, "memory_kb": 12612, "score_of_the_acc": -0.6136, "final_rank": 15 }, { "submission_id": "aoj_2760_3001516", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <cctype>\n#include <climits>\n#include <cinttypes>\n#include <set>\n#include <map>\n#include <algorithm>\n#include <vector>\n#include <utility>\n\n#define fprintf(...) void(0)\n\nint main() {\n intmax_t N;\n int M, K, D, S;\n scanf(\"%jd %d %d %d %d\", &N, &M, &K, &D, &S);\n\n if (N > M)\n return !printf(\"%jd\\n\", intmax_t(K)*D);\n\n std::map<intmax_t, std::vector<std::pair<int, int>>> regi;\n for (int i=0; i<M; ++i) {\n int a, b;\n intmax_t c;\n scanf(\"%d %d %jd\", &a, &b, &c);\n regi[c].emplace_back(a, a+b);\n }\n\n std::set<std::pair<int, int>> tsurai;\n for (const auto &pp: regi) {\n std::vector<std::pair<int, int>> cur;\n int P=0;\n int last=0;\n for (const auto &p: pp.second) {\n int s=p.first, e=p.second;\n if (P+last == s) {\n cur.emplace_back(s, s);\n P = 0;\n } else if (P+last < s) {\n cur.emplace_back(P+last, s);\n P = 0;\n } else {\n P -= s-last;\n }\n\n P += e-s;\n last = s;\n }\n cur.emplace_back(last+P, INT_MAX);\n for (const auto &p: cur)\n tsurai.insert(p);\n }\n\n std::vector<std::pair<int, int>> disjoint;\n for (const auto &p: tsurai) {\n if (disjoint.empty()) {\n disjoint.push_back(p);\n continue;\n }\n if (p.first <= disjoint.back().second) {\n disjoint.back().second = p.second;\n } else {\n disjoint.push_back(p);\n }\n }\n\n for (const auto &p: disjoint) {\n fprintf(stderr, \"[%d, %d)\\n\", p.first, p.second);\n }\n\n auto it=disjoint.cbegin();\n int SS=S;\n for (int i=0; i<K; ++i) {\n S += D;\n while (it->second <= S) ++it;\n \n fprintf(stderr, \"[%d, %d)\\n\", it->first, it->second);\n S = std::max(S, it->first);\n if (i+1 == K)\n return !printf(\"%d\\n\", S-SS);\n }\n}", "accuracy": 0.40476190476190477, "time_ms": 70, "memory_kb": 10880, "score_of_the_acc": -0.587, "final_rank": 14 }, { "submission_id": "aoj_2760_3000777", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing lint = long long;\nusing Time = pair< lint, int >;\n\nstruct Customer {\n\tlint a, b, c;\n\tbool operator > (const Customer& obj) const { return a == obj.a ? c > obj.c : a > obj.a; }\n};\n\nlint N, M, K, D, S, last[100005];\n\nint main() {\n\tcin >> N >> M >> K >> D >> S;\n\t\n\tif (N > M) {\n\t\tcout << K * D << endl;\n\t\treturn 0;\n\t}\n\t\n\tpriority_queue< Customer, vector< Customer >, greater< Customer > > que;\n\tfor (int i=0; i<M; ++i) {\n\t\tlint a, b, c;\n\t\tcin >> a >> b >> c;\n\t\t--c;\n\t\tque.push(Customer{a, b, c});\n\t}\n\tque.push(Customer{S+D, 0, N});\n\t\n\tset< Time > reg;\n\tfor (int i=0; i<N; ++i) reg.insert(Time(0, i));\n\tmemset(last, 0, sizeof(last));\n\t\n\tlint ans = K * D;\n\twhile (!que.empty() && K > 0) {\n\t\tCustomer cust = que.top(); que.pop();\n\t\tif (cust.c == N) { // sazoe\n\t\t\tlint fast = (*reg.begin()).first;\n\t\t\tans += max(0LL, fast - cust.a);\n\t\t\tque.push(Customer{max(fast, cust.a)+D, 0, N});\n\t\t\t--K;\n\t\t}\n\t\telse { // others\n\t\t\tint i = cust.c;\n\t\t\treg.erase(Time(last[i], i));\n\t\t\tlast[i] = max(last[i], cust.a) + cust.b;\n\t\t\treg.insert(Time(last[i], i));\n\t\t}\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 11976, "score_of_the_acc": -1.1038, "final_rank": 9 }, { "submission_id": "aoj_2760_3000760", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing lint = long long;\nusing Time = pair< lint, int >;\n\nstruct Customer {\n\tlint a, c;\n\tbool operator > (const Customer& obj) const { return a == obj.a ? c > obj.c : a > obj.a; }\n};\n\nlint N, M, K, D, S, last[100005];\nqueue< lint > b_que[100005];\n\nint main() {\n\tcin >> N >> M >> K >> D >> S;\n\t\n\tif (N > M) {\n\t\tcout << K * D << endl;\n\t\treturn 0;\n\t}\n\t\n\tpriority_queue< Customer, vector< Customer >, greater< Customer > > que;\n\tfor (int i=0; i<M; ++i) {\n\t\tlint a, b, c;\n\t\tcin >> a >> b >> c;\n\t\t--c;\n\t\tque.push(Customer{a, c});\n\t\tb_que[c].push(b);\n\t}\n\tque.push(Customer{S+D, N});\n\t\n\tset< Time > reg;\n\tfor (int i=0; i<N; ++i) {\n\t\treg.insert(Time(0, i));\n\t\tlast[i] = 0;\n\t}\n\t\n\tlint ans = K * D;\n\twhile (!que.empty() && K > 0) {\n\t\tCustomer cust = que.top(); que.pop();\n\t\tif (cust.c == N) { // sazoe\n\t\t\tlint fast = (*reg.begin()).first;\n\t\t\tans += max(0LL, fast - cust.a);\n\t\t\tque.push(Customer{max(fast, cust.a)+D, N});\n\t\t\t--K;\n\t\t}\n\t\telse { // others\n\t\t\tint i = (*reg.begin()).second;\n\t\t\treg.erase(reg.begin());\n\t\t\tlast[i] = max(last[i], cust.a) + b_que[i].front();\n\t\t\tb_que[i].pop();\n\t\t\treg.insert(Time(last[i], i));\n\t\t}\n\t}\n\tcout << ans << endl;\n}", "accuracy": 0.023809523809523808, "time_ms": 30, "memory_kb": 70332, "score_of_the_acc": -1.1667, "final_rank": 20 }, { "submission_id": "aoj_2760_2884780", "code_snippet": "#include <bits/stdc++.h>\n#define show(x) cerr << #x << \" = \" << x << endl\nusing namespace std;\nusing ll = long long;\ntemplate <typename T>\nconstexpr T INF = numeric_limits<T>::max() / 16;\ntemplate <typename Monoid>\nclass SegmentTree\n{\nprivate:\n static constexpr int sz(const int n)\n {\n int ans = 1;\n for (; n > ans; ans <<= 1) {}\n return ans;\n }\n\npublic:\n using BaseMonoid = Monoid;\n using T = typename Monoid::T;\n\n SegmentTree(const int n) : data_num(n), half(sz(n)), value(half << 1, Monoid::id()) {}\n template <typename InIt>\n SegmentTree(const InIt first, const InIt last) : data_num(distance(first, last)), half(sz(data_num)), value(half << 1, Monoid::id())\n {\n copy(first, last, value.begin() + half);\n for (int i = half - 1; i >= 1; i--) { up(i); }\n }\n T get(const int a) const\n {\n assert(0 <= a and a < data_num);\n return value[a + half];\n }\n void set(int a, const T& val)\n {\n assert(0 <= a and a < data_num);\n value[a += half] = val;\n while (a >>= 1) { up(a); }\n }\n T accumulate(int L, int R) const\n {\n assert(0 <= L and L < R and R <= data_num);\n T accl = Monoid::id(), accr = Monoid::id();\n for (L += half, R += half; L < R; L >>= 1, R >>= 1) {\n if (L & 1) { accl = acc(accl, value[L++]); }\n if (R & 1) { accr = acc(value[--R], accr); }\n }\n return acc(accl, accr);\n }\n template <typename F, typename QueryOp, typename AccOp>\n F query(int L, int R, const QueryOp& query_op, const AccOp& acc_op) const\n {\n assert(0 <= L and L < R and R <= data_num);\n constexpr F id = F{}; // Fの単位元(AccOpについての)\n F accl = id, accr = id;\n for (L += half, R += half; L < R; L >>= 1, R >>= 1) {\n if (L & 1) { accl = acc_op(accl, query_op(value[L++])); }\n if (R & 1) { accr = acc_op(query_op(value[--R]), accr); }\n }\n return acc_op(accl, accr);\n }\n template <typename Pred>\n int partitionPoint(const int L, const int R, const Pred& pred) const\n {\n auto prec = fix([&](auto&& self, const int index, const int left, const int right, const T& offset) -> pair<T, int> {\n if (right <= L or R <= left or pred(acc(offset, value[index]))) { return {Monoid::id(), -1}; }\n if (index >= half) { return {value[index], index - half}; }\n const pair<T, int> lans = self(self, index << 1, left, (left + right) >> 1, offset);\n if (lans.second != -1) { return lans; }\n return self(self, index << 1 | 1, (left + right) >> 1, right, acc(offset, lans.first));\n });\n const int ans = prec(1, 0, half, Monoid::id()).second;\n return ans == -1 ? R : ans;\n }\n\n vector<T> data() const { return vector<T>(value.begin() + half, value.begin() + half + data_num); }\n void debug() const\n {\n for (int l = 1; l < (half << 1); l <<= 1) {\n for (int i = l; i < (l << 1); i++) { cout << value[i] << \",\"; }\n cout << endl;\n }\n }\n\nprivate:\n void up(const int i) { value[i] = acc(value[i << 1], value[i << 1 | 1]); }\n const int data_num; // Num of valid data on leaves.\n const int half;\n vector<T> value;\n const Monoid acc{};\n};\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const SegmentTree<T>& seg)\n{\n os << \"[\";\n for (const auto e : seg.data()) { os << e << \",\"; }\n return (os << \"]\" << endl);\n}\n\nstruct Min\n{\n using T = ll;\n T operator()(const T& a, const T& b) const { return min(a, b); }\n static constexpr T id() { return INF<T>; }\n};\ntemplate <typename T, typename A>\ninline ostream& operator<<(ostream& os, const vector<T, A>& v)\n{\n os << \"[\";\n for (const auto& p : v) { os << p << \",\"; }\n return (os << \"]\" << endl);\n}\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll N, M, K, D, S;\n cin >> N >> M >> K >> D >> S;\n if (N > M) {\n for (int i = 0, d = 0; i < M; i++) { cin >> d >> d >> d; }\n cout << D * K << endl;\n } else {\n vector<ll> a(M), b(M), c(M);\n for (int i = 0; i < M; i++) { cin >> a[i] >> b[i] >> c[i]; }\n ll ans = S + D;\n vector<ll> zero(N, 0);\n SegmentTree<Min> seg(zero.begin(), zero.end());\n int pos = 0;\n for (int i = 0; i < K; i++) {\n for (; pos < M and a[pos] <= ans; pos++) { seg.set(c[pos] - 1, max(seg.get(c[pos] - 1), a[pos]) + b[pos]); }\n ans = max(ans, seg.accumulate(0, N)) + D;\n }\n cout << ans - S - D << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8044, "score_of_the_acc": -0.1268, "final_rank": 1 }, { "submission_id": "aoj_2760_2757635", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define int long long\n\nconst int inf = 1LL<<55;\n\nstruct SegmentTree {\n vector<int> data;\n int sz;\n SegmentTree(int n) {\n sz = 1; while(sz < n) sz *= 2;\n data.resize(2*sz-1, inf);\n }\n void update(int k, int x) {\n k += sz-1;\n data[k] = x;\n while(k > 0) {\n k = (k-1)/2;\n data[k] = min(data[2*k+1], data[2*k+2]);\n }\n }\n int query(int a, int b, int k, int l, int r) {\n if(r <= a || b <= l) return inf;\n if(a <= l && r <= b) return data[k];\n int vl = query(a, b, 2*k+1, l, (l+r)/2);\n int vr = query(a, b, 2*k+2, (l+r)/2, r);\n return min(vl, vr);\n }\n int query(int a, int b) {\n return query(a, b, 0, 0, sz);\n }\n};\n\nsigned main() {\n int n, m, k, d, s;\n cin >> n >> m >> k >> d >> s;\n if(n > m) {\n cout << d*k << endl;\n return 0;\n }\n vector<int> a(m), b(m), c(m);\n vector<int> cmpC;\n for(int i = 0; i < m; ++i) {\n cin >> a[i] >> b[i] >> c[i];\n --c[i];\n //cmpC.push_back(c[i]);\n }\n /*\n for(int i = 0; i < m; ++i) {\n c[i] = lower_bound(cmpC.begin(), cmpC.end(), c[i])-cmpC.begin();\n }\n */\n struct State {\n int t, a, b, c;\n State(){}\n State(int t, int a, int b, int c):t(t), a(a), b(b), c(c){}\n bool operator < (const State& s) const {\n return a == s.a ? t > s.t : a > s.a;\n }\n };\n priority_queue<State> que;\n for(int i = 0; i < m; ++i) que.emplace(1, a[i], b[i], c[i]);\n que.emplace(2, s+d, 0, 0);\n int sz = n;//max(n, (int)cmpC.size());\n SegmentTree seg(sz);\n for(int i = 0; i < sz; ++i) seg.update(i, 0);\n while(!que.empty()) {\n State st = que.top(); que.pop();\n //cout<<st.t<<\" \"<<st.a<<\" \"<<st.b<<\" \"<<st.c<<endl;\n if(st.t == 1) {\n int tmp = seg.query(st.c, st.c+1);\n //cout<<tmp<<endl;\n seg.update(st.c, max(st.a, tmp)+st.b);\n } else {\n int tmp = seg.query(0, sz);\n //cout<<sz<<endl;\n //cout<<tmp<<endl;\n --k;\n if(k == 0) {\n\tcout << max(st.a, tmp)-s << endl;\n\treturn 0;\n }\n que.emplace(2, max(st.a, tmp)+d, 0, 0);\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 10364, "score_of_the_acc": -0.7457, "final_rank": 6 } ]
aoj_2771_cpp
G: 塗るだけ / Paint 問題文 情太くんと立子さんは, 平面の世界にある庭付きの家に住んでいる.二人は点とみなせ, 庭は $N$ 頂点の単純多角形 (隣り合わないどの $2$ 辺も交差も接触もしない多角形) の形をしている. ある日,二人は一本の伸び縮みするローラーを手に入れた. ローラーは線分とみなせ,ローラーが通過した領域に色を塗ることができる. 二人はローラーを使って庭全体に色を塗りたいと思っている. 作業の前に,二人は以下のような準備を上から順に行う. 庭の内部の任意の $1$ 箇所に杭を打つ. 庭の外部のある $1$ 点に集まる. 十分に長い紐を用意し,片方の端を情太くん,もう一方の端を立子さんの体に結ぶ. 情太くんがローラーの片方の端を,立子さんがもう一方の端を持つ. 準備ができたら,以下のルールに従って塗り始める. ただし,ローラーは杭の上空を通過させることができるが,紐はできない. 庭のどの部分から塗り始めてもよい. 庭の外部または周上を移動できるが,内部に入ってはいけない. 塗り終わるまでローラーから手を離してはいけない. さらに,塗り終わったときに以下の条件を満たしていなければならない. 二人が再びある $1$ 点に集まっている. 庭の内部の任意の点の上をローラーが通過している. 二人の体の紐を解き,両端を結んで輪を作る.この輪を外から引っ張ったときに,杭に引っかかって抜けない. さて,二人はできるだけ離れたくないので,塗っている最中にとる二人の距離の最大値を最小化したい. 二人に代わってそのような値を求めてほしい. 入力 入力は以下の形式で与えられる.$N$ は多角形を構成する頂点の数, $(x_i,y_i)$ はある頂点から始めて時計回りまたは反時計回りに見たときの $i$ 番目の点の座標である. $N$ $x_1 \ y_1$ $\vdots$ $x_N \ y_N$ 制約 $3 \leq N \leq 50$ $|x_i|, |y_i| \leq 100$ 全て整数である 頂点は時計回りまたは反時計回りに与えられる 庭の形は単純多角形である 周上の連続する $3$ 点は一直線上に存在しない 出力 答えを $1$ 行で出力せよ.$10^{-5}$ 未満の絶対誤差は許容される. サンプル 各サンプルでの庭の形と塗り終わるまでのローラーの動きを図示すると以下のようになる.整数は時刻を表す.図示する都合上ローラーの動きは飛び飛びに示したが,実際には連続的に動いている. ローラーが太くなっている部分で距離の最大値を達成している. サンプル入力1 4 0 0 0 1 1 1 1 0 サンプル出力1 1 サンプル入力2 3 0 0 0 1 1 0 サンプル出力2 0.7071067811865476 サンプル入力3 8 0 0 5 0 5 3 0 3 0 2 4 2 4 1 0 1 サンプル出力3 1.4142135623730951
[ { "submission_id": "aoj_2771_4964531", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\ntypedef double P_type; //座標(integer or real)\ntypedef double G_real; //実数の戻り値(float or double or long double)\ntypedef complex<P_type> P;\nconst G_real P_eps = 1e-8; //整数の時はゼロ\n\nnamespace std {\n template<class T>\n bool operator<(const complex<T> &a, const complex<T> &b) {\n return abs(a.real() - b.real()) < P_eps ? a.imag() + P_eps < b.imag() : a.real() + P_eps < b.real();\n }\n};\n\nP rotate(P p, double theta) {\n return p * P(cos(theta), sin(theta));\n}\n\n//内積\nP_type dot(P a, P b) {\n return (a * conj(b)).real();\n}\n\n//外積\nP_type cross(P a, P b) {\n return (conj(a) * b).imag();\n}\n\n//反時計回り\nint ccw(P a, P b, P c) {\n if (cross(b - a, c - a) > P_eps) return 1; //COUNTER_CLOCKWISE(center:a)\n if (cross(b - a, c - a) < -P_eps) return -1; //CLOCKWISE(center:a)\n if (dot(b - a, c - a) < -P_eps) return -2; //c -> a -> b\n if (dot(a - b, c - b) < -P_eps) return 2; //a -> b -> c\n return 0; //a -> c -> b\n}\n\n/* 線分交差判定 */\nbool isIntersectedSS(P a1, P a2, P b1, P b2) {\n //線分a と 直線b\n int a = ccw(b1, b2, a1);\n int b = ccw(b1, b2, a2);\n\n //線分b と 直線a\n int c = ccw(a1, a2, b1);\n int d = ccw(a1, a2, b2);\n\n return a * b <= 0 && c * d <= 0; // T字を除く時は (** < 0)\n}\n\n/* 射影(直線abとpからの垂線との交点) */\nP getProject(P a, P b, P p) {\n P base = b - a;\n return a + base * dot(p - a, base) / norm(base);\n}\n\nvoid chmin(double &a, double b) {\n if (a > b) { a = b; }\n}\n\ndouble solve(vector<P> a) {\n const int n = a.size();\n for (int i = 0; i < n; i++) a.push_back(a[i]);\n vector<vector<double>> dp(n * 2, vector<double>(n * 2, INFINITY));\n for (int i = 0; i < n * 2; i++) dp[i][i] = 0;\n for (int d = 0; d < n; d++) {\n for (int i = 0; i + d < n * 2; i++) {\n const int j = i + d;\n if (i) {\n chmin(dp[i - 1][j], max<double>(dp[i][j], abs(a[i - 1] - a[j])));\n }\n if (j + 1 < n * 2) {\n chmin(dp[i][j + 1], max<double>(dp[i][j], abs(a[i] - a[j + 1])));\n }\n if (i && j + 1 < n * 2) {\n chmin(dp[i - 1][j + 1], max<double>(dp[i][j], abs(a[i - 1] - a[j + 1])));\n }\n }\n }\n double ans = INFINITY;\n for (int i = 0; i < n; i++) chmin(ans, dp[i][i + n]);\n return ans;\n}\n\nint main() {\n int N;\n vector<P> poly;\n\n scanf(\"%d\", &N);\n\n for (int i = 0; i < N; i++) {\n int x, y;\n scanf(\"%d%d\", &x, &y);\n poly.push_back(P(x, y));\n }\n\n vector<P> vec;\n\n for (int i = 0; i < N; i++) {\n P s = poly[i], t = poly[(i + 1) % N];\n\n vector<pair<G_real, P>> temp;\n\n for (int j = 0; j < N; j++) {\n if (j == i || (i + 1) % N == j) continue;\n\n auto proj = getProject(s, t, poly[j]);\n\n if (abs(s - proj) > P_eps && abs(t - proj) > P_eps && isIntersectedSS(s, t, poly[j], proj)) {\n temp.push_back({abs(s - proj), proj});\n }\n }\n\n sort(temp.begin(), temp.end());\n\n vec.push_back(s);\n for (auto v : temp) vec.push_back(v.second);\n }\n\n debug(vec);\n\n double ans = solve(vec);\n\n printf(\"%.10lf\\n\", ans);\n\n return 0;\n}", "accuracy": 0.08571428571428572, "time_ms": 70, "memory_kb": 40080, "score_of_the_acc": -1.2857, "final_rank": 6 }, { "submission_id": "aoj_2771_4964512", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\ntypedef double P_type; //座標(integer or real)\ntypedef double G_real; //実数の戻り値(float or double or long double)\ntypedef complex<P_type> P;\nconst G_real P_eps = 1e-8; //整数の時はゼロ\n\nnamespace std {\n template<class T>\n bool operator<(const complex<T> &a, const complex<T> &b) {\n return abs(a.real() - b.real()) < P_eps ? a.imag() + P_eps < b.imag() : a.real() + P_eps < b.real();\n }\n};\n\nP rotate(P p, double theta) {\n return p * P(cos(theta), sin(theta));\n}\n\n//内積\nP_type dot(P a, P b) {\n return (a * conj(b)).real();\n}\n\n//外積\nP_type cross(P a, P b) {\n return (conj(a) * b).imag();\n}\n\n//反時計回り\nint ccw(P a, P b, P c) {\n if (cross(b - a, c - a) > P_eps) return 1; //COUNTER_CLOCKWISE(center:a)\n if (cross(b - a, c - a) < -P_eps) return -1; //CLOCKWISE(center:a)\n if (dot(b - a, c - a) < -P_eps) return -2; //c -> a -> b\n if (dot(a - b, c - b) < -P_eps) return 2; //a -> b -> c\n return 0; //a -> c -> b\n}\n\n/* 線分交差判定 */\nbool isIntersectedSS(P a1, P a2, P b1, P b2) {\n //線分a と 直線b\n int a = ccw(b1, b2, a1);\n int b = ccw(b1, b2, a2);\n\n //線分b と 直線a\n int c = ccw(a1, a2, b1);\n int d = ccw(a1, a2, b2);\n\n return a * b <= 0 && c * d <= 0; // T字を除く時は (** < 0)\n}\n\n/* 射影(直線abとpからの垂線との交点) */\nP getProject(P a, P b, P p) {\n P base = b - a;\n return a + base * dot(p - a, base) / norm(base);\n}\n\nvoid chmin(double &a, double b) {\n if (a > b) { a = b; }\n}\n\ndouble solve(vector<P> a) {\n const int n = a.size();\n for (int i = 0; i < n; i++) a.push_back(a[i]);\n vector<vector<double>> dp(n * 2, vector<double>(n * 2, INFINITY));\n for (int i = 0; i < n * 2; i++) dp[i][i] = 0;\n for (int d = 0; d < n; d++) {\n for (int i = 0; i + d < n * 2; i++) {\n const int j = i + d;\n if (i) {\n chmin(dp[i - 1][j], max<double>(dp[i][j], abs(a[i - 1] - a[j])));\n }\n if (j + 1 < n * 2) {\n chmin(dp[i][j + 1], max<double>(dp[i][j], abs(a[i] - a[j + 1])));\n }\n if (i && j + 1 < n * 2) {\n chmin(dp[i][j + 1], max<double>(dp[i][j], abs(a[i - 1] - a[j + 1])));\n }\n }\n }\n double ans = INFINITY;\n for (int i = 0; i < n; i++) chmin(ans, dp[i][i + n]);\n return ans;\n}\n\nint main() {\n int N;\n vector<P> poly;\n\n scanf(\"%d\", &N);\n\n for (int i = 0; i < N; i++) {\n int x, y;\n scanf(\"%d%d\", &x, &y);\n poly.push_back(P(x, y));\n }\n\n vector<P> vec;\n\n for (int i = 0; i < N; i++) {\n P s = poly[i], t = poly[(i + 1) % N];\n\n vector<pair<G_real, P>> temp;\n\n for (int j = 0; j < N; j++) {\n if (j == i || (i + 1) % N == j) continue;\n\n auto proj = getProject(s, t, poly[j]);\n\n if (abs(s - proj) > P_eps && abs(t - proj) > P_eps && isIntersectedSS(s, t, poly[j], proj)) {\n temp.push_back({abs(s - proj), proj});\n }\n }\n\n sort(temp.begin(), temp.end());\n\n vec.push_back(s);\n for (auto v : temp) vec.push_back(v.second);\n }\n\n debug(vec);\n\n double ans = solve(vec);\n\n printf(\"%.10lf\\n\", ans);\n\n return 0;\n}", "accuracy": 0.08571428571428572, "time_ms": 60, "memory_kb": 40076, "score_of_the_acc": -1.238, "final_rank": 5 }, { "submission_id": "aoj_2771_4964285", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=n;i--;)\n#define rrep2(i,n) for(ll i=n;i--;)\n#define rrep3(i,a,b) for(ll i=b;i-->(a);)\n#define rrep4(i,a,b,c) for(ll i=(a)+((b)-(a)-1)/(c)*(c);i>=(a);i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each1(i,a) for(auto&&i:a)\n#define each2(x,y,a) for(auto&&[x,y]:a)\n#define each3(x,y,z,a) for(auto&&[x,y,z]:a)\n#define each(...) overload4(__VA_ARGS__,each3,each2,each1)(__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define Msum(...) accumulate(all(__VA_ARGS__),0_M)\n#define elif else if\n#define unless(a) if(!(a))\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > T(b)){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < T(b)){ a = b; return 1; } return 0; }\nvector<ll> iota(ll n, ll begin = 0){ vector<ll> a(n); iota(a.begin(), a.end(), begin); return a; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nmap<ll,ll> factor_map(ull x){ map<ll,ll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans[i] = 1; while((x /= i) % i == 0) ans[i]++; } if(x != 1) ans[x] = 1; return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T> a){ Uniq(a); unordered_map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T> a){ Uniq(a); map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const complex<T>& a){ if(a.real() >= 0) print('+'); print(a.real()); if(a.imag() >= 0) print('+'); print(a.imag()); print('i'); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\ninline ll __lg(ull x){ return 63 - __builtin_clzll(x); }\n#define debug(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...) void(0)\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint First(bool i = true){ return out(i?\"First\":\"Second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\nusing Real = ld;\nusing Point = complex< Real >;\n\ninline bool eq(Real a, Real b) { return fabs(b - a) < EPS; }\n\nPoint operator*(const Point &p, const Real &d) {\n return Point(real(p) * d, imag(p) * d);\n}\n\nistream &operator>>(istream &is, Point &p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\n\nostream &operator<<(ostream &os, Point &p) {\n return os << fixed << setprecision(10) << p.real() << \" \" << p.imag();\n}\n\n// rotate point p counterclockwise by theta rad\nPoint rotate(Real theta, const Point &p) {\n return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag());\n}\n\nReal radian_to_degree(Real r) {\n return (r * 180.0 / PI);\n}\n\nReal degree_to_radian(Real d) {\n return (d * PI / 180.0);\n}\n\n// smaller angle of the a-b-c\nReal get_angle(const Point &a, const Point &b, const Point &c) {\n const Point v(b - a), w(c - b);\n Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());\n if(alpha > beta) swap(alpha, beta);\n Real theta = (beta - alpha);\n return min(theta, 2 * acos(-1) - theta);\n}\n\nnamespace std {\n bool operator<(const Point &a, const Point &b) {\n return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();\n }\n}\n\n\nstruct Line {\n Point a, b;\n\n Line() = default;\n\n Line(Point a, Point b) : a(a), b(b) {}\n\n Line(Real A, Real B, Real C) // Ax + By = C\n {\n if(eq(A, 0)) a = Point(0, C / B), b = Point(1, C / B);\n else if(eq(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1);\n else a = Point(0, C / B), b = Point(C / A, 0);\n }\n\n friend ostream &operator<<(ostream &os, Line &p) {\n return os << p.a << \" to \" << p.b;\n }\n\n friend istream &operator>>(istream &is, Line &a) {\n return is >> a.a >> a.b;\n }\n};\n\nstruct Segment : Line {\n Segment() = default;\n\n Segment(Point a, Point b) : Line(a, b) {}\n};\n\nstruct Circle {\n Point p;\n Real r;\n\n Circle() = default;\n\n Circle(Point p, Real r) : p(p), r(r) {}\n};\n\nusing Points = vector< Point >;\nusing Polygon = vector< Point >;\nusing Segments = vector< Segment >;\nusing Lines = vector< Line >;\nusing Circles = vector< Circle >;\n\nReal cross(const Point &a, const Point &b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\n\nReal dot(const Point &a, const Point &b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\n\nint ccw(const Point &a, Point b, Point c) {\n b = b - a, c = c - a;\n if(cross(b, c) > EPS) return +1; // \"COUNTER_CLOCKWISE\"\n if(cross(b, c) < -EPS) return -1; // \"CLOCKWISE\"\n if(dot(b, c) < 0) return +2; // \"ONLINE_BACK\" c-a-b\n if(norm(b) < norm(c)) return -2; // \"ONLINE_FRONT\" a-b-c\n return 0; // \"ON_SEGMENT\" a-c-b\n}\n\n// 平行\nbool parallel(const Line &a, const Line &b) {\n return eq(cross(a.b - a.a, b.b - b.a), 0.0);\n}\n\n// 直交\nbool orthogonal(const Line &a, const Line &b) {\n return eq(dot(a.a - a.b, b.a - b.b), 0.0);\n}\n\n// 点に直線から垂線を引いたときの交点\nPoint projection(const Line &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\nPoint projection(const Segment &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\n// 線対称な位置の点\nPoint reflection(const Line &l, const Point &p) {\n return p + (projection(l, p) - p) * 2.0;\n}\n\nbool intersect(const Line &l, const Point &p) {\n return abs(ccw(l.a, l.b, p)) != 1;\n}\n\nbool intersect(const Line &l, const Line &m) {\n return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS;\n}\n\nbool intersect(const Segment &s, const Point &p) {\n return ccw(s.a, s.b, p) == 0;\n}\n\nbool intersect(const Line &l, const Segment &s) {\n return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS;\n}\n\nReal distance(const Line &l, const Point &p);\n\nbool intersect(const Circle &c, const Line &l) {\n return distance(l, c.p) <= c.r + EPS;\n}\n\nbool intersect(const Circle &c, const Point &p) {\n return abs(abs(p - c.p) - c.r) < EPS;\n}\n\nbool intersect(const Segment &s, const Segment &t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\nint intersect(const Circle &c, const Segment &l) {\n if(norm(projection(l, c.p) - c.p) - c.r * c.r > EPS) return 0;\n auto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b);\n if(d1 < c.r + EPS && d2 < c.r + EPS) return 0;\n if(d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS) return 1;\n const Point h = projection(l, c.p);\n if(dot(l.a - h, l.b - h) < 0) return 2;\n return 0;\n}\n\n// 2円の共通接線の数\nint intersect(Circle c1, Circle c2) {\n if(c1.r < c2.r) swap(c1, c2);\n Real d = abs(c1.p - c2.p);\n if(c1.r + c2.r < d) return 4; // 離れている\n if(eq(c1.r + c2.r, d)) return 3; // 外接\n if(c1.r - c2.r < d) return 2; // 交わる\n if(eq(c1.r - c2.r, d)) return 1; // 内接\n return 0; // 内包\n}\n\nReal distance(const Point &a, const Point &b) {\n return abs(a - b);\n}\n\nReal distance(const Line &l, const Point &p) {\n return abs(p - projection(l, p));\n}\n\nReal distance(const Line &l, const Line &m) {\n return intersect(l, m) ? 0 : distance(l, m.a);\n}\n\nReal distance(const Segment &s, const Point &p) {\n Point r = projection(s, p);\n if(intersect(s, r)) return abs(r - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\n\nReal distance(const Segment &a, const Segment &b) {\n if(intersect(a, b)) return 0;\n return min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)});\n}\n\nReal distance(const Line &l, const Segment &s) {\n if(intersect(l, s)) return 0;\n return min(distance(l, s.a), distance(l, s.b));\n}\n\nPoint crosspoint(const Line &l, const Line &m) {\n Real A = cross(l.b - l.a, m.b - m.a);\n Real B = cross(l.b - l.a, l.b - m.a);\n if(eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a;\n return m.a + (m.b - m.a) * B / A;\n}\n\nPoint crosspoint(const Segment &l, const Segment &m) {\n return crosspoint(Line(l), Line(m));\n}\n\npair< Point, Point > crosspoint(const Circle &c, const Line l) {\n Point pr = projection(l, c.p);\n Point e = (l.b - l.a) / abs(l.b - l.a);\n if(eq(distance(l, c.p), c.r)) return {pr, pr};\n double base = sqrt(c.r * c.r - norm(pr - c.p));\n return {pr - e * base, pr + e * base};\n}\n\npair< Point, Point > crosspoint(const Circle &c, const Segment &l) {\n Line aa = Line(l.a, l.b);\n if(intersect(c, l) == 2) return crosspoint(c, aa);\n auto ret = crosspoint(c, aa);\n if(dot(l.a - ret.first, l.b - ret.first) < 0) ret.second = ret.first;\n else ret.first = ret.second;\n return ret;\n}\n\npair< Point, Point > crosspoint(const Circle &c1, const Circle &c2) {\n Real d = abs(c1.p - c2.p);\n Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());\n Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);\n Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);\n return {p1, p2};\n}\n\n\nint main(){\n LL(n);\n vec(Point,a,n);\n rep(n){\n LD(x,y);\n a[i]={x,y};\n }\n rep(n*2)a.push_back(a[i]);\n ld ans=DINF;\n rep(n)rep(j,i,i+n+1){\n const ll k=i+n;\n ld mx=0;\n rep(x,i,j+1){\n ld mn=DINF;\n rep(y,j,k){\n chmin(mn,distance(Segment{a[y],a[y+1]},a[x]));\n }\n chmax(mx,mn);\n }\n rep(x,j,k+1){\n ld mn=DINF;\n rep(y,i,j){\n chmin(mn,distance(Segment{a[y],a[y+1]},a[x]));\n }\n chmax(mx,mn);\n }\n chmin(ans,mx);\n }\n out(ans);\n}", "accuracy": 0.22857142857142856, "time_ms": 210, "memory_kb": 3640, "score_of_the_acc": -0.9524, "final_rank": 4 }, { "submission_id": "aoj_2771_4937180", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 18;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\n#include<complex>\ntypedef complex<ld> Point;\nld dot(Point a, Point b) { return real(conj(a) * b); }\nld cross(Point a, Point b) { return imag(conj(a) * b); }\nnamespace std {\n\tbool operator<(const Point& lhs, const Point& rhs) {\n\t\treturn lhs.real() == rhs.real() ? lhs.imag() < rhs.imag() : lhs.real() < rhs.real();\n\t}\n}\nstruct Line {\n\tPoint a, b;\n};\nint ccw(Point a, Point b, Point c) {\n\tb -= a; c -= a;\n\tif (cross(b, c) > eps)return 1;//counter clockwise\n\tif (cross(b, c) < -eps)return -1;//clock wise\n\tif (dot(b, c) < 0)return 2;//c--a--b on line\n\tif (norm(b) < norm(c))return -2;//a--b--c on line\n\treturn 0; //a--c--b on line\n}\n//点から直線への垂線の足\nPoint proj(Line l, Point p) {\n\tld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n\treturn l.a + t * (l.a - l.b);\n}\n//直線と点の距離\nld dist_lp(Line l, Point p) {\n\treturn abs(p - proj(l, p));\n}\n//点が線分上に存在するか\nbool isis_sp(Line s, Point p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\nld dist_sp(Line s, Point p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(p - r) : min(abs(p - s.a), abs(p - s.b));\n}\nstruct ste {\n\tint x,y;\n};\nbool operator<(const ste& a, const ste& b) {\n\tif (a.x != b.x)return a.x < b.x;\n\telse return a.y < b.y;\n}\nusing speP = pair<ld, ste>;\n\nld lcost[50][50][50];\nld dist[50][50];\nvoid solve() {\n\tint n; cin >> n;\n\tvector<ld> x(n), y(n);\n\trep(i, n) {\n\t\tcin >> x[i] >> y[i];\n\t}\n\tvector<vector<ld>> cost(n, vector<ld>(n));\n\n\trep(i, n)rep(j, n) {\n\t\tld dx = abs(x[j] - x[i]);\n\t\tld dy = abs(y[j] - y[i]);\n\t\tcost[i][j] = sqrtl(dx * dx + dy * dy);\n\t}\n\n\trep(i, n) {\n\t\tPoint pl = { x[i],y[i] };\n\t\tPoint pr = { x[(i + 1) % n],y[(i + 1) % n] };\n\t\trep(j, n) {\n\t\t\tld ma = dist_sp({ pl,pr }, { x[j],y[j] });\n\t\t\tfor (int k = 1; k <= n; k++) {\n\t\t\t\tint to = (j + k) % n;\n\t\t\t\tma = max(ma, dist_sp({ pl,pr }, { x[to],y[to] }));\n\t\t\t\tlcost[i][j][to] = ma;\n\t\t\t}\n\t\t}\n\t}\n\t//rep(i, n)rep(j, n)rep(k, n)cout << i << \" \" << j << \" \" << k << \" \" << lcost[i][j][k] << \"\\n\";\n\t\n\trep(i, n)rep(j, n)dist[i][j] = INF;\n\tpriority_queue<speP, vector<speP>, greater<speP>> q;\n\trep(i, 1) {\n\t\tdist[i][i] = 0;\n\t\tq.push({ 0,{i,i} });\n\t}\n\tld ans = INF;\n\twhile (!q.empty()) {\n\t\tspeP p = q.top(); q.pop();\n\t\tste s = p.second;\n\t\tld d = p.first;\n\t\tif (d > dist[s.x][s.y])continue;\n\t\t//cout << s.x << \" \" << s.y << \" \" << d << \"\\n\";\n\t\tint dif = s.y - s.x; if (dif < 0)dif += n;\n\t\t//left zero\n\t\tfor (int j = -1; j <= 1; j += 2) {\n\t\t\tint tx = s.x;\n\t\t\tint ty = s.y + j;\n\t\t\tif (tx < 0)tx += n;\n\t\t\tif (tx >= n)tx -= n;\n\t\t\tif (ty < 0)ty += n;\n\t\t\tif (ty >= n)ty -= n;\n\t\t\tint tz = dif + j;\n\t\t\tld nd = max(d, cost[tx][ty]);\n\t\t\t\n\t\t\tif (tz < 0)continue;\n\t\t\telse if (tz == n) {\n\t\t\t\tans = min(ans,nd);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (nd < dist[tx][ty]) {\n\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t//right zero\n\t\tfor (int j = -1; j <= 1; j += 2) {\n\t\t\tint tx = s.x + j;\n\t\t\tint ty = s.y;\n\t\t\tif (tx < 0)tx += n;\n\t\t\tif (tx >= n)tx -= n;\n\t\t\tif (ty < 0)ty += n;\n\t\t\tif (ty >= n)ty -= n;\n\t\t\tint tz = dif - j;\n\t\t\tld nd = max(d, cost[tx][ty]);\n\t\t\tif (tz < 0)continue;\n\t\t\telse if (tz == n) {\n\t\t\t\tans = min(ans, nd);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (nd < dist[tx][ty]) {\n\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t//left\n\t\tfor (int i = -1; i <= 1; i += 2) {\n\t\t\tint cx = s.x; if (i < 0)cx--; if (cx < 0)cx += n;\n\t\t\tfor (int j = -n; j<=n; j++) {\n\t\t\t\tint tx = s.x+i;\n\t\t\t\tint ty = s.y + j;\n\t\t\t\tint tz = dif -i + j;\n\t\t\t\tif (tx < 0)tx += n;\n\t\t\t\tif (tx >= n)tx -= n;\n\t\t\t\tif (ty < 0)ty += n;\n\t\t\t\tif (ty >= n)ty -= n;\n\t\t\t\tld nd = d;\n\t\t\t\tnd = max(nd, cost[tx][ty]);\n\t\t\t\tif (j <= 0)nd = max(nd, lcost[cx][ty][s.y]);\n\t\t\t\telse nd = max(nd, lcost[cx][s.y][ty]);\n\t\t\t\tif (tz<0 || tz>n)continue;\n\t\t\t\telse if (tz == n) {\n\t\t\t\t\tans = min(ans, nd);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (dist[tx][ty] > nd) {\n\t\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t//right\n\t\tfor (int j = -1; j <= 1; j += 2) {\n\t\t\tint cy = s.y; if (j < 0)cy--; if (cy < 0)cy += n;\n\t\t\tfor (int i = -n; i <= n; i++) {\n\t\t\t\tint tx = s.x + i;\n\t\t\t\tint ty = s.y + j;\n\t\t\t\tint tz = dif - i + j;\n\t\t\t\tif (tx < 0)tx += n;\n\t\t\t\tif (tx >= n)tx -= n;\n\t\t\t\tif (ty < 0)ty += n;\n\t\t\t\tif (ty >= n)ty -= n;\n\t\t\t\tld nd = d;\n\t\t\t\tnd = max(nd, cost[tx][ty]);\n\t\t\t\tif (i <= 0)nd = max(nd, lcost[cy][tx][s.x]);\n\t\t\t\telse nd = max(nd, lcost[cy][s.x][tx]);\n\t\t\t\tif (tz<0 || tz>n)continue;\n\t\t\t\telse if (tz == n) {\n\t\t\t\t\tans = min(ans, nd);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (dist[tx][ty] > nd) {\n\t\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t//rep(i, n)rep(j, n)cout << i << \" \" << j << \" \" << dist[i][j] << \"\\n\";\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.6, "time_ms": 10, "memory_kb": 8736, "score_of_the_acc": -0.1398, "final_rank": 2 }, { "submission_id": "aoj_2771_4937177", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 18;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\n#include<complex>\ntypedef complex<ld> Point;\nld dot(Point a, Point b) { return real(conj(a) * b); }\nld cross(Point a, Point b) { return imag(conj(a) * b); }\nnamespace std {\n\tbool operator<(const Point& lhs, const Point& rhs) {\n\t\treturn lhs.real() == rhs.real() ? lhs.imag() < rhs.imag() : lhs.real() < rhs.real();\n\t}\n}\nstruct Line {\n\tPoint a, b;\n};\nint ccw(Point a, Point b, Point c) {\n\tb -= a; c -= a;\n\tif (cross(b, c) > eps)return 1;//counter clockwise\n\tif (cross(b, c) < -eps)return -1;//clock wise\n\tif (dot(b, c) < 0)return 2;//c--a--b on line\n\tif (norm(b) < norm(c))return -2;//a--b--c on line\n\treturn 0; //a--c--b on line\n}\n//点から直線への垂線の足\nPoint proj(Line l, Point p) {\n\tld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n\treturn l.a + t * (l.a - l.b);\n}\n//直線と点の距離\nld dist_lp(Line l, Point p) {\n\treturn abs(p - proj(l, p));\n}\n//点が線分上に存在するか\nbool isis_sp(Line s, Point p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\nld dist_sp(Line s, Point p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(p - r) : min(abs(p - s.a), abs(p - s.b));\n}\nstruct ste {\n\tint x,y;\n};\nbool operator<(const ste& a, const ste& b) {\n\tif (a.x != b.x)return a.x < b.x;\n\telse return a.y < b.y;\n}\nusing speP = pair<ld, ste>;\n\nld lcost[50][50][50];\nld dist[50][50];\nvoid solve() {\n\tint n; cin >> n;\n\tvector<ld> x(n), y(n);\n\trep(i, n) {\n\t\tcin >> x[i] >> y[i];\n\t}\n\tvector<vector<ld>> cost(n, vector<ld>(n));\n\n\trep(i, n)rep(j, n) {\n\t\tld dx = abs(x[j] - x[i]);\n\t\tld dy = abs(y[j] - y[i]);\n\t\tcost[i][j] = sqrtl(dx * dx + dy * dy);\n\t}\n\n\trep(i, n) {\n\t\tPoint pl = { x[i],y[i] };\n\t\tPoint pr = { x[(i + 1) % n],y[(i + 1) % n] };\n\t\trep(j, n) {\n\t\t\tld ma = dist_sp({ pl,pr }, { x[j],y[j] });\n\t\t\tfor (int k = 1; k <= n; k++) {\n\t\t\t\tint to = (j + k) % n;\n\t\t\t\tma = max(ma, dist_sp({ pl,pr }, { x[to],y[to] }));\n\t\t\t\tlcost[i][j][to] = ma;\n\t\t\t}\n\t\t}\n\t}\n\t//rep(i, n)rep(j, n)rep(k, n)cout << i << \" \" << j << \" \" << k << \" \" << lcost[i][j][k] << \"\\n\";\n\t\n\trep(i, n)rep(j, n)dist[i][j] = INF;\n\tpriority_queue<speP, vector<speP>, greater<speP>> q;\n\trep(i, 1) {\n\t\tdist[i][i] = 0;\n\t\tq.push({ 0,{i,i} });\n\t}\n\tld ans = INF;\n\twhile (!q.empty()) {\n\t\tspeP p = q.top(); q.pop();\n\t\tste s = p.second;\n\t\tld d = p.first;\n\t\tif (d > dist[s.x][s.y])continue;\n\t\t//cout << s.x << \" \" << s.y << \" \" << d << \"\\n\";\n\t\tint dif = s.y - s.x; if (dif < 0)dif += n;\n\t\t//left zero\n\t\tfor (int j = -1; j <= 1; j += 2) {\n\t\t\tint tx = s.x;\n\t\t\tint ty = s.y + j;\n\t\t\tif (tx < 0)tx += n;\n\t\t\tif (tx >= n)tx -= n;\n\t\t\tif (ty < 0)ty += n;\n\t\t\tif (ty >= n)ty -= n;\n\t\t\tint tz = dif + j;\n\t\t\tld nd = max(d, cost[tx][ty]);\n\t\t\t\n\t\t\tif (tz < 0)continue;\n\t\t\telse if (tz == n) {\n\t\t\t\tans = min(ans,nd);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (nd < dist[tx][ty]) {\n\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t//right zero\n\t\tfor (int j = -1; j <= 1; j += 2) {\n\t\t\tint tx = s.x + j;\n\t\t\tint ty = s.y;\n\t\t\tif (tx < 0)tx += n;\n\t\t\tif (tx >= n)tx -= n;\n\t\t\tif (ty < 0)ty += n;\n\t\t\tif (ty >= n)ty -= n;\n\t\t\tint tz = dif - j;\n\t\t\tld nd = max(d, cost[tx][ty]);\n\t\t\tif (tz < 0)continue;\n\t\t\telse if (tz == n) {\n\t\t\t\tans = min(ans, nd);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (nd < dist[tx][ty]) {\n\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t//left\n\t\tfor (int i = -1; i <= 1; i += 2) {\n\t\t\tint cx = s.x; if (i < 0)cx--; if (cx < 0)cx += n;\n\t\t\tfor (int j = -n; j<=n; j++) {\n\t\t\t\tif (abs(j) == n)continue;\n\t\t\t\tint tx = s.x+i;\n\t\t\t\tint ty = s.y + j;\n\t\t\t\tint tz = dif -i + j;\n\t\t\t\tif (tx < 0)tx += n;\n\t\t\t\tif (tx >= n)tx -= n;\n\t\t\t\tif (ty < 0)ty += n;\n\t\t\t\tif (ty >= n)ty -= n;\n\t\t\t\tld nd = d;\n\t\t\t\tnd = max(nd, cost[tx][ty]);\n\t\t\t\tif (j <= 0)nd = max(nd, lcost[cx][ty][s.y]);\n\t\t\t\telse nd = max(nd, lcost[cx][s.y][ty]);\n\t\t\t\tif (tz<0 || tz>n)continue;\n\t\t\t\telse if (tz == n) {\n\t\t\t\t\tans = min(ans, nd);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (dist[tx][ty] > nd) {\n\t\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t//right\n\t\tfor (int j = -1; j <= 1; j += 2) {\n\t\t\tint cy = s.y; if (j < 0)cy--; if (cy < 0)cy += n;\n\t\t\tfor (int i = -n; i <= n; i++) {\n\t\t\t\tif (abs(i) == n)continue;\n\t\t\t\tint tx = s.x + i;\n\t\t\t\tint ty = s.y + j;\n\t\t\t\tint tz = dif - i + j;\n\t\t\t\tif (tx < 0)tx += n;\n\t\t\t\tif (tx >= n)tx -= n;\n\t\t\t\tif (ty < 0)ty += n;\n\t\t\t\tif (ty >= n)ty -= n;\n\t\t\t\tld nd = d;\n\t\t\t\tnd = max(nd, cost[tx][ty]);\n\t\t\t\tif (i <= 0)nd = max(nd, lcost[cy][tx][s.x]);\n\t\t\t\telse nd = max(nd, lcost[cy][s.x][tx]);\n\t\t\t\tif (tz<0 || tz>n)continue;\n\t\t\t\telse if (tz == n) {\n\t\t\t\t\tans = min(ans, nd);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (dist[tx][ty] > nd) {\n\t\t\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t//rep(i, n)rep(j, n)cout << i << \" \" << j << \" \" << dist[i][j] << \"\\n\";\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.6, "time_ms": 10, "memory_kb": 8836, "score_of_the_acc": -0.1426, "final_rank": 3 }, { "submission_id": "aoj_2771_4937046", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 18;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\n#include<complex>\ntypedef complex<ld> Point;\nld dot(Point a, Point b) { return real(conj(a) * b); }\nld cross(Point a, Point b) { return imag(conj(a) * b); }\nnamespace std {\n\tbool operator<(const Point& lhs, const Point& rhs) {\n\t\treturn lhs.real() == rhs.real() ? lhs.imag() < rhs.imag() : lhs.real() < rhs.real();\n\t}\n}\nstruct Line {\n\tPoint a, b;\n};\nint ccw(Point a, Point b, Point c) {\n\tb -= a; c -= a;\n\tif (cross(b, c) > eps)return 1;//counter clockwise\n\tif (cross(b, c) < -eps)return -1;//clock wise\n\tif (dot(b, c) < 0)return 2;//c--a--b on line\n\tif (norm(b) < norm(c))return -2;//a--b--c on line\n\treturn 0; //a--c--b on line\n}\n//点から直線への垂線の足\nPoint proj(Line l, Point p) {\n\tld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n\treturn l.a + t * (l.a - l.b);\n}\n\n\nstruct ste {\n\tint le, ri;\n};\nbool operator<(const ste& a, const ste& b) {\n\tif (a.le != b.le)return a.le < b.le;\n\treturn a.ri < b.ri;\n}\nusing speP = pair<ld, ste>;\nvoid solve() {\n\tint n; cin >> n;\n\tvector<ld> x(n), y(n);\n\trep(i, n) {\n\t\tcin >> x[i] >> y[i];\n\t}\n\tvector<ld> vx, vy;\n\trep(i, n) {\n\t\tvx.push_back(x[i]);\n\t\tvy.push_back(y[i]);\n\t\t//(x_i,y_i)->(x_{i+1},y_{i+1})\n\t\tPoint pl = { x[i],y[i] };\n\t\tPoint pr = { x[(i + 1) % n],y[(i + 1) % n] };\n\t\tLine l = { pl,pr };\n\t\tvector<ld> ts;\n\t\tfor (int j = 0; j < n - 2; j++) {\n\t\t\tint to = i + 2 + j; to %= n;\n\t\t\tPoint p = proj(l, { x[to],y[to] });\n\t\t\tif (ccw(pl,pr, p) == 0) {\n\t\t\t\tld t = abs(p - pl) / abs(pr - pl);\n\t\t\t\tts.push_back(t);\n\t\t\t}\n\t\t}\n\t\tsort(all(ts));\n\t\trep(j, ts.size()) {\n\t\t\tPoint nex = pl * (1 - ts[j]) + pr * ts[j];\n\t\t\tvx.push_back(real(nex));\n\t\t\tvy.push_back(imag(nex));\n\t\t}\n\t}\n\tn = vx.size();\n\tx = vx, y = vy;\n\n\tvector<vector<ld>> cost(n, vector<ld>(n));\n\n\trep(i, n)rep(j, n) {\n\t\tld dx = abs(x[j] - x[i]);\n\t\tld dy = abs(y[j] - y[i]);\n\t\tcost[i][j] = sqrtl(dx * dx + dy * dy);\n\t}\n\tvector<vector<ld>> dist(n, vector<ld>(n, INF));\n\trep(i, n)rep(j, n)dist[i][j] = INF;\n\tpriority_queue<speP, vector<speP>, greater<speP>> q;\n\trep(i, n) {\n\t\tdist[i][i] = 0;\n\t\tq.push({ 0,{i,i} });\n\t}\n\tld ans = INF;\n\twhile (!q.empty()) {\n\t\tspeP p = q.top(); q.pop();\n\t\tste s = p.second;\n\t\tld d = p.first;\n\t\tif (d > dist[s.le][s.ri])continue;\n\t\tfor (int i = -1; i <= 1; i++)for (int j = -1; j <= 1; j++) {\n\t\t\tif (s.le == s.ri) {\n\t\t\t\tif (i >= j)continue;\n\t\t\t}\n\t\t\telse if ((s.le + 1) % n == s.ri) {\n\t\t\t\tif (i>j)continue;\n\t\t\t}\n\t\t\telse if ((s.le + 2) % n == s.ri) {\n\t\t\t\tif (i > j + 1)continue;\n\t\t\t}\n\t\t\tint tx = s.le + i;\n\t\t\tint ty = s.ri + j;\n\t\t\tif (tx < 0)tx += n;\n\t\t\tif (tx >= n)tx -= n;\n\t\t\tif (ty < 0)ty += n;\n\t\t\tif (ty >= n)ty -= n;\n\t\t\tld nd = max(d, cost[tx][ty]);\n\t\t\tif (nd < dist[tx][ty]) {\n\t\t\t\tdist[tx][ty] = nd;\n\t\t\t\tq.push({ nd,{tx,ty} });\n\t\t\t}\n\t\t\tif (tx == ty) {\n\t\t\t\tans = min(ans, nd);\n\t\t\t}\n\t\t}\n\t}\n\t//rep(i, n)rep(j, n)cout << i << \" \" << j << \" \" << dist[i][j] << \"\\n\";\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\t\tsolve();\n\treturn 0;\n}", "accuracy": 0.08571428571428572, "time_ms": 220, "memory_kb": 28572, "score_of_the_acc": -1.6842, "final_rank": 7 }, { "submission_id": "aoj_2771_4937042", "code_snippet": "#include <bits/stdc++.h>\n\n#define REP(i, n) for (int i = 0; i < (int)(n); i++)\n#define ALL(x) (x).begin(), (x).end()\n#define HHH(x) cerr << \"L\" << __LINE__ << \": \" << #x << \" = \" << (x) << endl\n\ntemplate <typename T> T &chmin(T &a, const T &b) { return a = std::min(a, b); }\ntemplate <typename T> T &chmax(T &a, const T &b) { return a = std::max(a, b); }\n\nusing ll = long long;\nusing ld = long double;\n\nusing namespace std;\n\nusing ld = long double;\nusing P = complex<ld>;\nusing VP = vector<P>;\nconst ld eps = 1e-8, pi = acos(-1.0);\n\n#define EQ(a,b) (abs((a)-(b))<eps)\n\nld dot (P a, P b) { return real(conj(a) * b); }\nld cross (P a, P b) { return imag(conj(a) * b); }\n\nnamespace std {\n bool operator<(const P &lhs, const P &rhs) {\n return lhs.real() == rhs.real() ? lhs.imag() < rhs.imag()\n : lhs.real() < rhs.real();\n }\n}\n\nint ccw (P a, P b, P c) {\n b -= a; c -= a;\n if (cross(b, c) > eps) return 1; // counter clockwise\n if (cross(b, c) < -eps) return -1; // clockwise\n if (dot(b, c) < 0) return 2; // c--a--b on line\n if (norm(b) < norm(c)) return -2; // a--b--c on line\n return 0; // a--c--b on line\n}\n\nstruct L{ P a, b; };\n\nP proj(L l, P p) {\n ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + t * (l.a - l.b);\n}\n\nbool isis_sp(L s, P p) {\n return abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps;\n}\n\nbool isis_ss(L s, L t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\nld dist_sp(L s, P p) {\n P r = proj(s, p);\n if (isis_sp(s, r)) return abs(r - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\n\nld dist_ss(L s, L t) {\n if (isis_ss(s, t)) return 0;\n ld a = min(dist_sp(s, t.a), dist_sp(t, s.a));\n ld b = min(dist_sp(s, t.b), dist_sp(t, s.b));\n return min(a, b);\n}\n\nld dist[128][128];\nld max_dist[256][256];\nbool visited[256][256];\n\nint main() {\n int n;\n cin >> n;\n vector<P> poly;\n REP(i,n) {\n ld x, y;\n cin >> x >> y;\n poly.emplace_back(x, y);\n }\n REP(i,n) REP(j,n) {\n dist[i*2][j*2] = abs(poly[i] - poly[j]);\n L si = (L){poly[i], poly[(i+1)%n]};\n L sj = (L){poly[j], poly[(j+1)%n]};\n dist[i*2+1][j*2] = dist_sp(si, poly[j]);\n dist[i*2][j*2+1] = dist_sp(sj, poly[i]);\n dist[i*2+1][j*2+1] = dist_ss(si, sj);\n }\n REP(i,256) REP(j,256) max_dist[i][j] = 1e18;\n using T = tuple<ld, int, int>;\n priority_queue<T, vector<T>, greater<T>> que;\n que.emplace(0, 0, 0);\n max_dist[0][0] = 0;\n\n // REP(i,2*n) {\n // REP(j,2*n) cout << dist[i][j] << \" \";\n // cout << endl;\n // }\n\n while (!que.empty()) {\n ld max_d;\n int i, j;\n tie(max_d, i, j) = que.top();\n que.pop();\n if (visited[i][j]) continue;\n visited[i][j] = true;\n\n // cout << i << \" \" << j << \" \" << max_dist[i][j] << endl;\n\n auto update = [&](int new_i, int new_j) {\n new_i = (new_i + 4 * n) % (4 * n);\n new_j = (new_j + 4 * n) % (4 * n);\n if (visited[new_i][new_j]) return;\n ld new_dist = max(max_d, dist[new_i % (2 * n)][new_j % (2 * n)]);\n if (max_dist[new_i][new_j] > new_dist) {\n max_dist[new_i][new_j] = new_dist;\n que.emplace(new_dist, new_i, new_j);\n }\n };\n update(i - 1, j);\n update(i, j - 1);\n update(i + 1, j);\n update(i, j + 1);\n }\n ld res = 1e18;\n REP(i,n*2) {\n // int j = i + n * 2;\n // cout << i << \" \" << j << \" \" << max_dist[i][j] << endl;\n chmin(res, max_dist[i][i+n*2]);\n }\n cout << setprecision(12) << fixed;\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5188, "score_of_the_acc": -0.0425, "final_rank": 1 } ]
aoj_2764_cpp
G: 旅費支給 - Travel Support - 物語 私,香坂穂乃果16歳!学生アイドルをやっています!! 学生アイドルの良さをみんなに伝えるためのライブをやろうと,たくさんの学生アイドルの人たちを呼んでアキバスタジアムでライブをします. だけど,遠くから来るライブ参加者もいてとっても電車賃がかかるの.だからu’sのメンバーでバイトをして,ライブ参加者たちに電車賃を渡すことにしたんだ!ただ,バイト代が入るのが遅いから電車賃を渡すのがライブ参加者の出発に間に合わないことがあったり,バイト代が足りなくて電車賃の全額は渡せないことがあるんだ.そんな時は,ライブ参加者に足りない分のお金を事前に用意してもらうのだけど,どのくらい用意して貰えばいいんだろう? そこで,あなたにライブ参加者が用意する必要のある最小の金額を求めて欲しいんだ! おねがい真衣ちゃん,電車賃貸して? 問題 N 個の都市があり,それぞれ 1 〜 N までの番号がつけられている. i ( 1 ≤ i ≤ N )番目の都市は人口が t_i ( i ≠ j ならば t_i ≠ t_j )である. 現在,都市1に K 人のライブ参加者が集まろうとしている.許された交通手段が M 通りあり, i 番目の交通手段では都市 a_i と都市 b_i ( 1 ≤ a_i, b_i ≤ N )を c_i 円の費用で双方向に移動ができる.移動にはどの交通手段でも1日を必要とする. i ( 1 ≤ i ≤ K )番目の参加者は,都市 x_i を出発し必要な費用が最小になるような経路で都市1に向かう.費用が最小な経路が複数ある場合は,移動日数が少ない経路を選ぶ.それでも複数の経路がある場合は,人口が少ない都市へ優先して移動するような経路を選ぶ.これにより経路が定まり到着するまでの日数がわかるので,参加者はそれぞれライブが行われる日にちょうど都市1に到着するように移動を開始する. また, i ( 1 ≤ i ≤ K )番目の参加者にはライブの d_i 日前に p_i 円の支給がある事が知らされている.支給後の移動には可能なかぎり支給された費用を用いるが,支給前にかかっている費用や,賄いきれない支給後の費用は,各参加者が事前に用意する必要がある. それぞれの参加者が事前に用意する費用の最小値を求めよ. 入力形式 入力は次の形式で与えられる. N M t_1 ... t_N a_1 b_1 c_1 ... a_M b_M c_M K x_1 d_1 p_1 ... x_K d_K p_K 1行目には2つの整数 N ( 1 ≤ N ≤ 100,000 ), M ( 0 ≤ M ≤ 500,000 )が空白区切りで与えられ,それぞれ都市数と許された交通手段の数を表す.2行目には N 個の整数 t_i ( 1 ≤ i ≤ N , 1 ≤ t_i ≤ 500,000 )が空白区切りで与えられる. t_i は都市 i の人口を表し, i ≠ j ならば t_i ≠ t_j を満たす. 続く M 行は交通手段についての入力であり, i 番目の交通手段について3つの整数 a_i , b_i , c_i が空白区切りで与えられる.これは, i 番目の交通手段で都市 a_i と b_i ( 1 ≤ a_i, b_i ≤ N , a_i ≠ b_i )を行き来でき, c_i ( 1 ≤ c_i ≤ 10,000 )円の費用がかかることを表す.また,任意の2つの都市を直接結ぶ2つ以上の交通手段は無い.全ての都市は,いくつかの交通手段を用いて互いに行き来できる. 次の行には参加者の人数を表す整数 K ( 1 ≤ K ≤ 100,000 )が与えられる. 続く K 行は参加者たちについての入力であり, i 番目の参加者について3つの整数 x_i, d_i, p_i が空白区切りで与えられる.これは, i 番目の参加者が最初は都市 x_i ( 1 ≤ x_i ≤ N )におり,ライブの d_i ( 0 ≤ d_i ≤ 100,000 )日前に p_i ( 0 ≤ p_i ≤ 100,000 )円の支給を受けることを表す. 出力形式 それぞれの参加者が事前に用意する費用の最小値を,1番目の参加者から順に改行区切りで出力せよ. 入出力が非常に大きくなる可能性があるので,入出力の関数には高速なものを用いることを推奨する. 入力例1 5 6 100 80 70 60 50 1 2 500 2 5 100 1 3 400 1 4 200 3 5 700 4 5 800 1 5 3 600 出力例1 0 移動全体にかかる費用の最小値は600円で,2日間で都市1につくことができる.3日前に十分な費用が支給されるので,事前に費用を用意する必要はない. 入力例2 5 6 400 200 500 300 100 1 2 500 2 5 100 1 3 400 1 4 200 3 5 200 4 5 800 1 5 1 800 出力例2 100 費用が最小でありかつ日数が最小となる経路は 5−2−1 と 5−3−1 の2つの経路があるが,都市5から次の都市へ移動する際に,都市3より都市2の方が人口が少ないので経路 5−2−1 を選ぶ.合計の費用は600円なの支給額で全額支払い可能であるが,支給されるより前の費用は立て替えなければならないので, 5−2 間の費用である100円だけ事前に用意する必要がある. 入力例3 10 13 100 90 80 70 60 50 40 30 20 10 1 2 5 1 4 4 2 3 3 3 5 2 4 5 6 4 6 7 4 7 2 5 8 1 5 9 8 6 7 10 6 9 7 6 10 3 7 10 10 10 2 0 0 2 1 3 3 0 100000 3 1 3 3 1 100000 3 2 100000 3 100000 100000 8 1 5 9 2 11 10 0 0 出力例3 5 2 8 5 3 0 0 7 7 14
[ { "submission_id": "aoj_2764_10593094", "code_snippet": "#include <iostream>\n#include <vector>\n#include <queue>\n#include <algorithm>\n#include <climits>\n\nusing namespace std;\n\nconst int MAX_N = 100000;\nconst int MAX_D = 20;\ntypedef long long ll;\nconst ll INF = 1LL << 60;\n\nstruct Edge {\n int to;\n int cost;\n Edge(int t, int c) : to(t), cost(c) {}\n};\n\nstruct State {\n ll total_cost;\n int depth;\n int node;\n State(ll c, int d, int n) : total_cost(c), depth(d), node(n) {}\n \n bool operator<(const State& other) const {\n if (total_cost != other.total_cost) {\n return total_cost > other.total_cost;\n }\n return depth > other.depth;\n }\n};\n\nvector<int> tree_types;\nvector<vector<Edge>> graph;\nvector<ll> min_costs;\nvector<int> depths;\nvector<vector<int>> ancestors;\n\nvoid dijkstra(int start, int n) {\n min_costs.assign(n, INF);\n depths.assign(n, 0);\n ancestors.assign(n, vector<int>(MAX_D, -1));\n \n min_costs[start] = 0;\n priority_queue<State> pq;\n pq.push(State(0, 0, start));\n \n while (!pq.empty()) {\n State current = pq.top();\n pq.pop();\n \n if (current.total_cost != min_costs[current.node] || \n current.depth != depths[current.node]) {\n continue;\n }\n \n for (const Edge& edge : graph[current.node]) {\n int neighbor = edge.to;\n ll new_cost = current.total_cost + edge.cost;\n int new_depth = current.depth + 1;\n \n if (new_cost < min_costs[neighbor]) {\n min_costs[neighbor] = new_cost;\n depths[neighbor] = new_depth;\n ancestors[neighbor][0] = current.node;\n pq.push(State(new_cost, new_depth, neighbor));\n }\n else if (new_cost == min_costs[neighbor]) {\n if (new_depth < depths[neighbor]) {\n depths[neighbor] = new_depth;\n ancestors[neighbor][0] = current.node;\n pq.push(State(new_cost, new_depth, neighbor));\n }\n else if (new_depth == depths[neighbor] && \n tree_types[ancestors[neighbor][0]] > tree_types[current.node]) {\n ancestors[neighbor][0] = current.node;\n }\n }\n }\n }\n \n // Build binary lifting table\n for (int d = 1; d < MAX_D; ++d) {\n for (int i = 0; i < n; ++i) {\n if (ancestors[i][d-1] != -1) {\n ancestors[i][d] = ancestors[ancestors[i][d-1]][d-1];\n }\n }\n }\n}\n\nint find_ancestor(int node, int steps) {\n for (int d = MAX_D - 1; d >= 0; --d) {\n if (steps >= (1 << d)) {\n node = ancestors[node][d];\n steps -= (1 << d);\n if (node == -1) break;\n }\n }\n return node;\n}\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n \n int n, m;\n cin >> n >> m;\n \n tree_types.resize(n);\n for (int i = 0; i < n; ++i) {\n cin >> tree_types[i];\n }\n \n graph.resize(n);\n for (int i = 0; i < m; ++i) {\n int a, b, c;\n cin >> a >> b >> c;\n a--; b--;\n graph[a].emplace_back(b, c);\n graph[b].emplace_back(a, c);\n }\n \n dijkstra(0, n);\n \n int k;\n cin >> k;\n while (k--) {\n int x, d, p;\n cin >> x >> d >> p;\n x--;\n \n int r = depths[x] - d;\n int y = x;\n \n if (r > 0) {\n y = find_ancestor(x, r);\n }\n \n ll cost = min_costs[x] - min_costs[y];\n if (p < min_costs[y]) {\n cost = min_costs[x] - p;\n }\n \n cout << cost << '\\n';\n }\n \n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 33948, "score_of_the_acc": -0.1835, "final_rank": 1 }, { "submission_id": "aoj_2764_10230010", "code_snippet": "// AOJ #2764 Travel Support\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct State { ll cost; int days, city, parent; };\n \nint N;\nvector<int> popArr;\n \nstruct StateCompare {\n bool operator()(const State &a, const State &b) const {\n if(a.cost != b.cost) return a.cost > b.cost;\n if(a.days != b.days) return a.days > b.days;\n int pa = (a.parent == -1 ? -1 : popArr[a.parent-1]);\n int pb = (b.parent == -1 ? -1 : popArr[b.parent-1]);\n return pa > pb;\n }\n};\n \nstruct Edge { int to, cost; };\n \nint main() {\n N = Cin();\n int M = Cin();\n popArr.resize(N);\n for (int i=0; i<N; i++) popArr[i] = Cin();\n \n vector<vector<Edge>> graph(N+1);\n for (int i=0; i<M; i++){\n int a = Cin(), b = Cin(), c = Cin();\n graph[a].push_back({b,c});\n graph[b].push_back({a,c});\n }\n \n const ll INF = 1LL << 60;\n vector<ll> bestCost(N+1, INF);\n vector<int> bestDays(N+1, INT_MAX);\n vector<int> bestParent(N+1, -1);\n bestCost[1] = 0;\n bestDays[1] = 0;\n bestParent[1] = -1;\n \n priority_queue<State, vector<State>, StateCompare> pq;\n pq.push({0,0,1,-1});\n \n while(!pq.empty()){\n State st = pq.top(); pq.pop();\n int cur = st.city;\n if(st.cost != bestCost[cur] || st.days != bestDays[cur]) continue;\n \n for(auto &e : graph[cur]){\n int nxt = e.to;\n ll nc = st.cost + e.cost;\n int nd = st.days + 1;\n int candidateParent = cur;\n bool update = false;\n if(nc < bestCost[nxt]) update = true;\n else if(nc == bestCost[nxt]){\n if(nd < bestDays[nxt]) update = true;\n else if(nd == bestDays[nxt]){\n int candPop = popArr[candidateParent-1];\n int currPop = (bestParent[nxt] == -1 ? INT_MAX : popArr[bestParent[nxt]-1]);\n if(candPop < currPop)\n update = true;\n }\n }\n if(update){\n bestCost[nxt] = nc;\n bestDays[nxt] = nd;\n bestParent[nxt] = candidateParent;\n pq.push({nc, nd, nxt, candidateParent});\n }\n }\n }\n \n vector<int> depth(N+1, 0);\n for (int i=1; i<=N; i++) depth[i] = bestDays[i];\n vector<int> edgeCost(N+1, 0);\n for (int i=2; i<=N; i++){\n if(bestParent[i] != -1) edgeCost[i] = (int)(bestCost[i] - bestCost[bestParent[i]]);\n }\n \n int maxP = 0;\n while((1 << maxP) <= N) maxP++;\n vector<vector<int>> up(maxP, vector<int>(N+1, -1));\n vector<vector<ll>> sumCost(maxP, vector<ll>(N+1, 0));\n for (int i=1; i<=N; i++){\n up[0][i] = (bestParent[i] == -1 ? 0 : bestParent[i]);\n sumCost[0][i] = (i==1 ? 0 : edgeCost[i]);\n }\n for (int p=1; p<maxP; p++){\n for (int i=1; i<=N; i++){\n int mid = up[p-1][i];\n up[p][i] = (mid==0 ? 0 : up[p-1][mid]);\n sumCost[p][i] = sumCost[p-1][i] + (mid==0 ? 0 : sumCost[p-1][mid]);\n }\n }\n auto getSum = [&](int x, int k) -> ll {\n ll s = 0;\n int cur = x;\n for (int p = 0; p < maxP; p++){\n if(k & (1 << p)){\n s += sumCost[p][cur];\n cur = up[p][cur];\n if(cur==0) break;\n }\n }\n return s;\n };\n \n int Q = Cin();\n for (int i=0; i<Q; i++){\n int x = Cin(), d = Cin(), pSub = Cin();\n if(x==1){\n Cout(0);\n continue;\n }\n int L = depth[x];\n int preCount = (L > d ? L - d : 0);\n ll cost_pre = getSum(x, preCount);\n ll total = getSum(x, L);\n ll cost_post = total - cost_pre;\n ll extra = 0;\n if((ll)pSub < cost_post) extra = cost_post - pSub;\n ll ans = cost_pre + extra;\n Cout(ans);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 45852, "score_of_the_acc": -0.2359, "final_rank": 3 }, { "submission_id": "aoj_2764_10229988", "code_snippet": "// AOJ #2764 Travel Support\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nstruct State { ll cost; int days, city, parent; };\n \nint N;\nvector<int> popArr;\n \nstruct StateCompare {\n bool operator()(const State &a, const State &b) const {\n if(a.cost != b.cost) return a.cost > b.cost;\n if(a.days != b.days) return a.days > b.days;\n int pa = (a.parent == -1 ? -1 : popArr[a.parent-1]);\n int pb = (b.parent == -1 ? -1 : popArr[b.parent-1]);\n return pa > pb;\n }\n};\n \nstruct Edge { int to, cost; };\n \nint main() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int M;\n cin >> N >> M;\n popArr.resize(N);\n for (int i=0; i<N; i++) cin >> popArr[i];\n \n vector<vector<Edge>> graph(N+1);\n for (int i=0; i<M; i++){\n int a, b, c;\n cin >> a >> b >> c;\n graph[a].push_back({b,c});\n graph[b].push_back({a,c});\n }\n \n const ll INF = 1LL << 60;\n vector<ll> bestCost(N+1, INF);\n vector<int> bestDays(N+1, INT_MAX);\n vector<int> bestParent(N+1, -1);\n bestCost[1] = 0;\n bestDays[1] = 0;\n bestParent[1] = -1;\n \n priority_queue<State, vector<State>, StateCompare> pq;\n pq.push({0,0,1,-1});\n \n while(!pq.empty()){\n State st = pq.top(); pq.pop();\n int cur = st.city;\n if(st.cost != bestCost[cur] || st.days != bestDays[cur]) continue;\n \n for(auto &e : graph[cur]){\n int nxt = e.to;\n ll nc = st.cost + e.cost;\n int nd = st.days + 1;\n int candidateParent = cur;\n bool update = false;\n if(nc < bestCost[nxt]) update = true;\n else if(nc == bestCost[nxt]){\n if(nd < bestDays[nxt]) update = true;\n else if(nd == bestDays[nxt]){\n int candPop = popArr[candidateParent-1];\n int currPop = (bestParent[nxt] == -1 ? INT_MAX : popArr[bestParent[nxt]-1]);\n if(candPop < currPop)\n update = true;\n }\n }\n if(update){\n bestCost[nxt] = nc;\n bestDays[nxt] = nd;\n bestParent[nxt] = candidateParent;\n pq.push({nc, nd, nxt, candidateParent});\n }\n }\n }\n \n vector<int> depth(N+1, 0);\n for (int i=1; i<=N; i++) depth[i] = bestDays[i];\n vector<int> edgeCost(N+1, 0);\n for (int i=2; i<=N; i++){\n if(bestParent[i] != -1) edgeCost[i] = (int)(bestCost[i] - bestCost[bestParent[i]]);\n }\n \n int maxP = 0;\n while((1 << maxP) <= N) maxP++;\n vector<vector<int>> up(maxP, vector<int>(N+1, -1));\n vector<vector<ll>> sumCost(maxP, vector<ll>(N+1, 0));\n for (int i=1; i<=N; i++){\n up[0][i] = (bestParent[i] == -1 ? 0 : bestParent[i]);\n sumCost[0][i] = (i==1 ? 0 : edgeCost[i]);\n }\n for (int p=1; p<maxP; p++){\n for (int i=1; i<=N; i++){\n int mid = up[p-1][i];\n up[p][i] = (mid==0 ? 0 : up[p-1][mid]);\n sumCost[p][i] = sumCost[p-1][i] + (mid==0 ? 0 : sumCost[p-1][mid]);\n }\n }\n auto getSum = [&](int x, int k) -> ll {\n ll s = 0;\n int cur = x;\n for (int p = 0; p < maxP; p++){\n if(k & (1 << p)){\n s += sumCost[p][cur];\n cur = up[p][cur];\n if(cur==0) break;\n }\n }\n return s;\n };\n \n int Q;\n cin >> Q;\n for (int i=0; i<Q; i++){\n int x, d, pSub;\n cin >> x >> d >> pSub;\n if(x==1){\n cout << 0 << endl;\n continue;\n }\n int L = depth[x];\n int preCount = (L > d ? L - d : 0);\n ll cost_pre = getSum(x, preCount);\n ll total = getSum(x, L);\n ll cost_post = total - cost_pre;\n ll extra = 0;\n if((ll)pSub < cost_post) extra = cost_post - pSub;\n ll ans = cost_pre + extra;\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 45432, "score_of_the_acc": -0.4802, "final_rank": 9 }, { "submission_id": "aoj_2764_8319101", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <functional>\nusing namespace std;\n#pragma warning (disable: 4996)\n\n// Main Variables\nlong long N, T[1 << 19];\nlong long M, A[1 << 19], B[1 << 19], C[1 << 19];\nlong long K, X[1 << 19], D[1 << 19], P[1 << 19];\nvector<pair<long long, long long>> G[1 << 19];\nvector<int> H[1 << 19];\npair<long long, long long> Dist[1 << 19];\npriority_queue<tuple<long long, long long, long long>, vector<tuple<long long, long long, long long>>, greater<tuple<long long, long long, long long>>> Q;\n\n// LCA Variables\nlong long Par[1 << 19][22];\nlong long Depth[1 << 19];\nbool Used[1 << 19];\n\nvoid dfs(int pos, int dep) {\n\tDepth[pos] = dep;\n\tfor (int to : H[pos]) dfs(to, dep + 1);\n}\n\nint prevs(int pos, int x) {\n\tfor (int i = 20; i >= 0; i--) {\n\t\tif (x >= (1 << i)) { x -= (1 << i); pos = Par[pos][i]; }\n\t}\n\treturn pos;\n}\n\nint main() {\n\t// Step 1. Input\n\tscanf(\"%lld%lld\", &N, &M);\n\tfor (int i = 1; i <= N; i++) scanf(\"%lld\", &T[i]);\n\tfor (int i = 1; i <= M; i++) scanf(\"%lld%lld%lld\", &A[i], &B[i], &C[i]);\n\tscanf(\"%lld\", &K);\n\tfor (int i = 1; i <= K; i++) scanf(\"%lld%lld%lld\", &X[i], &D[i], &P[i]);\n\n\t// Step 2. Make Graph\n\tfor (int i = 1; i <= M; i++) {\n\t\tG[A[i]].push_back(make_pair(B[i], C[i]));\n\t\tG[B[i]].push_back(make_pair(A[i], C[i]));\n\t}\n\tfor (int i = 1; i <= N; i++) Dist[i] = make_pair((1LL << 60), -1);\n\tQ.push(make_tuple(0, 0, 1));\n\tDist[1] = make_pair(0, 0);\n\n\t// Step 3A. Dijkstra\n\twhile (!Q.empty()) {\n\t\tlong long pos = get<2>(Q.top());\n\t\tlong long cost1 = get<0>(Q.top());\n\t\tlong long cost2 = get<1>(Q.top()); Q.pop();\n\t\tif (Used[pos] == true) continue;\n\t\tUsed[pos] = true;\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\tlong long to = G[pos][i].first;\n\t\t\tlong long nex_cost1 = cost1 + G[pos][i].second;\n\t\t\tlong long nex_cost2 = cost2 + 1;\n\t\t\tif (Dist[to] > make_pair(nex_cost1, nex_cost2)) {\n\t\t\t\tDist[to] = make_pair(nex_cost1, nex_cost2);\n\t\t\t\tQ.push(make_tuple(nex_cost1, nex_cost2, to));\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 3B. Get Prev\n\tfor (int i = 2; i <= N; i++) {\n\t\tpair<long long, long long> minid = make_pair((1LL << 60), (1LL << 60));\n\t\tfor (int j = 0; j < G[i].size(); j++) {\n\t\t\tlong long to = G[i][j].first;\n\t\t\tlong long bef_cost1 = Dist[i].first - G[i][j].second;\n\t\t\tlong long bef_cost2 = Dist[i].second - 1;\n\t\t\tif (Dist[to] == make_pair(bef_cost1, bef_cost2)) {\n\t\t\t\tminid = min(minid, make_pair(T[to], to));\n\t\t\t}\n\t\t}\n\t\tPar[i][0] = minid.second;\n\t}\n\n\t// Step 4. LCA Init\n\tfor (int d = 1; d <= 20; d++) {\n\t\tfor (int i = 1; i <= N; i++) Par[i][d] = Par[Par[i][d - 1]][d - 1];\n\t}\n\tfor (int i = 2; i <= N; i++) H[Par[i][0]].push_back(i);\n\tdfs(1, 0);\n\n\t// Step 5. Answer Query\n\tfor (int i = 1; i <= K; i++) {\n\t\tlong long Dist1 = get<0>(Dist[X[i]]);\n\t\tlong long Dist2 = 0;\n\t\tif (Depth[X[i]] > D[i]) {\n\t\t\tint pos = prevs(X[i], Depth[X[i]] - D[i]);\n\t\t\tDist2 = get<0>(Dist[X[i]]) - get<0>(Dist[pos]);\n\t\t}\n\t\tlong long Answer = max(Dist2, Dist1 - P[i]);\n\t\tprintf(\"%lld\\n\", Answer);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 99928, "score_of_the_acc": -1.103, "final_rank": 14 }, { "submission_id": "aoj_2764_8319087", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <functional>\nusing namespace std;\n#pragma warning (disable: 4996)\n\n// Main Variables\nlong long N, T[1 << 19];\nlong long M, A[1 << 19], B[1 << 19], C[1 << 19];\nlong long K, X[1 << 19], D[1 << 19], P[1 << 19];\nlong long Prev[1 << 19];\nvector<pair<long long, long long>> G[1 << 19];\nvector<int> H[1 << 19];\ntuple<long long, long long, long long> Dist[1 << 19];\npriority_queue<tuple<long long, long long, long long, long long>, vector<tuple<long long, long long, long long, long long>>, greater<tuple<long long, long long, long long, long long>>> Q;\n\n// LCA Variables\nlong long Par[1 << 19][22];\nlong long Depth[1 << 19];\nbool Used[1 << 19];\n\nvoid dfs(int pos, int dep) {\n\tDepth[pos] = dep;\n\tfor (int to : H[pos]) dfs(to, dep + 1);\n}\n\nint prevs(int pos, int x) {\n\tfor (int i = 20; i >= 0; i--) {\n\t\tif (x >= (1 << i)) { x -= (1 << i); pos = Par[pos][i]; }\n\t}\n\treturn pos;\n}\n\nint main() {\n\t// Step 1. Input\n\tscanf(\"%lld%lld\", &N, &M);\n\tfor (int i = 1; i <= N; i++) scanf(\"%lld\", &T[i]);\n\tfor (int i = 1; i <= M; i++) scanf(\"%lld%lld%lld\", &A[i], &B[i], &C[i]);\n\tscanf(\"%lld\", &K);\n\tfor (int i = 1; i <= K; i++) scanf(\"%lld%lld%lld\", &X[i], &D[i], &P[i]);\n\n\t// Step 2. Make Graph\n\tfor (int i = 1; i <= M; i++) {\n\t\tG[A[i]].push_back(make_pair(B[i], C[i]));\n\t\tG[B[i]].push_back(make_pair(A[i], C[i]));\n\t}\n\tfor (int i = 1; i <= N; i++) Dist[i] = make_tuple((1LL << 60), -1, -1);\n\tQ.push(make_tuple(0, 0, (1LL << 60), 1));\n\tDist[1] = make_tuple(0, 0, (1LL << 60));\n\n\t// Step 3. Dijkstra\n\twhile (!Q.empty()) {\n\t\tlong long pos = get<3>(Q.top());\n\t\tlong long cost1 = get<0>(Q.top());\n\t\tlong long cost2 = get<1>(Q.top());\n\t\tlong long cost3 = get<2>(Q.top()); Q.pop();\n\t\tif (Used[pos] == true) continue;\n\t\tUsed[pos] = true;\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\tlong long to = G[pos][i].first;\n\t\t\tlong long nex_cost1 = cost1 + G[pos][i].second;\n\t\t\tlong long nex_cost2 = cost2 + 1;\n\t\t\tlong long nex_cost3 = min(cost3, T[pos]);\n\t\t\tif (Dist[to] > make_tuple(nex_cost1, nex_cost2, nex_cost3)) {\n\t\t\t\tDist[to] = make_tuple(nex_cost1, nex_cost2, nex_cost3);\n\t\t\t\tPrev[to] = pos;\n\t\t\t\tQ.push(make_tuple(nex_cost1, nex_cost2, nex_cost3, to));\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. LCA Init\n\tfor (int i = 1; i <= N; i++) Par[i][0] = Prev[i];\n\tfor (int d = 1; d <= 20; d++) {\n\t\tfor (int i = 1; i <= N; i++) Par[i][d] = Par[Par[i][d - 1]][d - 1];\n\t}\n\tfor (int i = 2; i <= N; i++) H[Prev[i]].push_back(i);\n\tdfs(1, 0);\n\n\t// Step 5. Answer Query\n\tfor (int i = 1; i <= K; i++) {\n\t\tlong long Dist1 = get<0>(Dist[X[i]]);\n\t\tlong long Dist2 = 0;\n\t\tif (Depth[X[i]] > D[i]) {\n\t\t\tint pos = prevs(X[i], Depth[X[i]] - D[i]);\n\t\t\tDist2 = get<0>(Dist[X[i]]) - get<0>(Dist[pos]);\n\t\t}\n\t\tlong long Answer = max(Dist2, Dist1 - P[i]);\n\t\tprintf(\"%lld\\n\", Answer);\n\t}\n\treturn 0;\n}", "accuracy": 0.6984126984126984, "time_ms": 170, "memory_kb": 102900, "score_of_the_acc": -1.125, "final_rank": 20 }, { "submission_id": "aoj_2764_8319078", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <functional>\nusing namespace std;\n#pragma warning (disable: 4996)\n\n// Main Variables\nlong long N, T[1 << 19];\nlong long M, A[1 << 19], B[1 << 19], C[1 << 19];\nlong long K, X[1 << 19], D[1 << 19], P[1 << 19];\nlong long Prev[1 << 19];\nvector<pair<long long, long long>> G[1 << 19];\nvector<int> H[1 << 19];\ntuple<long long, long long, long long> Dist[1 << 19];\npriority_queue<tuple<long long, long long, long long, long long>, vector<tuple<long long, long long, long long, long long>>, greater<tuple<long long, long long, long long, long long>>> Q;\n\n// LCA Variables\nlong long Par[1 << 19][22];\nlong long Depth[1 << 19];\nbool Used[1 << 19];\n\nvoid dfs(int pos, int dep) {\n\tDepth[pos] = dep;\n\tfor (int to : H[pos]) dfs(to, dep + 1);\n}\n\nint prevs(int pos, int x) {\n\tfor (int i = 20; i >= 0; i--) {\n\t\tif (x >= (1 << i)) { x -= (1 << i); pos = Par[pos][i]; }\n\t}\n\treturn pos;\n}\n\nint main() {\n\t// Step 1. Input\n\tscanf(\"%lld%lld\", &N, &M);\n\tfor (int i = 1; i <= N; i++) scanf(\"%lld\", &T[i]);\n\tfor (int i = 1; i <= M; i++) scanf(\"%lld%lld%lld\", &A[i], &B[i], &C[i]);\n\tscanf(\"%lld\", &K);\n\tfor (int i = 1; i <= K; i++) scanf(\"%lld%lld%lld\", &X[i], &D[i], &P[i]);\n\n\t// Step 2. Make Graph\n\tfor (int i = 1; i <= M; i++) {\n\t\tG[A[i]].push_back(make_pair(B[i], C[i]));\n\t\tG[B[i]].push_back(make_pair(A[i], C[i]));\n\t}\n\tfor (int i = 1; i <= N; i++) Dist[i] = make_tuple((1LL << 60), -1, -1);\n\tQ.push(make_tuple(0, 0, 0, 1));\n\tDist[1] = make_tuple(0, 0, 0);\n\n\t// Step 3. Dijkstra\n\twhile (!Q.empty()) {\n\t\tlong long pos = get<3>(Q.top());\n\t\tlong long cost1 = get<0>(Q.top());\n\t\tlong long cost2 = get<1>(Q.top());\n\t\tlong long cost3 = get<2>(Q.top()); Q.pop();\n\t\tif (Used[pos] == true) continue;\n\t\tUsed[pos] = true;\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\tlong long to = G[pos][i].first;\n\t\t\tlong long nex_cost1 = cost1 + G[pos][i].second;\n\t\t\tlong long nex_cost2 = cost2 + 1;\n\t\t\tlong long nex_cost3 = cost3 + T[to];\n\t\t\tif (Dist[to] > make_tuple(nex_cost1, nex_cost2, nex_cost3)) {\n\t\t\t\tDist[to] = make_tuple(nex_cost1, nex_cost2, nex_cost3);\n\t\t\t\tPrev[to] = pos;\n\t\t\t\tQ.push(make_tuple(nex_cost1, nex_cost2, nex_cost3, to));\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. LCA Init\n\tfor (int i = 1; i <= N; i++) Par[i][0] = Prev[i];\n\tfor (int d = 1; d <= 20; d++) {\n\t\tfor (int i = 1; i <= N; i++) Par[i][d] = Par[Par[i][d - 1]][d - 1];\n\t}\n\tfor (int i = 2; i <= N; i++) H[Prev[i]].push_back(i);\n\tdfs(1, 0);\n\n\t// Step 5. Answer Query\n\tfor (int i = 1; i <= K; i++) {\n\t\tlong long Dist1 = get<0>(Dist[X[i]]);\n\t\tlong long Dist2 = 0;\n\t\tif (Depth[X[i]] > D[i]) {\n\t\t\tint pos = prevs(X[i], Depth[X[i]] - D[i]);\n\t\t\tDist2 = get<0>(Dist[X[i]]) - get<0>(Dist[pos]);\n\t\t}\n\t\tlong long Answer = max(Dist2, Dist1 - P[i]);\n\t\tprintf(\"%lld\\n\", Answer);\n\t}\n\treturn 0;\n}", "accuracy": 0.6984126984126984, "time_ms": 170, "memory_kb": 102632, "score_of_the_acc": -1.1214, "final_rank": 19 }, { "submission_id": "aoj_2764_4550057", "code_snippet": "#include <array>\n#include <iostream>\n#include <vector>\n#include <queue>\nusing namespace std;\n\nint main(){\n using ll = long long;\n int N, M;\n cin >> N >> M;\n vector<int> T(N);\n for(int i = 0; i < N; ++i)\n cin >> T[i];\n vector<vector<pair<int,int>>> G(N);\n for(int i = 0; i < M; ++i){\n int a, b, c;\n cin >> a >> b >> c;\n --a,--b;\n G[a].emplace_back(c,b);\n G[b].emplace_back(c,a);\n }\n int K;\n cin >> K;\n vector<int> X(K), D(K), P(K);\n for(int i = 0; i < K; ++i){\n cin >> X[i] >> D[i] >> P[i];\n --X[i];\n }\n priority_queue<array<ll,3>,vector<array<ll,3>>,greater<>> pq;\n pq.push({0,0,0});\n const ll INF = 1e18;\n vector<ll> cost(N,INF), day(N,INF), from(N,-1);\n cost[0] = 0;\n day[0] = 0;\n from[0] = 0;\n auto update = [&](int v, ll c, int d, int f){\n if(cost[v] < c) return false;\n if(cost[v] > c){\n cost[v] = c;\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(day[v] < d) return false;\n if(day[v] > d){\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(from[v] < 0 or T[from[v]] > T[f]){\n from[v] = f;\n return true;\n }\n return false;\n };\n\n while(pq.size()){\n auto p = pq.top();\n pq.pop();\n ll c = p[0], d = p[1], v = p[2];\n if(cost[v] != c or day[v] != d) continue;\n for(auto e : G[v]){\n ll c_ = c + e.first, d_ = d + 1, v_ = e.second;\n if(update(v_,c_,d_,v)){\n pq.push({c_,d_,v_});\n }\n }\n }\n // for(int i = 0; i < N; ++i){\n // printf(\"v = %d, cost = %lld, day = %lld, from = %lld\\n\",i,cost[i],day[i],from[i]);\n // }\n\n vector<vector<int>> nex(N,vector<int>(25,-1));\n for(int i = 0; i < N; ++i){\n nex[i][0] = from[i];\n }\n for(int i = 1; i < 25; ++i){\n for(int j = 0; j < N; ++j){\n nex[j][i] = nex[nex[j][i-1]][i-1];\n }\n }\n for(int i = 0; i < K; ++i){\n int x = X[i], d = D[i], p = P[i];\n if(day[x] <= d){\n cout << max(0LL,cost[x]-p) << \"\\n\";\n continue;\n }\n ll ans = cost[x];\n int v = x;\n for(int j = 24; j >= 0; --j){\n if(day[nex[v][j]] > d){\n v = nex[v][j];\n }\n }\n if(day[v] > d){\n v = nex[v][0];\n }\n ans -= cost[v];\n ans += max(0LL,cost[v]-p);\n cout << ans << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 38000, "score_of_the_acc": -0.8093, "final_rank": 13 }, { "submission_id": "aoj_2764_4550042", "code_snippet": "#include <array>\n#include <iostream>\n#include <vector>\n#include <queue>\nusing namespace std;\n\nint main(){\n using ll = long long;\n int N, M;\n cin >> N >> M;\n vector<int> T(N);\n for(int i = 0; i < N; ++i)\n cin >> T[i];\n vector<vector<pair<int,int>>> G(N);\n for(int i = 0; i < M; ++i){\n int a, b, c;\n cin >> a >> b >> c;\n --a,--b;\n G[a].emplace_back(c,b);\n G[b].emplace_back(c,a);\n }\n int K;\n cin >> K;\n vector<int> X(K), D(K), P(K);\n for(int i = 0; i < K; ++i){\n cin >> X[i] >> D[i] >> P[i];\n --X[i];\n }\n priority_queue<array<ll,3>,vector<array<ll,3>>,greater<>> pq;\n pq.push({0,0,0});\n const ll INF = 1e18;\n vector<ll> cost(N,INF), day(N,INF), from(N,-1);\n cost[0] = 0;\n day[0] = 0;\n from[0] = 0;\n auto update = [&](int v, ll c, int d, int f){\n if(cost[v] < c) return false;\n if(cost[v] > c){\n cost[v] = c;\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(day[v] > d){\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(from[v] < 0 or T[from[v]] > T[f]){\n from[v] = f;\n return true;\n }\n return false;\n };\n\n while(pq.size()){\n auto p = pq.top();\n pq.pop();\n ll c = p[0], d = p[1], v = p[2];\n if(cost[v] != c or day[v] != d) continue;\n for(auto e : G[v]){\n ll c_ = c + e.first, d_ = d + 1, v_ = e.second;\n if(update(v_,c_,d_,v)){\n pq.push({c_,d_,v_});\n }\n }\n }\n // for(int i = 0; i < N; ++i){\n // printf(\"v = %d, cost = %lld, day = %lld, from = %lld\\n\",i,cost[i],day[i],from[i]);\n // }\n\n vector<vector<int>> nex(N,vector<int>(25,-1));\n for(int i = 0; i < N; ++i){\n nex[i][0] = from[i];\n }\n for(int i = 1; i < 25; ++i){\n for(int j = 0; j < N; ++j){\n nex[j][i] = nex[nex[j][i-1]][i-1];\n }\n }\n for(int i = 0; i < K; ++i){\n int x = X[i], d = D[i], p = P[i];\n if(day[x] <= d){\n cout << max(0LL,cost[x]-p) << \"\\n\";\n continue;\n }\n ll ans = cost[x];\n int v = x;\n for(int j = 24; j >= 0; --j){\n if(day[nex[v][j]] > d){\n v = nex[v][j];\n }\n }\n if(day[v] > d){\n v = nex[v][0];\n }\n ans -= cost[v];\n ans += max(0LL,cost[v]-p);\n cout << ans << \"\\n\";\n }\n}", "accuracy": 0.6984126984126984, "time_ms": 490, "memory_kb": 38164, "score_of_the_acc": -0.8293, "final_rank": 18 }, { "submission_id": "aoj_2764_4550021", "code_snippet": "#include <array>\n#include <iostream>\n#include <vector>\n#include <queue>\nusing namespace std;\n\nint main(){\n using ll = long long;\n int N, M;\n cin >> N >> M;\n vector<int> T(N);\n for(int i = 0; i < N; ++i)\n cin >> T[i];\n vector<vector<pair<int,int>>> G(N);\n for(int i = 0; i < M; ++i){\n int a, b, c;\n cin >> a >> b >> c;\n --a,--b;\n G[a].emplace_back(c,b);\n G[b].emplace_back(c,a);\n }\n int K;\n cin >> K;\n vector<int> X(K), D(K), P(K);\n for(int i = 0; i < K; ++i){\n cin >> X[i] >> D[i] >> P[i];\n --X[i];\n }\n priority_queue<array<ll,3>,vector<array<ll,3>>,greater<>> pq;\n pq.push({0,0,0});\n const ll INF = 1e18;\n vector<ll> cost(N,INF), day(N,INF), from(N,-1);\n cost[0] = 0;\n day[0] = 0;\n from[0] = 0;\n auto update = [&](int v, ll c, int d, int f){\n if(cost[v] < c) return false;\n if(cost[v] > c){\n cost[v] = c;\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(day[v] > d){\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(from[v] < 0 or T[from[v]] > T[f]){\n from[v] = f;\n return true;\n }\n return false;\n };\n\n while(pq.size()){\n auto p = pq.top();\n pq.pop();\n ll c = p[0], d = p[1], v = p[2];\n if(cost[v] < c) continue;\n for(auto e : G[v]){\n ll c_ = c + e.first, d_ = d + 1, v_ = e.second;\n if(update(v_,c_,d_,v)){\n pq.push({c_,d_,v_});\n }\n }\n }\n // for(int i = 0; i < N; ++i){\n // printf(\"v = %d, cost = %lld, day = %lld, from = %lld\\n\",i,cost[i],day[i],from[i]);\n // }\n\n vector<vector<int>> nex(N,vector<int>(25,-1));\n for(int i = 0; i < N; ++i){\n nex[i][0] = from[i];\n }\n for(int i = 1; i < 25; ++i){\n for(int j = 0; j < N; ++j){\n nex[j][i] = nex[nex[j][i-1]][i-1];\n }\n }\n for(int i = 0; i < K; ++i){\n int x = X[i], d = D[i], p = P[i];\n if(day[x] <= d){\n cout << max(0LL,cost[x]-p) << \"\\n\";\n continue;\n }\n long long ans = cost[x];\n int v = x;\n for(int j = 24; j >= 0; --j){\n if(day[nex[v][j]] > d){\n v = nex[v][j];\n }\n }\n if(day[v] > d){\n v = nex[v][0];\n }\n ans -= cost[v];\n ans += max(0LL,cost[v]-p);\n cout << ans << \"\\n\";\n }\n}", "accuracy": 0.6984126984126984, "time_ms": 480, "memory_kb": 38164, "score_of_the_acc": -0.8114, "final_rank": 17 }, { "submission_id": "aoj_2764_4550019", "code_snippet": "#include <array>\n#include <iostream>\n#include <vector>\n#include <queue>\nusing namespace std;\n\nint main(){\n using ll = long long;\n int N, M;\n cin >> N >> M;\n vector<int> T(N);\n for(int i = 0; i < N; ++i)\n cin >> T[i];\n vector<vector<pair<int,int>>> G(N);\n for(int i = 0; i < M; ++i){\n int a, b, c;\n cin >> a >> b >> c;\n --a,--b;\n G[a].emplace_back(c,b);\n G[b].emplace_back(c,a);\n }\n int K;\n cin >> K;\n vector<int> X(K), D(K), P(K);\n for(int i = 0; i < K; ++i){\n cin >> X[i] >> D[i] >> P[i];\n --X[i];\n }\n priority_queue<array<ll,3>,vector<array<ll,3>>,greater<>> pq;\n pq.push({0,0,0});\n const ll INF = 1e18;\n vector<ll> cost(N,INF), day(N,INF), from(N,-1);\n cost[0] = 0;\n day[0] = 0;\n from[0] = 0;\n auto update = [&](int v, ll c, int d, int f){\n if(cost[v] < c) return false;\n if(cost[v] > c){\n cost[v] = c;\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(day[v] > d){\n day[v] = d;\n from[v] = f;\n return true;\n }\n if(from[v] < 0 or T[from[v]] > T[f]){\n from[v] = f;\n return true;\n }\n return false;\n };\n\n while(pq.size()){\n auto p = pq.top();\n pq.pop();\n ll c = p[0], d = p[1], v = p[2];\n if(cost[v] < c) continue;\n for(auto e : G[v]){\n ll c_ = c + e.first, d_ = d + 1, v_ = e.second;\n if(update(v_,c_,d_,v)){\n pq.push({c_,d_,v_});\n }\n }\n }\n // for(int i = 0; i < N; ++i){\n // printf(\"v = %d, cost = %lld, day = %lld, from = %lld\\n\",i,cost[i],day[i],from[i]);\n // }\n\n vector<vector<int>> nex(N,vector<int>(20,-1));\n for(int i = 0; i < N; ++i){\n nex[i][0] = from[i];\n }\n for(int i = 1; i < 20; ++i){\n for(int j = 0; j < N; ++j){\n nex[j][i] = nex[nex[j][i-1]][i-1];\n }\n }\n for(int i = 0; i < K; ++i){\n int x = X[i], d = D[i], p = P[i];\n if(day[x] <= d){\n cout << max(0LL,cost[x]-p) << \"\\n\";\n continue;\n }\n long long ans = cost[x];\n int v = x;\n for(int j = 19; j >= 0; --j){\n if(day[nex[v][j]] > d){\n v = nex[v][j];\n }\n }\n if(day[v] > d){\n v = nex[v][0];\n }\n ans -= cost[v];\n ans += max(0LL,cost[v]-p);\n cout << ans << \"\\n\";\n }\n}", "accuracy": 0.6984126984126984, "time_ms": 480, "memory_kb": 36340, "score_of_the_acc": -0.787, "final_rank": 16 }, { "submission_id": "aoj_2764_3717706", "code_snippet": "#include \"iostream\"\n#include \"random\"\n#include \"string\"\n#include \"bitset\"\n#include \"algorithm\"\n#include \"map\"\n#include \"queue\"\n#include \"list\"\n#include \"set\"\n#include \"climits\"\n#include \"iomanip\"\n#include \"stack\"\n#include \"functional\"\n\nusing namespace std;\nusing ll = long long int;\nusing PII = pair<ll, ll>;\n\nstruct Edge {\n\tint to, cost;\n\tEdge(int a, int b) {\n\t\tto = a;\n\t\tcost = b;\n\t\treturn;\n\t}\n};\n\nstruct Node {\n\tint num, cost, day;\n\tbool operator<(const Node&n)const {\n\t\treturn make_pair(cost, day) < make_pair(n.cost, n.day);\n\t}\n\tbool operator>(const Node&n)const {\n\t\treturn make_pair(cost, day)>make_pair(n.cost, n.day);\n\t}\n\tNode(int a, int b, int c) {\n\t\tnum = a, cost = b, day = c;\n\t\treturn;\n\t}\n};\n\nint main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\tint N, M;\n\tcin >> N >> M;\n\tvector<long long int>num(N);\n\tfor (auto &i : num)cin >> i;\n\tvector<vector<Edge>>edge(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint a, b, c;\n\t\tcin >> a >> b >> c;\n\t\ta--;\n\t\tb--;\n\t\tedge[a].push_back(Edge(b, c));\n\t\tedge[b].push_back(Edge(a, c));\n\t}\n\tvector<pair<int, int>>dist(N, { 1000000000,1000000000 });\n\tdist[0] = make_pair( 0,0 );\n\tpriority_queue<Node, vector<Node>, greater<Node>>PQ;\n\tPQ.push(Node(0, 0, 0));\n\twhile (!PQ.empty()) {\n\t\tint cn = PQ.top().num;\n\t\tint c = PQ.top().cost;\n\t\tint cd = PQ.top().day;\n\t\tPQ.pop();\n\t\tfor (auto i : edge[cn]) {\n\t\t\tif (dist[i.to] > make_pair(c + i.cost, cd + 1)) {\n\t\t\t\tdist[i.to] = make_pair(c + i.cost, cd + 1);\n\t\t\t\tPQ.push(Node(i.to, dist[i.to].first, dist[i.to].second));\n\t\t\t}\n\t\t}\n\t}\n\tint K;\n\tcin >> K;\n\tvector<vector<int>>tapi(N, vector<int>(20, -1));\n\tfor (int i = 1; i < N; i++) {\n\t\tint nx = -1;\n\t\tfor (auto j : edge[i]) {\n\t\t\tif (dist[j.to].first + j.cost == dist[i].first&&dist[j.to].second + 1 == dist[i].second) {\n\t\t\t\tif (nx == -1)nx = j.to;\n\t\t\t\telse if (num[nx] > num[j.to])nx = j.to;\n\t\t\t}\n\t\t}\n\t\tif (nx != -1) {\n\t\t\ttapi[i][0] = nx;\n\t\t}\n\t}\n\tfor (int j = 1; j < 20; j++) {\n\t\tfor (int i = 0; i < N; i++) {\n\t\t\tif (tapi[i][j - 1] == -1)continue;\n\t\t\ttapi[i][j] = tapi[tapi[i][j - 1]][j - 1];\n\t\t}\n\t}\n\twhile (K--) {\n\t\tint a, b, c;\n\t\tcin >> a >> b >> c;\n\t\ta--;\n\t\tint step = max(0, dist[a].second - b);\n\t\tint ans = dist[a].first;\n\t\tint node = a;\n\t\tfor (int i = 0; i < 20; i++) {\n\t\t\tif ((step >> i) & 1) {\n\t\t\t\tnode = tapi[node][i];\n\t\t\t}\n\t\t}\n\t\tans -= dist[node].first;\n\t\tans += max(0, dist[node].first - c);\n\t\tcout << ans << endl;\n\t}\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 32588, "score_of_the_acc": -0.6118, "final_rank": 10 }, { "submission_id": "aoj_2764_3659763", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100005\n\nstruct Edge{\n\tEdge(int arg_to,ll arg_cost){\n\t\tto = arg_to;\n\t\tcost = arg_cost;\n\t}\n\tint to;\n\tll cost;\n};\n\nstruct Info{\n\n\tint start,day,pay;\n};\n\nstruct State{\n\n\tState(int arg_node_id,int arg_sum_date,int arg_sum_cost){\n\t\tnode_id = arg_node_id;\n\t\tsum_date = arg_sum_date;\n\t\tsum_cost = arg_sum_cost;\n\t}\n\tbool operator<(const struct State &arg) const{\n\n\t\tif(sum_cost != arg.sum_cost){\n\n\t\t\treturn sum_cost > arg.sum_cost; //総コストが異なるなら昇順(PQ)\n\t\t}else{\n\n\t\t\treturn sum_date > arg.sum_date; //総コストが同じなら、日数の総和(PQ)\n\t\t}\n\t}\n\n\tint node_id,sum_date,sum_cost;\n};\n\nint N,E,K;\nint root; //根ノードの番号\nint MAX_LOG_V = 17;\nint POW[18];\nint T[NUM];\nint min_dist[NUM],min_date[NUM];\nint parent[18][NUM];\nint depth[NUM];\nvector<Edge> G[NUM]; //グラフの隣接リスト表現\nvector<int> Tree_G[NUM];\nInfo info[NUM];\n\n\n//parentとdepthを再帰的に設定\nvoid dfs(int node_id,int parent_id,int d){\n\tparent[0][node_id] = parent_id;\n\tdepth[node_id] = d;\n\tfor(int i = 0; i < Tree_G[node_id].size(); i++){\n\t\tif(Tree_G[node_id][i] != parent_id)dfs(Tree_G[node_id][i],node_id,d+1);\n\t}\n}\n\n//初期化\nvoid init(){\n\t//parent[0]とdepthを初期化する\n\tdfs(root,-1,0);\n\t//parentを初期化する\n\tfor(int k = 0; k + 1 < MAX_LOG_V; k++){\n\t\tfor(int node_id = 0; node_id < N; node_id++){\n\t\t\tif(parent[k][node_id] < 0)parent[k+1][node_id] = -1; //node_idの2^k上のノードがルートノードより上なら、2^(k+1)上も同様とする\n\t\t\telse{\n\t\t\t\tparent[k+1][node_id] = parent[k][parent[k][node_id]];\n\t\t\t}\n\t\t}\n\t}\n}\n\n\nint main(){\n\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= 17; i++){\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d %d\",&N,&E);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%d\",&T[i]);\n\t}\n\n\tint from,to,cost;\n\n\tfor(int i = 0; i < E; i++){\n\n\t\tscanf(\"%d %d %d\",&from,&to,&cost);\n\t\tfrom--;\n\t\tto--;\n\n\t\tG[from].push_back(Edge(to,cost));\n\t\tG[to].push_back(Edge(from,cost));\n\t}\n\n\tscanf(\"%d\",&K);\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tscanf(\"%d %d %d\",&info[i].start,&info[i].day,&info[i].pay);\n\t\tinfo[i].start--;\n\t}\n\n\t//ダイクストラ\n\n\tmin_dist[0] = 0;\n\tmin_date[0] = 0;\n\n\tfor(int i = 1; i < N; i++){\n\n\t\tmin_dist[i] = BIG_NUM;\n\t\tmin_date[i] = BIG_NUM;\n\t}\n\n\tpriority_queue<State> Q;\n\tQ.push(State(0,0,0));\n\n\tint next_node,next_cost,next_date;\n\n\twhile(!Q.empty()){\n\n\t\tif((Q.top().sum_cost > min_dist[Q.top().node_id])\n\t\t\t\t|| (Q.top().sum_cost == min_dist[Q.top().node_id] && Q.top().sum_date > min_date[Q.top().node_id])){\n\n\t\t\tQ.pop();\n\t\t}else{\n\n\t\t\tfor(int i = 0; i < G[Q.top().node_id].size(); i++){\n\n\t\t\t\tnext_node = G[Q.top().node_id][i].to;\n\t\t\t\tnext_cost = Q.top().sum_cost+G[Q.top().node_id][i].cost;\n\t\t\t\tnext_date = Q.top().sum_date+1;\n\n\t\t\t\tif(min_dist[next_node] > next_cost){\n\n\t\t\t\t\tmin_dist[next_node] = next_cost;\n\t\t\t\t\tmin_date[next_node] = next_date;\n\t\t\t\t\tQ.push(State(next_node,next_date,next_cost));\n\n\t\t\t\t}else if(min_dist[next_node] == next_cost && min_date[next_node] > next_date){\n\n\t\t\t\t\tmin_date[next_node] = next_date;\n\t\t\t\t\tQ.push(State(next_node,next_date,next_cost));\n\t\t\t\t}\n\t\t\t}\n\t\t\tQ.pop();\n\t\t}\n\t}\n\n\tint tmp_num,next;\n\n\t//最短経路の辺を張る\n\tfor(int i = 1; i < N; i++){\n\t\t//次の節店を探し、辺を張る\n\t\ttmp_num = BIG_NUM;\n\t\tnext = -1;\n\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\t\t\tif(min_dist[i]-G[i][k].cost == min_dist[G[i][k].to] && min_date[i] == min_date[G[i][k].to]+1){ //最短経路上\n\n\t\t\t\tif(tmp_num > T[G[i][k].to]){ //人口で選ぶ\n\t\t\t\t\ttmp_num = T[G[i][k].to];\n\t\t\t\t\tnext = G[i][k].to;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(next == -1)continue;\n\n\t\tTree_G[next].push_back(i); //木は都市0をスタートとする\n\t}\n\n\t//木作り&ダブリング\n\troot = 0;\n\tinit();\n\n\tint current_node,diff;\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tint ans = BIG_NUM;\n\n\t\tcurrent_node = info[i].start;\n\t\tdiff = depth[info[i].start]-info[i].day;\n\n\t\tfor(int k = MAX_LOG_V-1; k >= 0; k--){\n\t\t\tif(diff >= POW[k]){ //たとえば深さの差が39なら、32+4+2+1のように、ノードを上方に移動させる\n\n\t\t\t\tcurrent_node = parent[k][current_node];\n\t\t\t\tdiff -= POW[k];\n\t\t\t}\n\t\t}\n\n\t\tif(current_node == -1){ //★金を貰う前に着く★\n\n\t\t\tans = min(ans,min_dist[info[i].start]);\n\n\t\t}else{\n\n\t\t\tans = min(ans,(min_dist[info[i].start]-min_dist[current_node])+max(0,min_dist[current_node]-info[i].pay));\n\t\t}\n\n\t\tprintf(\"%d\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 43016, "score_of_the_acc": -0.4479, "final_rank": 7 }, { "submission_id": "aoj_2764_3367882", "code_snippet": "#include <bits/stdc++.h>\n \nusing namespace std;\n \n#define rep(i,n) REP(i,0,n)\n#define REP(i,s,e) for(int i=(s); i<(int)(e); i++)\n#define repr(i, n) REPR(i, n, 0)\n#define REPR(i, s, e) for(int i=(int)(s-1); i>=(int)(e); i--)\n#define pb push_back\n#define all(r) r.begin(),r.end()\n#define rall(r) r.rbegin(),r.rend()\n#define fi first\n#define se second\n \ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\n \nconst int INF = 1e9;\nconst ll MOD = 1e9 + 7;\ndouble EPS = 1e-8;\n\n#define DEBUG_MODE\n#ifdef DEBUG_MODE\n#define dump(x) cout << #x << \" : \" << x << endl\n#define LINE cout << \"line : \" << __LINE__ << endl\n#define dumpV(v) cout << #v << \" : [\"; for(auto& t : v) cout << t << \", \"; cout<<\"]\" << endl\n#define STOP assert(false)\n#else\n#define dump(x) ;\n#define LINE ;\n#define dumpV(v);\n#define STOP ;\n#endif\n#define mp make_pair\n\nnamespace std{\n template<class S,class T>\n ostream &operator <<(ostream& out,const pair<S,T>& a){\n out<<'('<<a.fi<<\", \"<<a.se<<')';\n return out;\n }\n}\n\n\nconst int MAX_N = 1e5+10;\nconst int MAX_M = 5e5+10;\n\nint t[MAX_N];\nusing Edge = pair<int, ll>; // to, cost\nvector<Edge> es[MAX_N];\n\nusing State = pair<ll, pii>; // cost, day, population\nState StateINF = State(1e18, pii(1e9, 1e9));\n\nbool chMin(State& a, const State& b) {\n if(a <= b) return false;\n a = b;\n return true;\n}\n\nState d[MAX_N];\n\nint from[MAX_N]; // 経路復元\n\nint A[MAX_N][30];\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, m;\n cin >> n >> m;\n rep(i, n) cin >> t[i];\n rep(i, m) {\n int a, b, c;\n cin >> a >> b >> c;\n --a;\n --b;\n es[a].pb({b, (ll)c});\n es[b].pb({a, (ll)c});\n }\n from[0] = -1;\n {\n rep(i, n) d[i] = StateINF;\n int root = 0;\n using P = pair<State, int>;\n priority_queue<P, vector<P>, greater<P> > q;\n d[root] = {0LL, {0, -1}};\n q.push({d[root], root});\n while (!q.empty()) {\n auto p = q.top(); q.pop();\n int prv = p.se;\n const auto state = p.fi;\n if (d[prv] < p.fi) continue;\n for (auto& e : es[prv]) {\n int to = e.fi;\n auto nState = state;\n nState.fi += e.se;\n nState.se.fi++;\n nState.se.se = t[prv];\n\n if (chMin(d[to], nState)) {\n q.push({d[to], to});\n from[to] = prv;\n }\n }\n }\n }\n rep(i, MAX_N) rep(j, 30) A[i][j] = -1;\n rep(j, 30) rep(i, n) {\n if(j == 0) A[i][j] = from[i];\n else if(A[i][j-1] != -1) A[i][j] = A[A[i][j-1]][j-1];\n }\n // rep(i, n) {\n // cout << i << \" \" << d[i].fi << \" \" << d[i].se.fi << \" \" << d[i].se.se << \" \" << from[i] << \" \" << A[i][0] <<endl;\n // }\n // return 0;\n // LINE;\n int k;\n cin >> k;\n rep(_, k) {\n int x, D, p;\n cin >> x >> D >> p;\n --x;\n auto s = d[x];\n int day = s.se.fi;\n ll cost = s.fi;\n if(day <= D) cout << max(0LL, cost - p) << '\\n';\n else {\n int now = x;\n while(d[now].se.fi > D) {\n // dump(mp(now, d[now].se.fi));\n // dump(D);\n if(A[now][0] == -1) break;\n rep(i, 20) {\n int to = A[now][i];\n if(to == -1) {\n now = A[now][i-1];\n break;\n }\n if(d[to].se.fi < D) {\n now = A[now][i-1];\n break;\n } \n }\n }\n assert(now >= 0 && d[now].se.fi == D);\n ll dif = cost - d[now].fi;\n // cout << now << endl;\n cout << dif + max(0LL, d[now].fi - p) << '\\n';\n // LINE;\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 44388, "score_of_the_acc": -0.4484, "final_rank": 8 }, { "submission_id": "aoj_2764_3254689", "code_snippet": "#include <queue>\n#include <vector>\n#include <iostream>\nusing namespace std;\nconst int bits = 20;\nstruct edge {\n\tint to, cost;\n};\nstruct state {\n\tint pos, cost, dist, pop, par;\n};\nbool operator<(const state& s1, const state& s2) {\n\tif (s1.cost != s2.cost) return s1.cost > s2.cost;\n\tif (s1.dist != s2.dist) return s1.dist > s2.dist;\n\treturn s1.pop > s2.pop;\n}\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\tint N, M;\n\tcin >> N >> M;\n\tvector<int> t(N);\n\tfor (int i = 0; i < N; ++i) cin >> t[i];\n\tvector<vector<edge> > G(N);\n\tfor (int i = 0; i < M; ++i) {\n\t\tint a, b, c;\n\t\tcin >> a >> b >> c; --a, --b;\n\t\tG[a].push_back(edge{ b, c });\n\t\tG[b].push_back(edge{ a, c });\n\t}\n\tpriority_queue<state> que;\n\tque.push(state{ 0, 0, 0, t[0], -1 });\n\tvector<int> p(N, -2), pc(N), days(N), costs(N);\n\twhile (!que.empty()) {\n\t\tstate u = que.top(); que.pop();\n\t\tif (p[u.pos] == -2) {\n\t\t\tp[u.pos] = u.par;\n\t\t\tdays[u.pos] = u.dist;\n\t\t\tcosts[u.pos] = u.cost;\n\t\t\tfor (edge e : G[u.pos]) {\n\t\t\t\tif (p[e.to] == -2) {\n\t\t\t\t\tque.push(state{ e.to, u.cost + e.cost, u.dist + 1, t[u.pos], u.pos });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvector<vector<int> > xp(bits, vector<int>(N));\n\txp[0] = p; xp[0][0] = 0;\n\tfor (int i = 1; i < bits; ++i) {\n\t\tfor (int j = 0; j < N; ++j) {\n\t\t\txp[i][j] = xp[i - 1][xp[i - 1][j]];\n\t\t}\n\t}\n\tint Q;\n\tcin >> Q;\n\tfor (int i = 0; i < Q; ++i) {\n\t\tint pos, day, money;\n\t\tcin >> pos >> day >> money; --pos;\n\t\tint forward = max(days[pos] - day, 0);\n\t\tint fpos = pos;\n\t\tfor (int j = bits - 1; j >= 0; --j) {\n\t\t\tif ((forward >> j) & 1) fpos = xp[j][fpos];\n\t\t}\n\t\tint least = costs[pos] - costs[fpos];\n\t\tint ans = least + max(costs[fpos] - money, 0);\n\t\tcout << ans << '\\n';\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 35716, "score_of_the_acc": -0.4215, "final_rank": 6 }, { "submission_id": "aoj_2764_3002031", "code_snippet": "#include <cstdio>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <tuple>\n#include <queue>\n#include <cmath>\n#include <cstdlib>\nusing namespace std;\nusing ll = long long int;\n\n#define fprintf(...) void(0)\n\nstruct Edge {\n ll to, cost;\n};\n\nusing Graph = vector< vector< Edge > >;\n\nstruct Elem {\n ll pos, cost, day;\n bool operator<(const Elem &e) const {\n if(cost != e.cost) return cost > e.cost;\n return day > e.day;\n }\n};\n\nconst int MAX_N = 100000;\nll N, M, K;\nll popu[MAX_N + 10], x[MAX_N + 10], d[MAX_N + 10], p[MAX_N + 10];\n\nconst ll INF = 1LL << 60;\npair< Graph, vector<int> > get_tree(Graph &G) {\n // cost, days\n vector< pair<ll, ll> > state(N, make_pair(INF, INF));\n\n // population, prev_town\n vector< pair<ll, ll> > pre(N, make_pair(INF, -1));\n\n priority_queue<Elem> que;\n que.push(Elem{0, 0, 0});\n state[0] = make_pair(0, 0);\n\n while(que.size()) {\n Elem cur = que.top(); que.pop();\n pair<ll, ll> cur_state = make_pair(cur.cost, cur.day);\n\n int u = cur.pos;\n if(cur_state > state[u]) continue;\n\n for(auto e : G[u]) {\n int to = e.to, n_cost = cur.cost + e.cost, n_day = cur.day + 1;\n\n pair<ll, ll> nxt = make_pair(n_cost, n_day);\n pair<ll, ll> pop_info = make_pair(popu[u], u);\n if(state[to] > nxt) {\n state[to] = nxt;\n pre[to] = pop_info;\n que.push(Elem{to, n_cost, n_day});\n }\n else if(state[to] == nxt) {\n if(pre[to] > pop_info) {\n pre[to] = pop_info;\n }\n }\n }\n }\n\n Graph ret(N);\n vector<int> par(N, -1);\n for(int i=1; i<N; i++) {\n // the parent of i is pre[i].second\n int u = i, v = pre[i].second;\n\n ll cost_u = state[u].first, cost_v = state[v].first;\n ll diff = llabs(cost_u - cost_v);\n ret[u].push_back(Edge{v, diff});\n ret[v].push_back(Edge{u, diff});\n par[u] = v;\n }\n return make_pair(ret, par);\n}\n\npair< vector<ll>, vector<ll> > get_cost_info(Graph &G) {\n vector<ll> visited(N), sum(N), days(N);\n\n queue<int> que;\n que.push(0);\n visited[0] = true;\n\n while(que.size()) {\n int cur = que.front(); que.pop();\n for(auto e : G[cur]) {\n if(visited[e.to]) continue;\n visited[e.to] = true;\n sum[e.to] = sum[cur] + e.cost;\n days[e.to] = days[cur] + 1;\n que.push(e.to);\n }\n }\n return make_pair(sum, days);\n}\n\nvoid solve(Graph &G, vector<int> &par) {\n vector< vector<int> > nxt(N, vector<int>(18, -1));\n vector<ll> acc_cost, days;\n tie(acc_cost, days) = get_cost_info(G);\n\n // 2^k table\n for(int i=0; i<N; i++) {\n fprintf(stderr, \"parent of %d is %d\\n\", i, par[i]);\n nxt[i][0] = par[i];\n }\n for(int k=1; k<18; k++) {\n for(int i=0; i<N; i++) {\n if(nxt[i][k-1] < 0) continue;\n nxt[i][k] = nxt[ nxt[i][k-1] ][k-1];\n }\n }\n\n for(int i=0; i<K; i++) {\n ll need_day = days[ x[i] ];\n ll dayA = max(0LL, days[ x[i] ] - d[i]), dayB = need_day - dayA;\n\n ll costA = acc_cost[ x[i] ];\n\n // get costB\n ll rest = dayA, cur = x[i];\n for(int k=0; k<18; k++) {\n if(rest >> k & 1) {\n cur = nxt[cur][k];\n }\n }\n\n ll costB = acc_cost[ cur ];\n\n fprintf(stderr, \"dayA = %lld, dayB = %lld, costA = %lld, costB = %lld\\n\", dayA, dayB, costA, costB);\n\n ll ans = costA - costB + max(0LL, costB - p[i]);\n printf(\"%lld\\n\", ans);\n }\n}\n\nint main() {\n scanf(\"%lld%lld\", &N, &M);\n for(int i=0; i<N; i++) {\n scanf(\"%lld\", &popu[i]);\n }\n\n Graph G(N);\n for(int i=0; i<M; i++) {\n int a, b, c; scanf(\"%d%d%d\", &a, &b, &c);\n a--; b--;\n G[a].push_back(Edge{b, c});\n G[b].push_back(Edge{a, c});\n }\n\n scanf(\"%lld\", &K);\n for(int i=0; i<K; i++) {\n scanf(\"%lld%lld%lld\", &x[i], &d[i], &p[i]);\n x[i]--;\n }\n\n Graph H; vector<int> par;\n\n fprintf(stderr, \"get tree!\\n\");\n tie(H, par) = get_tree(G);\n\n fprintf(stderr, \"solve!\\n\");\n solve(H, par);\n return 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 53072, "score_of_the_acc": -0.6361, "final_rank": 11 }, { "submission_id": "aoj_2764_2884869", "code_snippet": "#include <iostream>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <queue>\n#include <cmath>\nusing namespace std;\ntypedef long long ll;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define MP make_pair\n#define PB push_back\nll inf = (1LL)<<60;\n\nll dp[100001][20];\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n,m;\n cin >> n >> m;\n vector<ll> t(n);\n rep(i,n)cin >> t[i];\n vector<vector<pair<int,ll> > >g(n);\n rep(i,m){\n int a,b;\n ll c;\n cin >> a >> b >> c;\n a--;\n b--;\n g[a].PB(MP(b,c));\n g[b].PB(MP(a,c));\n }\n priority_queue<pair<ll,pair<ll,int> >,vector<pair<ll,pair<ll,int> > >,greater<pair<ll,pair<ll,int> > > >pq;\n pq.push(MP((ll)0,MP((ll)0,0)));\n vector<int> parent(n);\n parent[0]=-1;\n vector<pair<ll,ll> > place(n,MP(inf,inf));\n place[0] = MP(0,0);\n while(!pq.empty()){\n auto xxxxxxxx = pq.top();\n pq.pop();\n auto x = xxxxxxxx.first;\n auto y = xxxxxxxx.second.first;\n auto p = xxxxxxxx.second.second;\n if(make_pair(x,y) > place[p]) continue;\n for(auto& e : g[p]){\n if(MP(x+e.second,y+1)>place[e.first])continue;\n if(MP(x+e.second,y+1)==place[e.first]){\n if(t[parent[e.first]]>t[p]){\n parent[e.first] = p;\n pq.push(MP(x+e.second,MP(y+1,e.first)));\n }\n }else{\n place[e.first] = MP(x+e.second,y+1);\n parent[e.first] = p;\n pq.push(MP(x+e.second,MP(y+1,e.first)));\n }\n }\n }\n rep(i,n){\n rep(j,20){\n dp[i][j] = -1;\n }\n }\n rep(i,n){\n dp[i][0] = parent[i];\n }\n rep(j,19){\n rep(i,n){\n if(dp[i][j]>=0){\n dp[i][j+1] = dp[dp[i][j]][j];\n }\n }\n }\n int k;\n cin >> k;\n rep(i,k){\n int a,b;\n ll c;\n cin >> a >> b >> c;\n a--;\n ll ans = 0;\n ans = place[a].first;\n if(place[a].second<=b){\n cout << max(0LL,ans-c) << endl;\n }else{\n int now = a;\n int d = place[a].second-b;\n for(int i = 20; i>=0; i--){\n if(d < (1 << i)) continue;\n now = dp[now][i];\n d -= (1<<i);\n }\n cout << ans - min(place[now].first,c) << endl;\n }\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 50812, "score_of_the_acc": -0.6952, "final_rank": 12 }, { "submission_id": "aoj_2764_2736310", "code_snippet": "/*\n * g.cc: \n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n\nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_D = 20;\n\ntypedef long long ll;\n\nconst int INF = 1 << 30;\nconst ll LINF = 1LL << 60;\n\n/* typedef */\n\ntypedef pair<int,int> pii;\ntypedef vector<pii> vpii;\n\nstruct Stat {\n ll c;\n int d, i;\n Stat() {}\n Stat(ll _c, int _d, int _i): c(_c), d(_d), i(_i) {}\n bool operator<(const Stat &s) const {\n return c > s.c || (c == s.c && d > s.d);\n }\n};\n\n/* global variables */\n\nint ts[MAX_N];\nvpii nbrs[MAX_N];\nll costs[MAX_N];\nint dists[MAX_N], prts[MAX_N][MAX_D];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, m;\n int tmp = scanf(\"%d%d\", &n, &m);\n\n for (int i = 0; i < n; i++) tmp = scanf(\"%d\", &ts[i]);\n\n for (int i = 0; i < m; i++) {\n int ai, bi, ci;\n tmp = scanf(\"%d%d%d\", &ai, &bi, &ci);\n ai--, bi--;\n nbrs[ai].push_back(pii(bi, ci));\n nbrs[bi].push_back(pii(ai, ci));\n }\n\n for (int i = 0; i < n; i++) costs[i] = LINF;\n costs[0] = 0;\n dists[0] = 0;\n prts[0][0] = -1;\n\n priority_queue<Stat> q;\n q.push(Stat(0, 0, 0));\n\n while (! q.empty()) {\n Stat u = q.top(); q.pop();\n if (costs[u.i] != u.c || dists[u.i] != u.d) continue;\n\n int vd = u.d + 1;\n vpii &nbru = nbrs[u.i];\n\n for (vpii::iterator vit = nbru.begin(); vit != nbru.end(); vit++) {\n int &vi = vit->first;\n ll vc = u.c + vit->second;\n\n if (costs[vi] > vc) {\n\tcosts[vi] = vc;\n\tdists[vi] = vd;\n\tprts[vi][0] = u.i;\n\tq.push(Stat(vc, vd, vi));\n }\n else if (costs[vi] == vc) {\n\tif (dists[vi] > vd) {\n\t dists[vi] = vd;\n\t prts[vi][0] = u.i;\n\t q.push(Stat(vc, vd, vi));\n\t}\n\telse if (dists[vi] == vd && ts[prts[vi][0]] > ts[u.i]) {\n\t prts[vi][0] = u.i;\n\t}\n }\n }\n }\n\n for (int d = 1; d < MAX_D; d++)\n for (int i = 0; i < n; i++) {\n int j = prts[i][d - 1];\n prts[i][d] = (j < 0) ? -1 : prts[j][d - 1];\n }\n\n int k;\n tmp = scanf(\"%d\", &k);\n\n while (k--) {\n int xi, di, pi;\n tmp = scanf(\"%d%d%d\", &xi, &di, &pi);\n xi--;\n\n int r = dists[xi] - di;\n int yi = xi;\n //printf(\"xi=%d,di=%d,pi=%d: costs=%lld,dists=%d,r=%d\\n\",\n //xi, di, pi, costs[xi], dists[xi], r);\n\n if (r > 0)\n for (int d = MAX_D - 1; d >= 0; d--)\n\tif (r & (1 << d)) yi = prts[yi][d];\n //printf(\" yi=%d\\n\", yi);\n \n ll cost = costs[xi] - costs[yi];\n if (cost < costs[xi] - pi) cost = costs[xi] - pi;\n\n printf(\"%lld\\n\", cost);\n }\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 30240, "score_of_the_acc": -0.2232, "final_rank": 2 }, { "submission_id": "aoj_2764_2058074", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nvector<int>pops;\nstruct edge {\n\tint from;\n\tint to;\n\tlong long int cost;\n};\nstruct aa {\n\tedge frome;\n\tlong long int cost;\n\t int time;\n};\nclass Compare {\npublic:\n\tbool operator()(const aa l, const aa r) {\n\t\treturn l.cost == r.cost ?l.time==r.time?pops[l.frome.from] > pops[r.frome.from]: l.time > r.time:l.cost > r.cost;\n\t}\n}comp;\t\n\n\nclass Tree {\npublic:\n\tTree(int V, int root) : V(V),revT(V), root(root), cnum(V), place(V), id(V) {\n\t\tT.resize(V);\n\t\tfor (int i = 0; i < MAXLOGV; i++) {\n\t\t\tparent[i].resize(V);\n\t\t\tcosts[i].resize(V);\n\n\t\t}\n\t\tdepth.resize(V);\n\t}\n\t// u??¨v????????????\n\t// lca????±????????????¨????????????????????§????????°????????¨????????????\n\tvoid unite(edge& v) {\n\t\tT[v.from].push_back(v);\n\t\trevT[v.to]=(edge{ v.to,v.from,v.cost });\n\t}\n\t// init??????\n\t// ????????????????????????????????????????????????????????°????????¨lca????±???????????????????\n\tvoid init() {\n\t\tdfs(root, 0, 0);\n\t\tint id = 0;\n\t\tgetid(root, 0, id);\n\t}\n\t// u??¨v???lca????±???????\n\tint lca(int u, int v) const {\n\t\tif (depth[u] > depth[v]) swap(u, v);\n\t\tfor (int k = 0; k < MAXLOGV; k++) {\n\t\t\tif ((depth[v] - depth[u]) >> k & 1) {\n\t\t\t\tv = parent[k][v];\n\t\t\t}\n\t\t}\n\t\tif (u == v) return u;\n\t\tfor (int k = MAXLOGV - 1; k >= 0; k--) {\n\t\t\tif (parent[k][u] != parent[k][v]) {\n\t\t\t\tu = parent[k][u];\n\t\t\t\tv = parent[k][v];\n\t\t\t}\n\t\t}\n\t\treturn parent[0][u];\n\t}\n\t// u??¨v????????¢????±???????\n\t// edge????????????????????¨????????????????????????????????????\n\tint dist(int u, int v) const {\n\t\tint p = lca(u, v);\n\t\treturn (depth[u] - depth[p]) + (depth[v] - depth[p]);\n\t}\n\tint dfs(int v, int p, int d) {\n\t\tparent[0][v] = p;\n\t\tcosts[0][v] = revT[v].cost;\n\t\tdepth[v] = d;\n\t\tcnum[v] = 0;\n\t\tfor (int i = 1; i < MAXLOGV; i++) {\n\t\t\tparent[i][v] = parent[i - 1][parent[i - 1][v]];\n\t\t\tcosts[i][v] = costs[i - 1][parent[i - 1][v]] + costs[i - 1][v];\n\t\t}\n\t\tfor (auto e : T[v]) {\n\t\t\tint next = e.to;\n\t\t\tif (next != p) cnum[v] += dfs(next, v, d + 1);\n\t\t}\n\t\treturn cnum[v] + 1;\n\t}\n\n\tvoid getid(const int v, const int p, int &nplace) {\n\t\tplace[v] = nplace;\n\t\tid[nplace] = v;\n\t\tnplace++;\n\t\tfor (auto e : T[v]) {\n\t\t\tint next = e.to;\n\t\t\tif (next != p) getid(next, v, nplace);\n\t\t}\n\t}\n\tstatic const int MAXLOGV = 20;\n\t// ??°???????????£??\\???????????¨???\n\tvector<vector<edge> > T;\n\tvector<edge>revT;\n\t// ???????????°\n\tint V;\n\t// ?????????????????????\n\tint root;\n\n\t// ????????????\n\tvector<int> parent[MAXLOGV];\n\tvector<long long int>costs[MAXLOGV];\n\t// ??????????????±???\n\tvector<int> depth;\n\n\t//????????°\n\tvector<int>cnum;\n\n\t//??????\n\tvector<int>place;\n\tvector<int>id;\n\n};\n\nint main() {\n\tint N, M; cin >> N >> M;\n\tfor (int i = 0; i < N; ++i) {\n\t\tint a; cin >> a;\n\t\tpops.push_back(a);\n\t}\n\tvector<vector<edge>>edges(N);\n\tfor (int i = 0; i < M; ++i) {\n\t\tint a, b, c; cin >> a >> b >> c; a--; b--;\n\t\tedges[a].push_back(edge{ a,b,c });\n\t\tedges[b].push_back(edge{ b,a,c });\n\t}\n\t\n\tvector<aa>memo(N, aa{ edge{-1,-1,-1},static_cast<long long int>(1e18),(static_cast<int>(1e9)) });\n\tmemo[0] = aa{ edge{-1,0,0},0,0 };\n\tpriority_queue<aa, vector<aa>, Compare>que;\n\tque.push(aa{ edge{-1,0,0},0,0 });\n\twhile (!que.empty()) {\n\t\taa atop(que.top());\n\t\tque.pop();\n\t\tfor (auto e : edges[atop.frome.to]) {\n\t\t\tconst int next = e.to;\n\t\t\tconst long long int nextcost = atop.cost + e.cost;\n\t\t\tconst int nexttime = atop.time + 1;\n\t\t\tif (comp.operator()(memo[next],aa{ e,nextcost,nexttime })) {\n\t\t\t\tmemo[next] = aa{ e,nextcost,nexttime };\n\t\t\t\tque.push(aa{ e,nextcost,nexttime });\n\t\t\t}\n\t\t}\n\t}\n\tTree t(N,0);\n\tfor (int i = 1; i < N; ++i) {\n\t\tt.unite(memo[i].frome);\n\t}\n\tt.init();\n\tint K; cin >> K;\n\tfor (int i = 0; i < K; ++i) {\n\t\tlong long int sum = 0;\n\t\tint x, d, p; cin >> x >> d >> p;\n\t\tx--;\n\t\tif (d >= t.depth[x]) {\n\t\t\tint rest = t.depth[x];\n\t\t\tlong long int need = 0;\n\t\t\tint now = x;\n\t\t\tfor (int i = 0; i < 20; ++i) {\n\t\t\t\tif (rest&(1 << i)) {\n\t\t\t\t\tneed += t.costs[i][now];\n\t\t\t\t\tnow = t.parent[i][now];\n\t\t\t\t}\n\t\t\t}\n\t\t\tsum += max(0ll, need -p);\n\t\t}\n\t\telse {\n\t\t\tint rest = t.depth[x] - d;\n\t\t\tlong long int need = 0;\n\t\t\tint now = x;\n\t\t\tfor (int i = 0; i < 20; ++i) {\n\t\t\t\tif (rest&(1 << i)) {\n\t\t\t\t\tneed += t.costs[i][now];\n\t\t\t\t\tnow = t.parent[i][now];\n\t\t\t\t}\n\t\t\t}\n\t\t\tsum += need;\n\t\t\trest = d;\n\t\t\tneed = 0;\n\t\t\tfor (int i = 0; i < 20; ++i) {\n\t\t\t\tif (rest&(1 << i)) {\n\t\t\t\t\tneed += t.costs[i][now];\n\t\t\t\t\tnow = t.parent[i][now];\n\t\t\t\t}\n\t\t\t}\n\t\t\tsum += max(0ll, need - p);\n\t\t}\n\t\tcout << sum << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 66080, "score_of_the_acc": -1.5068, "final_rank": 15 }, { "submission_id": "aoj_2764_1661416", "code_snippet": "/*\n * g.cc: \n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n\nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_D = 20;\n\ntypedef long long ll;\n\nconst int INF = 1 << 30;\nconst ll LINF = 1LL << 60;\n\n/* typedef */\n\ntypedef pair<int,int> pii;\ntypedef vector<pii> vpii;\n\nstruct Stat {\n ll c;\n int d, i;\n Stat() {}\n Stat(ll _c, int _d, int _i): c(_c), d(_d), i(_i) {}\n bool operator<(const Stat &s) const {\n return c > s.c || (c == s.c && d > s.d);\n }\n};\n\n/* global variables */\n\nint ts[MAX_N];\nvpii nbrs[MAX_N];\nll costs[MAX_N];\nint dists[MAX_N], prts[MAX_N][MAX_D];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, m;\n int tmp = scanf(\"%d%d\", &n, &m);\n\n for (int i = 0; i < n; i++) tmp = scanf(\"%d\", &ts[i]);\n\n for (int i = 0; i < m; i++) {\n int ai, bi, ci;\n tmp = scanf(\"%d%d%d\", &ai, &bi, &ci);\n ai--, bi--;\n nbrs[ai].push_back(pii(bi, ci));\n nbrs[bi].push_back(pii(ai, ci));\n }\n\n for (int i = 0; i < n; i++) costs[i] = LINF;\n costs[0] = 0;\n dists[0] = 0;\n prts[0][0] = -1;\n\n priority_queue<Stat> q;\n q.push(Stat(0, 0, 0));\n\n while (! q.empty()) {\n Stat u = q.top(); q.pop();\n if (costs[u.i] != u.c || dists[u.i] != u.d) continue;\n\n int vd = u.d + 1;\n vpii &nbru = nbrs[u.i];\n\n for (vpii::iterator vit = nbru.begin(); vit != nbru.end(); vit++) {\n int &vi = vit->first;\n ll vc = u.c + vit->second;\n\n if (costs[vi] > vc) {\n\tcosts[vi] = vc;\n\tdists[vi] = vd;\n\tprts[vi][0] = u.i;\n\tq.push(Stat(vc, vd, vi));\n }\n else if (costs[vi] == vc) {\n\tif (dists[vi] > vd) {\n\t dists[vi] = vd;\n\t prts[vi][0] = u.i;\n\t q.push(Stat(vc, vd, vi));\n\t}\n\telse if (dists[vi] == vd && ts[prts[vi][0]] > ts[u.i]) {\n\t prts[vi][0] = u.i;\n\t}\n }\n }\n }\n\n for (int d = 1; d < MAX_D; d++)\n for (int i = 0; i < n; i++) {\n int j = prts[i][d - 1];\n prts[i][d] = (j < 0) ? -1 : prts[j][d - 1];\n }\n\n int k;\n tmp = scanf(\"%d\", &k);\n\n while (k--) {\n int xi, di, pi;\n tmp = scanf(\"%d%d%d\", &xi, &di, &pi);\n xi--;\n\n int r = dists[xi] - di;\n int yi = xi;\n //printf(\"xi=%d,di=%d,pi=%d: costs=%lld,dists=%d,r=%d\\n\",\n //xi, di, pi, costs[xi], dists[xi], r);\n\n if (r > 0)\n for (int d = MAX_D - 1; d >= 0; d--)\n\tif (r & (1 << d)) yi = prts[yi][d];\n //printf(\" yi=%d\\n\", yi);\n \n ll cost = costs[xi] - costs[yi];\n if (cost < costs[xi] - pi) cost = costs[xi] - pi;\n\n printf(\"%lld\\n\", cost);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 28244, "score_of_the_acc": -0.3214, "final_rank": 5 }, { "submission_id": "aoj_2764_1522948", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cstdlib>\n#include <cmath>\n#include <complex>\n#include <cassert>\n#include <string>\n#include <sstream>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <set>\nusing namespace std;\ntypedef pair<int,int> P;\ntypedef pair<P,int> T;\ntypedef pair<T,int> F;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n#define pu push\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000\n#define sz(x) ((int)(x).size())\n#define fi first\n#define sec second\n#define SORT(x) sort((x).begin(),(x).end())\n#define all(x) (x).begin(),(x).end()\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);(i)++)\n#define repn(i,a,n) for(int (i)=(a);(i)<(int)(n);(i)++)\n#define EQ(a,b) (abs((a)-(b))<eps)\nstruct edge\n{\n\tint to,cost;\n\tedge(int to,int cost):to(to),cost(cost){}\n};\nint N,M,K;\nint t[100100];\nint day[100100],dist[100100];\nint x[100100],d[100100],p[100100];\nint par[100100][20];\nvector<edge> G[100100];\nbool used[100100];\npriority_queue<F,vector<F>,greater<F> > q;\nint ascend(int v,int k)\n{\n\tfor(int i=19;i>=0;i--)\n\t{\n\t\tif(k&(1<<i))v=par[v][i];\n\t}\n\treturn v;\n}\nint main()\n{\n\tscanf(\"%d %d\",&N,&M);\n\tfor(int i=0;i<N;i++)scanf(\"%d\",&t[i]);\n\tfor(int i=0;i<M;i++)\n\t{\n\t\tint a,b,c;\n\t\tscanf(\"%d %d %d\",&a,&b,&c);\n\t\ta--;b--;\n\t\tG[a].pb(edge(b,c));\n\t\tG[b].pb(edge(a,c));\n\t}\n\tscanf(\"%d\",&K);\n\tfor(int i=0;i<K;i++)\n\t{\n\t\tscanf(\"%d %d %d\",&x[i],&d[i],&p[i]);\n\t\tx[i]--;\n\t}\n\tmemset(used,false,sizeof(used));\n\tfor(int i=0;i<N;i++)day[i]=INF,dist[i]=INF;\n\tday[0]=0;dist[0]=0;\n\tq.push(F(T(P(0,0),t[0]),0));\n\tpar[0][0]=-1;\n\twhile(!q.empty())\n\t{\n\t\tF a = q.top();\n\t\tq.pop();\n\t\tint v = a.sec;\n\t\tint date = a.fi.fi.sec;\n\t\tint dis = a.fi.fi.fi;\n\t\tfor(int i=0;i<G[v].size();i++)\n\t\t{\n\t\t\tedge e = G[v][i];\n\t\t\tif(dist[e.to]>dis+e.cost){\n\t\t\t\tday[e.to]=date+1;\n\t\t\t\tdist[e.to]=dis+e.cost;\n\t\t\t\tpar[e.to][0]=v;\n\t\t\t\tq.push(F(T(P(dist[e.to],day[e.to]),t[e.to]),e.to));\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif(dist[e.to]==dis+e.cost&&day[e.to]>date+1){\n\t\t\t\tday[e.to]=date+1;\n\t\t\t\tdist[e.to]=dis+e.cost;\n\t\t\t\tpar[e.to][0]=v;\n\t\t\t\tq.push(F(T(P(dist[e.to],day[e.to]),t[e.to]),e.to));\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif(dist[e.to]==dis+e.cost&&day[e.to]==date+1&&t[par[e.to][0]]>t[v]){\n\t\t\t\tday[e.to]=date+1;\n\t\t\t\tdist[e.to]=dis+e.cost;\n\t\t\t\tpar[e.to][0]=v;\n\t\t\t\tq.push(F(T(P(dist[e.to],day[e.to]),t[e.to]),e.to));\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t}\n\t}\n\t/*for(int i=0;i<N;i++)\n\t{\n\t\tprintf(\"%d %d %d\\n\",day[i],dist[i],par[i][0]);\n\t}*/\n\tfor(int i=0;i<19;i++)\n\t{\n\t\tfor(int v=0;v<N;v++)\n\t\t{\n\t\t\tif(par[v][i]==-1)par[v][i+1]=-1;\n\t\t\telse par[v][i+1]=par[par[v][i]][i];\n\t\t}\n\t}\n\tfor(int i=0;i<K;i++)\n\t{\n\t\tif(day[x[i]]<=d[i])printf(\"%d\\n\",max(0,dist[x[i]]-p[i]));\n\t\telse\n\t\t{\n\t\t\tint k = day[x[i]]-d[i];\n\t\t\tassert(k<=day[x[i]]);\n\t\t\tint y = ascend(x[i],k);\n\t\t\t//printf(\"y %d\\n\",y);\n\t\t\tif(dist[y]<=p[i])printf(\"%d\\n\",dist[x[i]]-dist[y]);\n\t\t\telse printf(\"%d\\n\",dist[x[i]]-p[i]);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 29144, "score_of_the_acc": -0.3156, "final_rank": 4 } ]
aoj_2763_cpp
F: みこみー文字列 - Miko Mi String - 物語 みっこみっこみ〜!みんなのアイドル,田澤みこみこ!今日は〜,みこと一緒に〜,文字列アルゴリズムの練習,しよ☆ みこのとっておきの キャラ作り 合言葉,「みっこみっこみ〜」は,ローマ字にすると “MikoMikoMi” になるみこ!つまり, A= “Mi”, B= “Ko” とすると, ABABA の形で書けるってことなの!こんな風に,適切に A と B を決めると ABABA の形に分解できる文字列のことを「みこみー文字列」って言うわ!文字列の名前にまでなっちゃうなんて,みこはみんなの人気者みこね! みんなでみこみー文字列をも〜っと使っていくために,与えられた文字列がみこみー文字列かどうか判定するプログラムを作ることにしたんだけど,みこ,FizzBuzzより長いプログラムなんて書けな〜い!だから〜,みこのために〜,みこみー文字列を判定するプログラムを書いて欲しいな☆ ……アンタ,いま寒いって言った!? 問題 アルファベット大文字・小文字からなる文字列 S が与えられる. ここで, S = ABABA と書けるような,空でない2つの文字列 A, B が存在するならば, S は「みこみー文字列」であるという. このとき,アルファベットの大文字と小文字は違う文字として区別するものとする. 与えられた文字列がみこみー文字列であるかどうかを判定するプログラムを作成せよ. 入力形式 入力は文字列 S を含む1行のみからなる. S は以下の条件を満たすと仮定してよい. 1 ≤ |S| ≤ 10^6 .ただし, |S| は文字列 S の長さを表す. S は大文字,もしくは小文字のアルファベットのみからなる. なお,入力が非常に大きくなる場合があるため,入力の受け取りには高速な関数を用いることを推奨する. 出力形式 S がみこみー文字列であるならば, S = ABABA を満たすような A, B について,“Love AB !”と出力せよ.ただし,複数の A, B の組が条件を満たす場合, |AB| が最小のものを出力せよ. S がみこみー文字列でないならば,“mitomerarenaiWA”と出力せよ. 入力例1 NicoNicoNi 出力例1 Love Nico! 入力例2 KashikoiKawaiiElichika 出力例2 mitomerarenaiWA 入力例3 LiveLiveL 出力例3 Love Live! 入力例4 AizunyanPeroPero 出力例4 mitomerarenaiWA 入力例5 AAAAAAAAAAAAAA 出力例5 Love AAAAA!
[ { "submission_id": "aoj_2763_8469801", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2763.cc: Miko Mi String\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 1000000;\nconst int P = 4073;\nconst int MOD = 1000000009;\n\n/* typedef */\n\ntemplate<const int MOD>\nstruct MI {\n int v;\n MI(): v() {}\n MI(int _v): v(_v % MOD) {}\n MI(long long _v): v(_v % MOD) {}\n\n MI operator+(const MI m) const { return MI(v + m.v); }\n MI operator-(const MI m) const { return MI(v + MOD - m.v); }\n MI operator*(const MI m) const { return MI((long long)v * m.v); }\n\n MI &operator+=(const MI m) { return (*this = *this + m); }\n MI &operator-=(const MI m) { return (*this = *this - m); }\n MI &operator*=(const MI m) { return (*this = *this * m); }\n\n bool operator==(const MI m) const { return v == m.v; }\n bool operator!=(const MI m) const { return v != m.v; }\n\n MI pow(int n) const { // a^n % MOD\n MI pm = 1, a = *this;\n while (n > 0) {\n if (n & 1) pm *= a;\n a *= a;\n n >>= 1;\n }\n return pm;\n }\n\n MI inv() const { return pow(MOD - 2); }\n MI operator/(const MI m) const { return *this * m.inv(); }\n MI &operator/=(const MI m) { return (*this = *this / m); }\n};\n\ntypedef MI<MOD> mi;\n\n/* global variables */\n\nmi pes[MAX_N + 1], invpes[MAX_N + 1];\nchar s[MAX_N + 4];\nmi rh[MAX_N + 1];\n\n/* subroutines */\n\ninline void prep_rhash(int n) {\n pes[0] = invpes[0] = 1;\n pes[1] = P;\n invpes[1] = pes[1].inv();\n for (int i = 2; i <= n; i++) {\n pes[i] = pes[i - 1] * P;\n invpes[i] = invpes[i - 1] * invpes[1];\n }\n}\n\ninline int s2rh(mi rh[], const char s[]) {\n int k = 0;\n for (; s[k]; k++)\n rh[k + 1] = rh[k] + pes[k] * s[k];\n return k;\n}\n\ninline mi s2h(const char s[]) {\n mi h = 0;\n for (int k = 0; s[k]; k++) h += pes[k] * s[k];\n return h;\n}\n\ninline mi rhash(mi rh[], int i, int j) {\n return (rh[j] - rh[i]) * invpes[i];\n}\n\n/* main */\n\nint main() {\n prep_rhash(MAX_N);\n\n scanf(\"%s\", s);\n int n = s2rh(rh, s);\n \n for (int a = (n - 1) / 3; a >= 1; a--) {\n int m = n - a * 3;\n if (! (m & 1)) {\n int b = m / 2;\n mi ah0 = rhash(rh, 0, a);\n mi bh0 = rhash(rh, a, a + b);\n mi ah1 = rhash(rh, a + b, a * 2 + b);\n mi bh1 = rhash(rh, a * 2 + b, a * 2 + b * 2);\n mi ah2 = rhash(rh, a * 2 + b * 2, n);\n if (ah0 == ah1 && ah1 == ah2 && bh0 == bh1) {\n\tprintf(\"Love \");\n\tfor (int i = 0; i < a + b; i++) putchar(s[i]);\n\tputchar('!');\n\tputchar('\\n');\n\treturn 0;\n }\n }\n }\n\n puts(\"mitomerarenaiWA\");\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 15652, "score_of_the_acc": -0.2488, "final_rank": 1 }, { "submission_id": "aoj_2763_8469792", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2763.cc: Miko Mi String\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 1000000;\nconst int P = 4073;\nconst int MOD = 1000000009;\n\n/* typedef */\n\ntemplate<const int MOD>\nstruct MI {\n int v;\n MI(): v() {}\n MI(int _v): v(_v % MOD) {}\n MI(long long _v): v(_v % MOD) {}\n\n MI operator+(const MI m) const { return MI(v + m.v); }\n MI operator-(const MI m) const { return MI(v + MOD - m.v); }\n MI operator*(const MI m) const { return MI((long long)v * m.v); }\n\n MI &operator+=(const MI m) { return (*this = *this + m); }\n MI &operator-=(const MI m) { return (*this = *this - m); }\n MI &operator*=(const MI m) { return (*this = *this * m); }\n\n bool operator==(const MI m) const { return v == m.v; }\n bool operator!=(const MI m) const { return v != m.v; }\n\n MI pow(int n) const { // a^n % MOD\n MI pm = 1, a = *this;\n while (n > 0) {\n if (n & 1) pm *= a;\n a *= a;\n n >>= 1;\n }\n return pm;\n }\n\n MI inv() const { return pow(MOD - 2); }\n MI operator/(const MI m) const { return *this * m.inv(); }\n MI &operator/=(const MI m) { return (*this = *this / m); }\n};\n\ntypedef MI<MOD> mi;\n\n/* global variables */\n\nmi pes[MAX_N + 1], invpes[MAX_N + 1];\nchar s[MAX_N + 4];\nmi rh[MAX_N + 1];\n\n/* subroutines */\n\ninline void prep_rhash(int n) {\n pes[0] = invpes[0] = 1;\n pes[1] = P;\n invpes[1] = pes[1].inv();\n for (int i = 2; i <= n; i++) {\n pes[i] = pes[i - 1] * P;\n invpes[i] = invpes[i - 1] * invpes[1];\n }\n}\n\ninline int s2rh(mi rh[], const char s[]) {\n int k = 0;\n for (; s[k]; k++)\n rh[k + 1] = rh[k] + pes[k] * s[k];\n return k;\n}\n\ninline mi s2h(const char s[]) {\n mi h = 0;\n for (int k = 0; s[k]; k++) h += pes[k] * s[k];\n return h;\n}\n\ninline mi rhash(mi rh[], int i, int j) {\n return (rh[j] - rh[i]) * invpes[i];\n}\n\n/* main */\n\nint main() {\n prep_rhash(MAX_N);\n\n scanf(\"%s\", s);\n int n = s2rh(rh, s);\n \n for (int a = n / 3; a >= 1; a--) {\n int m = n - a * 3;\n if (! (m & 1)) {\n int b = m / 2;\n mi ah0 = rhash(rh, 0, a);\n mi bh0 = rhash(rh, a, a + b);\n mi ah1 = rhash(rh, a + b, a * 2 + b);\n mi bh1 = rhash(rh, a * 2 + b, a * 2 + b * 2);\n mi ah2 = rhash(rh, a * 2 + b * 2, n);\n if (ah0 == ah1 && ah1 == ah2 && bh0 == bh1) {\n\tprintf(\"Love \");\n\tfor (int i = 0; i < a + b; i++) putchar(s[i]);\n\tputchar('!');\n\tputchar('\\n');\n\treturn 0;\n }\n }\n }\n\n puts(\"mitomerarenaiWA\");\n return 0;\n}", "accuracy": 0.4819277108433735, "time_ms": 10, "memory_kb": 15656, "score_of_the_acc": -0.2489, "final_rank": 16 }, { "submission_id": "aoj_2763_8319005", "code_snippet": "#include <iostream>\nusing namespace std;\n\nlong long mod = 2147483647;\nlong long N;\nlong long Pow[1 << 20];\nlong long Hash[1 << 20];\n\n// Hash value of [l, r]\nlong long Hash_Value(int l, int r) {\n\treturn (Hash[r] - Hash[l - 1] * Pow[r - l + 1] + mod * mod) % mod;\n}\n\nint main() {\n\t// Step 1. Init\n\tPow[0] = 1;\n\tfor (int i = 1; i <= 1000000; i++) Pow[i] = (233LL * Pow[i - 1]) % mod;\n\n\t// Step 2. Input\n\tstring S; cin >> S; N = S.size();\n\tfor (int i = 1; i <= N; i++) {\n\t\tlong long val = S[i - 1];\n\t\tHash[i] = (233LL * Hash[i - 1] + val) % mod;\n\t}\n\n\t// Step 3. Brute Force\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (3 * i <= N) continue;\n\t\tif (2 * i >= N) continue;\n\t\tint amari = N - 2 * i;\n\t\tlong long v1 = Hash_Value(1, i);\n\t\tlong long v2 = Hash_Value(i + 1, 2 * i);\n\t\tif (v1 != v2) continue;\n\t\tlong long u1 = Hash_Value(0 * i + 1, 0 * i + amari);\n\t\tlong long u2 = Hash_Value(1 * i + 1, 1 * i + amari);\n\t\tlong long u3 = Hash_Value(2 * i + 1, 2 * i + amari);\n\t\tif (u1 != u2 || u1 != u3 || u2 != u3) continue;\n\t\tcout << \"Love \" << S.substr(0, i) << \"!\" << endl;\n\t\treturn 0;\n\t}\n\n\t// Step 4. Output\n\tcout << \"mitomerarenaiWA\" << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 20876, "score_of_the_acc": -0.478, "final_rank": 6 }, { "submission_id": "aoj_2763_5853002", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = calc_mod(mt()) % 100000 + 1000;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\n\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n string s; cin >> s;\n RollingHash rh(s);\n\n int n = s.size();\n int mi = 1e9;\n for(int i=1; i<n; i++) {\n if((n-3*i) <= 0) break;\n if((n-3*i)%2 != 0) continue;\n\n int len1 = i, len2 = (n-3*i)/2;\n if(rh.get(0, len1) == rh.get(len1+len2, 2*len1+len2) && rh.get(len1+len2, 2*len1+len2) == rh.get(2*len1+2*len2, n) && rh.get(len1, len1+len2) == rh.get(2*len1+len2, 2*len1+2*len2)) {\n \n if(mi > len1 + len2) {\n mi = len1+len2;\n }\n }\n }\n if(mi == 1e9) {\n cout << \"mitomerarenaiWA\" << endl;\n }else{\n cout << \"Love \" << s.substr(0, mi) << \"!\" << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 20152, "score_of_the_acc": -0.4137, "final_rank": 4 }, { "submission_id": "aoj_2763_5852979", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = calc_mod(mt()) % 100000 + 1000;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\n\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n string s; cin >> s;\n RollingHash rh(s);\n\n int n = s.size();\n int mi = 1e9;\n for(int i=1; i<n; i++) {\n if((n-3*i) < 0) break;\n if((n-3*i)%2 != 0) continue;\n\n int len1 = i, len2 = (n-3*i)/2;\n if(rh.get(0, len1) == rh.get(len1+len2, 2*len1+len2) && rh.get(len1+len2, 2*len1+len2) == rh.get(2*len1+2*len2, n) && rh.get(len1, len1+len2) == rh.get(2*len1+len2, 2*len1+2*len2)) {\n \n if(mi > len1 + len2) {\n mi = len1+len2;\n }\n }\n }\n if(mi == 1e9) {\n cout << \"mitomerarenaiWA\" << endl;\n }else{\n cout << \"Love \" << s.substr(0, mi) << \"!\" << endl;\n }\n return 0;\n}", "accuracy": 0.4819277108433735, "time_ms": 10, "memory_kb": 20072, "score_of_the_acc": -0.4108, "final_rank": 17 }, { "submission_id": "aoj_2763_5852970", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash {\n static const int base1 = 1007, base2 = 2009;\n static const int mod1 = 1000000007, mod2 = 1000000009;\n vector<long long> hash1, hash2, power1, power2;\n int n;\n // construct\n RollingHash(const string &S) {\n n = (int)S.size();\n hash1.assign(n+1, 0);\n hash2.assign(n+1, 0);\n power1.assign(n+1, 1);\n power2.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n hash2[i+1] = (hash2[i] * base2 + S[i]) % mod2;\n power1[i+1] = (power1[i] * base1) % mod1;\n power2[i+1] = (power2[i] * base2) % mod2;\n }\n }\n \n // get hash of S[left:right]\n inline pair<long long, long long> get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n long long res2 = hash2[r] - hash2[l] * power2[r-l] % mod2;\n if (res2 < 0) res2 += mod2;\n return {res1, res2};\n }\n \n inline pair<long long, long long> c_shift(int l) {\n auto h1 = get(0, l);\n auto h2 = get(l, n);\n return {(h1.first + h2.first * power1[l]) % mod1, (h1.second + h2.second * power2[l]) % mod2};\n }\n \n // get lcp of S[a:] and T[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n string s; cin >> s;\n RollingHash rh(s);\n\n int n = s.size();\n int mi = 1e9;\n for(int i=1; i<n; i++) {\n if((n-3*i) < 0) break;\n if((n-3*i)%2 != 0) continue;\n\n int len1 = i, len2 = (n-3*i)/2;\n if(rh.get(0, len1-1) == rh.get(len1+len2, 2*len1+len2-1) && rh.get(len1+len2, 2*len1+len2-1) == rh.get(2*len1+2*len2, n-1) && rh.get(len1, len1+len2-1) == rh.get(2*len1+len2, 2*len1+2*len2-1)) {\n \n if(mi > len1 + len2) {\n mi = len1+len2;\n }\n }\n }\n if(mi == 1e9) {\n cout << \"mitomerarenaiWA\" << endl;\n }else{\n cout << \"Love \" << s.substr(0, mi) << \"!\" << endl;\n }\n return 0;\n}", "accuracy": 0.5662650602409639, "time_ms": 10, "memory_kb": 35872, "score_of_the_acc": -0.9899, "final_rank": 14 }, { "submission_id": "aoj_2763_5852962", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash {\n static const int base1 = 1007, base2 = 2009;\n static const int mod1 = 1000000007, mod2 = 1000000009;\n vector<long long> hash1, hash2, power1, power2;\n int n;\n // construct\n RollingHash(const string &S) {\n n = (int)S.size();\n hash1.assign(n+1, 0);\n hash2.assign(n+1, 0);\n power1.assign(n+1, 1);\n power2.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n hash2[i+1] = (hash2[i] * base2 + S[i]) % mod2;\n power1[i+1] = (power1[i] * base1) % mod1;\n power2[i+1] = (power2[i] * base2) % mod2;\n }\n }\n \n // get hash of S[left:right]\n inline pair<long long, long long> get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n long long res2 = hash2[r] - hash2[l] * power2[r-l] % mod2;\n if (res2 < 0) res2 += mod2;\n return {res1, res2};\n }\n \n inline pair<long long, long long> c_shift(int l) {\n auto h1 = get(0, l);\n auto h2 = get(l, n);\n return {(h1.first + h2.first * power1[l]) % mod1, (h1.second + h2.second * power2[l]) % mod2};\n }\n \n // get lcp of S[a:] and T[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n string s; cin >> s;\n RollingHash rh(s);\n\n int n = s.size();\n int mi = 1e9;\n for(int i=1; i<n; i++) {\n if((n-3*i) < 0) break;\n if((n-3*i)%2 != 0) continue;\n\n int len1 = i, len2 = (n-3*i)/2;\n if(rh.get(0, len1) == rh.get(len1+len2, 2*len1+len2) && rh.get(len1+len2, 2*len1+len2) == rh.get(2*len1+2*len2, n) && rh.get(len1, len1+len2) == rh.get(2*len1+len2, 2*len1+2*len2)) {\n \n if(mi > len1 + len2) {\n mi = len1+len2;\n }\n }\n }\n if(mi == 1e9) {\n cout << \"mitomerarenaiWA\" << endl;\n }else{\n cout << \"Love \" << s.substr(0, mi) << \"!\" << endl;\n }\n return 0;\n}", "accuracy": 0.4819277108433735, "time_ms": 10, "memory_kb": 35812, "score_of_the_acc": -0.9877, "final_rank": 19 }, { "submission_id": "aoj_2763_5135928", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <random>\nusing namespace std;\n\n// source: https://qiita.com/keymoon/items/11fac5627672a6d6a9f6\nstruct rolling_hash{\n using lli = long long int;\n const lli MOD = (1LL << 61) -1;\n const lli MASK30 = (1LL << 30) -1;\n const lli MASK31 = (1LL << 31) -1;\n const lli MASK61 = (1LL << 61) -1;\n\n lli base;\n vector<lli> hash_table;\n vector<lli> base_pow;\n rolling_hash(const string& s){\n base = get_rand();\n int n = s.length();\n hash_table.assign(n+1, 0);\n base_pow.assign(n+1, 1);\n for(int i=0; i<n; i++){\n hash_table[i+1] = calc_mod(mul(hash_table[i], base) + s[i]);\n base_pow[i+1] = mul(base_pow[i], base);\n }\n }\n // calculate hash value of s[a:b]\n lli calc_hash(int a, int b){\n lli res = hash_table[b] -mul(hash_table[a], base_pow[b-a]);\n return (res>=0)? res: res+MOD; \n }\n\n // calculate a*b mod 2^61-1\n lli mul(lli a, lli b){\n lli au = a >> 31;\n lli al = a & MASK31;\n lli bu = b >> 31;\n lli bl = b & MASK31;\n lli mid = al*bu + au*bl;\n lli midu = mid >> 30;\n lli midl = mid & MASK30;\n return calc_mod(2*au*bu + midu+(midl<<31) + al*bl);\n }\n // calculate x mod 2^61-1\n lli calc_mod(lli x){\n lli xu = x >> 61;\n lli xl = x & MASK61;\n lli res = xu + xl;\n if(res >= MOD) res -= MOD;\n return res;\n }\n\n // generate random number\n lli get_rand(){\n std::random_device seed_gen;\n std::mt19937_64 rnd(seed_gen());\n return rnd() % MOD;\n }\n};\n\nint main(){\n string s;\n cin >> s;\n int n = s.length();\n rolling_hash rh(s);\n string ans = \"\";\n for(int i=1; i*3+2<=n; i++){\n int rem = n -3*i;\n if(rem%2 == 1) continue;\n int p[]={0, i, i+rem/2, 2*i+rem/2, 2*i+rem, n};\n long long int h[5];\n for(int i=0; i<5; i++){\n h[i] = rh.calc_hash(p[i], p[i+1]);\n }\n if(h[0]==h[2] and h[0]==h[4] and h[1]==h[3]){\n ans = s.substr(0, i+rem/2);\n }\n }\n if(ans == \"\"){\n cout << \"mitomerarenaiWA\" << endl;\n }else{\n cout << \"Love \" << ans << \"!\" << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 20692, "score_of_the_acc": -0.6977, "final_rank": 7 }, { "submission_id": "aoj_2763_5018837", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define endl '\\n'\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size)\\\n vector<type> name(size);\\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w)\\\n vector<vector<type>> name(h, vector<type>(w));\\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...)\\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...)\\\n int __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define LL(...)\\\n ll __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define STR(...)\\\n string __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define CHR(...)\\\n char __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define DBL(...)\\\n double __VA_ARGS__;\\\n IN(__VA_ARGS__)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\ntemplate <typename T> vi iota(vector<T> &a, bool greater = false) {\n vi res(a.size());\n iota(all(res), 0);\n sort(all(res), [&](int i, int j) {\n if(greater) return a[i] > a[j];\n return a[i] < a[j];\n });\n return res;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\ntemplate <class T> T POW(T x, int n) {\n T res = 1;\n for(; n; n >>= 1, x *= x)\n if(n & 1) res *= x;\n return res;\n}\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n#define i128 __int128_t\n#define ull unsigned long long int\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\ntemplate <typename A, typename B>\nostream& operator <<(ostream& out, const pair<A, B>& a) {\nout << \"(\" << a.first << \",\" << a.second << \")\";\nreturn out;\n}\ntemplate <typename T, size_t N>\nostream& operator <<(ostream& out, const array<T, N>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T>\nostream& operator <<(ostream& out, const vector<T>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T, class Cmp>\nostream& operator <<(ostream& out, const set<T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" :\", \"); out << v; first = 0;} out << \"}\";\nreturn out;\n}\ntemplate <typename U, typename T, class Cmp>\nostream& operator <<(ostream& out, const map<U, T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& p : a) { out << (first ? \"\" : \", \"); out << p.first << \":\" << p.second; first = 0;} out << \"}\";\nreturn out;\n}\n// #define LOCAL\n#ifdef LOCAL\n#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)\n#else\n#define trace(...) 42\n#endif\ntemplate <typename Arg1>\nvoid __f(const char* name, Arg1&& arg1){\ncerr << name << \": \" << arg1 << endl;\n}\ntemplate <typename Arg1, typename... Args>\nvoid __f(const char* names, Arg1&& arg1, Args&&... args){\nconst char* comma = strchr(names + 1, ',');\ncerr.write(names, comma - names) << \": \" << arg1 << \" |\";\n__f(comma + 1, args...);\n}\n#pragma endregion\n//#include<atcoder/all>\n//using namespace atcoder;\nstruct RollingHash {\n static const int base1 = 8973;\n static const int mod1 = 2016112121;\n vector<long long> hash1, power1;\n\n // construct\n RollingHash(const string &S) {\n int n = (int)S.size();\n hash1.assign(n+1, 0);\n power1.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n power1[i+1] = (power1[i] * base1) % mod1;\n }\n }\n \n // get hash value of S[left:right]\n inline long long get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n return res1;\n }\n\n // get hash value of whole S\n inline long long get() const {\n return hash1.back();\n }\n\n // get lcp of S[a:] and S[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n\n // get lcp of S[a:] and T[b:]\n inline int getLCP(const RollingHash &T, int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != T.get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\nint main(){\n STR(s);\n RollingHash rh(s);\n int n = s.size();\n vector<int> ret;\n rep(i,n){\n if(!i)continue;\n int sizA = i;\n int sizB = n - i*3;\n if(sizB<= 0 || sizB%2 == 1)continue;\n sizB /= 2;\n vector<ll> A,B;\n A.pb(rh.get(0,sizA-1));\n B.pb(rh.get(sizA,sizA+sizB-1));\n A.pb(rh.get(sizA+sizB,2*sizA+sizB-1));\n B.pb(rh.get(2*sizA+sizB,2*sizA+2*sizB-1));\n A.pb(rh.get(2*sizA+2*sizB,n-1));\n sort(all(A));sort(all(B));\n auto check = [&](vector<ll> v){\n int k = v.size();\n ll ret = v[0];\n rep(i,k){\n if(ret != v[i])return false; \n }\n return true;\n };\n if(check(A) && check(B)){\n ret.pb(sizA+sizB);\n }\n }\n if(ret.size() == 0){\n cout << \"mitomerarenaiWA\" << endl;\n return 0;\n }\n sort(all(ret));\n trace(ret);\n string hoge = s.substr(0,ret[0]);\n cout << \"Love \" << hoge << '!' << endl;\n return 0;\n}", "accuracy": 0.5662650602409639, "time_ms": 20, "memory_kb": 20152, "score_of_the_acc": -0.4326, "final_rank": 13 }, { "submission_id": "aoj_2763_5018831", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define endl '\\n'\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size)\\\n vector<type> name(size);\\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w)\\\n vector<vector<type>> name(h, vector<type>(w));\\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...)\\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...)\\\n int __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define LL(...)\\\n ll __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define STR(...)\\\n string __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define CHR(...)\\\n char __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define DBL(...)\\\n double __VA_ARGS__;\\\n IN(__VA_ARGS__)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\ntemplate <typename T> vi iota(vector<T> &a, bool greater = false) {\n vi res(a.size());\n iota(all(res), 0);\n sort(all(res), [&](int i, int j) {\n if(greater) return a[i] > a[j];\n return a[i] < a[j];\n });\n return res;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\ntemplate <class T> T POW(T x, int n) {\n T res = 1;\n for(; n; n >>= 1, x *= x)\n if(n & 1) res *= x;\n return res;\n}\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n#define i128 __int128_t\n#define ull unsigned long long int\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\ntemplate <typename A, typename B>\nostream& operator <<(ostream& out, const pair<A, B>& a) {\nout << \"(\" << a.first << \",\" << a.second << \")\";\nreturn out;\n}\ntemplate <typename T, size_t N>\nostream& operator <<(ostream& out, const array<T, N>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T>\nostream& operator <<(ostream& out, const vector<T>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T, class Cmp>\nostream& operator <<(ostream& out, const set<T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" :\", \"); out << v; first = 0;} out << \"}\";\nreturn out;\n}\ntemplate <typename U, typename T, class Cmp>\nostream& operator <<(ostream& out, const map<U, T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& p : a) { out << (first ? \"\" : \", \"); out << p.first << \":\" << p.second; first = 0;} out << \"}\";\nreturn out;\n}\n// #define LOCAL\n#ifdef LOCAL\n#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)\n#else\n#define trace(...) 42\n#endif\ntemplate <typename Arg1>\nvoid __f(const char* name, Arg1&& arg1){\ncerr << name << \": \" << arg1 << endl;\n}\ntemplate <typename Arg1, typename... Args>\nvoid __f(const char* names, Arg1&& arg1, Args&&... args){\nconst char* comma = strchr(names + 1, ',');\ncerr.write(names, comma - names) << \": \" << arg1 << \" |\";\n__f(comma + 1, args...);\n}\n#pragma endregion\n//#include<atcoder/all>\n//using namespace atcoder;\nstruct RollingHash {\n static const int base1 = 8973;\n static const int mod1 = 2016112121;\n vector<long long> hash1, power1;\n\n // construct\n RollingHash(const string &S) {\n int n = (int)S.size();\n hash1.assign(n+1, 0);\n power1.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n power1[i+1] = (power1[i] * base1) % mod1;\n }\n }\n \n // get hash value of S[left:right]\n inline long long get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n return res1;\n }\n\n // get hash value of whole S\n inline long long get() const {\n return hash1.back();\n }\n\n // get lcp of S[a:] and S[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n\n // get lcp of S[a:] and T[b:]\n inline int getLCP(const RollingHash &T, int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != T.get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\nint main(){\n STR(s);\n RollingHash rh(s);\n int n = s.size();\n vector<int> ret;\n rep(i,n){\n if(!i)continue;\n int sizA = i;\n int sizB = n - i*3;\n if(sizB<= 0 || sizB%2 == 1)continue;\n sizB /= 2;\n vector<ll> A,B;\n A.pb(rh.get(0,sizA-1));\n B.pb(rh.get(sizA,sizA+sizB-1));\n A.pb(rh.get(sizA+sizB,2*sizA+sizB-1));\n B.pb(rh.get(2*sizA+sizB,2*sizA+2*sizB-1));\n A.pb(rh.get(2*sizA+2*sizB,n-1));\n sort(all(A));sort(all(B));\n if(A.back() == A[0] && B.back() == B[0]){\n ret.pb(sizA+sizB);\n }\n }\n if(ret.size() == 0){\n cout << \"mitomerarenaiWA\" << endl;\n return 0;\n }\n sort(all(ret));\n trace(ret);\n string hoge = s.substr(0,ret[0]);\n cout << \"Love \" << hoge << '!' << endl;\n return 0;\n}", "accuracy": 0.5662650602409639, "time_ms": 20, "memory_kb": 19980, "score_of_the_acc": -0.4263, "final_rank": 10 }, { "submission_id": "aoj_2763_5018826", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define endl '\\n'\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size)\\\n vector<type> name(size);\\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w)\\\n vector<vector<type>> name(h, vector<type>(w));\\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...)\\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...)\\\n int __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define LL(...)\\\n ll __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define STR(...)\\\n string __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define CHR(...)\\\n char __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define DBL(...)\\\n double __VA_ARGS__;\\\n IN(__VA_ARGS__)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\ntemplate <typename T> vi iota(vector<T> &a, bool greater = false) {\n vi res(a.size());\n iota(all(res), 0);\n sort(all(res), [&](int i, int j) {\n if(greater) return a[i] > a[j];\n return a[i] < a[j];\n });\n return res;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\ntemplate <class T> T POW(T x, int n) {\n T res = 1;\n for(; n; n >>= 1, x *= x)\n if(n & 1) res *= x;\n return res;\n}\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n#define i128 __int128_t\n#define ull unsigned long long int\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\ntemplate <typename A, typename B>\nostream& operator <<(ostream& out, const pair<A, B>& a) {\nout << \"(\" << a.first << \",\" << a.second << \")\";\nreturn out;\n}\ntemplate <typename T, size_t N>\nostream& operator <<(ostream& out, const array<T, N>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T>\nostream& operator <<(ostream& out, const vector<T>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T, class Cmp>\nostream& operator <<(ostream& out, const set<T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" :\", \"); out << v; first = 0;} out << \"}\";\nreturn out;\n}\ntemplate <typename U, typename T, class Cmp>\nostream& operator <<(ostream& out, const map<U, T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& p : a) { out << (first ? \"\" : \", \"); out << p.first << \":\" << p.second; first = 0;} out << \"}\";\nreturn out;\n}\n// #define LOCAL\n#ifdef LOCAL\n#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)\n#else\n#define trace(...) 42\n#endif\ntemplate <typename Arg1>\nvoid __f(const char* name, Arg1&& arg1){\ncerr << name << \": \" << arg1 << endl;\n}\ntemplate <typename Arg1, typename... Args>\nvoid __f(const char* names, Arg1&& arg1, Args&&... args){\nconst char* comma = strchr(names + 1, ',');\ncerr.write(names, comma - names) << \": \" << arg1 << \" |\";\n__f(comma + 1, args...);\n}\n#pragma endregion\n//#include<atcoder/all>\n//using namespace atcoder;\nstruct RollingHash {\n static const int base1 = 8973;\n static const int mod1 = 1000000007;\n vector<long long> hash1, power1;\n\n // construct\n RollingHash(const string &S) {\n int n = (int)S.size();\n hash1.assign(n+1, 0);\n power1.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n power1[i+1] = (power1[i] * base1) % mod1;\n }\n }\n \n // get hash value of S[left:right]\n inline long long get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n return res1;\n }\n\n // get hash value of whole S\n inline long long get() const {\n return hash1.back();\n }\n\n // get lcp of S[a:] and S[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n\n // get lcp of S[a:] and T[b:]\n inline int getLCP(const RollingHash &T, int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != T.get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\nint main(){\n STR(s);\n RollingHash rh(s);\n int n = s.size();\n vector<int> ret;\n rep(i,n){\n if(!i)continue;\n int sizA = i;\n int sizB = n - i*3;\n if(sizB<= 0 || sizB%2 == 1)continue;\n sizB /= 2;\n vector<ll> A,B;\n A.pb(rh.get(0,sizA-1));\n B.pb(rh.get(sizA,sizA+sizB-1));\n A.pb(rh.get(sizA+sizB,2*sizA+sizB-1));\n B.pb(rh.get(2*sizA+sizB,2*sizA+2*sizB-1));\n A.pb(rh.get(2*sizA+2*sizB,n-1));\n sort(all(A));sort(all(B));\n if(A.back() == A[0] && B.back() == B[0]){\n ret.pb(sizA+sizB);\n }\n }\n if(ret.size() == 0){\n cout << \"mitomerarenaiWA\" << endl;\n return 0;\n }\n sort(all(ret));\n trace(ret);\n string hoge = s.substr(0,ret[0]);\n cout << \"Love \" << hoge << '!' << endl;\n return 0;\n}", "accuracy": 0.5662650602409639, "time_ms": 20, "memory_kb": 20124, "score_of_the_acc": -0.4316, "final_rank": 12 }, { "submission_id": "aoj_2763_5018825", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define endl '\\n'\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size)\\\n vector<type> name(size);\\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w)\\\n vector<vector<type>> name(h, vector<type>(w));\\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...)\\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...)\\\n int __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define LL(...)\\\n ll __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define STR(...)\\\n string __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define CHR(...)\\\n char __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define DBL(...)\\\n double __VA_ARGS__;\\\n IN(__VA_ARGS__)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\ntemplate <typename T> vi iota(vector<T> &a, bool greater = false) {\n vi res(a.size());\n iota(all(res), 0);\n sort(all(res), [&](int i, int j) {\n if(greater) return a[i] > a[j];\n return a[i] < a[j];\n });\n return res;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\ntemplate <class T> T POW(T x, int n) {\n T res = 1;\n for(; n; n >>= 1, x *= x)\n if(n & 1) res *= x;\n return res;\n}\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n#define i128 __int128_t\n#define ull unsigned long long int\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\ntemplate <typename A, typename B>\nostream& operator <<(ostream& out, const pair<A, B>& a) {\nout << \"(\" << a.first << \",\" << a.second << \")\";\nreturn out;\n}\ntemplate <typename T, size_t N>\nostream& operator <<(ostream& out, const array<T, N>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T>\nostream& operator <<(ostream& out, const vector<T>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T, class Cmp>\nostream& operator <<(ostream& out, const set<T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" :\", \"); out << v; first = 0;} out << \"}\";\nreturn out;\n}\ntemplate <typename U, typename T, class Cmp>\nostream& operator <<(ostream& out, const map<U, T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& p : a) { out << (first ? \"\" : \", \"); out << p.first << \":\" << p.second; first = 0;} out << \"}\";\nreturn out;\n}\n// #define LOCAL\n#ifdef LOCAL\n#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)\n#else\n#define trace(...) 42\n#endif\ntemplate <typename Arg1>\nvoid __f(const char* name, Arg1&& arg1){\ncerr << name << \": \" << arg1 << endl;\n}\ntemplate <typename Arg1, typename... Args>\nvoid __f(const char* names, Arg1&& arg1, Args&&... args){\nconst char* comma = strchr(names + 1, ',');\ncerr.write(names, comma - names) << \": \" << arg1 << \" |\";\n__f(comma + 1, args...);\n}\n#pragma endregion\n//#include<atcoder/all>\n//using namespace atcoder;\nstruct RollingHash {\n static const int base1 = 1007;\n static const int mod1 = 1000000007;\n vector<long long> hash1, power1;\n\n // construct\n RollingHash(const string &S) {\n int n = (int)S.size();\n hash1.assign(n+1, 0);\n power1.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n power1[i+1] = (power1[i] * base1) % mod1;\n }\n }\n \n // get hash value of S[left:right]\n inline long long get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n return res1;\n }\n\n // get hash value of whole S\n inline long long get() const {\n return hash1.back();\n }\n\n // get lcp of S[a:] and S[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n\n // get lcp of S[a:] and T[b:]\n inline int getLCP(const RollingHash &T, int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != T.get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\nint main(){\n STR(s);\n RollingHash rh(s);\n int n = s.size();\n vector<int> ret;\n rep(i,n){\n if(!i)continue;\n int sizA = i;\n int sizB = n - i*3;\n if(sizB<= 0 || sizB%2 == 1)continue;\n sizB /= 2;\n vector<ll> A,B;\n A.pb(rh.get(0,sizA-1));\n B.pb(rh.get(sizA,sizA+sizB-1));\n A.pb(rh.get(sizA+sizB,2*sizA+sizB-1));\n B.pb(rh.get(2*sizA+sizB,2*sizA+2*sizB-1));\n A.pb(rh.get(2*sizA+2*sizB,n-1));\n sort(all(A));sort(all(B));\n if(A.back() == A[0] && B.back() == B[0]){\n ret.pb(sizA+sizB);\n }\n }\n if(ret.size() == 0){\n cout << \"mitomerarenaiWA\" << endl;\n return 0;\n }\n sort(all(ret));\n trace(ret);\n string hoge = s.substr(0,ret[0]);\n cout << \"Love \" << hoge << '!' << endl;\n return 0;\n}", "accuracy": 0.5662650602409639, "time_ms": 20, "memory_kb": 20024, "score_of_the_acc": -0.4279, "final_rank": 11 }, { "submission_id": "aoj_2763_4549691", "code_snippet": "#include <iostream> // cout, endl, cin\n#include <string> // string, to_string, stoi\n#include <vector> // vector\n#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound\n#include <utility> // pair, make_pair\n#include <tuple> // tuple, make_tuple\n#include <cstdint> // int64_t, int*_t\n#include <cstdio> // printf\n#include <map> // map\n#include <queue> // queue, priority_queue\n#include <set> // set\n#include <stack> // stack\n#include <deque> // deque\n#include <unordered_map> // unordered_map\n#include <unordered_set> // unordered_set\n#include <bitset> // bitset\n#include <cctype> // isupper, islower, isdigit, toupper, tolower\n#include <iomanip> // setprecision\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\nvector<int> Z_algorithm(string S){\n int c=0,n=S.size();\n vector<int> Z(n,0);\n for(int i=1; i<n; i++){\n int l = i-c;\n if(i+Z[l] < c+Z[c]){\n Z[i] = Z[l];\n }else{\n int j = max(0, c+Z[c]-i);\n while(i+j<n && S[j]==S[i+j]) j++;\n Z[i] = j;\n c = i;\n }\n }\n Z[0] = n;\n return Z;\n}\n\n\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n string S;\n cin >> S;\n vector<int> Z = Z_algorithm(S);\n int N = S.size();\n // ABを入れる\n string ans = \"-\";\n for(int i=N-1; i>=1; i--){\n // 後ろがAになるか判定\n if(Z[i] == N-i){\n // Bの文字列の長さ\n // これB*2の長さ\n int B = (i-1)-Z[i]+1-Z[i];\n if(B <= 0) continue;\n if(B%2 == 0){\n // Bの長さ\n B /= 2;\n if(Z[Z[i]+B] >= Z[i]+B){\n // 条件満たす\n // cout << i << \" \" << Z[i]+B << \"\\n\";\n if(ans == \"-\"){\n ans = S.substr(0,Z[i]+B);\n }else{\n if(ans.size() > Z[i]+B){\n ans = S.substr(0,Z[i]+B);\n }\n }\n }\n }\n }\n }\n if(ans == \"-\"){\n cout << \"mitomerarenaiWA\" << \"\\n\";\n }else{\n cout << \"Love \" << ans << \"!\" << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 8864, "score_of_the_acc": -0.3962, "final_rank": 2 }, { "submission_id": "aoj_2763_4549416", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\ntemplate< unsigned mod >\nstruct RollingHash {\n vector< unsigned > hashed, power;\n\n inline unsigned mul(unsigned a, unsigned b) const {\n unsigned long long x = (unsigned long long) a * b;\n unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;\n asm(\"divl %4; \\n\\t\" : \"=a\" (d), \"=d\" (m) : \"d\" (xh), \"a\" (xl), \"r\" (mod));\n return m;\n }\n\n RollingHash(const string &s, unsigned base = 10007) {\n int sz = (int) s.size();\n hashed.assign(sz + 1, 0);\n power.assign(sz + 1, 0);\n power[0] = 1;\n for(int i = 0; i < sz; i++) {\n power[i + 1] = mul(power[i], base);\n hashed[i + 1] = mul(hashed[i], base) + s[i];\n if(hashed[i + 1] >= mod) hashed[i + 1] -= mod;\n }\n }\n\n unsigned get(int l, int r) const {\n unsigned ret = hashed[r] + mod - mul(hashed[l], power[r - l]);\n if(ret >= mod) ret -= mod;\n return ret;\n }\n\n unsigned connect(unsigned h1, int h2, int h2len) const {\n unsigned ret = mul(h1, power[h2len]) + h2;\n if(ret >= mod) ret -= mod;\n return ret;\n }\n\n int LCP(const RollingHash< mod > &b, int l1, int r1, int l2, int r2) {\n int len = min(r1 - l1, r2 - l2);\n int low = -1, high = len + 1;\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(get(l1, l1 + mid) == b.get(l2, l2 + mid)) low = mid;\n else high = mid;\n }\n return (low);\n }\n};\n\nusing RH = RollingHash< 1000000007 >;\n\n\nint main() {\n \n string s; cin >> s;\n int n = s.size();\n string ans = \"\";\n int val = inf;\n\n\n RH rh(s);\n for (int A = 1; A <= n; A++) {\n int rest = n - 3 * A;\n if (rest <= 0) continue;\n if (rest % 2 != 0) continue;\n int B = rest / 2;\n\n if (rh.get(0, A) == rh.get(A + B, A + B + A) \n and rh.get(0, A) == rh.get(2 * A + 2 * B, 2 * A + 2 * B + A) \n and rh.get(A, A + B) == rh.get(2 * A + B, 2 * A + B + B)) {\n\n string a = s.substr(0, A);\n string b = s.substr(A, B);\n if (A + B < val) {\n ans = \"Love \" + a + b + \"!\";\n val = A + B;\n }\n }\n }\n\n\n if (ans == \"\") {\n cout << \"mitomerarenaiWA\" << endl;\n } else {\n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 540, "memory_kb": 13828, "score_of_the_acc": -1.1819, "final_rank": 9 }, { "submission_id": "aoj_2763_4549349", "code_snippet": "#include <iostream> // cout, endl, cin\n#include <string> // string, to_string, stoi\n#include <vector> // vector\n#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound\n#include <utility> // pair, make_pair\n#include <tuple> // tuple, make_tuple\n#include <cstdint> // int64_t, int*_t\n#include <cstdio> // printf\n#include <map> // map\n#include <queue> // queue, priority_queue\n#include <set> // set\n#include <stack> // stack\n#include <deque> // deque\n#include <unordered_map> // unordered_map\n#include <unordered_set> // unordered_set\n#include <bitset> // bitset\n#include <cctype> // isupper, islower, isdigit, toupper, tolower\n#include <iomanip> // setprecision\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\nvector<int> Z_algorithm(string S){\n int c=0,n=S.size();\n vector<int> Z(n,0);\n for(int i=1; i<n; i++){\n int l = i-c;\n if(i+Z[l] < c+Z[c]){\n Z[i] = Z[l];\n }else{\n int j = max(0, c+Z[c]-i);\n while(i+j<n && S[j]==S[i+j]) j++;\n Z[i] = j;\n c = i;\n }\n }\n Z[0] = n;\n return Z;\n}\n\n\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n string S;\n cin >> S;\n vector<int> Z = Z_algorithm(S);\n int N = S.size();\n // ABを入れる\n string ans = \"-\";\n for(int i=N-1; i>=1; i--){\n // 後ろがAになるか判定\n if(Z[i] == N-i){\n // Bの文字列の長さ\n // これB*2の長さ\n int B = (i-1)-Z[i]+1-Z[i];\n if(B <= 0) continue;\n if(B%2 == 0){\n // Bの長さ\n B /= 2;\n if(Z[Z[i]+B] >= Z[i]+B){\n // 条件満たす\n // cout << i << \" \" << Z[i]+B << \"\\n\";\n if(ans == \"-\"){\n ans = S.substr(0,Z[i]+B);\n }else{\n if(ans.size() > Z[i]+B){\n ans = S.substr(0,Z[i]+B);\n }\n }\n }\n }\n }\n }\n if(ans == \"-\"){\n cout << \"mitomerarenaiWA\" << \"\\n\";\n }else{\n cout << \"Love \" << ans << \"!\" << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 8940, "score_of_the_acc": -0.399, "final_rank": 3 }, { "submission_id": "aoj_2763_4246987", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std::literals::string_literals;\nusing i64 = std::int_fast64_t;\nusing std::cout;\nusing std::cerr;\nusing std::endl;\nusing std::cin;\n\ntemplate<typename T>\nstd::vector<T> make_v(size_t a){return std::vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\n#include <vector>\n#include <string>\n\nclass rolling_hash {\npublic:\n\tusing u64 = std::uint_fast64_t;\n\tusing size_type = std::uint_fast32_t;\n\n\tstatic constexpr u64 MOD = (1uL << 61) - 1;\n\tstatic constexpr u64 base = 20200213;\n\n\tstd::string str;\n\tstd::vector<u64> hash_, pow;\n\nprivate:\n\tstatic constexpr u64 mask30 = (1ul << 30) - 1;\n\tstatic constexpr u64 mask31 = (1ul << 31) - 1;\n\n\tu64 mul(u64 a, u64 b) const {\n\t\tu64 au = a >> 31;\n\t\tu64 ad = a & mask31;\n\t\tu64 bu = b >> 31;\n\t\tu64 bd = b & mask31;\n\t\tu64 mid = ad * bu + au * bd;\n\t\tu64 midu = mid >> 30;\n\t\tu64 midd = mid & mask30;\n\t\treturn apply(au * bu * 2 + midu + (midd << 31) + ad * bd);\n\t}\n\tu64 apply(u64 val) const {\n\t\tval = (val & MOD) + (val >> 61);\n\t\tif(val >= MOD) val -= MOD;\n\t\treturn val;\n\t}\n\tsize_type xorshift(size_type x) const {\n\t\tx ^= x << 13;\n\t\tx ^= x >> 17;\n\t\tx ^= x << 5;\n\t\treturn x;\n\t}\n\npublic:\n\trolling_hash(const rolling_hash &) = default;\n\trolling_hash(rolling_hash&&) = default;\n\n\trolling_hash() : str() {};\n\trolling_hash(const std::string & str) : str(str) {\n\t\thash_.resize(str.size() + 1, 0);\n\t\tpow.resize(str.size() + 1, 1);\n\t\tfor(size_type i = 0; i < str.size(); i++) {\n\t\t\thash_[i + 1] = mul(hash_[i], base) + xorshift(str[i] + 1);\n\t\t\tpow[i + 1] = mul(pow[i], base);\n\t\t\tif(hash_[i + 1] >= MOD) hash_[i + 1] -= MOD;\n\t\t}\n\t}\n\n\tu64 hash() const { return hash_.back(); }\n\tu64 hash(size_type l, size_type r) const {\n\t\tu64 ret = MOD + hash_[r] - mul(hash_[l], pow[r - l]);\n\t\treturn ret < MOD ? ret : ret - MOD;\n\t}\n\t\n\tsize_type size() const { return str.size(); }\n};\n\nint main() {\n\tstd::string s; cin >> s;\n\n\trolling_hash hash(s);\n\tfor(int i = (int)s.size(); i > 0; i--) {\n\t\tint A = i;\n\t\tint B = (int)s.size() - 3 * A;\n\t\tif(A <= 0 or B <= 0 or B & 1) continue; B /= 2;\n\n\t\ti64 X = hash.hash(0, A);\n\t\ti64 Y = hash.hash(A, A + B);\n\t\tif(X != hash.hash(A + B, A + B + A)) continue;\n\t\tif(Y != hash.hash(A + B + A, A + B + A + B)) continue;\n\t\tif(X != hash.hash(A + B + A + B, A + B + A + B + A)) continue;\n\n\t\tprintf(\"Love %s!\\n\", s.substr(0, A + B).c_str());\n\t\treturn 0;\n\t}\n\tprintf(\"mitomerarenaiWA\\n\");\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 20040, "score_of_the_acc": -0.4474, "final_rank": 5 }, { "submission_id": "aoj_2763_4246974", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std::literals::string_literals;\nusing i64 = std::int_fast64_t;\nusing std::cout;\nusing std::cerr;\nusing std::endl;\nusing std::cin;\n\ntemplate<typename T>\nstd::vector<T> make_v(size_t a){return std::vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\n#include <vector>\n#include <string>\n\nclass rolling_hash {\npublic:\n\tusing u64 = std::uint_fast64_t;\n\tusing size_type = std::uint_fast32_t;\n\n\tstatic constexpr u64 MOD = (1uL << 61) - 1;\n\tstatic constexpr u64 base = 20200213;\n\n\tstd::string str;\n\tstd::vector<u64> hash_, pow;\n\nprivate:\n\tstatic constexpr u64 mask30 = (1ul << 30) - 1;\n\tstatic constexpr u64 mask31 = (1ul << 31) - 1;\n\n\tu64 mul(u64 a, u64 b) const {\n\t\tu64 au = a >> 31;\n\t\tu64 ad = a & mask31;\n\t\tu64 bu = b >> 31;\n\t\tu64 bd = b & mask31;\n\t\tu64 mid = ad * bu + au * bd;\n\t\tu64 midu = mid >> 30;\n\t\tu64 midd = mid & mask30;\n\t\treturn apply(au * bu * 2 + midu + (midd << 31) + ad * bd);\n\t}\n\tu64 apply(u64 val) const {\n\t\tval = (val & MOD) + (val >> 61);\n\t\tif(val >= MOD) val -= MOD;\n\t\treturn val;\n\t}\n\tsize_type xorshift(size_type x) const {\n\t\tx ^= x << 13;\n\t\tx ^= x >> 17;\n\t\tx ^= x << 5;\n\t\treturn x;\n\t}\n\npublic:\n\trolling_hash(const rolling_hash &) = default;\n\trolling_hash(rolling_hash&&) = default;\n\n\trolling_hash() : str() {};\n\trolling_hash(const std::string & str) : str(str) {\n\t\thash_.resize(str.size() + 1, 0);\n\t\tpow.resize(str.size() + 1, 1);\n\t\tfor(size_type i = 0; i < str.size(); i++) {\n\t\t\thash_[i + 1] = mul(hash_[i], base) + xorshift(str[i] + 1);\n\t\t\tpow[i + 1] = mul(pow[i], base);\n\t\t\tif(hash_[i + 1] >= MOD) hash_[i + 1] -= MOD;\n\t\t}\n\t}\n\n\tu64 hash() const { return hash_.back(); }\n\tu64 hash(size_type l, size_type r) const {\n\t\tu64 ret = MOD + hash_[r] - mul(hash_[l], pow[r - l]);\n\t\treturn ret < MOD ? ret : ret - MOD;\n\t}\n\t\n\tsize_type size() const { return str.size(); }\n};\n\nint main() {\n\tstd::string s; cin >> s;\n\n\trolling_hash hash(s);\n\tfor(int i = (int)s.size(); i >= 0; i--) {\n\t\tint A = i;\n\t\tint B = (int)s.size() - 3 * A;\n\t\tif(A < 0 or B < 0 or B & 1) continue; B /= 2;\n\n\t\ti64 X = hash.hash(0, A);\n\t\ti64 Y = hash.hash(A, A + B);\n\t\tif(X != hash.hash(A + B, A + B + A)) continue;\n\t\tif(Y != hash.hash(A + B + A, A + B + A + B)) continue;\n\t\tif(X != hash.hash(A + B + A + B, A + B + A + B + A)) continue;\n\n\t\tprintf(\"Love %s!\\n\", s.substr(0, A + B).c_str());\n\t\treturn 0;\n\t}\n\tprintf(\"mitomerarenaiWA\\n\");\n\treturn 0;\n}", "accuracy": 0.4578313253012048, "time_ms": 30, "memory_kb": 20088, "score_of_the_acc": -0.4491, "final_rank": 20 }, { "submission_id": "aoj_2763_4246973", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std::literals::string_literals;\nusing i64 = std::int_fast64_t;\nusing std::cout;\nusing std::cerr;\nusing std::endl;\nusing std::cin;\n\ntemplate<typename T>\nstd::vector<T> make_v(size_t a){return std::vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\n#include <vector>\n#include <string>\n\nclass rolling_hash {\npublic:\n\tusing u64 = std::uint_fast64_t;\n\tusing size_type = std::uint_fast32_t;\n\n\tstatic constexpr u64 MOD = (1uL << 61) - 1;\n\tstatic constexpr u64 base = 20200213;\n\n\tstd::string str;\n\tstd::vector<u64> hash_, pow;\n\nprivate:\n\tstatic constexpr u64 mask30 = (1ul << 30) - 1;\n\tstatic constexpr u64 mask31 = (1ul << 31) - 1;\n\n\tu64 mul(u64 a, u64 b) const {\n\t\tu64 au = a >> 31;\n\t\tu64 ad = a & mask31;\n\t\tu64 bu = b >> 31;\n\t\tu64 bd = b & mask31;\n\t\tu64 mid = ad * bu + au * bd;\n\t\tu64 midu = mid >> 30;\n\t\tu64 midd = mid & mask30;\n\t\treturn apply(au * bu * 2 + midu + (midd << 31) + ad * bd);\n\t}\n\tu64 apply(u64 val) const {\n\t\tval = (val & MOD) + (val >> 61);\n\t\tif(val >= MOD) val -= MOD;\n\t\treturn val;\n\t}\n\tsize_type xorshift(size_type x) const {\n\t\tx ^= x << 13;\n\t\tx ^= x >> 17;\n\t\tx ^= x << 5;\n\t\treturn x;\n\t}\n\npublic:\n\trolling_hash(const rolling_hash &) = default;\n\trolling_hash(rolling_hash&&) = default;\n\n\trolling_hash() : str() {};\n\trolling_hash(const std::string & str) : str(str) {\n\t\thash_.resize(str.size() + 1, 0);\n\t\tpow.resize(str.size() + 1, 1);\n\t\tfor(size_type i = 0; i < str.size(); i++) {\n\t\t\thash_[i + 1] = mul(hash_[i], base) + xorshift(str[i] + 1);\n\t\t\tpow[i + 1] = mul(pow[i], base);\n\t\t\tif(hash_[i + 1] >= MOD) hash_[i + 1] -= MOD;\n\t\t}\n\t}\n\n\tu64 hash() const { return hash_.back(); }\n\tu64 hash(size_type l, size_type r) const {\n\t\tu64 ret = MOD + hash_[r] - mul(hash_[l], pow[r - l]);\n\t\treturn ret < MOD ? ret : ret - MOD;\n\t}\n\t\n\tsize_type size() const { return str.size(); }\n};\n\nint main() {\n\tstd::string s; cin >> s;\n\n\trolling_hash hash(s);\n\tfor(int i = (int)s.size() - 1; i >= 0; i--) {\n\t\tint A = i + 1;\n\t\tint B = (int)s.size() - 3 * A;\n\t\tif(A < 0 or B < 0 or B & 1) continue; B /= 2;\n\n\t\ti64 X = hash.hash(0, A);\n\t\ti64 Y = hash.hash(A, A + B);\n\t\tif(X != hash.hash(A + B, A + B + A)) continue;\n\t\tif(Y != hash.hash(A + B + A, A + B + A + B)) continue;\n\t\tif(X != hash.hash(A + B + A + B, A + B + A + B + A)) continue;\n\n\t\tprintf(\"Love %s!\\n\", s.substr(0, A + B).c_str());\n\t\treturn 0;\n\t}\n\tprintf(\"mitomerarenaiWA\\n\");\n\treturn 0;\n}", "accuracy": 0.4819277108433735, "time_ms": 30, "memory_kb": 19996, "score_of_the_acc": -0.4457, "final_rank": 18 }, { "submission_id": "aoj_2763_3736602", "code_snippet": "#include \"iostream\"\n#include \"random\"\n#include \"string\"\n#include \"bitset\"\n#include \"algorithm\"\n#include \"map\"\n#include \"queue\"\n#include \"list\"\n#include \"set\"\n#include \"climits\"\n#include \"iomanip\"\n#include \"stack\"\n#include \"functional\"\n\nusing namespace std;\nusing ll = long long int;\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n\nstruct rollingHash {\n ll mo[2] = {1000000007, 1000000009};\n ll base[2] = {1009, 1007};\n vector<ll> hash[2], power[2];\n rollingHash() {}\n rollingHash(string s) {\n hash[0].resize(s.size()+1); hash[1].resize(s.size()+1);\n power[0].resize(s.size()+1); power[1].resize(s.size()+1);\n init(s);\n }\n inline ll mul(ll a, ll b, ll md) const {\n return a * b % md;\n // unsigned long long y = a*b;\n // unsigned xh = (unsigned)(y>>32), xl = (unsigned)y, d, m;\n // asm(\n // \"divl %4; \\n\\t\"\n // : \"=a\" (d), \"=d\" (m)\n // : \"d\" (xh), \"a\" (xl), \"r\" (md)\n // );\n // return a;\n }\n // O(|S|)\n void init(string s) {\n REP(i, 2) {\n power[i][0] = 1;\n FOR(j, 1, s.size()+1) power[i][j] = mul(power[i][j-1], base[i], mo[i]);\n }\n // 1-indexの累積和\n REP(i, 2) REP(j, s.size()) {\n hash[i][j+1] = (hash[i][j]+mul(power[i][j], s[j], mo[i]))%mo[i];\n }\n }\n // [l1,r1) と [l2,r2) が一致するか\n bool equal(int l1, int r1, int l2, int r2) {\n REP(i, 2) {\n ll a = (hash[i][r1]-hash[i][l1]+mo[i])%mo[i];\n ll b = (hash[i][r2]-hash[i][l2]+mo[i])%mo[i];\n if(mul(a,power[i][l2-l1],mo[i]) != b) return false;\n }\n return true;\n }\n // [l,r)\n PII get(int l, int r) {\n PII ret;\n ret.first = (hash[0][r]-hash[0][l]+mo[0])%mo[0];\n ret.first = mul(ret.first, power[0][hash[0].size()-1-l], mo[0]);\n ret.second = (hash[1][r]-hash[1][l]+mo[1])%mo[1];\n ret.second = mul(ret.second, power[1][hash[1].size()-1-l], mo[1]);\n return ret;\n }\n};\n\nint main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\tstring s;\n\tcin >> s;\n\n\tconst ll INF = 1LL << 30;\n\tll ans = INF;\n\trollingHash hash(s);\n\tfor (ll i = 1; i <= s.size(); ++i) {\n\t\tll len = (ll)s.size() - i * 3;\n\t\tif (len <= 0 || len % 2) continue;\n\t\tlen /= 2;\n\t\tll idx1 = i - 1, idx2 = i + len - 1, idx3 = 2 * i + len - 1, idx4 = 2 * i + 2 * len - 1;\n\t\tif (hash.equal(0, idx1, idx2 + 1, idx3) && hash.equal(idx2 + 1, idx3, idx4 + 1, s.size() - 1) && hash.equal(idx1 + 1, idx2, idx3 + 1, idx4)) {\n\t\t\tif (ans > i + len) {\n\t\t\t\tans = i + len;\n\t\t\t}\n\t\t}\n\t}\n\n\tif (ans == INF) cout << \"mitomerarenaiWA\" << endl;\n\telse cout << \"Love \" << s.substr(0, ans) << \"!\" << endl;\n}", "accuracy": 0.5662650602409639, "time_ms": 90, "memory_kb": 36148, "score_of_the_acc": -1.1509, "final_rank": 15 }, { "submission_id": "aoj_2763_3718739", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\nusing namespace std;\n\nstruct RollingHash {\n const int base = 10007;\n static const int M = 2;\n const vector<int> mod = {999999937, 1000000007};\n vector<long long> hash[M], power[M];\n RollingHash(const string &s, int base = 9973) : base(base) {\n int n = s.size();\n for (int iter = 0; iter < M; ++iter) {\n hash[iter].assign(n + 1, 0);\n power[iter].assign(n + 1, 1);\n for (int i = 0; i < n; ++i) {\n hash[iter][i + 1] = (hash[iter][i] * base + s[i]) % mod[iter];\n power[iter][i + 1] = power[iter][i] * base % mod[iter];\n }\n }\n }\n long long get(int l, int r, int id = 0) { // [l, r)\n long long ret = hash[id][r] - hash[id][l] * power[id][r-l] % mod[id];\n return (ret < 0 ? ret + mod[id] : ret);\n }\n};\n\nint main() {\n string s;\n while (cin >> s) {\n RollingHash rh(s);\n int n = s.size();\n int ans = n;\n int a = n % 2 == 0 ? 2 : 1;\n int b = n % 2 == 0 ? n / 2 - 1 : n / 2;\n int c = b + a;\n int d = n - a;\n while (a < b) {\n long long A = rh.get(0, a);\n if (rh.get(b, c) == A && rh.get(d, n) == A && rh.get(a, b) == rh.get(c, d)) {\n ans = min(ans, b);\n }\n a += 2; b -= 1; c += 1; d -= 2;\n }\n if (ans != n) {\n cout << \"Love \" << s.substr(0, ans) << '!' << endl;\n } else {\n cout << \"mitomerarenaiWA\" << endl;\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 35664, "score_of_the_acc": -1.0577, "final_rank": 8 } ]
aoj_2770_cpp
F: リレー / Relay 問題文 湖に浮かぶ $N$ 個の小島からなるビワコという村がある. ビワコ村には $N-1$ 本の簡単な作りの橋がある. 島には $0$ から $N-1$ まで,橋には $0$ から $N-2$ までの番号が付けられている. $i$ 番の橋は $i+1$ 番の島と $p_i$ 番の島を直接つなぎ,長さは $w_i$ である. 村人はどの島の間もいくつかの橋を通って相互に移動できるようになっている. ある村人の提案により,ビワコ村でリレー大会が開催されることとなった. しかし,ビワコ村には閉路がなくトラックを用意できないため, 現在ある橋を $1$ つだけ掛け替えることによって閉路を作ろうと考えた. この操作によって用意できる閉路のうち,長さが最大となるものの長さを求めなさい. 入力 $N$ $p_0 \ w_0$ $\vdots$ $p_{n-2} \ w_{n-2}$ 制約 $2 \leq N \leq 100000$ $0 \leq p_i \leq N-1$ $1 \leq w_i \leq 1000$ 全て整数 全ての島と島の間が到達可能である 出力 答えを $1$ 行で出力せよ. サンプル 各サンプルを図示すると次のようになる. サンプル入力1 5 0 1 0 2 0 3 0 4 サンプル出力1 9 サンプル入力2 12 0 6 1 1 0 3 3 4 0 2 5 1 6 1 0 2 8 1 9 1 10 2 サンプル出力2 19 サンプル入力3 2 0 1 サンプル出力3 1
[ { "submission_id": "aoj_2770_10401948", "code_snippet": "// AOJ #2770 Relay\n// 2025.4.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nint main(){\n int N = Cin();\n vector<vector<pair<int,int>>> adj(N);\n vector<tuple<int,int,int>> edges(N-1);\n for(int i = 0; i < N-1; i++){\n int v = Cin(), w = Cin();\n int u = i + 1;\n edges[i] = {u, v, w};\n adj[u].emplace_back(v, w);\n adj[v].emplace_back(u, w);\n }\n\n vector<int> parent(N, -1), pw(N, 0);\n vector<vector<int>> children(N);\n vector<int> idx(N, 0), post;\n post.reserve(N);\n vector<int> stk;\n stk.reserve(N);\n\n parent[0] = -2;\n stk.push_back(0);\n while(!stk.empty()){\n int u = stk.back();\n if(idx[u] < (int)adj[u].size()){\n auto [v, w] = adj[u][idx[u]++];\n if(parent[u] == v) continue;\n parent[v] = u;\n pw[v] = w;\n children[u].push_back(v);\n stk.push_back(v);\n } else {\n post.push_back(u);\n stk.pop_back();\n }\n }\n\n vector<ll> down1(N,0), down2(N,0), down3(N,0), sub_dia(N,0);\n vector<int> d1id(N,-1), d2id(N,-1), d3id(N,-1);\n vector<ll> child_dia1(N,0), child_dia2(N,0);\n vector<int> cd1id(N,-1);\n\n for(int u: post){\n for(int v: children[u]){\n ll h = down1[v] + pw[v];\n if(h > down1[u]){\n down3[u] = down2[u]; d3id[u] = d2id[u];\n down2[u] = down1[u]; d2id[u] = d1id[u];\n down1[u] = h, d1id[u] = v;\n } else if(h > down2[u]){\n down3[u] = down2[u]; d3id[u] = d2id[u];\n down2[u] = h, d2id[u] = v;\n } else if(h > down3[u]){\n down3[u] = h, d3id[u] = v;\n }\n }\n ll best1 = 0, best2 = 0;\n int best1idx = -1;\n for(int v: children[u]){\n ll cd = sub_dia[v];\n if(cd > best1){\n best2 = best1;\n best1 = cd;\n best1idx = v;\n } else if(cd > best2) best2 = cd;\n }\n child_dia1[u] = best1;\n child_dia2[u] = best2;\n cd1id[u] = best1idx;\n sub_dia[u] = max(best1, down1[u] + down2[u]);\n }\n\n vector<ll> up(N,0), dout(N,0);\n stk.clear();\n stk.push_back(0);\n while(!stk.empty()){\n int u = stk.back(); stk.pop_back();\n for(int v: children[u]){\n ll best_h = (d1id[u] != v ? down1[u]\n : (d2id[u] != v ? down2[u]\n : down3[u]));\n ll c1, c2;\n if(d1id[u] != v){\n c1 = down1[u];\n c2 = (d2id[u] != v ? down2[u] : down3[u]);\n } else {\n c1 = down2[u];\n c2 = down3[u];\n }\n ll cross = c1 + c2;\n ll bcd = (cd1id[u] != v ? child_dia1[u] : child_dia2[u]);\n\n ll best = dout[u];\n best = max(best, bcd);\n best = max(best, cross);\n best = max(best, up[u] + best_h);\n dout[v] = best;\n\n ll up_ex = max(up[u], best_h);\n up[v] = up_ex + pw[v];\n\n stk.push_back(v);\n }\n }\n\n ll ans = 0;\n for(auto [u, v, w] : edges){\n if(parent[v] == u) ans = max(ans, max(sub_dia[v], dout[v]) + w);\n else ans = max(ans, max(sub_dia[u], dout[u]) + w);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 24816, "score_of_the_acc": -0.1723, "final_rank": 2 }, { "submission_id": "aoj_2770_4968872", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#include <cmath>\n#include <complex>\n#include <cstdint>\n#include <cstdlib>\n#include <deque>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <limits>\n#include <list>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <type_traits>\n#include <unordered_map>\n#include <utility>\n#include <vector>\n\n/* template start */\n\nusing i64 = std::int_fast64_t;\nusing u64 = std::uint_fast64_t;\n\n#define rep(i, a, b) for (i64 i = (a); (i) < (b); (i)++)\n#define all(i) i.begin(), i.end()\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() { std::cerr << std::endl; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cout << \" :\";\n debug_out(t...);\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream& operator<<(std::ostream& os, std::pair<T1, T2> pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& os, std::vector<T> vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T1, typename T2>\ninline bool chmax(T1& a, T2 b) {\n return a < b && (a = b, true);\n}\n\ntemplate <typename T1, typename T2>\ninline bool chmin(T1& a, T2 b) {\n return a > b && (a = b, true);\n}\n\ntemplate <typename Num>\nconstexpr Num mypow(Num a, u64 b, Num id = 1) {\n if (b == 0) return id;\n Num x = id;\n while (b > 0) {\n if (b & 1) x *= a;\n a *= a;\n b >>= 1;\n }\n return x;\n}\n\ntemplate <typename T>\nstd::vector<std::pair<std::size_t, T>> enumerate(const std::vector<T>& data) {\n std::vector<std::pair<std::size_t, T>> ret;\n for (std::size_t index = 0; index < data.size(); index++)\n ret.emplace_back(index, data[index]);\n return ret;\n}\n\n/* template end */\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n i64 n;\n std::cin>>n;\n\n using P=std::pair<i64,i64>;\n\n std::vector<std::vector<P>> graph(n);\n\n i64 ans=0;\n\n rep(i,1,n){\n i64 p,w;\n std::cin>>p>>w;\n\n chmax(ans,w);\n\n graph[i].emplace_back(p,w);\n graph[p].emplace_back(i,w);\n }\n\n std::vector<i64> arch(n,0),path_root(n,0);\n\n auto dfs1=[&](auto&& f,i64 now,i64 par)->void{\n arch[now] = 0;\n path_root[now] = 0;\n\n i64 first=0,second=0;\n\n for(auto itr = graph[now].begin();itr!=graph[now].end();){\n if(itr->first == par){\n itr = graph[now].erase(itr);\n continue;\n }\n\n const auto& [e,w] = *itr;\n\n f(f,e,now);\n chmax(arch[now],arch[e]);\n\n if(path_root[e] + w > first){\n second = first;\n first = path_root[e]+w;\n }else if(path_root[e] + w > second){\n second = path_root[e]+w;\n }\n\n itr++;\n }\n\n path_root[now] = first;\n chmax(arch[now],first+second);\n };\n\n dfs1(dfs1,0,-1);\n\n debug(arch);\n debug(path_root);\n\n auto dfs2=[&](auto&& f,i64 now,i64 par,i64 pw,i64 parch,i64 ppath)->void{\n if(par!=-1){\n chmax(ans,arch[now]+pw);\n chmax(ans,parch + pw);\n }\n\n debug(now,par,pw,parch,ppath);\n\n if(graph[now].empty())return;\n\n i64 m = graph[now].size();\n std::vector<i64> lfirst(m),lsecond(m),rfirst(m),rsecond(m);\n std::vector<i64> lmax(m),rmax(m);\n\n lfirst[0] = 0;\n lsecond[0] = 0;\n lmax[0]=0;\n rep(i,1,m){\n const auto& [e,w] = graph[now][i-1];\n lmax[i] = std::max(lmax[i-1],arch[e]);\n lfirst[i] = lfirst[i-1];\n lsecond[i] = lsecond[i-1];\n if(path_root[e] + w > lfirst[i-1]){\n lsecond[i] = lfirst[i-1];\n lfirst[i] = path_root[e]+w;\n }else if(path_root[e] + w > lsecond[i-1]){\n lfirst[i] = lfirst[i-1];\n lsecond[i] = path_root[e]+w;\n }\n }\n\n rfirst[m-1] = ppath + pw;\n rsecond[m-1] = 0;\n rmax[m-1] = parch;\n for(i64 i = m-2;i>=0;i--){\n const auto& [e,w] = graph[now][i+1];\n rmax[i] = std::max(rmax[i+1],arch[e]);\n rfirst[i] = rfirst[i+1];\n rsecond[i] = rsecond[i+1];\n if(path_root[e] + w > rfirst[i+1]){\n rsecond[i] = rfirst[i+1];\n rfirst[i] = path_root[e]+w;\n }else if(path_root[e]+w > rsecond[i+1]){\n rfirst[i] = rfirst[i+1];\n rsecond[i] = path_root[e]+w;\n }\n }\n\n if(now == 2){\n debug(rfirst);\n debug(rsecond);\n }\n\n rep(i,0,m){\n const auto& [e,w] = graph[now][i];\n i64 narch = std::max(lmax[i],rmax[i]);\n i64 npath = std::max(lfirst[i],rfirst[i]);\n std::vector<i64> tmp = {lfirst[i],lsecond[i],rfirst[i],rsecond[i]};\n std::sort(all(tmp),std::greater<i64>());\n chmax(narch,tmp[0]+tmp[1]);\n\n f(f,e,now,w,narch,npath);\n }\n };\n\n dfs2(dfs2,0,-1,0,0,0);\n\n std::cout<<ans<<\"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 58620, "score_of_the_acc": -1.147, "final_rank": 9 }, { "submission_id": "aoj_2770_4968657", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#include <cmath>\n#include <complex>\n#include <cstdint>\n#include <cstdlib>\n#include <deque>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <limits>\n#include <list>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <type_traits>\n#include <unordered_map>\n#include <utility>\n#include <vector>\n\n/* template start */\n\nusing i64 = std::int_fast64_t;\nusing u64 = std::uint_fast64_t;\n\n#define rep(i, a, b) for (i64 i = (a); (i) < (b); (i)++)\n#define all(i) i.begin(), i.end()\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() { std::cerr << std::endl; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cout << \" :\";\n debug_out(t...);\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream& operator<<(std::ostream& os, std::pair<T1, T2> pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& os, std::vector<T> vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T1, typename T2>\ninline bool chmax(T1& a, T2 b) {\n return a < b && (a = b, true);\n}\n\ntemplate <typename T1, typename T2>\ninline bool chmin(T1& a, T2 b) {\n return a > b && (a = b, true);\n}\n\ntemplate <typename Num>\nconstexpr Num mypow(Num a, u64 b, Num id = 1) {\n if (b == 0) return id;\n Num x = id;\n while (b > 0) {\n if (b & 1) x *= a;\n a *= a;\n b >>= 1;\n }\n return x;\n}\n\ntemplate <typename T>\nstd::vector<std::pair<std::size_t, T>> enumerate(const std::vector<T>& data) {\n std::vector<std::pair<std::size_t, T>> ret;\n for (std::size_t index = 0; index < data.size(); index++)\n ret.emplace_back(index, data[index]);\n return ret;\n}\n\n/* template end */\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n i64 n;\n std::cin>>n;\n\n using P=std::pair<i64,i64>;\n\n std::vector<std::vector<P>> graph(n);\n\n i64 ans=0;\n\n rep(i,1,n){\n i64 p,w;\n std::cin>>p>>w;\n\n chmax(ans,w);\n\n graph[i].emplace_back(p,w);\n graph[p].emplace_back(i,w);\n }\n\n std::vector<i64> arch(n,0),path_root(n,0);\n\n auto dfs1=[&](auto&& f,i64 now,i64 par)->void{\n arch[now] = 0;\n path_root[now] = 0;\n\n i64 first=0,second=0;\n\n for(auto itr = graph[now].begin();itr!=graph[now].end();){\n if(itr->first == par){\n itr = graph[now].erase(itr);\n continue;\n }\n\n const auto& [e,w] = *itr;\n\n f(f,e,now);\n chmax(arch[now],arch[e]);\n\n if(path_root[e] + w > first){\n second = first;\n first = path_root[e]+w;\n }else if(path_root[e] + w > second){\n second = path_root[e]+w;\n }\n\n itr++;\n }\n\n path_root[now] = first;\n chmax(arch[now],first+second);\n };\n\n dfs1(dfs1,0,-1);\n\n auto dfs2=[&](auto&& f,i64 now,i64 par,i64 pw,i64 parch,i64 ppath)->void{\n if(par!=-1){\n chmax(ans,arch[now]+pw);\n chmax(ans,parch + pw);\n }\n\n if(graph[now].empty())return;\n\n i64 m = graph[now].size();\n std::vector<i64> lfirst(m),lsecond(m),rfirst(m),rsecond(m);\n std::vector<i64> lmax(m),rmax(m);\n\n lfirst[0] = 0;\n lsecond[0] = 0;\n lmax[0]=0;\n rep(i,1,m){\n const auto& [e,w] = graph[now][i-1];\n lmax[i] = std::max(lmax[i-1],arch[e]);\n if(path_root[e] + w > lfirst[i-1]){\n lsecond[i] = lfirst[i-1];\n lfirst[i] = path_root[e]+w;\n }else if(path_root[e] + w > lsecond[i-1]){\n lfirst[i] = lfirst[i-1];\n lsecond[i] = path_root[e]+w;\n }\n }\n\n rfirst[m-1] = ppath + pw;\n rsecond[m-1] = 0;\n rmax[m-1] = parch;\n for(i64 i = m-2;i>=0;i--){\n const auto& [e,w] = graph[now][i+1];\n rmax[i] = std::max(rmax[i+1],arch[e]);\n if(path_root[e] + w > rfirst[i+1]){\n rsecond[i] = rfirst[i+1];\n rfirst[i] = path_root[e]+w;\n }else if(path_root[e]+w > rsecond[i+1]){\n rfirst[i] = rfirst[i+1];\n rsecond[i] = path_root[e]+w;\n }\n }\n\n rep(i,0,m){\n const auto& [e,w] = graph[now][i];\n i64 narch = std::max(lmax[i],rmax[i]);\n i64 npath = std::max(lfirst[i],rfirst[i]);\n std::vector<i64> tmp = {lfirst[i],lsecond[i],rfirst[i],rsecond[i]};\n std::sort(all(tmp),std::greater<i64>());\n chmax(narch,tmp[0]+tmp[1]);\n\n f(f,e,now,w,narch,npath);\n }\n };\n\n dfs2(dfs2,0,-1,0,0,0);\n\n std::cout<<ans<<\"\\n\";\n\n return 0;\n}", "accuracy": 0.2542372881355932, "time_ms": 30, "memory_kb": 16220, "score_of_the_acc": -0.1007, "final_rank": 20 }, { "submission_id": "aoj_2770_4968551", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#include <cmath>\n#include <complex>\n#include <cstdint>\n#include <cstdlib>\n#include <deque>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <limits>\n#include <list>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <type_traits>\n#include <unordered_map>\n#include <utility>\n#include <vector>\n\n/* template start */\n\nusing i64 = std::int_fast64_t;\nusing u64 = std::uint_fast64_t;\n\n#define rep(i, a, b) for (i64 i = (a); (i) < (b); (i)++)\n#define all(i) i.begin(), i.end()\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() { std::cerr << std::endl; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cout << \" :\";\n debug_out(t...);\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream& operator<<(std::ostream& os, std::pair<T1, T2> pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& os, std::vector<T> vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T1, typename T2>\ninline bool chmax(T1& a, T2 b) {\n return a < b && (a = b, true);\n}\n\ntemplate <typename T1, typename T2>\ninline bool chmin(T1& a, T2 b) {\n return a > b && (a = b, true);\n}\n\ntemplate <typename Num>\nconstexpr Num mypow(Num a, u64 b, Num id = 1) {\n if (b == 0) return id;\n Num x = id;\n while (b > 0) {\n if (b & 1) x *= a;\n a *= a;\n b >>= 1;\n }\n return x;\n}\n\ntemplate <typename T>\nstd::vector<std::pair<std::size_t, T>> enumerate(const std::vector<T>& data) {\n std::vector<std::pair<std::size_t, T>> ret;\n for (std::size_t index = 0; index < data.size(); index++)\n ret.emplace_back(index, data[index]);\n return ret;\n}\n\n/* template end */\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n i64 n;\n std::cin>>n;\n\n using P=std::pair<i64,i64>;\n\n std::vector<std::vector<P>> graph(n);\n\n i64 ans=0;\n\n rep(i,1,n){\n i64 p,w;\n std::cin>>p>>w;\n\n chmax(ans,w);\n\n graph[i].emplace_back(p,w);\n graph[p].emplace_back(i,w);\n }\n\n std::vector<i64> arch(n,0),path_root(n,0);\n\n auto dfs1=[&](auto&& f,i64 now,i64 par)->void{\n arch[now] = 0;\n path_root[now] = 0;\n\n i64 first=0,second=0;\n\n for(auto itr = graph[now].begin();itr!=graph[now].end();){\n if(itr->first == par){\n itr = graph[now].erase(itr);\n continue;\n }\n\n const auto& [e,w] = *itr;\n\n f(f,e,now);\n chmax(arch[now],arch[e]);\n\n if(path_root[e] + w > first){\n second = first;\n first = path_root[e]+w;\n }else if(path_root[e] + w > second){\n second = path_root[e]+w;\n }\n\n itr++;\n }\n\n path_root[now] = first;\n chmax(arch[now],first+second);\n };\n\n dfs1(dfs1,0,-1);\n\n auto dfs2=[&](auto&& f,i64 now,i64 par,i64 pw,i64 parch,i64 ppath)->void{\n if(par!=-1){\n chmax(ans,arch[now]+pw);\n chmax(ans,parch + pw);\n }\n\n if(graph[now].empty())return;\n\n i64 m = graph[now].size();\n std::vector<i64> lfirst(m),lsecond(m),rfirst(m),rsecond(m);\n std::vector<i64> lmax(m),rmax(m);\n\n lfirst[0] = 0;\n lsecond[0] = 0;\n lmax[0]=0;\n rep(i,1,m){\n const auto& [e,w] = graph[now][i-1];\n lmax[i] = std::max(lmax[i-1],arch[e]);\n if(path_root[e] + w > lfirst[i-1]){\n lsecond[i] = lfirst[i-1];\n lfirst[i] = path_root[e]+w;\n }else if(path_root[e] + w > lsecond[i-1]){\n lfirst[i] = lfirst[i-1];\n lsecond[i] = path_root[e]+w;\n }\n }\n\n rfirst[m-1] = ppath + pw;\n rsecond[m-1] = 0;\n rmax[m-1] = parch;\n for(i64 i = m-2;i>=0;i--){\n const auto& [e,w] = graph[now][i+1];\n rmax[i] = std::max(rmax[i+1],arch[e]);\n if(path_root[e] + w > rfirst[i+1]){\n rsecond[i] = rfirst[i+1];\n rfirst[i] = path_root[e]+w;\n }else if(path_root[e]+w > rsecond[i+1]){\n rfirst[i] = rfirst[i+1];\n rsecond[i] = path_root[e]+w;\n }\n }\n\n rep(i,0,m){\n const auto& [e,w] = graph[now][i];\n i64 narch = std::max(lmax[i],rmax[i]);\n i64 npath = std::max(lfirst[i],rfirst[i]);\n std::vector<i64> tmp = {lfirst[i],lsecond[i],rfirst[i],rsecond[i]};\n std::sort(all(tmp),std::greater<i64>());\n chmax(narch,tmp[0]+tmp[1]);\n\n f(f,e,now,w,narch,npath);\n }\n };\n\n dfs2(dfs2,0,-1,0,0,0);\n\n std::cout<<ans<<\"\\n\";\n\n return 0;\n}", "accuracy": 0.2542372881355932, "time_ms": 30, "memory_kb": 16184, "score_of_the_acc": -0.1, "final_rank": 19 }, { "submission_id": "aoj_2770_4964391", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 300000000 //3e8\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nvector<pair<int, int>> G[SIZE];\npair<int, int> lE[SIZE][3];\nint cSize[SIZE];\n\npair<int, int> dfs1(int now) {\n cSize[now] = 1;\n for (auto p : G[now]) {\n auto res = dfs1(p.first);\n cSize[now] += res.second;\n int e = max(res.first, p.second);\n lE[now][2] = max(lE[now][2], {e, p.first});\n if (lE[now][1] < lE[now][2]) swap(lE[now][1], lE[now][2]);\n if (lE[now][0] < lE[now][1]) swap(lE[now][0], lE[now][1]);\n }\n\n return {lE[now][0].first, cSize[now]};\n}\n\nint ans = 0;\n\npair<pair<int, int>, int> dfs2(int now, int L) { // {max dist, max (dist + w)}\n int D = 0, DW = -INF, W = -INF, DD = -INF;\n\n for (auto p : G[now]) {\n int to = p.first;\n int l = lE[now][0].second == to ? lE[now][1].first : lE[now][0].first;\n auto res = dfs2(p.first, max({L, l, p.second}));\n\n int d = res.first.first + p.second;\n int dw = res.first.second + p.second;\n int w = max(p.second, res.second);\n\n ans = max(ans, D + d + L);\n ans = max(ans, D + dw);\n ans = max(ans, DW + d);\n ans = max(ans, DD + w);\n\n DW = max({DW, dw, d + W, D + w});\n DD = max(DD, D + d);\n D = max(D, d);\n W = max(W, w);\n }\n\n debug(now, ans, L, D, DW, W);\n\n return {{D, DW}, W};\n}\n\nint inEdge[SIZE] = {};\n\nint main() {\n int N, sumW = 0;\n\n scanf(\"%d\", &N);\n\n for (int i = 1; i < N; i++) {\n int p, w;\n scanf(\"%d%d\", &p, &w);\n G[p].push_back({i, w});\n sumW += w;\n inEdge[p]++;\n inEdge[i]++;\n }\n\n int counter = 0;\n\n for (int i = 0; i < N; i++) {\n counter += inEdge[i] == 1;\n if (inEdge[i] > 2) counter = INF;\n }\n\n if (counter == 2) {\n printf(\"%d\\n\", sumW);\n return 0;\n }\n\n dfs1(0);\n dfs2(0, -INF);\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 17808, "score_of_the_acc": -0.1324, "final_rank": 1 }, { "submission_id": "aoj_2770_4964330", "code_snippet": "#if 1\n#include <iostream>\n#include <fstream>\n#include <string>\n#include <vector>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n#include <queue>\n#include <stack>\n#include <array>\n#include <deque>\n#include <algorithm>\n#include <utility>\n#include <cstdint>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <assert.h>\n#include <bitset>\n#include <list>\n#include <cmath>\n//#include <atcoder/all>\n\nauto& in = std::cin;\nauto& out = std::cout;\n#define all_range(C) std::begin(C), std::end(C)\nconst double PI = 3.141592653589793238462643383279502884197169399375105820974944;\n\n\ntemplate<typename T, typename U>\nstd::enable_if_t<std::rank<T>::value == 0> fill_all(T& arr, const U& v) {\n arr = v;\n}\ntemplate<typename ARR, typename U>\nstd::enable_if_t<std::rank<ARR>::value != 0> fill_all(ARR& arr, const U& v) {\n for (auto& i : arr) {\n fill_all(i, v);\n }\n}\n\nstd::map<int, int> graph[100000];\nint N;\nbool used_v[100000];\nint parent[100000];\nint32_t D[100000];\nvoid dfs(int v, int p, int32_t depth) {\n parent[v] = p;\n D[v] = depth;\n for (auto& next : graph[v]) {\n if (next.first == p) { continue; }\n dfs(next.first, v, depth + next.second);\n }\n}\n\nint32_t maxdp[100000];\nint32_t maxdep(int v, int p) {\n if (maxdp[v] != -1) { return maxdp[v]; }\n maxdp[v] = D[v];\n for (auto& next : graph[v]) {\n if (next.first == p) { continue; }\n if (used_v[next.first]) { continue; }\n maxdp[v] = std::max(maxdp[v], maxdep(next.first, v));\n }\n return maxdp[v];\n}\n\nint main()\n{\n using std::endl;\n using std::cout;\n in.sync_with_stdio(false);\n out.sync_with_stdio(false);\n in.tie(nullptr);\n out.tie(nullptr);\n\n in >> N;\n for (size_t i = 0; i < N-1; i++)\n {\n int b, l;\n in >> b >> l;\n graph[i + 1].insert({ b, l });\n graph[b].insert({ i + 1, l });\n }\n\n dfs(0, -1, 0);\n int maxa = std::max_element(D, D + N) - D;\n dfs(maxa, -1, 0);\n int maxb = std::max_element(D, D + N) - D;\n\n int32_t used_max = 0;\n int v = maxb;\n while (true) {\n used_v[v] = true;\n if (parent[v] == -1) { break; }\n if (used_max < graph[v][parent[v]]) {\n used_max = graph[v][parent[v]];\n }\n\n v = parent[v];\n }\n\n int32_t not_used_max = 0;\n for (size_t i = 0; i < N; i++)\n {\n for (auto& edge : graph[i]) {\n if (used_v[i] && used_v[edge.first]) { continue; }\n if (not_used_max < edge.second) {\n not_used_max = edge.second;\n }\n }\n }\n int32_t res = D[maxb] + not_used_max;\n\n //graph[used_max_a].erase(used_max_b);\n //graph[used_max_b].erase(used_max_a);\n\n //fill_all(D, -1);\n //dfs(used_max_a, -1, 0);\n //dfs(std::max_element(D, D + N) - D, -1, 0);\n //res = std::max(res, (*std::max_element(D, D + N)) + used_max);\n\n //fill_all(D, -1);\n //dfs(used_max_b, -1, 0);\n //dfs(std::max_element(D, D + N) - D, -1, 0);\n //res = std::max(res, (*std::max_element(D, D + N)) + used_max);\n\n fill_all(maxdp, -1);\n v = maxb;\n used_max = 0;\n while (true) {\n if (parent[v] == -1) { break; }\n used_max = std::max(used_max, graph[v][parent[v]]);\n res = std::max(res, maxdep(parent[v], -1) + used_max);\n v = parent[v];\n }\n\n dfs(maxb, -1, 0);\n fill_all(maxdp, -1);\n v = maxa;\n used_max = 0;\n while (true) {\n if (parent[v] == -1) { break; }\n used_max = std::max(used_max, graph[v][parent[v]]);\n res = std::max(res, maxdep(parent[v], -1) + used_max);\n v = parent[v];\n }\n\n out << res << endl;\n\n return 0;\n}\n#endif", "accuracy": 1, "time_ms": 120, "memory_kb": 23148, "score_of_the_acc": -1.139, "final_rank": 8 }, { "submission_id": "aoj_2770_4937089", "code_snippet": "//\n// Created by yamunaku on 2020/10/23.\n//\n\n#include <bits/stdc++.h>\n//#include <atcoder/all>\n\nusing namespace std;\n//using namespace atcoder;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nvector<pair<int, int>> p;\nvector<vector<pair<int, int>>> ch;\n\nstruct status {\n int top;\n int ans;\n};\n\npair<int, int> get2(pair<int, int> pp, int x) {\n if (x > pp.first) return {x, pp.first};\n else if (x > pp.second) return {pp.first, x};\n else return pp;\n}\n\nvector<status> s;\n\nint answer = 0;\n\nstatus dfs(int x) {\n status ans = {0, 0};\n pair<int, int> top2 = {0, 0};\n for (auto &p : ch[x]) {\n auto ret = dfs(p.first);\n ret.top += p.second;\n top2 = get2(top2, ret.top);\n ans.ans = max(ans.ans, ret.ans);\n answer = max(answer, ret.ans + p.second);\n }\n ans.top = max(ans.top, top2.first);\n ans.ans = max(ans.ans, top2.first + top2.second);\n s[x] = ans;\n return s[x];\n}\n\nvoid zendfs(int x, int ans, int top) {\n int sz = ch[x].size();\n vector<pair<int, int>> pl(sz + 1, {0, 0});\n vector<pair<int, int>> pr(sz + 1, {0, 0});\n vi ansl(sz + 1, ans), ansr(sz + 1, ans);\n rep(i, sz) {\n pl[i + 1] = get2(pl[i], s[ch[x][i].first].top + ch[x][i].second);\n ansl[i + 1] = max(ansl[i], s[ch[x][i].first].ans);\n }\n per(i, sz) {\n pr[i] = get2(pr[i + 1], s[ch[x][i].first].top + ch[x][i].second);\n ansr[i] = max(ansr[i + 1], s[ch[x][i].first].ans);\n }\n rep(i, sz) {\n auto pp = pl[i];\n pp = get2(pp, pr[i + 1].first);\n pp = get2(pp, pr[i + 1].second);\n pp = get2(pp, top);\n int k = max(max(ansl[i], ansr[i + 1]), pp.first + pp.second);\n// cout << ch[x][i].first SP pp.first SP pp.second SP ansl[i] SP ansr[i] SP k << endl;\n answer = max(answer, k + ch[x][i].second);\n zendfs(ch[x][i].first, k, pp.first + ch[x][i].second);\n }\n}\n\nvector<vector<pair<int, int>>> e;\n\nvoid indfs(int x, int prnt, int &c) {\n int now = c;\n// cout << x SP c << endl;\n c++;\n for (auto &nx : e[x]) {\n if (nx.first == prnt) continue;\n p[c] = {now, nx.second};\n ch[now].emplace_back(c, nx.second);\n indfs(nx.first, x, c);\n }\n}\n\nint main() {\n //CFS;\n int n;\n cin >> n;\n p = vector<pair<int, int>>(n, {0, 0});\n ch = vector<vector<pair<int, int>>>(n);\n s = vector<status>(n);\n e = vector<vector<pair<int, int>>>(n);\n rep(i, n - 1) {\n int to, w;\n cin >> to >> w;\n e[i + 1].emplace_back(to, w);\n e[to].emplace_back(i + 1, w);\n }\n int idx = 0;\n indfs(0, 0, idx);\n dfs(0);\n zendfs(0, 0, 0);\n cout << answer << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 37336, "score_of_the_acc": -0.8222, "final_rank": 5 }, { "submission_id": "aoj_2770_4936965", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 18;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nconst int mn = 1 << 18;\nstruct edge {\n\tint to; int cost;\n};\nusing Data = P;\nvector<edge> G[mn];\nvector<int> ids[mn];\nvector<Data> memo[mn];\nvector<int> costs[mn];\nint root;\n\nData merge(Data a, Data b) {\n\tData res;\n\t//\n\tres.first = max(a.first, b.first);\n\tres.second = max({ a.second,b.second,a.first + b.first });\n\t//\n\treturn res;\n}\n\nint ans = 0;\nData dfs(int id, int fr) {\n\tData res;\n\t//\n\t//initialize\n\tres = { 0,0 };\n\t//\n\tfor (edge e : G[id]) {\n\t\tif (e.to == fr)continue;\n\t\tData nex = dfs(e.to, id);\n\n\t\t//calc ans\n\t\tans = max(ans, e.cost + nex.second);\n\t\t//\n\t\t//update with edge\n\t\tnex.first += e.cost;\n\t\tnex.second = max(nex.second, nex.first);\n\t\t//\n\t\tres = merge(res, nex);\n\t\tids[id].push_back(e.to);\n\t\tmemo[id].push_back(nex);\n\t\tcosts[id].push_back(e.cost);\n\t}\n\t//\n\t//update for return\n\t//\n\treturn res;\n}\nvoid invdfs(int id, int fr, Data pre) {\n\tvector<Data> v;\n\tfor (Data d : memo[id])v.push_back(d);\n\tif (fr >= 0)v.push_back(pre);\n\tint len = v.size();\n\t//\n\t//calcurate id's ans\n\t//\n\tvector<Data> le(len + 1);\n\tvector<Data> ri(len + 1);\n\t//\n\tData init_c = { 0,0 };\n\t//\n\tle[0] = init_c;\n\trep(i, len) {\n\t\tle[i + 1] = merge(le[i], v[i]);\n\t}\n\tri[len] = init_c;\n\tper(i, len) {\n\t\tri[i] = merge(ri[i + 1], v[i]);\n\t}\n\trep(i, ids[id].size()) {\n\t\tint to = ids[id][i];\n\t\tData d = merge(le[i], ri[i + 1]);\n\t\tans = max(ans, costs[id][i] + d.second);\n\t\t//\n\t\t//update for return\n\t\td.first += costs[id][i];\n\t\td.second = max(d.first, d.second);\n\t\t//\n\t\tinvdfs(to, id, d);\n\t}\n}\nvoid yaru() {\n\tdfs(root, -1);\n\tinvdfs(root, -1, { 0,0 });\n}\nvoid solve() {\n\tint n; cin >> n;\n\trep(i, n - 1) {\n\t\tint p, w; cin >> p >> w;\n\t\tG[i + 1].push_back({ p,w });\n\t\tG[p].push_back({ i + 1,w });\n\t}\n\tyaru();\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\t\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 66288, "score_of_the_acc": -1.5, "final_rank": 10 }, { "submission_id": "aoj_2770_4322974", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\nstruct Edge{\n\tEdge(int arg_to,ll arg_weight){\n\t\tto = arg_to;\n\t\tweight = arg_weight;\n\t}\n\tint to;\n\tll weight;\n};\n\nstruct Info{\n\tInfo(int arg_node_id,int arg_pre){\n\t\tnode_id = arg_node_id;\n\t\tpre = arg_pre;\n\t}\n\tint node_id,pre;\n};\n\nint N;\nint root = 0;\nint leaf[SIZE];\nint num_visit;\nint LEFT[SIZE],RIGHT[SIZE];\nll PARENT[SIZE],num_OUT[SIZE],W[SIZE],euler_W[SIZE],edge_W[SIZE];\nll nodes[2*SIZE+5],max_L[2*SIZE+5],max_R[2*SIZE+5];\nvector<Edge> G[SIZE];\n\n//オイラーツアーで、ノードのカバー範囲を計算する\nvoid euler_tour(int node_id,int pre_node,ll sum){\n\teuler_W[node_id] = sum;\n\tnodes[num_visit] = node_id;\n\tLEFT[node_id] = num_visit++;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\tif(G[node_id][i].to == pre_node)continue;\n\t\tedge_W[G[node_id][i].to] = G[node_id][i].weight; //入次の重み\n\t\teuler_tour(G[node_id][i].to,node_id,sum+G[node_id][i].weight);\n\t}\n\tnodes[num_visit] = node_id;\n\tRIGHT[node_id] = num_visit++;\n}\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tint from;\n\tll weight;\n\n\tfor(int to = 1; to <= N-1; to++){\n\t\tscanf(\"%d %lld\",&from,&weight);\n\t\tG[from].push_back(Edge(to,weight));\n\t\tG[to].push_back(Edge(from,weight));\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tnum_OUT[i] = 0;\n\t}\n\n\tqueue<Info> Q;\n\tQ.push(Info(root,-1));\n\n\twhile(!Q.empty()){\n\n\t\tPARENT[Q.front().node_id] = Q.front().pre;\n\n\t\tfor(int i = 0; i < G[Q.front().node_id].size(); i++){\n\t\t\tint next = G[Q.front().node_id][i].to;\n\t\t\tif(next == Q.front().pre)continue;\n\n\t\t\tnum_OUT[Q.front().node_id]++;\n\n\t\t\tQ.push(Info(next,Q.front().node_id));\n\t\t}\n\t\tQ.pop();\n\t}\n\n\tll maximum = 0;\n\tint A,B;\n\n\tqueue<int> NODE;\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(num_OUT[i] == 0){\n\t\t\tleaf[i] = i;\n\t\t\tW[i] = 0;\n\t\t\tNODE.push(i);\n\t\t}\n\t}\n\n\tll max_path1,max_path2;\n\tint a,b;\n\n\twhile(!NODE.empty()){\n\n\t\tint node = NODE.front();\n\t\tNODE.pop();\n\n\t\tmax_path1 = 0;\n\t\tmax_path2 = 0;\n\n\t\tb = node;\n\n\t\tfor(int i = 0; i < G[node].size(); i++){\n\n\t\t\tint child = G[node][i].to;\n\t\t\tif(child == PARENT[node])continue;\n\n\t\t\tll tmp = W[child]+G[node][i].weight;\n\n\t\t\tif(tmp > max_path1){\n\n\t\t\t\tmax_path2 = max_path1;\n\t\t\t\tb = a;\n\t\t\t\tmax_path1 = tmp;\n\t\t\t\tW[node] = tmp;\n\t\t\t\tleaf[node] = leaf[child];\n\t\t\t\ta = leaf[child];\n\n\t\t\t}else if(tmp > max_path2){\n\n\t\t\t\tmax_path2 = tmp;\n\t\t\t\tb = leaf[child];\n\t\t\t}\n\t\t}\n\n\t\tif(max_path1+max_path2 > maximum){\n\n\t\t\tmaximum = max_path1+max_path2;\n\t\t\tA = a;\n\t\t\tB = b;\n\t\t}\n\t\tif(PARENT[node] != -1){\n\t\t\tnum_OUT[PARENT[node]]--;\n\t\t}\n\t\tif(num_OUT[PARENT[node]] == 0){\n\n\t\t\tNODE.push(PARENT[node]);\n\t\t}\n\t}\n\tnum_visit = 0;\n\teuler_tour(A,-1,0);\n\n\t//基準点より左の最大重み\n\tmax_L[0] = euler_W[A];\n\tfor(int i = 1; i < 2*N; i++){\n\n\t\tmax_L[i] = max(max_L[i-1],euler_W[nodes[i]]);\n\t}\n\tmax_R[2*N-1] = euler_W[A];\n\tfor(int i = 2*N-2; i >= 0; i--){\n\n\t\tmax_R[i] = max(max_R[i+1],euler_W[nodes[i]]);\n\t}\n\n\tll ans = 0;\n\tll w_L,w_R;\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(i == A)continue;\n\n\t\tif(LEFT[i] > 0){\n\n\t\t\tw_L = max_L[LEFT[i]-1];\n\t\t}\n\t\tif(RIGHT[i]+1 < 2*N){\n\n\t\t\tw_R = max_R[RIGHT[i]+1];\n\t\t}\n\t\tans = max(ans,edge_W[i]+max(w_L,w_R));\n\t}\n\n\tnum_visit = 0;\n\tedge_W[B] = 0;\n\teuler_tour(B,-1,0);\n\n\t//基準点より左の最大重み\n\tmax_L[0] = euler_W[B];\n\tfor(int i = 1; i < 2*N; i++){\n\n\t\tmax_L[i] = max(max_L[i-1],euler_W[nodes[i]]);\n\t}\n\tmax_R[2*N-1] = euler_W[B];\n\tfor(int i = 2*N-2; i >= 0; i--){\n\n\t\tmax_R[i] = max(max_R[i+1],euler_W[nodes[i]]);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(i == B)continue;\n\n\t\tif(LEFT[i] > 0){\n\n\t\t\tw_L = max_L[LEFT[i]-1];\n\t\t}\n\t\tif(RIGHT[i]+1 < 2*N){\n\n\t\t\tw_R = max_R[RIGHT[i]+1];\n\t\t}\n\t\tans = max(ans,edge_W[i]+max(w_L,w_R));\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 26852, "score_of_the_acc": -0.7129, "final_rank": 4 }, { "submission_id": "aoj_2770_4322972", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\nstruct Edge{\n\tEdge(int arg_to,ll arg_weight){\n\t\tto = arg_to;\n\t\tweight = arg_weight;\n\t}\n\tint to;\n\tll weight;\n};\n\nstruct Info{\n\tInfo(int arg_node_id,int arg_pre){\n\t\tnode_id = arg_node_id;\n\t\tpre = arg_pre;\n\t}\n\tint node_id,pre;\n};\n\nint N;\nint root = 0;\nint leaf[SIZE];\nint num_visit;\nint LEFT[SIZE],RIGHT[SIZE];\nll PARENT[SIZE],num_OUT[SIZE],W[SIZE],euler_W[SIZE],edge_W[SIZE];\nll nodes[2*SIZE+5],max_L[2*SIZE+5],max_R[2*SIZE+5];\nvector<Edge> G[SIZE];\n\n//オイラーツアーで、ノードのカバー範囲を計算する\nvoid euler_tour(int node_id,int pre_node,ll sum){\n\teuler_W[node_id] = sum;\n\tnodes[num_visit] = node_id;\n\tLEFT[node_id] = num_visit++;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\tif(G[node_id][i].to == pre_node)continue;\n\t\tedge_W[G[node_id][i].to] = G[node_id][i].weight; //入次の重み\n\t\teuler_tour(G[node_id][i].to,node_id,sum+G[node_id][i].weight);\n\t}\n\tnodes[num_visit] = node_id;\n\tRIGHT[node_id] = num_visit++;\n}\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tint from;\n\tll weight;\n\n\tfor(int to = 1; to <= N-1; to++){\n\t\tscanf(\"%d %lld\",&from,&weight);\n\t\tG[from].push_back(Edge(to,weight));\n\t\tG[to].push_back(Edge(from,weight));\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tnum_OUT[i] = 0;\n\t}\n\n\tqueue<Info> Q;\n\tQ.push(Info(root,-1));\n\n\twhile(!Q.empty()){\n\n\t\tPARENT[Q.front().node_id] = Q.front().pre;\n\n\t\tfor(int i = 0; i < G[Q.front().node_id].size(); i++){\n\t\t\tint next = G[Q.front().node_id][i].to;\n\t\t\tif(next == Q.front().pre)continue;\n\n\t\t\tnum_OUT[Q.front().node_id]++;\n\n\t\t\tQ.push(Info(next,Q.front().node_id));\n\t\t}\n\t\tQ.pop();\n\t}\n\n\tll maximum = 0;\n\tint A,B;\n\n\tqueue<int> NODE;\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(num_OUT[i] == 0){\n\t\t\tleaf[i] = i;\n\t\t\tW[i] = 0;\n\t\t\tNODE.push(i);\n\t\t}\n\t}\n\n\tll max_path1,max_path2;\n\tint a,b;\n\n\twhile(!NODE.empty()){\n\n\t\tint node = NODE.front();\n\t\tNODE.pop();\n\n\t\tmax_path1 = 0;\n\t\tmax_path2 = 0;\n\n\t\tb = node;\n\n\t\tfor(int i = 0; i < G[node].size(); i++){\n\n\t\t\tint child = G[node][i].to;\n\t\t\tif(child == PARENT[node])continue;\n\n\t\t\tll tmp = W[child]+G[node][i].weight;\n\n\t\t\tif(tmp > max_path1){\n\n\t\t\t\tmax_path2 = max_path1;\n\t\t\t\tb = a;\n\t\t\t\tmax_path1 = tmp;\n\t\t\t\tW[node] = tmp;\n\t\t\t\tleaf[node] = leaf[child];\n\t\t\t\ta = leaf[child];\n\n\t\t\t}else if(tmp > max_path2){\n\n\t\t\t\tmax_path2 = tmp;\n\t\t\t\tb = leaf[child];\n\t\t\t}\n\t\t}\n\n\t\t/*if(node == root){\n\t\t\tprintf(\"max_path1:%lld path2:%lld\\n\",max_path1,max_path2);\n\t\t\tprintf(\"a:%d b:%d\\n\",a,b);\n\t\t}*/\n\n\t\tif(max_path1+max_path2 > maximum){\n\n\t\t\tmaximum = max_path1+max_path2;\n\t\t\tA = a;\n\t\t\tB = b;\n\t\t}\n\t\tif(PARENT[node] != -1){\n\t\t\tnum_OUT[PARENT[node]]--;\n\t\t}\n\t\tif(num_OUT[PARENT[node]] == 0){\n\n\t\t\tNODE.push(PARENT[node]);\n\t\t}\n\t}\n\n\t/*printf(\"maximum:%lld\\n\",maximum);\n\tprintf(\"A:%d B:%d\\n\",A,B);\n*/\n\tnum_visit = 0;\n\teuler_tour(A,-1,0);\n\n\t//基準点より左の最大重み\n\tmax_L[0] = euler_W[A];\n\tfor(int i = 1; i < 2*N; i++){\n\n\t\tmax_L[i] = max(max_L[i-1],euler_W[nodes[i]]);\n\t}\n\tmax_R[2*N-1] = euler_W[A];\n\tfor(int i = 2*N-2; i >= 0; i--){\n\n\t\tmax_R[i] = max(max_R[i+1],euler_W[nodes[i]]);\n\t}\n\n\tll ans = 0;\n\tll w_L,w_R;\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(i == A)continue;\n\n\t\tif(LEFT[i] > 0){\n\n\t\t\tw_L = max_L[LEFT[i]-1];\n\t\t}\n\t\tif(RIGHT[i]+1 < 2*N){\n\n\t\t\tw_R = max_R[RIGHT[i]+1];\n\t\t}\n\t\tans = max(ans,edge_W[i]+max(w_L,w_R));\n\t}\n\n\tnum_visit = 0;\n\tedge_W[B] = 0;\n\teuler_tour(B,-1,0);\n\n\t//基準点より左の最大重み\n\tmax_L[0] = euler_W[B];\n\tfor(int i = 1; i < 2*N; i++){\n\n\t\tmax_L[i] = max(max_L[i-1],euler_W[nodes[i]]);\n\t}\n\tmax_R[2*N-1] = euler_W[B];\n\tfor(int i = 2*N-2; i >= 0; i--){\n\n\t\tmax_R[i] = max(max_R[i+1],euler_W[nodes[i]]);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(i == B)continue;\n\n\t\tif(LEFT[i] > 0){\n\n\t\t\tw_L = max_L[LEFT[i]-1];\n\t\t}\n\t\tif(RIGHT[i]+1 < 2*N){\n\n\t\t\tw_R = max_R[RIGHT[i]+1];\n\t\t}\n\t\tans = max(ans,edge_W[i]+max(w_L,w_R));\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 26856, "score_of_the_acc": -0.613, "final_rank": 3 }, { "submission_id": "aoj_2770_3723523", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int> P;\n\n\nvector<P> G[100001];\nvector<P> dp1(100000);\nP dfs1(int u,int t){\n P ret;\n ret.first=0;\n ret.second=0;\n for(auto v:G[u]){\n if(v.first==t) continue;\n P p = dfs1(v.first,u);\n ret.first=max(ret.first,p.first+v.second);\n ret.second=max({ret.second,p.second,v.second});\n }\n return dp1[u]=ret;\n}\n\nint dfs2(int u,int t,int d,int e){\n vector<pair<P,int>> A;\n vector<P> dd,ee;\n A.push_back({{0,0},-1});\n A.push_back({{0,0},-1});\n for(auto v:G[u]){\n if(v.first==t){\n A.push_back({{d+v.second,e},v.first});\n }\n else{\n A.push_back({{dp1[v.first].first+v.second,max(dp1[v.first].second,v.second)},v.first});\n }\n }\n sort(A.rbegin(),A.rend());\n int ret=0;\n for(auto v:A){\n int sum = v.first.second;\n if(v.second==A[0].second){\n sum += A[1].first.first;\n sum += A[2].first.first;\n }\n else if(v.second==A[1].second){\n sum += A[0].first.first;\n sum += A[2].first.first;\n }\n else{\n sum += A[0].first.first;\n sum += A[1].first.first;\n }\n ret = max(ret,sum);\n\n dd.push_back({v.first.first,v.second});\n ee.push_back({v.first.second,v.second});\n }\n sort(dd.rbegin(),dd.rend());\n sort(ee.rbegin(),ee.rend());\n for(auto v:G[u]){\n if(v.first==t) continue;\n int nd=dd[0].first,ne=ee[0].first;\n if(dd[0].second==v.first) nd=dd[1].first;\n if(ee[0].second==v.first) ne=ee[1].first;\n ret=max(ret,dfs2(v.first,u,nd,max(ne,v.second)));\n }\n return ret;\n}\n\nint main(){\n int n;cin >> n;\n for (int i = 0; i < n-1; i++) {\n int p,w;cin >> p >> w;\n G[i+1].push_back({p,w});\n G[p].push_back({i+1,w});\n }\n dfs1(0,-1);\n cout << dfs2(0,-1,0,0) << endl;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 46648, "score_of_the_acc": -1.508, "final_rank": 11 }, { "submission_id": "aoj_2770_3720684", "code_snippet": "#include<iostream>\n#include<vector>\n#include<algorithm>\nusing namespace std;\nint N;\nvector<pair<int,int> >G[1<<17];\npair<int,int>dp1[1<<17];\npair<int,int>dfs1(int u,int p)\n{\n\tpair<int,int>ret;\n\tret.first=ret.second=0;\n\tfor(pair<int,int>q:G[u])\n\t{\n\t\tif(q.first==p)continue;\n\t\tpair<int,int>now=dfs1(q.first,u);\n\t\tret.first=max(ret.first,now.first+q.second);\n\t\tret.second=max(ret.second,max(now.second,q.second));\n\t}\n\tdp1[u]=ret;\n\treturn ret;\n}\nint ans;\nvoid dfs2(int u,int p,pair<int,int>P)\n{\n\tvector<pair<pair<int,int>,int> >A;\n\tA.push_back(make_pair(P,-1));\n\tfor(int i=0;i<G[u].size();i++)\n\t{\n\t\tint v=G[u][i].first;\n\t\tif(v==p)continue;\n\t\tA.push_back(make_pair(make_pair(dp1[v].first+G[u][i].second,max(dp1[v].second,G[u][i].second)),i));\n\t}\n\tsort(A.rbegin(),A.rend());\n\tpair<int,int>dmax1,dmax2,emax1,emax2;\n\tdmax1=dmax2=emax1=emax2=make_pair(0,-1);\n\twhile(A.size()<3)A.push_back(make_pair(make_pair(0,0),-(int)A.size()-1));\n\tfor(int i=0;i<A.size();i++)\n\t{\n\t\tans=max(ans,A[i].first.second+A[i==0?2:0].first.first+A[i==1?2:1].first.first);\n\t\tif(dmax1.first<=A[i].first.first)\n\t\t{\n\t\t\tdmax2=dmax1;\n\t\t\tdmax1=make_pair(A[i].first.first,A[i].second);\n\t\t}\n\t\telse if(dmax2.first<=A[i].first.first)\n\t\t{\n\t\t\tdmax2=make_pair(A[i].first.first,A[i].second);\n\t\t}\n\t\tif(emax1.first<=A[i].first.second)\n\t\t{\n\t\t\temax2=emax1;\n\t\t\temax1=make_pair(A[i].first.second,A[i].second);\n\t\t}\n\t\telse if(emax2.first<=A[i].first.second)\n\t\t{\n\t\t\temax2=make_pair(A[i].first.second,A[i].second);\n\t\t}\n\t}\n\tfor(int i=0;i<G[u].size();i++)\n\t{\n\t\tif(G[u][i].first==p)continue;\n\t\tdfs2(G[u][i].first,u,make_pair(G[u][i].second+(dmax1.second==i?dmax2.first:dmax1.first),max(G[u][i].second,emax1.second==i?emax2.first:emax1.first)));\n\t}\n}\nmain()\n{\n\tcin>>N;\n\tfor(int i=1;i<N;i++)\n\t{\n\t\tint p,w;cin>>p>>w;\n\t\tG[p].push_back(make_pair(i,w));\n\t\tG[i].push_back(make_pair(p,w));\n\t}\n\tdfs1(0,-1);\n\tdfs2(0,-1,make_pair(0,0));\n\tcout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 33472, "score_of_the_acc": -0.945, "final_rank": 6 }, { "submission_id": "aoj_2770_3720487", "code_snippet": "#include<iostream>\n#include<vector>\n#include<algorithm>\nusing namespace std;\nint N;\nvector<pair<int,int> >G[1<<17];\npair<int,int>dp1[1<<17];\npair<int,int>dfs1(int u,int p)\n{\n\tpair<int,int>ret;\n\tret.first=ret.second=0;\n\tfor(pair<int,int>q:G[u])\n\t{\n\t\tif(q.first==p)continue;\n\t\tpair<int,int>now=dfs1(q.first,u);\n\t\tret.first=max(ret.first,now.first+q.second);\n\t\tret.second=max(ret.second,max(now.second,q.second));\n\t}\n\tdp1[u]=ret;\n\treturn ret;\n}\nint ans;\nvoid dfs2(int u,int p,pair<int,int>P)\n{\n\tvector<pair<pair<int,int>,int> >A;\n\tA.push_back(make_pair(P,-1));\n\tfor(int i=0;i<G[u].size();i++)\n\t{\n\t\tint v=G[u][i].first;\n\t\tif(v==p)continue;\n\t\tA.push_back(make_pair(make_pair(dp1[v].first+G[u][i].second,max(dp1[v].second,G[u][i].second)),i));\n\t}\n\tsort(A.rbegin(),A.rend());\n\tpair<int,int>dmax1,dmax2,emax1,emax2;\n\tdmax1=dmax2=emax1=emax2=make_pair(0,-1);\n\twhile(A.size()<3)A.push_back(make_pair(make_pair(0,0),-(int)A.size()-1));\n\tfor(int i=0;i<A.size();i++)\n\t{\n\t\tans=max(ans,A[i].first.second+A[i==0?2:0].first.first+A[i==1?2:1].first.first);\n\t\tif(dmax1.first<=A[i].first.first)\n\t\t{\n\t\t\tdmax2=dmax1;\n\t\t\tdmax1=make_pair(A[i].first.first,A[i].second);\n\t\t}\n\t\telse if(dmax2.first<=A[i].first.first)\n\t\t{\n\t\t\tdmax2=make_pair(A[i].first.first,A[i].second);\n\t\t}\n\t\tif(emax1.first<=A[i].first.second)\n\t\t{\n\t\t\temax2=emax1;\n\t\t\temax1=make_pair(A[i].first.second,A[i].second);\n\t\t}\n\t\telse if(emax2.first<=A[i].first.second)\n\t\t{\n\t\t\temax2=make_pair(A[i].first.second,A[i].second);\n\t\t}\n\t}\n\tfor(int i=0;i<G[u].size();i++)\n\t{\n\t\tif(G[u][i].first==p)continue;\n\t\tdfs2(G[u][i].first,u,make_pair(G[u][i].second+(dmax1.second==i?dmax2.first:dmax1.first),max(G[u][i].second,emax1.second==i?emax2.first:emax1.first)));\n\t}\n}\nmain()\n{\n\tcin>>N;\n\tfor(int i=1;i<N;i++)\n\t{\n\t\tint p,w;cin>>p>>w;\n\t\tG[p].push_back(make_pair(i,w));\n\t\tG[i].push_back(make_pair(p,w));\n\t}\n\tdfs1(0,-1);\n\tdfs2(0,-1,make_pair(0,0));\n\tcout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 33476, "score_of_the_acc": -1.0451, "final_rank": 7 }, { "submission_id": "aoj_2770_3583698", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <utility>\n#include <cassert>\nusing namespace std;\nusing ll = long long;\n\npair<ll,ll> dfs(const vector<vector<pair<ll,int>>> &G, vector<pair<ll,ll>> &D, const int v, const int prev){\n ll t = 0, s = 0;\n for(auto e : G[v]){\n int v_ = e.second;\n ll w = e.first;\n if(v_ == prev) continue;\n pair<ll,ll> p = dfs(G,D,v_,v);\n ll x = max(p.first,p.second);\n s = max(s,x+w);\n if(s > t) swap(s,t);\n }\n D[v] = {t,s};\n return D[v];\n}\n\npair<ll,ll> top2(pair<ll,ll> A, pair<ll,ll> B){\n assert(A.first >= A.second);\n assert(B.first >= B.second);\n if(A < B) swap(A,B);\n pair<ll,ll> ret = A;\n ret.second = max(ret.second,B.first);\n return ret;\n}\n\nll solve(const vector<vector<pair<long long,int>>> &G, int v, int prev,\n const vector<pair<ll,ll>> &D, const pair<ll,ll> ts){\n int N = G[v].size();\n vector<pair<ll,ll>> E(N+1,{0,0}), B(N+1,{0,0});\n for(int i = 0; i < N; ++i){\n pair<ll,int> e = G[v][i];\n int v_ = e.second;\n ll w = e.first, l = 0;\n if(v_ == prev) l = max(ts.first,ts.second);\n else l = max(D[v_].first,D[v_].second);\n E[i+1].first = l+w;\n B[i ].first = l+w;\n }\n for(int i = 1; i <= N; ++i) E[i] = top2(E[i],E[i-1]);\n for(int i = N-1; i >= 0; --i) B[i] = top2(B[i],B[i+1]);\n ll ret = 0;\n for(int i = 0; i < N; ++i){\n ll w = G[v][i].first;\n int v_ = G[v][i].second;\n pair<ll,ll> p = D[v_];\n if(v_ == prev) p = ts;\n ret = max(ret,w+p.first+p.second);\n p = top2(E[i],B[i+1]);\n ret = max(ret,w+p.first+p.second);\n }\n for(int i = 0; i < N; ++i){\n int v_ = G[v][i].second;\n if(v_ == prev) continue;\n pair<ll,ll> ts_ = top2(E[i],B[i+1]);\n ret = max(ret,solve(G,v_,v,D,ts_));\n }\n return ret;\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<pair<long long,int>>> G(N);\n for(int i = 0; i < N-1; ++i){\n int p;\n long long w;\n cin >> p >> w;\n G[p].emplace_back(w,i+1);\n G[i+1].emplace_back(w,p);\n }\n vector<pair<ll,ll>> D(N,{0,0});\n pair<ll,ll> p = dfs(G,D,0,-1);\n ll ans = p.first+p.second;\n pair<ll,ll> ts(0,0);\n cout << max(ans,solve(G,0,-1,D,ts)) << endl;\n}", "accuracy": 0.3728813559322034, "time_ms": 90, "memory_kb": 38456, "score_of_the_acc": -1.1445, "final_rank": 17 }, { "submission_id": "aoj_2770_3583671", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <utility>\n#include <cassert>\nusing namespace std;\nusing ll = long long;\n\npair<ll,ll> dfs(const vector<vector<pair<ll,int>>> &G, vector<pair<ll,ll>> &D, const int v, const int prev){\n ll t = 0, s = 0;\n for(auto e : G[v]){\n int v_ = e.second;\n ll w = e.first;\n if(v_ == prev) continue;\n pair<ll,ll> p = dfs(G,D,v_,v);\n ll x = max(p.first,p.second);\n s = max(s,x+w);\n if(s > t) swap(s,t);\n }\n D[v] = {t,s};\n return D[v];\n}\n\npair<ll,ll> top2(pair<ll,ll> A, pair<ll,ll> B){\n assert(A.first >= A.second);\n assert(B.first >= B.second);\n if(A < B) swap(A,B);\n pair<ll,ll> ret = A;\n ret.second = max(ret.second,B.first);\n return ret;\n}\n\nll solve(const vector<vector<pair<long long,int>>> &G, int v, int prev,\n const vector<pair<ll,ll>> &D, const pair<ll,ll> ts){\n int N = G[v].size();\n vector<pair<ll,ll>> E(N+1,{0,0}), B(N+1,{0,0});\n for(int i = 0; i < N; ++i){\n pair<ll,int> e = G[v][i];\n int v_ = e.second;\n ll w = e.first, l = 0;\n if(v_ == prev) l = max(ts.first,ts.second);\n else l = max(D[v_].first,D[v_].second);\n E[i+1].first = l+w;\n B[i ].first = l+w;\n }\n for(int i = 1; i <= N; ++i) E[i] = top2(E[i],E[i-1]);\n for(int i = N-1; i >= 0; --i) B[i] = top2(B[i],B[i+1]);\n ll ret = 0;\n for(int i = 0; i < N; ++i){\n ll w = G[v][i].first;\n int v_ = G[v][i].second;\n pair<ll,ll> p = D[v_];\n if(v_ == prev) p = ts;\n ret = max(ret,w+p.first+p.second);\n p = top2(E[i],B[i+1]);\n ret = max(ret,w+p.first+p.second);\n }\n for(int i = 0; i < N; ++i){\n int v_ = G[v][i].second;\n if(v_ == prev) continue;\n pair<ll,ll> ts_ = top2(E[i],B[i+1]);\n ret = max(ret,solve(G,v_,v,D,ts_));\n }\n return ret;\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<pair<long long,int>>> G(N);\n for(int i = 0; i < N-1; ++i){\n int p;\n long long w;\n cin >> p >> w;\n G[p].emplace_back(w,i+1);\n G[i+1].emplace_back(w,p);\n }\n vector<pair<ll,ll>> D(N,{0,0});\n dfs(G,D,0,-1);\n pair<ll,ll> ts(0,0);\n cout << solve(G,0,-1,D,ts) << endl;\n}", "accuracy": 0.3728813559322034, "time_ms": 90, "memory_kb": 38336, "score_of_the_acc": -1.1421, "final_rank": 14 }, { "submission_id": "aoj_2770_3583644", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <utility>\n#include <cassert>\nusing namespace std;\nusing ll = long long;\n\npair<ll,ll> dfs(const vector<vector<pair<ll,int>>> &G, vector<pair<ll,ll>> &D, int v, int prev){\n ll t = 0, s = 0;\n for(auto e : G[v]){\n int v_ = e.second;\n ll w = e.first;\n if(v_ == prev) continue;\n pair<ll,ll> p = dfs(G,D,v_,v);\n ll x = max(p.first,p.second);\n s = max(s,x+w);\n if(s > t) swap(s,t);\n }\n D[v] = {t,s};\n return D[v];\n}\n\npair<ll,ll> top2(pair<ll,ll> A, pair<ll,ll> B){\n assert(A.first >= A.second);\n assert(B.first >= B.second);\n if(A < B) swap(A,B);\n pair<ll,ll> ret = A;\n ret.second = max(ret.second,B.first);\n return ret;\n}\n\nll solve(const vector<vector<pair<long long,int>>> &G, int v, int prev, vector<pair<ll,ll>> &D, pair<ll,ll> ts){\n int N = G[v].size();\n vector<pair<ll,ll>> E(N+1,{0,0}), B(N+1,{0,0});\n for(int i = 0; i < N; ++i){\n pair<ll,int> e = G[v][i];\n int v_ = e.second;\n ll w = e.first, l = 0;\n if(v_ == prev) l = max(ts.first,ts.second);\n else l = max(D[v_].first,D[v_].second);\n E[i+1].first = l+w;\n B[i ].first = l+w;\n }\n for(int i = 1; i <= N; ++i) E[i] = top2(E[i],E[i-1]);\n for(int i = N-1; i >= 0; --i) B[i] = top2(B[i],B[i+1]);\n ll ret = 0;\n for(int i = 0; i < N; ++i){\n ll w = G[v][i].first;\n int v_ = G[v][i].second;\n pair<ll,ll> p = D[v_];\n if(v_ == prev) p = ts;\n ret = max(ret,w+p.first+p.second);\n p = top2(E[i],B[i+1]);\n ret = max(ret,w+p.first+p.second);\n }\n for(int i = 0; i < N; ++i){\n int v_ = G[v][i].second;\n if(v_ == prev) continue;\n pair<ll,ll> ts_ = top2(E[i],B[i+1]);\n ret = max(ret,solve(G,v_,v,D,ts_));\n }\n return ret;\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<pair<long long,int>>> G(N);\n long long ans = 0;\n for(int i = 0; i < N-1; ++i){\n int p;\n long long w;\n cin >> p >> w;\n G[p].emplace_back(w,i+1);\n G[i+1].emplace_back(w,p);\n ans = max(ans,w);\n }\n vector<pair<ll,ll>> D(N,{0,0});\n dfs(G,D,0,-1);\n // for(int i = 0; i < N; ++i)\n // cerr << D[i].first << \" \" << D[i].second << endl;\n pair<ll,ll> ts(0,0);\n ans = max(ans,solve(G,0,-1,D,ts));\n cout << ans << endl;\n}", "accuracy": 0.3728813559322034, "time_ms": 90, "memory_kb": 38336, "score_of_the_acc": -1.1421, "final_rank": 14 }, { "submission_id": "aoj_2770_3583643", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <utility>\n#include <cassert>\nusing namespace std;\nconst long long INF = 1e9;\nusing ll = long long;\n\npair<ll,ll> dfs(const vector<vector<pair<ll,int>>> &G, vector<pair<ll,ll>> &D, int v, int prev){\n ll t = 0, s = 0;\n for(auto e : G[v]){\n int v_ = e.second;\n ll w = e.first;\n if(v_ == prev) continue;\n pair<ll,ll> p = dfs(G,D,v_,v);\n ll x = max(p.first,p.second);\n s = max(s,x+w);\n if(s > t) swap(s,t);\n }\n D[v] = {t,s};\n return D[v];\n}\n\npair<ll,ll> top2(pair<ll,ll> A, pair<ll,ll> B){\n assert(A.first >= A.second);\n assert(B.first >= B.second);\n if(A < B) swap(A,B);\n pair<ll,ll> ret = A;\n ret.second = max(ret.second,B.first);\n return ret;\n}\n\nll solve(const vector<vector<pair<long long,int>>> &G, int v, int prev, vector<pair<ll,ll>> &D, pair<ll,ll> ts){\n int N = G[v].size();\n vector<pair<ll,ll>> E(N+1,{0,0}), B(N+1,{0,0});\n for(int i = 0; i < N; ++i){\n pair<ll,int> e = G[v][i];\n int v_ = e.second;\n ll w = e.first, l = 0;\n if(v_ == prev) l = max(ts.first,ts.second);\n else l = max(D[v_].first,D[v_].second);\n E[i+1].first = l+w;\n B[i ].first = l+w;\n }\n for(int i = 1; i <= N; ++i) E[i] = top2(E[i],E[i-1]);\n for(int i = N-1; i >= 0; --i) B[i] = top2(B[i],B[i+1]);\n ll ret = 0;\n for(int i = 0; i < N; ++i){\n ll w = G[v][i].first;\n int v_ = G[v][i].second;\n pair<ll,ll> p = D[v_];\n if(v_ == prev) p = ts;\n ret = max(ret,w+p.first+p.second);\n p = top2(E[i],B[i+1]);\n ret = max(ret,w+p.first+p.second);\n }\n for(int i = 0; i < N; ++i){\n int v_ = G[v][i].second;\n if(v_ == prev) continue;\n pair<ll,ll> ts_ = top2(E[i],B[i+1]);\n ret = max(ret,solve(G,v_,v,D,ts_));\n }\n return ret;\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<pair<long long,int>>> G(N);\n long long ans = -INF;\n for(int i = 0; i < N-1; ++i){\n int p;\n long long w;\n cin >> p >> w;\n G[p].emplace_back(w,i+1);\n G[i+1].emplace_back(w,p);\n ans = max(ans,w);\n }\n vector<pair<ll,ll>> D(N,{0,0});\n dfs(G,D,0,-1);\n // for(int i = 0; i < N; ++i)\n // cerr << D[i].first << \" \" << D[i].second << endl;\n pair<ll,ll> ts(0,-INF);\n ans = max(ans,solve(G,0,-1,D,ts));\n cout << ans << endl;\n}", "accuracy": 0.3728813559322034, "time_ms": 90, "memory_kb": 38296, "score_of_the_acc": -1.1413, "final_rank": 12 }, { "submission_id": "aoj_2770_3583636", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <utility>\n#include <cassert>\nusing namespace std;\nconst long long INF = 1e9;\nusing ll = long long;\n\npair<ll,ll> dfs(const vector<vector<pair<ll,int>>> &G, vector<pair<ll,ll>> &D, int v, int prev){\n ll t = 0, s = -INF;\n for(auto e : G[v]){\n int v_ = e.second;\n ll w = e.first;\n if(v_ == prev) continue;\n pair<ll,ll> p = dfs(G,D,v_,v);\n ll x = max(p.first,p.second);\n s = max(s,x+w);\n if(s > t) swap(s,t);\n }\n D[v] = {t,s};\n return D[v];\n}\n\npair<ll,ll> top2(pair<ll,ll> A, pair<ll,ll> B){\n assert(A.first >= A.second);\n assert(B.first >= B.second);\n if(A < B) swap(A,B);\n pair<ll,ll> ret = A;\n ret.second = max(ret.second,B.first);\n return ret;\n}\n\nll solve(const vector<vector<pair<long long,int>>> &G, int v, int prev, vector<pair<ll,ll>> &D, pair<ll,ll> ts){\n int N = G[v].size();\n vector<pair<ll,ll>> E(N+1,{0,0}), B(N+1,{0,0});\n for(int i = 0; i < N; ++i){\n pair<ll,int> e = G[v][i];\n int v_ = e.second;\n ll w = e.first, l = -INF;\n if(v_ == prev) l = max(ts.first,ts.second);\n else l = max(D[v_].first,D[v_].second);\n E[i+1].first = l+w;\n B[i ].first = l+w;\n }\n for(int i = 1; i <= N; ++i) E[i] = top2(E[i],E[i-1]);\n for(int i = N-1; i >= 0; --i) B[i] = top2(B[i],B[i+1]);\n ll ret = -INF;\n for(int i = 0; i < N; ++i){\n ll w = G[v][i].first;\n int v_ = G[v][i].second;\n pair<ll,ll> p = D[v_];\n if(v_ == prev) p = ts;\n ret = max(ret,w+p.first+p.second);\n p = top2(E[i],B[i+1]);\n ret = max(ret,w+p.first+p.second);\n }\n for(int i = 0; i < N; ++i){\n int v_ = G[v][i].second;\n if(v_ == prev) continue;\n pair<ll,ll> ts_ = top2(E[i],B[i+1]);\n ret = max(ret,solve(G,v_,v,D,ts_));\n }\n return ret;\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<pair<long long,int>>> G(N);\n long long ans = -INF;\n for(int i = 0; i < N-1; ++i){\n int p;\n long long w;\n cin >> p >> w;\n G[p].emplace_back(w,i+1);\n G[i+1].emplace_back(w,p);\n ans = max(ans,w);\n }\n vector<pair<ll,ll>> D(N,{0,0});\n dfs(G,D,0,-1);\n // for(int i = 0; i < N; ++i)\n // cerr << D[i].first << \" \" << D[i].second << endl;\n pair<ll,ll> ts(0,-INF);\n ans = max(ans,solve(G,0,-1,D,ts));\n cout << ans << endl;\n}", "accuracy": 0.3728813559322034, "time_ms": 90, "memory_kb": 38324, "score_of_the_acc": -1.1419, "final_rank": 13 }, { "submission_id": "aoj_2770_3583609", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <utility>\n#include <cassert>\nusing namespace std;\nconst long long INF = 1e9;\nusing ll = long long;\n\npair<ll,ll> dfs(const vector<vector<pair<ll,int>>> &G, vector<pair<ll,ll>> &D, int v, int prev){\n ll t = 0, s = -INF;\n for(auto e : G[v]){\n int v_ = e.second;\n ll w = e.first;\n if(v_ == prev) continue;\n pair<ll,ll> p = dfs(G,D,v_,v);\n ll x = max(p.first,p.second);\n s = max(s,x+w);\n if(s > t) swap(s,t);\n }\n D[v] = {t,s};\n return D[v];\n}\n\npair<ll,ll> top2(pair<ll,ll> A, pair<ll,ll> B){\n assert(A.first >= A.second);\n assert(B.first >= B.second);\n if(A < B) swap(A,B);\n pair<ll,ll> ret = A;\n ret.second = max(ret.second,B.first);\n return ret;\n}\n\nll solve(const vector<vector<pair<long long,int>>> &G, int v, int prev, vector<pair<ll,ll>> &D, pair<ll,ll> ts){\n int N = G[v].size();\n vector<pair<ll,ll>> E(N+1,{-INF,-INF}), B(N+1,{-INF,-INF});\n for(int i = 0; i < N; ++i){\n pair<ll,int> e = G[v][i];\n int v_ = e.second;\n ll w = e.first, l = -INF;\n if(v_ == prev) l = max(ts.first,ts.second);\n else l = max(D[v_].first,D[v_].second);\n E[i+1].first = l+w;\n B[i ].first = l+w;\n }\n for(int i = 1; i <= N; ++i) E[i] = top2(E[i],E[i-1]);\n for(int i = N-1; i >= 0; --i) B[i] = top2(B[i],B[i+1]);\n ll ret = -INF;\n for(int i = 0; i < N; ++i){\n ll w = G[v][i].first;\n int v_ = G[v][i].second;\n pair<ll,ll> p = D[v_];\n if(v_ == prev) p = ts;\n ret = max(ret,w+p.first+p.second);\n p = top2(E[i],B[i+1]);\n ret = max(ret,w+p.first+p.second);\n ret = max(ret,w+p.first);\n }\n for(int i = 0; i < N; ++i){\n int v_ = G[v][i].second;\n if(v_ == prev) continue;\n pair<ll,ll> ts_ = top2(E[i],B[i+1]);\n ret = max(ret,solve(G,v_,v,D,ts_));\n }\n return ret;\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<pair<long long,int>>> G(N);\n long long ans = -INF;\n for(int i = 0; i < N-1; ++i){\n int p;\n long long w;\n cin >> p >> w;\n G[p].emplace_back(w,i+1);\n G[i+1].emplace_back(w,p);\n ans = max(ans,w);\n }\n vector<pair<ll,ll>> D(N,{0,-INF});\n dfs(G,D,0,-1);\n // for(int i = 0; i < N; ++i)\n // cerr << D[i].first << \" \" << D[i].second << endl;\n pair<ll,ll> ts(0,-INF);\n ans = max(ans,solve(G,0,-1,D,ts));\n cout << ans << endl;\n}", "accuracy": 0.3728813559322034, "time_ms": 90, "memory_kb": 38452, "score_of_the_acc": -1.1444, "final_rank": 16 }, { "submission_id": "aoj_2770_3583592", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <utility>\n#include <cassert>\nusing namespace std;\nconst long long INF = 1e9;\nusing ll = long long;\n\npair<ll,ll> dfs(const vector<vector<pair<ll,int>>> &G, vector<pair<ll,ll>> &D, int v, int prev){\n ll t = 0, s = -INF;\n for(auto e : G[v]){\n int v_ = e.second;\n ll w = e.first;\n if(v_ == prev) continue;\n pair<ll,ll> p = dfs(G,D,v_,v);\n ll x = max(p.first,p.second);\n s = max(s,x+w);\n if(s > t) swap(s,t);\n }\n D[v] = {t,s};\n return D[v];\n}\n\npair<ll,ll> top2(pair<ll,ll> A, pair<ll,ll> B){\n assert(A.first >= A.second);\n assert(B.first >= B.second);\n if(A < B) swap(A,B);\n pair<ll,ll> ret = A;\n ret.second = max(ret.second,B.first);\n return ret;\n}\n\nll solve(const vector<vector<pair<long long,int>>> &G, int v, int prev, vector<pair<ll,ll>> &D, pair<ll,ll> ts){\n int N = G[v].size();\n vector<pair<ll,ll>> E(N+1,{-INF,-INF}), B(N+1,{-INF,-INF});\n for(int i = 0; i < N; ++i){\n pair<ll,int> e = G[v][i];\n int v_ = e.second;\n ll w = e.first, l = -INF;\n if(v_ == prev) l = max(ts.first,ts.second);\n else l = max(D[v_].first,D[v_].second);\n E[i+1].first = l+w;\n B[i ].first = l+w;\n }\n for(int i = 1; i <= N; ++i) E[i] = top2(E[i],E[i-1]);\n for(int i = N-1; i >= 0; --i) B[i] = top2(B[i],B[i+1]);\n ll ret = -INF;\n for(int i = 0; i < N; ++i){\n ll w = G[v][i].first;\n int v_ = G[v][i].second;\n pair<ll,ll> p = D[v_];\n if(v_ == prev) p = ts;\n ret = max(ret,w+p.first+p.second);\n p = top2(E[i],B[i+1]);\n ret = max(ret,w+p.first+p.second);\n }\n for(int i = 0; i < N; ++i){\n int v_ = G[v][i].second;\n if(v_ == prev) continue;\n pair<ll,ll> ts_ = top2(E[i],B[i+1]);\n ret = max(ret,solve(G,v_,v,D,ts_));\n }\n return ret;\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<pair<long long,int>>> G(N);\n long long ans = -INF;\n for(int i = 0; i < N-1; ++i){\n int p;\n long long w;\n cin >> p >> w;\n G[p].emplace_back(w,i+1);\n G[i+1].emplace_back(w,p);\n ans = max(ans,w);\n }\n vector<pair<ll,ll>> D(N,{0,-INF});\n dfs(G,D,0,-1);\n // for(int i = 0; i < N; ++i)\n // cerr << D[i].first << \" \" << D[i].second << endl;\n pair<ll,ll> ts(0,-INF);\n ans = max(ans,solve(G,0,-1,D,ts));\n cout << ans << endl;\n}", "accuracy": 0.3220338983050847, "time_ms": 90, "memory_kb": 28688, "score_of_the_acc": -0.9496, "final_rank": 18 } ]
aoj_2768_cpp
D: スキャナー / Scanner 問題文 ここに $N$ 枚の紙がある。あなたは $3$ 台のスキャナーを並列に用いることで、 全ての紙をスキャンしたいと考えている。それぞれの紙はスキャンにかかる時間が決まっており、 $i$ 番目の紙をスキャンするのにかかる時間は $T_i$ である。 紙をスキャンする順番は任意であるが、$1$ 台のスキャナーで複数の紙を同時にスキャンすることはできない。 全ての紙のスキャンが終了し、スキャンを行っているスキャナーがなくなるまでにかかる時間を最小化しなさい。 入力 $N$ $T_1$ $T_2$ $T_3$ $\vdots$ $T_N$ 制約 $1 \leq N \leq 50$ $1 \leq T_i \leq 50$ 入力は全て整数 出力 答えを $1$ 行で出力してください. サンプル サンプル入力1 4 1 1 1 1 サンプル出力1 2 サンプル入力2 9 15 20 27 4 10 7 34 30 36 サンプル出力2 61 サンプル入力3 6 20 18 46 16 9 48 サンプル出力3 55
[ { "submission_id": "aoj_2768_10851361", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define FOR(i,s,t) for(int i = s; i< t ;i++)\n\n#define SZ(x) (int)x.size()\nusing LL = long long; using ll = LL;\nconst int INF = 1e9; const LL LINF = 1e18;\n\n#define MAXT 1005\nll N;\nvector<int> T;\nbool memo[55][MAXT][MAXT];\n\nvoid dfs(int n, int x, int y,ll sum) {\n\tif (memo[n][x][y]) return;\n\tmemo[n][x][y] = true;\n\tif (n == N) return;\n\tif (x + T[n] < MAXT) dfs(n + 1, x + T[n], y,sum + T[n]);\n\tif (y + T[n] < MAXT) dfs(n + 1, x, y + T[n],sum + T[n]);\n\tif (sum - x - y + T[n] < MAXT) dfs(n + 1, x, y, sum + T[n]);\n}\n\nvoid solve() {\n\tcin >> N;\n\tT.resize(N);\n\tfor (auto& in : T) { cin >> in; }\n\tsort(T.begin(), T.end());\n\treverse(T.begin(), T.end());\n\tdfs(0, 0, 0, 0);\n\tint sum = accumulate(T.begin(), T.end(), 0);\n\n\tll ans = LINF;\n\tfor (int i = 0; i < MAXT; i++) {\n\t\tfor (int j = 0; j < MAXT; j++) {\n\t\t\tif (memo[N][i][j] == false) continue;\n\t\t\tll t = -1;\n\t\t\tt = max({ i,j,sum - i - j });\n\t\t\tans = min(ans, t);\n\t\t}\n\t}\n\tcout << ans << endl;\n}\n\n\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 52640, "score_of_the_acc": -0.4611, "final_rank": 15 }, { "submission_id": "aoj_2768_9521829", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) { return (ull)rng() % B; }\n\nbool dp[2501][2501];\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n int sum = 0;\n vector<int> t(n);\n for (int i = 0; i < n; ++i) {\n cin >> t[i];\n sum += t[i];\n }\n dp[0][0] = true;\n for (int i = 0; i < n; ++i) {\n for (int j = 2500; j >= 0; --j) {\n for (int k = 2500; k >= 0; --k) {\n if (dp[j][k]) {\n dp[j + t[i]][k] = true;\n dp[j][k + t[i]] = true;\n }\n }\n }\n }\n int res = sum;\n for (int i = 0; i <= 2500; ++i) {\n for (int j = 0; j <= 2500; ++j) {\n if (dp[i][j]) {\n res = min(res, max({i, j, sum - i - j}));\n }\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 8484, "score_of_the_acc": -0.1702, "final_rank": 8 }, { "submission_id": "aoj_2768_7952735", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define drep(i,n) for(ll i = (n)-1;i >= 0;i--)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define endl '\\n'\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size)\\\n vector<type> name(size);\\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w)\\\n vector<vector<type>> name(h, vector<type>(w));\\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...)\\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...)\\\n int __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define LL(...)\\\n ll __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define STR(...)\\\n string __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define CHR(...)\\\n char __VA_ARGS__;\\\n IN(__VA_ARGS__)\n#define DBL(...)\\\n double __VA_ARGS__;\\\n IN(__VA_ARGS__)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\ntemplate <typename T> vi iota(vector<T> &a, bool greater = false) {\n vi res(a.size());\n iota(all(res), 0);\n sort(all(res), [&](int i, int j) {\n if(greater) return a[i] > a[j];\n return a[i] < a[j];\n });\n return res;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\ntemplate <class T> T POW(T x, int n) {\n T res = 1;\n for(; n; n >>= 1, x *= x)\n if(n & 1) res *= x;\n return res;\n}\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n#define i128 __int128_t\n#define ull unsigned long long int\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\ntemplate <typename A, typename B>\nostream& operator <<(ostream& out, const pair<A, B>& a) {\nout << \"(\" << a.first << \",\" << a.second << \")\";\nreturn out;\n}\ntemplate <typename T, size_t N>\nostream& operator <<(ostream& out, const array<T, N>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T>\nostream& operator <<(ostream& out, const vector<T>& a) {\nout << \"[\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" : \", \"); out << v; first = 0;} out << \"]\";\nreturn out;\n}\ntemplate <typename T, class Cmp>\nostream& operator <<(ostream& out, const set<T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& v : a) { out << (first ? \"\" :\", \"); out << v; first = 0;} out << \"}\";\nreturn out;\n}\ntemplate <typename U, typename T, class Cmp>\nostream& operator <<(ostream& out, const map<U, T, Cmp>& a) {\nout << \"{\"; bool first = true;\nfor (auto& p : a) { out << (first ? \"\" : \", \"); out << p.first << \":\" << p.second; first = 0;} out << \"}\";\nreturn out;\n}\n#define LOCAL\n#ifdef LOCAL\n#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)\n#else\n#define trace(...) 42\n#endif\ntemplate <typename Arg1>\nvoid __f(const char* name, Arg1&& arg1){\ncerr << name << \": \" << arg1 << endl;\n}\ntemplate <typename Arg1, typename... Args>\nvoid __f(const char* names, Arg1&& arg1, Args&&... args){\nconst char* comma = strchr(names + 1, ',');\ncerr.write(names, comma - names) << \": \" << arg1 << \" |\";\n__f(comma + 1, args...);\n}\n#pragma endregion\n//#include<atcoder/all>\n//using namespace atcoder;\nint main(){\n INT(n);\n VEC(int,a,n);\n vv(int,dp,n*51+1,n*51+1);\n dp[0][0] = 1;\n rep(i,n){\n vv(int,tmp,n*51+1,n*51+1);\n rep(j,n*51+1)rep(k,n*51+1){\n tmp[j][k] |= dp[j][k];\n if(j+a[i] <= n*51)tmp[j+a[i]][k] |= dp[j][k];\n if(k+a[i] <= n*51)tmp[j][k+a[i]] |= dp[j][k];\n }\n swap(dp,tmp);\n }\n int sum = 0;\n rep(i,n)sum += a[i];\n int ret = 100000;\n rep(j,n*51+1)rep(k,n*51+1){\n if(dp[j][k]){\n chmin(ret,max(j,max(k,sum-j-k)));\n }\n }\n cout << ret << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 870, "memory_kb": 54308, "score_of_the_acc": -1.2877, "final_rank": 18 }, { "submission_id": "aoj_2768_7952369", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\n//#pragma GCC optimize (\"-Ofast\")\n//#pragma GCC optimize (\"unroll-loops\")\n#define int long long\n#define endl '\\n'\n//#define double __float80\nusing namespace std;\n#define fi first\n#define se second\n#define rep(i, n) for(int i=0, i##_len=(n); i<i##_len; i++)\n#define rep2(i, a, b) for (int i = (int)(a), i##_len=(b); i < i##_len; i++)\n#define rep3(i, a, b) for (int i = (int)(a), i##_len=(b); i >= i##_len; i--)\n#define rfor(i, a) for (auto &i: a)\n#define all(obj) begin(obj), end(obj)\n#define _max(x) *max_element(all(x))\n#define _min(x) *min_element(all(x))\n#define _sum(x) accumulate(all(x), 0LL)\n\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\n const int INF = 1e18;\n// const int INF = 1e13 + 7;\n// const int INF = LLONG_MAX; // 9.2e18\nconst double EPS = 1e-20;\nconst double PI = 3.14159265358979;\ntemplate <class T> using V = vector<T>;\ntemplate <class T> using VV = vector<vector<T>>;\ntemplate <class T> using VVV = vector<vector<vector<T>>>;\ntemplate <class T, class S> using P = pair<T, S>;\ntemplate<class T> bool chmax(T &a, const T &b) {if (a < b) {a = b;return true;}return false;}\ntemplate<class T> bool chmin(T &a, const T &b) {if (b < a) {a = b;return true;}return false;}\nint _ceil(int a, int b) { return (a >= 0 ? (a + (b - 1)) / b : (a - (b - 1)) / b); }\ntemplate<class T> T chmod(T &a, T mod=MOD) {a = a >= 0 ? a % mod : a - (mod * _ceil(a, mod)); return a;};\nint _mod(int a, int mod=MOD) {return a >= 0 ? a % mod : a - (mod * _ceil(a, mod));}\ndouble _mod(double a, int mod = MOD) { return fmod(a, mod) >= 0 ? fmod(a, mod) : fmod(a, mod) + mod; }\nint _pow(int a, int b, int mod=MOD) {int res = 1;for (a %= mod; b; a = a * a % mod, b >>= 1)if (b & 1) res = res * a % mod;return res;}\nvector<int> iota(int n){vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret;}\nstruct mint {long long x;mint(long long x = 0): x((x % MOD + MOD) % MOD) {}mint operator-() const { return mint(-x); }mint &operator+=(const mint a) {if ((x += a.x) >= MOD) x -= MOD;return *this;}mint &operator-=(const mint a) {if ((x += MOD - a.x) >= MOD) x -= MOD;return *this;}mint &operator*=(const mint a) {(x *= a.x) %= MOD;return *this;}mint operator+(const mint a) const { return mint(*this) += a; }mint operator-(const mint a) const { return mint(*this) -= a; }mint operator*(const mint a) const { return mint(*this) *= a; }mint pow(long long n) const {mint ret(1), mul(x);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}mint inv() const {int a = x, b = MOD, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return mint(u);}mint &operator/=(const mint a) { return *this *= a.inv(); }mint operator/(const mint a) const { return mint(*this) /= a; }bool operator==(const mint a) const { return x == a.x; }bool operator!=(const mint a) const { return x != a.x; }friend istream &operator>>(istream &is, mint &a) { return is >> a.x; }friend ostream &operator<<(ostream &os, const mint &a) { return os << a.x; }};\n// clang-format on\n\nsigned main() {\n cin.tie(nullptr);\n cout.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n int N;\n cin >> N;\n vector<int> T(N);\n for (int i = 0; i < N; i++) {\n cin >> T[i];\n }\n vector<vector<bool>> dp(2500 + 1, vector<bool>(2500 + 1));\n dp[0][0] = true;\n for (int i = 0; i < N; i++) {\n int t = T[i];\n vector<vector<bool>> dp_new = dp;\n for (int j = 0; j < 2500 + 1; j++) {\n for (int k = 0; k < 2500 + 1; k++) {\n if (!dp[j][k]) {\n continue;\n }\n if (j + t <= 2500) {\n dp_new[j + t][k] = true;\n }\n if (k + t <= 2500) {\n dp_new[j][k + t] = true;\n }\n }\n }\n dp = dp_new;\n }\n int ans = INF;\n int T_sum = _sum(T);\n for (int j = 0; j < 2500 + 1; j++) {\n for (int k = 0; k < 2500 + 1; k++) {\n if (dp[j][k]) {\n ans = min(ans, max({j, k, T_sum - j - k}));\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 4936, "score_of_the_acc": -0.4006, "final_rank": 14 }, { "submission_id": "aoj_2768_7950806", "code_snippet": "#line 2 \"src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\n\n#line 2 \"src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr {\n T i, d;\n constexpr itr(const T i) noexcept : i(i), d(1) {}\n constexpr itr(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept {\n return d > 0 ? i < x.i : i > x.i;\n }\n};\n\ntemplate < class T > struct rep {\n const itr< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end() const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end() const noexcept { return t; }\n};\n#line 2 \"src/utility/io.hpp\"\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator vector< T >() {\n vector< T > v(n);\n for(T& x : v) cin >> x;\n return v;\n }\n };\n struct mat {\n int h,w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator vector< vector< T > >() {\n vector m(h, vector< T >(w));\n for(vector< T >& v : m) for(T& x : v) cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n } su;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) {\n cout << fixed << setprecision(d);\n }\n void flush() {\n cout.flush();\n }\n}\nint print() { cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n cout << h; if(sizeof...(tail)) cout << ' ';\n return print(forward<tail>(t)...);\n}\ntemplate < class T > int print(vector< T > a, char sep = ' ') {\n int n = a.size();\n for(int i : rep(n)) cout << a[i] << (i != n - 1 ? sep : '\\n');\n return 0;\n}\ntemplate < class T > int print(vector< vector< T > > a) {\n if(a.empty()) return 0;\n int h = a.size(), w = a[0].size();\n for(int i : rep(h)) for(int j : rep(w)) cout << a[i][j] << (j != w - 1 ? ' ' : '\\n');\n return 0;\n}\n#line 2 \"src/utility/key_val.hpp\"\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n};\n#line 2 \"src/utility/vec_op.hpp\"\ntemplate < class T >\nkey_val< int, T > max_of(const vector< T >& a) {\n int i = max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\n\ntemplate < class T >\nkey_val< int, T > min_of(const vector< T >& a) {\n int i = min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\n\ntemplate < class T >\nT sum_of(const vector< T >& a) {\n T sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\n\ntemplate < class T >\nvector<ll> freq_of(const vector< T >& a, T L, T R) {\n vector<ll> res(R - L);\n for(const T x : a) res[x - L]++;\n return res;\n}\n\ntemplate < class T >\nvector<ll> freq_of(const vector< T >& a, T R) {\n return freq_of(a, T(0), R);\n}\n\ntemplate < class T >\nstruct prefix_sum {\n vector< T > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), T(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n T sum(int L, int R) {\n return s[R] - s[L];\n }\n};\n#line 2 \"A.cpp\"\n\nint main() {\n int N = in();\n vector<int> T = in(N);\n int SUM = sum_of(T);\n auto h = [&](int x, int y) { return x * SUM + y; };\n vector<int> dp((SUM + 1) * (SUM + 1), 0);\n dp[h(0, 0)] = 1;\n for(int i : rep(N)) {\n vector<int> nt = dp;\n for(int x = 0; x <= SUM; x++) {\n for(int y = 0; y <= SUM; y++) {\n if(x + T[i] <= SUM) nt[h(x + T[i], y)] |= dp[h(x, y)];\n if(y + T[i] <= SUM) nt[h(x, y + T[i])] |= dp[h(x, y)];\n }\n }\n swap(dp, nt);\n }\n\n int ans = SUM;\n for(int x = 0; x <= SUM; x++) {\n for(int y = 0; y <= SUM; y++) {\n if(dp[h(x, y)]) {\n chmin(ans, max({x, y, SUM - (x + y)}));\n }\n }\n }\n print(ans);\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 45596, "score_of_the_acc": -0.7039, "final_rank": 16 }, { "submission_id": "aoj_2768_7937039", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int INF = 1 << 28;\nint main() {\n int N, T[50];\n static int dp[2][2501][2501];\n cin >> N;\n for (int i = 0; i < N; i++) {\n cin >> T[i];\n }\n fill_n(**dp, 2 * 2501 * 2501, INF);\n dp[1][0][0] = 0;\n for (int i = 0; i < N; i++) {\n for (int j = 2500; j >= 0; j--) {\n for (int k = 2500; k >= 0; k--) {\n if (j >= T[i])\n dp[i & 1][j][k] = min(dp[i & 1][j][k], dp[(i + 1) & 1][j - T[i]][k]);\n if (k >= T[i])\n dp[i & 1][j][k] = min(dp[i & 1][j][k], dp[(i + 1) & 1][j][k - T[i]]);\n dp[i & 1][j][k] = min(dp[i & 1][j][k], dp[(i + 1) & 1][j][k] + T[i]);\n }\n }\n fill_n(*dp[(i + 1) & 1], 2501 * 2501, INF);\n }\n int ret = INF;\n for (int i = 0; i <= 2500; i++) {\n for (int j = 0; j <= 2500; j++) {\n ret = min(ret, max(i, max(j, dp[(N + 1) & 1][i][j])));\n }\n }\n cout << ret << endl;\n}", "accuracy": 1, "time_ms": 900, "memory_kb": 51984, "score_of_the_acc": -1.3075, "final_rank": 19 }, { "submission_id": "aoj_2768_7084225", "code_snippet": "#include <iostream>\n#include <string.h>\n#include <queue>\nusing namespace std;\n\nint dp[2501][2501];\n\nint main() {\n\tint n;\n\tint s1=0;\n\tcin>>n;\n\tmemset(dp,0,sizeof(dp));\n\tdp[0][0]=1;\n\tfor(int i=0;i<n;i++){\n\t\tint t;\n\t\tcin>>t;\n\t\t\n\t\tfor(int x=s1;x>=0;x--){\n\t\t\tfor(int y=s1;y>=0;y--){\n\t\t\t\tif(dp[x][y]==1){\n\t\t\t\t\tdp[x+t][y]=1;\n\t\t\t\t\tdp[x][y+t]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\ts1+=t;;\n\t}\n\tint ans=s1;\n\tfor(int x=0;x<=s1;x++){\n\t\tfor(int y=0;y<=s1;y++){\n\t\t\tif(dp[x][y]==1){\n\t\t\t\tint z=s1-x-y;\n\t\t\t\tint t1=max(x,y);\n\t\t\t\tint t2=max(t1,z);\n\t\t\t\tif(t2<ans)ans=t2;\n\t\t\t}\n\t\t}\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 27548, "score_of_the_acc": -0.2103, "final_rank": 9 }, { "submission_id": "aoj_2768_6986290", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main(){\n int n, v, s = 0;\n cin >> n;\n bool dp[901][901] = {};\n dp[0][0] = true;\n while(n--){\n cin >> v;\n s += v;\n for(int j = 900; j >= 0; j--){\n for(int k = 900; k >= 0; k--){\n if(j + v <= 900)dp[j + v][k] |= dp[j][k];\n if(k + v <= 900)dp[j][k + v] |= dp[j][k];\n }\n }\n }\n int ans = s;\n for(int j = 900; j >= 0; j--){\n for(int k = 900; k >= 0; k--){\n if(dp[j][k])ans = min(ans, max({s - j - k, j, k}));\n }\n }\n cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4208, "score_of_the_acc": -0.0052, "final_rank": 1 }, { "submission_id": "aoj_2768_5972388", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n#include<utility>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconstexpr long long INF = (long long)1e18;\nconstexpr long long MOD = 1000000007; \n\nstruct fast_io {\n\tfast_io(){\n\t\tstd::cin.tie(nullptr);\n\t\tstd::ios::sync_with_stdio(false);\n\t};\n} fio;\n\nsigned main(){\n\tcout<<fixed<<setprecision(10);\n\t\n\tconstexpr int MAX = 51;\n\tint N;\n\tvector<int> t;\n\tvector<vector<bool>> dp;\n\tint ans = INF, sum = 0;\n\t\n\tcin>>N;\n\t\n\tdp.resize(N*MAX, vector<bool>(N*MAX));\n\tt.resize(N);\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>t[i];\n\t\tsum += t[i];\n\t}\n\t\n\tdp[0][0] = true;\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int j = dp.size()-1; j >= 0; j--){\n\t\t\tfor(int k = dp[j].size()-1; k >= 0; k--){\n\t\t\t\tif(!dp[j][k]) continue;\n\t\t\t\tif(j+t[i] < dp.size()) dp[j+t[i]][k] = true;\n\t\t\t\tif(k+t[i] < dp[j].size()) dp[j][k+t[i]] = true;\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i < dp.size(); i++){\n\t\tfor(int j = 0; j < dp.size(); j++){\n\t\t\tif(!dp[i][j]) continue;\n\t\t\tans = min(ans, max({i, j, sum - i - j}));\n\t\t}\n\t}\n\t\n\tcout<<ans<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 4428, "score_of_the_acc": -0.2709, "final_rank": 12 }, { "submission_id": "aoj_2768_5972320", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\nint func(){\n int n = in();\n const int N = 2501;\n vvector<char> dp1(N,vector<char>(N,false));\n dp1[0][0] = true;\n int sum = 0;\n rep(_,n){\n vvector<char> dp2(N,vector<char>(N,false));\n int v = in();\n sum += v;\n rep(i,N){\n rep(j,N){\n if(not dp1[i][j])continue;\n dp2[i][j] = true;\n dp2[i+v][j] = true;\n dp2[i][j+v] = true;\n }\n }\n swap(dp1,dp2);\n }\n int res = 10000000;\n rep(i,N){\n rep(j,N){\n if(dp1[i][j]){\n chmin(res,max({i,j,sum-i-j}));\n }\n }\n }\n return res;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n println(func());\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 15512, "score_of_the_acc": -0.2951, "final_rank": 13 }, { "submission_id": "aoj_2768_5972228", "code_snippet": "#include<bits/stdc++.h>\n\n#define int ll\n#define rep(i, N) for(int i = 0; i < N; i++)\n#define per(i, N) for(int i = N-1; i >= 0; i--)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define TakAo(ans) ans ? cout << \"Takahashi\\n\" : cout << \"Aoki\\n\"\n#define YesNo(ans) ans ? cout << \"Yes\\n\" : cout << \"No\\n\"\n#define yesno(ans) ans ? cout << \"yes\\n\" : cout << \"no\\n\"\n#define YESNO(ans) ans ? cout << \"YES\\n\" : cout << \"NO\\n\"\n#define equal(f1, f2) (abs(f1 - f2) <= EPS)\n#define endl '\\n'\n#define fi first\n#define se second\n#define mkpr make_pair\n#define mktpl make_tuple\n\nusing namespace std;\nusing ll = int64_t;\nusing ld = long double;\nusing P = pair<int, int>;\nusing Tpl = tuple<int, int, int>;\nusing vvi = vector<vector<int>>;\nusing vvvec = vector<vector<vector<int>>>;\n\nconst ld EPS = 1e-8;\nconst ld Pi = acos(-1);\nconst ll INF = 1e9+10;\nconst int MOD = 998244353;\n//const int MOD = 1e4+7;\nconst int NIL = -1;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, -1, 0, 1};\n\nll cel(ll a, ll b){ return (a + b - 1) / b; }\nll Gcd(ll a, ll b){ return b ? Gcd(b, a % b) : a; }\nll Lcm(ll a, ll b){ return a / Gcd(a, b) * b; }\nll sq(ll a){ return a * a; }\nll cube(ll a){ return a * a * a; }\nll powi(ll a, ll b){ ll res = 1; rep(i, b) res *= a; return res; }\ntemplate<class T> bool chmin(T &a, T b){ if(a > b){ a = b; return 1;} return 0; }\ntemplate<class T> bool chmax(T &a, T b){ if(a < b){ a = b; return 1;} return 0; }\n\nvoid Main(){\n int N, T[50], Tsum = 0; cin >> N;\n\n rep(i, N){\n cin >> T[i];\n Tsum += T[i];\n }\n \n const int smax = 1000;\n\n bool dp[2][smax][smax] = {};\n dp[1][0][0] = dp[1][T[0]][0] = dp[1][0][T[0]] = 1;\n\n for(int i = 1; i < N; i++){\n rep(j, smax){\n rep(k, smax){\n if(dp[i & 1][j][k]){\n dp[i & 1][j][k] = 0;\n dp[(i+1) & 1][j][k] = 1;\n if(j + T[i] < smax) dp[(i+1) & 1][j + T[i]][k] = 1;\n if(k + T[i] < smax) dp[(i+1) & 1][j][k + T[i]] = 1;\n }\n }\n }\n }\n\n ll ans = INF;\n rep(i, smax){\n rep(j, smax){\n if(dp[N & 1][i][j]){\n ans = min(max(i, max(j, Tsum - i - j)), ans);\n }\n }\n }\n\n cout << ans << endl;\n}\n\nsigned main(){\n cin.tie(nullptr);\n\tios_base::sync_with_stdio(false);\n\tcout << fixed << setprecision(15);\n\tMain();\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 5400, "score_of_the_acc": -0.0127, "final_rank": 2 }, { "submission_id": "aoj_2768_5972195", "code_snippet": "#include<bits/stdc++.h>\n\n#define int ll\n#define rep(i, N) for(int i = 0; i < N; i++)\n#define per(i, N) for(int i = N-1; i >= 0; i--)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define TakAo(ans) ans ? cout << \"Takahashi\\n\" : cout << \"Aoki\\n\"\n#define YesNo(ans) ans ? cout << \"Yes\\n\" : cout << \"No\\n\"\n#define yesno(ans) ans ? cout << \"yes\\n\" : cout << \"no\\n\"\n#define YESNO(ans) ans ? cout << \"YES\\n\" : cout << \"NO\\n\"\n#define equal(f1, f2) (abs(f1 - f2) <= EPS)\n#define endl '\\n'\n#define fi first\n#define se second\n#define mkpr make_pair\n#define mktpl make_tuple\n\nusing namespace std;\nusing ll = int64_t;\nusing ld = long double;\nusing P = pair<int, int>;\nusing Tpl = tuple<int, int, int>;\nusing vvi = vector<vector<int>>;\nusing vvvec = vector<vector<vector<int>>>;\n\nconst ld EPS = 1e-8;\nconst ld Pi = acos(-1);\nconst ll INF = 1e9+10;\nconst int MOD = 998244353;\n//const int MOD = 1e4+7;\nconst int NIL = -1;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, -1, 0, 1};\n\nll cel(ll a, ll b){ return (a + b - 1) / b; }\nll Gcd(ll a, ll b){ return b ? Gcd(b, a % b) : a; }\nll Lcm(ll a, ll b){ return a / Gcd(a, b) * b; }\nll sq(ll a){ return a * a; }\nll cube(ll a){ return a * a * a; }\nll powi(ll a, ll b){ ll res = 1; rep(i, b) res *= a; return res; }\ntemplate<class T> bool chmin(T &a, T b){ if(a > b){ a = b; return 1;} return 0; }\ntemplate<class T> bool chmax(T &a, T b){ if(a < b){ a = b; return 1;} return 0; }\n\nvoid Main(){\n int N, T[50], Tsum = 0; cin >> N;\n\n rep(i, N){\n cin >> T[i];\n Tsum += T[i];\n }\n \n const int smax = 1000;\n\n bool dp[2][smax][smax] = {};\n dp[1][0][0] = dp[1][T[0]][0] = dp[1][0][T[0]] = 1;\n\n for(int i = 1; i < N; i++){\n rep(j, smax){\n rep(k, smax){\n if(j + k > smax) break;\n if(dp[i & 1][j][k]){\n dp[(i+1) & 1][j][k] = 1;\n if(j + T[i] < smax) dp[(i+1) & 1][j + T[i]][k] = 1;\n if(k + T[i] < smax) dp[(i+1) & 1][j][k + T[i]] = 1;\n dp[i & 1][j][k] = 0;\n }\n }\n }\n }\n\n ll ans = INF;\n rep(i, smax){\n rep(j, smax){\n if(dp[N & 1][i][j]){\n ans = min(max(i, max(j, Tsum - i - j)), ans);\n }\n }\n }\n\n cout << ans << endl;\n}\n\nsigned main(){\n cin.tie(nullptr);\n\tios_base::sync_with_stdio(false);\n\tcout << fixed << setprecision(15);\n\tMain();\n return 0;\n}", "accuracy": 0.35714285714285715, "time_ms": 30, "memory_kb": 5404, "score_of_the_acc": -0.0127, "final_rank": 20 }, { "submission_id": "aoj_2768_5972025", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n#include<utility>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconstexpr long long INF = (long long)1e18;\nconstexpr long long MOD = 1000000007; \n\nstruct fast_io {\n\tfast_io(){\n\t\tstd::cin.tie(nullptr);\n\t\tstd::ios::sync_with_stdio(false);\n\t};\n} fio;\n\nsigned main(){\n\tcout<<fixed<<setprecision(10);\n\t\n\tconstexpr int MAX = 51;\n\tint N;\n\tvector<int> t;\n\tvector<vector<bool>> dp;\n\tint ans = INF, sum = 0;\n\t\n\tcin>>N;\n\t\n\tdp.resize(N*MAX, vector<bool>(N*MAX));\n\tt.resize(N);\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>t[i];\n\t\tsum += t[i];\n\t}\n\t\n\tdp[0][0] = true;\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int j = dp.size()-1; j >= 0; j--){\n\t\t\tfor(int k = dp[j].size()-1; k >= 0; k--){\n\t\t\t\tif(!dp[j][k]) continue;\n\t\t\t\tif(j+t[i] < dp.size()) dp[j+t[i]][k] = true;\n\t\t\t\tif(k+t[i] < dp[j].size()) dp[j][k+t[i]] = true;\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i < dp.size(); i++){\n\t\tfor(int j = 0; j < dp.size(); j++){\n\t\t\tif(!dp[i][j]) continue;\n\t\t\tans = min(ans, max({i, j, sum - i - j}));\n\t\t}\n\t}\n\t\n\tcout<<ans<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 4412, "score_of_the_acc": -0.2593, "final_rank": 11 }, { "submission_id": "aoj_2768_5056862", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tini(n);\n\tVI a = in[n];\n\tint sum = a | Sum;\n\n\tauto dp = make_vector({sum + 1, sum + 1}, false);\n\tdp[0][0] = true;\n\trep(i, n) {\n\t\trrep(x, sum + 1) rrep(y, sum + 1) if (dp[x][y]) {\n\t\t\tif (x + a[i] <= sum) {\n\t\t\t\tdp[x + a[i]][y] = true;\n\t\t\t}\n\t\t\tif (y + a[i] <= sum) {\n\t\t\t\tdp[x][y + a[i]] = true;\n\t\t\t}\n\t\t}\n\t}\n\n\tint ans = inf;\n\trep(x, sum + 1) rep(y, sum + 1) {\n\t\tif (dp[x][y]) {\n\t\t\tchmin(ans, max({x, y, sum - x - y}));\n\t\t}\n\t}\n\tout(ans);\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 4216, "score_of_the_acc": -0.2466, "final_rank": 10 }, { "submission_id": "aoj_2768_4969410", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <array>\n#include <bitset>\n#include <algorithm>\n\nconstexpr int MAX_S = 50 * 17;\nstd::array<std::array<std::bitset<MAX_S + 1>, MAX_S + 1>, 2> dp;\n\nint main(void){\n std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false);\n int n; std::cin >> n;\n dp[0][0][0] = true;\n int S = 0;\n for(int i = 0; i < n; ++i){\n int t; std::cin >> t; S += t;\n for(int o1 = 0; o1 + t <= MAX_S; ++o1) for(int o2 = 0; o2 <= MAX_S; ++o2) if(dp[0][o1][o2]) dp[1][o1 + t][o2] = true;\n for(int o1 = 0; o1 <= MAX_S; ++o1) for(int o2 = 0; o2 + t <= MAX_S; ++o2) if(dp[0][o1][o2]) dp[1][o1][o2 + t] = true;\n dp[0] = dp[1];\n }\n int res = std::numeric_limits<int>::max();\n for(int i = 0; i <= MAX_S and i < res; ++i){\n for(int j = std::max(0, S - i - res + 1), k = S - i - j; j <= MAX_S and j < res; ++j, --k) if(dp[0][i][j]){\n const int v = std::max({i, j, k});\n if(res > v) res = v;\n }\n }\n std::cout << res << '\\n';\n\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3392, "score_of_the_acc": -0.046, "final_rank": 5 }, { "submission_id": "aoj_2768_4968724", "code_snippet": "#include <iostream>\n#include <vector>\nusing namespace std;\n\n\nint main(void){\n \n long long N;\n vector<long long> T;\n int Tsum=0;\n\n cin >> N;\n for(int i=0;i<N;i++){\n long long t;\n cin >> t;\n Tsum+=t;\n T.push_back(t);\n }\n long long range = min(1000,Tsum);\n \n bool dp[2][1010][1010]={};\n dp[0][0][0]=true;\n \n for(int i=0;i<N;i++){\n for(int j=0;j<=range;j++){\n for(int k=0;k<=range;k++){\n dp[1][j][k]|=dp[0][j][k];\n if(j-T[i]>=0){\n dp[1][j][k]|=dp[0][j-T[i]][k];\n }\n if(k-T[i]>=0){\n dp[1][j][k]|=dp[0][j][k-T[i]];\n }\n }\n }\n\n\n for(int j=0;j<=range;j++){\n for(int k=0;k<=range;k++){\n dp[0][j][k]=dp[1][j][k];\n dp[1][j][k]=false;\n }\n }\n }\n \n\n int Ans = 10*Tsum;\n for(int j=0;j<=range;j++){\n for(int k=0;k<=range;k++){\n if(dp[0][j][k]){\n //cout << j << \" \" << k << \" \" << Tsum-j-k << endl;\n int r = max(max(j,k),Tsum-j-k); \n Ans=min(Ans,r);\n }\n }\n }\n\n \n cout << Ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 5440, "score_of_the_acc": -0.0474, "final_rank": 6 }, { "submission_id": "aoj_2768_4968555", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main(){\n\tint N;\n\tcin>>N;\n\tvector<vector<int>> p(851,vector<int>(851));\n\tint S=0;\n\tp[0][0]=1;\n\tvector<int> q(N);\n\tfor(int i=0;i<N;i++){\n\t\tcin>>q[i];\n\t}\n\tfor(int k=0;k<N;k++){\n\t\tint a=q[k];\n\t\tfor(int i=850;i>=0;i--){\n\t\t\tfor(int j=850;j>=0;j--){\n\t\t\t\tif(p[i][j]==0){\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t\tif(j+a<=850){\n\t\t\t\t\tp[i][j+a]=1;\n\t\t\t\t}\n\t\t\t\tif(i+a<=850){\n\t\t\t\t\tp[i+a][j]=1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tS+=a;\n\t}\n\tint Z=855;\n\tfor(int i=0;i<851;i++){\n\t\tfor(int j=0;j<851;j++){\n\t\t\tif(p[i][j]==1){\n\t\t\t\tZ=min(Z,max(S-i-j,max(i,j)));\n\t\t\t}\n\t\t}\n\t}\n\tcout<<Z<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6320, "score_of_the_acc": -0.0185, "final_rank": 3 }, { "submission_id": "aoj_2768_4964120", "code_snippet": "#if 1\n#include <iostream>\n#include <fstream>\n#include <string>\n#include <vector>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n#include <queue>\n#include <stack>\n#include <array>\n#include <deque>\n#include <algorithm>\n#include <utility>\n#include <cstdint>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <assert.h>\n#include <bitset>\n#include <list>\n#include <cmath>\n//#include <atcoder/all>\n\nauto& in = std::cin;\nauto& out = std::cout;\n#define all_range(C) std::begin(C), std::end(C)\nconst double PI = 3.141592653589793238462643383279502884197169399375105820974944;\n\n\ntemplate<typename T, typename U>\nstd::enable_if_t<std::rank<T>::value == 0> fill_all(T& arr, const U& v) {\n arr = v;\n}\ntemplate<typename ARR, typename U>\nstd::enable_if_t<std::rank<ARR>::value != 0> fill_all(ARR& arr, const U& v) {\n for (auto& i : arr) {\n fill_all(i, v);\n }\n}\n\nint32_t N;\nint32_t T[50];\nint dp[50][900][900];\nint func(int i, int a, int b, int c)\n{\n if (i == N) {\n return std::max({ a,b,c });\n }\n if (a >= 900 || b >= 900 || c >= 900) {\n return 1000;\n }\n\n auto& memo = dp[i][a][b];\n if (memo != -1) {\n return memo;\n }\n auto& t = T[i];\n memo = std::min({ func(i + 1,a + t, b,c), func(i + 1,a, b + t,c) , func(i + 1,a, b,c + t) });\n\n return memo;\n}\n\nint main()\n{\n using std::endl;\n using std::cout;\n in.sync_with_stdio(false);\n out.sync_with_stdio(false);\n in.tie(nullptr);\n out.tie(nullptr);\n fill_all(dp, -1);\n\n in >> N ;\n for (size_t i = 0; i < N; i++)\n {\n in >> T[i];\n }\n\n out << func(0, 0, 0, 0) << endl;\n\n return 0;\n}\n#endif", "accuracy": 1, "time_ms": 280, "memory_kb": 161412, "score_of_the_acc": -1.2874, "final_rank": 17 }, { "submission_id": "aoj_2768_4964080", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=n;i--;)\n#define rrep2(i,n) for(ll i=n;i--;)\n#define rrep3(i,a,b) for(ll i=b;i-->(a);)\n#define rrep4(i,a,b,c) for(ll i=(a)+((b)-(a)-1)/(c)*(c);i>=(a);i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each1(i,a) for(auto&&i:a)\n#define each2(x,y,a) for(auto&&[x,y]:a)\n#define each3(x,y,z,a) for(auto&&[x,y,z]:a)\n#define each(...) overload4(__VA_ARGS__,each3,each2,each1)(__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define Msum(...) accumulate(all(__VA_ARGS__),0_M)\n#define elif else if\n#define unless(a) if(!(a))\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > T(b)){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < T(b)){ a = b; return 1; } return 0; }\nvector<ll> iota(ll n, ll begin = 0){ vector<ll> a(n); iota(a.begin(), a.end(), begin); return a; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nmap<ll,ll> factor_map(ull x){ map<ll,ll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans[i] = 1; while((x /= i) % i == 0) ans[i]++; } if(x != 1) ans[x] = 1; return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T> a){ Uniq(a); unordered_map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T> a){ Uniq(a); map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const complex<T>& a){ if(a.real() >= 0) print('+'); print(a.real()); if(a.imag() >= 0) print('+'); print(a.imag()); print('i'); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\ninline ll __lg(ull x){ return 63 - __builtin_clzll(x); }\n#define debug(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...) void(0)\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint First(bool i = true){ return out(i?\"First\":\"Second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\n\nint main(){\n LL(n);\n vector dp(2501, vector<bool>(2501));\n dp[0][0] = 1;\n ll sum=0;\n while(n--){\n LL(t);\n sum+=t;\n rrep(2500)rrep(j,2500-i)if(dp[i][j]){\n if(i+t<=2500)dp[i+t][j]=1;\n if(j+t<=2500)dp[i][j+t]=1;\n }\n }\n ll ans=LINF;\n rep(2501)rep(j,2501)if(dp[i][j])chmin(ans,max({i,j,sum-i-j}));\n out(ans);\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 4544, "score_of_the_acc": -0.1567, "final_rank": 7 }, { "submission_id": "aoj_2768_4936983", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<cstring>\n#include<string>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<map>\n#include<queue>\n#include<deque>\n#include<iomanip>\n#include<tuple>\n#include<cassert>\n#include<set>\n#include<complex>\nusing namespace std;\ntypedef long long int LL;\ntypedef pair<int,int> P;\ntypedef pair<LL,int> LP;\nconst int INF=1<<30;\nconst LL MAX=1e9+7;\n\nvoid array_show(int *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%d%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(LL *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%lld%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(vector<int> &vec_s,int vec_n=-1,char middle=' '){\n if(vec_n==-1)vec_n=vec_s.size();\n for(int i=0;i<vec_n;i++)printf(\"%d%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\nvoid array_show(vector<LL> &vec_s,int vec_n=-1,char middle=' '){\n if(vec_n==-1)vec_n=vec_s.size();\n for(int i=0;i<vec_n;i++)printf(\"%lld%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\n\n\nint main(){\n int n,m;\n int i,j,k;\n int a,b,c;\n vector<vector<int>> dp(1e3+7,vector<int>(1e3+7,INF));\n dp[0][0]=0;\n cin>>n;\n for(i=0;i<n;i++){\n cin>>a;\n for(j=min((int)1e3,50*i);j>=0;j--){\n for(k=min((int)1e3,50*i);k>=0;k--){\n if(dp[j][k]==INF)continue;\n if(j+a<1e3)dp[j+a][k]=min(dp[j][k],dp[j+a][k]);\n if(k+a<1e3)dp[j][k+a]=min(dp[j][k],dp[j][k+a]);\n dp[j][k]+=a;\n }\n }\n }\n int s=1e9;\n for(i=0;i<1e3;i++){\n for(j=0;j<1e3;j++){\n s=min(s,max({i,j,dp[i][j]}));\n }\n }\n cout<<s<<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7456, "score_of_the_acc": -0.0372, "final_rank": 4 } ]
aoj_2769_cpp
E: 28 問題文 トランプゲームの大富豪において,ランクが $2$, $8$ のカードは強力です. そこで,$10$ 進数表記で数字の $2$, $8$ のみからなる整数を 良い整数 と呼ぶことにします. 良い整数を小さいものから列挙すると $2, 8, 22, 28, 82, 88, \cdots$ となります. $n$ を正の整数とします.$n$ が良い整数の積の形で表現できるとき, 最大でいくつの積になるか求めてください.できないなら $-1$ と出力してください. 入力 $n$ 制約 $1 \leq n \leq 10^{18}$ 出力 答えを $1$ 行で出力してください. サンプル サンプル入力1 1 サンプル出力1 -1 サンプル入力2 2 サンプル出力2 1 サンプル入力3 88 サンプル出力3 3 $2 \times 2 \times 22$ と表せます. サンプル入力4 100 サンプル出力4 -1 サンプル入力5 173553147234869248 サンプル出力5 11 $2^6 \times 28 \times 2222^3 \times 8828$ と表せます.
[ { "submission_id": "aoj_2769_5972328", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\nvector<ll> gene28(){\n vector<ll> res;\n string buf = \"\";\n method(rec,void,int rem){\n if(rem==0){\n res.emplace_back(stoll(buf));\n return;\n }\n buf += \"2\";\n rec(rem-1);\n buf.erase(buf.end()-1);\n buf += \"8\";\n rec(rem-1);\n buf.erase(buf.end()-1);\n };\n rep(i,1,19){\n rec(i);\n }\n sort(all(res));\n return res;\n}\n\nint func(){\n ll n = in();\n if(n==1)return -1;\n map<ll,int> m;\n vector<ll> v28 = gene28();\n method(rec,int,ll n){\n if(n==1)return 0;\n if(m.count(n))return m[n];\n int res = -INF;\n foreach(i,v28){\n if(i > n)break;\n if(n % i == 0){\n chmax(res,1+rec(n/i));\n }\n }\n return m[n] = res;\n };\n\n int res = rec(n);\n if(res<0)return -1;\n return res;\n}\n\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n println(func());\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 9236, "score_of_the_acc": -0.2016, "final_rank": 9 }, { "submission_id": "aoj_2769_4968710", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <algorithm>\n#include <array>\n#include <cassert>\n#include <map>\n#include <utility>\n#include <vector>\n\ntemplate <class InputIterator>\nstd::ostream& range_output(std::ostream& os_arg, InputIterator first_arg, InputIterator last_arg){ if(first_arg != last_arg){ do{ os_arg << *(first_arg++); if(first_arg == last_arg) break; os_arg << ' '; } while(true); } return os_arg; }\ntemplate <class Tp> std::ostream& operator << (std::ostream& os_arg, const std::vector<Tp>& arr_arg){ return range_output(os_arg, arr_arg.cbegin(), arr_arg.cend()); }\ntemplate <class Tp, std::size_t Size> std::ostream& operator << (std::ostream& os_arg, const std::array<Tp, Size>& arr_arg){ return range_output(os_arg, arr_arg.cbegin(), arr_arg.cend()); }\ntemplate <class S, class T> std::ostream& operator << (std::ostream& os_arg, const std::pair<S, T>& pair_arg){ return os_arg << '(' << pair_arg.first << \", \" << pair_arg.second << ')'; }\n\n#ifndef ONLINE_JUDGE\n template <typename Head> void dump_out(Head head_arg){ std::cerr << head_arg << '\\n'; }\n template <typename Head, typename... Tail>\n void dump_out(Head head_arg, Tail... tail_args){ std::cerr << head_arg << \", \"; dump_out(tail_args...); }\n #define dump(...) do { std::cerr << \"[in line \" << __LINE__ << \"] \" << #__VA_ARGS__ << \" : \"; dump_out(__VA_ARGS__); } while(false)\n#else\n #define dump(...) (void(0))\n#endif\n\ntemplate <class S, class T> bool chmax(S& x, const T& y){ if(x < y){x = y; return true; } return false; }\ntemplate <class S, class T> bool chmin(S& x, const T& y){ if(x > y){x = y; return true; } return false; }\n\nstd::vector<long long int> S, T;\n\nstd::map<long long int, int> dp;\n\nvoid dfs1(int depth = 0, long long int val = 0, long long int D = 1){\n if(val != 0) S.push_back(val);\n if(depth < 9){\n dfs1(depth + 1, val + 2 * D, 10 * D);\n dfs1(depth + 1, val + 8 * D, 10 * D);\n }\n}\n\nvoid dfs2(int depth = 0, long long int val = 0, long long int D = 1){\n if(val != 0) T.push_back(val);\n if(depth < 18){\n dfs2(depth + 1, val + 2 * D, 10 * D);\n dfs2(depth + 1, val + 8 * D, 10 * D);\n }\n}\n\nint solve(long long int v){\n if(v % 2 == 1) return -1;\n if(dp.find(v) != dp.end()) return dp[v];\n\n int res = -1;\n const auto itr = std::lower_bound(T.cbegin(), T.cend(), v);\n if(itr != T.cend() and *itr == v) res = 1;\n for(const auto s : S){\n const long long int t = v / s;\n if(t < s) break;\n if(v % s != 0) continue;\n const int r = solve(t);\n if(r == -1) continue;\n chmax(res, r + 1);\n }\n return dp[v] = res;\n}\n\n\n\nint main(void){\n std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false);\n long long int n; std::cin >> n;\n dfs1(); std::sort(S.begin(), S.end());\n dfs2(); std::sort(T.begin(), T.end());\n std::cout << solve(n) << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9368, "score_of_the_acc": -0.1125, "final_rank": 5 }, { "submission_id": "aoj_2769_4968691", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\tint64_t N;\n\tcin>>N;\n\tvector<int64_t>p;\n\tfor(int64_t i=(1<<19)-1;i>0;i--){\n\t\tint64_t A=-1,K=1e18L,B=0;\n\t\tfor(int j=18;j>=0;j--){\n\t\t\tif(A==-1&&!(i&(1<<j))){\n\t\t\t\tK/=10;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif(A==-1&&(i&(1<<j))){\n\t\t\t\tA=0;\n\t\t\t\tB=j;\n\t\t\t}\n\t\t\telse if(i&(1<<j)){\n\t\t\t\tB--;\n\t\t\t\tA+=8*K;\n\t\t\t}\n\t\t\telse{\n\t\t\t\tA+=2*K;\n\t\t\t}\n\t\t\tK/=10;\n\t\t}\n\t\tif(B==0){\n\t\t\tcontinue;\n\t\t}\n\t\tp.push_back(A);\n\t}\n\tint Z=0;\n\tif(N==1){\n\t\tcout<<\"-1\"<<endl;\n\t\treturn 0;\n\t}\n\tmap<int64_t,int64_t> m;\n\tm[N]=0;\n\tfor(int i=0;i<p.size();i++){\n\t\tfor(auto x:m){\n\t\t\tint64_t b,c;\n\t\t\ttie(b,c)=x;\n\t\t\twhile(b%p[i]==0){\n\t\t\t\tb/=p[i];\n\t\t\t\tc++;\n\t\t\t\tif(!m.count(b)){\n\t\t\t\t\tm[b]=c;\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\tm[b]=max(c,m[b]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tif(m.count(1)){\n\t\tcout<<m[1]<<endl;\n\t}\n\telse{\n\t\tcout<<\"-1\"<<endl;\n\t}\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9396, "score_of_the_acc": -0.1128, "final_rank": 6 }, { "submission_id": "aoj_2769_4968492", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\tint64_t N;\n\tcin>>N;\n\tvector<int64_t>p;\n\tfor(int64_t i=(1<<19)-1;i>0;i--){\n\t\tint64_t A=-1,K=1e18L,B=0;\n\t\tfor(int j=18;j>=0;j--){\n\t\t\tif(A==-1&&!(i&(1<<j))){\n\t\t\t\tK/=10;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif(A==-1&&(i&(1<<j))){\n\t\t\t\tA=0;\n\t\t\t\tB=j;\n\t\t\t}\n\t\t\telse if(i&(1<<j)){\n\t\t\t\tB--;\n\t\t\t\tA+=8*K;\n\t\t\t}\n\t\t\telse{\n\t\t\t\tA+=2*K;\n\t\t\t}\n\t\t\tK/=10;\n\t\t}\n\t\tif(B==0){\n\t\t\tcontinue;\n\t\t}\n\t\tp.push_back(A);\n\t}\n\tint Z=0;\n\tif(N==1){\n\t\tcout<<\"-1\"<<endl;\n\t\treturn 0;\n\t}\n\tfor(int i=0;i<p.size();i++){\n\t\twhile(N%p[i]==0){\n\t\t\tN/=p[i];\n\t\t\tZ++;\n\t\t}\n\t}\n\tif(N==1){\n\t\tcout<<Z<<endl;\n\t}\n\telse{\n\t\tcout<<\"-1\"<<endl;\n\t}\n}", "accuracy": 0.1346153846153846, "time_ms": 20, "memory_kb": 9000, "score_of_the_acc": -0.1076, "final_rank": 18 }, { "submission_id": "aoj_2769_4964542", "code_snippet": "#if 1\n#include <iostream>\n#include <fstream>\n#include <string>\n#include <vector>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n#include <queue>\n#include <stack>\n#include <array>\n#include <deque>\n#include <algorithm>\n#include <utility>\n#include <cstdint>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <assert.h>\n#include <bitset>\n#include <list>\n#include <cmath>\n//#include <atcoder/all>\n\nauto& in = std::cin;\nauto& out = std::cout;\n#define all_range(C) std::begin(C), std::end(C)\nconst double PI = 3.141592653589793238462643383279502884197169399375105820974944;\n\nstd::map<uint64_t, int> makeable;\nstd::set<uint64_t> prim2;\nvoid dfs(int i, uint64_t base) {\n if (i == 18) {\n return;\n }\n\n if (!makeable.count(base + 2)) {\n //makeable.insert({ base + 2,1 });\n prim2.insert(base + 2);\n //makeable.insert(base + 2);\n //for (auto& p : prim2) {\n // if ((base + 2) < 10000000000000000000 / p) {\n // makeable.insert((base + 2) * p);\n // }\n //}\n }\n if (!makeable.count(base + 8)) {\n //makeable.insert({ base + 8,1 });\n prim2.insert(base + 8);\n //makeable.insert(base + 8);\n //for (auto& p : prim2) {\n // if ((base + 8) < 10000000000000000000 / p) {\n // makeable.insert((base + 8) * p);\n // }\n //}\n }\n dfs(i + 1, (base + 2) * 10);\n dfs(i + 1, (base + 8) * 10);\n}\n\nuint64_t N;\nstd::map<std::pair< uint64_t, uint64_t>, int > dp;\nint dfs2(uint64_t n, std::set<uint64_t>::iterator iter) {\n\n if (dp.count({ n, 0 })) {\n return dp[{n, 0}];\n }\n auto iter_end = ++iter;\n int res = -1;\n for (;;) {\n if (n == 1) {\n return 0;\n }\n if (*iter == 1) { return dp[{n, 0}] = res; }\n if (n % 2 == 1) { return dp[{n, 0}] = res; }\n if (n % *iter == 0) {\n auto tmp = dfs2(n / *iter, --prim2.upper_bound(n / *iter));\n if (tmp >= 0) {\n res = std::max(res, 1 + tmp);\n }\n }\n //return std::max(res, dfs2(n, std::prev(iter)));\n --iter;\n }\n}\n\nint main()\n{\n using std::endl;\n in.sync_with_stdio(false);\n out.sync_with_stdio(false);\n in.tie(nullptr);\n out.tie(nullptr);\n prim2.insert(1);\n dfs(0, 0);\n\n in >> N;\n if (N == 1) { out << -1 << endl; return 0; }\n int res = -1;\n std::set<uint64_t>::iterator iter = --prim2.end();\n while (*iter > 1000000) {\n if (N % *iter == 0) {\n auto tmp = dfs2(N / *iter, --prim2.upper_bound(N / *iter));\n if(tmp >= 0) res = std::max(res, 1 + tmp);\n if ((N / *iter) % *iter == 0) {\n tmp = dfs2(N / *iter / *iter, --prim2.upper_bound(N / *iter / *iter));\n if (tmp >= 0) res = std::max(res, 2 + tmp);\n }\n }\n --iter;\n }\n out << std::max(res, dfs2(N, iter)) << endl;\n\n return 0;\n}\n#endif", "accuracy": 1, "time_ms": 150, "memory_kb": 27776, "score_of_the_acc": -0.7499, "final_rank": 13 }, { "submission_id": "aoj_2769_4937007", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 18;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nvoid solve() {\n\tvector<ll> v;\n\trep1(i, 18) {\n\t\trep(j, (1 << i)) {\n\t\t\tll s = 0;\n\t\t\tll t = 1;\n\t\t\trep(k, i) {\n\t\t\t\tif (j & (1 << k)) {\n\t\t\t\t\ts += t * 2;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\ts += t * 8;\n\t\t\t\t}\n\t\t\t\tt *= 10;\n\t\t\t}\n\t\t\tv.push_back(s);\n\t\t}\n\t}\n\tsort(all(v), greater<ll>());\n\tll n; cin >> n;\n\tif (n == 1) {\n\t\tcout << -1 << \"\\n\"; return;\n\t}\n\tmap<ll, int> mp;\n\tmap<ll, int> nex;\n\tmp[n] = 0;\n\trep(i, v.size()) {\n\t\tnex.clear();\n\t\tnex = mp;\n\t\tfor (LP p : mp) {\n\t\t\tif (p.first % v[i] == 0) {\n\t\t\t\tll cop = p.first;\n\t\t\t\tint cop2 = p.second;\n\t\t\t\twhile (cop % v[i] == 0) {\n\t\t\t\t\tcop /= v[i]; cop2++;\n\t\t\t\t\tnex[cop] = max(nex[cop], cop2);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tmp = nex;\n\t}\n\tif (mp.find(1) == mp.end())cout << -1 << \"\\n\";\n\telse cout << mp[1] << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\t\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 13404, "score_of_the_acc": -0.2871, "final_rank": 10 }, { "submission_id": "aoj_2769_4936969", "code_snippet": "#include <bits/stdc++.h>\n\n#define REP(i, n) for (int i = 0; i < (int)(n); i++)\n#define ALL(x) (x).begin(), (x).end()\n#define HHH(x) cerr << \"L\" << __LINE__ << \": \" << #x << \" = \" << (x) << endl\n\ntemplate <typename T> T &chmin(T &a, const T &b) { return a = std::min(a, b); }\ntemplate <typename T> T &chmax(T &a, const T &b) { return a = std::max(a, b); }\n\nusing ll = long long;\nusing ld = long double;\n\nusing namespace std;\n\nconst int INF = 1e9;\n\nvector<ll> goods;\n\nmap<pair<ll,int>,int> memo;\n\nint dfs(ll n, int i) {\n // cout << n << \" \" << i << endl;\n if (n == 1) return 0;\n if (i == -1) return -INF;\n auto p = make_pair(n, i);\n if (memo.count(p)) return memo[p];\n int res = -INF;\n if (n % goods[i] == 0) chmax(res, dfs(n / goods[i], i) + 1);\n chmax(res, dfs(n, i - 1));\n return memo[p] = res;\n}\n\nint main() {\n for (int n_digit = 1; n_digit <= 18; ++n_digit) {\n REP(bit, 1 << n_digit) {\n ll val = 0;\n for (int i = 0; i < n_digit; ++i) {\n if ((bit >> i) & 1) val = val * 10 + 8;\n else val = val * 10 + 2;\n }\n goods.push_back(val);\n }\n }\n ll n;\n cin >> n;\n vector<ll> new_goods;\n for (ll x: goods) {\n if (n % x == 0) new_goods.push_back(x);\n }\n goods = new_goods;\n // REP(i,goods.size()) cout << goods[i] << endl;\n int res = dfs(n, goods.size() - 1);\n if (res <= 0) cout << -1 << endl;\n else cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 9148, "score_of_the_acc": -0.0793, "final_rank": 4 }, { "submission_id": "aoj_2769_3999501", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\n\nsigned main(){\n ios::sync_with_stdio(false);\n\tcin.tie(0);\n cout << fixed << setprecision(20);\n\n ll n;\n cin>>n;\n vector<ll> v;\n queue<ll> q;\n q.push(0);\n while(q.size()){\n ll now=q.front();\n if(now>n) break;\n q.pop();\n ll p=now*10 + 2;\n if(n%p==0) v.push_back(p);\n q.push(p);\n p = now*10 + 8;\n if(n%p==0) v.push_back(p);\n q.push(p);\n }\n // cerr << v.size() << endl;\n // for(auto i:v){\n // cerr << i << endl;\n // }\n map<ll,ll> mp;\n mp[n]=0;\n mp[1] = -1;\n for(int i=0;i<v.size();i++){\n ll now=v[i];\n for(auto j:mp){\n ll a = j.first;\n while(a%now == 0){\n mp[a/now] = max(mp[a/now],mp[a]+1);\n a/=now;\n }\n } \n }\n cout << mp[1] << endl;\n \n}", "accuracy": 1, "time_ms": 10, "memory_kb": 7000, "score_of_the_acc": -0.0508, "final_rank": 3 }, { "submission_id": "aoj_2769_3720736", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing LL = long long;\n\nvector<LL> st;\nint ans = -1;\n\nvoid dfs(LL N, int k, int use){\n if(k >= st.size()) return;\n LL now = st[k];\n if(N == 1){\n ans = max(ans, use);\n return;\n }\n if(now > N) return;\n if(N % now == 0){\n dfs(N/now, k, use+1);\n }\n dfs(N, k+1, use);\n}\n\nint main(){\n LL N;\n cin>>N;\n if(N == 1){\n cout << -1 << endl;\n return 0;\n }\n set<LL> M;\n for(int i=1;i<=18;i++)\n {\n for(int j=0;j<(1<<i);j++)\n {\n LL now=0;\n for(int k=0;k<i;k++) now = now*10 + (j>>k&1 ? 8:2);\n if(__builtin_popcountll(j) == i) continue;\n M.insert(now);\n }\n }\n for(auto &&i : M)if(N % i == 0) st.push_back(i);\n dfs(N, 0, 0);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 27724, "score_of_the_acc": -0.7795, "final_rank": 14 }, { "submission_id": "aoj_2769_3720676", "code_snippet": "#include<iostream>\n#include<vector>\nusing namespace std;\nlong N;\nvector<long>A;\nint dfs(long n,int i)\n{\n\tif(i==A.size())\n\t{\n\t\treturn n==1?0:-1;\n\t}\n\tint ans=dfs(n,i+1);\n\tint t=0;\n\twhile(n%A[i]==0)\n\t{\n\t\tt++;n/=A[i];\n\t\tint now=dfs(n,i+1);\n\t\tif(now>=0)ans=max(ans,now+t);\n\t}\n\treturn ans;\n}\nmain()\n{\n cin>>N;\n\tif(N==1)\n\t{\n\t\tcout<<-1<<endl;\n\t\treturn 0;\n\t}\n for(int i=1;i<=18;i++)\n {\n for(int j=0;j<1<<i;j++)\n {\n long now=0;\n for(int k=0;k<i;k++)now=now*10+(j>>k&1?8:2);\n\t\t\tif(N%now==0)A.push_back(now);\n\t\t}\n\t}\n\tcout<<dfs(N,0)<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3156, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2769_3720671", "code_snippet": "#include<iostream>\n#include<vector>\nusing namespace std;\nlong N;\nvector<int>A;\nint dfs(long n,int i)\n{\n\tif(i==A.size())\n\t{\n\t\treturn n==1?0:-1;\n\t}\n\tint ans=dfs(n,i+1);\n\tint t=0;\n\twhile(n%A[i]==0)\n\t{\n\t\tt++;n/=A[i];\n\t\tint now=dfs(n,i+1);\n\t\tif(now>=0)ans=max(ans,now+t);\n\t}\n\treturn ans;\n}\nmain()\n{\n cin>>N;\n\tif(N==1)\n\t{\n\t\tcout<<-1<<endl;\n\t\treturn 0;\n\t}\n for(int i=1;i<=18;i++)\n {\n for(int j=0;j<1<<i;j++)\n {\n long now=0;\n for(int k=0;k<i;k++)now=now*10+(j>>k&1?8:2);\n\t\t\tif(N%now==0)A.push_back(now);\n\t\t}\n\t}\n\tcout<<dfs(N,0)<<endl;\n}", "accuracy": 0.17307692307692307, "time_ms": 10, "memory_kb": 3156, "score_of_the_acc": 0, "final_rank": 16 }, { "submission_id": "aoj_2769_3720361", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nlong N;\nmain()\n{\n cin>>N;\n if(N == 1){\n cout << -1 << endl;\n return 0;\n }\n set<long> M;\n for(int i=1;i<=18;i++)\n {\n for(int j=0;j<1<<i;j++)\n {\n long now=0;\n for(int k=0;k<i;k++)now=now*10+(j>>k&1?8:2);\n if(__builtin_popcountll(j) == i) continue;\n M.insert(now);\n }\n }\n int ans = 0;\n for(auto i=M.rbegin(); i!=M.rend(); i++){\n long x = *i;\n while(N > 1 && N%x == 0){\n N /= x;\n ans++;\n // cout << x << endl;\n }\n }\n if(N > 1) ans = -1;\n // cout << N << endl;\n\n cout << ans << endl;\n}", "accuracy": 0.1346153846153846, "time_ms": 140, "memory_kb": 27672, "score_of_the_acc": -0.7182, "final_rank": 19 }, { "submission_id": "aoj_2769_3583287", "code_snippet": "#include <bits/stdc++.h>\n\n#define ALL(a) (a).begin(), (a).end()\n#define llong long long\n\nusing namespace std;\nmap<llong, llong> m;\nvector<llong> l;\n\n\nllong dfs(llong n){\n\n\tif(n == 1)return 0;\n\tif(m.find(n) != m.end())return m[n];\n\tm[n] = -1;\n\tfor(auto e : l){\n\t\tif(e > n)break;\n\t\tif(n%e == 0){\n\t\t\tllong val = dfs(n/e);\n\t\t\tif(val < 0) continue;\n\t\t\tm[n] = max(m[n], 1+val);\n\t\n\t\t}\n\t}\n\tif(m[n] == 0)return -1;\n\treturn m[n];\n}\n\n/*\nllong dfs(llong n){\n\tif(n == 1)return 0;\n\tif(m.find(n) != m.end())return m[n];\n\tllong ret = \n\tfor(auto e : l){\n\t\tif(e > n)break;\n\t\tif(n%e == 0)m[n] = max(m[n], 1+dfs(n/e));\n\t}\n\tif(m[n] == 0)return -1;\n\treturn m[n];\n}\n*/\nsigned main(){\n\tllong n; cin >> n;\n\tfor(llong i = 1; i < 19; i++){\n\t\tfor(llong j = 0; j < (1 << i); j++){\n\t\t\tllong tmp = 0;\n\t\t\tllong t = 1;\n\t\t\tfor(llong k = 0; k < i; k++){\n\t\t\t\tif(j & (1 << k)){\n\t\t\t\t\ttmp += 8*t;\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\ttmp += 2*t;\n\t\t\t\t}\n\t\t\t\tt *= 10;\n\t\t\t}\n\t\t\tl.push_back(tmp);\n\t\t}\n\t}\n//\tfor(int i = 0; i < 20; i++)cerr << l[i] << \" \";\n//\tcerr << endl;\n\tif(n == 1){\n\t\tcout << -1 << endl;\n\t\treturn 0;\n\t}\n\tm[1] = 0;\n\tcout << dfs(n) << endl;\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7076, "score_of_the_acc": -0.1428, "final_rank": 7 }, { "submission_id": "aoj_2769_3583159", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <vector>\n#include <map>\n\nint inf = 1e9;\n\nstd::map<intmax_t, int> memo;\n\nint dfs(intmax_t n, const std::vector<intmax_t>& div) {\n if (n == 1) return 0;\n if (memo.find(n) != memo.end()) return memo.at(n);\n int res = 0;\n for (auto x: div) {\n if (x > n) break;\n if (n % x != 0) continue;\n int cur = dfs(n / x, div) + 1;\n res = std::max(cur, res);\n }\n if (res == 0) res = -1;\n memo[n] = res;\n return res;\n}\n\nint main() {\n intmax_t n;\n scanf(\"%jd\", &n);\n\n if (n == 1)\n return puts(\"-1\"), 0;\n\n std::vector<intmax_t> div{2, 8};\n auto tmp = div;\n intmax_t bound = 1e18;\n while (true) {\n bool updated = false;\n std::vector<intmax_t> tmp0;\n for (auto x: tmp) {\n if (10*x > bound) continue;\n tmp0.push_back(10*x+2);\n tmp0.push_back(10*x+8);\n div.push_back(10*x+2);\n div.push_back(10*x+8);\n updated = true;\n }\n tmp = std::move(tmp0);\n if (!updated) break;\n }\n\n int res = dfs(n, div);\n if (!res) res = -1;\n printf(\"%d\\n\", res);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 12524, "score_of_the_acc": -0.1542, "final_rank": 8 }, { "submission_id": "aoj_2769_3245142", "code_snippet": "#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\nconst int inf = (1 << 30);\nvector<long long> d;\nint solve(int pos, long long cur) {\n\tif (pos == d.size()) return -inf;\n\tif (cur == 1) return 0;\n\tint ret = solve(pos + 1, cur);\n\tif (cur % d[pos] == 0) ret = max(ret, solve(pos, cur / d[pos]) + 1);\n\treturn ret;\n}\nint main() {\n\tlong long n;\n\tcin >> n;\n\tfor (int i = 1; i <= 18; ++i) {\n\t\tfor (int j = 0; j < (1 << i) - 1; ++j) {\n\t\t\tlong long cur = 0;\n\t\t\tfor (int k = 0; k < i; ++k) {\n\t\t\t\tcur = cur * 10 + (((j >> k) & 1) ? 8 : 2);\n\t\t\t}\n\t\t\tif (n % cur == 0) {\n\t\t\t\td.push_back(cur);\n\t\t\t}\n\t\t}\n\t}\n\tint ans = solve(0, n);\n\tcout << (ans >= 0 ? ans : -1) << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3164, "score_of_the_acc": -0.0001, "final_rank": 2 }, { "submission_id": "aoj_2769_3245139", "code_snippet": "#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\nconst int inf = (1 << 30);\nvector<long long> d;\nint solve(int pos, long long cur) {\n\tif (pos == d.size()) return -inf;\n\tif (cur == 1) return 0;\n\tint ret = solve(pos + 1, cur);\n\tif (cur % d[pos] == 0) ret = max(ret, solve(pos, cur / d[pos]) + 1);\n\treturn ret;\n}\nint main() {\n\tlong long n;\n\tcin >> n;\n\tfor (int i = 1; i <= 18; ++i) {\n\t\tfor (int j = 0; j < (1 << i) - 1; ++j) {\n\t\t\tlong long cur = 0;\n\t\t\tfor (int k = 0; k < i; ++k) {\n\t\t\t\tcur = cur * 10 + (((j >> k) & 1) ? 8 : 2);\n\t\t\t}\n\t\t\tif (n % cur == 0) {\n\t\t\t\td.push_back(cur);\n\t\t\t}\n\t\t}\n\t}\n\tint ans = solve(0, n);\n\tcout << (ans != -inf ? ans : -1) << endl;\n\treturn 0;\n}", "accuracy": 0.057692307692307696, "time_ms": 10, "memory_kb": 3160, "score_of_the_acc": -0.0001, "final_rank": 20 }, { "submission_id": "aoj_2769_3109831", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcount\n\n#define INF 1e16\n#define mod 1000000007\nll n;\nvector<ll> vs;\nmap<ll,ll> dp[2];\n\nint main(){\n\n repl(i,1,19){\n rep(S,1<<i){\n string tmp;\n rep(d,i){\n if((S>>d)&1)tmp+=\"8\";\n else tmp+=\"2\";\n }\n vs.push_back(stoll(tmp));\n }\n }\n reverse(all(vs));\n cin>>n;\n if(n==1){\n cout<<-1<<endl;\n return 0;\n }\n ll m=vs.size();\n\n int crt=0,nxt=1;\n dp[crt][n]=0;\n rep(i,m){\n ll v=vs[i];\n dp[nxt].clear();\n for(auto it : dp[crt]){\n if(it.fi%v==0){\n ll tmp=it.fi,cnt=1;\n while(tmp%v==0){\n maxch(dp[nxt][tmp/v],it.se+cnt);\n tmp/=v;\n cnt++;\n }\n }\n maxch(dp[nxt][it.fi],it.se);\n }\n swap(crt,nxt);\n }\n if(dp[crt].find(1)==dp[crt].end())cout<<-1<<endl;\n else cout<<dp[crt][1]<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 6948, "score_of_the_acc": -0.6259, "final_rank": 12 }, { "submission_id": "aoj_2769_3107927", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nll make(int d, int mask){\n string s = \"\";\n rep(i,d){\n if(mask>>i&1) s += '8';\n else s += '2';\n }\n return atoll(s.c_str());\n}\n\nconst int INF = 19191919;\nvector<ll> v;\nint V;\n\nconst int N = 1<<10;\nmap<ll,int> dp[N];\nint dfs(int d, ll n){\n if(d==V){\n if(n==1) return 0;\n return -INF;\n }\n if(dp[d].count(n)) return dp[d][n];\n\n int ret = -INF;\n if(n%v[d]==0) ret = max(ret, dfs(d, n/v[d])+1);\n ret = max(ret, dfs(d+1, n));\n\n return dp[d][n] = ret;\n}\n\nint main(){\n ll n;\n cin >>n;\n if(n==1){\n cout << -1 << endl;\n return 0;\n }\n\n for(int i=1; i<=9; ++i){\n rep(mask,1<<i) v.pb(make(i,mask));\n }\n V = v.size();\n\n int ans = -1;\n\n ans = max(ans, dfs(0,n));\n for(int i=10; i<=18; ++i){\n rep(mask,1<<i){\n ll val = make(i,mask);\n if(n%val==0){\n ans = max(ans, dfs(0, n/val)+1);\n }\n }\n }\n\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 78760, "score_of_the_acc": -2, "final_rank": 15 }, { "submission_id": "aoj_2769_3107477", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define _MACRO(_1, _2, _3, NAME, ...) NAME\n#define _repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define _rep(i,n) _repl(i,0,n)\n#define rep(...) _MACRO(__VA_ARGS__, _repl, _rep)(__VA_ARGS__)\n#define pb push_back\n#define all(x) begin(x),end(x)\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#ifdef LOCAL\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cerr<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cerr<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream &o, const pair<T,U> &p){o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream &o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n#else\n#define dbg(...) {}\n#endif\n\n#define long long long // for codeforces\n\nvector<long> goods = {2,8};\nmap<long,int> memo;\n\nint dfs(long val){\n if (memo.count(val)) return memo[val];\n int ans = -1;\n for(auto v : goods){\n if(v > val) break;\n if(v == val) {\n ans = max(ans, 1);\n }\n if(val%v==0){\n int r = dfs(val/v);\n if(r > 0) ans = max(ans, r + 1);\n }\n }\n return memo[val] = ans;\n}\n\nbool isgood(long x){\n while(x>0){\n if(x%10 !=2 && x%10 != 8) return false;\n x /= 10;\n }\n return true;\n}\n\nint main(){\n rep(_,9){\n int s = goods.size();\n rep(i,s) if (goods[i] * 10 <= 1000000000){\n goods.pb(goods[i]*10 + 2);\n goods.pb(goods[i]*10 + 8);\n }\n }\n\n long v;\n cin>>v;\n\n int ans = dfs(v);\n if(isgood(v)) ans = max(ans, 1);\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 3348, "score_of_the_acc": -0.3056, "final_rank": 11 }, { "submission_id": "aoj_2769_3107475", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define _MACRO(_1, _2, _3, NAME, ...) NAME\n#define _repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define _rep(i,n) _repl(i,0,n)\n#define rep(...) _MACRO(__VA_ARGS__, _repl, _rep)(__VA_ARGS__)\n#define pb push_back\n#define all(x) begin(x),end(x)\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#ifdef LOCAL\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cerr<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cerr<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream &o, const pair<T,U> &p){o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream &o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n#else\n#define dbg(...) {}\n#endif\n\n#define long long long // for codeforces\n\nvector<long> goods = {2,8};\nmap<long,int> memo;\n\nint dfs(long val){\n if (memo.count(val)) return memo[val];\n int ans = -1;\n for(auto v : goods){\n if(v > val) break;\n if(v == val) {\n ans = max(ans, 1);\n }\n if(val%v==0){\n int r = dfs(val/v);\n if(r > 0) ans = max(ans, r + 1);\n }\n }\n return memo[val] = ans;\n}\n\nint main(){\n rep(_,9){\n int s = goods.size();\n rep(i,s) if (goods[i] * 10 <= 1000000000){\n goods.pb(goods[i]*10 + 2);\n goods.pb(goods[i]*10 + 8);\n }\n }\n\n long v;\n cin>>v;\n\n cout << dfs(v) << endl;\n\n return 0;\n}", "accuracy": 0.17307692307692307, "time_ms": 70, "memory_kb": 3344, "score_of_the_acc": -0.1843, "final_rank": 17 } ]
aoj_2773_cpp
B: 周期数列 - Periodic Sequence - 問題 H大学の教授を務めているPeriod博士は、万物に潜むとされる周期と呼ばれる性質を研究している。一般的に知られている基本的な周期としては、数列に潜む周期が考えられるだろう。すなわち、長さ N の数列 S = S_1, S_2, ... , S_N が以下の性質を満たすならば、周期 t ( t \≤ N ) を持つという事実である。 1 \≤ i \≤ N − t について、 S_i=S_{i+t} である。 今、Period博士が着目しているのは、周期を用いてより簡易な記述ができる数列である。例えば、長さ N の数列が周期 t ( \≤ N ) を持つとき、ある整数 k を用いて N=kt と書けるならば、その数列は長さ t の数列 S_1, ... , S_t が k 個連続したものである、と記述できる。Period博士は数列を例のように記述できたとき、その数列は k -partであると言うことにした。 Period博士は、 k が最も大きい k -partに興味を示している。そこで助手であるあなたは、入力として数列を受け取り、それが k -partであるとき最も大きい k を出力するプログラムの作成を任されることとなった。Period博士の要求に正確に応えるプログラムを作成しよう。 入力形式 N S_1 ... S_N 1行目には、数列の長さを表す整数 N が与えられる。2行目には、長さ N の数列の各要素を表す整数 S_i ( 1 \≤ i \≤ N ) が空白区切りで与えられる。また、入力は 1 \≤ N \≤ 200,000 と 1 \≤ S_i \≤ 100,000 ( 1 \≤ i \≤ N ) を満たす。 出力形式 与えられた数列に対して、 k -partであるときの k の最大値を1行に出力せよ。 入力例1 6 1 2 3 1 2 3 出力例1 2 入力例2 12 1 2 1 2 1 2 1 2 1 2 1 2 出力例2 6 入力例3 6 1 2 3 4 5 6 出力例3 1
[ { "submission_id": "aoj_2773_10865813", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing LL = long long; using ll = LL;\nusing PII = pair<int, int>; using pii = PII;\nusing PLL = pair<LL, LL>; using pll = PLL;\nusing VI = vector<int>; using VL = vector<LL>;\nconst ll LINF = 1e18;\nconst int INF = 1e9;\n#define FOR(i,s,t) for(int i =s; i < t;i++)\n#define SZ(a) (int)a.size()\n#define ALL(a) a.begin(),a.end()\n\nvoid solve() {\n\tll N; cin >> N;\n\tvector<ll> S(N);\n\tfor (auto& in : S) cin >> in;\n\n\tll res = 1;\n\tfor (ll t = 1; t <= N; t++) {\n\t\tif (N%t != 0) continue;\n\t\tbool f = false;\n\t\tfor (ll i = 0; i < N - t; i++) {\n\t\t\tif (S[i] == S[i + t]) continue;\n\t\t\tf = true;\n\t\t\tbreak;\n\t\t}\n\t\tif (f) continue;\n\t\tres = N / t;\n\t\tbreak;\n\t}\n\tcout << res << endl;\n}\n\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\n\tsolve();\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4648, "score_of_the_acc": -0.0903, "final_rank": 7 }, { "submission_id": "aoj_2773_10283845", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n#define rep(i, m, n) for (ll i = (ll)m; i < (ll)n; i++)\n#define drep(i, m, n) for (ll i = m - 1; i >= n; i--)\n#define Endl endl\n#define all(a) a.begin(), a.end()\n#define pr(i, j) make_pair(i, j)\n#define isin(x, l, r) (l <= x && x < r)\n#define chmin(a, b) a = min(a, b)\n#define chmax(a, b) a = max(a, b)\n#define srt(ar) sort(ar.begin(), ar.end())\n#define rev(ar) reverse(ar.begin(), ar.end())\n#define jge(f, s, t) cout << (f ? s : t) << endl\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n#define printar(ar) \\\n do \\\n { \\\n for (auto dbg : ar) \\\n { \\\n cout << dbg << \" \"; \\\n } \\\n cout << endl; \\\n } while (0)\nconst ll inf = 1e18;\nconst ld pi = 3.14159265358979;\nconst ld eps = 1e-9;\ntemplate <class T, ll n, ll idx = 0>\nauto make_vec(const ll (&d)[n], const T &init) noexcept\n{\n if constexpr (idx < n)\n return std::vector(d[idx], make_vec<T, n, idx + 1>(d, init));\n else\n return init;\n}\n\ntemplate <class T, ll n>\nauto make_vec(const ll (&d)[n]) noexcept\n{\n return make_vec(d, T{});\n}\n//////////////// 以下を貼る ////////////////\ntemplate <class T>\nsize_t HashCombine(const size_t seed, const T &v)\n{\n return seed ^ (std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2));\n}\n/* pair用 */\ntemplate <class T, class S>\nstruct std::hash<std::pair<T, S>>\n{\n size_t operator()(const std::pair<T, S> &keyval) const noexcept\n {\n return HashCombine(std::hash<T>()(keyval.first), keyval.second);\n }\n};\n////////////////////////////////////////////\nint main()\n{\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n;\n cin >> n;\n vector<ll> s(n);\n rep(i, 0, n)\n {\n cin >> s[i];\n }\n vector<bool> f(n + 1, true);\n rep(i, 2, n + 1)\n {\n if (!f[i])\n {\n continue;\n }\n if (n % i != 0)\n {\n for (ll j = i; j <= n; j += i)\n {\n f[j] = false;\n }\n }\n else\n {\n ll t = n / i;\n bool g = true;\n rep(j, 0, n - t)\n {\n if (s[j] != s[j + t])\n {\n g = false;\n }\n }\n if (!g)\n {\n for (ll j = i; j <= n; j += i)\n {\n f[j] = false;\n }\n }\n }\n }\n ll ans = 1;\n rep(i, 1, n + 1)\n {\n if (f[i])\n {\n ans = i;\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4992, "score_of_the_acc": -0.1208, "final_rank": 10 }, { "submission_id": "aoj_2773_6939952", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (int i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\nnamespace po167{\n//LCP vec[0,n) and vec[i,n)\n//for all i \n//O(vec.size())\ntemplate<class T>\nstd::vector<int> Z_algo(std::vector<T> &vec){\n\tint n=vec.size();\n\tint ind=1,j=0,k;\n\tstd::vector<int> ans(n,0);\n\tans[0]=n;\n\twhile(ind<n){\n\t\twhile(ind+j<n&&vec[j]==vec[ind+j]) j++;\n\t\tans[ind]=j;\n\t\tif(j==0){\n\t\t\tind++;\n\t\t\tcontinue;\n\t\t}\n\t\tk=1;\n\t\twhile(k+ind<n&&ans[k]+k<j){\n\t\t\tans[k+ind]=ans[k];\n\t\t\tk++;\n\t\t}\n\t\tj-=k;\n\t\tind+=k;\n\t}\n\treturn ans;\n}\nstd::vector<int> Z_algo(std::string &vec){\n\tint n=vec.size();\n\tint ind=1,j=0,k;\n\tstd::vector<int> ans(n,0);\n\tans[0]=n;\n\twhile(ind<n){\n\t\twhile(ind+j<n&&vec[j]==vec[ind+j]) j++;\n\t\tans[ind]=j;\n\t\tif(j==0){\n\t\t\tind++;\n\t\t\tcontinue;\n\t\t}\n\t\tk=1;\n\t\twhile(k+ind<n&&ans[k]+k<j){\n\t\t\tans[k+ind]=ans[k];\n\t\t\tk++;\n\t\t}\n\t\tj-=k;\n\t\tind+=k;\n\t}\n\treturn ans;\n}\n}\nusing po167::Z_algo;\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<int> S(N);\n\trep(i,N) cin>>S[i];\n\tauto Z=Z_algo(S);\n\trep(i,N){\n\t\tif(i==0) continue;\n\t\tif(__gcd(i,N)!=i) continue;\n\t\tif(Z[i]==N-i){\n\t\t\tcout<<N/i<<\"\\n\";\n\t\t\treturn;\n\t\t}\n\t}\n\tcout<<\"1\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4644, "score_of_the_acc": -0.1044, "final_rank": 9 }, { "submission_id": "aoj_2773_5850720", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash {\n static const int base1 = 1007, base2 = 2009;\n static const int mod1 = 1000000007, mod2 = 1000000009;\n vector<long long> hash1, hash2, power1, power2;\n int n;\n // construct\n RollingHash(const string &S) {\n n = (int)S.size();\n hash1.assign(n+1, 0);\n hash2.assign(n+1, 0);\n power1.assign(n+1, 1);\n power2.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n hash2[i+1] = (hash2[i] * base2 + S[i]) % mod2;\n power1[i+1] = (power1[i] * base1) % mod1;\n power2[i+1] = (power2[i] * base2) % mod2;\n }\n }\n \n // get hash of S[left:right]\n inline pair<long long, long long> get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n long long res2 = hash2[r] - hash2[l] * power2[r-l] % mod2;\n if (res2 < 0) res2 += mod2;\n return {res1, res2};\n }\n \n inline pair<long long, long long> c_shift(int l) {\n auto h1 = get(0, l);\n auto h2 = get(l, n);\n return {(h1.first + h2.first * power1[l]) % mod1, (h1.second + h2.second * power2[l]) % mod2};\n }\n \n // get lcp of S[a:] and T[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n int n; cin >> n;\n vector<int> s(n);\n REP(i,n) cin >> s[i];\n\n int ans = 1;\n for(int i=1; i*i<=n; i++) {\n if(n%i == 0) {\n int a = i, b = n/i;\n bool f = true;\n for(int j=a; j<n; j++) {\n if(s[j] != s[j-a]) f = false;\n }\n if(f) ans = max(ans, b);\n f = true;\n for(int j=b; j<n; j++) {\n if(s[j] != s[j-b]) f = false;\n \n }\n if(f) ans = max(ans, a);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3876, "score_of_the_acc": -0.0217, "final_rank": 4 }, { "submission_id": "aoj_2773_5850717", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash {\n static const int base1 = 1007, base2 = 2009;\n static const int mod1 = 1000000007, mod2 = 1000000009;\n vector<long long> hash1, hash2, power1, power2;\n int n;\n // construct\n RollingHash(const string &S) {\n n = (int)S.size();\n hash1.assign(n+1, 0);\n hash2.assign(n+1, 0);\n power1.assign(n+1, 1);\n power2.assign(n+1, 1);\n for (int i = 0; i < n; ++i) {\n hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;\n hash2[i+1] = (hash2[i] * base2 + S[i]) % mod2;\n power1[i+1] = (power1[i] * base1) % mod1;\n power2[i+1] = (power2[i] * base2) % mod2;\n }\n }\n \n // get hash of S[left:right]\n inline pair<long long, long long> get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;\n if (res1 < 0) res1 += mod1;\n long long res2 = hash2[r] - hash2[l] * power2[r-l] % mod2;\n if (res2 < 0) res2 += mod2;\n return {res1, res2};\n }\n \n inline pair<long long, long long> c_shift(int l) {\n auto h1 = get(0, l);\n auto h2 = get(l, n);\n return {(h1.first + h2.first * power1[l]) % mod1, (h1.second + h2.second * power2[l]) % mod2};\n }\n \n // get lcp of S[a:] and T[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size()-a, (int)hash1.size()-b);\n int low = 0, high = len;\n while (high - low > 1) {\n int mid = (low + high) >> 1;\n if (get(a, a+mid) != get(b, b+mid)) high = mid;\n else low = mid;\n }\n return low;\n }\n};\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n int n; cin >> n;\n vector<int> s(n);\n REP(i,n) cin >> s[i];\n\n int ans = 1;\n for(int i=2; i*i<=n; i++) {\n if(n%i == 0) {\n int a = i, b = n/i;\n bool f = true;\n for(int j=a; j<n; j++) {\n if(s[j] != s[j-a]) f = false;\n }\n if(f) ans = max(ans, b);\n f = true;\n for(int j=b; j<n; j++) {\n if(s[j] != s[j-b]) f = false;\n \n }\n if(f) ans = max(ans, a);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.5, "time_ms": 10, "memory_kb": 3880, "score_of_the_acc": -0.022, "final_rank": 18 }, { "submission_id": "aoj_2773_5850154", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\n//イテレーション\n#define REP(i, n) for (ll i = 0; i < ll(n); i++)\n#define REPD(i, n) for (ll i = n - 1; i >= 0; i--)\n#define FOR(i, a, b) for (ll i = a; i <= ll(b); i++)\n#define FORD(i, a, b) for (ll i = a; i >= ll(b); i--)\n#define FORA(i, I) for (const auto& i : I)\n// x:コンテナ\n#define ALL(x) x.begin(), x.end()\n#define SIZE(x) ll(x.size())\n//定数\n#define INF32 2147483647 // 2.147483647×10^{9}:32bit整数のinf\n#define INF64 9223372036854775807 // 9.223372036854775807×10^{18}:64bit整数のinf\n#define MOD 1000000007 //問題による\n//略記\n#define F first\n#define S second\n//出力(空白区切りで昇順に)\n#define coutALL(x) \\\n for (auto i = x.begin(); i != --x.end(); i++) cout << *i << \" \"; \\\n cout << *--x.end() << endl;\n\n// aをbで割る時の繰上げ,繰り下げ\nll myceil(ll a, ll b) { return (a + (b - 1)) / b; }\nll myfloor(ll a, ll b) { return a / b; }\n\nint main() {\n //小数の桁数の出力指定\n // cout<<fixed<<setprecision(10);\n //入力の高速化用のコード\n // ios::sync_with_stdio(false);\n // cin.tie(nullptr);\n ll N;\n cin >> N;\n vector<ll> ss;\n REP(i, N) {\n ll t;\n cin >> t;\n ss.push_back(t);\n }\n\n ll bk = 1;\n FOR(i, 1, N-1) {\n if(N % i != 0) continue;\n ll k = N / i;\n\n bool f = true;\n FOR(j, 0, i - 1) {\n for(ll n = 1; n < k; n++) {\n //cout << k << \" \" << i << \" \" << j << \" \" << n << \" \" << ss[j] << \" \" << ss[n*i+j] << endl;\n if(ss[j] != ss[n*i+j]) {\n f = false;\n break;\n }\n }\n if(!f) break;\n }\n if(f) {\n bk = k;\n break;\n }\n }\n cout << bk << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 5180, "score_of_the_acc": -0.1665, "final_rank": 13 }, { "submission_id": "aoj_2773_5534217", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<int> s(n);\n for(int i=0;i<n;i++){\n cin >> s[i];\n }\n int res=1;\n for(int i=1;i<=n;i++){\n if(n%i==0){\n bool ok=true;\n for(int j=i;j<n;j++){\n if(s[j]!=s[j%i]){\n ok=false; break;\n }\n }\n if(ok){\n res=max(res,n/i);\n }\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3900, "score_of_the_acc": -0.0383, "final_rank": 5 }, { "submission_id": "aoj_2773_5532377", "code_snippet": "#line 2 \"cpplib/util/template.hpp\"\n/**\n * These codes are licensed under CC0.\n * http://creativecommons.org/publicdomain/zero/1.0/deed.ja\n */\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma GCC target(\"avx2\")\n#include<bits/stdc++.h>\nusing namespace std;\nstruct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;\ntypedef long long lint;\n#define INF (1LL<<60)\n#define IINF (1<<30)\n#define EPS (1e-10)\n#define endl ('\\n')\ntypedef vector<lint> vec;\ntypedef vector<vector<lint>> mat;\ntypedef vector<vector<vector<lint>>> mat3;\ntypedef vector<string> svec;\ntypedef vector<vector<string>> smat;\ntemplate<typename T>using V=vector<T>;\ntemplate<typename T>using VV=V<V<T>>;\ntemplate<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?\" \":\"\")<<i;f=1;}cout<<endl;}\ntemplate<typename T>inline void output2(T t){for(auto i:t)output(i);}\ntemplate<typename T>inline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?\" \":\"\")<<i;f=1;}cerr<<endl;}\ntemplate<typename T>inline void debug2(T t){for(auto i:t)debug(i);}\n#define loop(n) for(long long _=0;_<(long long)(n);++_)\n#define _overload4(_1,_2,_3,_4,name,...) name\n#define __rep(i,a) repi(i,0,a,1)\n#define _rep(i,a,b) repi(i,a,b,1)\n#define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c)\n#define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__)\n#define _overload3_rev(_1,_2,_3,name,...) name\n#define _rep_rev(i,a) repi_rev(i,0,a)\n#define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i)\n#define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__)\n\n// #define rep(i,...) for(auto i:range(__VA_ARGS__)) \n// #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))\n// #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)\n// #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)\n// #define irep(i) for(lint i=0;;++i)\n// inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}\n// inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;}\n// inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}\n// template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}\n#define all(n) begin(n),end(n)\ntemplate<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}\ntemplate<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}\nconst vector<lint> dx={1,0,-1,0,1,1,-1,-1};\nconst vector<lint> dy={0,1,0,-1,1,-1,1,-1};\n#define SUM(v) accumulate(all(v),0LL)\n#if __cplusplus>=201703L\n template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));}\n#endif\n#define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__}))\n#define bit(n,a) ((n>>a)&1)\nvector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret.push_back(e);ret.back().push_back(i);}return ret;}\nusing graph=vector<vector<int>>;\ntemplate<typename T>using graph_w=vector<vector<pair<int,T>>>;\ntemplate<typename T,typename E>ostream& operator<<(ostream& out,pair<T,E>v){out<<\"(\"<<v.first<<\",\"<<v.second<<\")\";return out;}\n#if __cplusplus>=201703L\n constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;}\n#endif\n\ntemplate<typename T,typename E>pair<T,E>& operator+=(pair<T,E>&s,const pair<T,E>&t){s.first+=t.first;s.second+=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E>& operator-=(pair<T,E>&s,const pair<T,E>&t){s.first-=t.first;s.second-=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E> operator+(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res+=t;}\ntemplate<typename T,typename E>pair<T,E> operator-(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res-=t;}\n#define BEGIN_STACK_EXTEND(size) void * stack_extend_memory_ = malloc(size);void * stack_extend_origin_memory_;char * stack_extend_dummy_memory_ = (char*)alloca((1+(int)(((long long)stack_extend_memory_)&127))*16);*stack_extend_dummy_memory_ = 0;asm volatile(\"mov %%rsp, %%rbx\\nmov %%rax, %%rsp\":\"=b\"(stack_extend_origin_memory_):\"a\"((char*)stack_extend_memory_+(size)-1024));\n#define END_STACK_EXTEND asm volatile(\"mov %%rax, %%rsp\"::\"a\"(stack_extend_origin_memory_));free(stack_extend_memory_);\n#line 2 \"code.cpp\"\n\nstd::vector<int> z_algorithm(const vec& s){\n std::vector<int>res(s.size());\n res[0]=s.size();\n int i=1,j=0;\n while(i<(int)s.size()){\n while(i+j<(int)s.size()&&s[j]==s[i+j])++j;\n res[i]=j;\n if(j==0){++i;continue;}\n int k=1;\n while(i+k<(int)s.size()&&k+res[k]<j)res[i+k]=res[k],++k;\n i+=k;j-=k;\n }\n return res;\n}\n\nint main(){\n lint n;\n cin>>n;\n vec a(n);\n rep(i,n)cin>>a[i];\n auto d=z_algorithm(a);\n rep(i,1,n){\n if(n%i==0&&d[i]==n-i){\n cout<<n/i<<endl;\n return 0;\n }\n }\n cout<<1<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5428, "score_of_the_acc": -0.1596, "final_rank": 12 }, { "submission_id": "aoj_2773_5532372", "code_snippet": "#line 1 \"b.cpp\"\n#pragma region Macros\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define FOR(i, a, b) for(int i = (a); i < int(b); i++)\n#define REP(i, n) FOR(i, 0, n)\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\nvoid Case(int i) { cout << \"Case #\" << i << \": \"; }\n#pragma endregion Macros\n\n#line 1 \"/home/siro53/kyo-pro/compro_library/math/divisor.hpp\"\ntemplate<class T>\nvector<T> divisor(T n) {\n vector<T> ret;\n for(T i = 1; i * i <= n; i++) {\n if(n % i == 0) {\n ret.push_back(i);\n if(i * i != n)\n ret.push_back(n / i);\n }\n }\n sort(begin(ret), end(ret));\n return (ret);\n}\n#line 70 \"b.cpp\"\n\nint main() {\n int N;\n cin >> N;\n vector<int> a(N);\n REP(i, N) cin >> a[i];\n\n auto v = divisor(N);\n int ans = -INF;\n\n for(int len : v) {\n vector<vector<int>> v(N/len);\n for(int i = 0; i < N; i += len) {\n REP(j, len) v[i/len].push_back(a[i + j]);\n }\n debug(len, v);\n bool ok = true;\n FOR(i, 1, N/len) if(v[i-1] != v[i]) ok = false;\n if(ok) chmax(ans, N/len);\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 14888, "score_of_the_acc": -1.058, "final_rank": 14 }, { "submission_id": "aoj_2773_4926994", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\n#define rep(i,n) for(ll i=0;i<n;i++)\n\nvector<long long> divisor(long long n){\n vector<long long> r;\n for(long long i=1;i*i<=n;i++){\n if(n%i==0){\n r.emplace_back(i);\n if(i*i!=n)r.emplace_back(n/i);\n }\n }\n sort(r.begin(),r.end());\n return r;\n}\n\nsigned main(){\n ll n;\n cin>>n;\n vector<ll> S(n);\n rep(i,n)cin>>S[i];\n auto v=divisor(n);\n for(auto a:v){\n if(a>n-1)break;\n rep(i,n-a){\n if(S[i]!=S[i+a]){\n break;\n }\n if(i==n-a-1){\n cout<<n/a<<endl;\n return 0;\n }\n }\n }\n cout<<1<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4692, "score_of_the_acc": -0.1232, "final_rank": 11 }, { "submission_id": "aoj_2773_4926942", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\n#define rep(i,n) for(ll i=0;i<n;i++)\n\nvector<long long> divisor(long long n){\n vector<long long> r;\n for(long long i=1;i*i<=n;i++){\n if(n%i==0){\n r.emplace_back(i);\n if(i*i!=n)r.emplace_back(n/i);\n }\n }\n sort(r.begin(),r.end());\n return r;\n}\n\nsigned main(){\n ll n;\n cin>>n;\n vector<ll> S(n);\n rep(i,n)cin>>S[i];\n auto v=divisor(n);\n ll t=n;\n for(auto a:v){\n if(a>n-1)break;\n if(S[0]==S[a]){\n t=a;\n break;\n }\n }\n cout<<n/t<<endl;\n}", "accuracy": 0.72, "time_ms": 30, "memory_kb": 4700, "score_of_the_acc": -0.1239, "final_rank": 17 }, { "submission_id": "aoj_2773_4926911", "code_snippet": "#include <bits/stdc++.h>\ntypedef long long int lli;\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define out(s) cout << s << endl;\nusing namespace std;\nint main()\n{\n string s = \"\";\n lli n;\n cin >> n;\n vector<lli> yaku;\n lli p = 2;\n while(p<=n/2){\n if(n%p==0){\n yaku.push_back(p);\n }\n p++;\n }\n rep(i, n)\n {\n string a;\n cin >> a;\n s = s + a;\n }\n lli k = 1;\n lli div = 0;\n while (true)\n {\n\n if (s.size() % yaku[div] == 0)\n {\n string sub = s.substr(0, s.size() / yaku[div]);\n bool check = true;\n rep(j, s.size() /sub.size() - 1)\n {\n if (sub != s.substr((sub.size()) * (j + 1), s.size()/yaku[div]))\n {\n check = false;\n break;\n }\n }\n\n if (check)\n {\n k = k * yaku[div];\n div = 0;\n s = sub;\n continue;\n }\n }\n div++;\n if (div >=yaku.size())\n {\n break;\n }\n }\n cout << k << endl;\n}", "accuracy": 0.04, "time_ms": 670, "memory_kb": 4020, "score_of_the_acc": -0.991, "final_rank": 19 }, { "submission_id": "aoj_2773_4926867", "code_snippet": "#include <bits/stdc++.h>\ntypedef long long int lli;\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define out(s) cout << s << endl;\nusing namespace std;\nint main()\n{\n string s = \"\";\n lli n;\n cin >> n;\n vector<lli> yaku;\n lli p = 2;\n while(p*p<=n){\n if(n%p==0){\n yaku.push_back(p);\n }\n p++;\n }\n rep(i, n)\n {\n string a;\n cin >> a;\n s = s + a;\n }\n lli k = 1;\n lli div = 0;\n while (true)\n {\n if (s.size() % yaku[div] == 0)\n {\n string sub = s.substr(0, s.size() / yaku[div]);\n bool check = true;\n rep(j, s.size() /sub.size() - 1)\n {\n if (sub != s.substr((sub.size()) * (j + 1), s.size()/yaku[div]))\n {\n check = false;\n break;\n }\n }\n\n if (check)\n {\n k = k * yaku[div];\n div = 0;\n s = sub;\n continue;\n }\n }\n div++;\n if (div >=yaku.size())\n {\n break;\n }\n }\n cout << k << endl;\n}", "accuracy": 0.04, "time_ms": 700, "memory_kb": 3984, "score_of_the_acc": -1.0313, "final_rank": 20 }, { "submission_id": "aoj_2773_4926782", "code_snippet": "#include <bits/stdc++.h>\n\nusing i64=std::int_fast64_t;\nusing u64=std::uint_fast64_t;\n\n#define rep(i,a,b) for(i64 i=(a);(i) < (b);(i)++)\n#define all(i) i.begin(),i.end()\n\nint main(){\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n i64 n;\n std::cin>>n;\n\n std::vector<i64> s(n);\n for(auto&& e:s)std::cin>>e;\n\n std::vector<i64> yaku;\n\n for(i64 i=1;i*i<=n;i++){\n if(n%i==0){\n yaku.emplace_back(i);\n if(i*i!=n)yaku.emplace_back(n/i);\n }\n }\n\n std::sort(all(yaku),std::greater<i64>());\n\n for(const auto& e:yaku){\n i64 len = n/e;\n bool isok=true;\n rep(i,0,len){\n rep(j,0,e)isok&=(s[i] == s[i+len*j]);\n }\n if(isok){\n std::cout<<e<<\"\\n\";\n return 0;\n }\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4672, "score_of_the_acc": -0.0924, "final_rank": 8 }, { "submission_id": "aoj_2773_4926653", "code_snippet": "#include <algorithm>\n#include <cstdio>\n\nusing namespace std;\n\n#define SIZE 200000\n\nint main() {\n int N, S[SIZE];\n\n scanf(\"%d\", &N);\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", S + i);\n }\n\n int ans = 1;\n\n for (int i = 1; i <= N; i++) {\n if (N % i != 0) continue;\n\n bool ok = true;\n\n for (int j = 0; j + i < N; j++) {\n ok &= S[j] == S[i + j];\n }\n\n if (ok) {\n ans = max(ans, N / i);\n }\n }\n\n printf(\"%d\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3788, "score_of_the_acc": -0.0139, "final_rank": 1 }, { "submission_id": "aoj_2773_4472189", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[6] = {1, 0, -1, 0,1,1};\nconst int dy[6] = {0, 1, 0, -1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N;\n cin >> N;\n vector<int> A(N);\n for(int i=0; i<N; i++) cin >> A[i];\n for(int i=1; i<=N; i++){\n if(N%i == 0){\n bool can = true;\n for(int j=0; i+j<N; j++){\n if(A[j] != A[i+j]){\n can = false;\n break;\n }\n }\n if(can){\n cout << N/i << enld;\n return 0;\n }\n }\n }\n \n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3632, "score_of_the_acc": -0.0145, "final_rank": 2 }, { "submission_id": "aoj_2773_4471516", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[6] = {1, 0, -1, 0,1,1};\nconst int dy[6] = {0, 1, 0, -1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N;\n cin >> N;\n vector<int> A(N+1);\n for(int i=1; i<=N; i++){\n cin >> A[i];\n }\n int ans = inf;\n for(int i=1; i<=N; i++){\n if(N%i == 0){\n bool can = true;\n for(int j=1; j<=i; j++){\n int now = A[j];\n for(int k=j; k<=N; k+=i){\n if(now != A[k]){\n can = false;\n break;\n }\n }\n if(!can) break;\n }\n if(can){\n chmin(ans,i);\n }\n }\n }\n cout << N/ans << enld;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3636, "score_of_the_acc": -0.0148, "final_rank": 3 }, { "submission_id": "aoj_2773_4471488", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n vector<int> a(n);\n for(int i=0; i<n; i++){\n cin >> a[i];\n }\n int ans;\n for(int k=n; k>=1; k--){\n if(n%k != 0) continue;\n int t = n/k;\n bool ok = true;\n for(int i=0; i<n; i++){\n if(a[i] != a[i%t]){\n ok = false;\n break;\n }\n }\n if(ok){\n ans = k;\n break;\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3636, "score_of_the_acc": -0.0728, "final_rank": 6 }, { "submission_id": "aoj_2773_4471429", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[6] = {1, 0, -1, 0,1,1};\nconst int dy[6] = {0, 1, 0, -1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\nvector<int> KMP(vector<int> S){\n int l = S.size();\n vector<int> A(l+1);\n A[0] = -1;\n int j = -1;\n for(int i=0; i<l; i++){\n while(j >= 0 and S[i] != S[j]) j = A[j];\n j++;\n if(i<l and S[i+1] == S[j]) A[i+1] = A[j];\n else A[i+1] = j;\n }\n return A;\n}\n\nint gcd(int a,int b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N;\n cin >> N;\n vector<int> S(N);\n for(int i=0; i<N; i++) cin >> S[i];\n vector<int> A = KMP(S);\n int temp = N/(N-A[N]);\n cout << gcd(N,temp) << enld; \n return 0;\n}", "accuracy": 0.88, "time_ms": 10, "memory_kb": 5272, "score_of_the_acc": -0.1457, "final_rank": 15 }, { "submission_id": "aoj_2773_4471410", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[6] = {1, 0, -1, 0,1,1};\nconst int dy[6] = {0, 1, 0, -1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\nvector<int> KMP(vector<int> S){\n int l = S.size();\n vector<int> A(l+1);\n A[0] = -1;\n int j = -1;\n for(int i=0; i<l; i++){\n while(j >= 0 and S[i] != S[j]) j = A[j];\n j++;\n if(i<l and S[i+1] == S[j]) A[i+1] = A[j];\n else A[i+1] = j;\n }\n return A;\n}\n\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N;\n cin >> N;\n vector<int> S(N);\n for(int i=0; i<N; i++) cin >> S[i];\n vector<int> A = KMP(S);\n cout << N/(N-A[N]) << enld; \n return 0;\n}", "accuracy": 0.8, "time_ms": 10, "memory_kb": 5252, "score_of_the_acc": -0.1439, "final_rank": 16 } ]
aoj_2774_cpp
C: 成長する点 - Growing Point - 問題 粘菌コンピュータというものがある。 ある種の粘菌には「餌を求め、餌と餌の最短距離をつなぐ形に変形する」 という性質がある。 これを利用し、餌を「入力」、形を「出力」とみなして コンピュータとして利用することができる。 今、二次元平面上に1つの粘菌の拠点と N 個の餌が存在する。それぞれの餌には 1 から N までの異なる番号が与えられ、拠点には番号0が与えられている。 この粘菌はある餌を食べるために、その餌と最も近い拠点の最短距離を結ぶ管状に 成長し、食べた位置に新たに拠点を形成する。 新たに形成した拠点は拠点を形成する直前に食べた餌と同じ番号を持つ。 粘菌は拠点以外の場所から成長することはできない。 以降では、拠点と餌を二次元平面上の点、管状に成長した粘菌を複数の線分として考える。 すべての拠点と線分からなる構造を粘菌網と呼ぶ。 粘菌は1つの餌を食べるために次のような操作を繰り返す。 まだ食べていない餌の中で粘菌網に最も近い餌を選ぶ。そのような餌が複数存在する場合は番号が最も小さい餌を選ぶ。 選んだ餌と最も近い拠点を選ぶ。そのような拠点が複数存在する場合は、最も拠点の番号が小さいものから取る。 選んだ拠点と餌を結ぶ線分を引く。以降ではこのとき選んだ餌も拠点として扱う。 この粘菌は生きるために必要な栄養を取るのに M 個の餌を食べる必要がある。 粘菌が M 個の餌を食べるまでに引いたすべての線分の長さの合計を求めよ。 また、出力する値は0.0001以下の誤差を含んでいても良い。 以下の図では入力例2の粘菌の様子を示している。 入力形式 N M X Y px_1 py_1 ... px_n py_n 1 行目には餌の数 N ( 1 \≤ N \≤ 5,000 )、食べる餌の個数 M ( 1 \≤ M \≤ N )、番号0の拠点の座標 X , Y ( −5,000 \≤ X, Y \≤ 5,000 )が整数値で与えられる。続く N 行には番号順に餌の座標 px_i , py_i ( 1 \≤ i \≤ N )が整数値で与えられる。( −5,000 \≤ px_i, py_i \≤ 5,000 ) また、番号が異なる餌は異なる座標に存在し、それぞれの餌と番号0の拠点の座標は異なる。 出力形式 成長した距離の合計を1行で出力せよ。また、出力する値は0.0001以下の誤差を含んでいても良い。 入力例1 2 2 0 0 3 3 4 0 出力例1 7.16227766017 最初は番号1の餌と拠点の距離が $3\sqrt{2}$ と番号2の餌と拠点の距離が 4 なので 番号2の餌が選ばれる。その後番号1の餌と粘菌網との距離が 3 になり、番号1の餌が選ばれる。 入力例2 4 4 1 3 3 3 2 1 3 1 1 1 出力例2 6.2360679775 図のように餌1、2、4、3の順に粘菌は餌を食べていく 入力例3 16 15 -4077 763 -2480 2841 -2908 -1096 676 -4080 -4988 -2634 3004 -1360 -2272 1773 -4344 -3631 -355 4426 -3740 3634 -3330 2191 -3423 -2999 -3438 2281 4754 -1500 -3440 -3873 -2089 -3419 1426 2793 出力例3 25349.9626798834
[ { "submission_id": "aoj_2774_10858226", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing LL = long long; using ll = LL;\nusing PII = pair<int, int>; using pii = PII;\nusing PLL = pair<LL, LL>; using pll = PLL;\nusing VI = vector<int>; using VL = vector<LL>;\nconst ll LINF = 1e18;\nconst int INF = 1e9;\n#define FOR(i,s,t) for(int i =s; i < t;i++)\n#define SZ(a) (int)a.size()\n#define ALL(a) a.begin(),a.end()\n\ntypedef double ld;\ntypedef complex<ld> Point;\nconst ld eps = 1e-9, pi = acos(-1.0);\nnamespace std {\n\tbool operator < (const Point& lhs, const Point& rhs) {\n\t\tif (lhs.real() < rhs.real() - eps) return true;\n\t\tif (lhs.real() < rhs.real() + eps) return false;\n\t\treturn lhs.imag() < rhs.imag();\n\t}\n}\n\nclass Line {\npublic:\n\tPoint a, b;\n\tLine() :a(Point(0, 0)), b(Point(0, 0)) {}\n\tLine(Point a, Point b) :a(a), b(b) {}\n\tPoint operator[](const int _num) {\n\t\tif (_num == 0) return a;\n\t\telse if (_num == 1) return b;\n\t}\n};\n\nld dot(Point a, Point b) { return real(conj(a)*b); }\nPoint proj(Line l, Point p) {\n\tld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n\treturn l.a + t * (l.a - l.b);\n}\nbool isis_sp(Line s, Point p) {\n\treturn (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\nld dist_sp(Line s, Point p) {\n\tPoint r = proj(s, p);\n\treturn isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\nvoid solve() {\n\tint N, M, X, Y; cin >> N >> M >> X >> Y;\n\tvector<int> flag(N+1, 0);\n\tvector<Point> ps(N+1);\n\tps[0] = Point(X, Y); flag[0] = 1;\n\tfor (int i = 1; i <= N; i++) {\n\t\tint a, b; cin >> a >> b;\n\t\tps[i] = Point(a, b);\n\t}\n\n\tld ans = 0;\n\tvector<double> dist(N + 1, LINF);\n\tfor (int i = 0; i <= N; i++) {\n\t\tdist[i] = abs(ps[i] - ps[0]);\n\t}\n\tfor (int i = 0; i < M; i++) {\n\t\tld len = LINF;\n\t\tint idx = -1;\n\t\tfor (int i = 0; i <= N; i++) {\n\t\t\tif (flag[i] == 1) continue;\n\t\t\tif (len > dist[i]) {\n\t\t\t\tlen = dist[i];\n\t\t\t\tidx = i;\n\t\t\t}\n\t\t}\n\n\t\tlen = LINF;\n\t\tint pidx = -1;\n\t\tfor (int i = 0; i <= N; i++) {\n\t\t\tif (flag[i] == 1) {\n\t\t\t\tld d = abs(ps[i] - ps[idx]);\n\t\t\t\tif (len > d) {\n\t\t\t\t\tlen = d;\n\t\t\t\t\tpidx = i;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tans += abs(ps[idx] - ps[pidx]);\n\t\tflag[idx] = 1;\n\t\tLine L(ps[idx], ps[pidx]);\n\t\tfor (int i = 0; i <= N; i++) {\n\t\t\tif (flag[i] == 1) continue;\n\t\t\tdist[i] = min(dist[i], dist_sp(L, ps[i]));\n\t\t}\n\n\t}\n\tcout << fixed << setprecision(12) << ans << endl;\n}\n\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\n\tsolve();\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1110, "memory_kb": 3696, "score_of_the_acc": -0.6429, "final_rank": 9 }, { "submission_id": "aoj_2774_9640371", "code_snippet": "#include<iostream>\n#include<cmath>\n\nusing namespace std;\n#define ld long double\nconst ld EPS = 1e-8;\nconst int N = 5010;\n\nstruct Point {\n int x, y;\n\n Point (int x1 = 0, int y1 = 0) {\n x = x1, y = y1;\n }\n};\n\nstruct Vector {\n int x, y;\n\n Vector(Point a, Point b) {\n x = b.x - a.x, y = b.y - a.y;\n }\n\n ld len() {\n return sqrtl(x * x + y * y);\n }\n\n int dot_prod(Vector v1) {\n return x * v1.x + y * v1.y;\n }\n\n int cross_prod(Vector v1) {\n return x * v1.y - y * v1.x;\n }\n};\n\nld dist_point_point(Point a, Point b) {\n Vector ab(a, b);\n return ab.len();\n}\n\nld dist_edg_point(Point a, Point b, Point p) {\n Vector ab(a, b), ba(b, a), ap(a, p), bp(b, p);\n if(ab.dot_prod(ap) < 0) return ap.len();\n if(ba.dot_prod(bp) < 0) return bp.len();\n return abs(ab.cross_prod(ap) / ab.len());\n}\n\nint n, m;\nbool usd[N];\nPoint a[N];\nld ans = 0, d[N];\n\nint main() {\n#ifdef LOCAL\n freopen(\"inp.txt\", \"r\", stdin);\n freopen(\"out.txt\", \"w\", stdout);\n#endif\n cin >> n >> m >> a[0].x >> a[0].y;\n for(int i = 1; i <= n; ++i) {\n cin >> a[i].x >> a[i].y;\n d[i] = dist_point_point(a[0], a[i]);\n }\n usd[0] = true;\n for(int i = 0; i < m; ++i) {\n int opt = -1;\n for(int j = 1; j <= n; ++j) {\n if(usd[j]) continue;\n if(opt == -1 || d[j] < d[opt] - EPS) opt = j;\n }\n int opt_usd = 0;\n for(int j = 0; j <= n; ++j) {\n if(usd[j]) {\n if(dist_point_point(a[j], a[opt]) < dist_point_point(a[opt_usd], a[opt])) {\n opt_usd = j;\n }\n }\n }\n ans += dist_point_point(a[opt], a[opt_usd]);\n usd[opt] = true;\n for(int j = 1; j <= n; ++j) {\n if(!usd[j]) {\n d[j] = min(d[j], dist_edg_point(a[opt], a[opt_usd], a[j]));\n }\n }\n }\n cout.precision(11);\n cout << fixed << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 3416, "score_of_the_acc": -0.1793, "final_rank": 5 }, { "submission_id": "aoj_2774_9522006", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) { return (ull)rng() % B; }\n\n// https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all\n////////////////////////////////////////////////////////////////////////////////\ntypedef double Real;\nconst Real eps = 1e-8; // 1000 : 10^-8, 10000 : 10^-7\ninline int sgn(Real a, Real b = 0) { return (a - b < -eps) ? -1 : (a - b > eps) ? 1 : 0; }\ninline Real _sqrt(Real a) { return sqrt(max(a, (Real)0)); }\nstruct Point {\n Real x, y;\n Point() {}\n Point(Real x, Real y) : x(x), y(y) {}\n Point &operator-=(const Point &p) {\n x -= p.x;\n y -= p.y;\n return *this;\n }\n Point &operator+=(const Point &p) {\n x += p.x;\n y += p.y;\n return *this;\n }\n Point &operator*=(Real d) {\n x *= d;\n y *= d;\n return *this;\n }\n Point &operator/=(Real d) {\n x /= d;\n y /= d;\n return *this;\n }\n Point operator+(const Point &p) const {\n Point res(*this);\n return res += p;\n }\n Point operator-(const Point &p) const {\n Point res(*this);\n return res -= p;\n }\n Point operator*(Real d) const {\n Point res(*this);\n return res *= d;\n }\n Point operator/(Real d) const {\n Point res(*this);\n return res /= d;\n }\n bool operator<(const Point &p) const {\n return (sgn(x, p.x) < 0 or (sgn(x, p.x) == 0 and sgn(y, p.y) < 0));\n }\n bool operator==(const Point &p) const { return (sgn(x - p.x) == 0 and sgn(y - p.y) == 0); }\n friend istream &operator>>(istream &is, Point &p) {\n is >> p.x >> p.y;\n return (is);\n }\n Real norm() { return _sqrt(x * x + y * y); }\n Real norm2() { return (x * x + y * y); }\n Point vec() { return (*this); }\n Point unit() { return (*this) / this->norm(); } // 単位ベクトル\n Point rotate(Real theta) {\n return {x * cos(theta) - y * sin(theta), x * sin(theta) + y * cos(theta)};\n }\n Point perpendicular() { return {-y, x}; }\n Point normal() { return perpendicular().unit(); } // 法線ベクトル\n};\n\nPoint vec(Point a, Point b) { return (b - a); }\nReal dist(Point a, Point b) { return vec(a, b).norm(); }\nReal dot(Point a, Point b) { return a.x * b.x + a.y * b.y; }\nReal cross(Point a, Point b) { return a.x * b.y - a.y * b.x; }\n\n// 線分\nstruct Segment : array<Point, 2> {\n Segment() {}\n Segment(Point a, Point b) { at(0) = a, at(1) = b; }\n Point vec() { return (at(1) - at(0)); }\n Real length() { return vec().norm(); }\n friend istream &operator>>(istream &is, Segment &s) {\n is >> s[0] >> s[1];\n return (is);\n }\n};\n// 直線\nstruct Line : Segment {\n Line() {}\n Line(Point a, Point b) : Segment(a, b) {}\n Line(Segment s) : Line(s[0], s[1]) {}\n};\n\nint ccw(Point a, Point b, Point c) {\n b -= a, c -= a;\n if (sgn(cross(b, c)) == 1) return 1; // a,b,c 反時計回り\n if (sgn(cross(b, c)) == -1) return -1; // a,b,c 時計周り\n if (sgn(dot(b, c)) == -1) return 2; // c,a,b 一直線上\n if (sgn(c.norm() - b.norm()) == 1) return -2; // a,b,c 一直線上\n return 0; // a,c,b 一直線上\n}\n\n// 垂直判定\ntemplate <typename T> bool is_orthogonal(T s, T t) { return sgn(dot(s.vec(), t.vec())) == 0; }\n// 並行判定\ntemplate <typename T> bool is_parallel(T s, T t) { return sgn(cross(s.vec(), t.vec())) == 0; }\n// 同一直線判定\ntemplate <typename T> bool is_same_line(T s, T t) {\n return abs(ccw(s[0], s[1], t[0])) != 1 and abs(ccw(s[0], s[1], t[1])) != 1;\n}\n// 線分上の点判定\nbool is_on_segment(Point p, Segment l) { return ccw(l[0], l[1], p) == 0; }\n// 線分の交差判定(AOJ-2172)\nbool is_intersect(Segment s, Segment t) {\n return ccw(s[0], s[1], t[0]) * ccw(s[0], s[1], t[1]) <= 0 and\n ccw(t[0], t[1], s[0]) * ccw(t[0], t[1], s[1]) <= 0;\n}\n// 2直線の交点(AOJ-2596)\npair<bool, Point> line_intersection(Line s, Line t) {\n if (is_same_line(s, t)) return {true, s[0]};\n else if (is_parallel(s, t)) return {false, Point()};\n else return {true, s[0] + s.vec() * cross(t[0] - s[0], t.vec()) / cross(s.vec(), t.vec())};\n}\n// 2線分の交点\npair<bool, Point> segment_intersection(Segment s, Segment t) {\n if (is_same_line(s, t)) {\n if (is_on_segment(s[0], t)) return {true, s[0]};\n else if (is_on_segment(s[1], t)) return {true, s[1]};\n else if (is_on_segment(t[0], s)) return {true, t[0]};\n else return {false, Point()};\n }\n if (!is_intersect(s, t)) return {false, Point()};\n else return line_intersection(Line(s), Line(t));\n}\n// 点と直線の距離\nReal point_line_distance(Point p, Line l) { return abs(cross(p - l[0], l.vec())) / l.length(); }\n// 点と線分の距離\nReal point_segment_distance(Point p, Segment l) {\n if (sgn(dot(p - l[0], l.vec())) == -1) return dist(p, l[0]);\n else if (sgn(dot(p - l[1], l.vec())) == 1) return dist(p, l[1]);\n else return point_line_distance(p, l);\n}\n// 線分と線分の距離(AOJ-1157)\nReal segment_segment_distance(Segment s, Segment t) {\n if (is_intersect(s, t)) return 0;\n double res = point_segment_distance(s[0], t);\n res = min(res, point_segment_distance(s[1], t));\n res = min(res, point_segment_distance(t[0], s));\n res = min(res, point_segment_distance(t[1], s));\n return res;\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n, m;\n cin >> n >> m;\n vector<Point> p(n + 1);\n vector<double> dist(n + 1);\n vector<bool> used(n + 1);\n for (int i = 0; i <= n; ++i) {\n cin >> p[i];\n }\n used[0] = true;\n for (int i = 0; i <= n; ++i) {\n dist[i] = (p[0] - p[i]).norm();\n }\n double res = 0;\n for (int i = 0; i < m; ++i) {\n int idx = -1;\n for (int j = 0; j <= n; ++j) {\n if (used[j]) continue;\n if (idx == -1) idx = j;\n if (dist[j] < dist[idx]) idx = j;\n }\n int base = -1;\n double cost = 1e9;\n for (int j = 0; j <= n; ++j) {\n if (!used[j]) continue;\n double d = (p[j] - p[idx]).norm();\n if (d < cost) {\n cost = d;\n base = j;\n }\n }\n res += cost;\n used[idx] = true;\n Segment s = Segment(p[base], p[idx]);\n for (int j = 0; j <= n; ++j) {\n dist[j] = min(dist[j], point_segment_distance(p[j], s));\n }\n }\n printf(\"%.9f\\n\", res);\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 3664, "score_of_the_acc": -0.0843, "final_rank": 2 }, { "submission_id": "aoj_2774_5533669", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// arg(x) : argment,[-PI,PI]\nusing CP = complex<long double>;\n#define X real()\n#define Y imag()\nconst long double PI = acos(-1.0L);\nconst long double EPS = 1e-10;\nbool operator==(const CP &l, const CP &r) { return norm(l - r) <= EPS; }\nstruct Circle {\n CP o;\n long double r;\n Circle(long double _x = 0.0L, long double _y = 0.0L, long double _r = 0.0L)\n : o(CP(_x, _y)), r(_r) {}\n Circle(CP _o, long double _r = 0.0) : o(_o), r(_r) {}\n bool operator<(const Circle &cr) const { return r < cr.r; }\n};\n\nstruct Line {\n CP s, t;\n Line(long double sx = 0.0L, long double sy = 0.0L, long double tx = 0.0L,\n long double ty = 0.0L)\n : s(CP(sx, sy)), t(CP(tx, ty)) {}\n Line(CP _s, CP _t) : s(_s), t(_t) {}\n};\n\n// cos a\nlong double costh(const long double &a, const long double &b,\n const long double &c) {\n return (b * b - a * a + c * c) / (2.0L * b * c);\n}\n\n// dot(a,b) = |a||b|cos x\nlong double dot(const CP &a, const CP &b) { return (conj(a) * b).X; }\n// cross(a,b) : area of parallelogram\n// sign : a-> b ,counter clockwise? + : -\nlong double cross(const CP &a, const CP &b) { return (conj(a) * b).Y; }\nlong double corner(const CP &a, const CP &b) {\n //[0,PI]\n return acos(dot(a, b) / (abs(a) * abs(b)));\n}\n\nCP projectionLP(const CP &s, const CP &t, const CP &p) {\n if (s == t) return s;\n CP base = t - s;\n long double r = dot(p - s, base) / norm(base);\n return s + base * r;\n}\nCP projectionLP(const Line &l, const CP &p) {\n return projectionLP(l.s, l.t, p);\n}\n\nCP reflectionLP(const CP &s, const CP &t, const CP &p) {\n CP tmp = (projectionLP(s, t, p) - p);\n tmp *= 2;\n return p + tmp;\n}\nCP reflectionLP(const Line &l, const CP &p) {\n return reflectionLP(l.s, l.t, p);\n}\n\nint calc_clockwiseSP(const CP &s, CP t, CP p) {\n t -= s;\n p -= s;\n if (cross(t, p) > EPS) return 1; // \"COUNTER_CLOCKWISE\"\n if (cross(t, p) < -EPS) return -1; //\"CLOCK_WISE\"\n if (dot(t, p) < 0) return 2; // \"ONLINE_BACK\"\n if (norm(t) < norm(p)) return -2; // \"ONLINE_FRONT\"\n return 0; // \"ON_SEGMENT\"\n}\nint calc_clockwiseSP(const Line &l, const CP &p) {\n return calc_clockwiseSP(l.s, l.t, p);\n}\n\nint parallel_orthogonalLL(const CP &s, CP t, const CP &a, CP b) {\n t -= s;\n b -= a;\n if (abs(cross(t, b)) <= EPS) return 2; // \"parallel\"\n if (abs(dot(t, b)) <= EPS) return 1; // \"orthogonal\"\n return 0;\n}\nint parallel_orthogonalLL(const Line &ll, const Line &lr) {\n return parallel_orthogonalLL(ll.s, ll.t, lr.s, lr.t);\n}\n\nCP intersectionLL(const CP &a, const CP &b, const CP &c, const CP &d) {\n return a + (b - a) * (cross(d - c, c - a) / cross(d - c, b - a));\n}\nCP intersectionLL(const Line &ll, const Line &lr) {\n return intersectionLL(ll.s, ll.t, lr.s, lr.t);\n}\n\nbool on_segSP(const CP &s, const CP &t, const CP &p) {\n // if not use end point, dot(s - p, t - p) < 0\n return abs(cross(s - p, t - p)) <= EPS && dot(s - p, t - p) <= 0;\n}\nbool on_segSP(const Line &l, const CP &p) { return on_segSP(l.s, l.t, p); }\n\n// crossing segments? (a,b) and (c,d)\nbool iscrossSS(const CP &a, const CP &b, const CP &c, const CP &d) {\n // parallel\n if (abs(cross(a - b, c - d)) <= EPS) {\n return on_segSP(a, b, c) || on_segSP(a, b, d) || on_segSP(c, d, a) ||\n on_segSP(c, d, b);\n }\n CP isp = intersectionLL(a, b, c, d);\n return on_segSP(a, b, isp) && on_segSP(c, d, isp);\n}\nbool iscrossSS(const Line &ll, const Line &lr) {\n return iscrossSS(ll.s, ll.t, lr.s, lr.t);\n}\n\nlong double distLP(const CP &s, const CP &t, const CP &p) {\n return abs(cross(t - s, p - s) / abs(t - s));\n}\nlong double distLP(const Line &l, const CP &p) { return distLP(l.s, l.t, p); }\n\nlong double distSP(const CP &s, const CP &t, const CP &p) {\n if (dot(t - s, p - s) < 0) return abs(p - s);\n if (dot(s - t, p - t) < 0) return abs(p - t);\n return distLP(s, t, p);\n}\nlong double distSP(const Line &l, const CP &p) { return distSP(l.s, l.t, p); }\n\nusing P = pair<long double, int>;\n\nint n, m;\nvector<CP> v;\n\nlong double solve();\n\nint main() {\n cin >> n >> m, ++n;\n for (int i = 0; i < n; ++i) {\n int x, y;\n cin >> x >> y;\n v.emplace_back(x, y);\n }\n cout << fixed << setprecision(10);\n cout << solve() << endl;\n return 0;\n}\n\nlong double solve() {\n vector<long double> memo(n, 1e10);\n for (int i = 1; i < n; ++i) memo[i] = abs(v[i] - v[0]);\n memo[0] = -1;\n long double res = 0;\n while (m--) {\n long double nd = 1e10;\n int now = 0;\n for (int i = 0; i < n; ++i)\n if (memo[i] > 0 && memo[i] < nd) now = i, nd = memo[i];\n int from = 0;\n nd = 1e10;\n for (int i = 0; i < n; ++i)\n if (memo[i] < 0 && abs(v[now] - v[i]) < nd)\n from = i, nd = abs(v[now] - v[i]);\n res += nd;\n memo[now] = -1;\n for (int i = 0; i < n; ++i)\n if (memo[i] > 0) memo[i] = min(memo[i], distSP(v[from], v[now], v[i]));\n }\n return res;\n}", "accuracy": 1, "time_ms": 1350, "memory_kb": 3744, "score_of_the_acc": -0.7982, "final_rank": 12 }, { "submission_id": "aoj_2774_5532964", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// arg(x) : argment,[-PI,PI]\nusing CP = complex<long double>;\n#define X real()\n#define Y imag()\nconst long double PI = acos(-1.0L);\nconst long double EPS = 1e-10;\nbool operator==(const CP &l, const CP &r) { return norm(l - r) <= EPS; }\nstruct Circle {\n CP o;\n long double r;\n Circle(long double _x = 0.0L, long double _y = 0.0L, long double _r = 0.0L)\n : o(CP(_x, _y)), r(_r) {}\n Circle(CP _o, long double _r = 0.0) : o(_o), r(_r) {}\n bool operator<(const Circle &cr) const { return r < cr.r; }\n};\n\nstruct Line {\n CP s, t;\n Line(long double sx = 0.0L, long double sy = 0.0L, long double tx = 0.0L,\n long double ty = 0.0L)\n : s(CP(sx, sy)), t(CP(tx, ty)) {}\n Line(CP _s, CP _t) : s(_s), t(_t) {}\n};\n\n// cos a\nlong double costh(const long double &a, const long double &b,\n const long double &c) {\n return (b * b - a * a + c * c) / (2.0L * b * c);\n}\n\n// dot(a,b) = |a||b|cos x\nlong double dot(const CP &a, const CP &b) { return (conj(a) * b).X; }\n// cross(a,b) : area of parallelogram\n// sign : a-> b ,counter clockwise? + : -\nlong double cross(const CP &a, const CP &b) { return (conj(a) * b).Y; }\nlong double corner(const CP &a, const CP &b) {\n //[0,PI]\n return acos(dot(a, b) / (abs(a) * abs(b)));\n}\n\nCP projectionLP(const CP &s, const CP &t, const CP &p) {\n if (s == t) return s;\n CP base = t - s;\n long double r = dot(p - s, base) / norm(base);\n return s + base * r;\n}\nCP projectionLP(const Line &l, const CP &p) {\n return projectionLP(l.s, l.t, p);\n}\n\nCP reflectionLP(const CP &s, const CP &t, const CP &p) {\n CP tmp = (projectionLP(s, t, p) - p);\n tmp *= 2;\n return p + tmp;\n}\nCP reflectionLP(const Line &l, const CP &p) {\n return reflectionLP(l.s, l.t, p);\n}\n\nint calc_clockwiseSP(const CP &s, CP t, CP p) {\n t -= s;\n p -= s;\n if (cross(t, p) > EPS) return 1; // \"COUNTER_CLOCKWISE\"\n if (cross(t, p) < -EPS) return -1; //\"CLOCK_WISE\"\n if (dot(t, p) < 0) return 2; // \"ONLINE_BACK\"\n if (norm(t) < norm(p)) return -2; // \"ONLINE_FRONT\"\n return 0; // \"ON_SEGMENT\"\n}\nint calc_clockwiseSP(const Line &l, const CP &p) {\n return calc_clockwiseSP(l.s, l.t, p);\n}\n\nint parallel_orthogonalLL(const CP &s, CP t, const CP &a, CP b) {\n t -= s;\n b -= a;\n if (abs(cross(t, b)) <= EPS) return 2; // \"parallel\"\n if (abs(dot(t, b)) <= EPS) return 1; // \"orthogonal\"\n return 0;\n}\nint parallel_orthogonalLL(const Line &ll, const Line &lr) {\n return parallel_orthogonalLL(ll.s, ll.t, lr.s, lr.t);\n}\n\nCP intersectionLL(const CP &a, const CP &b, const CP &c, const CP &d) {\n return a + (b - a) * (cross(d - c, c - a) / cross(d - c, b - a));\n}\nCP intersectionLL(const Line &ll, const Line &lr) {\n return intersectionLL(ll.s, ll.t, lr.s, lr.t);\n}\n\nbool on_segSP(const CP &s, const CP &t, const CP &p) {\n // if not use end point, dot(s - p, t - p) < 0\n return abs(cross(s - p, t - p)) <= EPS && dot(s - p, t - p) <= 0;\n}\nbool on_segSP(const Line &l, const CP &p) { return on_segSP(l.s, l.t, p); }\n\n// crossing segments? (a,b) and (c,d)\nbool iscrossSS(const CP &a, const CP &b, const CP &c, const CP &d) {\n // parallel\n if (abs(cross(a - b, c - d)) <= EPS) {\n return on_segSP(a, b, c) || on_segSP(a, b, d) || on_segSP(c, d, a) ||\n on_segSP(c, d, b);\n }\n CP isp = intersectionLL(a, b, c, d);\n return on_segSP(a, b, isp) && on_segSP(c, d, isp);\n}\nbool iscrossSS(const Line &ll, const Line &lr) {\n return iscrossSS(ll.s, ll.t, lr.s, lr.t);\n}\n\nlong double distLP(const CP &s, const CP &t, const CP &p) {\n return abs(cross(t - s, p - s) / abs(t - s));\n}\nlong double distLP(const Line &l, const CP &p) { return distLP(l.s, l.t, p); }\n\nlong double distSP(const CP &s, const CP &t, const CP &p) {\n if (dot(t - s, p - s) < 0) return abs(p - s);\n if (dot(s - t, p - t) < 0) return abs(p - t);\n return distLP(s, t, p);\n}\nlong double distSP(const Line &l, const CP &p) { return distSP(l.s, l.t, p); }\n\nusing P = pair<long double, int>;\n\nint n, m;\nvector<CP> v;\n\nlong double solve();\n\nint main() {\n cin >> n >> m, ++n;\n for (int i = 0; i < n; ++i) {\n int x, y;\n cin >> x >> y;\n v.emplace_back(x, y);\n }\n cout << fixed << setprecision(10);\n cout << solve() << endl;\n return 0;\n}\n\nlong double solve() {\n // vector<vector<long double>> dist(n, vector<long double>(n, 0));\n vector<long double> memo(n, 1e10);\n {\n // for (int i = 0; i < n; ++i)\n // for (int j = 0; j < n; ++j) dist[i][j] = abs(v[i] - v[j]);\n for (int i = 1; i < n; ++i) memo[i] = abs(v[i] - v[0]);\n memo[0] = -1;\n }\n long double res = 0;\n while (m--) {\n long double nd = 1e10;\n int now = 0;\n for (int i = 0; i < n; ++i)\n if (memo[i] > 0 && memo[i] < nd) now = i, nd = memo[i];\n int from = 0;\n nd = 1e10;\n for (int i = 0; i < n; ++i)\n if (memo[i] < 0 && abs(v[now] - v[i]) < nd)\n from = i, nd = abs(v[now] - v[i]);\n res += nd;\n memo[now] = -1;\n for (int i = 0; i < n; ++i)\n if (memo[i] > 0) memo[i] = min(memo[i], distSP(v[from], v[now], v[i]));\n }\n return res;\n}", "accuracy": 1, "time_ms": 1350, "memory_kb": 3744, "score_of_the_acc": -0.7982, "final_rank": 12 }, { "submission_id": "aoj_2774_5532551", "code_snippet": "#line 1 \"c.cpp\"\n#pragma region Macros\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define FOR(i, a, b) for(int i = (a); i < int(b); i++)\n#define REP(i, n) FOR(i, 0, n)\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\nvoid Case(int i) { cout << \"Case #\" << i << \": \"; }\n#pragma endregion Macros\n\n#line 1 \"/home/siro53/kyo-pro/compro_library/geometry/geometry.hpp\"\nnamespace geometry {\n // Point : 複素数型を位置ベクトルとして扱う\n // 実軸(real)をx軸、挙軸(imag)をy軸として見る\n using D = double;\n using Point = complex<D>;\n const D EPS = 1e-7;\n const D PI = acosl(-1);\n\n inline bool equal(const D &a, const D &b) { return fabs(a - b) < EPS; }\n\n // 単位ベクトル(unit vector)を求める\n Point unitVector(const Point &a) { return a / abs(a); }\n\n // 法線ベクトル(normal vector)を求める\n // 90度回転した単位ベクトルをかける\n // -90度がよければPoint(0, -1)をかける\n Point normalVector(const Point &a) { return a * Point(0, 1); }\n\n // 内積(dot product) : a・b = |a||b|cosΘ\n D dot(const Point &a, const Point &b) {\n return (a.real() * b.real() + a.imag() * b.imag());\n }\n\n // 外積(cross product) : a×b = |a||b|sinΘ\n D cross(const Point &a, const Point &b) {\n return (a.real() * b.imag() - a.imag() * b.real());\n }\n\n // 点pを反時計回りにtheta度回転\n // thetaはラジアン!!!\n Point rotate(const Point &p, const D &theta) {\n return Point(cos(theta) * p.real() - sin(theta) * p.imag(),\n sin(theta) * p.real() + cos(theta) * p.imag());\n }\n\n // ラジアン->度\n D radianToDegree(const D &radian) { return radian * 180.0 / PI; }\n\n // 度->ラジアン\n D degreeToRadian(const D &degree) { return degree * PI / 180.0; }\n\n // 点の回転方向\n // 点a, b, cの位置関係について(aが基準点)\n int ccw(const Point &a, Point b, Point c) {\n b -= a, c -= a;\n // 点a, b, c が\n // 反時計回りの時、\n if(cross(b, c) > EPS) return 1;\n // 時計回りの時、\n if(cross(b, c) < -EPS) return -1;\n // c, a, bがこの順番で同一直線上にある時、\n if(dot(b, c) < 0) return 2;\n // a, b, cがこの順番で同一直線上にある場合、\n if(norm(b) < norm(c)) return -2;\n // cが線分ab上にある場合、\n return 0;\n }\n\n // Line : 直線を表す構造体\n // b - a で直線・線分を表せる\n struct Line {\n Point a, b;\n Line() = default;\n Line(Point a, Point b) : a(a), b(b) {}\n // Ax+By=C\n Line(D A, D B, D C) {\n if(equal(A, 0)) {\n a = Point(0, C / B), b = Point(1, C / B);\n } else if(equal(B, 0)) {\n b = Point(C / A, 0), b = Point(C / A, 1);\n } else {\n a = Point(0, C / B), b = Point(C / A, 0);\n }\n }\n };\n\n // Segment : 線分を表す構造体\n // Lineと同じ\n struct Segment : Line {\n Segment() = default;\n\n Segment(Point a, Point b) : Line(a, b) {}\n };\n\n // Circle : 円を表す構造体\n // pが中心の位置ベクトル、rは半径\n struct Circle {\n Point p;\n D r;\n\n Circle() = default;\n\n Circle(Point p, D r) : p(p), r(r) {}\n };\n\n // 2直線の直交判定 : a⊥b <=> dot(a, b) = 0\n bool isOrthogonal(const Line &a, const Line &b) {\n return equal(dot(a.b - a.a, b.b - b.a), 0);\n }\n // 2直線の平行判定 : a//b <=> cross(a, b) = 0\n bool isParallel(const Line &a, const Line &b) {\n return equal(cross(a.b - a.a, b.b - b.a), 0);\n }\n\n // 点cが直線ab上にあるか\n bool isPointOnLine(const Point &a, const Point &b, const Point &c) {\n return isParallel(Line(a, b), Line(a, c));\n }\n\n // 点cが\"線分\"ab上にあるか\n bool isPointOnSegment(const Point &a, const Point &b, const Point &c) {\n // |a-c| + |c-b| <= |a-b| なら線分上\n return (abs(a - c) + abs(c - b) < abs(a - b) + EPS);\n }\n\n // 直線lと点pの距離を求める\n D distanceBetweenLineAndPoint(const Line &l, const Point &p) {\n return abs(cross(l.b - l.a, p - l.a)) / abs(l.b - l.a);\n }\n\n // 線分lと点pの距離を求める\n // 定義:点pから「線分lのどこか」への最短距離\n D distanceBetweenSegmentAndPoint(const Segment &l, const Point &p) {\n if(dot(l.b - l.a, p - l.a) < EPS) return abs(p - l.a);\n if(dot(l.a - l.b, p - l.b) < EPS) return abs(p - l.b);\n return abs(cross(l.b - l.a, p - l.a)) / abs(l.b - l.a);\n }\n\n // 直線s, tの交点の計算\n Point crossPoint(const Line &s, const Line &t) {\n D d1 = cross(s.b - s.a, t.b - t.a);\n D d2 = cross(s.b - s.a, s.b - t.a);\n if(equal(abs(d1), 0) && equal(abs(d2), 0)) return t.a;\n return t.a + (t.b - t.a) * (d2 / d1);\n }\n\n // 線分s, tの交点の計算\n Point crossPoint(const Segment &s, const Segment &t) {\n return crossPoint(Line(s), Line(t));\n }\n\n // 線分sと線分tが交差しているかどうか\n // bound:線分の端点を含むか\n bool isIntersect(const Segment &s, const Segment &t, bool bound) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) < bound &&\n ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) < bound;\n }\n\n // 線分sとtの距離\n D distanceBetweenSegments(const Segment &s, const Segment &t) {\n if(isIntersect(s, t, 1)) return (D)(0);\n D ans = distanceBetweenSegmentAndPoint(s, t.a);\n chmin(ans, distanceBetweenSegmentAndPoint(s, t.b));\n chmin(ans, distanceBetweenSegmentAndPoint(t, s.a));\n chmin(ans, distanceBetweenSegmentAndPoint(t, s.b));\n return ans;\n }\n\n // 射影(projection)\n // 直線(線分)lに点pから引いた垂線の足を求める\n Point projection(const Line &l, const Point &p) {\n D t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n }\n\n Point projection(const Segment &l, const Point &p) {\n D t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n }\n\n // 反射(reflection)\n // 直線lを対称軸として点pと線対称の位置にある点を求める\n Point reflection(const Line &l, const Point &p) {\n return p + (projection(l, p) - p) * (D)2.0;\n }\n\n // 2つの円の交差判定\n // 返り値は共通接線の数\n int isIntersect(const Circle &c1, const Circle &c2) {\n D d = abs(c1.p - c2.p);\n // 2つの円が離れている場合\n if(d > c1.r + c2.r + EPS) return 4;\n // 外接している場合\n if(equal(d, c1.r + c2.r)) return 3;\n // 内接している場合\n if(equal(d, abs(c1.r - c2.r))) return 1;\n // 内包している場合\n if(d < abs(c1.r - c2.r) - EPS) return 0;\n return 2;\n }\n\n // 2つの円の交点\n vector<Point> crossPoint(const Circle &c1, const Circle &c2) {\n vector<Point> res;\n int mode = isIntersect(c1, c2);\n // 2つの中心の距離\n D d = abs(c1.p - c2.p);\n // 2円が離れている場合\n if(mode == 4) return res;\n // 1つの円がもう1つの円に内包されている場合\n if(mode == 0) return res;\n // 2円が外接する場合\n if(mode == 3) {\n D t = c1.r / (c1.r + c2.r);\n res.emplace_back(c1.p + (c2.p - c1.p) * t);\n return res;\n }\n // 内接している場合\n if(mode == 1) {\n if(c2.r < c1.r - EPS) {\n res.emplace_back(c1.p + (c2.p - c1.p) * (c1.r / d));\n } else {\n res.emplace_back(c2.p + (c1.p - c2.p) * (c2.r / d));\n }\n return res;\n }\n // 2円が重なる場合\n D rc1 = (c1.r * c1.r + d * d - c2.r * c2.r) / (2 * d);\n D rs1 = sqrt(c1.r * c1.r - rc1 * rc1);\n if(c1.r - abs(rc1) < EPS) rs1 = 0;\n Point e12 = (c2.p - c1.p) / abs(c2.p - c1.p);\n res.emplace_back(c1.p + rc1 * e12 + rs1 * e12 * Point(0, 1));\n res.emplace_back(c1.p + rc1 * e12 + rs1 * e12 * Point(0, -1));\n return res;\n }\n\n // 点pが円cの内部(円周上も含む)に入っているかどうか\n bool isInCircle(const Circle &c, const Point &p) {\n D d = abs(c.p - p);\n return (equal(d, c.r) || d < c.r - EPS);\n }\n\n // 円cと直線lの交点\n vector<Point> crossPoint(const Circle &c, const Line &l) {\n vector<Point> res;\n D d = distanceBetweenLineAndPoint(l, c.p);\n // 交点を持たない\n if(d > c.r + EPS) return res;\n // 接する\n Point h = projection(l, c.p);\n if(equal(d, c.r)) {\n res.emplace_back(h);\n return res;\n }\n Point e = unitVector(l.b - l.a);\n D ph = sqrt(c.r * c.r - d * d);\n res.emplace_back(h - e * ph);\n res.emplace_back(h + e * ph);\n return res;\n }\n\n // 点pを通る円cの接線\n // 2本あるので、接点のみを返す\n vector<Point> tangentToCircle(const Point &p, const Circle &c) {\n return crossPoint(c, Circle(p, sqrt(norm(c.p - p) - c.r * c.r)));\n }\n\n // 円の共通接線\n vector<Line> tangent(const Circle &a, const Circle &b) {\n vector<Line> ret;\n // 2円の中心間の距離\n D g = abs(a.p - b.p);\n // 円が内包されている場合\n if(equal(g, 0)) return ret;\n Point u = unitVector(b.p - a.p);\n Point v = rotate(u, PI / 2);\n for(int s : {-1, 1}) {\n D h = (a.r + b.r * s) / g;\n if(equal(h * h, 1)) {\n ret.emplace_back(a.p + (h > 0 ? u : -u) * a.r,\n a.p + (h > 0 ? u : -u) * a.r + v);\n\n } else if(1 - h * h > 0) {\n Point U = u * h, V = v * sqrt(1 - h * h);\n ret.emplace_back(a.p + (U + V) * a.r,\n b.p - (U + V) * (b.r * s));\n ret.emplace_back(a.p + (U - V) * a.r,\n b.p - (U - V) * (b.r * s));\n }\n }\n return ret;\n }\n\n // 多角形の面積を求める\n D PolygonArea(const vector<Point> &p) {\n D res = 0;\n int n = p.size();\n for(int i = 0; i < n - 1; i++) res += cross(p[i], p[i + 1]);\n res += cross(p[n - 1], p[0]);\n return res * 0.5;\n }\n\n // 凸多角形かどうか\n bool isConvex(const vector<Point> &p) {\n int n = p.size();\n int now, pre, nxt;\n for(int i = 0; i < n; i++) {\n pre = (i - 1 + n) % n;\n nxt = (i + 1) % n;\n now = i;\n if(ccw(p[pre], p[now], p[nxt]) == -1) return false;\n }\n return true;\n }\n\n // 凸包 O(NlogN)\n vector<Point> ConvexHull(vector<Point> &p) {\n int n = (int)p.size(), k = 0;\n sort(ALL(p), [](const Point &a, const Point &b) {\n return (real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b));\n });\n vector<Point> ch(2 * n);\n // 一直線上の3点を含める -> (< -EPS)\n // 含め無い -> (< EPS)\n for(int i = 0; i < n; ch[k++] = p[i++]) { // lower\n while(k >= 2 &&\n cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS)\n --k;\n }\n for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) { // upper\n while(k >= t &&\n cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS)\n --k;\n }\n ch.resize(k - 1);\n return ch;\n }\n\n // 多角形gに点pが含まれているか?\n // 含まれる:2, 辺上にある:1, 含まれない:0\n int isContained(const vector<Point> &g, const Point &p) {\n bool in = false;\n int n = (int)g.size();\n for(int i = 0; i < n; i++) {\n Point a = g[i] - p, b = g[(i + 1) % n] - p;\n if(imag(a) > imag(b)) swap(a, b);\n if(imag(a) <= EPS && EPS < imag(b) && cross(a, b) < -EPS) in = !in;\n if(cross(a, b) == 0 && dot(a, b) <= 0) return 1;\n }\n return (in ? 2 : 0);\n }\n\n} // namespace geometry\n#line 70 \"c.cpp\"\nusing namespace geometry;\n\nusing Data = pair<D, int>;\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<Point> p(N+1); \n REP(i, N+1) {\n int x, y;\n cin >> x >> y;\n p[i] = Point(x, y);\n }\n\n D ans = 0;\n set<Data> unused; // まだ追加してない頂点\n set<int> used; // すでに追加した頂点\n REP(i, N) unused.emplace(abs(p[0] - p[i+1]), i+1);\n used.insert(0);\n\n REP(_, M) {\n // 次の餌を選ぶ\n auto [nxt_d, nxt_id] = *unused.begin();\n // 餌と最も近い拠点を求める\n int min_kyoten = -1;\n D mn = LLINF;\n for(int id : used) if(chmin(mn, abs(p[nxt_id] - p[id]))) min_kyoten = id;\n ans += mn;\n Segment seg(p[nxt_id], p[min_kyoten]);\n // まだ追加してない頂点の最短距離を更新\n set<Data> newse;\n for(auto& [d, id] : unused) {\n if(id == nxt_id) continue;\n D nd = min(d, distanceBetweenSegmentAndPoint(seg, p[id]));\n newse.emplace(nd, id);\n }\n unused = newse;\n used.insert(nxt_id);\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 1690, "memory_kb": 4268, "score_of_the_acc": -1.0322, "final_rank": 15 }, { "submission_id": "aoj_2774_5532524", "code_snippet": "#line 2 \"cpplib/util/template.hpp\"\n/**\n * These codes are licensed under CC0.\n * http://creativecommons.org/publicdomain/zero/1.0/deed.ja\n */\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma GCC target(\"avx2\")\n#include<bits/stdc++.h>\nusing namespace std;\nstruct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;\ntypedef long long lint;\n#define INF (1LL<<60)\n#define IINF (1<<30)\n#define EPS (1e-10)\n#define endl ('\\n')\ntypedef vector<lint> vec;\ntypedef vector<vector<lint>> mat;\ntypedef vector<vector<vector<lint>>> mat3;\ntypedef vector<string> svec;\ntypedef vector<vector<string>> smat;\ntemplate<typename T>using V=vector<T>;\ntemplate<typename T>using VV=V<V<T>>;\ntemplate<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?\" \":\"\")<<i;f=1;}cout<<endl;}\ntemplate<typename T>inline void output2(T t){for(auto i:t)output(i);}\ntemplate<typename T>inline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?\" \":\"\")<<i;f=1;}cerr<<endl;}\ntemplate<typename T>inline void debug2(T t){for(auto i:t)debug(i);}\n#define loop(n) for(long long _=0;_<(long long)(n);++_)\n#define _overload4(_1,_2,_3,_4,name,...) name\n#define __rep(i,a) repi(i,0,a,1)\n#define _rep(i,a,b) repi(i,a,b,1)\n#define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c)\n#define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__)\n#define _overload3_rev(_1,_2,_3,name,...) name\n#define _rep_rev(i,a) repi_rev(i,0,a)\n#define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i)\n#define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__)\n\n// #define rep(i,...) for(auto i:range(__VA_ARGS__)) \n// #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))\n// #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)\n// #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)\n// #define irep(i) for(lint i=0;;++i)\n// inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}\n// inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;}\n// inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}\n// template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}\n#define all(n) begin(n),end(n)\ntemplate<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}\ntemplate<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}\nconst vector<lint> dx={1,0,-1,0,1,1,-1,-1};\nconst vector<lint> dy={0,1,0,-1,1,-1,1,-1};\n#define SUM(v) accumulate(all(v),0LL)\n#if __cplusplus>=201703L\n template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));}\n#endif\n#define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__}))\n#define bit(n,a) ((n>>a)&1)\nvector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret.push_back(e);ret.back().push_back(i);}return ret;}\nusing graph=vector<vector<int>>;\ntemplate<typename T>using graph_w=vector<vector<pair<int,T>>>;\ntemplate<typename T,typename E>ostream& operator<<(ostream& out,pair<T,E>v){out<<\"(\"<<v.first<<\",\"<<v.second<<\")\";return out;}\n#if __cplusplus>=201703L\n constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;}\n#endif\n\ntemplate<typename T,typename E>pair<T,E>& operator+=(pair<T,E>&s,const pair<T,E>&t){s.first+=t.first;s.second+=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E>& operator-=(pair<T,E>&s,const pair<T,E>&t){s.first-=t.first;s.second-=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E> operator+(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res+=t;}\ntemplate<typename T,typename E>pair<T,E> operator-(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res-=t;}\n#define BEGIN_STACK_EXTEND(size) void * stack_extend_memory_ = malloc(size);void * stack_extend_origin_memory_;char * stack_extend_dummy_memory_ = (char*)alloca((1+(int)(((long long)stack_extend_memory_)&127))*16);*stack_extend_dummy_memory_ = 0;asm volatile(\"mov %%rsp, %%rbx\\nmov %%rax, %%rsp\":\"=b\"(stack_extend_origin_memory_):\"a\"((char*)stack_extend_memory_+(size)-1024));\n#define END_STACK_EXTEND asm volatile(\"mov %%rax, %%rsp\"::\"a\"(stack_extend_origin_memory_));free(stack_extend_memory_);\n#line 2 \"code.cpp\"\n\nint main(){\n lint n,m,x,y;\n cin>>n>>m>>x>>y;\n vec px(n),py(n);\n rep(i,n){\n cin>>px[i]>>py[i];\n }\n px.emplace_back(x);\n py.emplace_back(y);\n vector<pair<__int128_t,__int128_t>>score(n+1,make_pair(INF,1));\n set<lint> s;\n s.emplace(n);\n auto f=[&](lint i,lint j)->lint{\n return (px[j]-px[i])*(px[j]-px[i])+(py[j]-py[i])*(py[j]-py[i]);\n };\n auto g=[&](lint i,lint j,lint k)->pair<__int128_t,__int128_t>{\n lint a=py[i]-py[j];\n lint b=-(px[i]-px[j]);\n lint c=-(a*px[i]+b*py[i]);\n pair<lint,lint> tmp=make_pair((a*px[k]+b*py[k]+c)*(a*px[k]+b*py[k]+c),(a*a+b*b));\n if((px[j]-px[i])*(px[k]-px[i])+(py[j]-py[i])*(py[k]-py[i])>=0\n && (px[i]-px[j])*(px[k]-px[j])+(py[i]-py[j])*(py[k]-py[j])>=0\n )return tmp;\n else return min(make_pair(f(i,k),1LL),make_pair(f(j,k),1LL));\n };\n long double ans=0;\n auto chmin=[&](pair<__int128_t,__int128_t>&s,const pair<__int128_t,__int128_t>&t)->bool{\n if(s.first*t.second>t.first*s.second){\n s=t;\n return 1;\n }\n return 0;\n };\n rep(i,n){\n chmin(score[i],make_pair(f(i,n),1LL));\n }\n while(m--){\n pair<__int128_t,__int128_t> mn2=make_pair(INF,1LL);\n lint k=0;\n rep(i,n){\n if(chmin(mn2,score[i])){\n k=i;\n }\n }\n pair<__int128_t,__int128_t> mn=make_pair(INF,1LL);\n lint idx=0;\n for(auto j:s){\n if(chmin(mn,make_pair(f(j,k),1LL))){\n idx=j;\n }\n }\n ans+=sqrtl(f(k,idx));\n s.emplace(k);\n score[k]=make_pair(INF,1LL);\n rep(i,n){\n if(!s.count(i)){\n chmin(score[i],g(k,idx,i));\n }\n }\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 1330, "memory_kb": 3856, "score_of_the_acc": -0.7888, "final_rank": 11 }, { "submission_id": "aoj_2774_5532489", "code_snippet": "#line 2 \"cpplib/util/template.hpp\"\n/**\n * These codes are licensed under CC0.\n * http://creativecommons.org/publicdomain/zero/1.0/deed.ja\n */\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma GCC target(\"avx2\")\n#include<bits/stdc++.h>\nusing namespace std;\nstruct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;\ntypedef long long lint;\n#define INF (1LL<<60)\n#define IINF (1<<30)\n#define EPS (1e-10)\n#define endl ('\\n')\ntypedef vector<lint> vec;\ntypedef vector<vector<lint>> mat;\ntypedef vector<vector<vector<lint>>> mat3;\ntypedef vector<string> svec;\ntypedef vector<vector<string>> smat;\ntemplate<typename T>using V=vector<T>;\ntemplate<typename T>using VV=V<V<T>>;\ntemplate<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?\" \":\"\")<<i;f=1;}cout<<endl;}\ntemplate<typename T>inline void output2(T t){for(auto i:t)output(i);}\ntemplate<typename T>inline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?\" \":\"\")<<i;f=1;}cerr<<endl;}\ntemplate<typename T>inline void debug2(T t){for(auto i:t)debug(i);}\n#define loop(n) for(long long _=0;_<(long long)(n);++_)\n#define _overload4(_1,_2,_3,_4,name,...) name\n#define __rep(i,a) repi(i,0,a,1)\n#define _rep(i,a,b) repi(i,a,b,1)\n#define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c)\n#define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__)\n#define _overload3_rev(_1,_2,_3,name,...) name\n#define _rep_rev(i,a) repi_rev(i,0,a)\n#define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i)\n#define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__)\n\n// #define rep(i,...) for(auto i:range(__VA_ARGS__)) \n// #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))\n// #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)\n// #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)\n// #define irep(i) for(lint i=0;;++i)\n// inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}\n// inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;}\n// inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}\n// template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}\n#define all(n) begin(n),end(n)\ntemplate<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}\ntemplate<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}\nconst vector<lint> dx={1,0,-1,0,1,1,-1,-1};\nconst vector<lint> dy={0,1,0,-1,1,-1,1,-1};\n#define SUM(v) accumulate(all(v),0LL)\n#if __cplusplus>=201703L\n template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));}\n#endif\n#define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__}))\n#define bit(n,a) ((n>>a)&1)\nvector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret.push_back(e);ret.back().push_back(i);}return ret;}\nusing graph=vector<vector<int>>;\ntemplate<typename T>using graph_w=vector<vector<pair<int,T>>>;\ntemplate<typename T,typename E>ostream& operator<<(ostream& out,pair<T,E>v){out<<\"(\"<<v.first<<\",\"<<v.second<<\")\";return out;}\n#if __cplusplus>=201703L\n constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;}\n#endif\n\ntemplate<typename T,typename E>pair<T,E>& operator+=(pair<T,E>&s,const pair<T,E>&t){s.first+=t.first;s.second+=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E>& operator-=(pair<T,E>&s,const pair<T,E>&t){s.first-=t.first;s.second-=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E> operator+(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res+=t;}\ntemplate<typename T,typename E>pair<T,E> operator-(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res-=t;}\n#define BEGIN_STACK_EXTEND(size) void * stack_extend_memory_ = malloc(size);void * stack_extend_origin_memory_;char * stack_extend_dummy_memory_ = (char*)alloca((1+(int)(((long long)stack_extend_memory_)&127))*16);*stack_extend_dummy_memory_ = 0;asm volatile(\"mov %%rsp, %%rbx\\nmov %%rax, %%rsp\":\"=b\"(stack_extend_origin_memory_):\"a\"((char*)stack_extend_memory_+(size)-1024));\n#define END_STACK_EXTEND asm volatile(\"mov %%rax, %%rsp\"::\"a\"(stack_extend_origin_memory_));free(stack_extend_memory_);\n#line 2 \"code.cpp\"\n\nint main(){\n lint n,m,x,y;\n cin>>n>>m>>x>>y;\n vec px(n),py(n);\n rep(i,n){\n cin>>px[i]>>py[i];\n }\n px.emplace_back(x);\n py.emplace_back(y);\n vector<lint>score(n+1,INF);\n set<lint> s;\n s.emplace(n);\n auto f=[&](lint i,lint j)->lint{\n return (px[j]-px[i])*(px[j]-px[i])+(py[j]-py[i])*(py[j]-py[i]);\n };\n auto g=[&](lint i,lint j,lint k)->lint{\n lint a=py[i]-py[j];\n lint b=-(px[i]-px[j]);\n lint c=-(a*px[i]+b*py[i]);\n lint tmp=(a*px[k]+b*py[k]+c)*(a*px[k]+b*py[k]+c)/(a*a+b*b);\n if((px[j]-px[i])*(px[k]-px[i])+(py[j]-py[i])*(py[k]-py[i])>=0\n && (px[i]-px[j])*(px[k]-px[j])+(py[i]-py[j])*(py[k]-py[j])>=0\n )return tmp;\n else return min(f(i,k),f(j,k));\n };\n long double ans=0;\n rep(i,n){\n chmin(score[i],f(i,n));\n }\n while(m--){\n lint mn2=INF,k=0;\n rep(i,n){\n if(chmin(mn2,score[i])){\n k=i;\n }\n }\n lint mn=INF,idx=0;\n for(auto j:s){\n if(chmin(mn,f(j,k))){\n idx=j;\n }\n }\n ans+=sqrtl(f(k,idx));\n s.emplace(k);\n score[k]=INF;\n rep(i,n){\n if(!s.count(i)){\n chmin(score[i],g(k,idx,i));\n }\n }\n }\n cout<<ans<<endl;\n}", "accuracy": 0.5, "time_ms": 970, "memory_kb": 3732, "score_of_the_acc": -0.5543, "final_rank": 19 }, { "submission_id": "aoj_2774_5532463", "code_snippet": "#line 2 \"cpplib/util/template.hpp\"\n/**\n * These codes are licensed under CC0.\n * http://creativecommons.org/publicdomain/zero/1.0/deed.ja\n */\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma GCC target(\"avx2\")\n#include<bits/stdc++.h>\nusing namespace std;\nstruct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;\ntypedef long long lint;\n#define INF (1LL<<60)\n#define IINF (1<<30)\n#define EPS (1e-10)\n#define endl ('\\n')\ntypedef vector<lint> vec;\ntypedef vector<vector<lint>> mat;\ntypedef vector<vector<vector<lint>>> mat3;\ntypedef vector<string> svec;\ntypedef vector<vector<string>> smat;\ntemplate<typename T>using V=vector<T>;\ntemplate<typename T>using VV=V<V<T>>;\ntemplate<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?\" \":\"\")<<i;f=1;}cout<<endl;}\ntemplate<typename T>inline void output2(T t){for(auto i:t)output(i);}\ntemplate<typename T>inline void debug(T t){bool f=0;for(auto i:t){cerr<<(f?\" \":\"\")<<i;f=1;}cerr<<endl;}\ntemplate<typename T>inline void debug2(T t){for(auto i:t)debug(i);}\n#define loop(n) for(long long _=0;_<(long long)(n);++_)\n#define _overload4(_1,_2,_3,_4,name,...) name\n#define __rep(i,a) repi(i,0,a,1)\n#define _rep(i,a,b) repi(i,a,b,1)\n#define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c)\n#define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__)\n#define _overload3_rev(_1,_2,_3,name,...) name\n#define _rep_rev(i,a) repi_rev(i,0,a)\n#define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i)\n#define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__)\n\n// #define rep(i,...) for(auto i:range(__VA_ARGS__)) \n// #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))\n// #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)\n// #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)\n// #define irep(i) for(lint i=0;;++i)\n// inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}\n// inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;}\n// inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}\n// template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}\n#define all(n) begin(n),end(n)\ntemplate<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}\ntemplate<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}\nconst vector<lint> dx={1,0,-1,0,1,1,-1,-1};\nconst vector<lint> dy={0,1,0,-1,1,-1,1,-1};\n#define SUM(v) accumulate(all(v),0LL)\n#if __cplusplus>=201703L\n template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));}\n#endif\n#define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__}))\n#define bit(n,a) ((n>>a)&1)\nvector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret.push_back(e);ret.back().push_back(i);}return ret;}\nusing graph=vector<vector<int>>;\ntemplate<typename T>using graph_w=vector<vector<pair<int,T>>>;\ntemplate<typename T,typename E>ostream& operator<<(ostream& out,pair<T,E>v){out<<\"(\"<<v.first<<\",\"<<v.second<<\")\";return out;}\n#if __cplusplus>=201703L\n constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;}\n#endif\n\ntemplate<typename T,typename E>pair<T,E>& operator+=(pair<T,E>&s,const pair<T,E>&t){s.first+=t.first;s.second+=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E>& operator-=(pair<T,E>&s,const pair<T,E>&t){s.first-=t.first;s.second-=t.second;return s;}\ntemplate<typename T,typename E>pair<T,E> operator+(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res+=t;}\ntemplate<typename T,typename E>pair<T,E> operator-(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res-=t;}\n#define BEGIN_STACK_EXTEND(size) void * stack_extend_memory_ = malloc(size);void * stack_extend_origin_memory_;char * stack_extend_dummy_memory_ = (char*)alloca((1+(int)(((long long)stack_extend_memory_)&127))*16);*stack_extend_dummy_memory_ = 0;asm volatile(\"mov %%rsp, %%rbx\\nmov %%rax, %%rsp\":\"=b\"(stack_extend_origin_memory_):\"a\"((char*)stack_extend_memory_+(size)-1024));\n#define END_STACK_EXTEND asm volatile(\"mov %%rax, %%rsp\"::\"a\"(stack_extend_origin_memory_));free(stack_extend_memory_);\n#line 2 \"code.cpp\"\n\nint main(){\n lint n,m,x,y;\n cin>>n>>m>>x>>y;\n vec px(n),py(n);\n rep(i,n){\n cin>>px[i]>>py[i];\n }\n px.emplace_back(x);\n py.emplace_back(y);\n vector<lint>score(n+1,INF);\n set<lint> s;\n s.emplace(n);\n auto f=[&](lint i,lint j)->lint{\n return (px[j]-px[i])*(px[j]-px[i])+(py[j]-py[i])*(py[j]-py[i]);\n };\n auto g=[&](lint i,lint j,lint k)->lint{\n lint a=py[i]-py[j];\n lint b=-(px[i]-px[j]);\n lint c=-(a*px[i]+b*py[i]);\n lint tmp=(a*px[k]+b*py[k]+c)*(a*px[k]+b*py[k]+c)/(a*a+b*b);\n if((px[j]-px[i])*(px[k]-px[i])+(py[j]-py[i])*(py[k]-py[i])>=0\n && (px[i]-px[j])*(px[k]-px[j])+(py[i]-py[j])*(py[k]-py[j])>=0\n )return tmp;\n else return min(f(i,k),f(j,k));\n };\n double ans=0;\n rep(i,n){\n chmin(score[i],f(i,n));\n }\n while(m--){\n lint mn2=INF,k=0;\n rep(i,n){\n if(chmin(mn2,score[i])){\n k=i;\n }\n }\n lint mn=INF,idx=0;\n for(auto j:s){\n if(chmin(mn,f(j,k))){\n idx=j;\n }\n }\n ans+=sqrt(f(k,idx));\n s.emplace(k);\n score[k]=INF;\n rep(i,n){\n if(!s.count(i)){\n chmin(score[i],g(k,idx,i));\n }\n }\n }\n cout<<ans<<endl;\n}", "accuracy": 0.5, "time_ms": 970, "memory_kb": 3836, "score_of_the_acc": -0.5575, "final_rank": 20 }, { "submission_id": "aoj_2774_4472073", "code_snippet": "#include<bits/stdc++.h>\n#include <algorithm>\n#include <iostream>\n#include <complex>\n#include <cstdio>\n#include <cmath>\n#include <utility>\n#include <vector>\nusing namespace std;\nusing W = double;\nusing P = complex<W>;\nusing L = pair<P,P>;\nusing C = pair<P,W>;\nusing Poly = vector<P>;\n#define X real()\n#define Y imag()\nconst W EPS = (1e-10), pi = acos(-1);\ndouble dot(P a, P b){ return a.X * b.X + a.Y * b.Y;}\nW cross(P a, P b){ return a.X * b.Y - a.Y * b.X;}\nW ps_dist(P a, L s){\n P sf = s.first, ss = s.second;\n if(dot(ss-sf,a-sf) >= 0 && dot(sf-ss,a-ss) >= 0)\n return abs(cross(sf-ss,a-ss))/abs(sf-ss);\n return min(abs(a-sf), abs(a-ss));\n} \n\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nint inf = 1e9;\n\nusing pdi = pair<double,int>;\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n,m;\n cin >> n >> m;\n vector<P> p(n+1);\n double x,y;\n cin >> x >> y;\n p[0] = P(x,y);\n for(int i=1; i<=n; i++){\n cin >> x >> y;\n p[i] = P(x,y);\n }\n bool fst = true;\n vector<bool> used(n+1,false);\n used[0] = true;\n double ans = 0;\n priority_queue<pdi,vector<pdi>,greater<pdi>> que;\n vector<double> dist(n+1);\n for(int i=1; i<=n; i++){\n dist[i] = abs(p[i]-p[0]);\n que.emplace(abs(p[i]-p[0]),i);\n }\n for(int i=0; i<m; i++){\n pdi mn = pdi(inf,inf);\n while(used[que.top().second]) que.pop();\n int id = que.top().second;\n que.pop();\n double res = inf;\n int root;\n for(int j=0; j<=n; j++){\n if(used[j]){\n if(chmin(res,abs(p[id]-p[j]))){\n root = j;\n }\n }\n }\n ans += res;\n used[id] = true;\n L line = L(p[id],p[root]);\n for(int j=0; j<=n; j++){\n if(used[j]) continue;\n if(chmin(dist[j],abs(p[j]-p[id]))){\n que.emplace(abs(p[j]-p[id]),j);\n }\n if(chmin(dist[j],ps_dist(p[j],line))){\n que.emplace(ps_dist(p[j],line),j);\n }\n }\n }\n cout << fixed << setprecision(10) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 740, "memory_kb": 36056, "score_of_the_acc": -1.391, "final_rank": 16 }, { "submission_id": "aoj_2774_4471881", "code_snippet": "#include<bits/stdc++.h>\n#include <algorithm>\n#include <iostream>\n#include <complex>\n#include <cstdio>\n#include <cmath>\n#include <utility>\n#include <vector>\nusing namespace std;\nusing W = double;\nusing P = complex<W>;\nusing L = pair<P,P>;\nusing C = pair<P,W>;\nusing Poly = vector<P>;\n#define X real()\n#define Y imag()\nconst W EPS = (1e-10), pi = acos(-1);\ndouble dot(P a, P b){ return a.X * b.X + a.Y * b.Y;}\nW cross(P a, P b){ return a.X * b.Y - a.Y * b.X;}\nW ps_dist(P a, L s){\n P sf = s.first, ss = s.second;\n if(dot(ss-sf,a-sf) >= 0 && dot(sf-ss,a-ss) >= 0)\n return abs(cross(sf-ss,a-ss))/abs(sf-ss);\n return min(abs(a-sf), abs(a-ss));\n} \n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n,m;\n cin >> n >> m;\n P ori;\n double x,y;\n cin >> x >> y;\n ori = P(x,y);\n vector<P> p;\n for(int i=0; i<n; i++){\n cin >> x >> y;\n p.emplace_back(x,y);\n // cout << p[i] << endl;\n }\n vector<pair<double,int>> dist(n);\n pair<W,int> mn = make_pair(100000000,100000000);\n for(int i=0; i<n; i++){\n dist[i].first = abs(ori-p[i]);\n dist[i].second = i;\n // cout << ori << endl;\n // cout << p[i] << endl;\n // cout << dist[i].first << endl;\n mn = min(mn,dist[i]);\n }\n vector<bool> used(n,false);\n double ans = 0;\n used[mn.second] = true;\n ans += mn.first;\n for(int i=0; i<n; i++){\n if(used[i]) continue;\n dist[i].first = min(dist[i].first,abs(p[i]-p[mn.second]));\n // 線分\n L sen = make_pair(ori,p[mn.second]);\n dist[i].first = min(dist[i].first,ps_dist(p[i],sen));\n }\n for(int i=0; i<m-1; i++){\n mn = make_pair(1000000000,10000000);\n for(int j=0; j<n; j++){\n if(used[j]) continue;\n mn = min(mn,dist[j]); \n }\n int id = mn.second;\n pair<double,int> kyo = make_pair(abs(ori-p[id]),-1); \n for(int j=0; j<n; j++){\n if(used[j]){\n kyo = min(kyo,pair<double,int>(abs(p[j]-p[id]),j));\n }\n }\n used[id] = true;\n ans += kyo.first;\n for(int j=0; j<n; j++){\n if(used[j]) continue;\n dist[j].first = min(dist[j].first,abs(p[j]-p[id]));\n L sen;\n if(kyo.second == -1){\n sen = make_pair(ori,p[id]);\n }else{\n sen = make_pair(p[kyo.second],p[id]); \n }\n dist[j].first = min(dist[j].first,ps_dist(p[j],sen));\n }\n }\n cout << fixed << setprecision(10) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 790, "memory_kb": 3480, "score_of_the_acc": -0.4312, "final_rank": 8 }, { "submission_id": "aoj_2774_4471705", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing Real = double;\nusing Point = complex<Real>;\nconst Real EPS = 1e-8, PI = acos(-1);\n\n// 実数同士の比較\ninline bool eq(Real a, Real b) { return fabs(b - a) < EPS; }\n\nPoint operator*(const Point &p, const Real &d) {\n return Point(real(p) * d, imag(p) * d);\n}\n\n// 入力\nistream &operator>>(istream &is, Point &p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\n\n// 出力\nostream &operator<<(ostream &os, Point &p) {\n os << fixed << setprecision(10) << p.real() << \" \" << p.imag();\n}\n\n// 原点を中心として, 点 p を θ 回転すた点を返す\nPoint rotate(Real theta, const Point &p) {\n return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag());\n}\n\n// ラジアンを度数に変換\nReal radian_to_degree(Real r) {\n return (r * 180.0 / PI);\n}\n\n// 度数をラジアンに変換\nReal degree_to_radian(Real d) {\n return (d * PI / 180.0);\n}\n\n// ∠BAC をラジアンで取得\nReal get_angle(const Point &a, const Point &b, const Point &c) {\n const Point v(b - a), w(c - a);\n Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());\n if(alpha > beta) swap(alpha, beta);\n Real theta = (beta - alpha);\n return min(theta, 2 * acos(-1) - theta);\n}\n\n// x軸, y軸の順にソート\nnamespace std {\n bool operator<(const Point &a, const Point &b) {\n return !eq(a.real(), b.real()) ? a.real() < b.real() : a.imag() < b.imag();\n }\n}\n\n// 直線\n// 2 点を通る直線\n// Ax + By = C \nstruct Line {\n Point a, b;\n\n Line() = default;\n\n Line(Point a, Point b) : a(a), b(b) {}\n\n Line(Real A, Real B, Real C) // Ax + By = C\n {\n if(eq(A, 0)) a = Point(0, C / B), b = Point(1, C / B);\n else if(eq(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1);\n else a = Point(0, C / B), b = Point(C / A, 0);\n }\n\n friend ostream &operator<<(ostream &os, Line &p) {\n return os << p.a << \" to \" << p.b;\n }\n\n friend istream &operator>>(istream &is, Line &a) {\n return is >> a.a >> a.b;\n }\n};\n\n// 線分\n// 2 点を結ぶ\nstruct Segment : Line {\n Segment() = default;\n Segment(Point a, Point b) : Line(a, b) {}\n};\n\n\n// 円\n// 中心と半径\nstruct Circle {\n Point p;\n Real r;\n\n Circle() = default;\n\n Circle(Point p, Real r) : p(p), r(r) {}\n};\n\nusing Points = vector< Point >;\nusing Polygon = vector< Point >; // 注意!! 凸多角形は反時計回りに与える.(保証されない場合は面積が負なら reverse をかける)\nusing Segments = vector< Segment >;\nusing Lines = vector< Line >;\nusing Circles = vector< Circle >;\n\n// 外積\nReal cross(const Point &a, const Point &b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\n\n// 内積\nReal dot(const Point &a, const Point &b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\n\n\n// +1\n// \n// +2 a 0 b -2\n//\n// -1\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C&lang=jp\nint ccw(const Point &a, Point b, Point c) {\n b = b - a, c = c - a;\n if(cross(b, c) > EPS) return +1; // \"COUNTER_CLOCKWISE\"\n if(cross(b, c) < -EPS) return -1; // \"CLOCKWISE\"\n if(dot(b, c) < 0) return +2; // \"ONLINE_BACK\"\n if(norm(b) < norm(c)) return -2; // \"ONLINE_FRONT\"\n return 0; // \"ON_SEGMENT\"\n}\n\n\n// 2 直線が平行か\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\nbool parallel(const Line &a, const Line &b) {\n return eq(cross(a.b - a.a, b.b - b.a), 0.0);\n}\n\n// 2 直線が垂直か\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\nbool orthogonal(const Line &a, const Line &b) {\n return eq(dot(a.a - a.b, b.a - b.b), 0.0);\n}\n\n// 直線 l に 点 p から垂線を下ろして,交わる点を返す\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A\nPoint projection(const Line &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\n// 同じ\n// 直線として扱われそう\nPoint projection(const Segment &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\n// 直線 l に対して, 点 p と線対称な位置にある点を返す.\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B\nPoint reflection(const Line &l, const Point &p) {\n return p + (projection(l, p) - p) * 2.0;\n}\n\n// 直線上に点が乗るかどうか\nbool intersect(const Line &l, const Point &p) {\n return abs(ccw(l.a, l.b, p)) != 1;\n}\n\n// 直線 l と直線 m の交差判定\nbool intersect(const Line &l, const Line &m) {\n return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS;\n}\n\n// 線分上に点があるかどうか\nbool intersect(const Segment &s, const Point &p) {\n return ccw(s.a, s.b, p) == 0;\n}\n\n// 直線 l と 線分 s の交差判定\nbool intersect(const Line &l, const Segment &s) {\n return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS;\n}\n\n// 点 p と 直線 l との距離\nReal distance(const Line &l, const Point &p);\n\n// 円 c と直線 l との交差判定\nbool intersect(const Circle &c, const Line &l) {\n return distance(l, c.p) <= c.r + EPS;\n}\n\n// 点 p が 円 c 上にあるかどうか\nbool intersect(const Circle &c, const Point &p) {\n return abs(abs(p - c.p) - c.r) < EPS;\n}\n\n\n// 線分同士の交差判定\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B\nbool intersect(const Segment &s, const Segment &t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// 円 c と 線分 l との交差判定\nint intersect(const Circle &c, const Segment &l) {\n if(norm(projection(l, c.p) - c.p) - c.r * c.r > EPS) return 0;\n auto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b);\n if(d1 < c.r + EPS && d2 < c.r + EPS) return 0;\n if(d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS) return 1;\n const Point h = projection(l, c.p);\n if(dot(l.a - h, l.b - h) < 0) return 2;\n return 0;\n}\n\n// 円同士の交差判定\n// 4 := 離れている\n// 3 := 外接する\n// 2 := 交わる\n// 1 := 内接する\n// 0 := 内包する\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A&lang=jp\nint intersect(Circle c1, Circle c2) {\n if(c1.r < c2.r) swap(c1, c2);\n Real d = abs(c1.p - c2.p);\n if(c1.r + c2.r < d) return 4;\n if(eq(c1.r + c2.r, d)) return 3;\n if(c1.r - c2.r < d) return 2;\n if(eq(c1.r - c2.r, d)) return 1;\n return 0;\n}\n\n// 点と点の距離\nReal distance(const Point &a, const Point &b) {\n return abs(a - b);\n}\n\n// 直線と点の距離\nReal distance(const Line &l, const Point &p) {\n return abs(p - projection(l, p));\n}\n\n// 直線と直線の距離 (もちろん交わってたら 0)\nReal distance(const Line &l, const Line &m) {\n return intersect(l, m) ? 0 : distance(l, m.a);\n}\n\n// 線分と点の距離\nReal distance(const Segment &s, const Point &p) {\n Point r = projection(s, p);\n if(intersect(s, r)) return abs(r - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\n\n// 線分同士の距離\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D\nReal distance(const Segment &a, const Segment &b) {\n if(intersect(a, b)) return 0;\n return min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)});\n}\n\n// 直線と線分の距離\nReal distance(const Line &l, const Segment &s) {\n if(intersect(l, s)) return 0;\n return min(distance(l, s.a), distance(l, s.b));\n}\n\n// 直線同士の交点を返す (交差することが要請されるのかな (事前にintersect を呼べばいい))\nPoint crosspoint(const Line &l, const Line &m) {\n Real A = cross(l.b - l.a, m.b - m.a);\n Real B = cross(l.b - l.a, l.b - m.a);\n if(eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a;\n return m.a + (m.b - m.a) * B / A;\n}\n\n// 線分同士の交点を返す (交差することが要請されるのかな (事前にintersect を呼べばいい))\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C\nPoint crosspoint(const Segment &l, const Segment &m) {\n return crosspoint(Line(l), Line(m));\n}\n\n\n// 円と直線の交点を返す (交差することが要請されるのかな (事前にintersect を呼べばいい))\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D\npair< Point, Point > crosspoint(const Circle &c, const Line l) {\n Point pr = projection(l, c.p);\n Point e = (l.b - l.a) / abs(l.b - l.a);\n if(eq(distance(l, c.p), c.r)) return {pr, pr};\n double base = sqrt(c.r * c.r - norm(pr - c.p));\n return {pr - e * base, pr + e * base};\n}\n\n\n// 円と線分の交点を返す (交差することが要請されるのかな (事前にintersect を呼べばいい))\npair< Point, Point > crosspoint(const Circle &c, const Segment &l) {\n Line aa = Line(l.a, l.b);\n if(intersect(c, l) == 2) return crosspoint(c, aa);\n auto ret = crosspoint(c, aa);\n if(dot(l.a - ret.first, l.b - ret.first) < 0) ret.second = ret.first;\n else ret.first = ret.second;\n return ret;\n}\n\n// 円同士の交点を返す (交差することが要請されるのかな (事前にintersect を呼べばいい))\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E\npair< Point, Point > crosspoint(const Circle &c1, const Circle &c2) {\n Real d = abs(c1.p - c2.p);\n Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());\n Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);\n Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);\n return {p1, p2};\n}\n\n// 点 p から円 C へ接戦を引いた時の、接点を返す\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F\npair< Point, Point > tangent(const Circle &c1, const Point &p2) {\n return crosspoint(c1, Circle(p2, sqrt(norm(c1.p - p2) - c1.r * c1.r)));\n}\n\n// 円と円の共通接線を複数返す\n// 0 ~ 4 つの可能性がある\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G\nLines tangent(Circle c1, Circle c2) {\n Lines ret;\n if(c1.r < c2.r) swap(c1, c2);\n Real g = norm(c1.p - c2.p);\n if(eq(g, 0)) return ret;\n Point u = (c2.p - c1.p) / sqrt(g);\n Point v = rotate(PI * 0.5, u);\n for(int s : {-1, 1}) {\n Real h = (c1.r + s * c2.r) / sqrt(g);\n if(eq(1 - h * h, 0)) {\n ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r);\n } else if(1 - h * h > 0) {\n Point uu = u * h, vv = v * sqrt(1 - h * h);\n ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s);\n ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s);\n }\n }\n return ret;\n}\n\n// 多角形が凸かどうかを判定\n// 与えられる多角形は反時計回りなことが要請される\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B\nbool is_convex(const Polygon &p) {\n int n = (int) p.size();\n for(int i = 0; i < n; i++) {\n if(ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1) return false;\n }\n return true;\n}\n\n// 凸包に含まれる点上および辺上の頂点からなる多角形を返す.\n// 多角形の開始位置は特に指定がない.\n// 反時計回りに返されることは保証されていそう\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_A\nPolygon convex_hull(Polygon &p) {\n int n = (int) p.size(), k = 0;\n if(n <= 2) return p;\n sort(p.begin(), p.end());\n vector< Point > ch(2 * n);\n for(int i = 0; i < n; ch[k++] = p[i++]) {\n while(k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k;\n }\n for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n while(k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k;\n }\n ch.resize(k - 1);\n return ch;\n}\n\n// 多角形 Q と点 p との関係を返す\n// 0 := OUT\n// 1 := ON\n// 2 := IN\n// 多角形は反時計回りに渡す\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C\nenum {\n OUT, ON, IN\n};\nint contains(const Polygon &Q, const Point &p) {\n bool in = false;\n for(int i = 0; i < Q.size(); i++) {\n Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;\n if(a.imag() > b.imag()) swap(a, b);\n if(a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0) in = !in;\n if(cross(a, b) == 0 && dot(a, b) <= 0) return ON;\n }\n return in ? IN : OUT;\n}\n\n// TODO よくわからん\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033\nvoid merge_segments(vector< Segment > &segs) {\n\n auto merge_if_able = [](Segment &s1, const Segment &s2) {\n if(abs(cross(s1.b - s1.a, s2.b - s2.a)) > EPS) return false;\n if(ccw(s1.a, s2.a, s1.b) == 1 || ccw(s1.a, s2.a, s1.b) == -1) return false;\n if(ccw(s1.a, s1.b, s2.a) == -2 || ccw(s2.a, s2.b, s1.a) == -2) return false;\n s1 = Segment(min(s1.a, s2.a), max(s1.b, s2.b));\n return true;\n };\n\n for(int i = 0; i < segs.size(); i++) {\n if(segs[i].b < segs[i].a) swap(segs[i].a, segs[i].b);\n }\n for(int i = 0; i < segs.size(); i++) {\n for(int j = i + 1; j < segs.size(); j++) {\n if(merge_if_able(segs[i], segs[j])) {\n segs[j--] = segs.back(), segs.pop_back();\n }\n }\n }\n}\n\n// TODO よくわからん\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033\nvector< vector< int > > segment_arrangement(vector< Segment > &segs, vector< Point > &ps) {\n vector< vector< int > > g;\n int N = (int) segs.size();\n for(int i = 0; i < N; i++) {\n ps.emplace_back(segs[i].a);\n ps.emplace_back(segs[i].b);\n for(int j = i + 1; j < N; j++) {\n const Point p1 = segs[i].b - segs[i].a;\n const Point p2 = segs[j].b - segs[j].a;\n if(cross(p1, p2) == 0) continue;\n if(intersect(segs[i], segs[j])) {\n ps.emplace_back(crosspoint(segs[i], segs[j]));\n }\n }\n }\n sort(begin(ps), end(ps));\n ps.erase(unique(begin(ps), end(ps)), end(ps));\n\n int M = (int) ps.size();\n g.resize(M);\n for(int i = 0; i < N; i++) {\n vector< int > vec;\n for(int j = 0; j < M; j++) {\n if(intersect(segs[i], ps[j])) {\n vec.emplace_back(j);\n }\n }\n for(int j = 1; j < vec.size(); j++) {\n g[vec[j - 1]].push_back(vec[j]);\n g[vec[j]].push_back(vec[j - 1]);\n }\n }\n return (g);\n}\n\n\n// 直線の進行方向の右側を残す\n// Polygon は反時計回りに与える\n// Line には一応向きがあるわけで\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C\nPolygon convex_cut(const Polygon &U, Line l) {\n Polygon ret;\n for(int i = 0; i < U.size(); i++) {\n Point now = U[i], nxt = U[(i + 1) % U.size()];\n if(ccw(l.a, l.b, now) != -1) ret.push_back(now);\n if(ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) {\n ret.push_back(crosspoint(Line(now, nxt), l));\n }\n }\n return (ret);\n}\n\n\n// 多角形の面積\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A\nReal area2(const Polygon &p) {\n Real A = 0;\n for(int i = 0; i < p.size(); ++i) {\n A += cross(p[i], p[(i + 1) % p.size()]);\n }\n return A;\n}\n\n// 多角形と円の共通部分の面積\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H\nReal area2(const Polygon &p, const Circle &c) {\n if(p.size() < 3) return 0.0;\n function< Real(Circle, Point, Point) > cross_area = [&](const Circle &c, const Point &a, const Point &b) {\n Point va = c.p - a, vb = c.p - b;\n Real f = cross(va, vb), ret = 0.0;\n if(eq(f, 0.0)) return ret;\n if(max(abs(va), abs(vb)) < c.r + EPS) return f;\n if(distance(Segment(a, b), c.p) > c.r - EPS) return c.r * c.r * arg(vb * conj(va));\n auto u = crosspoint(c, Segment(a, b));\n vector< Point > tot{a, u.first, u.second, b};\n for(int i = 0; i + 1 < tot.size(); i++) {\n ret += cross_area(c, tot[i], tot[i + 1]);\n }\n return ret;\n };\n Real A = 0;\n for(int i = 0; i < p.size(); i++) {\n A += cross_area(c, p[i], p[(i + 1) % p.size()]);\n }\n return A;\n}\n\n// 凸多角形 g の直径を求めよ。ただし、凸多角形の直径とはその最遠頂点対間距離のことである.\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B\nReal convex_diameter(const Polygon &p) {\n int N = (int) p.size();\n int is = 0, js = 0;\n for(int i = 1; i < N; i++) {\n if(p[i].imag() > p[is].imag()) is = i;\n if(p[i].imag() < p[js].imag()) js = i;\n }\n Real maxdis = norm(p[is] - p[js]);\n\n int maxi, maxj, i, j;\n i = maxi = is;\n j = maxj = js;\n do {\n if(cross(p[(i + 1) % N] - p[i], p[(j + 1) % N] - p[j]) >= 0) {\n j = (j + 1) % N;\n } else {\n i = (i + 1) % N;\n }\n if(norm(p[i] - p[j]) > maxdis) {\n maxdis = norm(p[i] - p[j]);\n maxi = i;\n maxj = j;\n }\n } while(i != is || j != js);\n return sqrt(maxdis);\n}\n\n\n// 平面上の n 個の点について、最も近い2点の距離.\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_5_A\nReal closest_pair(Points ps) {\n if(ps.size() <= 1) throw (0);\n sort(begin(ps), end(ps));\n\n auto compare_y = [&](const Point &a, const Point &b) {\n return imag(a) < imag(b);\n };\n vector< Point > beet(ps.size());\n const Real INF = 1e18;\n\n function< Real(int, int) > rec = [&](int left, int right) {\n if(right - left <= 1) return INF;\n int mid = (left + right) >> 1;\n auto x = real(ps[mid]);\n auto ret = min(rec(left, mid), rec(mid, right));\n inplace_merge(begin(ps) + left, begin(ps) + mid, begin(ps) + right, compare_y);\n int ptr = 0;\n for(int i = left; i < right; i++) {\n if(abs(real(ps[i]) - x) >= ret) continue;\n for(int j = 0; j < ptr; j++) {\n auto luz = ps[i] - beet[ptr - j - 1];\n if(imag(luz) >= ret) break;\n ret = min(ret, abs(luz));\n }\n beet[ptr++] = ps[i];\n }\n return ret;\n };\n return rec(0, (int) ps.size());\n}\n\nint main() {\n int n, m;\n cin >> n >> m;\n double x, y; cin >> x >> y;\n Point p(x, y);\n\n Points ps(n);\n\n for (int i = 0; i < n; i++) {\n double px, py; cin >> px >> py;\n ps[i] = Point(px, py);\n }\n\n // 粘菌は,線分の集合とみなすことができる\n // (距離,頂点)\n using P = pair<double, int>;\n double inf = 1e18;\n vector<double> dist(n, inf);\n priority_queue<P, vector<P>, greater<P>> que;\n int cnt = 0;\n // 始め,すべての頂点間の距離を que へ突っ込む\n for (int i = 0; i < n; i++) {\n double d = distance(p, ps[i]);\n dist[i] = d;\n que.emplace(d, i);\n }\n\n vector<bool> used(n, false);\n double ans = 0.0;\n\n while (cnt < m) {\n \n double cost;\n int node;\n tie(cost, node) = que.top();\n que.pop();\n\n if (dist[node] < cost) continue;\n\n // 頂点を追加\n cnt++;\n // 確定した頂点の中で,一番近いやつを選ぶ\n int nxtNode = -1;\n double nxtNodeCost = distance(p, ps[node]);;\n for (int i = 0; i < n; i++) {\n if (!used[i]) continue;\n\n double tmp = distance(ps[i], ps[node]);\n if (nxtNodeCost > tmp) {\n nxtNodeCost = tmp;\n nxtNode = i;\n }\n }\n\n Point nxtPoint = p;\n if (nxtNode != -1) {\n nxtPoint = ps[nxtNode];\n }\n\n // 晴れて,線分が決まる\n // ps[node] と nxtPoint\n ans += distance(ps[node], nxtPoint);\n\n // node を確定させる\n used[node] = true;\n // cerr << \"node = \" << node + 1 << \", nxtNode = \" << nxtNode << endl;\n\n // まだ確定していない頂点と,この新しい線分の距離を計算して push\n Segment sg(ps[node], nxtPoint);\n for (int i = 0; i < n; i++) {\n if (used[i]) continue;\n double tmp = distance(sg, ps[i]);\n // cerr << \"to \" << i + 1 << \" \" << tmp << endl;\n if (dist[i] <= tmp) continue;\n dist[i] = tmp;\n que.emplace(tmp, i);\n }\n }\n\n // cout << ans << endl;\n printf(\"%.10f\\n\", ans);\n return 0;\n}", "accuracy": 1, "time_ms": 950, "memory_kb": 35956, "score_of_the_acc": -1.5226, "final_rank": 17 }, { "submission_id": "aoj_2774_4471692", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <complex>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <array>\nusing namespace std;\nconst double EPS = 1e-8;\nconst double INF = 1e12;\n#define EQ(n,m) (abs((n)-(m)) < EPS)\n#define X real()\n#define Y imag()\n\ntypedef complex<double> P;\ntypedef vector<P> VP;\nstruct L : array<P, 2>{\n L(const P& a, const P& b){ at(0)=a; at(1)=b; }\n L(){}\n};\ndouble dot(P a, P b){\n return (conj(a)*b).X;\n}\ndouble cross(P a, P b){\n return (conj(a)*b).Y;\n}\ndouble distanceLP(const L &l, const P &p) {\n return abs(cross(l[1]-l[0], p-l[0])) /abs(l[1]-l[0]);\n}\ndouble distanceSP(const L &s, const P &p) {\n if(dot(s[1]-s[0], p-s[0]) < EPS) return abs(p-s[0]);\n if(dot(s[0]-s[1], p-s[1]) < EPS) return abs(p-s[1]);\n return distanceLP(s, p);\n}\n\nint main(){\n int n,m,sx,sy;\n cin >> n >> m >> sx >> sy;\n VP p(n+1);\n p[0] = P(sx, sy);\n for(int i=1; i<n+1; i++){\n int x,y;\n cin >> x >> y;\n p[i] = P(x, y);\n }\n\n vector<double> dist(n+1, INF);\n for(int i=1; i<=n; i++){\n dist[i] = abs(p[i] -p[0]);\n }\n double ans = 0;\n for(int rep=0; rep<m; rep++){\n double minval = INF;\n int newidx = -1;\n for(int i=0; i<n+1; i++){\n if(dist[i] +EPS < minval){\n minval = dist[i];\n newidx = i;\n }\n }\n int nearidx = -1;\n minval = INF;\n for(int i=0; i<n+1; i++){\n if(dist[i] == INF and abs(p[newidx]-p[i]) +EPS < minval){\n nearidx = i;\n minval = abs(p[newidx]-p[i]);\n }\n }\n ans += abs(p[newidx] -p[nearidx]);\n dist[newidx] = INF;\n for(int i=0; i<n+1; i++){\n if(dist[i] == INF) continue;\n dist[i] = min(dist[i], distanceSP(L(p[newidx], p[nearidx]), p[i]));\n }\n }\n cout << fixed << setprecision(10);\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 580, "memory_kb": 3420, "score_of_the_acc": -0.2948, "final_rank": 7 }, { "submission_id": "aoj_2774_4096647", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\ndouble eps = 1e-6;\n\nsigned main(){\n ios::sync_with_stdio(false);\n\tcin.tie(0);\n cout << fixed << setprecision(20);\n\n int n,m;\n cin>>n>>m;\n double a[n+1],b[n+1];\n cin>>a[0] >> b[0];\n for(int i=1;i<=n;i++){\n cin>>a[i]>>b[i];\n }\n double ans = 0;\n bool used[n+1]={};\n used[0] =1;\n double dist[n+1]={};\n for(int i=1;i<=n;i++){\n dist[i] = sqrt((a[0]-a[i])*(a[0]-a[i]) + (b[0]-b[i])*(b[0]-b[i]));\n }\n while(m){\n double d=1e13;\n int f=-1;\n for(int i=1;i<=n;i++){\n if(used[i]) continue;\n if(d > eps + dist[i]){\n d = dist[i];\n f = i;\n }\n }\n double x1 = a[f],y2 = b[f];\n d = 1e13;\n int g = 0;\n for(int i=0;i<=n;i++){\n if(!used[i]) continue;\n double ret = (x1-a[i]) * (x1-a[i]) + (y2-b[i])*(y2-b[i]);\n ret = sqrt(ret);\n if(ret+eps < d){\n d = ret;\n g = i;\n }\n }\n ans += d;\n used[f]=1;\n m--;\n //cerr << \"a \"<<f << \" \" << g << endl;\n \n for(int i=1;i<=n;i++){\n if(used[i]) continue;\n double ret = 1e14;\n double x1=a[g],y1=b[g],x2=a[f],y2=b[f];\n d = 1e15;\n if(x1==x2){\n if(b[i]>=min(y1,y2) && b[i] <=max(y1,y2)){\n double ret = abs(a[i]-x1);\n if(d > ret+eps){\n d = ret;\n }\n }\n else{\n ret = (x1-a[i]) * (x1-a[i]) + (y1-b[i]) * (y1-b[i]);\n ret = min(ret, (x2-a[i])*(x2-a[i]) + (y2-b[i]) * (y2-b[i]));\n ret = sqrt(ret);\n if(ret+eps < d){\n d = ret;\n }\n }\n }\n else{\n ret = (x1-a[i]) * (x1-a[i]) + (y1-b[i]) * (y1-b[i]);\n ret = min(ret, (x2-a[i])*(x2-a[i]) + (y2-b[i]) * (y2-b[i]));\n ret = sqrt(ret);\n double k1 = x1*y2 - x2*y1;\n double k2 = a[i] * x1 - a[i]*x2 + y1*b[i] - y2*b[i];\n k2 *= (x1 - x2);\n k1 *= (y1 - y2);\n double K = k2 - k1;\n double c = K / ((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));\n if(c>=min(x1,x2) && c <= max(x1,x2)){\n double d = (y1-y2) / (x1-x2) * c + (x1*y2 - x2*y1)/(x1-x2);\n ret = (c-a[i]) * (c-a[i]) + (d-b[i]) * (d-b[i]);\n ret = sqrt(ret);\n }\n if(ret+eps < d){\n d = ret;\n }\n }\n dist[i] = min(dist[i],d);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 3400, "score_of_the_acc": -0.1147, "final_rank": 3 }, { "submission_id": "aoj_2774_3967891", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\n/***** 基本的準備 *****/\n\n// xy平面上の点(ベクトル)を表現するには、complex型を利用するとよい\ntypedef complex<double> P;\n\n// 辺の表現 (座標を2つ pair でもつ)\ntypedef pair<P, P> L;\n\n// 円の表現 (座標 P と 半径 d で表現する)\ntypedef pair<P, double> C;\n\n// 成分を取り出すのを簡単にする\n#define X real()\n#define Y imag()\n\n// 誤差(epsilon)の定義\n#define EPS (1e-10)\n\n// 2つの要素が等しいかどうか\n#define EQ(a,b) (abs((a) - (b)) < EPS)\n\n// 2つのベクトルが等しいかどうか\n#define EQV(a,b) ( EQ((a).X, (b).X) && EQ((a).Y, (b).Y) )\n\n// m は n より大きい(以上)かどうか\n#define LE(n, m) ((n) < (m) + EPS)\n#define LEQ(n, m) ((n) <= (m) + EPS)\n\n// m は n より小さい(以下)かどうか\n#define GE(n, m) ((n) + EPS > (m))\n#define GEQ(n, m) ((n) + EPS >= (m))\n\n// 2つのベクトルの内積を求める\ndouble dot(P a, P b) {\n return (a.X * b.X + a.Y * b.Y);\n}\n\n// 2つのベクトルの外積を求める\ndouble cross(P a, P b) {\n return (a.X * b.Y - a.Y * b.X);\n}\n\n// ccw (c が直線(線分) ab に対してどのような位置関係か?)\n// Verified: AOJ CGL_1_C: Counter-Clockwise\n// +1 ... a → b で半時計方向に折れて b → c (COUNTER_CLOCKWISE)\n// -1 ... a → b で時計方向に折れて b → c (CLOCKWISE)\n// +2 ... c, a, b がこの順で同一直線状にある場合 (ONLINE_BACK)\n// -2 ... a, b, c がこの順で同一直線状にある場合 ( or a == b ) (ONLINE_FRONT)\n// 0 ... c が線分 ab 上にある場合 (点 a, b 上を含む) (ON_SEGMENT)\nint ccw(P a, P b, P c) {\n b -= a; c -= a;\n if( cross(b,c) > EPS ) return +1;\n if( cross(b,c) < -EPS ) return -1;\n if( dot(b,c) < 0 ) return +2;\n if( norm(b) < norm(c) ) return -2;\n return 0;\n}\n\n// 点 a1, a2 を端点とする線分と点 b との距離\ndouble dist_sp(P a1, P a2, P b) {\n if( dot(a2-a1, b-a1) < EPS ) return abs(b - a1);\n if( dot(a1-a2, b-a2) < EPS ) return abs(b - a2);\n return abs( cross(a2-a1, b-a1) ) / abs(a2 - a1);\n}\n\nint main() {\n int N, M; cin >> N >> M;\n vector<P> points(N+1);\n for(int i=0; i<N+1; i++) {\n int x, y; cin >> x >> y;\n points[i] = P(x, y);\n }\n\n vector<bool> selected(N+1, false);\n selected[0] = true;\n vector<double> dist(N+1, INF), pdist(N+1, INF), best(N+1, -1);\n for(int i=1; i<=N; i++) {\n double x = points[0].real() - points[i].real();\n double y = points[0].imag() - points[i].imag();\n dist[i] = sqrt(x*x + y*y);\n pdist[i] = dist[i];\n best[i] = 0;\n }\n\n double ans = 0;\n for(int i=0; i<M; i++) {\n double min_val = INF; int argmin = -1;\n for(int k=1; k<=N; k++) {\n if(selected[k]) continue;\n // fprintf(stderr, \"k = %d, dist = %.12f\\n\", k, dist[k]);\n if(min_val > dist[k]) {\n min_val = dist[k];\n argmin = k;\n }\n }\n\n ans += pdist[argmin];\n selected[argmin] = true;\n\n // argmin と best[argmin] で辺ができる\n // 辺との距離\n int u = argmin, v = best[argmin];\n // fprintf(stderr, \"u = %d, v = %d\\n\", u, v);\n for(int k=0; k<=N; k++) {\n double cost = dist_sp(points[u], points[v], points[k]);\n if(dist[k] > cost) {\n dist[k] = cost;\n }\n }\n\n // 頂点との距離\n // 誰とつなぐのが最も近いかも更新\n for(int k=0; k<=N; k++) {\n double x = points[argmin].real() - points[k].real();\n double y = points[argmin].imag() - points[k].imag();\n\n double cost = sqrt(x*x + y*y);\n dist[k] = min(dist[k], cost);\n\n if(pdist[k] > cost) {\n pdist[k] = cost;\n best[k] = argmin;\n }\n }\n }\n printf(\"%.12f\\n\", ans);\n return 0;\n}", "accuracy": 1, "time_ms": 560, "memory_kb": 3404, "score_of_the_acc": -0.2815, "final_rank": 6 }, { "submission_id": "aoj_2774_3844897", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\nstruct Vector {\n\tint x, y;\n\tint cross(const Vector that) const { return x * that.y - y * that.x; }\n\tint dot(const Vector that) const { return x * that.x + y * that.y; }\n};\nstruct Point {\n\tint x, y;\n\tdouble distance(const Point that) const {\n\t\treturn std::sqrt((x - that.x) * (x - that.x) + (y - that.y) * (y - that.y));\n\t}\n\tVector operator-(const Point& that) const {\n\t\treturn Vector{ x - that.x, y - that.y };\n\t}\n};\nstruct Edge {\n\tPoint from, to;\n\tbool has_catheti(const Point& that) const {\n\t\treturn (to - from).dot(that - from) >= 0 && (from - to).dot(that - to) >= 0;\n\t}\n\tdouble catheti_length(const Point& that) const {\n\t\treturn std::abs((to.y - from.y) * that.x - (to.x - from.x) * that.y + to.x * from.y - to.y * from.x) / std::sqrt((to.y - from.y) * (to.y - from.y) + (to.x - from.x) * (to.x - from.x));\n\t}\n\tdouble length() const { return from.distance(to); }\n};\nint main() {\n\tint n, m, x, y; std::cin >> n >> m >> x >> y;\n\tstd::vector<Point> points(n + 1); points[0] = Point{ x, y };\n\tfor (auto i = 1; i <= n; ++i) std::cin >> points[i].x >> points[i].y;\n\tstd::vector<double> nearest_distance_to_point(n + 1, DBL_MAX), nearest_distance_to_edge(n + 1, DBL_MAX);\n\tstd::vector<int> nearest_point(n + 1, 0);\n\tstd::vector<int> rest(n + 1, -1); for (auto i = 0; i < n; ++i) rest[i] = i + 1;\n\tauto comparator = [](const std::pair<int, double>& a, const std::pair<int, double>& b) { return (std::abs(a.second - b.second) < 0.0000000001) ? a.first > b.first : a.second > b.second; };\n\tstd::priority_queue<std::pair<int, double>, std::vector<std::pair<int, double>>, decltype(comparator)> queue(comparator);\n\tfor (auto i = 1; i <= n; ++i) {\n\t\tnearest_distance_to_point[i] = points[0].distance(points[i]);\n\t\tqueue.emplace(i, nearest_distance_to_point[i]);\n\t\tif (nearest_distance_to_point[0] < nearest_distance_to_point[i]) {\n\t\t\tnearest_distance_to_point[0] = nearest_distance_to_point[i];\n\t\t\tnearest_point[0] = i;\n\t\t}\n\t}\n\tdouble result = 0;\n\tfor (auto c = 0; c < m; ++c) {\n\t\twhile (nearest_point[queue.top().first] == -1) queue.pop();\n\t\tauto top = queue.top(); queue.pop();\n\t\tauto edge = Edge{ points[top.first], points[nearest_point[top.first]] };\n\t\tresult += nearest_distance_to_point[top.first];\n\t\tnearest_point[top.first] = -1;\n\t\tfor (auto i = 0; i < n - c - 1; ++i) {\n\t\t\tif (rest[i] == top.first) {\n\t\t\t\trest[i] = rest[n - c - 1];\n\t\t\t}\n\t\t\tauto distance = points[top.first].distance(points[rest[i]]);\n\t\t\tif (nearest_distance_to_point[rest[i]] > distance) {\n\t\t\t\tnearest_distance_to_point[rest[i]] = distance;\n\t\t\t\tnearest_point[rest[i]] = top.first;\n\t\t\t\tif (nearest_distance_to_edge[rest[i]] > distance) {\n\t\t\t\t\tnearest_distance_to_edge[rest[i]] = distance;\n\t\t\t\t\tqueue.emplace(rest[i], distance);\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (edge.has_catheti(points[rest[i]])) {\n\t\t\t\tauto d = edge.catheti_length(points[rest[i]]);\n\t\t\t\tif (nearest_distance_to_edge[rest[i]] > d) {\n\t\t\t\t\tnearest_distance_to_edge[rest[i]] = d;\n\t\t\t\t\tqueue.emplace(rest[i], d);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tstd::cout << std::setprecision(15) << std::fixed << result << std::endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 35880, "score_of_the_acc": -0.9946, "final_rank": 14 }, { "submission_id": "aoj_2774_2917956", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\nconst int INF = 1e9;\nconst ll LINF = 1e18;\ntemplate<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << \"(\" << o.first << \",\" << o.second << \")\"; return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << \" \";} return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }\ntemplate<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << \"{ \"; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << \":\" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << \", \"; } out << \" }\"; return out; }\n\n/*\n <url:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2774>\n 問題文============================================================\n =================================================================\n 解説=============================================================\n \n prim法の要領で辺を追加するたびに、各頂点への最短距離を更新していけば良い\n ================================================================\n */\ntypedef double ld;\ntypedef complex<ld> Point;\nconst ld eps = 1e-9, pi = acos(-1.0);\nnamespace std {\n bool operator < (const Point& lhs, const Point& rhs) {\n if (lhs.real() < rhs.real() - eps) return true;\n if (lhs.real() < rhs.real() + eps) return false;\n return lhs.imag() < rhs.imag();\n }\n}\n\nclass Line {\npublic:\n Point a, b;\n Line() :a(Point(0, 0)), b(Point(0, 0)) {}\n Line(Point a, Point b) :a(a), b(b) {}\n Point operator[](const int _num) {\n if (_num == 0) return a;\n else if (_num == 1) return b;\n else assert(false);\n }\n};\n\nld dot(Point a, Point b) { return real(conj(a)*b); }\nPoint proj(Line l, Point p) {\n ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + t * (l.a - l.b);\n}\nbool isis_sp(Line s, Point p) {\n return (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);\n}\n\nld dist_sp(Line s, Point p) {\n Point r = proj(s, p);\n return isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));\n}\n\nvoid solve() {\n int N, M, X, Y; cin >> N >> M >> X >> Y;\n vector<int> flag(N+1, 0);\n vector<Point> ps(N+1);\n ps[0] = Point(X, Y); flag[0] = 1;\n for (int i = 1; i <= N; i++) {\n int a, b; cin >> a >> b;\n ps[i] = Point(a, b);\n }\n \n ld ans = 0;\n vector<double> dist(N + 1, LINF);\n for (int i = 0; i <= N; i++) {\n dist[i] = abs(ps[i] - ps[0]);\n }\n for (int i = 0; i < M; i++) {\n ld len = LINF;\n int idx = -1;\n for (int i = 0; i <= N; i++) {\n if (flag[i] == 1) continue;\n if (len > dist[i]) {\n len = dist[i];\n idx = i;\n }\n }\n \n len = LINF;\n int pidx = -1;\n for (int i = 0; i <= N; i++) {\n if (flag[i] == 1) {\n ld d = abs(ps[i] - ps[idx]);\n if (len > d) {\n len = d;\n pidx = i;\n }\n }\n }\n ans += abs(ps[idx] - ps[pidx]);\n flag[idx] = 1;\n Line L(ps[idx], ps[pidx]);\n for (int i = 0; i <= N; i++) {\n if (flag[i] == 1) continue;\n dist[i] = min(dist[i], dist_sp(L, ps[i]));\n }\n }\n cout << fixed << setprecision(12) << ans << endl;\n}\n\nint main() {\n cin.tie(0); ios_base::sync_with_stdio(false);\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 1200, "memory_kb": 3448, "score_of_the_acc": -0.6931, "final_rank": 10 }, { "submission_id": "aoj_2774_2720555", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 5001\n\nstruct Point{\n double x,y;\n};\n\ntypedef Point Vector;\n\nstruct Line{\n void set(double x1,double y1,double x2,double y2){\n p1.x = x1;\n p1.y = y1;\n p2.x = x2;\n p2.y = y2;\n }\n Point p1,p2;\n};\n\ntypedef Line Segment;\n\nint N,M;\nbool is_nenkin[NUM];\nPoint point[NUM];\ndouble min_dist[NUM];\nint index[NUM];\n\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nPoint calc_minus(Point a,Point b){\n Point ret;\n\n ret.x = a.x-b.x;\n ret.y = a.y-b.y;\n\n return ret;\n}\n\ndouble calc_len(Vector a){\n return sqrt(a.x*a.x+a.y*a.y);\n}\n\ndouble getDistanceLP(Line l,Point p){\n return fabs(cross(calc_minus(l.p2,l.p1),calc_minus(p,l.p1))/calc_len(calc_minus(l.p2,l.p1)));\n}\n\ndouble getDistanceSP(Segment s,Point p){\n\tif(dot(calc_minus(s.p2,s.p1),calc_minus(p,s.p1)) < 0.0)return calc_len(calc_minus(p,s.p1));\n\tif(dot(calc_minus(s.p1,s.p2),calc_minus(p,s.p2)) < 0.0)return calc_len(calc_minus(p,s.p2));\n\treturn getDistanceLP(s,p);\n}\n\n\ndouble calc_dist(int from,int to){\n\treturn sqrt((point[from].x-point[to].x)*(point[from].x-point[to].x)+(point[from].y-point[to].y)*(point[from].y-point[to].y));\n}\n\n\nint main(){\n\n\tscanf(\"%d %d %lf %lf\",&N,&M,&point[0].x,&point[0].y);\n\n\tis_nenkin[0] = true;\n\tmin_dist[0] = 0;\n\n\tfor(int i = 1; i <= N; i++){\n\t\tis_nenkin[i] = false;\n\t\tmin_dist[i] = DBL_MAX;\n\t\tscanf(\"%lf %lf\",&point[i].x,&point[i].y);\n\t}\n\n\tint next;\n\tdouble minimum = DBL_MAX,tmp_dist;\n\n\tfor(int i = 1; i <= N; i++){\n\t\ttmp_dist = calc_dist(0,i);\n\t\tif(minimum > tmp_dist){\n\t\t\tminimum = tmp_dist;\n\t\t\tnext = i;\n\t\t}\n\t}\n\n\tvector<int> Group;\n\n\tdouble ans = minimum;\n\tis_nenkin[next] = true;\n\tGroup.push_back(0);\n\tGroup.push_back(next);\n\n\tLine first_line;\n\tfirst_line.set(point[0].x,point[0].y,point[next].x,point[next].y);\n\n\tminimum = DBL_MAX;\n\tfor(int i = 1; i <= N; i++){\n\t\tif(is_nenkin[i])continue;\n\t\ttmp_dist = getDistanceSP(first_line,point[i]);\n\t\tmin_dist[i] = tmp_dist;\n\t}\n\n\tint count = 1,from;\n\n\twhile(count < M){\n\n\t\tminimum = DBL_MAX;\n\t\tfor(int i = 1; i <= N; i++){\n\t\t\tif(is_nenkin[i])continue;\n\t\t\tif(minimum > min_dist[i]){\n\t\t\t\tminimum = min_dist[i];\n\t\t\t\tnext = i;\n\t\t\t}\n\t\t}\n\n\t\tminimum = DBL_MAX;\n\t\tfor(int i = 0; i < Group.size(); i++){\n\t\t\ttmp_dist = calc_dist(next,Group[i]);\n\t\t\tif(minimum > tmp_dist){\n\t\t\t\tminimum = tmp_dist;\n\t\t\t\tfrom = Group[i];\n\t\t\t}else if(fabs(minimum-tmp_dist) < EPS){\n\t\t\t\tif(from > Group[i]){\n\t\t\t\t\tfrom = Group[i];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tans += minimum;\n\t\tcount++;\n\t\tif(count == M)break;\n\n\t\tis_nenkin[next] = true;\n\t\tGroup.push_back(next);\n\t\tLine new_line;\n\t\tnew_line.set(point[from].x,point[from].y,point[next].x,point[next].y);\n\n\t\tfor(int i = 1; i <= N; i++){\n\t\t\tif(is_nenkin[i])continue;\n\n\t\t\tmin_dist[i] = min(min_dist[i],getDistanceSP(new_line,point[i]));\n\t\t}\n\t}\n\n\tprintf(\"%.10lf\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 3404, "score_of_the_acc": -0.0828, "final_rank": 1 }, { "submission_id": "aoj_2774_2559902", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define GET_MACRO(_1, _2, _3, NAME, ...) NAME\n#define _repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define _rep(i,n) _repl(i,0,n)\n#define rep(...) GET_MACRO(__VA_ARGS__, _repl, _rep)(__VA_ARGS__)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream &o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream &o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n\nusing P = pair<int,int>;\n\nlong dist(P &a, P &b){\n long x=a.fi-b.fi;\n long y=a.se-b.se;\n return x*x+y*y;\n}\n\ndouble dist(P &a, P &b, P &c){\n long ipa = (b.fi-a.fi)*(c.fi-a.fi) + (b.se-a.se)*(c.se-a.se);\n long ipb = (a.fi-b.fi)*(c.fi-b.fi) + (a.se-b.se)*(c.se-b.se);\n if(ipa<=0 || ipb<=0) return min(dist(a,c), dist(b,c));\n else {\n long outacab = (c.fi-a.fi)*(b.se-a.se) - (c.se-a.se)*(b.fi-a.fi);\n return (double)outacab*outacab / dist(a,b);\n }\n}\n\nint main(){\n int n,m;\n cin>>n>>m;\n vector<P> p(n+1);\n cin>>p[0].fi>>p[0].se;\n rep(i,1,n+1) cin>>p[i].fi>>p[i].se;\n\n n++;\n\n vector<bool> used(n, false);\n used[0]=true;\n vector<double> dd(n); // dist^2\n rep(i,n) dd[i] = dist(p[0],p[i]);\n dd[0] = INF;\n\n double ans = 0;\n rep(_,m){\n int cand = 0;\n rep(j,1,n) if(!used[j] && dd[cand] > dd[j]) cand = j;\n\n double add = INF;\n int from = 0;\n rep(j,n) if(used[j] && dist(p[cand], p[j]) < add) from=j, add = dist(p[cand], p[j]);\n\n ans += sqrt(add);//dbg(add,from);\n used[cand] = true;\n\n rep(j,n) if(!used[j]) dd[j] = min<double>(dd[j], dist(p[cand], p[from], p[j]));\n }\n\n printf(\"%.10f\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 3248, "score_of_the_acc": -0.1229, "final_rank": 4 }, { "submission_id": "aoj_2774_2559901", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define GET_MACRO(_1, _2, _3, NAME, ...) NAME\n#define _repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define _rep(i,n) _repl(i,0,n)\n#define rep(...) GET_MACRO(__VA_ARGS__, _repl, _rep)(__VA_ARGS__)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream &o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream &o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n\nusing P = pair<int,int>;\n\nlong dist(P &a, P &b){\n long x=a.fi-b.fi;\n long y=a.se-b.se;\n return x*x+y*y;\n}\n\ndouble dist(P &a, P &b, P &c){\n long ipa = (b.fi-a.fi)*(c.fi-a.fi) + (b.se-a.se)*(c.se-a.se);\n long ipb = (a.fi-b.fi)*(c.fi-b.fi) + (a.se-b.se)*(c.se-b.se);\n if(ipa<=0 || ipb<=0) return min(dist(a,c), dist(b,c));\n else {\n long outacab = (c.fi-a.fi)*(b.se-a.se) - (c.se-a.se)*(b.fi-a.fi);\n return (double)outacab*outacab / dist(a,b);\n }\n}\n\nint main(){\n int n,m;\n cin>>n>>m;\n vector<P> p(n+1);\n cin>>p[0].fi>>p[0].se;\n rep(i,1,n+1) cin>>p[i].fi>>p[i].se;\n\n n++;\n\n vector<bool> used(n, false);\n used[0]=true;\n vector<int> dd(n); // dist^2\n rep(i,n) dd[i] = dist(p[0],p[i]);\n dd[0] = INF;\n\n double ans = 0;\n rep(_,m){\n int cand = 0;\n rep(j,1,n) if(!used[j] && dd[cand] > dd[j]) cand = j;\n\n double add = INF;\n int from = 0;\n rep(j,n) if(used[j] && dist(p[cand], p[j]) < add) from=j, add = dist(p[cand], p[j]);\n\n ans += sqrt(add);//dbg(add,from);\n used[cand] = true;\n\n rep(j,n) if(!used[j]) dd[j] = min<int>(dd[j], dist(p[cand], p[from], p[j]));\n }\n\n printf(\"%.10f\\n\", ans);\n\n return 0;\n}", "accuracy": 0.5, "time_ms": 260, "memory_kb": 3212, "score_of_the_acc": -0.0833, "final_rank": 18 } ]
aoj_2775_cpp
D: Complex Oracle - Complex Oracle - 問題 ※この問題はリアクティブ問題です.すなわち,サーバー側に用意されたプログラムと対話的に応答することで正答を導くプログラムを作成する必要があります. また、サーバー側のプログラムも計算機資源を共有する関係上、サーバーだけで最大 3 sec程度の実行時間、最大 300 MB程度のメモリを使用する場合がありますので、TLE・MLEにお気をつけください。 あいずにゃんは若ヶ松高校のプログラミングコンテスト部、通称ぷろこん部に所属する2年生である。見目麗しい。あいずにゃんはその小さな体も無限に存在するチャームポイントの1つであるが、本人はコンプレックスを感じているようだ。そのせいか、一列に並んでいる人たちを見ると、それぞれの人の前方にその人より身長が高い人が何人並んでいるかを瞬時に数えられる能力を持っている。 プロコンの名門・律命館大学中等部卒のエリート競技プログラマであり、ぷろこん部の部長であるりっつちゃんは、あいずにゃんのこの能力を使えば、並んでいる人たちがそれぞれ何番目に背が高いのかを当てることができるのではないかと考えた。 今、りっつちゃんは N 人が並んでいる列をあいずにゃんに見せている。りっつちゃんは、人が N 人並んでいることは知っているが、その並び順がどうなっているかはわからない。りっつちゃんはあいずにゃんに “ l 番目の人から r 番目の人までコンプレックス度” を教えてもらうことができる。ここで、 l 番目の人から r 番目の人までのコンプレックス度とは、 i ( l \≤ i \≤ r ) 番目の人それぞれに関して、 l 番目から i − 1 番目までの間にいる自分 ( i ) より背が高い人の人数の総和である。(より厳密な定義は入出力形式を参照のこと) (うらやましいことに) ぷろこん部の部員であるあなたは、(とても、とても心苦しいが) あいずにゃんをオラクルとして利用することで身長順を当てるプログラムを書くようりっつちゃんに命じられた。つらい。せめてあいずにゃんに負担をかけないよう、少ない質問回数で求められるよう頑張ろう。 入力出力形式 サーバーは背の順を表す長さ N の数列 p を保持している。これは入力として与えられない。 p の各要素 p_i は 1 以上 N 以下であり、それぞれ値は異なる。 p_i が大きい値を持つ方が背が高いことを表す。 サーバーはまず、 p の長さ N を表す 1 つの整数からなる 1 行を入力として解答プログラムに与える。 次に解答プログラムが 2 つの整数 l, r ( 1 \≤ l \≤ r \≤ N ) からなるクエリをサーバーに送る。クエリの出力形式は ? l r である。これは例えばC/C++だと、 printf("? %d %d\n", l, r); fflush(stdout); などと書けばよい。出力の度にフラッシュすることを推奨する。 すると、サーバー側は以下の値を表す 1 つの整数 C からなる1行を入力として解答プログラムに与える。 C = (\{ (i, j) | p_i > p_j {\rm for} l \≤ i<j \≤ r \}の要素数) ただし、クエリとして正しくない l, r ( l, r が 1 以上 N 以下の数ではない、または l>r である) が与えられた場合、サーバーは −1 を C として返す。 この応答を何度か繰り返し、解答プログラムが p を推定できたならば、 p を以下の形式で出力する。 ! p_1 ... p_N 推定した順列の出力は1度しかできず、この出力が p と異なる場合、誤答となる。200,000回以内のクエリで正しい p を出力できた場合、正答となる。 各クエリで改行を行うよう気をつけること。 入力制約 1 \≤ N \≤ 100,000 推定される長さ N の数列 p は順列。すなわち、 p_i \in \{1, ... , N\} {\rm for} 1 \≤ i \≤ N 、および p_i \neq p_j {\rm for} 1 \≤ i < j \≤ N を満たす サーバーへのクエリ回数は200,000回まで サーバーから返答される C は32bit整数型では収まらない大きさになりうることに注意せよ 入力出力例 サーバーの出力 サーバーへの入力 4 ? 1 3 2 ? 2 4 1 ... ... ! 4 1 3 2
[ { "submission_id": "aoj_2775_10850453", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing LL = long long; using ll = LL;\nusing PII = pair<int, int>; using pii = PII;\nusing PLL = pair<LL, LL>; using pll = PLL;\nusing VI = vector<int>; using VL = vector<LL>;\n#define FOR(i,s,t) for(int i =s; i < t;i++)\n#define SZ(a) (int)a.size()\n#define ALL(a) a.begin(),a.end()\n#define debug(a) cout<<#a<<\":=\"<<a<<endl;\n#define int long long\nstruct BIT {\n\tint N, nn; vector<int> data;\n\tBIT(int n) {\n\t\tN = n + 1;\n\t\tdata = vector<int>(n + 1, 0);\n\t\tnn = 1;\n\t\twhile (nn * 2 <= N)nn *= 2;\n\t}\n\tvoid add(int i, int w) {\n\t\ti++;\n\t\tfor (int x = i; x < N; x += x & -x) {\n\t\t\tdata[x] += w;\n\t\t}\n\t}\n\tint sum(int i) { // [0,i)\n\t\tint ret = 0;\n\t\tfor (int x = i; x > 0; x -= x & -x) {\n\t\t\tret += data[x];\n\t\t}\n\t\treturn ret;\n\t}\n\t// [l,r)\n\tint sum(int l, int r) {\n\t\treturn sum(r) - sum(l);\n\t}\n};\n\nvoid solve() {\n\tint N;\n\tcin >> N;\n\tBIT bit(N);\n\tFOR(i, 0, N) {\n\t\tbit.add(i, 1);\n\t}\n\tLL kim = N;\n\tVI ans(N, -1);\n\tVI SET(N, 0);\n\tcout << \"? 1 \" << N<< endl;\n\tcin >> kim;\n\tfor (int i = N - 1; i >= 1; i--) {\n\t\tcout << \"? 1 \" << i << endl;\n\t\tLL nx; cin >> nx;\n\t\tLL val = kim - nx + 1;\n\t\tint l = 0; int r = N;\n\t\tFOR(unchi, 0, 30) {\n\t\t\tint mid = (l + r) / 2;\n\t\t\tif (bit.sum(mid, N) >= val) {\n\t\t\t\tl = mid;\n\t\t\t}\n\t\t\telse r = mid;\n\t\t}\n\t\tans[i] = l;\n\t\tSET[l] = 1;\n\t\tif (bit.sum(l, l + 1) == 1)bit.add(l, -1);\n\t\tkim = nx;\n\t}\n\tFOR(i, 0, N) {\n\t\tif (!SET[i])ans[0] = i;// , debug(i);\n\t}\n\tcout << \"!\";\n\tFOR(i, 0, N) {\n\t\tassert(ans[i] != -1);\n\t\tcout << \" \" << ans[i] + 1;\n\t}\n\tcout << endl;\n\n}\n\nsigned main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\n\tsolve();\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1260, "memory_kb": 291740, "score_of_the_acc": -1.2633, "final_rank": 3 }, { "submission_id": "aoj_2775_10259994", "code_snippet": "// AOJ #2775 Complex Oracle\n// 2025.3.2\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n \nstruct Fenw {\n int n;\n vector<int> f;\n Fenw(int n): n(n), f(n+1,0){}\n void upd(int i, int d) {\n for(; i<=n; i+= i&-i) f[i]+=d;\n }\n int sum(int i) {\n int s=0;\n for(; i; i-= i&-i) s+=f[i];\n return s;\n }\n int kth(int k) {\n int idx = 0;\n for (int bit = 1 << 20; bit; bit >>= 1) {\n int nxt = idx + bit;\n if(nxt<=n && f[nxt] < k){\n k -= f[nxt];\n idx = nxt;\n }\n }\n return idx+1;\n }\n};\n \nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N; cin >> N;\n vector<ll> P(N+1,0), b(N+1,0);\n\n for(int i=2;i<=N;i++){\n cout << \"? \" << 1 << \" \" << i << \"\\n\";\n cout.flush();\n ll r; cin >> r;\n P[i]=r;\n }\n b[1]=0;\n for(int i=2;i<=N;i++) b[i] = P[i]-P[i-1];\n\n Fenw fenw(N);\n for(int i=1;i<=N;i++) fenw.upd(i,1);\n\n vector<int> ans(N+1,0);\n for(int i=N;i>=1;i--){\n int sz = fenw.sum(N);\n int k = b[i] + 1;\n int pos = fenw.kth(sz - k + 1);\n ans[i] = pos;\n fenw.upd(pos, -1);\n }\n cout << \"!\";\n for(int i=1;i<=N;i++) cout << \" \" << ans[i];\n cout << endl;\n cout.flush();\n return 0;\n}", "accuracy": 1, "time_ms": 1230, "memory_kb": 291764, "score_of_the_acc": -1.2569, "final_rank": 2 }, { "submission_id": "aoj_2775_8470731", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2775.cc: Complex Oracle\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef long long ll;\n\ntemplate <typename T>\nstruct BIT {\n int n;\n vector<T> bits;\n \n BIT() {}\n BIT(int _n) { init(_n); }\n\n void init(int _n) {\n n = _n;\n bits.assign(n + 1, 0);\n }\n\n T sum(int x) {\n x = min(x, n);\n T s = 0;\n while (x > 0) {\n s += bits[x];\n x -= (x & -x);\n }\n return s;\n }\n\n void add(int x, T v) {\n if (x <= 0) return;\n while (x <= n) {\n bits[x] += v;\n x += (x & -x);\n }\n }\n\n int lower_bound(T v) {\n int\tk = 1;\n while ((k << 1) <= n) k <<=\t1;\n int\tx = 0;\n for\t(; k > 0; k >>= 1)\n if (x + k <= n && bits[x + k] < v) {\n x += k;\n v -= bits[x];\n }\n return x + 1;\n }\n};\n\n/* global variables */\n\nll cs[MAX_N];\nint ds[MAX_N], ps[MAX_N];\nBIT<int> bit;\n\n/* subroutines */\n\nll query(int i, int j) {\n printf(\"? %d %d\\n\", i + 1, j + 1); fflush(stdout);\n\n ll c;\n scanf(\"%lld\", &c);\n return c;\n}\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n\n cs[0] = 0;\n for (int i = 1; i < n; i++) {\n cs[i] = (ll)i * (i + 1) / 2 - query(0, i);\n ds[i] = cs[i] - cs[i - 1];\n }\n\n bit.init(n);\n for (int i = 1; i <= n; i++) bit.add(i, 1);\n\n for (int i = n - 1; i >= 0; i--) {\n int l = 0, r = n;\n while (l + 1 < r) {\n int m = (l + r) / 2;\n if (bit.sum(m) > ds[i]) r = m;\n else l = m;\n }\n\n ps[i] = r;\n bit.add(r, -1);\n }\n\n putchar('!');\n for (int i = 0; i < n; i++) printf(\" %d\", ps[i]);\n putchar('\\n'); fflush(stdout);\n\n return 0;\n}", "accuracy": 1, "time_ms": 1220, "memory_kb": 291764, "score_of_the_acc": -1.2548, "final_rank": 1 }, { "submission_id": "aoj_2775_6940120", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (int i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<ll> p(N);\n\tll tmp=0;\n\trep(i,N-1){\n\t\tcout<<\"? 1 \"<<i+2<<endl;\n\t\tll a;\n\t\tcin>>a;\n\t\tp[i+1]=i+1-(a-tmp);\n\t\ttmp=a;\n\t}\n\t//vec_out(p);\n\ttmp=0;\n\tfor(int i=N-2;i>=0;i--){\n\t\tcout<<\"? \"<<i+1<<\" \"<<N<<endl;\n\t\tll a;\n\t\tcin>>a;\n\t\tp[i]+=a-tmp;\n\t\ttmp=a;\n\t}\n\t//vec_out(p);\n\tcout<<\"!\";\n\trep(i,N){\n\t\tcout<<\" \"<<p[i]+1;\n\t}\n\tcout<<endl;\n}", "accuracy": 1, "time_ms": 2190, "memory_kb": 291716, "score_of_the_acc": -1.4623, "final_rank": 10 }, { "submission_id": "aoj_2775_5535188", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\n\n// 1-indexed\ntemplate<typename T>\nstruct BIT{\n int n;\n vector<T> bit;\n BIT(int n_=0):n(n_),bit(n+1){}\n T sum(int i){\n T res=0;\n for(;i>0;i-=(i&-i))res+=bit[i];\n return res;\n }\n void add(int i,T a){\n if(i==0)return;\n for(;i<=n;i+=(i&-i)){bit[i]+=a;}\n }\n int lower_bound(T k){ // k<=sum(res)\n if(k<=0)return 0;\n int res=0,i=1;\n while((i<<1)<=n)i<<=1;\n for(;i;i>>=1){\n if(res+i<=n&&bit[res+i]<k)k-=bit[res+=i];\n }\n return res+1;\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<ll> query(n+1);\n BIT<int> bit(n+1);\n for(int i=1;i<=n;i++){\n cout << \"? \" << i << \" \" << n << endl;\n cin >> query[i];\n bit.add(i,1);\n }\n vector<int> res(n+1);\n for(int i=1;i+1<=n;i++){\n ll u=query[i]-query[i+1]+1;\n int id=bit.lower_bound(u);\n bit.add(id,-1);\n res[i]=id;\n }\n res[n]=bit.lower_bound(1);\n cout << \"!\";\n for(int i=1;i<=n;i++){\n cout << \" \" << res[i];\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 1340, "memory_kb": 291776, "score_of_the_acc": -1.2805, "final_rank": 5 }, { "submission_id": "aoj_2775_5535187", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\n\n// 1-indexed\ntemplate<typename T>\nstruct BIT{\n int n;\n vector<T> bit;\n BIT(int n_=0):n(n_),bit(n+1){}\n T sum(int i){\n T res=0;\n for(;i>0;i-=(i&-i))res+=bit[i];\n return res;\n }\n void add(int i,T a){\n if(i==0)return;\n for(;i<=n;i+=(i&-i)){bit[i]+=a;}\n }\n int lower_bound(T k){ // k<=sum(res)\n if(k<=0)return 0;\n int res=0,i=1;\n while((i<<1)<=n)i<<=1;\n for(;i;i>>=1){\n if(res+i<=n&&bit[res+i]<k)k-=bit[res+=i];\n }\n return res+1;\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<int> query(n+1);\n BIT<int> bit(n+1);\n for(int i=1;i<=n;i++){\n cout << \"? \" << i << \" \" << n << endl;\n cin >> query[i];\n bit.add(i,1);\n }\n vector<int> res(n+1);\n for(int i=1;i+1<=n;i++){\n int u=query[i]-query[i+1]+1;\n int id=bit.lower_bound(u);\n bit.add(id,-1);\n res[i]=id;\n }\n res[n]=bit.lower_bound(1);\n cout << \"!\";\n for(int i=1;i<=n;i++){\n cout << \" \" << res[i];\n }\n cout << endl;\n}", "accuracy": 0.6176470588235294, "time_ms": 30, "memory_kb": 41248, "score_of_the_acc": -0.1041, "final_rank": 20 }, { "submission_id": "aoj_2775_5532968", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// 0-indexed\ntemplate <class T>\nstruct SegmentTree {\n // a,b,c: T, e:T(unit)\n // abc = (ab)c = a(bc)\n // ae = ea = a\n typedef function<T(T, T)> F;\n int n;\n F f;\n T unit;\n vector<T> dat;\n SegmentTree(){};\n SegmentTree(int newn, F f, T t) : f(f), unit(t) { init(newn); }\n SegmentTree(const vector<T> &v, F f, T t) : f(f), unit(t) {\n int _n = v.size();\n init(v.size());\n for (int i = 0; i < _n; ++i) dat[n + i] = v[i];\n for (int i = n - 1; i; --i) dat[i] = f(dat[i << 1], dat[(i << 1) | 1]);\n }\n void init(int newn) {\n n = 1;\n while (n < newn) n <<= 1;\n dat.assign(n << 1, unit);\n }\n\n // \"go up\" process\n void update(int k, T newdata) {\n dat[k += n] = newdata;\n while (k >>= 1) dat[k] = f(dat[k << 1], dat[(k << 1) | 1]);\n }\n // [a,b)\n T query(int a, int b) {\n T vl = unit, vr = unit;\n for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {\n if (l & 1) vl = f(vl, dat[l++]);\n if (r & 1) vr = f(dat[--r], vr);\n }\n return f(vl, vr);\n }\n // require: func(unit) == false\n // min left: st <= res && func(seg.query(st,res + 1))\n template <typename C>\n int find_left(int st, C &func, T &acc, int k, int l, int r) {\n if (l + 1 == r) {\n acc = f(acc, dat[k]);\n return func(acc) ? l : -1;\n }\n int mid = (l + r) >> 1;\n if (mid <= st) return find_left(st, func, acc, (k << 1) | 1, mid, r);\n if (st <= l && !func(f(acc, dat[k]))) {\n acc = f(acc, dat[k]);\n return -1;\n }\n int nres = find_left(st, func, acc, (k << 1), l, mid);\n if (~nres) return nres;\n return find_left(st, func, acc, (k << 1) | 1, mid, r);\n }\n template <typename C>\n int find_left(int st, C &func) {\n T acc = unit;\n return find_left(st, func, acc, 1, 0, n);\n }\n\n // max right: res <= st && func(seg.query(res - 1,st))\n template <typename C>\n int find_right(int st, C &func, T &acc, int k, int l, int r) {\n if (l + 1 == r) {\n acc = f(dat[k], acc);\n return func(acc) ? r : -1;\n }\n int mid = (l + r) >> 1;\n if (st <= mid) return find_right(st, func, acc, k << 1, l, mid);\n if (r <= st && !func(f(dat[k], acc))) {\n acc = f(dat[k], acc);\n return -1;\n }\n int nres = find_right(st, func, acc, (k << 1) | 1, mid, r);\n if (~nres) return nres;\n return find_right(st, func, acc, k << 1, l, mid);\n }\n template <typename C>\n int find_right(int st, C &func) {\n T acc = unit;\n return find_right(st, func, acc, 1, 0, n);\n }\n};\n\nint n;\nvector<long long> memo;\n\nvector<int> solve();\n\nint main() {\n cin >> n;\n memo.resize(n + 1);\n for (int i = 0; i < n - 1; ++i) {\n cout << \"? \" << i + 1 << \" \" << n << endl;\n cin >> memo[i];\n }\n auto res = solve();\n cout << \"!\";\n for (int i = 0; i < n; ++i) cout << \" \" << res[i] + 1;\n cout << endl;\n return 0;\n}\n\nvector<int> solve() {\n SegmentTree<int> seg(\n n, [](int l, int r) { return l + r; }, 0);\n vector<int> res(n);\n for (int i = 0; i < n; ++i) seg.update(i, 1);\n for (int i = 0; i < n; ++i) {\n int now = memo[i] - memo[i + 1] + 1;\n auto cmp = [&](int x) { return x >= now; };\n now = seg.find_left(0, cmp);\n res[i] = now;\n seg.update(now, 0);\n }\n return res;\n}", "accuracy": 1, "time_ms": 1370, "memory_kb": 291756, "score_of_the_acc": -1.2869, "final_rank": 6 }, { "submission_id": "aoj_2775_5532668", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\n// struct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\nint main(){\n int n;\n cin>>n;\n V<ll> tmp(n),l(n);\n for(ll i=1;i<n;i++){\n cout<<\"? \"<<1<<\" \"<<i+1<<endl;\n ll v;\n cin>>v;\n tmp[i]=v;\n l[i]=i-(v-tmp[i-1]);\n }\n // print(tmp);\n tmp.assign(n,0);\n V<ll> r(n);\n for(int i=n-2;i>=0;i--){\n cout<<\"? \"<<i+1<<\" \"<<n<<endl;\n ll v;\n cin>>v;\n tmp[i]=v;\n r[i]=v-tmp[i+1];\n }\n V<ll> ans(n);\n for(int i=0;i<n;i++){\n ans[i]=l[i]+r[i]+1;\n }\n // print(l);\n // print(r);\n cout<<\"! \";\n for(int i=0;i<n;i++){\n cout<<ans[i];\n if(i==n-1){\n cout<<endl;\n }else{\n cout<<\" \";\n }\n }\n}", "accuracy": 1, "time_ms": 2240, "memory_kb": 291776, "score_of_the_acc": -1.4732, "final_rank": 11 }, { "submission_id": "aoj_2775_5532597", "code_snippet": "#include<bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n//#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"unroll-loops\")\nusing namespace std;\n//#include<boost/multiprecision/cpp_int.hpp>\n//#include<boost/multiprecision/cpp_dec_float.hpp>\n//namespace mp=boost::multiprecision;\n//#define mulint mp::cpp_int\n//#define mulfloat mp::cpp_dec_float_100\n//struct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\n#define INF (1<<30)\n#define LINF (lint)(1LL<<56)\n//#define endl \"\\n\"\n#define rep(i,n) for(lint (i)=0;(i)<(n);(i)++)\n#define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--)\n#define flc(x) __builtin_popcountll(x)\n#define pint pair<int,int>\n#define pdouble pair<double,double>\n#define plint pair<lint,lint>\n#define fi first\n#define se second\n#define all(x) x.begin(),x.end()\n#define vec vector<lint>\n#define nep(x) next_permutation(all(x))\ntypedef long long lint;\nint dx[8]={1,1,0,-1,-1,-1,0,1};\nint dy[8]={0,1,1,1,0,-1,-1,-1};\nconst int MAX_N=3e5+5;\ntemplate<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return 1;}return 0;}\n//vector<int> bucket[MAX_N/1000];\nconstexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n/*#include<atcoder/all>\nusing namespace atcoder;\ntypedef __int128_t llint;*/\n\ntemplate<typename U = unsigned, int B = 32>\nclass lazy_binary_trie {\n struct node {\n int cnt;\n U lazy;\n node *ch[2];\n node() : cnt(0), lazy(0), ch{ nullptr, nullptr } {}\n };\n void push(node* t, int b) {\n if ((t->lazy >> (U)b) & (U)1) swap(t->ch[0], t->ch[1]);\n if (t->ch[0]) t->ch[0]->lazy ^= t->lazy;\n if (t->ch[1]) t->ch[1]->lazy ^= t->lazy;\n t->lazy = 0;\n }\n node* add(node* t, U val, int b = B - 1) {\n if (!t) t = new node;\n t->cnt += 1;\n if (b < 0) return t;\n push(t, b);\n bool f = (val >> (U)b) & (U)1;\n t->ch[f] = add(t->ch[f], val, b - 1);\n return t;\n }\n node* sub(node* t, U val, int b = B - 1) {\n assert(t);\n t->cnt -= 1;\n if (t->cnt == 0) return nullptr;\n if (b < 0) return t;\n push(t, b);\n bool f = (val >> (U)b) & (U)1;\n t->ch[f] = sub(t->ch[f], val, b - 1);\n return t;\n }\n U get_min(node* t, U val, int b = B - 1) {\n assert(t);\n if (b < 0) return 0;\n push(t, b);\n bool f = (val >> (U)b) & (U)1; f ^= !t->ch[f];\n return get_min(t->ch[f], val, b - 1) | ((U)f << (U)b);\n }\n U get(node* t, int k, int b = B - 1) {\n if (b < 0) return 0;\n push(t, b);\n int m = t->ch[0] ? t->ch[0]->cnt : 0;\n return k < m ? get(t->ch[0], k, b - 1) : get(t->ch[1], k - m, b - 1) | ((U)1 << (U)b);\n }\n int count_lower(node* t, U val, int b = B - 1) {\n if (!t || b < 0) return 0;\n push(t, b);\n bool f = (val >> (U)b) & (U)1;\n return (f && t->ch[0] ? t->ch[0]->cnt : 0) + count_lower(t->ch[f], val, b - 1);\n }\n node *root;\npublic:\n lazy_binary_trie() : root(nullptr) {}\n int size() const {\n return root ? root->cnt : 0;\n }\n bool empty() const {\n return !root;\n }\n void insert(U val) {\n root = add(root, val);\n }\n void erase(U val) {\n root = sub(root, val);\n }\n void xor_all(U val) {\n if (root) root->lazy ^= val;\n }\n U max_element(U bias = 0) {\n return get_min(root, ~bias);\n }\n U min_element(U bias = 0) {\n return get_min(root, bias);\n }\n int lower_bound(U val) { // return id\n return count_lower(root, val);\n }\n int upper_bound(U val) { // return id\n return count_lower(root, val + 1);\n }\n U operator[](int k) {\n assert(0 <= k && k < size());\n return get(root, k);\n }\n int count(U val) {\n if (!root) return 0;\n node *t = root;\n for (int i = B - 1; i >= 0; i--) {\n push(t, i);\n t = t->ch[(val >> (U)i) & (U)1];\n if (!t) return 0;\n }\n return t->cnt;\n }\n};\n\nint main(void){\n int N;\n cin >> N;\n int ans[N];\n lint q[N];\n lazy_binary_trie<int,20> BT;\n rep(i,N) BT.insert(i+1);\n rep(i,N){\n cout << \"? \" << i+1 << \" \" << N << endl;\n cin >> q[i];\n if(i==0) continue;\n ans[i-1]=BT[q[i-1]-q[i]];\n BT.erase(ans[i-1]);\n }\n ans[N-1]=BT[0];\n cout << \"! \";\n rep(i,N){\n cout << ans[i];\n if(i!=N-1) cout << \" \";\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 1400, "memory_kb": 291776, "score_of_the_acc": -1.2934, "final_rank": 7 }, { "submission_id": "aoj_2775_4926734", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#include <ext/rope>\nusing namespace __gnu_cxx;\n\n\nll query(ll l, ll r){\n l++;\n printf(\"? %lld %lld\\n\", l, r); fflush(stdout);\n scanf(\"%lld\", &l);\n return l;\n}\nvoid answer(vector<ll>a){\n putchar('!');\n for(ll i : a) printf(\" %lld\", i);\n puts(\"\");\n exit(0);\n}\nint main(){\n ll n;\n scanf(\"%lld\", &n);\n vector<ll> a(n + 1);\n for(ll i = 1; i <= n; i++) a[i] = query(0, i);\n rope<ll> x;\n for(ll i = n; i; i--) x.push_back(i);\n for(ll i = n; i; i--){\n auto p = x.mutable_begin() + (a[i] - a[i - 1]);\n a[i] = *p;\n x.erase(p);\n }\n a.erase(a.begin());\n answer(a);\n}", "accuracy": 1, "time_ms": 1330, "memory_kb": 291756, "score_of_the_acc": -1.2783, "final_rank": 4 }, { "submission_id": "aoj_2775_4471789", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\ntypedef long long int lli;\n\nint main(){\n int n;\n cin >> n;\n vector<lli> a(n), b(n);\n for(int i=0; i<n; i++){\n cout << \"? \" << 1 << \" \" << i+1 << endl;\n cin >> a[i];\n cout << \"? \" << i+1 << \" \" << n << endl;\n cin >> b[i];\n }\n for(int i=0; i<n-1; i++){\n a[n-1-i] -= a[n-2-i];\n b[i] -= b[i+1];\n }\n cout << \"!\";\n for(int i=0; i<n; i++){\n cout << \" \" << b[i]+1 +(i-a[i]);\n }\n cout << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 4650, "memory_kb": 288960, "score_of_the_acc": -1.9792, "final_rank": 16 }, { "submission_id": "aoj_2775_4471776", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\ntypedef long long int lli;\n\nint main(){\n int n;\n cin >> n;\n vector<lli> a(n), b(n);\n for(int i=0; i<n; i++){\n cout << \"? \" << 1 << \" \" << i+1 << endl;\n cin >> a[i];\n cout << \"? \" << i+1 << \" \" << n << endl;\n cin >> b[i];\n }\n for(int i=n-2; i>=0; i--){\n a[i+1] -= a[i];\n b[n-i-2] -= b[n-i-1];\n }\n for(int i=0; i<n; i++){\n cout << a[i] << \" \" << b[i] << endl;\n }\n cout << \"!\";\n for(int i=0; i<n; i++){\n cout << \" \" << b[i]+1 +(i-a[i]);\n }\n cout << endl;\n return 0;\n}", "accuracy": 0.6176470588235294, "time_ms": 130, "memory_kb": 12140, "score_of_the_acc": -0.0214, "final_rank": 19 }, { "submission_id": "aoj_2775_4471491", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef long double ld;\n#define rep(i,n) for (int i = 0; i < (n); ++i)\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\nconst ll INF=1LL<<60;\nconst int inf=(1<<30)-1;\nconst int mod=1e9+7;\nint dx[4]={1,0,-1,0};\nint dy[4]={0,1,0,-1};\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n;cin >> n;\n vector<int> p(n);\n vector<ll> l(n+1),r(n+1);\n for(int i=2;i<=n;i++){\n cout << \"? \" << 1 << \" \" << i << endl;\n cin >> l[i];\n }\n for(int i=1;i<=n-1;i++){\n cout << \"? \" << i << \" \" << n << endl;\n cin >> r[i-1];\n }\n for(int i=0;i<n;i++){\n ll u=l[i+1]-l[i];\n ll v=r[i]-r[i+1];\n p[i]=i-u+v;\n }\n cout << '!';\n for(int i=0;i<n;i++){\n cout << \" \" << p[i]+1;\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 4600, "memory_kb": 288900, "score_of_the_acc": -1.9683, "final_rank": 15 }, { "submission_id": "aoj_2775_4096256", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nint64_t question(int l, int r){\n cout << \"? \" << l + 1 << \" \" << r + 1 << endl;\n int64_t res;\n cin >> res;\n return res;\n}\n\nvoid output(vector<int> &A){\n cout << \"!\";\n for (const auto &a: A)\n cout << \" \" << a;\n cout << endl;\n}\n\nll INF = 1e9+7;\nll N, dat[2222222];\nvoid init(ll k){\n N = 1;\n while(N < k) N *= 2;\n for(ll i=0;i<2*N-1;i++) dat[i] = 0;\n}\n\nvoid update(ll k, ll num){\n k += N-1;\n dat[k] = num;\n while(k>0){\n k = (k-1)/2;\n dat[k] = dat[k*2 + 1] + dat[k*2+2];\n }\n}\n\n// query(a,b,0,0,n) → [a,b)\nll query(ll a, ll b, ll k, ll l, ll r){\n if(r<=a || b<=l) return 0;\n if(a<=l && r<=b) return dat[k];\n else{\n ll vl = query(a,b,k*2+1,l,(l+r)/2);\n ll vr = query(a,b,k*2+2,(l+r)/2,r);\n return vl+vr;\n }\n}\n\n\nsigned main(){\n ios::sync_with_stdio(false);\n\tcin.tie(0);\n cout << fixed << setprecision(20);\n\n int n;\n cin >> n;\n vector<int64_t> D(n);\n int64_t prev = 0;\n for (int i = 1; i < n; i++){\n auto res = question(0, i);\n D[i] = res - prev;\n prev = res;\n }\n init(n + 1);\n\n auto check = [&](auto k, auto d){\n return d < query(k, n + 1, 0, 0, N);\n };\n\n auto b_serach = [&](auto ok, auto ng, auto check, auto d){\n while (abs(ok - ng) > 1){\n auto mid = (ok + ng) / 2;\n (check(mid, d) ? ok : ng) = mid;\n }\n return ok;\n };\n\n for (int i = 1; i <= n; i++)\n update(i, 1);\n vector<int> ans(n);\n \n for (int i = n - 1; i >= 0; i--){\n int res = b_serach(0, n + 2, check, D[i]);\n update(res, 0);\n ans[i] = res;\n }\n\n output(ans);\n}", "accuracy": 1, "time_ms": 2680, "memory_kb": 288908, "score_of_the_acc": -1.5572, "final_rank": 13 }, { "submission_id": "aoj_2775_4096005", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\nconstexpr long long int MOD = 1000000007;\n//constexpr int MOD = 1000000007;\n//constexpr int MOD = 998244353;\n//constexpr long long int MOD = 998244353;\nconstexpr double EPS = 1e-8;\n\n//int N, M, K, H, W, L, R;\nlong long int N, M, K, H, W, L, R;\n\nclass Add_Segment_Tree {\n\tvector<long long int>v;\n\tvector<long long int>add;\n\tvector<long long int>modi;\n\tvector<int>l;\n\tvector<int>r;\n\tint num;\n\tlong long int ret;\n\tvoid Left(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\tl[place] = place - v.size() / 2;\n\t\t\treturn;\n\t\t}\n\t\tLeft(place * 2);\n\t\tLeft(place * 2 + 1);\n\t\tl[place] = l[place * 2];\n\t\treturn;\n\t}\n\tvoid Right(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\tr[place] = place - v.size() / 2;\n\t\t\treturn;\n\t\t}\n\t\tRight(place * 2);\n\t\tRight(place * 2 + 1);\n\t\tr[place] = r[place * 2 + 1];\n\t\treturn;\n\t}\n\tlong long int Update(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\treturn v[place];\n\t\t}\n\t\tv[place] = Update(place * 2) + Update(place * 2 + 1);\n\t\treturn v[place];\n\t}\n\tvoid Modify(int a, int b, long long int num, int place) {\n\t\tif (l[place] >= a && r[place] <= b) {\n\t\t\tmodi[place] = num * (r[place] - l[place] + 1);\n\t\t\tv[place] = num * (r[place] - l[place] + 1);\n\t\t\tadd[place] = 0;\n\t\t\treturn;\n\t\t}\n\t\tif (l[place] > b || r[place] < a)return;\n\t\tif (modi[place] != LLONG_MAX) {\n\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place] / 2;\n\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place] / 2;\n\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\tmodi[place] = LLONG_MAX;\n\t\t}\n\t\tadd[place * 2] += add[place] / 2;\n\t\tadd[place * 2 + 1] += add[place] / 2;\n\t\tadd[place] = 0;\n\t\tModify(a, b, num, place * 2);\n\t\tModify(a, b, num, place * 2 + 1);\n\t\tv[place] = v[place * 2] + add[place * 2] + v[place * 2 + 1] + add[place * 2 + 1];\n\t\treturn;\n\t}\n\tvoid Add(int a, int b, long long int num, int place) {\n\t\tif (l[place] >= a && r[place] <= b) {\n\t\t\tif (modi[place] != LLONG_MAX) {\n\t\t\t\tif (place * 2 < v.size()) {\n\t\t\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place] / 2;\n\t\t\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place] / 2;\n\t\t\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\t\t}\n\t\t\t\tmodi[place] = LLONG_MAX;\n\t\t\t}\n\t\t\tadd[place] += num * (r[place] - l[place] + 1);\n\t\t\treturn;\n\t\t}\n\t\tif (l[place] > b || r[place] < a)return;\n\t\tif (modi[place] != LLONG_MAX) {\n\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place] / 2;\n\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place] / 2;\n\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\tmodi[place] = LLONG_MAX;\n\t\t}\n\t\tadd[place * 2] += add[place] / 2;\n\t\tadd[place * 2 + 1] += add[place] / 2;\n\t\tadd[place] = 0;\n\t\tAdd(a, b, num, place * 2);\n\t\tAdd(a, b, num, place * 2 + 1);\n\t\tv[place] = v[place * 2] + add[place * 2] + v[place * 2 + 1] + add[place * 2 + 1];\n\t\treturn;\n\t}\n\tvoid Sum(int a, int b, int place) {\n\t\tif (l[place] >= a && r[place] <= b) {\n\t\t\tif (modi[place] != LLONG_MAX) {\n\t\t\t\tif (place * 2 < v.size()) {\n\t\t\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place] / 2;\n\t\t\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place] / 2;\n\t\t\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\t\t}\n\t\t\t\tmodi[place] = LLONG_MAX;\n\t\t\t}\n\t\t\tret += v[place] + add[place];\n\t\t\treturn;\n\t\t}\n\t\tif (l[place]>b || r[place]<a) return;\n\t\tif (modi[place] != LLONG_MAX) {\n\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place] / 2;\n\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place] / 2;\n\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\tmodi[place] = LLONG_MAX;\n\t\t}\n\t\tadd[place * 2] += add[place] / 2;\n\t\tadd[place * 2 + 1] += add[place] / 2;\n\t\tadd[place] = 0;\n\t\tSum(a, b, place * 2);\n\t\tSum(a, b, place * 2 + 1);\n\t\tv[place] = v[place * 2] + add[place * 2] + v[place * 2 + 1] + add[place * 2 + 1];\n\t\treturn;\n\t}\npublic:\n\tAdd_Segment_Tree(int n) {\n\t\tn++;\n\t\tnum = 1;\n\t\twhile (num < n * 2) {\n\t\t\tnum *= 2;\n\t\t}\n\t\tl.resize(num);\n\t\tr.resize(num);\n\t\tv.resize(num, 0);\n\t\tadd.resize(num, 0);\n\t\tmodi.resize(num, LLONG_MAX);\n\t\tLeft(1);\n\t\tRight(1);\n\t}\n\tvoid Insert(int place, long long int num, bool update) {\n\t\tplace += v.size() / 2;\n\t\tv[place] = num;\n\t\tif (!update)return;\n\t\tplace /= 2;\n\t\twhile (place) {\n\t\t\tv[place] = v[place * 2] + v[place * 2 + 1];\n\t\t\tplace /= 2;\n\t\t}\n\t}\n\tvoid Modify(int a, int b, long long int num) {\n\t\tModify(a, b, num, 1);\n\t}\n\tvoid Add(int a, int b, long long int num) {\n\t\tAdd(a, b, num, 1);\n\t}\n\tvoid Init() {\n\t\tUpdate(1);\n\t}\n\tlong long int Sum(int a, int b) {\n\t\tret = 0;\n\t\tSum(a, b, 1);\n\t\treturn ret;\n\t}\n};\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tcin >> N;\n\t//Add_Segment_Tree asg(N);\n\tAdd_Segment_Tree num(N);\n\tfor (int i = 0; i < N; i++) {\n\t\t//asg.Add(i, i, N - i);\n\t\tnum.Add(i, i, 1);\n\t}\n\tlong long int bef = 0;\n\tcout << \"? 1 \" << N << endl;\n\tcin >> bef;\n\tvector<int>ans(N);\n\tfor (int i = N - 2; i >= 0; i--) {\n\t\tcout << \"? 1 \" << i + 1 << endl;\n\t\tlong long int c;\n\t\tcin >> c;\n\t\t//int box= asg.Sum(bef - c, bef - c);\n\t\tint bag = i + 2 - (bef-c);\n\t\tL = 0;\n\t\tR = N;\n\t\t//cout << \"bag \" <<bag<< endl;\n\t\twhile (R - L > 1) {\n\t\t\tint mid = (R + L) / 2;\n\t\t\tif (num.Sum(1, mid) < bag)L = mid;\n\t\t\telse R = mid;\n\t\t}\n\t\tans[i + 1] = R;\n\t//\tasg.Add(bef-c, N, -1);\n\t\tnum.Add(ans[i + 1], ans[i+1], -1);\n\t\tbef = c;\n\t}\n\tlong long int nx = N * (N + 1) / 2 - accumulate(ans.begin(), ans.end(), 0LL);\n\tans[0] = nx;\n\tcout << \"!\";\n\tfor (auto i : ans)cout << \" \" << i;\n\tcout << endl;\n}", "accuracy": 1, "time_ms": 3610, "memory_kb": 288956, "score_of_the_acc": -1.7565, "final_rank": 14 }, { "submission_id": "aoj_2775_3968164", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n \nint main() {\n int N; scanf(\"%d\", &N);\n\n vector<int> A(N), B(N);\n ll pre = 0;\n for(int i=0; i<N; i++) {\n printf(\"? %d %d\\n\", 1, i+1);\n fflush(stdout);\n \n ll v; scanf(\"%lld\", &v);\n A[i] = i - (v - pre);\n pre = v;\n }\n\n pre = 0;\n for(int i=N-1; i>=0; i--) {\n printf(\"? %d %d\\n\", i+1, N);\n fflush(stdout);\n\n ll v; scanf(\"%lld\", &v);\n B[i] = v - pre;\n pre = v;\n }\n\n printf(\"!\");\n for(int i=0; i<N; i++) printf(\" %d\", A[i] + B[i] + 1);\n printf(\"\\n\");\n fflush(stdout);\n return 0;\n}", "accuracy": 1, "time_ms": 2600, "memory_kb": 288952, "score_of_the_acc": -1.5402, "final_rank": 12 }, { "submission_id": "aoj_2775_2739174", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100000\n\nll to_N[NUM+1],from_1[NUM+1],ans[NUM+1];\n\n\nint main(){\n\n\tll N;\n\tscanf(\"%lld\",&N);\n\n\tto_N[N] = 0;\n\tfor(ll left = N-1; left >= 1; left--){\n\t\tprintf(\"? %lld %lld\\n\",left,N); fflush(stdout);\n\t\tscanf(\"%lld\",&to_N[left]);\n\t}\n\n\tfrom_1[1] = 0;\n\n\tfor(int right = 2; right <= N; right++){\n\t\tprintf(\"? 1 %d\\n\",right); fflush(stdout);\n\t\tscanf(\"%lld\",&from_1[right]);\n\t}\n\n\tans[1] = to_N[1]-to_N[2]+1;\n\tfor(int i = 2; i <= N-1; i++){\n\t\tans[i] = (to_N[i]-to_N[i+1])+((ll)i-(from_1[i]-from_1[i-1]+1))+1;\n\t}\n\tans[N] = N-(from_1[N]-from_1[N-1]+1)+1;\n\n\tprintf(\"!\");\n\tfor(int i = 1; i <=N; i++)printf(\" %lld\",ans[i]);\n\tprintf(\"\\n\");\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 4670, "memory_kb": 288940, "score_of_the_acc": -1.9834, "final_rank": 17 }, { "submission_id": "aoj_2775_2739169", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100000\n\nll to_N[NUM+1],from_1[NUM+1],ans[NUM+1];\n\n\nint main(){\n\n\tll N;\n\tscanf(\"%lld\",&N);\n\n\tto_N[N] = 0;\n\t//右端にかけてのクエリを投げる<ans[left]より右にある小さい数の個数>\n\tfor(ll left = N-1; left >= 1; left--){\n\t\tprintf(\"? %lld %lld\\n\",left,N); fflush(stdout);\n\t\tscanf(\"%lld\",&to_N[left]);\n\t}\n\n\tfrom_1[1] = 0;\n\t//左端からのクエリを投げる\n\tfor(int right = 2; right <= N; right++){\n\t\tprintf(\"? 1 %d\\n\",right); fflush(stdout);\n\t\tscanf(\"%lld\",&from_1[right]);\n\t}\n\n\tans[1] = to_N[1]-to_N[2]+1;\t //自分の右にある、自分より小さい数の個数+1\n\tfor(int i = 2; i <= N-1; i++){\n\t\tans[i] = (to_N[i]-to_N[i+1])+((ll)i-(from_1[i]-from_1[i-1]+1))+1; //自分の右にある、自分より小さい数の個数+自分の左にある、自分より小さい数の個数+1\n\t}\n\tans[N] = N-(from_1[N]-from_1[N-1]+1)+1;\n\n\tprintf(\"!\");\n\tfor(int i = 1; i <=N; i++)printf(\" %lld\",ans[i]);\n\tprintf(\"\\n\");\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 4700, "memory_kb": 288940, "score_of_the_acc": -1.9899, "final_rank": 18 }, { "submission_id": "aoj_2775_2558466", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nstruct BIT{\n // [1,n]\n int n; vector<ll> bit;\n // ?????????\n BIT(int _n){\n n = _n;\n bit = vector<ll>(n+1,0);\n }\n // sum of [1,i]\n ll sum(int i){\n ll s = 0;\n while(i>0){\n s += bit[i];\n i -= i & -i;\n }\n return s;\n }\n // add x in i-th element\n void add(int i, ll x){\n while(i<=n){\n bit[i] += x;\n i += i & -i;\n }\n }\n};\n\nll query(int x)\n{\n printf(\"? 1 %d\\n\", x); fflush(stdout);\n ll ret;\n scanf(\" %lld\", &ret);\n return ret;\n}\n\nint main()\n{\n int n;\n scanf(\" %d\", &n);\n\n vector<int> ans(n);\n\n BIT bit(n);\n for(int i=1; i<=n; ++i) bit.add(i,1);\n\n ll x = query(n);\n for(int i=n-1; i>0; --i)\n {\n ll y = query(i);\n ll diff = x-y;\n\n int l=0, r=n;\n while(r-l>1)\n {\n int m = (l+r)/2;\n if(bit.sum(n)-bit.sum(m)<=diff) r=m;\n else l=m;\n }\n\n // dbg(l);dbg(r);\n ans[i] = r;\n bit.add(r,-1);\n x = y;\n }\n\n for(int i=1; i<=n; ++i) if(bit.sum(i)-bit.sum(i-1)>0) ans[0] = i;\n\n printf(\"!\");\n rep(i,n) printf(\" %d\", ans[i]);\n printf(\"\\n\");\n return 0;\n}", "accuracy": 1, "time_ms": 1660, "memory_kb": 288940, "score_of_the_acc": -1.3389, "final_rank": 8 }, { "submission_id": "aoj_2775_2558240", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define GET_MACRO(_1, _2, _3, NAME, ...) NAME\n#define _repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define _rep(i,n) _repl(i,0,n)\n#define rep(...) GET_MACRO(__VA_ARGS__, _repl, _rep)(__VA_ARGS__)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream &o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream &o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n\ntemplate<typename T>\nclass BIT {\nprivate:\n vector<T> bit;\n int n;\npublic:\n BIT(int _n) : n(_n) {\n bit = vector<T>(n+1, 0);\n }\n void add(int v, T a){ //0-indexed\n for(int x=v+1; x<=n; x += x&(-x)) bit[x] += a;\n }\n T sum(int v){ //0-indexed\n T ret=0;\n for(int x=v+1; x>0; x -= x&(-x)) ret += bit[x];\n return ret;\n }\n int lower_bound(T w){ //wテ、ツサツ・テ、ツクツ甘」ツ?ィテ」ツ?ェテ」ツつ凝ヲツ慊?・ツーツ湘」ツ?ョsumテ」ツ?ョテ、ツスツ催ァツスツョ(0-indexed)\n if(w<=0) return 0;\n int x=0, d=0;\n while(n > (1<<d)) d++;\n for(int k=(1<<(d-1)); k>0; k/=2){\n if(x+k<=n && bit[x+k]<w){\n w -= bit[x+k];\n x += k;\n }\n }\n return x;\n }\n};\n\nvector<int> ans;\n\nlong ask(int l, int r){\n cout << \"? \" << l << \" \" << r << endl;\n if(ans.size()>0){\n l--;\n long ret = 0;\n rep(i,l,r)rep(j,l,i) if(ans[j] > ans[i]) ret++;\n return ret;\n } else {\n long d;\n cin>>d;\n return d;\n }\n}\n\nint main(int argc, char* argv[]){\n if(argc>2){\n rep(i,1,argc) ans.pb(atoi(argv[i]));\n dbg(ans);\n }\n\n int n;\n cin>>n;\n\n vector<long> acc(n);\n acc[0] = 0;\n rep(i,1,n){\n acc[i] = ask(1,i+1);\n }\n vector<long> val(n);\n val[0] = 0;\n rep(i,1,n) val[i] = acc[i] - acc[i-1];\n\n BIT<int> bit(n+1);\n rep(i,n) bit.add(i+1,1);\n\n vector<int> res(n);\n for(int i=n-1; i>=0; i--){//dbg(i,val[i]);\n int idx = bit.lower_bound(i+1-val[i]);\n res[i] = idx;\n bit.add(idx, -1);\n }\n\n cout << \"!\";\n rep(i,n) cout << \" \" << res[i];\n cout<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 1700, "memory_kb": 288896, "score_of_the_acc": -1.3473, "final_rank": 9 } ]
aoj_2776_cpp
E: Arai's - Arai's - 問題 スクールアイドル時代から、国民的人気を誇ってきた女性アイドルグループArai's。今では、たくさんの「あらい」さんが所属する大規模なグループとして、世界レベルで活躍している。そして今日、新たなるプロジェクトの始動が決定した。彼女たちは、小さなユニットをいくつか結成することで、さらなる売上の向上を試みることになったのである。 Arai'sには「荒井」さんが A 人,「新井」さんが B 人在籍しており、合計で A+B 人の「あらい」さんからなる。新ユニットは、「荒井」さん一人と「新井」さん一人のペアで構成する。(ここで、同じ「あらい」さんが複数のユニットに所属していはいけない。)ただし、ある「荒井」さんが一部の「新井」さんのことを良く思っていないうえに、同様にある「新井」さんが一部の「荒井」さんのことを良く思っていない。「あらい」さんたちはユニットを組む際に、良く思っていない「あらい」さんをペアとして認めてくれず、一方でも認めてくれなければユニットを組むことはできない。 Arai'sのマネージャーであるあなたは、なるべくたくさんのユニットを作りたいと考えているが、メンバーの交友関係からその限界を感じていた。そこであなたは、「あらい」さんたちと個別に面談し、ユニットを組ませたい「あらい」さんについての、良い噂を聞かせることを考えた。面談をした「あらい」さんは、噂に聞いた「あらい」さんを見直し、ユニットのペアとして認めるようになる。 しかし、あなたはそれほど時間をとることができないため、最大 K 回までしか噂を聞かせることができない。あなたは限られた時間の中で、結成できるユニットの数を最大化しようと試みた。あなたが結成できるユニットの数の最大値を求めよ。 入力形式 A B K a_1 ... a_A b_1 ... b_B 1行目には、「荒井」さんの人数 A と「新井」さんの人数 B ( 1 \≤ A, B \≤ 200 であり A , B は整数)、噂を聞かせることができる人数 K ( 0 \≤ K \≤ 200 であり K は整数)が空白区切りで与えられる。 続く A 行には、それぞれ長さ B の 0 と 1 のみからなる文字列が与えられる。そのうち i 行目の文字列 a_i の j 文字目が 1 であるとき、 i 番目の「荒井」さんは j 番目の「新井」さんを良く思っていない。 続く B 行には、それぞれ長さ A の 0 と 1 のみからなる文字列が与えられる。そのうち i 行目の文字列 b_i の j 文字目が 1 であるとき、 i 番目の「新井」さんは j 番目の「荒井」さんを良く思っていない。 出力形式 あなたが結成できるユニット数の最大値を1行に出力せよ。 入力例1 3 3 4 111 111 111 111 111 111 出力例1 2 入力例2 3 3 2 101 100 010 001 011 111 出力例2 3 入力例3 5 6 3 101101 110110 010111 110110 110111 01010 10101 11101 01011 11011 11011 出力例3 4
[ { "submission_id": "aoj_2776_10851385", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing LL = long long; using ll = LL;\nusing PII = pair<int, int>; using pii = PII;\nusing PLL = pair<LL, LL>; using pll = PLL;\nusing VI = vector<int>; using VL = vector<LL>;\nconst ll LINF = 1e18;\nconst int INF = 1e9;\n#define FOR(i,s,t) for(int i =s; i < t;i++)\n#define SZ(a) (int)a.size()\n#define ALL(a) a.begin(),a.end()\n\nstruct Primal_Dual {\n\tstruct edge {\n\t\tint to, rev;\n\t\tll cap, cost;\n\t\tedge() {}\n\t\tedge(int to, ll cap, ll cost, int rev) :to(to), cap(cap), cost(cost), rev(rev) {}\n\t};\n\tvector<vector<edge>> graph;\n\tvector<int> prevv, preve;\n\tvector<ll> potential, min_cost;\n\tPrimal_Dual(int V) :graph(V) {}\n\n\tvoid add_edge(int from, int to, ll cap, ll cost) {\n\t\tgraph[from].emplace_back(to, cap, cost, graph[to].size());\n\t\tgraph[to].emplace_back(from, 0, -cost, graph[from].size() - 1);\n\t}\n\n\tll min_cost_flow(int s, int t, int f) {\n\t\tint V = graph.size();\n\t\tll ret = 0;\n\t\tpriority_queue<pll, vector<pll>, greater<pll>> que;\n\t\tpotential.assign(V, 0);\n\t\tpreve.assign(V, -1);\n\t\tprevv.assign(V, -1);\n\n\t\twhile (f > 0) {\n\t\t\tmin_cost.assign(V, LINF);\n\t\t\tque.push({ 0,s });\n\t\t\tmin_cost[s] = 0;\n\n\t\t\twhile (que.size()) {\n\t\t\t\tpll p = que.top();\n\t\t\t\tque.pop();\n\t\t\t\tif (min_cost[p.second] < p.first) continue;\n\t\t\t\tfor (int i = 0; i < graph[p.second].size(); i++) {\n\t\t\t\t\tedge& e = graph[p.second][i];\n\t\t\t\t\tll nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];\n\t\t\t\t\tif (e.cap > 0 && min_cost[e.to] > nextCost) {\n\t\t\t\t\t\tmin_cost[e.to] = nextCost;\n\t\t\t\t\t\tprevv[e.to] = p.second; preve[e.to] = i;\n\t\t\t\t\t\tque.push(pll(min_cost[e.to], e.to));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (min_cost[t] == LINF) return -1;\n\t\t\tfor (int v = 0; v < V; v++) potential[v] += min_cost[v];\n\t\t\tll add = f;\n\t\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\t\tadd = min(add, graph[prevv[v]][preve[v]].cap);\n\t\t\t}\n\t\t\tf -= add;\n\t\t\tret += add * potential[t];\n\t\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\t\tedge& e = graph[prevv[v]][preve[v]];\n\t\t\t\te.cap -= add;\n\t\t\t\tgraph[v][e.rev].cap += add;\n\t\t\t}\n\t\t}\n\t\treturn ret;\n\t}\n};\n\nvoid solve() {\n\tll A, B, K; cin >> A >> B >> K;\n\tvector<string> a(A), b(B);\n\tfor (auto& in : a) cin >> in;\n\tfor (auto& in : b) cin >> in;\n\n\tll S = A + B, T = A + B + 1;\n\tPrimal_Dual clojure(A + B + 2);\n\tfor (int i = 0; i < A; i++) clojure.add_edge(S, i, 1, 0);\n\tfor (int i = 0; i < B; i++) clojure.add_edge(A+i, T, 1, 0);\n\n\tfor (int i = 0; i < A; i++) {\n\t\tfor (int j = 0; j < B; j++) {\n\t\t\tll cost = 0;\n\t\t\tif (a[i][j] == '1') cost++;\n\t\t\tif (b[j][i] == '1') cost++;\n\t\t\t\n\t\t\tclojure.add_edge(i, A + j, 1, cost);\n\t\t}\n\t}\n\n\tll ans = 0;\n\twhile (true) {\n\t\tll ret = clojure.min_cost_flow(S, T, 1);\n//\t\tcout << ret << endl;\n\t\tif (ret == -1) break;\n\t\tif (ret > K) break;\n\t\tK -= ret;\n\t\tans++;\n\t}\n\tcout << ans << endl;\n}\n\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\n\tsolve();\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 5720, "score_of_the_acc": -0.2737, "final_rank": 11 }, { "submission_id": "aoj_2776_6941874", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\nnamespace atcoder {\nnamespace internal {\n\ntemplate <class E> struct csr {\n std::vector<int> start;\n std::vector<E> elist;\n explicit csr(int n, const std::vector<std::pair<int, E>>& edges)\n : start(n + 1), elist(edges.size()) {\n for (auto e : edges) {\n start[e.first + 1]++;\n }\n for (int i = 1; i <= n; i++) {\n start[i] += start[i - 1];\n }\n auto counter = start;\n for (auto e : edges) {\n elist[counter[e.first]++] = e.second;\n }\n }\n};\n\n} // namespace internal\n\nnamespace internal {\n\ntemplate <class T> struct simple_queue {\n std::vector<T> payload;\n int pos = 0;\n void reserve(int n) { payload.reserve(n); }\n int size() const { return int(payload.size()) - pos; }\n bool empty() const { return pos == int(payload.size()); }\n void push(const T& t) { payload.push_back(t); }\n T& front() { return payload[pos]; }\n void clear() {\n payload.clear();\n pos = 0;\n }\n void pop() { pos++; }\n};\n\n} // namespace internal\n\n\n\ntemplate <class Cap, class Cost> struct mcf_graph {\n public:\n mcf_graph() {}\n explicit mcf_graph(int n) : _n(n) {}\n\n int add_edge(int from, int to, Cap cap, Cost cost) {\n assert(0 <= from && from < _n);\n assert(0 <= to && to < _n);\n assert(0 <= cap);\n assert(0 <= cost);\n int m = int(_edges.size());\n _edges.push_back({from, to, cap, 0, cost});\n return m;\n }\n\n struct edge {\n int from, to;\n Cap cap, flow;\n Cost cost;\n };\n\n edge get_edge(int i) {\n int m = int(_edges.size());\n assert(0 <= i && i < m);\n return _edges[i];\n }\n std::vector<edge> edges() { return _edges; }\n\n std::pair<Cap, Cost> flow(int s, int t) {\n return flow(s, t, std::numeric_limits<Cap>::max());\n }\n std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {\n return slope(s, t, flow_limit).back();\n }\n std::vector<std::pair<Cap, Cost>> slope(int s, int t) {\n return slope(s, t, std::numeric_limits<Cap>::max());\n }\n std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {\n assert(0 <= s && s < _n);\n assert(0 <= t && t < _n);\n assert(s != t);\n\n int m = int(_edges.size());\n std::vector<int> edge_idx(m);\n\n auto g = [&]() {\n std::vector<int> degree(_n), redge_idx(m);\n std::vector<std::pair<int, _edge>> elist;\n elist.reserve(2 * m);\n for (int i = 0; i < m; i++) {\n auto e = _edges[i];\n edge_idx[i] = degree[e.from]++;\n redge_idx[i] = degree[e.to]++;\n elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});\n elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});\n }\n auto _g = internal::csr<_edge>(_n, elist);\n for (int i = 0; i < m; i++) {\n auto e = _edges[i];\n edge_idx[i] += _g.start[e.from];\n redge_idx[i] += _g.start[e.to];\n _g.elist[edge_idx[i]].rev = redge_idx[i];\n _g.elist[redge_idx[i]].rev = edge_idx[i];\n }\n return _g;\n }();\n\n auto result = slope(g, s, t, flow_limit);\n\n for (int i = 0; i < m; i++) {\n auto e = g.elist[edge_idx[i]];\n _edges[i].flow = _edges[i].cap - e.cap;\n }\n\n return result;\n }\n\tstd::vector<Cost> slope_all(int s, int t,Cap flow_limit) {\n std::vector<std::pair<Cap, Cost>> tmp=slope(s, t, flow_limit);\n\t\tstd::vector<Cost> ans((*tmp.rbegin()).first+1);\n\t\tans[0]=0;\n\t\tfor(int i=0;i<(int)(tmp.size())-1;i++){\n\t\t\tCost diff=(tmp[i+1].second-tmp[i].second)/(tmp[i+1].first-tmp[i].first);\n\t\t\tfor(int j=1+tmp[i].first;j<=tmp[i+1].first;j++){\n\t\t\t\tans[j]=ans[j-1]+diff;\n\t\t\t}\n\t\t}\n\t\treturn ans;\n }\n\tstd::vector<Cost> slope_all(int s, int t){\n\t\treturn slope_all(s,t,std::numeric_limits<Cap>::max());\n }\n\n private:\n int _n;\n std::vector<edge> _edges;\n\n // inside edge\n struct _edge {\n int to, rev;\n Cap cap;\n Cost cost;\n };\n\n std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,\n int s,\n int t,\n Cap flow_limit) {\n // variants (C = maxcost):\n // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0\n // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge\n\n // dual_dist[i] = (dual[i], dist[i])\n std::vector<std::pair<Cost, Cost>> dual_dist(_n);\n std::vector<int> prev_e(_n);\n std::vector<bool> vis(_n);\n struct Q {\n Cost key;\n int to;\n bool operator<(Q r) const { return key > r.key; }\n };\n std::vector<int> que_min;\n std::vector<Q> que;\n auto dual_ref = [&]() {\n for (int i = 0; i < _n; i++) {\n dual_dist[i].second = std::numeric_limits<Cost>::max();\n }\n std::fill(vis.begin(), vis.end(), false);\n que_min.clear();\n que.clear();\n\n // que[0..heap_r) was heapified\n size_t heap_r = 0;\n\n dual_dist[s].second = 0;\n que_min.push_back(s);\n while (!que_min.empty() || !que.empty()) {\n int v;\n if (!que_min.empty()) {\n v = que_min.back();\n que_min.pop_back();\n } else {\n while (heap_r < que.size()) {\n heap_r++;\n std::push_heap(que.begin(), que.begin() + heap_r);\n }\n v = que.front().to;\n std::pop_heap(que.begin(), que.end());\n que.pop_back();\n heap_r--;\n }\n if (vis[v]) continue;\n vis[v] = true;\n if (v == t) break;\n // dist[v] = shortest(s, v) + dual[s] - dual[v]\n // dist[v] >= 0 (all reduced cost are positive)\n // dist[v] <= (n-1)C\n Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;\n for (int i = g.start[v]; i < g.start[v + 1]; i++) {\n auto e = g.elist[i];\n if (!e.cap) continue;\n // |-dual[e.to] + dual[v]| <= (n-1)C\n // cost <= C - -(n-1)C + 0 = nC\n Cost cost = e.cost - dual_dist[e.to].first + dual_v;\n if (dual_dist[e.to].second - dist_v > cost) {\n Cost dist_to = dist_v + cost;\n dual_dist[e.to].second = dist_to;\n prev_e[e.to] = e.rev;\n if (dist_to == dist_v) {\n que_min.push_back(e.to);\n } else {\n que.push_back(Q{dist_to, e.to});\n }\n }\n }\n }\n if (!vis[t]) {\n return false;\n }\n\n for (int v = 0; v < _n; v++) {\n if (!vis[v]) continue;\n // dual[v] = dual[v] - dist[t] + dist[v]\n // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +\n // (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,\n // t) + dual[t] + shortest(s, v) = shortest(s, v) -\n // shortest(s, t) >= 0 - (n-1)C\n dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;\n }\n return true;\n };\n Cap flow = 0;\n Cost cost = 0, prev_cost_per_flow = -1;\n std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};\n while (flow < flow_limit) {\n if (!dual_ref()) break;\n Cap c = flow_limit - flow;\n for (int v = t; v != s; v = g.elist[prev_e[v]].to) {\n c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);\n }\n for (int v = t; v != s; v = g.elist[prev_e[v]].to) {\n auto& e = g.elist[prev_e[v]];\n e.cap += c;\n g.elist[e.rev].cap -= c;\n }\n Cost d = -dual_dist[s].first;\n flow += c;\n cost += c * d;\n if (prev_cost_per_flow == d) {\n result.pop_back();\n }\n result.push_back({flow, cost});\n prev_cost_per_flow = d;\n }\n return result;\n }\n};\n\n\n} // namespace atcoder\nusing namespace atcoder;\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint A,B,K;\n\tcin>>A>>B>>K;\n\tmcf_graph<int,int> G(A+B+2);\n\tint S=A+B,T=S+1;\n\trep(i,A) G.add_edge(S,i,1,0);\n\trep(i,B) G.add_edge(i+A,T,1,0);\n\tvector<vector<int>> p(A,vector<int>(B));\n\trep(i,A) rep(j,B){\n\t\tchar c;\n\t\tcin>>c;\n\t\tp[i][j]+=(int)(c-'0');\n\t}\n\trep(j,B) rep(i,A){\n\t\tchar c;\n\t\tcin>>c;\n\t\tp[i][j]+=(int)(c-'0');\n\t}\n\trep(i,A) rep(j,B) G.add_edge(i,j+A,1,p[i][j]);\n\tauto ans=G.slope_all(S,T);\n\tans.push_back(INF);\n\tint a=UB(ans,K);\n\tcout<<a-1<<\"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 7344, "score_of_the_acc": -0.6681, "final_rank": 14 }, { "submission_id": "aoj_2776_5533033", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\n\nstruct Primal_Dual{\n const int INF=(1<<30);\n struct edge{\n int to,cap,cost,rev;\n };\n vector<vector<edge>> G;\n vector<int> potential,min_cost,prevv,preve;\n Primal_Dual(int V):G(V){}\n void add_edge(int s,int t,int cap,int cost){\n G[s].push_back((edge){t,cap,cost,(int)(G[t].size())});\n G[t].push_back((edge){s,0,-cost,(int)(G[s].size()-1)});\n }\n int min_cost_flow(int s,int t,int f){\n int V=G.size(); int res=0;\n priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> pq;\n potential.assign(V,0);\n preve.assign(V,-1);\n prevv.assign(V,-1);\n while(f>0){\n min_cost.assign(V,INF);\n pq.push(make_pair(0,s));\n min_cost[s]=0;\n while(pq.size()){\n auto p=pq.top(); pq.pop();\n if(min_cost[p.second]<p.first)continue;\n int i=-1;\n for(auto &e:G[p.second]){\n i++;\n int nextcost=min_cost[p.second]+e.cost+potential[p.second]-potential[e.to];\n if(e.cap>0 and min_cost[e.to]>nextcost){\n min_cost[e.to]=nextcost;\n prevv[e.to]=p.second;\n preve[e.to]=i;\n pq.push(make_pair(min_cost[e.to],e.to));\n }\n }\n }\n if(min_cost[t]==INF)return -1; // 流せない\n for(int v=0;v<V;v++){\n potential[v]+=min_cost[v];\n }\n int Addflow=f;\n for(int v=t;v!=s;v=prevv[v]){\n Addflow=min(Addflow,G[prevv[v]][preve[v]].cap);\n }\n f-=Addflow;\n res+=Addflow*potential[t];\n for(int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=Addflow;\n G[v][e.rev].cap+=Addflow;\n }\n }\n return res;\n }\n};\n\nchar a[211][211],b[211][211];\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int A,B,K; cin >> A >> B >> K;\n Primal_Dual G(A+B+2);\n int S=A+B,T=A+B+1;\n for(int i=0;i<A;i++){\n G.add_edge(S,i,1,0);\n }\n for(int i=0;i<B;i++){\n G.add_edge(A+i,T,1,0);\n }\n for(int i=0;i<A;i++){\n for(int j=0;j<B;j++){\n cin >> a[i][j];\n }\n }\n for(int i=0;i<B;i++){\n for(int j=0;j<A;j++){\n cin >> b[i][j];\n }\n }\n for(int i=0;i<A;i++){\n for(int j=0;j<B;j++){\n G.add_edge(i,A+j,1,(a[i][j]-'0')+(b[j][i]-'0'));\n }\n }\n int res=0;\n int sum=0;\n for(int i=1;i<=min(A,B);i++){\n int flow=G.min_cost_flow(S,T,1);\n if(flow==-1)break;\n sum+=flow;\n if(sum<=K )res=i;\n else break;\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4960, "score_of_the_acc": -0.0606, "final_rank": 5 }, { "submission_id": "aoj_2776_5532983", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <class T>\nstruct Primal_Dual {\n using Pa = pair<T, int>;\n int infinity = (int)(1e9);\n struct edge {\n int to;\n T cap, cost;\n int rev;\n };\n int v;\n vector<vector<edge>> edges;\n vector<T> h;\n vector<T> dist;\n vector<int> prevv, preve;\n Primal_Dual(int vsize = 1) {\n v = vsize;\n edges.resize(v);\n h.resize(v);\n dist.resize(v);\n prevv.resize(v);\n preve.resize(v);\n }\n bool add(int from, int to, T cap, T cost) {\n edges[from].push_back((edge){to, cap, cost, (int)edges[to].size()});\n edges[to].push_back((edge){from, 0, -cost, (int)edges[from].size() - 1});\n return 1;\n }\n T solve(int s, int t, T f) {\n T ans = 0;\n h.assign(v, 0);\n while (f > 0) {\n priority_queue<Pa, vector<Pa>, greater<Pa>> qu;\n dist.assign(v, infinity);\n dist[s] = 0;\n qu.push({0, s});\n while (!qu.empty()) {\n Pa now = qu.top();\n qu.pop();\n int nowv = now.second;\n if (dist[nowv] < now.first) continue;\n for (int i = 0; i < (int)edges[nowv].size(); ++i) {\n edge &e = edges[nowv][i];\n if (e.cap > 0 &&\n dist[e.to] > dist[nowv] + e.cost + h[nowv] - h[e.to]) {\n dist[e.to] = dist[nowv] + e.cost + h[nowv] - h[e.to];\n prevv[e.to] = nowv;\n preve[e.to] = i;\n qu.push({dist[e.to], e.to});\n }\n }\n }\n if (dist[t] == infinity) return -1;\n for (int i = 0; i < v; ++i) h[i] += dist[i];\n T d = f;\n for (int i = t; i != s; i = prevv[i])\n d = min(d, edges[prevv[i]][preve[i]].cap);\n f -= d;\n ans += d * h[t];\n for (int i = t; i != s; i = prevv[i]) {\n edge &e = edges[prevv[i]][preve[i]];\n e.cap -= d;\n edges[i][e.rev].cap += d;\n }\n }\n return ans;\n }\n};\n\nint a, b, k;\nvector<vector<int>> cnt;\n\nint main() {\n cin >> a >> b >> k;\n cnt.assign(a, vector<int>(b, 0));\n for (int i = 0; i < a; ++i) {\n string s;\n cin >> s;\n for (int j = 0; j < b; ++j) cnt[i][j] += s[j] - '0';\n }\n for (int i = 0; i < b; ++i) {\n string s;\n cin >> s;\n for (int j = 0; j < a; ++j) cnt[j][i] += s[j] - '0';\n }\n Primal_Dual<int> pd(a + b + 2);\n for (int i = 0; i < a; ++i) pd.add(a + b, i, 1, 0);\n for (int i = 0; i < b; ++i) pd.add(i + a, a + b + 1, 1, 0);\n for (int i = 0; i < a; ++i)\n for (int j = 0; j < b; ++j) pd.add(i, j + a, 1, cnt[i][j]);\n int res = 0;\n while (res < min(a, b)) {\n k -= pd.solve(a + b, a + b + 1, 1);\n if (k < 0) break;\n ++res;\n }\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5324, "score_of_the_acc": -0.1556, "final_rank": 8 }, { "submission_id": "aoj_2776_5532538", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\nstruct PrimalDual{\n const ll INF=(1ll<<60);\n struct edge{\n int to,rev;ll cap,cost;bool isrev;\n edge(int to,ll cap,ll cost,int rev,bool isrev):to(to),cap(cap),cost(cost),rev(rev),isrev(isrev){}\n };\n vector<vector<edge>> graph;\n vector<ll> potential,min_cost;\n vector<int> prev_v,prev_e;\n\n PrimalDual(int V):graph(V){}\n\n void add_edge(int from,int to,ll cap, ll cost){\n graph[from].emplace_back(to,cap,cost,int(graph[to].size()),false);\n graph[to].emplace_back(from,0,-cost,int(graph[from].size())-1,true);\n }\n\n ll min_cost_flow(int s,int t,ll f){\n int N=graph.size();\n ll res=0;\n priority_queue<pair<ll,int>,vector<pair<ll,int>>,greater<pair<ll,int>>> pq;\n potential.assign(N,0);\n prev_e.assign(N,-1);\n prev_v.assign(N,-1);\n\n while(f>0){\n min_cost.assign(N,INF);\n pq.emplace(0,s);\n min_cost[s]=0;\n while(pq.size()){\n ll cost=pq.top().fi,cur=pq.top().se;\n pq.pop();\n if(min_cost[cur]<cost)continue;\n for(int i=0;i<graph[cur].size();i++){\n edge &e=graph[cur][i];\n ll next_cost=min_cost[cur]+e.cost+potential[cur]-potential[e.to];\n if(e.cap>0&&min_cost[e.to]>next_cost){\n min_cost[e.to]=next_cost;\n prev_v[e.to]=cur;\n prev_e[e.to]=i;\n pq.emplace(min_cost[e.to],e.to);\n }\n }\n }\n if(min_cost[t]>=INF)return -1;\n for(int v=0;v<N;v++)potential[v]+=min_cost[v];\n ll add_flow=f;\n for(int v=t;v!=s;v=prev_v[v]){\n chmin(add_flow,graph[prev_v[v]][prev_e[v]].cap);\n }\n f-=add_flow;\n res+=add_flow*potential[t];\n for(int v=t;v!=s;v=prev_v[v]){\n edge &e=graph[prev_v[v]][prev_e[v]];\n e.cap-=add_flow;\n graph[v][e.rev].cap+=add_flow;\n }\n }\n return res;\n }\n};\nint main(){\n ll A,B,k;\n cin>>A>>B>>k;\n V<string> a(A),b(B);\n for(int i=0;i<A;i++)cin>>a[i];\n for(int i=0;i<B;i++)cin>>b[i];\n V<V<bool>> ngA(205,V<bool>(205,false)),ngB(205,V<bool>(205,false));;\n for(int i=0;i<A;i++){\n for(int j=0;j<B;j++){\n if(a[i][j]=='1'){\n ngA[i][j]=true;\n }\n }\n }\n for(int i=0;i<B;i++){\n for(int j=0;j<A;j++){\n if(b[i][j]=='1'){\n ngB[i][j]=true;\n } \n }\n }\n ll l=0,r=min(A,B)+1;\n int ma=A+B+5;\n while(r-l>1){\n ll mid=(l+r)/2;\n \n PrimalDual f(ma);\n int S=A+B+1,T=A+B+2;\n for(int i=0;i<A;i++){\n f.add_edge(S,i,1,0);\n }\n for(int i=0;i<B;i++){\n f.add_edge(i+A,T,1,0);\n }\n for(int i=0;i<A;i++){\n for(int j=0;j<B;j++){\n int cost=0;\n if(ngA[i][j])cost++;\n if(ngB[j][i])cost++;\n f.add_edge(i,j+A,1,cost);\n }\n }\n ll v=f.min_cost_flow(S,T,mid);\n // cout<<v<<\" \"<<mid<<\"\\n\";\n if(v==-1)v=inf;\n if(v>k)r=mid;\n else l=mid;\n }\n cout<<l<<\"\\n\";\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 6692, "score_of_the_acc": -0.7479, "final_rank": 15 }, { "submission_id": "aoj_2776_5532528", "code_snippet": "#include<bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n//#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"unroll-loops\")\nusing namespace std;\n//#include<boost/multiprecision/cpp_int.hpp>\n//#include<boost/multiprecision/cpp_dec_float.hpp>\n//namespace mp=boost::multiprecision;\n//#define mulint mp::cpp_int\n//#define mulfloat mp::cpp_dec_float_100\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\n#define INF (1<<30)\n#define LINF (lint)(1LL<<56)\n#define endl \"\\n\"\n#define rep(i,n) for(lint (i)=0;(i)<(n);(i)++)\n#define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--)\n#define flc(x) __builtin_popcountll(x)\n#define pint pair<int,int>\n#define pdouble pair<double,double>\n#define plint pair<lint,lint>\n#define fi first\n#define se second\n#define all(x) x.begin(),x.end()\n#define vec vector<lint>\n#define nep(x) next_permutation(all(x))\ntypedef long long lint;\nint dx[8]={1,1,0,-1,-1,-1,0,1};\nint dy[8]={0,1,1,1,0,-1,-1,-1};\nconst int MAX_N=3e5+5;\ntemplate<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return 1;}return 0;}\n//vector<int> bucket[MAX_N/1000];\nconstexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n/*#include<atcoder/all>\nusing namespace atcoder;\ntypedef __int128_t llint;*/\n\nnamespace atcoder {\nnamespace internal {\ntemplate <class T> struct simple_queue {\n std::vector<T> payload;\n int pos = 0;\n void reserve(int n) { payload.reserve(n); }\n int size() const { return int(payload.size()) - pos; }\n bool empty() const { return pos == int(payload.size()); }\n void push(const T& t) { payload.push_back(t); }\n T& front() { return payload[pos]; }\n void clear() {\n payload.clear();\n pos = 0;\n }\n void pop() { pos++; }\n};\n} // namespace internal\n}\n\nnamespace atcoder {\ntemplate <class Cap> struct mf_graph {\n public:\n mf_graph() : _n(0) {}\n mf_graph(int n) : _n(n), g(n) {}\n int add_edge(int from, int to, Cap cap) {\n assert(0 <= from && from < _n);\n assert(0 <= to && to < _n);\n assert(0 <= cap);\n int m = int(pos.size());\n pos.push_back({from, int(g[from].size())});\n g[from].push_back(_edge{to, int(g[to].size()), cap});\n g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});\n return m;\n }\n struct edge {\n int from, to;\n Cap cap, flow;\n };\n edge get_edge(int i) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n auto _e = g[pos[i].first][pos[i].second];\n auto _re = g[_e.to][_e.rev];\n return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};\n }\n std::vector<edge> edges() {\n int m = int(pos.size());\n std::vector<edge> result;\n for (int i = 0; i < m; i++) {\n result.push_back(get_edge(i));\n }\n return result;\n }\n void change_edge(int i, Cap new_cap, Cap new_flow) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n assert(0 <= new_flow && new_flow <= new_cap);\n auto& _e = g[pos[i].first][pos[i].second];\n auto& _re = g[_e.to][_e.rev];\n _e.cap = new_cap - new_flow;\n _re.cap = new_flow;\n }\n Cap flow(int s, int t) {\n return flow(s, t, std::numeric_limits<Cap>::max());\n }\n Cap flow(int s, int t, Cap flow_limit) {\n assert(0 <= s && s < _n);\n assert(0 <= t && t < _n);\n std::vector<int> level(_n), iter(_n);\n internal::simple_queue<int> que;\n auto bfs = [&]() {\n std::fill(level.begin(), level.end(), -1);\n level[s] = 0;\n que.clear();\n que.push(s);\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n for (auto e : g[v]) {\n if (e.cap == 0 || level[e.to] >= 0) continue;\n level[e.to] = level[v] + 1;\n if (e.to == t) return;\n que.push(e.to);\n }\n }\n };\n auto dfs = [&](auto self, int v, Cap up) {\n if (v == s) return up;\n Cap res = 0;\n int level_v = level[v];\n for (int& i = iter[v]; i < int(g[v].size()); i++) {\n _edge& e = g[v][i];\n if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;\n Cap d =\n self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));\n if (d <= 0) continue;\n g[v][i].cap += d;\n g[e.to][e.rev].cap -= d;\n res += d;\n if (res == up) break;\n }\n return res;\n };\n Cap flow = 0;\n while (flow < flow_limit) {\n bfs();\n if (level[t] == -1) break;\n std::fill(iter.begin(), iter.end(), 0);\n while (flow < flow_limit) {\n Cap f = dfs(dfs, t, flow_limit - flow);\n if (!f) break;\n flow += f;\n }\n }\n return flow;\n }\n std::vector<bool> min_cut(int s) {\n std::vector<bool> visited(_n);\n internal::simple_queue<int> que;\n que.push(s);\n while (!que.empty()) {\n int p = que.front();\n que.pop();\n visited[p] = true;\n for (auto e : g[p]) {\n if (e.cap && !visited[e.to]) {\n visited[e.to] = true;\n que.push(e.to);\n }\n }\n }\n return visited;\n }\n private:\n int _n;\n struct _edge {\n int to, rev;\n Cap cap;\n };\n std::vector<std::pair<int, int>> pos;\n std::vector<std::vector<_edge>> g;\n};\n}\n\nnamespace atcoder {\ntemplate <class Cap, class Cost> struct mcf_graph {\n public:\n mcf_graph() {}\n mcf_graph(int n) : _n(n), g(n) {}\n int add_edge(int from, int to, Cap cap, Cost cost) {\n assert(0 <= from && from < _n);\n assert(0 <= to && to < _n);\n int m = int(pos.size());\n pos.push_back({from, int(g[from].size())});\n g[from].push_back(_edge{to, int(g[to].size()), cap, cost});\n g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});\n return m;\n }\n struct edge {\n int from, to;\n Cap cap, flow;\n Cost cost;\n };\n edge get_edge(int i) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n auto _e = g[pos[i].first][pos[i].second];\n auto _re = g[_e.to][_e.rev];\n return edge{\n pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,\n };\n }\n std::vector<edge> edges() {\n int m = int(pos.size());\n std::vector<edge> result(m);\n for (int i = 0; i < m; i++) {\n result[i] = get_edge(i);\n }\n return result;\n }\n std::pair<Cap, Cost> flow(int s, int t) {\n return flow(s, t, std::numeric_limits<Cap>::max());\n }\n std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {\n return slope(s, t, flow_limit).back();\n }\n std::vector<std::pair<Cap, Cost>> slope(int s, int t) {\n return slope(s, t, std::numeric_limits<Cap>::max());\n }\n std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {\n assert(0 <= s && s < _n);\n assert(0 <= t && t < _n);\n assert(s != t);\n // variants (C = maxcost):\n // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0\n // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge\n std::vector<Cost> dual(_n, 0), dist(_n);\n std::vector<int> pv(_n), pe(_n);\n std::vector<bool> vis(_n);\n auto dual_ref = [&]() {\n std::fill(dist.begin(), dist.end(),\n std::numeric_limits<Cost>::max());\n std::fill(pv.begin(), pv.end(), -1);\n std::fill(pe.begin(), pe.end(), -1);\n std::fill(vis.begin(), vis.end(), false);\n struct Q {\n Cost key;\n int to;\n bool operator<(Q r) const { return key > r.key; }\n };\n std::priority_queue<Q> que;\n dist[s] = 0;\n que.push(Q{0, s});\n while (!que.empty()) {\n int v = que.top().to;\n que.pop();\n if (vis[v]) continue;\n vis[v] = true;\n if (v == t) break;\n // dist[v] = shortest(s, v) + dual[s] - dual[v]\n // dist[v] >= 0 (all reduced cost are positive)\n // dist[v] <= (n-1)C\n for (int i = 0; i < int(g[v].size()); i++) {\n auto e = g[v][i];\n if (vis[e.to] || !e.cap) continue;\n // |-dual[e.to] + dual[v]| <= (n-1)C\n // cost <= C - -(n-1)C + 0 = nC\n Cost cost = e.cost - dual[e.to] + dual[v];\n if (dist[e.to] - dist[v] > cost) {\n dist[e.to] = dist[v] + cost;\n pv[e.to] = v;\n pe[e.to] = i;\n que.push(Q{dist[e.to], e.to});\n }\n }\n }\n if (!vis[t]) {\n return false;\n }\n for (int v = 0; v < _n; v++) {\n if (!vis[v]) continue;\n // dual[v] = dual[v] - dist[t] + dist[v]\n // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])\n // = - shortest(s, t) + dual[t] + shortest(s, v)\n // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C\n dual[v] -= dist[t] - dist[v];\n }\n return true;\n };\n Cap flow = 0;\n Cost cost = 0, prev_cost = -1;\n std::vector<std::pair<Cap, Cost>> result;\n result.push_back({flow, cost});\n while (flow < flow_limit) {\n if (!dual_ref()) break;\n Cap c = flow_limit - flow;\n for (int v = t; v != s; v = pv[v]) {\n c = std::min(c, g[pv[v]][pe[v]].cap);\n }\n for (int v = t; v != s; v = pv[v]) {\n auto& e = g[pv[v]][pe[v]];\n e.cap -= c;\n g[v][e.rev].cap += c;\n }\n Cost d = -dual[s];\n flow += c;\n cost += c * d;\n if (prev_cost == d) {\n result.pop_back();\n }\n result.push_back({flow, cost});\n prev_cost = cost;\n }\n return result;\n }\n private:\n int _n;\n struct _edge {\n int to, rev;\n Cap cap;\n Cost cost;\n };\n std::vector<std::pair<int, int>> pos;\n std::vector<std::vector<_edge>> g;\n};\n}\n\nusing namespace atcoder;\n\nint main(void){\n int A,B,K;\n cin >> A >> B >> K;\n mf_graph<int> G(A+B+2);\n rep(i,A) G.add_edge(A+B,i,1);\n rep(i,B) G.add_edge(A+i,A+B+1,1);\n string a[A],b[B];\n rep(i,A) cin >> a[i];\n rep(i,B) cin >> b[i];\n lint needs[A][B];\n /*rep(i,A) rep(j,B){\n if(a[i][j]=='0' && b[j][i]=='0') G.add_edge(i,A+j,1);\n else G.add_edge(i,A+j,0);\n }*/\n /*int ans=G.flow(A+B,A+B+1);\n vector<mf_graph<int>::edge> es=G.edges();\n int needs[A][B];\n bool used[A+B]={};\n rep(i,es.size()){\n if(es[i].from==A+B || es[i].to==A+B+1) continue;\n if(es[i].flow==1){\n int from=es[i].from,to=es[i].to;\n used[from]=true;\n used[to]=true;\n }\n }*/\n rep(i,A) rep(j,B) needs[i][j]=INF;\n /*rep(i,es.size()){\n if(es[i].from==A+B || es[i].to==A+B+1) continue;\n if(es[i].flow==0){\n int from=es[i].from,to=es[i].to-A;\n int cost=2;\n if(a[from][to]=='0') cost--;\n if(b[to][from]=='0') cost--;\n needs[from][to]=cost;\n if(used[from] || used[to]) needs[from][to]=INF;\n }\n }*/\n rep(i,A) rep(j,B){\n int cost=2;\n if(a[i][j]=='0') cost--;\n if(b[j][i]=='0') cost--;\n needs[i][j]=cost;\n }\n mcf_graph<lint,lint> G2(A+B+2);\n rep(i,A){\n G2.add_edge(A+B,i,1,0);\n }\n rep(i,B){\n G2.add_edge(A+i,A+B+1,1,0);\n }\n rep(i,A) rep(j,B){\n int from=i,to=A+j;\n G2.add_edge(from,to,1,needs[i][j]);\n }\n int lo=0,hi=300;\n while(hi-lo>1){\n int mid=(hi+lo)/2;\n mcf_graph<lint,lint> G3=G2;\n plint res=G3.flow(A+B,A+B+1,mid);\n if(res.se<=K && res.fi==mid) lo=mid;\n else hi=mid;\n }\n cout << lo << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 8616, "score_of_the_acc": -1.0441, "final_rank": 19 }, { "submission_id": "aoj_2776_5532477", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\n\nstruct Primal_Dual{\n const int INF=(1<<30);\n struct edge{\n int to,cap,cost,rev;\n };\n vector<vector<edge>> G;\n vector<int> potential,min_cost,prevv,preve;\n Primal_Dual(int V):G(V){}\n void add_edge(int s,int t,int cap,int cost){\n G[s].push_back((edge){t,cap,cost,(int)(G[t].size())});\n G[t].push_back((edge){s,0,-cost,(int)(G[s].size()-1)});\n }\n int min_cost_flow(int s,int t,int f){\n int V=G.size(); int res=0;\n priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> pq;\n potential.assign(V,0);\n preve.assign(V,-1);\n prevv.assign(V,-1);\n while(f>0){\n min_cost.assign(V,INF);\n pq.push(make_pair(0,s));\n min_cost[s]=0;\n while(pq.size()){\n auto p=pq.top(); pq.pop();\n if(min_cost[p.second]<p.first)continue;\n int i=-1;\n for(auto &e:G[p.second]){\n i++;\n int nextcost=min_cost[p.second]+e.cost+potential[p.second]-potential[e.to];\n if(e.cap>0 and min_cost[e.to]>nextcost){\n min_cost[e.to]=nextcost;\n prevv[e.to]=p.second;\n preve[e.to]=i;\n pq.push(make_pair(min_cost[e.to],e.to));\n }\n }\n }\n if(min_cost[t]==INF)return -1; // 流せない\n for(int v=0;v<V;v++){\n potential[v]+=min_cost[v];\n }\n int Addflow=f;\n for(int v=t;v!=s;v=prevv[v]){\n Addflow=min(Addflow,G[prevv[v]][preve[v]].cap);\n }\n f-=Addflow;\n res+=Addflow*potential[t];\n for(int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=Addflow;\n G[v][e.rev].cap+=Addflow;\n }\n }\n return res;\n }\n};\n\nchar a[211][211],b[211][211];\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int A,B,K; cin >> A >> B >> K;\n Primal_Dual G(A+B+2);\n int S=A+B,T=A+B+1;\n for(int i=0;i<A;i++){\n G.add_edge(S,i,1,0);\n }\n for(int i=0;i<B;i++){\n G.add_edge(A+i,T,1,0);\n }\n for(int i=0;i<A;i++){\n for(int j=0;j<B;j++){\n cin >> a[i][j];\n }\n }\n for(int i=0;i<B;i++){\n for(int j=0;j<A;j++){\n cin >> b[i][j];\n }\n }\n for(int i=0;i<A;i++){\n for(int j=0;j<B;j++){\n G.add_edge(i,A+j,1,(a[i][j]-'0')+(b[j][i]-'0'));\n }\n }\n int res=0;\n int sum=0;\n for(int i=1;i<=min(A,B);i++){\n int flow=G.min_cost_flow(S,T,1);\n if(flow==-1)break;\n sum+=flow;\n if(sum<=K )res=i;\n else break;\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4968, "score_of_the_acc": -0.0627, "final_rank": 6 }, { "submission_id": "aoj_2776_4926720", "code_snippet": "#include <bits/stdc++.h>\n\nconst int inf = 1000000000;\n\nusing namespace std;\n\nstruct MinimumCostFlow {\n typedef pair<int, int> P;\n\n struct edge {\n int to, cap, rev;\n int cost;\n edge(int a, int b, int c, int d): to(a), cap(b), rev(c), cost(d) {}\n };\n\n vector<vector<edge>> G;\n vector<int> prevv, preve;\n vector<int> h, dist;\n int V;\n\n MinimumCostFlow(int v): G(v, vector<edge>()), prevv(v, 0), preve(v, 0), V(v) {}\n\n int add_edge(int from, int to, int cap, int cost) {\n int id = G[from].size();\n G[from].push_back(edge(to, cap, G[to].size(), cost));\n G[to].push_back(edge(from, 0, G[from].size() - 1, -cost));\n return id;\n }\n\n int solve(int s, int t, int f) {\n int res = 0;\n h.assign(V, 0);\n while (f > 0) {\n priority_queue<P, vector<P>, greater<P>> pq;\n dist.assign(V, inf);\n dist[s] = 0;\n pq.push(P(0, s));\n while (pq.size()) {\n P p = pq.top();\n pq.pop();\n int v = p.second;\n if (dist[v] < p.first) continue;\n\n for (int i = 0; i < (int)G[v].size(); i++) {\n edge &e = G[v][i];\n int d = dist[v] + e.cost + h[v] - h[e.to];\n if (e.cap > 0 && dist[e.to] > d) {\n dist[e.to] = d;\n prevv[e.to] = v;\n preve[e.to] = i;\n pq.push(P(dist[e.to], e.to));\n }\n }\n }\n if (dist[t] == inf) return -1;\n\n for (int v = 0; v < V; v++) h[v] += dist[v];\n\n int d = f;\n for (int v = t; v != s; v = prevv[v])\n d = min(d, G[prevv[v]][preve[v]].cap);\n\n f -= d;\n res += d * h[t];\n\n for (int v = t; v != s; v = prevv[v]) {\n edge &e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n\n return res;\n }\n};\n\n#define SIZE 200\n\n\nint main() {\n int A, B, K;\n int a[SIZE][SIZE], b[SIZE][SIZE];\n\n scanf(\"%d%d%d\", &A, &B, &K);\n\n for (int i = 0; i < A; i++) {\n for (int j = 0; j < B; j++) {\n scanf(\"%1d\", a[i] + j);\n }\n }\n\n for (int i = 0; i < B; i++) {\n for (int j = 0; j < A; j++) {\n scanf(\"%1d\", b[j] + i);\n }\n }\n\n MinimumCostFlow flow(A + B + 2);\n\n int S = A + B;\n int T = S + 1;\n\n for (int i = 0; i < A; i++) flow.add_edge(S, i, 1, 0);\n for (int j = 0; j < B; j++) flow.add_edge(A + j, T, 1, 0);\n\n for (int i = 0; i < A; i++) {\n for (int j = 0; j < B; j++) {\n flow.add_edge(i, A + j, 1, a[i][j] + b[i][j]);\n }\n }\n\n int ans = 0;\n\n for (int i = 0; i < min(A, B); i++) {\n int res = flow.solve(S, T, 1);\n if (res < 0) break;\n if (K < res) break;\n ans++;\n K -= res;\n }\n\n printf(\"%d\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4948, "score_of_the_acc": -0.0722, "final_rank": 7 }, { "submission_id": "aoj_2776_4471577", "code_snippet": "#include <cassert>\n#include <cstdio>\n#include <vector>\n#include <queue>\n#include <utility>\n#include <iostream>\n#include <tuple>\n#include <limits>\nusing namespace std;\n\nstruct MinCostFlowGraph {\nprivate:\n using ll = long long;\n struct edge {\n int to;\n ll cap, cost;\n int r_idx;\n edge(int t, ll cap, ll cost, int r) :\n to(t), cap(cap), cost(cost), r_idx(r) {}\n };\n vector<vector<edge>> G;\n int sz;\n\npublic:\n MinCostFlowGraph(int n) : G(n), sz(n) {}\n\n void add_edge(int from, int to, ll cap, ll cost){\n int i = G[to].size(), i_ = G[from].size();\n G[from].emplace_back(to,cap,cost,i);\n G[to].emplace_back(from,0,-cost,i_);\n }\n \n ll solve(int from, int to, ll k){\n ll f = 0, cost_sum = 0;\n const ll INF = numeric_limits<ll>::max();\n vector<ll> potential(sz);\n while(1){\n vector<ll> dist(sz,INF);\n dist[from] = 0;\n vector<int> prev_v(sz,-1);\n vector<int> prev_e(sz,-1);\n priority_queue<pair<ll,int>, vector<pair<ll,int>>, greater<>> pq;\n pq.emplace(0,from);\n while(pq.size()){\n // auto [d, v] = pq.top();\n ll d = pq.top().first;\n ll v = pq.top().second;\n // d *= -1;\n pq.pop();\n if(dist[v] < d) continue;\n for(size_t i = 0; i < G[v].size(); ++i){\n const auto& e = G[v][i];\n if(e.cap == 0) continue;\n int v_ = e.to;\n ll d_ = d + e.cost + potential[v] - potential[v_];\n if(dist[v_] <= d_)\n continue;\n dist[v_] = d_;\n prev_v[v_] = v;\n prev_e[v_] = i;\n // pq.emplace(-d_,e.to);\n pq.emplace(d_,e.to);\n }\n }\n if(dist[to] >= INF) return f;\n for(int i = 0; i < sz; ++i)\n potential[i] += dist[i];\n int v = to;\n ll flow = 1;\n while(v != from){\n int v_ = prev_v[v];\n flow = min(flow,G[v_][prev_e[v]].cap);\n v = v_;\n }\n v = to;\n ll diff = 0;\n while(v != from){\n int v_ = prev_v[v];\n auto& e = G[v_][prev_e[v]];\n e.cap -= flow;\n diff += flow*e.cost;\n G[v][e.r_idx].cap += flow;\n v = v_;\n }\n if(cost_sum+diff > k)\n return f;\n f += flow;\n cost_sum += diff;\n }\n return f;\n }\n};\n\nint main(){\n int a, b, k;\n cin >> a >> b >> k;\n MinCostFlowGraph G(a+b+2);\n vector<vector<int>> E(a,vector<int>(b));\n for(int i = 0; i < a; ++i){\n string s;\n cin >> s;\n for(int j = 0; j < b; ++j){\n int c = s[j] - '0';\n E[i][j] += c;\n }\n }\n for(int j = 0; j < b; ++j){\n string s;\n cin >> s;\n for(int i = 0; i < a; ++i){\n int c = s[i] - '0';\n E[i][j] += c;\n }\n }\n for(int i = 0; i < a; ++i)\n for(int j = 0; j < b; ++j)\n G.add_edge(i,a+j,1,E[i][j]);\n int s = a+b, t = s+1;\n for(int i = 0; i < a; ++i)\n G.add_edge(s,i,1,0);\n for(int j = 0; j < b; ++j)\n G.add_edge(a+j,t,1,0);\n cout << G.solve(s,t,k) << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 6396, "score_of_the_acc": -0.4648, "final_rank": 13 }, { "submission_id": "aoj_2776_4471440", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n\n// 最小費用流\n// O(F E log V)\n// 与えられるもの\n// 有向グラフ G = (V, E)\n// 各辺 e に対して, 容量 u(e) >= 0\n// 各辺 e に対して, 費用 c(e) (負でも ok)\n\n// 使い方\n// PrimalDual(V) (コンストラクタ)\n// add_edge(int from, int to, flow_t cap, cost_t cost)\n// cost に関する負の閉路が存在する場合,だめ\n// veryfied : http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_6_B&lang=jp\n// 流れなかったら -1 を返す\n\n\n\ntemplate< typename flow_t, typename cost_t >\nstruct PrimalDual{\n const cost_t INF;\n\n struct edge {\n int to;\n flow_t cap;\n cost_t cost;\n int rev;\n bool isrev;\n };\n vector<vector<edge>> graph;\n vector<cost_t> potential, min_cost;\n vector<int> prevv, preve;\n\n PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()){}\n\n void add_edge(int from, int to, flow_t cap, cost_t cost){\n graph[from].emplace_back((edge) {to, cap, cost, (int)graph[to].size(), false});\n graph[to].emplace_back((edge) {from, 0, -cost, (int)graph[from].size() - 1, true});\n }\n\n cost_t min_cost_flow(int s, int t, flow_t f){\n int V = (int) graph.size();\n cost_t ret = 0;\n using Pi = pair< cost_t, int >;\n priority_queue< Pi, vector< Pi >, greater< Pi > > que;\n potential.assign(V, 0);\n preve.assign(V, -1);\n prevv.assign(V, -1);\n\n while(f > 0){\n min_cost.assign(V, INF);\n que.emplace(0, s);\n min_cost[s] = 0;\n while(!que.empty()){\n Pi p = que.top();\n que.pop();\n if(min_cost[p.second] < p.first) continue;\n for(int i = 0; i < graph[p.second].size(); i++){\n edge &e = graph[p.second][i];\n cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];\n if(e.cap > 0 && min_cost[e.to] > nextCost){\n min_cost[e.to] = nextCost;\n prevv[e.to] = p.second, preve[e.to] = i;\n que.emplace(min_cost[e.to], e.to);\n }\n }\n }\n if(min_cost[t] == INF) return -1;\n for(int v = 0; v < V; v++) potential[v] += min_cost[v];\n flow_t addflow = f;\n for(int v = t; v != s; v = prevv[v]){\n addflow = min(addflow, graph[prevv[v]][preve[v]].cap);\n }\n f -= addflow;\n ret += addflow * potential[t];\n for(int v = t; v != s; v = prevv[v]){\n edge &e = graph[prevv[v]][preve[v]];\n e.cap -= addflow;\n graph[v][e.rev].cap += addflow;\n }\n }\n return ret;\n }\n\n void output(){\n for(int i = 0; i < graph.size(); i++){\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << rev_e.cap + e.cap << \")\" << endl;\n }\n }\n }\n};\n\nint main() {\n\n lint A, B, K; cin >> A >> B >> K;\n vector<string> a(A);\n for (int i = 0; i < A; i++) {\n cin >> a[i];\n }\n vector<string> b(B);\n for (int i = 0; i < B; i++) {\n cin >> b[i];\n }\n \n\n // cost が k 以下の中の最大の F\n int ok = 0;\n int ng = min(A, B) + 1;\n while (ng - ok > 1) {\n int mid = (ok + ng) / 2;\n PrimalDual<int, int> pd(A + B + 2);\n int source = A + B;\n int sink = A + B + 1;\n\n for (int i = 0; i < A; i++) {\n int from = source;\n int to = i;\n pd.add_edge(from, to, 1, 0);\n }\n\n for (int i = 0; i < B; i++) {\n int from = A + i;\n int to = sink;\n pd.add_edge(from, to, 1, 0);\n }\n\n for (int i = 0; i < A; i++) {\n for (int j = 0; j < B; j++) {\n int from = i;\n int to = j + A;\n int cap = 1;\n int cost = 0;\n if (a[i][j] == '1') cost++;\n if (b[j][i] == '1') cost++;\n pd.add_edge(from, to, cap, cost);\n }\n }\n\n int cost = pd.min_cost_flow(source, sink, mid);\n\n if (cost <= K) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n\n cout << ok << endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 5192, "score_of_the_acc": -0.4447, "final_rank": 12 }, { "submission_id": "aoj_2776_3967902", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\n// Ford-Fulkerson 法による 最大流 O( F |E| )\n// Bellman-Ford 法による 最小費用流 O( F |V| |E| )\n// [条件に注意] Dijkstra 法による 最小費用流 O( F |E| log |V| )\n\ntemplate <typename CapTp=int, typename CostTp=int>\nstruct Edge {\n int to, rev;\n CapTp cap; CostTp cost;\n bool is_rev;\n Edge(int t, bool f, int r, CapTp ca, CostTp co=0)\n : to(t), rev(r), cap(ca), cost(co), is_rev(f) {}\n};\n\ntemplate <typename CapTp=int, typename CostTp=int>\nstruct Flow {\n using Graph = vector< vector< Edge<CapTp, CostTp> > >;\n Graph G; const CapTp IA; const CostTp IO;\n vector< pair<int, int> > r_edges;\n Flow(int N_, CapTp IA_=1<<29, CostTp IO_=1<<29)\n : G(N_), IA(IA_), IO(IO_), r_edges() {}\n // 辺を追加 (from -> to に流量 ca, コスト co)\n void add_edge(int from, int to, CapTp ca, CostTp co=0) {\n G[from].emplace_back(to, false, G[to].size(), ca, co);\n G[to].emplace_back(from, true, G[from].size() - 1, 0, -co);\n r_edges.emplace_back(to, G[to].size() - 1);\n }\n // k 番目の辺にいくつ流れたか\n CapTp get_flowed_cap(size_t k) {\n if(r_edges.size() <= k) return -1;\n int v, i; tie(v, i) = r_edges[k];\n return G[v][i].cap;\n }\n // s -> t 最大流\n CapTp max_flow(int s, int t) {\n vector<bool> used(G.size());\n auto dfs = [&](auto &&func, int v, int t, CapTp f) -> CapTp {\n if(v == t) return f;\n used[v] = true;\n for(auto &e : G[v]) {\n if(used[e.to] or e.cap == 0) continue;\n CapTp d = func(func, e.to, t, min(f, e.cap));\n if(d == 0) continue;\n e.cap -= d; G[e.to][e.rev].cap += d;\n return d;\n }\n return 0;\n };\n\n CapTp res(0);\n while(true) {\n fill(used.begin(), used.end(), false);\n CapTp delta = dfs(dfs, s, t, IA);\n if(delta == 0) return res;\n res += delta;\n }\n }\n // ベルマンフォードをつかって最小費用流\n CostTp mincost_flow(int s, int t, CapTp f) {\n vector<CostTp> dist(G.size()); CostTp res(0);\n vector<int> prevv(G.size()), preve(G.size());\n while(f > 0) {\n fill(dist.begin(), dist.end(), IO);\n dist[s] = 0;\n while(1) {\n bool upd = false;\n for(int v=0; v<(int)G.size(); v++) {\n if(dist[v] == IO) continue;\n for(size_t i=0; i<G[v].size(); i++) {\n auto &e = G[v][i];\n if(e.cap == 0 or dist[e.to] <= dist[v] + e.cost) continue;\n dist[e.to] = dist[v] + e.cost;\n prevv[e.to] = v, preve[e.to] = i;\n upd = true;\n }\n }\n if(!upd) break;\n }\n\n if(dist[t] == IO) return -1;\n CapTp d = f;\n for(int v=t; v!=s; v=prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap);\n f -= d; res += d * dist[t];\n for(int v=t; v!=s; v=prevv[v]) {\n auto &e = G[prevv[v]][preve[v]];\n e.cap -= d, G[v][e.rev].cap += d;\n }\n }\n return res;\n }\n // ポテンシャルの導入により、ダイクストラ法で最小費用流を解く\n // [仮定している条件]\n // 1. グラフに負の閉路が存在しない (流量の 0 初期化のため)\n // もし存在するならベルマンフォードで負の閉路を見つけ\n // そこに流せるだけ流してスタート\n // 2. グラフに負の辺が存在しない (pot_0 の計算可能性)\n // もし存在する場合は最初のみベルマンフォードを使う必要あり\n CostTp fast_mincost_flow(int s, int t, CapTp f) {\n CostTp res = 0;\n vector<CostTp> dist(G.size()), pot(G.size());\n vector<int> prevv(G.size()), preve(G.size());\n while(f > 0) {\n using PT = pair<CostTp, int>;\n priority_queue< PT, vector<PT>, greater<PT> > que;\n fill(dist.begin(), dist.end(), IO);\n\n dist[s] = 0;\n que.push(make_pair(0, s));\n while(!que.empty()) {\n PT cur = que.top(); que.pop();\n int v = cur.second;\n if(dist[v] < cur.first) continue;\n for(size_t i=0; i<G[v].size(); i++) {\n auto& e = G[v][i];\n if(e.cap > 0 and dist[e.to] > dist[v] + e.cost + pot[v] - pot[e.to]) {\n dist[e.to] = dist[v] + e.cost + pot[v] - pot[e.to];\n prevv[e.to] = v;\n preve[e.to] = i;\n que.push(make_pair(dist[e.to], e.to));\n }\n }\n }\n if(dist[t] == IO) {\n return INF;\n }\n for(int v=0; v<(int)G.size(); v++) pot[v] += dist[v];\n\n CapTp d = f;\n for(int v=t; v!=s; v=prevv[v]) {\n d = min(d, G[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d * pot[t];\n for(int v=t; v!=s; v=prevv[v]) {\n auto& e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n return res;\n } \n};\n\n\nint main() {\n int A, B, K; cin >> A >> B >> K;\n vector<string> X(A), Y(B);\n for(int i=0; i<A; i++) cin >> X[i];\n for(int i=0; i<B; i++) cin >> Y[i];\n\n Flow<> fl(A + B + 2);\n int source = A + B, sink = source + 1;\n for(int i=0; i<A; i++) fl.add_edge(source, i, 1, 0);\n for(int i=0; i<B; i++) fl.add_edge(A+i, sink, 1, 0);\n \n for(int i=0; i<A; i++) {\n for(int j=0; j<B; j++) {\n int cnt = 0;\n if(X[i][j] == '1') cnt++;\n if(Y[j][i] == '1') cnt++;\n // fprintf(stderr, \"i = %d, j = %d, cnt = %d\\n\", i, j, cnt);\n fl.add_edge(i, A+j, 1, cnt);\n }\n }\n\n int ub = min(A, B) + 1, lb = 0;\n while(ub - lb > 1) {\n Flow<> fl_ = fl;\n int mid = (ub + lb) / 2;\n int res = fl_.fast_mincost_flow(source, sink, mid);\n // fprintf(stderr, \"mid = %d, res = %d\\n\", mid, res);\n if(res <= K) lb = mid;\n else ub = mid;\n }\n cout << lb << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 7464, "score_of_the_acc": -1.0376, "final_rank": 18 }, { "submission_id": "aoj_2776_2917969", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\nconst int INF = 1e9;\nconst ll LINF = 1e18;\ntemplate<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << \"(\" << o.first << \",\" << o.second << \")\"; return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << \" \";} return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }\ntemplate<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << \"{ \"; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << \":\" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << \", \"; } out << \" }\"; return out; }\n\n/*\n <url:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2776>\n 問題文============================================================\n =================================================================\n 解説=============================================================\n ================================================================\n */\ntypedef ll PD_Type;\nconst PD_Type PD_INF = INF;\nstruct Primal_Dual\n{\n typedef pair< PD_Type, int > pii;\n \n struct edge\n {\n int to, rev;\n PD_Type cap, cost;\n edge() {}\n edge(int to, PD_Type cap, PD_Type cost, int rev) :to(to), cap(cap), cost(cost), rev(rev) {}\n \n };\n vector< vector< edge > > graph;\n vector< int > prevv, preve;\n vector< PD_Type > potential, min_cost;\n Primal_Dual(int V) : graph(V) {}\n \n void add_edge(int from, int to, PD_Type cap, PD_Type cost)\n {\n graph[from].push_back(edge(to, cap, cost, (int)graph[to].size()));\n graph[to].push_back(edge(from, 0, -cost, (int)graph[from].size() - 1));\n }\n \n PD_Type min_cost_flow(int s, int t, int f)\n {\n int V = (int)graph.size();\n PD_Type ret = 0;\n priority_queue< pii, vector< pii >, greater< pii > > que;\n potential.assign(V, 0);\n preve.assign(V, -1);\n prevv.assign(V, -1);\n \n while (f > 0) {\n min_cost.assign(V, PD_INF);\n que.push(pii(0, s));\n min_cost[s] = 0;\n \n while (!que.empty()) {\n pii p = que.top();\n que.pop();\n if (min_cost[p.second] < p.first) continue;\n for (int i = 0; i < (int)graph[p.second].size(); i++) {\n edge &e = graph[p.second][i];\n PD_Type nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];\n if (e.cap > 0 && min_cost[e.to] > nextCost) {\n min_cost[e.to] = nextCost;\n prevv[e.to] = p.second; preve[e.to] = i;\n que.push(pii(min_cost[e.to], e.to));\n }\n }\n }\n if (min_cost[t] == PD_INF) return -1;\n for (int v = 0; v < V; v++) potential[v] += min_cost[v];\n PD_Type addflow = f;\n for (int v = t; v != s; v = prevv[v]) {\n addflow = min(addflow, graph[prevv[v]][preve[v]].cap);\n }\n f -= addflow;\n ret += addflow * potential[t];\n for (int v = t; v != s; v = prevv[v]) {\n edge &e = graph[prevv[v]][preve[v]];\n e.cap -= addflow;\n graph[v][e.rev].cap += addflow;\n }\n }\n return ret;\n }\n};\n\nvoid solve() {\n int A, B, K; cin >> A >> B >> K;\n vector<string> a(A), b(B);\n for (auto& in : a) cin >> in;\n for (auto& in : b) cin >> in;\n \n int S = A + B, T = A + B + 1;\n Primal_Dual clojure(A + B + 2);\n for (int i = 0; i < A; i++) clojure.add_edge(S, i, 1, 0);\n for (int i = 0; i < B; i++) clojure.add_edge(A+i, T, 1, 0);\n \n for (int i = 0; i < A; i++) {\n for (int j = 0; j < B; j++) {\n ll cost = 0;\n if (a[i][j] == '1') cost++;\n if (b[j][i] == '1') cost++;\n clojure.add_edge(i, A + j, 1, cost);\n }\n }\n \n ll ans = 0;\n while (true) {\n ll ret = clojure.min_cost_flow(S, T, 1);\n if (ret == -1) break;\n if (ret > K) break;\n K -= ret;\n ans++;\n }\n cout << ans << endl;\n}\n\nint main() {\n cin.tie(0); ios_base::sync_with_stdio(false);\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5540, "score_of_the_acc": -0.2414, "final_rank": 10 }, { "submission_id": "aoj_2776_2754638", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define NUM 410\n\n\nstruct Edge{\n\tEdge(int arg_to,int arg_capacity,int arg_cost,int arg_rev_index){\n\t\tto = arg_to;\n\t\tcapacity = arg_capacity;\n\t\tcost = arg_cost;\n\t\trev_index = arg_rev_index;\n\t}\n\n\tint to,capacity,cost,rev_index;\n};\n\nint V;\nvector<Edge> G[NUM];\nint dist[NUM];\nint pre_node[NUM],pre_edge[NUM];\n\n\nvoid add_edge(int from,int to,int capacity,int cost){\n\tG[from].push_back(Edge(to,capacity,cost,G[to].size()));\n\tG[to].push_back(Edge(from,0,-cost,G[from].size()-1));\n}\n\nint min_cost_flow(int source,int sink,int flow){\n\tint ret = 0;\n\twhile(flow > 0){\n\n\t\tfor(int i = 0; i < V; i++)dist[i] = BIG_NUM;\n\t\tdist[source] = 0;\n\t\tbool update = true;\n\t\twhile(update){\n\t\t\tupdate = false;\n\t\t\tfor(int node_id = 0; node_id < V; node_id++){\n\t\t\t\tif(dist[node_id] == BIG_NUM)continue;\n\t\t\t\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\t\t\t\tEdge &e = G[node_id][i];\n\t\t\t\t\tif(e.capacity > 0 && dist[e.to] > dist[node_id]+e.cost){\n\t\t\t\t\t\tdist[e.to] = dist[node_id]+e.cost;\n\t\t\t\t\t\tpre_node[e.to] = node_id;\n\t\t\t\t\t\tpre_edge[e.to] = i;\n\t\t\t\t\t\tupdate = true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(dist[sink] == BIG_NUM){\n\t\t\treturn -1;\n\t\t}\n\n\t\tint tmp_flow = flow;\n\t\tfor(int node_id = sink; node_id != source; node_id = pre_node[node_id]){\n\t\t\ttmp_flow = min(tmp_flow,G[pre_node[node_id]][pre_edge[node_id]].capacity);\n\t\t}\n\t\tflow -= tmp_flow;\n\t\tret += tmp_flow*dist[sink];\n\t\tfor(int node_id = sink; node_id != source; node_id = pre_node[node_id]){\n\t\t\tEdge &e = G[pre_node[node_id]][pre_edge[node_id]];\n\t\t\te.capacity -= tmp_flow;\n\t\t\tG[node_id][e.rev_index].capacity += tmp_flow;\n\t\t}\n\t}\n\treturn ret;\n}\n\nint main(){\n\n\tint A,B,K;\n\tscanf(\"%d %d %d\",&A,&B,&K);\n\n\tchar table_1[A][B+1],table_2[B][A+1];\n\tint cost[A][B];\n\n\tfor(int i = 0; i < A; i++){\n\t\tscanf(\"%s\",table_1[i]);\n\t}\n\n\tfor(int i = 0; i < B; i++){\n\t\tscanf(\"%s\",table_2[i]);\n\t}\n\n\tfor(int i = 0; i < A; i++){\n\t\tfor(int k = 0; k < B; k++){\n\t\t\tcost[i][k] = (table_1[i][k]-'0')+(table_2[k][i]-'0');\n\t\t}\n\t}\n\n\tint source = 0,sink = 1,index = 2;\n\tint index_A[A],index_B[B];\n\n\tfor(int i = 0; i < A; i++){\n\t\tindex_A[i] = index++;\n\t\tadd_edge(source,index_A[i],1,0);\n\t}\n\n\tfor(int i = 0; i < B; i++){\n\t\tindex_B[i] = index++;\n\t\tadd_edge(index_B[i],sink,1,0);\n\t}\n\n\tfor(int i = 0; i < A; i++){\n\t\tfor(int k = 0; k < B; k++){\n\t\t\tadd_edge(index_A[i],index_B[k],1,cost[i][k]);\n\t\t}\n\t}\n\n\tint ans = 0,add_cost;\n\tint sum_cost = 0;\n\n\tV = index;\n\n\twhile(sum_cost <= K){\n\t\tadd_cost = min_cost_flow(source,sink,1);\n\n\t\tif(add_cost < 0)break;\n\n\t\tif(sum_cost+add_cost <= K){\n\t\t\tsum_cost += add_cost;\n\t\t\tans++;\n\t\t\tif(ans == min(A,B))break;\n\t\t}else{\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4932, "score_of_the_acc": -0.0533, "final_rank": 4 }, { "submission_id": "aoj_2776_2558428", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define GET_MACRO(_1, _2, _3, NAME, ...) NAME\n#define _repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define _rep(i,n) _repl(i,0,n)\n#define rep(...) GET_MACRO(__VA_ARGS__, _repl, _rep)(__VA_ARGS__)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream &o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream &o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n\ntemplate<typename T>\nclass MinCostFlow{\nprivate:\n struct edge{int to; T cap, cost; int rev;};\n using P = pair<T,int>;\n vector<vector<edge> > Graph;\n vector<int> prevv, preve;\n vector<T> h, d; // ??????????????£?????????????????¢\npublic:\n MinCostFlow(int v){\n // ????????°v??§?????????\n Graph.resize(v);\n prevv.resize(v);\n preve.resize(v);\n h.resize(v);\n d.resize(v);\n }\n T min_cost_flow(int s, int t, T f){\n T res = 0;\n fill(all(h), 0);\n // ??????????????????????????¨???\n // rep(v,Graph.size()){\n // rep(j,Graph[v].size()){\n // edge &e = Graph[v][j];\n // if(e.cap==0) continue;\n // int u = e.to;\n // h[u] = min(h[u],h[v]+e.cost);\n // }\n // }\n while(f>0){\n priority_queue<P, vector<P>, greater<P>> pq;\n fill(all(d), INF);\n d[s] = 0;\n pq.push(mp(0,s));\n while(!pq.empty()){\n auto p = pq.top(); pq.pop();\n int v = p.se;\n if(d[v] < p.fi) continue;\n rep(i,Graph[v].size()){\n edge &e = Graph[v][i];\n if(e.cap > 0 && d[e.to] > d[v] + e.cost + h[v] - h[e.to]){\n d[e.to] = d[v] + e.cost + h[v] - h[e.to];\n prevv[e.to] = v;\n preve[e.to] = i;\n pq.push(mp(d[e.to], e.to));\n }\n }\n }\n if(d[t] == INF) return -1;\n rep(i,Graph.size()) h[i] += d[i];\n\n T nf = f;\n for(int v=t; v!=s; v = prevv[v]){\n nf = min(nf, Graph[prevv[v]][preve[v]].cap);\n }\n f -= nf;\n res += nf * h[t];\n for(int v=t; v!=s; v=prevv[v]){\n edge &e = Graph[prevv[v]][preve[v]];\n e.cap -= nf;\n Graph[v][e.rev].cap += nf;\n }\n }\n return res;\n }\n void add_edge(int from ,int to, T cap, T cost){\n Graph[from].pb(((edge){to, cap, cost, (int)Graph[to].size()}));\n Graph[to].pb(((edge){from, 0, -cost, (int)Graph[from].size()-1}));\n }\n};\n\nint main(){\n int a,b,k;\n cin>>a>>b>>k;\n\n vector<string> va(a), vb(b);\n rep(i,a) cin>>va[i];\n rep(i,b) cin>>vb[i];\n\n MinCostFlow<int> flow(a+b+2);\n int s = a+b;\n int t = a+b+1;\n\n rep(i,a) rep(j,b){\n int cost = va[i][j] + vb[j][i] -'0'*2;\n flow.add_edge(i, a+j, 1, cost);\n }\n rep(i,a) flow.add_edge(s, i, 1, 0);\n rep(i,b) flow.add_edge(a+i, t, 1, 0);\n\n int crnt = 0;\n int totalcost = 0;\n while(true){\n int nv = flow.min_cost_flow(s, t, 1);\n if(nv == -1 || totalcost+nv > k) break;\n totalcost += nv;\n crnt++;\n }\n cout << crnt << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4784, "score_of_the_acc": -0.0441, "final_rank": 2 }, { "submission_id": "aoj_2776_2558246", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nusing pi = pair<int,int>;\n\n// (ティツ。ツ古」ツ?催・ツ?? テ・ツョツケテゥツ?? テ」ツつウテ」ツつケテ」ツδ? テゥツ??ィツセツコ)\nstruct edge{ int to,cap,cost,rev; };\n\nint V; // TODO:initialize\nconst int MAX_V = 444; // TODO:initialize\nconst int INF = 19191919; // TODO:initialize\nvector<edge> G[MAX_V];\nint h[MAX_V]; // テ」ツδ敕」ツδ?」ツδウテ」ツつキテ」ツδ」テ」ツδォ\nint dist[MAX_V];\nint prevv[MAX_V], preve[MAX_V]; // テァツ崢エテ・ツ可催」ツ?ョテゥツ?づァツつケテ」ツ?ィティツセツコ\n\nvoid add_edge(int from, int to, int cap, int cost){\n G[from].pb({to,cap,cost,(int)G[to].size()});\n G[to].pb({from,0,-cost,(int)G[from].size()-1});\n}\n\n// sテ」ツ?凝」ツつ液テ」ツ?クテ」ツ?ョテヲツオツ?ゥツ?叔テ」ツ?ョテヲツ慊?・ツーツ湘ィツイツサテァツ板ィテヲツオツ?テ、ツクツ催・ツ渉ッティツδステ」ツ?ェテ」ツつ?1)\nint min_cost_flow(int s, int t, int f, bool neg = false){\n int res = 0;\n fill(h,h+V,0);\n while(f>0){\n priority_queue<pi,vector<pi>,greater<pi>> pq;\n fill(dist,dist+V,INF);\n dist[s]=0;\n if(neg)\n {\n // bellman-fordテ」ツ?ァhテ」ツつ津ヲツ崢エテヲツ鳴ー\n neg = false;\n bool update;\n do{\n update = false;\n rep(v,V){\n if(dist[v] == INF) continue;\n rep(i,G[v].size()){\n edge &e = G[v][i];\n if(e.cap>0 && dist[e.to]>dist[v]+e.cost){\n dist[e.to]=dist[v]+e.cost;\n prevv[e.to] = v;\n preve[e.to] = i;\n update = true;\n }\n }\n }\n }while(update);\n }\n else\n {\n // dijkstraテ」ツ?ァhテ」ツつ津ヲツ崢エテヲツ鳴ー\n pq.push(pi(0,s));\n while(!pq.empty()){\n pi p = pq.top();\n pq.pop();\n int v = p.se;\n if(p.fi>dist[v]) continue;\n rep(i,G[v].size()){\n edge &e = G[v][i];\n if(e.cap>0 && dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){\n dist[e.to] = dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to] = v;\n preve[e.to] = i;\n pq.push(pi(dist[e.to],e.to));\n }\n }\n }\n }\n\n // テ」ツ?禿」ツつ古、ツサツ・テ、ツクツ甘ヲツオツ?」ツ?崚」ツ?ェテ」ツ??\n if(dist[t]==INF) return -1;\n\n rep(v,V) h[v] += dist[v];\n\n // s-tテゥツ鳴禿」ツ?ョテヲツ慊?ァツ淞ュティツキツッテ」ツ?ォテヲツイツソテ」ツ?」テ」ツ?ヲテァツ崢ョテ、ツクツ?ヲツ敖ッテヲツオツ?」ツ??\n int d=f;\n for(int v=t; v!=s; v=prevv[v]) d = min(d,G[prevv[v]][preve[v]].cap);\n f -= d;\n res += d*h[t];\n\n for(int v=t; v!=s; v=prevv[v]){\n edge &e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n return res;\n}\n\nint main()\n{\n int A,B,K;\n cin >>A >>B >>K;\n\n V = A+B+2;\n\n vector<string> a(A),b(B);\n rep(i,A) cin >>a[i];\n rep(i,B) cin >>b[i];\n\n int S = A+B, T = S+1;\n rep(i,A) add_edge(S,i,1,0);\n rep(i,B) add_edge(A+i,T,1,0);\n\n rep(i,A)rep(j,B)\n {\n int cost = 0;\n cost += a[i][j]-'0';\n cost += b[j][i]-'0';\n add_edge(i,A+j,1,cost);\n }\n\n int total = 0;\n int ans = 0;\n while(1)\n {\n int F = min_cost_flow(S,T,1);\n if(F==-1) break;\n\n total += F;\n if(total>K) break;\n ++ans;\n }\n\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4796, "score_of_the_acc": -0.0325, "final_rank": 1 }, { "submission_id": "aoj_2776_2339842", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\n\n\n\ntypedef int Weight;\ntypedef int Cap;\nconst Weight W_INF = INT_MAX;\nconst Weight W_ZERO = 0;\nconst Cap C_INF = INT_MAX;\nconst Cap C_ZERO = 0;\n\nstruct Edge {\n\tint src, dst;\n\tCap capacity;\n\tWeight cost;\n\tEdge(int src, int dst, const Cap& acap, const Weight& acost) :\n\t\tsrc(src), dst(dst), capacity(acap), cost(acost) {\n\t}\n};\nbool operator < (const Edge &e, const Edge &f) {\n\treturn e.cost > f.cost;\n}\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\n\n#define RESIDUE(s,t) (capacity[s][t]-flow[s][t])\n#define RCOST(u,v) (cost[u][v] + h[u] - h[v])\n\n//??°?????????????????§???????????????????????¨?????????\n\n//Graph &ag\n//????????§???????????????(u, v, capacity, cost) ??????????????????(u, v, 0, -cost) ???????????°????????????????????¶?????????????????§????´???°????????§???????????°???????????????\n//int s, int t\n//?????????????§??????¨?????????\n//?????????\n//?????¨??¨????????????????????????\npair<Weight, Cap> minimumCostFlow(const int amax,const Graph &ag, int s, int t) {\n\t//check???????´???°??????????????£???????????????\n\tGraph g(ag);\n\tfor (int i = 0; i < ag.size(); ++i) {\n\t\tfor (int j = 0; j < ag[i].size(); ++j) {\n\t\t\tint d = ag[i][j].dst;\n\t\t\tint s = ag[i][j].src;\n\n\t\t\tbool ok = false;\n\t\t\tfor (int k = 0; k < ag[d].size(); ++k) {\n\t\t\t\tif (ag[d][k].src == s) {\n\t\t\t\t\tok = true;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (!ok) {\n\t\t\t\tg[d].push_back(Edge(d, s, C_ZERO, -ag[i][j].cost));\n\t\t\t}\n\t\t}\n\t}\n\tconst int n = g.size();\n\tvector<vector<Cap>> capacity(n, vector<Cap>(n)), flow(n, vector<Cap>(n));\n\tvector<vector<Weight>>cost(n, vector<Weight>(n));\n\tfor (int u = 0; u < n; ++u) {\n\t\tfor (auto e : g[u]) {\n\t\t\tcapacity[e.src][e.dst] = capacity[e.src][e.dst] + e.capacity;\n\t\t\tcost[e.src][e.dst] = cost[e.src][e.dst] + e.cost;\n\t\t}\n\t}\n\tpair<Weight, Cap> total; // (cost, flow)\n\tvector<Weight> h(n);\n\n\tfor (Cap F = amax; F > 0; ) { // residual flow\n\t\tvector<Weight> d(n, W_INF); d[s] = W_ZERO;\n\t\tvector<int> p(n, -1);\n\t\tpriority_queue<Edge> Q; // \"e < f\" <=> \"e.cost > f.cost\"\n\t\tfor (Q.push(Edge(-2, s, C_ZERO, W_ZERO)); !Q.empty(); ) {\n\t\t\tEdge e = Q.top(); Q.pop();\n\t\t\tif (p[e.dst] != -1) continue;\n\t\t\tp[e.dst] = e.src;\n\t\t\tFOR(f, g[e.dst]) {\n\t\t\t\tif (RESIDUE(f->src, f->dst) > 0) {\n\t\t\t\t\tif (d[f->dst] > d[f->src] + RCOST(f->src, f->dst)) {\n\t\t\t\t\t\td[f->dst] = d[f->src] + RCOST(f->src, f->dst);\n\t\t\t\t\t\tQ.push(Edge(f->src, f->dst, 0, d[f->dst]));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (p[t] == -1) {\n\t\t\tbreak;\n\t\t}\n\n\t\tCap f = F;\n\t\tfor (int u = t; u != s; u = p[u]) {\n\t\t\tf = min(f, RESIDUE(p[u], u));\n\t\t}\n\t\tfor (int u = t; u != s; u = p[u]) {\n\t\t\ttotal.first = total.first + f * cost[p[u]][u];\n\t\t\tflow[p[u]][u] = flow[p[u]][u] + f; flow[u][p[u]] = flow[u][p[u]] - f;\n\t\t}\n\t\tF = F - f;\n\t\ttotal.second = total.second + f;\n\t\tfor (int u = 0; u < n; ++u) {\n\t\t\th[u] = h[u] + d[u];\n\t\t}\n\t}\n\treturn total;\n}\nvoid add_edge(Graph&g, const int from, const int to, const Cap& cap, const Weight& weight) {\n\tassert(weight >= 0);//????????¨?????°??????\n\tg[from].push_back(Edge(from, to, cap, weight));\n}\n\nint main() {\n\tint A, B, K; cin >> A >> B >> K;\n\tvector<vector<int>>costs(A, vector<int>(B));\n\tfor (int i = 0; i < A; ++i) {\n\t\tstring st; cin >> st;\n\t\tfor (int j = 0; j < B; ++j) {\n\t\t\tauto c = st[j] != '1';\n\t\t\tif (c == 0)costs[i][j] += 1;\n\t\t}\n\t}\n\tfor (int i = 0; i < B; ++i) {\n\t\tstring st; cin >> st;\n\t\tfor (int j = 0; j < A; ++j) {\n\t\t\tauto c = st[j]!= '1';\n\t\t\tif (c == 0)costs[j][i] += 1;\n\t\t}\n\t}\n\n\tconst int start = 0;\n\tconst int aa = start + 1;\n\tconst int bb=aa+A;\n\tconst int goal = bb + B;\n\tGraph g(goal + 1);\n\tfor (int i = 0; i < A; ++i) {\n\t\tg[start].push_back(Edge(start, aa + i, 1, 0));\n\t}\n\tfor (int i = 0; i < A; ++i) {\n\t\tfor (int j = 0; j < B; ++j) {\n\t\t\tg[aa + i].push_back(Edge(aa + i, bb + j, 1, costs[i][j]));\n\t\t}\n\t}\n\tfor (int j = 0; j < B; ++j) {\n\t\tg[bb + j].push_back(Edge(bb + j, goal, 1, 0));\n\t}\n\tint amin = 0;\n\tint amax = min(A,B)+1;\n\twhile (amin + 1 != amax) {\n\t\tint amid = (amin + amax) / 2;\n\t\tauto p = minimumCostFlow(amid, g, start, goal);\n\t\tif (minimumCostFlow(amid, g, start, goal).first <=K) {\n\t\t\tamin = amid;\n\t\t}\n\t\telse {\n\t\t\tamax = amid;\n\t\t}\n\t}\n\tcout << amin << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 690, "memory_kb": 8064, "score_of_the_acc": -1.8559, "final_rank": 20 }, { "submission_id": "aoj_2776_2270763", "code_snippet": "#include<bits/stdc++.h>\n#define FOR(i,a,b) for(int i=(a);i<(int)(b);i++)\n#define rep(i,a) FOR(i,0,a)\n#define all(a) (a).begin(),(a).end()\n#define pb push_back\n#define sz size()\n#define MP make_pair\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef vector<int> vi;\n\nconst int INF = 1e8;\n\nstruct edge{\n int from, to, cost, cap, rev;\n edge(int a, int b, int c, int d, int e)\n :from(a), to(b), cost(c), cap(d), rev(e) {}\n};\n\n\nstruct minFlow{\n int v;\n vector< vector<edge> > graph;\n vi d, use, h, pv, pe;\n\n minFlow(int n):v(n){\n graph.resize(v);\n pv.resize(v); pe.resize(v);\n }\n\n void add(int s, int g, int c, int p){\n graph[s].pb(edge(s,g,c,p,graph[g].sz));\n graph[g].pb(edge(g,s,-c,0,graph[s].sz-1));\n }\n\n int maxFlow(int s, int t, int k){\n int res = 0, cost = 0;\n h = vi(v,0);\n\n while(1){\n int f = 1;\n priority_queue< pii, vector<pii>, greater<pii> > q;\n d = vi(v,INF);\n d[s] = 0; q.push(MP(0,s));\n \n while(q.sz){\n\tpii p = q.top(); q.pop();\n\tint u = p.second;\n\tif(d[u] < p.first) continue;\n\trep(i, graph[u].sz){\n\t edge &e = graph[u][i];\n\t if(e.cap>0 && d[e.to] > d[u] + e.cost + h[u] - h[e.to]){\n\t d[e.to] = d[u] + e.cost + h[u] - h[e.to];\n\t pv[e.to] = u; pe[e.to] = i;\n\t q.push( MP(d[e.to], e.to) );\n\t }\n\t}\n }\n if(d[t] == INF) break;\n rep(u,v) h[u] += d[u];\n \n int x = f;\n for(int u=t;u!=s;u=pv[u]) x = min(x, graph[pv[u]][pe[u]].cap);\n f -= x;\n cost += x*h[t];\n\n if(cost>k) break;\n res++;\n for(int u=t;u!=s;u=pv[u]){\n\tedge &e = graph[pv[u]][pe[u]];\n\te.cap -= x; graph[u][e.rev].cap += x;\n }\n\n }\n\n return res;\n }\n};\n\nint main(){\n int a,b,k;\n cin >> a >> b >> k;\n\n int n = a+b+2;\n int S = a+b, T = S+1;\n minFlow mf(n);\n\n vector<vi> w(a, vi(b,0));\n\n rep(i,a){\n string x; cin >> x;\n rep(j,b){\n if(x[j] == '1') w[i][j]++;\n }\n }\n\n rep(i,b){\n string x; cin >> x;\n rep(j,a){\n if(x[j] == '1') w[j][i]++;\n }\n }\n\n rep(i,a)rep(j,b){\n mf.add(i,j+a,w[i][j],1);\n }\n\n rep(i,a) mf.add(S,i,0,1);\n rep(i,b) mf.add(i+a,T,0,1);\n\n cout << mf.maxFlow(S,T,k) << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5328, "score_of_the_acc": -0.1861, "final_rank": 9 }, { "submission_id": "aoj_2776_2030185", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n \n#define int long long\ntypedef pair<int,int>pint;\ntypedef vector<int>vint;\ntypedef vector<pint>vpint;\n#define pb push_back\n#define mp make_pair\n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define reps(i,f,n) for(int i=(f);i<(n);i++)\n#define each(it,v) for(__typeof((v).begin()) it=(v).begin();it!=(v).end();it++)\ntemplate<class T,class U>inline void chmin(T &t,U f){if(t>f)t=f;}\ntemplate<class T,class U>inline void chmax(T &t,U f){if(t<f)t=f;}\n \nstruct edge{\n int to,cap,cost,rev;\n edge(int to,int cap,int cost,int rev):to(to),cap(cap),cost(cost),rev(rev){}\n};\n \nconst int INF=1001001001;\nconst int MAX_V=500;\nint S=MAX_V-2,T=MAX_V-1;\nvector<edge>G[MAX_V];\nint dist[MAX_V];\nint prevv[MAX_V],preve[MAX_V];\n \nvoid init(){\n rep(i,MAX_V)G[i].clear();\n}\nvoid add_edge(int from,int to,int cap,int cost){\n G[from].pb(edge(to,cap,cost,G[to].size()));\n G[to].pb(edge(from,0,-cost,G[from].size()-1));\n}\n \nint min_cost_flow(int s,int t,int f){\n int res=0;\n while(f>0){\n fill_n(dist,MAX_V,INF);\n dist[s]=0;\n bool update=true;\n while(update){\n update=false;\n rep(v,MAX_V){\n if(dist[v]==INF)continue;\n rep(i,G[v].size()){\n edge &e=G[v][i];\n if(e.cap>0&&dist[e.to]>dist[v]+e.cost){\n dist[e.to]=dist[v]+e.cost;\n prevv[e.to]=v;\n preve[e.to]=i;\n update=true;\n }\n }\n }\n }\n \n if(dist[t]==INF)return -1;\n \n int d=f;\n for(int v=t;v!=s;v=prevv[v]){\n chmin(d,G[prevv[v]][preve[v]].cap);\n }\n \n f-=d;\n res+=d*dist[t];\n for(int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n \n return res;\n}\n \nint A,B,K;\nstring a[200],b[200];\nsigned main(){\n cin>>A>>B>>K;\n rep(i,A)cin>>a[i];\n rep(i,B)cin>>b[i];\n \n int lb=0,ub=300;\n while(ub-lb>1){\n int mid=(ub+lb)/2;\n \n init();\n rep(i,A)add_edge(S,i,1,0);\n rep(i,B)add_edge(i+A,T,1,0);\n rep(i,A)rep(j,B){\n int cnt=0;\n if(a[i][j]=='1')cnt++;\n if(b[j][i]=='1')cnt++;\n add_edge(i,j+A,1,cnt);\n }\n \n int tmp=min_cost_flow(S,T,mid);\n if(tmp==-1||tmp>K)ub=mid;\n else lb=mid;\n }\n cout<<lb<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 6496, "score_of_the_acc": -0.785, "final_rank": 16 }, { "submission_id": "aoj_2776_1971807", "code_snippet": "#include<stdio.h>\n#include<iostream>\n#include<fstream>\n#include<string>\n#include<vector>\n#include<list>\n#include<map>\n#include<math.h>\n#include<algorithm>\nusing namespace std;\n\nclass MatrixIndex :public pair<int, int>\n{\npublic:\n\tMatrixIndex(int i, int j) :pair<int, int>(i, j){\n\t}\n};\n\nclass Matrix :public vector< vector<char> >\n{\npublic:\n\tMatrix(int col, int row)\n\t{\n\t\tresize(col);\n\t\tfor (size_t i = 0; i < size(); ++i)\n\t\t{\n\t\t\tvector<char> & t = (*this)[i];\n\t\t\tt.resize(row);\n\t\t}\n\t}\n};\n\n\nclass Keys //: public string\n{\npublic:\n\tstring keys;\n\tKeys(const Keys &_key) :keys(_key.keys)\n\t{\n\n\t}\n\tKeys(Matrix & c, list<int> & is, list<int> & js)\n\t{\n\t\tlist<pair<int,int> > sorted_is;\n\t\tfor (list<int>::iterator it = is.begin(); it != is.end(); ++it)\n\t\t{\n\t\t\tpair<int, int> sum(0,*it);\n\t\t\tfor (list<int>::iterator jt = js.begin(); jt != js.end(); ++jt)\n\t\t\t{\n\t\t\t\tsum.first += c[*it][*jt];\n\t\t\t}\n\t\t\tsorted_is.push_back(sum);\n\t\t}\n\t\tsorted_is.sort();\n\n\t\tlist<pair<int, int> > sorted_js;\n\t\tfor (list<int>::iterator jt = js.begin(); jt != js.end(); ++jt)\n\t\t{\n\t\t\tpair<int, int> sum(0, *jt);\n\t\t\tfor (list<int>::iterator it = is.begin(); it != is.end(); ++it)\n\t\t\t{\n\t\t\t\tsum.first += c[*it][*jt];\n\t\t\t}\n\t\t\tsorted_js.push_back(sum);\n\t\t}\n\t\tsorted_js.sort();\n\n\t\tkeys.resize((sorted_js.size() + 1) * sorted_is.size());\n\t\tint i = 0;\n\t\tfor (list<pair<int, int> >::iterator it = sorted_is.begin(); it != sorted_is.end(); ++it)\n\t\t{\n\t\t\tfor (list<pair<int, int> >::iterator jt = sorted_js.begin(); jt != sorted_js.end(); ++jt)\n\t\t\t{\n\t\t\t\tkeys[i++] = c[it->second][jt->second] + '0';\n\t\t\t}\n\t\t\tkeys[i++] = '_';\n\t\t}\n\t}\n};\n\n\n\n\n\n\nvoid normalize_two(Matrix & c, list<int> & is, list<int> & js, list<MatrixIndex> & twos)\n{\n\t//???\n\tlist<int> is2;\n\tfor (list<int>::iterator it = is.begin(); it != is.end(); ++it)\n\t{\n\t\tint & i = *it;\n\t\tbool b_ok = js.size()>0;\n\t\tint j=-1;\n\t\tfor (list<int>::iterator jt = js.begin(); jt != js.end() && b_ok; ++jt)\n\t\t{\n\t\t\tj = *jt;\n\t\t\tb_ok = (c[i][j] == 2);\n\t\t}\n\t\tif (b_ok)\n\t\t{\n\t\t\ttwos.push_back(MatrixIndex(i, j));\n\t\t\tjs.remove(j);\n\t\t}\n\t\telse\n\t\t{\n\t\t\tis2.push_back(i);\n\t\t}\n\t}\n\tis = is2;\n\tlist<int> js2;\n\tfor (list<int>::iterator jt = js.begin(); jt != js.end(); ++jt)\n\t{\n\t\tint & j = *jt;\n\t\tint i = -1;\n\t\tbool b_ok = is.size()>0;\n\t\tfor (list<int>::iterator it = is.begin(); it != is.end() && b_ok; ++it)\n\t\t{\n\t\t\ti = *it;\n\t\t\tb_ok = (c[i][j] == 2);\n\t\t}\n\t\tif (b_ok)\n\t\t{\n\t\t\ttwos.push_back(MatrixIndex(-1,j));\n\t\t\tis.remove(i);\n\t\t}\n\t\telse\n\t\t{\n\t\t\tjs2.push_back(j);\n\t\t}\n\t}\n\tjs = js2;\n}\n\nclass info\n{\npublic:\n\tlist<MatrixIndex> indexpair[3];\n\tint maxpairs;\n\tint K;\n\tbool complete;\n\tinfo() :K(0), complete(false), maxpairs(-1)\n\t{\n\t}\n\tinfo(int _K) :info()\n\t{\n\t\tK = _K;\n\t}\n\tinfo(list<MatrixIndex> _indexpair[3], int _K) :info(_K)\n\t{\n\t\tinit(_indexpair);\n\t}\n\tinfo(const info & _inf, const int _K) :info(_K)\n\t{\n\t\tmaxpairs = _inf.maxpairs;\n\t\tcomplete = _inf.complete;\n\t\tinit(_inf.indexpair);\n\t}\n\tvoid init(const list<MatrixIndex> _indexpair[3])\n\t{\n\t\tfor (int i = 0; i < 3; ++i)\n\t\t{\n\t\t\tindexpair[i] = _indexpair[i];\n\t\t}\n\t\tupdate();\n\t}\n\tvoid update()\n\t{\n\t\tint k = K;\n\t\tmaxpairs = int(indexpair[0].size());\n\t\tif (k > 0)\n\t\t{\n\t\t\t//1\n\t\t\tint ones = min(k, int(indexpair[1].size()));\n\t\t\tk -= ones;\n\t\t\tmaxpairs += ones;\n\t\t}\n\t\tif (k/2 > 0)\n\t\t{\n\t\t\t//2\n\t\t\tint twos = min(k/2, int(indexpair[2].size()));\n\t\t\tk -= twos*2;\n\t\t\tmaxpairs += twos;\n\t\t}\n\t\tcomplete = (maxpairs == int(indexpair[0].size() + indexpair[1].size() + indexpair[2].size()));\n\t}\n};\nmap<string, info> g_cache;\n\ninfo & travers_all(Matrix & c, list<int> & is, list<int> & js, list<MatrixIndex> indexpair[3], int K)\n{\n\tKeys key(c, is, js);\n\tmap<string, info>::iterator it_inf = g_cache.find(key.keys);\n\tif (it_inf != g_cache.end())\n\t{\n\t\treturn it_inf->second;\n\t}\n\n\tinfo inf(K);\n\tbool b_one = false;\n\tfor (list<int>::iterator it = is.begin(); it != is.end(); ++it)\n\t{\n\t\tint & i = *it;\n\t\tfor (list<int>::iterator jt = js.begin(); jt != js.end(); ++jt)\n\t\t{\n\t\t\tint & j = *jt;\n\t\t\tif (c[i][j] == 1)\n\t\t\t{\n\t\t\t\tlist<int> is2(is);\n\t\t\t\tis2.remove(i);\n\t\t\t\tlist<int> js2(js);\n\t\t\t\tjs2.remove(j);\n\t\t\t\tindexpair[1].push_back(MatrixIndex(i, j));\n\t\t\t\tinfo _inf = travers_all(c, is2, js2, indexpair, K);\n\t\t\t\t//info current(_inf);\n\t\t\t\t//current.indexpair[1].push_back(MatrixIndex(i, j));\n\t\t\t\t_inf.indexpair[1].push_back(MatrixIndex(i, j));\n\t\t\t\t//for (int previ = 0; previ < 2; ++previ)\n\t\t\t\t//{\n\t\t\t\t//\tfor (list<MatrixIndex>::iterator prev = indexpair[previ].begin(); prev != indexpair[previ].end(); prev++)\n\t\t\t\t//\t{\n\t\t\t\t//\t\tcurrent.indexpair[previ].push_back(*prev);\n\t\t\t\t//\t}\n\t\t\t\t//}\n\t\t\t\t//current.update();\n\t\t\t\tif (b_one)\n\t\t\t\t{\n\t\t\t\t\t//update\n\t\t\t\t\tif (_inf.indexpair[1].size() > inf.indexpair[1].size())\n\t\t\t\t\t{\n\t\t\t\t\t\tinf = _inf;\n\t\t\t\t\t}\n\t\t\t\t\t//if (current.maxpairs > inf.maxpairs)\n\t\t\t\t\t//{\n\t\t\t\t\t//\tinf = _inf;\n\t\t\t\t\t//}\n\n\t\t\t\t}\n\t\t\t\telse\n\t\t\t\t{\n\t\t\t\t\tb_one = true;\n\t\t\t\t\tinf = _inf;\n\t\t\t\t}\n\t\t\t\tindexpair[1].pop_back();\n\t\t\t\tif (inf.complete)\n\t\t\t\t{\n\t\t\t\t//\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (inf.complete)\n\t\t{\n\t\t\t//break;\n\t\t}\n\t}\n\tif (b_one == false)\n\t{\n\t\tlist<MatrixIndex> ip[3];\n\t\t//for (int i = 0; i < 3; ++i)\n\t\t//{\n\t\t//\tip[i] = indexpair[i];\n\t\t//}\n\t\t///one ???????????£???\n\t\tnormalize_two(c, is, js, ip[2]);\n\t\tinf = info(ip, K);\n\t\t//static info sinfo;\n\t\t//sinfo = inf;\n\t\t//return sinfo;\n\t}\n\t/// all complete\n\tg_cache[key.keys] = inf;\n\treturn g_cache[key.keys];\n}\n\ninfo & travers_select_zero(Matrix & c, list<int> & is, list<int> & js, list<MatrixIndex> indexpair[3], int K)\n{\n\tKeys key(c, is, js);\n\tmap<string, info>::iterator it_inf = g_cache.find(key.keys);\n\tif (it_inf != g_cache.end())\n\t{\n\t\treturn it_inf->second;\n\t}\n\tinfo inf(K);\n\tbool b_zero = false;\n\tfor (list<int>::iterator it = is.begin(); it != is.end(); ++it)\n\t{\n\t\tint & i = *it;\n\t\tfor (list<int>::iterator jt = js.begin(); jt != js.end(); ++jt)\n\t\t{\n\t\t\tint & j = *jt;\n\t\t\tif (c[i][j] == 0)\n\t\t\t{\n\t\t\t\tlist<int> is2(is);\n\t\t\t\tis2.remove(i);\n\t\t\t\tlist<int> js2(js);\n\t\t\t\tjs2.remove(j);\n\t\t\t\tindexpair[0].push_back(MatrixIndex(i, j));\n\t\t\t\tinfo _inf = travers_select_zero(c, is2, js2, indexpair, K);\n\t\t\t\tinfo total(_inf);\n\t\t\t\tfor (list<MatrixIndex>::iterator prev = indexpair[0].begin(); prev != indexpair[0].end(); prev++)\n\t\t\t\t{\n\t\t\t\t\ttotal.indexpair[0].push_back(*prev);\n\t\t\t\t}\n\t\t\t\ttotal.update();\n\t\t\t\t_inf.indexpair[0].push_back(MatrixIndex(i, j));\n\t\t\t\tif (b_zero)\n\t\t\t\t{\n\t\t\t\t\t//update\n\t\t\t\t\tif (total.maxpairs > inf.maxpairs)\n\t\t\t\t\t{\n\t\t\t\t\t\tinf = _inf;\n\t\t\t\t\t\tinf.maxpairs = total.maxpairs;\n\t\t\t\t\t\tinf.complete = total.complete;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse\n\t\t\t\t{\n\t\t\t\t\tb_zero = true;\n\t\t\t\t\tinf = _inf;\n\t\t\t\t\tinf.maxpairs = total.maxpairs;\n\t\t\t\t\tinf.complete = total.complete;\n\t\t\t\t}\n\t\t\t\tindexpair[0].pop_back();\n\t\t\t}\n\t\t\tif (inf.complete)\n\t\t\t{\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (inf.complete)\n\t\t{\n\t\t\tbreak;\n\t\t}\n\t}\n\tif (b_zero == false)\n\t{\n\t\t///zero ???????????£???\n\t\tinf = travers_all(c, is, js, indexpair, K);\n\t\tinf.update();\n\t}\n\t/// all complete\n\tg_cache[key.keys] = inf;\n\treturn g_cache[key.keys];\n}\n\ninfo & search_maxpair(Matrix & c, list<int> & is, list<int> & js, int K)\n{\n\tlist<MatrixIndex> indexpair[3];\n\tinfo & inf = travers_select_zero(c, is, js, indexpair, K);\n\treturn inf;\n}\nint main(){\n\n\tstd::istream & c_in = cin;\n\n\tint A, B, K;\n\tc_in >> A >> B >> K;\n\tMatrix a(A, B);\n\tfor (size_t i = 0; i < a.size(); ++i)\n\t{\n\t\tvector<char> & t = a[i];\n\t\tfor (size_t j = 0; j < t.size(); ++j)\n\t\t{\n\t\t\tc_in >> t[j];\n\t\t\tt[j] -= '0';\n\t\t}\n\t}\n\tMatrix b(B, A);\n\tfor (size_t i = 0; i < b.size(); ++i)\n\t{\n\t\tvector<char> & t = b[i];\n\t\tfor (size_t j = 0; j < t.size(); ++j)\n\t\t{\n\t\t\tc_in >> t[j];\n\t\t\tt[j] -= '0';\n\t\t}\n\t}\n\n\tMatrix c(A, B);\n\tfor (size_t i = 0; i < c.size(); ++i)\n\t{\n\t\tfor (size_t j = 0; j < c[i].size(); ++j)\n\t\t{\n\t\t\tc[i][j] = a[i][j] + b[j][i];\n\t\t}\n\t}\n\tlist<int>is;\n\tlist<int>js;\n\tfor (int i = 0; i < A; ++i)\n\t{\n\t\tis.push_back(i);\n\t}\n\tfor (int j = 0; j < B; ++j)\n\t{\n\t\tjs.push_back(j);\n\t}\n\n\n\tinfo inf = search_maxpair(c, is, js, K);\n\tcout << inf.maxpairs << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7852, "score_of_the_acc": -0.83, "final_rank": 17 }, { "submission_id": "aoj_2776_1935188", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nstruct CWW{\n CWW(){\n\tios::sync_with_stdio(false);cin.tie(0);\n }\n}cww;\n\n\n\n\n\nint A,B,K;\n#define ARAI(x) (x)\n#define arai(x) (A+x)\n#define S (A+B)\n#define G (S+1)\n\nstruct edge{\n int flow,to,rev,cost;\n};\ntypedef vector<edge> E;\ntypedef vector<E> Graph;\n\nvoid addedge(Graph &g,int from,int to,int f,int cost){\n int n=g[from].size();\n int m=g[to].size();\n g[from].push_back(edge{f,to,m,cost});\n g[to].push_back(edge{0,from,n,-cost});\n}\n\nnamespace _ssc{\n #define SZ 500\n int h[SZ];\n int d[SZ];\n int pV[SZ];\n int pE[SZ];\n};\nstruct ssc{\n int *h,*d,*pV,*pE;\n ssc(int V):h(_ssc::h),d(_ssc::d),pV(_ssc::pV),pE(_ssc::pE){\n\tfill(h,h+V,0);\n }\t \n};\nconst int INF=114514;\nint min_cost_flow(int s,int t,int f,Graph &g,ssc& info){\n using P=tuple<int,int>;\n\n const int V=g.size();\n int res=0;\n while(f>0){\n\tpriority_queue<P> que;\n\tfill(info.d,info.d+V,INF);\n\tinfo.d[s]=0;\n\tque.push(P(0,s));\n\twhile(que.size()){\n\t auto p=que.top();que.pop();\n\t int cost,v;tie(cost,v)=p;cost=-cost;\n\t if(info.d[v]<cost)continue;\n\t for(int i=0,sz=g[v].size();i<sz;i++){\n\t\tauto &e=g[v][i];\n\t\tif(e.flow>0&&info.d[e.to]>info.d[v]+e.cost+info.h[v]-info.h[e.to]){\n\t\t info.d[e.to]=info.d[v]+e.cost+info.h[v]-info.h[e.to];\n\t\t info.pV[e.to]=v;\n\t\t info.pE[e.to]=i;\n\t\t que.push(P(-info.d[e.to],e.to));\n\t\t}\n\t }\n\t}\n\tif(info.d[t]==INF)return -1;\n\t\n\tfor(int v=0;v<V;v++)info.h[v]+=info.d[v];\n\tint d=f;\n\tfor(int v=t;v!=s;v=info.pV[v])\n\t d=min(d,g[info.pV[v]][info.pE[v]].flow);\n\tf-=d;\n\tres+=d*info.h[t];\n\tfor(int v=t;v!=s;v=info.pV[v]){\n\t auto &e=g[info.pV[v]][info.pE[v]];\n\t e.flow-=d;\n\t g[v][e.rev].flow+=d;\n\t}\n }\n return res;\n}\nint main(){\n cin>>A>>B>>K;\n int V=A+B+2;\n Graph g(V);\n ssc info(V);\n for(int i=0;i<A;i++)addedge(g,S,ARAI(i),1,0);\n for(int i=0;i<B;i++)addedge(g,arai(i),G,1,0);\n vector<vector<int>> R(A,vector<int>(B,0));\n for(int i=0;i<A;i++){\n\tstring s;\n\tcin>>s;\n\tfor(int j=0;j<B;j++)if(s[j]=='1')R[i][j]++;\t\t\t \n }\n for(int i=0;i<B;i++){\n\tstring s;\n\tcin>>s;\n\tfor(int j=0;j<A;j++)if(s[j]=='1')R[j][i]++;\t\t\t \n }\n for(int i=0;i<A;i++)\n\tfor(int j=0;j<B;j++)\n\t addedge(g,ARAI(i),arai(j),1,R[i][j]);\n int res=0,cost,allcost=0;\n while((cost=min_cost_flow(S,G,1,g,info))!=-1){\n\tallcost+=cost;\n\tif(allcost<=K)res++;\n\telse break;\n }\n cout<<res<<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4808, "score_of_the_acc": -0.0504, "final_rank": 3 } ]
aoj_2777_cpp
F: きっちり - Kitsuchiri - 問題 若ヶ松高校二年へ組の合津千里(あつちり)さんは数列が「きっちり」していなければ気がすまない。 合津さんによると、「きっちり」した数列とは、長さが偶数で左右対称である数列のことである。 すなわち、長さ N ( N は偶数)の数列 S について、次の条件を満たせば数列 S は「きっちり」している。 S_1 = S_N, S_2 = S_{N − 1}, ... , S_{N/2} = S_{N − N/2 + 1} 二年へ組の数学担当の先生は、合津さんから「きっちりしてください。」と要望され、授業で用いる数列を作り直さなければならない。 先生は、数列の l 番目から r 番目までのそれぞれの要素に数字 x を足すクエリをいくつも適用することで、数列を「きっちり」させようと奮闘しているが、うまくいかないようだ。 二年へ組に所属する凄腕プログラマーのあなたの仕事は、先生が絶望してしまう前に、先生が作り直している数列が「きっちり」しているかを調べるプログラムを作ることだ。 入力形式 入力は以下の形式からなる。 N S_1 ... S_N Q q_1 ... q_Q Q はクエリの総数であり、 1 \≤ i \≤ Q について、各 q_i は l , r , x を順に1つの半角スペースで区切って与えらる。 また、次の制約を満たす。 2 \≤ N \≤ 500,000 である。 N は偶数である。 1 \≤ j \≤ N について、 −100,000,000 \≤ S_j \≤ 100,000,000 である。 i 番目の各クエリを適用した後の数列の各要素 T_{i,j} は −100,000,000 \≤ T_{i,j} \≤ 100,000,000 を満たす。 1 \≤ Q \≤ 100,000 である。 1 \≤ l \≤ r \≤ N である。 −1,000 \≤ x \≤ 1,000 である。 出力形式 クエリ i まで処理した後の数列が「きっちり」していれば“1”を、そうでなければ“0”を i 行目に出力せよ。 入力例1 10 0 1 2 3 4 4 3 2 1 0 7 2 6 0 2 4 5 7 9 10 2 4 5 3 8 100 4 6 1000 7 7 1000 出力例1 1 0 0 1 1 0 1 入力例2 10 4 4 4 4 4 4 4 4 6 4 5 9 9 -2 1 10 1000 1 10 -1000 3 8 100 5 6 1 出力例2 1 1 1 1 1
[ { "submission_id": "aoj_2777_10850964", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing LL = long long; using ll = LL;\nusing PII = pair<int, int>; using pii = PII;\nusing PLL = pair<LL, LL>; using pll = PLL;\nusing VI = vector<int>; using VL = vector<LL>;\nconst ll LINF = 1e18;\nconst int INF = 1e9;\n#define FOR(i,s,t) for(int i =s; i < t;i++)\n#define SZ(a) (int)a.size()\n#define ALL(a) a.begin(),a.end()\n\nconst ll INIT = 0;\nstruct SegTree {\n\tint N;\n\tll init_v;\n\tvector<pll> node;\n\tVL lazy;\n\tSegTree(int _N) :init_v(INIT) {\n\t\tinit_v = 0;\n\t\tN = 1;\n\t\twhile (N < _N) N *= 2;\n\t\tnode.resize(2 * N - 1, pll(0,0));\n\t\tlazy.resize(2 * N - 1, 0);\n\t}\n\n\tpll merge(pll a, pll b) {\n\t\tpll ret = pll(-1e9, 1e9);\n\t\tret.first = max(a.first, b.first);\n\t\tret.second = min(a.second, b.second);\n\t\treturn ret;\n\t}\n\tvoid lazy_e(int l, int r, int k) {\n\t\tnode[k].first += lazy[k];\n\t\tnode[k].second += lazy[k];\n\t\tif (r - l > 1) {\n\t\t\tlazy[2 * k + 1] += lazy[k];\n\t\t\tlazy[2 * k + 2] += lazy[k];\n\t\t}\n\t\tlazy[k] = 0;\n\t}\n\n\tvoid update(int a, int b, ll x) {\n\t\tupdate(a, b, 0, 0, N, x);\n\t}\n\tvoid update(int a, int b, int k, int l, int r, ll x) {\n\t\tlazy_e(l, r, k);\n\t\tif (r <= a || b <= l) return;\n\t\tif (a <= l && r <= b) {\n\t\t\tlazy[k] += x;\n\t\t\tlazy_e(l, r, k);\n\t\t}\n\t\telse {\n\t\t\tupdate(a, b, 2 * k + 1, l, (l + r) / 2, x);\n\t\t\tupdate(a, b, 2 * k + 2, (l + r) / 2, r, x);\n\t\t\tnode[k] = merge(node[2 * k + 1], node[2 * k + 2]);\n\t\t}\n\t}\n\n\tpll query(int a, int b) { return query(a, b, 0, 0, N); }\n\tpll query(int a, int b, int k, int l, int r) {\n\t\tlazy_e(l, r, k);\n\t\tif (r <= a || b <= l) return pll(-1e9, 1e9);\n\t\tif (a <= l && r <= b) {\n\t\t\treturn node[k];\n\t\t}\n\t\telse {\n\t\t\treturn merge(\n\t\t\t\tquery(a, b, 2 * k + 1, l, (l + r) / 2),\n\t\t\t\tquery(a, b, 2 * k + 2, (l + r) / 2, r)\n\t\t\t);\n\t\t}\n\t}\n};\n\nvoid solve() {\n\tll N; cin >> N;\n\tvector<ll> kassa(N); for (auto& in : kassa) cin >> in;\n\tll Q; cin >> Q;\n\tll S = N / 2;\n\tSegTree ST(S);\n\tfor (int i = 0; i < S; i++) {\n\n\t\tST.update(i, i + 1, kassa[i]);\n\t}\n\tfor (int i = S; i < N; i++) {\n\t\t//\tcout << N - i << endl;\n\t\tST.update(N - i - 1, N - i, -kassa[i]);\n\t}\n\n\t//\tcout << ST.query(0, S) << endl;\n\t//return;\n\twhile (Q--) {\n\t\tll l, r, x; cin >> l >> r >> x;\n\t\tl--; r--;\n\t\tif (r < S) {\n\t\t\tST.update(l, r + 1, x);\n\t\t}\n\t\telse if (l >= S) {\n\t\t\tST.update(N - r - 1, N - l, -x);\n\t\t}\n\t\telse {\n\t\t\tST.update(l, S, x);\n\t\t\tST.update(N - r - 1, S, -x);\n\t\t}\n\t\t//cout << string(10, '=') << endl;\n\t\t//\tcout << ST.query(0,S) << endl;\n\t\tpll a = ST.query(0, S);\n\t\tif (a.first == a.second && a.first == 0) {\n\t\t\tcout << 1 << endl;\n\t\t}\n\t\telse {\n\t\t\tcout << 0 << endl;\n\t\t}\n//\t\tcout << (ST.query(0, S) == 0) << endl;\n\t\t//\t\tcout << string(10, '-') << endl;\n\t}\n}\n\nint main() {\n\tcin.tie(0);\n\tios_base::sync_with_stdio(false);\n\n\tsolve();\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 19376, "score_of_the_acc": -0.8112, "final_rank": 10 }, { "submission_id": "aoj_2777_9522215", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) { return (ull)rng() % B; }\n\nstruct Node {\n int n;\n using NP = Node *;\n NP L, R;\n ll mi, mx, lz;\n\n void initNode() { mi = 0, mx = 0, lz = 0; }\n void update() { mi = min(L->mi, R->mi), mx = max(L->mx, R->mx); }\n void push() { L->lazy(lz), R->lazy(lz), lz = 0; }\n void lazy(ll x) { mi += x, mx += x, lz += x; }\n void add(int l, int r, ll x) {\n if (r <= 0 or n <= l) return;\n if (l <= 0 and n <= r) {\n lazy(x);\n return;\n }\n push();\n L->add(l, r, x);\n R->add(l - n / 2, r - n / 2, x);\n update();\n }\n Node(int n) : n(n) {\n initNode();\n if (n == 1) return;\n L = new Node(n / 2);\n R = new Node(n - n / 2);\n }\n};\n// sst = new Node(sz);\nNode *sst = nullptr;\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n vector<ll> a(n);\n for (int i = 0; i < n; ++i) {\n cin >> a[i];\n }\n sst = new Node(n);\n for (int i = 0; i < n; ++i) {\n sst->add(i, i + 1, a[i] - a[n - 1 - i]);\n }\n int q;\n cin >> q;\n while (q--) {\n int l, r, x;\n cin >> l >> r >> x;\n l -= 1;\n sst->add(l, r, x);\n sst->add(n - r, n - l, -x);\n if (sst->mi == 0 and sst->mx == 0) cout << 1 << \"\\n\";\n else cout << 0 << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 69580, "score_of_the_acc": -1.5, "final_rank": 18 }, { "submission_id": "aoj_2777_6941925", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<int> S(N);\n\trep(i,N) cin>>S[i];\n\tvector<int> p(N/2+2);\n\tvector<int> q(N/2+1);\n\trep(i,N/2) p[i+1]=S[i]-S[N-i-1];\n\trep(i,N/2+1) q[i]=p[i+1]-p[i];\n\tint ans=0;\n\trep(i,N/2+1) if(q[i]!=0) ans++;\n\tint Q;\n\tcin>>Q;\n\trep(i,Q){\n\t\tint l,r;\n\t\tll x;\n\t\tcin>>l>>r>>x;\n\t\tif(N/2<l){\n\t\t\tl=N+1-l;\n\t\t\tr=N+1-r;\n\t\t\tswap(l,r);\n\t\t\tx=-x;\n\t\t\tr++;\n\t\t}else if(l<=N/2&&N/2<r){\n\t\t\tr=N+1-r;\n\t\t\tif(l>r) swap(l,r),x=-x;\n\t\t\tif(l==r) x=0;\n\t\t}else{\n\t\t\tr++;\n\t\t}\n\t\tif(q[l-1]!=0) ans--;\n\t\tq[l-1]+=x;\n\t\tif(q[l-1]!=0) ans++;\n\t\tif(q[r-1]!=0) ans--;\n\t\tq[r-1]-=x;\n\t\tif(q[r-1]!=0) ans++;\n\t\t//cout<<l<<\" \"<<r<<\" \"<<x<<\"\\n\";\n\t\tif(ans==0) cout<<\"1\\n\";\n\t\telse cout<<\"0\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7016, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2777_5532969", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// 0-indexed\ntemplate <class T, class E>\nstruct SegmentTreeLaze {\n // a,b:T c,d:E e:E(unit)\n // g(f(a,b),c) = f(g(a,c),g(b,c))\n // g(g(a,c),d) = g(a,h(c,d))\n // g(a,e) = a\n typedef function<T(T, T)> F;\n typedef function<T(T, E)> G;\n typedef function<E(E, E)> H;\n int n, height;\n F f;\n G g;\n H h;\n T tunit;\n E eunit;\n vector<T> dat;\n vector<E> laz;\n SegmentTreeLaze(){};\n SegmentTreeLaze(int newn, F f, G g, H h, T nt, E ne)\n : f(f), g(g), h(h), tunit(nt), eunit(ne) {\n init(newn);\n }\n SegmentTreeLaze(const vector<T> &v, F f, G g, H h, T nt, E ne)\n : f(f), g(g), h(h), tunit(nt), eunit(ne) {\n int _n = v.size();\n init(v.size());\n for (int i = 0; i < _n; ++i) dat[n + i] = v[i];\n for (int i = n - 1; i; --i) dat[i] = f(dat[i << 1], dat[(i << 1) | 1]);\n }\n void init(int newn) {\n n = 1, height = 0;\n while (n < newn) n <<= 1, ++height;\n dat.assign(n << 1, tunit);\n laz.assign(n << 1, eunit);\n }\n\n inline T reflect(int k) {\n return laz[k] == eunit ? dat[k] : g(dat[k], laz[k]);\n }\n\n inline void eval(int k) {\n if (laz[k] == eunit) return;\n laz[k << 1] = h(laz[k << 1], laz[k]);\n laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]);\n dat[k] = reflect(k);\n laz[k] = eunit;\n }\n\n inline void thrust(int k) {\n for (int i = height; i; --i) eval(k >> i);\n // reset query\n // dat[k] = reflect(k);\n // laz[k] = eunit;\n }\n\n void recalc(int k) {\n while (k >>= 1) dat[k] = f(reflect(k << 1), reflect((k << 1) | 1));\n }\n // [a,b)\n void update(int a, int b, E newdata) {\n thrust(a += n);\n thrust(b += n - 1);\n for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if (l & 1) laz[l] = h(laz[l], newdata), l++;\n if (r & 1) --r, laz[r] = h(laz[r], newdata);\n }\n recalc(a);\n recalc(b);\n }\n\n void set_val(int k, T newdata) {\n thrust(k += n);\n dat[k] = newdata;\n laz[k] = eunit;\n recalc(k);\n }\n\n // [a,b)\n T query(int a, int b) {\n thrust(a += n);\n thrust(b += n - 1);\n T vl = tunit, vr = tunit;\n for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if (l & 1) vl = f(vl, reflect(l++));\n if (r & 1) vr = f(reflect(--r), vr);\n }\n return f(vl, vr);\n }\n\n // require: func(unit) == false\n // min left: st <= res && func(seg.query(st,res + 1))\n template <typename C>\n int find_left(int st, C &func, T &acc, int k, int l, int r) {\n if (l + 1 == r) {\n acc = f(acc, reflect(k));\n return func(acc) ? l : -1;\n }\n eval(k);\n int mid = (l + r) >> 1;\n if (mid <= st) return find_left(st, func, acc, (k << 1) | 1, mid, r);\n if (st <= l && !func(f(acc, dat[k]))) {\n acc = f(acc, dat[k]);\n return -1;\n }\n int nres = find_left(st, func, acc, (k << 1), l, mid);\n if (~nres) return nres;\n return find_left(st, func, acc, (k << 1) | 1, mid, r);\n }\n template <typename C>\n int find_left(int st, C &func) {\n T acc = tunit;\n return find_left(st, func, acc, 1, 0, n);\n }\n\n // max right: res <= st && func(seg.query(res - 1,st))\n template <typename C>\n int find_right(int st, C &func, T &acc, int k, int l, int r) {\n if (l + 1 == r) {\n acc = f(reflect(k), acc);\n return func(acc) ? r : -1;\n }\n eval(k);\n int mid = (l + r) >> 1;\n if (st <= mid) return find_right(st, func, acc, k << 1, l, mid);\n if (r <= st && !func(f(dat[k], acc))) {\n acc = f(dat[k], acc);\n return -1;\n }\n int nres = find_right(st, func, acc, (k << 1) | 1, mid, r);\n if (~nres) return nres;\n return find_right(st, func, acc, k << 1, l, mid);\n }\n template <typename C>\n int find_right(int st, C &func) {\n T acc = tunit;\n return find_right(st, func, acc, 1, 0, n);\n }\n};\n\nint n, q;\nSegmentTreeLaze<int, int> segmax, segmin;\n\nint main() {\n cin >> n;\n {\n n >>= 1;\n vector<int> s(n);\n for (int i = 0; i < n; ++i) cin >> s[i];\n for (int i = n - 1; i >= 0; --i) {\n int p;\n cin >> p;\n s[i] -= p;\n }\n auto minf = [](int l, int r) { return min(l, r); };\n auto maxf = [](int l, int r) { return max(l, r); };\n auto gh = [](int l, int r) { return l + r; };\n segmin = SegmentTreeLaze<int, int>(s, minf, gh, gh, 0, 0);\n segmax = SegmentTreeLaze<int, int>(s, maxf, gh, gh, 0, 0);\n }\n cin >> q;\n while (q--) {\n int l, r, x;\n cin >> l >> r >> x;\n if (--l < n) {\n segmin.update(l, min(r, n), x);\n segmax.update(l, min(r, n), x);\n }\n if (r-- > n) {\n l = max(l, n);\n l -= n, r -= n;\n swap(l, r);\n l = n - 1 - l;\n r = n - r;\n segmin.update(l, r, -x);\n segmax.update(l, r, -x);\n }\n cout << (!segmin.query(0, n) && !segmax.query(0, n)) << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 12372, "score_of_the_acc": -0.7902, "final_rank": 9 }, { "submission_id": "aoj_2777_5532484", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\ntemplate <typename T,typename E>\nstruct lazysegtree{\n using F = function<T(T,T)>;\n using G = function<T(T,E)>;\n using H = function<E(E,E)>;\n int n,height;\n F f;\n G g;\n H h;\n T ti;\n E ei;\n vector<T> dat;\n vector<E> laz;\n lazysegtree(F f,G g,H h,T ti,E ei):\n f(f),g(g),h(h),ti(ti),ei(ei){}\n \n void init(int n_){\n n=1;height=0;\n while(n<n_) n<<=1,height++;\n dat.assign(2*n,ti);\n laz.assign(2*n,ei);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n inline T reflect(int k){\n return laz[k]==ei?dat[k]:g(dat[k],laz[k]);\n }\n inline void eval(int k){\n if(laz[k]==ei) return;\n laz[(k<<1)|0]=h(laz[(k<<1)|0],laz[k]);\n laz[(k<<1)|1]=h(laz[(k<<1)|1],laz[k]);\n dat[k]=reflect(k);\n laz[k]=ei;\n }\n inline void thrust(int k){\n for(int i=height;i;i--) eval(k>>i);\n }\n inline void recalc(int k){ \n while(k>>=1)\n dat[k]=f(reflect((k<<1)|0),reflect((k<<1)|1));\n }\n void update(int a,int b,E x){\n thrust(a+=n);\n thrust(b+=n-1);\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1){\n if(l&1) laz[l]=h(laz[l],x),l++;\n if(r&1) --r,laz[r]=h(laz[r],x);\n }\n recalc(a);\n recalc(b);\n }\n void set_val(int a,T x){\n thrust(a+=n);\n dat[a]=x;laz[a]=ei;\n recalc(a);\n }\n T query(int a,int b){\n thrust(a+=n);\n thrust(b+=n-1);\n T vl=ti,vr=ti;\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,reflect(l++));\n if(r&1) vr=f(reflect(--r),vr);\n }\n return f(vl,vr);\n }\n};\nint main(){\n auto f1=[&](ll a,ll b){\n if(a>b)return a;\n return b;\n };\n auto f2=[&](ll a,ll b){\n if(a<b)return a;\n return b;\n\n };\n auto g=[&](ll a,ll b){\n return a+b;\n };\n ll n;\n cin>>n;\n V<ll> a(n);\n for(int i=0;i<n;i++)cin>>a[i];\n V<ll> d(n/2);\n for(int i=0;i<n/2;i++){\n d[i]=a[i]-a[n-i-1];\n }\n lazysegtree<ll,ll> dpa(f1,g,g,-inf,0ll),dpb(f2,g,g,inf,0);\n dpa.build(d);\n dpb.build(d);\n // print(d);\n int q;\n cin>>q;\n while(q--){\n ll l,r,x;\n cin>>l>>r>>x;\n l--;\n ll L=min(l,n/2),R=min(n/2,r);\n if(L!=R){\n dpa.update(L,R,x);\n dpb.update(L,R,x);\n }\n // L=max(n/2,l)-n/2,R=max(n/2,r)-n/2;\n L=n/2-(max(n/2,r)-n/2); R=n/2-(max(n/2,l)-n/2);\n if(L!=R){\n dpa.update(L,R,-x);\n dpb.update(L,R,-x);\n }\n\n cout<<(dpa.query(0,n/2)==0&&dpb.query(0,n/2)==0)<<\"\\n\";\n // for(int i=0;i<n/2;i++)cout<<dpa.query(i,i+1)<<\" \";\n // cout<<\"\\n\";\n // for(int i=0;i<n/2;i++)cout<<dpb.query(i,i+1)<<\" \";\n // cout<<\"\\n\";\n // cout<<dpa.query(0,n/2)<<\" \"<<dpb.query(0,n/2)<<\"\\n\";\n // cout<<\"\\n\";\n }\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 25460, "score_of_the_acc": -0.6812, "final_rank": 7 }, { "submission_id": "aoj_2777_5532400", "code_snippet": "#include<bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n//#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"unroll-loops\")\nusing namespace std;\n//#include<boost/multiprecision/cpp_int.hpp>\n//#include<boost/multiprecision/cpp_dec_float.hpp>\n//namespace mp=boost::multiprecision;\n//#define mulint mp::cpp_int\n//#define mulfloat mp::cpp_dec_float_100\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\n#define INF (1<<30)\n#define LINF (lint)(1LL<<56)\n#define endl \"\\n\"\n#define rep(i,n) for(lint (i)=0;(i)<(n);(i)++)\n#define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--)\n#define flc(x) __builtin_popcountll(x)\n#define pint pair<int,int>\n#define pdouble pair<double,double>\n#define plint pair<lint,lint>\n#define fi first\n#define se second\n#define all(x) x.begin(),x.end()\n#define vec vector<lint>\n#define nep(x) next_permutation(all(x))\ntypedef long long lint;\nint dx[8]={1,1,0,-1,-1,-1,0,1};\nint dy[8]={0,1,1,1,0,-1,-1,-1};\nconst int MAX_N=3e5+5;\ntemplate<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return 1;}return 0;}\n//vector<int> bucket[MAX_N/1000];\nconstexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n/*#include<atcoder/all>\nusing namespace atcoder;\ntypedef __int128_t llint;*/\n\n// Segment Tree Beats\n// - l<=i<r について、 A_i の値を min(A_i, x) に更新\n// - l<=i<r について、 A_i の値を max(A_i, x) に更新\n// - l<=i<r の中の A_i の最大値を求める\n// - l<=i<r の中の A_i の最小値を求める\n// - l<=i<r の A_i の和を求める\n// - l<=i<r について、 A_i の値に x を加える\n// - l<=i<r について、 A_i の値を x に更新\n\nclass SegmentTreeBeats{\n static const lint inf = 1e18;\n struct Node{\n Node *left, *right;\n lint max_v, smax_v, max_c;\n lint min_v, smin_v, min_c;\n lint sum;\n lint len, ladd, lval;\n\n Node() : left(0), right(0), ladd(0), lval(inf) {}\n\n void init(lint x){\n max_v = min_v = sum = x;\n smax_v = -inf;\n smin_v = inf;\n max_c = min_c = 1;\n }\n\n void init_empty(){\n max_v = smax_v = -inf;\n min_v = smin_v = inf;\n max_c = min_c = 0;\n }\n\n void update_max(lint x){\n sum += (x - max_v) * max_c;\n\n if (max_v == min_v){\n max_v = min_v = x;\n }\n else if (max_v == smin_v){\n max_v = smin_v = x;\n }\n else{\n max_v = x;\n }\n\n if (lval != inf && x < lval){\n lval = x;\n }\n }\n\n void update_min(lint x){\n sum += (x - min_v) * min_c;\n\n if (max_v == min_v){\n max_v = min_v = x;\n }\n else if (max_v == smin_v){\n min_v = smax_v = x;\n }\n else{\n min_v = x;\n }\n\n if (lval != inf && lval < x){\n lval = x;\n }\n }\n\n void addalint(lint x)\n {\n max_v += x;\n if (smax_v != -inf) smax_v += x;\n min_v += x;\n if (smin_v != inf) smin_v += x;\n sum += len * x;\n if (lval != inf){\n lval += x;\n }\n else{\n ladd += x;\n }\n }\n\n void updatealint(lint x){\n max_v = min_v = x;\n smax_v = -inf;\n smin_v = inf;\n max_c = min_c = len;\n\n sum = len * x;\n lval = x;\n ladd = 0;\n }\n\n void push(){\n\n if (lval != inf){\n left->updatealint(lval);\n right->updatealint(lval);\n lval = inf;\n return;\n }\n\n if (ladd != 0){\n left->addalint(ladd);\n right->addalint(ladd);\n ladd = 0;\n }\n\n if (max_v < left->max_v){\n left->update_max(max_v);\n }\n if (left->min_v < min_v){\n left->update_min(min_v);\n }\n\n if (max_v < right->max_v){\n right->update_max(max_v);\n }\n if (right->min_v < min_v){\n right->update_min(min_v);\n }\n }\n\n void update(){\n sum = left->sum + right->sum;\n\n if (left->max_v < right->max_v){\n max_v = right->max_v;\n max_c = right->max_c;\n smax_v = max(left->max_v, right->smax_v);\n }\n else if (left->max_v > right->max_v){\n max_v = left->max_v;\n max_c = left->max_c;\n smax_v = max(left->smax_v, right->max_v);\n }\n else{\n max_v = left->max_v;\n max_c = left->max_c + right->max_c;\n smax_v = max(left->smax_v, right->smax_v);\n }\n\n if (left->min_v < right->min_v){\n min_v = left->min_v;\n min_c = left->min_c;\n smin_v = min(left->smin_v, right->min_v);\n }\n else if (left->min_v > right->min_v){\n min_v = right->min_v;\n min_c = right->min_c;\n smin_v = min(left->min_v, right->smin_v);\n }\n else{\n min_v = left->min_v;\n min_c = left->min_c + right->min_c;\n smin_v = min(left->smin_v, right->smin_v);\n }\n }\n };\n\n int n, n0;\n Node *root;\n\n void _update_min(lint x, int a, int b, Node *nd, int l, int r){\n if (b <= l || r <= a || nd->max_v <= x){\n return;\n }\n if (a <= l && r <= b && nd->smax_v < x){\n nd->update_max(x);\n return;\n }\n\n nd->push();\n _update_min(x, a, b, nd->left, l, (l + r) / 2);\n _update_min(x, a, b, nd->right, (l + r) / 2, r);\n nd->update();\n }\n\n void _update_max(lint x, int a, int b, Node *nd, int l, int r){\n if (b <= l || r <= a || x <= nd->min_v){\n return;\n }\n if (a <= l && r <= b && x < nd->smin_v){\n nd->update_min(x);\n return;\n }\n\n nd->push();\n _update_max(x, a, b, nd->left, l, (l + r) / 2);\n _update_max(x, a, b, nd->right, (l + r) / 2, r);\n nd->update();\n }\n\n void _add_val(lint x, int a, int b, Node *nd, int l, int r){\n if (b <= l || r <= a){\n return;\n }\n if (a <= l && r <= b){\n nd->addalint(x);\n return;\n }\n\n nd->push();\n _add_val(x, a, b, nd->left, l, (l + r) / 2);\n _add_val(x, a, b, nd->right, (l + r) / 2, r);\n nd->update();\n }\n\n void _update_val(lint x, int a, int b, Node *nd, int l, int r){\n if (b <= l || r <= a){\n return;\n }\n if (a <= l && r <= b){\n nd->updatealint(x);\n return;\n }\n\n nd->push();\n _update_val(x, a, b, nd->left, l, (l + r) / 2);\n _update_val(x, a, b, nd->right, (l + r) / 2, r);\n nd->update();\n }\n\n lint _query_max(int a, int b, Node *nd, int l, int r){\n if (b <= l || r <= a){\n return -inf;\n }\n if (a <= l && r <= b){\n return nd->max_v;\n }\n nd->push();\n lint lv = _query_max(a, b, nd->left, l, (l + r) / 2);\n lint rv = _query_max(a, b, nd->right, (l + r) / 2, r);\n return max(lv, rv);\n }\n\n lint _query_min(int a, int b, Node *nd, int l, int r){\n if (b <= l || r <= a){\n return inf;\n }\n if (a <= l && r <= b){\n return nd->min_v;\n }\n nd->push();\n lint lv = _query_min(a, b, nd->left, l, (l + r) / 2);\n lint rv = _query_min(a, b, nd->right, (l + r) / 2, r);\n return min(lv, rv);\n }\n\n lint _query_sum(int a, int b, Node *nd, int l, int r){\n if (b <= l || r <= a){\n return 0;\n }\n if (a <= l && r <= b){\n return nd->sum;\n }\n nd->push();\n lint lv = _query_sum(a, b, nd->left, l, (l + r) / 2);\n lint rv = _query_sum(a, b, nd->right, (l + r) / 2, r);\n return lv + rv;\n }\n\npublic:\n SegmentTreeBeats(int n, vector<lint> a) : n(n){\n n0 = 1;\n while (n0 < n) n0 <<= 1;\n\n Node *nds = new Node[2 * n0];\n root = nds;\n\n nds[0].len = n0;\n for (int i = 0; i < n0 - 1; ++i){\n nds[i].left = &nds[2 * i + 1];\n nds[i].right = &nds[2 * i + 2];\n nds[2 * i + 1].len = nds[2 * i + 2].len = (nds[i].len >> 1);\n }\n\n for (int i = 0; i < n; ++i) nds[n0 - 1 + i].init(a[i]);\n for (int i = n; i < n0; ++i) nds[n0 - 1 + i].init_empty();\n for (int i = n0 - 2; i >= 0; i--) nds[i].update();\n }\n SegmentTreeBeats(int n) : n(n){\n n0 = 1;\n while (n0 < n) n0 <<= 1;\n\n Node *nds = new Node[2 * n0];\n root = nds;\n\n nds[0].len = n0;\n for (int i = 0; i < n0 - 1; ++i){\n nds[i].left = &nds[2 * i + 1];\n nds[i].right = &nds[2 * i + 2];\n nds[2 * i + 1].len = nds[2 * i + 2].len = (nds[i].len >> 1);\n }\n\n for (int i = 0; i < n; ++i) nds[n0 - 1 + i].init(0);\n for (int i = n; i < n0; ++i) nds[n0 - 1 + i].init_empty();\n for (int i = n0 - 2; i >= 0; i--) nds[i].update();\n }\n\n void update_min(int a, int b, lint x){\n _update_min(x, a, b, root, 0, n0);\n }\n\n void update_max(int a, int b, lint x){\n _update_max(x, a, b, root, 0, n0);\n }\n\n void add_val(int a, int b, lint x){\n _add_val(x, a, b, root, 0, n0);\n }\n\n void update_val(int a, int b, lint x){\n _update_val(x, a, b, root, 0, n0);\n }\n\n lint query_max(int a, int b){\n return _query_max(a, b, root, 0, n0);\n }\n\n lint query_min(int a, int b){\n return _query_min(a, b, root, 0, n0);\n }\n\n lint query_sum(int a, int b){\n return _query_sum(a, b, root, 0, n0);\n }\n};\n\n\nint main(void){\n int N;\n cin >> N;\n int A[N];\n rep(i,N) cin >> A[i];\n int n=N/2;\n SegmentTreeBeats seg(n);\n rep(i,n) seg.update_val(i,i+1,A[i]);\n for(int i=n;i<N;i++) seg.add_val(n-1+(n-i),n+(n-i),-A[i]);\n int Q;\n cin >> Q;\n rep(i,Q){\n int l,r,x;\n cin >> l >> r >> x;\n l--,r--;\n if(l<n){\n seg.add_val(l,min(n,r+1),x);\n }\n if(r>=n){\n int R=(N-1-l);\n if(l<n) R=n-1;\n int L=(N-1-r);\n seg.add_val(L,R+1,-x);\n }\n bool chk=true;\n if(seg.query_min(0,n)!=0) chk=false;\n if(seg.query_max(0,n)!=0) chk=false;\n if(chk) cout << 1 << endl;\n else cout << 0 << endl;\n }\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 54604, "score_of_the_acc": -1.2834, "final_rank": 16 }, { "submission_id": "aoj_2777_4927055", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n\nint main(){\n int n;\n cin >> n;\n vector<int> a(n);\n for(int& x : a) cin >> x;\n for(int i = 0; i < n / 2; i++){\n a[i] -= a.rbegin()[i];\n a.rbegin()[i] = -a[i];\n }\n a.push_back(0);\n adjacent_difference(a.begin(), a.end(), a.begin());\n int zero = 0;\n for(int x : a) zero += !x;\n int q;\n cin >> q;\n while(q--){\n int l, r, x;\n cin >> l >> r >> x;\n l--;\n {\n zero -= !a[l];\n a[l] += x;\n zero += !a[l];\n zero -= !a[r];\n a[r] -= x;\n zero += !a[r];\n }\n tie(l, r) = pair{n - r, n - l};\n x = -x;\n {\n zero -= !a[l];\n a[l] += x;\n zero += !a[l];\n zero -= !a[r];\n a[r] -= x;\n zero += !a[r];\n }\n cout << (zero == n + 1) << '\\n';\n }\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 8608, "score_of_the_acc": -0.3891, "final_rank": 5 }, { "submission_id": "aoj_2777_4926816", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\n#define LLINF 100000000000000\n\nstruct StarrySkyTree {\n int segn2;\n vector<ll> data, s_data;\n\n StarrySkyTree(int n) {\n for (segn2 = 1; segn2 < n; segn2 *= 2)\n ;\n data.assign(segn2 * 2, 0);\n s_data.assign(segn2 * 2, 0);\n }\n\n ll query(int a, int b, int l = 0, int r = -1, int k = 0) {\n if (r == -1) r = segn2;\n if (r <= a || b <= l) return LLINF;\n if (a <= l && r <= b) return data[k] + s_data[k];\n return min(query(a, b, l, (l + r) / 2, k * 2 + 1), query(a, b, (l + r) / 2, r, k * 2 + 2));\n }\n\n ll add(int a, int b, ll x, int l = 0, int r = -1, int k = 0) {\n if (r == -1) r = segn2;\n if (a <= l && r <= b)\n s_data[k] += x;\n else if (a < r && l < b)\n data[k] = min(add(a, b, x, l, (l + r) / 2, k * 2 + 1), add(a, b, x, (l + r) / 2, r, k * 2 + 2));\n\n return data[k] + s_data[k];\n }\n};\n\nint main() {\n int N;\n\n scanf(\"%d\", &N);\n\n StarrySkyTree seg1(N / 2), seg2(N / 2);\n\n auto add = [&](int l, int r, ll x) {\n if (l < N / 2) {\n seg1.add(l, min(r, N / 2), x);\n seg2.add(l, min(r, N / 2), -x);\n }\n r = N - r;\n l = N - l;\n swap(l, r);\n if (l < N / 2) {\n seg1.add(l, min(r, N / 2), -x);\n seg2.add(l, min(r, N / 2), x);\n }\n };\n\n for (int i = 0; i < N; i++) {\n int S;\n scanf(\"%d\", &S);\n add(i, i + 1, S);\n }\n\n int Q;\n\n scanf(\"%d\", &Q);\n\n for (int i = 0; i < Q; i++) {\n int l, r, x;\n scanf(\"%d%d%d\", &l, &r, &x);\n l--;\n add(l, r, x);\n\n int a = seg1.query(0, N / 2);\n int b = seg2.query(0, N / 2);\n\n puts(a == 0 && b == 0 ? \"1\" : \"0\");\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 19216, "score_of_the_acc": -0.8314, "final_rank": 12 }, { "submission_id": "aoj_2777_4471608", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n\n// quoted from beet-aizu\ntemplate <typename T,typename E, typename F, typename G, typename H>\nstruct LazySegmentTree{\n //using F = function<T(T,T)>;\n //using G = function<T(T,E)>;\n //using H = function<E(E,E)>;\n int n,height;\n F f;\n G g;\n H h;\n T ti;\n E ei;\n vector<T> dat;\n vector<E> laz;\n LazySegmentTree(F f,G g,H h,T ti,E ei):\n f(f),g(g),h(h),ti(ti),ei(ei){}\n\n void init(int n_){\n n=1;height=0;\n while(n<n_) n<<=1,height++;\n dat.assign(2*n,ti);\n laz.assign(2*n,ei);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n inline T reflect(int k){\n return laz[k]==ei?dat[k]:g(dat[k],laz[k]);\n }\n inline void eval(int k){\n if(laz[k]==ei) return;\n laz[(k<<1)|0]=h(laz[(k<<1)|0],laz[k]);\n laz[(k<<1)|1]=h(laz[(k<<1)|1],laz[k]);\n dat[k]=reflect(k);\n laz[k]=ei;\n }\n inline void thrust(int k){\n for(int i=height;i;i--) eval(k>>i);\n }\n inline void recalc(int k){ \n while(k>>=1)\n dat[k]=f(reflect((k<<1)|0),reflect((k<<1)|1));\n }\n void update(int a,int b,E x){\n thrust(a+=n);\n thrust(b+=n-1);\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1){\n if(l&1) laz[l]=h(laz[l],x),l++;\n if(r&1) --r,laz[r]=h(laz[r],x);\n }\n recalc(a);\n recalc(b);\n }\n void set_val(int a,T x){\n thrust(a+=n);\n dat[a]=x;laz[a]=ei;\n recalc(a);\n }\n T query(int a,int b){\n thrust(a+=n);\n thrust(b+=n-1);\n T vl=ti,vr=ti;\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,reflect(l++));\n if(r&1) vr=f(reflect(--r),vr);\n }\n return f(vl,vr);\n }\n};\n\n/* \n * [考えるべきこと]\n * 区間をマージしてから作用素を作用させても、作用素を作用させてから区間をマージするのと結果が同じ\n * 複数の作用素をマージして一度に作用させられること\n * 作用素を伝搬し終わっているのかの判定に必要(まあこれは満たされていなくても最悪どうにかなる)\n * O(N) とかだと困る(setのマージとか)\n * 区間の長さに比例して作用が変わるときは,practice/RSRA や Library-Checher の RangeAffineRangeSum を参照する\n * \n */\n\n/** テンプレ\nint main(){\n using T = ***; // type T\n using E = ***; // type E\n auto f = [](T a, T b){ // return type T value\n return ***;\n };\n auto g = [](T a, E b){ // return type T value\n return ***;\n };\n auto h = [](E a, E b){ // return type E value\n return ***;\n };\n T ti = ***; // identity element\n E ei = ***; // identity element\n LazySegmentTree<T, E, decltype(f), decltype(g), decltype(h)> sg(f, g, h, ti, ei); // don't change\n sg.build(***);\n}\n**/\n\n\n#define int long long\n\n\nsigned main() {\n \n int n; cin >> n;\n vector<lint> s(n);\n for (int i = 0; i < n; i++) {\n cin >> s[i];\n }\n\n vector<lint> dat(n / 2);\n for (int i = 0; i < n / 2; i++) {\n dat[i] = s[i] - s[n - i - 1];\n }\n\n auto f1 = [](int a, int b){ return min(a, b); };\n auto g1 = [](int a, int b){ return a + b; };\n auto h1 = [](int a, int b){ return a + b; };\n LazySegmentTree<int, int, decltype(f1), decltype(g1), decltype(h1)> sgmin(f1, g1, h1, INT_MAX, 0);\n sgmin.build(dat);\n\n auto f2 = [](int a, int b){ return max(a, b); };\n auto g2 = [](int a, int b){ return a + b; };\n auto h2 = [](int a, int b){ return a + b; };\n LazySegmentTree<int, int, decltype(f2), decltype(g2), decltype(h2)> sgmax(f2, g2, h2, -INT_MAX, 0);\n sgmax.build(dat);\n \n /*cerr << \"min\" << endl;\n for (int i = 0; i < n / 2; i++) {\n cerr << sgmin.query(i, i + 1) << \" \";\n }\n cerr << endl;\n cerr << \"max\" << endl;\n for (int i = 0; i < n / 2; i++) {\n cerr << sgmax.query(i, i + 1) << \" \";\n }\n cerr << endl;\n */\n\n int q; cin >> q;\n for (int i = 0; i < q; i++) {\n int l, r, x; cin >> l >> r >> x;\n l--;\n r--;\n \n // [0, n / 2)\n // [n / 2, n)\n if (r < n / 2) {\n sgmin.update(l, r + 1, x);\n sgmax.update(l, r + 1, x);\n } else if (l >= n / 2) {\n int ll = n - r - 1;\n int rr = n - l - 1;\n\n sgmin.update(ll, rr + 1, -x);\n sgmax.update(ll, rr + 1, -x);\n } else {\n // cerr << l << \" \" << n / 2 << \" \" << x << endl;\n sgmin.update(l, n / 2, x);\n sgmax.update(l, n / 2, x);\n \n int ll = n - r - 1;\n // cerr << ll << \" \" << n / 2 << \" \" << -x << endl;\n sgmin.update(ll, n / 2, -x);\n sgmax.update(ll, n / 2, -x);\n }\n\n // cerr << \"min\" << endl;\n /*\n for (int i = 0; i < n / 2; i++) {\n cerr << sgmin.query(i, i + 1) << \" \";\n }\n cerr << endl;\n cerr << \"max\" << endl;\n for (int i = 0; i < n / 2; i++) {\n cerr << sgmax.query(i, i + 1) << \" \";\n }\n cerr << endl;\n\n\n // 左 - 右をしているので\n cerr << sgmin.query(0, n / 2) << \" \" << sgmax.query(0, n / 2) << endl;\n\n */\n cout << (sgmin.query(0, n / 2) == 0 and sgmax.query(0, n / 2) == 0) << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 420, "memory_kb": 25028, "score_of_the_acc": -1.1515, "final_rank": 15 }, { "submission_id": "aoj_2777_4471497", "code_snippet": "#include <iostream>\n#include <vector>\n#include <functional>\nusing namespace std;\n\ntemplate <typename T, typename E>\nstruct LazySegmentTree{\nprivate:\n using F = function<T(T,T)>;\n using G = function<T(T,E)>;\n using H = function<E(E,E)>;\n int n, height;\n F f;\n G g;\n H h;\n T ti;\n E ei;\n vector<T> dat;\n vector<E> laz;\n T reflect(int k){\n return laz[k] == ei ? dat[k] : g(dat[k],laz[k]);\n }\n void propagate(int k){\n if(laz[k] == ei) return;\n if(k >= n){\n dat[k] = reflect(k);\n laz[k] = ei;\n return;\n }\n laz[k<<1|0] = h(laz[k<<1|0],laz[k]);\n laz[k<<1|1] = h(laz[k<<1|1],laz[k]);\n dat[k] = reflect(k);\n laz[k] = ei;\n }\n void thrust(int k){\n for(int i = height; i >= 0; --i)\n propagate(k>>i);\n }\n void recalc(int k){\n while(k >>= 1){\n dat[k] = f(reflect(k<<1|0),reflect(k<<1|1));\n }\n }\npublic:\n LazySegmentTree(F f,G g, H h, T ti, E ei) :\n f(f), g(g), h(h), ti(ti), ei(ei) {}\n void build(int n_){\n n = n_;\n height = 2;\n while(n_ >>= 1) ++height;\n dat.assign(2*n,ti);\n laz.assign(2*n,ei);\n }\n void build(const vector<T> &v){\n int n_ = v.size();\n build(n_);\n for(int i = 0; i < n; ++i) dat[n+i]=v[i];\n for(int i = n-1; i >= 0; --i)\n dat[i]=f(dat[i<<1|0],dat[i<<1|1]);\n }\n void update(int l_, int r_, E x){\n if(l_ >= r_) return;\n l_ += n, r_ += n;\n thrust(l_);\n thrust(r_-1);\n for(int l = l_, r = r_;l < r; l >>= 1, r >>= 1){\n if(l&1) laz[l] = h(laz[l],x), ++l;\n if(r&1) --r, laz[r] = h(laz[r],x);\n }\n recalc(l_);\n recalc(r_-1);\n }\n void set_val(int a, T x){\n thrust(a+=n);\n dat[a] = x;\n laz[a] = ei;\n recalc(a);\n }\n T query(int l, int r){\n if(l >= r) return ti;\n l += n;\n r += n;\n thrust(l);\n thrust(r-1);\n T vl = ti, vr = ti;\n for(; l < r; l >>= 1, r >>= 1){\n if(l&1) vl = f(vl,reflect(l++));\n if(r&1) vr = f(reflect(--r),vr);\n }\n return f(vl,vr);\n }\n};\n\nint main(){\n using ll = long long;\n using T = pair<ll,ll>;\n using E = ll;\n function<T(T,T)> f = [](T a, T b) -> T {\n return {max(a.first,b.first),min(a.second,b.second)};\n };\n function<T(T,E)> g = [](T a, E b) -> T {\n return {a.first+b,a.second+b};\n };\n function<E(E,E)> h = [](E a, E b){\n return a+b;\n };\n const ll INF = 1e9;\n T ti = {-INF,INF};\n E ei = 0;\n LazySegmentTree<T,E> st(f,g,h,ti,ei);\n\n int N;\n cin >> N;\n vector<int> S(N);\n for(int i = 0; i < N; ++i){\n cin >> S[i];\n }\n int n = N/2;\n vector<T> A(n);\n for(int i = 0; i < n; ++i){\n A[i] = {S[i]-S[N-1-i], S[i]-S[N-1-i]};\n }\n\n int Q;\n cin >> Q;\n st.build(A);\n while(Q--){\n int l, r, x;\n cin >> l >> r >> x;\n --l, --r;\n if(l >= n){\n l = n - 1 - (l-n);\n r = n - 1 - (r-n);\n // cerr << l << \" \" << r << endl;\n st.update(r,l+1,-x);\n }else if(r < n){\n st.update(l,r+1,x);\n }else{\n st.update(l,n,x);\n r = n - 1 - (r-n);\n // cerr << r << endl;\n st.update(r,n,-x);\n }\n // for(int i = 0; i < n; ++i){\n // cerr << \"(\" << st.query(i,i+1).first << \", \" << st.query(i,i+1).second << \") \";\n // }\n // cerr << endl;\n cout << (st.query(0,n) == make_pair(0LL,0LL)) << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 20492, "score_of_the_acc": -0.9881, "final_rank": 13 }, { "submission_id": "aoj_2777_4096580", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\n// Segment Tree\ntemplate<class Monoid, class Action> struct SegTree {\n using FuncMonoid = function< Monoid(Monoid, Monoid) >;\n using FuncAction = function< void(Monoid&, Action) >;\n using FuncLazy = function< void(Action&, Action) >;\n FuncMonoid FM;\n FuncAction FA;\n FuncLazy FL;\n Monoid UNITY_MONOID;\n Action UNITY_LAZY;\n int SIZE, HEIGHT;\n vector<Monoid> dat;\n vector<Action> lazy;\n\n SegTree() { }\n SegTree(int n, const FuncMonoid fm, const FuncAction fa, const FuncLazy fl,\n const Monoid &unity_monoid, const Action &unity_lazy)\n : FM(fm), FA(fa), FL(fl), UNITY_MONOID(unity_monoid), UNITY_LAZY(unity_lazy) {\n SIZE = 1; HEIGHT = 0;\n while (SIZE < n) SIZE <<= 1, ++HEIGHT;\n dat.assign(SIZE * 2, UNITY_MONOID);\n lazy.assign(SIZE * 2, UNITY_LAZY);\n }\n void init(int n, const FuncMonoid fm, const FuncAction fa, const FuncLazy fl,\n const Monoid &unity_monoid, const Action &unity_lazy) {\n FM = fm; FA = fa; FL = fl;\n UNITY_MONOID = unity_monoid; UNITY_LAZY = unity_lazy;\n SIZE = 1; HEIGHT = 0;\n while (SIZE < n) SIZE <<= 1, ++HEIGHT;\n dat.assign(SIZE * 2, UNITY_MONOID);\n lazy.assign(SIZE * 2, UNITY_LAZY);\n }\n\n /* set, a is 0-indexed */\n void set(int a, const Monoid &v) { dat[a + SIZE] = v; }\n void build() {\n for (int k = SIZE - 1; k > 0; --k)\n dat[k] = FM(dat[k*2], dat[k*2+1]);\n }\n\n /* update [a, b) */\n inline void evaluate(int k) {\n if (lazy[k] == UNITY_LAZY) return;\n if (k < SIZE) FL(lazy[k*2], lazy[k]), FL(lazy[k*2+1], lazy[k]);\n FA(dat[k], lazy[k]);\n lazy[k] = UNITY_LAZY;\n }\n inline void update(int a, int b, const Action &v, int k, int l, int r) {\n evaluate(k);\n if (a <= l && r <= b) FL(lazy[k], v), evaluate(k);\n else if (a < r && l < b) {\n update(a, b, v, k*2, l, (l+r)>>1), update(a, b, v, k*2+1, (l+r)>>1, r);\n dat[k] = FM(dat[k*2], dat[k*2+1]);\n }\n }\n inline void update(int a, int b, const Action &v) { update(a, b, v, 1, 0, SIZE); }\n\n /* get [a, b) */\n inline Monoid get(int a, int b, int k, int l, int r) {\n evaluate(k);\n if (a <= l && r <= b)\n return dat[k];\n else if (a < r && l < b)\n return FM(get(a, b, k*2, l, (l+r)>>1), get(a, b, k*2+1, (l+r)>>1, r));\n else\n return UNITY_MONOID;\n }\n inline Monoid get(int a, int b) { return get(a, b, 1, 0, SIZE); }\n inline Monoid operator [] (int a) { return get(a, a+1); }\n /* debug */\n void print() {\n for (int i = 0; i < SIZE; ++i) { cout << (*this)[i]; if (i != SIZE) cout << \",\"; }\n cout << endl;\n }\n};\n\nsigned main(){\n ios::sync_with_stdio(false);\n\tcin.tie(0);\n cout << fixed << setprecision(20);\n\n ll m;\n cin>>m;\n ll a[m];\n for(int i=0;i<m;i++){\n cin>>a[i];\n }\n ll n = m/2;\n ll INF = 1e10;\n auto fm = [](long long a, long long b) { return max(a,b);};\n auto fm2 = [](ll a,ll b){ return min(a,b);};\n auto fa = [](long long &a, long long d) { a = a + d; };\n auto fl = [](long long &d, long long e) { d = d + e; };\n SegTree<long long, long long> seg(n+1, fm, fa, fl, 0, 0);\n SegTree<ll,ll> seg2(n+1,fm2,fa,fl,0,0);\n\n for(int i=0;i<n;i++){\n seg.update(i,i+1,a[i]-a[m-1-i]);\n seg2.update(i,i+1,a[i]-a[m-1-i]);\n }\n int q;\n cin>>q;\n while(q--){\n ll a,b,x;\n cin>>a>>b>>x;\n a--,b--;\n seg.update(min(a,n),min(b+1,n),x);\n seg2.update(min(a,n),min(b+1,n),x);\n seg.update(min(m-1-b,n),min(m-a,n),-x);\n seg2.update(min(m-1-b,n),min(n,m-a),-x);\n\n // cerr << \"d1 \"<<min(a,n) << \" \" << min(b+1,n) <<endl;\n // cerr << \"d2 \"<<min(n,m-b) << \" \" << min(m-a,n) << endl;\n // cerr<< seg.get(0,n) << \" \" << seg2.get(0,n) << \" \";\n if(seg.get(0,n) == 0 && seg2.get(0,n)==0){\n cout << 1 << \"\\n\";\n }\n else cout <<0 << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 23168, "score_of_the_acc": -1.0309, "final_rank": 14 }, { "submission_id": "aoj_2777_4096071", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"ctime\"\n\nusing namespace std;\n\nconstexpr long long int MOD = 1000000007;\n//constexpr int MOD = 1000000007;\n//constexpr int MOD = 998244353;\n//constexpr long long int MOD = 998244353;\nconstexpr double EPS = 1e-8;\n\n//int N, M, K, H, W, L, R;\nlong long int N, M, K, H, W, L, R;\n\nclass Segment_Tree {\n\tvector<long long int>v;\n\tvector<long long int>add;\n\tvector<long long int>modi;\n\tvector<int>l;\n\tvector<int>r;\n\tint num;\n\tlong long int ret;\n\tbool is_min;\n\tvoid Left(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\tl[place] = place - v.size() / 2;\n\t\t\treturn;\n\t\t}\n\t\tLeft(place * 2);\n\t\tLeft(place * 2 + 1);\n\t\tl[place] = l[place * 2];\n\t\treturn;\n\t}\n\tvoid Right(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\tr[place] = place - v.size() / 2;\n\t\t\treturn;\n\t\t}\n\t\tRight(place * 2);\n\t\tRight(place * 2 + 1);\n\t\tr[place] = r[place * 2 + 1];\n\t\treturn;\n\t}\n\tlong long int Update(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\treturn v[place];\n\t\t}\n\t\tif (is_min) {\n\t\t\tv[place] = min(Update(place * 2), Update(place * 2 + 1));\n\t\t\treturn v[place];\n\t\t}\n\t\tv[place] = max(Update(place * 2), Update(place * 2 + 1));\n\t\treturn v[place];\n\t}\n\tvoid Modify(int a, int b, long long int num, int place) {\n\t\tif (l[place] >= a && r[place] <= b) {\n\t\t\tmodi[place] = num;\n\t\t\tv[place] = num;\n\t\t\tadd[place] = 0;\n\t\t\treturn;\n\t\t}\n\t\tif (l[place] > b || r[place] < a)return;\n\t\tif (modi[place] != LLONG_MAX) {\n\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place];\n\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place];\n\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\tmodi[place] = LLONG_MAX;\n\t\t}\n\t\tadd[place * 2] += add[place];\n\t\tadd[place * 2 + 1] += add[place];\n\t\tadd[place] = 0;\n\t\tModify(a, b, num, place * 2);\n\t\tModify(a, b, num, place * 2 + 1);\n\t\tif (is_min)v[place] = min(v[place * 2] + add[place * 2], v[place * 2 + 1] + add[place * 2 + 1]);\n\t\telse v[place] = max(v[place * 2] + add[place * 2], v[place * 2 + 1] + add[place * 2 + 1]);\n\t\treturn;\n\t}\n\tvoid Add(int a, int b, long long int num, int place) {\n\t\tif (l[place] >= a && r[place] <= b) {\n\t\t\tif (modi[place] != LLONG_MAX) {\n\t\t\t\tif (place * 2 < v.size()) {\n\t\t\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place];\n\t\t\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place];\n\t\t\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\t\t}\n\t\t\t\tmodi[place] = LLONG_MAX;\n\t\t\t}\n\t\t\tadd[place] += num;\n\t\t\treturn;\n\t\t}\n\t\tif (l[place] > b || r[place] < a)return;\n\t\tif (modi[place] != LLONG_MAX) {\n\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place];\n\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place];\n\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\tmodi[place] = LLONG_MAX;\n\t\t}\n\t\tadd[place * 2] += add[place];\n\t\tadd[place * 2 + 1] += add[place];\n\t\tadd[place] = 0;\n\t\tAdd(a, b, num, place * 2);\n\t\tAdd(a, b, num, place * 2 + 1);\n\t\tif (is_min)v[place] = min(v[place * 2] + add[place * 2], v[place * 2 + 1] + add[place * 2 + 1]);\n\t\telse v[place] = max(v[place * 2] + add[place * 2], v[place * 2 + 1] + add[place * 2 + 1]);\n\t\treturn;\n\t}\n\tvoid RMQ(int a, int b, int place) {\n\t\tif (l[place] >= a && r[place] <= b) {\n\t\t\tif (modi[place] != LLONG_MAX) {\n\t\t\t\tif (place * 2 < v.size()) {\n\t\t\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place];\n\t\t\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place];\n\t\t\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\t\t}\n\t\t\t\tmodi[place] = LLONG_MAX;\n\t\t\t}\n\t\t\tif (is_min)ret = min(ret, v[place] + add[place]);\n\t\t\telse ret = max(ret, v[place] + add[place]);\n\t\t\treturn;\n\t\t}\n\t\tif (l[place]>b || r[place]<a) return;\n\t\tif (modi[place] != LLONG_MAX) {\n\t\t\tmodi[place * 2] = modi[place * 2 + 1] = modi[place];\n\t\t\tv[place * 2] = v[place * 2 + 1] = modi[place];\n\t\t\tadd[place * 2] = add[place * 2 + 1] = 0;\n\t\t\tmodi[place] = LLONG_MAX;\n\t\t}\n\t\tadd[place * 2] += add[place];\n\t\tadd[place * 2 + 1] += add[place];\n\t\tadd[place] = 0;\n\t\tRMQ(a, b, place * 2);\n\t\tRMQ(a, b, place * 2 + 1);\n\t\tif (is_min)v[place] = min(v[place * 2] + add[place * 2], v[place * 2 + 1] + add[place * 2 + 1]);\n\t\telse v[place] = max(v[place * 2] + add[place * 2], v[place * 2 + 1] + add[place * 2 + 1]);\n\t\treturn;\n\t}\npublic:\n\tSegment_Tree(int n, bool min) {\n\t\tn++;\n\t\tnum = 1;\n\t\twhile (num < n * 2) {\n\t\t\tnum *= 2;\n\t\t}\n\t\tl.resize(num);\n\t\tr.resize(num);\n\t\tis_min = min;\n\t\tif (min) {\n\t\t\tv.resize(num, MOD*MOD);\n\t\t}\n\t\telse v.resize(num, -MOD * MOD);\n\t\tadd.resize(num, 0);\n\t\tmodi.resize(num, MOD*MOD);\n\t\tLeft(1);\n\t\tRight(1);\n\t}\n\tvoid Insert(int place, long long int num, bool update) {\n\t\tplace += v.size() / 2;\n\t\tv[place] = num;\n\t\tif (!update)return;\n\t\tplace /= 2;\n\t\twhile (place) {\n\t\t\tif (is_min)v[place] = min(v[place * 2], v[place * 2 + 1]);\n\t\t\telse v[place] = max(v[place * 2], v[place * 2 + 1]);\n\t\t\tplace /= 2;\n\t\t}\n\t}\n\tvoid Modify(int a, int b, long long int num) {\n\t\tModify(a, b, num, 1);\n\t}\n\tvoid Add(int a, int b, long long int num) {\n\t\tAdd(a, b, num, 1);\n\t}\n\tvoid Init() {\n\t\tUpdate(1);\n\t}\n\tlong long int RMQ(int a, int b) {\n\t\tif (is_min)ret = LLONG_MAX;\n\t\telse ret = LLONG_MIN;\n\t\tRMQ(a, b, 1);\n\t\treturn ret;\n\t}\n};\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tlong long int sum = 0;\n\tcin >> N;\n\tSegment_Tree sg(N/2, true);\n\tvector<int>v(N);\n\tfor (auto &i : v)cin >> i;\n\tvector<long long int>w(N / 2);\n\tfor (int i = 0; i < N / 2; i++) {\n\t\tw[i] = v[i] - v[N - 1 - i];\n\t\tsum += w[i];\n\t\tsg.Modify(i, i, w[i]);\n\t}\n\tcin >> K;\n\twhile (K--) {\n\t\tcin >> L >> R >> M;\n\t\tL--, R--;\n\t\tif (R < N / 2) {\n\t\t\tsum += M * (R - L + 1);\n\t\t\tsg.Add(L, R, M);\n\t\t}\n\t\telse if (L >= N - N / 2) {\n\t\t\tsum -= M * (R - L + 1);\n\t\t\tsg.Add(N - 1 - R, N - 1 - L, -M);\n\t\t}\n\t\telse {\n\t\t\tsum += M * (N / 2 - L);\n\t\t\tsg.Add(L, N / 2, M);\n\t\t\tsum -= M * (R + 1 - (N - (N / 2)));\n\t\t\tsg.Add(N - 1 - R, N / 2, -M);\n\t\t}\n\t\tif (sg.RMQ(0, N/2) == 0 && !sum)cout << 1 << endl;\n\t\telse cout << 0 << endl;\n\t}\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 23188, "score_of_the_acc": -0.7812, "final_rank": 8 }, { "submission_id": "aoj_2777_3967954", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\ntemplate <typename MonoidType, typename OperatorType>\nstruct LazySegmentTree {\n using MMtoM = function< MonoidType(MonoidType, MonoidType) >;\n using OOtoO = function< OperatorType(OperatorType, OperatorType) >;\n using MOtoM = function< MonoidType(MonoidType, OperatorType) >;\n using OItoO = function< OperatorType(OperatorType, int) >;\n\n // node, lazy, update flag (for lazy), identity element\n int n;\n vector<MonoidType> node;\n vector<OperatorType> lazy;\n vector<bool> need_update;\n MonoidType E0;\n OperatorType E1;\n\n // update / combine / lazy / accumulate function\n MOtoM upd_f;\n MMtoM cmb_f;\n OOtoO lzy_f;\n OItoO acc_f;\n\n void build(int m, vector<MonoidType> v = vector<MonoidType>()) {\n if(v != vector<MonoidType>()) m = v.size();\n n = 1; while(n < m) n *= 2;\n\n node = vector<MonoidType>(2*n-1, E0);\n lazy = vector<OperatorType>(2*n-1, E1);\n need_update = vector<bool>(2*n-1, false);\n if(v != vector<MonoidType>()) {\n for(int i=0; i<m; i++) {\n node[n-1+i] = v[i];\n }\n for(int i=n-2; i>=0; i--) {\n node[i] = cmb_f(node[2*i+1], node[2*i+2]);\n }\n }\n }\n\n // initialize\n LazySegmentTree() {}\n LazySegmentTree(int n_, MonoidType E0_, OperatorType E1_,\n MOtoM upd_f_, MMtoM cmb_f_, OOtoO lzy_f_, OItoO acc_f_,\n vector<MonoidType> v = vector<MonoidType>()) :\n E0(E0_), E1(E1_),\n upd_f(upd_f_), cmb_f(cmb_f_), lzy_f(lzy_f_), acc_f(acc_f_) {\n build(n_, v);\n }\n\n void eval(int k, int l, int r) {\n if(!need_update[k]) return;\n node[k] = upd_f(node[k], acc_f(lazy[k], r - l));\n if(r - l > 1) {\n lazy[2*k+1] = lzy_f(lazy[2*k+1], lazy[k]);\n lazy[2*k+2] = lzy_f(lazy[2*k+2], lazy[k]);\n need_update[2*k+1] = need_update[2*k+2] = true;\n }\n lazy[k] = E1;\n need_update[k] = false;\n }\n\n void update(int a, int b, OperatorType x, int l, int r, int k) {\n eval(k, l, r);\n if(b <= l or r <= a) return;\n if(a <= l and r <= b) {\n lazy[k] = lzy_f(lazy[k], x);\n need_update[k] = true;\n eval(k, l, r);\n }\n else {\n int mid = (l + r) / 2;\n update(a, b, x, l, mid, 2*k+1);\n update(a, b, x, mid, r, 2*k+2);\n node[k] = cmb_f(node[2*k+1], node[2*k+2]);\n }\n }\n\n MonoidType query(int a, int b, int l, int r, int k) {\n if(b <= l or r <= a) return E0;\n eval(k, l, r);\n if(a <= l and r <= b) return node[k];\n int mid = (l + r) / 2;\n MonoidType vl = query(a, b, l, mid, 2*k+1);\n MonoidType vr = query(a, b, mid, r, 2*k+2);\n return cmb_f(vl, vr);\n }\n\n // update [a, b)-th element (applied value, x)\n void update(int a, int b, OperatorType x) {\n update(a, b, x, 0, n, 0);\n }\n\n // range query for [a, b)\n MonoidType query(int a, int b) {\n return query(a, b, 0, n, 0);\n }\n\n void dump() {\n fprintf(stderr, \"[lazy]\\n\");\n for(int i=0; i<2*n-1; i++) {\n if(i == n-1) fprintf(stderr, \"xxx \");\n if(lazy[i] == E1) fprintf(stderr, \" E \");\n else fprintf(stderr, \"%3d \", lazy[i]);\n }\n fprintf(stderr, \"\\n\");\n\n fprintf(stderr, \"[node]\\n\");\n for(int i=0; i<2*n-1; i++) {\n if(i == n-1) fprintf(stderr, \"xxx \");\n if(node[i] == E0) fprintf(stderr, \" E \");\n else fprintf(stderr, \"%3d \", node[i]);\n }\n fprintf(stderr, \"\\n\");\n }\n};\n\nint main() {\n int N; cin >> N;\n vector<int> A(N);\n for(int i=0; i<N; i++) cin >> A[i];\n\n // 差分: 左 - 右\n vector<int> B(N);\n int H = N / 2;\n for(int i=0; i<H; i++) {\n B[i] = A[i] - A[N-1-i];\n }\n\n using PI = pair<ll, ll>;\n\n const PI E0(LONGINF, -LONGINF);\n const ll E1 = 0;\n LazySegmentTree<PI, ll> seg(H, E0, E1,\n [](PI a, ll b) {\n a.first += b;\n a.second += b;\n return a;\n },\n [](PI a, PI b) {\n ll x = min(a.first, b.first);\n ll y = max(a.second, b.second);\n return make_pair(x, y);\n },\n [](ll a, ll b) {\n return a + b;\n },\n [](ll a, int x) {\n return a;\n },\n vector<PI>(H, make_pair(0, 0)));\n for(int i=0; i<H; i++) seg.update(i, i+1, B[i]);\n\n int Q; cin >> Q;\n for(int i=0; i<Q; i++) {\n int l, r, x; cin >> l >> r >> x; l--;\n\n int dl = max(H - l, 0);\n int dr = max(r - H, 0);\n\n int d = min(dl, dr);\n // fprintf(stderr, \"### query %d: d = %d\\n\", i, d);\n if(d > 0) {\n int ql = l, qr = H - d;\n // fprintf(stderr, \"? 1: l = %d, r = %d\\n\", ql, qr);\n if(ql < qr) {\n // fprintf(stderr, \"q1: l = %d, r = %d\\n\", ql, qr);\n seg.update(ql, qr, x);\n }\n }\n if(d > 0) {\n int ql = N - r, qr = H - d;\n // fprintf(stderr, \"? 2: l = %d, r = %d\\n\", ql, qr);\n if(ql < qr) {\n // fprintf(stderr, \"q2: l = %d, r = %d\\n\", ql, qr);\n seg.update(ql, qr, -x);\n }\n }\n if(d == 0) {\n int ql = l, qr = r;\n if(ql >= H) {\n swap(ql, qr);\n ql = N - ql, qr = N - qr, x = -x;\n }\n // fprintf(stderr, \"q3: l = %d, r = %d\\n\", ql, qr);\n seg.update(ql, qr, x);\n }\n\n auto res = seg.query(0, H);\n if(res.first == 0 and res.second == 0) cout << 1 << endl;\n else cout << 0 << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 26868, "score_of_the_acc": -1.3173, "final_rank": 17 }, { "submission_id": "aoj_2777_3858356", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nusing ld=long double;\nusing ull=unsigned long long;\nusing uint=unsigned int;\nusing pcc=pair<char,char>;\nusing pii=pair<int,int>;\nusing pll=pair<ll,ll>;\nusing pdd=pair<double,double>;\nusing tuplis=pair<ll,pll>;\nusing tuplis2=pair<pll,ll>;\ntemplate<class T> using pq=priority_queue<T,vector<T>,greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst ll MOD=1000000007;\nconst ll MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.141592653589793238462643383279;\nconst vector<ll>four{0,1,0,-1,0};\n#define _overload4(_1,_2,_3,_4,name,...) name\n#define _overload3(_1,_2,_3,name,...) name\n#define _rep1(n) for(ll i=0;i<n;++i)\n#define _rep2(i,n) for(ll i=0;i<n;++i)\n#define _rep3(i,a,b) for(ll i=a;i<b;++i)\n#define _rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) _overload4(__VA_ARGS__,_rep4,_rep3,_rep2,_rep1)(__VA_ARGS__)\n#define _rrep1(n) for(ll i=(n)-1;i>=0;i--)\n#define _rrep2(i,n) for(ll i=(n)-1;i>=0;i--)\n#define _rrep3(i,a,b) for(ll i=(b)-1;i>=a;i--)\n#define _rrep4(i,a,b,c) for(ll i=a+(b-a-1)/c*c;i>=a;i-=c)\n#define rrep(...) _overload4(__VA_ARGS__,_rrep4,_rrep3,_rrep2,_rrep1)(__VA_ARGS__)\n#define each(i,a) for(auto &i:a)\n#define sum(...) accumulate(range(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(range(__VA_ARGS__),double(0))\n#define _range(i) (i).begin(),(i).end()\n#define _range2(i,k) (i).begin(),(i).begin()+k\n#define _range3(i,a,b) (i).begin()+a,(i).begin()+b\n#define range(...) _overload3(__VA_ARGS__,_range3,_range2,_range)(__VA_ARGS__)\n#define _rrange(i) (i).rbegin(),(i).rend()\n#define _rrange2(i,k) (i).rbegin(),(i).rbegin()+k\n#define _rrange3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rrange(...) _overload3(__VA_ARGS__,_rrange3,_rrange2,_rrange)(__VA_ARGS__)\n#define elif else if\n#define unless(a) if(!(a))\n#define mp make_pair\n#define mt make_tuple\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define vec(type,name,...) vector<type> name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type> name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ninline constexpr ll gcd(ll a,ll b){if(!a||!b)return 0;while(b){ll c=b;b=a%b;a=c;}return a;}\ninline constexpr ll lcm(ll a,ll b){if(!a||!b)return 0;return a*b/gcd(a,b);}\ntemplate<class T> inline constexpr T min(vector<T> &v){return *min_element(range(v));}\ninline char min(string &v){return *min_element(range(v));}\ntemplate<class T> inline constexpr T max(vector<T> &v){return *max_element(range(v));}\ninline char max(string &v){return *max_element(range(v));}\ninline constexpr ll intpow(ll a,ll b){ll ans=1;for(ll i=1;b;i*=2){if(b&i){b^=i;ans*=a;}a*=a;}return ans;}\ntemplate<typename T>\ninline constexpr bool chmin(T &mn,const T &cnt){if(mn>cnt){mn=cnt;return 1;}else return 0;}\ntemplate<typename T>\ninline constexpr bool chmax(T &mx,const T &cnt){if(mx<cnt){mx=cnt;return 1;}else return 0;}\ntemplate<class T> unordered_map<T,ll> press(vector<T> &a){ auto b = a; sort(range(b)); b.erase(unique(range(b)), b.end()); unordered_map<T,ll> ans; rep(b.size()) ans[b[i]] = i; each(i, a) i = ans[i]; return ans; }\ntemplate<class T> map<T,ll> press_map(vector<T> &a){ auto b = a; sort(range(b)); b.erase(unique(range(b)), b.end()); map<T,ll> ans; rep(b.size()) ans[b[i]] = i; each(i, a) i = ans[i]; return ans; }\ninline int scan(){ return getchar(); }\ninline void scan(int &a){ scanf(\"%d\", &a); }\ninline void scan(unsigned &a){ scanf(\"%u\", &a); }\ninline void scan(long &a){ scanf(\"%ld\", &a); }\ninline void scan(long long &a){ scanf(\"%lld\", &a); }\ninline void scan(unsigned long long &a){ scanf(\"%llu\", &a); }\ninline void scan(char &a){ cin >> a; }\ninline void scan(float &a){ scanf(\"%f\", &a); }\ninline void scan(double &a){ scanf(\"%lf\", &a); }\ninline void scan(long double &a){ scanf(\"%Lf\", &a); }\ninline void scan(vector<bool> &vec){ for(unsigned i = 0; i < vec.size(); i++) { int a; scan(a); vec[i] = a; } }\ninline void scan(string &a){ cin >> a; }\ntemplate<class T> inline void scan(vector<T> &vec);\ntemplate<class T, size_t size> inline void scan(array<T, size> &vec);\ntemplate<class T, class L> inline void scan(pair<T, L> &p);\ntemplate<class T, size_t size> inline void scan(T (&vec)[size]);\ntemplate<class T> inline void scan(vector<T> &vec){ for(auto &i : vec) scan(i); }\ntemplate<class T, size_t size> inline void scan(array<T, size> &vec){ for(auto &i : vec) scan(i); }\ntemplate<class T, class L> inline void scan(pair<T, L> &p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> inline void scan(T (&vec)[size]){ for(auto &i : vec) scan(i); }\ntemplate<class T> inline void scan(T &a){ cin>>a; }\ninline void in(){}\ntemplate <class Head, class... Tail> inline void in(Head &head, Tail&... tail){ scan(head); in(tail...); }\ninline void print(){ putchar(' '); }\ninline void print(const bool &a){ printf(\"%d\", a); }\ninline void print(const int &a){ printf(\"%d\", a); }\ninline void print(const unsigned &a){ printf(\"%u\", a); }\ninline void print(const long &a){ printf(\"%ld\", a); }\ninline void print(const long long &a){ printf(\"%lld\", a); }\ninline void print(const unsigned long long &a){ printf(\"%llu\", a); }\ninline void print(const char &a){ printf(\"%c\", a); }\ninline void print(const char a[]){ printf(\"%s\", a); }\ninline void print(const float &a){ printf(\"%.15f\", a); }\ninline void print(const double &a){ printf(\"%.15f\", a); }\ninline void print(const long double &a){ printf(\"%.15Lf\", a); }\ntemplate<class T> void print(const vector<T> &vec);\ntemplate<class T, size_t size> void print(const array<T, size> &vec);\ntemplate<class T, class L> void print(const pair<T, L> &p);\ntemplate<class T, size_t size> inline void print(const T (&vec)[size]);\ntemplate<class T> void print(const vector<T> &vec){ if(vec.empty()) return; print(vec[0]); for(auto i = vec.begin(); ++i != vec.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size> &vec){ print(vec[0]); for(auto i = vec.begin(); ++i != vec.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L> &p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> inline void print(const T (&vec)[size]){ print(vec[0]); for(auto i = vec; ++i != end(vec); ){ putchar(' '); print(*i); } }\ntemplate<class T> inline void print(const T &a){ cout << a; }\ninline int out(){ putchar('\\n'); return 0; }\ntemplate<class T> inline int out(const T &t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> inline int out(const Head &head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\ntemplate <class T> inline void err(T t){cerr<<t<<'\\n';}\ninline void err(){cerr<<'\\n';}\ninline int first(const bool &i){return out(i?\"first\":\"second\");}\ninline int yes(const bool &i){return out(i?\"yes\":\"no\");}\ninline int Yes(const bool &i){return out(i?\"Yes\":\"No\");}\ninline int YES(const bool &i){return out(i?\"YES\":\"NO\");}\ninline int Yay(const bool &i){return out(i?\"Yay!\":\":(\");}\ninline int Possible(const bool &i){return out(i?\"Possible\":\"Impossible\");}\ninline int POSSIBLE(const bool &i){return out(i?\"POSSIBLE\":\"IMPOSSIBLE\");}\ninline void Case(ll i){printf(\"Case #%lld: \",i);}\n\n\n\ntemplate<class T>\nstruct SegmentTree{\n using F = function<T(T, T)>;\n ll size = 1;\n vector<T> data;\n const F f;\n const T def_value;\n SegmentTree(ll n, const T& def_value, const F& f): f(f), def_value(def_value){\n while(size < n) size *= 2;\n data.assign(size * 2, def_value);\n }\n SegmentTree(const vector<T>& v, const T& def_value, const F& f): f(f), def_value(def_value){\n while(size < v.size()) size *= 2;\n data.assign(size * 2, def_value);\n for(ll i = 0; i < v.size(); i++) data[size + i] = v[i];\n for(ll i = size; --i;) data[i] = f(data[i * 2], data[i * 2 + 1]);\n }\n T operator[](ll at) const {\n return data[size + at];\n }\n void update(ll at){\n while(at /= 2) data[at] = f(data[at * 2], data[at * 2 + 1]);\n }\n void set(ll at, const T& val){\n at += size;\n data[at] = val;\n update(at);\n }\n void add(ll at, const T& val){\n at += size;\n data[at] += val;\n update(at);\n }\n T get(ll l, ll r) const {\n T L = def_value, R = def_value;\n l += size; r += size;\n for(; l < r; l /= 2, r /= 2){\n if(l & 1) L = f(L, data[l++]);\n if(r & 1) R = f(data[--r], R);\n }\n return f(L, R);\n }\n void clear(){\n for(auto& i : data) i = def_value;\n }\n};\ntemplate<class T>\nstruct SegmentTreeMin : SegmentTree<T>{\n SegmentTreeMin(ll n, const T& def_value) : SegmentTree<T>(n, def_value, [](T a, T b){return min(a, b);}){}\n SegmentTreeMin(const vector<T>& v, const T& def_value) : SegmentTree<T>(v, def_value, [](T a, T b){return min(a, b);}){}\n};\ntemplate<class T>\nstruct SegmentTreeMax : SegmentTree<T>{\n SegmentTreeMax(ll n, const T& def_value) : SegmentTree<T>(n, def_value, [](T a, T b){return max(a, b);}){}\n SegmentTreeMax(const vector<T>& v, const T& def_value) : SegmentTree<T>(v, def_value, [](T a, T b){return max(a, b);}){}\n};\ntemplate<class T>\nstruct SegmentTreeSum : SegmentTree<T>{\n SegmentTreeSum(ll n, const T& def_value = T()) : SegmentTree<T>(n, def_value, [](T a, T b){return a + b;}){}\n SegmentTreeSum(const vector<T>& v, const T& def_value = T()) : SegmentTree<T>(v, def_value, [](T a, T b){return a + b;}){}\n};\nsigned main(){\n LL(n);\n VEC(ll,a,n);\n rep(n/2)a[i]-=a[n-1-i];\n a.resize(n/=2);\n vec(ll,b,n+1);\n b[0]=a[0];\n rep(n-1)b[i+1]=a[i+1]-a[i];\n b[n]=-sum(b);\n SegmentTreeMax<ll>seg(b,0);\n LL(q);\n rep(_,q){\n LL(l,r,x);\n if(r<=n){\n seg.add(l-1,x);\n seg.add(r,-x);\n }\n elif(l>n){\n l=2*n-l;\n r=2*n-r;\n seg.add(r,-x);\n seg.add(l+1,x);\n }\n else{\n seg.add(l-1,x);\n r=2*n-r;\n seg.add(r,-x);\n }\n out(!seg.data[1]);\n }\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 12844, "score_of_the_acc": -0.1613, "final_rank": 2 }, { "submission_id": "aoj_2777_3234237", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2777.cc: Kitsuchiri\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 500000;\nconst int MAX_M = MAX_N / 2; // = 250000\nconst int MAX_E2 = 1 << 19; // = 524288\nconst int INF = 1 << 30;\n\n/* typedef */\n\ntemplate <typename T, const int MAX_E2>\nstruct SegTreeSumMinMax {\n int n, e2, inf;\n T sums[MAX_E2], mins[MAX_E2], maxs[MAX_E2], ds[MAX_E2];\n SegTreeSumMinMax() {}\n\n void init(int _n, int _inf) {\n n = _n, inf = _inf;\n for (e2 = 1; e2 < n; e2 <<= 1);\n fill(sums, sums + MAX_E2, 0);\n fill(mins, mins + MAX_E2, inf);\n fill(maxs, maxs + MAX_E2, -inf);\n fill(ds, ds + MAX_E2, 0);\n }\n\n void set(int i, T v) { sums[e2 - 1 + i] = v; }\n \n void setall() {\n for (int i = e2 * 2 - 2; i >= e2 - 1; i--)\n mins[i] = maxs[i] = sums[i];\n for (int i = e2 - 2; i >= 0; i--) {\n int i0 = i * 2 + 1, i1 = i0 + 1;\n sums[i] = sums[i0] + sums[i1];\n mins[i] = min(mins[i0], mins[i1]);\n maxs[i] = max(maxs[i0], maxs[i1]);\n }\n }\n \n void add_range(int r0, int r1, T v, int k, int i0, int i1) {\n if (r1 <= i0 || i1 <= r0) return;\n if (r0 <= i0 && i1 <= r1) {\n sums[k] += v, mins[k] += v, maxs[k] += v, ds[k] += v;\n return;\n }\n\n int im = (i0 + i1) / 2, k0 = k * 2 + 1, k1 = k0 + 1;\n if (ds[k] != 0) {\n sums[k0] += ds[k], mins[k0] += ds[k], maxs[k0] += ds[k], ds[k0] += ds[k];\n sums[k1] += ds[k], mins[k1] += ds[k], maxs[k1] += ds[k], ds[k1] += ds[k];\n ds[k] = 0;\n }\n\n add_range(r0, r1, v, k0, i0, im);\n add_range(r0, r1, v, k1, im, i1);\n\n sums[k] = sums[k0] + sums[k1];\n mins[k] = min(mins[k0], mins[k1]);\n maxs[k] = max(maxs[k0], maxs[k1]);\n }\n void add_range(int r0, int r1, T v) { add_range(r0, r1, v, 0, 0, e2); }\n};\n\n/* global variables */\n\nint as[MAX_N];\nSegTreeSumMinMax<int,MAX_E2> st;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n for (int i = 0; i < n; i++) scanf(\"%d\", as + i);\n\n int m = n / 2;\n\n st.init(m, INF);\n for (int i = 0; i < m; i++) st.set(i, as[i] - as[n - 1 - i]);\n st.setall();\n\n int q;\n scanf(\"%d\", &q);\n while (q--) {\n int l, r, x;\n scanf(\"%d%d%d\", &l, &r, &x);\n l--;\n\n if (r <= m) st.add_range(l, r, x);\n else if (m <= l) st.add_range(n - r, n - l, -x);\n else {\n int l0 = m - l, r0 = r - m;\n if (l0 > r0) st.add_range(l, n - r, x);\n else if (l0 < r0) st.add_range(n - r, l, -x);\n }\n\n printf(\"%d\\n\", (st.mins[0] == 0 && st.maxs[0] == 0) ? 1 : 0);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 13348, "score_of_the_acc": -0.283, "final_rank": 3 }, { "submission_id": "aoj_2777_2917979", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\nconst int INF = 1e9;\nconst ll LINF = 1e18;\ntemplate<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << \"(\" << o.first << \",\" << o.second << \")\"; return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << \" \";} return out; }\ntemplate<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }\ntemplate<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << \"{ \"; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << \":\" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << \", \"; } out << \" }\"; return out; }\n\n/* [0..N-1] */\nconst ll INIT = 0; // 問題に合わせる\nstruct SegTree {\n int N;\n ll init_v;\n vector<pll> node;\n vector<ll> lazy;\n \n SegTree(int _N):init_v(INIT) {\n N = 1;\n while (N < _N) N *= 2;\n node.resize(2 * N - 1, {init_v,init_v});\n lazy.resize(2 * N - 1, init_v);\n }\n pll merge(pll a, pll b) {\n pll ret = pll(-1e9, 1e9);\n ret.first = max(a.first, b.first);\n ret.second = min(a.second, b.second);\n return ret;\n }\n void lazy_evaluate(int l, int r,int k){\n node[k].first += lazy[k];\n node[k].second += lazy[k];\n if(r - l > 1){\n lazy[2 * k + 1] += lazy[k];\n lazy[2 * k + 2] += lazy[k];\n }\n lazy[k] = 0;\n }\n \n /* [a,b) 引数の範囲に注意!! s~tまでを更新→update(s,t+1,~) */\n void update(int a, int b, ll x) { update(a, b, 0, 0, N, x); }\n void update(int a, int b, int k, int l, int r, ll x) {\n lazy_evaluate(l,r,k);\n if (r <= a || b <= l) return;\n if (a <= l && r <= b) {\n lazy[k] += x;\n lazy_evaluate(l,r,k);\n }\n else {\n update(a, b, 2 * k + 1, l, (l + r) / 2, x);\n update(a, b, 2 * k + 2, (l + r) / 2, r, x);\n node[k] = merge(node[2 * k + 1],node[2 * k + 2]);\n }\n }\n \n /* [a,b) 引数の範囲に注意!! */\n pll query(int a, int b) { return query(a, b, 0, 0, N); }\n pll query(int a, int b, int k, int l, int r) {\n lazy_evaluate(l, r, k);\n if (r <= a || b <= l) return {-INF,INF}; // min : LLONG_MAX , max : LLONG_MIN\n if (a <= l && r <= b) {\n return node[k];\n }\n else {\n pll vl = query(a, b, 2 * k + 1, l, (l + r) / 2);\n pll vr = query(a, b, 2 * k + 2, (l + r) / 2, r);\n return merge(vl, vr);\n }\n }\n};\n\nvoid solve() {\n int N; cin >> N;\n vector<ll> kassa(N); for (auto& in : kassa) cin >> in;\n int Q; cin >> Q;\n int S = N / 2;\n SegTree ST(S);\n for (int i = 0; i < S; i++) {\n ST.update(i, i + 1, kassa[i]);\n }\n for (int i = S; i < N; i++) {\n ST.update(N - i - 1, N - i, -kassa[i]);\n }\n while (Q--) {\n int l, r, x; cin >> l >> r >> x;\n l--; r--;\n if (r < S) {\n ST.update(l, r + 1, x);\n }\n else if (l >= S) {\n ST.update(N - r - 1, N - l, -x);\n }\n else {\n ST.update(l, S, x);\n ST.update(N - r - 1, S, -x);\n }\n pll a = ST.query(0, S);\n if (a.first == a.second && a.first == 0) {\n cout << 1 << endl;\n } else {\n cout << 0 << endl;\n }\n }\n}\n\nint main() {\n cin.tie(0); ios_base::sync_with_stdio(false);\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 18948, "score_of_the_acc": -0.8271, "final_rank": 11 }, { "submission_id": "aoj_2777_2675475", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nint *min_data,*max_data,*add_data;\nint first_table[500000];\nint N = 1;\n\nvoid init(ll first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid add(int left,int right,int value,int node_id,int node_left,int node_right){\n\n\tif(right < node_left || left > node_right){\n\t\treturn;\n\t}\n\telse if(left <= node_left && right >= node_right){\n\n\t\tadd_data[node_id] += value;\n\n\t\twhile(node_id != 0){\n\n\t\t\tnode_id = (node_id-1)/2;\n\t\t\tmin_data[node_id] = min(min_data[2*node_id+1]+add_data[2*node_id+1],min_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t\tmax_data[node_id] = max(max_data[2*node_id+1]+add_data[2*node_id+1],max_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t}\n\t}else{\n\n\t\tadd(left,right,value,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tadd(left,right,value,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t}\n}\n\nint getMin(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn min_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tint left_min = getMin(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tint right_min = getMin(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn min(left_min,right_min)+add_data[node_id];\n\t}\n}\n\nint getMax(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return -BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn max_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tint left_max = getMax(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tint right_max = getMax(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn max(left_max,right_max)+add_data[node_id];\n\t}\n}\n\nint main(){\n\n\tint first_N;\n\tscanf(\"%d\",&first_N);\n\n\tfor(int i = 0; i < first_N; i++)scanf(\"%lld\",&first_table[i]);\n\n\tfor(int i = 0; i < first_N/2; i++){\n\t\tfirst_table[i] -= first_table[(first_N-1)-i];\n\t}\n\n\tfirst_N /= 2;\n\tinit(first_N);\n\n\tmin_data = new int[2*N-1];\n\tmax_data = new int[2*N-1];\n\tadd_data = new int[2*N-1];\n\n\tfor(ll i = 0; i <= 2*N-2; i++){\n\t\tmin_data[i] = 0;\n\t\tmax_data[i] = 0;\n\t\tadd_data[i] = 0;\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\t\tadd(i,i,first_table[i],0,0,N-1);\n\t}\n\n\tint Q;\n\tscanf(\"%d\",&Q);\n\n\tint left,right,tmp,calc_left;\n\tint add_value;\n\n\tfor(int i = 0; i < Q; i++){\n\t\tscanf(\"%d %d %d\",&left,&right,&add_value);\n\t\tleft--;\n\t\tright--;\n\n\t\tif(left >= first_N){\n\n\t\t\ttmp = right;\n\t\t\tright = (2*first_N-1)-left;\n\t\t\tleft = (2*first_N-1)-tmp;\n\n\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t}else{ // left < first_N\n\n\t\t\tif(right < first_N){\n\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\n\t\t\t}else{ //right > first_N\n\n\t\t\t\tif(left+right == 2*first_N-1){\n\t\t\t\t\t//Do nothing\n\t\t\t\t}else{\n\n\t\t\t\t\tcalc_left = (2*first_N-1)-right;\n\n\t\t\t\t\tif(calc_left < left){\n\n\t\t\t\t\t\tright = left-1;\n\t\t\t\t\t\tleft = calc_left;\n\t\t\t\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = calc_left-1;\n\t\t\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(getMin(0,first_N-1,0,0,N-1) == 0 && getMax(0,first_N-1,0,0,N-1) == 0){\n\t\t\tprintf(\"1\\n\");\n\t\t}else{\n\t\t\tprintf(\"0\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 11252, "score_of_the_acc": -0.3859, "final_rank": 4 }, { "submission_id": "aoj_2777_2675472", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nll *min_data,*max_data,*add_data;\nll first_table[500000];\nint N = 1;\n\nvoid init(ll first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid add(int left,int right,ll value,int node_id,int node_left,int node_right){\n\n\tif(right < node_left || left > node_right){\n\t\treturn;\n\t}\n\telse if(left <= node_left && right >= node_right){\n\n\t\tadd_data[node_id] += value;\n\n\t\twhile(node_id != 0){\n\n\t\t\tnode_id = (node_id-1)/2;\n\t\t\tmin_data[node_id] = min(min_data[2*node_id+1]+add_data[2*node_id+1],min_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t\tmax_data[node_id] = max(max_data[2*node_id+1]+add_data[2*node_id+1],max_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t}\n\t}else{\n\n\t\tadd(left,right,value,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tadd(left,right,value,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t}\n}\n\nll getMin(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn min_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tll left_min = getMin(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tll right_min = getMin(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn min(left_min,right_min)+add_data[node_id];\n\t}\n}\n\nll getMax(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return -BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn max_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tll left_max = getMax(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tll right_max = getMax(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn max(left_max,right_max)+add_data[node_id];\n\t}\n}\n\nint main(){\n\n\tint first_N;\n\tscanf(\"%d\",&first_N);\n\n\tfor(int i = 0; i < first_N; i++)scanf(\"%lld\",&first_table[i]);\n\n\tfor(int i = 0; i < first_N/2; i++){\n\t\tfirst_table[i] -= first_table[(first_N-1)-i];\n\t}\n\n\tfirst_N /= 2;\n\tinit(first_N);\n\n\tmin_data = new ll[2*N-1];\n\tmax_data = new ll[2*N-1];\n\tadd_data = new ll[2*N-1];\n\n\tfor(ll i = 0; i <= 2*N-2; i++){\n\t\tmin_data[i] = 0;\n\t\tmax_data[i] = 0;\n\t\tadd_data[i] = 0;\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\t\tadd(i,i,first_table[i],0,0,N-1);\n\t}\n\n\tint Q;\n\tscanf(\"%d\",&Q);\n\n\tint left,right,tmp,calc_left,pre = -1;\n\tll add_value;\n\n\tfor(int i = 0; i < Q; i++){\n\t\tscanf(\"%d %d %lld\",&left,&right,&add_value);\n\t\tleft--;\n\t\tright--;\n\n\t\tif(left >= first_N){\n\n\t\t\ttmp = right;\n\t\t\tright = (2*first_N-1)-left;\n\t\t\tleft = (2*first_N-1)-tmp;\n\n\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t\tif(pre == 1){\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\tpre = 0;\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t}else{ // left < first_N\n\n\t\t\tif(right < first_N){\n\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\n\t\t\t\tif(pre == 1){\n\t\t\t\t\tprintf(\"0\\n\");\n\t\t\t\t\tpre = 0;\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\n\t\t\t}else{\n\n\t\t\t\tif(left+right == 2*first_N-1){\n\t\t\t\t\tif(pre != -1){\n\t\t\t\t\t\tprintf(\"%d\\n\",pre);\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\t\t\t\t}else{\n\n\t\t\t\t\tcalc_left = (2*first_N-1)-right;\n\n\t\t\t\t\tif(calc_left < left){\n\n\t\t\t\t\t\tright = left-1;\n\t\t\t\t\t\tleft = calc_left;\n\t\t\t\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t\t\t\t\tif(pre == 1){\n\t\t\t\t\t\t\tprintf(\"0\\n\");\n\t\t\t\t\t\t\tpre = 0;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = calc_left-1;\n\t\t\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\n\t\t\t\t\t\tif(pre == 1){\n\t\t\t\t\t\t\tprintf(\"0\\n\");\n\t\t\t\t\t\t\tpre = 0;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(getMin(0,first_N-1,0,0,N-1) == 0 && getMax(0,first_N-1,0,0,N-1) == 0){\n\t\t\tprintf(\"1\\n\");\n\t\t\tpre = 1;\n\t\t}else{\n\t\t\tprintf(\"0\\n\");\n\t\t\tpre = 0;\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.6753246753246753, "time_ms": 190, "memory_kb": 19352, "score_of_the_acc": -0.5381, "final_rank": 19 }, { "submission_id": "aoj_2777_2675470", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nll *min_data,*max_data,*add_data;\nll first_table[500000];\nint N = 1;\n\nvoid init(ll first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid add(int left,int right,ll value,int node_id,int node_left,int node_right){\n\n\tif(right < node_left || left > node_right){\n\t\treturn;\n\t}\n\telse if(left <= node_left && right >= node_right){\n\n\t\tadd_data[node_id] += value;\n\n\t\twhile(node_id != 0){\n\n\t\t\tnode_id = (node_id-1)/2;\n\t\t\tmin_data[node_id] = min(min_data[2*node_id+1]+add_data[2*node_id+1],min_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t\tmax_data[node_id] = max(max_data[2*node_id+1]+add_data[2*node_id+1],max_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t}\n\t}else{\n\n\t\tadd(left,right,value,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tadd(left,right,value,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t}\n}\n\nll getMin(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn min_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tll left_min = getMin(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tll right_min = getMin(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn min(left_min,right_min)+add_data[node_id];\n\t}\n}\n\nll getMax(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return -BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn max_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tll left_max = getMax(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tll right_max = getMax(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn max(left_max,right_max)+add_data[node_id];\n\t}\n}\n\nint main(){\n\n\tint first_N;\n\tscanf(\"%d\",&first_N);\n\n\tfor(int i = 0; i < first_N; i++)scanf(\"%lld\",&first_table[i]);\n\n\tfor(int i = 0; i < first_N/2; i++){\n\t\tfirst_table[i] -= first_table[(first_N-1)-i];\n\t}\n\n\tfirst_N /= 2;\n\tinit(first_N);\n\n\tmin_data = new ll[2*N-1];\n\tmax_data = new ll[2*N-1];\n\tadd_data = new ll[2*N-1];\n\n\tfor(ll i = 0; i <= 2*N-2; i++){\n\t\tmin_data[i] = 0;\n\t\tmax_data[i] = 0;\n\t\tadd_data[i] = 0;\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\t\tadd(i,i,first_table[i],0,0,N-1);\n\t}\n\n\tint Q;\n\tscanf(\"%d\",&Q);\n\n\tint left,right,tmp,calc_left;\n\tll add_value;\n\n\tfor(int i = 0; i < Q; i++){\n\t\tscanf(\"%d %d %lld\",&left,&right,&add_value);\n\t\tleft--;\n\t\tright--;\n\n\t\tif(left >= first_N){\n\n\t\t\ttmp = right;\n\t\t\tright = (2*first_N-1)-left;\n\t\t\tleft = (2*first_N-1)-tmp;\n\n\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t}else{ // left < first_N\n\n\t\t\tif(right < first_N){\n\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\n\t\t\t}else{ //right > first_N\n\n\t\t\t\tif(left+right == 2*first_N-1){\n\t\t\t\t\t//Do nothing\n\t\t\t\t}else{\n\n\t\t\t\t\tcalc_left = (2*first_N-1)-right;\n\n\t\t\t\t\tif(calc_left < left){\n\n\t\t\t\t\t\tright = left-1;\n\t\t\t\t\t\tleft = calc_left;\n\t\t\t\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = calc_left-1;\n\t\t\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(getMin(0,first_N-1,0,0,N-1) == 0 && getMax(0,first_N-1,0,0,N-1) == 0){\n\t\t\tprintf(\"1\\n\");\n\t\t}else{\n\t\t\tprintf(\"0\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 19364, "score_of_the_acc": -0.5383, "final_rank": 6 }, { "submission_id": "aoj_2777_2675469", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nll *min_data,*max_data,*add_data;\nll first_table[500000];\nint N = 1;\n\nvoid init(ll first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid add(int left,int right,ll value,int node_id,int node_left,int node_right){\n\n\tif(right < node_left || left > node_right){\n\t\treturn;\n\t}\n\telse if(left <= node_left && right >= node_right){\n\n\t\tadd_data[node_id] += value;\n\n\t\twhile(node_id != 0){\n\n\t\t\tnode_id = (node_id-1)/2;\n\t\t\tmin_data[node_id] = min(min_data[2*node_id+1]+add_data[2*node_id+1],min_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t\tmax_data[node_id] = max(max_data[2*node_id+1]+add_data[2*node_id+1],max_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t}\n\t}else{\n\n\t\tadd(left,right,value,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tadd(left,right,value,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t}\n}\n\nll getMin(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn min_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tll left_min = getMin(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tll right_min = getMin(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn min(left_min,right_min)+add_data[node_id];\n\t}\n}\n\nll getMax(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return -BIG_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn max_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tll left_max = getMax(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tll right_max = getMax(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn max(left_max,right_max)+add_data[node_id];\n\t}\n}\n\nint main(){\n\n\tint first_N;\n\tscanf(\"%d\",&first_N);\n\n\tfor(int i = 0; i < first_N; i++)scanf(\"%lld\",&first_table[i]);\n\n\tfor(int i = 0; i < first_N/2; i++){\n\t\tfirst_table[i] -= first_table[(first_N-1)-i];\n\t}\n\n\tfirst_N /= 2;\n\tinit(first_N);\n\n\tmin_data = new ll[2*N-1];\n\tmax_data = new ll[2*N-1];\n\tadd_data = new ll[2*N-1];\n\n\tfor(ll i = 0; i <= 2*N-2; i++){\n\t\tmin_data[i] = 0;\n\t\tmax_data[i] = 0;\n\t\tadd_data[i] = 0;\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\t\tadd(i,i,first_table[i],0,0,N-1);\n\t}\n\n\tint Q;\n\tscanf(\"%d\",&Q);\n\n\tint left,right,tmp,calc_left,pre = -1;\n\tll add_value;\n\n\tfor(int i = 0; i < Q; i++){\n\t\tscanf(\"%d %d %lld\",&left,&right,&add_value);\n\t\tleft--;\n\t\tright--;\n\n\t\tif(left >= first_N){\n\n\t\t\ttmp = right;\n\t\t\tright = (2*first_N-1)-left;\n\t\t\tleft = (2*first_N-1)-tmp;\n\n\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t\tif(pre == 1){\n\t\t\t\tprintf(\"0\\n\");\n\t\t\t\tpre = 0;\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t}else{ // left < first_N\n\n\t\t\tif(right < first_N){\n\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\n\t\t\t\tif(pre == 1){\n\t\t\t\t\tprintf(\"0\\n\");\n\t\t\t\t\tpre = 0;\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\n\t\t\t}else{ //right > first_N\n\n\t\t\t\tif(left+right == 2*first_N-1){\n\t\t\t\t\tprintf(\"%d\\n\",pre);\n\t\t\t\t\tcontinue;\n\t\t\t\t}else{\n\n\t\t\t\t\tcalc_left = (2*first_N-1)-right;\n\n\t\t\t\t\tif(calc_left < left){\n\n\t\t\t\t\t\tright = left-1;\n\t\t\t\t\t\tleft = calc_left;\n\t\t\t\t\t\tadd(left,right,-add_value,0,0,N-1);\n\n\t\t\t\t\t\tif(pre == 1){\n\t\t\t\t\t\t\tprintf(\"0\\n\");\n\t\t\t\t\t\t\tpre = 0;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tright = calc_left-1;\n\t\t\t\t\t\tadd(left,right,add_value,0,0,N-1);\n\n\t\t\t\t\t\tif(pre == 1){\n\t\t\t\t\t\t\tprintf(\"0\\n\");\n\t\t\t\t\t\t\tpre = 0;\n\t\t\t\t\t\t\tcontinue;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(getMin(0,first_N-1,0,0,N-1) == 0 && getMax(0,first_N-1,0,0,N-1) == 0){\n\t\t\tprintf(\"1\\n\");\n\t\t\tpre = 1;\n\t\t}else{\n\t\t\tprintf(\"0\\n\");\n\t\t\tpre = 0;\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.6753246753246753, "time_ms": 190, "memory_kb": 19388, "score_of_the_acc": -0.5387, "final_rank": 20 } ]
aoj_2779_cpp
H: われわれの努力について - About Our Effort - 問題 ※この問題はおまけの問題と捉えていただけるとありがたく、 できれば先に他の問題のほうをお楽しみいただければと思っておりまして,ですので他の問題を通し終えて暇になり,かつその暇を このコンテストで潰そうという気になってくれた方に挑戦していただければと思います。 D問題のクエリが遅くてすみませんでした。 しかし我々といたしましても決してただ怠慢をしていたわけではないのです。 私たちなりに努力したのです。 その努力の片鱗を味わっていただくため、このような問題を出題した次第であります。 問題: D問題のサーバー側の処理をするプログラムを作成せよ。 なおこの問題は本当にD問題の要求を満たすプログラムを作成することが目標ということですので、言語による向き/不向きなどは一切考慮いたしませんのであしからず。最速実行速度を達成された方はもれなくAOJに収録される際にジャッジプログラムとして採用される可能性がありますのでぜひ挑戦下さい。 入力形式 入力は以下の形式で与えられる。 N p_1 ... p_N Q l_1 r_1 ... l_Q r_Q 1行目では順列 p の長さ N が与えられる。2行目では順列 p を表す N 個の整数が空白区切りで与えられる。3行目ではクエリの数を表す整数 Q が与えられる。続く Q 行の i 行目は空白区切りの2つの整数 l_i , r_i からなり、クエリが区間 [l_i, r_i] のコンプレックス度を聞くものであることを表す。 入力は以下の制約を満たす。 1 \≤ N \≤ 100,000 1 \≤ p_i \≤ N , p_i \neq p_j (i \neq j) 1 \≤ Q \≤ 200,000 1 \≤ l_i \≤ r_i \≤ N 出力形式 Q 個の各クエリ i に関して、 p の区間 [l_i, r_i] のコンプレックス度を i 行目に出力せよ。ただし、 p の区間 [l_i, r_i] のコンプレックス度とは、 (\{ (i, j) | p_i > p_j {\rm for} l \≤ i<j \≤ r \}の要素数) と定義される。 入力例1 4 4 1 3 2 2 1 3 2 4 出力例1 2 1 入力例2 1 1 1 1 1 出力例2 0
[ { "submission_id": "aoj_2779_4926964", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\n#define SIZE 200000\n#define SQ 300\n#define LLINF 100000000000000\n\nstruct BIT {\n vector<int> data;\n\n BIT(int n): data(n + 2, 0) {};\n\n void add(int k, int x) {\n k++;\n while (k <= data.size() - 2) {\n data[k] += x;\n k += k & -k;\n }\n }\n\n int query(int k) {\n int rec = 0;\n while (k > 0) {\n rec += data[k];\n k -= k & (-k);\n }\n return rec;\n }\n\n int query(int a, int b) {\n return query(b) - query(a);\n }\n};\n\nint N, P[SIZE];\nll ans[SIZE];\n\nint main() {\n scanf(\"%d\", &N);\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", P + i);\n P[i]--;\n }\n\n int Q;\n\n vector<pair<pair<int, int>, pair<int, int>>> queries;\n\n scanf(\"%d\", &Q);\n\n for (int i = 0; i < Q; i++) {\n int l, r;\n scanf(\"%d%d\", &l, &r);\n l--;\n int t = l / SQ;\n\n queries.push_back({{t, r}, {l, i}});\n }\n\n sort(queries.begin(), queries.end());\n\n BIT bit(N);\n int L = 0, R = 0;\n ll cur = 0;\n\n for (int i = 0; i < Q; i++) {\n int idx = queries[i].second.second;\n int l = queries[i].second.first;\n int r = queries[i].first.second;\n\n while (R < r) {\n int p = P[R];\n cur += bit.query(p, N);\n bit.add(p, 1);\n R++;\n }\n while (L < l) {\n int p = P[L];\n cur -= bit.query(p);\n bit.add(p, -1);\n L++;\n }\n while (l < L) {\n int p = P[L - 1];\n cur += bit.query(p);\n L--;\n bit.add(p, 1);\n }\n while (r < R) {\n int p = P[R - 1];\n bit.add(p, -1);\n cur -= bit.query(p, N);\n R--;\n }\n\n ans[idx] = cur;\n }\n\n for (int i = 0; i < Q; i++) {\n printf(\"%lld\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 1460, "memory_kb": 8512, "score_of_the_acc": -0.5426, "final_rank": 3 }, { "submission_id": "aoj_2779_4926951", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing pll = pair<ll, ll>;\n#define all(a) begin(a),end(a)\n\n\nconst ll MAX = 1000001;\nll bit[MAX];\nll sum_all = 0;\nvoid add(ll k, ll x){\n sum_all += x;\n for(; k < MAX; k += k & -k) bit[k] += x;\n}\nll low(ll k){ // (0, k]\n ll ans = 0;\n for(; k; k -= k & -k) ans += bit[k];\n return ans;\n}\nll high(ll k){ // (k, MAX]\n return sum_all - low(k);\n}\nint main(){\n cin.tie(nullptr)->sync_with_stdio(false);\n ll n;\n cin >> n;\n vector<ll> p(n);\n for(ll& x : p) cin >> x;\n ll q;\n cin >> q;\n vector<pll> query(q);\n for(auto& [l, r] : query){\n cin >> l >> r;\n l--;\n }\n const ll sq = sqrt(n);\n vector<ll> idx(q);\n iota(all(idx), 0);\n sort(all(idx), [&](ll x, ll y){\n const auto [l1, r1] = query[x];\n const auto [l2, r2] = query[y];\n if(l1 / sq == l2 / sq){\n return r1 < r2;\n }\n return l1 < l2;\n });\n vector<ll> ans(q);\n ll L = 0, R = 0, cnt = 0;\n for(ll i : idx){\n const auto [l, r] = query[i];\n while(R < r){\n cnt += high(p[R]);\n add(p[R], 1);\n R++;\n }\n while(L > l){\n L--;\n cnt += low(p[L]);\n add(p[L], 1);\n }\n while(R > r){\n R--;\n add(p[R], -1);\n cnt -= high(p[R]);\n }\n while(L < l){\n add(p[L], -1);\n cnt -= low(p[L]);\n L++;\n }\n ans[i] = cnt;\n }\n for(ll i : ans) cout << i << '\\n';\n}", "accuracy": 1, "time_ms": 1580, "memory_kb": 15128, "score_of_the_acc": -0.5999, "final_rank": 5 }, { "submission_id": "aoj_2779_4926941", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing pll = pair<ll, ll>;\n#define all(a) begin(a),end(a)\n\n\nconst ll MAX = 1000001;\nll bit[MAX];\nll sum_all = 0;\nvoid add(ll k, ll x){\n sum_all += x;\n for(; k < MAX; k += k & -k) bit[k] += x;\n}\nll low(ll k){ // (0, k]\n ll ans = 0;\n for(; k; k -= k & -k) ans += bit[k];\n return ans;\n}\nll high(ll k){ // (k, MAX]\n return sum_all - low(k);\n}\nint main(){\n cin.tie(nullptr)->sync_with_stdio(false);\n ll n;\n cin >> n;\n vector<ll> p(n);\n for(ll& x : p) cin >> x;\n ll q;\n cin >> q;\n vector<pll> query(q);\n for(auto& [l, r] : query){\n cin >> l >> r;\n l--;\n }\n const ll sq = sqrt(n);\n vector<ll> idx(q);\n iota(all(idx), 0);\n sort(all(idx), [&](ll x, ll y){\n const auto [l1, r1] = query[x];\n const auto [l2, r2] = query[y];\n if(l1 / sq == l2 / sq){\n if(l1 / sq & 1) return r1 > r2;\n else return r1 < r2;\n }\n return l1 < l2;\n });\n vector<ll> ans(q);\n ll L = 0, R = 0, cnt = 0;\n for(ll i : idx){\n const auto [l, r] = query[i];\n while(R < r){\n cnt += high(p[R]);\n add(p[R], 1);\n R++;\n }\n while(L > l){\n L--;\n cnt += low(p[L]);\n add(p[L], 1);\n }\n while(R > r){\n R--;\n add(p[R], -1);\n cnt -= high(p[R]);\n }\n while(L < l){\n add(p[L], -1);\n cnt -= low(p[L]);\n L++;\n }\n ans[i] = cnt;\n }\n for(ll i : ans) cout << i << '\\n';\n}", "accuracy": 1, "time_ms": 1090, "memory_kb": 15156, "score_of_the_acc": -0.4178, "final_rank": 1 }, { "submission_id": "aoj_2779_4571199", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace std;\nusing namespace __gnu_pbds;\nusing ll = long long;\nusing u64 = uint_fast64_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\nconstexpr char ln = '\\n';\nconstexpr long long MOD = 1000000007;\n//constexpr long long MOD = 998244353;\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) { if (a < b) { a = b; return true;} return false; }\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) { if (a > b) { a = b; return true;} return false; }\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\nvoid print() { cout << \"\\n\"; }\ntemplate<class T, class... Args>\nvoid print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n///////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\ntemplate<typename T>\nstruct BinaryIndexedTree {\n int N;\n vector<T> data;\n\n BinaryIndexedTree(){}\n BinaryIndexedTree(int N) : N(N), data(N+1,0) {}\n\n // [0,k) (0-indexed) a[0] + … + a[k-1]\n T sum(int k) {\n T ret = 0;\n for(; k > 0; k -= k & -k) ret += data[k];\n return ret;\n }\n\n // [l,r) (0-indexed) a[l] + … + a[r-1]\n T sum(int l, int r) {\n if (l >= r) return 0;\n T vl = sum(l);\n T vr = sum(r);\n return vr - vl;\n }\n // (0-indexed) a[k] += x;\n void add(int k, T x) {\n for(++k; k <= N; k += k & -k) data[k] += x;\n }\n\n // (0-indexed)\n int lowerbound(T x) {\n int k = 1;\n int ret = 0;\n while ((k<<1) <= N) k <<= 1;\n while (k) {\n if (ret + k <= N && data[ret+k] < x) {\n x -= data[ret+k];\n ret += k;\n }\n k >>= 1;\n }\n return ret;\n }\n\n // (0-indexed)\n int upperbound(T x) {return lowerbound(x+1);}\n};\n\nint main() {\n ios::sync_with_stdio(false); cin.tie(nullptr);\n int N; cin >> N;\n vector<int> p(N);\n rep(i,N) {\n cin >> p[i];\n --p[i];\n }\n\n int Q; cin >> Q;\n vector<int> L(Q),R(Q);\n rep(i,Q) {\n cin >> L[i] >> R[i];\n --L[i];\n }\n const int B = 500;\n vector<int> idx(Q);\n iota(all(idx),0);\n sort(all(idx),[&](int i, int j){\n if (L[i]/B==L[j]/B) return R[i] < R[j];\n return L[i] < L[j]; \n });\n BinaryIndexedTree<int> BIT(N);\n vector<ll> ans(Q);\n int nl = 0, nr = 0;\n ll val = 0;\n rep(i,Q) {\n int u = idx[i];\n while (nl > L[u]) {\n nl--;\n val += BIT.sum(p[nl]);\n BIT.add(p[nl],1);\n }\n while (nr < R[u]) {\n val += BIT.sum(p[nr]+1,N);\n BIT.add(p[nr],1);\n nr++;\n }\n while (nl < L[u]) {\n BIT.add(p[nl],-1);\n val -= BIT.sum(p[nl]);\n nl++;\n }\n while (nr > R[u]) {\n nr--;\n BIT.add(p[nr],-1);\n val -= BIT.sum(p[nr]+1,N);\n }\n ans[u] = val;\n }\n\n for (auto i : ans) cout << i << ln;\n}", "accuracy": 1, "time_ms": 1390, "memory_kb": 7644, "score_of_the_acc": -0.5149, "final_rank": 2 }, { "submission_id": "aoj_2779_4571195", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace std;\nusing namespace __gnu_pbds;\nusing ll = long long;\nusing u64 = uint_fast64_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\nconstexpr char ln = '\\n';\nconstexpr long long MOD = 1000000007;\n//constexpr long long MOD = 998244353;\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) { if (a < b) { a = b; return true;} return false; }\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) { if (a > b) { a = b; return true;} return false; }\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\nvoid print() { cout << \"\\n\"; }\ntemplate<class T, class... Args>\nvoid print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n///////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\ntemplate<typename T>\nstruct BinaryIndexedTree {\n int N;\n vector<T> data;\n\n BinaryIndexedTree(){}\n BinaryIndexedTree(int N) : N(N), data(N+1,0) {}\n\n // [0,k) (0-indexed) a[0] + … + a[k-1]\n T sum(int k) {\n T ret = 0;\n for(; k > 0; k -= k & -k) ret += data[k];\n return ret;\n }\n\n // [l,r) (0-indexed) a[l] + … + a[r-1]\n T sum(int l, int r) {\n if (l >= r) return 0;\n T vl = sum(l);\n T vr = sum(r);\n return vr - vl;\n }\n // (0-indexed) a[k] += x;\n void add(int k, T x) {\n for(++k; k <= N; k += k & -k) data[k] += x;\n }\n\n // (0-indexed)\n int lowerbound(T x) {\n int k = 1;\n int ret = 0;\n while ((k<<1) <= N) k <<= 1;\n while (k) {\n if (ret + k <= N && data[ret+k] < x) {\n x -= data[ret+k];\n ret += k;\n }\n k >>= 1;\n }\n return ret;\n }\n\n // (0-indexed)\n int upperbound(T x) {return lowerbound(x+1);}\n};\n\nint main() {\n ios::sync_with_stdio(false); cin.tie(nullptr);\n int N; cin >> N;\n vector<int> p(N);\n rep(i,N) {\n cin >> p[i];\n --p[i];\n }\n\n int Q; cin >> Q;\n vector<int> L(Q),R(Q);\n rep(i,Q) {\n cin >> L[i] >> R[i];\n --L[i];\n }\n const int B = 500;\n vector<int> idx(Q);\n iota(all(idx),0);\n sort(all(idx),[&](int i, int j){\n if (L[i]/B==L[j]/B) return R[i] < R[j];\n return L[i] < L[j]; \n });\n BinaryIndexedTree<int> BIT(N);\n vector<int> ans(Q);\n int nl = 0, nr = 0;\n ll val = 0;\n rep(i,Q) {\n int u = idx[i];\n while (nl > L[u]) {\n nl--;\n val += BIT.sum(p[nl]);\n BIT.add(p[nl],1);\n }\n while (nr < R[u]) {\n val += BIT.sum(p[nr]+1,N);\n BIT.add(p[nr],1);\n nr++;\n }\n while (nl < L[u]) {\n BIT.add(p[nl],-1);\n val -= BIT.sum(p[nl]);\n nl++;\n }\n while (nr > R[u]) {\n nr--;\n BIT.add(p[nr],-1);\n val -= BIT.sum(p[nr]+1,N);\n }\n ans[u] = val;\n }\n\n for (auto i : ans) cout << i << ln;\n}", "accuracy": 0.6176470588235294, "time_ms": 1260, "memory_kb": 6592, "score_of_the_acc": -0.4646, "final_rank": 17 }, { "submission_id": "aoj_2779_4472159", "code_snippet": "#include <cstdio>\n#include <vector>\n#include <algorithm>\n#include <functional>\n#include <tuple>\n#include <utility>\nusing namespace std;\nusing ll = long long int;\n\nconst int B = 500;\n\n// @category セグメント木 (Segment Tree)\n// @title セグメント木 (Segment Tree)\n// 抽象 SegmentTree (0-indexed・一点更新・区間取得)\ntemplate <typename MonoidType>\nstruct SegmentTree {\n using Function = function< MonoidType(MonoidType, MonoidType) >;\n\n // node, identity element\n int n;\n vector<MonoidType> node;\n MonoidType E0;\n\n // update / combine function\n Function upd_f, cmb_f;\n\n void build(int m, vector<MonoidType> v = vector<MonoidType>()) {\n if(v != vector<MonoidType>()) m = v.size();\n n = 1; while(n < m) n *= 2;\n\n node = vector<MonoidType>(2*n-1, E0);\n if(v != vector<MonoidType>()) {\n for(int i=0; i<m; i++) {\n node[n-1+i] = v[i];\n }\n for(int i=n-2; i>=0; i--) {\n node[i] = cmb_f(node[2*i+1], node[2*i+2]);\n }\n }\n }\n\n // initialize\n SegmentTree() {}\n SegmentTree(int n_, MonoidType E0_,\n Function upd_f_, Function cmb_f_,\n vector<MonoidType> v = vector<MonoidType>()) :\n E0(E0_), upd_f(upd_f_), cmb_f(cmb_f_) {\n build(n_, v);\n }\n\n // update k-th element (applied value: x)\n void update(int k, MonoidType x) {\n k += n - 1;\n node[k] = upd_f(node[k], x);\n while(k > 0) {\n k = (k - 1) / 2;\n node[k] = cmb_f(node[2*k+1], node[2*k+2]);\n }\n }\n\n // range query for [a, b)\n // 非再帰のアイデア: http://d.hatena.ne.jp/komiyam/20131202/1385992406\n MonoidType query(int a, int b) {\n MonoidType vl = E0, vr = E0;\n for(int l=a+n, r=b+n; l<r; l>>=1, r>>=1) {\n if(l & 1) vl = cmb_f(vl, node[(l++)-1]);\n if(r & 1) vr = cmb_f(node[(--r)-1], vr);\n }\n return cmb_f(vl, vr);\n }\n};\n\nint main() {\n int N; scanf(\"%d\", &N);\n vector<int> P(N);\n for(int i=0; i<N; i++) scanf(\"%d\", &P[i]), P[i]--;\n\n vector< vector< tuple<int, int, int> > > segs(B);\n int Q; scanf(\"%d\", &Q);\n for(int i=0; i<Q; i++) {\n int l, r; scanf(\"%d%d\", &l, &r); l--;\n int b = l / B;\n segs[b].emplace_back(l, r, i);\n }\n\n for(int i=0; i<B; i++) {\n sort(segs[i].begin(), segs[i].end(), [](auto x, auto y) {\n return get<1>(x) < get<1>(y);\n });\n }\n\n SegmentTree<int> seg(N, 0,\n [](int a, int b) { return a + b; },\n [](int a, int b) { return a + b; });\n ll sum = 0, pl = 0, pr = 0;\n auto add_l = [&]() {\n sum += seg.query(0, P[--pl]);\n seg.update(P[pl], +1);\n };\n auto add_r = [&]() {\n sum += seg.query(P[pr] + 1, N);\n seg.update(P[pr++], +1);\n };\n auto del_l = [&]() {\n sum -= seg.query(0, P[pl]);\n seg.update(P[pl++], -1);\n };\n auto del_r = [&]() {\n sum += seg.query(P[--pr] + 1, N);\n seg.update(P[pr], -1);\n };\n\n vector<ll> ans(Q);\n for(int i=0; i<B; i++) {\n for(auto e : segs[i]) {\n int l, r, k; tie(l, r, k) = e;\n while(pl < l) del_l();\n while(pl > l) add_l();\n while(pr < r) add_r();\n while(pr > r) del_r();\n ans[k] = sum;\n }\n }\n for(int i=0; i<Q; i++) printf(\"%lld\\n\", ans[i]);\n return 0;\n}", "accuracy": 0.3235294117647059, "time_ms": 50, "memory_kb": 2780, "score_of_the_acc": -0.0074, "final_rank": 20 }, { "submission_id": "aoj_2779_2270773", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm>\nusing namespace std;\ntypedef long long Int;\n\nconst int MAX_N = 100000;\nconst int SQRT_N = 400;\n\nint N;\nint A[MAX_N];\nint P[MAX_N+1];\nint E[MAX_N+1][SQRT_N+1], F[SQRT_N+1][MAX_N+1];\nint G[MAX_N+1], H[MAX_N+1];\nInt X[SQRT_N+1][SQRT_N+1];\nint pre[SQRT_N], suf[SQRT_N];\nint B_size, B_num;\n\n//Fenwick Tree\nint bit_size;\nint bit[MAX_N+1];\n\n//note that we maintain bit[1..n]\ninline void init(int n){\n bit_size = n;\n memset(bit,0,sizeof(bit));\n}\n\n//add x to the i-th element\ninline void inc(int i){\n while(i <= bit_size){\n bit[i]++;\n i += i & -i;\n }\n}\n\n//sum of [1..i]\ninline int sum(int i){\n int res = 0;\n while(i > 0){\n res += bit[i];\n i -= i & -i;\n }\n return res;\n}\n\n//sum of [l..r]\ninline int partial_sum(int l, int r){ return sum(r) - sum(l-1); }\n\ninline void preprocess(void) {\n //Set B_size and B_num\n B_size = sqrt(N);\n //B_size = 400;\n B_num = (N + B_size-1) / B_size;\n\n //Step 1: make E and F\n for(int k=0;k<B_num;k++) {\n int l = k*B_size, r = min( (k+1)*B_size, N);\n\n memset(P,0,sizeof(P));\n for(int i=l;i<r;i++) {\n P[A[i]]++;\n }\n\n for(int i=0;i<N-1;i++) {\n P[i+1] += P[i];\n }\n\n //fill E\n int backward = 0;\n for(int i=l-1;i>=0;i--){\n backward += P[A[i]];\n E[i][k] = backward;\n }\n\n memset(P,0,sizeof(P));\n for(int i=l;i<r;i++) {\n P[A[i]]++;\n }\n\n for(int i=0;i<N-1;i++) {\n P[N-i-2] += P[N-i-1];\n }\n\n //fill F\n int forward = 0;\n for(int i=r;i<N;i++){\n forward += P[A[i]];\n F[k][i] = forward;\n }\n }\n\n //Step2-1: make G\n init(N);\n int suf_inv = 0;\n for(int i=N-1;i>=0;i--){\n suf_inv += partial_sum(1,A[i]+1);\n inc(A[i]+1);\n G[i] = suf_inv;\n\n if(i%B_size == 0){\n init(N);\n suf_inv = 0;\n }\n }\n\n //Step2-2: make H\n int pre_inv = 0;\n for(int i=0;i<N;i++){\n if(i%B_size == 0){\n init(N);\n pre_inv = 0;\n }\n pre_inv += partial_sum(A[i]+1, N);\n inc(A[i]+1);\n H[i] = pre_inv;\n }\n\n //Step3: make X\n for(int L=0;L<B_num;L++){\n Int inv = 0;\n for(int R=L;R<B_num;R++){\n inv += G[R*B_size];\n inv += E[L*B_size][R];\n X[L][R+1] = inv;\n }\n }\n\n //Step4: update E and F\n for(int k=0;k<B_num;k++){\n for(int i=0;i<k*B_size;i++){\n E[i][k] -= E[(i+B_size-1)/B_size*B_size][k];\n }\n for(int i=N-1;i>=k*B_size;i--){\n F[k][i] -= F[k][(i+1)/B_size*B_size-1];\n }\n }\n\n for(int i=0;i<N;i++){\n for(int k=0;k<B_num-1;k++){\n E[i][k+1] += E[i][k];\n F[k+1][i] += F[k][i];\n }\n }\n}\n\ninline void answer_query(int l, int r){\n l--;\n int L = (l+B_size-1)/B_size, R = r/B_size;\n int Ll = l, Lr = L*B_size, Rl = R*B_size, Rr = r;\n\n //l and r are in the same block\n if(L>=R){\n Int inv = 0;\n\n init(N);\n for(int i=l;i<r;i++){\n inv += partial_sum(A[i]+1, N);\n inc(A[i]+1);\n }\n\n printf(\"%lld\\n\", inv);\n return;\n }\n\n //l and r are in different blocks\n Int inv = 0;\n\n //inversion in consecutive blcoks\n inv += X[L][R];\n\n //inversion between prefix/suffix and consecutive blocks\n inv += E[l][R-1] - (L==0?0:E[l][L-1]);\n inv += F[R-1][r-1] - (L==0?0:F[L-1][r-1]);\n\n //inversion in prefix/suffix\n if(Ll<Lr) inv += G[l];\n if(Rl<Rr) inv += H[r-1];\n\n //inversion between prefix and suffix (using radix sort)\n\n int pn = Lr-Ll;\n for(int i=Ll;i<Lr;i++) {\n pre[i-Ll] = A[i];\n }\n sort(pre,pre+pn);\n \n int sn = Rr-Rl;\n for(int i=Rl;i<Rr;i++) {\n suf[i-Rl] = A[i];\n }\n sort(suf,suf+sn);\n \n int id_p = 0, id_s = 0;\n while(id_p<pn) {\n if(id_s == sn) {\n id_p++;\n inv += id_s;\n } else {\n if(pre[id_p] < suf[id_s]) {\n\tid_p++;\n\tinv += id_s;\n } else {\n\tid_s++;\n }\n }\n }\n\n printf(\"%lld\\n\", inv);\n}\n\nint main(){\n scanf(\"%d\",&N);\n\n for(int i=0;i<N;i++) {\n scanf(\"%d\", A+i); A[i]--;\n }\n\n preprocess();\n\n int Q;\n scanf(\"%d\",&Q);\n\n while(Q--){\n int l,r;\n scanf(\"%d%d\",&l,&r);\n\n answer_query(l,r);\n }\n}", "accuracy": 1, "time_ms": 2240, "memory_kb": 286704, "score_of_the_acc": -1.3672, "final_rank": 11 }, { "submission_id": "aoj_2779_1847273", "code_snippet": "#include<bits/stdc++.h>\n\n#define rep(i,n) for(int i=0;i<(int)n;i++)\n#define all(c) (c).begin(),(c).end()\n#define mp make_pair\n#define pb push_back\n#define each(i,c) for(__typeof((c).begin()) i=(c).begin();i!=(c).end();i++)\n#define dbg(x) cerr<<__LINE__<<\": \"<<#x<<\" = \"<<(x)<<endl\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pi;\nconst int inf = (int)1e9;\nconst double INF = 1e12, EPS = 1e-9;\n\nll bit[131072];\nll sum(int i){\n\tll res = 0;\n\tfor(; i; i -= i & -i) res += bit[i];\n\treturn res;\n}\nvoid add(int i, int x){\n\tfor(; i < 131072; i += i & -i) bit[i] += x;\n}\n\nconst int B = 500;\nint n, p[100000];\nll ans[200000];\n\nint main(){\n\tcin.tie(0); cin.sync_with_stdio(0);\n\tcin >> n;\n\trep(i, n) cin >> p[i];\n\tint q; cin >> q;\n\t\n\tvector<pair<pi, pi>> v; //l/B, r, l\n\trep(i, q){\n\t\tint l, r; cin >> l >> r; l--;\n\t\tv.pb(mp(mp(l / B, r), mp(l, i)));\n\t}\n\tint cnt = 0;\n\tsort(all(v));\n\tint L = 0, R = 0; ll res = 0;\n\tfor(auto &i: v){\n\t\tint r = i.first.second, l = i.second.first;\n\t\twhile(R < r) { assert(L <= R); res += R - L - sum(p[R]); add(p[R++], 1); }\n\t\twhile(L > l) { assert(L <= R); res += sum(p[--L]); add(p[L], 1); }\n\t\twhile(L < l) { assert(L < R); res -= sum(p[L]) - 1; add(p[L++], -1); }\n\t\twhile(R > r) { assert(L < R); res -= R - L; res += sum(p[--R]); add(p[R], -1); }\n\t\tans[i.second.second] = res;\n\t}\n\trep(i, q) printf(\"%lld\\n\", ans[i]);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1460, "memory_kb": 8972, "score_of_the_acc": -0.5435, "final_rank": 4 }, { "submission_id": "aoj_2779_1701393", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <map>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n \n#define B 317\n \ntypedef long long int LLI;\n#define int long long int\n \ntypedef pair<string, int> Pair;\ntypedef pair<int, int> Seg;\ntypedef pair<Seg, pair<int,int> > Data;\n \nint size;\nint T;\nint n;\nint m;\nLLI cur;\nLLI ans[200005];\nLLI BIT2[100005];\nvector<int> list_str;\nvector<int> sorted_str;\nint myrank[100010];\nvector<Data> queries;\n \nbool cmp_query(const Data &d1, const Data &d2) {\n int l1 = d1.first.first;\n int r1 = d1.first.second;\n int l2 = d2.first.first;\n int r2 = d2.first.second;\n \n if (l1/B != l2/B) return l1/B < l2/B;\n return r1 < r2;\n}\n \nvoid update(LLI *BIT, int k, LLI x) {\n k++;\n while (k <= n) {\n BIT[k] += x;\n k += k&-k;\n }\n}\n \nLLI getsum(LLI *BIT, int k) {\n k++;\n LLI ret = 0;\n while (k > 0) {\n ret += BIT[k];\n k -= k&-k;\n }\n return ret;\n}\n \nvoid append_end(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur += getsum(BIT2, n-1) - getsum(BIT2, idx); // (idx,n-1]\n update(BIT2, idx, 1);\n}\nvoid append_front(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur += getsum(BIT2, idx-1);\n update(BIT2, idx, 1);\n}\nvoid remove_end(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur -= getsum(BIT2, n-1) - getsum(BIT2, idx); // (idx,n-1]\n update(BIT2, idx, -1);\n}\nvoid remove_front(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur -= getsum(BIT2,idx-1);\n update(BIT2, idx, -1);\n}\n \nsigned main() {\n ios_base::sync_with_stdio(false);\n \n //cin >> T;\n while (1) {\n cin >> n;\n size = 1;\n fill(BIT2, BIT2+n+1, 0ll);\n \n list_str.clear();\n sorted_str.clear();\n for (int i=0; i<n; i++) {\n int s;\n cin >> s;\n list_str.push_back(s);\n sorted_str.push_back(s);\n }\n sort(sorted_str.begin(), sorted_str.end());\n for (int i=0; i<n; i++) {\n myrank[sorted_str[i]] = i;\n }\n \n queries.clear();\n cin >> m;\n for(int j = 0 ; j < m ; j++){\n int l, r,k;\n cin >> l >> r;\n --l;\n --r;\n queries.push_back(Data(Seg(l, r), {j,j}));\n }\n \n sort(queries.begin(), queries.end(), cmp_query);\n cur = 0;\n int a = 0;\n int b = -1;\n for (int i=0; i<queries.size(); i++) {\n int l = queries[i].first.first;\n int r = queries[i].first.second;\n int idx = queries[i].second.second;\n int k = queries[i].second.first;\n while (b < r) append_end(++b);\n while (l < a) append_front(--a);\n while (a < l) remove_front(a++);\n while (r < b) remove_end(b--);\n ans[idx] = cur;\n }\n \n for (int i=0; i<m; i++) {\n cout << ans[i] << endl;\n }\n break;\n }\n}", "accuracy": 1, "time_ms": 1850, "memory_kb": 14412, "score_of_the_acc": -0.6989, "final_rank": 6 }, { "submission_id": "aoj_2779_1701391", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <map>\n#include <utility>\n#include <algorithm>\nusing namespace std;\n \n#define B 317\n \ntypedef long long int LLI;\n#define int long long int\n \ntypedef pair<string, int> Pair;\ntypedef pair<int, int> Seg;\ntypedef pair<Seg, pair<int,int> > Data;\n \nint size;\nint T;\nint n;\nint m;\nLLI cur;\nLLI ans[100005];\nLLI BIT2[100005];\nvector<int> list_str;\nvector<int> sorted_str;\nint myrank[100010];\nvector<Data> queries;\n \nbool cmp_query(const Data &d1, const Data &d2) {\n int l1 = d1.first.first;\n int r1 = d1.first.second;\n int l2 = d2.first.first;\n int r2 = d2.first.second;\n \n if (l1/B != l2/B) return l1/B < l2/B;\n return r1 < r2;\n}\n \nvoid update(LLI *BIT, int k, LLI x) {\n k++;\n while (k <= n) {\n BIT[k] += x;\n k += k&-k;\n }\n}\n \nLLI getsum(LLI *BIT, int k) {\n k++;\n LLI ret = 0;\n while (k > 0) {\n ret += BIT[k];\n k -= k&-k;\n }\n return ret;\n}\n \nvoid append_end(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur += getsum(BIT2, n-1) - getsum(BIT2, idx); // (idx,n-1]\n update(BIT2, idx, 1);\n}\nvoid append_front(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur += getsum(BIT2, idx-1);\n update(BIT2, idx, 1);\n}\nvoid remove_end(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur -= getsum(BIT2, n-1) - getsum(BIT2, idx); // (idx,n-1]\n update(BIT2, idx, -1);\n}\nvoid remove_front(int x) {\n int &ss = list_str[x];\n int idx = myrank[ss];\n cur -= getsum(BIT2,idx-1);\n update(BIT2, idx, -1);\n}\n \nsigned main() {\n ios_base::sync_with_stdio(false);\n \n //cin >> T;\n while (1) {\n cin >> n;\n size = 1;\n fill(BIT2, BIT2+n+1, 0ll);\n \n list_str.clear();\n sorted_str.clear();\n for (int i=0; i<n; i++) {\n int s;\n cin >> s;\n list_str.push_back(s);\n sorted_str.push_back(s);\n }\n sort(sorted_str.begin(), sorted_str.end());\n for (int i=0; i<n; i++) {\n myrank[sorted_str[i]] = i;\n }\n \n queries.clear();\n cin >> m;\n for(int j = 0 ; j < m ; j++){\n int l, r,k;\n cin >> l >> r;\n --l;\n --r;\n queries.push_back(Data(Seg(l, r), {j,j}));\n }\n \n sort(queries.begin(), queries.end(), cmp_query);\n cur = 0;\n int a = 0;\n int b = -1;\n for (int i=0; i<queries.size(); i++) {\n int l = queries[i].first.first;\n int r = queries[i].first.second;\n int idx = queries[i].second.second;\n int k = queries[i].second.first;\n while (b < r) append_end(++b);\n while (l < a) append_front(--a);\n while (a < l) remove_front(a++);\n while (r < b) remove_end(b--);\n ans[idx] = cur;\n }\n \n for (int i=0; i<m; i++) {\n cout << ans[i] << endl;\n }\n break;\n }\n}", "accuracy": 0.6176470588235294, "time_ms": 60, "memory_kb": 14396, "score_of_the_acc": -0.0335, "final_rank": 16 }, { "submission_id": "aoj_2779_1697156", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef complex<double> P;\ntypedef pair<int,int> pii;\n#define REP(i,n) for(ll i=0;i<n;++i)\n#define REPR(i,n) for(ll i=1;i<n;++i)\n#define FOR(i,a,b) for(ll i=a;i<b;++i)\n\n#define DEBUG(x) cout<<#x<<\": \"<<x<<endl\n#define DEBUG_VEC(v) cout<<#v<<\":\";REP(i,v.size())cout<<\" \"<<v[i];cout<<endl\n#define ALL(a) (a).begin(),(a).end()\n\n#define MOD (ll)(1e9+7)\n#define ADD(a,b) a=((a)+(b))%MOD\n#define FIX(a) ((a)%MOD+MOD)%MOD\n\n// http://hos.ac/slides/20140319_bit.pdf\nstruct BIT{\n int n;\n vl dat;\n BIT(){}\n BIT(int n):n(n){dat.assign(n,0);}\n BIT(int n, ll arr[]){\n dat.assign(n,0);\n REP(i,n-1){\n dat[i]+=arr[i];\n dat[i|(i+1)]+=dat[i];\n }\n }\n BIT(BIT &past):n(past.n),dat(past.dat){}\n // 0-indexed\n void add(int pos, ll val){for(int x=pos;x<n;x|=x+1)dat[x]+=val;}\n // [0...pos]\n ll sum(int pos){\n ll ret = 0;\n for(int x=pos;x>=0;x=(x&(x+1))-1)ret+=dat[x];\n return ret;\n }\n ll all(){\n return sum(n-1);\n }\n // [pos...n-1]\n ll revsum(int pos){\n return all()-sum(pos-1);\n }\n};\n\n// http://japl.pl/contest/ijpc/1/reviews/training.html\n\nint n;\nll p[100001];\nint sqrtn;\nll s[317][317];\nBIT f[317];\n\nint main(){\n scanf(\"%d\",&n);\n REP(i,n)scanf(\"%d\",p+i);\n // ???????????´\n sqrtn = 1;\n while(sqrtn*sqrtn<n)++sqrtn;\n FOR(i,n,sqrtn*sqrtn)p[i]=n;\n n = sqrtn*sqrtn;\n // ?????±??????????????±?????? sum\n REP(i,sqrtn){\n BIT bit(n+1);\n ll ans = 0;\n FOR(j,i,sqrtn){\n // update bit\n REP(k,sqrtn){\n ll val = p[j*sqrtn + k];\n ans += bit.revsum(val+1);\n bit.add(val,1);\n }\n s[i][j] = ans;\n }\n }\n // ????????????\n {\n BIT bit(n+1);\n REP(i,sqrtn){\n REP(j,sqrtn)bit.add(p[i*sqrtn+j],1);\n f[i] = BIT(bit);\n }\n }\n // answer\n int q;\n scanf(\"%d\",&q);\n BIT bit(n+1); // ??????n????´?????????£?¨????????????¨O(NQ)????????§????????????\n while(q--){\n ll ans = 0;\n int l,r;\n scanf(\"%d%d\",&l,&r);\n --l; --r;\n int u = l/sqrtn, v = r/sqrtn;\n ++u; --v;\n int leftright = u*sqrtn-1;\n int rightleft = (v+1)*sqrtn;\n if(u<=v){\n // [u,v]????????±??????????????£??¨????????§??????\n ans += s[u][v];\n // ?????´??¨[u,v]?????±???\n FOR(i,l,leftright+1){\n ll val = p[i];\n ans += f[v].sum(val-1);\n ans -= f[u-1].sum(val-1);\n }\n // ?????´??¨[u,v]?????±???\n FOR(i,rightleft,r+1){\n ll val = p[i];\n ans += f[v].revsum(val+1);\n ans -= f[u-1].revsum(val+1);\n }\n }\n // ??£???\n if(leftright<rightleft){\n // ?????¢\n FOR(i,l,leftright+1){\n ll val = p[i];\n ans += bit.revsum(val+1);\n bit.add(val,1);\n }\n FOR(i,rightleft,r+1){\n ll val = p[i];\n ans += bit.revsum(val+1);\n bit.add(val,1);\n }\n // ???????????????\n FOR(i,l,leftright+1){\n bit.add(p[i],-1);\n }\n FOR(i,rightleft,r+1){\n bit.add(p[i],-1);\n }\n }else{\n // ????????????\n int size = r-l+1;\n assert(size <= 2*sqrtn);\n FOR(i,l,r+1){\n ll val = p[i];\n ans += bit.revsum(val+1);\n bit.add(val,1);\n }\n // ???????????????\n FOR(i,l,r+1){\n bit.add(p[i],-1);\n }\n }\n printf(\"%d\\n\",ans);\n }\n return 0;\n}", "accuracy": 0.6176470588235294, "time_ms": 30, "memory_kb": 4296, "score_of_the_acc": -0.0029, "final_rank": 15 }, { "submission_id": "aoj_2779_1695804", "code_snippet": "#include <vector>\n#include <utility>\n#include <algorithm>\n#include <iostream>\n#include <cstdio>\n#include <cstring>\nusing namespace std;\n\ninline int calcIndex(int i, int j) {\n\treturn j * (j + 1) / 2 + (j - i);\n}\n\nint main() {\n\tconst int BlockSize = 400;\n\tconst int MaxN = 100000, MaxNumBlocks = (MaxN + BlockSize - 1) / BlockSize;\n\tstatic int counts[MaxNumBlocks + 1][MaxN + 1];\n\tstatic short counts2[BlockSize + 1][BlockSize + 1];\n\n\tint N;\n\twhile(~scanf(\"%d\", &N)) {\n\t\tint X = N;\n\t\tvector<int> p(N);\n\t\tfor(int i = 0; i < N; ++ i) {\n\t\t\tscanf(\"%d\", &p[i]), -- p[i];\n\t\t}\n\t\tint NumBlocks = (N + BlockSize - 1) / BlockSize;\n\t\tmemset(counts, 0, sizeof counts);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\t++ counts[bi + 1][p[i] + 1];\n\t\t\tfor(int x = 1; x <= X; ++ x)\n\t\t\t\tcounts[bi + 1][x] += counts[bi][x] + counts[bi + 1][x - 1] - counts[bi][x - 1];\n\t\t}\n\t\tvector<vector<pair<int, int> > > sortedBlocks(NumBlocks);\n\t\tvector<vector<int> > inner(NumBlocks);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tint M = R - L, Y = M;\n\n\t\t\tvector<pair<int, int> > &sorted = sortedBlocks[bi];\n\t\t\tsorted.resize(M);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\tsorted[i - L] = make_pair(p[i], i);\n\t\t\tsort(sorted.begin(), sorted.end());\n\t\t\t\n\t\t\tvector<int> rank(M);\n\t\t\tfor(int i = 0; i < M; ++ i)\n\t\t\t\trank[sorted[i].second - L] = i;\n\n\t\t\tmemset(counts2, 0, sizeof counts2);\n\n\t\t\tfor(int i = 0; i < M; ++ i)\n\t\t\t\t++ counts2[i + 1][rank[i] + 1];\n\t\t\tfor(int i = 0; i < M; ++ i) for(int y = 1; y <= Y; ++ y)\n\t\t\t\tcounts2[i + 1][y] += counts2[i][y] + counts2[i + 1][y - 1] - counts2[i][y - 1];\n\n\t\t\tvector<int> &v = inner[bi];\n\t\t\tv.resize((R - L) * (R - L + 1) / 2);\n\t\t\tint k = 0;\n\t\t\tfor(int j = 0; j < M; ++ j) {\n\t\t\t\tint sum = 0;\n\t\t\t\tfor(int i = j; i >= 0; -- i) {\n\t\t\t\t\tsum += counts2[j + 1][rank[i]] - counts2[i + 1][rank[i]];\n\t\t\t\t\tv[k ++] = sum;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<long long> > outer(NumBlocks + 1, vector<long long>(N));\n\t\tfor(int bi = 0; bi <= NumBlocks; ++ bi) {\n\t\t\tvector<long long> &v = outer[bi];\n\t\t\tlong long sum;\n\t\t\tsum = 0;\n\t\t\tfor(int bj = bi; bj < NumBlocks; ++ bj) {\n\t\t\t\tint L = bj * BlockSize, R = min((bj + 1) * BlockSize, N);\n\t\t\t\tint num = (bj - bi) * BlockSize;\n\t\t\t\tfor(int j = L; j < R; ++ j) {\n\t\t\t\t\tsum += num - (counts[bj][p[j] + 1] - counts[bi][p[j] + 1]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t}\n\t\t\t\tsum += inner[bj][calcIndex(0, R - L - 1)];\n\t\t\t}\n\t\t\tsum = 0;\n\t\t\tfor(int bj = bi - 1; bj >= 0; -- bj) {\n\t\t\t\tint L = bj * BlockSize, R = min((bj + 1) * BlockSize, N);\n\t\t\t\tfor(int j = R - 1; j >= L; -- j) {\n\t\t\t\t\tsum += counts[bi][p[j]] - counts[bj + 1][p[j]];\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t}\n\t\t\t\tsum += inner[bj][calcIndex(0, R - L - 1)];\n\t\t\t}\n\t\t}\n\t\tint Q;\n\t\tscanf(\"%d\", &Q);\n\t\tfor(int ii = 0; ii < Q; ++ ii) {\n\t\t\tint l; int r;\n\t\t\tscanf(\"%d%d\", &l, &r), -- l;\n\t\t\tint bl = (l + BlockSize - 1) / BlockSize, br = r / BlockSize;\n\t\t\tlong long ans = 0;\n\t\t\tif(l / BlockSize == (r - 1) / BlockSize) {\n\t\t\t\tans = inner[l / BlockSize][calcIndex(l % BlockSize, (r - 1) % BlockSize)];\n\t\t\t} else {\n\t\t\t\tint L = bl * BlockSize, R = br * BlockSize;\n\t\t\t\tans += outer[bl][r - 1];\n\t\t\t\tans += inner[(r - 1) / BlockSize][calcIndex(0, (r - 1) % BlockSize)];\n\t\t\t\tif(l < R) {\n\t\t\t\t\tans += outer[br][l];\n\t\t\t\t\tans += inner[l / BlockSize][calcIndex(l % BlockSize, min(BlockSize, N - l / BlockSize * BlockSize) - 1)];\n\t\t\t\t}\n\t\t\t\tif(bl < br) {\n\t\t\t\t\tans -= outer[bl][R - 1];\n\t\t\t\t\tans -= inner[(R - 1) / BlockSize][calcIndex(0, BlockSize - 1)];\n\t\t\t\t}\n\t\t\t\tif(l < L && R < r) {\n\t\t\t\t\tconst vector<pair<int, int> > &v = sortedBlocks[bl - 1], &w = sortedBlocks[br];\n\t\t\t\t\tint nv = (int)v.size(), nw = (int)w.size();\n\t\t\t\t\tfor(int i = 0, j = 0, cnt = 0; i < nv; ++ i) {\n\t\t\t\t\t\tfor(; j < nw && w[j].first < v[i].first; ++ j)\n\t\t\t\t\t\t\tcnt += w[j].second < r;\n\t\t\t\t\t\tif(l <= v[i].second)\n\t\t\t\t\t\t\tans += cnt;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"%lld\\n\", ans);\n\t\t\t//fflush(stdout);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1350, "memory_kb": 377236, "score_of_the_acc": -1.2104, "final_rank": 9 }, { "submission_id": "aoj_2779_1695803", "code_snippet": "#include <vector>\n#include <utility>\n#include <algorithm>\n#include <iostream>\n#include <cstdio>\n#include <cstring>\nusing namespace std;\n\ninline int calcIndex(int i, int j) {\n\treturn j * (j + 1) / 2 + (j - i);\n}\n\nint main() {\n\tconst int BlockSize = 250;\n\tconst int MaxN = 100000, MaxNumBlocks = (MaxN + BlockSize - 1) / BlockSize;\n\tstatic int counts[MaxNumBlocks + 1][MaxN + 1];\n\tstatic short counts2[BlockSize + 1][BlockSize + 1];\n\n\tint N;\n\twhile(~scanf(\"%d\", &N)) {\n\t\tint X = N;\n\t\tvector<int> p(N);\n\t\tfor(int i = 0; i < N; ++ i) {\n\t\t\tscanf(\"%d\", &p[i]), -- p[i];\n\t\t}\n\t\tint NumBlocks = (N + BlockSize - 1) / BlockSize;\n\t\tmemset(counts, 0, sizeof counts);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\t++ counts[bi + 1][p[i] + 1];\n\t\t\tfor(int x = 1; x <= X; ++ x)\n\t\t\t\tcounts[bi + 1][x] += counts[bi][x] + counts[bi + 1][x - 1] - counts[bi][x - 1];\n\t\t}\n\t\tvector<vector<pair<int, int> > > sortedBlocks(NumBlocks);\n\t\tvector<vector<int> > inner(NumBlocks);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tint M = R - L, Y = M;\n\n\t\t\tvector<pair<int, int> > &sorted = sortedBlocks[bi];\n\t\t\tsorted.resize(M);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\tsorted[i - L] = make_pair(p[i], i);\n\t\t\tsort(sorted.begin(), sorted.end());\n\t\t\t\n\t\t\tvector<int> rank(M);\n\t\t\tfor(int i = 0; i < M; ++ i)\n\t\t\t\trank[sorted[i].second - L] = i;\n\n\t\t\tmemset(counts2, 0, sizeof counts2);\n\n\t\t\tfor(int i = 0; i < M; ++ i)\n\t\t\t\t++ counts2[i + 1][rank[i] + 1];\n\t\t\tfor(int i = 0; i < M; ++ i) for(int y = 1; y <= Y; ++ y)\n\t\t\t\tcounts2[i + 1][y] += counts2[i][y] + counts2[i + 1][y - 1] - counts2[i][y - 1];\n\n\t\t\tvector<int> &v = inner[bi];\n\t\t\tv.resize((R - L) * (R - L + 1) / 2);\n\t\t\tint k = 0;\n\t\t\tfor(int j = 0; j < M; ++ j) {\n\t\t\t\tint sum = 0;\n\t\t\t\tfor(int i = j; i >= 0; -- i) {\n\t\t\t\t\tsum += counts2[j + 1][rank[i]] - counts2[i + 1][rank[i]];\n\t\t\t\t\tv[k ++] = sum;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<long long> > outer(NumBlocks + 1, vector<long long>(N));\n\t\tfor(int bi = 0; bi <= NumBlocks; ++ bi) {\n\t\t\tvector<long long> &v = outer[bi];\n\t\t\tlong long sum;\n\t\t\tsum = 0;\n\t\t\tfor(int bj = bi; bj < NumBlocks; ++ bj) {\n\t\t\t\tint L = bj * BlockSize, R = min((bj + 1) * BlockSize, N);\n\t\t\t\tint num = (bj - bi) * BlockSize;\n\t\t\t\tfor(int j = L; j < R; ++ j) {\n\t\t\t\t\tsum += num - (counts[bj][p[j] + 1] - counts[bi][p[j] + 1]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t}\n\t\t\t\tsum += inner[bj][calcIndex(0, R - L - 1)];\n\t\t\t}\n\t\t\tsum = 0;\n\t\t\tfor(int bj = bi - 1; bj >= 0; -- bj) {\n\t\t\t\tint L = bj * BlockSize, R = min((bj + 1) * BlockSize, N);\n\t\t\t\tfor(int j = R - 1; j >= L; -- j) {\n\t\t\t\t\tsum += counts[bi][p[j]] - counts[bj + 1][p[j]];\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t}\n\t\t\t\tsum += inner[bj][calcIndex(0, R - L - 1)];\n\t\t\t}\n\t\t}\n\t\tint Q;\n\t\tscanf(\"%d\", &Q);\n\t\tfor(int ii = 0; ii < Q; ++ ii) {\n\t\t\tint l; int r;\n\t\t\tscanf(\"%d%d\", &l, &r), -- l;\n\t\t\tint bl = (l + BlockSize - 1) / BlockSize, br = r / BlockSize;\n\t\t\tlong long ans = 0;\n\t\t\tif(l / BlockSize == (r - 1) / BlockSize) {\n\t\t\t\tans = inner[l / BlockSize][calcIndex(l % BlockSize, (r - 1) % BlockSize)];\n\t\t\t} else {\n\t\t\t\tint L = bl * BlockSize, R = br * BlockSize;\n\t\t\t\tans += outer[bl][r - 1];\n\t\t\t\tans += inner[(r - 1) / BlockSize][calcIndex(0, (r - 1) % BlockSize)];\n\t\t\t\tif(l < R) {\n\t\t\t\t\tans += outer[br][l];\n\t\t\t\t\tans += inner[l / BlockSize][calcIndex(l % BlockSize, min(BlockSize, N - l / BlockSize * BlockSize) - 1)];\n\t\t\t\t}\n\t\t\t\tif(bl < br) {\n\t\t\t\t\tans -= outer[bl][R - 1];\n\t\t\t\t\tans -= inner[(R - 1) / BlockSize][calcIndex(0, BlockSize - 1)];\n\t\t\t\t}\n\t\t\t\tif(l < L && R < r) {\n\t\t\t\t\tconst vector<pair<int, int> > &v = sortedBlocks[bl - 1], &w = sortedBlocks[br];\n\t\t\t\t\tint nv = (int)v.size(), nw = (int)w.size();\n\t\t\t\t\tfor(int i = 0, j = 0, cnt = 0; i < nv; ++ i) {\n\t\t\t\t\t\tfor(; j < nw && w[j].first < v[i].first; ++ j)\n\t\t\t\t\t\t\tcnt += w[j].second < r;\n\t\t\t\t\t\tif(l <= v[i].second)\n\t\t\t\t\t\t\tans += cnt;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"%lld\\n\", ans);\n\t\t\t//fflush(stdout);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1270, "memory_kb": 523108, "score_of_the_acc": -1.461, "final_rank": 12 }, { "submission_id": "aoj_2779_1695799", "code_snippet": "#include <vector>\n#include <utility>\n#include <algorithm>\n#include <iostream>\n#include <cstdio>\n#include <cstring>\nusing namespace std;\n\ninline int calcIndex(int i, int j) {\n\treturn j * (j + 1) / 2 + (j - i);\n}\n\nint main() {\n\tconst int BlockSize = 300;\n\tconst int MaxN = 100000, MaxNumBlocks = (MaxN + BlockSize - 1) / BlockSize;\n\tstatic int counts[MaxNumBlocks + 1][MaxN + 1];\n\tstatic short counts2[BlockSize + 1][BlockSize + 1];\n\n\tint N;\n\twhile(~scanf(\"%d\", &N)) {\n\t\tint X = N;\n\t\tvector<int> p(N);\n\t\tfor(int i = 0; i < N; ++ i) {\n\t\t\tscanf(\"%d\", &p[i]), -- p[i];\n\t\t}\n\t\tint NumBlocks = (N + BlockSize - 1) / BlockSize;\n\t\tmemset(counts, 0, sizeof counts);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\t++ counts[bi + 1][p[i] + 1];\n\t\t\tfor(int x = 1; x <= X; ++ x)\n\t\t\t\tcounts[bi + 1][x] += counts[bi][x] + counts[bi + 1][x - 1] - counts[bi][x - 1];\n\t\t}\n\t\tvector<vector<pair<int, int> > > sortedBlocks(NumBlocks);\n\t\tvector<vector<int> > inner(NumBlocks);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tint M = R - L, Y = M;\n\n\t\t\tvector<pair<int, int> > &sorted = sortedBlocks[bi];\n\t\t\tsorted.resize(M);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\tsorted[i - L] = make_pair(p[i], i);\n\t\t\tsort(sorted.begin(), sorted.end());\n\t\t\t\n\t\t\tvector<int> rank(M);\n\t\t\tfor(int i = 0; i < M; ++ i)\n\t\t\t\trank[sorted[i].second - L] = i;\n\n\t\t\tmemset(counts2, 0, sizeof counts2);\n\n\t\t\tfor(int i = 0; i < M; ++ i)\n\t\t\t\t++ counts2[i + 1][rank[i] + 1];\n\t\t\tfor(int i = 0; i < M; ++ i) for(int y = 1; y <= Y; ++ y)\n\t\t\t\tcounts2[i + 1][y] += counts2[i][y] + counts2[i + 1][y - 1] - counts2[i][y - 1];\n\n\t\t\tvector<int> &v = inner[bi];\n\t\t\tv.resize((R - L) * (R - L + 1) / 2);\n\t\t\tint k = 0;\n\t\t\tfor(int j = 0; j < M; ++ j) {\n\t\t\t\tint sum = 0;\n\t\t\t\tfor(int i = j; i >= 0; -- i) {\n\t\t\t\t\tsum += counts2[j + 1][rank[i]] - counts2[i + 1][rank[i]];\n\t\t\t\t\tv[k ++] = sum;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<long long> > outer(NumBlocks + 1, vector<long long>(N));\n\t\tfor(int bi = 0; bi <= NumBlocks; ++ bi) {\n\t\t\tvector<long long> &v = outer[bi];\n\t\t\tlong long sum;\n\t\t\tsum = 0;\n\t\t\tfor(int bj = bi; bj < NumBlocks; ++ bj) {\n\t\t\t\tint L = bj * BlockSize, R = min((bj + 1) * BlockSize, N);\n\t\t\t\tint num = (bj - bi) * BlockSize;\n\t\t\t\tfor(int j = L; j < R; ++ j) {\n\t\t\t\t\tsum += num - (counts[bj][p[j] + 1] - counts[bi][p[j] + 1]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t}\n\t\t\t\tsum += inner[bj][calcIndex(0, R - L - 1)];\n\t\t\t}\n\t\t\tsum = 0;\n\t\t\tfor(int bj = bi - 1; bj >= 0; -- bj) {\n\t\t\t\tint L = bj * BlockSize, R = min((bj + 1) * BlockSize, N);\n\t\t\t\tfor(int j = R - 1; j >= L; -- j) {\n\t\t\t\t\tsum += counts[bi][p[j]] - counts[bj + 1][p[j]];\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t}\n\t\t\t\tsum += inner[bj][calcIndex(0, R - L - 1)];\n\t\t\t}\n\t\t}\n\t\tint Q;\n\t\tscanf(\"%d\", &Q);\n\t\tfor(int ii = 0; ii < Q; ++ ii) {\n\t\t\tint l; int r;\n\t\t\tscanf(\"%d%d\", &l, &r), -- l;\n\t\t\tint bl = (l + BlockSize - 1) / BlockSize, br = r / BlockSize;\n\t\t\tlong long ans = 0;\n\t\t\tif(l / BlockSize == (r - 1) / BlockSize) {\n\t\t\t\tans = inner[l / BlockSize][calcIndex(l % BlockSize, (r - 1) % BlockSize)];\n\t\t\t} else {\n\t\t\t\tint L = bl * BlockSize, R = br * BlockSize;\n\t\t\t\tans += outer[bl][r - 1];\n\t\t\t\tans += inner[(r - 1) / BlockSize][calcIndex(0, (r - 1) % BlockSize)];\n\t\t\t\tif(l < R) {\n\t\t\t\t\tans += outer[br][l];\n\t\t\t\t\tans += inner[l / BlockSize][calcIndex(l % BlockSize, min(BlockSize, N - l / BlockSize * BlockSize) - 1)];\n\t\t\t\t}\n\t\t\t\tif(bl < br) {\n\t\t\t\t\tans -= outer[bl][R - 1];\n\t\t\t\t\tans -= inner[(R - 1) / BlockSize][calcIndex(0, BlockSize - 1)];\n\t\t\t\t}\n\t\t\t\tif(l < L && R < r) {\n\t\t\t\t\tconst vector<pair<int, int> > &v = sortedBlocks[bl - 1], &w = sortedBlocks[br];\n\t\t\t\t\tint nv = (int)v.size(), nw = (int)w.size();\n\t\t\t\t\tfor(int i = 0, j = 0, cnt = 0; i < nv; ++ i) {\n\t\t\t\t\t\tfor(; j < nw && w[j].first < v[i].first; ++ j)\n\t\t\t\t\t\t\tcnt += w[j].second < r;\n\t\t\t\t\t\tif(l <= v[i].second)\n\t\t\t\t\t\t\tans += cnt;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"%lld\\n\", ans);\n\t\t\t//fflush(stdout);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1260, "memory_kb": 456736, "score_of_the_acc": -1.3297, "final_rank": 10 }, { "submission_id": "aoj_2779_1695542", "code_snippet": "#include <cstdio>\n#include <algorithm>\n#include <vector>\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define pb push_back\n#define sz(x) (int)(x).size()\nusing namespace std;\ntypedef long long int ll;\ntypedef vector<int> vi;\n\nconst int D = 300, E = 351, MX = 100005;\n// Binary Indexed Tree\nstruct bit {\n vector<int> d; int n, hi;\n vi hist;\n bit() {}\n bit(int mx): n(mx), d(mx), hist(MX), hi(0) {}\n void add(int i, int x=1) {\n for (++i;i<n;i+=i&-i) {\n d[i] += x;\n }\n }\n void add2(int i, int x=1) {\n for (++i;i<n;i+=i&-i) {\n hist[hi++] = i;\n d[i] += x;\n }\n }\n int sum(int i) {\n int x = 0;\n for (++i;i;i-=i&-i) x += d[i];\n return x;\n }\n void rev() {\n d = vi(n);\n }\n void rev2() {\n while (hi--) d[hist[hi]] = 0;\n hi = 0;\n }\n};\n//\nint n, a[MX];\nvector<ll> dl[E], dr[E];\nint main() {\n // preprocess\n scanf(\"%d\",&n);\n rep(i,n) scanf(\"%d\",&a[i]), a[i] = n-a[i];\n bit t(n+2);\n for (int i = 0; i <= n; i += D) {\n int di = i/D;\n ll sum = 0;\n for (int j = i; j < n; ++j) {\n sum += t.sum(a[j]);\n dl[di].pb(sum);\n t.add(a[j]);\n }\n t.rev();\n sum = 0;\n for (int j = i-1; j >= 0; --j) {\n sum += t.sum(n-a[j]);\n dr[di].pb(sum);\n t.add(n-a[j]);\n }\n t.rev();\n }\n // online query\n int q;\n scanf(\"%d\",&q);\n rep(qi,q) {\n int l, r;\n scanf(\"%d%d\",&l,&r);\n --l;\n ll ans = 0;\n if (r-l <= D) {\n for (int i = l; i < r; ++i) {\n ans += t.sum(a[i]);\n t.add2(a[i]);\n }\n t.rev2();\n } else {\n int li = l/D+1, ri = r/D;\n ans += dl[li][r-1-li*D];\n ans += dr[ri][ri*D-1-l];\n ans -= dl[li][ri*D-1-li*D];\n vi p;\n for (int i = li*D-1; i >= l; --i) p.pb(a[i]<<1);\n for (int i = ri*D; i < r; ++i) p.pb(a[i]<<1|1);\n sort(p.begin(), p.end());\n int s = 0;\n rep(i,sz(p)) {\n if (p[i]&1) ans += s;\n else s++;\n }\n }\n printf(\"%lld\\n\",ans);\n }\n return 0;\n}", "accuracy": 0.3235294117647059, "time_ms": 40, "memory_kb": 3412, "score_of_the_acc": -0.0049, "final_rank": 18 }, { "submission_id": "aoj_2779_1695539", "code_snippet": "#include <cstdio>\n#include <algorithm>\n#include <vector>\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define pb push_back\n#define sz(x) (int)(x).size()\nusing namespace std;\ntypedef long long int ll;\ntypedef vector<int> vi;\n\nconst int D = 300, E = 351, MX = 100005;\n// Binary Indexed Tree\nstruct bit {\n vector<int> d; int n, hi;\n vi hist;\n bit() {}\n bit(int mx): n(mx), d(mx), hist(MX), hi(0) {}\n void add(int i, int x=1) {\n for (++i;i<n;i+=i&-i) {\n d[i] += x;\n }\n }\n void add2(int i, int x=1) {\n for (++i;i<n;i+=i&-i) {\n hist[hi++] = i;\n d[i] += x;\n }\n }\n int sum(int i) {\n int x = 0;\n for (++i;i;i-=i&-i) x += d[i];\n return x;\n }\n void rev() {\n d = vi(n);\n }\n void rev2() {\n while (hi--) d[hist[hi]] = 0;\n hi = 0;\n }\n};\n//\nint n, a[MX];\nvector<ll> dl[E], dr[E];\nint main() {\n // preprocess\n scanf(\"%d\",&n);\n rep(i,n) scanf(\"%d\",&a[i]), a[i] = n-a[i];\n bit t(n+2);\n for (int i = 0; i <= n; i += D) {\n int di = i/D;\n ll sum = 0;\n for (int j = i; j < n; ++j) {\n sum += t.sum(a[j]);\n dl[di].pb(sum);\n t.add(a[j]);\n }\n t.rev();\n sum = 0;\n for (int j = i-1; j >= 0; --j) {\n sum += t.sum(n-a[j]);\n dr[di].pb(sum);\n t.add(n-a[j]);\n }\n t.rev();\n }\n // online query\n int q;\n scanf(\"%d\",&q);\n rep(qi,q) {\n int l, r;\n scanf(\"%d%d\",&l,&r);\n --l;\n ll ans = 0;\n if (r-l <= D) {\n for (int i = l; i < r; ++i) {\n ans += t.sum(a[i]);\n t.add2(a[i]);\n }\n t.rev2();\n } else {\n int li = l/D+1, ri = r/D;\n ans += dl[li][r-1-li*D];\n ans += dr[ri][ri*D-l];\n ans -= dl[li][ri*D-1-li*D];\n vi p;\n for (int i = li*D-1; i >= l; --i) p.pb(a[i]<<1);\n for (int i = ri*D; i < r; ++i) p.pb(a[i]<<1|1);\n sort(p.begin(), p.end());\n int s = 0;\n rep(i,sz(p)) {\n if (p[i]&1) ans += s;\n else s++;\n }\n }\n printf(\"%lld\\n\",ans);\n }\n return 0;\n}", "accuracy": 0.3235294117647059, "time_ms": 40, "memory_kb": 3412, "score_of_the_acc": -0.0049, "final_rank": 18 }, { "submission_id": "aoj_2779_1695533", "code_snippet": "#include <cstdio>\n#include <algorithm>\n#include <vector>\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define pb push_back\n#define sz(x) (int)(x).size()\nusing namespace std;\ntypedef long long int ll;\ntypedef vector<int> vi;\n\nconst int D = 300, E = 351, MX = 100005;\n// Binary Indexed Tree\nstruct bit {\n vector<int> d; int n, hi;\n vi hist;\n bit() {}\n bit(int mx): n(mx), d(mx), hist(MX), hi(0) {}\n void add(int i, int x=1) {\n for (++i;i<n;i+=i&-i) {\n d[i] += x;\n }\n }\n void add2(int i, int x=1) {\n for (++i;i<n;i+=i&-i) {\n hist[hi++] = i;\n d[i] += x;\n }\n }\n int sum(int i) {\n int x = 0;\n for (++i;i;i-=i&-i) x += d[i];\n return x;\n }\n void rev() {\n d = vi(n);\n }\n void rev2() {\n while (hi--) d[hist[hi]] = 0;\n hi = 0;\n }\n};\n//\nint n, a[MX];\nll dl[E][MX], dr[E][MX];\nint main() {\n // preprocess\n scanf(\"%d\",&n);\n rep(i,n) scanf(\"%d\",&a[i]), a[i] = n-a[i];\n bit t(n+2);\n for (int i = 0; i <= n; i += D) {\n int di = i/D;\n ll sum = 0;\n for (int j = i; j < n; ++j) {\n sum += t.sum(a[j]);\n dl[di][j] = sum;\n t.add(a[j]);\n }\n t.rev();\n sum = 0;\n for (int j = i-1; j >= 0; --j) {\n sum += t.sum(n-a[j]);\n dr[di][j] = sum;\n t.add(n-a[j]);\n }\n t.rev();\n }\n // online query\n int q;\n scanf(\"%d\",&q);\n rep(qi,q) {\n int l, r;\n scanf(\"%d%d\",&l,&r);\n --l;\n ll ans = 0;\n if (r-l <= D) {\n for (int i = l; i < r; ++i) {\n ans += t.sum(a[i]);\n t.add2(a[i]);\n }\n t.rev2();\n } else {\n int li = l/D+1, ri = r/D;\n ans += dl[li][r-1];\n ans += dr[ri][l];\n ans -= dl[li][ri*D-1];\n vi p;\n for (int i = li*D-1; i >= l; --i) p.pb(a[i]<<1);\n for (int i = ri*D; i < r; ++i) p.pb(a[i]<<1|1);\n sort(p.begin(), p.end());\n int s = 0;\n rep(i,sz(p)) {\n if (p[i]&1) ans += s;\n else s++;\n }\n }\n printf(\"%lld\\n\",ans);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 2720, "memory_kb": 267636, "score_of_the_acc": -1.509, "final_rank": 13 }, { "submission_id": "aoj_2779_1695527", "code_snippet": "#include <vector>\n#include <utility>\n#include <algorithm>\n#include <cstdio>\nusing namespace std;\n\nstruct FenwickTree {\n\ttypedef int T;\n\tvector<T> v;\n\tvoid init(int n) { v.assign(n, 0); }\n\tvoid add(int i, T x) {\n\t\tfor(; i < (int)v.size(); i |= i + 1) v[i] += x;\n\t}\n\tT sum(int i) const {\t//[0, i)\n\t\tT r = 0;\n\t\tfor(-- i; i >= 0; i = (i & (i + 1)) - 1) r += v[i];\n\t\treturn r;\n\t}\n\tT sum(int left, int right) const {\t//[left, right)\n\t\treturn sum(right) - sum(left);\n\t}\n};\n\nint main() {\n\tint N;\n\twhile(~scanf(\"%d\", &N)) {\n\t\tvector<int> p(N);\n\t\tfor(int i = 0; i < N; ++ i) {\n\t\t\tscanf(\"%d\", &p[i]), -- p[i];\n\t\t}\n\t\tint BlockSize = 500;\n\t\tint NumBlocks = N / BlockSize + 1;\n\t\tvector<vector<long long> > memo(NumBlocks, vector<long long>(N));\n\t\tFenwickTree ft;\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tvector<long long> &v = memo[bi];\n\t\t\tint i = bi * BlockSize;\n\t\t\t{\n\t\t\t\tft.init(N);\n\t\t\t\tlong long sum = 0;\n\t\t\t\tfor(int j = i; j < N; ++ j) {\n\t\t\t\t\tsum += (j - i) - ft.sum(p[j]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t\tft.add(p[j], 1);\n\t\t\t\t}\n\t\t\t}\n\t\t\t{\n\t\t\t\tft.init(N);\n\t\t\t\tlong long sum = 0;\n\t\t\t\tfor(int j = i - 1; j >= 0; -- j) {\n\t\t\t\t\tsum += ft.sum(p[j]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t\tft.add(p[j], 1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<pair<int, int> > > sortedBlocks(NumBlocks);\n\t\tvector<int> rankInBlock(N, -1);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tvector<pair<int, int> > &v = sortedBlocks[bi];\n\t\t\tv.resize(R - L);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\tv[i - L] = make_pair(p[i], i);\n\t\t\tsort(v.begin(), v.end());\n\t\t\tfor(int i = 0; i < R - L; ++ i)\n\t\t\t\trankInBlock[v[i].second] = i;\n\t\t}\n\t\tint Q;\n\t\tscanf(\"%d\", &Q);\n\t\tfor(int ii = 0; ii < Q; ++ ii) {\n\t\t\tint l; int r;\n\t\t\tscanf(\"%d%d\", &l, &r), -- l, -- r;\n\t\t\tint bl = (l + BlockSize - 1) / BlockSize, br = (r + 1) / BlockSize;\n\t\t\tlong long ans = 0;\n\t\t\tif(bl > br) {\n\t\t\t\tft.init(BlockSize);\n\t\t\t\tfor(int i = r; i >= l; -- i) {\n\t\t\t\t\tans += ft.sum(rankInBlock[i]);\n\t\t\t\t\tft.add(rankInBlock[i], 1);\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\tint L = bl * BlockSize, R = br * BlockSize;\n\t\t\t\tans += memo[bl][r];\n\t\t\t\tans += memo[br][l];\n\t\t\t\tif(bl < br)\n\t\t\t\t\tans -= memo[bl][R - 1];\n\t\t\t\tif(l < L && R <= r) {\n\t\t\t\t\tconst vector<pair<int, int> > &v = sortedBlocks[bl - 1], &w = sortedBlocks[br];\n\t\t\t\t\tint nv = (int)v.size(), nw = (int)w.size();\n\t\t\t\t\tfor(int i = 0, j = 0, cnt = 0; i < nv; ++ i) {\n\t\t\t\t\t\tfor(; j < nw && w[j].first < v[i].first; ++ j)\n\t\t\t\t\t\t\tcnt += w[j].second <= r;\n\t\t\t\t\t\tif(l <= v[i].second)\n\t\t\t\t\t\t\tans += cnt;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"%lld\\n\", ans);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1670, "memory_kb": 160564, "score_of_the_acc": -0.9129, "final_rank": 7 }, { "submission_id": "aoj_2779_1695525", "code_snippet": "#include <vector>\n#include <utility>\n#include <algorithm>\n#include <cstdio>\nusing namespace std;\n\nstruct FenwickTree {\n\ttypedef int T;\n\tvector<T> v;\n\tvoid init(int n) { v.assign(n, 0); }\n\tvoid add(int i, T x) {\n\t\tfor(; i < (int)v.size(); i |= i + 1) v[i] += x;\n\t}\n\tT sum(int i) const {\t//[0, i)\n\t\tT r = 0;\n\t\tfor(-- i; i >= 0; i = (i & (i + 1)) - 1) r += v[i];\n\t\treturn r;\n\t}\n\tT sum(int left, int right) const {\t//[left, right)\n\t\treturn sum(right) - sum(left);\n\t}\n};\n\nint main() {\n\tint N;\n\twhile(~scanf(\"%d\", &N)) {\n\t\tvector<int> p(N);\n\t\tfor(int i = 0; i < N; ++ i) {\n\t\t\tscanf(\"%d\", &p[i]), -- p[i];\n\t\t}\n\t\tint BlockSize = 500;\n\t\tint NumBlocks = N / BlockSize + 1;\n\t\tvector<vector<long long> > memo(NumBlocks, vector<long long>(N));\n\t\tFenwickTree ft;\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tvector<long long> &v = memo[bi];\n\t\t\tint i = bi * BlockSize;\n\t\t\t{\n\t\t\t\tft.init(N);\n\t\t\t\tlong long sum = 0;\n\t\t\t\tfor(int j = i; j < N; ++ j) {\n\t\t\t\t\tsum += (j - i) - ft.sum(p[j]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t\tft.add(p[j], 1);\n\t\t\t\t}\n\t\t\t}\n\t\t\t{\n\t\t\t\tft.init(N);\n\t\t\t\tlong long sum = 0;\n\t\t\t\tfor(int j = i - 1; j >= 0; -- j) {\n\t\t\t\t\tsum += ft.sum(p[j]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t\tft.add(p[j], 1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<pair<int, int> > > sortedBlocks(NumBlocks);\n\t\tvector<int> rankInBlock(N, -1);\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tint L = bi * BlockSize, R = min((bi + 1) * BlockSize, N);\n\t\t\tvector<pair<int, int> > &v = sortedBlocks[bi];\n\t\t\tv.resize(R - L);\n\t\t\tfor(int i = L; i < R; ++ i)\n\t\t\t\tv[i - L] = make_pair(p[i], i);\n\t\t\tsort(v.begin(), v.end());\n\t\t\tfor(int i = 0; i < R - L; ++ i)\n\t\t\t\trankInBlock[v[i].second] = i;\n\t\t}\n\t\tint Q;\n\t\tscanf(\"%d\", &Q);\n\t\tfor(int ii = 0; ii < Q; ++ ii) {\n\t\t\tint l; int r;\n\t\t\tscanf(\"%d%d\", &l, &r), -- l, -- r;\n\t\t\tint bl = (l + BlockSize - 1) / BlockSize, br = (r + 1) / BlockSize;\n\t\t\tlong long ans = 0;\n\t\t\tif(bl > br) {\n\t\t\t\tft.init(BlockSize);\n\t\t\t\tfor(int i = r; i >= l; -- i) {\n\t\t\t\t\tans += ft.sum(rankInBlock[i]);\n\t\t\t\t\tft.add(rankInBlock[i], 1);\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\tint L = bl * BlockSize, R = br * BlockSize;\n\t\t\t\tans += memo[bl][r];\n\t\t\t\tans += memo[br][l];\n\t\t\t\tif(bl < br)\n\t\t\t\t\tans -= memo[bl][R - 1];\n\t\t\t\tif(l < L && R <= r) {\n\t\t\t\t\tconst vector<pair<int, int> > &v = sortedBlocks[bl - 1], &w = sortedBlocks[br];\n\t\t\t\t\tint nv = (int)v.size(), nw = (int)w.size();\n\t\t\t\t\tfor(int i = 0, j = 0, cnt = 0; i < nv; ++ i) {\n\t\t\t\t\t\tfor(; j < nw && w[j].first < v[i].first; ++ j)\n\t\t\t\t\t\t\tcnt += w[j].second <= r;\n\t\t\t\t\t\tif(l <= v[i].second)\n\t\t\t\t\t\t\tans += cnt;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"%lld\\n\", ans); fflush(stdout);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 2060, "memory_kb": 160564, "score_of_the_acc": -1.0579, "final_rank": 8 }, { "submission_id": "aoj_2779_1695471", "code_snippet": "#include <vector>\n#include <cstdio>\nusing namespace std;\n\nstruct FenwickTree {\n\ttypedef int T;\n\tvector<T> v;\n\tvoid init(int n) { v.assign(n, 0); }\n\tvoid add(int i, T x) {\n\t\tfor(; i < (int)v.size(); i |= i + 1) v[i] += x;\n\t}\n\tT sum(int i) const { //[0, i)\n\t\tT r = 0;\n\t\tfor(-- i; i >= 0; i = (i & (i + 1)) - 1) r += v[i];\n\t\treturn r;\n\t}\n\tT sum(int left, int right) const { //[left, right)\n\t\treturn sum(right) - sum(left);\n\t}\n};\n\nint main() {\n\tint N;\n\twhile(~scanf(\"%d\", &N)) {\n\t\tvector<int> p(N);\n\t\tfor(int i = 0; i < N; ++ i)\n\t\t\tscanf(\"%d\", &p[i]), -- p[i];\n\t\tint BlockSize = 250, NumBlocks = N / BlockSize + 1;\n\t\tvector<vector<long long> > memo(NumBlocks, vector<long long>(N));\n\t\tFenwickTree ft;\n\t\tfor(int bi = 0; bi < NumBlocks; ++ bi) {\n\t\t\tvector<long long> &v = memo[bi];\n\t\t\tint i = bi * BlockSize;\n\t\t\t{\n\t\t\t\tft.init(N);\n\t\t\t\tlong long sum = 0;\n\t\t\t\tfor(int j = i; j < N; ++ j) {\n\t\t\t\t\tsum += (j - i) - ft.sum(p[j]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t\tft.add(p[j], 1);\n\t\t\t\t}\n\t\t\t}\n\t\t\t{\n\t\t\t\tft.init(N);\n\t\t\t\tlong long sum = 0;\n\t\t\t\tfor(int j = i - 1; j >= 0; -- j) {\n\t\t\t\t\tsum += ft.sum(p[j]);\n\t\t\t\t\tv[j] = sum;\n\t\t\t\t\tft.add(p[j], 1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tft.init(N);\n\t\tint Q;\n\t\tscanf(\"%d\", &Q);\n\t\tfor(int ii = 0; ii < Q; ++ ii) {\n\t\t\tint l; int r;\n\t\t\tscanf(\"%d%d\", &l, &r), -- l, -- r;\n\t\t\tint bl = (l + BlockSize - 1) / BlockSize, br = (r - 1) / BlockSize;\n\t\t\tlong long ans = 0;\n\t\t\tif(bl > br) {\n\t\t\t\tfor(int i = r; i >= l; -- i) {\n\t\t\t\t\tans += ft.sum(p[i]);\n\t\t\t\t\tft.add(p[i], 1);\n\t\t\t\t}\n\t\t\t\tfor(int i = l; i <= r; ++ i)\n\t\t\t\t\tft.add(p[i], -1);\n\t\t\t} else {\n\t\t\t\tint L = bl * BlockSize, R = br * BlockSize;\n\t\t\t\tans += memo[bl][r];\n\t\t\t\tans += memo[br][l];\n\t\t\t\tif(bl < br)\n\t\t\t\t\tans -= memo[bl][R - 1];\n\t\t\t\tfor(int i = R; i <= r; ++ i)\n\t\t\t\t\tft.add(p[i], 1);\n\t\t\t\tfor(int i = l; i < L; ++ i)\n\t\t\t\t\tans += ft.sum(p[i]);\n\t\t\t\tfor(int i = R; i <= r; ++ i)\n\t\t\t\t\tft.add(p[i], -1);\n\t\t\t}\n\t\t\tprintf(\"%lld\\n\", ans);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 2600, "memory_kb": 316488, "score_of_the_acc": -1.5583, "final_rank": 14 } ]
aoj_2778_cpp
G: 運命力 - Destiny Draw - 問題 Mr. D はカードゲームで勝負をすることになった。 このカードゲームでは、 N 枚のカードの山を用いる。 また、山のカードには、上から順に 1, 2, 3, ... , N の番号がついている。 D で始まるものすべてを背負う彼に敗北は許されないが、不幸にも Mr. D はカードゲームが不得手である。 そこで、自分が引くカードをコントロールすることで勝利を手にすることにした。 Mr. D は K 種類のシャッフルが可能である。 K 種類のうち i 番目のシャッフルでは上から a_i 枚目から a_i+b_i − 1 枚目までのちょうど b_i 枚を引き抜き、上に重ねる。 i 番目のシャッフルを 1 回するとき、それぞれ t_i 秒を要する。 ちょうど T 秒のシャッフルの後、一番上のカードを C にする方法は何通りあるか。 数が多くなる可能性があるので、 10^9+7 で割った余りを出力せよ。 入力形式 入力は次の形式で与えられる。 N K C T a_1 b_1 t_1 a_2 b_2 t_2 ... a_K b_K t_K N は整数で 2 \≤ N \≤ 40 を満たす。 K は整数で 1 \≤ K \≤ \frac{N (N+1)}{2} を満たす C は整数で 1 \≤ C \≤ N を満たす T は整数で 1 \≤ T \≤ 1,000,000 を満たす a_i ( i = 1, 2, ... , K ) は整数で 1 \≤ a_i \≤ N を満たす b_i ( i = 1, 2, ... , K ) は整数で 1 \≤ b_i \≤ N − a_i + 1 を満たす a_i = a_j かつ b_i = b_j を満たすとき i = j に限定される t_i は整数で 1 \≤ t_i \≤ 5 を満たす 出力形式 答えを 10^9+7 で割った余りを一行で出力せよ。 入力例1 4 1 1 6 3 2 3 出力例1 1 入力例2 4 1 1 5 3 2 3 出力例2 0 入力例3 6 2 2 5 1 2 1 2 5 3 出力例3 3 ちょうど 5 秒で一番上のカードを 2 にする方法は以下の 3 通りである。 1→1→2 1→2→1 2→1→1 入力例4 6 8 3 10 1 4 5 1 3 3 1 6 5 1 2 2 1 1 4 2 5 1 4 3 1 2 1 3 出力例4 3087
[ { "submission_id": "aoj_2778_10259979", "code_snippet": "// AOJ #2778 Destiny Draw\n// 2025.3.2\n\n#include <bits/stdc++.h>\nusing namespace std;\nconst long long MOD = 1000000007;\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int n, K, C, T;\n cin >> n >> K >> C >> T;\n vector<vector<vector<long long>>> A(6, vector<vector<long long>>(n, vector<long long>(n, 0)));\n for (int i = 0; i < K; i++){\n int a, b, t;\n cin >> a >> b >> t;\n int a0 = a - 1;\n for (int x = 0; x < n; x++){\n int y;\n if (x >= a0 && x < a0 + b) y = x - a0;\n else if (x < a0) y = x + b;\n else y = x;\n A[t][y][x] = (A[t][y][x] + 1) % MOD;\n }\n }\n int m = min(T, 5);\n vector<vector<long long>> dp(m + 1, vector<long long>(n, 0));\n dp[0][C - 1] = 1;\n for (int t = 1; t <= m; t++){\n for (int cost = 1; cost <= min(t, 5); cost++){\n for (int i = 0; i < n; i++){\n long long s = 0;\n for (int j = 0; j < n; j++) s = (s + A[cost][i][j] * dp[t - cost][j]) % MOD;\n dp[t][i] = (dp[t][i] + s) % MOD;\n }\n }\n }\n if (T <= 5){\n cout << dp[T][0] << endl;\n return 0;\n }\n int d = 5 * n;\n vector<vector<long long>> M(d, vector<long long>(d, 0));\n for (int j = 0; j < 5; j++){\n for (int i = 0; i < n; i++){\n for (int k = 0; k < n; k++) M[i][j * n + k] = A[j + 1][i][k] % MOD;\n }\n }\n for (int j = 1; j < 5; j++){\n for (int i = 0; i < n; i++) M[j * n + i][(j - 1) * n + i] = 1;\n }\n vector<long long> X(d, 0);\n for (int i = 0; i < n; i++){\n X[i] = dp[5][i];\n X[n + i] = dp[4][i];\n X[2 * n + i] = dp[3][i];\n X[3 * n + i] = dp[2][i];\n X[4 * n + i] = dp[1][i];\n }\n auto mulMat = [&](const vector<vector<long long>> &B, const vector<vector<long long>> &C) -> vector<vector<long long>> {\n vector<vector<long long>> R(d, vector<long long>(d, 0));\n for (int i = 0; i < d; i++){\n for (int k = 0; k < d; k++){\n if (B[i][k])\n for (int j = 0; j < d; j++) R[i][j] = (R[i][j] + B[i][k] * C[k][j]) % MOD;\n }\n }\n return R;\n };\n auto mulVec = [&](const vector<vector<long long>> &B, const vector<long long> &v) -> vector<long long> {\n vector<long long> r(d, 0);\n for (int i = 0; i < d; i++){\n for (int j = 0; j < d; j++) r[i] = (r[i] + B[i][j] * v[j]) % MOD;\n }\n return r;\n };\n auto mpow = [&](long long p) -> vector<vector<long long>> {\n vector<vector<long long>> R(d, vector<long long>(d, 0));\n for (int i = 0; i < d; i++) R[i][i] = 1;\n vector<vector<long long>> B = M;\n while (p){\n if (p & 1) R = mulMat(R, B);\n B = mulMat(B, B);\n p >>= 1;\n }\n return R;\n };\n vector<vector<long long>> Mexp = mpow(T - 5);\n vector<long long> Y = mulVec(Mexp, X);\n cout << Y[0] % MOD << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 4424, "score_of_the_acc": -0.1133, "final_rank": 4 }, { "submission_id": "aoj_2778_6942004", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\n\ntemplate<class T>\nusing square_matrix=std::vector<std::vector<T>>;\ntemplate<class T,T (*add_op)(T,T),T(*add_e)(),T (*mul_op)(T,T),T(*mul_e)()>\nsquare_matrix<T> mul_matrix(square_matrix<T> l,square_matrix<T> r){\n\tint n=l.size();\n\tassert((int)l[0].size()==n&&(int)r.size()==n&&(int)r[0].size()==n);\n\tsquare_matrix<T> val(n,std::vector<T>(n,add_e()));\n\tfor(int i=0;i<n;i++) for(int j=0;j<n;j++) for(int k=0;k<n;k++){\n\t\tval[i][k]=add_op(val[i][k],mul_op(l[i][j],r[j][k]));\n\t}\n\treturn val;\n}\ntemplate<class T,T (*add_op)(T,T),T(*add_e)(),T (*mul_op)(T,T),T(*mul_e)()>\nsquare_matrix<T> pow_matrix(square_matrix<T> l,long long times){\n\tint n=l.size();\n\tsquare_matrix<T> val(n,std::vector<T>(n,add_e()));\n\tfor(int i=0;i<n;i++) val[i][i]=mul_e();\n\twhile(times){\n\t\tif(times&1){\n\t\t\tval=mul_matrix<T,add_op,add_e,mul_op,mul_e>(val,l);\n\t\t}\n\t\tl=mul_matrix<T,add_op,add_e,mul_op,mul_e>(l,l);\n\t\ttimes>>=1;\n\t}\n\treturn val;\n}\n\nusing mat_F=ll;\nmat_F add_op(mat_F a,mat_F b){\n\treturn (a+b)%mod;\n}\nmat_F add_e(){\n\treturn 0;\n}\nmat_F mul_op(mat_F a,mat_F b){\n\treturn (a*b)%mod;\n}\nmat_F mul_e(){\n\treturn 1;\n}\n#define calc mat_F,add_op,add_e,mul_op,mul_e\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tll N,K,C,T;\n\tcin>>N>>K>>C>>T;\n\tvector<vector<ll>> p(N*5,vector<ll>(N*5));\n\trep(i,N*4) p[i][i+N]=1;\n\trep(i,K){\n\t\tll a,b,t;\n\t\tcin>>a>>b>>t;\n\t\ta--;t--;\n\t\trep(j,N){\n\t\t\tif(j<a) p[N*t+j][j+b]++;\n\t\t\telse if(j<a+b) p[N*t+j][j-a]++;\n\t\t\telse p[N*t+j][j]++;\n\t\t}\n\t}\n\tauto base=pow_matrix<calc>(p,T);\n\t//rep(i,N*5) vec_out(base[i]);\n\tcout<<base[C-1][0]<<\"\\n\";\n}", "accuracy": 1, "time_ms": 430, "memory_kb": 4960, "score_of_the_acc": -0.2325, "final_rank": 7 }, { "submission_id": "aoj_2778_5532971", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <class T>\nstruct Matrix {\n vector<vector<T>> A;\n Matrix() {}\n Matrix(size_t m, size_t n) : A(m, vector<T>(n, 0)) {}\n Matrix(size_t n) : A(n, vector<T>(n, 0)) {}\n size_t height() const { return (A.size()); }\n size_t width() const { return (A[0].size()); }\n inline const vector<T> &operator[](int k) const { return (A.at(k)); }\n inline vector<T> &operator[](int k) { return (A.at(k)); }\n static Matrix E(size_t n) {\n Matrix mat(n);\n for (int i = 0; i < n; ++i) mat[i][i] = 1;\n return (mat);\n }\n Matrix &operator+=(const Matrix &B) {\n size_t m = height(), n = width();\n assert(m == B.height() && n == B.width());\n for (int i = 0; i < m; ++i)\n for (int j = 0; j < n; ++j) (*this)[i][j] += B[i][j];\n return (*this);\n }\n Matrix &operator-=(const Matrix &B) {\n size_t m = height(), n = width();\n assert(m == B.height() && n == B.width());\n for (int i = 0; i < m; ++i)\n for (int j = 0; j < n; ++j) (*this)[i][j] -= B[i][j];\n return (*this);\n }\n Matrix &operator*=(const Matrix &B) {\n size_t m = height(), n = B.width(), p = width();\n assert(p == B.height());\n vector<vector<T>> C(m, vector<T>(n, 0));\n for (int i = 0; i < m; ++i)\n for (int k = 0; k < p; ++k) {\n T tmp = (*this)[i][k];\n for (int j = 0; j < n; ++j) C[i][j] += tmp * B[k][j];\n }\n A.swap(C);\n return (*this);\n }\n Matrix &operator^=(long long k) {\n Matrix B = Matrix::E(height());\n while (k) {\n if (k & 1) B *= *this;\n *this *= *this;\n k >>= 1;\n }\n A.swap(B.A);\n return (*this);\n }\n\n Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }\n Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }\n Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }\n Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }\n\n Matrix trans() {\n size_t m = height(), n = width();\n Matrix res(n, m);\n for (int i = 0; i < n; ++i)\n for (int j = 0; j < m; ++j) res[i][j] = (*this)[j][i];\n return res;\n }\n\n Matrix inv() {\n assert(height() == width());\n size_t n = height();\n Matrix B(n, 2 * n);\n for (int i = 0; i < n; ++i) {\n B[i][i + n] = 1;\n for (int j = 0; j < n; ++j) B[i][j] = (*this)[i][j];\n }\n for (int i = 0; i < n; ++i) {\n int piv = i;\n for (int j = i; j < n; ++j)\n if (abs(B[j][i]) > abs(B[piv][i])) piv = j;\n // not exist or unique\n assert(abs(B[piv][i]) >= 0);\n swap(B[i], B[piv]);\n for (int j = i + 1; j < 2 * n; ++j) B[i][j] /= B[i][i];\n for (int j = 0; j < n; ++j)\n if (i != j)\n for (int k = i + 1; k < 2 * n; ++k) B[j][k] -= B[j][i] * B[i][k];\n }\n Matrix res(n);\n for (int i = 0; i < n; ++i)\n for (int j = 0; j < n; ++j) res[i][j] = B[i][j + n];\n return res;\n }\n\n T det() {\n int m = height(), n = width();\n assert(m == n);\n T res = 1;\n Matrix B(m);\n for (int i = 0; i < m; ++i)\n for (int j = 0; j < n; ++j) B[i][j] = (*this)[i][j];\n for (int i = 0; i < n; ++i) {\n int piv = i;\n for (int j = i + 1; j < m; ++j)\n if (B[j][i] != 0) {\n piv = j;\n break;\n }\n // if (abs(B[j][i]) > abs(B[piv][i])) piv = j;\n if (B[piv][i] == 0) return (T)0;\n // if (abs(B[piv][i]) < EPS) return (T)0; // B[piv][i] < EPS\n if (piv != i) swap(B[i], B[piv]), res = -res;\n res *= B[i][i];\n // for (int j = i + 1; j < m; ++j)\n // for (int k = n - 1; k >= i; --k) B[j][k] -= B[i][k] * B[j][i] /\n // B[i][i];\n {\n const T d = (T)1 / B[i][i];\n for (int j = i + 1; j < n; ++j) B[i][j] *= d;\n for (int j = i + 1; j < m; ++j)\n for (int k = i + 1; k < n; ++k) B[j][k] -= B[i][k] * B[j][i];\n }\n }\n return res;\n }\n\n T cofactor(int r = -1, int c = -1) {\n int m = height(), n = width();\n if (r < 0) r = c = m - 1;\n assert(m == n && m > 1 && r < m && c < n);\n Matrix mat(m - 1, n - 1);\n for (int i = 0, rcnt = 0; i < m; ++i)\n if (i != r) {\n int ccnt = 0;\n for (int j = 0; j < n; ++j)\n if (j != c) mat[rcnt][ccnt++] = (*this)[i][j];\n ++rcnt;\n }\n T res = mat.det();\n if ((r ^ c) & 1) res *= -1;\n return res;\n }\n\n friend ostream &operator<<(ostream &os, Matrix &p) {\n size_t m = p.height(), n = p.width();\n for (int i = 0; i < m; i++) {\n os << \"[\";\n for (int j = 0; j < n; j++) {\n os << p[i][j] << (j + 1 == n ? \"]\\n\" : \",\");\n }\n }\n return (os);\n }\n};\n\ntemplate <int mod = (int)(1e9 + 7)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\nusing mint = ModInt<>;\n\nint n, k, c, t;\n\nint main() {\n cin >> n >> k >> c >> t;\n Matrix<mint> mat(5 * n, 5 * n), st(5 * n, 1);\n st[c - 1][0] = 1;\n for (int i = 0; i < 4 * n; ++i) mat[i + n][i] = 1;\n for (int i = 0; i < k; ++i) {\n int a, b, p;\n cin >> a >> b >> p, --a, --p;\n p *= n;\n for (int j = 0; j < a; ++j) mat[j + b][j + p] += 1;\n for (int j = a; j < a + b; ++j) mat[j - a][j + p] += 1;\n for (int j = a + b; j < n; ++j) mat[j][j + p] += 1;\n }\n mat ^= t;\n mat *= st;\n cout << mat[0][0] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 3924, "score_of_the_acc": -0.1111, "final_rank": 3 }, { "submission_id": "aoj_2778_5532751", "code_snippet": "#line 1 \"g.cpp\"\n#pragma region Macros\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define FOR(i, a, b) for(int i = (a); i < int(b); i++)\n#define REP(i, n) FOR(i, 0, n)\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\nvoid Case(int i) { cout << \"Case #\" << i << \": \"; }\n#pragma endregion Macros\n\n#line 1 \"/home/siro53/kyo-pro/compro_library/math/modint.hpp\"\ntemplate <int mod> struct ModInt {\n int x;\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod)\n x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod)\n x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inv();\n return *this;\n }\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n ModInt inv() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1)\n ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n static int get_mod() { return mod; }\n};\n#line 70 \"g.cpp\"\nusing mint = ModInt<MOD>;\n#line 1 \"/home/siro53/kyo-pro/compro_library/math/matrix.hpp\"\n// 行列ライブラリ\ntemplate <class T> struct Matrix {\n vector<vector<T>> A;\n\n Matrix() {}\n\n Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}\n\n Matrix(size_t n) : A(n, vector<T>(n, 0)){};\n\n size_t height() const { return (A.size()); }\n\n size_t width() const { return (A[0].size()); }\n\n inline const vector<T> &operator[](int k) const { return (A.at(k)); }\n\n inline vector<T> &operator[](int k) { return (A.at(k)); }\n\n // 単位行列\n static Matrix I(size_t n) {\n Matrix mat(n);\n for(int i = 0; i < n; i++)\n mat[i][i] = 1;\n return (mat);\n }\n\n Matrix &operator+=(const Matrix &B) {\n size_t n = height(), m = width();\n assert(n == B.height() && m == B.width());\n for(int i = 0; i < n; i++)\n for(int j = 0; j < m; j++)\n (*this)[i][j] += B[i][j];\n return (*this);\n }\n\n Matrix &operator-=(const Matrix &B) {\n size_t n = height(), m = width();\n assert(n == B.height() && m == B.width());\n for(int i = 0; i < n; i++)\n for(int j = 0; j < m; j++)\n (*this)[i][j] -= B[i][j];\n return (*this);\n }\n\n Matrix &operator*=(const Matrix &B) {\n size_t n = height(), m = B.width(), p = width();\n assert(p == B.height());\n vector<vector<T>> C(n, vector<T>(m, 0));\n\t\tT sum;\n for(int i = 0; i < n; i++){\n for(int j = 0; j < m; j++){\n\t\t\t\tsum = 0;\n for(int k = 0; k < p; k++){\n sum += (*this)[i][k] * B[k][j];\n\t\t\t\t}\n\t\t\t\tC[i][j] = sum;\n\t\t\t}\n\t\t}\n A.swap(C);\n return (*this);\n }\n\n // 累乗\n Matrix &operator^=(long long k) {\n Matrix B = Matrix::I(height());\n while(k > 0) {\n if(k & 1)\n B *= *this;\n *this *= *this;\n k >>= 1LL;\n }\n A.swap(B.A);\n return (*this);\n }\n\n Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }\n\n Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }\n\n Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }\n\n Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }\n\n friend ostream &operator<<(ostream &os, Matrix &p) {\n size_t n = p.height(), m = p.width();\n for(int i = 0; i < n; i++) {\n os << \"[\";\n for(int j = 0; j < m; j++) {\n os << p[i][j] << (j + 1 == m ? \"]\\n\" : \",\");\n }\n }\n return (os);\n }\n\n // 行列式\n T determinant() {\n Matrix B(*this);\n assert(width() == height());\n T ret = 1;\n for(int i = 0; i < width(); i++) {\n int idx = -1;\n for(int j = i; j < width(); j++) {\n if(B[j][i] != 0)\n idx = j;\n }\n if(idx == -1)\n return (0);\n if(i != idx) {\n ret *= -1;\n swap(B[i], B[idx]);\n }\n ret *= B[i][i];\n T vv = B[i][i];\n for(int j = 0; j < width(); j++) {\n B[i][j] /= vv;\n }\n for(int j = i + 1; j < width(); j++) {\n T a = B[j][i];\n for(int k = 0; k < width(); k++) {\n B[j][k] -= B[i][k] * a;\n }\n }\n }\n return (ret);\n }\n};\n#line 72 \"g.cpp\"\nusing matrix = Matrix<mint>;\n\nint main() {\n int N, K, C, T;\n cin >> N >> K >> C >> T;\n vector<int> a(K), b(K), t(K);\n REP(i, K) {\n cin >> a[i] >> b[i] >> t[i];\n a[i]--; t[i]--;\n }\n\n matrix A(N*5, N*5);\n REP(i, 4*N) A[i+N][i] = 1;\n REP(from, N) {\n REP(i, K) {\n int to;\n if(a[i] <= from and from <= a[i] + b[i] - 1) {\n to = from - a[i];\n }\n else if(from < a[i]) {\n to = from + b[i];\n }\n else {\n to = from;\n }\n assert(0 <= from and from < N);\n assert(0 <= to and to < N);\n A[to][from + t[i] * N] += 1;\n }\n }\n A ^= T;\n\n matrix B(5*N, 1);\n B[C-1][0] = 1;\n A *= B;\n\n mint ans = A[0][0]; \n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 3884, "score_of_the_acc": -0.1084, "final_rank": 2 }, { "submission_id": "aoj_2778_4926883", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing uint = unsigned;\nusing ll = long long;\n\nuint mod = 1000000007;\nstruct Modint{\n uint x = 0;\n Modint(const Modint& a): x(a.x){}\n Modint(ll a){\n a %= ll(mod);\n if(a < 0) a += mod;\n x = a;\n }\n Modint(){}\n Modint& operator+=(const Modint& a){\n x += a.x;\n if(x >= mod) x -= mod;\n return *this;\n }\n Modint& operator*=(const Modint& a){\n x = uint64_t(x) * a.x % mod;\n return *this;\n }\n Modint operator+(const Modint& a) const {\n return Modint(*this) += a;\n }\n Modint operator*(const Modint& a) const {\n return Modint(*this) *= a;\n }\n void operator++(int){\n *this += 1;\n }\n};\nstruct Matrix{\n vector<vector<Modint>> x;\n Matrix(ll n): x(n, vector<Modint>(n)){}\n Matrix operator*(const Matrix& a) const {\n const ll n = size();\n Matrix ans(n);\n for(ll i = 0; i < n; i++) for(ll j = 0; j < n; j++) for(ll k = 0; k < n; k++) ans[i][k] += x[i][j] * a[j][k];\n return ans;\n }\n Matrix pow(ll x) const {\n const ll n = size();\n Matrix ans(n), a = *this;\n for(ll i = 0; i < n; i++) ans[i][i] = 1;\n while(x){\n if(x & 1) ans = ans * a;\n a = a * a;\n x >>= 1;\n }\n return ans;\n }\n vector<Modint>& operator[](ll i){ return x[i]; }\n const vector<Modint>& operator[](ll i) const { return x[i]; }\n ll size() const { return x.size(); }\n};\nint main(){\n ll n, k, c, t;\n cin >> n >> k >> c >> t;\n Matrix d(5 * n);\n for(ll i = n; i < 5 * n; i++) d[i][i - n] = 1;\n for(ll i = 0; i < k; i++){\n ll a, b, t;\n cin >> a >> b >> t;\n a--; t--;\n for(ll j = 0; j < a; j++) d[j][t * n + j + b]++;\n for(ll j = a; j < a + b; j++) d[j][t * n + j - a]++;\n for(ll j = a + b; j < n; j++) d[j][t * n + j]++;\n }\n c--;\n Matrix a(5 * n);\n a[0][c] = 1;\n a = a * d.pow(t);\n cout << a[0][0].x << endl;\n}", "accuracy": 1, "time_ms": 1310, "memory_kb": 4020, "score_of_the_acc": -0.5579, "final_rank": 15 }, { "submission_id": "aoj_2778_3968146", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\n// ModInt begin\n\nusing ll = long long;\ntemplate<ll mod>\nstruct ModInt {\n ll v;\n ll mod_pow(ll x, ll n) const {\n return (!n) ? 1 : (mod_pow((x*x)%mod,n/2) * ((n&1)?x:1)) % mod;\n }\n ModInt(ll a = 0) : v((a %= mod) < 0 ? a + mod : a) {}\n ModInt operator+ ( const ModInt& b ) const {\n return (v + b.v >= mod ? ModInt(v + b.v - mod) : ModInt(v + b.v));\n }\n ModInt operator- () const {\n return ModInt(-v);\n }\n ModInt operator- ( const ModInt& b ) const {\n return (v - b.v < 0 ? ModInt(v - b.v + mod) : ModInt(v - b.v));\n }\n ModInt operator* ( const ModInt& b ) const {return (v * b.v) % mod;}\n ModInt operator/ ( const ModInt& b ) const {return (v * mod_pow(b.v, mod-2)) % mod;}\n \n bool operator== ( const ModInt &b ) const {return v == b.v;}\n bool operator!= ( const ModInt &b ) const {return !(*this == b); }\n ModInt& operator+= ( const ModInt &b ) {\n v += b.v;\n if(v >= mod) v -= mod;\n return *this;\n }\n ModInt& operator-= ( const ModInt &b ) {\n v -= b.v;\n if(v < 0) v += mod;\n return *this;\n }\n ModInt& operator*= ( const ModInt &b ) {\n (v *= b.v) %= mod;\n return *this;\n }\n ModInt& operator/= ( const ModInt &b ) {\n (v *= mod_pow(b.v, mod-2)) %= mod;\n return *this;\n }\n ModInt pow(ll x) { return ModInt(mod_pow(v, x)); }\n // operator int() const { return int(v); }\n // operator long long int() const { return v; }\n};\n\ntemplate<ll mod>\nostream& operator<< (ostream& out, ModInt<mod> a) {return out << a.v;}\ntemplate<ll mod>\nistream& operator>> (istream& in, ModInt<mod>& a) {\n in >> a.v;\n return in;\n}\n\n// ModInt end\n\n// 行列ライブラリ\n\n// size(): 行数を返す (列数は mat[0].size() で)\n// 演算子: 複合代入 (+=, *=, -=), 単項 (-), 二項 (+, -, *, ==)\n// eigen(N): N*N 単位行列を返す\n// pow(mat, k): mat の k 乗を返す\n\ntemplate <typename T>\nstruct Matrix {\n vector< vector<T> > mat;\n Matrix() {}\n Matrix(int h, int w, T val = T(0)) : mat(h, vector<T>(w, val)) {}\n size_t size() const { return mat.size(); }\n const vector<T>& operator[](int i) const { return mat[i]; }\n vector<T>& operator[](int i) { return mat[i]; }\n\n Matrix<T> &operator+=(const Matrix<T>& rhs) {\n assert(mat.size() == rhs.size());\n assert(mat[0].size() == rhs[0].size());\n for(size_t i=0; i<mat.size(); i++) {\n for(size_t j=0; j<mat[0].size(); j++) {\n mat[i][j] += rhs[i][j];\n }\n }\n return *this;\n }\n\n Matrix<T> operator-() const {\n Matrix<T> res(*this);\n for(size_t i=0; i<res.size(); i++) {\n for(size_t j=0; j<res[0].size(); j++) {\n res[i][j] *= T(-1);\n }\n }\n return res;\n }\n\n Matrix<T>& operator-=(const Matrix<T>& rhs) {\n return (Matrix<T>(*this) += -rhs);\n }\n\n Matrix<T>& operator*=(const Matrix<T>& rhs) {\n assert(mat[0].size() == rhs.size());\n size_t H = mat.size(), W = rhs[0].size(), C = rhs.size();\n Matrix<T> res(H, W);\n for(size_t i=0; i<H; i++) {\n for(size_t j=0; j<W; j++) {\n for(size_t k=0; k<C; k++) {\n res[i][j] += mat[i][k] * rhs[k][j];\n }\n }\n }\n this->mat = res.mat;\n return *this;\n }\n\n Matrix<T> operator+(const Matrix<T>& rhs) {\n return (Matrix<T>(*this) += rhs);\n }\n\n Matrix<T> operator*(const Matrix<T>& rhs) {\n return (Matrix<T>(*this) *= rhs);\n }\n\n Matrix<T> operator-(const Matrix<T> &rhs) {\n return (Matrix<T>(*this) -= rhs);\n }\n\n bool operator==(const Matrix<T> &rhs) const {\n return this->mat == rhs.mat;\n }\n bool operator!=(const Matrix<T> &rhs) const {\n return !(*this == rhs);\n }\n};\n\ntemplate <typename T>\nMatrix<T> eigen(size_t N) {\n Matrix<T> res(N, N, 0);\n for(size_t i=0; i<N; i++) res[i][i] = T(1);\n return res;\n}\n\ntemplate <typename T>\nMatrix<T> pow(Matrix<T> mat, long long int k) {\n Matrix<T> res = eigen<T>(mat.size());\n for(; k>0; k>>=1) {\n if(k & 1) res *= mat;\n mat *= mat;\n }\n return res;\n}\n\ntemplate <typename T>\nostream& operator<< (ostream& out, Matrix<T> mat) {\n int H = mat.size(), W = mat[0].size();\n out << \"[\" << endl;\n for(int i=0; i<H; i++) {\n out << \" [ \";\n for(int j=0; j<W; j++) out << mat[i][j] << \" \";\n out << \"]\" << endl;\n }\n out << \"]\" << endl;\n return out;\n}\n\nusing mint = ModInt<MOD>;\nint main() {\n int N, K, C, T; cin >> N >> K >> C >> T; C--;\n\n int M = 5 * N;\n Matrix<mint> mat(M, M);\n\n auto get_idx = [&](int time, int pos) {\n return time * N + pos;\n };\n\n for(int i=0; i<K; i++) {\n int a, b, t; cin >> a >> b >> t; a--;\n int l = a, r = a + b;\n vector<int> x, y;\n for(int j=0; j<N; j++) {\n if(l <= j and j < r) x.emplace_back(j);\n else y.emplace_back(j);\n }\n\n for(auto e : y) x.emplace_back(e);\n for(int j=0; j<N; j++) {\n int k = x[j]; // もともと k 番目だったものが j 番目に\n for(int s=0; s<1; s++) {\n int u = get_idx(s, j); // now\n int v = get_idx(s+t-1, k); // prev\n mat[u][v] += mint(1);\n }\n }\n }\n\n for(int i=0; i<N; i++) {\n for(int t=1; t<=4; t++) {\n int u = get_idx(t, i); // now\n int v = get_idx(t-1, i); // prev\n mat[u][v] += mint(1);\n }\n }\n\n mat = pow(mat, T);\n Matrix<mint> vec(M, 1);\n vec[C][0] = mint(1);\n\n vec = mat * vec;\n cout << vec[0][0] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1270, "memory_kb": 4212, "score_of_the_acc": -0.553, "final_rank": 14 }, { "submission_id": "aoj_2778_2738213", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\ntypedef vector<ll> V;\ntypedef vector<V> MATRIX;\n\nint SIZE;\nint base[40],work[40],next_loc[40];\n\nMATRIX calc(MATRIX left,MATRIX right){\n\n\tMATRIX ret(SIZE,V(SIZE));\n\n\tfor(int i = 0; i < SIZE; i++){\n\t\tfor(int k = 0; k < SIZE; k++)ret[i][k] = 0;\n\t}\n\n\tfor(int row = 0; row < SIZE; row++){\n\t\tfor(int col = 0; col < SIZE; col++){\n\t\t\tfor(int a = 0; a < SIZE; a++){\n\t\t\t\tret[row][col] += left[row][a]*right[a][col]%MOD;\n\t\t\t\tret[row][col] %= MOD;\n\t\t\t}\n\t\t}\n\t}\n\n\treturn ret;\n}\n\n\nMATRIX pow(MATRIX MULT,int count){\n\n\tMATRIX ret(SIZE,V(SIZE));\n\n\tfor(int row = 0; row < SIZE; row++){\n\t\tfor(int col = 0; col < SIZE; col++){\n\t\t\tif(row == col)ret[row][col] = 1;\n\t\t\telse{\n\t\t\t\tret[row][col] = 0;\n\t\t\t}\n\t\t}\n\t}\n\n\twhile(count > 0){\n\t\tif(count%2 == 1)ret = calc(ret,MULT);\n\t\tMULT = calc(MULT,MULT);\n\t\tcount /= 2;\n\t}\n\n\treturn ret;\n}\n\n\nint main(){\n\n\tint N,K,C,T;\n\tscanf(\"%d %d %d %d\",&N,&K,&C,&T);\n\tC--;\n\n\tfor(int i = 0; i < N; i++)base[i] = i;\n\n\tSIZE = 5*N;\n\n\tMATRIX MULT(SIZE,V(SIZE));\n\tfor(int row = 0; row < SIZE; row++){\n\t\tfor(int col = 0; col < SIZE; col++)MULT[row][col] = 0;\n\t}\n\n\tint from,num,add_time;\n\tint work_index,base_row = 0,base_col;\n\n\tfor(int loop = 0; loop < K; loop++){\n\t\tscanf(\"%d %d %d\",&from,&num,&add_time);\n\t\tfrom--;\n\n\t\twork_index = 0;\n\t\tfor(int i = 0;i < num; i++){\n\t\t\twork[work_index++] = base[from+i];\n\t\t}\n\n\t\tfor(int i = 0; i < N; i++){\n\t\t\tif(i >= from && i <= from+num-1)continue;\n\t\t\twork[work_index++] = base[i];\n\t\t}\n\n\t\tbase_col = N*(add_time-1);\n\t\tfor(int i = 0; i < N; i++){\n\t\t\tMULT[base_row+work[i]][base_col+i]++;\n\t\t}\n\t}\n\n\tfor(base_row = N; base_row <= 4*N; base_row += N){\n\t\tfor(base_col = 0; base_col <= 4*N; base_col += N){\n\t\t\tif(base_row-N != base_col)continue;\n\t\t\tfor(int i = 0; i < N; i++)MULT[base_row+i][base_col+i] = 1;\n\t\t}\n\t}\n\n\tMULT = pow(MULT,T);\n\n\tprintf(\"%lld\\n\",MULT[C][0]%MOD);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 760, "memory_kb": 4876, "score_of_the_acc": -0.3723, "final_rank": 13 }, { "submission_id": "aoj_2778_2558451", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define GET_MACRO(_1, _2, _3, NAME, ...) NAME\n#define _repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define _rep(i,n) _repl(i,0,n)\n#define rep(...) GET_MACRO(__VA_ARGS__, _repl, _rep)(__VA_ARGS__)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream &o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream &o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define MOD 1000000007\n\ntypedef vector<vector<long>> mat;\n\n// return A*B\nmat mat_mul(const mat &A, const mat &B){\n int n=A.size(), m=B[0].size(), l=B.size();\n mat ret(n, vector<long>(m, 0));\n rep(i,n) rep(k,l) if(A[i][k]!=0) rep(j,m){\n (ret[i][j] += A[i][k] * B[k][j]) %= MOD;\n }\n return ret;\n}\n\n// A^p\nmat mat_pow(const mat &A, long p){\n int n = A.size();\n mat tmp(A), ret(n, vector<long>(n,0));\n rep(i,n) ret[i][i] = 1;\n while(p>0){\n if(p&1) ret = mat_mul(tmp, ret);\n tmp = mat_mul(tmp, tmp);\n p /= 2;\n }\n return ret;\n}\n\nint main(){\n int n,k,c,T;\n cin>>n>>k>>c>>T;\n c--;\n\n vector<int> a(k), b(k), t(k);\n rep(i,k) cin>>a[i]>>b[i]>>t[i];\n rep(i,k) a[i]--;\n\n int sz = 5*n;\n\n mat A(sz, vector<long>(sz, 0));\n rep(i,n,sz){\n A[i-n][i] += 1;\n }\n\n rep(i,k){\n rep(j,n){\n int to = (t[i]-1)*n + j;\n if(j < a[i]) to += b[i];\n else if(j < a[i]+b[i]) to -= a[i];\n A[to][j] += 1;\n }\n }\n\n A = mat_pow(A, T);\n\n cout << A[0][c] << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 4196, "score_of_the_acc": -0.1247, "final_rank": 5 }, { "submission_id": "aoj_2778_2558275", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nusing vl = vector<ll>;\nusing mat = vector<vl>;\n\nconst ll mod = 1e9+7;\n\nmat mul(const mat &a, const mat &b)\n{\n int n = a.size();\n mat c(n,vl(n));\n rep(i,n)rep(j,n)rep(k,n) (c[i][j]+=a[i][k]*b[k][j])%=mod;\n return c;\n}\n\nvl mul(const mat &a, const vl &b)\n{\n int n = a.size();\n vl c(n);\n rep(i,n)rep(j,n) (c[i]+=a[i][j]*b[j])%=mod;\n return c;\n}\n\nmat mat_pow(const mat &a, int T)\n{\n int n = a.size();\n mat ret(n,vl(n));\n rep(i,n) ret[i][i] = 1;\n\n mat p(a);\n while(T)\n {\n if(T&1) ret = mul(ret,p);\n p = mul(p,p);\n T>>=1;\n }\n return ret;\n}\n\nint main()\n{\n int n,k,C,T;\n cin >>n >>k >>C >>T;\n --C;\n\n vector<int> a(k),b(k),t(k);\n rep(i,k)\n {\n cin >>a[i] >>b[i] >>t[i];\n --a[i];\n }\n\n int SZ = 5*n;\n\n mat A(SZ,vl(SZ));\n // make A\n for(int i=n; i<5*n; ++i) A[i-n][i] += 1;\n rep(i,k)\n {\n rep(j,n)\n {\n int idx = (t[i]-1)*n+j;\n if(j<a[i]) idx += b[i];\n else if(j<a[i]+b[i]) idx -= a[i];\n\n A[idx][j] += 1;\n }\n }\n\n vl B(SZ);\n B[C] = 1;\n\n vl res = mul(mat_pow(A,T),B);\n cout << res[0] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 650, "memory_kb": 4180, "score_of_the_acc": -0.2778, "final_rank": 8 }, { "submission_id": "aoj_2778_2342162", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n\nconst int mod = 1000000007;\nstruct Mod {\npublic:\n\tint num;\n\tMod() : Mod(0) { ; }\n\tMod(long long int n) : num((n % mod + mod) % mod) {\n\t\tstatic_assert(mod<INT_MAX / 2, \"mod is too big, please make num 'long long int' from 'int'\");\n\t}\n\tMod(int n) : Mod(static_cast<long long int>(n)) { ; }\n\toperator int() { return num; }\n};\n\nMod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mod); }\nMod operator+(const long long int a, const Mod b) { return Mod(a) + b; }\nMod operator+(const Mod a, const long long int b) { return b + a; }\nMod operator++(Mod &a) { return a + Mod(1); }\nMod operator-(const Mod a, const Mod b) { return Mod((mod + a.num - b.num) % mod); }\nMod operator-(const long long int a, const Mod b) { return Mod(a) - b; }\nMod operator--(Mod &a) { return a - Mod(1); }\nMod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mod); }\nMod operator*(const long long int a, const Mod b) { return Mod(a)*b; }\nMod operator*(const Mod a, const long long int b) { return Mod(b)*a; }\nMod operator*(const Mod a, const int b) { return Mod(b)*a; }\nMod operator+=(Mod &a, const Mod b) { return a = a + b; }\nMod operator+=(long long int &a, const Mod b) { return a = a + b; }\nMod operator-=(Mod &a, const Mod b) { return a = a - b; }\nMod operator-=(long long int &a, const Mod b) { return a = a - b; }\nMod operator*=(Mod &a, const Mod b) { return a = a * b; }\nMod operator*=(long long int &a, const Mod b) { return a = a * b; }\nMod operator*=(Mod& a, const long long int &b) { return a = a * b; }\nMod operator^(const Mod a, const int n) {\n\tif (n == 0) return Mod(1);\n\tMod res = (a * a) ^ (n / 2);\n\tif (n % 2) res = res * a;\n\treturn res;\n}\nMod mod_pow(const Mod a, const long long int n) {\n\tif (n == 0) return Mod(1);\n\tMod res = mod_pow((a * a), (n / 2));\n\tif (n % 2) res = res * a;\n\treturn res;\n}\nMod inv(const Mod a) { return a ^ (mod - 2); }\nMod operator/(const Mod a, const Mod b) {\n\tassert(b.num != 0);\n\treturn a * inv(b);\n}\nMod operator/(const long long int a, const Mod b) {\n\treturn Mod(a) / b;\n}\nMod operator/=(Mod &a, const Mod b) {\n\treturn a = a / b;\n}\n\n#define MAX_MOD_N 1024000\n\nMod fact[MAX_MOD_N], factinv[MAX_MOD_N];\nvoid init(const int amax = MAX_MOD_N) {\n\tfact[0] = Mod(1); factinv[0] = 1;\n\tfor (int i = 0; i < amax - 1; ++i) {\n\t\tfact[i + 1] = fact[i] * Mod(i + 1);\n\t\tfactinv[i + 1] = factinv[i] / Mod(i + 1);\n\t}\n}\nMod comb(const int a, const int b) {\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\n\ntemplate<typename T>\nvector<vector<T>> keisann(const vector<vector<T>>l, const vector<vector<T>>r) {\n\tvector<vector<T>>ans(l.size(), vector<T>(r[0].size()));\n\tassert(l[0].size() == r.size());\n\tfor (unsigned int h = 0; h < l.size(); ++h) {\n\t\tfor (unsigned int i = 0; i < r.size(); ++i) {\n\t\t\tfor (unsigned int w = 0; w < r[0].size(); ++w) {\n\n\t\t\t\tans[h][w] += l[h][i] * r[i][w];\n\t\t\t}\n\t\t}\n\t}\n\treturn ans;\n}\n\ntemplate<typename T>\nvector<vector<T>>powgyou(vector<vector<T>>a, const long long int n) {\n\tassert(a.size() == a[0].size());\n\tif (!n) {\n\t\tvector<vector<T>>e(a.size(), vector<T>(a[0].size()));\n\t\tfor (unsigned int i = 0; i < a.size(); ++i) {\n\t\t\te[i][i] = 1;\n\t\t}\n\t\treturn e;\n\t}\n\tif (n == 1)return a;\n\telse {\n\t\tvector<vector<T>>ans(a.size(), vector<T>(a[0].size(), 0));\n\t\tans = powgyou(a, n / 2);\n\t\tans = keisann(ans, ans);\n\t\tif (n % 2) {\n\t\t\tans = keisann(ans, a);\n\t\t}\n\t\treturn ans;\n\t}\n}\n\nint main(){\n\tint N, K, C, T; cin >> N >> K >> C >> T;\n\t\n\tC--;\n\tvector<vector<Mod>>from(5*N, vector<Mod>(1));\n\tfrom[5*C][0]+=1;\n\tvector<vector<Mod>>gyou(5*N, vector<Mod>(5*N));\n\tfor (int i = 0; i < N; ++i) {\n\t\tfor (int j = 0; j < 4; ++j) {\n\t\t\tgyou[5 * i + j][5 *i + j + 1] = 1;\n\t\t}\n\t}\n\tfor (int i = 0; i < K; ++i) {\n\t\tint a, b, t; cin >> a >> b >> t;\n\t\ta--;\n\n\t\tfor (int j = 0; j < N; ++j) {\n\t\t\tconst int afrom = 5 * j;\n\t\t\tint to;\n\t\t\tif (j<a) {\n\t\t\t\tto = 5 * (j + b) + t - 1;\n\t\t\t}\n\t\t\telse if ((j>a + b - 1)) {\n\t\t\t\tto = afrom+t-1;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tto = 5 * (j - a) + t-1;\n\n\t\t\t}\n\t\t\tgyou[to][afrom] += 1;\n\t\t}\n\t}\n\tauto kake = powgyou(gyou,T);\n\tauto ans = keisann(kake, from);\n\tcout << ans[0][0] << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1170, "memory_kb": 17820, "score_of_the_acc": -1.4097, "final_rank": 20 }, { "submission_id": "aoj_2778_2270769", "code_snippet": "#include<iostream>\n#include<vector>\n\n#define rep(i,n) for(int i=0;i<(int)n;i++)\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\nconst ll mod = 1000000007;\nconst int tMAX = 5;\n\ninline void init(mat &A, int n, int m){\n A = mat(n,vec(m,0));\n}\n\ninline mat add(mat A, mat B){\n mat res = A;\n rep(i,A.size())rep(j,A[i].size())(res[i][j] += B[i][j]) %= mod;\n return res;\n}\n\ninline mat mul(mat A, mat B){\n mat res; init(res,A.size(),B[0].size());\n rep(i,A.size())rep(j,B[0].size()){\n rep(k,B.size())res[i][j] += (A[i][k] * B[k][j]) % mod;\n res[i][j] %= mod;\n }\n return res;\n}\n\ninline mat pow_mat(mat &A, ll n){\n if(n==1LL)return A;\n mat B = pow_mat(A,n/2), res = mul(B,B);\n if(n&1)res = mul(A,res);\n return res;\n}\n\nll N,K,C,T,tr;\nll a, b, t;\nvec shuffle(50), perm(50);\nmat perm_mat[10], dp[500100], tmp;\nmat large_mat, thin_mat;\n\nint main(){\n cin >> N >> K >> C >> T;\n\n rep(i,tMAX+1)init(perm_mat[i],N,N);\n rep(i,N)perm[i] = i;\n\n rep(i,K){\n cin >> a >> b >> t;\n rep(j,b)shuffle[j] = perm[j+a-1];\n rep(j,a-1)shuffle[b+j] = perm[j];\n for(int j=a+b-1;j<N;j++)shuffle[j] = perm[j];\n rep(j,N)perm_mat[t][j][shuffle[j]]++;\n }\n\n rep(i,tMAX+1)init(dp[i],N,N);\n rep(i,N)dp[0][i][i] = 1;\n \n rep(i,tMAX)rep(j,tMAX){\n if(i+j+1<=tMAX){\n tmp = mul(perm_mat[j+1],dp[i]);\n dp[i+j+1] = add(dp[i+j+1],tmp);\n }\n }\n\n init(large_mat,N*tMAX,N*tMAX);\n rep(id,tMAX){\n rep(i,N)rep(j,N)large_mat[i][j+id*N] = perm_mat[id+1][i][j];\n }\n rep(i,N*(tMAX-1))large_mat[i+N][i] = 1;\n\n init(thin_mat,N*tMAX,N);\n rep(id,tMAX){\n rep(i,N)rep(j,N)thin_mat[i+id*N][j] = dp[tMAX-1-id][i][j];\n }\n\n tmp = pow_mat(large_mat,T);\n cout << mul(tmp,thin_mat)[(tMAX-1)*N][C-1] << endl;\n}", "accuracy": 1, "time_ms": 470, "memory_kb": 16880, "score_of_the_acc": -1.0391, "final_rank": 19 }, { "submission_id": "aoj_2778_2161191", "code_snippet": "#include <valarray>\n#include <vector>\n#include <cstdio>\nusing namespace std;\ntypedef valarray<__int128_t>V;\nint n,m=1000000007;\nV z;\nV &Me(const V &_x,const V &_y){\n\tint i=0,j;\n\tfor(;i<n;i++)for(j=0;j<n;j++)z[i*n+j]=(_x[slice(i*n,n,1)]*_y[slice(j,n,n)]).sum()%m;\n\treturn z;\n}\nV &Mx(const V &_x){\n\tint i=0,j;\n\tfor(;i<n;i++)for(j=0;j<n;j++)z[i*n+j]=(_x[slice(i*n,n,1)]*_x[slice(j,n,n)]).sum()%m;\n\treturn z;\n}\nint main(){\n\tint N,K,C,T;\n\tscanf(\"%d%d%d%d\",&N,&K,&C,&T);C--;\n\tvector<int>a(K),b(K),t(K);\n\tfor(int i=0;i<K;i++)scanf(\"%d%d%d\",&a[i],&b[i],&t[i]),a[i]--;\n\tn=N*5;\n\tV x(n*n);\n\tV e(n*n);\n\tz.resize(n*n);\n\tfor(int i=0;i<n;i++)e[i*n+i]=1;\n\tfor(int i=0;i<K;i++)for(int j=0;j<N;j++){\n\t\tint nj=j<a[i]?j+b[i]:j<a[i]+b[i]?j-a[i]:j;\n\t\tx[j*5*n+nj*5+t[i]-1]++;\n\t}\n\tfor(int i=0;i<N;i++)for(int j=1;j<5;j++)x[(i*5+j)*n+i*5+j-1]++;\n\tfor(;T;T>>=1){\n\t\tif(T&1)e=Me(e,x);\n\t\tx=Mx(x);\n\t}\n\tprintf(\"%lld\\n\",(long long)e[C*5*n]);\n}", "accuracy": 1, "time_ms": 420, "memory_kb": 4236, "score_of_the_acc": -0.1802, "final_rank": 6 }, { "submission_id": "aoj_2778_2156949", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long // <-----!!!!!!!!!!!!!!!!!!!\n \n#define rep(i,n) for (int i=0;i<(n);++i)\n#define rep2(i,a,b) for (int i=(a);i<(b);++i)\n#define rrep(i,n) for (int i=(n)-1;i>=0;--i)\n#define rrep2(i,a,b) for (int i=(a)-1;i>=b;--i)\n#define chmin(a,b) (a)=min((a),(b));\n#define chmax(a,b) (a)=max((a),(b));\n#define all(a) (a).begin(),(a).end()\n#define rall(a) (a).rbegin(),(a).rend()\n#define printV(_v) cout<<(#_v)<<\":\";for(auto(_x):(_v)){cout<<\" \"<<(_x);}cout<<endl;\n#define printVS(vs) cout<<(#vs)<<\":\"<<endl;for(auto(s):(vs)){cout<<(s)<< endl;}\n#define printVV(vv) cout<<(#vv)<<\":\"<<endl;for(auto(v):(vv)){for(auto(x):(v)){cout<<\" \"<<(x);}cout<<endl;}\n#define printP(p) cout<<(#p)<<(p).first<<\" \"<<(p).second<<endl;\n#define printVP(vp) cout<<(#vp)<<\":\"<<endl;for(auto(p):(vp)){cout<<(p).first<<\" \"<<(p).second<<endl;}\n \ninline void output(){ cout << endl; }\ntemplate<typename First, typename... Rest>\ninline void output(const First& first, const Rest&... rest) {\n cout << first << \" \"; output(rest...);\n}\n \nusing ll = long long;\nusing Pii = pair<int, int>;\nusing TUPLE = tuple<int, int, int>;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nconst int inf = 1ll << 60;\nconst int mod = 1e9 + 7;\nusing Graph = vector<vector<int>>;\n \nusing Vec = vector<int>;\nusing Mat = vector<Vec>;\n \nMat mulMatMat(const Mat& a, const Mat& b) {\n int n = a.size();\n int m = b[0].size();\n assert(a[0].size() == b.size());\n Mat c(n, Vec(m, 0));\n rep(i, n) {\n rep(j, m) {\n rep(k, a[0].size()) {\n (c[i][j] += a[i][k] * b[k][j]) %= mod;\n }\n }\n }\n return c;\n}\n \nvoid addMatMat(Mat& a, const Mat& b) {\n assert(a.size() == b.size());\n assert(a[0].size() == b[0].size());\n rep(i, a.size()) {\n rep(j, a[0].size()) {\n (a[i][j] += b[i][j]) %= mod;\n }\n }\n}\n \nVec mulMatVec(const Mat& a, const Vec& v) {\n int n = a.size();\n assert(a[0].size() == v.size());\n Vec c(n, 0);\n rep(i, n) {\n rep(j, a[0].size()) {\n (c[i] += a[i][j] * v[j]) %= mod;\n }\n }\n return c;\n}\n \nMat identityMatrix(int n) {\n Mat a(n, Vec(n));\n rep(i, n) a[i][i] = 1;\n return a;\n}\n \nMat powMat(Mat a, int t) {\n assert(a.size() == a[0].size());\n Mat b = identityMatrix(a.size());\n for (; t > 0; t >>= 1) {\n if (t & 1) {\n b = mulMatMat(a, b);\n }\n a = mulMatMat(a, a);\n }\n return b;\n}\n \nmain() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(0);\n \n int N, K, C, T;\n cin >> N >> K >> C >> T;\n C--;\n vector<Mat> A(5, Mat(N, Vec(N)));\n rep(k, K) {\n int a, b, t;\n cin >> a >> b >> t;\n a--; t--;\n rep(i, a) A[t][i][i + b]++;\n rep2(i, a, a + b) A[t][i][i - a]++;\n rep2(i, a + b, N) A[t][i][i]++;\n }\n \n // rep(t, 5) {\n // printVV(A[t]);\n // }\n \n Mat B(5*N, Vec(5*N));\n rep(t, 5) {\n rep(i, N) {\n rep(j, N) {\n B[i][j + t*N] = A[t][i][j];\n }\n }\n }\n rep(j, 4 * N) {\n B[j + N][j] = 1;\n }\n \n // printVV(B);\n \n vector<Mat> dp(5, Mat(N, Vec(N)));\n dp[0] = identityMatrix(N);\n rep2(i, 1, 5) {\n rep(j, i) {\n addMatMat(dp[i], mulMatMat(A[i - j - 1], dp[j]));\n }\n }\n \n // rep(t, 5) {\n // printVV(dp[t]);\n // }\n \n auto D = powMat(B, T);\n \n Mat E(N, Vec(N));\n rep(k, 5) {\n Mat F(N, Vec(N));\n rep(i, N) {\n rep(j, N) {\n F[i][j] = D[i + 4*N][j + k*N];\n }\n }\n addMatMat(E, mulMatMat(F, dp[4 - k]));\n }\n \n cout << E[C][0] << endl;\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 4212, "score_of_the_acc": -0.2843, "final_rank": 9 }, { "submission_id": "aoj_2778_2155036", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long // <-----!!!!!!!!!!!!!!!!!!!\n\n#define rep(i,n) for (int i=0;i<(n);++i)\n#define rep2(i,a,b) for (int i=(a);i<(b);++i)\n#define rrep(i,n) for (int i=(n)-1;i>=0;--i)\n#define rrep2(i,a,b) for (int i=(a)-1;i>=b;--i)\n#define chmin(a,b) (a)=min((a),(b));\n#define chmax(a,b) (a)=max((a),(b));\n#define all(a) (a).begin(),(a).end()\n#define rall(a) (a).rbegin(),(a).rend()\n#define printV(_v) cout<<(#_v)<<\":\";for(auto(_x):(_v)){cout<<\" \"<<(_x);}cout<<endl;\n#define printVS(vs) cout<<(#vs)<<\":\"<<endl;for(auto(s):(vs)){cout<<(s)<< endl;}\n#define printVV(vv) cout<<(#vv)<<\":\"<<endl;for(auto(v):(vv)){for(auto(x):(v)){cout<<\" \"<<(x);}cout<<endl;}\n#define printP(p) cout<<(#p)<<(p).first<<\" \"<<(p).second<<endl;\n#define printVP(vp) cout<<(#vp)<<\":\"<<endl;for(auto(p):(vp)){cout<<(p).first<<\" \"<<(p).second<<endl;}\n\ninline void output(){ cout << endl; }\ntemplate<typename First, typename... Rest>\ninline void output(const First& first, const Rest&... rest) {\n cout << first << \" \"; output(rest...);\n}\n\nusing ll = long long;\nusing Pii = pair<int, int>;\nusing TUPLE = tuple<int, int, int>;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nconst int inf = 1ll << 60;\nconst int mod = 1e9 + 7;\nusing Graph = vector<vector<int>>;\n\nusing Vec = vector<int>;\nusing Mat = vector<Vec>;\n\nMat mulMatMat(const Mat& a, const Mat& b) {\n int n = a.size();\n int m = b[0].size();\n assert(a[0].size() == b.size());\n Mat c(n, Vec(m, 0));\n rep(i, n) {\n rep(j, m) {\n rep(k, a[0].size()) {\n (c[i][j] += a[i][k] * b[k][j]) %= mod;\n }\n }\n }\n return c;\n}\n\nvoid addMatMat(Mat& a, const Mat& b) {\n assert(a.size() == b.size());\n assert(a[0].size() == b[0].size());\n rep(i, a.size()) {\n rep(j, a[0].size()) {\n (a[i][j] += b[i][j]) %= mod;\n }\n }\n}\n\nVec mulMatVec(const Mat& a, const Vec& v) {\n int n = a.size();\n assert(a[0].size() == v.size());\n Vec c(n, 0);\n rep(i, n) {\n rep(j, a[0].size()) {\n (c[i] += a[i][j] * v[j]) %= mod;\n }\n }\n return c;\n}\n\nMat identityMatrix(int n) {\n Mat a(n, Vec(n));\n rep(i, n) a[i][i] = 1;\n return a;\n}\n\nMat powMat(Mat a, int t) {\n assert(a.size() == a[0].size());\n Mat b = identityMatrix(a.size());\n for (; t > 0; t >>= 1) {\n if (t & 1) {\n b = mulMatMat(a, b);\n }\n a = mulMatMat(a, a);\n }\n return b;\n}\n\nmain() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(0);\n\n int N, K, C, T;\n cin >> N >> K >> C >> T;\n C--;\n vector<Mat> A(5, Mat(N, Vec(N)));\n rep(k, K) {\n int a, b, t;\n cin >> a >> b >> t;\n a--; t--;\n rep(i, a) A[t][i][i + b]++;\n rep2(i, a, a + b) A[t][i][i - a]++;\n rep2(i, a + b, N) A[t][i][i]++;\n }\n\n // rep(t, 5) {\n // printVV(A[t]);\n // }\n\n Mat B(5*N, Vec(5*N));\n rep(t, 5) {\n rep(i, N) {\n rep(j, N) {\n B[i][j + t*N] = A[t][i][j];\n }\n }\n }\n rep(j, 4 * N) {\n B[j + N][j] = 1;\n }\n\n // printVV(B);\n\n vector<Mat> dp(5, Mat(N, Vec(N)));\n dp[0] = identityMatrix(N);\n rep2(i, 1, 5) {\n rep(j, i) {\n addMatMat(dp[i], mulMatMat(A[i - j - 1], dp[j]));\n }\n }\n\n // rep(t, 5) {\n // printVV(dp[t]);\n // }\n\n auto D = powMat(B, T);\n\n Mat E(N, Vec(N));\n rep(k, 5) {\n Mat F(N, Vec(N));\n rep(i, N) {\n rep(j, N) {\n F[i][j] = D[i + 4*N][j + k*N];\n }\n }\n addMatMat(E, mulMatMat(F, dp[4 - k]));\n }\n\n cout << E[C][0] << endl;\n}", "accuracy": 1, "time_ms": 690, "memory_kb": 4264, "score_of_the_acc": -0.301, "final_rank": 11 }, { "submission_id": "aoj_2778_2030187", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n \n#define int long long\ntypedef pair<int,int>pint;\ntypedef vector<int>vint;\ntypedef vector<pint>vpint;\n#define pb push_back\n#define mp make_pair\n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define reps(i,f,n) for(int i=(f);i<(n);i++)\n#define each(it,v) for(__typeof((v).begin()) it=(v).begin();it!=(v).end();it++)\ntemplate<class T,class U>inline void chmin(T &t,U f){if(t>f)t=f;}\ntemplate<class T,class U>inline void chmax(T &t,U f){if(t<f)t=f;}\n \ntypedef vector<vint>mat;\nconst int mod=1000000007;\n \nmat mul(mat A,mat B){\n mat C(A.size(),vint(B[0].size()));\n rep(i,C.size()){\n rep(j,C[0].size()){\n rep(k,A[0].size()){\n (C[i][j]+=A[i][k]*B[k][j])%=mod;\n }\n }\n }\n return C;\n}\n \nmat mpow(mat A,int m){\n mat B(A.size(),vint(A.size()));\n rep(i,A.size())B[i][i]=1;\n for(;m;m>>=1,A=mul(A,A))if(m&1)B=mul(A,B);\n return B;\n}\n \nint N,K,C,T;\nint a[114514],b[114514],t[114514];\nsigned main(){\n cin>>N>>K>>C>>T;C--;\n rep(i,K)cin>>a[i]>>b[i]>>t[i],a[i]--;\n \n mat X(N*5,vint(1)),A(N*5,vint(N*5));\n X[C][0]=1;\n rep(i,N*4)A[N+i][i]=1;\n rep(k,K){\n int bb=(t[k]-1)*N;\n rep(i,N){\n if(i<a[k])A[i+b[k]][bb+i]++;\n else if(i<a[k]+b[k])A[i-a[k]][bb+i]++;\n else A[i][bb+i]++;\n }\n }\n \n \n X=mul(mpow(A,T),X);\n cout<<X[0][0]<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 650, "memory_kb": 4780, "score_of_the_acc": -0.3175, "final_rank": 12 }, { "submission_id": "aoj_2778_1847138", "code_snippet": "#include<bits/stdc++.h>\n\n#define rep(i,n) for(int i=0;i<(int)n;i++)\n#define all(c) (c).begin(),(c).end()\n#define mp make_pair\n#define pb push_back\n#define each(i,c) for(__typeof((c).begin()) i=(c).begin();i!=(c).end();i++)\n#define dbg(x) cerr<<__LINE__<<\": \"<<#x<<\" = \"<<(x)<<endl\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pi;\nconst int inf = (int)1e9;\nconst double INF = 1e12, EPS = 1e-9;\n\nconst int mod = 1e9 + 7;\ntypedef vector<vi> M;\ninline M operator*(const M & a, const M &b){\n\tM c(a.size(), vi(b[0].size()));\n\trep(i, c.size()) rep(j, c[0].size()){\n\t\tll s = 0;\n\t\trep(k, a[0].size()) s += (ll)a[i][k] * b[k][j] % mod;\n\t\tc[i][j] = s % mod;\n\t}\n\treturn c;\n}\ninline M pow(M a, ll m){\n\tM res(a.size(), vi(a.size()));\n\trep(i, a.size()) res[i][i] = 1;\n\tfor(; m; m /= 2){\n\t\tif(m & 1) res = res * a;\n\t\ta = a * a;\n\t}\n\treturn res;\n}\n\nint n, K, c, T, a[1000], b[1000], t[1000];\nint dp[10][40];\n\n\nint main(){\n\tcin >> n >> K >> c >> T;\n\trep(i, K) cin >> a[i] >> b[i] >> t[i], a[i]--;\n\t\n\tM A(5 * n, vi(5 * n));\n\t\n\trep(s, 5 * n){\n\t\tmemset(dp, 0, sizeof(dp));\n\t\tdp[s / n][s % n] = 1;\n\t\trep(i, 5) rep(j, n) if(dp[i][j]) rep(k, K){\n\t\t\tint nj = j >= a[k] + b[k] ? j : j >= a[k] ? j - a[k] : j + b[k];\n\t\t\t(dp[i + t[k]][nj] += dp[i][j]) %= mod;\n\t\t}\n\t\tfor(int i = 5; i < 10; i++) rep(j, n) (A[(i - 5) * n + j][s] += dp[i][j]) %= mod;\n\t}\n\tA = pow(A, T / 5);\n\tM x(5 * n, vi(1));\n\tx[c - 1][0] = 1;\n\tx = A * x;\n\t\n\tmemset(dp, 0, sizeof(dp));\n\trep(i, 5 * n) dp[i / n][i % n] = x[i][0];\n\trep(i, 5) rep(j, n) if(dp[i][j]) rep(k, K){\n\t\tint nj = j >= a[k] + b[k] ? j : j >= a[k] ? j - a[k] : j + b[k];\n\t\t(dp[i + t[k]][nj] += dp[i][j]) %= mod;\n\t}\n\tcout << dp[T % 5][0] << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 3688, "score_of_the_acc": -0.0954, "final_rank": 1 }, { "submission_id": "aoj_2778_1703738", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef long long LL;\ntypedef pair<LL, LL> PLL;\n\n#define ALL(a) (a).begin(),(a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define SORT(c) sort((c).begin(),(c).end())\n\n#define FOR(i,a,b) for(int i=(a);i<(b);++i)\n#define REP(i,n) FOR(i,0,n)\n\n#define FF first\n#define SS second\ntemplate<class S, class T>\nistream& operator>>(istream& is, pair<S,T>& p){\n return is >> p.FF >> p.SS;\n}\n\nconst double EPS = 1e-10;\nconst double PI = acos(-1.0);\nconst LL MOD = 1e9+7;\n\ntypedef vector<LL> Col;\ntypedef vector<Col> Matrix;\nMatrix mul(const Matrix& A, const Matrix& B){\n const int R = A.size(), C = B[0].size(), sz = B.size();\n Matrix AB(R, Col(C));\n\n for(int i=0;i<R;++i)\n for(int j=0;j<C;++j)\n for(int k=0;k<sz;++k)\n\t\t(AB[i][j] += A[i][k] * B[k][j]) %= MOD;\n\n return AB;\n}\n\n// O(N^3 lgN)\nMatrix powA(const Matrix& A, int n){\n const int N = A.size();\n Matrix p(N, Col(N, 0)), w = A;\n for(int i=0;i<N;++i) p[i][i] = 1;\n\n while(n>0){\n\tif(n&1)\n\t p = mul(p, w);\n\tw = mul(w, w);\n\tn >>= 1;\n }\n\n return p;\n}\n\nvoid dump(const Matrix& A){\n REP(i,SZ(A)){\n\tREP(j,SZ(A[i]))\n\t cout << A[i][j] << (j%5==4?\" | \":\" \");\n\tcout << endl;\n\tif(i%5==4)cout<<string(SZ(A)+20,'-')<<endl;\n }\n}\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n int N, K, C, T; cin >> N >> K >> C >> T;\n --C;\n VI as(K), bs(K), ts(K);\n Matrix A(5*N, Col(5*N));\n REP(i,N) REP(t,4)\n\tA[5*i+t][5*i+t+1]++;\n\n REP(i,K){\n\tcin >> as[i] >> bs[i] >> ts[i];\n\t--as[i];\n\t--ts[i];\n\tfor(int k=0;k<bs[i];++k)\n\t A[k*5+ts[i]][(as[i]+k)*5]++;\n\tfor(int k=0;k<as[i];++k)\n\t A[(bs[i]+k)*5+ts[i]][k*5]++;\n\tfor(int k=as[i]+bs[i];k<N;++k)\n\t A[5*k+ts[i]][5*k]++;\n }\n\n A = powA(A, T);\n cout << A[0][5*C] << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 670, "memory_kb": 4168, "score_of_the_acc": -0.2858, "final_rank": 10 }, { "submission_id": "aoj_2778_1696692", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef complex<double> P;\ntypedef pair<int,int> pii;\n#define REP(i,n) for(ll i=0;i<n;++i)\n#define REPR(i,n) for(ll i=1;i<n;++i)\n#define FOR(i,a,b) for(ll i=a;i<b;++i)\n\n#define DEBUG(x) cout<<#x<<\": \"<<x<<endl\n#define DEBUG_VEC(v) cout<<#v<<\":\";REP(i,v.size())cout<<\" \"<<v[i];cout<<endl\n#define ALL(a) (a).begin(),(a).end()\n\n#define ADD(a,b) a=((a)+(b))%MOD\n#define FIX(a) ((a)%MOD+MOD)%MOD\n\nconst int mod = 1000000007;\nconst int logR = 30;\nconst int R = 1<<logR;\nconst int Rmask = R-1;\nconst int R2 = (int)((ll)R*R%mod);\nint modash;\nint MR(ll x){\n int m = (x*modash)&Rmask;\n int t = (x+(ll)m*mod)>>logR;\n if(t>=mod)t-=mod;\n return t;\n}\nint get_mod(ll x){return (int)MR((ll)MR(x)*R2);}\nvoid init(){\n // R=1ll;logR=0;modash=0;\n // while(R<mod){R<<=1;logR++;}\n // R2=R*R%mod;\n int t=0,r=R,i=1;\n while(r>1){\n if((t&1)==0){t+=mod;modash+=i;}\n t>>=1;r>>=1;i<<=1;\n }\n}\n\nvector<vl> mul(vector<vl> a, vector<vl> b){\n int n = a.size();\n vector<vl> ret(n,vl(n,0));\n REP(k,n)REP(i,n)REP(j,n){\n ret[i][j] += get_mod(a[i][k]*b[k][j]);\n if(ret[i][j]>=mod) ret[i][j] -= mod;\n }\n return ret;\n}\n\nint main(){\n int n,k,c,t;\n scanf(\"%d%d%d%d\",&n,&k,&c,&t);\n // ????§???????\n // 0?§???????1?§????...4?§????????£??????§??\\?????????????????°t?????§?????¨?????????\n vector<vl> mat(5*n,vl(5*n,0));\n // ??????????§?\n REP(i,4){\n REP(j,n) mat[i*n+j][(i+1)*n+j] += 1;\n }\n // ?????????????§?\n REP(_,k){\n int a,b,tm;\n scanf(\"%d%d%d\",&a,&b,&tm);\n // --a; --b;\n --tm;\n REP(i,n){\n int from;\n if(i<b) from = i+a-1;\n else if(i<b+a-1) from = i-b;\n else from = i;\n int to = i;\n mat[tm*n+to][from] += 1;\n }\n }\n // REP(po,5*n){\n // DEBUG_VEC(mat[po]);\n // }\n // cout<<endl;\n init();\n // ?´????\n vector<vl> ans(5*n,vl(5*n,0));\n REP(i,5*n) ans[i][i]=1;\n while(t){\n if(t&1) ans = mul(ans,mat);\n mat = mul(mat,mat);\n t>>=1;\n }\n // DEBUG\n // REP(po,5*n){\n // DEBUG_VEC(ans[po]);\n // }\n cout<<ans[0][c-1]<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2080, "memory_kb": 2712, "score_of_the_acc": -0.8106, "final_rank": 16 }, { "submission_id": "aoj_2778_1696674", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef complex<double> P;\ntypedef pair<int,int> pii;\n#define REP(i,n) for(ll i=0;i<n;++i)\n#define REPR(i,n) for(ll i=1;i<n;++i)\n#define FOR(i,a,b) for(ll i=a;i<b;++i)\n\n#define DEBUG(x) cout<<#x<<\": \"<<x<<endl\n#define DEBUG_VEC(v) cout<<#v<<\":\";REP(i,v.size())cout<<\" \"<<v[i];cout<<endl\n#define ALL(a) (a).begin(),(a).end()\n\n#define ADD(a,b) a=((a)+(b))%MOD\n#define FIX(a) ((a)%MOD+MOD)%MOD\n\nconst int mod = 1000000007;\nll R,R2,modash;\nint logR;\nll MR(ll x){\n ll ret = (x + (((x&(R-1ll))*modash)&(R-1ll))*mod)>>(logR);\n return (ret>=mod ? ret-mod : ret);\n}\nint get_mod(ll x){return (int)MR(MR(x)*R2);}\nvoid init(){\n R=1ll;logR=0;modash=0;\n while(R<mod){R<<=1;logR++;}\n R2=R*R%mod;\n int t=0,r=R,i=1;\n while(r>1){\n if((t&1)==0){t+=mod;modash+=i;}\n t>>=1;r>>=1;i<<=1;\n }\n}\n\nvector<vl> mul(vector<vl> a, vector<vl> b){\n int n = a.size();\n vector<vl> ret(n,vl(n,0));\n REP(k,n)REP(i,n)REP(j,n){\n ret[i][j] += get_mod(a[i][k]*b[k][j]);\n if(ret[i][j]>=mod) ret[i][j] -= mod;\n }\n return ret;\n}\n\nint main(){\n int n,k,c,t;\n scanf(\"%d%d%d%d\",&n,&k,&c,&t);\n // ????§???????\n // 0?§???????1?§????...4?§????????£??????§??\\?????????????????°t?????§?????¨?????????\n vector<vl> mat(5*n,vl(5*n,0));\n // ??????????§?\n REP(i,4){\n REP(j,n) mat[i*n+j][(i+1)*n+j] += 1;\n }\n // ?????????????§?\n REP(_,k){\n int a,b,tm;\n scanf(\"%d%d%d\",&a,&b,&tm);\n // --a; --b;\n --tm;\n REP(i,n){\n int from;\n if(i<b) from = i+a-1;\n else if(i<b+a-1) from = i-b;\n else from = i;\n int to = i;\n mat[tm*n+to][from] += 1;\n }\n }\n // REP(po,5*n){\n // DEBUG_VEC(mat[po]);\n // }\n // cout<<endl;\n init();\n // ?´????\n vector<vl> ans(5*n,vl(5*n,0));\n REP(i,5*n) ans[i][i]=1;\n while(t){\n if(t&1) ans = mul(ans,mat);\n mat = mul(mat,mat);\n t>>=1;\n }\n // DEBUG\n // REP(po,5*n){\n // DEBUG_VEC(ans[po]);\n // }\n cout<<ans[0][c-1]<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2510, "memory_kb": 2712, "score_of_the_acc": -1, "final_rank": 18 }, { "submission_id": "aoj_2778_1696663", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef complex<double> P;\ntypedef pair<int,int> pii;\n#define REP(i,n) for(ll i=0;i<n;++i)\n#define REPR(i,n) for(ll i=1;i<n;++i)\n#define FOR(i,a,b) for(ll i=a;i<b;++i)\n\n#define DEBUG(x) cout<<#x<<\": \"<<x<<endl\n#define DEBUG_VEC(v) cout<<#v<<\":\";REP(i,v.size())cout<<\" \"<<v[i];cout<<endl\n#define ALL(a) (a).begin(),(a).end()\n\n#define ADD(a,b) a=((a)+(b))%MOD\n#define FIX(a) ((a)%MOD+MOD)%MOD\n\nconst int mod = 1000000007;\nll R,R2,modash;\nint logR;\nll MR(ll x){\n ll ret = (x + ((x*modash)&(R-1ll))*mod)>>(logR);\n return (ret>=mod ? ret-mod : ret);\n}\nll get_mod(ll x){return MR(MR(x)*R2);}\nvoid init(){\n R=1ll;logR=0;modash=0;\n while(R<mod){R<<=1;logR++;}\n R2=R*R%mod;\n int t=0,r=R,i=1;\n while(r>1){\n if((t&1)==0){t+=mod;modash+=i;}\n t>>=1;r>>=1;i<<=1;\n }\n}\n\nvector<vl> mul(vector<vl> a, vector<vl> b){\n int n = a.size();\n vector<vl> ret(n,vl(n,0));\n REP(k,n)REP(i,n)REP(j,n){\n ret[i][j] += get_mod(a[i][k]*b[k][j]);\n if(ret[i][j]>=mod) ret[i][j] -= mod;\n }\n return ret;\n}\n\nint main(){\n int n,k,c,t;\n scanf(\"%d%d%d%d\",&n,&k,&c,&t);\n // ????§???????\n // 0?§???????1?§????...4?§????????£??????§??\\?????????????????°t?????§?????¨?????????\n vector<vl> mat(5*n,vl(5*n,0));\n // ??????????§?\n REP(i,4){\n REP(j,n) mat[i*n+j][(i+1)*n+j] += 1;\n }\n // ?????????????§?\n REP(_,k){\n int a,b,tm;\n scanf(\"%d%d%d\",&a,&b,&tm);\n // --a; --b;\n --tm;\n REP(i,n){\n int from;\n if(i<b) from = i+a-1;\n else if(i<b+a-1) from = i-b;\n else from = i;\n int to = i;\n mat[tm*n+to][from] += 1;\n }\n }\n // REP(po,5*n){\n // DEBUG_VEC(mat[po]);\n // }\n // cout<<endl;\n init();\n // ?´????\n vector<vl> ans(5*n,vl(5*n,0));\n REP(i,5*n) ans[i][i]=1;\n while(t){\n if(t&1) ans = mul(ans,mat);\n mat = mul(mat,mat);\n t>>=1;\n }\n // DEBUG\n // REP(po,5*n){\n // DEBUG_VEC(ans[po]);\n // }\n cout<<ans[0][c-1]<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2120, "memory_kb": 2712, "score_of_the_acc": -0.8282, "final_rank": 17 } ]
aoj_2780_cpp
Best Matched Pair You are working for a worldwide game company as an engineer in Tokyo. This company holds an annual event for all the staff members of the company every summer. This year's event will take place in Tokyo. You will participate in the event on the side of the organizing staff. And you have been assigned to plan a recreation game which all the participants will play at the same time. After you had thought out various ideas, you designed the rules of the game as below. Each player is given a positive integer before the start of the game. Each player attempts to make a pair with another player in this game, and formed pairs compete with each other by comparing the products of two integers. Each player can change the partner any number of times before the end of the game, but cannot have two or more partners at the same time. At the end of the game, the pair with the largest product wins the game. In addition, regarding the given integers, the next condition must be satisfied for making a pair. The sequence of digits obtained by considering the product of the two integers of a pair as a string must be increasing and consecutive from left to right. For example, 2, 23, and 56789 meet this condition, but 21, 334, 135 or 89012 do not. Setting the rules as above, you noticed that multiple pairs may be the winners who have the same product depending on the situation. However, you can find out what is the largest product of two integers when a set of integers is given. Your task is, given a set of distinct integers which will be assigned to the players, to compute the largest possible product of two integers, satisfying the rules of the game mentioned above. Input The input consists of a single test case formatted as follows. $N$ $a_1$ $a_2$ ... $a_N$ The first line contains a positive integer $N$ which indicates the number of the players of the game. $N$ is an integer between 1 and 1,000. The second line has $N$ positive integers that indicate the numbers given to the players. For $i = 1, 2, ... , N - 1$, there is a space between $a_i$ and $a_{i+1}$. $a_i$ is between 1 and 10,000 for $i = 1, 2, ..., N$, and if $i \ne j$, then $a_i \ne a_j$. Output Print the largest possible product of the two integers satisfying the conditions for making a pair. If any two players cannot make a pair, print -1. Sample Input 1 2 1 2 Output for the Sample Input 1 2 Sample Input 2 3 3 22 115 Output for the Sample Input 2 345 Sample Input 3 2 1 11 Output for the Sample Input 3 -1 Sample Input 4 2 5 27 Output for the Sample Input 4 -1 Sample Input 5 2 17 53 Output for the Sample Input 5 -1 Sample Input 6 10 53 43 36 96 99 2 27 86 93 23 Output for the Sample Input 6 3456
[ { "submission_id": "aoj_2780_10295740", "code_snippet": "// AOJ #2780 Best Matched Pair\n// 2025.3.14\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nbool valid(ll p) {\n string s = to_string(p);\n if(s.size() == 1) return true;\n for (size_t i = 0; i + 1 < s.size(); i++) {\n if(s[i+1] - s[i] != 1) return false;\n }\n return true;\n}\n\nint main(){\n int n = Cin();\n vector<int> v(n);\n for (int i = 0; i < n; i++) v[i] = Cin();\n\n ll ans = -1;\n for (int i = 0; i < n; i++){\n for (int j = i+1; j < n; j++){\n ll p = (ll)v[i] * v[j];\n if(valid(p)) ans = max(ans, p);\n }\n }\n Cout(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3508, "score_of_the_acc": -0.4571, "final_rank": 4 }, { "submission_id": "aoj_2780_10295739", "code_snippet": "// AOJ #2780 Best Matched Pair\n// 2025.3.14\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nbool valid(ll p) {\n string s = to_string(p);\n if(s.size() == 1) return true;\n for (size_t i = 0; i + 1 < s.size(); i++) {\n if(s[i+1] - s[i] != 1) return false;\n }\n return true;\n}\n\nint main(){\n int n;\n cin >> n;\n vector<int> v(n);\n for (int i = 0; i < n; i++) cin >> v[i];\n\n ll ans = -1;\n for (int i = 0; i < n; i++){\n for (int j = i+1; j < n; j++){\n ll p = (ll)v[i] * v[j];\n if(valid(p)) ans = max(ans, p);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3508, "score_of_the_acc": -0.4571, "final_rank": 4 }, { "submission_id": "aoj_2780_10013939", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(a) a.begin(),a.end()\n#define reps(i, a, n) for (int i = (a); i < (int)(n); i++)\n#define rep(i, n) reps(i, 0, n)\n#define rreps(i, a, n) for (int i = (a); i > (int)(n); i--)\nconst long long mod = 1000000007;\nconst long long INF = 1e18;\nll myceil(ll a, ll b) {return (a+b-1)/b;}\n\n\nvoid solve() {\n int n;\n cin >> n;\n vector<ll> v(n);\n rep(i,n) {\n cin >> v[i];\n }\n\n sort(all(v));\n reverse(all(v));\n\n int ans = -1;\n\n rep(i,n) {\n reps(j,i+1,n) {\n int x = v[i]*v[j];\n if (x < ans) break;\n\n string s = to_string(v[i]*v[j]);\n rep(ind,s.length()-1) {\n if (s[ind] != s[ind+1]-1) break;\n\n if (ind == s.length()-2) ans = x;\n }\n if (s.length() == 1) ans = x;\n }\n }\n\n cout << ans << endl;\n return;\n}\n\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n int t = 1;\n //cin >> t;\n rep(i,t) {\n solve();\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3536, "score_of_the_acc": -0.6571, "final_rank": 14 }, { "submission_id": "aoj_2780_9668990", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\nint main(){\n int N;cin>>N;\n vector<ll>A(N);\n REP(i,N)cin>>A[i];\n ll ans=-1;\n REP(i,N)REP(j,i){\n string s=to_string(A[i]*A[j]);\n bool ok=1;\n REP(k,s.size()-1)if(s[k+1]-s[k]!=1)ok=0;\n if(ok)ans=max(ans,A[i]*A[j]);\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3532, "score_of_the_acc": -0.6286, "final_rank": 11 }, { "submission_id": "aoj_2780_9578940", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nint main() {\n int N;\n cin >> N;\n vector<int> A(N);\n rep(i,0,N) cin >> A[i];\n int ANS = -1;\n rep(i,0,N) {\n rep(j,i+1,N) {\n int X = A[i] * A[j];\n string S = to_string(X);\n bool check = true;\n rep(k,0,S.size()-1) {\n if (S[k] + 1 != S[k+1]) check = false;\n }\n if (check) chmax(ANS,X);\n }\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3584, "score_of_the_acc": -1, "final_rank": 18 }, { "submission_id": "aoj_2780_9069657", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define FOR(i, a, b) for(int i = (a); i < (b); i++)\n#define RFOR(i, a, b) for(int i = (a) - 1; i >= (b); i--)\n#define SZ(a) int(a.size())\n#define ALL(a) a.begin(), a.end()\n#define PB push_back\n#define MP make_pair\n#define F first\n#define S second\n\ntypedef long long LL;\ntypedef vector<int> VI;\ntypedef pair<int, int> PII;\ntypedef double db;\n\nint main()\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tint n;\n\tcin >> n;\n\tVI a(n);\n\tint ans = -1;\n\tFOR (i, 0, n)\n\t{\n\t\tcin >> a[i];\n\t\tFOR (j, 0, i)\n\t\t{\n\t\t\tint x = a[i] * a[j];\n\t\t\tstring s = to_string(x);\n\t\t\tbool ok = true;\n\t\t\tFOR (k, 0, SZ(s) - 1)\n\t\t\t{\n\t\t\t\tok &= (s[k + 1] - s[k]) == 1;\n\t\t\t}\n\t\t\tif (ok)\n\t\t\t\tans = max(ans, x);\n\t\t}\n\t}\n\tcout << ans << '\\n';\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3528, "score_of_the_acc": -0.6, "final_rank": 10 }, { "submission_id": "aoj_2780_8618535", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int n; std::cin >> n;\n std::vector<int> a(n);\n for (auto& x : a) std::cin >> x;\n int ans{-1};\n for (int i{} ; i < n ; i++) for (int j{i + 1} ; j < n ; j++) {\n int v{a[i] * a[j]};\n std::string t{std::to_string(v)};\n bool ok{true};\n for (int i{1} ; i < (int)t.size() ; i++) {\n ok &= t[i] == t[i - 1] + 1;\n }\n if (ok) ans = std::max(ans, v);\n }\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3516, "score_of_the_acc": -0.5143, "final_rank": 8 }, { "submission_id": "aoj_2780_8528357", "code_snippet": "#include <bits/stdc++.h>\n\nint main() {\n int n;\n std::cin >> n;\n std::vector<int> a(n);\n for (int i = 0; i < n; i++) std::cin >> a[i];\n int ans = -1;\n for (int i = 0; i < n; i++) {\n for (int j = i + 1; j < n; j++) {\n int mul = a[i] * a[j];\n std::string s = std::to_string(mul);\n bool flag = true;\n for (int k = 0; k + 1 < (int)s.size(); k++) {\n if (s[k] != s[k + 1] - 1) {\n flag = false;\n break;\n }\n }\n if (flag) {\n ans = std::max(ans, mul);\n }\n }\n }\n std::cout << ans << std::endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3500, "score_of_the_acc": -0.4, "final_rank": 2 }, { "submission_id": "aoj_2780_7916593", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntemplate<class T> bool chmax(T &a, T b){if (a < b){a = b;return true;} else return false;}\ntemplate<class T> bool chmin(T &a, T b){if (a > b){a = b;return true;} else return false;}\n\nbool solve(){\n return true;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n // while(1){\n // if(!solve()){\n // return 0;\n // }\n // }\n int N;\n cin>>N;\n vector<int>A(N);\n for(int i=0;i<N;i++)cin>>A[i];\n int ans=-1;\n for(int i=0;i<N-1;i++)for(int j=i+1;j<N;j++){\n string s=to_string(A[i]*A[j]);\n int n=s.size();\n bool ok=true;\n for(int k=0;k<n-1;k++){\n if(s[k+1]-s[k]!=1){\n ok=false;\n break;\n }\n }\n if(ok)chmax(ans,A[i]*A[j]);\n }\n cout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3532, "score_of_the_acc": -0.6286, "final_rank": 11 }, { "submission_id": "aoj_2780_7304906", "code_snippet": "#include <iostream>\n#include <vector>\nusing namespace std;\n\nint main(){\n int n; cin >> n;\n vector<int> a(n);\n for(auto &it: a) cin >> it;\n\n int ans = -1;\n for(int i = 0; i < n; i++){\n for(int j = i+1; j < n; j++){\n int x = a[i]*a[j];\n int y = x;\n vector<int> v;\n while(y > 0){\n v.emplace_back(y%10);\n y /= 10;\n }\n bool isok = true;\n for(int k = 1; k < v.size(); k++){\n if(v[k-1] != v[k]+1) isok = false;\n }\n if(isok && ans < x) ans = x;\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3444, "score_of_the_acc": -0.3333, "final_rank": 1 }, { "submission_id": "aoj_2780_7164029", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define repn(i,end) for(int i = 0; i <= (int)(end); i++)\n#define reps(i,start,end) for(int i = start; i < (int)(end); i++)\n#define repsn(i,start,end) for(int i = start; i <= (int)(end); i++)\n#define ll long long\n#define print(t) cout << t << endl \n#define all(a) (a).begin(),(a).end()\n// << std::fixed << std::setprecision(0)\nconst ll INF = 1LL << 60;\n \ntemplate<class T> void chmin(T& a, T b){\n if(a > b){\n a = b;\n }\n}\n \ntemplate<class T> void chmax(T& a, T b){\n if(a < b){\n a = b;\n }\n}\n \nll lpow(ll x,ll n){\n ll ans = 1;\n while(n >0){\n if(n & 1)ans *= x;\n x *= x;\n n >>= 1;\n }\n return ans;\n}\n \nint main(){\n ll n;cin >> n;\n vector<ll> a(n);\n rep(i,n)cin >> a[i];\n sort(all(a));\n\n for(ll i = n-1;i >= 1;i--){\n for(ll j = i-1;j>= 0;j--){\n ll b = a[i] * a[j];\n string s = to_string(b);\n bool ok = true;\n rep(k,(int)s.size()-1){\n if(s[k+1] !=s[k] + 1){\n ok = false;\n break;\n }\n }\n if(ok){\n cout << b << endl;\n return 0;\n }\n\n }\n }\n cout << -1 << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3516, "score_of_the_acc": -0.5143, "final_rank": 8 }, { "submission_id": "aoj_2780_7102458", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)\n#define REP(i, a, b) for (ll i = a; i < (ll)(b); i++)\n#define all(v) v.begin(), v.end()\n#define INF32 2147483647 //2.147483647×10^{9}:32bit整数のinf\n#define INF 9223372036854775807 //9.223372036854775807×10^{18}:64bit整数のinf\n\nint main(){\n ll N;\n cin>>N;\n vector<ll> a(N);\n rep(i,N){\n cin>>a[i];\n }\n ll ans=-1;\n string judge;\n bool flag;\n rep(i,N){\n REP(j,i+1,N){\n judge=to_string(a[i]*a[j]);\n flag=true;\n rep(k,judge.size()-1){\n if((judge[k+1]-'0')!=(judge[k]-'0'+1)){\n flag=false;\n break;\n }\n }\n if(flag&&stoll(judge)>ans)ans=stoll(judge);\n }\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3548, "score_of_the_acc": -1.0762, "final_rank": 19 }, { "submission_id": "aoj_2780_6634187", "code_snippet": "#line 2 \"library/KowerKoint/base.hpp\"\n\n#ifdef DEBUG\n#define _GLIBCXX_DEBUG\n#endif\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i, n) for(int i = 0; i < (int)(n); i++)\n#define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++)\n#define ALL(a) (a).begin(),(a).end()\n#define END(...) { print(__VA_ARGS__); return; }\n\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VVVI = vector<VVI>;\nusing ll = long long;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VVVL = vector<VVL>;\nusing VD = vector<double>;\nusing VVD = vector<VD>;\nusing VVVD = vector<VVD>;\nusing VS = vector<string>;\nusing VVS = vector<VS>;\nusing VVVS = vector<VVS>;\nusing VC = vector<char>;\nusing VVC = vector<VC>;\nusing VVVC = vector<VVC>;\nusing P = pair<int, int>;\nusing VP = vector<P>;\nusing VVP = vector<VP>;\nusing VVVP = vector<VVP>;\nusing LP = pair<ll, ll>;\nusing VLP = vector<LP>;\nusing VVLP = vector<VLP>;\nusing VVVLP = vector<VVLP>;\n\ntemplate <typename T>\nusing PQ = priority_queue<T>;\ntemplate <typename T>\nusing GPQ = priority_queue<T, vector<T>, greater<T>>;\n\nconstexpr int INF = 1001001001;\nconstexpr ll LINF = 1001001001001001001ll;\nconstexpr int DX[] = {1, 0, -1, 0};\nconstexpr int DY[] = {0, 1, 0, -1};\n\nvoid print() { cout << '\\n'; }\ntemplate<typename T>\nvoid print(const T &t) { cout << t << '\\n'; }\ntemplate<typename Head, typename... Tail>\nvoid print(const Head &head, const Tail &... tail) {\n cout << head << ' ';\n print(tail...);\n}\n\n#ifdef DEBUG\nvoid dbg() { cerr << '\\n'; }\ntemplate<typename T>\nvoid dbg(const T &t) { cerr << t << '\\n'; }\ntemplate<typename Head, typename... Tail>\nvoid dbg(const Head &head, const Tail &... tail) {\n cerr << head << ' ';\n dbg(tail...);\n}\n#else\ntemplate<typename... Args>\nvoid dbg(const Args &... args) {}\n#endif\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 >& p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != (int) v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate<typename T>\nvector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) {\n vector<vector<T>> res;\n vector<T> cur;\n for(auto it = begin; it != end; it++) {\n if(*it == val) {\n res.push_back(cur);\n cur.clear();\n } else cur.push_back(val);\n }\n res.push_back(cur);\n return res;\n}\n\nvector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) {\n vector<string> res;\n string cur = \"\";\n for(auto it = begin; it != end; it++) {\n if(*it == val) {\n res.push_back(cur);\n cur.clear();\n } else cur.push_back(val);\n }\n res.push_back(cur);\n return res;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate <typename T>\npair<VI, vector<T>> compress(const vector<T> &a) {\n int n = a.size();\n vector<T> x;\n REP(i, n) x.push_back(a[i]);\n sort(ALL(x)); x.erase(unique(ALL(x)), x.end());\n VI res(n);\n REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin();\n return make_pair(res, x);\n}\n\ntemplate <typename It>\nauto rle(It begin, It end) {\n vector<pair<typename It::value_type, int>> res;\n if(begin == end) return res;\n auto pre = *begin;\n int num = 1;\n for(auto it = begin + 1; it != end; it++) {\n if(pre != *it) {\n res.emplace_back(pre, num);\n pre = *it;\n num = 1;\n } else num++;\n }\n res.emplace_back(pre, num);\n return res;\n}\n\nvector<pair<char, int>> rle(string s) {\n return rle(ALL(s));\n}\n\ntemplate <typename T>\npair<vector<T>, vector<T>> factorial(int n) {\n vector<T> res(n+1), rev(n+1);\n res[0] = 1;\n REP(i, n) res[i+1] = res[i] * (i+1);\n rev[n] = 1 / res[n];\n for(int i = n; i > 0; i--) {\n rev[i-1] = rev[i] * i;\n }\n return make_pair(res, rev);\n}\n#line 3 \"library/KowerKoint/internal_operator.hpp\"\n\nnamespace internal_operator {\n template <typename T>\n T default_add(T a, T b) { return a + b; }\n template <typename T>\n T default_sub(T a, T b) { return a - b; }\n template <typename T>\n T zero() { return T(0); }\n template <typename T>\n T default_div(T a, T b) { return a / b; }\n template <typename T>\n T default_mult(T a, T b) { return a * b; }\n template <typename T>\n T one() { return T(1); }\n template <typename T>\n T default_xor(T a, T b) { return a ^ b; }\n template <typename T>\n T default_and(T a, T b) { return a & b; }\n template <typename T>\n T default_or(T a, T b) { return a | b; }\n ll mod3() { return 998244353LL; }\n ll mod7() { return 1000000007LL; }\n ll mod9() { return 1000000009LL; }\n template <typename T>\n T default_max(T a, T b) { return max(a, b); }\n template <typename T>\n T default_min(T a, T b) { return min(a, b); }\n}\n\n#line 3 \"library/KowerKoint/integer.hpp\"\n\nll kth_root(ll x, ll k) {\n if(k == 1) return x;\n ll res = 0;\n for(int i = 31; i >= 0; i--) {\n bool over = false;\n ll tmp = 1;\n ll nxt = res | 1LL << i;\n REP(i, k) {\n if(tmp > x / nxt) {\n over = true;\n break;\n }\n tmp *= nxt;\n }\n if(!over) res = nxt;\n }\n return res;\n}\n\nll sqrt(ll x) {\n return kth_root(x, 2);\n}\n\nstruct Prime {\n VI sieved;\n VL primes;\n\n Prime() {}\n Prime(ll n) {\n expand(n);\n }\n\n void expand(ll n) {\n ll sz = (ll)sieved.size() - 1;\n if(n <= sz) return;\n sieved.resize(n+1);\n sieved[0] = sieved[1] = 1;\n primes.clear();\n primes.push_back(2);\n for(ll d = 4; d <= n; d += 2) sieved[d] = 1;\n FOR(d, 3, n+1) {\n if(!sieved[d]) {\n primes.push_back(d);\n for(ll i = d*d; i <= n; i += d*2) sieved[i] = 1;\n }\n }\n }\n\n bool is_prime(ll n) {\n assert(n > 0);\n if(n <= (ll)sieved.size() - 1) return !sieved[n];\n for(ll d = 2; d*d <= n; d++) {\n if(n % d == 0) return false;\n }\n return true;\n }\n\n VL least_prime_factors(ll n) {\n assert(n > 0);\n VL lpfs(n+1, -1), primes;\n FOR(d, 2, n+1) {\n if(lpfs[d] == -1) {\n lpfs[d] = d;\n primes.push_back(d);\n }\n for(ll p : primes) {\n if(p * d > n || p > lpfs[d]) break;\n lpfs[p*d] = p;\n }\n }\n return lpfs;\n }\n\n VL prime_list(ll n) {\n assert(n > 0);\n expand(n);\n return VL(primes.begin(), upper_bound(ALL(primes), n));\n }\n\n vector<pair<ll, int>> prime_factor(ll n) {\n assert(n > 0);\n vector<pair<ll, int>> factor;\n expand(sqrt(n));\n for(ll prime : primes) {\n if(prime * prime > n) break;\n int cnt = 0;\n while(n % prime == 0) {\n n /= prime;\n cnt++;\n }\n if(cnt) factor.emplace_back(prime, cnt);\n }\n if(n > 1) factor.emplace_back(n, 1);\n return factor;\n }\n\n\n VL divisor(ll n) {\n assert(n > 0);\n auto factor = prime_factor(n);\n VL res = {1};\n for(auto [prime, cnt] : factor) {\n int sz = res.size();\n res.resize(sz * (cnt+1));\n REP(i, sz*cnt) res[sz+i] = res[i] * prime;\n REP(i, cnt) inplace_merge(res.begin(), res.begin() + sz*(i+1), res.begin() + sz*(i+2));\n }\n return res;\n }\n};\n\nll extgcd(ll a, ll b, ll& x, ll& y) {\n x = 1, y = 0;\n ll nx = 0, ny = 1;\n while(b) {\n ll q = a / b;\n tie(a, b) = LP(b, a % b);\n tie(x, nx) = LP(nx, x - nx*q);\n tie(y, ny) = LP(ny, y - ny*q);\n }\n return a;\n}\n\nll inv_mod(ll n, ll m) {\n ll x, y;\n assert(extgcd(n, m, x, y) == 1);\n x %= m;\n if(x < 0) x += m;\n return x;\n}\n\nll pow_mod(ll a, ll n, ll m) {\n if(n == 0) return 1LL;\n if(n < 0) return inv_mod(pow_mod(a, -n, m), m);\n ll res = 1;\n while(n) {\n if(n & 1) {\n res *= a;\n res %= m;\n }\n n >>= 1;\n a *= a;\n a %= m;\n }\n return res;\n}\n\n#line 5 \"library/KowerKoint/modint.hpp\"\n\ntemplate <ll (*mod)()>\nstruct Modint {\n ll val;\n \n Modint(): val(0) {}\n\n Modint(ll x): val(x) {\n val %= mod();\n if(val < 0) val += mod();\n }\n\n Modint& operator+=(const Modint& r) {\n val += r.val;\n if(val >= mod()) val -= mod();\n return *this;\n }\n friend Modint operator+(const Modint& l, const Modint& r) {\n return Modint(l) += r;\n }\n\n Modint& operator-=(const Modint& r) {\n val -= r.val;\n if(val < 0) val += mod();\n return *this;\n }\n friend Modint operator-(const Modint& l, const Modint& r) {\n return Modint(l) -= r;\n }\n\n Modint& operator*=(const Modint& r) {\n val *= r.val;\n val %= mod();\n return *this;\n }\n Modint operator*(const Modint& r) {\n return (Modint(*this) *= r);\n }\n friend Modint operator*(const Modint& l, const Modint& r) {\n return Modint(l) *= r;\n }\n\n Modint pow(ll n) const {\n return Modint(pow_mod(val, n, mod()));\n }\n\n Modint inv() const {\n return Modint(inv_mod(val, mod()));\n }\n\n Modint& operator/=(const Modint& r) {\n return (*this *= r.inv());\n }\n friend Modint operator/(const Modint& l, const Modint& r) {\n return Modint(l) /= r;\n }\n\n Modint& operator^=(const ll n) {\n val = pow_mod(val, n, mod());\n return *this;\n }\n Modint operator^(const ll n) {\n return this->pow(n);\n }\n\n Modint operator+() const { return *this; }\n Modint operator-() const { return Modint() - *this; }\n\n Modint& operator++() {\n val++;\n if(val == mod()) val = 0LL;\n return *this;\n }\n Modint& operator++(int) {\n Modint res(*this);\n ++*this;\n return res;\n }\n\n Modint& operator--() {\n if(val == 0LL) val = mod();\n val--;\n return *this;\n }\n Modint& operator--(int) {\n Modint res(*this);\n --*this;\n return res;\n }\n\n friend bool operator==(const Modint& l, const Modint& r) {\n return l.val == r.val;\n }\n friend bool operator!=(const Modint& l, const Modint& r) {\n return l.val != r.val;\n }\n\n static pair<vector<Modint>, vector<Modint>> factorial(int n) {\n vector<Modint> fact(n+1), rfact(n+1);\n fact[0] = 1;\n REP(i, n) fact[i+1] = fact[i] * (i+1);\n rfact[n] = 1 / fact[n];\n for(int i = n-1; i >= 0; i--) rfact[i] = rfact[i+1] * (i+1);\n return {fact, rfact};\n }\n\n friend istream& operator>>(istream& is, Modint& mi) {\n is >> mi.val;\n return is;\n }\n\n friend ostream& operator<<(ostream& os, const Modint& mi) {\n os << mi.val;\n return os;\n }\n};\n\nusing MI3 = Modint<internal_operator::mod3>;\nusing V3 = vector<MI3>;\nusing VV3 = vector<V3>;\nusing VVV3 = vector<VV3>;\nusing MI7 = Modint<internal_operator::mod7>;\nusing V7 = vector<MI7>;\nusing VV7 = vector<V7>;\nusing VVV7 = vector<VV7>;\nusing MI9 = Modint<internal_operator::mod9>;\nusing V9 = vector<MI9>;\nusing VV9 = vector<V9>;\nusing VVV9 = vector<VV9>;\n#line 3 \"library/KowerKoint/counting.hpp\"\n\ntemplate <typename T>\nstruct Counting {\n vector<T> fact, ifact;\n\n Counting() {}\n Counting(ll n) {\n expand(n);\n }\n\n void expand(ll n) {\n ll sz = (ll)fact.size();\n if(sz > n) return;\n fact.resize(n+1);\n ifact.resize(n+1);\n fact[0] = 1;\n FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i;\n ifact[n] = 1 / fact[n];\n for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1);\n }\n\n T permutation(ll n, ll r) {\n assert(n >= r);\n assert(r >= 0);\n expand(n);\n return fact[n] * ifact[n-r];\n }\n\n T combination(ll n, ll r) {\n assert(n >= r);\n assert(r >= 0);\n expand(n);\n return fact[n] * ifact[r] * ifact[n-r];\n }\n\n T stirling(ll n, ll k) {\n assert(n >= k);\n assert(k >= 0);\n if(n == 0) return 1;\n T res = 0;\n int sign = k%2? -1 : 1;\n expand(k);\n REP(i, k+1) {\n res += sign * ifact[i] * ifact[k-i] * T(i).pow(n);\n sign *= -1;\n }\n return res;\n }\n\n vector<vector<T>> stirling_table(ll n, ll k) {\n assert(n >= 0 && k >= 0);\n vector<vector<T>> res(n+1, vector<T>(k+1));\n res[0][0] = 1;\n FOR(i, 1, n+1) FOR(j, 1, k+1) {\n res[i][j] = res[i-1][j-1] + j * res[i-1][j];\n }\n return res;\n }\n\n T bell(ll n, ll k) {\n assert(n >= 0 && k >= 0);\n expand(k);\n vector<T> tmp(k+1);\n int sign = 1;\n tmp[0] = 1;\n FOR(i, 1, k+1) {\n sign *= -1;\n tmp[i] = tmp[i-1] + sign * ifact[i];\n }\n T res = 0;\n REP(i, k+1) {\n res += T(i).pow(n) * ifact[i] * tmp[k-i];\n }\n return res;\n }\n\n vector<vector<T>> partition_table(ll n) {\n assert(n >= 0);\n vector<vector<T>> res(n+1, vector<T>(n+1));\n REP(i, n+1) res[0][i] = 1;\n FOR(i, 1, n+1) FOR(j, 1, n+1) {\n res[i][j] = res[i][j-1] + (i<j? 0 : res[i-j][j]);\n }\n return res;\n }\n};\n#line 2 \"Contests/Dummy/main.cpp\"\n\n/* #include <atcoder/all> */\n/* using namespace atcoder; */\n/* #include \"KowerKoint/expansion/ac-library/all.hpp\" */\n\nvoid solve(){\n int n; cin >> n;\n VL a(n); cin >> a;\n ll ans = -1;\n REP(i, n) REP(j, i) {\n ll tmp = a[i] * a[j];\n string s = to_string(tmp);\n bool ok = true;\n REP(i, s.length()-1) ok &= s[i]+1 == s[i+1];\n if(ok) chmax(ans, tmp);\n }\n print(ans);\n}\n\n// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)\nint main() {\n // Fasterize input/output script\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(100);\n // scanf/printf user should delete this fasterize input/output script\n\n int t = 1;\n //cin >> t; // comment out if solving multi testcase\n for(int testCase = 1;testCase <= t;++testCase){\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3528, "score_of_the_acc": -0.9333, "final_rank": 17 }, { "submission_id": "aoj_2780_6392175", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < n; ++i)\ntypedef long long ll;\nusing namespace std;\n\nint main() {\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n int N;\n cin >> N;\n vector<int> A(N);\n rep(i, N) cin >> A[i];\n\n int ans = -1;\n for (int i = 0; i < N; ++i) {\n for (int j = i + 1; j < N; ++j) {\n string s = to_string(A[i] * A[j]);\n\n bool flag = true;\n rep(k, s.size() - 1) {\n if (s[k] + 1 != s[k + 1]) {\n flag = false;\n break;\n }\n }\n if (flag)\n ans = max(ans, A[i] * A[j]);\n }\n }\n cout << ans << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3556, "score_of_the_acc": -0.8, "final_rank": 16 }, { "submission_id": "aoj_2780_6024140", "code_snippet": "//GIVE ME AC!!!!!!!!!!!!!!!!!\n//#pragma GCC target(\"avx\")\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nusing ld=long double;\nusing vl=vector<ll>;\nusing vi=vector<int>;\nusing vs=vector<string>;\nusing vc=vector<char>;\nusing vvl=vector<vl>;\nusing P=pair<ll,ll>;\nusing vvc=vector<vc>;\nusing vd=vector<double>;\nusing vp=vector<P>;\nusing vb=vector<bool>;\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(a) for(__typeof(a) i=0;i<a;i++)\n#define rep2(i,a) for(__typeof(a) i=0;i<a;i++)\n#define rep3(i,a,b) for(__typeof(a) i=a;i<b;i++)\n#define rep4(i,a,b,c) for(__typeof(a) i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define rrep1(a) for(__typeof(a) i=(a)-1;i>=0;i--)\n#define rrep2(i,a) for(__typeof(a) i=(a)-1;i>=0;i--)\n#define rrep3(i,a,b) for(__typeof(a) i=(b)-1;i>=(a);i--)\n#define rrep(...) overload3(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall(n) (n).rbegin(),(n).rend()\n#define pb push_back\n#define eb emplace_back\n#define MtSaka ios::sync_with_stdio(0);cin.tie(0);cout<<fixed<<setprecision(12)\n#define max_(a) *max_element(all(a))\n#define min_(a) *min_element(all(a))\n#define INT(...) int __VA_ARGS__;scan(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__)\nconst int dx[8]={1,0,-1,0,1,-1,-1,1};\nconst int dy[8]={0,1,0,-1,1,1,-1,-1};\nconst ll inf=2e18;\nconst ll MOD=1000000007;\nconst ll mod=998244353;\nconst double pi=acos(-1);\ntemplate<typename T1,typename T2 >\nostream &operator<<(ostream&os,const pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>\nistream &operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T>\nostream &operator<<(ostream&os,const vector<T>&v){for(int i=0;i<(int)v.size();i++){os<<v[i]<<(i+1!=v.size()?\" \":\"\");}return os;}\ntemplate<typename T>\nistream &operator>>(istream&is,vector<T>&v){for(T &in:v){is>>in;}return is;}\nvoid scan(){}\ntemplate<class Head,class... Tail>\nvoid scan(Head&head,Tail&... tail){cin>>head;scan(tail...);}\ntemplate<class T>\nvoid print(const T &t){cout<<t<<'\\n';}\ntemplate<class Head, class... Tail>\nvoid print(const Head &head, const Tail &... tail){cout<<head<<' ';print(tail...);}\ntemplate<class... T>\nvoid fin(const T &... a){print(a...);exit(0);}\ntemplate<typename T>\nT sum_(vector<T>a){return accumulate(all(a),T(0));}\ntemplate<typename T1,typename T2>\ninline bool chmax(T1&a,T2 b){return a<b&&(a=b,true);}\ntemplate<typename T1,typename T2>\ninline bool chmin(T1&a,T2 b){return a>b&&(a=b,true);}\nint main(){\n LL(n);\n vl a(n);\n scan(a);\n ll ans=-1;\n rep(i,n)rep(j,i+1,n){\n ll now=a[i]*a[j];\n string s=to_string(now);\n rep(i,s.size()-1){\n if(s[i]+1!=s[i+1])now=-1;\n }\n chmax(ans,now);\n }\n print(ans);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3512, "score_of_the_acc": -0.4857, "final_rank": 7 }, { "submission_id": "aoj_2780_6008029", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, a, n) for(int i = a; i < (n); i++)\nusing namespace std;\nusing ll = long long;\nusing P = pair<int, int>;\nconst int INF = 1001001001;\nconst ll LINF = 1001002003004005006ll;\n//const int mod = 1000000007;\n//const int mod = 998244353;\n\nint main()\n{\n int n;\n cin >> n;\n vector<ll> a(n);\n rep(i, 0, n) cin >> a[i];\n sort(a.rbegin(), a.rend());\n ll ans = -1;\n rep(i, 0, n){\n rep(j, i+1, n){\n ll tmp = a[i]*a[j];\n string s = to_string(tmp);\n bool flag = true;\n rep(k, 0, s.size()-1){\n if(s[k] + 1 != s[k+1]) flag = false;\n }\n if(flag) ans = max(ans, tmp);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3548, "score_of_the_acc": -0.7429, "final_rank": 15 }, { "submission_id": "aoj_2780_6008016", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nconst int INF = 1e9;\nconst ll inf = 1LL<<60;\n\nint main() {\n int n; cin >> n;\n vector<int> a(n);\n for (int i=0; i<n; i++) cin >> a[i];\n auto f = [](int x) -> bool {\n string s = to_string(x);\n for (int i=1; i<s.size(); i++) {\n if (s[i] - '0' != s[i-1] - '0' + 1) return false;\n }\n return true;\n };\n int ans = -1;\n for (int i=0; i<n; i++) for (int j=i+1; j<n; j++) if (f(a[i]*a[j])) ans = max(ans, a[i]*a[j]);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3508, "score_of_the_acc": -0.4571, "final_rank": 4 }, { "submission_id": "aoj_2780_5997952", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nconst int INF = 1e9;\nconst ll inf = 1LL<<60;\n\nint main() {\n int n; cin >> n;\n vector<int> a(n);\n for (int i=0; i<n; i++) cin >> a[i];\n auto f = [](int x) -> bool {\n string s = to_string(x);\n for (int i=1; i<s.size(); i++) {\n if (s[i-1] - '0' + 1 != s[i] - '0') return false;\n }\n return true;\n };\n int ans = -1;\n for (int i=0; i<n; i++) for (int j=i+1; j<n; j++) if (f(a[i]*a[j])) ans = max(ans, a[i]*a[j]);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3500, "score_of_the_acc": -0.4, "final_rank": 2 }, { "submission_id": "aoj_2780_5988760", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MOD 1000000007\n//#define MOD 998244353\n#define INF 1000000010\n#define EPS 1e-9\n#define F first\n#define S second\n\n#define debug(x) cout<<x<<endl;\n#define repi(i,x,n) for(int i=x;i<n;i++)\n#define rep(i,n) repi(i,0,n)\n#define lp(i,n) repi(i,0,n)\n#define repn(i,n) for(int i=n;i>=0;i--)\n#define int long long\n#define endl \"\\n\"\n\ntypedef pair<int,int> PII;\ntypedef pair<int,string> PIS;\ntypedef pair<string,int> PSI;\n\ntemplate <typename T>\nbool chmax(T &a, const T& b) {\n if (a < b) {\n a = b; \n return true;\n }\n return false;\n}\n\ntemplate <typename T>\nbool chmin(T &a, const T& b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nsigned main(){\n cin.tie(0);\t\n ios::sync_with_stdio(false);\n int n;\n cin>>n;\n vector<int> v(n);\n rep(i,n) cin>>v[i];\n sort(v.begin(),v.end(),greater<int>() );\n rep(i,n){\n repi(j,i+1,n){\n int num=v[i]*v[j];\n string s=to_string(num);\n char c=s[0];\n if(s.size()==1){cout<<num<<endl;return 0;}\n repi(j,1,s.size() ){\n\tif(s[j] != 1+s[j-1]) break;\n\telse if(j==s.size()-1){\n\t cout<<num<<endl;\n\t return 0;\n\t}\n }\n }\n }\n cout<<-1<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3532, "score_of_the_acc": -0.6286, "final_rank": 11 }, { "submission_id": "aoj_2780_5940604", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i = 0; i < (n); i++)\nusing namespace std;\ntypedef long long ll;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n \n int N; cin >> N;\n vector<int> a(N);\n rep(i,N) cin >> a[i];\n int ans = -1;\n rep(i,N)rep(j,N) if(i != j) {\n string s = to_string(a[i] * a[j]);\n bool ok = true;\n rep(k,s.size()-1) {\n if(s[k] + 1 != s[k + 1]) ok = false;\n }\n if(ok) ans = max(ans, stoi(s));\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3508, "score_of_the_acc": -1.4571, "final_rank": 20 } ]
aoj_2782_cpp
We don't wanna work! ACM is an organization of programming contests. The purpose of ACM does not matter to you. The only important thing is that workstyles of ACM members are polarized: each member is either a workhorse or an idle fellow. Each member of ACM has a motivation level. The members are ranked by their motivation levels: a member who has a higher motivation level is ranked higher. When several members have the same value of motivation levels, the member who joined ACM later have a higher rank. The top 20% highest ranked members work hard, and the other (80%) members never (!) work. Note that if 20% of the number of ACM members is not an integer, its fraction part is rounded down. You, a manager of ACM, tried to know whether each member is a workhorse or an idle fellow to manage ACM. Finally, you completed to evaluate motivation levels of all the current members. However, your task is not accomplished yet because the members of ACM are dynamically changed from day to day due to incoming and outgoing of members. So, you want to record transitions of members from workhorses to idle fellows, and vice versa. You are given a list of the current members of ACM and their motivation levels in chronological order of their incoming date to ACM. You are also given a list of incoming/outgoing of members in chronological order. Your task is to write a program that computes changes of workstyles of ACM members. Input The first line of the input contains a single integer $N$ ($1 \leq N \leq 50,000$) that means the number of initial members of ACM. The ($i$ + 1)-th line of the input contains a string $s_i$ and an integer $a_i$ ($0 \leq a_i \leq 10^5$), separated by a single space. $s_i$ means the name of the $i$-th initial member and $a_i$ means the motivation level of the $i$-th initial member. Each character of $s_i$ is an English letter, and $1 \leq |s_i| \leq 20$. Note that those $N$ lines are ordered in chronological order of incoming dates to ACM of each member. The ($N$ + 2)-th line of the input contains a single integer $M$ ($1 \leq M \leq 20,000$) that means the number of changes of ACM members. The ($N$ + 2 + $j$)-th line of the input contains information of the $j$-th incoming/outgoing member. When the $j$-th information represents an incoming of a member, the information is formatted as "$+ t_j b_j$", where $t_j$ is the name of the incoming member and $b_j$ ($0 \leq b_j \leq 10^5$) is his motivation level. On the other hand, when the $j$-th information represents an outgoing of a member, the information is formatted as "$- t_j$", where $t_j$ means the name of the outgoing member. Each character of $t_j$ is an English letter, and $1 \leq |t_j| \leq 20$. Note that uppercase letters and lowercase letters are distinguished. Note that those $M$ lines are ordered in chronological order of dates when each event happens. No two incoming/outgoing events never happen at the same time. No two members have the same name, but members who left ACM once ma ...(truncated)
[ { "submission_id": "aoj_2782_10851164", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define D(x) cout << #x \" = \" << (x) << endl\n#define un(x) x.erase(unique(x.begin(), x.end()), x.end())\n#define sf(n) scanf(\"%d\", &n)\n#define sff(a,b) scanf(\"%d %d\", &a, &b)\n#define sfff(a,b,c) scanf(\"%d %d %d\", &a, &b, &c)\n#define pb push_back\n#define mp make_pair\n#define xx first\n#define yy second\n#define hp (LL) 999983\n#define MAX 100000\n#define eps 1e-9\n#define pi acos(-1.00)\ntypedef long long int LL;\ntypedef pair<int,int> pii;\n\nint global_id;\nmap<string, int> M;\n\nstruct node{\n char name[24];\n int ID, motiv;\n\n node(){}\n node(char *str, int mtv, int _id){\n strcpy(name, str);\n motiv = mtv;\n ID = _id;\n }\n};\n\nbool operator < (const node &u, const node &v){\n if(u.motiv == v.motiv) return u.ID > v.ID;\n return u.motiv > v.motiv;\n}\n\nbool operator == (const node &u, const node &v){\n return u.ID == v.ID;\n}\n\nbool operator <= (const node &u, const node &v){\n return (u < v || u == v);\n}\n\nstruct Treap{\n node val;\n int prior, cnt;\n Treap *l, *r;\n\n Treap(node v){\n l = 0;\n r = 0;\n val = v;\n prior = (rand() << 15) + rand();\n cnt = 1;\n }\n};\n\nint sz(Treap *t) {return (t == NULL) ? 0:t->cnt;}\nvoid upd_sz(Treap *t){\n if(t) t->cnt = 1 + sz(t->l) + sz(t->r);\n}\n\nvoid split(Treap *t, Treap *&l, Treap *&r, node key)\n{\n if(!t) l = r = NULL;\n else if(t->val <= key) {split(t->r, t->r, r, key); l = t;}\n else {split(t->l, l, t->l, key); r = t;}\n upd_sz(t);\n}\n\nvoid merge(Treap *&t, Treap *l, Treap *r){\n if(!l || !r) t = l ? l : r;\n else if(l->prior > r->prior) {merge(l->r, l->r, r); t = l;}\n else {merge(r->l, l, r->l), t = r;}\n upd_sz(t);\n}\n\nvoid insert(Treap *&t, Treap *it){\n if(!t) t = it;\n else if(it->prior > t->prior) {split(t, it->l, it->r, it->val); t = it;}\n else if( (it->val <= t->val) == false) insert(t->r, it);\n else insert(t->l, it);\n upd_sz(t);\n}\n\nvoid erase(Treap *&t, node key){\n if(!t) return;\n else if(t->val == key) {Treap *temp = t; merge(t, t->l, t->r); delete(temp);}\n else if( (key <= t->val) == false) erase(t->r, key);\n else erase(t->l, key);\n upd_sz(t);\n}\n\nnode find_kth(Treap *cur, int k)\n{\n if(sz(cur->l) < k)\n {\n k -= sz(cur->l);\n if(k == 1) return cur->val;\n return find_kth(cur->r, k - 1);\n }\n return find_kth(cur->l, k);\n}\n\nint canWork(int n) {return n / 5;}\n\n\nint n;\nTreap *working, *idle;\nchar str[33], sgn[3];\nstring S;\nset<int> working_id, idle_id;\nint motivation[5000000];\nchar pending_print[1111];\n\nvoid welcomeNewMember(bool printFlag)\n{\n n++;\n\n int mtv;\n Treap *current;\n node lastOne;\n\n\n global_id++;\n scanf(\"%s %d\", str, &mtv);\n motivation[global_id] = mtv;\n\n S = string(str);\n M[S] = global_id;\n\n current = new Treap(node(str, mtv, global_id));\n pending_print[0] = 0;\n\n if(canWork(n) != canWork(n - 1))\n {\n node idleFront = find_kth(idle, 1);\n if(idleFront.motiv > mtv){\n erase(idle, idleFront);\n idle_id.erase(idleFront.ID);\n\n insert(working, new Treap(idleFront));\n working_id.insert(idleFront.ID);\n\n strcat(pending_print, idleFront.name);\n strcat(pending_print, \" is working hard now.\");\n }\n }\n\n if(sz(working) < canWork(n))\n {\n insert(working, current);\n if(printFlag) printf(\"%s is working hard now.\\n\", str);\n working_id.insert(global_id);\n }\n else{\n if(sz(working)){\n lastOne = find_kth(working, sz(working));\n if(lastOne.motiv <= mtv){\n erase(working, lastOne);\n insert(working, current);\n insert(idle, new Treap(lastOne));\n\n working_id.insert(global_id);\n working_id.erase(M[lastOne.name]);\n idle_id.insert(M[lastOne.name]);\n\n if(printFlag) printf(\"%s is working hard now.\\n\", str);\n if(printFlag) printf(\"%s is not working now.\\n\", lastOne.name);\n }\n else\n {\n idle_id.insert(global_id);\n insert(idle, current);\n if(printFlag) printf(\"%s is not working now.\\n\", str);\n }\n }\n else\n {\n idle_id.insert(global_id);\n insert(idle, current);\n if(printFlag) printf(\"%s is not working now.\\n\", str);\n }\n }\n\n if(pending_print[0] && printFlag) puts(pending_print);\n}\n\nvoid removeSomeone(){\n n--;\n\n Treap *current;\n node lastOne, firstOne;\n\n scanf(\"%s\", str);\n int getID = M[str];\n\n\n if(idle_id.find(getID) != idle_id.end()){\n idle_id.erase(getID);\n erase(idle, node(str, motivation[getID], getID));\n }\n else{\n working_id.erase(getID);\n erase(working, node(str, motivation[getID], getID));\n }\n\n while(sz(working) > canWork(n)){\n lastOne = find_kth(working, sz(working));\n\n working_id.erase(lastOne.ID);\n erase(working, lastOne);\n\n\n idle_id.insert(lastOne.ID);\n insert(idle, new Treap(lastOne));\n printf(\"%s is not working now.\\n\", lastOne.name);\n }\n\n while(sz(working) < canWork(n)){\n firstOne = find_kth(idle, 1);\n\n idle_id.erase(firstOne.ID);\n erase(idle, firstOne);\n\n\n working_id.insert(firstOne.ID);\n insert(working, new Treap(firstOne));\n printf(\"%s is working hard now.\\n\", firstOne.name);\n }\n}\n\nint main()\n{\n //freopen(\"in.txt\", \"r\", stdin);\n srand(time(0));\n int i, j, k, mtv, q, N;\n Treap *current;\n node lastOne;\n\n sf(N);\n for(i = 1; i <= N; i++)\n welcomeNewMember(false);\n\n sf(q);\n while(q--){\n scanf(\"%s\", sgn);\n\n if(sgn[0] == '+') welcomeNewMember(true);\n else removeSomeone();\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 13628, "score_of_the_acc": -0.9993, "final_rank": 9 }, { "submission_id": "aoj_2782_10691086", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define inf 0x3f3f3f3f\nstruct node\n{\n\tstring name;\n\tint id,val;\n\tnode(){}\n\tnode(string _s,int _id,int _val)\n\t{\n\t\tname=_s,id=_id,val=_val;\n\t}\n\tbool operator<(const node &A)const\n\t{\n\t\tif(val!=A.val)return val>A.val;\n\t\treturn id>A.id;\n\t}\n};\nset<node>se;\nset<node>::iterator it;\nnode la=node(\"\",inf,inf);\nmap<string,node>mp;\nvoid init()\n{\n\tint t=se.size()/5;\n\tit=se.begin();\n\tfor(int i=0;i<t;i++)\n\t{\n\t\tla=*(it);\n\t\tit++;\n\t}\n}\nvoid add(node no)\n{\n\tse.insert(no);\n\tmp[no.name]=no;\n\tint x=se.size()/5,y=se.size()%5;\n\tif(x==0)\n\t{\n\t\tcout<<no.name<<\" is not working now.\\n\";\n\t}\n\telse if(x==1&&y==0)\n\t{\n\t\tit=se.begin();\n\t\tla=*(se.begin());\n\t\tif(la<no)\n\t\t{\n\t\t\tcout<<no.name<<\" is not working now.\\n\";\n\t\t\tcout<<la.name<<\" is working hard now.\\n\";\n\t\t}\n\t\telse\n\t\t{\n\t\t\tcout<<no.name<<\" is working hard now.\\n\";\n\t\t}\n\t}\n\telse if(y==0)\n\t{\n\t\tif(la<no)\n\t\t{\n\t\t\tit=se.find(la);\n\t\t\tit++;\n\t\t\tla=*(it);\n\t\t\tif(la.name==no.name)\n\t\t\t{\n\t\t\t\tcout<<no.name<<\" is working hard now.\\n\";\n\t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\tcout<<no.name<<\" is not working now.\\n\";\n\t\t\t\tcout<<la.name<<\" is working hard now.\\n\";\n\t\t\t}\n\t\t}\n\t\telse\n\t\t{\n\t\t\tcout<<no.name<<\" is working hard now.\\n\";\n\t\t}\n\t}\n\telse\n\t{\n\t\tif(la<no)\n\t\t{\n\t\t\tcout<<no.name<<\" is not working now.\\n\";\n\t\t}\n\t\telse\n\t\t{\n\t\t\tcout<<no.name<<\" is working hard now.\\n\";\n\t\t\tcout<<la.name<<\" is not working now.\\n\";\n\t\t\tit=se.find(la);\n\t\t\tit--;\n\t\t\tla=*(it);\n\t\t}\n\t}\n}\nvoid sub(node no)\n{\n\tint x=(se.size()-1)/5,y=(se.size()-1)%5;\n\tif(y==4)\n\t{\n\t\tif(la<no)\n\t\t{\n\t\t\tcout<<la.name<<\" is not working now.\\n\";\n\t\t\tit=se.find(la);\n\t\t\tif(it!=se.begin())\n\t\t\t{\n\t\t\t\tit--;la=*(it);\n\t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\tla=node(\"\",inf,inf);\n\t\t\t}\n\t\t}\n\t}\n\telse\n\t{\n\t\tif(!(la<no))\n\t\t{\n\t\t\tit=se.find(la);\n\t\t\tit++;\n\t\t\tla=*(it);\n\t\t\tcout<<la.name<<\" is working hard now.\\n\";\n\t\t}\n\t}\n\tse.erase(no);\n}\nint main()\n{\n\tint n;\n\tscanf(\"%d\",&n);\n\tfor(int i=0;i<n;i++)\n\t{\n\t\tchar s[25];int k;\n\t\tscanf(\"%s %d\",s,&k);\n\t\tse.insert(node(s,i,k));\n\t\tmp[s]=node(s,i,k);\n\t}\n\tinit();\n\tint m;\n\tscanf(\"%d\",&m);\n\tfor(int i=n;i<n+m;i++)\n\t{\n\t\tchar s[25];\n\t\tscanf(\"%s\",s);\n\t\tif(s[0]=='+')\n\t\t{\n\t\t\tint k;\n\t\t\tscanf(\"%s %d\",s,&k);\n\t\t\tadd(node(s,i,k));\n\t\t}\n\t\telse\n\t\t{\n\t\t\tscanf(\"%s\",s);\n\t\t\tsub(mp[s]);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.2878787878787879, "time_ms": 50, "memory_kb": 13716, "score_of_the_acc": -0.7641, "final_rank": 17 }, { "submission_id": "aoj_2782_10691077", "code_snippet": "#include <map>\n#include <queue>\n#include <string>\n#include <cstdio>\n#include <vector>\n#include <cstring>\n#include <algorithm>\nusing namespace std;\nconst int N = 70007;\n\nstruct A{ int val, id; char nm[25]; A(){} };;\nstruct B{\n int val, id; char nm[25];\n bool operator<(const B& b)const{\n if (val==b.val) return id<b.id;\n return val<b.val;\n }\n};\n\nstruct cmp{\n bool operator()(A a, A b){\n if (a.val==b.val) return a.id<b.id;\n return a.val<b.val;\n }\n};\n\nstruct ccmp{\n bool operator()(A a, A b){\n if (a.val==b.val) return a.id>b.id;\n return a.val>b.val;\n }\n};\n\nint n, m, id, a, num, lft, rht, sl, sr, fl;\nchar ss[25], ch[5];\nB ini[50005];\nmap<string, int> mbig, msma;\n\nint main(){\n int i, j, k;\n while (~scanf(\"%d\", &n)){\n num = n; id = n-1;\n lft = num/5; rht = num-lft;\n for (i=0; i<n; ++i){\n scanf(\"%s%d\", ini[i].nm, &ini[i].val);\n ini[i].id = i;\n }\n sort(ini, ini+n);\n priority_queue<A, vector<A>, cmp> big;\n priority_queue<A, vector<A>, ccmp> sma;\n\n A tmp, nw;\n mbig.clear(); msma.clear();\n for (i=0; i<rht; ++i){\n tmp.id = ini[i].id;\n tmp.val = ini[i].val;\n strcpy(tmp.nm, ini[i].nm);\n mbig[ini[i].nm] = tmp.id;\n big.push(tmp);\n }\n for (i=rht; i<n; ++i){\n tmp.id = ini[i].id;\n tmp.val = ini[i].val;\n strcpy(tmp.nm, ini[i].nm);\n msma[ini[i].nm] = tmp.id;\n sma.push(tmp);\n }\n\n scanf(\"%d\", &m);\n for (k=0; k<m; k++){\n scanf(\"%s\", ch);\n if (ch[0]=='-'){\n scanf(\"%s\", ss); num--;\n sl = num/5; sr = num-sl;\n if (mbig.find(ss)!=mbig.end()){\n mbig.erase(ss); rht--;\n if(rht<sr){\n while (!sma.empty()){\n tmp = sma.top(); sma.pop();\n if (msma.find(tmp.nm)!=msma.end()){\n msma.erase(tmp.nm);\n mbig[tmp.nm] = tmp.id;\n big.push(tmp); rht++; lft--;\n printf(\"%s is not working now.\\n\", tmp.nm);\n break;\n }\n }\n }\n }else{\n msma.erase(ss); lft--;\n if (lft<sl){\n while (!big.empty()){\n tmp = big.top(); big.pop();\n if (mbig.find(tmp.nm)!=mbig.end()){\n mbig.erase(tmp.nm);\n msma[tmp.nm] = tmp.id;\n printf(\"%s is working hard now.\\n\", tmp.nm);\n sma.push(tmp); lft++; rht--;\n break;\n }\n }\n }\n }\n }else{\n scanf(\"%s%d\", ss, &a); num++; id++;\n sl = num/5; sr = num-sl;\n strcpy(nw.nm, ss);\n nw.val = a; nw.id = id;\n if (lft<sl){\n while (!big.empty()){\n tmp = big.top(); big.pop();\n if (mbig.find(tmp.nm)!=mbig.end()){\n mbig.erase(tmp.nm);\n break;\n }\n }\n if (nw.val>=tmp.val){\n msma[nw.nm] = nw.id;\n mbig[tmp.nm] = tmp.id;\n big.push(tmp);\n sma.push(nw);\n printf(\"%s is working hard now.\\n\", nw.nm);\n }else{\n mbig[nw.nm] = nw.id;\n msma[tmp.nm] = tmp.id;\n big.push(nw);\n sma.push(tmp);\n printf(\"%s is not working now.\\n\", nw.nm);\n printf(\"%s is working hard now.\\n\", tmp.nm);\n }\n lft++;\n }else if (rht<sr){\n if (sma.empty()){\n mbig[nw.nm] = nw.id;\n big.push(nw);\n printf(\"%s is not working now.\\n\", nw.nm);\n }else{\n while (!sma.empty()){\n tmp = sma.top(); sma.pop();\n if (msma.find(tmp.nm)!=msma.end()){\n msma.erase(tmp.nm);\n break;\n }\n }\n if (tmp.val<=nw.val){\n mbig[tmp.nm] = tmp.id;\n msma[nw.nm] = nw.id;\n sma.push(nw);\n big.push(tmp);\n printf(\"%s is working hard now.\\n\", nw.nm);\n printf(\"%s is not working now.\\n\", tmp.nm);\n }else{\n mbig[nw.nm] = nw.id;\n msma[tmp.nm] = tmp.id;\n sma.push(tmp);\n big.push(nw);\n printf(\"%s is not working now.\\n\", nw.nm);\n }\n }\n rht++;\n }\n }\n }\n }\n return 0;\n}", "accuracy": 0.19696969696969696, "time_ms": 40, "memory_kb": 10656, "score_of_the_acc": -0.125, "final_rank": 18 }, { "submission_id": "aoj_2782_10358541", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <cassert>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <numeric>\n#include <map>\n#include <set>\n// #include \"Src/Utility/BinarySearch.hpp\"\n// #include \"Src/Sequence/CompressedSequence.hpp\"\n// #include \"Src/Sequence/RunLengthEncoding.hpp\"\n// using namespace zawa;\n// #include \"atcoder/modint\"\n// using mint = atcoder::modint998244353;\nstd::map<std::string, int> map;\nint get_id(std::string S) {\n auto it = map.find(S);\n if (it != map.end()) {\n return it->second;\n }\n else {\n int res = map.size();\n return map[S] = res;\n }\n}\nint SIZE = 0;\nstd::pair<int, int> id[50010+20010]; // power, time\nusing item = std::tuple<int, int, std::string>; // power, time, name\nstd::multiset<item> small, big;\n\nvoid working(const std::string& S) {\n std::cout << S << \" is working hard now.\\n\";\n}\nvoid idle(const std::string& S) {\n std::cout << S << \" is not working now.\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::cout.tie(nullptr);\n std::ios::sync_with_stdio(false);\n int N;\n std::cin >> N;\n for (int i = 0 ; i < N ; i++) {\n std::string S;\n int a;\n std::cin >> S >> a;\n int j = get_id(S);\n id[j] = {a, i};\n SIZE++;\n big.insert(item{a, i, S});\n }\n while ((int)big.size() > SIZE / 5) {\n auto it = big.begin();\n small.insert(*it);\n big.erase(it);\n }\n int M;\n std::cin >> M;\n for (int i = 0 ; i < M ; i++) {\n char c;\n std::string S;\n std::cin >> c >> S;\n if (c == '+') {\n int p;\n std::cin >> p;\n int j = get_id(S);\n id[j] = {p, N+i};\n SIZE++;\n item cur{p, N+i, S};\n if ((int)big.size() < SIZE/5 and (small.empty() or *small.rbegin() < cur)) {\n working(S);\n big.insert(cur);\n }\n else if ((int)big.size() == SIZE/5 and big.size() and *big.begin() < cur) {\n working(S);\n big.insert(cur);\n }\n else {\n idle(S);\n small.insert(cur);\n }\n }\n else if (c == '-') {\n auto [p, t] = id[get_id(S)];\n item cur{p, t, S};\n {\n auto it = small.find(cur);\n if (it != small.end()) small.erase(it);\n else {\n it = big.find(cur);\n assert(it != big.end());\n big.erase(it);\n }\n }\n SIZE--;\n }\n else assert(false);\n if ((int)big.size() < SIZE / 5 and small.size()) {\n auto it = std::prev(small.end());\n working(std::get<2>(*it));\n big.insert(*it);\n small.erase(it);\n }\n else if ((int)big.size() > SIZE / 5) {\n auto it = big.begin();\n idle(std::get<2>(*it));\n small.insert(*it);\n big.erase(it);\n }\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 12288, "score_of_the_acc": -0.5242, "final_rank": 6 }, { "submission_id": "aoj_2782_10358335", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <cassert>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <numeric>\n#include <map>\n#include <set>\n// #include \"Src/Utility/BinarySearch.hpp\"\n// #include \"Src/Sequence/CompressedSequence.hpp\"\n// #include \"Src/Sequence/RunLengthEncoding.hpp\"\n// using namespace zawa;\n// #include \"atcoder/modint\"\n// using mint = atcoder::modint998244353;\nstd::map<std::string, int> map;\nint get_id(std::string S) {\n auto it = map.find(S);\n if (it != map.end()) {\n return it->second;\n }\n else {\n int res = map.size();\n return map[S] = res;\n }\n}\nint SIZE = 0;\nstd::pair<int, int> id[50010+20010]; // power, time\nusing item = std::tuple<int, int, std::string>; // power, time, name\nstd::multiset<item> small, big;\n\nvoid working(const std::string& S) {\n std::cout << S << \" is working hard now.\\n\";\n}\nvoid idle(const std::string& S) {\n std::cout << S << \" is not working now.\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::cout.tie(nullptr);\n std::ios::sync_with_stdio(false);\n int N;\n std::cin >> N;\n for (int i = 0 ; i < N ; i++) {\n std::string S;\n int a;\n std::cin >> S >> a;\n int j = get_id(S);\n id[j] = {a, i};\n SIZE++;\n big.insert(item{a, i, S});\n }\n while ((int)big.size() > SIZE / 5) {\n auto it = big.begin();\n small.insert(*it);\n big.erase(it);\n }\n int M;\n std::cin >> M;\n for (int i = 0 ; i < M ; i++) {\n char c;\n std::string S;\n std::cin >> c >> S;\n if (c == '+') {\n int p;\n std::cin >> p;\n int j = get_id(S);\n id[j] = {p, N+i};\n SIZE++;\n item cur{p, N+i, S};\n if ((int)big.size() < SIZE/5 and (small.empty() or *small.rbegin() < cur)) {\n working(S);\n big.insert(cur);\n }\n else if ((int)big.size() == SIZE/5 and big.size() and *big.begin() < cur) {\n working(S);\n big.insert(cur);\n }\n else {\n idle(S);\n small.insert(cur);\n }\n }\n else if (c == '-') {\n auto [p, t] = id[get_id(S)];\n item cur{p, t, S};\n {\n auto it = small.find(cur);\n if (it != small.end()) small.erase(it);\n else {\n it = big.find(cur);\n assert(it != big.end());\n big.erase(it);\n }\n }\n SIZE--;\n }\n else assert(false);\n if ((int)big.size() < SIZE / 5 and small.size()) {\n auto it = std::prev(small.end());\n working(std::get<2>(*it));\n big.insert(*it);\n small.erase(it);\n }\n else if ((int)big.size() > SIZE / 5) {\n auto it = big.begin();\n idle(std::get<2>(*it));\n small.insert(*it);\n big.erase(it);\n }\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 12288, "score_of_the_acc": -0.5242, "final_rank": 6 }, { "submission_id": "aoj_2782_10260027", "code_snippet": "// AOJ #2782 We don't wanna work!\n// 2025.3.2\n\n#include <bits/stdc++.h>\n#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace std;\nusing namespace __gnu_pbds;\n\nstruct M {\n int m, j;\n string n;\n};\n\nstruct cmp {\n bool operator()(const M &a, const M &b) const {\n if(a.m != b.m) return a.m > b.m;\n return a.j > b.j;\n }\n};\n\ntypedef tree<M, null_type, cmp, rb_tree_tag, tree_order_statistics_node_update> ost;\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int N; cin >> N;\n ost T;\n unordered_map<string, M> R;\n unordered_map<string, bool> S;\n int cnt = 0;\n for(int i = 0; i < N; i++){\n string s; int a; cin >> s >> a;\n cnt++;\n M x{a, cnt, s};\n T.insert(x);\n R[s] = x;\n }\n int t = (int)T.size() * 20 / 100;\n for(auto it = T.begin(); it != T.end(); it++){\n int pos = T.order_of_key(*it);\n S[it->n] = (pos < t);\n }\n int Mcnt; cin >> Mcnt;\n for(int i = 0; i < Mcnt; i++){\n char op; cin >> op;\n int oldSize = T.size();\n int oldt = (oldSize * 20) / 100;\n if(op == '+'){\n string s; int a; cin >> s >> a;\n cnt++;\n M x{a, cnt, s};\n T.insert(x);\n R[s] = x;\n int newSize = T.size();\n int nt = (newSize * 20) / 100;\n int pos = T.order_of_key(x);\n bool w = (pos < nt);\n S[s] = w;\n cout << s << (w ? \" is working hard now.\" : \" is not working now.\") << endl;\n if(nt > 0){\n M cand = *T.find_by_order(nt - 1);\n if(!S[cand.n]){\n S[cand.n] = true;\n cout << cand.n << \" is working hard now.\" << endl;\n }\n }\n if(nt < newSize){\n M cand = *T.find_by_order(nt);\n if(S[cand.n]){\n S[cand.n] = false;\n cout << cand.n << \" is not working now.\" << endl;\n }\n }\n } else {\n string s; cin >> s;\n M x = R[s];\n T.erase(x);\n R.erase(s);\n S.erase(s);\n int newSize = T.size();\n int nt = (newSize * 20) / 100;\n if(newSize > 0){\n if(nt > 0){\n M cand = *T.find_by_order(nt - 1);\n if(!S[cand.n]){\n S[cand.n] = true;\n cout << cand.n << \" is working hard now.\" << endl;\n }\n }\n if(nt < newSize){\n M cand = *T.find_by_order(nt);\n if(S[cand.n]){\n S[cand.n] = false;\n cout << cand.n << \" is not working now.\" << endl;\n }\n }\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 16504, "score_of_the_acc": -1.3575, "final_rank": 12 }, { "submission_id": "aoj_2782_10238690", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct Human {\n string name;\n int power;\n int joined;\n};\n\nbool operator<(const Human &a1, const Human &a2) {\n if (a1.power > a2.power) return true;\n if (a1.power < a2.power) return false;\n if (a1.joined > a2.joined) return true;\n return false;\n}\n\nint main() {\n // Input (Former)\n int N; cin >> N;\n vector<Human> P(N);\n for (int i = 0; i < N; i++) cin >> P[i].name >> P[i].power;\n for (int i = 0; i < N; i++) P[i].joined = i;\n int Q; cin >> Q;\n\n // Input (Latter)\n vector<pair<char, Human>> Change(Q);\n map<string, pair<int, int>> PowerList;\n for (int i = 0; i < N; i++) PowerList[P[i].name] = make_pair(P[i].power, P[i].joined);\n for (int i = 0; i < Q; i++) {\n cin >> Change[i].first;\n if (Change[i].first == '+') {\n cin >> Change[i].second.name >> Change[i].second.power;\n Change[i].second.joined = N + i;\n PowerList[Change[i].second.name] = make_pair(Change[i].second.power, Change[i].second.joined);\n }\n if (Change[i].first == '-') {\n cin >> Change[i].second.name;\n Change[i].second.power = PowerList[Change[i].second.name].first;\n Change[i].second.joined = PowerList[Change[i].second.name].second;\n PowerList[Change[i].second.name] = make_pair(0, 0);\n }\n }\n\n // Step 2. Query Init\n set<Human> Strong;\n set<Human> Weak;\n for (int i = 0; i < N; i++) Strong.insert(P[i]);\n while (Strong.size() * 4 > Weak.size()) {\n auto itr = Strong.end(); itr--;\n Weak.insert(*itr);\n Strong.erase(*itr);\n }\n\n // Step 3. Update\n for (int i = 0; i < Q; i++) {\n // Addition\n if (Change[i].first == '+') {\n int sz = Strong.size() + Weak.size();\n string verdict = \"lazy\";\n if (sz % 5 == 4) {\n auto itr = Weak.begin();\n if (Change[i].second < (*itr)) verdict = \"hard\";\n }\n else if (sz >= 5) {\n auto itr = Strong.end(); itr--;\n if (Change[i].second < (*itr)) verdict = \"hard\";\n }\n if (verdict == \"lazy\") {\n cout << Change[i].second.name << \" is not working now.\" << endl;\n Weak.insert(Change[i].second);\n }\n else {\n cout << Change[i].second.name << \" is working hard now.\" << endl;\n Strong.insert(Change[i].second);\n }\n }\n\n // Deletion\n if (Change[i].first == '-') {\n Strong.erase(Change[i].second);\n Weak.erase(Change[i].second);\n }\n\n // Update\n while (Strong.size() * 4 > Weak.size()) {\n auto itr = Strong.end(); itr--;\n cout << (*itr).name << \" is not working now.\" << endl;\n Weak.insert(*itr);\n Strong.erase(*itr);\n }\n while (Strong.size() * 4 + 4 < Weak.size()) {\n auto itr = Weak.begin();\n cout << (*itr).name << \" is working hard now.\" << endl;\n Strong.insert(*itr);\n Weak.erase(*itr);\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14464, "score_of_the_acc": -1.1398, "final_rank": 10 }, { "submission_id": "aoj_2782_9742912", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nmap<string,int> mps;\nvector<string> SV;\nvector<int> X;\nint scur = 0;\nint getstring() {\n string s;\n cin >> s;\n if (mps.count(s)) return mps[s];\n SV.push_back(s);\n X.push_back(0);\n mps[s] = scur;\n scur++;\n return scur-1;\n}\n\nint main() {\n int N;\n cin >> N;\n set<pair<int,int>> Left, Right;\n int LC = N, RC = 0;\n rep(i,0,N) {\n int A = getstring();\n int B;\n cin >> B;\n Left.insert({B,A});\n X[A] = B;\n }\n while(RC < N/5) {\n pair<int,int> P = *Left.rbegin();\n Left.erase(P);\n Right.insert(P);\n LC--, RC++;\n }\n auto Balancing = [&]() -> void {\n int RS = (LC+RC)/5;\n while(RC < RS) {\n pair<int,int> P = *Left.rbegin();\n Left.erase(P);\n Right.insert(P);\n LC--, RC++;\n cout << SV[P.second] << \" is working hard now.\" << endl;\n }\n while(RC > RS) {\n pair<int,int> P = *Right.begin();\n Right.erase(P);\n Left.insert(P);\n LC++, RC--;\n cout << SV[P.second] << \" is not working now.\" << endl;\n }\n };\n int Q;\n cin >> Q;\n while(Q--) {\n char C;\n cin >> C;\n int A = getstring();\n if (C == '+') {\n int B;\n cin >> B;\n X[A] = B;\n pair<int,int> P = {B,A};\n X.push_back(B);\n int RS = (LC+RC+1)/5;\n pair<int,int> L1, R1;\n if (Left.empty()) L1 = {-inf,-inf};\n else L1 = *Left.rbegin();\n if (Right.empty()) R1 = {inf,inf};\n else R1 = *Right.begin();\n if (P < L1) {\n Left.insert(P);\n LC++;\n cout << SV[P.second] << \" is not working now.\" << endl;\n }\n else if (R1 < P) {\n Right.insert(P);\n RC++;\n cout << SV[P.second] << \" is working hard now.\" << endl;\n }\n else {\n if (RS == RC) {\n Left.insert(P);\n LC++;\n cout << SV[P.second] << \" is not working now.\" << endl;\n }\n else {\n Right.insert(P);\n RC++;\n cout << SV[P.second] << \" is working hard now.\" << endl;\n }\n }\n Balancing();\n }\n else {\n pair<int,int> P = {X[A],A};\n if (Left.count(P)) Left.erase(P), LC--;\n if (Right.count(P)) Right.erase(P), RC--;\n Balancing();\n mps.erase(SV[A]);\n }\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 11656, "score_of_the_acc": -0.793, "final_rank": 8 }, { "submission_id": "aoj_2782_9742903", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nmap<string,int> mps;\nvector<string> SV;\nvector<int> X;\nint scur = 0;\nint getstring() {\n string s;\n cin >> s;\n if (mps.count(s)) return mps[s];\n SV.push_back(s);\n X.push_back(0);\n mps[s] = scur;\n scur++;\n return scur-1;\n}\n\nint main() {\n int N;\n cin >> N;\n set<pair<int,int>> Left, Right;\n int LC = N, RC = 0;\n rep(i,0,N) {\n int A = getstring();\n int B;\n cin >> B;\n Left.insert({B,A});\n X[A] = B;\n }\n while(RC < N/5) {\n pair<int,int> P = *Left.rbegin();\n Left.erase(P);\n Right.insert(P);\n LC--, RC++;\n }\n auto Balancing = [&]() -> void {\n int RS = (LC+RC)/5;\n while(RC < RS) {\n pair<int,int> P = *Left.rbegin();\n Left.erase(P);\n Right.insert(P);\n LC--, RC++;\n cout << SV[P.second] << \" is working hard now.\" << endl;\n }\n while(RC > RS) {\n pair<int,int> P = *Right.begin();\n Right.erase(P);\n Left.insert(P);\n LC++, RC--;\n cout << SV[P.second] << \" is not working now.\" << endl;\n }\n };\n int Q;\n cin >> Q;\n while(Q--) {\n char C;\n cin >> C;\n int A = getstring();\n if (C == '+') {\n int B;\n cin >> B;\n X[A] = B;\n pair<int,int> P = {B,A};\n X.push_back(B);\n int RS = (LC+RC+1)/5;\n pair<int,int> L1, R1;\n if (Left.empty()) L1 = {-inf,-inf};\n else L1 = *Left.rbegin();\n if (Right.empty()) R1 = {inf,inf};\n else R1 = *Right.begin();\n if (P < L1) {\n Left.insert(P);\n LC++;\n cout << SV[P.second] << \" is not working now.\" << endl;\n }\n else if (R1 < P) {\n Right.insert(P);\n RC++;\n cout << SV[P.second] << \" is working hard now.\" << endl;\n }\n else {\n if (RS == RC) {\n Left.insert(P);\n LC++;\n cout << SV[P.second] << \" is not working now.\" << endl;\n }\n else {\n Right.insert(P);\n RC++;\n cout << SV[P.second] << \" is working hard now.\" << endl;\n }\n }\n Balancing();\n }\n else {\n pair<int,int> P = {X[A],A};\n if (Left.count(P)) Left.erase(P), LC--;\n if (Right.count(P)) Right.erase(P), RC--;\n Balancing();\n }\n }\n}", "accuracy": 0.15151515151515152, "time_ms": 70, "memory_kb": 12172, "score_of_the_acc": -0.7547, "final_rank": 20 }, { "submission_id": "aoj_2782_9669019", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nint main(){\n ll N;cin>>N;\n set<pi>workhorse,idle;\n map<ll,string>name;\n map<string,pi>st;\n REP(i,N){\n string t;cin>>t;\n name[i]=t;\n ll m;cin>>m;\n st[t]=pi(m,i);\n idle.insert(pi(m,i));\n }\n while(workhorse.size()<N/5){\n workhorse.insert(*prev(idle.end()));\n idle.erase(prev(idle.end()));\n }\n ll Q,now=N;cin>>Q;\n REP(i,Q){\n char c;string t;cin>>c>>t;\n if(c=='+'){\n ll m;cin>>m;\n name[now]=t;\n N++;\n pi p=pi(m,now++);\n st[t]=p;\n if(workhorse.size()&&*workhorse.begin()<p){\n workhorse.insert(p);\n cout<<t<<\" is working hard now.\"<<endl;\n }\n else if(idle.size()&&*prev(idle.end())>p){\n idle.insert(p);\n cout<<t<<\" is not working now.\"<<endl;\n }\n else if(N%5==0){\n workhorse.insert(p);\n cout<<t<<\" is working hard now.\"<<endl;\n }\n else{\n idle.insert(p);\n cout<<t<<\" is not working now.\"<<endl;\n }\n }\n else{\n N--;\n auto p=st[t];\n workhorse.erase(p);\n idle.erase(p);\n }\n while(workhorse.size()!=N/5){\n if(workhorse.size()>N/5){\n auto p=*workhorse.begin();\n cout<<name[p.second]<<\" is not working now.\"<<endl;\n idle.insert(p);\n workhorse.erase(p);\n }\n else{\n auto p=*prev(idle.end());\n cout<<name[p.second]<<\" is working hard now.\"<<endl;\n workhorse.insert(p);\n idle.erase(p);\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 16608, "score_of_the_acc": -1.625, "final_rank": 14 }, { "submission_id": "aoj_2782_9437106", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<vvi> vvvi;\ntypedef vector<bool> vb;\ntypedef vector<vb> vvb;\ntypedef vector<vvb> vvvb;\ntypedef vector<vvvb> vvvvb;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define RFOR(i,l,r) for(ll i=r-1;i>=l;i--)\n#define RREP(i,n) RFOR(i,0,n)\n#define sz(A) (ll)(A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin())\n#define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin())\n#define COU(A,x) (UB(A,x)-LB(A,x))\n#define F first\n#define S second\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.F<<\" \"<<p.S;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.F>>p.S;return is;}\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){REP(i,sz(v))os<<v[i]<<(i+1!=sz(v)?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;}\nconst ll mod=998244353;\nint main(){\n while(1){\n ll N;cin>>N;\n vector<string>S(N);\n vi A(N);\n REP(i,N)cin>>S[i]>>A[i];\n set<pair<pi,string>>Q1;\n set<pair<pi,string>>Q2;\n map<string,pi>memo;\n REP(i,N)memo[S[i]]=pi(A[i],i-N);\n REP(i,N)Q1.insert(make_pair(pi(A[i],i-N),S[i]));\n while(sz(Q1)>N/5){\n Q2.insert(*Q1.begin());Q1.erase(Q1.begin());\n }\n //for(auto i:Q1)cout<<i<<\" \";cout<<endl;\n //for(auto i:Q2)cout<<i<<\" \";cout<<endl;\n ll M;cin>>M;\n REP(_,M){\n char c;cin>>c;\n if(c=='+'){\n string s;cin>>s;\n ll a;cin>>a;\n memo[s]=pi(a,_);\n N++;\n if(N/5==0){\n cout<<s<<\" is not working now.\"<<endl;\n Q2.insert(make_pair(memo[s],s));\n }\n else if(!sz(Q1)){\n auto p=*prev(Q2.end());\n if(p.F<memo[s]){\n cout<<s<<\" is working hard now.\"<<endl;\n Q1.insert(make_pair(memo[s],s));\n }\n else{\n cout<<s<<\" is not working now.\"<<endl;\n Q2.insert(make_pair(memo[s],s));\n cout<<p.S<<\" is working hard now.\"<<endl;\n Q2.erase(p);\n Q1.insert(p);\n }\n }\n else if(memo[s]>(*Q1.begin()).F){\n cout<<s<<\" is working hard now.\"<<endl;\n Q1.insert(make_pair(memo[s],s));\n if(sz(Q1)>N/5){\n auto p=*Q1.begin();\n cout<<p.S<<\" is not working now.\"<<endl;\n Q1.erase(p);\n Q2.insert(p);\n }\n }\n else if(memo[s]<(*prev(Q2.end())).F){\n cout<<s<<\" is not working now.\"<<endl;\n Q2.insert(make_pair(memo[s],s));\n if(sz(Q1)<N/5){\n auto p=*prev(Q2.end());\n cout<<p.S<<\" is working hard now.\"<<endl;\n Q2.erase(p);\n Q1.insert(p);\n }\n }\n else if(sz(Q1)==N/5){\n cout<<s<<\" is not working now.\"<<endl;\n Q2.insert(make_pair(memo[s],s));\n }\n else{\n cout<<s<<\" is working hard now.\"<<endl;\n Q1.insert(make_pair(memo[s],s));\n }\n }\n else{\n string s;cin>>s;\n if(Q1.count(make_pair(memo[s],s)))Q1.erase(make_pair(memo[s],s));\n else Q2.erase(make_pair(memo[s],s));\n N--;\n if(sz(Q1)>N/5){\n cout<<(*Q1.begin()).S<<\" is not working now.\"<<endl;\n Q2.insert(*Q1.begin());\n Q1.erase(Q1.begin());\n }\n if(sz(Q1)<N/5&&N){\n cout<<(*prev(Q2.end())).S<<\" is working hard now.\"<<endl;\n Q1.insert(*prev(Q2.end()));\n Q2.erase(prev(Q2.end()));\n }\n }\n }\n break;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14976, "score_of_the_acc": -1.2258, "final_rank": 11 }, { "submission_id": "aoj_2782_8491765", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2782.cc: We don't wanna work!\n */\n\n#include<cstdio>\n#include<string>\n#include<map>\n#include<set>\n#include<algorithm>\n#include<utility>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 50000 + 20000;\n\n/* typedef */\n\ntypedef pair<int,int> pii;\ntypedef map<string,int> msi;\ntypedef set<pii> spii;\n\n/* global variables */\n\nstring ss[MAX_N];\nint as[MAX_N];\npii ps[MAX_N];\n\n/* subroutines */\n\nint normalize(spii &q0, spii &q1) {\n int l0 = q0.size(), l1 = q1.size(), l = l0 + l1;\n int r = -1;\n\n if (l1 > l / 5) { // q1->q0\n auto sit = q1.begin();\n r = sit->second;\n q0.insert(*sit);\n q1.erase(sit);\n }\n else if (l0 > l - l / 5) { // q0->q1\n auto sit = q0.end(); sit--;\n r = sit->second;\n q1.insert(*sit);\n q0.erase(sit);\n }\n\n return r;\n}\n\ninline bool working(spii &q1, int i) {\n return q1.find(pii(as[i], i)) != q1.end();\n}\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n\n msi smap;\n for (int i = 0; i < n; i++) {\n char s[32];\n scanf(\"%s%d\", s, as + i);\n ss[i] = string(s);\n smap[ss[i]] = i;\n ps[i] = pii(as[i], i);\n }\n sort(ps, ps + n);\n\n int l1 = n / 5, l0 = n - l1;\n spii q0(ps, ps + l0), q1(ps + l0, ps + n);\n \n int m;\n scanf(\"%d\", &m);\n\n while (m--) {\n char op[4], s[32];\n scanf(\"%s%s\", op, s);\n\n if (op[0] == '+') {\n scanf(\"%d\", as + n);\n ss[n] = string(s);\n smap[ss[n]] = n;\n pii pi(as[n], n);\n\n if (! q1.empty() && *(q1.begin()) < pi) q1.insert(pi);\n else q0.insert(pi);\n int r = normalize(q0, q1);\n\n if (working(q1, n))\n\tprintf(\"%s is working hard now.\\n\", ss[n].c_str());\n else\n\tprintf(\"%s is not working now.\\n\", ss[n].c_str());\n\n if (r >= 0 && r != n) {\n\tif (working(q1, r))\n\t printf(\"%s is working hard now.\\n\", ss[r].c_str());\n\telse\n\t printf(\"%s is not working now.\\n\", ss[r].c_str());\n }\n\n n++;\n }\n else { // op[0] == '-'\n int k = smap[string(s)];\n\n if (working(q1, k)) {\n\tq1.erase(pii(as[k], k));\n\t//printf(\"%s is not working now.\\n\", ss[k].c_str());\n }\n else {\n\tq0.erase(pii(as[k], k));\n }\n\n int r = normalize(q0, q1);\n if (r >= 0) {\n\tif (working(q1, r))\n\t printf(\"%s is working hard now.\\n\", ss[r].c_str());\n\telse\n\t printf(\"%s is not working now.\\n\", ss[r].c_str());\n }\n }\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 12628, "score_of_the_acc": -0.3313, "final_rank": 2 }, { "submission_id": "aoj_2782_7939205", "code_snippet": "#include <bits/stdc++.h>\n#define N 100010\nusing namespace std;\ntypedef pair<pair<int, int>, int> Type;\nmap<string, int> A;\nset<Type> Q1, Q2;\nset<Type>::iterator it;\nint n, cnt, m, val[N], Time[N];\nchar name[N][30], s[30], opt[30];\nint main() {\n scanf(\"%d\", &n);\n for (int i = 1; i <= n; i++) {\n int v, id;\n scanf(\"%s%d\", s, &v);\n if (!A.count((string)s)) {\n A[(string)s] = ++cnt;\n int l = strlen(s);\n for (int j = 0; j < l; j++)\n name[cnt][j] = s[j];\n name[cnt][l] = 0;\n }\n id = A[(string)s];\n val[id] = v;\n Time[id] = i;\n Q2.insert(make_pair(make_pair(v, i), id));\n }\n int size = cnt;\n int K = size / 5;\n while (Q1.size() < K) {\n it = Q2.end();\n it--;\n Q1.insert(*it);\n Q2.erase(it);\n }\n scanf(\"%d\", &m);\n for (int i = 1; i <= m; i++) {\n int v, id;\n scanf(\"%s\", opt);\n if (opt[0] == '+') {\n scanf(\"%s%d\", s, &v);\n if (!A.count((string)s)) {\n A[(string)s] = ++cnt;\n int l = strlen(s);\n for (int j = 0; j < l; j++)\n name[cnt][j] = s[j];\n name[cnt][l] = 0;\n }\n id = A[(string)s];\n val[id] = v;\n Time[id] = i + n;\n size++;\n K = size / 5;\n Type now = make_pair(make_pair(v, i + n), id);\n it = Q2.end();\n it--;\n if ((*it).first.first > v) {\n printf(\"%s is not working now.\\n\", name[id]);\n Q2.insert(now);\n while (Q1.size() < K) {\n Q1.insert(*it);\n printf(\"%s is working hard now.\\n\", name[(*it).second]);\n Q2.erase(it);\n }\n } else {\n Q1.insert(now);\n it = Q1.begin();\n if ((*it).second == id && Q1.size() > K) {\n printf(\"%s is not working now.\\n\", name[id]);\n Q2.insert(*it);\n Q1.erase(it);\n } else {\n printf(\"%s is working hard now.\\n\", name[id]);\n while (Q1.size() > K) {\n printf(\"%s is not working now.\\n\", name[(*it).second]);\n Q2.insert(*it);\n Q1.erase(it);\n }\n }\n }\n } else {\n scanf(\"%s\", s);\n size--;\n K = size / 5;\n int id = A[(string)s];\n Type now = make_pair(make_pair(val[id], Time[id]), id);\n it = Q1.find(now);\n if (it == Q1.end())\n it = Q2.find(now), Q2.erase(it);\n else\n Q1.erase(it);\n while (Q1.size() > K) {\n it = Q1.begin();\n printf(\"%s is not working now.\\n\", name[(*it).second]);\n Q2.insert(*it);\n Q1.erase(it);\n }\n while (Q1.size() < K) {\n it = Q2.end();\n it--;\n printf(\"%s is working hard now.\\n\", name[(*it).second]);\n Q1.insert(*it);\n Q2.erase(it);\n }\n }\n }\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 14768, "score_of_the_acc": -1.6909, "final_rank": 16 }, { "submission_id": "aoj_2782_7939186", "code_snippet": "#include <algorithm>\n#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <map>\n#include <set>\n#include <string>\n#define maxn 100100\nusing namespace std;\nstruct node {\n int val, time;\n node(int val, int time) : val(val), time(time) {}\n bool operator<(const node &A) const {\n if (val == A.val)\n return time > A.time;\n return val > A.val;\n }\n};\nint n, m, val;\nint tval[maxn];\nstring op, name, mp[maxn];\nmap<string, int> tid;\nset<node> st1, st2;\nint main(void) {\n while (cin >> n) {\n st1.clear();\n st2.clear();\n tid.clear();\n for (int i = 1; i <= n; i++) {\n cin >> name >> val;\n mp[i] = name;\n tid[name] = i;\n tval[i] = val;\n st2.insert(node(val, i));\n }\n for (int i = 1; i <= n / 5; i++) {\n st1.insert(*st2.begin());\n st2.erase(st2.begin());\n }\n cin >> m;\n for (int i = 1; i <= m; i++) {\n cin >> op >> name;\n if (op == \"+\") {\n scanf(\"%d\", &val);\n tval[n + i] = val;\n mp[n + i] = name;\n tid[name] = n + i;\n if ((st1.size() + st2.size() + 1) % 5 == 0) {\n st2.insert(node(val, n + i));\n node tmp = *st2.begin();\n st2.erase(st2.begin());\n st1.insert(tmp);\n if (mp[tmp.time] != name)\n cout << name << \" is not working now.\" << endl;\n cout << mp[tmp.time] << \" is working hard now.\" << endl;\n continue;\n }\n if (!st1.empty() && val >= (*--st1.end()).val) {\n cout << name << \" is working hard now.\" << endl;\n node tmp = *--st1.end();\n st1.erase(--st1.end());\n st2.insert(tmp);\n cout << mp[tmp.time] << \" is not working now.\" << endl;\n st1.insert(node(val, n + i));\n continue;\n }\n st2.insert(node(val, n + i));\n cout << name << \" is not working now.\" << endl;\n } else {\n int ti = tid[name];\n if ((st1.size() + st2.size()) % 5 == 0) {\n if (st2.find(node(tval[ti], ti)) != st2.end()) {\n set<node>::iterator it1 = st2.find(node(tval[ti], ti));\n st2.erase(it1);\n node temp = *--st1.end();\n st1.erase(--st1.end());\n st2.insert(temp);\n cout << mp[temp.time] << \" is not working now.\" << endl;\n } else {\n set<node>::iterator it2 = st1.find(node(tval[ti], ti));\n st1.erase(it2);\n }\n } else if (st1.find(node(tval[ti], ti)) != st1.end()) {\n set<node>::iterator it3 = st1.find(node(tval[ti], ti));\n st1.erase(it3);\n node temp = *st2.begin();\n st1.insert(temp);\n st2.erase(st2.begin());\n cout << mp[temp.time] << \" is working hard now.\" << endl;\n } else {\n set<node>::iterator it4 = st2.find(node(tval[ti], ti));\n st2.erase(it4);\n }\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 13140, "score_of_the_acc": -1.4173, "final_rank": 13 }, { "submission_id": "aoj_2782_7939167", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define maxn 100100\nstruct P1 {\n string name;\n int v, tim;\n bool operator<(const P1 &pp) const {\n if (v != pp.v)\n return v < pp.v;\n else\n return tim < pp.tim;\n }\n};\nstruct P2 {\n string name;\n int v, tim;\n bool operator<(const P2 &pp) const {\n if (v != pp.v)\n return v > pp.v;\n else\n return tim > pp.tim;\n }\n} a[maxn];\nset<P1> s1;\nset<P2> s2;\nint n, m;\nstring man;\nint v;\n#define P pair<int, int>\nmap<string, P> mp;\nP1 p2top1(P2 tmp) {\n P1 ans;\n ans.name = tmp.name;\n ans.v = tmp.v;\n ans.tim = tmp.tim;\n return ans;\n}\nP2 p1top2(P1 tmp) {\n P2 ans;\n ans.name = tmp.name;\n ans.v = tmp.v;\n ans.tim = tmp.tim;\n return ans;\n}\nint main() {\n scanf(\"%d\", &n);\n for (int i = 1; i <= n; ++i) {\n a[i].tim = i;\n cin >> a[i].name;\n scanf(\"%d\", &a[i].v);\n mp[a[i].name] = P(a[i].v, i);\n }\n sort(a + 1, a + n + 1);\n int lx = n / 5;\n for (int i = 1; i <= lx; ++i)\n s1.insert(p2top1(a[i]));\n for (int i = lx + 1; i <= n; ++i)\n s2.insert(a[i]);\n scanf(\"%d\", &m);\n int tot = n;\n for (int i = 1; i <= m; ++i) {\n int now = n + i;\n char op[5];\n scanf(\"%s\", op);\n if (*op == '+') {\n cin >> man;\n scanf(\"%d\", &v);\n mp[man] = P(v, now);\n tot++;\n set<P1>::iterator it;\n it = s1.begin();\n P1 tmp, this_man;\n if (it != s1.end()) {\n tmp = (*it);\n this_man.name = man;\n this_man.v = v;\n this_man.tim = now;\n }\n if (it != s1.end() && tmp < this_man) {\n s1.insert(this_man);\n cout << man;\n puts(\" is working hard now.\");\n if (tot % 5 != 0) {\n P1 tmp = (*it);\n P2 ttmp = p1top2(tmp);\n s1.erase(it);\n s2.insert(ttmp);\n cout << tmp.name;\n puts(\" is not working now.\");\n }\n } else {\n if (tot % 5 == 0) {\n set<P2>::iterator it;\n it = s2.begin();\n P2 this_, tmp;\n if (it != s2.end()) {\n tmp = (*it);\n this_.name = man;\n this_.v = v;\n this_.tim = now;\n } else\n tmp.v = -100000;\n if (this_ < tmp) {\n P1 cpy = p2top1(this_);\n s1.insert(cpy);\n cout << man;\n puts(\" is working hard now.\");\n } else {\n s2.erase(*it);\n P1 cpy = p2top1(tmp);\n s1.insert(cpy);\n s2.insert(this_);\n cout << man;\n puts(\" is not working now.\");\n cout << tmp.name;\n puts(\" is working hard now.\");\n }\n } else {\n P2 this_;\n this_.name = man;\n this_.v = v;\n this_.tim = now;\n s2.insert(this_);\n cout << man;\n puts(\" is not working now.\");\n }\n }\n } else {\n tot--;\n cin >> man;\n P sx = mp[man];\n set<P1>::iterator it;\n P1 tmp1;\n tmp1.name = man;\n tmp1.v = sx.first;\n tmp1.tim = sx.second;\n it = s1.find(tmp1);\n if (it == s1.end()) {\n P2 tmp2;\n tmp2 = p1top2(tmp1);\n s2.erase(tmp2);\n if (tot % 5 == 4) {\n it = s1.begin();\n tmp1 = (*it);\n s1.erase(it);\n tmp2 = p1top2(tmp1);\n s2.insert(tmp2);\n cout << tmp1.name;\n puts(\" is not working now.\");\n }\n } else {\n s1.erase(it);\n if (tot % 5 != 4) {\n set<P2>::iterator it2;\n it2 = s2.begin();\n P2 ss = (*it2);\n s2.erase(it2);\n P1 tt = p2top1(ss);\n s1.insert(tt);\n cout << ss.name;\n puts(\" is working hard now.\");\n }\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 14392, "score_of_the_acc": -1.6277, "final_rank": 15 }, { "submission_id": "aoj_2782_7117437", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define rrep(i, n) for (int i = (n) - 1; i >= 0; --i)\n\n#define all(c) std::begin(c), std::end(c)\n\n#ifdef LOCAL\n#define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__)\ntemplate <class T, class ...Args> void debug_impl(string s, T&& f, Args &&...args) {\n cerr << \"(\" << s << \"): \" << \"(\" << forward<T>(f);\n ((cerr << \", \" << forward<Args>(args)), ..., (cerr << \")\\n\"));\n}\n#else\n#define debug(...) void(0)\n#endif\n\ntemplate <class T> bool chmax(T& a, const T& b) { return b > a ? (a = b, true) : false; }\ntemplate <class T> bool chmin(T& a, const T& b) { return b < a ? (a = b, true) : false; }\n\n\ntemplate <class T> istream& operator>>(istream& in, vector<T>& v) {\n for (auto& e : v) in >> e;\n return in;\n}\ntemplate <class ...Args> void read(Args&... args) {\n (cin >> ... >> args);\n}\n\ntemplate <class T> ostream& operator<<(ostream& out, const vector<T>& v) {\n int n = v.size();\n rep(i, n) {\n out << v[i];\n if (i + 1 != n) out << ' ';\n }\n return out;\n}\n\ntemplate <class T, class ...Tails> void print(T&& h, Tails &&... tails) {\n cout << h, ((cout << ' ' << forward<Tails>(tails)), ..., (cout << '\\n'));\n}\n\ntemplate <typename T, T(*op)(T, T), T(*e)()>\nstruct segtree {\n int n, siz;\n vector<T> dat;\n segtree(int n) : segtree(vector<T>(n, e())) {}\n segtree(vector<T> a) : n(a.size()) {\n siz = 1;\n while (siz < n) siz <<= 1;\n dat.assign(2 * siz, e());\n rep(i, n) {\n dat[siz + i] = a[i];\n }\n for (int i = n - 1; i > 0; --i) {\n dat[i] = op(dat[2 * i], dat[2 * i + 1]);\n }\n }\n\n T get(int p) const {\n return dat[siz + p];\n }\n\n T prod(int l, int r) const {\n T sml = e(), smr = e();\n l += siz, r += siz;\n for (; l < r; l >>= 1, r >>= 1) {\n if (l & 1) sml = op(sml, dat[l++]);\n if (r & 1) smr = op(dat[--r], smr);\n }\n return op(sml, smr);\n }\n\n T all_prod() const {\n return dat[1];\n }\n\n void set(int p, T v) {\n p += siz;\n dat[p] = v;\n while (p >>= 1) {\n dat[p] = op(dat[2 * p], dat[2 * p + 1]);\n }\n }\n};\n\nint op(int x, int y) {\n return x + y;\n}\nint e() {\n return 0;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int n;\n cin >> n;\n\n vector<string> names;\n\n vector<pair<int, int>> a(n);\n\n map<string, pair<int, int>> mp;\n\n rep(i, n) {\n string s;\n int x;\n read(s, x);\n a[i] = { x, i };\n\n names.push_back(s);\n\n mp[s] = { x, i };\n }\n\n int m;\n cin >> m;\n\n vector<tuple<bool, int, int>> b(m);\n\n int nxt_id = n;\n rep(i, m) {\n char c;\n string name;\n read(c, name);\n\n if (c == '+') {\n int x;\n read(x);\n b[i] = { true, x, nxt_id };\n mp[name] = { x, nxt_id };\n names.push_back(name);\n ++nxt_id;\n } else {\n auto [x2, i2] = mp[name];\n b[i] = { false, x2, i2 };\n }\n }\n\n vector<pair<int, int>> sorted;\n for (auto [x, id] : a) {\n sorted.emplace_back(x, id);\n }\n for (auto [is_join, x, id] : b) {\n if (is_join) {\n sorted.emplace_back(x, id);\n }\n }\n sort(all(sorted), greater<>());\n\n auto get_index = [&](int x, int id) {\n return lower_bound(all(sorted), make_pair(x, id), greater<>()) - sorted.begin();\n };\n auto get_original_index = [&](int id) {\n return sorted[id].second;\n };\n\n const int k = sorted.size();\n\n vector<int8_t> hard(k, false);\n\n segtree<int, op, e> seg(k);\n\n // debug(k);\n\n {\n int top20 = n / 5;\n\n vector<pair<int, int>> xs(n);\n rep(i, n) {\n auto [x, id] = a[i];\n\n int idx = get_index(x, id);\n xs[i] = { x, id };\n assert(seg.get(idx) == 0);\n seg.set(idx, 1);\n }\n sort(all(xs), greater<>());\n\n rep(i, top20) {\n hard[xs[i].second] = true;\n }\n }\n\n // debug(seg.all_prod());\n\n auto max_index_active = [&](int num) {\n int l = -1, r = k + 1;\n while (r - l > 1) {\n int p = (l + r) >> 1;\n if (seg.prod(0, p) < num) {\n l = p;\n } else {\n r = p;\n }\n }\n // seg[0, l) < num\n // seg[0, l] >= num\n // l is last active person.\n return l;\n };\n\n auto min_index_lazy = [&](int max_active) {\n if (max_active == k) return k;\n int l = max_active + 1, r = k + 1;\n while (r - l > 1) {\n int p = (l + r) >> 1;\n if (seg.prod(max_active + 1, p) == 0) {\n l = p;\n } else {\n r = p;\n }\n }\n // seg[max_active + 1, l) = 0\n // seg[max_active + 1, l] = 1\n return l;\n };\n\n auto print_active = [&](int id) {\n print(names[id], \"is working hard now.\");\n };\n auto print_inactive = [&](int id) {\n print(names[id], \"is not working now.\");\n };\n\n for (auto [is_join, x, id] : b) {\n // debug(x, id);\n if (is_join) {\n int pos = get_index(x, id);\n assert(seg.get(pos) == 0);\n seg.set(pos, 1);\n\n int num = seg.all_prod() / 5;\n\n if (seg.prod(0, pos + 1) <= num) {\n print_active(id);\n hard[get_original_index(pos)] = true;\n } else {\n print_inactive(id);\n hard[get_original_index(pos)] = false;\n }\n } else {\n int pos = get_index(x, id);\n assert(seg.get(pos) == 1);\n seg.set(pos, 0);\n }\n\n // debug(seg.all_prod());\n\n int cand1 = max_index_active(seg.all_prod() / 5);\n int cand2 = min_index_lazy(cand1);\n\n // debug(cand1, cand2);\n\n if (0 <= cand1 and cand1 < k) {\n int i = get_original_index(cand1);\n if (not hard[i]) {\n print_active(i);\n hard[i] = true;\n }\n }\n if (0 <= cand2 and cand2 < k) {\n int i = get_original_index(cand2);\n if (hard[i]) {\n print_inactive(i);\n hard[i] = false;\n }\n }\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 11712, "score_of_the_acc": -0.3024, "final_rank": 1 }, { "submission_id": "aoj_2782_7097284", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\ntemplate<class T> T sum(vector<T> &a){assert(!a.empty());T ans=a[0]-a[0];for(auto &x:a) ans+=x;return ans;}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tmap<string,pair<int,int>> m;\n\tset<pair<pair<int,int>,string>> s1,s2;\n\tauto work_hard=[&](string S)->void{\n\t\tcout<<S<<\" is working hard now.\\n\";\n\t};\n\tauto not_work=[&](string S)->void{\n\t\tcout<<S<<\" is not working now.\\n\";\n\t};\n\tauto outcoming=[&](string S,bool output)->void{\n\t\tauto val=m[S];\n\t\tpair<pair<int,int>,string> dat={val,S};\n\t\tif((int)(s1.size()+s2.size())%5==0){\n\t\t\tif(s1.count(dat)){\n\t\t\t\ts1.erase(dat);\n\t\t\t}else{\n\t\t\t\ts2.erase(dat);\n\t\t\t\tauto tmp=(*s1.begin());\n\t\t\t\ts1.erase(tmp);\n\t\t\t\ts2.insert(tmp);\n\t\t\t\tif(output) not_work(tmp.second);\n\t\t\t}\n\t\t}else{\n\t\t\tif(s2.count(dat)){\n\t\t\t\ts2.erase(dat);\n\t\t\t}else{\n\t\t\t\ts1.erase(dat);\n\t\t\t\tauto tmp=(*s2.rbegin());\n\t\t\t\ts2.erase(tmp);\n\t\t\t\ts1.insert(tmp);\n\t\t\t\tif(output) work_hard(tmp.second);\n\t\t\t}\n\t\t}\n\t\tm.erase(S);\n\t};\n\tauto incoming=[&](string S,int level,int ind,bool output)->void{\n\t\tpair<int,int> val={level,ind};\n\t\tpair<pair<int,int>,string> dat={val,S};\n\t\tm[S]=val;\n\t\tif((int)(s1.size()+s2.size())%5==4){\n\t\t\tauto tmp=(*s2.rbegin());\n\t\t\tif(tmp.first<val){\n\t\t\t\ts1.insert(dat);\n\t\t\t\tif(output) work_hard(S);\n\t\t\t}else{\n\t\t\t\ts2.insert(dat);\n\t\t\t\ts2.erase(tmp);\n\t\t\t\ts1.insert(tmp);\n\t\t\t\tif(output) not_work(S),work_hard(tmp.second);\n\t\t\t}\n\t\t}else{\n\t\t\tif(s1.empty()){\n\t\t\t\ts2.insert(dat);\n\t\t\t\tif(output) not_work(S);\n\t\t\t\treturn;\n\t\t\t}\n\t\t\tauto tmp=(*s1.begin());\n\t\t\tif(tmp.first>val){\n\t\t\t\ts2.insert(dat);\n\t\t\t\tif(output) not_work(S);\n\t\t\t}else{\n\t\t\t\ts1.insert(dat);\n\t\t\t\ts1.erase(tmp);\n\t\t\t\ts2.insert(tmp);\n\t\t\t\tif(output) work_hard(S),not_work(tmp.second);\n\t\t\t}\n\t\t}\n\t};\n\tint N;\n\tcin>>N;\n\trep(i,N){\n\t\tstring S;\n\t\tint A;\n\t\tcin>>S>>A;\n\t\tincoming(S,A,i,0);\n\t}\n\tint M;\n\tcin>>M;\n\trep(i,M){\n\t\tchar c;\n\t\tstring S;\n\t\tint A;\n\t\tcin>>c>>S;\n\t\t//cout<<i<<endl;\n\t\tif(c=='+') cin>>A,incoming(S,A,i+N,1);\n\t\telse outcoming(S,1);\n\t}\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 11284, "score_of_the_acc": -0.3555, "final_rank": 3 }, { "submission_id": "aoj_2782_6024119", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<pair<pair<int,int>,string>> v(n);\n for(int i=0;i<n;i++){\n cin >> v[i].second >> v[i].first.first;\n v[i].first.second = i;\n }\n sort(v.rbegin(), v.rend());\n map<string, pair<int,int>> mp;\n for(int i=0;i<n;i++){\n mp[v[i].second] = v[i].first;\n }\n\n map<pair<int,int>,string> hw,nw;\n for(int i=0;i<n;i++){\n if(i<n/5){\n hw[v[i].first] = v[i].second;\n }\n else{\n nw[v[i].first] = v[i].second;\n }\n }\n int num = n;\n int q; cin >> q;\n while(q--){\n char c; cin >> c;\n vector<string> change;\n if(c == '+'){\n string s; int a; cin >> s >> a;\n pair<int,int> p = pair<int,int>(a,num);\n mp[s] = p;\n num++;\n\n if(nw.size() == 0){\n nw[p] = s;\n }\n else{\n auto itr = nw.end(); itr--;\n auto uo = *itr;\n if(uo.first < p){\n hw[p] = s;\n }\n else{\n nw[p] = s;\n }\n }\n\n while(hw.size() < mp.size()/5){\n auto itr = nw.end(); itr--;\n auto uo = *itr;\n hw[uo.first] = uo.second;\n nw.erase(itr);\n change.push_back(uo.second);\n }\n while(hw.size() > mp.size()/5){\n auto itr = hw.begin();\n auto uo = *itr;\n nw[uo.first] = uo.second;\n hw.erase(itr);\n change.push_back(uo.second);\n }\n\n {\n if(hw.find(p) != hw.end()){\n cout << s << \" is working hard now.\" << \"\\n\";\n }\n else{\n cout << s << \" is not working now.\" << \"\\n\";\n }\n }\n sort(change.begin(), change.end());\n for(auto t:change){\n if(s == t)continue;\n if(hw.find(mp[t]) != hw.end()){\n cout << t << \" is working hard now.\" << \"\\n\";\n }\n else{\n cout << t << \" is not working now.\" << \"\\n\";\n }\n }\n }\n else{\n string s; cin >> s;\n auto p = mp[s];\n if(hw.find(p) != hw.end()){\n hw.erase(p);\n }\n else{\n nw.erase(p);\n }\n mp.erase(s);\n\n while(hw.size() < mp.size()/5){\n auto itr = nw.end(); itr--;\n auto uo = *itr;\n hw[uo.first] = uo.second;\n nw.erase(itr);\n change.push_back(uo.second);\n }\n while(hw.size() > mp.size()/5){\n auto itr = hw.begin();\n auto uo = *itr;\n nw[uo.first] = uo.second;\n hw.erase(itr);\n change.push_back(uo.second);\n }\n\n sort(change.begin(), change.end());\n for(auto t:change){\n if(hw.find(mp[t]) != hw.end()){\n cout << t << \" is working hard now.\" << \"\\n\";\n }\n else{\n cout << t << \" is not working now.\" << \"\\n\";\n }\n }\n }\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 12904, "score_of_the_acc": -0.5027, "final_rank": 5 }, { "submission_id": "aoj_2782_5992008", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nstruct dat{\n int a,t;\n string name;\n dat(int a, int t, string name) : a(a), t(t), name(name) {}\n bool operator< (const dat &d) const {\n if(a != d.a) return a > d.a;\n if(t != d.t) return t > d.t;\n return name < d.name;\n }\n};\n\nint main(){\n int n; cin >> n;\n map<string,pii> mp;\n int sz = n;\n set<dat> se;\n se.emplace(inf,inf,\"\");\n rep(i,n){\n string s; cin >> s;\n int a; cin >> a;\n se.emplace(a,i,s);\n mp[s] = {a,i};\n }\n int q; cin >> q;\n auto itr = se.begin();\n int hard = n/5;\n int h = hard;\n while(h > 0){\n h--;\n itr++;\n }\n rep(i,q){\n char c; cin >> c;\n if(c == '+'){\n string s; cin >> s;\n int a; cin >> a;\n dat d(a,i+n,s);\n mp[s] = {a,i+n};\n sz++;\n int nh = sz/5;\n se.emplace(d);\n if(d < *itr){\n cout << d.name << \" is working hard now.\\n\";\n if(hard < nh) hard = nh;\n else{\n cout << (*itr).name << \" is not working now.\\n\";\n itr--;\n }\n }else{\n if(hard < nh){\n itr++;\n if((*itr).t == d.t){\n cout << d.name << \" is working hard now.\\n\";\n }else{\n cout << d.name << \" is not working now.\\n\";\n cout << (*itr).name << \" is working hard now.\\n\";\n }\n hard = nh;\n }else{\n cout << d.name << \" is not working now.\\n\";\n }\n }\n }else{\n string s; cin >> s;\n dat d(mp[s].first,mp[s].second,s);\n sz--;\n int nh = sz/5;\n if(d < *itr){\n se.erase(d);\n if(hard > nh) hard = nh;\n else{\n itr++;\n cout << (*itr).name << \" is working hard now.\\n\"; \n }\n }else if((*itr).name == d.name){\n itr = se.erase(itr);\n if(hard > nh){\n hard = nh;\n itr--;\n }else{\n cout << (*itr).name << \" is working hard now.\\n\";\n }\n }else{\n se.erase(d);\n if(hard > nh){\n hard = nh;\n cout << (*itr).name << \" is not working now.\\n\";\n itr--;\n }\n }\n mp.erase(s);\n }\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 11184, "score_of_the_acc": -0.4637, "final_rank": 4 }, { "submission_id": "aoj_2782_5991994", "code_snippet": "#pragma GCC ta g(\"avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n int sz = a.size();\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr;\n sz--;\n if(sz) cout << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//#include <atcoder/maxflow>\n//using namespace atcoder;\nconst int inf = (1<<30)-1;\nconst ll linf = 1LL<<61;\nconst int MAX = 510000;\nint dy[8] = {0,1,0,-1,1,-1,-1,1};\nint dx[8] = {-1,0,1,0,1,-1,1,-1};\nconst double pi = acos(-1);\nconst double eps = 1e-9;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nstruct dat{\n int a,t;\n string name;\n dat(int a, int t, string name) : a(a), t(t), name(name) {}\n bool operator< (const dat &d) const {\n if(a != d.a) return a > d.a;\n if(t != d.t) return t > d.t;\n return name < d.name;\n }\n};\n\nint main(){\n int n; cin >> n;\n map<string,pii> mp;\n int sz = n;\n set<dat> se;\n se.emplace(inf,inf,\"\");\n rep(i,n){\n string s; cin >> s;\n int a; cin >> a;\n se.emplace(a,i,s);\n mp[s] = {a,i};\n }\n int q; cin >> q;\n auto itr = se.begin();\n int hard = n/5;\n int h = hard;\n while(h > 0){\n h--;\n itr++;\n }\n rep(i,q){\n char c; cin >> c;\n if(c == '+'){\n string s; cin >> s;\n int a; cin >> a;\n dat d(a,i+n,s);\n mp[s] = {a,i+n};\n sz++;\n int nh = sz/5;\n se.emplace(d);\n if(d < *itr){\n cout << d.name << \" is working hard now.\\n\";\n if(hard < nh) hard = nh;\n else{\n cout << (*itr).name << \" is not working now.\\n\";\n itr--;\n }\n }else{\n if(hard < nh){\n itr++;\n if((*itr).t == d.t){\n cout << d.name << \" is working hard now.\\n\";\n }else{\n cout << d.name << \" is not working now.\\n\";\n cout << (*itr).name << \" is working hard now.\\n\";\n }\n hard = nh;\n }else{\n cout << d.name << \" is not working now.\\n\";\n }\n }\n }else{\n string s; cin >> s;\n dat d(mp[s].first,mp[s].second,s);\n sz--;\n int nh = sz/5;\n if(d < *itr){\n cout << d.name << \" is not working now.\\n\";\n se.erase(d);\n if(hard > nh) hard = nh;\n else{\n itr++;\n cout << (*itr).name << \" is working hard now.\\n\"; \n }\n }else if((*itr).name == d.name){\n itr = se.erase(itr);\n if(hard > nh){\n hard = nh;\n itr--;\n }else{\n cout << (*itr).name << \" is working hard now.\\n\";\n }\n }else{\n se.erase(d);\n if(hard > nh){\n hard = nh;\n cout << (*itr).name << \" is not working now.\\n\";\n itr--;\n }\n }\n mp.erase(s);\n }\n }\n}", "accuracy": 0.15151515151515152, "time_ms": 60, "memory_kb": 11264, "score_of_the_acc": -0.4772, "final_rank": 19 } ]
aoj_2781_cpp
Help the Princess! The people of a certain kingdom make a revolution against the bad government of the princess. The revolutionary army invaded the royal palace in which the princess lives. The soldiers of the army are exploring the palace to catch the princess. Your job is writing a program to decide that the princess can escape from the royal palace or not. For simplicity, the ground of the palace is a rectangle divided into a grid. There are two kinds of cells in the grid: one is a cell that soldiers and the princess can enter, the other is a cell that soldiers or the princess cannot enter. We call the former an empty cell, the latter a wall. The princess and soldiers are in different empty cells at the beginning. There is only one escape hatch in the grid. If the princess arrives the hatch, then the princess can escape from the palace. There are more than or equal to zero soldiers in the palace. The princess and all soldiers take an action at the same time in each unit time. In other words, the princess and soldiers must decide their action without knowing a next action of the other people. In each unit time, the princess and soldiers can move to a horizontally or vertically adjacent cell, or stay at the current cell. Furthermore the princess and soldiers cannot move out of the ground of the palace. If the princess and one or more soldiers exist in the same cell after their move, then the princess will be caught. It is guaranteed that the princess can reach the escape hatch via only empty cells if all soldiers are removed from the palace. If there is a route for the princess such that soldiers cannot catch the princess even if soldiers make any moves, then the princess can escape the soldiers. Note that if the princess and a soldier arrive the escape hatch at the same time, the princess will be caught. Can the princess escape from the palace? Input Each dataset is formatted as follows. $H$ $W$ $map_1$ $map_2$ ... $map_H$ The first line of a dataset contains two positive integers $H$ and $W$ delimited by a space, where $H$ is the height of the grid and $W$ is the width of the grid ($2 \leq H, W \leq 200$). The $i$-th line of the subsequent $H$ lines gives a string $map_i$, which represents situation in the ground of palace. $map_i$ is a string of length $W$, and the $j$-th character of $map_i$ represents the state of the cell of the $i$-th row and the $j$-th column. '@', '\$', '%', '.', and '#' represent the princess, a soldier, the escape hatch, an empty cell, and a wall, respectively. It is guaranteed that there exists only one '@', only one '%', and more than or equal to zero '\$' in the grid. Output Output a line containing a word "Yes", if the princess can escape from the palace. Otherwise, output "No". Sample Input 1 2 4 %.@\$ ..\$\$ Output for the Sample Input 1 Yes Sample Input 2 3 4 .%.. .##. .@\$. Output for the Sample Input 2 Yes Sample Input 3 2 3 %\$@ ### Output for the Sample Input 3 No Sample Input 4 2 3 @#\$ .%. Output for the ...(truncated)
[ { "submission_id": "aoj_2781_10730387", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint n, m;\nint x, y;\nchar str[210][210];\nchar tmp[210][210];\nint dirx[] = {1, -1, 0, 0};\nint diry[] = {0, 0, 1, -1};\nint val (int a, int b) {\n if (a<0 || b<0 || a>=n || b>=m) return 0;\n return 1;\n}\nint bfs () {\n //printf(\"%d %d\\n\", x, y);\n int flag = 0;\n for (int i=0; i<n; i++) {\n for (int j=0; j<m; j++) {\n tmp[i][j] = str[i][j];\n }\n }\n for (int i=0; i<n; i++) {\n for (int j=0; j<m; j++) {\n if (str[i][j] == '@') {\n // printf(\"%d %d\\n\",i , j);\n flag = 1;\n if (i==x && j==y) {\n // printf(\"%d %d\\n\", i, j);\n return 1;\n }\n else {\n for (int k=0; k<4; k++) {\n if (val(i+dirx[k], j+diry[k]) && (str[i+dirx[k]][j+diry[k]] == '.' || str[i+dirx[k]][j+diry[k]] == '%')) {\n tmp[i+dirx[k]][j+diry[k]] = '@';\n }\n }\n }\n }\n else if (str[i][j] == '$') {\n for (int k=0; k<4; k++) {\n if (val(i+dirx[k], j+diry[k]) && str[i+dirx[k]][j+diry[k]] != '#') {\n tmp[i+dirx[k]][j+diry[k]] = '$';\n }\n }\n }\n }\n }\n for (int i=0; i<n; i++) {\n for (int j=0; j<m; j++) {\n str[i][j] = tmp[i][j];\n }\n }\n if (!flag) return 0;\n else return bfs();\n}\nint main () {\n //freopen(\"in.txt\", \"r\", stdin);\n scanf(\"%d %d\", &n, &m);\n for (int i=0; i<n; i++)\n scanf(\"%s\", str[i]);\n for (int i=0; i<n; i++) {\n for (int j=0; j<n; j++) {\n if (str[i][j] == '%') {\n x = i;\n y = j;\n break;\n }\n }\n }\n if (bfs()) printf(\"Yes\\n\");\n else printf(\"No\\n\");\n return 0;\n}", "accuracy": 0.34615384615384615, "time_ms": 10, "memory_kb": 3552, "score_of_the_acc": -0.0012, "final_rank": 15 }, { "submission_id": "aoj_2781_10730386", "code_snippet": "#include <bits/stdc++.h>\n//file stream\n#define output freopen(\"output.txt\",\"w\",stdout)\n#define input freopen(\"input.txt\",\"r\",stdin)\n//functions\n#define pb(x) push_back(x)\n// if needed pair\n#define f first\n#define s second\n#define mp(x,y) make_pair(x,y)\n\n\n//inputs 1 var\n#define s1i(n) scanf(\"%d\",&n)\n#define s1u(n) scanf(\"%u\",&n)\n#define s1l(n) scanf(\"%lld\",&n)\n#define s1lu(n) scanf(\"%llu\",&n)\n#define s1d(n) scanf(\"%lf\",&n)\n#define s1s(n) scanf(\"%s\",n)\n//inputs 2 var\n#define s2i(n,m) scanf(\"%d %d\",&n,&m)\n#define s2u(n,m) scanf(\"%u %u\",&n,&m)\n#define s2l(n,m) scanf(\"%lld %lld\",&n,&m)\n#define s2lu(n,m) scanf(\"%llu %llu\",&n,&m)\n#define s2d(n,m) scanf(\"%lf %lf\",&n,&m)\n//inputs 3 var\n#define s3i(n,m,l) scanf(\"%d %d %d\",&n,&m,&l)\n#define s3u(n,m,l) scanf(\"%u %u %u\",&n,&m,&l)\n#define s3l(n,m,l) scanf(\"%lld %lld %lld\",&n,&m,&l)\n#define s3lu(n,m,l) scanf(\"%llu %llu %llu\",&n,&m,&l)\n#define s3d(n,m,l) scanf(\"%lf %lf %lf\",&n,&m,&l)\n\n//output 1 var\n#define p1i(n) printf(\"%d\",n)\n#define p1u(n) printf(\"%u\",n)\n#define p1l(n) printf(\"%lld\",n)\n#define p1lu(n) printf(\"%llu\",n)\n#define p1d(n,pre) printf(\"%.*f\",pre,n)\n#define p1s(n) printf(\"%s\",n)\n//output 2 var\n#define p2i(n,m) printf(\"%d %d\",n,m)\n#define p2u(n,m) printf(\"%u %u\",n,m)\n#define p2l(n,m) printf(\"%lld %lld\",n,m)\n#define p2lu(n,m) printf(\"%llu %llu\",n,m)\n#define p2d(n,m,pre) printf(\"%.*f %.*f\",pre,n,pre,m)\n//inputs 3 var less important\n#define p3i(n,m,l) printf(\"%d %d %d\",n,m,l)\n#define p3u(n,m,l) printf(\"%u %u %u\",n,m,l)\n#define p3l(n,m,l) printf(\"%lld %lld %lld\",n,m,l)\n#define p3lu(n,m,l) printf(\"%llu %llu %llu\",n,m,l)\n//output misc\n#define nline() putchar(10)\n#define space() putchar(' ')\n#define pch(c) putchar(c)\n#define tcase(i) printf(\"Case %d:\",i)\n//loop\n#define fr0(i,n) for(i=0;i<n;i++)\n#define fr1(i,n) for(i=1;i<=n;i++)\n//memory reset\n#define set0(x) memset(x,0,sizeof x)\n#define setn1(x) memset(x,-1,sizeof x)\n#define setinf(x) memset(x,125,sizeof x)\n//bit operation single variable\n#define On(x,i) (x|=(1<<(i)))\n#define Off(x,i) (x&= ~(1<<(i)))\n#define isOn(x,i) (x&(1<<(i)))\n#define Toggle(x,i) (x^=(1<<(i)))\n#define tmod(x,i) (x&(~(-1<<i)))\n\n//data type\ntypedef long long ll;\ntypedef unsigned long long ull;\n//bit operation array\n//constant\nconst double EPS = 1e-9;\nusing namespace std;\nint tc,o,prc,sld,i,j,r,c,x,y;\n\nchar B[250][250];\nqueue<pair<int,int> > q;\nmap<pair<int,int> ,int> level,visited;\npair<int,int>u;\nmain()\n{\n {\n s2i(r,c);\n fr0(i,r)\n {\n scanf(\"%s\",B[i]);\n fr0(j,c)\n {\n if(B[i][j]=='%')\n {\n x=i,y=j;continue;\n }\n }\n }\n q.push(mp(x,y));\n level[mp(x,y)]=0;\n visited[mp(x,y)]=1;\n sld=5000;prc=50000;\n while(!q.empty())\n {\n u=q.front();q.pop();\n if(B[u.f][u.s]=='@')prc=level[u];\n if(B[u.f][u.s]=='$')sld=min(sld,level[u]);\n\n if(u.f+1<r && B[u.f+1][u.s]!='#' && !visited[mp(u.f+1,u.s)])\n {\n level[mp(u.f+1,u.s)]=level[u]+1;\n visited[mp(u.f+1,u.s)]=1;\n q.push(mp(u.f+1,u.s));\n }\n\n if(u.s+1<c && B[u.f][u.s+1]!='#' && !visited[mp(u.f,u.s+1)])\n {\n level[mp(u.f,u.s+1)]=level[u]+1;\n visited[mp(u.f,u.s+1)]=1;\n q.push(mp(u.f,u.s+1));\n }\n\n\n if(u.f-1>=0 && B[u.f-1][u.s]!='#' && !visited[mp(u.f-1,u.s)])\n {\n level[mp(u.f-1,u.s)]=level[u]+1;\n visited[mp(u.f-1,u.s)]=1;\n q.push(mp(u.f-1,u.s));\n }\n\n if(u.s+1>=0 && B[u.f][u.s-1]!='#' && !visited[mp(u.f,u.s-1)])\n {\n level[mp(u.f,u.s-1)]=level[u]+1;\n visited[mp(u.f,u.s-1)]=1;\n q.push(mp(u.f,u.s-1));\n }\n }\n if(prc<sld)printf(\"Yes\\n\");\n else printf(\"No\\n\");\n\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8104, "score_of_the_acc": -0.0299, "final_rank": 7 }, { "submission_id": "aoj_2781_10730381", "code_snippet": "/*\n * Biborno\n * fb.com/mfmejbah\n * [email protected]\n *\n * B\n * Date: 15 Nov 2016\n */\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\nint dx[] = {-1, 0, 0, 1};\nint dy[] = {0, -1, 1, 0};\nint h, w, d;\nchar g[201][201];\n\nbool bfs( int px, int py, int ex, int ey ) {\n bool vis[h][w];\n int dis[h][w];\n memset(vis, 0, sizeof(vis));\n queue<pair<int, int> > Q;\n vis[px][py] = 1;\n dis[px][py] = 0;\n Q.push(make_pair(px, py));\n while(!Q.empty()) {\n pair<int, int> p = Q.front();\n Q.pop();\n for( int i = 0; i < 4; i++ ) {\n int x = p.first + dx[i];\n int y = p.second + dy[i];\n if( x >= 0 && x < h && y >= 0 && y < w && !vis[x][y] && (g[x][y] == '.' || g[x][y] == '%') ) {\n vis[x][y] = 1;\n dis[x][y] = dis[p.first][p.second] + 1;\n Q.push(make_pair(x, y));\n }\n if( x == ex && y == ey ) {\n d = dis[x][y];\n return true;\n }\n }\n }\n return false;\n}\n\nint bfss( int px, int py, int ex, int ey ) {\n bool vis[h][w];\n int dis[h][w];\n memset(vis, 0, sizeof(vis));\n memset(dis, 0, sizeof(dis));\n queue<pair<int, int> > Q;\n vis[px][py] = 1;\n Q.push(make_pair(px, py));\n while(!Q.empty()) {\n pair<int, int> p = Q.front();\n Q.pop();\n for( int i = 0; i < 4; i++ ) {\n int x = p.first + dx[i];\n int y = p.second + dy[i];\n if( x >= 0 && x < h && y >= 0 && y < w && !vis[x][y] && (g[x][y] == '.' || g[x][y] == '%') ) {\n vis[x][y] = 1;\n dis[x][y] = dis[p.first][p.second] + 1;\n Q.push(make_pair(x, y));\n }\n if( x == ex && y == ey ) {\n return dis[x][y];\n }\n }\n }\n return 0;\n}\nint main()\n{\n //freopen(\"B.in\", \"r\", stdin);\n //freopen(\"B.out\", \"w\", stdout);\n cin >> h >> w;\n int px, py, ex, ey;\n for( int i = 0; i < h; i++ )\n for( int j = 0; j < w; j++ ) {\n cin >> g[i][j];\n if( g[i][j] == '@' ) px = i, py = j;\n if( g[i][j] == '%' ) ex = i, ey = j;\n }\n if(bfs(px, py, ex, ey)) {\n bool f = 1;\n for( int i = 0; i < h; i++ )\n for( int j = 0; j < w; j++ )\n if( g[i][j] == '$' )\n if( bfss(i, j, ex, ey) == d ) {\n f = 0;\n break;\n }\n if(f)puts(\"Yes\");\n else puts(\"No\");\n } else puts(\"No\");\n}", "accuracy": 0.17307692307692307, "time_ms": 20, "memory_kb": 3448, "score_of_the_acc": -0.006, "final_rank": 17 }, { "submission_id": "aoj_2781_10691088", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<cstring>\n#include<algorithm>\n#include<queue>\n\nusing namespace std;\n\nconst int f[4][2]={{1,0},{-1,0},{0,1},{0,-1}};\nstruct Q{\n int x;\n int y;\n int num;\n bool cmp(Q a){\n return a.x==x&&a.y==y;\n }\n Q(int _x=0,int _y=0,int _num=0):x(_x),y(_y),num(_num){}\n};\nint n,m;\nchar map[210][210];\nQ shi[400000];\nint sl;\nQ z;\nQ g;\nint ansG;\nint ansS=0x7fffffff;\nbool h[210][210];\n\nint BFS(Q b){\n memset(h,0,sizeof(h));\n queue<Q> q;\n h[b.x][b.y]=1;\n q.push(b);\n while(!q.empty()){\n Q a=q.front();\n q.pop();\n if(a.cmp(z)){\n return a.num;\n }\n for(int i=0;i<4;i++){\n int xx=a.x+f[i][0];\n int yy=a.y+f[i][1];\n int num=a.num+1;\n if(xx>=0&&yy>=0&&xx<n&&yy<m&&!h[xx][yy]&&(map[xx][yy]=='.'||map[xx][yy]=='%')){\n\t\t\t\th[xx][yy]=1;\n q.push(Q(xx,yy,num));\n }\n }\n }\n return -1;\n}\n\nint main()\n{\n cin>>n>>m;\n for(int i=0;i<n;i++){\n for(int j=0;j<m;j++){\n cin>>map[i][j];\n if(map[i][j]=='%'){\n z=Q(i,j);\n }else if(map[i][j]=='@'){\n g=Q(i,j);\n }else if(map[i][j]=='$'){\n shi[sl++]=Q(i,j);\n }\n }\n }\n ansG=BFS(g);\n if(ansG<0){\n\t\tcout<<\"No\"<<endl;\n\t\treturn 0;\n\t}\n for(int i=0;i<sl;i++){\n int w=BFS(shi[i]);\n if(w>0){\n\t\t\tansS=min(ansS,w);\n\t\t}\n }\n if(ansG<ansS){\n cout<<\"Yes\"<<endl;\n }else{\n cout<<\"No\"<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 8220, "score_of_the_acc": -0.0788, "final_rank": 9 }, { "submission_id": "aoj_2781_6030555", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i = 0; i < (n); i++)\nusing namespace std;\ntypedef long long ll;\n\n// g <- pair < v , cost > \ntemplate < class T >\nvector<T> Dijkstra(vector<vector<pair<int,T>>> &g, vector<int> starts) {\n const auto INF = numeric_limits<T>::max();\n vector<T> dist(g.size(), INF);\n priority_queue<pair<T,int>> Q;\n for(int s : starts) Q.emplace(0, s);\n while(!Q.empty()){\n T cost = Q.top().first;\n int v = Q.top().second;\n Q.pop();\n cost = - cost;\n if(dist[v] == INF){\n dist[v] = cost;\n for(auto e : g[v]){\n if(dist[e.first] == INF){\n Q.emplace(-(cost + e.second), e.first);\n }\n }\n }\n }\n return dist;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n \n int H,W; cin >> H >> W;\n vector<string> grid(H);\n rep(i,H) cin >> grid[i];\n auto f = [&](int i, int j){ return i * W + j; };\n\n vector<vector<pair<int,int>>> G(H * W);\n int di[] = {0, 1};\n int dj[] = {1, 0};\n rep(i,H)rep(j,W)rep(d,2) {\n int ni = i + di[d], nj = j + dj[d];\n if(0 <= ni && ni < H && 0 <= nj && nj < W) {\n if(grid[i][j] != '#' && grid[ni][nj] != '#') {\n G[f(i, j)].push_back({f(ni, nj), 1});\n G[f(ni, nj)].push_back({f(i, j), 1});\n }\n }\n }\n\n int GOAL;\n rep(i,H)rep(j,W)if(grid[i][j] == '%') GOAL = f(i, j);\n int PRINCESS;\n vector<int> SOLDIERS;\n rep(i,H)rep(j,W){\n if(grid[i][j] == '@') PRINCESS = Dijkstra(G, vector<int>{f(i, j)})[GOAL];\n if(grid[i][j] == '$') SOLDIERS.push_back(f(i, j));\n }\n cout << (PRINCESS < Dijkstra(G, SOLDIERS)[GOAL] ? \"Yes\" : \"No\") << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6672, "score_of_the_acc": -0.0172, "final_rank": 4 }, { "submission_id": "aoj_2781_6030554", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i = 0; i < (n); i++)\nusing namespace std;\ntypedef long long ll;\n\n// g <- pair < v , cost > \ntemplate < class T >\nvector<T> Dijkstra(vector<vector<pair<int,T>>> &g, vector<int> starts) {\n vector<T> dist(g.size(), -1);\n priority_queue<pair<T,int>> Q;\n for(int s : starts) Q.emplace(0, s);\n while(!Q.empty()){\n T cost = Q.top().first;\n int v = Q.top().second;\n Q.pop();\n cost = - cost;\n if(dist[v] == -1){\n dist[v] = cost;\n for(auto e : g[v]){\n if(dist[e.first] == -1){\n Q.emplace(-(cost + e.second), e.first);\n }\n }\n }\n }\n for(auto &d : dist) if(d == -1) d = numeric_limits<T>::max();\n return dist;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n \n int H,W; cin >> H >> W;\n vector<string> grid(H);\n rep(i,H) cin >> grid[i];\n auto f = [&](int i, int j){ return i * W + j; };\n\n vector<vector<pair<int,int>>> G(H * W);\n int di[] = {0, 1};\n int dj[] = {1, 0};\n rep(i,H)rep(j,W)rep(d,2) {\n int ni = i + di[d], nj = j + dj[d];\n if(0 <= ni && ni < H && 0 <= nj && nj < W) {\n if(grid[i][j] != '#' && grid[ni][nj] != '#') {\n G[f(i, j)].push_back({f(ni, nj), 1});\n G[f(ni, nj)].push_back({f(i, j), 1});\n }\n }\n }\n\n int GOAL;\n rep(i,H)rep(j,W)if(grid[i][j] == '%') GOAL = f(i, j);\n int PRINCESS;\n vector<int> SOLDIERS;\n rep(i,H)rep(j,W){\n if(grid[i][j] == '@') PRINCESS = Dijkstra(G, vector<int>{f(i, j)})[GOAL];\n if(grid[i][j] == '$') SOLDIERS.push_back(f(i, j));\n }\n cout << (PRINCESS < Dijkstra(G, SOLDIERS)[GOAL] ? \"Yes\" : \"No\") << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6748, "score_of_the_acc": -0.0175, "final_rank": 5 }, { "submission_id": "aoj_2781_5176848", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef pair<int, int>PII;\nconst int N = 220;\nint n, m;\n\nchar s[N][N];\nint bx, by;\nint ax, ay;\n\nset<PII>q1, q2;\n\nint st[N][N];\n\nint dx[4] = {1, -1, 0, 0};\nint dy[4] = {0, 0, 1, -1};\n\nint main()\n{\n for (int i = 1; i <= 1e8; i ++);\n scanf(\"%d%d\", &n, &m);\n vector<vector<char> >a(n);\n for (int i = 1; i <= n; i++)\n {\n scanf(\"%s\", s[i] + 1);\n int len = strlen(s[i] + 1);\n for (int j = 1; j <= len; j ++)\n {\n if(s[i][j] == '\\\\') continue;\n a[i - 1].push_back(s[i][j]);\n }\n }\n for (int i = 0; i < n; i ++)\n {\n for (int j = 0; j < m; j ++)\n {\n \n if(a[i][j] == '@')\n {\n ax = i, ay = j;\n q1.insert({i, j});\n }\n else if(a[i][j] == '%')\n {\n bx = i, by = j;\n }\n else if(a[i][j] == '$')\n {\n q2.insert({i, j});\n // cout << i << \" \" << j<<'\\n';\n }\n }\n }\n while(!q1.empty())\n {\n set<PII>tmp;\n int t = q2.size();\n for (int i = 0; i < t; i ++)\n {\n PII x = *q2.begin();\n q2.erase(q2.begin());\n for (int k = 0; k < 4; k ++)\n {\n int nx = x.first + dx[k];\n int ny = x.second + dy[k];\n if(nx < 0 || nx >= n || ny < 0 || ny >= m || a[nx][ny] == '#'||st[nx][ny] == 2) continue;\n st[nx][ny] = 2;\n // cout << nx << \" \" << ny <<'\\n';\n tmp.insert({nx, ny});\n }\n }\n q2 = tmp;\n tmp.clear();\n t = q1.size();\n for (int i = 0; i < t; i ++)\n {\n PII x = *q1.begin();\n q1.erase(q1.begin());\n for (int k = 0; k < 4; k ++)\n {\n int nx = x.first + dx[k];\n int ny = x.second + dy[k];\n if(nx < 0 || nx >= n || ny < 0 || ny >= m || a[nx][ny] == '#'||st[nx][ny] == 2) continue;\n //cout << nx << \" \" << ny << '\\n';\n if(nx == bx && ny == by)\n {\n puts(\"Yes\");\n return 0;\n }\n tmp.insert({nx, ny});\n }\n }\n \n q1= tmp;\n }\n puts(\"No\");\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6812, "score_of_the_acc": -0.0179, "final_rank": 6 }, { "submission_id": "aoj_2781_5176668", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long LL;\ntypedef pair<int, int> pii;\n\nconst int maxn = 2e2+10;\nint n, m, dx, dy, px, py, sx[maxn], sy[maxn], cnt, a[maxn][maxn];\nint b[maxn][maxn];\nchar s[maxn];\n\nint work(int x, int y)\n{\n\tmemset(b, 63, sizeof(b));\n\tqueue<pii > q; q.push({x, y});\n\tqueue<int> st; st.push(0);\n\twhile(!q.empty())\n\t{\n\t\tint nx = q.front().first, ny = q.front().second; q.pop();\n\t\tint nt = st.front(); st.pop();\n\t\tif(nx >= 1 && nx <= n && ny >= 1 && ny <= m && !a[nx][ny] && nt < b[nx][ny])\n\t\t{\n\t\t\tb[nx][ny] = nt;\n\t\t\tq.push({nx+1, ny}); st.push(nt+1);\n\t\t\tq.push({nx-1, ny}); st.push(nt+1);\n\t\t\tq.push({nx, ny+1}); st.push(nt+1);\n\t\t\tq.push({nx, ny-1}); st.push(nt+1);\n\t\t}\n\t}\n\treturn b[dx][dy];\n}\n\nint main()\n{\n\tscanf(\"%d%d\", &n, &m);\n\tfor(int i = 1; i <= n; i++, getchar())\n\t{\n\t\tscanf(\"%s\", s+1);\n\t\tfor(int j = 1; j <= m; j++)\n\t\t{\n\t\t\tchar c = s[j];\n\t\t\tif(c == '%') dx = i, dy = j;\n\t\t\telse if(c == '@') px = i, py = j;\n\t\t\telse if(c == '$') \n\t\t\t{\n\t\t\t\tcnt++;\n\t\t\t\tsx[cnt] = i, sy[cnt] = j;\n\t\t\t}\n\t\t\telse if(c == '#') a[i][j] = 1;\n\t\t}\n\t}\n\tint ans1 = 1e9;\n\tfor(int i = 1; i <= cnt; i++)\n\t{\n\t\tans1 = min(ans1, work(sx[i], sy[i]));\n\t} \n\tint ans2 = work(px, py);\n//\tprintf(\"%d %d\\n\", ans1, ans2);\n\tprintf(\"%s\\n\", ans1 > ans2 ? \"Yes\":\"No\");\n\treturn 0;\n}\n\n/*\n2 4\n%.@$\n..$$\n\n3 4\n.%..\n.##.\n.@$.\n\n2 3\n%$@\n###\n\n2 3\n@#$\n.%.\n\n*/", "accuracy": 0.11538461538461539, "time_ms": 20, "memory_kb": 3444, "score_of_the_acc": -0.006, "final_rank": 20 }, { "submission_id": "aoj_2781_5175832", "code_snippet": "#include<iostream>\n#include<sstream>\n#include<fstream>\n#include<iomanip>\n#include<cstdio>\n#include<algorithm>\n#include<cstring>\n#include<cmath>\n#include<queue>\n#include<stack>\n#include<vector>\n#include<string>\n#include<map>\n#include<set>\n#include<ctime>\n#include<bitset>\n#include<iterator>\n#define bug cout<<\"-----------\"<<endl;\n#define ll long long\n#define ull unsigned long long\n#define pb push_back\n#define mp make_pair\n#define pi pair<int, int>\n#define fi first\n#define se second\nusing namespace std;\nconst int N=1e6+5,M=1e9+7;\nconst ull base=13331;\nconst double Pi=acos(-1.0);\nconst ll inf=0x3f3f3f3f3f3f3f3f;\ninline int read() {\n int x=0,f=1;char ch=getchar();\n while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}\n while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}\n return x*f;\n}\nint d[205][205],n,m;\nint v[205][205];\nchar a[205][205];\nint dirx[5]={0,0,0,1,-1};\nint diry[5]={0,1,-1,0,0};\nvoid dfs1(int x,int y,int t){\n\tif(d[x][y]<=t)return;\n\tif(a[x][y]=='#')return;\n\tif(a[x][y]=='$'&&!v[x][y]){\n\t\tv[x][y]=1;\n\t\tdfs1(x,y,0);\n\t\treturn;\n\t}\n\td[x][y]=min(t,d[x][y]);\n\tfor(int i=1;i<=4;i++){\n\t\tint x1=x+dirx[i];\n\t\tint y1=y+diry[i];\n\t\tif(x1<1||x1>n)continue;\n\t\tif(y1<1||y1>m)continue;\n\t\tdfs1(x1,y1,t+1);\n\t}\n}\nint v1[205][205];\nbool dfs2(int x,int y,int t){\n\tif(v1[x][y])return false;\n\tv1[x][y]=1;\n\tif(a[x][y]=='#')return false;\n\tif(t>=d[x][y])return false;\n\tif(a[x][y]=='%')return true;\n\tfor(int i=1;i<=4;i++){\n\t\tint x1=x+dirx[i];\n\t\tint y1=y+diry[i];\n\t\tif(x1<1||x1>n)continue;\n\t\tif(y1<1||y1>m)continue;\n\t\tif(dfs2(x1,y1,t+1))return true;\n\t}\n\treturn false;\n}\nint main(){\n\tios::sync_with_stdio(false);\n\tcin>>n>>m;\n\tstd::vector<pair<int,int> > vec;\n\tint px,py;\n\tfor(int i=1;i<=n;i++){\n\t\tfor(int j=1;j<=m;j++){\n\t\t\tcin>>a[i][j];\n\t\t\tif(a[i][j]=='$'){\n\t\t\t\tvec.pb(mp(i,j));\n\t\t\t}\n\t\t\tif(a[i][j]=='@'){\n\t\t\t\tpx=i,py=j;\n\t\t\t}\n\t\t}\n\t}\n\tmemset(d,0x3f,sizeof(d));\n\tint cnt=vec.size();\n\tfor(int i=0;i<cnt;i++){\n\t\tif(v[vec[i].fi][vec[i].se])continue;\n\t\tv[vec[i].fi][vec[i].se]=1;\n\t\tdfs1(vec[i].fi,vec[i].se,0);\n\t}\n\tif(dfs2(px,py,0)){\n\t\tcout<<\"Yes\"<<endl;\n\t}\n\telse cout<<\"No\"<<endl;\n}\n/*\n2 4\n%.@$\n..$$\n3 4\n.%..\n.##.\n.@$.\n2 3\n%$@\n###\n2 3\n@#$\n.%.\n*/", "accuracy": 0.36538461538461536, "time_ms": 10, "memory_kb": 4872, "score_of_the_acc": -0.0079, "final_rank": 14 }, { "submission_id": "aoj_2781_5175552", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n//#define ll long long\n#define int long long\n//#define ull unsigned long long\n#define PI pair<int,int>\n//#define PII pair<int,PI>\n//#define PI pair<ll,int>\nconst int maxm=555;\n/*\n@ 公主\n$ 士兵\n% 出口\n. 空格\n# 墙\n*/\nint dx[]={0,0,1,-1};\nint dy[]={1,-1,0,0};\nmap<PI,int>mark,mark2;\nchar a[maxm][maxm];\nint n,m;\nvector<PI>p;\nvector<PI>out;\nPI st;\nvoid bfs1(){\n queue<PI>q;\n for(auto i:p){\n q.push(i);\n mark[i]=1;\n }\n while(q.size()){\n PI x=q.front();q.pop();\n for(int k=0;k<4;k++){\n int xx=x.first+dx[k];\n int yy=x.second+dy[k];\n if(xx<=0||xx>n||yy<=0||yy>m)continue;\n if(a[xx][yy]=='#')continue;\n PI t={xx,yy};\n if(mark[t])continue;\n mark[t]=mark[x]+1;\n q.push(t);\n }\n }\n}\nvoid bfs2(){\n queue<PI>q;\n q.push(st);\n mark2[st]=1;\n while(q.size()){\n PI x=q.front();q.pop();\n for(int k=0;k<4;k++){\n int xx=x.first+dx[k];\n int yy=x.second+dy[k];\n if(xx<=0||xx>n||yy<=0||yy>m)continue;\n if(a[xx][yy]=='#')continue;\n PI t={xx,yy};\n if(!mark[t]||mark[t]>mark2[x]+1){\n if(mark2[t])continue;\n mark2[t]=mark2[x]+1;\n q.push(t);\n }\n }\n }\n}\nsigned main(){\n ios::sync_with_stdio(0);\n cin>>n>>m;\n for(int i=1;i<=n;i++){\n for(int j=1;j<=m;j++){\n cin>>a[i][j];\n if(a[i][j]=='@'){\n st={i,j};\n }else if(a[i][j]=='$'){\n p.push_back({i,j});\n }else if(a[i][j]=='%'){\n out.push_back({i,j});\n }\n }\n }\n bfs1();\n bfs2();\n int ok=0;\n for(auto i:out){\n if(mark2[i]){\n// cout<<i.first<<' '<<i.second<<' '<<mark2[i]<<endl;\n ok=1;\n }\n }\n if(ok)cout<<\"Yes\"<<endl;\n else cout<<\"No\"<<endl;\n return 0;\n}\n/*\n2 3\n@#$\n.%.\n\nNo\n*/\n/*\n\n\n*/", "accuracy": 1, "time_ms": 10, "memory_kb": 6224, "score_of_the_acc": -0.0149, "final_rank": 2 }, { "submission_id": "aoj_2781_3926439", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef pair<int,int> P;\ntypedef pair<int,P> T;\nint h,w;\nint dx[5]={1,0,-1,0,0};\nint dy[5]={0,-1,0,1,0};\nbool fail[5001][200][200]; //iターン目で兵士のいる可能性のある場所\nint mincost[200][200];\ndeque<T> q;\n\nint main()\n{\n\tvector<string> mp;\n\tcin>>h>>w;\n\tfor(int i=0;i<h;i++)\n\t{\n\t\tstring s;\n\t\tcin>>s;\n\t\tmp.push_back(s);\n\t}\n\tbool ans=false;\n\tfill(fail[0][0],fail[5001][0],false);\n\tfill(mincost[0],mincost[200],1e8-1);\n\t//初期配置を定める\n\tfor(int i=0;i<h;i++)\n\t{\n\t\tfor(int j=0;j<w;j++)\n\t\t{\n\t\t\tif(mp[i][j]=='$')\n\t\t\t\tfail[0][i][j]=true;\n\t\t\tif(mp[i][j]=='@')\n\t\t\t{\n\t\t\t\tq.push_back(T(0,P(i,j)));\n\t\t\t\tmincost[i][j]=0;\n\t\t\t}\n\t\t}\n\t}\n\t//兵士の移動パターンをすべて調べる\n\tfor(int k=1;k<1001;k++)\n\t{\n\t\tfor(int i=0;i<h;i++)\n\t\t{\n\t\t\tfor(int j=0;j<w;j++)\n\t\t\t{\n\t\t\t\tif(fail[k-1][i][j])\n\t\t\t\t{\n\t\t\t\t\tfor(int l=0;l<5;l++)\n\t\t\t\t\t{\n\t\t\t\t\t\tint nx=i+dx[l];\n\t\t\t\t\t\tint ny=j+dy[l];\n\t\t\t\t\t\tif(nx>=0 && nx<h && ny>=0 && ny<w && mp[nx][ny]!='#')\n\t\t\t\t\t\t\tfail[k][nx][ny]=true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t// for(int i=0;i<h;i++)\n\t// {\n\t// \tfor(int j=0;j<w;j++)\n\t// \t{\n\t// \t\tif(fail[1000][i][j])\n\t// \t\t\tcout<<'$';\n\t// \t\telse\n\t// \t\t\tcout<<mp[i][j];\n\t// \t}\n\t// \tcout<<endl;\n\t// }\n\t//BFS\n\twhile(!q.empty())\n\t{\n\t\tT t=q.front();q.pop_front();\n\t\tP p=t.second;\n\t\tif(t.first==1000)\n\t\t\tcontinue;\n\t\tif(mp[p.first][p.second]=='%')\n\t\t{\n\t\t\tans=true;\n\t\t\tbreak;\n\t\t}\n\t\tfor(int i=0;i<4;i++)\n\t\t{\n\t\t\tint nx=p.first+dx[i];\n\t\t\tint ny=p.second+dy[i];\n\t\t\tif(nx>=0 && nx<h && ny>=0 && ny<w && mp[nx][ny]!='#')\n\t\t\t{\n\t\t\t\tif(!fail[t.first+1][nx][ny] && mincost[nx][ny]==1e8-1)\n\t\t\t\t{\n\t\t\t\t\tq.push_back(T(t.first+1,P(nx,ny)));\n\t\t\t\t\tmincost[nx][ny]=t.first+1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tif(ans)\n\t\tcout<<\"Yes\"<<endl;\n\telse\n\t\tcout<<\"No\"<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 580, "memory_kb": 198716, "score_of_the_acc": -1.3065, "final_rank": 13 }, { "submission_id": "aoj_2781_3467298", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing ll = long long;\n\nconst double eps = 1e-10;\nconst int MOD = 1000000007;\nconst int INF = 1000000000;\nconst ll LINF = 1ll<<50;\n\ntemplate<typename T>\nvoid printv(const vector<T>& s) {\n for(int i=0;i<(int)(s.size());++i) {\n cout << s[i];\n if(i == (int)(s.size())-1) cout << endl;\n else cout << \" \";\n }\n}\n\nint main () {\n cin.tie(0);\n cout << fixed << setprecision(10);\n\n int h, w; cin>>h>>w;\n vector<int> dx = {-1, 1, 0, 0}, dy = {0, 0, -1, 1};\n vector<vector<char>> a(h, vector<char>(w));\n pair<int, int> s, e;\n map<pair<int, int>, bool> enemy;\n map<pair<int, int>, bool> wall;\n for(int i=0;i<h;++i) {\n for(int j=0;j<w;++j) {\n cin >> a[i][j];\n pair<int, int> p = make_pair(i, j);\n if(a[i][j] == '@') s = p;\n else if(a[i][j] == '%') e = p;\n else if(a[i][j] == '$') enemy[p] = true;\n else if(a[i][j] == '#') wall[p] = true;\n }\n }\n\n vector<vector<int>> d(h, vector<int>(w, INF));\n queue<pair<int, int>> q;\n map<pair<int, int>, bool> sel;\n q.push(s);\n sel[s] = true;\n d[s.first][s.second] = 0;\n while(!q.empty()) {\n pair<int, int> now = q.front(); q.pop();\n // cout << now.first << \":\" << now.second << endl;\n for(int i=0;i<4;++i) {\n pair<int, int> next = make_pair(now.first + dy[i], now.second + dx[i]);\n if(0 <= next.first && next.first < h && 0 <= next.second && next.second < w && !wall[next] && !sel[next]) {\n q.push(next);\n sel[next] = true;\n d[next.first][next.second] = d[now.first][now.second] + 1;\n }\n }\n }\n\n int d_prin = d[e.first][e.second];\n int d_enemy = INF;\n\n vector<vector<int>> de(h, vector<int>(w, INF));\n map<pair<int, int>, bool> sele;\n q.push(e);\n sele[e] = true;\n de[e.first][e.second] = 0;\n while(!q.empty()) {\n pair<int, int> now = q.front(); q.pop();\n if(enemy[now]) {\n d_enemy = de[now.first][now.second];\n break;\n }\n for(int i=0;i<4;++i) {\n pair<int, int> next = make_pair(now.first + dy[i], now.second + dx[i]);\n if(0 <= next.first && next.first < h && 0 <= next.second && next.second < w && !wall[next] && !sele[next]) {\n q.push(next);\n sele[next] = true;\n de[next.first][next.second] = de[now.first][now.second] + 1;\n }\n }\n }\n\n // cout << d_prin << \":\" << d_enemy << endl;\n if(d_prin < d_enemy) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n \n}", "accuracy": 1, "time_ms": 30, "memory_kb": 10384, "score_of_the_acc": -0.0469, "final_rank": 8 }, { "submission_id": "aoj_2781_2997656", "code_snippet": "#include<iostream>\nusing namespace std;\nint h,w;\nstring s[200];\nbool used[200][200];\nbool nxt[200][200];\nbool ns[200][200];\nint d[]={0,1,0,-1,0};\nmain()\n{\n\tcin>>h>>w;\n\tfor(int i=0;i<h;i++)cin>>s[i];\n\tfor(int i=0;i<h;i++)for(int j=0;j<w;j++)used[i][j]=s[i][j]=='$';\n\twhile(1)\n\t{\n\t\tbool flag=false;\n\t\tfor(int i=0;i<h;i++)for(int j=0;j<w;j++)ns[i][j]=nxt[i][j]=0;\n\t\tfor(int i=0;i<h;i++)for(int j=0;j<w;j++)\n\t\t{\n\t\t\tif(!used[i][j])continue;\n\t\t\tnxt[i][j]=1;\n\t\t\tfor(int r=0;r<4;r++)\n\t\t\t{\n\t\t\t\tint x=i+d[r],y=j+d[r+1];\n\t\t\t\tif(x<0||x>=h||y<0||y>=w||s[x][y]=='#')continue;\n\t\t\t\tnxt[x][y]=1;\n\t\t\t}\n\t\t}\n\t\tfor(int i=0;i<h;i++)for(int j=0;j<w;j++)used[i][j]=nxt[i][j];\n\t\tfor(int i=0;i<h;i++)for(int j=0;j<w;j++)\n\t\t{\n\t\t\tif(s[i][j]!='@')continue;\n\t\t\tfor(int r=0;r<4;r++)\n\t\t\t{\n\t\t\t\tint x=i+d[r],y=j+d[r+1];\n\t\t\t\tif(x<0||x>=h||y<0||y>=w||s[x][y]=='#'||used[x][y])continue;\n\t\t\t\tif(s[x][y]=='%')\n\t\t\t\t{\n\t\t\t\t\tcout<<\"Yes\"<<endl;\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t\tns[x][y]=1;\n\t\t\t\tflag=true;\n\t\t\t}\n\t\t\tif(!used[i][j])ns[i][j]=1,flag=true;\n\t\t\ts[i][j]='.';\n\t\t}\n\t\tif(!flag)\n\t\t{\n\t\t\tcout<<\"No\"<<endl;\n\t\t\treturn 0;\n\t\t}\n\t\tfor(int i=0;i<h;i++)\n\t\t{\n\t\t\tfor(int j=0;j<w;j++)if(ns[i][j])s[i][j]='@';\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3360, "score_of_the_acc": -0.0163, "final_rank": 3 }, { "submission_id": "aoj_2781_2935537", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<string>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1000000007;\nconst ll INF = (ll)1000000007 * 1000000007;\nconst double EPS = 1e-9;\ntypedef pair<int, int> P;\ntypedef unsigned int ui;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\nconst ld eps=1e-8;\nint d1[4] = { -1,0,1,0 };\nint d2[4] = { 0,1,0,-1 };\nint main() {\n\tint h, w; cin >> h >> w;\n\tchar pal[202][202];\n\trep(i, 202) {\n\t\trep(j, 202) {\n\t\t\tpal[i][j] = '#';\n\t\t}\n\t}\n\tstring s; P chk;\n\trep1(i, h) {\n\t\tcin >> s;\n\t\trep1(j, w) {\n\t\t\tpal[i][j] = s[j - 1];\n\t\t\tif (s[j - 1] == '%') {\n\t\t\t\tchk = { i,j };\n\t\t\t}\n\t\t}\n\t}\n\tint d[202][202];\n\trep(i, 202) {\n\t\trep(j, 202) {\n\t\t\td[i][j] = (int)MOD;\n\t\t}\n\t}\n\td[chk.first][chk.second] = 0;\n\tvector<P> v; int used[202][202] = {};\n\tv.push_back(chk);\n\twhile (!v.empty()) {\n\t\tint nx = v[0].first; int ny = v[0].second;\n\t\tv.erase(v.begin());\n\t\trep(i, 4) {\n\t\t\tif (used[nx + d1[i]][ny + d2[i]] == 0 && pal[nx + d1[i]][ny + d2[i]] != '#') {\n\t\t\t\tused[nx + d1[i]][ny + d2[i]] = 1;\n\t\t\t\tv.push_back({ nx + d1[i],ny + d2[i] });\n\t\t\t\td[nx + d1[i]][ny + d2[i]] = min(d[nx + d1[i]][ny + d2[i]], d[nx][ny] + 1);\n\t\t\t}\n\t\t}\n\t}\n\tint cnt1; int cnt2 = (int)MOD;\n\trep1(i, h) {\n\t\trep1(j, w) {\n\t\t\tif (pal[i][j] == '@') {\n\t\t\t\tcnt1 = d[i][j];\n\t\t\t}\n\t\t\telse if (pal[i][j] == '$') {\n\t\t\t\tcnt2 = min(cnt2, d[i][j]);\n\t\t\t}\n\t\t}\n\t}\n\tif(cnt1>=cnt2){\n\t\tcout << \"No\" << endl;\n\t}\n\telse {\n\t\tcout << \"Yes\" << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3576, "score_of_the_acc": -0.0013, "final_rank": 1 }, { "submission_id": "aoj_2781_2663281", "code_snippet": "///\n// File: 2781.cpp\n// Author: ymiyamoto\n//\n// Created on Fri Dec 29 19:30:51 2017\n//\n\n#include <cstdint>\n#include <iostream>\n#include <queue>\n#include <string>\n#include <vector>\n\nusing namespace std;\n\nuint32_t wfs(vector<string> map, int32_t y, int32_t x)\n{\n vector<vector<int32_t>> visited(map.size(), vector<int32_t>(map[0].size(), -1));\n visited[y][x] = 0;\n queue<pair<int32_t, int32_t>> q;\n q.push({y, x});\n\n while (!q.empty()) {\n pair<int32_t, int32_t> p = q.front();\n q.pop();\n\n vector<pair<int32_t, int32_t>> ds = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};\n for (auto d : ds) {\n int32_t y2 = p.first + d.first;\n int32_t x2 = p.second + d.second;\n if (0 <= y2 && y2 < (int32_t)map.size() && 0 <= x2 && x2 < (int32_t)map[0].size() && (visited[y2][x2] == -1)) {\n if (map[y2][x2] == '#' || map[y2][x2] == '$') continue;\n visited[y2][x2] = visited[p.first][p.second] + 1;\n q.push({y2, x2});\n }\n }\n }\n\n for (uint32_t i = 0; i < map.size(); i++) {\n for (uint32_t j = 0; j < map[0].size(); j++) {\n if (map[i][j] == '%') {\n return visited[i][j];\n }\n }\n }\n}\n\nint32_t main()\n{\n uint32_t H, W;\n cin >> H >> W;\n vector<string> map;\n for (uint32_t i = 0; i < H; i++) {\n string line;\n cin >> line;\n map.push_back(line);\n }\n\n uint32_t princess;\n uint32_t soldier = UINT32_MAX;\n for (uint32_t y = 0; y < H; y++) {\n for (uint32_t x = 0; x < W; x++) {\n if (map[y][x] == '@') {\n princess = wfs(map, y, x);\n } else if (map[y][x] == '$') {\n soldier = min(soldier, wfs(map, y, x));\n }\n }\n }\n\n if (princess < soldier) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 1870, "memory_kb": 3332, "score_of_the_acc": -1.0001, "final_rank": 12 }, { "submission_id": "aoj_2781_2523842", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <algorithm>\n#include <queue>\n\nusing namespace std;\n\nqueue<pair<int,int> > q;\nint n,m;\nint w[205][205];\nint d[205][205];\nint f[205][205];\nchar op;\nconst int dx[4] = {0,0,1,-1};\nconst int dy[4] = {1,-1,0,0};\nint sx,sy;\n\nvoid bfs(int x,int y)\n{\n\tpair<int,int> now,temp;\n\tnow = make_pair(x,y);\n\td[x][y] = 0;\n\tq.push(now);\n\tint nx,ny;\n\twhile (!q.empty())\n\t{\n\t\tnow = q.front();\n\t\tq.pop();\n\t\tx = now.first;\n\t\ty = now.second;\n\t\tfor (int i=0;i<4;i++)\n\t\t{\n\t\t\tnx = x+dx[i];\n\t\t\tny = y+dy[i];\n\t\t\tif (d[nx][ny] > d[x][y]+1 && w[nx][ny])\n\t\t\t{\n\t\t\t\td[nx][ny] = d[x][y]+1;\n\t\t\t\ttemp = make_pair(nx,ny);\n\t\t\t\tq.push(temp);\n\t\t\t}\n\t\t}\n\t}\n}\n\nbool solve(int x,int y)\n{\n\tpair<int,int> now,temp;\n\tf[x][y] = 0;\n\tnow = make_pair(x,y);\n\tq.push(now);\n\tint nx,ny;\n\twhile (!q.empty())\n\t{\n\t\tnow = q.front();\n\t\tq.pop();\n\t\tx = now.first;\n\t\ty = now.second;\n\t\tif (w[x][y] == 5) return 1;\n\t\tfor (int i=0;i<4;i++)\n\t\t{\n\t\t\tnx = x+dx[i];\n\t\t\tny = y+dy[i];\n\t\t\tif (w[nx][ny] == 0 || f[nx][ny] != f[0][0]) continue;\n\t\t\tf[nx][ny] = f[x][y]+1;\n\t\t\tif (f[nx][ny] < d[nx][ny])\n\t\t\t{\n\t\t\t\ttemp = make_pair(nx,ny);\n\t\t\t\tq.push(temp);\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}\n\nint main()\n{\n\tscanf(\"%d%d\",&n,&m);\n\tmemset(w,0,sizeof(w));\n\tmemset(d,0x3f,sizeof(d));\n\tmemset(f,0x3f,sizeof(f));\n\tfor (int i=1;i<=n;i++)\n\t{\n\t\tfor (int j=1;j<=m;j++)\n\t\t{\n\t\t\tscanf(\" %c\",&op);\n\t\t\tif (op == '@')\n\t\t\t{\n\t\t\t\tw[i][j] = 4;\n\t\t\t\tsx = i;\n\t\t\t\tsy = j;\n\t\t\t}\n\t\t\tif (op == '%')\n\t\t\t{\n\t\t\t\tw[i][j] = 5;\n\t\t\t}\n\t\t\tif (op == '$')\n\t\t\t{\n\t\t\t\tw[i][j] = 2;\n\t\t\t}\n\t\t\tif (op == '.')\n\t\t\t{\n\t\t\t\tw[i][j] = 1;\n\t\t\t}\n\t\t}\n\t}\n/*\tprintf(\"n=%d m=%d\\n\",n,m);\n\tfor (int i=0;i<=n+1;i++)\n\t{\n\t\tfor (int j=0;j<=m+1;j++)\n\t\t\tprintf(\"%d\",w[i][j]);\n\t\tprintf(\"\\n\");\n\t}*/\n\n\tfor (int i=1;i<=n;i++)\n\t{\n\t\tfor (int j=1;j<=m;j++)\n\t\t{\n\t\t\tif (w[i][j] == 2)\n\t\t\t{\n\t\t\t\tbfs(i,j);\n\t\t\t}\n\t\t}\n\t}\n\n\tif (solve(sx,sy))\n\t{\n\t\tprintf(\"Yes\\n\");\n\t}\n\telse\n\t{\n\t\tprintf(\"No\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1250, "memory_kb": 3728, "score_of_the_acc": -0.6688, "final_rank": 10 }, { "submission_id": "aoj_2781_2502069", "code_snippet": "#include<cstdio>\n#include<cstring>\n#include<algorithm>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<stack>\n#include<bitset>\n#include<cstdlib>\n#include<cmath>\n#include<set>\n#include<list>\n#include<deque>\n#include<queue>\nusing namespace std;\nint n,H,W;\nconst int maxn = 1e3;\nconst int INF = 1e9;\nint labyrinth[maxn][maxn],scnt;\nint shortest;\nint pshort,sshort,eshort,goal;\nbool tf;\n\nstruct pt\n{\n\tint x,y;\n} soldier[100000],princess,escape;\nchar ch;\nbool vis[maxn][maxn];\n\nint dfs(int x,int y,int cur_length)\n{\n\tint temp;\n\t//printf(\"%d %d, H:%d W:%d\\n\",x,y,H,W);\n\t//labyrinth[y][x] = 3;\n\tvis[y][x] = true;\n\tif(x>0&&labyrinth[y][x-1]&&!vis[y][x-1])\n\t{\n\t\tif(labyrinth[y][x-1] == goal)\n\t\t{\n\t\t\treturn cur_length+1;\n\t\t}\n\t\tif((temp = dfs(x-1,y,cur_length+1))<shortest)\n\t\t{\n\t\t\tshortest = temp;\n\t\t}\n\t}\n\tif(x<W-1&&labyrinth[y][x+1]&&!vis[y][x+1])\n\t{\n\t\tif(labyrinth[y][x+1] == 2)\n\t\t{\n\t\t\treturn cur_length+1;\n\t\t}\n\t\tif((temp = dfs(x+1,y,cur_length+1))<shortest)\n\t\t{\n\t\t\tshortest = temp;\n\t\t}\n\t}\n\tif(y>0&&labyrinth[y-1][x]&&!vis[y-1][x])\n\t{\n\t\tif(labyrinth[y-1][x] == 2)\n\t\t{\n\t\t\treturn cur_length+1;\n\t\t}\n\t\tif((temp = dfs(x,y-1,cur_length+1))<shortest)\n\t\t{\n\t\t\tshortest = temp;\n\t\t}\n\t}\n\tif(y<H-1&&labyrinth[y+1][x]&&!vis[y+1][x])\n\t{\n\t\tif(labyrinth[y+1][x] == 2)\n\t\t{\n\t\t\treturn cur_length+1;\n\t\t}\n\t\tif((temp = dfs(x,y+1,cur_length+1))<shortest)\n\t\t{\n\t\t\tshortest = temp;\n\t\t}\n\t}\n\treturn shortest;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false);\n\t//freopen(\"1002.txt\",\"r\",stdin);\n\t//freopen(\"ans.txt\",\"w+\",stdout);\n\twhile(~scanf(\"%d%d\",&H,&W))\n\t{\n\t\ttf = true;\n\t\tscnt = 0;\n\t\tshortest = INF;\n\t\tmemset(labyrinth,-1,sizeof(labyrinth));\n\t\tgetchar();\n\t\tfor(int i = 0; i<H; ++i)\n\t\t{\n\t\t\tfor(int j = 0; j < W; ++ j)\n\t\t\t{\n\t\t\t\twhile((ch = getchar())=='\\n');\n\t\t\t\tswitch(ch)\n\t\t\t\t{\n\t\t\t\tcase '@':\n\t\t\t\t\tprincess.x = j;\n\t\t\t\t\tprincess.y = i,labyrinth[i][j] = 5;\n\t\t\t\t\tbreak;\n\t\t\t\tcase '.':\n\t\t\t\t\tlabyrinth[i][j] = 1;\n\t\t\t\t\tbreak;\n\t\t\t\tcase '$':\n\t\t\t\t\tsoldier[scnt].x = j;\n\t\t\t\t\tsoldier[scnt++].y = i;\n\t\t\t\t\tlabyrinth[i][j] = 0;\n\t\t\t\t\tbreak;\n\t\t\t\tcase '%':\n\t\t\t\t\tlabyrinth[i][j] = 2;\n\t\t\t\t\tescape.x = j;\n\t\t\t\t\tescape.y = i;\n\t\t\t\t\tbreak;\n\t\t\t\tcase '#':\n\t\t\t\t\tlabyrinth[i][j] = 0;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tmemset(vis,false,sizeof(vis));\n\t\tgoal = 2;\n\t\tpshort = dfs(princess.x,princess.y,0);\n\t\t//printf(\"pshort:%d\\n\",pshort);\n\n\t\tgoal = 5;\n\t\tshortest = INF;\n\t\tmemset(vis,false,sizeof(vis));\n\t\teshort = dfs(escape.x,escape.y,0);\n\t\t//printf(\"eshort:%d\\n\",eshort);\n\t\tif(eshort<pshort)\n\t\t\tpshort = eshort;\n\t\t/*for(int i = 0; i<H; ++i)\n\t\t{\n\t\t\tfor(int j = 0; j < W; ++ j)\n\t\t\t{\n\t\t\t\tif(i == princess.y&&j == princess.x)\n\t\t\t\t\tprintf(\"X\");\n\t\t\t\telse\n\t\t\t\tprintf(\"%d\",labyrinth[i][j]);\n\t\t\t}\n\t\t\tprintf(\"\\n\");\n\t\t}*/\n\t\tif(!scnt&&pshort!=INF)\n\t\t{\n\t\t\ttf = true;\n\t\t}\n\t\telse\n\t\t{\n\t\t\tif(pshort != INF)\n\t\t\t{\n\t\t\t\tgoal = 2;\n\t\t\t\tfor(int i = 0; i < scnt; ++i)\n\t\t\t\t{\n\t\t\t\t\tmemset(vis,false,sizeof(vis));\n\t\t\t\t\tshortest = INF;\n\t\t\t\t\tsshort = dfs(soldier[i].x,soldier[i].y,0);\n\t\t\t\t\t//printf(\"sshort:%d\\n\",sshort);\n\t\t\t\t\tif(sshort <= pshort)\n\t\t\t\t\t{\n\t\t\t\t\t\ttf = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\t\t\telse\n\t\t\t\ttf = false;\n\n\t\t}\n\t\tif(tf)\n\t\t{\n\t\t\tprintf(\"Yes\\n\");\n\t\t}\n\t\telse\n\t\t{\n\t\t\tprintf(\"No\\n\");\n\t\t}\n\n\n\t}\n}", "accuracy": 0.3076923076923077, "time_ms": 120, "memory_kb": 8516, "score_of_the_acc": -0.0857, "final_rank": 16 }, { "submission_id": "aoj_2781_2502024", "code_snippet": "#include<cstdio>\n#include<cstring>\n#include<algorithm>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<stack>\n#include<bitset>\n#include<cstdlib>\n#include<cmath>\n#include<set>\n#include<list>\n#include<deque>\n#include<queue>\nusing namespace std;\nint n,H,W;\nconst int maxn = 2e2+2;\nconst int INF = 1e9;\nint labyrinth[maxn][maxn],scnt;\nint shortest;\nint pshort,sshort,eshort,goal;\nbool tf;\n\nstruct pt\n{\n int x,y;\n} soldier[maxn],princess,escape;\nchar ch;\nbool vis[maxn][maxn];\n\nint dfs(int x,int y,int cur_length)\n{\n int temp;\n //printf(\"%d %d, H:%d W:%d\\n\",x,y,H,W);\n //labyrinth[y][x] = 3;\n vis[y][x] = true;\n if(x>0&&labyrinth[y][x-1]&&!vis[y][x-1])\n {\n if(labyrinth[y][x-1] == goal)\n {\n return cur_length+1;\n }\n if((temp = dfs(x-1,y,cur_length+1))<shortest)\n {\n shortest = temp;\n }\n }\n if(x<W-1&&labyrinth[y][x+1]&&!vis[y][x+1])\n {\n if(labyrinth[y][x+1] == 2)\n {\n return cur_length+1;\n }\n if((temp = dfs(x+1,y,cur_length+1))<shortest)\n {\n shortest = temp;\n }\n }\n if(y>0&&labyrinth[y-1][x]&&!vis[y-1][x])\n {\n if(labyrinth[y-1][x] == 2)\n {\n return cur_length+1;\n }\n if((temp = dfs(x,y-1,cur_length+1))<shortest)\n {\n shortest = temp;\n }\n }\n if(y<H-1&&labyrinth[y+1][x]&&!vis[y+1][x])\n {\n if(labyrinth[y+1][x] == 2)\n {\n return cur_length+1;\n }\n if((temp = dfs(x,y+1,cur_length+1))<shortest)\n {\n shortest = temp;\n }\n }\n return shortest;\n}\n\nint main()\n{\n //freopen(\"1002.txt\",\"r\",stdin);\n //freopen(\"ans.txt\",\"w+\",stdout);\n while(~scanf(\"%d%d\",&H,&W))\n {\n tf = true;\n scnt = 0;\n shortest = INF;\n memset(labyrinth,-1,sizeof(labyrinth));\n getchar();\n for(int i = 0; i<H; ++i)\n {\n for(int j = 0; j < W; ++ j)\n {\n while((ch = getchar())=='\\n');\n switch(ch)\n {\n case '@':\n princess.x = j;\n princess.y = i,labyrinth[i][j] = 5;\n break;\n case '.':\n labyrinth[i][j] = 1;\n break;\n case '$':\n soldier[scnt].x = j;\n soldier[scnt++].y = i;\n labyrinth[i][j] = 1;\n break;\n case '%':\n labyrinth[i][j] = 2;\n escape.x = j;\n escape.y = i;\n break;\n case '#':\n labyrinth[i][j] = 0;\n break;\n }\n }\n }\n memset(vis,false,sizeof(vis));\n goal = 2;\n pshort = dfs(princess.x,princess.y,0);\n //printf(\"pshort:%d\\n\",pshort);\n\n goal = 5;\n shortest = INF;\n memset(vis,false,sizeof(vis));\n eshort = dfs(escape.x,escape.y,0);\n //printf(\"eshort:%d\\n\",eshort);\n if(eshort<pshort)\n pshort = eshort;\n /*for(int i = 0; i<H; ++i)\n {\n for(int j = 0; j < W; ++ j)\n {\n if(i == princess.y&&j == princess.x)\n printf(\"X\");\n else\n printf(\"%d\",labyrinth[i][j]);\n }\n printf(\"\\n\");\n }*/\n if(!scnt&&pshort!=INF)\n {\n tf = true;\n }\n else\n {\n if(pshort != INF)\n {\n goal = 2;\n for(int i = 0; i < scnt; ++i)\n {\n memset(vis,false,sizeof(vis));\n shortest = INF;\n sshort = dfs(soldier[i].x,soldier[i].y,0);\n //printf(\"sshort:%d\\n\",sshort);\n if(sshort <= pshort)\n {\n tf = false;\n break;\n }\n }\n\n }\n else\n tf = false;\n\n }\n if(tf)\n {\n printf(\"Yes\\n\");\n }\n else\n {\n printf(\"No\\n\");\n }\n\n\n }\n}", "accuracy": 0.11538461538461539, "time_ms": 10, "memory_kb": 3448, "score_of_the_acc": -0.0007, "final_rank": 19 }, { "submission_id": "aoj_2781_2501708", "code_snippet": "// @Team : nupt2017team12\n// @Author : Zst\n#include <iostream>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <algorithm>\n#include <map>\nusing namespace std;\n#define LL long long\n#define MOD 1000000007\n#define CLR(a,x) memset(a,x,sizeof(a))\n#define INF 0x3f3f3f3f\n#define pb push_back\n#define FOR(i,a,b) for( int i = ( a ); i <= ( b ); ++i )\n\nconst int N = 200+7;\nchar maps[N][N];\nint vis[N][N];\n\nint r, c;\nint posX, posY;\n\nint princess;\nint soldier;\n\nvoid solve( int x, int y, int times )\n{\n\tvis[x][y] = times;\n\tif( maps[x][y] == '@' ) {\n\t\tprincess = min( princess, times );\n\t} else if( maps[x][y] == '$' ) {\n\t\tsoldier = min( soldier, times );\n\t}\n\tif( x-1 >= 0 ) {\n\t\tif( vis[x-1][y] == -1 ) {\n\t\t\tsolve( x-1, y, times+1 );\n\t\t} else if( times+1 < vis[x-1][y] ) {\n\t\t\tsolve( x-1, y, times+1 );\n\t\t}\n\t}\n\tif( y-1 >= 0 ) {\n\t\tif( vis[x][y-1] == -1 ) {\n\t\t\tsolve( x, y-1, times+1 );\n\t\t} else if( times+1 < vis[x][y-1] ) {\n\t\t\tsolve( x, y-1, times+1 );\n\t\t}\n\t}\n\tif( x+1 < r ) {\n\t\tif( vis[x+1][y] == -1 ) {\n\t\t\tsolve( x+1, y, times+1 );\n\t\t} else if( times+1 < vis[x+1][y] ) {\n\t\t\tsolve( x+1, y, times+1 );\n\t\t}\n\t}\n\tif( y+1 < c ) {\n\t\tif( vis[x][y+1] == -1 ) {\n\t\t\tsolve( x, y+1, times+1 );\n\t\t} else if( times+1 < vis[x][y+1] ) {\n\t\t\tsolve( x, y+1, times+1 );\n\t\t}\n\t}\n\treturn;\n\n}\n\n\nint main()\n{\n // freopen( \"B.txt\", \"r\", stdin );\n while( scanf( \"%d%d\", &r, &c ) != EOF ) {\n \tprincess = soldier = INF;\n\t\tCLR( vis, -1 );\n\t FOR( i, 0, r-1 ) {\n\t \tscanf( \"%s\", maps[i] );\n\t\t\tFOR( j, 0, c-1 ) {\n\t\t\t\tif( maps[i][j] == '%' ) {\n\t\t\t\t\tposX = i;\n\t\t\t\t\tposY = j;\n\t\t\t\t} else if( maps[i][j] == '#' ) {\n\t\t\t\t\tvis[i][j] = true;\n\t\t\t\t}\n\t\t\t}\n\t }\n\t solve( posX, posY, 0 );\n\t if( princess < soldier ) {\n\t \tprintf( \"Yes\\n\");\n\t } else {\n\t \tprintf( \"No\\n\");\n\t }\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1430, "memory_kb": 5324, "score_of_the_acc": -0.7737, "final_rank": 11 }, { "submission_id": "aoj_2781_2501704", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<cstdio>\n#include<cmath>\n#include <queue>\n\nusing namespace std;\n\nconst int maxx=205;\nint n,m,k;\nchar a[maxx][maxx];\nint ans = 0,cnt = 0,pos = 0;\nint l = 0,r = 0;\n\n\nconst int INF = 100000000;\nint dx[4] = {0,0,1,-1};\nint dy[4] = {1,-1,0,0};\ntypedef pair <int,int> P;\nqueue<P> que;\nint d[maxx][maxx];\nint sx,sy;\nint ex,ey;\n\nbool judge(int x,int y){\n if(a[x][y] == '.' || a[x][y] == '%'){\n if(x >= 0 && x < n)\n {\n if(y >= 0 && y < m)\n {\n if(d[x][y] == INF){\n return true;\n }\n }\n }\n }\n return false;\n}\n\nint bfs()\n{\n for(int i = 0; i < n; i++){\n for(int j = 0; j < m; j++){\n d[i][j] = INF;//初始化\n }\n }\n que.push(P(sx,sy));\n d[sx][sy] = 0;//并把距???0;\n while(que.size()){//直到?列?空\n P p = que.front();que.pop();\n if(p.first == ex && p.second == ey){\n break;//如果已?是?点,??束搜索。\n }\n for(int i = 0; i < 4; i++)\n {\n int nx = p.first + dx[i],ny = p.second + dy[i];\n if(judge(nx,ny))\n {\n que.push(P(nx,ny));\n d[nx][ny] = d[p.first][p.second] + 1;\n }\n }\n }\n return d[ex][ey];\n}\n\n\nint main()\n{\n#ifdef LOCAL\n// freopen(\"/Users/ecooodt/Desktop/c++ and acm/_集?/tp1/2.txt\",\"r\",stdin);\n#endif\n scanf(\"%d%d\",&n,&m);\n for(int i = 0; i < n; i++)\n {\n getchar();\n for(int j = 0; j < m; j++)\n {\n scanf(\"%c\",&a[i][j]);\n if(a[i][j] == '%')\n {\n ex = i,ey = j;\n }\n if(a[i][j] == '@') sx = i,sy = j;\n }\n }\n pos = bfs();\n// printf(\"%d \",pos);\n for(int i = 0; i < n; i ++)\n {\n for(int j = 0; j < m; j++)\n {\n if(a[i][j] == '$')\n {\n sx = i,sy = j;\n int t = bfs();\n if(t <= pos) {\n// printf(\"%d\\n\",t);\n printf(\"No\\n\");\n return 0;\n }\n }\n }\n }\n printf(\"Yes\\n\");\n return 0;\n}", "accuracy": 0.15384615384615385, "time_ms": 10, "memory_kb": 3320, "score_of_the_acc": 0, "final_rank": 18 } ]
aoj_2783_cpp
Parentheses Dave loves strings consisting only of '(' and ')'. Especially, he is interested in balanced strings. Any balanced strings can be constructed using the following rules: A string "()" is balanced. Concatenation of two balanced strings are balanced. If $T$ is a balanced string, concatenation of '(', $T$, and ')' in this order is balanced. For example, "()()" and "(()())" are balanced strings. ")(" and ")()(()" are not balanced strings. Dave has a string consisting only of '(' and ')'. It satis es the followings: You can make it balanced by swapping adjacent characters exactly $A$ times. For any non-negative integer $B$ ($B < A$), you cannot make it balanced by $B$ swaps of adjacent characters. It is the shortest of all strings satisfying the above conditions. Your task is to compute Dave's string. If there are multiple candidates, output the minimum in lexicographic order. As is the case with ASCII, '(' is less than ')'. Input The input consists of a single test case, which contains an integer $A$ ($1 \leq A \leq 10^9$). Output Output Dave's string in one line. If there are multiple candidates, output the minimum in lexicographic order. Sample Input 1 1 Output for the Sample Input 1 )( There are infinitely many strings which can be balanced by only one swap. Dave's string is the shortest of them. Sample Input 2 4 Output for the Sample Input 2 )())(( String "))(()(" can be balanced by 4 swaps, but the output should be ")())((" because it is the minimum in lexicographic order.
[ { "submission_id": "aoj_2783_4919488", "code_snippet": "#include <random>\n#include \"bits/stdc++.h\"\n//#include <atcoder/all>\n\nusing namespace std;\n// using namespace atcoder;\n\nusing ll = long long;\nusing ld = long double;\nusing P = pair<int, int>;\nconstexpr ld eps = 1e-12;\nconstexpr int inf = numeric_limits<int>::max() / 2;\nconstexpr ll mod = 1e9 + 7;\nmt19937_64 rnd{random_device()()};\n\ntemplate <typename T>\nvoid printv(const vector<T> &v) {\n int sz = v.size();\n for (int i = 0; i < sz; i++) {\n cout << v[i] << \" \\n\"[i == sz - 1];\n }\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll a;\n cin >> a;\n auto generate = [](int n) {\n string s = \"\";\n for (int i = 0; i < n; i++) s += ')';\n for (int i = 0; i < n; i++) s += '(';\n return s;\n };\n string ans = \"\";\n for (ll i = 1; i <= a; i++) {\n ll sum = i * (i + 1) / 2;\n if (sum < a) continue;\n ans = generate(i);\n break;\n }\n ll x = ans.size() / 2;\n ll diff = x * (x + 1) / 2 - a;\n while (diff--) {\n int sz = ans.size();\n for (int i = 0; i < sz - 1; i++) {\n if (ans[i] == ')' && ans[i + 1] == '(') {\n swap(ans[i], ans[i + 1]);\n break;\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 3584, "score_of_the_acc": -0.3015, "final_rank": 6 }, { "submission_id": "aoj_2783_3540943", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <cassert>\n\nusing namespace std;\n\nusing lint = long long;\nusing ldouble = long double;\n\nstring rec(int A, int L) {\n if (L <= 0) {\n assert(A == 0);\n return \"\";\n }\n\n int D;\n for (D = 0; D * (D + 1) / 2 < A; ++D) {}\n\n string ret;\n for (int i = 0; i < L - D; ++i) ret += \"()\";\n return ret + ')' + rec(A - D, D - 1) + '(';\n}\n\nint main() {\n int A;\n cin >> A;\n int D;\n for (D = 1; D * (D + 1) / 2 < A; ++D) {}\n cout << ')' + rec(A - D, D - 1) + '(' << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 530, "memory_kb": 8868, "score_of_the_acc": -1.183, "final_rank": 9 }, { "submission_id": "aoj_2783_3351167", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<cstdio>\n#include<cmath>\n#include<cctype>\n#include<math.h>\n#include<string>\n#include<string.h>\n#include<stack>\n#include<queue>\n#include<vector>\n#include<utility>\n#include<set>\n#include<map>\n#include<stdlib.h>\n#include<iomanip>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n#define EPS 0.0000000001\n#define INF 1e9\n#define LINF (ll)INF*INF\n#define MOD 1000000007\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define loop(i,a,n) for(int i=a;i<(n);i++)\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\n\n#define int ll //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\ntypedef vector<int> vi;\ntypedef vector<string> vs;\ntypedef pair<int,int> pii;\ntypedef vector<pii> vp;\n\nint gcd(int a, int b){\n if(b==0) return a;\n return gcd(b,a%b);\n}\nint lcm(int a, int b){\n return a*b/gcd(a,b);\n}\n\nsigned main(void) {\n int in;\n cin >> in;\n int n = 1;\n while(!((n-1)*n < 2*in && 2*in <= n*(n+1)))n++;\n string s = \"\";\n rep(i,n)s = \")\" + s + \"(\";\n int t = n*(n+1)/2-in;\n swap(s[n], s[n-t]);\n cout << s << endl;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 3392, "score_of_the_acc": -0.1402, "final_rank": 2 }, { "submission_id": "aoj_2783_2502338", "code_snippet": "#include<iostream>\n\n#include<cstring>\n#include<cstdio>\n#include<algorithm>\n#include<vector>\n#include<map>\n#define set(x,y) memset(x,y,sizeof(x))\n#define scan(x) scanf(\"%d\",&x)\n#define For(x,y,z) for(int x=y;x<=z;x++)\nusing namespace std;\n\nconst int MAXN = 100010;\n\nint get(int n)\n{\n int i=1;\n for( i=1;i<=100000;i++)\n {\n if(n<=((i+1)*i/2))\n return i;\n }\n}\nlong long getmax(int n,int maxn)\n{\n long long ans=0;\n for(int i=maxn-n+1;i<=maxn;i++)\n ans+=i;\n\n return ans;\n}\nint main()\n{\n int n;\n cin>>n;\n int pairs=get(n);\n // cout<<pairs<<endl;\n long sumright=((pairs*2*(pairs*2+1))/2-pairs)/2+pairs;\n sumright-=n;//\n long sumleft=(pairs*2+1)*2*pairs/2-sumright;\n //cout<<sumleft<<endl;\n int cnt=0;\n bool a[MAXN];\n set(a,0);\n for(int i=1;i<=2*pairs;i++)\n {\n if(cnt==pairs)\n break;\n if((sumleft-i>i||(sumleft-i==0))&&((sumleft-i)<=getmax(pairs-cnt-1,2*pairs)))\n {\n // cout<<getmax(pairs-cnt-1,2*pairs)<<endl;\n cnt++;\n sumleft-=i;\n a[i]=1;\n }\n }\n for(int i=1;i<=2*pairs;i++)\n if(a[i])\n {\n cout<<'(';\n }\n else\n cout<<')';\n\n cout<<endl;\n //out(n);\n return 0;\n}", "accuracy": 0.024096385542168676, "time_ms": 460, "memory_kb": 3172, "score_of_the_acc": -0.2792, "final_rank": 14 }, { "submission_id": "aoj_2783_2476200", "code_snippet": "#include<cstdio>\n#include<cstring>\n#include<iostream>\n#include<algorithm>\n#include<cmath>\nusing namespace std;\nvoid work(int n)\n{\n\tn=(n+1)>>1;\n\tint tmp=n;\n\twhile(tmp>=10)\n\t{\n\t\ttmp-=10;\n\t\tprintf(\"))))))))))\");\n\t}\n\tfor(int i=1;i<=tmp;++i)\n\tprintf(\")\");\n\twhile(n>=10)\n\t{\n\t\tn-=10;\n\t\tprintf(\"((((((((((\");\n\t}\n\tfor(int i=1;i<=n;++i)\n\tprintf(\"(\");\n\tprintf(\"\\n\");\n}\nint main()\n{\n\tint n;\n\tscanf(\"%d\",&n);\n\tif(!(n&1))\n\t{\n\t\tprintf(\")(\");n--;\n\t}\n\t\n\twork(n);\n\treturn 0;\n}", "accuracy": 0.024096385542168676, "time_ms": 1540, "memory_kb": 3136, "score_of_the_acc": -0.8945, "final_rank": 17 }, { "submission_id": "aoj_2783_2407518", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define each(itr,v) for(auto itr:v)\n#define pb push_back\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcount\n\n#define INF INT_MAX/3\n\nll n;\nstring res;\n\nint main(){\n\tcin.sync_with_stdio(false);\n cin>>n;\n ll sum=0;\n repl(i,1,n+1){\n ll nxt=i+1;\n if(nxt*(nxt+1)/2>n){\n n-=i*(i+1)/2;\n string tmp;\n rep(j,i)tmp='('+tmp;\n rep(j,i)tmp=')'+tmp;\n if(n>0){\n res=\")\"+tmp.substr(0,n-1)+\"(\"+tmp.substr(n-1,tmp.size()-n+1);\n }else res=tmp;\n break;\n }\n }\n cout<<res<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 3372, "score_of_the_acc": -0.1314, "final_rank": 1 }, { "submission_id": "aoj_2783_2406706", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define each(itr,v) for(auto itr:v)\n#define pb push_back\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcount\n\n#define INF INT_MAX/3\n\nll n;\nstring res;\n\nint main(){\n\tcin.sync_with_stdio(false);\n cin>>n;\n while(n>0){\n repl(i,1,n+1){\n ll nxt=i+1;\n if(nxt*(nxt+1)/2>n){\n n-=i*(i+1)/2;\n rep(j,i)res='('+res;\n rep(j,i)res=')'+res;\n break;\n }\n }\n }\n cout<<res<<endl;\n\treturn 0;\n}", "accuracy": 0.024096385542168676, "time_ms": 110, "memory_kb": 3288, "score_of_the_acc": -0.0957, "final_rank": 11 }, { "submission_id": "aoj_2783_2270842", "code_snippet": "#include <bits/stdc++.h>\n\n#define N 100010\n\nusing namespace std;\n\nconst int inf = 0x3f3f3f3f;\nmap<int,int>Map;\nint a[N],k;\nchar s[N];\nint main()\n{\n int n,x = 0;\n for( k = 1; x <= 1000000000; k++)\n {\n x += k;\n Map[x] = k;\n a[k] = x;\n }\n scanf(\"%d\",&n);\n if(Map.find(n) != Map.end())\n {\n for(int i = 1; i <= Map[n]; i++)\n printf(\")\");\n for(int i = 1; i <= Map[n]; i++)\n printf(\"(\");\n printf(\"\\n\");\n }\n else\n {\n int x = n;\n while(Map.find(x) == Map.end())x++;\n int l = x;\n x = Map[x];\n n = l - n;\n for(int i = 1; i <= 2*x; i++)\n if(i <= x)s[i] = ')';\n else s[i] = '(';\n s[x*2+1] = '\\0';\n while(n --)\n {\n swap(s[x],s[x+1]);\n x--;\n }\n puts(s+1);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5508, "score_of_the_acc": -0.3748, "final_rank": 7 }, { "submission_id": "aoj_2783_2146044", "code_snippet": "#include <iostream>\n#include <string>\nusing namespace std;\n#define REP(i,n) for(int i=0; i<n; ++i)\nint a,i,p;\nint main() {\n cin >> a;\n while (p < a){\n i++;\n p += i;\n }\n string s;\n REP(j,i) s = s + ')';\n REP(j,i) s = s + '(';\n swap(s[i], s[i-p+a]);\n cout << s << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 3400, "score_of_the_acc": -0.1414, "final_rank": 3 }, { "submission_id": "aoj_2783_2146042", "code_snippet": "#include <iostream>\n#include <fstream>\n#include <cstdio>\n#include <cmath>\n#include <vector>\n#include <cstring>\n#include <string>\n#include <set>\n#include <map>\n#include <stack>\n#include <queue>\n#include <algorithm>\nusing namespace std;\n \n#define REP(i,n) for(int i=0; i<n; ++i)\n#define FOR(i,a,b) for(int i=a; i<=b; ++i)\n#define FORR(i,a,b) for (int i=a; i>=b; --i)\n \ntypedef long long ll;\ntypedef vector<int> VI;\ntypedef vector<ll> VL;\ntypedef vector<VI> VVI;\ntypedef pair<int,int> P;\ntypedef pair<ll,ll> PL;\n\nint main() {\n int a;\n cin >> a;\n int i = 0, p = 0;\n while (p < a){\n i++;\n p += i;\n }\n string ans;\n REP(j,i) ans = ans + ')';\n REP(j,i) ans = ans + '(';\n int j = i - (p - a);\n swap(ans[i], ans[j]);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 3400, "score_of_the_acc": -0.1414, "final_rank": 3 }, { "submission_id": "aoj_2783_2146029", "code_snippet": "#include <iostream>\n#include <fstream>\n#include <cstdio>\n#include <cmath>\n#include <vector>\n#include <cstring>\n#include <string>\n#include <set>\n#include <map>\n#include <stack>\n#include <queue>\n#include <algorithm>\nusing namespace std;\n \n#define REP(i,n) for(int i=0; i<n; ++i)\n#define FOR(i,a,b) for(int i=a; i<=b; ++i)\n#define FORR(i,a,b) for (int i=a; i>=b; --i)\n \ntypedef long long ll;\ntypedef vector<int> VI;\ntypedef vector<ll> VL;\ntypedef vector<VI> VVI;\ntypedef pair<int,int> P;\ntypedef pair<ll,ll> PL;\n\nint main() {\n int a;\n cin >> a;\n VI x;\n int p = 0;\n for (int i = 1; p <= a; i++){\n p += i;\n x.push_back(p);\n }\n string ans;\n while (a){\n int i = 0;\n while (i < x.size()-1 && x[i+1] <= a) i++;\n a -= x[i];\n REP(j,i+1) ans = \"(\" + ans;\n REP(j,i+1) ans = \")\" + ans;\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.024096385542168676, "time_ms": 120, "memory_kb": 3276, "score_of_the_acc": -0.0996, "final_rank": 12 }, { "submission_id": "aoj_2783_2132919", "code_snippet": "#include <iostream>\n#include <string>\nusing namespace std;\nusing ll = long long;\n\nint main() {\n ll A;\n cin >> A;\n ll i = 1;\n while((i + 1) * i / 2 < A) {\n ++i;\n }\n string res = \"()\";\n for(int j=0; j<i-1; ++j) {\n res += ')';\n }\n for(int j=0; j<i-1; ++j) {\n res += '(';\n }\n A -= i * (i-1) / 2;\n for(int j=0; j<A; ++j) {\n for(int k=0; k<res.size()-1; ++k) {\n if(res[k] == '(' && res[k+1] == ')') {\n swap(res[k], res[k+1]);\n break;\n }\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 770, "memory_kb": 3316, "score_of_the_acc": -0.4792, "final_rank": 8 }, { "submission_id": "aoj_2783_2085260", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define mx 10000000\n#define m 44722\n\nint ar[m+5],num;\n\n\nint main()\n{\n int val = 0,in=0;\n for(int i=1;i<mx;i++){\n\n //if(in>44715) cout<<val<<\" \"<<in<<endl;\n val+=i;\n if(in==44721+1) break;\n ar[++in] = val;\n\n }\n //cout<<in<<\" \"<<ar[in];\n scanf(\"%d\",&num);\n\n if(num==1){\n cout<<\")(\"<<endl;\n return 0;\n }\n else if(num==2){\n cout<<\")()(\"<<endl;\n return 0;\n }\n else if(num==3){\n cout<<\"))((\"<<endl;\n return 0;\n }\n\n int idx;\n for(int i=1;i<=m;i++){\n if(num<=ar[i]){\n idx = i;\n break;\n }\n }\n //cout<<idx<<endl;\n int n = idx;\n\n char x[idx*2+5];\n\n for(int i=1;i<=idx*2;i++){\n if(i%2==0) x[i] = '(';\n else x[i] = ')';\n //printf(\"%c\",x[i]);\n }\n //cout<<endl;\n\n int hi = idx*2;\n int lo = 1;\n\n for(int i=1;i<=num;i++){\n\n lo++;\n hi--;\n int l=lo,h=hi;\n int loop = hi-lo+1;\n //cout<<loop<<endl;\n for(int j=1;j<=loop/2;j++){\n\n swap(x[h],x[h-1]);\n n++;\n if(n==num){\n for(int k=1;k<=idx*2;k++) printf(\"%c\",x[k]);\n cout<<endl;\n return 0;\n }\n h-=2;\n }\n /*if(hi-lo==1){\n for(int k=1;k<=idx*2;k++) printf(\"%c\",x[k]);\n cout<<endl;\n return 0;\n }*/\n }\n\n return 0;\n}", "accuracy": 0.024096385542168676, "time_ms": 610, "memory_kb": 3308, "score_of_the_acc": -0.3861, "final_rank": 15 }, { "submission_id": "aoj_2783_2085258", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define mx 10000000\n#define m 44722\n\nint ar[m+5],num;\n\nint srch(int i,int j)\n{\n if(j-i==1){\n if(ar[i]==num) return i;\n else return j;\n }\n int mid = (i+j)/2;\n if(ar[mid]==num) return mid;\n\n if(num>ar[mid]) srch(mid,j);\n else if(num<ar[mid]) srch(i,mid);\n}\nint main()\n{\n int val = 0,in=0;\n for(int i=1;i<mx;i++){\n\n //if(in>44715) cout<<val<<endl;\n val+=i;\n if(in==44721+1) break;\n ar[++in] = val;\n\n }\n //cout<<in<<\" \"<<ar[in];\n scanf(\"%d\",&num);\n\n if(num==1){\n cout<<\")(\"<<endl;\n return 0;\n }\n else if(num==2){\n cout<<\")()(\"<<endl;\n return 0;\n }\n else if(num==3){\n cout<<\"))((\"<<endl;\n return 0;\n }\n\n int idx = srch(1,m);\n\n int n = idx;\n\n char x[idx*2+5];\n\n for(int i=1;i<=idx*2;i++){\n if(i%2==0) x[i] = '(';\n else x[i] = ')';\n }\n\n int hi = idx*2;\n int lo = 1;\n\n for(int i=1;i<=num;i++){\n\n lo++;\n hi--;\n int l=lo,h=hi;\n int loop = hi-lo+1;\n //cout<<loop<<endl;\n for(int j=1;j<=loop/2;j++){\n\n swap(x[h],x[h-1]);\n n++;\n if(n==num){\n for(int k=1;k<=idx*2;k++) printf(\"%c\",x[k]);\n cout<<endl;\n return 0;\n }\n h-=2;\n }\n if(hi-lo==1){\n for(int k=1;k<=idx*2;k++) printf(\"%c\",x[k]);\n cout<<endl;\n return 0;\n }\n }\n\n return 0;\n}", "accuracy": 0.024096385542168676, "time_ms": 670, "memory_kb": 3340, "score_of_the_acc": -0.4254, "final_rank": 16 }, { "submission_id": "aoj_2783_2076159", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nstring s;\n\nint main()\n{\n\n long long i,j,k,l,m,n,o,p;\n\n char sf[10005],sb[10005];\n for(i=0;i<10000;i++)\n {\n sf[i]='(';\n sb[i]=')';\n }\n sf[10000]='\\0';\n sb[10000]='\\0';\n\n cin>>n;\n\n if(n==1)\n {\n printf(\")(\\n\");\n return 0;\n }\n\n int number=(n/3);\n\n if(n%3!=0)\n number++;\n\n long long lim=number*3;\n long long check=lim-n;\n\n number++;\n\n if(check==1)\n {\n for(i=0; i<number-1; i++)\n {\n if(i+10000<number-1)\n {printf(\"%s\",sb);i+=10000;}\n else\n printf(\")\");\n }\n printf(\"()\");\n for(i=0; i<number-1; i++)\n {\n if(i+10000<number-1)\n {printf(\"%s\",sf);i+=10000;}\n else\n printf(\"(\");\n\n }\n //printf(\"(\");\n\n printf(\"\\n\");\n }\n\n else if(check==0)\n {\n for(i=0; i<number; i++)\n if(i+10000<number-1)\n {printf(\"%s\",sb);i+=10000;}\n else\n printf(\")\");\n//printf(\"()\");\n for(i=0; i<number; i++)\n if(i+10000<number-1)\n {printf(\"%s\",sf);i+=10000;}\n else\n printf(\"(\");\n\n printf(\"\\n\");\n }\n else if(check==2)\n {\n for(i=0; i<number-2; i++)\n if(i+10000<number-1)\n {printf(\"%s\",sb);i+=10000;}\n else\n printf(\")\");\n printf(\"())\");\n for(i=0; i<number-1; i++)\n if(i+10000<number-1)\n {printf(\"%s\",sf);i+=10000;}\n else\n printf(\"(\");\n printf(\"\\n\");\n }\n\n return 0;\n}", "accuracy": 0.024096385542168676, "time_ms": 420, "memory_kb": 3308, "score_of_the_acc": -0.2769, "final_rank": 13 }, { "submission_id": "aoj_2783_2076103", "code_snippet": "//#include <bits/stdc++.h>\n#include<cstdio>\n#include<cstring>\n#include<cmath>\n#include<algorithm>\n#include<map>\n#include<queue>\n#include<stack>\n#include<vector>\n#include<deque>\n#include<functional>\n#include<string>\n#include<iostream>\n#include<cctype>\n#include<set>\n#include<climits>\n#include<iomanip>\n#include<cassert>\n#include<sstream>\n\n#define pb push_back\n#define nl puts (\"\")\n#define sp printf ( \" \" )\n#define phl printf ( \"hello\\n\" )\n#define ff first\n#define ss second\n#define POPCOUNT __builtin_popcountll\n#define RIGHTMOST __builtin_ctzll\n#define LEFTMOST(x) (63-__builtin_clzll((x)))\n#define MP make_pair\n#define FOR(i,x,y) for(vlong i = (x) ; i <= (y) ; ++i)\n#define ROF(i,x,y) for(vlong i = (y) ; i >= (x) ; --i)\n#define CLR(x,y) memset(x,y,sizeof(x))\n#define UNIQUE(V) (V).erase(unique((V).begin(),(V).end()),(V).end())\n#define MIN(a,b) ((a)<(b)?(a):(b))\n#define MAX(a,b) ((a)>(b)?(a):(b))\n#define NUMDIGIT(x,y) (((vlong)(log10((x))/log10((y))))+1)\n#define SQ(x) ((x)*(x))\n#define ABS(x) ((x)<0?-(x):(x))\n#define FABS(x) ((x)+eps<0?-(x):(x))\n#define ALL(x) (x).begin(),(x).end()\n#define LCM(x,y) (((x)/gcd((x),(y)))*(y))\n#define SZ(x) ((vlong)(x).size())\n#define NORM(x) if(x>=mod) x-=mod;if(x<0) x+=mod;\n#define MOD(x,y) (((x)*(y))%mod)\n#define ODD(x) (((x)&1)==0?(0):(1))\n#define Set(N,cur) N=(N|(1LL<<cur))\n#define Reset(N,cur) N=(N&(~(1LL<<cur)))\n#define Check(N,cur) (!((N&(1LL<<cur))==0))\n#define fast_cin ios_base::sync_with_stdio(false);cin.tie(NULL)\n\nusing namespace std;\n\n\n#define LL long long\n#define LLU long long unsigned int\ntypedef long long vlong;\ntypedef unsigned long long uvlong;\ntypedef pair < int, int > pii;\ntypedef pair < vlong, vlong > pll;\ntypedef vector<int> vi;\ntypedef vector<vlong> vl;\ntypedef vector<pll> vll;\n\n#ifdef forthright48\n #include <ctime>\n clock_t tStart = clock();\n #define debug(args...) {dbg,args; cerr<<endl;}\n #define timeStamp debug (\"Execution Time: \", (double)(clock() - tStart)/CLOCKS_PER_SEC)\n #define bug printf(\"%d\\n\",__LINE__);\n\n#else\n #define debug(args...) // Just strip off all debug tokens\n #define timeStamp\n#endif\n\nstruct debugger{\n template<typename T> debugger& operator , (const T& v){\n cerr<<v<<\" \";\n return *this;\n }\n}dbg;\n\ninline vlong gcd ( vlong a, vlong b ) {\n a = ABS ( a ); b = ABS ( b );\n while ( b ) { a = a % b; swap ( a, b ); } return a;\n}\n\nvlong ext_gcd ( vlong A, vlong B, vlong *X, vlong *Y ){\n vlong x2, y2, x1, y1, x, y, r2, r1, q, r;\n x2 = 1; y2 = 0;\n x1 = 0; y1 = 1;\n for (r2 = A, r1 = B; r1 != 0; r2 = r1, r1 = r, x2 = x1, y2 = y1, x1 = x, y1 = y ) {\n q = r2 / r1;\n r = r2 % r1;\n x = x2 - (q * x1);\n y = y2 - (q * y1);\n }\n *X = x2; *Y = y2;\n return r2;\n}\n\ninline vlong modInv ( vlong a, vlong m ) {\n vlong x, y;\n ext_gcd( a, m, &x, &y );\n x %= m;\n if ( x < 0 ) x += m;\n return x;\n}\n\ninline vlong power ( vlong a, vlong p ) {\n vlong res = 1, x = a;\n while ( p ) {\n if ( p & 1 ) res = ( res * x );\n x = ( x * x ); p >>= 1;\n }\n return res;\n}\n\ninline vlong bigmod ( vlong a, vlong p, vlong m ) {\n vlong res = 1 % m, x = a % m;\n while ( p ) {\n if ( p & 1 ) res = ( res * x ) % m;\n x = ( x * x ) % m; p >>= 1;\n }\n return res;\n}\n\n\n//int knightDir[8][2] = { {-2,1},{-1,2},{1,2},{2,1},{2,-1},{-1,-2},{1,-2},{-2,-1} };\n//int dir4[4][2] = {{-1,0},{0,1},{1,0},{0,-1}};\n//int dir8[8][2] = {{-1,0},{0,1},{1,0},{0,-1},{-1,-1},{1,1},{1,-1},{-1,1}};\nconst vlong inf = 2147383647;\nconst vlong mod = 1000000007;\nconst double pi = 2 * acos ( 0.0 );\nconst double eps = 1e-9;\n\n///====================== TEMPLATE ENDS HERE =====================///\n\n\n/** WARNING WARNING WARNING **/\n// 1. Simulate Sample Test Case Before Coding\n// 2. Read Input & Output Format Before Coding\n// 3. Check Corner Case Specially When N<3\n// 4. Check Array Size, Mod Value & Long Long\n// 5. Check DP1 Memoization Part & Call Parameters\n// 6. Check Problem No When Submitting\n\n\n\nint main () {\n #ifdef forthright48\n //freopen ( \"Ainput.txt\", \"r\", stdin );\n //freopen ( \"output.txt\", \"w\", stdout );\n #endif // forthright48\n\n //while(1){\n vlong n;\n scanf ( \"%lld\", &n );\n\n string s = \"\";\n\n vlong now = 1;\n while (n > 0) {\n\n //debug(n, s);\n\n if (now >= n) {\n vlong cur = now;\n while (cur > n) {\n s = ')' + s;\n cur--;\n }\n s = '(' + s;\n while (cur > 0) {\n s = ')' + s;\n cur--;\n }\n n = 0;\n }\n\n else {\n s = '(' + s;\n n -= now;\n }\n\n now++;\n\n }\n\n printf(\"%s\\n\", s.c_str());\n\n\n //}\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 3408, "score_of_the_acc": -0.1484, "final_rank": 5 }, { "submission_id": "aoj_2783_2076012", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\n#define pb push_back\n#define ll unsigned long long\n#define pii pair<int,int>\n#define uu first\n#define vv second\n#define INF 1000000000\n#define V 38\n\nbool used[100000001];\nvector<int>v;\n\nint pow10(int n)\n{\n int prod = 1;\n while(n--)prod*=10;\n return prod;\n}\n\nvoid rec(int koto,int konta,int hmm)\n{\n if(koto==0)\n {\n v.pb(hmm);\n return ;\n }\n if(konta==10)return;\n //for(int i=konta;i<=9;i++)\n rec(koto-1,konta+1,hmm+(konta)*pow10(koto-1));\n}\nbool is(int n)\n{\n int y = sqrt(n);\n for(int i=1;i<=y;i++)\n {\n if(n%i==0 and used[i])\n {\n int r = n/i;\n if(r!=i and used[r])return 1;\n }\n }\n return 0;\n}\n\nint main()\n{\n //cout<<num(122345678)<<endl;\n int n;\n cin>>n;\n if(n&1)\n {\n if(n==1)\n {\n cout<<\")(\\n\";\n return 0;\n }\n int m = (n-3)/2;\n cout<<\"))\";\n char ch[3]=\"()\";\n if(m<1000000)while(m--)cout<<ch;\n else\n {\n char ch[11] = \"()()()()()\";\n int r = m/5;\n while(r--)cout<<ch;\n r = m%5;\n while(r--)cout<<\"()\";\n }\n cout<<\"((\\n\";\n }\n else\n {\n cout<<\")(\";\n n--;\n if(n==1)\n {\n cout<<\")(\";\n return 0;\n }\n int m = (n-3)/2;\n cout<<\"))\";\n char ch[3]=\"()\";\n if(m<1000000)while(m--)cout<<ch;\n else\n {\n char ch[11] = \"()()()()()\";\n int r = m/5;\n while(r--)cout<<ch;\n r = m%5;\n while(r--)cout<<\"()\";\n }\n cout<<\"((\\n\";\n }\n}", "accuracy": 0.024096385542168676, "time_ms": 1750, "memory_kb": 3036, "score_of_the_acc": -1, "final_rank": 18 }, { "submission_id": "aoj_2783_2059705", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\n#define REP(i,n) for(int i=0; i<(int)(n); ++i)\n#define DEBUG(x) cerr << #x << \" \" << x << endl\nusing namespace std;\n \nint magic(int A) {\n for(int k = 0; ; ++k) {\n if(A <= k * (k + 1) / 2) return k;\n }\n return -1;\n}\n \nstring paren(int a, int n) {\n // DEBUG(a);\n // DEBUG(n);\n if(a == n * (n + 1) / 2) {\n string ret;\n REP(i,n) ret += \")\";\n REP(i,n) ret += \"(\";\n return ret;\n }\n else {\n int rem = a - n;\n int k = magic(rem);\n string ret = \")\";\n for(int i = 0; i < n - 1 - k; ++i) ret += \"()\";\n ret += paren(rem, k);\n ret += \"(\";\n return ret;\n }\n}\n \nsigned main() {\n int A; cin >> A;\n int k = magic(A);\n cout << paren(A, k) << endl;\n}", "accuracy": 1, "time_ms": 520, "memory_kb": 9632, "score_of_the_acc": -1.2931, "final_rank": 10 } ]
aoj_2784_cpp
Similarity of Subtrees Define the depth of a node in a rooted tree by applying the following rules recursively: The depth of a root node is 0. The depths of child nodes whose parents are with depth $d$ are $d + 1$. Let $S(T, d)$ be the number of nodes of $T$ with depth $d$. Two rooted trees $T$ and $T'$ are similar if and only if $S(T, d)$ equals $S(T', d)$ for all non-negative integer $d$. You are given a rooted tree $T$ with $N$ nodes. The nodes of $T$ are numbered from 1 to $N$. Node 1 is the root node of $T$. Let $T_i$ be the rooted subtree of $T$ whose root is node $i$. Your task is to write a program which calculates the number of pairs $(i, j)$ such that $T_i$ and $T_j$ are similar and $i < j$. Input The input consists of a single test case. $N$ $a_1$ $b_1$ $a_2$ $b_2$ ... $a_{N-1}$ $b_{N-1}$ The first line contains an integer $N$ ($1 \leq N \leq 100,000$), which is the number of nodes in a tree. The following $N -1$ lines give information of branches: the $i$-th line of them contains $a_i$ and $b_i$, which indicates that a node $a_i$ is a parent of a node $b_i$. ($1 \leq a_i, b_i \leq N, a_i \ne b_i$) The root node is numbered by 1. It is guaranteed that a given graph is a rooted tree, i.e. there is exactly one parent for each node except the node 1, and the graph is connected. Output Print the number of the pairs $(x, y)$ of the nodes such that the subtree with the root $x$ and the subtree with the root $y$ are similar and $x < y$. Sample Input 1 5 1 2 1 3 1 4 1 5 Output for the Sample Input 1 6 Sample Input 2 6 1 2 2 3 3 4 1 5 5 6 Output for the Sample Input 2 2 Sample Input 3 13 1 2 1 3 2 4 2 5 3 6 3 7 4 8 4 9 6 10 7 11 8 12 11 13 Output for the Sample Input 3 14
[ { "submission_id": "aoj_2784_10946041", "code_snippet": "#include <bits/stdtr1c++.h>\n\n#define MAX 100100\n#define clr(ar) memset(ar, 0, sizeof(ar))\n#define read() freopen(\"lol.txt\", \"r\", stdin)\n#define dbg(x) cout << #x << \" = \" << x << endl\n\nusing namespace std;\n\nconst unsigned long long base = 666666667;\n\nint n, depth[MAX];\nvector <int> adj[MAX];\nunsigned long long dp[MAX], power[MAX];\ntr1::unordered_map <unsigned long long, int> mp;\n\nvoid dfs(int i, int p){\n depth[i] = 1;\n int j, k, d, x, len = adj[i].size();\n\n for (j = 0; j < len; j++){\n x = adj[i][j];\n if (x != p){\n dfs(x, i);\n depth[i] = max(depth[i], depth[x] + 1);\n }\n }\n\n d = depth[i] - 1;\n unsigned long long h = 0;\n for (j = 0; j < len; j++){\n x = adj[i][j];\n if (x != p){\n unsigned long long r = dp[x] * power[d - depth[x]];\n h += r;\n }\n }\n\n h += power[depth[i]];\n dp[i] = h;\n mp[h]++;\n}\n\nint main(){\n int i, j, k, l, a, b;\n\n power[0] = 1;\n for (i = 1; i < MAX; i++) power[i] = power[i - 1] * base;\n\n while (scanf(\"%d\", &n) != EOF){\n mp.clear();\n for (i = 0; i < MAX; i++) adj[i].clear();\n\n for (i = 1; i < n; i++){\n scanf(\"%d %d\", &a, &b);\n adj[a].push_back(b);\n adj[b].push_back(a);\n }\n\n dfs(1, 1);\n long long res = 0;\n for (auto it: mp){\n long long x = it.second;\n res += ((x * (x - 1)) >> 1);\n }\n\n printf(\"%lld\\n\", res);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 24036, "score_of_the_acc": -0.3201, "final_rank": 3 }, { "submission_id": "aoj_2784_9946345", "code_snippet": "#include <iostream>\n#include <random>\n#include <vector>\n#include <algorithm>\nstruct Mint {\n using Value = unsigned long long;\n static constexpr Value MOD{(1uLL << 61) - 1};\n static constexpr Value MASK30{(1ull << 30) - 1};\n static constexpr Value MASK31{(1ull << 31) - 1};\n constexpr Mint() {}\n static constexpr Value Mod() noexcept {\n return MOD;\n }\n static constexpr Value Modulo(Value v) noexcept {\n Value res{(v >> 61) + (v & MOD)};\n res = (res >= MOD ? res - MOD : res);\n return res;\n }\n static constexpr Value UnsafeMul(Value a, Value b) noexcept {\n Value fa{a >> 31}, fb{b >> 31};\n Value ba{a & MASK31}, bb{b & MASK31};\n Value mid{fa * bb + fb * ba};\n return Value{2} * fa * fb + (mid >> 30) + ((mid & MASK30) << 31) + ba * bb;\n }\n static constexpr Value Mul(Value a, Value b) noexcept {\n return Modulo(UnsafeMul(a, b));\n }\n};\nconst unsigned long long B{std::mt19937{std::random_device{}()}() % Mint::Mod()};\nint N;\nstd::vector<int> G[100010];\nlong long solve() {\n std::vector<long long> hash(N);\n auto rec{[&](auto rec, int v, int p) -> long long {\n long long h{};\n for (auto x : G[v]) if (x != p) {\n h = Mint::Modulo(h + rec(rec, x, v));\n }\n h = Mint::Mul(h, B);\n h = Mint::Modulo(h + 1);\n return hash[v] = h;\n }};\n rec(rec, 0, -1);\n //for (auto h : hash) std::cout << h << ' ';\n //std::cout << std::endl;\n std::sort(hash.begin(), hash.end());\n long long ans{};\n for (int i{}, j{} ; i < N ; i = j) {\n while (j < N and hash[i] == hash[j]) j++;\n ans += (long long)(j - i) * (j - i - 1) / 2;\n }\n return ans;\n}\nint main() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n std::cin >> N;\n for (int i{} ; i < N - 1 ; i++) {\n int a, b;\n std::cin >> a >> b;\n a--; b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n std::cout << solve() << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 18660, "score_of_the_acc": -0.2494, "final_rank": 1 }, { "submission_id": "aoj_2784_9727759", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nnamespace Random {\nmt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count());\nusing u64 = unsigned long long;\nu64 get() {\n return randgen();\n}\ntemplate <typename T> T get(T L) { // [0,L]\n\n return get() % (L + 1);\n}\ntemplate <typename T> T get(T L, T R) { // [L,R]\n\n return get(R - L) + L;\n}\ndouble uniform() {\n return double(get(1000000000)) / 1000000000;\n}\nstring str(int n) {\n string ret;\n rep(i, 0, n) ret += get('a', 'z');\n return ret;\n}\ntemplate <typename Iter> void shuffle(Iter first, Iter last) {\n if (first == last)\n return;\n int len = 1;\n for (auto it = first + 1; it != last; it++) {\n len++;\n int j = get(0, len - 1);\n if (j != len - 1)\n iter_swap(it, first + j);\n }\n}\ntemplate <typename T> vector<T> select(int n, T L, T R) { // [L,R]\n\n if (n * 2 >= R - L + 1) {\n vector<T> ret(R - L + 1);\n iota(ALL(ret), L);\n shuffle(ALL(ret));\n ret.resize(n);\n return ret;\n } else {\n unordered_set<T> used;\n vector<T> ret;\n while (SZ(used) < n) {\n T x = get(L, R);\n if (!used.count(x)) {\n used.insert(x);\n ret.push_back(x);\n }\n }\n return ret;\n }\n}\n\nvoid relabel(int n, vector<pair<int, int>> &es) {\n shuffle(ALL(es));\n vector<int> ord(n);\n iota(ALL(ord), 0);\n shuffle(ALL(ord));\n for (auto &[u, v] : es)\n u = ord[u], v = ord[v];\n}\ntemplate <bool directed, bool simple> vector<pair<int, int>> genGraph(int n) {\n vector<pair<int, int>> cand, es;\n rep(u, 0, n) rep(v, 0, n) {\n if (simple and u == v)\n continue;\n if (!directed and u > v)\n continue;\n cand.push_back({u, v});\n }\n int m = get(SZ(cand));\n vector<int> ord;\n if (simple)\n ord = select(m, 0, SZ(cand) - 1);\n else {\n rep(_, 0, m) ord.push_back(get(SZ(cand) - 1));\n }\n for (auto &i : ord)\n es.push_back(cand[i]);\n relabel(n, es);\n return es;\n}\nvector<pair<int, int>> genTree(int n) {\n vector<pair<int, int>> es;\n rep(i, 1, n) es.push_back({get(i - 1), i});\n relabel(n, es);\n return es;\n}\n}; // namespace Random\n\n\n/**\n * @brief Random\n */\n\nint main() {\n int N;\n cin >> N;\n vector<vector<int>> G(N);\n rep(i,0,N-1) {\n int A, B;\n cin >> A >> B;\n A--, B--;\n G[A].push_back(B);\n G[B].push_back(A);\n }\n vector<ll> Hash(N);\n ll base = Random::get((ull)1e8,(ull)1e9);\n ll MOD = 998244353;\n auto DFS = [&](auto self, int V, int P) -> ll {\n ll Ret = 0;\n for(int NV : G[V]) {\n if (NV == P) continue;\n Ret += self(self,NV,V);\n Ret %= MOD;\n }\n Ret *= base;\n Ret++;\n return Hash[V] = Ret % MOD;\n };\n DFS(DFS,0,-1);\n map<ll,int> mp;\n ll ANS = 0;\n rep(i,0,N) {\n ANS += mp[Hash[i]];\n mp[Hash[i]]++;\n }\n cout << ANS << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 26584, "score_of_the_acc": -0.6393, "final_rank": 11 }, { "submission_id": "aoj_2784_9669065", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nint main(){\n ll N;cin>>N;\n vvi E(N);\n REP(i,N-1){\n int a,b;cin>>a>>b;a--;b--;\n E[a].emplace_back(b);\n E[b].emplace_back(a);\n }\n srand(time(NULL));\n ll base=rand()%rand();\n const vi mod={998244353,1000000007,1000000009};\n vvi pow(3,vi(2e6,1));\n FOR(i,1,2e6){\n REP(j,3)pow[j][i]=pow[j][i-1]*(base%mod[j])%mod[j];\n }\n vi S(N,1),D(N),max_depth(N),P(N);\n function<void(ll)>dfs=[&](ll v){\n for(auto u:E[v])if(u!=P[v]){\n P[u]=v;\n D[u]=D[v]+1;\n dfs(u);\n S[v]+=S[u];\n max_depth[v]=max(max_depth[u]+1,max_depth[v]);\n }\n };\n map<tuple<ll,ll,ll,ll,ll>,ll>memo;\n dfs(0);\n vvi hash(3,vi(N));\n function<void(ll)>dfs2=[&](ll v){\n REP(j,3)hash[j][v]=1;\n for(auto u:E[v])if(u!=P[v]){\n dfs2(u);\n REP(j,3)hash[j][v]+=hash[j][u]*(base%mod[j])%mod[j];\n REP(j,3)hash[j][v]%=mod[j];\n }\n memo[make_tuple(S[v],max_depth[v],hash[0][v],hash[1][v],hash[2][v])]++;\n };\n dfs2(0);\n ll ans=0;\n for(auto[k,v]:memo)ans+=v*(v-1)/2;\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 81172, "score_of_the_acc": -2, "final_rank": 15 }, { "submission_id": "aoj_2784_9605639", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\n\nint main(){\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N;\n cin>>N;\n vector<vector<ll>> G(N);\n for(int i=0;i<N-1;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n ll VN=10;\n vector<ll> BS(VN),MD(VN);\n for(int i=0;i<VN;i++)BS[i]=rand()%1000+1000;\n for(int i=0;i<VN;i++)MD[i]=rand()%100000+1e9;\n vector<vector<ll>> C(N,vector<ll>(VN,1));\n map<vector<ll>,ll> MP;\n ll an=0;\n auto dfs = [&](auto dfs, int n,int p) -> void {\n for (int v : G[n]) {\n if(v!=p){\n dfs(dfs,v,n);\n for(int i=0;i<VN;i++){\n C[n][i]+=(C[v][i]*BS[i])%MD[i];\n C[n][i]%=MD[i];\n }\n }\n }\n an+=MP[C[n]];\n MP[C[n]]++;\n };\n dfs(dfs,0,-1);\n\n cout<<an<<endl; \n \n}", "accuracy": 1, "time_ms": 90, "memory_kb": 53024, "score_of_the_acc": -1.2013, "final_rank": 14 }, { "submission_id": "aoj_2784_9027153", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nint main() {\n int N = in();\n vector<vector<int>> tree(N);\n for(int i : rep(N - 1)) {\n int u = in(), v = in(); u--, v--;\n tree[u].push_back(v);\n tree[v].push_back(u);\n }\n\n const int M = 2;\n using hash = array<i64, M>;\n const hash mod = {int(1e9) + 7, int(1e9) + 9};\n const i64 b = 10007;\n map<hash, int> mp;\n auto dfs = [&](auto self, int v, int p) -> hash {\n hash sum = {};\n for(int to : tree[v]) if(to != p) {\n auto ch = self(self, to, v);\n for(int i : rep(M)) sum[i] = (sum[i] + ch[i]) % mod[i];\n }\n for(int i : rep(M)) sum[i] = (sum[i] * b + 1) % mod[i];\n mp[sum] += 1;\n return sum;\n };\n dfs(dfs, 0, -1);\n\n i64 ans = 0;\n for(auto [key, value] : mp) ans += i64(value) * (value - 1) / 2;\n print(ans);\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 28964, "score_of_the_acc": -0.5277, "final_rank": 8 }, { "submission_id": "aoj_2784_7238695", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define foa(s, v) for(auto &s : v)\n#define all(v) v.begin(), v.end()\n#define REPname(a,b,c,d,...) d\n#define rep(...) REPname(__VA_ARGS__, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP2(i,l,r) for(int i = l; i < r; i++)\n#define REP1(i, x) REP2(i,0,x)\n#define REP0(x) REP1(SPJ, x)\n#define sz(x) int(x.size())\n\ntemplate <class T>\nusing V=vector<T>;\n\ntemplate <class T>\nusing VV=vector<V<T>>;\n\ntemplate<class T>\nusing pqmin = priority_queue<T, V<T>, greater<T>>;\nusing ll = long long ;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing vll = vector<ll>;\nusing vvll = V<vll>;\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\ntemplate<class T>\ninline bool chmax(T &a, T b){\n\treturn a < b ? a=b, 1 : 0;\n}\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\treturn a > b ? a = b, 1 : 0;\n}\n\ntemplate <class T>\nvoid view(T x) {\n\tcerr << x;\n}\n\ntemplate <class T>\nvoid view(V<T> v) {\n\tcerr << \"{ \";\n\tfoa(t, v) {view(t) ; cerr << \", \";}\n\tcerr << \"}\";\n\tcerr << endl;\n}\n\n\ntemplate <class T>\nvoid view(VV<T> v) {\n\tcerr << \"{ \";\n\tfoa(t, v) {view(t) ; cerr << \",\\n\";}\n\tcerr << \"}\";\n\tcerr << endl;\n}\n\n\n// template <c0lass T>\nvoid view(int x) {\n\tcerr << x;\n}\n\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <class T>\nvoid debug_out(T x) {\n\tview(x);\n}\ntemplate <class H, class... T>\nvoid debug_out(H h, T... t) {\n\tview(h);\n\tcerr << \", \";\n\tdebug_out(t...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"]\\n\"; \\\n\t} while(0)\n#else\n#define debug(...) (void(0))\n#endif\nusing vvi = V<vi>;\n\nstruct uf{\n\tvector<int> dat;\n\tuf(int n) : dat(n, -1) {}\n\tint root(int x) \n\t{\n\t\tint& p = dat[x];\n\t\tif(p < 0) return x;\n\t\treturn p = root(p);\n\t}\n\tbool merge(int x, int y) {\n\t\tx = root(x);\n\t\ty = root(y);\n\t\tif(x == y) return false;\n\t\tif(-dat[x] < -dat[y]) swap(x, y);\n\t\tdat[x] += dat[y];\n\t\tdat[y] = x;\n\t\treturn true;\n\t}\n};\n\nll modpow(ll x, ll n, ll md){\n\tll ret = 1 % md;\n\twhile(n > 0){\n\t\tif(n & 1) {ret *= x; ret %= md;}\n\t\tn >>= 1;\n\t\tx *= x;\n\t\tx %= md;\n\t}\n\tif(ret < 0) ret += abs(md);\n\treturn ret;\n}\n\nusing bint = __int128_t;\n\nll solve(int n){\n\tvector<vi> g(n);\n\trep(n-1) {\n\t\tint a, b; cin >> a >> b;\n\t\ta--;\n\t\tb--;\n\t\tg[a].push_back(b);\n\t\tg[b].push_back(a);\n\t}\n\n\n\tvector<bint> hs(n, 0);\n\tconst bint base = 10231437;\n\tconst bint mod = (1LL << 61) - 1;\n\n\tauto dfs = [&](int now, int par, auto self) -> void {\n\t\tbint& tmp = hs[now];\n\t\tfoa(nxt, g[now]) {\n\t\t\tif(nxt == par) continue;\n\t\t\tself(nxt, now, self);\n\t\t\ttmp += hs[nxt];\n\t\t}\n\t\ttmp *= base;\n\t\ttmp += 1;\n\t\ttmp %= mod;\n\t\treturn;\n\t};\n\n\tdfs(0, -1, dfs);\n\n\tmap<bint, ll> m;\n\trep(i, n) m[hs[i]] ++ ;\n\tll ans = 0;\n\tfoa(t, m) {\n\t\tans += (t.second - 1) * t.second / 2;\n\t}\n\n\treturn ans;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\tint n;\n\twhile(cin >> n && n) cout << solve(n) << '\\n';\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 27224, "score_of_the_acc": -0.5049, "final_rank": 7 }, { "submission_id": "aoj_2784_6974119", "code_snippet": "#include <stdio.h>\n#include <vector>\n#include <map>\n#define M1 1030000001\n#define M2 1012345693\n#define X1 103001\n#define X2 123457\nusing namespace std;\n\nvector<int> ed[103000];\nmap<pair<int, int>, int> mp;\n\npair<long long, long long> makehash(int x, int p) {\n pair<long long, long long> pp, t;\n pp.first = 1;\n pp.second = 1;\n for (int i : ed[x]) {\n if (i == p) continue;\n t = makehash(i, x);\n pp.first = (pp.first + t.first * X1) % M1;\n pp.second = (pp.second + t.second * X2) % M2;\n }\n if (mp.find(pp) != mp.end()) mp[pp]++;\n else mp.insert({ pp, 1 });\n return pp;\n}\n\nint main(void) {\n int n, a, b;\n long long r = 0;\n scanf(\"%d\", &n);\n for (int i = 1; i < n; i++) {\n scanf(\"%d %d\", &a, &b);\n ed[a].push_back(b);\n ed[b].push_back(a);\n }\n makehash(1, -1);\n for (auto& i : mp) {\n r += i.second * (i.second - 1LL) / 2;\n }\n printf(\"%lld\\n\", r);\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 22564, "score_of_the_acc": -0.4436, "final_rank": 5 }, { "submission_id": "aoj_2784_6899938", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr int mod = 998244353,mod2 = 1000000007;\n\nmap<pair<int,int>,int>mp;\n\npair<int,int> dfs(int n,int p,vector<vector<int>>&ki) {\n int sum = 0,sum2 = 0;\n for(int i:ki[n]) {\n if(i == p) {\n continue;\n }\n pair<int,int> a = dfs(i,n,ki);\n sum += 1ll*a.first*1000003%mod;\n sum2 += 1ll*a.second*1000003%mod2;\n if(sum >= mod) sum -= mod;\n if(sum2 >= mod2) sum2 -= mod2;\n }\n sum += 1;\n if(sum >= mod) sum -= mod;\n sum2 += 1;\n if(sum2 >= mod) sum2 -= mod;\n mp[{sum,sum2}]++;\n return {sum,sum2};\n}\n\nint main() {\n int N;\n cin >> N;\n vector<vector<int>>ki(N);\n for(int i = 0; i < N-1; i++) {\n int a,b;\n cin >> a >> b;\n a--;\n b--;\n ki[a].push_back(b);\n ki[b].push_back(a);\n }\n dfs(0,-1,ki);\n long long ans = 0;\n for(auto i:mp) {\n ans += 1ll*i.second*(i.second-1)/2;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 22504, "score_of_the_acc": -0.5856, "final_rank": 9 }, { "submission_id": "aoj_2784_6899936", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr int mod = 998244353,mod2 = 1000000007;\n\nmap<pair<int,int>,int>mp;\n\npair<int,int> dfs(int n,int p,vector<vector<int>>&ki) {\n int sum = 0,sum2 = 0;\n for(int i:ki[n]) {\n if(i == p) {\n continue;\n }\n pair<int,int> a = dfs(i,n,ki);\n sum += 1ll*a.first*10%mod;\n sum2 += 1ll*a.second*10%mod2;\n if(sum >= mod) sum -= mod;\n if(sum2 >= mod2) sum2 -= mod2;\n }\n sum += 1;\n if(sum >= mod) sum -= mod;\n sum2 += 1;\n if(sum2 >= mod) sum2 -= mod;\n mp[{sum,sum2}]++;\n return {sum,sum2};\n}\n\nint main() {\n int N;\n cin >> N;\n vector<vector<int>>ki(N);\n for(int i = 0; i < N-1; i++) {\n int a,b;\n cin >> a >> b;\n a--;\n b--;\n ki[a].push_back(b);\n ki[b].push_back(a);\n }\n dfs(0,-1,ki);\n long long ans = 0;\n for(auto i:mp) {\n ans += 1ll*i.second*(i.second-1)/2;\n }\n cout << ans << endl;\n}", "accuracy": 0.12, "time_ms": 10, "memory_kb": 5128, "score_of_the_acc": 0, "final_rank": 17 }, { "submission_id": "aoj_2784_6899931", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr int mod = 998244353;\n\nmap<int,int>mp;\n\nint dfs(int n,int p,vector<vector<int>>&ki) {\n int sum = 0;\n for(int i:ki[n]) {\n if(i == p) {\n continue;\n }\n sum += 1ll*dfs(i,n,ki)*10%mod;\n if(sum >= mod) sum -= mod;\n }\n sum += 1;\n if(sum >= mod) sum -= mod;\n mp[sum]++;\n return sum;\n}\n\nint main() {\n int N;\n cin >> N;\n vector<vector<int>>ki(N);\n for(int i = 0; i < N-1; i++) {\n int a,b;\n cin >> a >> b;\n a--;\n b--;\n ki[a].push_back(b);\n ki[b].push_back(a);\n }\n dfs(0,-1,ki);\n long long ans = 0;\n for(auto i:mp) {\n ans += 1ll*i.second*(i.second-1)/2;\n }\n cout << ans << endl;\n}", "accuracy": 0.12, "time_ms": 10, "memory_kb": 5132, "score_of_the_acc": -0.0001, "final_rank": 18 }, { "submission_id": "aoj_2784_6426656", "code_snippet": "#include <cstdio>\n#include <vector>\n#include <functional>\n#include <algorithm>\nusing namespace std;\n\nconst int m0 = 1e9 + 7;\nconst int m1 = 1e9 + 9;\n\nstruct hv {\n int v0, v1;\n hv operator + (const hv& other) const {\n return hv{(v0 + other.v0)%m0, (v1 + other.v1)%m1};\n }\n hv operator * (const hv& other) const {\n return hv{(int)(v0 * 1ll * other.v0%m0), (int)(v1 * 1ll * other.v1%m1)};\n }\n bool operator == (const hv& other) const {\n return v0 == other.v0 && v1 == other.v1; \n }\n};\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n vector<vector<int>> g(n + 1);\n for (int i = 0; i < n - 1; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n g[u].push_back(v);\n }\n vector<hv> pw(n + 1);\n pw[0] = hv{1, 1};\n hv c = {171, 171};\n for (int i = 1; i <= n; i++) pw[i] = pw[i - 1] * c;\n vector<hv> val(n + 1);\n \n function<void(int)> dfs = [&](int u) {\n int find = 0;\n val[u] = hv{1, 1} * pw[0];\n for (int v: g[u]) {\n dfs(v);\n auto add = val[v] * c;\n val[u] = val[u] + add;\n }\n //printf(\"val[%d] = %d, %d\\n\", u, val[u].v0, val[u].v1);\n };\n \n dfs(1);\n vector<hv> all;\n for (int i = 1; i <= n; i++) {\n all.push_back(val[i]); \n }\n sort(all.begin(), all.end(), [](auto u, auto v) {\n if (u.v0 != v.v0) return u.v0 < v.v0;\n return u.v1 < v.v1; \n });\n long long ans = 0;\n int p = 0;\n while (p < n) {\n int np = p;\n while (np + 1 < n && all[np + 1] == all[p]) np++;\n int cnt = np - p + 1;\n ans += cnt * 1ll * (cnt - 1) / 2;\n p = np + 1;\n } \n printf(\"%lld\\n\", ans);\n return 0; \n}", "accuracy": 1, "time_ms": 20, "memory_kb": 19968, "score_of_the_acc": -0.2666, "final_rank": 2 }, { "submission_id": "aoj_2784_6399942", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\ntemplate<long long mod>\nclass modint{\n\tpublic:\n\t\tlong long x;\n\t\tmodint(long long a){x=a%mod;if(x<0)x+=mod;}\n\t\tmodint(){x=0;}\n\n\t\tmodint pow(long long a){\n\t\t\tmodint res(1), b(x);\n\t\t\twhile(a){\n\t\t\t\tif(a&1)res*=b;\n\t\t\t\tb*=b;\n\t\t\t\ta>>=1;\n\t\t\t}\n\t\t\treturn res;\n\t\t}\n\n\t\tmodint inv(){return pow(mod-2);}\n\n\t\tmodint& operator+=(modint a){x=(x+a.x)%mod;return *this;}\n\t\tmodint& operator-=(modint a){x=x-a.x;if(x<0)x+=mod;return *this;}\n\t\tmodint& operator*=(modint a){x=x*a.x%mod;return *this;}\n\t\tmodint& operator/=(modint a){x=x*a.inv().x%mod;return *this;}\n\n\t\tmodint operator+(modint a){return modint(x)+=a;}\n\t\tmodint operator-(modint a){return modint(x)-=a;}\n\t\tmodint operator*(modint a){return modint(x)*=a;}\n\t\tmodint operator/(modint a){return modint(x)/=a;}\n\n\t\tmodint operator-(){return modint(x);}\n\n\t\tbool operator==(const modint a){return x == a.x;}\n\t\tbool operator<(const modint a){return x < a.x;}\n\t\tbool operator>(const modint a){return x > a.x;}\n};\n\ntemplate<long long mod>\nostream& operator<<(ostream& os, const modint<mod>& a){\n\tos << a.x;\n\treturn os;\n}\n\nusing M1 = modint<1000000007>;\nusing M2 = modint<1000000009>;\n\nclass ModHash{\npublic:\n M1 v1;\n M2 v2;\n ModHash():ModHash(0){}\n ModHash(long long v):v1(v),v2(v){}\n ModHash(M1 v1,M2 v2):v1(v1),v2(v2){}\n ModHash(const ModHash &that):v1(that.v1),v2(that.v2){}\n ModHash operator+(ModHash that){\n return ModHash(v1+that.v1,v2+that.v2);\n }\n ModHash operator-(ModHash that){\n return ModHash(v1-that.v1,v2-that.v2);\n }\n ModHash operator*(ModHash that){\n return ModHash(v1*that.v1,v2*that.v2);\n }\n};\n\nbool operator<(ModHash x,ModHash y){\n return x.v1 < y.v1 or\n (x.v1 == y.v1 and\n x.v2 < y.v2);\n}\n\nll func(){\n int n = in();\n vvector<pii> edges(n);\n rep(_,n-1){\n int a = in()-1;\n int b = in()-1;\n edges[a].emplace_back(b,edges[b].size());\n edges[b].emplace_back(a,edges[a].size()-1);\n }\n vvector<ModHash> dp(n);\n vvector<int> used(n);\n ModHash B = ModHash(11,13);\n rep(i,n)dp[i].resize(edges[i].size()+1);\n rep(i,n)used[i].resize(edges[i].size()+1,false);\n method(rec,ModHash,int p,int last){\n int itr = last < 0 ? dp[p].size()-1 : last;\n if(used[p][itr])return dp[p][itr];\n used[p][itr] = true;\n ModHash &it = dp[p][itr];\n if(last < 0){\n ModHash sum = 1;\n foreach(e,edges[p]){\n sum = sum + rec(e.first,e.second) * 11;\n }\n rep(i,edges[p].size()){\n dp[p][i] = sum - rec(edges[p][i].first,edges[p][i].second) * B;\n }\n it = sum;\n }else{\n it = 1;\n rep(i,edges[p].size()){\n if(i==last)continue;\n it = it + rec(edges[p][i].first,edges[p][i].second) * B;\n }\n }\n return it;\n };\n map<ModHash,int> m;\n ll res = 0;\n method(solve,ll,int p,int last){\n ll res = 0;\n ModHash v = rec(p,last);\n res += m[v];\n ++m[v];\n rep(i,edges[p].size()){\n if(i==last)continue;\n res += solve(edges[p][i].first,edges[p][i].second);\n }\n return res;\n };\n return solve(0,-1);\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n println(func());\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 42876, "score_of_the_acc": -0.8535, "final_rank": 13 }, { "submission_id": "aoj_2784_6399937", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a,...) for(int i = (a)*(strlen(#__VA_ARGS__)!=0);i<(int)(strlen(#__VA_ARGS__)?__VA_ARGS__:(a));++i)\n#define per(i,a,...) for(int i = (strlen(#__VA_ARGS__)?__VA_ARGS__:(a))-1;i>=(int)(strlen(#__VA_ARGS__)?(a):0);--i)\n#define foreach(i, n) for(auto &i:(n))\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\n#define lambda(RES_TYPE, ...) (function<RES_TYPE(__VA_ARGS__)>)[&](__VA_ARGS__) -> RES_TYPE\n#define method(FUNC_NAME, RES_TYPE, ...) function<RES_TYPE(__VA_ARGS__)> FUNC_NAME = lambda(RES_TYPE, __VA_ARGS__)\nusing namespace std;\nusing ll = long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing vvvector = vector<vector<vector<t>>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define debug(x) cout<<\"LINE \"<<__LINE__<<\": \"<<#x<<\" = \"<<x<<endl;\n#else\n#define debug(x) (void)0\n#endif\n\nnamespace templates{\n ll modpow(ll x, ll b,ll mod=MOD){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % mod;\n x = x * x % mod;\n b>>=1;\n }\n return res;\n }\n\n ll modinv(ll x){\n return modpow(x, MOD-2);\n }\n\n bool was_output = false;\n\n void print();\n template <class t> void print(const vector<t> &);\n template <class t, class u> void print(const pair<t, u> &);\n template <class t> void print(const t&);\n template <class Head, class... Tail> void print(const Head&, const Tail&...);\n\n template <class t> void println(const vector<vector<t>>&);\n template <class t> void println(const vector<t>&);\n template <class t> void println(const t&);\n template <class Head, class... Tail> void println(const Head&, const Tail&...);\n void println();\n void newline();\n\n void print(){\n return;\n }\n\n template <class t>\n void print(const vector<t>&x){\n for(const t&i:x)print(i);\n }\n template <class t, class u>\n void print(const pair<t,u>&p){\n print(p.first);\n print(p.second);\n }\n template <class t>\n void print(const t&x){\n if(was_output)cout<<\" \";\n cout<<x;\n was_output = true;\n }\n template <class Head, class... Tail>\n void print(const Head&head,const Tail&...tail){\n print(head);\n print(tail...);\n }\n\n template<class t>\n void println(const vector<vector<t>>&x){\n for(vector<t> i:x)println(i);\n }\n template<class t>\n void println(const vector<t>&x){\n for(const t&i:x)print(i);\n println();\n }\n template <class t>\n void println(const t&x){\n print(x);\n println();\n }\n void println(){\n if(was_output){\n cout << endl;\n was_output = false;\n }\n }\n template <class Head, class... Tail>\n void println(const Head&head,const Tail&...tail){\n print(head);\n println(tail...);\n }\n\n void newline(){\n was_output = true;\n println();\n }\n\n template<class t>\n istream& operator>>(istream&is, vector<t>&x){\n for(auto &i:x)is >> i;\n return is;\n }\n\n template<class t, class u>\n istream& operator>>(istream&is, pair<t, u>&x){\n is >> x.first >> x.second;\n return is;\n }\n\n template<class t>\n ostream& operator<<(ostream&os, vector<t> &v){\n os << \"{\";\n for(t &i:v){\n os << i << \", \";\n }\n os << \"}\";\n return os;\n }\n\n template<class t = long long>\n t in(){\n t res; cin >> res; return res;\n }\n\n template<class t>\n vector<t> sorted(vector<t> line,function<bool(t,t)> comp=[](t a,t b){return a<b;}){\n sort(line.begin(),line.end(),comp);\n return line;\n }\n\n template<class t>\n vector<t> reversed(vector<t> line){\n reverse(line.begin(),line.end());\n return line;\n }\n string reversed(string str){\n reverse(str.begin(),str.end());\n return str;\n }\n\n long long gcd(long long a,long long b){\n while(b){\n a %= b;\n swap(a,b);\n }\n return a;\n }\n\n long long lcm(long long a,long long b){\n return a / gcd(a,b) * b;\n }\n\n class output_initializer{\n public:\n output_initializer(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << setprecision(20);\n }\n };output_initializer OUTPUT_INITIALIZER_INSTANCE = output_initializer();\n}\n\nusing namespace templates;\n\ntemplate<long long mod>\nclass modint{\n\tpublic:\n\t\tlong long x;\n\t\tmodint(long long a){x=a%mod;if(x<0)x+=mod;}\n\t\tmodint(){x=0;}\n\n\t\tmodint pow(long long a){\n\t\t\tmodint res(1), b(x);\n\t\t\twhile(a){\n\t\t\t\tif(a&1)res*=b;\n\t\t\t\tb*=b;\n\t\t\t\ta>>=1;\n\t\t\t}\n\t\t\treturn res;\n\t\t}\n\n\t\tmodint inv(){return pow(mod-2);}\n\n\t\tmodint& operator+=(modint a){x=(x+a.x)%mod;return *this;}\n\t\tmodint& operator-=(modint a){x=x-a.x;if(x<0)x+=mod;return *this;}\n\t\tmodint& operator*=(modint a){x=x*a.x%mod;return *this;}\n\t\tmodint& operator/=(modint a){x=x*a.inv().x%mod;return *this;}\n\n\t\tmodint operator+(modint a){return modint(x)+=a;}\n\t\tmodint operator-(modint a){return modint(x)-=a;}\n\t\tmodint operator*(modint a){return modint(x)*=a;}\n\t\tmodint operator/(modint a){return modint(x)/=a;}\n\n\t\tmodint operator-(){return modint(x);}\n\n\t\tbool operator==(const modint a){return x == a.x;}\n\t\tbool operator<(const modint a){return x < a.x;}\n\t\tbool operator>(const modint a){return x > a.x;}\n};\n\ntemplate<long long mod>\nostream& operator<<(ostream& os, const modint<mod>& a){\n\tos << a.x;\n\treturn os;\n}\n\nusing M1 = modint<1000000007>;\nusing M2 = modint<1000000009>;\n\nclass ModHash{\npublic:\n M1 v1;\n M2 v2;\n ModHash():ModHash(0){}\n ModHash(long long v):v1(v),v2(v){}\n ModHash(M1 v1,M2 v2):v1(v1),v2(v2){}\n ModHash(const ModHash &that):v1(that.v1),v2(that.v2){}\n ModHash operator+(ModHash that){\n return ModHash(v1+that.v1,v2+that.v2);\n }\n ModHash operator-(ModHash that){\n return ModHash(v1-that.v1,v2-that.v2);\n }\n ModHash operator*(ModHash that){\n return ModHash(v1*that.v1,v2*that.v2);\n }\n};\n\nbool operator<(ModHash x,ModHash y){\n return x.v1 < y.v1 or\n (x.v1 == y.v1 and\n x.v2 < y.v2);\n}\n\nll func(){\n int n = in();\n vvector<pii> edges(n);\n rep(_,n-1){\n int a = in()-1;\n int b = in()-1;\n edges[a].emplace_back(b,edges[b].size());\n edges[b].emplace_back(a,edges[a].size()-1);\n }\n vvector<ModHash> dp(n);\n vvector<int> used(n);\n rep(i,n)dp[i].resize(edges[i].size()+1);\n rep(i,n)used[i].resize(edges[i].size()+1,false);\n method(rec,ModHash,int p,int last){\n int itr = last < 0 ? dp[p].size()-1 : last;\n if(used[p][itr])return dp[p][itr];\n used[p][itr] = true;\n ModHash &it = dp[p][itr];\n if(last < 0){\n ModHash sum = 1;\n foreach(e,edges[p]){\n sum = sum + rec(e.first,e.second) * 11;\n }\n rep(i,edges[p].size()){\n dp[p][i] = sum - rec(edges[p][i].first,edges[p][i].second) * 11;\n }\n it = sum;\n }else{\n it = 1;\n rep(i,edges[p].size()){\n if(i==last)continue;\n it = it + rec(edges[p][i].first,edges[p][i].second) * 11;\n }\n }\n return it;\n };\n map<ModHash,int> m;\n ll res = 0;\n method(solve,ll,int p,int last){\n ll res = 0;\n ModHash v = rec(p,last);\n res += m[v];\n ++m[v];\n rep(i,edges[p].size()){\n if(i==last)continue;\n res += solve(edges[p][i].first,edges[p][i].second);\n }\n return res;\n };\n return solve(0,-1);\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n println(func());\n\n return 0;\n}", "accuracy": 0.14, "time_ms": 30, "memory_kb": 17604, "score_of_the_acc": -0.3069, "final_rank": 16 }, { "submission_id": "aoj_2784_6090674", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=1167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (int i=0;i<a;i++)\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"YES\\n\"; else cout<<\"NO\\n\";}\n\n\nvoid solve();\n\n// rainy ~ 雨に打たれて ~\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\tsolve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<vector<int>> G(N);\n\trep(i,N-1){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\ta--,b--;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<vector<ll>> dp(N,vector<ll>(3));\n\tvector<ll> M={(1ll<<61)-1,998244353,924924167};\n\tvector<ll> q={2,3,5};\n\tvector<int> order={0},seen(N,-2);\n\trep(i,N){\n\t\tint a=order[i];\n\t\tfor(auto x:G[a]){\n\t\t\tif(seen[a]==x) continue;\n\t\t\tseen[x]=a;\n\t\t\torder.push_back(x);\n\t\t}\n\t}\n\trep(m,3){\n\t\tfor(int i=N-1;i>=0;i--){\n\t\t\tint a=order[i];\n\t\t\tfor(auto x:G[a]){\n\t\t\t\tif(seen[a]==x) continue;\n\t\t\t\tdp[a][m]+=dp[x][m];\n\t\t\t\tdp[a][m]%=M[m];\n\t\t\t}\n\t\t\tdp[a][m]*=q[m];\n\t\t\tdp[a][m]++;\n\t\t\tdp[a][m]%=M[m];\n\t\t}\n\t}\n\tll ans=0;\n\tmap<vector<ll>,ll> table;\n\trep(i,N){\n\t\tans+=table[dp[i]];\n\t\ttable[dp[i]]++;\n\t}\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 25660, "score_of_the_acc": -0.6271, "final_rank": 10 }, { "submission_id": "aoj_2784_6090671", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=1167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (int i=0;i<a;i++)\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"YES\\n\"; else cout<<\"NO\\n\";}\n\n\nvoid solve();\n\n// rainy ~ 雨に打たれて ~\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\tsolve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<vector<int>> G(N);\n\trep(i,N-1){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\ta--,b--;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<vector<ll>> dp(N,vector<ll>(3));\n\tvector<ll> M={(1ll<<61)-1,998244353,924924167};\n\tvector<int> order={0},seen(N,-2);\n\trep(i,N){\n\t\tint a=order[i];\n\t\tfor(auto x:G[a]){\n\t\t\tif(seen[a]==x) continue;\n\t\t\tseen[x]=a;\n\t\t\torder.push_back(x);\n\t\t}\n\t}\n\trep(m,3){\n\t\tfor(int i=N-1;i>=0;i--){\n\t\t\tint a=order[i];\n\t\t\tfor(auto x:G[a]){\n\t\t\t\tif(seen[a]==x) continue;\n\t\t\t\tdp[a][m]+=dp[x][m];\n\t\t\t\tdp[a][m]%=M[m];\n\t\t\t}\n\t\t\tdp[a][m]*=2ll;\n\t\t\tdp[a][m]++;\n\t\t\tdp[a][m]%=M[m];\n\t\t}\n\t}\n\tll ans=0;\n\tmap<vector<ll>,ll> table;\n\trep(i,N){\n\t\tans+=table[dp[i]];\n\t\ttable[dp[i]]++;\n\t}\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 0.12, "time_ms": 10, "memory_kb": 7236, "score_of_the_acc": -0.0277, "final_rank": 20 }, { "submission_id": "aoj_2784_6090668", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n#define _GLIBCXX_DEBUG\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=1167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (int i=0;i<a;i++)\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"YES\\n\"; else cout<<\"NO\\n\";}\n\n\nvoid solve();\n\n// rainy ~ 雨に打たれて ~\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\tsolve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<vector<int>> G(N);\n\trep(i,N-1){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\ta--,b--;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<vector<int>> dp(N,vector<int>(3));\n\tvector<int> M={1000000007,998244353,924924167};\n\tvector<int> order={0},seen(N,-2);\n\trep(i,N){\n\t\tint a=order[i];\n\t\tfor(auto x:G[a]){\n\t\t\tif(seen[a]==x) continue;\n\t\t\tseen[x]=a;\n\t\t\torder.push_back(x);\n\t\t}\n\t}\n\trep(m,3){\n\t\tfor(int i=N-1;i>=0;i--){\n\t\t\tint a=order[i];\n\t\t\tfor(auto x:G[a]){\n\t\t\t\tif(seen[a]==x) continue;\n\t\t\t\tdp[a][m]+=dp[x][m];\n\t\t\t\tdp[a][m]%=M[m];\n\t\t\t}\n\t\t\tdp[a][m]*=2ll;\n\t\t\tdp[a][m]++;\n\t\t\tdp[a][m]%=M[m];\n\t\t}\n\t}\n\tll ans=0;\n\tmap<vector<int>,ll> table;\n\trep(i,N){\n\t\tans+=table[dp[i]];\n\t\ttable[dp[i]]++;\n\t}\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 0.12, "time_ms": 10, "memory_kb": 7232, "score_of_the_acc": -0.0277, "final_rank": 19 }, { "submission_id": "aoj_2784_6014088", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long int;\nusing ull = unsigned long long int;\nusing P = pair<ll, ll>;\nusing P3 = pair<int, P>;\nusing PP = pair<P, P>;\nconstexpr int INF32 = 1 << 30;\nconstexpr ll INF64 = 1LL << 60;\nconstexpr ll MOD = 1000000007;\n// constexpr ll MOD = 998244353;\nconstexpr int di[] = {0, 1, 0, -1};\nconstexpr int dj[] = {1, 0, -1, 0};\nconstexpr int di8[] = {0, 1, 1, 1, 0, -1, -1, -1};\nconstexpr int dj8[] = {1, 1, 0, -1, -1, -1, 0, 1};\nconstexpr double EPS = 1e-10;\nconst double PI = acos(-1);\n\n#define ALL(v) (v).begin(),(v).end()\n#define REP(i,n) for(int i=0,i_len=n; i<i_len; ++i)\n\ntemplate<typename T1,typename T2> bool chmax(T1 &a, T2 b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<typename T1,typename T2> bool chmin(T1 &a, T2 b) { if (b<a) { a=b; return 1; } return 0; }\n\nstruct Hash {\n static constexpr int M = 2;\n static constexpr ll MODS[M] = {999999937, 1000000007};\n static constexpr ll BASE = 100007;\n\n int n;\n ll hash[M];\n void init(){\n n = 0;\n REP(k,M){\n hash[k] = 0;\n }\n }\n void push(int d){\n n++;\n REP(k,M){\n hash[k] = (hash[k]*BASE + d) % MODS[k];\n }\n }\n ll get(int k) {\n return hash[k];\n }\n};\n\nbool match(Hash& a, Hash& b) {\n bool res = true;\n for (int k = 0; k < Hash::M; k++) {\n res &= a.get(k) == b.get(k);\n }\n return res;\n}\n\nHash add(Hash a, Hash b){\n Hash res;\n res.init();\n REP(i, Hash::M){\n res.hash[i] = (a.get(i) + b.get(i)) % Hash::MODS[i];\n }\n res.n = max(a.n, b.n);\n return res;\n}\n\nvector<vector<int> > g;\nvector<Hash> hs;\n\nHash dfs(int now){\n Hash res;\n res.init();\n for(auto nxt : g[now]){\n res = add(res, dfs(nxt));\n }\n res.push(1);\n return hs[now] = res;\n}\n\nint solve(){\n int n;\n cin >> n;\n g.resize(n);\n for(int i=0;i<n-1;i++){\n int a, b;\n cin >> a >> b;\n a--; b--;\n g[a].push_back(b);\n }\n hs.resize(n);\n dfs(0);\n ll ans = 0;\n map<P, ll> cnt;\n REP(i,n){\n cnt[P(hs[i].get(0), hs[i].get(1))]++;\n // cout << hs[i].get(0) << \" \" << hs[i].get(1) << endl;\n }\n for(auto& node : cnt){\n ll x = node.second;\n // cout << x << endl;\n ans += x*(x-1)/2;\n }\n cout <<ans << endl;\n return 0;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n solve();\n // int T; cin >> T; REP(t,T) solve();\n // while(!solve());\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 28124, "score_of_the_acc": -0.4453, "final_rank": 6 }, { "submission_id": "aoj_2784_6011426", "code_snippet": "#include<bits/stdc++.h> \nusing namespace std;\ntypedef long long ll;\n#define all(x) (x).begin(),(x).end()\ntemplate<typename T1,typename T2> bool chmin(T1 &a,T2 b){if(a<=b)return 0; a=b; return 1;}\ntemplate<typename T1,typename T2> bool chmax(T1 &a,T2 b){if(a>=b)return 0; a=b; return 1;}\nint dx[4]={0,1,0,-1}, dy[4]={1,0,-1,0};\nlong double eps = 1e-9;\nlong double pi = acos(-1);\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != (int) v.size() ? \" \" : \"\");\n }\n return os;\n}\n\nvector<vector<int>> v(200200);\nconst ll mul[] = {1007,1009,1013,1001};\nconst ll mod[] = {1000000007,1000000023,1000000087,1000000093};\nconst int hash_size = 3;\n\nmap<vector<ll>, ll> mp;\nll ans = 0;\nvector<ll> dfs(int p, int pre=-1){\n vector<ll> ret(hash_size, 1);\n for(auto i:v[p]){\n if(i == pre) continue;\n auto g = dfs(i, p);\n for(int i=0;i<hash_size;i++){\n ret[i] += g[i] * mul[i] % mod[i];\n if(ret[i] >= mod[i]) ret[i] -= mod[i];\n }\n }\n ans += mp[ret];\n mp[ret]++;\n return ret;\n}\n\n\nsigned main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(20);\n\n int n;\n cin>>n;\n for(int i=1;i<n;i++){\n int a,b;\n cin>>a>>b;\n a--,b--;\n v[a].push_back(b);\n v[b].push_back(a);\n }\n dfs(0, -1);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 31256, "score_of_the_acc": -0.7007, "final_rank": 12 }, { "submission_id": "aoj_2784_5977121", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) { os << ','; }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define OVERLOAD3(_1, _2, _3, name, ...) name\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define REP1(i, n) for(int i = 0; i < (n); i++)\n#define REP2(i, a, b) for(int i = (a); i < int(b); i++)\n#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconstexpr int MOD2 = 998244353;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\nvoid Case(int i) { cout << \"Case #\" << i << \": \"; }\nint popcount(int x) { return __builtin_popcount(x); }\nll popcount(ll x) { return __builtin_popcountll(x); }\n#pragma endregion Macros\n\nusing ull = unsigned long long;\nusing ui128 = __uint128_t;\nconstexpr ull mod = (1ULL << 61) - 1;\n\ninline ull add(ull a, ull b) {\n if((a += b) >= mod) {\n a -= mod;\n }\n return a;\n}\ninline ull mul(ull a, ull b) {\n ui128 t = (ui128)a * b;\n ull na = t >> 61;\n ull nb = t & mod;\n if((na += nb) >= mod) {\n na -= mod;\n }\n return na;\n}\n\nint N;\nvector<int> G[100001];\null base, dp[100001];\n\null dfs(int u, int p, int d) {\n ull res = base;\n for(int v : G[u]) {\n if(v == p) continue;\n res = add(res, mul(dfs(v, u, d+1), base));\n }\n return (dp[u] = res);\n}\n\nint main() {\n random_device seed_gen;\n mt19937_64 engine(seed_gen());\n uniform_int_distribution<ull> rand(2, mod-1);\n base = rand(engine);\n \n cin >> N;\n REP(i, N-1) {\n int a, b;\n cin >> a >> b;\n a--; b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n dfs(0, -1, 0);\n map<ull, int> cnt;\n REP(i, N) cnt[dp[i]] += 1;\n ll ans = 0;\n for(auto [h, sz] : cnt) {\n ans += (ll)sz * (sz-1) / 2;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 25260, "score_of_the_acc": -0.4076, "final_rank": 4 } ]
aoj_2786_cpp
Share the Ruins Preservation Two organizations International Community for Preservation of Constructions (ICPC) and Japanese Archaeologist Group (JAG) engage in ruins preservation. Recently, many ruins were found in a certain zone. The two organizations decided to share the preservation of the ruins by assigning some of the ruins to ICPC and the other ruins to JAG. Now, ICPC and JAG make a rule for assignment as follows: Draw a vertical straight line from the north to the south, avoiding to intersect ruins. Ruins located to the west of the line are preserved by ICPC. On the other hand, ruins located to the east of the line are preserved by JAG. (It is possible that no ruins are located to the east/west of the line; in this case, ICPC/JAG will preserve no ruins.) A problem is where to draw a straight line. For each organization, the way to preserve its assigned ruins is to make exactly one fence such that all the assigned ruins are in the region surrounded by the fence. Furthermore, they should minimize the length of such a fence for their budget. If the surrounded areas are vast, expensive costs will be needed to maintain the inside of areas. Therefore, they want to minimize the total preservation cost, i.e. the sum of the areas surrounded by two fences. Your task is to write a program computing the minimum sum of the areas surrounded by two fences, yielded by drawing an appropriate straight line. Input The input consists of a single test case. $N$ $x_1$ $y_1$ $x_2$ $y_2$ ... $x_N$ $y_N$ The first line contains an integer $N$ ($1 \leq N \leq 100,000$), which is the number of founded ruins. The following $N$ lines represent the location of the ruins. The $i$-th line of them consists of two integers $x_i$ and $y_i$, which indicate the location of the $i$-th ruin is $x_i$ east and $y_i$ north from a certain location in the zone. You can assume the following things for the ruins: $-10^9 \leq x_i, y_i \leq 10^9$ You can ignore the sizes of ruins. That is, you can assume ruins are points. No pair of ruins has the same location. Output Print the minimum total preservation cost yielded by drawing an appropriate straight line. You should round off the cost to the nearest integer. Sample Input 1 8 -10 0 -10 5 -5 5 -5 0 10 0 10 -5 5 -5 5 0 Output for the Sample Input 1 50 Sample Input 2 5 0 0 0 1 0 2 1 0 1 1 Output for the Sample Input 2 0 Sample Input 3 6 1 5 1 6 0 5 0 -5 -1 -5 -1 -6 Output for the Sample Input 3 6 Sample Input 4 10 2 5 4 6 9 5 8 8 1 3 6 4 5 9 7 3 7 7 3 9 Output for the Sample Input 4 17
[ { "submission_id": "aoj_2786_10850971", "code_snippet": "#include<bits/stdc++.h>\n\n#define PB push_back\n#define MP make_pair\n#define F first\n#define S second\n\n#define FRI freopen(\"zin.txt\",\"r\",stdin)\n#define FRO freopen(\"out.txt\",\"w\",stdout)\n#define DB(x) #x\" =>\",x\n#define debug(args...) {dbg,args; cerr<<endl;}\n#define RAD(x) ((x*PI)/180)\n#define DEG(x) ((x*180)/PI)\n#define NEX(x,y) ((x)==(y)-1?0:(x)+1)\n#define PRE(x,y) ((x)==0?(y)-1:(x)-1)\n\n#define EPS 1e-12\n#define INF 10000000000007LL\n#define MAXN 100005\nusing namespace std;\n\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef long double LD;\n\nstruct debugger{\n template<typename T> debugger& operator , (const T& v){\n cerr<<v<<\" \";\n return *this;\n }\n}dbg;\n\nclass PT {\npublic:\n LL x, y;\n PT() {}\n PT(LL x, LL y) : x(x), y(y) {}\n PT(const PT &p) : x(p.x), y(p.y) {}\n PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }\n PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }\n};\n\nLL SignedArea(PT a,PT b,PT c) {\n PT temp1(b.x-a.x,b.y-a.y),temp2(c.x-a.x,c.y-a.y);\n return temp1.x*temp2.y-temp1.y*temp2.x;\n}\n\nbool XYasscending(PT a,PT b) {\n if(a.x==b.x) return a.y<b.y;\n return a.x<b.x;\n}\n\nvector<PT>rawPts,U,L;\nvector<LL>xCoords,hi,lo;\nLL area[2][MAXN];\n\nint main() {\n// FRI;\n int i,n;\n LL x,y,ans,r1,r2,leftLo,leftHi;\n PT pivot;\n scanf(\"%d\",&n);\n for(i=0;i<n;i++) {\n scanf(\"%lld %lld\",&x,&y);\n rawPts.PB(PT(x,y));\n }\n sort(rawPts.begin(),rawPts.end(),XYasscending);\n for(i=0;i<rawPts.size();i++) {\n if(i==0||rawPts[i].x!=rawPts[i-1].x) {\n xCoords.PB(rawPts[i].x);\n lo.PB(rawPts[i].y);\n hi.PB(rawPts[i].y);\n }\n hi[hi.size()-1]=rawPts[i].y;\n }\n area[0][0]=0;\n pivot=PT(xCoords[0],lo[0]);\n\n U.PB(PT(xCoords[0],lo[0]));\n U.PB(PT(xCoords[0],hi[0]));\n L.PB(PT(xCoords[0],hi[0]));\n L.PB(PT(xCoords[0],lo[0]));\n\n for(i=1;i<xCoords.size();i++) {\n area[0][i]=area[0][i-1];\n// cout<<\"Considering \"<<xCoords[i]<<\" \"<<hi[i]<<\" \"<<lo[i]<<endl;\n// cout<<\"Initial \"<<area[0][i]<<endl;\n while(true) {\n if(U.size()<2) break;\n if(SignedArea(U[U.size()-2],U[U.size()-1],PT(xCoords[i],hi[i]))>=0) {\n area[0][i]-=SignedArea(pivot,U[U.size()-2],U[U.size()-1]);\n// cout<<\"Reduced \"<<area[0][i]<<endl;\n U.pop_back();\n }\n else break;\n }\n U.PB(PT(xCoords[i],hi[i]));\n area[0][i]+=SignedArea(pivot,U[U.size()-2],U[U.size()-1]);\n// cout<<\"Increased \"<<area[0][i]<<endl;\n\n while(true) {\n if(L.size()<2) break;\n if(SignedArea(L[L.size()-2],L[L.size()-1],PT(xCoords[i],lo[i]))<=0) {\n area[0][i]+=SignedArea(pivot,L[L.size()-2],L[L.size()-1]);\n// cout<<\"Reduced \"<<area[0][i]<<endl;\n L.pop_back();\n }\n else break;\n }\n L.PB(PT(xCoords[i],lo[i]));\n area[0][i]-=SignedArea(pivot,L[L.size()-2],L[L.size()-1]);\n// cout<<\"Increased \"<<area[0][i]<<endl;\n\n area[0][i]-=SignedArea(pivot,PT(xCoords[i-1],hi[i-1]),PT(xCoords[i-1],lo[i-1]));\n// cout<<\"Here \"<<area[0][i]<<endl;\n area[0][i]+=SignedArea(pivot,PT(xCoords[i],hi[i]),PT(xCoords[i],lo[i]));\n// cout<<\"Final \"<<area[0][i]<<endl;\n }\n\n area[1][xCoords.size()-1]=0;\n pivot=PT(xCoords[xCoords.size()-1],lo[xCoords.size()-1]);\n\n U.clear();\n L.clear();\n\n U.PB(PT(xCoords[xCoords.size()-1],lo[xCoords.size()-1]));\n U.PB(PT(xCoords[xCoords.size()-1],hi[xCoords.size()-1]));\n L.PB(PT(xCoords[xCoords.size()-1],hi[xCoords.size()-1]));\n L.PB(PT(xCoords[xCoords.size()-1],lo[xCoords.size()-1]));\n\n for(i=xCoords.size()-2;i>=0;i--) {\n area[1][i]=area[1][i+1];\n while(true) {\n if(U.size()<2) break;\n if(SignedArea(U[U.size()-2],U[U.size()-1],PT(xCoords[i],hi[i]))<=0) {\n area[1][i]-=SignedArea(pivot,U[U.size()-2],U[U.size()-1]);\n U.pop_back();\n }\n else break;\n }\n U.PB(PT(xCoords[i],hi[i]));\n area[1][i]+=SignedArea(pivot,U[U.size()-2],U[U.size()-1]);\n\n while(true) {\n if(L.size()<2) break;\n if(SignedArea(L[L.size()-2],L[L.size()-1],PT(xCoords[i],lo[i]))>=0) {\n area[1][i]+=SignedArea(pivot,L[L.size()-2],L[L.size()-1]);\n L.pop_back();\n }\n else break;\n }\n L.PB(PT(xCoords[i],lo[i]));\n area[1][i]-=SignedArea(pivot,L[L.size()-2],L[L.size()-1]);\n\n area[1][i]-=SignedArea(pivot,PT(xCoords[i+1],hi[i+1]),PT(xCoords[i+1],lo[i+1]));\n area[1][i]+=SignedArea(pivot,PT(xCoords[i],hi[i]),PT(xCoords[i],lo[i]));\n }\n\n ans=abs(area[0][0])+abs(area[1][1]);\n for(i=1;i<xCoords.size()-1;i++) ans=min(ans,abs(area[0][i])+abs(area[1][i+1]));\n\n if(ans&1) cout<<(ans+1)/2<<endl;\n else cout<<ans/2<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 11432, "score_of_the_acc": -0.6165, "final_rank": 3 }, { "submission_id": "aoj_2786_10690700", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nlong long X[100009];\nlong long Y[100009];\nlong long KEEP[100009];\nlong long MX[100009];\nlong long MI[100009];\nlong long ANS[100009],ANSS[100009];\nvector<long long>vec,XX[100009];\nmap<long long,long long>mymap;\n\nvector<pair<long long,long long> >U,L;\n\nvoid prnt(pair<long long,long long> A)\n{\n cout<<A.first<<\" \"<<A.second<<endl;\n}\n\npair<long long,long long> minu(pair<long long,long long> A,pair<long long,long long> B)\n{\n pair<long long,long long> C;\n C.first=-A.first*B.second+B.first*A.second;\n C.second=A.first*B.first;\n long long temp=__gcd(abs(C.first),abs(C.second));\n C.first/=temp;\n C.second/=temp;\n\n if(C.second<0)\n {\n C.first*=-1;\n C.second*=-1;\n }\n return C;\n}\n\npair<long long,long long> get(pair<long long,long long> A,pair<long long,long long> B)\n{\n pair<long long,long long> C;\n C.first=B.first-A.first;\n C.second=B.second-A.second;\n\n long long temp=__gcd(abs(C.first),abs(C.second));\n C.first/=temp;\n C.second/=temp;\n\n if(C.second<0)\n {\n C.first*=-1;\n C.second*=-1;\n }\n\n return C;\n}\n\nlong long get_area(pair<long long,long long> A,pair<long long,long long> B , pair<long long,long long>C)\n{\n long long ans=0;\n ans+=(A.first*B.second-A.second*B.first);\n ans+=(B.first*C.second-B.second*C.first);\n ans+=(C.first*A.second-C.second*A.first);\n return abs(ans);\n}\n\nint main()\n{\n long long n,i,j,k,l,ans,ind,siz,mi,mx,sl,su,temp,now;\n pair<long long,long long> now_ans,prev;\n cin>>n;\n\n for(i=1;i<=n;i++)\n {\n scanf(\"%lld%lld\",&X[i],&Y[i]);\n vec.push_back(X[i]);\n }\n\n sort(vec.begin(),vec.end());\n\n ind=0;\n\n for(i=0;i<n;i++)\n {\n if(i) if(vec[i]==vec[i-1]) continue;\n\n mymap[vec[i]]=++ind;\n KEEP[ind]=vec[i];\n }\n\n for(i=1;i<=n;i++)\n {\n XX[mymap[X[i]]].push_back(Y[i]);\n }\n\n for(i=1;i<=ind;i++) sort(XX[i].begin(),XX[i].end());\n for(i=1;i<=ind;i++)\n {\n siz=XX[i].size();\n MI[i]=XX[i][0];\n MX[i]=XX[i][siz-1];\n }\n\n U.clear();\n L.clear();\n sl=0;\n su=0;\n\n for(i=1;i<=ind;i++)\n {\n\n temp=0;\n if(sl==0)\n {\n L.push_back(make_pair(KEEP[i],MI[i]));\n sl++;\n }\n else\n {\n prev=get(L[sl-1],make_pair(KEEP[i],MI[i]));\n now=sl-1;\n\n while(1)\n {\n if(now<0) break;\n now_ans=get(L[now],make_pair(KEEP[i],MI[i]));\n if(minu(now_ans,prev).first<0) break;\n prev=now_ans;\n now--;\n }\n\n for(j=sl-1;j>now+1;j--)\n {\n temp+=get_area(make_pair(KEEP[i],MI[i]),L[j],L[j-1]);\n }\n\n for(j=sl-1;j>now+1;j--) L.pop_back();\n L.push_back(make_pair(KEEP[i],MI[i]));\n sl=L.size();\n }\n\n\n if(su==0)\n {\n U.push_back(make_pair(KEEP[i],MX[i]));\n su++;\n }\n else\n {\n prev=get(U[su-1],make_pair(KEEP[i],MX[i]));\n now=su-1;\n while(1)\n {\n if(now<0) break;\n now_ans=get(U[now],make_pair(KEEP[i],MX[i]));\n if(minu(now_ans,prev).first>0) break;\n prev=now_ans;\n now--;\n }\n\n\n for(j=su-1;j>now+1;j--)\n {\n temp+=get_area(make_pair(KEEP[i],MX[i]),U[j],U[j-1]);\n }\n\n for(j=su-1;j>now+1;j--) U.pop_back();\n U.push_back(make_pair(KEEP[i],MX[i]));\n su=U.size();\n\n }\n\n if(i>1) temp+=(MX[i]-MI[i]+MX[i-1]-MI[i-1])*(KEEP[i]-KEEP[i-1]);\n\n ANS[i]=ANS[i-1]+temp;\n }\n\n U.clear();\n L.clear();\n sl=0;\n su=0;\n\n\n for(i=ind;i>=1;i--)\n {\n temp=0;\n if(sl==0)\n {\n L.push_back(make_pair(KEEP[i],MI[i]));\n sl++;\n }\n else\n {\n prev=get(L[sl-1],make_pair(KEEP[i],MI[i]));\n now=sl-1;\n while(1)\n {\n if(now<0) break;\n now_ans=get(L[now],make_pair(KEEP[i],MI[i]));\n if(minu(now_ans,prev).first>0) break;\n prev=now_ans;\n now--;\n }\n\n\n for(j=sl-1;j>now+1;j--)\n {\n temp+=get_area(make_pair(KEEP[i],MI[i]),L[j],L[j-1]);\n }\n\n for(j=sl-1;j>now+1;j--) L.pop_back();\n L.push_back(make_pair(KEEP[i],MI[i]));\n sl=L.size();\n }\n\n if(su==0)\n {\n U.push_back(make_pair(KEEP[i],MX[i]));\n su++;\n }\n else\n {\n prev=get(U[su-1],make_pair(KEEP[i],MX[i]));\n now=su-1;\n while(1)\n {\n if(now<0) break;\n now_ans=get(U[now],make_pair(KEEP[i],MX[i]));\n if(minu(now_ans,prev).first<0) break;\n prev=now_ans;\n now--;\n }\n\n\n for(j=su-1;j>now+1;j--)\n {\n temp+=get_area(make_pair(KEEP[i],MX[i]),U[j],U[j-1]);\n }\n\n for(j=su-1;j>now+1;j--) U.pop_back();\n U.push_back(make_pair(KEEP[i],MX[i]));\n su=U.size();\n\n }\n\n if(i<ind) temp+=(MX[i]-MI[i]+MX[i+1]-MI[i+1])*(-KEEP[i]+KEEP[i+1]);\n\n ANSS[i]=ANSS[i+1]+temp;\n }\n\n\n ans=1LL<<62;\n\n for(i=0;i<=ind;i++)\n {\n ans=min(ans,ANS[i]+ANSS[i+1]);\n }\n\n cout<<(1+ans)/2<<endl;\n\n\n\n}", "accuracy": 0.1, "time_ms": 70, "memory_kb": 11340, "score_of_the_acc": -1.325, "final_rank": 20 }, { "submission_id": "aoj_2786_10296372", "code_snippet": "// AOJ #2786 Share the Ruins Preservation\n// 2025.3.14\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct P { ll x, y; };\n\nll cross(const P &a, const P &b, const P &c) {\n return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);\n}\n\nll cross(const P &a, const P &b) {\n return a.x * b.y - a.y * b.x;\n}\n\nvector<ld> getPrefixArea(const vector<P>& pts) {\n int n = pts.size();\n vector<ld> pre(n, 0.0L);\n vector<P> L;\n vector<ld> LS;\n vector<P> U;\n vector<ld> US;\n for (int i = 0; i < n; i++){\n P p = pts[i];\n while(L.size() >= 2 && cross(L[L.size()-2], L[L.size()-1], p) <= 0) {\n L.pop_back();\n LS.pop_back();\n }\n if(L.empty()){\n L.push_back(p);\n LS.push_back(0);\n } else {\n L.push_back(p);\n ll c = cross(L[L.size()-2], p);\n ld sum = (LS.empty()? 0 : LS.back()) + c;\n LS.push_back(sum);\n }\n\n while(U.size() >= 2 && cross(U[U.size()-2], U[U.size()-1], p) >= 0) {\n U.pop_back();\n US.pop_back();\n }\n if(U.empty()){\n U.push_back(p);\n US.push_back(0);\n } else {\n U.push_back(p);\n ll c = cross(U[U.size()-2], p);\n ld sum = (US.empty()? 0 : US.back()) + c;\n US.push_back(sum);\n }\n\n if(i < 2) {\n pre[i] = 0.0L;\n } else {\n ld area2 = US.back() - LS.back();\n if(area2 < 0) area2 = -area2;\n pre[i] = area2 / 2.0L;\n }\n }\n return pre;\n}\n\nvector<ld> getSuffixArea(const vector<P>& pts) {\n int n = pts.size();\n vector<ld> suf(n, 0.0L);\n vector<P> L;\n vector<ld> LS;\n vector<P> U;\n vector<ld> US;\n for (int i = n-1; i >= 0; i--){\n P p = pts[i];\n while(L.size() >= 2 && cross(L[L.size()-2], L[L.size()-1], p) <= 0) {\n L.pop_back();\n LS.pop_back();\n }\n if(L.empty()){\n L.push_back(p);\n LS.push_back(0);\n } else {\n L.push_back(p);\n ll c = cross(L[L.size()-2], p);\n ld sum = (LS.empty()? 0 : LS.back()) + c;\n LS.push_back(sum);\n }\n\n while(U.size() >= 2 && cross(U[U.size()-2], U[U.size()-1], p) >= 0) {\n U.pop_back();\n US.pop_back();\n }\n if(U.empty()){\n U.push_back(p);\n US.push_back(0);\n } else {\n U.push_back(p);\n ll c = cross(U[U.size()-2], p);\n ld sum = (US.empty()? 0 : US.back()) + c;\n US.push_back(sum);\n }\n\n if(i > n-3) {\n suf[i] = 0.0L;\n } else {\n ld area2 = US.back() - LS.back();\n if(area2 < 0) area2 = -area2;\n suf[i] = area2 / 2.0L;\n }\n }\n return suf;\n}\n\nint main(){\n int n = Cin();\n vector<P> pts(n);\n for (int i = 0; i < n; i++){\n pts[i].x = Cin(), pts[i].y = Cin();\n }\n sort(pts.begin(), pts.end(), [](const P &a, const P &b){\n if(a.x == b.x) return a.y < b.y;\n return a.x < b.x;\n });\n\n vector<ld> pre = getPrefixArea(pts);\n vector<ld> suf = getSuffixArea(pts);\n\n ld ans = pre[n-1];\n for (int i = 0; i < n-1; i++){\n if(pts[i].x < pts[i+1].x){\n ld tot = pre[i] + suf[i+1];\n if(tot < ans) ans = tot;\n }\n }\n Cout((ll)floor(ans + 0.5L));\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 12136, "score_of_the_acc": -0.5172, "final_rank": 1 }, { "submission_id": "aoj_2786_9822918", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nstruct Point {\n ll X, Y;\n Point() : X(0), Y(0) {}\n Point(ll x, ll y) : X(x), Y(y) {}\n};\n\nll cross(Point A, Point B) {\n return A.X * B.Y - A.Y * B.X;\n}\n\nll Area(Point A, Point B, Point C) {\n B.X -= A.X, B.Y -= A.Y;\n C.X -= A.X, C.Y -= A.Y;\n return abs(cross(B,C));\n}\n\nint ccw(Point A, Point B, Point C) {\n B.X -= A.X, B.Y -= A.Y;\n C.X -= A.X, C.Y -= A.Y;\n if (cross(B,C) > 0) return 1;\n if (cross(B,C) < 0) return -1;\n return 0;\n}\n\nvector<ll> Calc(vector<Point> P) {\n int N = P.size();\n vector<ll> Ret(N+1);\n Ret[0] = Ret[1] = 0;\n vector<Point> upper, lower;\n upper.push_back(P[0]), lower.push_back(P[0]);\n rep(i,1,N) {\n Ret[i+1] = Ret[i];\n while(upper.size() >= 2 && ccw(upper[upper.size()-2],upper.back(),P[i]) == 1) {\n Ret[i+1] -= Area(upper[upper.size()-2], upper.back(), lower.back());\n upper.pop_back();\n }\n while(lower.size() >= 2 && ccw(lower[lower.size()-2],lower.back(),P[i]) == -1) {\n Ret[i+1] -= Area(lower[lower.size()-2], lower.back(), upper.back());\n lower.pop_back();\n }\n Ret[i+1] += Area(lower.back(), upper.back(), P[i]);\n lower.push_back(P[i]), upper.push_back(P[i]);\n }\n return Ret;\n}\n\nint main() {\n int N;\n cin >> N;\n vector<Point> P(N), RP(N);\n rep(i,0,N) {\n ll x, y;\n cin >> x >> y;\n P[i] = Point(x,y);\n RP[i] = Point(-x,y);\n }\n sort(ALL(P), [&](Point P1, Point P2){\n if (P1.X == P2.X) return P1.Y < P2.Y;\n return P1.X < P2.X;\n });\n sort(ALL(RP), [&](Point P1, Point P2){\n if (P1.X == P2.X) return P1.Y < P2.Y;\n return P1.X < P2.X;\n });\n auto A = Calc(P), RA = Calc(RP);\n reverse(ALL(RA));\n ll ANS = RA[0];\n rep(i,0,N-1) {\n if (P[i].X == P[i+1].X) continue;\n chmin(ANS, A[i+1]+RA[i+1]);\n }\n cout << (ANS+1)/2 << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 14204, "score_of_the_acc": -1.2168, "final_rank": 6 }, { "submission_id": "aoj_2786_9822906", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nusing T = double;\nconst T eps = 1e-8;\nusing Point = complex<T>;\nusing Poly = vector<Point>;\n#define X real()\n#define Y imag()\ntemplate <typename T> inline bool eq(const T &a, const T &b) {\n return fabs(a - b) < eps;\n}\nbool cmp(const Point &a, const Point &b) {\n auto sub = [&](Point a) {\n return (a.Y < 0 ? -1 : (a.Y == 0 && a.X >= 0 ? 0 : 1));\n };\n if (sub(a) != sub(b))\n return sub(a) < sub(b);\n return a.Y * b.X < a.X * b.Y;\n}\nstruct Line {\n Point a, b, dir;\n Line() {}\n Line(Point _a, Point _b) : a(_a), b(_b), dir(b - a) {}\n Line(T A, T B, T C) {\n if (eq(A, .0)) {\n a = Point(0, C / B), b = Point(1 / C / B);\n } else if (eq(B, .0)) {\n a = Point(C / A, 0), b = Point(C / A, 1);\n } else {\n a = Point(0, C / B), b = Point(C / A, 0);\n }\n }\n};\nstruct Segment : Line {\n Segment() {}\n Segment(Point _a, Point _b) : Line(_a, _b) {}\n};\nstruct Circle {\n Point p;\n T r;\n Circle() {}\n Circle(Point _p, T _r) : p(_p), r(_r) {}\n};\n\nistream &operator>>(istream &is, Point &p) {\n T x, y;\n is >> x >> y;\n p = Point(x, y);\n return is;\n}\nostream &operator<<(ostream &os, Point &p) {\n os << fixed << setprecision(12) << p.X << ' ' << p.Y;\n return os;\n}\nPoint unit(const Point &a) {\n return a / abs(a);\n}\nT dot(const Point &a, const Point &b) {\n return a.X * b.X + a.Y * b.Y;\n}\nT cross(const Point &a, const Point &b) {\n return a.X * b.Y - a.Y * b.X;\n}\nPoint rot(const Point &a, const T &theta) {\n return Point(cos(theta) * a.X - sin(theta) * a.Y,\n sin(theta) * a.X + cos(theta) * a.Y);\n}\nPoint rot90(const Point &a) {\n return Point(-a.Y, a.X);\n}\nT arg(const Point &a, const Point &b, const Point &c) {\n double ret = acos(dot(a - b, c - b) / abs(a - b) / abs(c - b));\n if (cross(a - b, c - b) < 0)\n ret = -ret;\n return ret;\n}\n\nPoint Projection(const Line &l, const Point &p) {\n T t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\nPoint Projection(const Segment &l, const Point &p) {\n T t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\nPoint Reflection(const Line &l, const Point &p) {\n return p + (Projection(l, p) - p) * 2.;\n}\nint ccw(const Point &a, Point b, Point c) {\n b -= a;\n c -= a;\n if (cross(b, c) > eps)\n return 1; // ccw\n\n if (cross(b, c) < -eps)\n return -1; // cw\n\n if (dot(b, c) < 0)\n return 2; // c,a,b\n\n if (norm(b) < norm(c))\n return -2; // a,b,c\n\n return 0; // a,c,b\n\n}\nbool isOrthogonal(const Line &a, const Line &b) {\n return eq(dot(a.b - a.a, b.b - b.a), .0);\n}\nbool isParallel(const Line &a, const Line &b) {\n return eq(cross(a.b - a.a, b.b - b.a), .0);\n}\nbool isIntersect(const Segment &a, const Segment &b) {\n return ccw(a.a, a.b, b.a) * ccw(a.a, a.b, b.b) <= 0 and\n ccw(b.a, b.b, a.a) * ccw(b.a, b.b, a.b) <= 0;\n}\nint isIntersect(const Circle &a, const Circle &b) {\n T d = abs(a.p - b.p);\n if (d > a.r + b.r + eps)\n return 4;\n if (eq(d, a.r + b.r))\n return 3;\n if (eq(d, abs(a.r - b.r)))\n return 1;\n if (d < abs(a.r - b.r) - eps)\n return 0;\n return 2;\n}\nT Dist(const Line &a, const Point &b) {\n Point c = Projection(a, b);\n return abs(c - b);\n}\nT Dist(const Segment &a, const Point &b) {\n if (dot(a.b - a.a, b - a.a) < eps)\n return abs(b - a.a);\n if (dot(a.a - a.b, b - a.b) < eps)\n return abs(b - a.b);\n return abs(cross(a.b - a.a, b - a.a)) / abs(a.b - a.a);\n}\nT Dist(const Segment &a, const Segment &b) {\n if (isIntersect(a, b))\n return .0;\n T res = min({Dist(a, b.a), Dist(a, b.b), Dist(b, a.a), Dist(b, a.b)});\n return res;\n}\nPoint Intersection(const Line &a, const Line &b) {\n T d1 = cross(a.b - a.a, b.b - b.a);\n T d2 = cross(a.b - a.a, a.b - b.a);\n if (eq(d1, 0.) and eq(d2, 0.))\n return b.a;\n return b.a + (b.b - b.a) * (d2 / d1);\n}\nPoly Intersection(const Circle &a, const Line &b) {\n Poly res;\n T d = Dist(b, a.p);\n if (d > a.r + eps)\n return res;\n Point h = Projection(b, a.p);\n if (eq(d, a.r)) {\n res.push_back(h);\n return res;\n }\n Point e = unit(b.b - b.a);\n T ph = sqrt(a.r * a.r - d * d);\n res.push_back(h - e * ph);\n res.push_back(h + e * ph);\n return res;\n}\nPoly Intersection(const Circle &a, const Segment &b) {\n Line c(b.a, b.b);\n Poly sub = Intersection(a, c);\n double xmi = min(b.a.X, b.b.X), xma = max(b.a.X, b.b.X);\n double ymi = min(b.a.Y, b.b.Y), yma = max(b.a.Y, b.b.Y);\n Poly res;\n rep(i, 0, sub.size()) {\n if (xmi <= sub[i].X + eps and sub[i].X - eps <= xma and\n ymi <= sub[i].Y + eps and sub[i].Y - eps <= yma) {\n res.push_back(sub[i]);\n }\n }\n return res;\n}\nPoly Intersection(const Circle &a, const Circle &b) {\n Poly res;\n int mode = isIntersect(a, b);\n T d = abs(a.p - b.p);\n if (mode == 4 or mode == 0)\n return res;\n if (mode == 3) {\n T t = a.r / (a.r + b.r);\n res.push_back(a.p + (b.p - a.p) * t);\n return res;\n }\n if (mode == 1) {\n if (b.r < a.r - eps) {\n res.push_back(a.p + (b.p - a.p) * (a.r / d));\n } else {\n res.push_back(b.p + (a.p - b.p) * (b.r / d));\n }\n return res;\n }\n T rc = (a.r * a.r + d * d - b.r * b.r) / d / 2.;\n T rs = sqrt(a.r * a.r - rc * rc);\n if (a.r - abs(rc) < eps)\n rs = 0;\n Point e = unit(b.p - a.p);\n res.push_back(a.p + rc * e + rs * e * Point(0, 1));\n res.push_back(a.p + rc * e + rs * e * Point(0, -1));\n return res;\n}\nPoly HalfplaneIntersection(vector<Line> &H) {\n sort(ALL(H), [&](Line &l1, Line &l2) { return cmp(l1.dir, l2.dir); });\n auto outside = [&](Line &L, Point p) -> bool {\n return cross(L.dir, p - L.a) < -eps;\n };\n deque<Line> deq;\n int sz = 0;\n rep(i, 0, SZ(H)) {\n while (sz > 1 and\n outside(H[i], Intersection(deq[sz - 1], deq[sz - 2]))) {\n deq.pop_back();\n sz--;\n }\n while (sz > 1 and outside(H[i], Intersection(deq[0], deq[1]))) {\n deq.pop_front();\n sz--;\n }\n if (sz > 0 and fabs(cross(H[i].dir, deq[sz - 1].dir)) < eps) {\n if (dot(H[i].dir, deq[sz - 1].dir) < 0) {\n return {};\n }\n if (outside(H[i], deq[sz - 1].a)) {\n deq.pop_back();\n sz--;\n } else\n continue;\n }\n deq.push_back(H[i]);\n sz++;\n }\n\n while (sz > 2 and outside(deq[0], Intersection(deq[sz - 1], deq[sz - 2]))) {\n deq.pop_back();\n sz--;\n }\n while (sz > 2 and outside(deq[sz - 1], Intersection(deq[0], deq[1]))) {\n deq.pop_front();\n sz--;\n }\n if (sz < 3)\n return {};\n deq.push_back(deq.front());\n Poly ret;\n rep(i, 0, sz) ret.push_back(Intersection(deq[i], deq[i + 1]));\n return ret;\n}\n\nT Area(const Poly &a) {\n T res = 0;\n int n = a.size();\n rep(i, 0, n) res += cross(a[i], a[(i + 1) % n]);\n return fabs(res / 2.);\n}\nT Area(const Poly &a, const Circle &b) {\n int n = a.size();\n if (n < 3)\n return .0;\n auto rec = [&](auto self, const Circle &c, const Point &p1,\n const Point &p2) {\n Point va = c.p - p1, vb = c.p - p2;\n T f = cross(va, vb), res = .0;\n if (eq(f, .0))\n return res;\n if (max(abs(va), abs(vb)) < c.r + eps)\n return f;\n if (Dist(Segment(p1, p2), c.p) > c.r - eps)\n return c.r * c.r * arg(vb * conj(va));\n auto u = Intersection(c, Segment(p1, p2));\n Poly sub;\n sub.push_back(p1);\n for (auto &x : u)\n sub.push_back(x);\n sub.push_back(p2);\n rep(i, 0, sub.size() - 1) res += self(self, c, sub[i], sub[i + 1]);\n return res;\n };\n T res = .0;\n rep(i, 0, n) res += rec(rec, b, a[i], a[(i + 1) % n]);\n return fabs(res / 2.);\n}\nT Area(const Circle &a, const Circle &b) {\n T d = abs(a.p - b.p);\n if (d >= a.r + b.r - eps)\n return .0;\n if (d <= abs(a.r - b.r) + eps) {\n T r = min(a.r, b.r);\n return M_PI * r * r;\n }\n T ath = acos((a.r * a.r + d * d - b.r * b.r) / d / a.r / 2.);\n T res = a.r * a.r * (ath - sin(ath * 2) / 2.);\n T bth = acos((b.r * b.r + d * d - a.r * a.r) / d / b.r / 2.);\n res += b.r * b.r * (bth - sin(bth * 2) / 2.);\n return fabs(res);\n}\nbool isConvex(const Poly &a) {\n int n = a.size();\n int cur, pre, nxt;\n rep(i, 0, n) {\n pre = (i - 1 + n) % n;\n nxt = (i + 1) % n;\n cur = i;\n if (ccw(a[pre], a[cur], a[nxt]) == -1)\n return 0;\n }\n return 1;\n}\nint isContained(const Poly &a,\n const Point &b) { // 0:not contain,1:on edge,2:contain\n\n bool res = 0;\n int n = a.size();\n rep(i, 0, n) {\n Point p = a[i] - b, q = a[(i + 1) % n] - b;\n if (p.Y > q.Y)\n swap(p, q);\n if (p.Y < eps and eps < q.Y and cross(p, q) > eps)\n res ^= 1;\n if (eq(cross(p, q), .0) and dot(p, q) < eps)\n return 1;\n }\n return (res ? 2 : 0);\n}\nPoly ConvexHull(Poly &a) {\n sort(ALL(a), [](const Point &p, const Point &q) {\n return (eq(p.Y, q.Y) ? p.X < q.X : p.Y < q.Y);\n });\n a.erase(unique(ALL(a)), a.end());\n int n = a.size(), k = 0;\n Poly res(n * 2);\n for (int i = 0; i < n; res[k++] = a[i++]) {\n while (k >= 2 and\n cross(res[k - 1] - res[k - 2], a[i] - res[k - 1]) < eps)\n k--;\n }\n for (int i = n - 2, t = k + 1; i >= 0; res[k++] = a[i--]) {\n while (k >= t and\n cross(res[k - 1] - res[k - 2], a[i] - res[k - 1]) < eps)\n k--;\n }\n res.resize(k - 1);\n return res;\n}\nT Diam(const Poly &a) {\n int n = a.size();\n int x = 0, y = 0;\n rep(i, 1, n) {\n if (a[i].Y > a[x].Y)\n x = i;\n if (a[i].Y < a[y].Y)\n y = i;\n }\n T res = abs(a[x] - a[y]);\n int i = x, j = y;\n do {\n if (cross(a[(i + 1) % n] - a[i], a[(j + 1) % n] - a[j]) < 0)\n i = (i + 1) % n;\n else\n j = (j + 1) % n;\n chmax(res, abs(a[i] - a[j]));\n } while (i != x or j != y);\n return res;\n}\nPoly Cut(const Poly &a, const Line &l) {\n int n = a.size();\n Poly res;\n rep(i, 0, n) {\n Point p = a[i], q = a[(i + 1) % n];\n if (ccw(l.a, l.b, p) != -1)\n res.push_back(p);\n if (ccw(l.a, l.b, p) * ccw(l.a, l.b, q) < 0)\n res.push_back(Intersection(Line(p, q), l));\n }\n return res;\n}\n\nT Closest(Poly &a) {\n int n = a.size();\n if (n <= 1)\n return 0;\n sort(ALL(a), [&](Point a, Point b) {\n return (eq(a.X, b.X) ? a.Y < b.Y : a.X < b.X);\n });\n Poly buf(n);\n auto rec = [&](auto self, int lb, int rb) -> T {\n if (rb - lb <= 1)\n return (T)INF;\n int mid = (lb + rb) >> 1;\n auto x = a[mid].X;\n T res = min(self(self, lb, mid), self(self, mid, rb));\n inplace_merge(a.begin() + lb, a.begin() + mid, a.begin() + rb,\n [&](auto p, auto q) { return p.Y < q.Y; });\n int ptr = 0;\n rep(i, lb, rb) {\n if (abs(a[i].X - x) >= res)\n continue;\n rep(j, 0, ptr) {\n auto sub = a[i] - buf[ptr - 1 - j];\n if (sub.Y >= res)\n break;\n chmin(res, abs(sub));\n }\n buf[ptr++] = a[i];\n }\n return res;\n };\n return rec(rec, 0, n);\n}\n\nCircle Incircle(const Point &a, const Point &b, const Point &c) {\n T A = abs(b - c), B = abs(c - a), C = abs(a - b);\n Point p(A * a.X + B * b.X + C * c.X, A * a.Y + B * b.Y + C * c.Y);\n p /= (A + B + C);\n T r = Dist(Line(a, b), p);\n return Circle(p, r);\n}\nCircle Circumcircle(const Point &a, const Point &b, const Point &c) {\n Line l1((a + b) / 2., (a + b) / 2. + (b - a) * Point(0, 1));\n Line l2((b + c) / 2., (b + c) / 2. + (c - b) * Point(0, 1));\n Point p = Intersection(l1, l2);\n return Circle(p, abs(p - a));\n}\nPoly tangent(const Point &a, const Circle &b) {\n return Intersection(b, Circle(a, sqrt(norm(b.p - a) - b.r * b.r)));\n}\nvector<Line> tangent(const Circle &a, const Circle &b) {\n vector<Line> res;\n T d = abs(a.p - b.p);\n if (eq(d, 0.))\n return res;\n Point u = unit(b.p - a.p);\n Point v = u * Point(0, 1);\n for (int t : {-1, 1}) {\n T h = (a.r + b.r * t) / d;\n if (eq(h * h, 1.)) {\n res.push_back(Line(a.p + (h > 0 ? u : -u) * a.r,\n a.p + (h > 0 ? u : -u) * a.r + v));\n } else if (1 > h * h) {\n Point U = u * h, V = v * sqrt(1 - h * h);\n res.push_back(Line(a.p + (U + V) * a.r, b.p - (U + V) * (b.r * t)));\n res.push_back(Line(a.p + (U - V) * a.r, b.p - (U - V) * (b.r * t)));\n }\n }\n return res;\n}\n\n/**\n * @brief Geometry\n */\n\nvector<double> Calc(vector<Point> P) {\n int N = P.size();\n vector<double> Ret(N+1);\n Ret[0] = Ret[1] = 0.0;\n vector<Point> upper, lower;\n upper.push_back(P[0]), lower.push_back(P[0]);\n rep(i,1,N) {\n Ret[i+1] = Ret[i];\n while(upper.size() >= 2 && ccw(upper[upper.size()-2],upper.back(),P[i]) == 1) {\n Ret[i+1] -= Area({upper[upper.size()-2], upper.back(), lower.back()});\n upper.pop_back();\n }\n while(lower.size() >= 2 && ccw(lower[lower.size()-2],lower.back(),P[i]) == -1) {\n Ret[i+1] -= Area({lower[lower.size()-2], lower.back(), upper.back()});\n lower.pop_back();\n }\n Ret[i+1] += Area({lower.back(), upper.back(), P[i]});\n lower.push_back(P[i]), upper.push_back(P[i]);\n }\n return Ret;\n}\n\nint main() {\n int N;\n cin >> N;\n vector<Point> P(N), RP(N);\n rep(i,0,N) {\n double x, y;\n cin >> x >> y;\n P[i] = Point(x,y);\n RP[i] = Point(-x,y);\n }\n sort(ALL(P), [&](Point P1, Point P2){\n if (eq(P1.real(),P2.real())) return P1.imag() < P2.imag();\n return P1.real() < P2.real();\n });\n sort(ALL(RP), [&](Point P1, Point P2){\n if (eq(P1.real(),P2.real())) return P1.imag() < P2.imag();\n return P1.real() < P2.real();\n });\n auto A = Calc(P), RA = Calc(RP);\n reverse(ALL(RA));\n double ANS = RA[0];\n rep(i,0,N-1) {\n if (eq(P[i].real(),P[i+1].real())) continue;\n chmin(ANS, A[i+1]+RA[i+1]);\n }\n cout << round(ANS) << endl;\n}", "accuracy": 0.1, "time_ms": 10, "memory_kb": 4288, "score_of_the_acc": -0.031, "final_rank": 16 }, { "submission_id": "aoj_2786_9711336", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nconst long long INF = 15LL << 59;\n\nclass point {\npublic:\n\tlong long x, y;\n\tpoint() : x(0), y(0) {}\n\tpoint(long long x_, long long y_) : x(x_), y(y_) {}\n\tpoint& operator+=(const point& p) { x += p.x; y += p.y; return *this; }\n\tpoint& operator-=(const point& p) { x -= p.x; y -= p.y; return *this; }\n\tpoint operator+(const point& p) const { return point(*this) += p; }\n\tpoint operator-(const point& p) const { return point(*this) -= p; }\n\tlong long cross(const point& p) const { return x * p.y - y * p.x; }\n};\n\nvector<long long> subcalc(int N, const vector<point>& P) {\n\tvector<long long> ans = { 0 };\n\tlong long area = 0;\n\tvector<int> s1, s2;\n\tfor (int i = 0; i < N; i++) {\n\t\tif (s1.empty() || P[s1[s1.size() - 1]].y >= P[i].y) {\n\t\t\twhile (s1.size() >= 2) {\n\t\t\t\tint v1 = s1[s1.size() - 1];\n\t\t\t\tint v2 = s1[s1.size() - 2];\n\t\t\t\tif ((P[v1] - P[i]).cross(P[v2] - P[i]) >= 0) {\n\t\t\t\t\tarea -= P[v2].cross(P[v1]);\n\t\t\t\t\ts1.pop_back();\n\t\t\t\t} else {\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (s1.size() >= 1) {\n\t\t\t\tarea += P[s1[s1.size() - 1]].cross(P[i]);\n\t\t\t}\n\t\t\ts1.push_back(i);\n\t\t}\n\t\twhile (s2.size() >= 1 && P[s2[s2.size() - 1]].y >= P[i].y) {\n\t\t\tif (s2.size() >= 2) {\n\t\t\t\tarea -= P[s2[s2.size() - 2]].cross(P[s2[s2.size() - 1]]);\n\t\t\t}\n\t\t\ts2.pop_back();\n\t\t}\n\t\twhile (s2.size() >= 2) {\n\t\t\tint v1 = s2[s2.size() - 1];\n\t\t\tint v2 = s2[s2.size() - 2];\n\t\t\tif ((P[v1] - P[i]).cross(P[v2] - P[i]) >= 0) {\n\t\t\t\tarea -= P[v2].cross(P[v1]);\n\t\t\t\ts2.pop_back();\n\t\t\t} else {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (s2.size() >= 1) {\n\t\t\tarea += P[s2[s2.size() - 1]].cross(P[i]);\n\t\t}\n\t\ts2.push_back(i);\n\t\tif (i == N - 1 || P[i].x != P[i + 1].x) {\n\t\t\tans.push_back(area);\n\t\t}\n\t}\n\treturn ans;\n}\n\nvector<long long> calc(int N, vector<point> P) {\n\tvector<long long> res1 = subcalc(N, P);\n\tfor (int i = 0; i < N; i++) {\n\t\tP[i].y *= -1;\n\t}\n\tvector<long long> res2 = subcalc(N, P);\n\tvector<long long> res3(res1.size());\n\tfor (int i = 0; i < int(res1.size()); i++) {\n\t\tres3[i] = res1[i] + res2[i];\n\t}\n\treturn res3;\n}\n\nlong long solve(int N, vector<point> P) {\n\tsort(P.begin(), P.end(), [&](const point& p1, const point& p2) {\n\t\treturn p1.x != p2.x ? p1.x < p2.x : p1.y < p2.y;\n\t});\n\tvector<long long> res1 = calc(N, P);\n\treverse(P.begin(), P.end());\n\tfor (int i = 0; i < N; i++) {\n\t\tP[i].x *= -1;\n\t\tP[i].y *= -1;\n\t}\n\tvector<long long> res2 = calc(N, P);\n\treverse(res2.begin(), res2.end());\n\tlong long ans = INF;\n\tfor (int i = 0; i < int(res1.size()); i++) {\n\t\tans = min(ans, res1[i] + res2[i]);\n\t}\n\treturn ans;\n}\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<point> P(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> P[i].x >> P[i].y;\n\t}\n\tlong long ans = solve(N, P);\n\tcout << (ans + 1) / 2 << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 11160, "score_of_the_acc": -1.0282, "final_rank": 4 }, { "submission_id": "aoj_2786_9711332", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nconst long long INF = 7LL << 59;\n\nclass point {\npublic:\n\tlong long x, y;\n\tpoint() : x(0), y(0) {}\n\tpoint(long long x_, long long y_) : x(x_), y(y_) {}\n\tpoint& operator+=(const point& p) { x += p.x; y += p.y; return *this; }\n\tpoint& operator-=(const point& p) { x -= p.x; y -= p.y; return *this; }\n\tpoint operator+(const point& p) const { return point(*this) += p; }\n\tpoint operator-(const point& p) const { return point(*this) -= p; }\n\tlong long cross(const point& p) const { return x * p.y - y * p.x; }\n};\n\nvector<long long> subcalc(int N, const vector<point>& P) {\n\tvector<long long> ans = { 0 };\n\tlong long area = 0;\n\tvector<int> s1, s2;\n\tfor (int i = 0; i < N; i++) {\n\t\tif (s1.empty() || P[s1[s1.size() - 1]].y >= P[i].y) {\n\t\t\twhile (s1.size() >= 2) {\n\t\t\t\tint v1 = s1[s1.size() - 1];\n\t\t\t\tint v2 = s1[s1.size() - 2];\n\t\t\t\tif ((P[v1] - P[i]).cross(P[v2] - P[i]) >= 0) {\n\t\t\t\t\tarea -= P[v2].cross(P[v1]);\n\t\t\t\t\ts1.pop_back();\n\t\t\t\t} else {\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (s1.size() >= 1) {\n\t\t\t\tarea += P[s1[s1.size() - 1]].cross(P[i]);\n\t\t\t}\n\t\t\ts1.push_back(i);\n\t\t}\n\t\twhile (s2.size() >= 1 && P[s2[s2.size() - 1]].y >= P[i].y) {\n\t\t\tif (s2.size() >= 2) {\n\t\t\t\tarea -= P[s2[s2.size() - 2]].cross(P[s2[s2.size() - 1]]);\n\t\t\t}\n\t\t\ts2.pop_back();\n\t\t}\n\t\twhile (s2.size() >= 2) {\n\t\t\tint v1 = s2[s2.size() - 1];\n\t\t\tint v2 = s2[s2.size() - 2];\n\t\t\tif ((P[v1] - P[i]).cross(P[v2] - P[i]) >= 0) {\n\t\t\t\tarea -= P[v2].cross(P[v1]);\n\t\t\t\ts2.pop_back();\n\t\t\t} else {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (s2.size() >= 1) {\n\t\t\tarea += P[s2[s2.size() - 1]].cross(P[i]);\n\t\t}\n\t\ts2.push_back(i);\n\t\tif (i == N - 1 || P[i].x != P[i + 1].x) {\n\t\t\tans.push_back(area);\n\t\t}\n\t}\n\treturn ans;\n}\n\nvector<long long> calc(int N, vector<point> P) {\n\tvector<long long> res1 = subcalc(N, P);\n\tfor (int i = 0; i < N; i++) {\n\t\tP[i].y *= -1;\n\t}\n\tvector<long long> res2 = subcalc(N, P);\n\tvector<long long> res3(res1.size());\n\tfor (int i = 0; i < int(res1.size()); i++) {\n\t\tres3[i] = res1[i] + res2[i];\n\t}\n\treturn res3;\n}\n\nlong long solve(int N, vector<point> P) {\n\tsort(P.begin(), P.end(), [&](const point& p1, const point& p2) {\n\t\treturn p1.x != p2.x ? p1.x < p2.x : p1.y < p2.y;\n\t});\n\tvector<long long> res1 = calc(N, P);\n\treverse(P.begin(), P.end());\n\tfor (int i = 0; i < N; i++) {\n\t\tP[i].x *= -1;\n\t\tP[i].y *= -1;\n\t}\n\tvector<long long> res2 = calc(N, P);\n\treverse(res2.begin(), res2.end());\n\tlong long ans = INF;\n\tfor (int i = 0; i < int(res1.size()); i++) {\n\t\tans = min(ans, res1[i] + res2[i]);\n\t}\n\treturn ans;\n}\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<point> P(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> P[i].x >> P[i].y;\n\t}\n\tlong long ans = solve(N, P);\n\tcout << (ans + 1) / 2 << endl;\n\treturn 0;\n}", "accuracy": 0.1, "time_ms": 10, "memory_kb": 4504, "score_of_the_acc": -0.0444, "final_rank": 17 }, { "submission_id": "aoj_2786_9711303", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nconst long long INF = 3LL << 59;\n\nclass point {\npublic:\n\tlong long x, y;\n\tpoint() : x(0), y(0) {}\n\tpoint(long long x_, long long y_) : x(x_), y(y_) {}\n\tpoint& operator+=(const point& p) { x += p.x; y += p.y; return *this; }\n\tpoint& operator-=(const point& p) { x -= p.x; y -= p.y; return *this; }\n\tpoint operator+(const point& p) const { return point(*this) += p; }\n\tpoint operator-(const point& p) const { return point(*this) -= p; }\n\tlong long cross(const point& p) const { return x * p.y - y * p.x; }\n};\n\n#include <string>\n\nstring to_string(const vector<int>& arr) {\n\tstring res = \"[\";\n\tfor (int i = 0; i < arr.size(); i++) {\n\t\tif (i != 0) {\n\t\t\tres += \", \";\n\t\t}\n\t\tres += to_string(arr[i]);\n\t}\n\tres += \"]\";\n\treturn res;\n}\n\nvector<long long> subcalc(int N, const vector<point>& P) {\n\tvector<long long> ans = { 0 };\n\tlong long area = 0;\n\tvector<int> s1, s2;\n\tfor (int i = 0; i < N; i++) {\n\t\tif (s1.empty() || P[s1[s1.size() - 1]].y >= P[i].y) {\n\t\t\twhile (s1.size() >= 2) {\n\t\t\t\tint v1 = s1[s1.size() - 1];\n\t\t\t\tint v2 = s1[s1.size() - 2];\n\t\t\t\tif ((P[v1] - P[i]).cross(P[v2] - P[i]) >= 0) {\n\t\t\t\t\tarea -= P[v2].cross(P[v1]);\n\t\t\t\t\ts1.pop_back();\n\t\t\t\t} else {\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (s1.size() >= 1) {\n\t\t\t\tarea += P[s1[s1.size() - 1]].cross(P[i]);\n\t\t\t}\n\t\t\ts1.push_back(i);\n\t\t}\n\t\twhile (s2.size() >= 1 && P[s2[s2.size() - 1]].y >= P[i].y) {\n\t\t\tif (s2.size() >= 2) {\n\t\t\t\tarea -= P[s2[s2.size() - 2]].cross(P[s2[s2.size() - 1]]);\n\t\t\t}\n\t\t\ts2.pop_back();\n\t\t}\n\t\twhile (s2.size() >= 2) {\n\t\t\tint v1 = s2[s2.size() - 1];\n\t\t\tint v2 = s2[s2.size() - 2];\n\t\t\tif ((P[v1] - P[i]).cross(P[v2] - P[i]) >= 0) {\n\t\t\t\tarea -= P[v2].cross(P[v1]);\n\t\t\t\ts2.pop_back();\n\t\t\t} else {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (s2.size() >= 1) {\n\t\t\tarea += P[s2[s2.size() - 1]].cross(P[i]);\n\t\t}\n\t\ts2.push_back(i);\n\t\tif (i == N - 1 || P[i].x != P[i + 1].x) {\n\t\t\tans.push_back(area);\n\t\t}\n\t}\n\treturn ans;\n}\n\nvector<long long> calc(int N, vector<point> P) {\n\tvector<long long> res1 = subcalc(N, P);\n\tfor (int i = 0; i < N; i++) {\n\t\tP[i].y *= -1;\n\t}\n\tvector<long long> res2 = subcalc(N, P);\n\tvector<long long> res3(res1.size());\n\tfor (int i = 0; i < int(res1.size()); i++) {\n\t\tres3[i] = res1[i] + res2[i];\n\t}\n\treturn res3;\n}\n\nlong long solve(int N, vector<point> P) {\n\tsort(P.begin(), P.end(), [&](const point& p1, const point& p2) {\n\t\treturn p1.x != p2.x ? p1.x < p2.x : p1.y < p2.y;\n\t});\n\tvector<long long> res1 = calc(N, P);\n\treverse(P.begin(), P.end());\n\tfor (int i = 0; i < N; i++) {\n\t\tP[i].x *= -1;\n\t\tP[i].y *= -1;\n\t}\n\tvector<long long> res2 = calc(N, P);\n\treverse(res2.begin(), res2.end());\n\tlong long ans = INF;\n\tfor (int i = 0; i < int(res1.size()); i++) {\n\t\tans = min(ans, res1[i] + res2[i]);\n\t}\n\treturn ans;\n}\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<point> P(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> P[i].x >> P[i].y;\n\t}\n\tlong long ans = solve(N, P);\n\tcout << (ans + 1) / 2 << endl;\n\treturn 0;\n}", "accuracy": 0.1, "time_ms": 10, "memory_kb": 4504, "score_of_the_acc": -0.0444, "final_rank": 17 }, { "submission_id": "aoj_2786_9669250", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define sz(A) ((ll)A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (lower_bound(ALL(A),x)-A.begin())\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll N;cin>>N;\n vector<pi>A(N);\n REP(i,N)cin>>A[i].first>>A[i].second;\n vi X;\n REP(i,N)X.emplace_back(A[i].first);\n sort(ALL(X));\n X.erase(unique(ALL(X)),X.end());\n vi D(sz(X),1e18),U(sz(X),-1e18);\n REP(i,N){\n int x=LB(X,A[i].first);\n D[x]=min(D[x],A[i].second);\n U[x]=max(U[x],A[i].second);\n }\n N=X.size();\n\n vi ans1(N+1),ans2(N+1);\n auto f=[](pi a,pi b){\n return a.first*b.second-a.second*b.first;\n };\n {\n stack<pi>upper,lower;\n __int128 area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n area+=f(q,p);\n lower.emplace(p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n ans1[i+1]=area;\n assert(area>=0);\n }\n }\n {\n REP(i,N)X[i]=-X[i];\n reverse(ALL(X));\n reverse(ALL(D));\n reverse(ALL(U));\n stack<pi>upper,lower;\n __int128 area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n lower.emplace(p);\n area+=f(q,p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n assert(area>=0);\n ans2[i+1]=area;\n }\n }\n ll ans=9e18;\n REP(i,N+1)ans=min(ans,ans1[i]+ans2[N-i]);\n cout<<(ans+1)/2<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 10056, "score_of_the_acc": -1.1026, "final_rank": 5 }, { "submission_id": "aoj_2786_9669192", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define sz(A) ((ll)A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (lower_bound(ALL(A),x)-A.begin())\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll N;cin>>N;\n vector<pi>A(N);\n REP(i,N)cin>>A[i].first>>A[i].second;\n vi X;\n REP(i,N)X.emplace_back(A[i].first);\n sort(ALL(X));\n X.erase(unique(ALL(X)),X.end());\n vi D(sz(X),1e18),U(sz(X),-1e18);\n REP(i,N){\n int x=LB(X,A[i].first);\n D[x]=min(D[x],A[i].second);\n U[x]=max(U[x],A[i].second);\n }\n N=X.size();\n\n vi ans1(N+1),ans2(N+1);\n auto f=[](pi a,pi b){\n return a.first*b.second-a.second*b.first;\n };\n {\n stack<pi>upper,lower;\n __int128 area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n area+=f(q,p);\n lower.emplace(p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n ans1[i+1]=area;\n }\n }\n {\n REP(i,N)X[i]=-X[i];\n reverse(ALL(X));\n reverse(ALL(D));\n reverse(ALL(U));\n stack<pi>upper,lower;\n __int128 area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n lower.emplace(p);\n area+=f(q,p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n ans2[i+1]=area;\n }\n }\n ll ans=5e18;\n REP(i,N+1)ans=min(ans,ans1[i]+ans2[N-i]);\n cout<<(ans+1)/2<<endl;\n return 0;\n}", "accuracy": 0.1, "time_ms": 10, "memory_kb": 3788, "score_of_the_acc": 0, "final_rank": 13 }, { "submission_id": "aoj_2786_9669178", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define sz(A) ((ll)A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (lower_bound(ALL(A),x)-A.begin())\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll N;cin>>N;\n vector<pi>A(N);\n REP(i,N)cin>>A[i].first>>A[i].second;\n vi X;\n REP(i,N)X.emplace_back(A[i].first);\n sort(ALL(X));\n X.erase(unique(ALL(X)),X.end());\n vi D(sz(X),1e18),U(sz(X),-1e18);\n REP(i,N){\n int x=LB(X,A[i].first);\n D[x]=min(D[x],A[i].second);\n U[x]=max(U[x],A[i].second);\n }\n N=X.size();\n\n vi ans1(N+1),ans2(N+1);\n auto f=[](pi a,pi b){\n return a.first*b.second-a.second*b.first;\n };\n {\n stack<pi>upper,lower;\n ll area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n area+=f(q,p);\n lower.emplace(p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n ans1[i+1]=area;\n }\n }\n {\n REP(i,N)X[i]=-X[i];\n reverse(ALL(X));\n reverse(ALL(D));\n reverse(ALL(U));\n stack<pi>upper,lower;\n ll area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n lower.emplace(p);\n area+=f(q,p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n ans2[i+1]+=area;\n }\n }\n ll ans=5e18;\n REP(i,N+1)ans=min(ans,ans1[i]+ans2[N-i]);\n cout<<(ans+1)/2<<endl;\n return 0;\n}", "accuracy": 0.1, "time_ms": 10, "memory_kb": 3928, "score_of_the_acc": -0.0087, "final_rank": 15 }, { "submission_id": "aoj_2786_9669174", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define sz(A) ((ll)A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (lower_bound(ALL(A),x)-A.begin())\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll N;cin>>N;\n vector<pi>A(N);\n REP(i,N)cin>>A[i].first>>A[i].second;\n vi X;\n REP(i,N)X.emplace_back(A[i].first);\n sort(ALL(X));\n X.erase(unique(ALL(X)),X.end());\n vi D(sz(X),1e18),U(sz(X),-1e18);\n REP(i,N){\n int x=LB(X,A[i].first);\n D[x]=min(D[x],A[i].second);\n U[x]=max(U[x],A[i].second);\n }\n N=X.size();\n\n vi ans1(N+1),ans2(N+1);\n auto f=[](pi a,pi b){\n return a.first*b.second-a.second*b.first;\n };\n {\n stack<pi>upper,lower;\n ll area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n area+=f(q,p);\n lower.emplace(p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n ans1[i+1]=area;\n }\n }\n {\n REP(i,N)X[i]=-X[i];\n reverse(ALL(X));\n reverse(ALL(D));\n reverse(ALL(U));\n stack<pi>upper,lower;\n ll area=0;\n upper.emplace(pi(X[0],U[0]));\n lower.emplace(pi(X[0],D[0]));\n FOR(i,1,N){\n area-=f(lower.top(),upper.top());\n while(sz(upper)>1){\n auto p=upper.top();upper.pop();\n auto q=upper.top();\n area-=f(p,q);\n if(f(pi(p.first-q.first,p.second-q.second),pi(X[i]-q.first,U[i]-q.second))>=0)continue;\n upper.emplace(p);\n area+=f(p,q);\n break;\n }\n area+=f(pi(X[i],U[i]),upper.top());\n upper.emplace(pi(X[i],U[i]));\n while(sz(lower)>1){\n auto p=lower.top();lower.pop();\n auto q=lower.top();\n area-=f(q,p);\n if(f(pi(X[i]-q.first,D[i]-q.second),pi(p.first-q.first,p.second-q.second))>=0)continue;\n lower.emplace(p);\n area+=f(q,p);\n break;\n }\n area+=f(lower.top(),pi(X[i],D[i]));\n lower.emplace(pi(X[i],D[i]));\n area+=f(pi(X[i],D[i]),pi(X[i],U[i]));\n ans2[i+1]+=area;\n }\n }\n //REP(i,N+1)cout<<ans1[i]<<\" \";cout<<endl;\n //REP(i,N+1)cout<<ans2[i]<<\" \";cout<<endl;\n ll ans=1e18;\n REP(i,N+1)ans=min(ans,ans1[i]+ans2[N-i]);\n cout<<(ans+1)/2<<endl;\n return 0;\n}", "accuracy": 0.1, "time_ms": 10, "memory_kb": 3912, "score_of_the_acc": -0.0077, "final_rank": 14 }, { "submission_id": "aoj_2786_7181025", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,b) for(int i=a;i<b;i++)\nusing ll = long long;\ntemplate<class T> bool chmin(T &a,const T b){if(a>b){a=b;return 1;}return 0;}\ntemplate<class T> bool chmax(T &a,const T b){if(a<b){a=b;return 1;}return 0;}\nconst int INF = (1<<30)-1;\n#define all(p) p.begin(),p.end()\nconst int mod=998244353;\n\nint main(){\n\tint N;\n\tcin>>N;\n\tset<ll> s;\n\tvector<pair<ll,ll>> p(N);\n\trep(i,0,N){\n\t\tcin>>p[i].first>>p[i].second;\n\t\ts.insert(p[i].first);\n\t}\n\tsort(all(p));\n\tmap<int,int> m;\n\tvector<ll> order={167};\n\tint len=1;\n\tfor(auto x:s) m[x]=len,len++,order.push_back(x);\n\torder.push_back(167);\n\tvector<ll> U(len+1,-INF),D(len+1,-INF);\n\trep(i,0,N){\n\t\tint a=m[p[i].first];\n\t\tchmax(U[a],p[i].second);\n\t\tchmax(D[a],-p[i].second);\n\t}\n\tauto f=[&]()->vector<ll>{\n\t\tvector<ll> ans(len+1);\n\t\tvector<int> p(len+1);\n\t\tint k=0;\n\t\trep(i,1,len){\n\t\t\tans[i]=ans[i-1];\n\t\t\tif(k==0){\n\t\t\t\tp[k]=i;\n\t\t\t\tk++;\n\t\t\t}else if(k==1){\n\t\t\t\tp[k]=i;\n\t\t\t\tk++;\n\t\t\t\tans[i]+=abs(order[i]-order[i-1])*(U[i]+U[i-1]);\n\t\t\t}else{\n\t\t\t\twhile(2<=k){\n\t\t\t\t\tint a=p[k-2],b=p[k-1],c=i;\n\t\t\t\t\t//U[b]<=(U[a]*dist(b,c)+U[c]*dist(a,b))/dist(a,c);\n\t\t\t\t\tif(U[b]*abs(order[a]-order[c])<=U[a]*abs(order[b]-order[c])+U[c]*abs(order[b]-order[a])){\n\t\t\t\t\t\tans[i]-=abs(order[b]-order[a])*(U[a]+U[b]);\n\t\t\t\t\t\tk--;\n\t\t\t\t\t}\n\t\t\t\t\telse break;\n\t\t\t\t}\n\t\t\t\tp[k]=i;\n\t\t\t\tans[i]+=abs(order[i]-order[p[k-1]])*(U[i]+U[p[k-1]]);\n\t\t\t\tk++;\n\t\t\t}\n\t\t}\n\t\treturn ans;\n\t};\n\tvector<vector<ll>> area(4);\n\trep(i,0,2){\n\t\trep(j,0,2){\n\t\t\tarea[i*2+j]=f();\n\t\t\tswap(U,D);\n\t\t}\n\t\treverse(all(order));\n\t\treverse(all(U));\n\t\treverse(all(D));\n\t}\n\tll ans=area[0][len-1]+area[1][len-1];\n\trep(i,1,len-1){\n\t\tchmin(ans,area[0][i]+area[1][i]+area[2][len-1-i]+area[3][len-1-i]);\n\t}\n\tcout<<(1+ans)/2<<\"\\n\";\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 19928, "score_of_the_acc": -2, "final_rank": 7 }, { "submission_id": "aoj_2786_7180959", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,b) for(int i=a;i<b;i++)\nusing ll = long long;\ntemplate<class T> bool chmin(T &a,const T b){if(a>b){a=b;return 1;}return 0;}\ntemplate<class T> bool chmax(T &a,const T b){if(a<b){a=b;return 1;}return 0;}\nconst int INF = (1<<30)-1;\n#define all(p) p.begin(),p.end()\nconst int mod=998244353;\n\nint main(){\n\tint N;\n\tcin>>N;\n\tset<ll> s;\n\tvector<pair<ll,ll>> p(N);\n\trep(i,0,N){\n\t\tcin>>p[i].first>>p[i].second;\n\t\ts.insert(p[i].first);\n\t}\n\tsort(all(p));\n\tmap<int,int> m;\n\tvector<ll> order={167};\n\tint len=1;\n\tfor(auto x:s) m[x]=len,len++,order.push_back(x);\n\torder.push_back(167);\n\tvector<ll> U(len+1,-INF),D(len+1,-INF);\n\trep(i,0,N){\n\t\tint a=m[p[i].first];\n\t\tchmax(U[a],p[i].second);\n\t\tchmax(D[a],-p[i].second);\n\t}\n\tauto f=[&]()->vector<ll>{\n\t\tvector<ll> ans(len+1);\n\t\tvector<int> p(len+1);\n\t\tint k=0;\n\t\trep(i,1,len){\n\t\t\tans[i]=ans[i-1];\n\t\t\tif(k==0){\n\t\t\t\tp[k]=i;\n\t\t\t\tk++;\n\t\t\t}else if(k==1){\n\t\t\t\tp[k]=i;\n\t\t\t\tk++;\n\t\t\t\tans[i]+=abs(order[i]-order[i-1])*(U[i]+U[i-1]);\n\t\t\t}else{\n\t\t\t\twhile(2<=k){\n\t\t\t\t\tint a=p[k-2],b=p[k-1],c=i;\n\t\t\t\t\t//U[b]<=(U[a]*dist(b,c)+U[c]*dist(a,b))/dist(a,c);\n\t\t\t\t\tif(U[b]*abs(order[a]-order[c])<=U[a]*abs(order[b]-order[c])+U[c]*abs(order[b]-order[a])){\n\t\t\t\t\t\tans[i]-=abs(order[b]-order[a])*(U[a]+U[b]);\n\t\t\t\t\t\tk--;\n\t\t\t\t\t}\n\t\t\t\t\telse break;\n\t\t\t\t}\n\t\t\t\tp[k]=i;\n\t\t\t\tans[i]+=abs(order[i]-order[p[k-1]])*(U[i]+U[p[k-1]]);\n\t\t\t\tk++;\n\t\t\t}\n\t\t}\n\t\treturn ans;\n\t};\n\tvector<vector<ll>> area(4);\n\trep(i,0,2){\n\t\trep(j,0,2){\n\t\t\tarea[i*2+j]=f();\n\t\t\tswap(U,D);\n\t\t}\n\t\treverse(all(order));\n\t\treverse(all(U));\n\t\treverse(all(D));\n\t}\n\tll ans=(1ll<<62);\n\trep(i,0,len){\n\t\tchmin(ans,area[0][i]+area[1][i]+area[2][len-1-i]+area[3][len-1-i]);\n\t}\n\tcout<<(1+ans)/2<<\"\\n\";\n}", "accuracy": 0.1, "time_ms": 10, "memory_kb": 5856, "score_of_the_acc": -0.1281, "final_rank": 19 }, { "submission_id": "aoj_2786_6790609", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)\n#define all(x) begin(x), end(x)\ntemplate <typename T> bool chmax(T& a, const T& b) { return a < b ? (a = b, 1) : 0; }\ntemplate <typename T> bool chmin(T& a, const T& b) { return a > b ? (a = b, 1) : 0; }\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int) v.size(); ++i) {\n os << v[i];\n if (i < (int) v.size() - 1) os << \" \";\n }\n return os;\n}\n\nusing T = ll;\nusing Vec = std::complex<T>;\n\nconst T PI = std::acos(-1);\n\nconstexpr T eps = 1e-10;\ninline bool eq(T a, T b) { return std::abs(a - b) <= eps; }\ninline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }\ninline bool lt(T a, T b) { return a < b - eps; }\ninline bool leq(T a, T b) { return a <= b + eps; }\n\nstd::istream& operator>>(std::istream& is, Vec& p) {\n T x, y;\n is >> x >> y;\n p = {x, y};\n return is;\n}\n\nstruct Line {\n Vec p1, p2;\n Line() = default;\n Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Segment {\n Vec p1, p2;\n Segment() = default;\n Segment(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Circle {\n Vec c;\n T r;\n Circle() = default;\n Circle(const Vec& c, T r) : c(c), r(r) {}\n};\n\nusing Polygon = std::vector<Vec>;\n\nT dot(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).real();\n}\n\nT cross(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).imag();\n}\n\nVec rot(const Vec& a, T ang) {\n return a * Vec(std::cos(ang), std::sin(ang));\n}\n\nVec perp(const Vec& a) {\n return Vec(-a.imag(), a.real());\n}\n\nVec projection(const Line& l, const Vec& p) {\n return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());\n}\n\nVec reflection(const Line& l, const Vec& p) {\n return T(2) * projection(l, p) - p;\n}\n\n// 0: collinear\n// 1: counter-clockwise\n// -1: clockwise\nint ccw(const Vec& a, const Vec& b, const Vec& c) {\n if (eq(cross(b - a, c - a), 0)) return 0;\n if (lt(cross(b - a, c - a), 0)) return -1;\n return 1;\n}\n\nvoid sort_by_arg(std::vector<Vec>& pts) {\n std::sort(pts.begin(), pts.end(), [&](auto& p, auto& q) {\n if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);\n if (cross(p, q) == 0) {\n if (p == Vec(0, 0)) return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));\n if (q == Vec(0, 0)) return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));\n return (p.real() > q.real());\n }\n return (cross(p, q) > 0);\n });\n}\n\nstd::vector<Vec> convex_hull(std::vector<Vec>& pts) {\n int n = pts.size();\n if (n == 1) return pts;\n std::sort(pts.begin(), pts.end(), [](const Vec& v1, const Vec& v2) {\n return (v1.imag() != v2.imag()) ? (v1.imag() < v2.imag()) : (v1.real() < v2.real());\n });\n int k = 0; // the number of vertices in the convex hull\n std::vector<Vec> ch(2 * n);\n // right\n for (int i = 0; i < n; ++i) {\n while (k > 1 && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n int t = k;\n // left\n for (int i = n - 2; i >= 0; --i) {\n while (k > t && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n ch.resize(k - 1);\n return ch;\n}\n\n\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin >> N;\n vector<Vec> pts(N);\n for (auto& p : pts) cin >> p;\n\n if (N <= 2) {\n cout << 0 << endl;\n return 0;\n }\n\n auto calc = [&](vector<Vec> pts) {\n sort(all(pts), [&](auto& p1, auto& p2) {\n if (p1.real() == p2.real()) return p1.imag() < p2.imag();\n return p1.real() < p2.real();\n });\n vector<ll> area(N+1, 4e18);\n vector<Vec> lower, upper;\n lower.push_back(pts[0]);\n upper.push_back(pts[0]);\n area[0] = area[1] = 0;\n ll a = 0;\n for (int i = 1; i < N; ) {\n int j = i;\n while (j < N && pts[i].real() == pts[j].real()) {\n while (lower.size() >= 2 && leq(cross(lower.back()-lower[lower.size()-2], pts[j]-lower.back()), 0)) {\n a -= abs(cross(lower[lower.size()-2]-lower.back(), upper.back()-lower.back()));\n lower.pop_back();\n }\n while (upper.size() >= 2 && leq(0, cross(upper.back()-upper[upper.size()-2], pts[j]-upper.back()))) {\n a -= abs(cross(upper[upper.size()-2]-upper.back(), lower.back()-upper.back()));\n upper.pop_back();\n }\n a += abs(cross(upper.back()-pts[j], lower.back()-pts[j]));\n upper.push_back(pts[j]);\n lower.push_back(pts[j]);\n ++j;\n }\n area[j] = a;\n i = j;\n }\n return area;\n };\n\n auto left = calc(pts);\n rep(i,0,N) pts[i] = Vec(-pts[i].real(), pts[i].imag());\n auto right = calc(pts);\n ll ans = 4e18;\n rep(i,0,N+1) {\n chmin(ans, (left[i]+right[N-i]+1)/2);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 10316, "score_of_the_acc": -0.5473, "final_rank": 2 }, { "submission_id": "aoj_2786_6790458", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)\n#define all(x) begin(x), end(x)\ntemplate <typename T> bool chmax(T& a, const T& b) { return a < b ? (a = b, 1) : 0; }\ntemplate <typename T> bool chmin(T& a, const T& b) { return a > b ? (a = b, 1) : 0; }\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int) v.size(); ++i) {\n os << v[i];\n if (i < (int) v.size() - 1) os << \" \";\n }\n return os;\n}\n\nusing T = ll;\nusing Vec = std::complex<T>;\n\nconst T PI = std::acos(-1);\n\nconstexpr T eps = 1e-10;\ninline bool eq(T a, T b) { return std::abs(a - b) <= eps; }\ninline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }\ninline bool lt(T a, T b) { return a < b - eps; }\ninline bool leq(T a, T b) { return a <= b + eps; }\n\nstd::istream& operator>>(std::istream& is, Vec& p) {\n T x, y;\n is >> x >> y;\n p = {x, y};\n return is;\n}\n\nstruct Line {\n Vec p1, p2;\n Line() = default;\n Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Segment {\n Vec p1, p2;\n Segment() = default;\n Segment(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Circle {\n Vec c;\n T r;\n Circle() = default;\n Circle(const Vec& c, T r) : c(c), r(r) {}\n};\n\nusing Polygon = std::vector<Vec>;\n\nT dot(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).real();\n}\n\nT cross(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).imag();\n}\n\nVec rot(const Vec& a, T ang) {\n return a * Vec(std::cos(ang), std::sin(ang));\n}\n\nVec perp(const Vec& a) {\n return Vec(-a.imag(), a.real());\n}\n\nVec projection(const Line& l, const Vec& p) {\n return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());\n}\n\nVec reflection(const Line& l, const Vec& p) {\n return T(2) * projection(l, p) - p;\n}\n\n// 0: collinear\n// 1: counter-clockwise\n// -1: clockwise\nint ccw(const Vec& a, const Vec& b, const Vec& c) {\n if (eq(cross(b - a, c - a), 0)) return 0;\n if (lt(cross(b - a, c - a), 0)) return -1;\n return 1;\n}\n\nvoid sort_by_arg(std::vector<Vec>& pts) {\n std::sort(pts.begin(), pts.end(), [&](auto& p, auto& q) {\n if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);\n if (cross(p, q) == 0) {\n if (p == Vec(0, 0)) return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));\n if (q == Vec(0, 0)) return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));\n return (p.real() > q.real());\n }\n return (cross(p, q) > 0);\n });\n}\n\nstd::vector<Vec> convex_hull(std::vector<Vec>& pts) {\n int n = pts.size();\n if (n == 1) return pts;\n std::sort(pts.begin(), pts.end(), [](const Vec& v1, const Vec& v2) {\n return (v1.imag() != v2.imag()) ? (v1.imag() < v2.imag()) : (v1.real() < v2.real());\n });\n int k = 0; // the number of vertices in the convex hull\n std::vector<Vec> ch(2 * n);\n // right\n for (int i = 0; i < n; ++i) {\n while (k > 1 && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n int t = k;\n // left\n for (int i = n - 2; i >= 0; --i) {\n while (k > t && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n ch.resize(k - 1);\n return ch;\n}\n\n\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin >> N;\n vector<Vec> pts(N);\n for (auto& p : pts) cin >> p;\n\n if (N <= 2) {\n cout << 0 << endl;\n return 0;\n }\n\n auto calc = [&](vector<Vec> pts) {\n sort(all(pts), [&](auto& p1, auto& p2) {\n if (p1.real() == p2.real()) p1.imag() < p2.imag();\n return p1.real() < p2.real();\n });\n vector<ll> area(N+1, 4e18);\n vector<Vec> lower, upper;\n lower.push_back(pts[0]);\n upper.push_back(pts[0]);\n area[0] = area[1] = 0;\n ll a = 0;\n for (int i = 1; i < N; ) {\n int j = i;\n while (j < N && pts[i].real() == pts[j].real()) {\n while (lower.size() >= 2 && leq(cross(lower.back()-lower[lower.size()-2], pts[j]-lower.back()), 0)) {\n a -= abs(cross(lower[lower.size()-2]-lower.back(), upper.back()-lower.back()));\n lower.pop_back();\n }\n while (upper.size() >= 2 && leq(0, cross(upper.back()-upper[upper.size()-2], pts[j]-upper.back()))) {\n a -= abs(cross(upper[upper.size()-2]-upper.back(), lower.back()-upper.back()));\n upper.pop_back();\n }\n a += abs(cross(upper.back()-pts[j], lower.back()-pts[j]));\n upper.push_back(pts[j]);\n lower.push_back(pts[j]);\n ++j;\n }\n area[j] = a;\n i = j;\n }\n return area;\n };\n\n auto left = calc(pts);\n rep(i,0,N) pts[i] = Vec(-pts[i].real(), pts[i].imag());\n auto right = calc(pts);\n ll ans = 4e18;\n rep(i,0,N+1) {\n chmin(ans, (left[i]+right[N-i]+1)/2);\n }\n cout << ans << endl;\n}", "accuracy": 0.675, "time_ms": 20, "memory_kb": 7120, "score_of_the_acc": -0.3493, "final_rank": 9 }, { "submission_id": "aoj_2786_6790415", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)\n#define all(x) begin(x), end(x)\ntemplate <typename T> bool chmax(T& a, const T& b) { return a < b ? (a = b, 1) : 0; }\ntemplate <typename T> bool chmin(T& a, const T& b) { return a > b ? (a = b, 1) : 0; }\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int) v.size(); ++i) {\n os << v[i];\n if (i < (int) v.size() - 1) os << \" \";\n }\n return os;\n}\n\nusing T = ll;\nusing Vec = std::complex<T>;\n\nconst T PI = std::acos(-1);\n\nconstexpr T eps = 1e-10;\ninline bool eq(T a, T b) { return std::abs(a - b) <= eps; }\ninline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }\ninline bool lt(T a, T b) { return a < b - eps; }\ninline bool leq(T a, T b) { return a <= b + eps; }\n\nstd::istream& operator>>(std::istream& is, Vec& p) {\n T x, y;\n is >> x >> y;\n p = {x, y};\n return is;\n}\n\nstruct Line {\n Vec p1, p2;\n Line() = default;\n Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Segment {\n Vec p1, p2;\n Segment() = default;\n Segment(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Circle {\n Vec c;\n T r;\n Circle() = default;\n Circle(const Vec& c, T r) : c(c), r(r) {}\n};\n\nusing Polygon = std::vector<Vec>;\n\nT dot(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).real();\n}\n\nT cross(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).imag();\n}\n\nVec rot(const Vec& a, T ang) {\n return a * Vec(std::cos(ang), std::sin(ang));\n}\n\nVec perp(const Vec& a) {\n return Vec(-a.imag(), a.real());\n}\n\nVec projection(const Line& l, const Vec& p) {\n return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());\n}\n\nVec reflection(const Line& l, const Vec& p) {\n return T(2) * projection(l, p) - p;\n}\n\n// 0: collinear\n// 1: counter-clockwise\n// -1: clockwise\nint ccw(const Vec& a, const Vec& b, const Vec& c) {\n if (eq(cross(b - a, c - a), 0)) return 0;\n if (lt(cross(b - a, c - a), 0)) return -1;\n return 1;\n}\n\nvoid sort_by_arg(std::vector<Vec>& pts) {\n std::sort(pts.begin(), pts.end(), [&](auto& p, auto& q) {\n if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);\n if (cross(p, q) == 0) {\n if (p == Vec(0, 0)) return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));\n if (q == Vec(0, 0)) return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));\n return (p.real() > q.real());\n }\n return (cross(p, q) > 0);\n });\n}\n\nstd::vector<Vec> convex_hull(std::vector<Vec>& pts) {\n int n = pts.size();\n if (n == 1) return pts;\n std::sort(pts.begin(), pts.end(), [](const Vec& v1, const Vec& v2) {\n return (v1.imag() != v2.imag()) ? (v1.imag() < v2.imag()) : (v1.real() < v2.real());\n });\n int k = 0; // the number of vertices in the convex hull\n std::vector<Vec> ch(2 * n);\n // right\n for (int i = 0; i < n; ++i) {\n while (k > 1 && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n int t = k;\n // left\n for (int i = n - 2; i >= 0; --i) {\n while (k > t && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n ch.resize(k - 1);\n return ch;\n}\n\n\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin >> N;\n vector<Vec> pts(N);\n for (auto& p : pts) cin >> p;\n\n if (N <= 2) {\n cout << 0 << endl;\n return 0;\n }\n\n auto calc = [&](vector<Vec> pts) {\n sort(all(pts), [&](auto& p1, auto& p2) { return p1.real() < p2.real(); });\n vector<ll> area(N+1, 4e18);\n vector<Vec> lower, upper;\n if (pts[0].real() < pts[1].real()) {\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[0]);\n upper.push_back(pts[1]);\n } else {\n if (pts[0].imag() < pts[1].imag()) swap(pts[0], pts[1]);\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[1]);\n upper.push_back(pts[0]);\n }\n area[0] = area[1] = area[2] = 0;\n ll a = 0;\n for (int i = 2; i < N; ) {\n int j = i;\n while (j < N && pts[i].real() == pts[j].real()) {\n while (lower.size() >= 2 && leq(cross(lower.back()-lower[lower.size()-2], pts[j]-lower.back()), 0)) {\n a -= abs(cross(lower[lower.size()-2]-lower.back(), upper.back()-lower.back()));\n lower.pop_back();\n }\n while (upper.size() >= 2 && leq(0, cross(upper.back()-upper[upper.size()-2], pts[j]-upper.back()))) {\n a -= abs(cross(upper[upper.size()-2]-upper.back(), lower.back()-upper.back()));\n upper.pop_back();\n }\n a += abs(cross(upper.back()-pts[j], lower.back()-pts[j]));\n upper.push_back(pts[j]);\n lower.push_back(pts[j]);\n ++j;\n }\n area[j] = a;\n i = j;\n }\n return area;\n };\n\n auto left = calc(pts);\n rep(i,0,N) pts[i] = Vec(-pts[i].real(), pts[i].imag());\n auto right = calc(pts);\n ll ans = 4e18;\n rep(i,0,N+1) {\n chmin(ans, (left[i]+right[N-i]+1)/2);\n }\n cout << ans << endl;\n}", "accuracy": 0.675, "time_ms": 20, "memory_kb": 7040, "score_of_the_acc": -0.3443, "final_rank": 8 }, { "submission_id": "aoj_2786_6790407", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)\n#define all(x) begin(x), end(x)\ntemplate <typename T> bool chmax(T& a, const T& b) { return a < b ? (a = b, 1) : 0; }\ntemplate <typename T> bool chmin(T& a, const T& b) { return a > b ? (a = b, 1) : 0; }\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int) v.size(); ++i) {\n os << v[i];\n if (i < (int) v.size() - 1) os << \" \";\n }\n return os;\n}\n\nusing T = ll;\nusing Vec = std::complex<T>;\n\nconst T PI = std::acos(-1);\n\nconstexpr T eps = 1e-10;\ninline bool eq(T a, T b) { return std::abs(a - b) <= eps; }\ninline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }\ninline bool lt(T a, T b) { return a < b - eps; }\ninline bool leq(T a, T b) { return a <= b + eps; }\n\nstd::istream& operator>>(std::istream& is, Vec& p) {\n T x, y;\n is >> x >> y;\n p = {x, y};\n return is;\n}\n\nstruct Line {\n Vec p1, p2;\n Line() = default;\n Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Segment {\n Vec p1, p2;\n Segment() = default;\n Segment(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Circle {\n Vec c;\n T r;\n Circle() = default;\n Circle(const Vec& c, T r) : c(c), r(r) {}\n};\n\nusing Polygon = std::vector<Vec>;\n\nT dot(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).real();\n}\n\nT cross(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).imag();\n}\n\nVec rot(const Vec& a, T ang) {\n return a * Vec(std::cos(ang), std::sin(ang));\n}\n\nVec perp(const Vec& a) {\n return Vec(-a.imag(), a.real());\n}\n\nVec projection(const Line& l, const Vec& p) {\n return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());\n}\n\nVec reflection(const Line& l, const Vec& p) {\n return T(2) * projection(l, p) - p;\n}\n\n// 0: collinear\n// 1: counter-clockwise\n// -1: clockwise\nint ccw(const Vec& a, const Vec& b, const Vec& c) {\n if (eq(cross(b - a, c - a), 0)) return 0;\n if (lt(cross(b - a, c - a), 0)) return -1;\n return 1;\n}\n\nvoid sort_by_arg(std::vector<Vec>& pts) {\n std::sort(pts.begin(), pts.end(), [&](auto& p, auto& q) {\n if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);\n if (cross(p, q) == 0) {\n if (p == Vec(0, 0)) return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));\n if (q == Vec(0, 0)) return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));\n return (p.real() > q.real());\n }\n return (cross(p, q) > 0);\n });\n}\n\nstd::vector<Vec> convex_hull(std::vector<Vec>& pts) {\n int n = pts.size();\n if (n == 1) return pts;\n std::sort(pts.begin(), pts.end(), [](const Vec& v1, const Vec& v2) {\n return (v1.imag() != v2.imag()) ? (v1.imag() < v2.imag()) : (v1.real() < v2.real());\n });\n int k = 0; // the number of vertices in the convex hull\n std::vector<Vec> ch(2 * n);\n // right\n for (int i = 0; i < n; ++i) {\n while (k > 1 && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n int t = k;\n // left\n for (int i = n - 2; i >= 0; --i) {\n while (k > t && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n ch.resize(k - 1);\n return ch;\n}\n\n\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin >> N;\n vector<Vec> pts(N);\n for (auto& p : pts) cin >> p;\n\n if (N <= 2) {\n cout << 0 << endl;\n return 0;\n }\n\n auto calc = [&](vector<Vec> pts) {\n sort(all(pts), [&](auto& p1, auto& p2) { return p1.real() < p2.real(); });\n vector<ll> area(N+1, 4e18);\n vector<Vec> lower, upper;\n if (pts[0].real() < pts[1].real()) {\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[0]);\n upper.push_back(pts[1]);\n } else {\n if (pts[0].imag() < pts[1].imag()) swap(pts[0], pts[1]);\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[1]);\n upper.push_back(pts[0]);\n }\n area[0] = area[1] = area[2] = 0;\n ll a = 0;\n for (int i = 2; i < N; ) {\n int j = i;\n while (j < N && pts[i].real() == pts[j].real()) {\n while (lower.size() >= 2 && lt(cross(lower.back()-lower[lower.size()-2], pts[j]-lower.back()), 0)) {\n a -= abs(cross(lower[lower.size()-2]-lower.back(), upper.back()-lower.back()));\n lower.pop_back();\n }\n while (upper.size() >= 2 && lt(0, cross(upper.back()-upper[upper.size()-2], pts[j]-upper.back()))) {\n a -= abs(cross(upper[upper.size()-2]-upper.back(), lower.back()-upper.back()));\n upper.pop_back();\n }\n a += abs(cross(upper.back()-pts[j], lower.back()-pts[j]));\n upper.push_back(pts[j]);\n lower.push_back(pts[j]);\n ++j;\n }\n area[j] = a;\n i = j;\n }\n return area;\n };\n\n auto left = calc(pts);\n rep(i,0,N) pts[i] = Vec(-pts[i].real(), pts[i].imag());\n auto right = calc(pts);\n ll ans = 4e18;\n rep(i,0,N+1) {\n chmin(ans, (left[i]+right[N-i]+1)/2);\n }\n cout << ans << endl;\n}", "accuracy": 0.6, "time_ms": 20, "memory_kb": 7016, "score_of_the_acc": -0.3429, "final_rank": 10 }, { "submission_id": "aoj_2786_6790332", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)\n#define all(x) begin(x), end(x)\ntemplate <typename T> bool chmax(T& a, const T& b) { return a < b ? (a = b, 1) : 0; }\ntemplate <typename T> bool chmin(T& a, const T& b) { return a > b ? (a = b, 1) : 0; }\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int) v.size(); ++i) {\n os << v[i];\n if (i < (int) v.size() - 1) os << \" \";\n }\n return os;\n}\n\nusing T = ll;\nusing Vec = std::complex<T>;\n\nconst T PI = std::acos(-1);\n\nconstexpr T eps = 1e-10;\ninline bool eq(T a, T b) { return std::abs(a - b) <= eps; }\ninline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }\ninline bool lt(T a, T b) { return a < b - eps; }\ninline bool leq(T a, T b) { return a <= b + eps; }\n\nstd::istream& operator>>(std::istream& is, Vec& p) {\n T x, y;\n is >> x >> y;\n p = {x, y};\n return is;\n}\n\nstruct Line {\n Vec p1, p2;\n Line() = default;\n Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Segment {\n Vec p1, p2;\n Segment() = default;\n Segment(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Circle {\n Vec c;\n T r;\n Circle() = default;\n Circle(const Vec& c, T r) : c(c), r(r) {}\n};\n\nusing Polygon = std::vector<Vec>;\n\nT dot(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).real();\n}\n\nT cross(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).imag();\n}\n\nVec rot(const Vec& a, T ang) {\n return a * Vec(std::cos(ang), std::sin(ang));\n}\n\nVec perp(const Vec& a) {\n return Vec(-a.imag(), a.real());\n}\n\nVec projection(const Line& l, const Vec& p) {\n return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());\n}\n\nVec reflection(const Line& l, const Vec& p) {\n return T(2) * projection(l, p) - p;\n}\n\n// 0: collinear\n// 1: counter-clockwise\n// -1: clockwise\nint ccw(const Vec& a, const Vec& b, const Vec& c) {\n if (eq(cross(b - a, c - a), 0)) return 0;\n if (lt(cross(b - a, c - a), 0)) return -1;\n return 1;\n}\n\nvoid sort_by_arg(std::vector<Vec>& pts) {\n std::sort(pts.begin(), pts.end(), [&](auto& p, auto& q) {\n if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);\n if (cross(p, q) == 0) {\n if (p == Vec(0, 0)) return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));\n if (q == Vec(0, 0)) return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));\n return (p.real() > q.real());\n }\n return (cross(p, q) > 0);\n });\n}\n\nstd::vector<Vec> convex_hull(std::vector<Vec>& pts) {\n int n = pts.size();\n if (n == 1) return pts;\n std::sort(pts.begin(), pts.end(), [](const Vec& v1, const Vec& v2) {\n return (v1.imag() != v2.imag()) ? (v1.imag() < v2.imag()) : (v1.real() < v2.real());\n });\n int k = 0; // the number of vertices in the convex hull\n std::vector<Vec> ch(2 * n);\n // right\n for (int i = 0; i < n; ++i) {\n while (k > 1 && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n int t = k;\n // left\n for (int i = n - 2; i >= 0; --i) {\n while (k > t && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n ch.resize(k - 1);\n return ch;\n}\n\n\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin >> N;\n vector<Vec> pts(N);\n for (auto& p : pts) cin >> p;\n\n if (N <= 2) {\n cout << 0 << endl;\n return 0;\n }\n\n sort(all(pts), [&](auto& p1, auto& p2) {\n return p1.real() < p2.real();\n });\n\n auto calc = [&](vector<Vec> pts) {\n sort(all(pts), [&](auto& p1, auto& p2) { return p1.real() < p2.real(); });\n vector<ll> area(N+1, 4e18);\n vector<Vec> lower, upper;\n if (pts[0].real() < pts[1].real()) {\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[0]);\n upper.push_back(pts[1]);\n } else {\n if (pts[0].imag() < pts[1].imag()) swap(pts[0], pts[1]);\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[1]);\n upper.push_back(pts[0]);\n }\n area[0] = area[1] = area[2] = 0;\n ll a = 0;\n for (int i = 2; i < N; ) {\n int j = i+1;\n while (j < N && pts[i].real() == pts[j].real()) ++j;\n rep(k,i,j) {\n while (lower.size() >= 2 && lt(cross(lower.back()-lower[lower.size()-2], pts[k]-lower.back()), 0)) {\n a -= abs(cross(lower[lower.size()-2]-lower.back(), upper.back()-lower.back()));\n lower.pop_back();\n }\n while (upper.size() >= 2 && lt(0, cross(upper.back()-upper[upper.size()-2], pts[k]-upper.back()))) {\n a -= abs(cross(upper[upper.size()-2]-upper.back(), lower.back()-upper.back()));\n upper.pop_back();\n }\n a += abs(cross(upper.back()-pts[k], lower.back()-pts[k]));\n upper.push_back(pts[k]);\n lower.push_back(pts[k]);\n }\n area[j] = a;\n i = j;\n }\n return area;\n };\n\n auto left = calc(pts);\n rep(i,0,N) pts[i] = Vec(-pts[i].real(), pts[i].imag());\n auto right = calc(pts);\n ll ans = 4e18;\n rep(i,0,N+1) {\n chmin(ans, (left[i]+right[N-i]+1)/2);\n }\n cout << ans << endl;\n}", "accuracy": 0.6, "time_ms": 20, "memory_kb": 7156, "score_of_the_acc": -0.3515, "final_rank": 11 }, { "submission_id": "aoj_2786_6790300", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)\n#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)\n#define all(x) begin(x), end(x)\ntemplate <typename T> bool chmax(T& a, const T& b) { return a < b ? (a = b, 1) : 0; }\ntemplate <typename T> bool chmin(T& a, const T& b) { return a > b ? (a = b, 1) : 0; }\n\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int) v.size(); ++i) {\n os << v[i];\n if (i < (int) v.size() - 1) os << \" \";\n }\n return os;\n}\n\nusing T = ll;\nusing Vec = std::complex<T>;\n\nconst T PI = std::acos(-1);\n\nconstexpr T eps = 1e-10;\ninline bool eq(T a, T b) { return std::abs(a - b) <= eps; }\ninline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }\ninline bool lt(T a, T b) { return a < b - eps; }\ninline bool leq(T a, T b) { return a <= b + eps; }\n\nstd::istream& operator>>(std::istream& is, Vec& p) {\n T x, y;\n is >> x >> y;\n p = {x, y};\n return is;\n}\n\nstruct Line {\n Vec p1, p2;\n Line() = default;\n Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Segment {\n Vec p1, p2;\n Segment() = default;\n Segment(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}\n Vec dir() const { return p2 - p1; }\n};\n\nstruct Circle {\n Vec c;\n T r;\n Circle() = default;\n Circle(const Vec& c, T r) : c(c), r(r) {}\n};\n\nusing Polygon = std::vector<Vec>;\n\nT dot(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).real();\n}\n\nT cross(const Vec& a, const Vec& b) {\n return (std::conj(a) * b).imag();\n}\n\nVec rot(const Vec& a, T ang) {\n return a * Vec(std::cos(ang), std::sin(ang));\n}\n\nVec perp(const Vec& a) {\n return Vec(-a.imag(), a.real());\n}\n\nVec projection(const Line& l, const Vec& p) {\n return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());\n}\n\nVec reflection(const Line& l, const Vec& p) {\n return T(2) * projection(l, p) - p;\n}\n\n// 0: collinear\n// 1: counter-clockwise\n// -1: clockwise\nint ccw(const Vec& a, const Vec& b, const Vec& c) {\n if (eq(cross(b - a, c - a), 0)) return 0;\n if (lt(cross(b - a, c - a), 0)) return -1;\n return 1;\n}\n\nvoid sort_by_arg(std::vector<Vec>& pts) {\n std::sort(pts.begin(), pts.end(), [&](auto& p, auto& q) {\n if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);\n if (cross(p, q) == 0) {\n if (p == Vec(0, 0)) return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));\n if (q == Vec(0, 0)) return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));\n return (p.real() > q.real());\n }\n return (cross(p, q) > 0);\n });\n}\n\nstd::vector<Vec> convex_hull(std::vector<Vec>& pts) {\n int n = pts.size();\n if (n == 1) return pts;\n std::sort(pts.begin(), pts.end(), [](const Vec& v1, const Vec& v2) {\n return (v1.imag() != v2.imag()) ? (v1.imag() < v2.imag()) : (v1.real() < v2.real());\n });\n int k = 0; // the number of vertices in the convex hull\n std::vector<Vec> ch(2 * n);\n // right\n for (int i = 0; i < n; ++i) {\n while (k > 1 && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n int t = k;\n // left\n for (int i = n - 2; i >= 0; --i) {\n while (k > t && lt(cross(ch[k-1] - ch[k-2], pts[i] - ch[k-1]), 0)) --k;\n ch[k++] = pts[i];\n }\n ch.resize(k - 1);\n return ch;\n}\n\n\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n\n int N;\n cin >> N;\n vector<Vec> pts(N);\n for (auto& p : pts) cin >> p;\n\n if (N <= 2) {\n cout << 0 << endl;\n return 0;\n }\n\n sort(all(pts), [&](auto& p1, auto& p2) {\n return p1.real() < p2.real();\n });\n\n auto calc = [&](vector<Vec> pts) {\n vector<ll> area(N+1, 4e18);\n vector<Vec> lower, upper;\n if (pts[0].real() < pts[1].real()) {\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[0]);\n upper.push_back(pts[1]);\n } else {\n if (pts[0].imag() < pts[1].imag()) swap(pts[0], pts[1]);\n lower.push_back(pts[0]);\n lower.push_back(pts[1]);\n upper.push_back(pts[1]);\n upper.push_back(pts[0]);\n }\n area[0] = area[1] = area[2] = 0;\n ll a = 0;\n for (int i = 2; i < N; ) {\n int j = i+1;\n while (j < N && pts[i].real() == pts[j].real()) ++j;\n rep(k,i,j) {\n while (lower.size() >= 2 && lt(cross(lower.back()-lower[lower.size()-2], pts[k]-lower.back()), 0)) {\n a -= abs(cross(lower[lower.size()-2]-lower.back(), upper.back()-lower.back()));\n lower.pop_back();\n }\n while (upper.size() >= 2 && lt(0, cross(upper.back()-upper[upper.size()-2], pts[k]-upper.back()))) {\n a -= abs(cross(upper[upper.size()-2]-upper.back(), lower.back()-upper.back()));\n upper.pop_back();\n }\n a += abs(cross(upper.back()-pts[k], lower.back()-pts[k]));\n upper.push_back(pts[k]);\n lower.push_back(pts[k]);\n }\n area[j] = a;\n i = j;\n }\n return area;\n };\n\n auto left = calc(pts);\n reverse(all(pts));\n auto right = calc(pts);\n ll ans = 4e18;\n rep(i,0,N+1) {\n chmin(ans, (left[i]+right[N-i]+1)/2);\n }\n cout << ans << endl;\n}", "accuracy": 0.325, "time_ms": 20, "memory_kb": 7048, "score_of_the_acc": -0.3448, "final_rank": 12 } ]
aoj_2785_cpp
Escape from the Hell One day, Buddha looked into the hell and found an office worker. He did evil, such as enforcing hard work on his subordinates. However, he made only one good in his life. He refused an unreasonable request from his customer to save the lives of his subordinates. Buddha thought that, as the reward of the good, the office worker should have had a chance to escape from the hell. Buddha took a spider silk and put down to the hell. The office worker climbed up with the spider silk, however the length of the way $L$ meters was too long to escape one day. He had $N$ energy drinks and drunk one of them each day. The day he drunk the i-th energy drink he could climb $A_i$ meters in the daytime and after that slided down $B_i$ meters in the night. If he could reach at the height greater than or equal to the $L$ meters in the daytime, he could escape without sliding down. After the $N$ days the silk would be cut. He realized that other sinners climbed the silk in the night. They climbed $C_i$ meters in the $i$-th night without sliding down in the daytime. If they catched up with the office worker, they should have conflicted and the silk would be cut. Therefore he needed to escape before other sinners catched him. Your task is to write a program computing the best order of energy drink and output the earliest day which he could escape. If he could not escape, your program should output -1. Input The input consists of a single test case. $N$ $L$ $A_1$ $B_1$ $A_2$ $B_2$ ... $A_N$ $B_N$ $C_1$ $C_2$ ... $C_N$ The first line contains two integers $N$ ($1 \leq N \leq 10^5$) and $L$ ($1 \leq L \leq 10^9$), which mean the number of energy drinks and the length of the spider silk respectively. The following $N$ lines show the information of the drinks: the $i$-th of them indicates the $i$-th energy drink, he climbed up $A_i$ ($1 \leq A_i \leq 10^9$) meters and slided down $B_i$ ($1 \leq B_i \leq 10^9$) meters. Next $N$ lines show how far other sinners climbed: the $i$-th of them contains an integer $C_i$ ($1 \leq C_i \leq 10^9$), which means they climbed up $C_i$ meters in the $i$-th day. Output Print the earliest day which he could escape. If he could not escape, print -1 instead. Sample Input 1 3 9 6 3 5 2 3 1 2 2 2 Output for the Sample Input 1 2 Sample Input 2 5 20 3 2 4 2 6 3 8 4 10 5 4 2 3 4 5 Output for the Sample Input 2 -1 Sample Input 3 5 20 6 5 7 3 10 3 10 14 4 7 2 5 3 9 2 Output for the Sample Input 3 3 Sample Input 4 4 12 8 4 6 4 2 1 2 1 1 1 4 4 Output for the Sample Input 4 -1
[ { "submission_id": "aoj_2785_10946038", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define si(a) scanf(\"%d\",&a)\n#define f first\n#define s second\n#define mp(a,b) make_pair(a,b)\n#define MAX 100005\n#define INF 1LL<<50\ntypedef pair <int, int> Pii;\n\nstruct Less {\n bool operator () (Pii a, Pii b) {\n if ((a.f - a.s) == (b.f - b.s)) return a.f<b.f;\n return (a.f-a.s)>(b.f-b.s);\n }\n}LL;\n\nvector<pair<long long,long long> > all;\nint n,L,C[MAX];\nlong long cumall[MAX],cumC[MAX],ttt[MAX];\nbool allright[MAX];\n\nbool f(int x)\n{\n x--;\n if(!x){\n for(int i=0;i<n;i++)\n if(all[i].f>=L)\n return true;\n return false;\n }\n int i;\n ttt[x+1]=INF;\n for(i=x;i>0;i--)\n ttt[i]=min(ttt[i+1],cumall[i]-cumC[i-1]);\n long long mx=0;\n for(i=0;i<x;i++){\n if(i && !allright[i-1])\n continue;\n long long nowmin=ttt[i+1];\n nowmin-=(all[i].f-all[i].s);\n if(nowmin<=0)\n continue;\n mx=max(mx,cumall[x]-(all[i].f-all[i].s)+all[i].f);\n }\n if(allright[x-1]){\n for(i=x;i<n;i++)\n mx=max(mx,cumall[x-1]+all[i].f);\n }\n return mx>=L;\n}\n\nint main()\n{\n //freopen(\"input.txt\",\"r\",stdin);\n int N,i;\n long long mx=0;\n si(N);si(L);\n for(i=0;i<N;i++){\n long long a,b;\n scanf(\"%lld%lld\",&a,&b);\n if(a<b){\n mx=max(mx,a);\n continue;\n }\n all.push_back(mp(a,b));\n n++;\n }\n for(i=0;i<n;i++)si(C[i]);\n sort(all.begin(),all.end(),LL);\n cumall[0]=all[0].f-all[0].s;\n cumC[0]=C[0];\n allright[0]=(cumall[0]>cumC[0]);\n for(i=1;i<n;i++){\n cumall[i]=cumall[i-1]+(all[i].f-all[i].s);\n cumC[i]=cumC[i-1]+C[i];\n allright[i]=(cumall[i]>cumC[i]);\n }\n long long ans=INF;\n if(mx){\n if(mx>=L)ans=1;\n else{\n for(i=0;i<n;i++){\n if(!allright[i])\n break;\n if(cumall[i]+mx>=L){\n ans=i+2;\n break;\n }\n }\n }\n }\n int l=0,r=n;\n if(f(r)){\n while(r-l>1){\n int mid=(l+r)>>1;\n if(f(mid))r=mid;\n else l=mid;\n }\n ans=min(ans,(long long)r);\n }\n if(ans==INF)printf(\"-1\\n\");\n else\n printf(\"%lld\\n\",ans);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7604, "score_of_the_acc": -0.3544, "final_rank": 1 }, { "submission_id": "aoj_2785_10691082", "code_snippet": "//\n/*\nID: kfoozmi1\nLANG: C++\nTASK:\n*/\n#include <bits/stdc++.h>\nusing namespace std;\n\n#ifdef kfoozminus\n#define dbg(args...) do {cerr << #args << \" : \"; faltu(args); } while(0)\n\nvoid faltu() {\n\tcerr << endl;\n}\n\ntemplate <typename T>\nvoid faltu(T a[], int n) {\n\tfor(int i = 0; i < n; ++i) cerr << a[i] << ' ';\n\tcerr << endl;\n}\n\ntemplate <typename First, typename ... hello>\nvoid faltu(First arg, const hello&... rest) {\n\tcerr << arg << ' ';\n\tfaltu(rest...);\n}\n#else\n#define dbg(args...)\n#endif\n\n#define PB push_back\n#define F first\n#define S second\n#define MP make_pair\n#define SQR(a) ((a) * (a))\n#define vsort(v) sort(v.begin(), v.end())\n#define memset(a, b) memset(a, b, sizeof a)\n#define PQ priority_queue\n#define PI acos(-1)\n#define EPS 1e-9\n\n#define B1 43\n#define B2 43\n\n#define MOD1 1000000007\n#define MOD2 1000000009\n#define MOD 1000000007\n\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\n\n//int dx[] = {0, 0, +1, -1};\n//int dy[] = {+1, -1, 0, 0};\n//int dx[] = {+1, 0, -1, 0, +1, +1, -1, -1};\n//int dy[] = {0, +1, 0, -1, +1, -1, +1, -1};\n\ninline bool checkBit(ll n, int i) { return n & (1LL << i); }\ninline ll setBit(ll n, int i) { return n | (1LL << i); }\ninline ll resetBit(ll n, int i) { return n & (~ (1LL << i)); }\ninline bool EQ(double a, double b) { return fabs(a-b) < EPS; }\ninline double dist(double ix, double iy, double jx, double jy) { return sqrt(SQR(ix - jx) + SQR(iy - jy)); }\n\n#define PMX 1000000\n\nint marked[PMX/64+2];\n\n#define mark(x) marked[x>>6] |= (1<<((x&63)>>1))\n#define check(x) (marked[x>>6] & (1<<((x&63)>>1)))\n\nbool isPrime(int x)\n{\n return (x>1) && ((x==2) || ((x&1) && (!(check(x)))));\n}\n\nvoid seive(int n)\n{\n int i, j;\n for(i=3; i*i<=n; i+=2)\n {\n if(!check(i))\n {\n for(j=i*i; j<=n; j+=i<<1)\n {\n mark(j);\n }\n }\n }\n}\n\nll bigMod(ll a, ll b)\n{\n\tll r = 1;\n\twhile(b) {\n\t\tif(b & 1) (r *= a) %= MOD;\n\t\tb >>= 1;\n\t\t(a *= a) %= MOD;\n\t}\n\treturn r;\n}\n\nll add(ll a, ll b)\n{\n\tll ret = a + b;\n\tif(ret >= MOD) ret -= MOD;\n\treturn ret;\n}\n\nll sub(ll a, ll b)\n{\n\tll ret = a - b;\n\tif(ret < 0) ret += MOD;\n\treturn ret;\n}\n\n#define INF 100000000\n#define MX 100007\n\nint t[4 * MX], in[MX], shoja[MX], a[MX], b[MX], c[MX];\nvector< pii > v;\n\nvoid update(int nd, int tl, int tr, int pos, int val)\n{\n\tif(tl == tr) {\n\n\t\tt[nd] = val;\n\t\treturn ;\n\t}\n\n\tint tm = (tl + tr) >> 1;\n\tint lc = nd << 1;\n\tint rc = lc | 1;\n\n\tif(pos <= tm) update(lc, tl, tm, pos, val);\n\telse update(rc, tm + 1, tr, pos, val);\n\n\tt[nd] = min(t[lc], t[rc]);\n}\n\nint query(int nd, int tl, int tr, int l, int r)\n{\n\tif(tl >= l && tr <= r) return t[nd];\n\n\tint tm = (tl + tr) >> 1;\n\tint lc = nd << 1;\n\tint rc = lc | 1;\n\n\tif(r <= tm) return query(lc, tl, tm, l, r);\n\telse if(l > tm) return query(rc, tm + 1, tr, l, r);\n\telse return min(query(lc, tl, tm, l, r), query(rc, tm + 1, tr, l, r));\n}\n\nint main()\n{\n#ifdef kfoozminus\n\t//freopen(\"in\", \"r\", stdin);\n\t//freopen(\"out\", \"w\", stdout);\n#endif\n\tint L, _L, i, mn, mx, mid, p, n, midd, day;\n\n\tscanf(\"%d %d\", &n, &L);\n\tfor(i = 1; i <= n; i ++) {\n\n\t\tscanf(\"%d %d\", &a[i], &b[i]);\n\t\tif(a[i] > b[i]) v.PB({ a[i] - b[i], i} );\n\t\telse in[i] = -1;\n\t}\n\tvsort(v);\n\treverse(v.begin(), v.end());\n\tint sz = v.size();\n\tfor(i = 0; i < sz; i ++) in[ v[i].S ] = i;\n\tfor(i = 1; i <= n; i ++) {\n\t\t\n\t\tscanf(\"%d\", &c[i]);\n\t\tc[i] += c[i - 1];\n\t}\n\tfor(i = 1; i < sz; i ++) v[i].F += v[i - 1].F;\n\n\tif(sz) shoja[0] = v[0].F - c[1];\n\tfor(i = 1; i < sz; i ++) {\n\n\t\tshoja[i] = min(shoja[i - 1], v[i].F - c[i + 1]);\n\t\tupdate(1, 0, sz - 1, i, v[i].F - c[i]);\n\t\tdbg(i, v[i].F - c[i]);\n\t}\n\tday = INF;\n\tfor(i = 1; i <= n; i ++) {\n\n\t\t_L = L - a[i];\n\t\tif(_L <= 0) {\n\t\t\tday = 1;\n\t\t\tbreak;\n\t\t}\n\t\tif(in[i] == -1) {\n\t\t\tif(sz < 1) continue;\n\t\t\tmn = 0;\n\t\t\tmx = sz - 1;\n\t\t\twhile(mn < mx) {\n\n\t\t\t\tmid = (mn + mx) >> 1;\n\t\t\t\tif(v[mid].F < _L) mn = mid + 1;\n\t\t\t\telse mx = mid;\n\t\t\t}\n\t\t\tif(v[mn].F < _L) continue;\n\t\t\tif(shoja[mn] > 0) day = min(day, mn + 2);\n\t\t\tdbg(i, mn + 1);\n\t\t}\n\t\telse {\n\t\t\tif(sz <= 1) continue;\n\t\t\tmn = 0;\n\t\t\tmx = sz - 2;\n\t\t\twhile(mn < mx) {\n\n\t\t\t\tmid = (mn + mx) >> 1;\n\t\t\t\tif(mid >= in[i]) midd = mid + 1;\n\t\t\t\telse midd = mid;\n\t\t\t\tif(v[midd].F - (mid >= in[i]) * (a[i] - b[i]) < _L) mn = mid + 1;\n\t\t\t\telse mx = mid;\n\t\t\t}\n\t\t\tif(v[mn + (mn >= in[i])].F - (mn >= in[i]) * (a[i] - b[i]) < _L) continue;\n\t\t\tmn += (mn >= in[i]);\n\n\t\t\tif(mn < in[i]) {\n\t\t\t\tif(shoja[mn] > 0) day = min(day, mn + 2);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tp = query(1, 0, sz - 1, in[i] + 1, mn);\n\t\t\t\tif((shoja[ in[i] - 1] > 0) &&(p - (a[i] - b[i]) > 0)) day = min(day, mn + 1);\n\t\t\t}\n\t\t}\n\t}\n\tprintf(\"%d\\n\", day == INF ? -1: day);\n return 0;\n}", "accuracy": 0.10416666666666667, "time_ms": 10, "memory_kb": 4868, "score_of_the_acc": 0, "final_rank": 20 }, { "submission_id": "aoj_2785_10691078", "code_snippet": "#include <bits/stdc++.h>\n\n#define rep(i,n) for(i=1;i<=n;i++)\n#define Rep(i,n) for(i=0;i<n;i++)\n\n#define mem(ara,val) memset(ara,val,sizeof(ara))\n#define pb(x) push_back(x)\n#define sz(x) x.size()\n\n#define INF 1000000000000000000ll\n#define Max 200005\n#define mod 1000000007\n\n#define si(x) scanf(\"%d\",&x)\n#define sii(x,y) scanf(\"%d %d\",&x,&y)\n#define siii(x,y,z) scanf(\"%d %d %d\",&x,&y,&z)\n\n#define sl(x) scanf(\"%lld\",&x)\n#define sll(x,y) scanf(\"%lld %lld\",&x,&y)\n#define slll(x,y,z) scanf(\"%lld %lld %lld\",&x,&y,&z)\n\n#define FI freopen(\"in.txt\",\"r\",stdin)\n\nusing namespace std;\n\ntypedef long long LL;\ntypedef unsigned long long ULL;\n\nstruct info\n{\n LL h,d;\n info() {}\n info(LL _h,LL _d) {\n h = _h;\n d = _d;\n }\n bool operator < (const info & p) const\n {\n if(d == p.d)return h < p.h;\n else return d > p.d;\n }\n};\ninfo ara[Max];\nLL n,need[Max],L;\n\n/// brute\nLL brute()\n{\n LL i,mn = INF;\n for(LL flag=1;flag<=n;flag++)\n {\n LL tot = 0,cnt = 0;\n LL reach = L - ara[flag].h;\n LL done = 0;\n\n if(reach <= 0)\n {\n mn = min(mn,1ll);\n continue;\n }\n\n rep(i,n)\n {\n if(i == flag)continue;\n cnt++;\n tot += ara[i].d;\n if(tot < need[cnt])break;\n if(tot >= reach)\n {\n done = 1;\n break;\n }\n }\n if(done)\n {\n mn = min(mn,cnt+1);\n }\n }\n return mn;\n}\n///brute\n\n\n\n\nLL afford[Max],cum[Max],good,sat;\nLL tree[4*Max];\n\nvoid init(LL ind,LL b,LL e)\n{\n if(b == e)\n {\n tree[ind] = afford[b];\n return;\n }\n LL mid = (b + e) / 2,l = 2 * ind,r = l + 1;\n init(l,b,mid);\n init(r,mid+1,e);\n tree[ind] = min(tree[l],tree[r]);\n}\n\nLL Q(LL ind,LL b,LL e,LL i,LL j)\n{\n if(i > j)return INF;\n if(b == i && e == j)return tree[ind];\n LL mid = (b + e) / 2,l = 2 * ind,r = l + 1;\n return min( Q(l,b,mid,i,min(mid,j)) , Q(r,mid+1,e,max(mid+1,i),j) );\n}\n\nLL bin(LL x)\n{\n LL low = 1,high = sat,mid,ans = -1;\n while( low <= high )\n {\n mid = (low + high) / 2;\n if(cum[mid] >= x)\n {\n ans = mid;\n high = mid - 1;\n }\n else low = mid + 1;\n }\n return ans;\n}\n\nLL F()\n{\n LL i,f = 0;\n rep(i,n)\n {\n if(ara[i].d <= 0)break;\n good = i;\n cum[i] = cum[i-1] + ara[i].d;\n afford[i] = cum[i] - need[i-1];\n if(!f)\n {\n sat = i;\n if(cum[i] < need[i])f = 1;\n }\n }\n if(sat)init(1,1,sat);\n\n LL ret = INF;\n rep(i,sat)\n {\n LL delta = ara[i].d;\n LL jump = ara[i].h;\n LL pos = bin( L - jump + delta );\n if( pos == -1 )continue;\n LL rmq = INF;\n if(sat)rmq = Q(1,1,sat,i+1,pos);\n if(rmq < delta)continue;\n //if(i == 5)printf(\"pos %lld rmq %lld delta %lld\\n\",pos,rmq,delta);\n LL day = pos;\n if(pos < i)day++;\n //if(day == 1)printf(\"i %lld\\n\",i);\n ret = min(ret,day);\n }\n\n for(i=sat+1;i<=n;i++)\n {\n LL jump = ara[i].h;\n LL pos = bin( L - jump );\n if(pos == -1)continue;\n LL day = pos + 1;\n ret = min(ret,day);\n }\n\n return ret;\n}\n\nint main()\n{\n\n //srand( time(0) );\n //FI;\n LL i,x,y;\n sll(n,L);\n rep(i,n)\n {\n sll(x,y);\n ara[i] = info(x,x-y);\n }\n need[0] = 1;\n rep(i,n)\n {\n sl(x);\n need[i] = need[i-1] + x;\n }\n\n /*n = 10000;\n L = rand() % 10000 + 1;\n rep(i,n)\n {\n x = rand() % 30 + 1;\n y = rand() % 60 + 1;\n ara[i] = info(x,x-y);\n }\n\n rep(i,n)\n {\n x = rand() % 5 + 1;\n need[i] = need[i-1] + x;\n }*/\n\n sort(ara+1,ara+n+1);\n\n LL ret = F();\n if(ret == INF)ret = -1;\n printf(\"%lld\\n\",ret);\n //printf(\"brute %lld\\n\",brute());\n //printf(\"my %lld\\n\",F());\n return 0;\n}", "accuracy": 0.8333333333333334, "time_ms": 30, "memory_kb": 13936, "score_of_the_acc": -0.9555, "final_rank": 13 }, { "submission_id": "aoj_2785_10691076", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i,n) for(i = 0; i<n; i++)\n#define repl(i,n) for(i = 1; i<=n; i++)\n\n#define sz(x) (int)x.size()\n#define pb push_back\n#define all(x) x.begin(), x.end()\n#define uu first\n#define vv second\n#define mem(x,y) memset(x,y,sizeof(x))\n#define sdi(x) scanf(\"%d\",&x)\n#define sdii(x,y) scanf(\"%d %d\",&x,&y)\n#define sdiii(x,y,z) scanf(\"%d %d %d\",&x,&y,&z)\n#define sdl(x) scanf(\"%lld\",&x)\n#define sdll(x,y) scanf(\"%lld %lld\",&x,&y)\n#define sdlll(x,y,z) scanf(\"%lld %lld %lld\",&x,&y,&z)\n#define sds(x) scanf(\"%s\",s);\n#define pfi(x) printf(\"%d\\n\",x)\n#define pfii(x,y) printf(\"%d %d\\n\",x,y)\n#define pfiii(x,y,z) printf(\"%d %d %d\\n\",x,y,z)\n#define pfl(x) printf(\"%lld\\n\",x)\n#define pfll(x,y) printf(\"%lld %lld\\n\",x,y)\n#define pflll(x,y,z) printf(\"%lld %lld %lld\\n\",x,y,z)\n\n#define eps 1e-9\n//#define OK cerr<< \"OK\" << '\\n'\n//#define DB(x) cerr << #x \" = \" << x << '\\n'\n\n#define FRE(i,a,b) for(i = a; i<=b; i++)\n#define FRL(i,a,b) for(i = a; i<b; i++)\n#define un(x) x.erase(unique(all(x)),x.end())\n#define sf(x) scanf(\"%d\",&x)\n#define sff(x,y) scanf(\"%d %d\",&x,&y)\n#define sfff(x,y,z) scanf(\"%d %d %d\",&x,&y,&z)\n#define sl(x) scanf(\"%lld\",&x)\n#define sll(x,y) scanf(\"%lld %lld\",&x,&y)\n#define slll(x,y,z) scanf(\"%lld %lld %lld\",&x,&y,&z)\n#define D(x) cerr << #x \" = \" << x << '\\n'\n#define DBG cerr << \"Hi\" << '\\n'\n#define PI acose(-1.00)\n#define xx first\n#define yy second\n\ntypedef double db;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef pair<int,int> pii;\ntypedef pair<long long,long long> pll;\n\ninline int setBit(int N, int pos) { return N=N|(1<<pos);}\ninline int resetBit(int N, int pos) {return N=N &~(1<<pos);}\ninline bool checkBit(int N, int pos) {return (bool) (N & (1<<pos));}\n\n\n//int fx[] = {+0, +0, +1, -1, +1, -1, +1};\n//int fy[] = {-1, +1, +0, +0, +1, -1, -1};\n\n\nconst int MAX = 100005;\nint n, ub;\nLL c[MAX], cumDelta[MAX], cumC[MAX], tree[MAX*4], l;\nstruct data {\n int a, b;\n inline bool operator < (const data &p) const {\n return ((a-b) > (p.a-p.b));\n }\n} arr[MAX];\n\nvoid init(int node, int beg, int endd) {\n if(beg == endd) {\n tree[node] = cumDelta[beg] - cumC[beg];\n return;\n }\n\n int left = node << 1;\n int right = left + 1;\n int mid = (beg+endd) >> 1;\n\n init(left, beg, mid);\n init(right, mid+1, endd);\n\n tree[node] = min(tree[left], tree[right]);\n}\n\nvoid update(int node, int beg, int endd, int x, LL val) {\n if(beg == endd) {\n tree[node] += val;\n return;\n }\n\n int left = node << 1;\n int right = left + 1;\n int mid = (beg+endd) >> 1;\n\n if(x <= mid) update(left, beg, mid, x, val);\n else update(right, mid+1, endd, x, val);\n\n tree[node] = min(tree[left], tree[right]);\n}\n\nLL query(int node, int beg, int endd, int x, int y) {\n if(x > y) return LLONG_MAX;\n if(beg == x && endd == y) return tree[node];\n\n int left = node << 1;\n int right = left + 1;\n int mid = (beg+endd) >> 1;\n\n LL l = query(left, beg, mid, x, min(y, mid));\n LL r = query(right, mid+1, endd, max(x, mid+1), y);\n\n return min(l, r);\n}\n\ninline int bs(int idx) {\n int low=1, high=ub, mid, ret=n+5;\n while(low <= high) {\n mid = (low+high) >> 1;\n LL x = cumDelta[mid];\n if(mid >= idx) x -= (arr[idx].a - arr[idx].b);\n if(x >= l - arr[idx].a) {\n ret = min(ret, mid);\n high = mid-1;\n }\n else low = mid+1;\n }\n return ret;\n}\n\ninline int check(int idx) {\n update(1, 1, n, idx, -cumDelta[idx]);\n if(idx < n) update(1, 1, n, idx, cumDelta[idx+1]);\n if(arr[idx].a >= l) return 1;\n int here = bs(idx);\n// DB(here);\n if(here > n) return here;\n if(query(1, 1, n, 1, here) >= 0ll) {\n if(idx > here) here++;\n return here;\n }\n else return n+5;\n}\n\nint solve() {\n int ret = n+5, i;\n for(i=n; i>=1; i--) {\n int x = check(i);\n// DB(x);\n ret = min(ret, x);\n }\n if(ret > n) return -1;\n else return ret;\n}\n\nint main() {\n// freopen(\"in.txt\", \"r\", stdin);\n// freopen(\"out.txt\", \"w\", stdout);\n\n int i;\n\n sdi(n);\n sdl(l);\n repl(i, n) sdll(arr[i].a, arr[i].b);\n repl(i, n) sdl(c[i]);\n\n sort(arr+1, arr+1+n);\n ub = 0;\n repl(i, n) {\n if(arr[i].a >= arr[i].b) ub = i;\n }\n repl(i, n) {\n cumDelta[i] = cumDelta[i-1];\n cumDelta[i] += (arr[i].a - arr[i].b);\n }\n repl(i, n) {\n cumC[i] = cumC[i-1];\n cumC[i] += c[i];\n }\n\n// repl(i, n) pfll(arr[i].a, arr[i].b); puts(\"----------\");\n// repl(i, n) pfl(c[i]);\n\n init(1, 1, n);\n pfi(solve());\n\n return 0;\n}", "accuracy": 0.7291666666666666, "time_ms": 40, "memory_kb": 9788, "score_of_the_acc": -0.8375, "final_rank": 14 }, { "submission_id": "aoj_2785_10493893", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing i64 = long long;\n#define rep(i,n) for(i64 i=0; i<i64(n); i++)\n\nstruct RMQ{\n i64 N;\n vector<i64> A;\n RMQ(vector<i64> a = {}){\n N = 1; while(N < i64(a.size())) N*=2;\n A.assign(N*2, 1ll<<60);\n rep(i,a.size()) A[N+i] = a[i];\n for(i64 i=N-1; i>=1; i--) A[i] = min(A[i*2], A[i*2+1]);\n }\n i64 query(i64 l, i64 r){\n l += N; r += N;\n i64 res = 1ll << 60;\n while(l < r){\n if(l%2) res = min(res, A[l++]);\n if(r%2) res = min(res, A[--r]);\n l /= 2; r /= 2;\n }\n return res;\n }\n};\n\nbool nachia = false;\n\ni64 solve(i64 N, i64 L, vector<pair<i64,i64>> A, vector<i64> C){\n i64 ans = N+1;\n sort(A.rbegin(), A.rend());\n vector<i64> K(N+1); rep(i,N) K[i+1] = K[i] + C[i];\n\n vector<i64> D(N+1);\n rep(i,N) D[i+1] = D[i] + A[i].first;\n i64 cap_straight = 0;\n while(cap_straight < N && D[cap_straight+1] > K[cap_straight+1]) cap_straight++;\n\n vector<i64> capdiff(N);\n rep(i,N) capdiff[i] = D[i+1] - K[i];\n auto ds = RMQ(capdiff);\n\n if(nachia){\n cout << \"D = \"; for(auto d : D){ cout << d << \" \"; } cout << endl;\n cout << \"cap = \"; for(auto d : capdiff){ cout << d << \" \"; } cout << endl;\n }\n\n i64 maxDi = max_element(D.begin(), D.end()) - D.begin();\n\n rep(f,N){\n if(nachia) cout << \"f = \" << f << endl;\n if(f >= maxDi || D[f] + A[f].second >= L){\n if(nachia) cout << \" case A\" << endl;\n if(D[maxDi] + A[f].second < L) continue;\n i64 t = lower_bound(D.begin(), D.begin() + maxDi + 1, L-A[f].second) - D.begin();\n if(cap_straight < t) continue;\n t += 1;\n if(nachia) cout << \" ok t = \" << t << endl;\n if(t < ans) ans = t;\n continue;\n }\n if(nachia) cout << \" case B\" << endl;\n if(cap_straight < f) continue;\n i64 offset = A[f].second - A[f].first;\n i64 loss = A[f].first;\n if(D[maxDi] + offset < L) continue;\n i64 g = lower_bound(D.begin(), D.begin() + maxDi + 1, L-offset) - D.begin();\n i64 cap = ds.query(f+1, g);\n if(nachia){ cout << \" query : \"; for(int i=f+1; i<g; i++){ cout <<capdiff[i] << \" \"; } cout << endl; }\n if(nachia){ cout << \" offset = \" << offset << \" , g = \" << g << \" , cap = \" << cap << endl; }\n if(cap <= loss) continue;\n if(g < ans) ans = g;\n }\n \n if(ans == N+1) return -1;\n return ans;\n}\n\ni64 naive(i64 N, i64 L, vector<pair<i64,i64>> A, vector<i64> C){\n i64 ans = N+1;\n sort(A.rbegin(), A.rend());\n rep(f,N){\n i64 a = 0, c = 0;\n i64 t = 0;\n rep(j,N) if(j != f){\n if(A[f].second + a >= L) break;\n a += A[j].first;\n c += C[t];\n t++;\n if(a <= c){ t = -1; break; }\n }\n if(t < 0) continue;\n if(A[f].second + a >= L){\n i64 k = t + 1;\n if(k < ans) ans = k;\n }\n }\n return ans > N ? -1 : ans;\n}\n\n\nvoid testcase(){\n i64 N; cin >> N;\n i64 L; cin >> L;\n vector<pair<i64,i64>> A(N);\n rep(i,N){\n i64 a,b; cin >> a >> b;\n A[i] = { a-b, a };\n }\n vector<i64> C(N); rep(i,N) cin >> C[i];\n i64 ans = solve(N, L, A, C);\n cout << ans << \"\\n\";\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n testcase();\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 13060, "score_of_the_acc": -0.7287, "final_rank": 5 }, { "submission_id": "aoj_2785_10492640", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing i64 = long long;\n#define rep(i,n) for(i64 i=0; i<i64(n); i++)\n\nstruct RMQ{\n i64 N;\n vector<i64> A;\n RMQ(vector<i64> a = {}){\n N = 1; while(N < i64(a.size())) N*=2;\n A.assign(N*2, 1ll<<60);\n rep(i,a.size()) A[N+i] = a[i];\n for(i64 i=N-1; i>=1; i--) A[i] = min(A[i*2], A[i*2+1]);\n }\n i64 query(i64 l, i64 r){\n l += N; r += N;\n i64 res = 1ll << 60;\n while(l < r){\n if(l%2) res = min(res, A[l++]);\n if(r%2) res = min(res, A[--r]);\n l /= 2; r /= 2;\n }\n return res;\n }\n};\n\nbool nachia = false;\n\ni64 solve(i64 N, i64 L, vector<pair<i64,i64>> A, vector<i64> C){\n i64 ans = N+1;\n sort(A.rbegin(), A.rend());\n vector<i64> K(N+1); rep(i,N) K[i+1] = K[i] + C[i];\n\n vector<i64> D(N+1);\n rep(i,N) D[i+1] = D[i] + A[i].first;\n i64 cap_straight = 0;\n while(cap_straight < N && D[cap_straight+1] > K[cap_straight+1]) cap_straight++;\n\n vector<i64> capdiff(N);\n rep(i,N) capdiff[i] = D[i+1] - K[i];\n auto ds = RMQ(capdiff);\n\n if(nachia){\n cout << \"D = \"; for(auto d : D){ cout << d << \" \"; } cout << endl;\n cout << \"cap = \"; for(auto d : capdiff){ cout << d << \" \"; } cout << endl;\n }\n\n i64 maxDi = max_element(D.begin(), D.end()) - D.begin();\n\n rep(f,N){\n if(nachia) cout << \"f = \" << f << endl;\n if(f >= maxDi || D[f] >= L){\n if(nachia) cout << \" case A\" << endl;\n i64 t = lower_bound(D.begin(), D.begin() + maxDi + 1, L-A[f].second) - D.begin();\n if(cap_straight < t) continue;\n t += 1;\n if(t < ans) ans = t;\n continue;\n }\n if(nachia) cout << \" case B\" << endl;\n if(cap_straight < f) continue;\n i64 offset = A[f].second - A[f].first;\n if(D[maxDi] + offset < L) continue;\n i64 g = lower_bound(D.begin(), D.begin() + maxDi + 1, L-offset) - D.begin();\n i64 cap = ds.query(f, g);\n if(nachia) cout << \" offset = \" << offset << \" , g = \" << g << \" , cap = \" << cap << endl;\n if(cap < offset) continue;\n if(g < ans) ans = g;\n }\n \n if(ans == N+1) return -1;\n return ans;\n}\n\nvoid testcase(){\n i64 N; cin >> N;\n i64 L; cin >> L;\n vector<pair<i64,i64>> A(N);\n rep(i,N){\n i64 a,b; cin >> a >> b;\n A[i] = { a-b, a };\n }\n vector<i64> C(N); rep(i,N) cin >> C[i];\n i64 ans = solve(N, L, A, C);\n cout << ans << \"\\n\";\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n testcase();\n return 0;\n}", "accuracy": 0.6041666666666666, "time_ms": 20, "memory_kb": 12968, "score_of_the_acc": -0.7224, "final_rank": 16 }, { "submission_id": "aoj_2785_10492625", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing i64 = long long;\n#define rep(i,n) for(i64 i=0; i<i64(n); i++)\n\nstruct RMQ{\n i64 N;\n vector<i64> A;\n RMQ(vector<i64> a = {}){\n N = 1; while(N < i64(a.size())) N*=2;\n A.assign(N*2, 1ll<<60);\n rep(i,a.size()) A[N+i] = a[i];\n for(i64 i=N-1; i>=1; i--) A[i] = min(A[i*2], A[i*2+1]);\n }\n i64 query(i64 l, i64 r){\n l += N; r += N;\n i64 res = 1ll << 60;\n while(l < r){\n if(l%2) res = min(res, A[l++]);\n if(r%2) res = min(res, A[--r]);\n l /= 2; r /= 2;\n }\n return res;\n }\n};\n\nbool nachia = false;\n\ni64 solve(i64 N, i64 L, vector<pair<i64,i64>> A, vector<i64> C){\n i64 ans = N+1;\n sort(A.rbegin(), A.rend());\n vector<i64> K(N+1); rep(i,N) K[i+1] = K[i] + C[i];\n\n vector<i64> D(N+1);\n rep(i,N) D[i+1] = D[i] + A[i].first;\n i64 cap_straight = 0;\n while(cap_straight < N && D[cap_straight+1] >= K[cap_straight+1]) cap_straight++;\n\n vector<i64> capdiff(N);\n rep(i,N) capdiff[i] = D[i+1] - K[i];\n auto ds = RMQ(capdiff);\n\n if(nachia){\n cout << \"D = \"; for(auto d : D){ cout << d << \" \"; } cout << endl;\n cout << \"cap = \"; for(auto d : capdiff){ cout << d << \" \"; } cout << endl;\n }\n\n i64 maxDi = max_element(D.begin(), D.end()) - D.begin();\n\n rep(f,N){\n if(nachia) cout << \"f = \" << f << endl;\n if(f >= maxDi || D[f] >= L){\n if(nachia) cout << \" case A\" << endl;\n i64 t = lower_bound(D.begin(), D.begin() + maxDi + 1, L-A[f].second) - D.begin();\n if(cap_straight < t) continue;\n t += 1;\n if(t < ans) ans = t;\n continue;\n }\n if(nachia) cout << \" case B\" << endl;\n if(cap_straight < f) continue;\n i64 offset = A[f].second - A[f].first;\n if(D[maxDi] + offset < L) continue;\n i64 g = lower_bound(D.begin(), D.begin() + maxDi + 1, L-offset) - D.begin();\n i64 cap = ds.query(f, g);\n if(nachia) cout << \" offset = \" << offset << \" , g = \" << g << \" , cap = \" << cap << endl;\n if(cap < offset) continue;\n if(g < ans) ans = g;\n }\n \n if(ans == N+1) return -1;\n return ans;\n}\n\nvoid testcase(){\n i64 N; cin >> N;\n i64 L; cin >> L;\n vector<pair<i64,i64>> A(N);\n rep(i,N){\n i64 a,b; cin >> a >> b;\n A[i] = { a-b, a };\n }\n vector<i64> C(N); rep(i,N) cin >> C[i];\n i64 ans = solve(N, L, A, C);\n cout << ans << \"\\n\";\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n testcase();\n return 0;\n}", "accuracy": 0.6041666666666666, "time_ms": 20, "memory_kb": 12964, "score_of_the_acc": -0.7221, "final_rank": 15 }, { "submission_id": "aoj_2785_10492612", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing i64 = long long;\n#define rep(i,n) for(i64 i=0; i<i64(n); i++)\n\nstruct RMQ{\n i64 N;\n vector<i64> A;\n RMQ(vector<i64> a = {}){\n N = 1; while(N < i64(a.size())) N*=2;\n A.assign(N*2, 1ll<<60);\n rep(i,a.size()) A[N+i] = a[i];\n for(i64 i=N-1; i>=1; i--) A[i] = min(A[i*2], A[i*2+1]);\n }\n i64 query(i64 l, i64 r){\n l += N; r += N;\n i64 res = 1ll << 60;\n while(l < r){\n if(l%2) res = min(res, A[l++]);\n if(r%2) res = min(res, A[--r]);\n l /= 2; r /= 2;\n }\n return res;\n }\n};\n\nbool nachia = false;\n\ni64 solve(i64 N, i64 L, vector<pair<i64,i64>> A, vector<i64> C){\n i64 ans = N+1;\n sort(A.rbegin(), A.rend());\n vector<i64> K(N+1); rep(i,N) K[i+1] = K[i] + C[i];\n\n vector<i64> D(N+1);\n rep(i,N) D[i+1] = D[i] + A[i].first;\n i64 cap_straight = 0;\n while(cap_straight < N && D[cap_straight+1] >= K[cap_straight]) cap_straight++;\n\n vector<i64> capdiff(N);\n rep(i,N) capdiff[i] = D[i+1] - K[i];\n auto ds = RMQ(capdiff);\n\n if(nachia){\n cout << \"D = \"; for(auto d : D){ cout << d << \" \"; } cout << endl;\n cout << \"cap = \"; for(auto d : capdiff){ cout << d << \" \"; } cout << endl;\n }\n\n i64 maxDi = max_element(D.begin(), D.end()) - D.begin();\n\n rep(f,N){\n if(nachia) cout << \"f = \" << f << endl;\n if(f >= maxDi || D[f] >= L){\n if(nachia) cout << \" case A\" << endl;\n i64 t = lower_bound(D.begin(), D.begin() + maxDi + 1, L-A[f].second) - D.begin();\n if(cap_straight < t) continue;\n t += 1;\n if(t < ans) ans = t;\n continue;\n }\n if(nachia) cout << \" case B\" << endl;\n if(cap_straight < f) continue;\n i64 offset = A[f].second - A[f].first;\n if(D[maxDi] + offset < L) continue;\n i64 g = lower_bound(D.begin(), D.begin() + maxDi + 1, L-offset) - D.begin();\n i64 cap = ds.query(f, g);\n if(nachia) cout << \" offset = \" << offset << \" , g = \" << g << \" , cap = \" << cap << endl;\n if(cap < offset) continue;\n if(g < ans) ans = g;\n }\n \n if(ans == N+1) return -1;\n return ans;\n}\n\nvoid testcase(){\n i64 N; cin >> N;\n i64 L; cin >> L;\n vector<pair<i64,i64>> A(N);\n rep(i,N){\n i64 a,b; cin >> a >> b;\n A[i] = { a-b, a };\n }\n vector<i64> C(N); rep(i,N) cin >> C[i];\n i64 ans = solve(N, L, A, C);\n cout << ans << \"\\n\";\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n testcase();\n return 0;\n}", "accuracy": 0.6041666666666666, "time_ms": 20, "memory_kb": 13004, "score_of_the_acc": -0.7248, "final_rank": 17 }, { "submission_id": "aoj_2785_10295856", "code_snippet": "// AOJ #2785 Escape from the Hell\n// 2025.3.14\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll INF = LLONG_MAX;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct Drink { ll a, b; };\n\nint solve(){\n int N = Cin();\n ll L = Cin();\n\n vector<Drink> dArr(N);\n priority_queue< pair<ll,int> > pqA;\n priority_queue< pair<ll,int> > pqB;\n\n vector< pair<ll,int> > ord;\n for(int i = 0; i < N; i++){\n dArr[i].a = Cin(), dArr[i].b = Cin();\n ord.push_back({dArr[i].a - dArr[i].b, i});\n pqA.push({dArr[i].a, i});\n }\n vector<ll> C(N);\n for(int i = 0; i < N; i++) C[i] = Cin();\n\n sort(ord.begin(), ord.end(), [&dArr](auto &p, auto &q) {\n return (p.first == q.first) ? (dArr[p.second].b < dArr[q.second].b) : (p.first > q.first);\n });\n\n vector<ll> usedDay(N, INF);\n ll myH = 0;\n ll enemyH = 0;\n int delPtr = 0;\n\n if(!pqA.empty() && pqA.top().first >= L) return 1;\n\n for(int i = 0; i < N; i++){\n while(!pqA.empty() && usedDay[pqA.top().second] < i) pqA.pop();\n if(!pqA.empty() && myH + pqA.top().first >= L) return i+1;\n\n int curIdx = ord[i].second;\n ll delta = ord[i].first;\n myH += delta;\n\n pqB.push({ dArr[curIdx].b, curIdx });\n\n while(delPtr < i && myH - ord[delPtr].first <= enemyH) delPtr++;\n\n while(!pqB.empty() && usedDay[pqB.top().second] < delPtr) pqB.pop();\n\n if(!pqB.empty() && myH + pqB.top().first >= L) return i+1;\n\n usedDay[curIdx] = i;\n enemyH += C[i];\n if(enemyH >= myH) return -1;\n }\n return -1;\n}\n\nint main() {\n Cout(solve());\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 12276, "score_of_the_acc": -0.6749, "final_rank": 4 }, { "submission_id": "aoj_2785_10295768", "code_snippet": "// AOJ #2785 Escape from the Hell\n// 2025.3.14\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nstruct Dr { ll A, B, d; };\n\nstruct Seg {\n int n;\n vector<ll> seg;\n Seg(int n): n(n) {\n seg.assign(2*n, 0);\n }\n void build(const vector<ll>& arr) {\n for (int i = 0; i < n; i++) seg[n+i] = arr[i];\n for (int i = n-1; i > 0; i--) seg[i] = max(seg[2*i], seg[2*i+1]);\n }\n ll qry(int l, int r) {\n ll res = 0;\n l += n; r += n;\n while(l <= r){\n if(l % 2 == 1){ res = max(res, seg[l]); l++; }\n if(r % 2 == 0){ res = max(res, seg[r]); r--; }\n l /= 2; r /= 2;\n }\n return res;\n }\n};\n\nbool cmp(const Dr &p, const Dr &q){\n if(p.d == q.d) return p.B < q.B;\n return p.d > q.d;\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int n; ll L;\n cin >> n >> L;\n vector<Dr> v(n);\n for (int i = 0; i < n; i++){\n cin >> v[i].A >> v[i].B;\n v[i].d = v[i].A - v[i].B;\n }\n vector<ll> C(n);\n for (int i = 0; i < n; i++) cin >> C[i];\n\n sort(v.begin(), v.end(), cmp);\n\n vector<ll> suf(n);\n suf[n-1] = v[n-1].A;\n for (int i = n-2; i >= 0; i--) suf[i] = max(v[i].A, suf[i+1]);\n\n vector<ll> arr(n);\n for (int i = 0; i < n; i++) arr[i] = v[i].B;\n\n Seg segt(n);\n segt.build(arr);\n\n vector<ll> S(n+1, 0);\n for (int i = 1; i <= n; i++) S[i] = S[i-1] + v[i-1].d;\n vector<ll> M(n+1, 0);\n for (int i = 1; i <= n; i++) M[i] = M[i-1] + C[i-1];\n\n if(n >= 1 && suf[0] >= L){\n cout << 1 << endl;\n return 0;\n }\n\n int ans = -1;\n ll mn = LLONG_MAX;\n for (int d = 2; d <= n; d++){\n ll cur = S[d-1] - M[d-1];\n if(cur <= 0) break;\n mn = min(mn, cur);\n\n if(d-1 < n && S[d-1] + suf[d-1] >= L){\n ans = d;\n break;\n }\n\n int lo = 0, hi = d-1, pos = d;\n while(lo <= hi){\n int mid = (lo + hi) / 2;\n if(v[mid].d < mn) pos = mid, hi = mid - 1;\n else lo = mid + 1;\n }\n if(pos < d){\n ll cand = segt.qry(pos, d-1);\n if(S[d-1] + cand >= L){\n ans = d;\n break;\n }\n }\n }\n cout << (ans == -1 ? -1 : ans) << endl;\n return 0;\n}", "accuracy": 0.2916666666666667, "time_ms": 20, "memory_kb": 10324, "score_of_the_acc": -0.541, "final_rank": 18 }, { "submission_id": "aoj_2785_9836741", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/all>\n// #include<boost/multiprecision/cpp_int.hpp>\n\nusing namespace std;\n// using namespace atcoder;\n// using bint = boost::multiprecision::cpp_int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing P = pair<ll,ll>;\nusing vi = vector<ll>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing ve = vector<vector<int>>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\n#define rep(i,n) for(ll i = 0;i < (ll)n;i++)\n#define ALL(x) (x).begin(),(x).end()\n#define sz(c) ((ll)(c).size())\n#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())\n#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())\n// #define MOD 1000000007\n#define MOD 998244353\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}\nld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}\n\n\nint main(){\n \n ios_base::sync_with_stdio(0), cin.tie(0);\n ll n,L;cin >> n >> L;\n vi a(n),b(n);\n rep(i,n)cin >> a[i] >> b[i];\n vi c(n);cin >> c;\n vi idx(n);\n iota(ALL(idx),0);\n sort(ALL(idx),[&](int i,int j){\n return a[i]-b[i] > a[j]-b[j];\n });\n vi ruiC(n+1);\n rep(i,n)ruiC[i+1] = ruiC[i] + c[i];\n vi rui(n+1);\n rep(i,n)rui[i+1] = rui[i] + a[idx[i]] - b[idx[i]];\n int res = MOD;\n ll lst = n;\n rep(i,n)if(ruiC[i+1] >= rui[i+1]){\n lst = i;\n break;\n }\n {\n vi v;\n for(int i = n-1;i >= 0;i--){\n if(a[idx[i]] <= b[idx[i]]){\n v.emplace_back(a[idx[i]]);\n rui.pop_back();ruiC.pop_back();\n }else break;\n }\n n = sz(rui)-1;\n chmin(lst,n);\n for(auto au : v){\n int k = LB(rui,L-au);\n if(k-1 >= lst)continue;\n chmin(res,k+1);\n }\n }\n min_priority_queue<P> que;\n for(int i = n-1;i >= 0;i--){\n int A = a[idx[i]],B = b[idx[i]];\n while(!que.empty()){\n auto [x,y] = que.top();\n if(x <= A-B){\n chmin(lst,y);\n que.pop();\n }else break;\n }\n int k = LB(rui,L-A);\n int g = 0;\n if(k >= i+1){g = 1;\n k = LB(rui,L-A+(A-B));\n }\n if(k-1 < lst)chmin(res,k-g+1);\n que.push({rui[i+1]-ruiC[i],i});\n }\n cout << (res == MOD ? -1 : res) << \"\\n\";\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9852, "score_of_the_acc": -0.5086, "final_rank": 2 }, { "submission_id": "aoj_2785_9836735", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/all>\n// #include<boost/multiprecision/cpp_int.hpp>\n\nusing namespace std;\n// using namespace atcoder;\n// using bint = boost::multiprecision::cpp_int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing P = pair<ll,ll>;\nusing vi = vector<ll>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing ve = vector<vector<int>>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\n#define rep(i,n) for(ll i = 0;i < (ll)n;i++)\n#define ALL(x) (x).begin(),(x).end()\n#define sz(c) ((ll)(c).size())\n#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())\n#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())\n// #define MOD 1000000007\n#define MOD 998244353\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}\nld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}\n\n\nint main(){\n \n ios_base::sync_with_stdio(0), cin.tie(0);\n ll n,L;cin >> n >> L;\n vi a(n),b(n);\n rep(i,n)cin >> a[i] >> b[i];\n vi c(n);cin >> c;\n vi idx(n);\n iota(ALL(idx),0);\n sort(ALL(idx),[&](int i,int j){\n return a[i]-b[i] > a[j]-b[j];\n });\n vi ruiC(n+1);\n rep(i,n)ruiC[i+1] = ruiC[i] + c[i];\n vi rui(n+1);\n rep(i,n)rui[i+1] = rui[i] + a[idx[i]] - b[idx[i]];\n int res = MOD;\n {\n vi v;\n for(int i = n-1;i >= 0;i--){\n if(a[idx[i]] <= b[idx[i]]){\n v.emplace_back(a[idx[i]]);\n rui.pop_back();ruiC.pop_back();\n }else break;\n }\n n = sz(rui)-1;\n for(auto au : v){\n int k = LB(rui,L-au);\n if(k-1 > n-1)continue;\n chmin(res,k+1);\n }\n }\n ll lst = n;\n rep(i,n)if(ruiC[i+1] >= rui[i+1]){\n lst = i;\n break;\n }\n min_priority_queue<P> que;\n for(int i = n-1;i >= 0;i--){\n int A = a[idx[i]],B = b[idx[i]];\n while(!que.empty()){\n auto [x,y] = que.top();\n if(x <= A-B){\n chmin(lst,y);\n que.pop();\n }else break;\n }\n int k = LB(rui,L-A);\n int g = 0;\n if(k >= i+1){g = 1;\n k = LB(rui,L-A+(A-B));\n }\n if(k-1 < lst)chmin(res,k-g+1);\n que.push({rui[i+1]-ruiC[i],i});\n }\n cout << (res == MOD ? -1 : res) << \"\\n\";\n \n\n return 0;\n}", "accuracy": 0.8333333333333334, "time_ms": 30, "memory_kb": 9912, "score_of_the_acc": -0.6794, "final_rank": 12 }, { "submission_id": "aoj_2785_9836716", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/all>\n// #include<boost/multiprecision/cpp_int.hpp>\n\nusing namespace std;\n// using namespace atcoder;\n// using bint = boost::multiprecision::cpp_int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing P = pair<ll,ll>;\nusing vi = vector<ll>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing ve = vector<vector<int>>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\n#define rep(i,n) for(ll i = 0;i < (ll)n;i++)\n#define ALL(x) (x).begin(),(x).end()\n#define sz(c) ((ll)(c).size())\n#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())\n#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())\n// #define MOD 1000000007\n#define MOD 998244353\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}\nld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}\n\n\nint main(){\n \n ios_base::sync_with_stdio(0), cin.tie(0);\n ll n,L;cin >> n >> L;\n vi a(n),b(n);\n rep(i,n)cin >> a[i] >> b[i];\n vi c(n);cin >> c;\n vi idx(n);\n iota(ALL(idx),0);\n sort(ALL(idx),[&](int i,int j){\n return a[i]-b[i] > a[j]-b[j];\n });\n vi ruiC(n+1);\n rep(i,n)ruiC[i+1] = ruiC[i] + c[i];\n vi rui(n+1);\n rep(i,n)rui[i+1] = rui[i] + a[idx[i]] - b[idx[i]];\n ll lst = n;\n rep(i,n)if(ruiC[i+1] >= rui[i+1]){\n lst = i;\n break;\n }\n min_priority_queue<P> que;\n int res = MOD;\n for(int i = n-1;i >= 0;i--){\n int A = a[idx[i]],B = b[idx[i]];\n while(!que.empty()){\n auto [x,y] = que.top();\n if(x <= A-B){\n chmin(lst,y);\n que.pop();\n }else break;\n }\n int k = LB(rui,L-A);\n int g = 0;\n if(k >= i+1){g = 1;\n k = LB(rui,L-A+(A-B));\n }\n if(k-1 < lst)chmin(res,k-g+1);\n que.push({rui[i+1]-ruiC[i],i});\n }\n cout << (res == MOD ? -1 : res) << \"\\n\";\n \n\n return 0;\n}", "accuracy": 0.875, "time_ms": 20, "memory_kb": 9768, "score_of_the_acc": -0.5028, "final_rank": 11 }, { "submission_id": "aoj_2785_9831050", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\ntemplate <typename M, typename N, M (*f)(M, M), M (*g)(M, N), M (*m1)()>\nstruct SegmentTree {\n int sz, n;\n vector<M> data;\n SegmentTree(int _n = 0) : n(_n) {\n sz = 1;\n while (sz < _n)\n sz <<= 1;\n data.assign(2 * sz, m1());\n }\n void run(vector<M> &v) {\n for (int i = 0; i < (int)v.size(); i++)\n data[i + sz] = v[i];\n for (int k = sz - 1; k > 0; k--)\n data[k] = f(data[2 * k], data[2 * k + 1]);\n }\n void set(int k, const M &x) {\n k += sz;\n data[k] = x;\n while (k >>= 1)\n data[k] = f(data[2 * k], data[2 * k + 1]);\n }\n void update(int k, const N &x) {\n k += sz;\n data[k] = g(data[k], x);\n while (k >>= 1)\n data[k] = f(data[2 * k], data[2 * k + 1]);\n }\n M query(int a, int b) {\n M L = m1(), R = m1();\n for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {\n if (a & 1)\n L = f(L, data[a++]);\n if (b & 1)\n R = f(data[--b], R);\n }\n return f(L, R);\n }\n M operator[](const int &k) const {\n return data[k + sz];\n }\n vector<M> get() {\n return {data.begin() + sz, data.begin() + sz + n};\n }\n template <class F> int max_right(int L, F ch) const {\n int l = sz + L, w = 1;\n M ansL = m1();\n for (; L + w <= sz; l >>= 1, w <<= 1)\n if (l & 1) {\n if (not ch(f(ansL, data[l])))\n break;\n ansL = f(ansL, data[l++]);\n L += w;\n }\n while (l <<= 1, w >>= 1) {\n if (L + w <= sz && ch(f(ansL, data[l]))) {\n ansL = f(ansL, data[l++]);\n L += w;\n }\n }\n return L;\n }\n template <class F> int min_left(int R, F ch) const {\n int r = sz + R, w = 1;\n M ansR = m1();\n for (; R - w >= 0; r >>= 1, w <<= 1)\n if (r & 1) {\n if (not ch(f(data[r - 1], ansR)))\n break;\n ansR = f(data[--r], ansR);\n R -= w;\n }\n while (r <<= 1, w >>= 1) {\n if (R - w >= 0 && ch(f(data[r - 1], ansR))) {\n ansR = f(data[--r], ansR);\n R -= w;\n }\n }\n return R;\n }\n};\n\n/**\n * @brief Segment Tree\n */\n\nll f(ll A, ll B) {return min(A,B);}\nll g(ll A, ll B) {return B;}\nll e() {return INF;}\n\nint main() {\n int N;\n ll L;\n cin >> N >> L;\n vector<pair<ll,ll>> A(N);\n vector<ll> C(N);\n rep(i,0,N) cin >> A[i].first >> A[i].second;\n rep(i,0,N) cin >> C[i];\n sort(ALL(A),[&](pair<ll,ll> p, pair<ll,ll> q){return p.first-p.second > q.first-q.second;});\n vector<ll> D(N);\n rep(i,0,N) D[i] = A[i].first-A[i].second;\n vector<ll> DS(N+1);\n DS[0] = 0;\n rep(i,0,N) DS[i+1] = DS[i] + max(D[i], 0LL);\n vector<ll> E0(N), E1(N-1);\n rep(i,0,N) E0[i] = A[i].first-A[i].second-C[i];\n rep(i,0,N-1) E1[i] = A[i+1].first-A[i+1].second-C[i];\n vector<ll> ES0(N+1), ES1(N);\n ES0[0] = ES1[0] = 0;\n rep(i,0,N) ES0[i+1] = ES0[i] + E0[i];\n rep(i,0,N-1) ES1[i+1] = ES1[i] + E1[i];\n SegmentTree<ll,ll,f,g,e> Seg0(N+1), Seg1(N);\n Seg0.run(ES0);\n Seg1.run(ES1);\n int ANS = inf;\n rep(i,0,N) {\n if (DS[i] + A[i].first >= L) {\n int ID = LB(DS, L - A[i].first);\n if (Seg0.query(1,ID+1) > 0) chmin(ANS, ID+1);\n }\n else if (DS[N] - max(D[i], 0LL) + A[i].first >= L) {\n int ID = LB(DS, L - A[i].first + max(D[i], 0LL));\n if (Seg0.query(1,i+1) > 0 && ES0[i] + Seg1.query(i+1, ID) - ES1[i] > 0) chmin(ANS, ID);\n }\n }\n cout << (ANS == inf ? -1 : ANS) << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14128, "score_of_the_acc": -1.6353, "final_rank": 9 }, { "submission_id": "aoj_2785_9669146", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (lower_bound(ALL(A),x)-A.begin())\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nstruct minsegtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return min(a,b);}\n ll e(){return 1e18;}\n minsegtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll N,L;cin>>N>>L;\n vector<pi>A(N);\n REP(i,N)cin>>A[i].first>>A[i].second;\n REP(i,N)A[i].second=min(A[i].first,A[i].second);\n REP(i,N)A[i]=pi(A[i].first-A[i].second,-A[i].first);\n sort(ALL(A));\n reverse(ALL(A));\n REP(i,N)A[i].second*=-1;\n vi D(N+1);\n REP(i,N)D[i+1]=D[i]+A[i].first;\n vi C(N+1);\n REP(i,N)cin>>C[i+1];\n FOR(i,1,N+1)C[i]+=C[i-1];\n ll ans=1e18,m=*max_element(ALL(D));\n minsegtree seg(N+1),seg0(N);\n REP(i,N+1)seg.set(i,D[i]-C[i]);\n REP(i,N)seg0.set(i,D[i+1]-C[i]);\n REP(i,N){\n if(D[i]+A[i].second>=L){\n ll t=lower_bound(D.begin(),D.begin()+i,L-A[i].second)-D.begin();\n if(seg.prod(1,t+1)>0)ans=min(ans,t+1);\n }\n else if(m-A[i].first+A[i].second>=L){\n ll t=lower_bound(D.begin(),D.end(),L-A[i].second+A[i].first)-D.begin();\n if(t<i+1)continue;\n if(seg.prod(1,i+1)<=0)continue;\n if(seg0.prod(i+1,t)<=A[i].first)continue;\n ans=min(ans,t);\n }\n }\n if(ans>1e17)ans=-1;\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 10232, "score_of_the_acc": -1.368, "final_rank": 7 }, { "submission_id": "aoj_2785_9669085", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(A) A.begin(),A.end()\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll N,L;cin>>N>>L;\n vector<pi>A(N);\n REP(i,N)cin>>A[i].first>>A[i].second;\n REP(i,N)A[i]=pi(A[i].first-A[i].second,-A[i].first);\n sort(ALL(A));\n reverse(ALL(A));\n segtree seg(N);\n REP(i,N)seg.set(i,-A[i].second);\n vi C(N);\n REP(i,N)cin>>C[i];\n FOR(i,1,N)C[i]+=C[i-1];\n int l=0;\n REP(i,N){\n if(seg.prod(0,N)+l>=L){\n cout<<i+1<<endl;\n return 0;\n }\n seg.set(i,-1e18);\n l+=A[i].first;\n if(l<=C[i]){\n cout<<-1<<endl;return 0;\n }\n }\n cout<<-1<<endl;\n return 0;\n}", "accuracy": 0.2916666666666667, "time_ms": 50, "memory_kb": 7192, "score_of_the_acc": -0.8261, "final_rank": 19 }, { "submission_id": "aoj_2785_8321648", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst long long INF = (3LL << 59);\n\nclass drink {\npublic:\n\tlong long a, b;\n\tdrink() : a(0), b(0) {}\n\tdrink(long long a_, long long b_) : a(a_), b(b_) {}\n};\n\nclass segtree {\nprivate:\n\tint sz;\n\tvector<long long> val;\npublic:\n\tsegtree() : sz(0), val(vector<long long>()) {}\n\tsegtree(int n) {\n\t\tsz = (n >= 3 ? 1 << (32 - __builtin_clz(n - 1)) : n);\n\t\tval.resize(sz * 2, -INF);\n\t}\n\tvoid update(int pos, long long x) {\n\t\tpos += sz;\n\t\tval[pos] = x;\n\t\twhile (pos > 1) {\n\t\t\tpos /= 2;\n\t\t\tval[pos] = max(val[pos * 2], val[pos * 2 + 1]);\n\t\t}\n\t}\n\tlong long rangemax(int l, int r) const {\n\t\tlong long res = -INF;\n\t\tl += sz;\n\t\tr += sz;\n\t\twhile (l != r) {\n\t\t\tif (l & 1) res = max(res, val[l++]);\n\t\t\tif (r & 1) res = max(res, val[--r]);\n\t\t\tl >>= 1;\n\t\t\tr >>= 1;\n\t\t}\n\t\treturn res;\n\t}\n};\n\nint main() {\n\t// step #1. input\n\tint N; long long L;\n\tcin >> N >> L;\n\tvector<drink> D(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> D[i].a >> D[i].b;\n\t}\n\tvector<int> C(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> C[i];\n\t}\n\n\t// step #2. solve\n\tsort(D.begin(), D.end(), [&](const drink& d1, const drink& d2) {\n\t\treturn d1.a - d1.b > d2.a - d2.b;\n\t});\n\tvector<long long> F(N);\n\tsegtree seg1(N), seg2(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tF[i] = D[i].a - D[i].b;\n\t\tseg1.update(i, D[i].a);\n\t\tseg2.update(i, D[i].b);\n\t}\n\tint answer = -1;\n\tlong long height = F[0];\n\tlong long diff = F[0] + 1;\n\tlong long diffmin = diff;\n\tfor (int r = 1; r <= N; r++) {\n\t\tif (diffmin <= 0) {\n\t\t\tbreak;\n\t\t}\n\t\tint pos = lower_bound(F.begin(), F.end(), diffmin - 1, [](long long v1, long long v2) { return v1 > v2; }) - F.begin();\n\t\tif (pos < r - 1) {\n\t\t\tlong long bmax = seg2.rangemax(pos, r - 1);\n\t\t\tlong long h = height + bmax;\n\t\t\tif (h >= L) {\n\t\t\t\tanswer = r;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (pos < r) {\n\t\t\tlong long amax = seg1.rangemax(r - 1, N);\n\t\t\tlong long h = height - F[r - 1] + amax;\n\t\t\tif (h >= L) {\n\t\t\t\tanswer = r;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (r != N) {\n\t\t\theight += F[r];\n\t\t\tdiff += F[r] - C[r - 1];\n\t\t\tif (r == 1) {\n\t\t\t\tdiff -= 1;\n\t\t\t}\n\t\t\tdiffmin = min(diffmin, diff);\n\t\t}\n\t}\n\n\t// step #3. output\n\tcout << answer << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 9920, "score_of_the_acc": -1.3466, "final_rank": 6 }, { "submission_id": "aoj_2785_7235761", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define foa(s, v) for(auto &s : v)\n#define all(v) v.begin(), v.end()\n#define REPname(a,b,c,d,...) d\n#define rep(...) REPname(__VA_ARGS__, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP2(i,l,r) for(int i = l; i < r; i++)\n#define REP1(i, x) REP2(i,0,x)\n#define REP0(x) REP1(SPJ, x)\n#define sz(x) int(x.size())\n\ntemplate <class T>\nusing V=vector<T>;\n\ntemplate <class T>\nusing VV=vector<V<T>>;\n\ntemplate<class T>\nusing pqmin = priority_queue<T, V<T>, greater<T>>;\nusing ll = long long ;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing vll = vector<ll>;\nusing vvll = V<vll>;\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\ntemplate<class T>\ninline bool chmax(T &a, T b){\n\treturn a < b ? a=b, 1 : 0;\n}\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\treturn a > b ? a = b, 1 : 0;\n}\n\ntemplate <class T>\nvoid view(T x) {\n\tcerr << x;\n}\n\ntemplate <class T>\nvoid view(V<T> v) {\n\tcerr << \"{ \";\n\tfoa(t, v) {view(t) ; cerr << \", \";}\n\tcerr << \"}\";\n\tcerr << endl;\n}\n\n\ntemplate <class T>\nvoid view(VV<T> v) {\n\tcerr << \"{ \";\n\tfoa(t, v) {view(t) ; cerr << \",\\n\";}\n\tcerr << \"}\";\n\tcerr << endl;\n}\n\n\n// template <c0lass T>\nvoid view(int x) {\n\tcerr << x;\n}\n\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <class T>\nvoid debug_out(T x) {\n\tview(x);\n}\ntemplate <class H, class... T>\nvoid debug_out(H h, T... t) {\n\tview(h);\n\tcerr << \", \";\n\tdebug_out(t...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"]\\n\"; \\\n\t} while(0)\n#else\n#define debug(...) (void(0))\n#endif\nusing vvi = V<vi>;\n\nstruct uf{\n\tvector<int> dat;\n\tuf(int n) : dat(n, -1) {}\n\tint root(int x) \n\t{\n\t\tint& p = dat[x];\n\t\tif(p < 0) return x;\n\t\treturn p = root(p);\n\t}\n\tbool merge(int x, int y) {\n\t\tx = root(x);\n\t\ty = root(y);\n\t\tif(x == y) return false;\n\t\tif(-dat[x] < -dat[y]) swap(x, y);\n\t\tdat[x] += dat[y];\n\t\tdat[y] = x;\n\t\treturn true;\n\t}\n};\n\nll modpow(ll x, ll n, ll md){\n\tll ret = 1 % md;\n\twhile(n > 0){\n\t\tif(n & 1) {ret *= x; ret %= md;}\n\t\tn >>= 1;\n\t\tx *= x;\n\t\tx %= md;\n\t}\n\tif(ret < 0) ret += abs(md);\n\treturn ret;\n}\n\nusing S = ll;\nusing F = ll; // +\nconstexpr ll e = INF;\nconstexpr ll id = 0LL;\nconstexpr ll replace_e = e;\nll op(ll a, ll b) {return min(a,b);}\nll mapping(F f, S s) {return S(f+s);}\nll composition(F f, F g) {return f+g;}\nstruct node {\n\tnode *l = nullptr;\n\tnode *r = nullptr;\n\tint lo, hi;\n\tll mset = e;\n\tll madd = id;\n\tll val = e;\n\tnode(int lo, int hi) : lo(lo), hi(hi) {}\n\tnode (vll& v, int lo, int hi) : lo(lo), hi(hi) {\n\t\tif(lo + 1 < hi) {\n\t\t\tint mid = lo + (hi - lo) / 2;\n\t\t\tl = new node (v, lo, mid);\n\t\t\tr = new node(v, mid, hi);\n\t\t\tval = op(l->val, r->val);\n\t\t}\n\t\telse {\n\t\t\tval = v[lo];\n\t\t}\n\t}\n\n\tS query(int L, int R) {\n\t\tif(R <= lo || hi <= L) return e;\n\t\tif(L <=lo && hi <= R) return val;\n\t\tpush();\n\t\treturn op(l->query(L, R), r->query(L,R));\n\t}\n\n\tvoid set(int L, int R, ll x) {\n\t\tif(R <= lo || hi <= L) return;\n\t\tif(L <= lo && hi <= R) mset = val = x, madd = id;\n\t\telse {\n\t\t\tpush(), l->set (L, R, x) , r->set(L,R,x);\n\t\t\tval = op(l->val, r->val);\n\t\t}\n\t}\n\n\tvoid add(int L, int R, ll x) {\n\t\tif(R <= lo || hi <= L) return;\n\t\tif(L <= lo && hi <= R) {\n\t\t\tif(mset != replace_e) mset = mapping(x, mset);\n\t\t\telse madd = composition(x, madd);\n\t\t\tval = mapping(x, val);\n\t\t} else {\n\t\t\tpush(), l->add(L, R, x), r->add(L, R, x);\n\t\t\tval = op(l->val, r->val);\n\t\t}\n\t}\n\n\tvoid push() {\n\t\tif(!l) {\n\t\t\tint mid = lo + (hi - lo) / 2;\n\t\t\tl = new node(lo, mid);\n\t\t\tr = new node(mid, hi);\n\t\t}\n\t\tif(mset != replace_e)\n\t\t\tl->set(lo, hi, mset), r->set(lo, hi, mset), mset = replace_e;\n\t\telse if(madd)\n\t\t\tl->add(lo, hi, madd), r->add(lo, hi, madd), madd = id;\n\t}\n};\n\nint solve(int n){\n\tll len; cin >> len;\n\tV<pair<ll, ll>> up_bonus;\n\tll largest_bonus = -INF;\n\trep(n) {\n\t\tll a, b; cin >> a >> b;\n\t\tll up = a - b;\n\t\tif(up > 0) {\n\t\t\tup_bonus.emplace_back(up, b);\n\t\t} else if(a > 0) {\n\t\t\tchmax(largest_bonus, a);\n\t\t}\n\t}\n\tvll criminals = {0LL};\n\trep(n) {\n\t\tll c;\n\t\tcin >> c; \n\t\tcriminals.push_back(criminals.back() + c);\n\t}\n\n\tsort(all(up_bonus));\n\treverse(all(up_bonus));\n\n\tvector<ll> s = {0};\n\tfor(auto [c, d] : up_bonus) {\n\t\ts.push_back(s.back() + c);\n\t}\n\n\tconst int plus_size = up_bonus.size();\n\tif(plus_size == 0) {\n\t\tif(len <= largest_bonus) return 1;\n\t\treturn -1;\n\t}\n\n\tvector<ll> tab = s;\n\ttab.front() = INF;\n\ttab.at(1) = INF;\n\n\trep(i, 2, int(tab.size())) {\n\t\ttab[i] -= criminals[i-1];\n\t}\n\n\tnode* rmq = new node(tab, 0, int(tab.size()));\n\n\tint ans = n + 10;\n\n\trep(i, plus_size) {\n\t\tauto [up, bonus] = up_bonus.at(i);\n\n\t\tif(i && s[i] <= criminals[i]) break;\n\t\tif(s[i] + largest_bonus >= len) chmin(ans, i + 1);\n\n\t\tconst int from_here = int(lower_bound(all(s), len - bonus) - s.begin());\n\t\tif(from_here == int(s.size())) continue;\n\t\tif(from_here <= i + 1) {chmin(ans, i + 1); continue;}\n\n\t\tif(rmq->query(i + 2, from_here + 1) <= up) continue;\n\n\t\tchmin(ans, from_here);\n\t}\n\n\tif(s.back() > criminals.back() && s.back() + largest_bonus >= len) chmin(ans, plus_size + 1);\n\n\tif(ans > n) return -1;\n\treturn ans;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\tint n;\n\twhile(cin >> n && n) cout<< solve(n) << '\\n';\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 19376, "score_of_the_acc": -1.4953, "final_rank": 8 }, { "submission_id": "aoj_2785_7235723", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define foa(s, v) for(auto &s : v)\n#define all(v) v.begin(), v.end()\n#define REPname(a,b,c,d,...) d\n#define rep(...) REPname(__VA_ARGS__, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP2(i,l,r) for(int i = l; i < r; i++)\n#define REP1(i, x) REP2(i,0,x)\n#define REP0(x) REP1(SPJ, x)\n#define sz(x) int(x.size())\n\ntemplate <class T>\nusing V=vector<T>;\n\ntemplate <class T>\nusing VV=vector<V<T>>;\n\ntemplate<class T>\nusing pqmin = priority_queue<T, V<T>, greater<T>>;\nusing ll = long long ;\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing vll = vector<ll>;\nusing vvll = V<vll>;\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\ntemplate<class T>\ninline bool chmax(T &a, T b){\n\treturn a < b ? a=b, 1 : 0;\n}\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\treturn a > b ? a = b, 1 : 0;\n}\n\ntemplate <class T>\nvoid view(T x) {\n\tcerr << x;\n}\n\ntemplate <class T>\nvoid view(V<T> v) {\n\tcerr << \"{ \";\n\tfoa(t, v) {view(t) ; cerr << \", \";}\n\tcerr << \"}\";\n\tcerr << endl;\n}\n\n\ntemplate <class T>\nvoid view(VV<T> v) {\n\tcerr << \"{ \";\n\tfoa(t, v) {view(t) ; cerr << \",\\n\";}\n\tcerr << \"}\";\n\tcerr << endl;\n}\n\n\n// template <c0lass T>\nvoid view(int x) {\n\tcerr << x;\n}\n\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <class T>\nvoid debug_out(T x) {\n\tview(x);\n}\ntemplate <class H, class... T>\nvoid debug_out(H h, T... t) {\n\tview(h);\n\tcerr << \", \";\n\tdebug_out(t...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"]\\n\"; \\\n\t} while(0)\n#else\n#define debug(...) (void(0))\n#endif\nusing vvi = V<vi>;\n\nstruct uf{\n\tvector<int> dat;\n\tuf(int n) : dat(n, -1) {}\n\tint root(int x) \n\t{\n\t\tint& p = dat[x];\n\t\tif(p < 0) return x;\n\t\treturn p = root(p);\n\t}\n\tbool merge(int x, int y) {\n\t\tx = root(x);\n\t\ty = root(y);\n\t\tif(x == y) return false;\n\t\tif(-dat[x] < -dat[y]) swap(x, y);\n\t\tdat[x] += dat[y];\n\t\tdat[y] = x;\n\t\treturn true;\n\t}\n};\n\nll modpow(ll x, ll n, ll md){\n\tll ret = 1 % md;\n\twhile(n > 0){\n\t\tif(n & 1) {ret *= x; ret %= md;}\n\t\tn >>= 1;\n\t\tx *= x;\n\t\tx %= md;\n\t}\n\tif(ret < 0) ret += abs(md);\n\treturn ret;\n}\n\nusing S = ll;\nusing F = ll; // +\nconstexpr ll e = INF;\nconstexpr ll id = 0LL;\nconstexpr ll replace_e = e;\nll op(ll a, ll b) {return min(a,b);}\nll mapping(F f, S s) {return S(f+s);}\nll composition(F f, F g) {return f+g;}\nstruct node {\n\tnode *l = nullptr;\n\tnode *r = nullptr;\n\tint lo, hi;\n\tll mset = e;\n\tll madd = id;\n\tll val = e;\n\tnode(int lo, int hi) : lo(lo), hi(hi) {}\n\tnode (vll& v, int lo, int hi) : lo(lo), hi(hi) {\n\t\tif(lo + 1 < hi) {\n\t\t\tint mid = lo + (hi - lo) / 2;\n\t\t\tl = new node (v, lo, mid);\n\t\t\tr = new node(v, mid, hi);\n\t\t\tval = op(l->val, r->val);\n\t\t}\n\t\telse {\n\t\t\tval = v[lo];\n\t\t}\n\t}\n\n\tS query(int L, int R) {\n\t\tif(R <= lo || hi <= L) return e;\n\t\tif(L <=lo && hi <= R) return val;\n\t\tpush();\n\t\treturn op(l->query(L, R), r->query(L,R));\n\t}\n\n\tvoid set(int L, int R, ll x) {\n\t\tif(R <= lo || hi <= L) return;\n\t\tif(L <= lo && hi <= R) mset = val = x, madd = id;\n\t\telse {\n\t\t\tpush(), l->set (L, R, x) , r->set(L,R,x);\n\t\t\tval = op(l->val, r->val);\n\t\t}\n\t}\n\n\tvoid add(int L, int R, ll x) {\n\t\tif(R <= lo || hi <= L) return;\n\t\tif(L <= lo && hi <= R) {\n\t\t\tif(mset != replace_e) mset = mapping(x, mset);\n\t\t\telse madd = composition(x, madd);\n\t\t\tval = mapping(x, val);\n\t\t} else {\n\t\t\tpush(), l->add(L, R, x), r->add(L, R, x);\n\t\t\tval = op(l->val, r->val);\n\t\t}\n\t}\n\n\tvoid push() {\n\t\tif(!l) {\n\t\t\tint mid = lo + (hi - lo) / 2;\n\t\t\tl = new node(lo, mid);\n\t\t\tr = new node(mid, hi);\n\t\t}\n\t\tif(mset != replace_e)\n\t\t\tl->set(lo, hi, mset), r->set(lo, hi, mset), mset = replace_e;\n\t\telse if(madd)\n\t\t\tl->add(lo, hi, madd), r->add(lo, hi, madd), madd = id;\n\t}\n};\n\nint solve(int n){\n\tll len; cin >> len;\n\tV<pair<ll, ll>> up_bonus;\n\tll largest_bonus = -1;\n\trep(n) {\n\t\tll a, b; cin >> a >> b;\n\t\tll up = a - b;\n\t\tif(up > 0) {\n\t\t\tup_bonus.emplace_back(up, b);\n\t\t} else if(a > 0) {\n\t\t\tchmax(largest_bonus, a);\n\t\t}\n\t}\n\tvll criminals = {0LL};\n\trep(n) {\n\t\tll c;\n\t\tcin >> c; \n\t\tcriminals.push_back(criminals.back() + c);\n\t}\n\n\tsort(all(up_bonus));\n\treverse(all(up_bonus));\n\n\tvector<ll> s = {0};\n\tfor(auto [c, d] : up_bonus) {\n\t\ts.push_back(s.back() + c);\n\t}\n\n\tconst int ss = int(s.size());\n\n\tvector<ll> tab = s;\n\tif(ss < 2) {\n\t\tif(len <= largest_bonus) return 1;\n\t\treturn -1;\n\t}\n\n\ttab.front() = INF;\n\ttab.at(1) = INF;\n\n\trep(i, 2, ss) {\n\t\ttab[i] -= criminals[i-1];\n\t}\n\n\tnode* rmq = new node(tab, 0, ss);\n\n\tint ans = n + 10;\n\n\trep(i, int(up_bonus.size())) {\n\t\tauto [up, bonus] = up_bonus.at(i);\n\n\t\tif(i && s[i] <= criminals[i]) break;\n\t\tif(s[i] + largest_bonus >= len) chmin(ans, i + 1);\n\n\t\tconst int from_here = int(lower_bound(all(s), len - bonus) - s.begin());\n\t\tif(from_here == ss) continue;\n\t\tif(from_here <= i + 1) {chmin(ans, i + 1); continue;}\n\n\t\tif(rmq->query(i + 2, from_here + 1) <= up) continue;\n\n\t\tchmin(ans, from_here);\n\t}\n\n\tif(ans > n) return -1;\n\treturn ans;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\tint n;\n\twhile(cin >> n && n) cout<< solve(n) << '\\n';\n}", "accuracy": 0.9791666666666666, "time_ms": 40, "memory_kb": 19444, "score_of_the_acc": -1.5, "final_rank": 10 }, { "submission_id": "aoj_2785_7176631", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myrand(ll B){\n return (ull)rng() % B;\n}\n\nconst int mx = 1e9;\nconst ll inf = 1e18;\n\nstruct segtree {\n using S = ll; // 例\n S op(S a,S b) {return min(a,b);}\n S e() {return inf;}\n\n int n;\n vector<S> tree;\n segtree(int n) : n(n), tree(vector<S>(n*2, e())) {}\n\n void update(int pos,S val){\n pos += n; tree[pos] = val;\n while(pos > 1){\n tree[pos/2] = op(tree[pos], tree[pos^1]);\n pos /= 2;\n }\n }\n // [l,r)\n S query(int l, int r) {\n S sml = e(), smr = e();\n for(l += n, r += n; l < r; l >>= 1, r >>= 1){\n if(l%2) sml = op(sml, tree[l++]);\n if(r%2) smr = op(tree[--r], smr);\n }\n return op(sml,smr);\n }\n};\n\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n ll L; cin >> L;\n vector<pair<ll,ll>> v(n);\n for (int i = 0; i < n; ++i) {\n ll a,b; cin >> a >> b;\n v[i] = {a-b, a};\n }\n sort(v.rbegin(), v.rend());\n\n vector<ll> c(n);\n for (int i = 0; i < n; ++i) {\n cin >> c[i];\n }\n int res = mx;\n // ソート順で使う場合\n {\n vector<ll> rmx(n);\n for (int i = n-1; i >= 0; --i) {\n rmx[i] = max(rmx[i], v[i].second);\n if(i+1 < n){\n rmx[i] = max(rmx[i], rmx[i+1]);\n }\n }\n ll ss = 0;\n ll cs = 0;\n if(rmx[0] >= L) res = 1;\n for (int i = 0; i < n - 1; ++i) {\n ss += v[i].first;\n cs += c[i];\n if(ss <= cs) break;\n if(ss + rmx[i+1] >= L){\n res = min(res, i+2);\n }\n }\n }\n // aでかいのを後回しにする場合\n {\n vector<ll> dif(n-1);\n for (int i = 0; i < n - 1; ++i) {\n dif[i] = v[i+1].first-c[i];\n }\n segtree seg(n-1);\n vector<ll> dsum(n);\n for (int i = 0; i < n - 1; ++i) {\n dsum[i+1] = dsum[i] + dif[i];\n seg.update(i, dsum[i+1]);\n }\n\n vector<ll> sum(n+1);\n for (int i = 0; i < n; ++i) {\n sum[i+1] = sum[i] + v[i].first;\n }\n ll ss = 0;\n ll cs = 0;\n for (int i = 0; i+1 < n; ++i) {\n // iを後回し\n int l = i-1, r = n;\n while(r-l > 1){\n int mid = (l+r)/2;\n ll u = sum[mid+1]-v[i].first+v[i].second;\n if(u >= L){\n r = mid;\n }\n else{\n l = mid;\n }\n }\n bool ok = true;\n if(r == n or r == i) ok = false;\n // 正当性確認\n if(ok){\n // [i,r)のdifの前から累積和の最小値を調べる\n ll pds = dsum[i];\n ll mi = seg.query(i,r);\n if(mi-pds+ss-cs > 0){\n res = min(res, r+1);\n }\n }\n // 次の更新\n {\n ss += v[i].first;\n cs += c[i];\n if(ss <= cs) break;\n }\n }\n }\n if(res == mx) res = -1;\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 9284, "score_of_the_acc": -0.6363, "final_rank": 3 } ]
aoj_2787_cpp
Pipe Fitter and the Fierce Dogs You, a proud pipe fitter of ICPC (International Community for Pipe Connection), undertake a new task. The area in which you will take charge of piping work is a rectangular shape with $W$ blocks from west to east and $H$ blocks from north to south. We refer to the block at the $i$-th from west and the $j$-th from north as $(i, j)$. The westernmost and northernmost block is $(1, 1)$, and the easternmost and southernmost block is $(W,H)$. To make the area good scenery, the block $(i, j)$ has exactly one house if and only if both of $i$ and $j$ are odd numbers. Your task is to construct a water pipe network in the area such that every house in the area is supplied water through the network. A water pipe network consists of pipelines. A pipeline is made by connecting one or more pipes, and a pipeline with l pipes is constructed as follows: choose a first house, and connect the house to an underground water source with a special pipe . choose an $i$-th house ($2 \leq i \leq l$), and connect the $i$-th house to the ($i - 1$)-th house with a common pipe . In this case, there is a condition to choose a next $i$-th house because the area is slope land. Let $(x, y)$ be the block of the ($i - 1$)-th house. An $i$-th house must be located at either $(x - 2, y + 2)$, $(x, y + 2)$, or $(x + 2, y + 2)$. A common pipe connecting two houses must be located at $(x - 1, y + 1)$, $(x, y + 1)$, or $(x + 1, y + 1)$, respectively. In addition, you should notice the followings when you construct several pipelines: For each house, exactly one pipeline is through the house. Multiple pipes can be located at one block. In your task, common pipes are common, so you can use any number of common pipes. On the other hand, special pipes are special, so the number of available special pipes in this task is restricted under ICPC regulation. Besides the restriction of available special pipes, there is another factor obstructing your pipe work: fierce dogs. Some of the blocks which do not contain a house seem to be home of fierce dogs. Each dog always stays at his/her home block. Since several dogs must not live at the same block as their home, you can assume each block is home of only one dog, or not home of any dogs. The figure below is an example of a water pipe network in a 5 $\times$ 5 area with 4 special pipes. This corresponds to the first sample. Locating a common pipe at a no-dog block costs 1 unit time, but locating a common pipe at a dog-living block costs 2 unit time because you have to fight against the fierce dog. Note that when you locate multiple pipes at the same block, each pipe-locating costs 1 unit time for no-dog blocks and 2 for dog-living blocks, respectively. By the way, special pipes are very special, so locating a special pipe costs 0 unit time. You, a proud pipe fitter, want to accomplish this task as soon as possible. Fortunately, you get a list of blocks which are home of dogs. You have frequently participated in programmi ...(truncated)
[ { "submission_id": "aoj_2787_10851470", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cmath>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <map>\n#include <set>\n#include <cassert>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\nconst ll mod=1000000007;\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\n// head\n\nconst int N=10100;\n//map<int,int> dp,v,c;\nVI cand,d[N];\nint w,h,k,n,x,y,v[N],c[N],dp[N];\n//int query(int x) { return (--dp.upper_bound(x))->se;}\nint solve(VI x) {\n/*\tv.clear(); c.clear();\n\tcand.clear();\n\tfor (auto p:x) {\n\t\tif (p%2==0) c[p/2+1]=1;\n\t\telse v[p/2+1]=1;\n\t\tcand.pb(p/2+1);\n\t\tif (p/2+2<=(w+1)/2) cand.pb(p/2+2);\n\t\tif (p/2+3<=(w+1)/2) cand.pb(p/2+3);\n\t}\n\tcand.pb((w+1)/2);\n\tcand.pb(0);\n\tsort(all(cand));\n\tcand.erase(unique(all(cand)),cand.end());\n\tdp.clear();\n\tdp[0]=0;\n\trep(x,1,SZ(cand)) {\n\t\tint i=cand[x];\n\t\tdp[i]=query(i-1)+v[i];\n\t\tif (i-2>=0) dp[i]=min(dp[i],query(i-2)+c[i]);\n\t}\n\treturn dp[w/2+1];*/\n\trep(i,1,w/2+2) {\n\t\tv[i]=c[i]=0;\n\t}\n\tfor (auto p:x) {\n\t\tif (p%2==0) c[p/2+1]=1; else v[p/2+1]=1;\n\t}\n\tdp[0]=0;\n\trep(i,1,w/2+2) {\n\t\tdp[i]=dp[i-1]+v[i];\n\t\tif (i>=2) dp[i]=min(dp[i],dp[i-2]+2*c[i]);\n\t}\n\treturn dp[w/2+1];\n}\nint main() {\n\tscanf(\"%d%d%d\",&w,&h,&k);\n\tk-=(w+1)/2;\n\tif (k<0) {\n\t\tputs(\"-1\");\n\t\treturn 0;\n\t}\n\tscanf(\"%d\",&n);\n\trep(i,0,n) {\n\t\tscanf(\"%d%d\",&x,&y);\n\t\tif (y%2==0) d[y/2].pb(x);\n\t}\n\tint r=0;\n\trep(i,1,h/2+1) r+=solve(d[i]);\n\tint cur=(h/2)*(w/2+1)-r;\n\tint dd=min(r,k); r-=dd; k-=dd;\n\tdd=min(cur,k); cur-=dd; k-=dd;\n\tprintf(\"%d\\n\",cur+r*2);\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3692, "score_of_the_acc": -0.0485, "final_rank": 5 }, { "submission_id": "aoj_2787_9808820", "code_snippet": "#include<bits/stdc++.h>\n// #include<atcoder/all>\n// #include<boost/multiprecision/cpp_int.hpp>\n\nusing namespace std;\n// using namespace atcoder;\n// using bint = boost::multiprecision::cpp_int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing P = pair<ll,ll>;\nusing vi = vector<ll>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing ve = vector<vector<int>>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\n#define rep(i,n) for(ll i = 0;i < (ll)n;i++)\n#define ALL(x) (x).begin(),(x).end()\n#define sz(c) ((ll)(c).size())\n#define LB(A,x) (int)(lower_bound(A.begin(),A.end(),x)-A.begin())\n#define UB(A,x) (int)(upper_bound(A.begin(),A.end(),x)-A.begin())\n// #define MOD 1000000007\n#define MOD 998244353\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){for(int i = 0;i < v.size();i++)os<<v[i]<<(i+1!=v.size()?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.first<<\" \"<<p.second;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T> inline bool chmax(T &a,T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(a > b){a = b;return true;}return false;}\nld dist(ld x1,ld y1,ld x2, ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}\n\n\n// https://ei1333.github.io/luzhiled/snippets/graph/dinic.html\ntemplate<typename flow_t>\nstruct Dinic{\n /*\n 復元をするときはfromの頂点から出る辺からのcapを出力.\n is_e == trueの時その辺は元のグラフにあった\"本当の\"辺.\n \"本当の\"辺eについてfr -> toにv[e.to][e.ref].capだけフローが流れている.\n 二部マッチングの復元の場合,仮想の始点(終点)から(へ)の辺に注意.\n */\n struct edge{\n int to;\n flow_t cap;\n int ref;//逆辺の番号\n bool is_e;//本物の辺かどうか\n int idx;//入力で与えられる辺としてのindex\n };\n vector<vector<edge>> v;\n vector<int> mn_cost,iter;\n const flow_t inf;\n Dinic(int n):inf(numeric_limits<flow_t>::max()),v(n){}\n void add_edge(int fr,int to,flow_t cap,int idx = -1){\n v[fr].emplace_back((edge){to,cap,(int)v[to].size(),true,idx});\n v[to].emplace_back((edge){fr,0,(int)v[fr].size()-1,false,idx});\n }\n bool bfs(int s,int t){\n mn_cost.assign(v.size(),-1);\n queue<int> que;\n mn_cost[s] = 0;\n que.push(s);\n while(!que.empty() && mn_cost[t] == -1){\n int ov = que.front();que.pop();\n for(auto &e : v[ov]){\n if(e.cap > 0 && mn_cost[e.to] == -1){\n mn_cost[e.to] = mn_cost[ov] + 1;\n que.push(e.to);\n }\n }\n }\n return mn_cost[t] != -1;\n }\n flow_t dfs(int ov,const int t,flow_t flow){\n if(ov == t)return flow;\n for(int &i = iter[ov];i < v[ov].size();i++){\n edge &e = v[ov][i];\n if(e.cap > 0 && mn_cost[ov] < mn_cost[e.to]){\n flow_t d = dfs(e.to,t,min(flow,e.cap));\n if(d > 0){\n e.cap -= d;\n v[e.to][e.ref].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n // O(m n^2)(n:頂点数 m:辺数)\n flow_t max_flow(int s,int t){\n flow_t flow = 0;\n while(bfs(s,t)){\n iter.assign(v.size(),0);\n flow_t f = 0;\n while((f = dfs(s,t,inf)) > 0)flow += f;\n }\n return flow;\n }\n void output(){\n for(int i = 0;i < v.size();i++){\n for(auto &e : v[i]) {\n if(!e.is_e) continue;\n auto &rev_e = v[e.to][e.ref];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << \"\\n\";\n }\n }\n }\n};\n\nint main(){\n \n ios_base::sync_with_stdio(0), cin.tie(0);\n ll h,w,K;cin >> w >> h >> K;\n int n;cin >> n;\n vector<set<int>> st(h+1);\n rep(i,n){\n ll x,y;cin >> x >> y;\n st[y].insert(x);\n }\n K -= (w+1)/2;\n if(K < 0){\n cout << \"-1\\n\";\n return 0;\n }\n ll res = 0;\n for(int i = 2;i <= h;i+=2){\n set<int> cand;\n for(auto au : st[i]){\n for(int j = -2;j <= 2;j++){\n if((au+j+100)%2 == 1 && au+j >= 1 && au+j <= w)cand.insert(au+j);\n }\n }\n int SZ = sz(cand);\n Dinic<int> dn(SZ*2 + 2);\n int S = SZ*2,T = S+1;\n int cnt = 0;\n for(auto au : cand){\n for(int j = -2;j <= 2;j+=2){\n if(cand.count(au+j) && !st[i].count(au+(j/2))){\n dn.add_edge(cnt,SZ+cnt+(j/2),1);\n }\n }\n cnt++;\n }\n rep(i,SZ){\n dn.add_edge(S,i,1);\n dn.add_edge(SZ+i,T,1);\n }\n ll flw = dn.max_flow(S,T);\n res += (w+1)/2 - cnt + flw;\n flw = cnt-flw;\n int k = min(K,flw);\n K -= k;\n flw -= k;\n res += flw*2;\n }\n if(K)res -= min(res,K);\n cout << res << \"\\n\";\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 9144, "score_of_the_acc": -0.0884, "final_rank": 12 }, { "submission_id": "aoj_2787_9808676", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n/**\n * @brief template\n */\n\nint main() {\n int N, M, K;\n cin >> M >> N >> K;\n if ((M+1)/2 > K) {\n cout << -1 << endl;\n return 0;\n }\n K -= (M+1)/2;\n int Q;\n cin >> Q;\n vector<vector<int>> X(N);\n while(Q--) {\n int A, B;\n cin >> B >> A;\n A--, B--;\n X[A].push_back(B);\n }\n int ANS = 0;\n rep(i,0,(N-1)/2) {\n vector<bool> B(M,false);\n for (int j : X[i*2+1]) B[j] = true;\n vector<int> DP((M+1)/2+1,inf);\n DP[0] = 0;\n rep(j,0,(M+1)/2) {\n chmin(DP[j+1], DP[j] + (B[j*2] ? 1 : 0));\n if (j+2 < (M+1)/2+1) chmin(DP[j+2], DP[j] + (B[j*2+1] ? 2 : 0));\n }\n ANS += DP[(M+1)/2];\n }\n int ANS2 = ((N-1)/2)*((M+1)/2)-ANS;\n int MIN = min(ANS, K);\n K -= MIN;\n ANS -= MIN;\n MIN = min(ANS2, K);\n ANS2 -= MIN;\n cout << ANS2 + ANS * 2 << endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 4208, "score_of_the_acc": -0.0697, "final_rank": 11 }, { "submission_id": "aoj_2787_9669512", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define sz(A) ((ll)A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (lower_bound(ALL(A),x)-A.begin())\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll W,H,K,N;cin>>W>>H>>K>>N;\n vvi D(H);\n REP(i,N){\n ll x,y;cin>>x>>y;x--;y--;\n if(y%2)D[y].emplace_back(x);\n }\n if(K<(W+1)/2){cout<<-1<<endl;return 0;}\n K-=(W+1)/2;\n ll ans=0;\n vi DP(W/2+2,1e18);\n REP(i,H/2){\n auto A=D[2*i+1];\n if(W==1){\n if(sz(A))ans++;\n continue;\n }\n vi B,C;\n for(auto i:A){\n if(i%2)C.emplace_back(i/2);\n else B.emplace_back(i/2);\n }\n sort(ALL(B));\n sort(ALL(C));\n vi X;\n FOR(j,-5,6){\n for(auto k:B){\n if(0<=k+j&&k+j<=(W+1)/2)X.emplace_back(k+j);\n }\n for(auto k:C){\n if(0<=k+j&&k+j<=(W+1)/2)X.emplace_back(k+j);\n }\n }\n sort(ALL(X));\n X.erase(unique(ALL(X)),X.end());\n REP(i,sz(X)){\n ll j=i;\n while(i<sz(X)&&X[i]==X[j]+i-j)i++;\n FOR(k,j,i)DP[X[k]]=1e18;\n DP[X[j]]=0;\n FOR(k,j,i-1){\n if(binary_search(ALL(C),X[k])==false&&k+2<i)DP[X[k+2]]=min(DP[X[k+2]],DP[X[k]]);\n DP[X[k+1]]=min(DP[X[k+1]],DP[X[k]]+binary_search(ALL(B),X[k]));\n }\n ans+=DP[X[i-1]];\n i--;\n }\n // DP[0]=0;\n // REP(i,W/2+1){\n // if(i&&!binary_search(ALL(C),i-1))DP[i+1]=DP[i-1];\n // DP[i+1]=min(DP[i+1],DP[i]+binary_search(ALL(B),i));\n // }\n // ans+=DP.back();\n //i->i+1 にコスト B\n //i->i+2 はNG\n //Aのうち最小で何個踏むことになるのか \n }\n ll total=(H/2)*((W+1)/2);\n if(K>=ans)cout<<max(0LL,total-K)<<endl;\n else cout<<total+ans-2*K<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 6268, "score_of_the_acc": -0.0486, "final_rank": 6 }, { "submission_id": "aoj_2787_9640066", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint dog[10001][10001];\nint dp[10010];\n\nint main() {\n int W, H, K;\n scanf(\"%d%d%d\", &W, &H, &K);\n int N;\n scanf(\"%d\", &N);\n int x, y;\n for (int i = 1; i <= N; i++) {\n scanf(\"%d%d\", &y, &x);\n dog[x][y] = 1;\n }\n if (K < W / 2 + 1) { // Если не хватило для каждой верхней трубы\n printf(\"-1\\n\");\n return 0;\n }\n int ans = 0;\n for (int i = 2; i < H; i += 2) {\n memset(dp, 0x3f, sizeof(dp));\n dp[0] = 0;\n // Считается только доп время за трубы.\n for (int j = 1; j <= W; j += 2) {\n // Напрямую сверху {\n dp[j] = dog[i][j];\n if (j > 1) {\n dp[j] += dp[j-2];\n }\n // }\n // Крест накрест {\n if (j > 3) {\n dp[j] = min(dp[j], dp[j-4] + 2 * dog[i][j-1]);\n } else if (j > 1) {\n dp[j] = min(dp[j], 2 * dog[i][j-1]);\n }\n // }\n }\n ans += dp[W];\n }\n K -= W / 2 + 1;\n int num = (H / 2) * (W / 2 + 1) - ans;\n if (K <= ans) {\n ans -= K;\n } else {\n K -= ans;\n ans = 0;\n if (K <= num) {\n num -= K;\n } else {\n K -= num;\n num = 0;\n }\n }\n printf(\"%d\\n\", ans * 2 + num);\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 268172, "score_of_the_acc": -1.1154, "final_rank": 19 }, { "submission_id": "aoj_2787_8408349", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// ===================================================================== Solve Function =====================================================================\npair<int, int> SubSolve(int N, vector<bool> L1, vector<bool> L2) {\n // Step 1. First Division\n vector<int> vec;\n vec.push_back(0);\n for (int i = 0; i < N; i++) {\n if (L2[i] == true) vec.push_back(i + 1);\n }\n vec.push_back(N);\n\n // Step 2. Second Greedy\n vector<int> cons(N + 1, 0);\n for (int i = 0; i < (int)vec.size() - 1; i++) {\n if ((vec[i + 1] - vec[i]) % 2 == 0) continue;\n int cnt = 0;\n for (int j = vec[i]; j < vec[i + 1]; j++) {\n if (L1[j] == false && (j - vec[i]) % 2 == 0) cnt += 1;\n }\n if (cnt >= 1) continue;\n\n // Special Case\n int num = 0; if (vec[i] >= 1) num = cons[vec[i] - 1];\n int idx = -1;\n if (num % 2 == 0) idx = vec[i + 1] - 1;\n if (num % 2 == 1) idx = vec[i];\n cons[idx] = num + 1;\n }\n\n // Step 3. Calculate\n int ret1 = 0;\n int ret2 = 0;\n for (int i = 0; i < N + 1; i++) {\n if (cons[i] >= 1 && cons[i + 1] == 0) {\n ret1 += (cons[i] / 2);\n ret2 += (cons[i] % 2);\n }\n }\n return make_pair(ret1, ret2);\n}\n\n// ===================================================================== Main Function =====================================================================\nint W;\nint H;\nint K;\nint N, X[1 << 19], Y[1 << 19];\nbool Dog[10009][10009];\n\nint main() {\n // Step 1. Input\n cin >> W >> H >> K;\n cin >> N;\n for (int i = 1; i <= N; i++) cin >> Y[i] >> X[i];\n for (int i = 1; i <= N; i++) Dog[X[i]][Y[i]] = true;\n\n // Step 2. Get Answer\n int Answer1 = 0;\n int Answer2 = 0;\n for (int i = 2; i <= H; i += 2) {\n vector<bool> L1((W + 1) / 2, false);\n vector<bool> L2((W - 1) / 2, false);\n for (int j = 1; j <= W; j++) {\n if (Dog[i][j] == false) continue;\n if (j % 2 == 1) L1[(j - 1) / 2] = true;\n if (j % 2 == 0) L2[(j - 1) / 2] = true;\n }\n pair<int, int> ret = SubSolve(L1.size(), L1, L2);\n Answer1 += ret.first;\n Answer2 += ret.second;\n }\n \n // Step 3. Output\n if (K < ((W + 1) / 2)) {\n cout << \"-1\" << endl;\n }\n else {\n int cur = 2 * Answer1 + 1 * Answer2;\n int rem = K - ((W + 1) / 2);\n int FinalAns = 0;\n if (rem < Answer1) FinalAns = cur - 2 * rem;\n else if (rem < Answer1 + Answer2) FinalAns = (Answer1 + Answer2 - rem);\n else FinalAns = 0;\n cout << max(0, ((H + 1) / 2) * ((W + 1) / 2) - K) + FinalAns << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 103696, "score_of_the_acc": -0.4553, "final_rank": 17 }, { "submission_id": "aoj_2787_8399597", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <tuple>\n#include <cstdint>\n#include <cstdio>\n#include <map>\n#include <cstdint>\n#include <queue>\n#include <set>\n#include <stack>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <bitset>\n#include <cctype>\n#include <functional>\n#include <ctime>\n#include <fstream>\n#include <cmath>\n#include <limits>\n#include <chrono>\n#include <numeric>\n#include <type_traits>\n#include <iomanip>\n#include <float.h>\n#include <math.h>\n#include <cassert>\n#include <random>\n//#include <bit>\n#include <cstdint>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\nusing ll = long long;\n\n\n\n\nll ll_gcd(ll a, ll b) {\n\tif (a < b) return ll_gcd(b, a);\n\tll r;\n\twhile ((r = a % b)) {\n\t\ta = b;\n\t\tb = r;\n\t}\n\treturn b;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\n\tif (n < 0)return 0;\n\tlong long res = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modinv(long long a, long long mod) {\n\treturn modpow(a, mod - 2, mod);\n}\n\nll merge_cnt(vector<ll>& a) {\n\tint n = a.size();\n\tif (n <= 1) { return 0; }\n\n\tll cnt = 0;\n\tvector<ll> b(a.begin(), a.begin() + n / 2);\n\tvector<ll> c(a.begin() + n / 2, a.end());\n\n\tcnt += merge_cnt(b);\n\tcnt += merge_cnt(c);\n\n\tint ai = 0, bi = 0, ci = 0;\n\twhile (ai < n) {\n\t\tif (bi < b.size() && (ci == c.size() || b[bi] <= c[ci])) {\n\t\t\ta[ai++] = b[bi++];\n\t\t}\n\t\telse {\n\t\t\tcnt += n / 2 - bi;\n\t\t\ta[ai++] = c[ci++];\n\t\t}\n\t}\n\treturn cnt;\n}\n\ntemplate< typename T >\nsize_t longest_increasing_subsequence(const vector< T >& a, bool strict) {\n\tvector< T > lis;\n\tfor (auto& p : a) {\n\t\ttypename vector< T >::iterator it;\n\t\tif (strict) it = lower_bound(begin(lis), end(lis), p);\n\t\telse it = upper_bound(begin(lis), end(lis), p);\n\t\tif (end(lis) == it) lis.emplace_back(p);\n\t\telse *it = p;\n\t}\n\treturn lis.size();\n}\n\n\nconstexpr uint32_t PrimitiveRoot(uint32_t mod) {\n\tusing u64 = uint64_t;\n\tif (mod == 2) return 1;\n\tu64 ds[32] = {};\n\tint idx = 0;\n\tu64 m = mod - 1;\n\tfor (u64 i = 2; i * i <= m; ++i) {\n\t\tif (m % i == 0) {\n\t\t\tds[idx++] = i;\n\t\t\twhile (m % i == 0) m /= i;\n\t\t}\n\t}\n\tif (m != 1) ds[idx++] = m;\n\n\tuint32_t pr = 2;\n\twhile (1) {\n\t\tint flg = 1;\n\t\tfor (int i = 0; i < idx; ++i) {\n\t\t\tu64 a = pr, b = (mod - 1) / ds[i], r = 1;\n\t\t\twhile (b) {\n\t\t\t\tif (b & 1) r = r * a % mod;\n\t\t\t\ta = a * a % mod;\n\t\t\t\tb >>= 1;\n\t\t\t}\n\t\t\tif (r == 1) {\n\t\t\t\tflg = 0;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif (flg == 1) break;\n\t\t++pr;\n\t}\n\treturn pr;\n}\n\n\nstruct edge { ll to; ll cost; };\ntypedef pair<ll, ll> P;\nstruct graph {\n\tll V;\n\tvector<vector<edge> > G;\n\tvector<ll> d;\n\n\tgraph(ll n) {\n\t\tinit(n);\n\t}\n\n\tvoid init(ll n) {\n\t\tV = n;\n\t\tG.resize(V);\n\t\td.resize(V);\n\t\tfor (int i = 0; i < V; i++) {\n\t\t\td[i] = 2000000000000000000;\n\t\t}\n\t}\n\n\tvoid add_edge(ll s, ll t, ll cost) {\n\t\tedge e;\n\t\te.to = t, e.cost = cost;\n\t\tG[s].push_back(e);\n\t}\n\n\tvoid dijkstra(ll s) {\n\t\tfor (int i = 0; i < V; i++) {\n\t\t\td[i] = 2000000000000000000;\n\t\t}\n\t\td[s] = 0;\n\t\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\tque.push(P(0, s));\n\t\twhile (!que.empty()) {\n\t\t\tP p = que.top(); que.pop();\n\t\t\tll v = p.second;\n\t\t\tif (d[v] < p.first) continue;\n\t\t\tfor (auto e : G[v]) {\n\t\t\t\tif (d[e.to] > d[v] + e.cost) {\n\t\t\t\t\td[e.to] = d[v] + e.cost;\n\t\t\t\t\tque.push(P(d[e.to], e.to));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n};\n\nstruct UnionFind {\n\tvector <ll> par;\n\tvector <ll> siz;\n\tUnionFind(ll sz_) : par(sz_), siz(sz_, 1LL) {\n\t\tfor (ll i = 0; i < sz_; ++i) par[i] = i;\n\t}\n\tvoid init(ll sz_) {\n\t\tpar.resize(sz_);\n\t\tsiz.assign(sz_, 1LL);\n\t\tfor (ll i = 0; i < sz_; ++i) par[i] = i;\n\t}\n\tll root(ll x) {\n\t\twhile (par[x] != x) {\n\t\t\tx = par[x] = par[par[x]];\n\t\t}\n\t\treturn x;\n\t}\n\tbool merge(ll x, ll y) {\n\t\tx = root(x);\n\t\ty = root(y);\n\t\tif (x == y) return false;\n\t\tif (siz[x] < siz[y]) swap(x, y);\n\t\tsiz[x] += siz[y];\n\t\tpar[y] = x;\n\t\treturn true;\n\t}\n\n\tbool issame(ll x, ll y) {\n\t\treturn root(x) == root(y);\n\t}\n\n\tll size(ll x) {\n\t\treturn siz[root(x)];\n\t}\n};\n\n//using mint = modint998244353;\n\n\nlong long extGCD(long long a, long long b, long long& x, long long& y) {\n\tif (b == 0) {\n\t\tx = 1;\n\t\ty = 0;\n\t\treturn a;\n\t}\n\tlong long d = extGCD(b, a % b, y, x);\n\ty -= a / b * x;\n\treturn d;\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tll w, h, k;\n\tcin >> h >> w >> k;\n\tll n;\n\tcin >> n;\n\tvector<vector<ll>> z(w,{-1,h});\n\tfor (int i = 0; i < n; i++) {\n\t\tll x, y;\n\t\tcin >> x >> y;\n\t\ty--;\n\t\tx--;\n\t\tz[y].push_back(x);\n\t}\n\tll ans = 0;\n\tfor (int i = 0; i < w; i++) {\n\t\tif (i % 2 == 0)continue;\n\t\tsort(z[i].begin(), z[i].end());\n\t\tvector<vector<ll>> a(1);\n\t\tll now = 0;\n\t\tfor (int j = 0; j < z[i].size(); j++) {\n\t\t\ta[now].push_back(z[i][j]);\n\t\t\tif (z[i][j] != h && z[i][j] != -1 && z[i][j] % 2 == 1) {\n\t\t\t\tnow++;\n\t\t\t\ta.push_back({});\n\t\t\t\ta[now].push_back(z[i][j]);\n\t\t\t}\n\t\t}\n\t\t\tfor (int ij = 0; ij < a.size(); ij++) {\n\t\t\t\tll t = 1;\n\t\t\t\tif ((a[ij][a[ij].size() - 1] - a[ij][0]) % 4 == 0)t = 0;\n\t\t\t\tset<ll> p;\n\t\t\t\tfor (int k = 1; k < a[ij].size(); k++) {\n\t\t\t\t\tp.insert(a[ij][k]);\n\t\t\t\t}\n\t\t\t\tfor (int ks = a[ij][0] +1; ks < a[ij][a[ij].size() - 1]; ks+=4) {\n\t\t\t\t\tif (!p.count(ks)) {\n\t\t\t\t\t\tt = 0;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tans += t;\n\t\t\t}\n\t\t\n\t}\n\tif (h / 2 + 1 > k)cout << -1 << endl;\n\telse if (ans + h / 2 + 1 < k) {\n\t\tcout << max((ll)(h / 2+1) * (w / 2+1) - k, (ll)0) << endl;\n\t}\n\telse {\n\t\tcout << (h / 2 + 1) * (w / 2 + 1) + (ans)-2 * (k)+h/2+1 << endl;\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4872, "score_of_the_acc": -0.0049, "final_rank": 1 }, { "submission_id": "aoj_2787_7181378", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,b) for(int i=a;i<b;i++)\nusing ll = long long;\ntemplate<class T> bool chmin(T &a,const T b){if(a>b){a=b;return 1;}return 0;}\ntemplate<class T> bool chmax(T &a,const T b){if(a<b){a=b;return 1;}return 0;}\nconst int INF = (1<<30)-1;\n#define all(p) p.begin(),p.end()\nconst int mod=998244353;\n\nint main(){\n\tint W,H,K;\n\tcin>>W>>H>>K;\n\tint N;\n\tcin>>N;\n\tvector<vector<int>> p(H/2);\n\trep(i,0,N){\n\t\tint x,y;\n\t\tcin>>x>>y;\n\t\tif(y%2) continue;\n\t\tp[y/2-1].push_back(x-1);\n\t}\n\tint ans=0;\n\trep(i,0,H/2){\n\t\tvector<int> dp(W/2+3,INF);\n\t\tp[i].push_back(INF);\n\t\tsort(all(p[i]));\n\t\tint ind=0;\n\t\tdp[0]=0;\n\t\trep(j,0,W/2+1){\n\t\t\tif(p[i][ind]==j*2){\n\t\t\t\tchmin(dp[j+1],dp[j]+1);\n\t\t\t\tind++;\n\t\t\t}else{\n\t\t\t\tchmin(dp[j+1],dp[j]);\n\t\t\t}\n\t\t\tif(p[i][ind]==j*2+1){\n\t\t\t\tchmin(dp[j+2],dp[j]+2);\n\t\t\t\tind++;\n\t\t\t}else{\n\t\t\t\tchmin(dp[j+2],dp[j]);\n\t\t\t}\n\t\t}\n\t\tans+=dp[W/2+1];\n\t}\n\tif(K<W/2+1){\n\t\tcout<<\"-1\\n\";\n\t\treturn 0;\n\t}\n\tans=max(0,ans-(K-(W/2+1)));\n\tans+=max(0,(W/2+1)*(H/2+1)-K);\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3956, "score_of_the_acc": -0.0591, "final_rank": 10 }, { "submission_id": "aoj_2787_7177866", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int w,h,k; cin >> w >> h >> k;\n int n; cin >> n;\n h = (h+1)/2;\n w = (w+1)/2;\n if(w > k){\n cout << -1 << endl;\n return 0;\n }\n vector<vector<int>> v(h-1);\n for(int i=0;i<n;i++){\n int x,y; cin >> x >> y;\n if(y%2 == 0){\n v[y/2-1].push_back(x-1);\n }\n }\n constexpr int mx = 1e9;\n int cost = 0; // 2\n vector<int> dp(w+1,mx);\n for(int i=0;i+1<h;i++){\n if(!v[i].size()) continue;\n fill(dp.begin(), dp.end(), mx);\n dp[0] = 0;\n vector<bool> down(w),cross(w);\n for(int j:v[i]){\n if(j%2 == 0) down[j/2] = true;\n else cross[j/2] = true;\n }\n for(int j=0;j<w;j++){\n dp[j+1] = min(dp[j+1], dp[j]+down[j]);\n if(j+1<w){\n dp[j+2] = min(dp[j+2], dp[j]+cross[j]+cross[j]);\n }\n }\n cost += dp.back();\n }\n int res = (h-1)*w;\n k -= w;\n if(k >= cost){\n res -= k;\n }\n else{\n res += (cost-k);\n res -= k;\n }\n cout << max(0,res) << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3988, "score_of_the_acc": -0.0496, "final_rank": 8 }, { "submission_id": "aoj_2787_7177860", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int w,h,k; cin >> w >> h >> k;\n int n; cin >> n;\n h = (h+1)/2;\n w = (w+1)/2;\n if(w > k){\n cout << -1 << endl;\n return 0;\n }\n vector<vector<int>> v(h-1);\n for(int i=0;i<n;i++){\n int x,y; cin >> x >> y;\n if(y%2 == 0){\n v[y/2-1].push_back(x-1);\n }\n }\n constexpr int mx = 1e9;\n int cost = 0; // 2\n for(int i=0;i+1<h;i++){\n if(!v[i].size()) continue;\n vector<int> dp(w+1,mx);\n dp[0] = 0;\n vector<bool> down(w),cross(w);\n for(int j:v[i]){\n if(j%2 == 0) down[j/2] = true;\n else cross[j/2] = true;\n }\n for(int j=0;j<w;j++){\n dp[j+1] = min(dp[j+1], dp[j]+down[j]);\n if(j+1<w){\n dp[j+2] = min(dp[j+2], dp[j]+cross[j]+cross[j]);\n }\n }\n cost += dp.back();\n }\n int res = (h-1)*w;\n k -= w;\n if(k >= cost){\n res -= k;\n }\n else{\n res += (cost-k);\n res -= k;\n }\n cout << max(0,res) << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3960, "score_of_the_acc": -0.0495, "final_rank": 7 }, { "submission_id": "aoj_2787_6054152", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define eps 1e-9\n#define INF 2000000000 // 2e9\n#define LLINF 2000000000000000000ll // 2e18 (llmax:9e18)\n#define all(x) (x).begin(), (x).end()\n#define sq(x) ((x) * (x))\n\n#define rep(i, x) for (int i = 0; i < (int)(x); i++)\n#define drep(i, x) for (int i = ((int)(x)-1); i >= 0; i--)\n\n#define popcount __builtin_popcount\n#define next __next\n#define prev __prev\n\n#ifndef LOCAL\n#define dmp(...) ;\n#else\n#define dmp(...) \\\n cerr << \"[ \" << #__VA_ARGS__ << \" ] : \" << dump_str(__VA_ARGS__) << endl\n#endif\n\n// ---------------- Utility ------------------\n\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a <= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a >= b) return false;\n a = b;\n return true;\n}\n\ntemplate <class T>\nusing MaxHeap = priority_queue<T>;\n\ntemplate <class T>\nusing MinHeap = priority_queue<T, vector<T>, greater<T>>;\n\ntemplate <class T>\nvector<T> vect(int len, T elem) {\n return vector<T>(len, elem);\n}\n\n// ----------------- Input -------------------\n\ntemplate <class T, class U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class T>\nistream &operator>>(istream &is, vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) is >> vec[i];\n return is;\n}\n\n// ----------------- Output ------------------\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ',' << p.second;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n for (const T &e : v) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const deque<T> &d) {\n for (const T &e : d) os << e << \" \";\n return os;\n}\n\ntemplate <class T>\nostream &operator<<(ostream &os, const set<T> &s) {\n os << \"{ \";\n for (const T &e : s) os << e << \" \";\n return os << \"}\";\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const map<T, U> &m) {\n os << \"{ \";\n for (const auto &[key, val] : m) os << \"( \" << key << \" -> \" << val << \" ) \";\n return os << \"}\";\n}\n\ntemplate <class TupleTy, size_t... I>\nvoid dump_tuple(ostream &os, const TupleTy t, std::index_sequence<I...>) {\n (..., (os << (I == 0 ? \"\" : \",\") << std::get<I>(t)));\n}\n\ntemplate <class... Args>\nostream &operator<<(ostream &os, const tuple<Args...> &t) {\n os << \"(\";\n dump_tuple(os, t, std::make_index_sequence<sizeof...(Args)>());\n return os << \")\";\n}\n\nvoid dump_str_rec(ostringstream &) {}\n\ntemplate <class Head, class... Tail>\nvoid dump_str_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << \", \" << head;\n dump_str_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate <class T, class... U>\nstring dump_str(T &&arg, U &&... args) {\n ostringstream oss;\n oss << arg;\n dump_str_rec(oss, forward<U>(args)...);\n return oss.str();\n}\n\n// --------------- Fast I/O ------------------\n\nvoid fastio() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n}\n\n// ------------------ ACL --------------------\n\n// #include <atcoder/modint>\n// constexpr int MOD = 998244353;\n// constexpr int MOD = 1000000007;\n// using mint = atcoder::static_modint<MOD>;\n// ostream &operator<<(ostream &os, const mint &v) {\n// return os << v.val();\n// }\n\n// ------------ End of template --------------\n\n#define endl \"\\n\"\nusing ll = long long;\nusing pii = pair<int, int>;\n\nconst bool multitest = false;\n\nvoid solve() {\n ll W, H, K;\n cin >> W >> H >> K;\n int N;\n cin >> N;\n\n set<int> us;\n for (int i = 0; i < N; i++) {\n int x, y;\n cin >> x >> y;\n us.insert(y * (int)W + x);\n }\n\n ll w = (W + 1) / 2;\n ll h = (H + 1) / 2;\n if (K < w) {\n cout << -1 << endl;\n return;\n }\n\n if (K >= w * h) {\n cout << 0 << endl;\n return;\n }\n\n K -= w;\n\n ll need_dog = 0ll;\n\n auto check = [&](int X, int Y) {\n if (us.count(X * (int)W + Y))\n return true;\n else\n return false;\n };\n\n for (int i = 3; i <= H; i += 2) {\n vector<ll> dp(w + 1, INF);\n dp[0] = 0;\n for (int j = 0; j < w; j++) {\n if (check(i - 1, 2 * j + 1))\n chmin(dp[j + 1], dp[j] + 1);\n else\n chmin(dp[j + 1], dp[j]);\n if (j + 2 <= w) {\n if (check(i - 1, 2 * j + 2))\n chmin(dp[j + 2], dp[j] + 2);\n else\n chmin(dp[j + 2], dp[j]);\n }\n }\n dmp(dp[w]);\n need_dog += dp[w];\n }\n\n ll need_common = (h - 1) * w - need_dog;\n\n {\n ll val = min(need_dog, K);\n need_dog -= val;\n K -= val;\n }\n\n {\n ll val = min(need_common, K);\n need_common -= val;\n K -= val;\n }\n\n cout << need_common + need_dog * 2ll << endl;\n return;\n}\n\nint main() {\n fastio();\n if (!multitest) {\n solve();\n } else {\n cerr << \"[Warning] Multi testcase mode on\" << endl;\n int t;\n cin >> t;\n while (t--) solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1050, "memory_kb": 8100, "score_of_the_acc": -1.0171, "final_rank": 18 }, { "submission_id": "aoj_2787_6024536", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2021.11.03 12:07:40 */\n\n// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region macros\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define popcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\n#pragma endregion\n\n#pragma region aliases\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\nusing pii = std::pair<int, int>;\nusing pll = std::pair<long long, long long>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nconst int inf = 1e9;\nconst long long INF = 1e18;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nconst char sp = ' ';\nint dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nint dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n\nconst int mod_1000000007 = 1000000007;\nconst int mod_998244353 = 998244353;\n\n#pragma endregion\n\n#pragma region basic_operation\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { std::cout << (f ? \"Yes\" : \"No\") << '\\n'; }\nvoid No() { std::cout << \"No\\n\"; }\nvoid YES(bool f = 1) { std::cout << (f ? \"YES\" : \"NO\") << '\\n'; }\nvoid NO() { std::cout << \"NO\\n\"; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\nvoid err(bool flag = true) {\n\tif(!flag) return;\n\tstd::cout << -1 << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(T x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(Head H, Tail... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T val) {\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\treturn (a + b - 1) / b;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(std::vector<T> &a) {\n\tauto vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\nnamespace viewer {\nvoid view(const long long e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << \"(\";\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tif(s.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tstd::cerr << \", \";\n\t\tview(c.second);\n\t\tstd::cerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tif(v.empty()) {\n\t\tstd::cerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << '{';\n\tfor(const auto &t : v) {\n\t\tstd::cerr << \"\\n\\t\";\n\t\tview(t);\n\t\tstd::cerr << \",\";\n\t}\n\tstd::cerr << \"\\n}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tstd::cerr << \"] : \";\n\t\tview(t.second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n} // namespace viewer\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tviewer::view(x); \\\n\t\tstd::cerr << '\\n'; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nll solve(int w) {\n\tint h;\n\tll k;\n\tcin >> h >> k;\n\tint n;\n\tcin >> n;\n\tV<pair<int, int>> dogs;\n\trep(n) {\n\t\tint x, y;\n\t\tcin >> y >> x;\n\t\tdogs.emplace_back(x, y);\n\t}\n\tsort(all(dogs));\n\n\tll houses = ll(dup(h, 2)) * ll(dup(w, 2));\n\tll cost = dup(w, 2);\n\tif(cost > k) return -1;\n\thouses -= cost;\n\tk -= cost;\n\tcost = 0;\n\n\tfor(auto it = dogs.begin(); it != dogs.end();) {\n\t\tint x = it->first;\n\t\tvi ys;\n\t\twhile(it != dogs.end() && it->first == x) {\n\t\t\tys.push_back((it++)->second);\n\t\t}\n\t\tdebug(x, ys);\n\t\tif(x & 1) continue;\n\n\t\tset<int> yset(ys.begin(), ys.end());\n\n\t\tint pre_notvalid = -1;\n\t\tfoa(y, ys) {\n\t\t\tif(y & 1) {\n\t\t\t\tif(pre_notvalid == y) {\n\t\t\t\t\tcontinue;\n\t\t\t\t} else if(!yset.count(y - 1) && pre_notvalid != y - 2) {\n\t\t\t\t\t// ok\n\t\t\t\t} else if(!yset.count(y + 1) && y + 2 <= w) {\n\t\t\t\t\tpre_notvalid = y + 2;\n\t\t\t\t} else {\n\t\t\t\t\tcost++;\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\t// pass\n\t\t\t}\n\t\t}\n\t}\n\n\tdebug(houses, cost, k);\n\n\tll ret = 0;\n\tll special_two = min(cost, k);\n\tk -= special_two;\n\thouses -= cost;\n\tcost -= special_two;\n\tret += cost * 2 + max(0LL, houses - k);\n\treturn ret;\n}\n\nint main() {\n\tstd::ios::sync_with_stdio(false);\n\tstd::cin.tie(nullptr);\n\tstd::cout << std::fixed << std::setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tint w;\n\twhile(cin >> w && w) {\n\t\tcout << solve(w) << dl;\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4252, "score_of_the_acc": -0.0122, "final_rank": 2 }, { "submission_id": "aoj_2787_5826973", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=100005,INF=1<<30;\n\nvector<int> wh[MAX];\n\nint dp[MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int H,W,K;cin>>W>>H>>K;\n int N;cin>>N;\n set<pair<int,int>> SE;\n \n for(int i=0;i<N;i++){\n int h,w;cin>>w>>h;\n wh[h].push_back(w+4);\n SE.insert(mp(h,w+4));\n }\n \n int need=0;\n \n for(int i=1;i<=H;i++){\n sort(all(wh[i]));\n int j=0;\n while(j<si(wh[i])){\n int k=j+1;\n while(k<si(wh[i])&&wh[i][k]-wh[i][k-1]<=6) k++;\n int s=wh[i][j]-1,t=wh[i][k-1]+1;\n if(s%2==0) s--;\n if(s<5) s+=2;\n if(t%2==0) t++;\n if(t>W+4) t-=2;\n for(int w=s;w<=t;w++) dp[w]=INF;\n dp[s-2]=0;\n for(int w=s-2;w<t;w+=2){\n if(SE.count(mp(i,w+2))) chmin(dp[w+2],dp[w]+1);\n else chmin(dp[w+2],dp[w]);\n \n if(w+4<=t){\n if(SE.count(mp(i,w+3))) chmin(dp[w+4],dp[w]+2);\n else chmin(dp[w+4],dp[w]);\n }\n }\n \n //cout<<j<<\" \"<<k<<\" \"<<s<<\" \"<<t<<\" \"<<dp[t]<<endl;\n \n need+=dp[t];\n \n j=k;\n }\n }\n \n if(K<(W+1)/2){\n cout<<-1<<endl;\n }else{\n K-=(W+1)/2;\n int al=(H-1)/2*(W+1)/2;\n chmin(K,al);\n int ans=al+need;\n if(need>=K) ans-=2*K;\n else ans-=2*need+(K-need);\n \n cout<<ans<<endl;\n \n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 11304, "score_of_the_acc": -0.0581, "final_rank": 9 }, { "submission_id": "aoj_2787_5404181", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int INF = 10000000;\nint main(){\n int W, H, K;\n cin >> W >> H >> K;\n int w = (W + 1) / 2, h = (H + 1) / 2;\n if (K < w){\n cout << -1 << endl;\n } else {\n int N;\n cin >> N;\n vector<vector<int>> p(h);\n for (int i = 0; i < N; i++){\n int x, y;\n cin >> x >> y;\n x--;\n y--;\n if (y % 2 == 1){\n p[(y - 1) / 2].push_back(x);\n }\n }\n int mn = 0;\n for (int i = 0; i < h; i++){\n if (!p[i].empty()){\n \tint cnt = p[i].size();\n set<int> st;\n for (int j = 0; j < cnt; j++){;\n st.insert(p[i][j]);\n }\n vector<int> dp(w + 1, INF);\n dp[0] = 0;\n for (int j = 0; j < w; j++){\n if (st.count(j * 2) == 0){\n dp[j + 1] = min(dp[j + 1], dp[j]);\n } else {\n dp[j + 1] = min(dp[j + 1], dp[j] + 1);\n }\n if (j < w - 1){\n if (st.count(j * 2 + 1) == 0){\n dp[j + 2] = min(dp[j + 2], dp[j]);\n } else {\n dp[j + 2] = min(dp[j + 2], dp[j] + 2);\n }\n }\n }\n mn += dp[w];\n }\n }\n int ans = (h - 1) * w + mn;\n K -= w;\n if (K < mn){\n ans -= K * 2;\n } else {\n ans -= mn * 2;\n K -= mn;\n ans = max(ans - K, 0);\n }\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 3884, "score_of_the_acc": -0.2319, "final_rank": 15 }, { "submission_id": "aoj_2787_5404179", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int INF = 10000000;\nint main(){\n int W, H, K;\n cin >> W >> H >> K;\n int w = (W + 1) / 2, h = (H + 1) / 2;\n if (K < w){\n cout << -1 << endl;\n } else {\n int N;\n cin >> N;\n vector<vector<int>> p(h);\n for (int i = 0; i < N; i++){\n int x, y;\n cin >> x >> y;\n x--;\n y--;\n if (y % 2 == 1){\n p[(y - 1) / 2].push_back(x);\n }\n }\n int mn = 0;\n for (int i = 0; i < h; i++){\n if (!p[i].empty()){\n p[i].insert(p[i].begin(), -1);\n p[i].push_back(W);\n int cnt = p[i].size();\n /*\n vector<int> d(cnt - 1);\n for (int j = 0; j < cnt - 1; j++){\n d[j] = p[i][j + 1] - p[i][j];\n if (d[j] > 8){\n d[j] -= (d[j] - 8) / 2 * 2;\n }\n }\n for (int j = 0; j < cnt - 1; j++){\n p[i][j + 1] = p[i][j] + d[j];\n }\n */\n int W2 = (p[i][cnt - 1] + 1) / 2;\n set<int> st;\n for (int j = 1; j < cnt - 1; j++){;\n st.insert(p[i][j]);\n }\n vector<int> dp(W2 + 1, INF);\n dp[0] = 0;\n for (int j = 0; j < W2; j++){\n if (st.count(j * 2) == 0){\n dp[j + 1] = min(dp[j + 1], dp[j]);\n } else {\n dp[j + 1] = min(dp[j + 1], dp[j] + 1);\n }\n if (j < W2 - 1){\n if (st.count(j * 2 + 1) == 0){\n dp[j + 2] = min(dp[j + 2], dp[j]);\n } else {\n dp[j + 2] = min(dp[j + 2], dp[j] + 2);\n }\n }\n }\n mn += dp[W2];\n }\n }\n int ans = (h - 1) * w + mn;\n K -= w;\n if (K < mn){\n ans -= K * 2;\n } else {\n ans -= mn * 2;\n K -= mn;\n ans = max(ans - K, 0);\n }\n cout << ans << endl;\n }\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 3724, "score_of_the_acc": -0.164, "final_rank": 13 }, { "submission_id": "aoj_2787_5356638", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 22;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nbool exi[10000];\nint dp[10005];\nvoid solve() {\n\tint w, h, k; cin >> w >> h >> k;\n\tint n; cin >> n;\n\tvector<vector<int>> vs(h);\n\trep(i, n) {\n\t\tint x, y; cin >> x >> y; x--; y--;\n\t\tvs[y].push_back(x);\n\t}\n\tk -= (w/2+1);\n\tif (k < 0) {\n\t\tcout << -1 << \"\\n\"; return;\n\t}\n\tint c1 = 0, c2 = 0;\n\tfor (int i = 1; i < h; i += 2) {\n\t\tfor (int x : vs[i])exi[x] = true;\n\t\tfor (int j = 0; j < w+2; j += 2) {\n\t\t\tdp[j] = mod;\n\t\t}\n\t\tdp[0] = 0;\n\t\tfor (int j = 0; j < w; j += 2) {\n\t\t\t//single\n\t\t\tif (exi[j]) {\n\t\t\t\tdp[j + 2] = min(dp[j + 2], dp[j] + 1);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[j + 2] = min(dp[j + 2], dp[j]);\n\t\t\t}\n\t\t\t//double\n\t\t\tif (j + 2 < w) {\n\t\t\t\tint cost = 0;\n\t\t\t\tif (exi[j + 1]) {\n\t\t\t\t\tcost = 2;\n\t\t\t\t}\n\t\t\t\tdp[j + 4] = min(dp[j + 4], dp[j] + cost);\n\t\t\t}\n\t\t}\n\t\tc2 += dp[w + 1];\n\t\tc1 += (w / 2 + 1) - dp[w + 1];\n\t\tfor (int x : vs[i])exi[x] = false;\n\t}\n\t//cout << c1 << \" \" << c2 << \"\\n\";\n\tint ans = c1 + 2 * c2;\n\tint m = min(c2, k);\n\tans -= 2 * m; k -= m;\n\tm = min(c1, k);\n\tans -= m;\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\t\t//expr();\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 69764, "score_of_the_acc": -0.2886, "final_rank": 16 }, { "submission_id": "aoj_2787_5315011", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\nconst int inf = 1e9;\n\nint prev(int a, vector<int> &v){\n auto itr = lower_bound(v.begin(), v.end(), a);\n if(itr == v.begin()) return -inf;\n return *(itr-1);\n}\nint next(int a, vector<int> &v){\n auto itr = lower_bound(v.begin(), v.end(), a);\n if(itr == v.end()) return inf;\n return *itr;\n}\nbool isin(int a, vector<int> &v){\n auto itr = lower_bound(v.begin(), v.end(), a);\n return itr!=v.end() and *itr==a;\n}\n\nint main(){\n int w,h,k;\n cin >> w >> h >> k;\n w=(w+1)/2; h=h/2;\n if(w > k){\n cout << -1 << endl;\n return 0;\n }\n k -= w;\n int n;\n cin >> n;\n vector<vector<int>> a(h);\n for(int i=0; i<n; i++){\n int x,y;\n cin >> x >> y;\n if(y%2 == 0){\n a[y/2-1].push_back(x-1);\n }\n }\n for(auto& v: a){\n sort(v.begin(), v.end());\n }\n\n int ans = 0;\n vector<int> dp(w+1, inf);\n for(int i=0; i<h; i++){\n int base = 2*w*(h-i);\n dp[0] = base;\n for(int j=0; j<w; j++){\n int x = 2*j;\n // skip\n int nj = min(next(x, a[i])/2 -1, w);\n int pj = prev(x, a[i])/2;\n if(pj+2<j and j+2<nj){\n dp[nj] = dp[j]+(nj-j);\n j = nj-1;\n continue;\n }\n // normal\n if(j < w-1){\n int cost = (isin(x+1, a[i]))? 4: 2;\n dp[j+2] = min(dp[j+2], dp[j]+cost);\n }\n int cost = (isin(x, a[i]))? 2: 1;\n dp[j+1] = min(dp[j+1], dp[j]+cost);\n }\n ans += dp[w]-base;\n }\n int two = ans -h*w;\n int one = ans -2*two;\n if(k > two){\n ans = max(two +one -k, 0);\n }else{\n ans = 2*(two-k) +one;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3992, "score_of_the_acc": -0.0208, "final_rank": 4 }, { "submission_id": "aoj_2787_5314991", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\nconst int inf = 1e9;\n\nint next(int a, vector<int> &v){\n auto itr = lower_bound(v.begin(), v.end(), a);\n if(itr == v.end()) return inf;\n return *itr;\n}\nbool isin(int a, vector<int> &v){\n auto itr = lower_bound(v.begin(), v.end(), a);\n return itr!=v.end() and *itr==a;\n}\n\nint main(){\n int w,h,k;\n cin >> w >> h >> k;\n w=(w+1)/2; h=h/2;\n if(w > k){\n cout << -1 << endl;\n return 0;\n }\n k -= w;\n int n;\n cin >> n;\n vector<vector<int>> a(h);\n for(int i=0; i<n; i++){\n int x,y;\n cin >> x >> y;\n if(y%2 == 0){\n a[y/2-1].push_back(x-1);\n }\n }\n for(auto& v: a){\n sort(v.begin(), v.end());\n }\n\n int ans = 0;\n vector<int> dp(w+1, inf);\n for(int i=0; i<h; i++){\n int base = 2*w*(h-i);\n dp[0] = base;\n for(int j=0; j<w; j++){\n int x = 2*j;\n // skip\n int nj = min(next(x, a[i])/2 -1, w);\n if(nj > j+2){\n dp[nj] = dp[j]+(nj-j);\n j = nj-1;\n continue;\n }\n // normal\n if(j < w-1){\n int cost = (isin(x+1, a[i]))? 4: 2;\n dp[j+2] = min(dp[j+2], dp[j]+cost);\n }\n int cost = (isin(x, a[i]))? 2: 1;\n dp[j+1] = min(dp[j+1], dp[j]+cost);\n }\n ans += dp[w]-base;\n }\n int two = ans -h*w;\n int one = ans -2*two;\n if(k > two){\n ans = max(two +one -k, 0);\n }else{\n ans = 2*(two-k) +one;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.5925925925925926, "time_ms": 20, "memory_kb": 3832, "score_of_the_acc": -0.0106, "final_rank": 20 }, { "submission_id": "aoj_2787_4894064", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<cstring>\n#include<string>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<map>\n#include<queue>\n#include<deque>\n#include<iomanip>\n#include<tuple>\n#include<cassert>\n#include<set>\nusing namespace std;\ntypedef long long int LL;\ntypedef pair<LL,LL> P;\ntypedef pair<LL,int> LP;\nconst int INF=1<<30;\nconst LL MAX=1e9+7;\n\nvoid array_show(int *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%d%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(LL *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%lld%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(vector<int> &vec_s,int vec_n=-1,char middle=' '){\n if(vec_n==-1)vec_n=vec_s.size();\n for(int i=0;i<vec_n;i++)printf(\"%d%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\nvoid array_show(vector<LL> &vec_s,int vec_n=-1,char middle=' '){\n if(vec_n==-1)vec_n=vec_s.size();\n for(int i=0;i<vec_n;i++)printf(\"%lld%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\n\nint main(){\n LL n,m;\n int i,j,k;\n LL a,b,c;\n LL w,h;\n LL x,y;\n set<P> s1,s2;\n cin>>w>>h>>m;\n vector<vector<LL>> v1(h);\n cin>>n;\n for(i=0;i<n;i++){\n cin>>a>>b;\n a--,b--;\n s1.insert(make_pair(a,b));\n if(b%2==0)continue;\n a/=2,b=(b+1)/2;\n if(s2.find(make_pair(a,b))==s2.end()){\n v1[b].push_back(a);\n s2.insert(make_pair(a,b));\n }\n a--;\n if(a<0)continue;\n if(s2.find(make_pair(a,b))==s2.end()){\n v1[b].push_back(a);\n s2.insert(make_pair(a,b));\n }\n }\n if(m<=w/2){\n cout<<-1<<endl;\n return 0;\n }\n m-=w/2+1;\n b=0;\n for(i=1;i<h/2+1;i++){\n int t[5]={0};\n a=-10;\n sort(v1[i].begin(),v1[i].end());\n if(v1[i].empty() || v1[i].back()!=w/2)v1[i].push_back(w/2);\n for(auto num:v1[i]){\n if(a+1==num){\n t[0]=t[1],t[1]=t[2],t[2]=INF;\n }else{\n t[0]=min({t[1],t[2]});\n t[1]=t[2]=INF;\n }\n a=num;\n x=num*2,y=i*2;\n if(s1.find(make_pair(x,y-1))!=s1.end())t[1]=min(t[0]+1,t[1]);\n else t[1]=min(t[0],t[1]);\n if(s1.find(make_pair(x+1,y-1))!=s1.end())t[2]=min(t[0]+2,t[2]);\n else t[2]=min(t[0],t[2]);\n }\n b+=t[1];\n }\n a=(w/2+1)*(h/2)-b;\n c=min(b,m);\n b-=c,m-=c;\n a-=min(a,m);\n cout<<a+2*b<<endl;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 18336, "score_of_the_acc": -0.1808, "final_rank": 14 }, { "submission_id": "aoj_2787_3931324", "code_snippet": "#include<deque>\n#include<queue>\n#include<vector>\n#include<algorithm>\n#include<iostream>\n#include<set>\n#include<cmath>\n#include<tuple>\n#include<string>\n#include<chrono>\n#include<functional>\n#include<iterator>\n#include<random>\n#include<unordered_set>\n#include<array>\n#include<map>\n#include<iomanip>\n#include<assert.h>\n#include<list>\n#include<bitset>\n#include<stack>\n#include<memory>\n#include<numeric>\nusing namespace std;\nusing namespace std::chrono;\ntypedef long long int llint;\ntypedef long double lldo;\n#define mp make_pair\n#define mt make_tuple\n#define pub push_back\n#define puf push_front\n#define pob pop_back\n#define pof pop_front\n#define fir first\n#define sec second\n#define res resize\n#define ins insert\n#define era erase\n/*cout<<fixed<<setprecision(20);cin.tie(0);ios::sync_with_stdio(false);*/\nconst llint mod=1000000007;\nconst llint big=2.19e15+1;\nconst long double pai=3.141592653589793238462643383279502884197;\nconst long double eps=1e-12;\ntemplate <class T,class U>bool mineq(T& a,U b){if(a>b){a=b;return true;}return false;}\ntemplate <class T,class U>bool maxeq(T& a,U b){if(a<b){a=b;return true;}return false;}\nllint gcd(llint a,llint b){if(a%b==0){return b;}else return gcd(b,a%b);}\nllint lcm(llint a,llint b){if(a==0){return b;}return a/gcd(a,b)*b;}\ntemplate<class T> void SO(T& ve){sort(ve.begin(),ve.end());}\ntemplate<class T> void REV(T& ve){reverse(ve.begin(),ve.end());}\ntemplate<class T>llint LBI(const vector<T>&ar,T in){return lower_bound(ar.begin(),ar.end(),in)-ar.begin();}\ntemplate<class T>llint UBI(const vector<T>&ar,T in){return upper_bound(ar.begin(),ar.end(),in)-ar.begin();}\n\nint main(void){\n\tint w,h,K,n,i;cin>>w>>h>>K>>n;\n\tint H=(h+1)/2,W=(w+1)/2;\n\tvector<pair<int,int>>dog(n+1);\n\tdog[n]=mp(mod,mod);\n\tfor(i=0;i<n;i++){cin>>dog[i].sec>>dog[i].fir;}\n\tSO(dog);\n\tK-=W;\n\tif(K<0){cout<<-1<<endl;return 0;}\n\tpair<int,int>mae=mp(-1,-1);\n\tint ans=0,dp=0,ep=0,fp=0;\n\tfor(auto it:dog){\n\t\tif(mae.fir!=it.fir||mae.sec+6<=it.sec){//清算します\n\t\t\tans+=min({dp,ep,fp});\n\t\t\tdp=0;ep=0;fp=0;\n\t\t\tif(it.sec==1){dp=99;}\n\t\t\t\n\t\t}else{\n\t\t\tfor(i=mae.sec+1;i<=it.sec;i++){\n\t\t\t\tif(i%2==1){int sp=min(dp,ep);dp=fp;ep=sp;fp=sp;}\n\t\t\t}\n\t\t}\n\t\tif(it.sec%2==0){fp+=2;}//中間\n\t\telse{ep++;}\n\t\tif(it.sec==w){fp=mod;}\n\t\tmae=it;\n\t}\n\t//cerr<<\"ans=\"<<ans<<endl;\n\tcout<<max(0,(H-1)*W-K)+max(0,ans-K)<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3576, "score_of_the_acc": -0.0192, "final_rank": 3 } ]
aoj_2796_cpp
F: 紙の折りたたみ / Folding Paper 問題文 高さ $H$ マス、幅 $W$ マスの格子状に区切られた長方形の紙がある。 $0$ から数えて上から $i$ 行目、左から $j$ 列目のマスには整数 $i \times W+j$ が書かれている。 $H=2, W=3$ の例を下の図に示す。 AOR イカちゃんは、この紙に対して次のような操作を順に行った。 $1$ マス分の面積になるまでマスの区切り線に沿って繰り返し折る。この時の折る線や山谷、順番などは任意である。紙を破らない任意の折り方ができる。 $4$ 辺を切り落として $H \times W$ 枚の紙に分割する。 上から順にめくっていき、書かれていた整数を並べた数列 $S$ を作る。 例えば、下の図のように折った後切った場合、$S$ として $4, 3, 0, 5, 2, 1$ が得られる。このように、間に差し込むような折り方も可能である。 あなたは AOR イカちゃんから数列 $S$ を受け取った。 しかし、AOR イカちゃんのことを信用していないので、これが本物か確かめたい。 $S$ と一致するような紙の折り方が存在するなら "YES" を、しないなら "NO" を出力するプログラムを書け。 入力 $H \ W$ $S_0 \cdots S_{HW-1}$ 入力の制約 $1 \le H, W \le 500$ $S$ は $0$ から $H \times W - 1$ までの整数を $1$ つずつ含む 出力 "YES" または "NO" を $1$ 行で出力せよ。 サンプル サンプル入力1 1 4 0 1 2 3 サンプル出力1 YES サンプル入力2 2 3 4 3 0 5 2 1 サンプル出力2 YES 問題文中の例である。 サンプル入力3 1 4 0 2 1 3 サンプル出力3 NO サンプル入力4 2 2 0 1 3 2 サンプル出力4 YES $2$ 回半分に折る。
[ { "submission_id": "aoj_2796_4958013", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acos(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 2;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\n\nstruct SegT {\nprivate:\n\tint sz; vector<int> node;\n\tconst int init_c = -mod;\npublic:\n\tSegT(vector<int> v) {\n\t\tint n = v.size();\n\t\tsz = 1;\n\t\twhile (sz < n)sz *= 2;\n\t\tnode.resize(2 * sz - 1, init_c);\n\t\trep(i, n) {\n\t\t\tnode[i + sz - 1] = v[i];\n\t\t}\n\t\tper(i, sz - 1) {\n\t\t\tnode[i] = f(node[2 * i + 1], node[2 * i + 2]);\n\t\t}\n\t}\n\tSegT(int n) {\n\t\tsz = 1;\n\t\twhile (sz < n)sz *= 2;\n\t\tnode.resize(2 * sz - 1, init_c);\n\t}\n\tint f(int a, int b) {\n\t\treturn max(a, b);\n\t}\n\tvoid update(int k, int a) {\n\t\tk += sz - 1;\n\t\tnode[k] = a;\n\t\twhile (k > 0) {\n\t\t\tk = (k - 1) / 2;\n\t\t\tnode[k] = f(node[k * 2 + 1], node[k * 2 + 2]);\n\t\t}\n\t}\n\tint query(int a, int b, int k = 0, int l = 0, int r = -1) {\n\t\tif (r < 0)r = sz;\n\t\tif (r <= a || b <= l)return init_c;\n\t\telse if (a <= l && r <= b)return node[k];\n\t\telse {\n\t\t\tint vl = query(a, b, k * 2 + 1, l, (l + r) / 2);\n\t\t\tint vr = query(a, b, k * 2 + 2, (l + r) / 2, r);\n\t\t\treturn f(vl, vr);\n\t\t}\n\t}\n};\n\nvoid solve() {\n\tint h, w; cin >> h >> w;\n\tvector<int> a(h * w);\n\trep(i, h * w)cin >> a[i];\n\tvector<int> t(h * w);\n\trep(i, h * w)t[a[i]] = i;\n\tvector<bool> invy(h * w), invt(h * w);\n\tqueue<int> q;\n\tvector<bool> used(h * w,false);\n\tused[0] = true; q.push(0);\n\tvector<int> vs;\n\twhile (!q.empty()) {\n\t\tint v = q.front(); q.pop();\n\t\tvs.push_back(v);\n\t\tint x = a[v] / w;\n\t\tint y = a[v] % w;\n\t\tif (x - 1 >= 0) {\n\t\t\tint to = t[(x - 1) * w + y];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t\tif (x + 1 < h) {\n\t\t\tint to = t[(x + 1) * w + y];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t\tif (y - 1 >= 0) {\n\t\t\tint to = t[x * w + y-1];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t\tif (y + 1 < w) {\n\t\t\tint to = t[x * w + y+1];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t}\n\tfill(all(used), false);\n\tinvy[0] = false;\n\tinvt[0] = false;\n\tused[0] = true;\n\tvector<P> seg[4];\n\trep(i, vs.size()) {\n\t\t//cout << vs[i] << \"\\n\";\n\t\tint v = vs[i];\n\t\tint x = a[v] / w;\n\t\tint y = a[v] % w;\n\t\tif (y - 1 >= 0) {\n\t\t\tint to = t[x * w + y-1];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invy[v]) {\n\t\t\t\tby = true;\n\t\t\t\tif(!used[to])seg[0].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tby = false;\n\t\t\t\tif(!used[to])seg[1].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tbt = invt[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t\tif (y + 1 < w) {\n\t\t\tint to = t[x * w + y + 1];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invy[v]) {\n\t\t\t\tby = true;\n\t\t\t\tif(!used[to])seg[1].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tby = false;\n\t\t\t\tif(!used[to])seg[0].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tbt = invt[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t\tif (x - 1 >= 0) {\n\t\t\tint to = t[(x - 1) * w + y];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invt[v]) {\n\t\t\t\tbt = true;\n\t\t\t\tif(!used[to])seg[2].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbt = false;\n\t\t\t\tif(!used[to])seg[3].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tby = invy[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t\tif (x + 1 < h) {\n\t\t\tint to = t[(x + 1) * w + y];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invt[v]) {\n\t\t\t\tbt = true;\n\t\t\t\tif(!used[to])seg[3].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbt = false;\n\t\t\t\tif(!used[to])seg[2].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tby = invy[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t}\n\trep(i, 4) {\n\t\tvector<P> s = seg[i];\n\t\t//cout << \"hello\\n\";\n\t\t//rep(j, s.size())cout << s[j].first << \" \" << s[j].second << \"\\n\";\n\t\tsort(all(s));\n\t\tvector<int> ori(h * w);\n\t\trep(j, s.size()) {\n\t\t\tint le = j;\n\t\t\twhile (j + 1 < s.size() && s[j + 1].first == s[j].first)j++;\n\t\t\tif (le != j) {\n\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t}\n\t\t\tori[s[j].first] = s[j].second;\n\t\t}\n\t\tSegT st(ori);\n\t\trep(j, s.size()) {\n\t\t\tint q = st.query(s[j].first + 1, s[j].second);\n\t\t\tif (q >= s[j].second) {\n\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t}\n\t\t}\n\t}\n\tcout << \"YES\\n\";\n}\n\n\n\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14104, "score_of_the_acc": -1.3333, "final_rank": 5 }, { "submission_id": "aoj_2796_4955666", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acos(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 2;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\n\nstruct SegT {\nprivate:\n\tint sz; vector<int> node;\n\tconst int init_c = -mod;\npublic:\n\tSegT(vector<int> v) {\n\t\tint n = v.size();\n\t\tsz = 1;\n\t\twhile (sz < n)sz *= 2;\n\t\tnode.resize(2 * sz - 1, init_c);\n\t\trep(i, n) {\n\t\t\tnode[i + sz - 1] = v[i];\n\t\t}\n\t\tper(i, sz - 1) {\n\t\t\tnode[i] = f(node[2 * i + 1], node[2 * i + 2]);\n\t\t}\n\t}\n\tSegT(int n) {\n\t\tsz = 1;\n\t\twhile (sz < n)sz *= 2;\n\t\tnode.resize(2 * sz - 1, init_c);\n\t}\n\tint f(int a, int b) {\n\t\treturn max(a, b);\n\t}\n\tvoid update(int k, int a) {\n\t\tk += sz - 1;\n\t\tnode[k] = a;\n\t\twhile (k > 0) {\n\t\t\tk = (k - 1) / 2;\n\t\t\tnode[k] = f(node[k * 2 + 1], node[k * 2 + 2]);\n\t\t}\n\t}\n\tint query(int a, int b, int k = 0, int l = 0, int r = -1) {\n\t\tif (r < 0)r = sz;\n\t\tif (r <= a || b <= l)return init_c;\n\t\telse if (a <= l && r <= b)return node[k];\n\t\telse {\n\t\t\tint vl = query(a, b, k * 2 + 1, l, (l + r) / 2);\n\t\t\tint vr = query(a, b, k * 2 + 2, (l + r) / 2, r);\n\t\t\treturn f(vl, vr);\n\t\t}\n\t}\n};\n\nvoid solve() {\n\tint h, w; cin >> h >> w;\n\tvector<int> a(h * w);\n\trep(i, h * w)cin >> a[i];\n\tvector<int> t(h * w);\n\trep(i, h * w)t[a[i]] = i;\n\tvector<bool> invy(h * w), invt(h * w);\n\tqueue<int> q;\n\tvector<bool> used(h * w,false);\n\tused[0] = true; q.push(0);\n\tvector<int> vs;\n\twhile (!q.empty()) {\n\t\tint v = q.front(); q.pop();\n\t\tvs.push_back(v);\n\t\tint x = a[v] / w;\n\t\tint y = a[v] % w;\n\t\tif (x - 1 >= 0) {\n\t\t\tint to = t[(x - 1) * w + y];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t\tif (x + 1 < h) {\n\t\t\tint to = t[(x + 1) * w + y];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t\tif (y - 1 >= 0) {\n\t\t\tint to = t[x * w + y-1];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t\tif (y + 1 < w) {\n\t\t\tint to = t[x * w + y+1];\n\t\t\tif (!used[to])used[to] = true, q.push(to);\n\t\t}\n\t}\n\tfill(all(used), false);\n\tinvy[0] = false;\n\tinvt[0] = false;\n\tused[0] = true;\n\tvector<P> seg[4];\n\trep(i, vs.size()) {\n\t\t//cout << vs[i] << \"\\n\";\n\t\tint v = vs[i];\n\t\tint x = a[v] / w;\n\t\tint y = a[v] % w;\n\t\tif (y - 1 >= 0) {\n\t\t\tint to = t[x * w + y-1];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invy[v]) {\n\t\t\t\tby = true;\n\t\t\t\tif(!used[to])seg[0].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tby = false;\n\t\t\t\tif(!used[to])seg[1].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tbt = invt[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t\tif (y + 1 < w) {\n\t\t\tint to = t[x * w + y + 1];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invy[v]) {\n\t\t\t\tby = true;\n\t\t\t\tif(!used[to])seg[1].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tby = false;\n\t\t\t\tif(!used[to])seg[0].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tbt = invt[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t\tif (x - 1 >= 0) {\n\t\t\tint to = t[(x - 1) * w + y];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invt[v]) {\n\t\t\t\tbt = true;\n\t\t\t\tif(!used[to])seg[2].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbt = false;\n\t\t\t\tif(!used[to])seg[3].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tby = invy[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t\tif (x + 1 < h) {\n\t\t\tint to = t[(x + 1) * w + y];\n\t\t\tbool by = false, bt = false;\n\t\t\tif (!invt[v]) {\n\t\t\t\tbt = true;\n\t\t\t\tif(!used[to])seg[3].push_back(minmax(v, to));\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbt = false;\n\t\t\t\tif(!used[to])seg[2].push_back(minmax(v, to));\n\t\t\t}\n\t\t\tby = invy[v];\n\t\t\tif (used[to]) {\n\t\t\t\tif (invy[to] != by || invt[to] != bt) {\n\t\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tused[to] = true;\n\t\t\t\tinvy[to] = by, invt[to] = bt;\n\t\t\t}\n\t\t}\n\t}\n\trep(i, 4) {\n\t\tvector<P> s = seg[i];\n\t\t//cout << \"hello\\n\";\n\t\t//rep(j, s.size())cout << s[j].first << \" \" << s[j].second << \"\\n\";\n\t\tsort(all(s));\n\t\tvector<int> ori(h * w);\n\t\trep(j, s.size()) {\n\t\t\tint le = j;\n\t\t\twhile (j + 1 < s.size() && s[j + 1].first == s[j].first)j++;\n\t\t\tif (le != j) {\n\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t}\n\t\t\tori[s[j].first] = s[j].second;\n\t\t}\n\t\tSegT st(ori);\n\t\trep(j, s.size()) {\n\t\t\tint q = st.query(s[j].first + 1, s[j].second);\n\t\t\tif (q >= s[j].second) {\n\t\t\t\tcout << \"NO\\n\"; return;\n\t\t\t}\n\t\t}\n\t}\n\tcout << \"YES\\n\";\n}\n\n\n\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 13852, "score_of_the_acc": -1.3079, "final_rank": 4 }, { "submission_id": "aoj_2796_2240850", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int> P;\n\nint H,W;\nint t[250000];\nint u[250001];\nbool rh[250001];\nbool rw[250001];\n\nint dy[]={-1,0,1,0};\nint dx[]={0,1,0,-1};\n\nbool solve(){\n int sy=t[0]/W;\n int sx=t[0]%W;\n for(int i=1;i<H*W;i++){\n int y=t[i]/W;\n int x=t[i]%W;\n if( abs(y-sy)%2 == 1 )rh[ t[i] ]=true;\n if( abs(x-sx)%2 == 1 )rw[ t[i] ]=true;\n }\n \n int last=-1;\n stack<int> total;\n stack<int> st[4];\n \n for(int i=0;i<H*W;i++){\n int n=t[i];\n vector<P> v;\n for(int dir=0;dir<4;dir++){\n int y=n/W+dy[dir];\n int x=n%W+dx[dir];\n if(y<0||H<=y)continue;\n if(x<0||W<=x)continue;\n int m=y*W+x;\n v.push_back(P(u[m],dir));\n }\n \n sort(v.begin(),v.end());\n reverse(v.begin(),v.end());\n \n for(int j=0;j<(int)v.size();j++){\n int dir=v[j].second;\n int y=n/W+dy[dir];\n int x=n%W+dx[dir];\n int m=y*W+x;\n int ndir=dir;\n if(rh[n]&&ndir%2==0)ndir=(ndir+2)%4;\n if(rw[n]&&ndir%2==1)ndir=(ndir+2)%4;\n stack<int> &w=st[ndir];\n if(u[m]<i){\n // cout<<\"pop \"<<n<<' '<<m<<' '<<ndir<<endl;\n if(w.empty()||w.top()!=n)return false;\n w.pop();\n // if(total.top()<last)return false;\n total.pop();\n last=i;\n }\n }\n \n for(int j=0;j<(int)v.size();j++){\n int dir=v[j].second;\n int y=n/W+dy[dir];\n int x=n%W+dx[dir];\n int m=y*W+x;\n int ndir=dir;\n if(rh[n]&&ndir%2==0)ndir=(ndir+2)%4;\n if(rw[n]&&ndir%2==1)ndir=(ndir+2)%4;\n stack<int> &w=st[ndir];\n if(u[m]>=i){\n // cout<<\"push \"<<n<<' '<<m<<' '<<ndir<<endl;\n w.push(m);\n total.push(i);\n }\n }\n }\n return true;\n}\n\nint main(){\n cin>>H>>W;\n for(int i=0;i<H*W;i++){\n cin>>t[i];\n u[t[i]]=i;\n }\n cout<<(solve()?\"YES\":\"NO\")<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 5916, "score_of_the_acc": -1.1733, "final_rank": 3 }, { "submission_id": "aoj_2796_2001060", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define rep1(i,n) for(int i=1;i<=(int)(n);i++)\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define fs first\n#define sc second\n#define show(x) cout << #x << \" = \" << x << endl\n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\nusing namespace std;\ntemplate<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){return o<<\"(\"<<p.fs<<\",\"<<p.sc<<\")\";}\ntemplate<class T> ostream& operator<<(ostream& o,const vector<T> &vc){o<<\"sz = \"<<vc.size()<<endl<<\"[\";for(const T& v:vc) o<<v<<\",\";o<<\"]\";return o;}\nint H,W;\ntypedef pair<int,int> P;\nint ids[500*500];\nbool ok(vector<P> vp){\n\trep(i,H*W) ids[i]=0;\n\tint N=vp.size();\n\trep(i,N){\n\t\tint in=vp[i].fs,out=vp[i].sc;\n\t\tif(in>out) swap(in,out);\n\t\tids[in]=i+1;\n\t\tids[out]=-(i+1);\n\t}\n\tstack<int> st;\n\trep(i,H*W) if(ids[i]!=0){\n\t\tint x=ids[i];\n\t\tif(x>0){\n\t\t\tst.push(x);\n\t\t}else{\n\t\t\tint y=st.top();st.pop();\n\t\t\tif(-x!=y) return 0;\n\t\t}\n\t}\n\treturn 1;\n}\nint p[500*500];\nbool solve(){\n\tcin>>H>>W;\n\trep(i,H*W){\n\t\tint a;\n\t\tcin>>a;\n\t\tp[a]=i;\n\t}\n\tvector<P> vp[2];\n\trep(i,H) rep(j,W-1){\n\t\tvp[j%2].pb(P(p[i*W+j],p[i*W+j+1]));\n\t}\n\tif(!ok(vp[0])||!ok(vp[1])) return 0;\n\tvp[0].clear(),vp[1].clear();\n\trep(j,W) rep(i,H-1){\n\t\tvp[i%2].pb(P(p[i*W+j],p[(i+1)*W+j]));\n\t}\n\tif(!ok(vp[0])||!ok(vp[1])) return 0;\n\treturn 1;\n}\nint main(){\n\tif(solve()) puts(\"YES\");\n\telse puts(\"NO\");\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 8796, "score_of_the_acc": -0.4641, "final_rank": 2 }, { "submission_id": "aoj_2796_2000860", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\nusing ll = long long;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10LL * TEN(n-1); }\n\nusing P = pair<int, int>;\nbool ok(vector<P> v) {\n for (auto &p: v) {\n if (p.first > p.second) {\n swap(p.first, p.second);\n }\n }\n sort(begin(v), end(v));\n vector<P> st;\n for (auto p: v) {\n while (st.size() && st.back().second < p.first) {\n st.pop_back();\n }\n if (st.size() && st.back().second < p.second) {\n return false;\n }\n st.push_back(p);\n }\n return true;\n}\n\nint main() {\n int h, w;\n scanf(\"%d %d\", &h, &w);\n int n = h*w;\n int rid[n];\n for (int i = 0; i < n; i++) {\n int a;\n cin >> a;\n rid[a] = i;\n }\n\n for (int y = 0; y < h; y++) {\n vector<P> v[2];\n for (int x = 0; x < w-1; x++) {\n int id = y*w+x;\n v[x%2].push_back(P(rid[id], rid[id+1]));\n }\n if (!ok(v[0]) || !ok(v[1])) {\n cout << \"NO\" << endl;\n return 0;\n }\n }\n\n for (int x = 0; x < w; x++) {\n vector<P> v[2];\n for (int y = 0; y < h-1; y++) {\n int id = y*w+x;\n v[y%2].push_back(P(rid[id], rid[id+w]));\n }\n if (!ok(v[0]) || !ok(v[1])) {\n cout << \"NO\" << endl;\n return 0;\n } \n }\n cout << \"YES\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4200, "score_of_the_acc": -0.3333, "final_rank": 1 } ]
aoj_2792_cpp
B: イカったー / SNS 問題文 AOR イカちゃんは最近少し機嫌が悪い。 どうやら、”イカったー”のフォロー数とフォロワー数の比が気に入らないようだ 。現在、AOR イカちゃんのフォロー数は $A$ 人、フォロワー数は $B$ 人であり、比は $A:B$ である。 そこで、AOR イカちゃんはフォロー数とフォロワー数の比が気に入った整数比になるように、 フォロー数 を増減させることにした。 なお気に入った整数比とは、比に含まれるどちらの値も $1$ 以上 $N$ 以下の整数となるように表せる比である。 しかし、AOR イカちゃんはできるだけフォロー数を変更したくないので、変更前との差の絶対値をできるだけ小さくしたい。 AOR イカちゃんの機嫌を良くするために、少なくともフォロー数をいくつ変更する必要があるかを求めるプログラムを作成せよ。 入力 $A \ B \ N$ 入力の制約 $1 \le A, \ B \le 10^{12}$ $1 \leq N \leq 100 $ 出力 気に入った整数比にできる、$A$ の変化量の絶対値の最小値を出力せよ。 サンプル サンプル入力1 19 30 3 サンプル出力1 1 サンプル入力2 3 7 7 サンプル出力2 0 サンプル入力3 3 7 1 サンプル出力3 4 サンプル入力4 102 30 3 サンプル出力4 12 フォローを $12$ 人減らすことで $90:30 \ (=3:1)$ になり、比の大きい方の数字が $3$ 以下となります。 このとき、変化量は $12$ です。 サンプル入力5 3 4 2 サンプル出力5 1 一人フォローを外すと $2:4 \ (=1:2)$ に、フォローすると $4:4 \ (=1:1)$ になり、どちらも増減の絶対値は $1$ でそれが答えです。 サンプル入力6 1 100 2 サンプル出力6 49 最低でも $1$ 人はフォローしていなければいけない事に注意してください。
[ { "submission_id": "aoj_2792_2000870", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nlong long cl(long long a,long long b,long long n){\n long long na=a+(b-a%b);\n if(na/b>n){\n na=n*b;\n return abs(a-na);\n }else{\n long long na2=a-a%b;\n if(na2==0) return abs(a-na);\n return min(abs(a-na),abs(a-na2));\n }\n}\n\n\nint main(){\n long long a,b,n;\n long long ans = 1e12;\n cin>>a>>b>>n;\n for(long long i=1;i*i<=b;i++){\n if(b%i) continue;\n if(b/i<=n){\n long long c=cl(a,i,n);\n if(c<ans) ans=c;\n }\n if(b/(b/i)<=n){ \n long long d=cl(a,b/i,n);\n if(d<ans) ans=d;\n }\n }\n cout<<ans<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1156, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2792_2000832", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nlong long cl(int a,int b,int n){\n long long na=a+(b-a%b);\n if(na/b>n){\n na=n*b;\n return abs(a-na);\n }else{\n long long na2=a-a%b;\n if(na2 == 0) na2 = 1e12;\n return min(abs(a-na),abs(a-na2));\n }\n}\n\n\nint main(){\n long long a,b,n;\n long long ans = 1e12;\n cin>>a>>b>>n;\n for(long long i=1;i*i<=b;i++){\n if(b%i) continue;\n if(b/i<=n){\n long long c=cl(a,i,n);\n if(c<ans) ans=c;\n }\n if(b/(b/i)<=n){ \n long long d=cl(a,b/i,n);\n if(d<ans) ans=d;\n }\n }\n cout<<ans<<endl;\n\n return 0;\n}", "accuracy": 0.15789473684210525, "time_ms": 10, "memory_kb": 1160, "score_of_the_acc": -0.0019, "final_rank": 4 }, { "submission_id": "aoj_2792_2000791", "code_snippet": "#include <bits/stdc++.h>\n\n\nusing namespace std;\n\nstruct cww{cww(){ios::sync_with_stdio(false);cin.tie(0);}}init;\n\ntypedef long long LL;\n#define fin \"\\n\"\nvoid chmin(LL &a,LL b){a=min(a,b);}\nLL f(LL a,LL b){return (a+b-1)/b;}\nint main(){\n LL A,B,N;\n cin>>A>>B>>N;\n LL res=1e15;\n for(LL i=1;i<=1000000;i++)\n if(B%i==0){\n {\n LL m=i;\n LL b=B/m;\n if(B/m<=N)\n for(LL a=1;a<=N;a++)\n chmin(res,abs(a*m-A));\n \n \n }\n {\n LL m=B/i;\n LL b=B/m;\n if(B/m<=N)\n for(LL a=1;a<=N;a++)\n chmin(res,abs(a*m-A));\n \n }\n }\n cout<<res<<fin;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3208, "score_of_the_acc": -1, "final_rank": 3 }, { "submission_id": "aoj_2792_2000783", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long int64;\nconst int64 INF = 1LL << 58;\n\nint main()\n{\n int64 A, B, N;\n cin >> A >> B >> N;\n\n vector< int64 > prime;\n for(int64 i = 1; i * i <= B; i++) {\n if(B % i == 0) {\n prime.push_back(i);\n if(i != B / i) prime.push_back(B / i);\n }\n }\n\n\n\n int64 ret = INF;\n for(int64 k : prime) {\n if(B / k > N) continue;\n int64 prev = A / k * k;\n int64 next = (A + k - 1) / k * k;\n int64 gcd1 = __gcd(prev, B);\n int64 gcd2 = __gcd(next, B);\n if(prev > 0 && B / gcd1 <= N && prev / gcd1 <= N) ret = min(ret, llabs(prev - A));\n if(next > 0 && B / gcd2 <= N && next / gcd2 <= N) ret = min(ret, llabs(next - A));\n }\n for(int64 k = B; k / B <= N; k += B) {\n ret = min(ret, llabs(k - A));\n }\n cout << ret << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3156, "score_of_the_acc": -0.9747, "final_rank": 2 }, { "submission_id": "aoj_2792_2000770", "code_snippet": "#include <bits/stdc++.h>\n\n\nusing namespace std;\n\nstruct cww{cww(){ios::sync_with_stdio(false);cin.tie(0);}}init;\n\ntypedef long long LL;\n#define fin \"\\n\"\nvoid chmin(LL &a,LL b){a=min(a,b);}\nLL f(LL a,LL b){return (a+b-1)/b;}\nint main(){\n LL A,B,N;\n cin>>A>>B>>N;\n LL res=1e15;\n for(LL i=1;i<=1000000;i++)\n if(B%i==0){\n {\n LL m=i;\n LL a=f(A,m);\n LL b=B/m;\n if(a<=N&&b<=N)\n chmin(res,a*m-A);\n a=A/m;\n if(a<=N&&b<=N&&a>0)\n chmin(res,A-a*m);\n }\n {\n LL m=B/i;\n LL a=f(A,m);\n LL b=B/m;\n if(a<=N&&b<=N)\n chmin(res,a*m-A);\n a=A/m;\n if(a<=N&&b<=N&&a>0)\n chmin(res,A-a*m);\n }\n }\n cout<<res<<fin;\n\n return 0;\n}", "accuracy": 0.15789473684210525, "time_ms": 10, "memory_kb": 3208, "score_of_the_acc": -1, "final_rank": 6 }, { "submission_id": "aoj_2792_2000687", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long int64;\nconst int64 INF = 1LL << 58;\n\nint main()\n{\n int64 A, B, N;\n cin >> A >> B >> N;\n\n\n vector< int64 > prime;\n for(int64 i = 1; i * i <= B; i++) {\n if(B % i == 0) {\n prime.push_back(i);\n if(i != B / i) prime.push_back(B / i);\n }\n }\n\n int64 ret = INF;\n for(int64 k : prime) {\n if(B / k > N) continue;\n int64 prev = A / k * k;\n int64 next = (A + k - 1) / k * k;\n if(prev / k > 0 && prev / k <= N) ret = min(ret, llabs(prev - A));\n if(next / k > 0 && next / k <= N) ret = min(ret, llabs(next - A));\n }\n cout << ret << endl;\n}", "accuracy": 0.15789473684210525, "time_ms": 10, "memory_kb": 3160, "score_of_the_acc": -0.9766, "final_rank": 5 } ]
aoj_2788_cpp
Multisect We are developing the world's coolest AI robot product. After the long struggle, we finally managed to send our product at revision $R_{RC}$ to QA team as a release candidate. However, they reported that some tests failed! Because we were too lazy to set up a continuous integration system, we have no idea when our software corrupted. We only know that the software passed all the test at the past revision $R_{PASS}$. To determine the revision $R_{ENBUG}$ ($R_{PASS} < R_{ENBUG} \leq R_{RC}$) in which our software started to fail, we must test our product revision-by-revision. Here, we can assume the following conditions: When we test at the revision $R$, the test passes if $R < R_{ENBUG}$, or fails otherwise. It is equally possible, which revision between $R_{PASS} + 1$ and $R_{RC}$ is $R_{ENBUG}$. From the first assumption, we don't need to test all the revisions. All we have to do is to find the revision $R$ such that the test at $R - 1$ passes and the test at $R$ fails. We have $K$ testing devices. Using them, we can test at most $K$ different revisions simultaneously. We call this "parallel testing". By the restriction of the testing environment, we cannot start new tests until a current parallel testing finishes, even if we don't use all the $K$ devices. Parallel testings take some cost. The more tests fail, the more costly the parallel testing becomes. If $i$ tests fail in a parallel testing, its cost is $T_i$ ($0 \leq i \leq K$). And if we run parallel testings multiple times, the total cost is the sum of their costs. Of course we want to minimize the total cost to determine $R_{ENBUG}$, by choosing carefully how many and which revisions to test on each parallel testing. What is the minimum expected value of the total cost if we take an optimal strategy? Input The input consists of a single test case with the following format. $R_{PASS}$ $R_{RC}$ $K$ $T_0$ $T_1$ ... $T_K$ $R_{PASS}$ and $R_{RC}$ are integers that represent the revision numbers of our software at which the test passed and failed, respectively. $1 \leq R_{PASS} < R_{RC} \leq 1,000$ holds. $K$ ($1 \leq K \leq 30$) is the maximum number of revisions we can test in a single parallel testing. $T_i$ is an integer that represents the cost of a parallel testing in which $i$ tests fail ($0 \leq i \leq K$). You can assume $1 \leq T_0 \leq T_1 \leq ... \leq T_K \leq 100,000$. Output Output the minimum expected value of the total cost. The output should not contain an error greater than 0.0001. Sample Input 1 1 10 2 1 1 1 Output for the Sample Input 1 2.0 Sample Input 2 1 100 1 100 100 Output for the Sample Input 2 670.7070707 Sample Input 3 100 200 4 1 1 2 2 3 Output for the Sample Input 3 4.6400000 Sample Input 4 2 3 4 1 2 3 4 5 Output for the Sample Input 4 0.0 Sample Input 5 998 1000 4 10 100 1000 10000 100000 Output for the Sample Input 5 55.0
[ { "submission_id": "aoj_2788_10853223", "code_snippet": "#include <bits/stdc++.h>\n//#include <ext/pb_ds/assoc_container.hpp>\n//#include <ext/pb_ds/tree_policy.hpp>\nusing namespace std;\n//using namespace __gnu_pbds; //new version c++\n//using namespace pb_ds;\n\n#define PB push_back\n#define MP make_pair\n#define SZ size()\n#define REP(i, n) for(int i = 0; i < (n); i++)\n#define ITR(i, j, n) for(int i = (j); i < (n); i++)\n#define mem(array, val) memset(array, val, sizeof(array))\n#define READ(filename) freopen(filename, \"r\", stdin)\n#define WRITE(filename) freopen(filename, \"w\", stdout)\n#define Fr first\n#define Sc second\n#define si(a) scanf(\"%d\", &a)\n#define sl(a) scanf(\"%lld\", &a)\n#define sd(a) scanf(\"%lf\", &a)\n#define ss(a) scanf(\"%s\", a)\n#define sii(a, b) scanf(\"%d%d\", &a, &b)\n#define sll(a, b) scanf(\"%lld%lld\", &a, &b)\n#define sdd(a, b) scanf(\"%lf%lf\", &a, &b)\n#define debug(x) cout << #x << \": \" << x << endl\n#define Fast_IO ios_base::sync_with_stdio(0);cin.tie(0)\n\ntypedef long long Long;\ntypedef pair <int, int> Pii;\n///<-------------------------------------------------END OF TEMPLATE-------------------------------------------------->\n\n#define MAX 1005\n#define MAXG 35\nint K, T[MAXG];\ndouble dp[MAX][MAXG];\n\nint main() {\n int rp, rc, N;\n sii(rp, rc); si(K);\n REP(i, K+1) si(T[i]);\n\n N = rc - rp;\n dp[1][1] = T[0];\n ITR(n, 2, N+1) {\n dp[n][1] = 1e12;\n\n ITR(k, 2, K+2) {\n if(k > n) break;\n dp[n][k] = 1e12;\n ITR(sz, 1, n) {\n if(n-sz < k-1) break;\n dp[n][k] = min(dp[n][k], (double(sz) / double(n)) * (dp[sz][1] - T[0] + T[k-1]) + (double(n - sz) / double(n)) * dp[n-sz][k-1]);\n }\n dp[n][1] = min(dp[n][1], dp[n][k]);\n }\n dp[n][1] += T[0];\n //printf(\"DP[%d]: %.8lf\\n\", n, DP[n]);\n }\n\n printf(\"%.8lf\\n\", dp[N][1] - T[0]);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3840, "score_of_the_acc": -0.0972, "final_rank": 10 }, { "submission_id": "aoj_2788_9669629", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define RFOR(i,l,r) for(ll i=r-1;i>=l;i--)\n#define RREP(i,n) RFOR(i,0,n)\n#define sz(A) ((ll)A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (lower_bound(ALL(A),x)-A.begin())\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\nstruct segtree{\n vi tree;\n int n;\n ll op(ll a,ll b){return max(a,b);}\n ll e(){return -1e18;}\n segtree(int _N){\n n=1;\n while(n<_N)n<<=1;\n tree.assign(2*n,e());\n }\n void set(int i,ll x){\n i+=n;\n tree[i]=x;\n while(i>1){\n i>>=1;\n tree[i]=op(tree[2*i],tree[2*i+1]);\n }\n }\n ll prod(int l,int r){\n l+=n;r+=n;\n ll L=e(),R=e();\n while(l<r){\n if(l%2)L=op(L,tree[l++]);\n if(r%2)R=op(tree[--r],R);\n l>>=1;r>>=1;\n }\n return op(L,R);\n }\n};\nint main(){\n ll a,b,K;cin>>a>>b>>K;\n vi T(K+1);\n REP(i,K+1)cin>>T[i];\n vector<vector<ld>>DP(1000,vector<ld>(K+2,1e18));\n REP(i,K+2)DP[0][i]=0;\n DP[1][K+1]=0;\n FOR(D,1,1000){\n RREP(_D,D)RREP(j,K+1){\n DP[D][j+1]=min(DP[D][j+1],DP[_D][j]+T[K-j]*(D-_D)+DP[D-_D][K+1]);\n }\n }\n //FOR(i,1,10){\n //for(auto j:DP[i])cout<<j<<\" \";cout<<endl;\n //}\n printf(\"%.20Lf\\n\",DP[b-a][K+1]/(b-a));\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4028, "score_of_the_acc": -0.1557, "final_rank": 12 }, { "submission_id": "aoj_2788_8428091", "code_snippet": "#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nint ri() {\n\tint n;\n\tscanf(\"%d\", &n);\n\treturn n;\n}\n\ntypedef double D;\n\nint main() {\n\tint pass = ri();\n\tint rc = ri();\n\t\n\tint n = rc - pass;\n\tint k = ri();\n\tstd::vector<int> t(k + 1);\n\tfor (auto &i : t) i = ri();\n\t\n\tstd::vector<D> res(n + 1, 1e18);\n\tstd::vector<std::vector<D> > dp(k + 2, std::vector<D>(n + 1, 1e18));\n\t\n\tres[0] = res[1] = 0;\n\tdp[1][1] = t[0];\n\tfor (int i = 2; i <= n; i++) {\n\t\tfor (int j = 1; j <= k + 1; j++) {\n\t\t\tfor (int l = 1; l < i; l++) {\n\t\t\t\tdp[j][i] = std::min(dp[j][i], dp[j - 1][l] + (i - l) * (res[i - l] + t[j - 1]));\n\t\t\t}\n\t\t}\n\t\t\n\t\tdouble tmp = 1e18;\n\t\tfor (int j = 1; j <= k + 1; j++) tmp = std::min(tmp, dp[j][i]);\n\t\tres[i] = tmp / i;\n\t\t\n\t\tdp[1][i] = std::min(dp[1][i], tmp + (double) t[0] * i);\n\t}\n\tprintf(\"%.11f\\n\", res[n]);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3664, "score_of_the_acc": -0.0697, "final_rank": 5 }, { "submission_id": "aoj_2788_7182094", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,b) for(int i=a;i<b;i++)\nusing ll = long long;\ntemplate<class T> bool chmin(T &a,const T b){if(a>b){a=b;return 1;}return 0;}\ntemplate<class T> bool chmax(T &a,const T b){if(a<b){a=b;return 1;}return 0;}\nconst int INF = (1<<30)-1;\n#define all(p) p.begin(),p.end()\nconst int mod=998244353;\n\nint main(){\n\tint A,B,K;\n\tcin>>A>>B>>K;\n\tvector<double> T(K+1);\n\trep(i,0,K+1) cin>>T[i];\n\tint N=B-A;\n\tvector<vector<double>> dp(N+1,vector<double>(K+2,INF));\n\trep(i,0,K+2) dp[0][i]=0;\n\tdp[1][0]=0;\n\trep(i,1,N+1){\n\t\trep(j,0,N-i+1) rep(k,1,K+2){\n\t\t\t//if(i==1) cout<<j<<\" \"<<k<<\" \"<<dp[2][0]<<endl;\n\t\t\tchmin(dp[i+j][k-1],dp[j][k]+dp[i][0]+T[k-1]*i);\n\t\t}\n\t\t//cout<<i<<\" : \"<<fixed<<setprecision(20)<<dp[i][0]/(double)(i)<<\"\\n\";\n\t}\n\tcout<<fixed<<setprecision(20)<<dp[N][0]/(double)(N)<<\"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3856, "score_of_the_acc": -0.0957, "final_rank": 9 }, { "submission_id": "aoj_2788_6798456", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\n#define X first\n#define Y second\n#define SZ(a) ((int)a.size())\n#define ALL(v) v.begin(), v.end()\n#define pb push_back\n\nconst double INF = 9e18;\ndouble dp[1005], dp2[55][1005];\ndouble cst[55];\n\nint main() {\n ios::sync_with_stdio(0), cin.tie(0);\n int l, r, k;\n cin >> l >> r >> k;\n r -= l;\n for (int i = 0; i <= k; ++i)\n cin >> cst[i];\n for (int j = 0; j <= k + 1; ++j)\n fill(dp2[j] + 1, dp2[j] + r + 1, INF);\n for (int i = 2; i <= r; ++i) {\n for (int j = k; j >= 0; --j)\n for (int p = 1; p <= r; ++p)\n dp2[j][p] = min(dp2[j][p], dp2[j + 1][p - (i - 1)] + (double)(i - 1) * (dp[i - 1] + cst[j]));\n dp[i] = INF;\n dp[i] = min(dp[i], dp2[0][i] / i);\n }\n cout << fixed << setprecision(7) << dp[r] << \"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3560, "score_of_the_acc": -0.0211, "final_rank": 2 }, { "submission_id": "aoj_2788_6702572", "code_snippet": "/**\n * author: otera\n**/\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing int128_t = __int128_t;\n#define repa(i, n) for(int i = 0; i < n; ++ i)\n#define repb(i, a, b) for(int i = a; i < b; ++ i)\n#define repc(i, a, b, c) for(int i = a; i < b; i += c)\n#define overload4(a, b, c, d, e, ...) e\n#define overload3(a, b, c, d, ...) d\n#define rep(...) overload4(__VA_ARGS__, repc, repb, repa)(__VA_ARGS__)\n#define rep1a(i, n) for(int i = 0; i <= n; ++ i)\n#define rep1b(i, a, b) for(int i = a; i <= b; ++ i)\n#define rep1c(i, a, b, c) for(int i = a; i <= b; i += c)\n#define rep1(...) overload4(__VA_ARGS__, rep1c, rep1b, rep1a)(__VA_ARGS__)\n#define rev_repa(i, n) for(int i=n-1;i>=0;i--)\n#define rev_repb(i, a, b) assert(a > b);for(int i=a;i>b;i--)\n#define rev_rep(...) overload3(__VA_ARGS__, rev_repb, rev_repa)(__VA_ARGS__)\n#define rev_rep1a(i, n) for(int i=n;i>=1;i--)\n#define rev_rep1b(i, a, b) assert(a >= b);for(int i=a;i>=b;i--)\n#define rev_rep1(...) overload3(__VA_ARGS__, rev_rep1b, rev_rep1a)(__VA_ARGS__)\ntypedef pair<int, int> P;\ntypedef pair<ll, ll> LP;\n#define pb push_back\n#define pf push_front\n#define ppb pop_back\n#define ppf pop_front\n#define eb emplace_back\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define rall(c) c.rbegin(), c.rend()\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define si(c) (int)(c).size()\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\n#define kth_bit(x, k) ((x>>k)&1)\n#define unless(A) if(!(A))\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll intpow(ll a, ll b, ll m) {ll ans = 1; while(b){ if(b & 1) (ans *= a) %= m; (a *= a) %= m; b /= 2; } return ans; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate <class T> using vc = vector<T>;\ntemplate <class T> using vvc = vector<vc<T>>;\ntemplate <class T> using vvvc = vector<vvc<T>>;\ntemplate <class T> using vvvvc = vector<vvvc<T>>;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T, class U> using umap = unordered_map<T, U>;\ntemplate<class T> void scan(T& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ cout << ' '; }\ntemplate<class T> void print(const T& a){ cout << a; }\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout << ' '; print(*i); } }\nint out(){ cout << '\\n'; return 0; }\ntemplate<class T> int out(const T& t){ print(t); cout << '\\n'; return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); cout << ' '; out(tail...); return 0; }\n#define CHOOSE(a) CHOOSE2 a\n#define CHOOSE2(a0,a1,a2,a3,a4,x,...) x\n#define debug_1(x1) cout<<#x1<<\": \"<<x1<<endl\n#define debug_2(x1,x2) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<endl\n#define debug_3(x1,x2,x3) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<endl\n#define debug_4(x1,x2,x3,x4) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<endl\n#define debug_5(x1,x2,x3,x4,x5) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<\", \"#x5<<\": \"<<x5<<endl\n#ifdef DEBUG\n#define debug(...) CHOOSE((__VA_ARGS__,debug_5,debug_4,debug_3,debug_2,debug_1,~))(__VA_ARGS__)\n#define dump(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...)\n#define dump(...)\n#endif\n\nstruct io_setup {\n io_setup(int precision = 20) {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(precision);\n }\n} io_setup_ {};\n\nconst int inf = 1e9 + 7;\n\nvoid solve() {\n INT(r_pass, r_rc, k);\n VEC(int, t, k + 1);\n int n = r_rc - r_pass;\n if(n == 1) {\n out(0.0);\n return;\n }\n vvc<ld> dp(n + 1, vc<ld>(k + 1, inf));\n vc<ld> sum(n + 1, inf);\n for(int j = 1; j <= k; ++ j) {\n dp[1][j] = 0.0;\n }\n sum[0] = 0.0; sum[1] = 0.0;\n for(int i = 2; i <= n; ++ i) {\n for(int j = 1; j <= k; ++ j) {\n for(int p = 1; p <= i - j; ++ p) {\n ld res = 0.0;\n if(j != 1) res = (ld)(i - p) * (dp[i - p][j - 1]) / (ld)i + (ld)p * ((ld)t[j] + sum[p]) / (ld)i;\n else res = (ld)(i - p) * ((ld)t[0] + sum[i - p]) / (ld)i + (ld)p * ((ld)t[j] + sum[p]) / (ld)i;\n debug(i, j, p, res);\n chmin(dp[i][j], res);\n }\n debug(i, j, dp[i][j]);\n // sum[i] += dp[i][j];\n chmin(sum[i], dp[i][j]);\n }\n }\n ld ans = inf;\n for(int j = 1; j <= k; ++ j) {\n chmin(ans, dp[n][j]);\n }\n out(ans);\n}\n\nsigned main() {\n int testcase = 1;\n // in(testcase);\n while(testcase--) solve();\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3820, "score_of_the_acc": -0.109, "final_rank": 11 }, { "submission_id": "aoj_2788_6702564", "code_snippet": "/**\n * author: otera\n**/\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing int128_t = __int128_t;\n#define repa(i, n) for(int i = 0; i < n; ++ i)\n#define repb(i, a, b) for(int i = a; i < b; ++ i)\n#define repc(i, a, b, c) for(int i = a; i < b; i += c)\n#define overload4(a, b, c, d, e, ...) e\n#define overload3(a, b, c, d, ...) d\n#define rep(...) overload4(__VA_ARGS__, repc, repb, repa)(__VA_ARGS__)\n#define rep1a(i, n) for(int i = 0; i <= n; ++ i)\n#define rep1b(i, a, b) for(int i = a; i <= b; ++ i)\n#define rep1c(i, a, b, c) for(int i = a; i <= b; i += c)\n#define rep1(...) overload4(__VA_ARGS__, rep1c, rep1b, rep1a)(__VA_ARGS__)\n#define rev_repa(i, n) for(int i=n-1;i>=0;i--)\n#define rev_repb(i, a, b) assert(a > b);for(int i=a;i>b;i--)\n#define rev_rep(...) overload3(__VA_ARGS__, rev_repb, rev_repa)(__VA_ARGS__)\n#define rev_rep1a(i, n) for(int i=n;i>=1;i--)\n#define rev_rep1b(i, a, b) assert(a >= b);for(int i=a;i>=b;i--)\n#define rev_rep1(...) overload3(__VA_ARGS__, rev_rep1b, rev_rep1a)(__VA_ARGS__)\ntypedef pair<int, int> P;\ntypedef pair<ll, ll> LP;\n#define pb push_back\n#define pf push_front\n#define ppb pop_back\n#define ppf pop_front\n#define eb emplace_back\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define rall(c) c.rbegin(), c.rend()\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define si(c) (int)(c).size()\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\n#define kth_bit(x, k) ((x>>k)&1)\n#define unless(A) if(!(A))\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll intpow(ll a, ll b, ll m) {ll ans = 1; while(b){ if(b & 1) (ans *= a) %= m; (a *= a) %= m; b /= 2; } return ans; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate <class T> using vc = vector<T>;\ntemplate <class T> using vvc = vector<vc<T>>;\ntemplate <class T> using vvvc = vector<vvc<T>>;\ntemplate <class T> using vvvvc = vector<vvvc<T>>;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T, class U> using umap = unordered_map<T, U>;\ntemplate<class T> void scan(T& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ cout << ' '; }\ntemplate<class T> void print(const T& a){ cout << a; }\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout << ' '; print(*i); } }\nint out(){ cout << '\\n'; return 0; }\ntemplate<class T> int out(const T& t){ print(t); cout << '\\n'; return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); cout << ' '; out(tail...); return 0; }\n#define CHOOSE(a) CHOOSE2 a\n#define CHOOSE2(a0,a1,a2,a3,a4,x,...) x\n#define debug_1(x1) cout<<#x1<<\": \"<<x1<<endl\n#define debug_2(x1,x2) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<endl\n#define debug_3(x1,x2,x3) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<endl\n#define debug_4(x1,x2,x3,x4) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<endl\n#define debug_5(x1,x2,x3,x4,x5) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<\", \"#x5<<\": \"<<x5<<endl\n#ifdef DEBUG\n#define debug(...) CHOOSE((__VA_ARGS__,debug_5,debug_4,debug_3,debug_2,debug_1,~))(__VA_ARGS__)\n#define dump(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...)\n#define dump(...)\n#endif\n\nstruct io_setup {\n io_setup(int precision = 20) {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(precision);\n }\n} io_setup_ {};\n\nconst int inf = 1e9 + 7;\n\nvoid solve() {\n INT(r_pass, r_rc, k);\n VEC(int, t, k + 1);\n int n = r_rc - r_pass;\n if(n == 1) {\n out(0.0);\n return;\n }\n vvc<ld> dp(n + 1, vc<ld>(k + 1, inf));\n vc<ld> sum(n + 1, inf);\n for(int j = 1; j <= k; ++ j) {\n dp[1][j] = 0.0;\n }\n sum[0] = 0.0; sum[1] = 0.0;\n for(int i = 2; i <= n; ++ i) {\n for(int j = 1; j <= k; ++ j) {\n for(int p = 1; p <= i - 1; ++ p) {\n ld res = 0.0;\n if(j != 1) res = (ld)(i - p) / (ld)i * (dp[i - p][j - 1]) + (ld)p / (ld)i * (t[j] + sum[p]);\n else res = (ld)(i - p) / (ld)i * (t[0] + sum[i - p]) + (ld)p / (ld)i * (t[j] + sum[p]);\n debug(i, j, p, res);\n chmin(dp[i][j], res);\n }\n debug(i, j, dp[i][j]);\n // sum[i] += dp[i][j];\n chmin(sum[i], dp[i][j]);\n }\n }\n ld ans = inf;\n for(int j = 1; j <= k; ++ j) {\n chmin(ans, dp[n][j]);\n }\n out(ans);\n}\n\nsigned main() {\n int testcase = 1;\n // in(testcase);\n while(testcase--) solve();\n return 0;\n}", "accuracy": 0.15384615384615385, "time_ms": 40, "memory_kb": 3580, "score_of_the_acc": -0.0429, "final_rank": 17 }, { "submission_id": "aoj_2788_6702561", "code_snippet": "/**\n * author: otera\n**/\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing int128_t = __int128_t;\n#define repa(i, n) for(int i = 0; i < n; ++ i)\n#define repb(i, a, b) for(int i = a; i < b; ++ i)\n#define repc(i, a, b, c) for(int i = a; i < b; i += c)\n#define overload4(a, b, c, d, e, ...) e\n#define overload3(a, b, c, d, ...) d\n#define rep(...) overload4(__VA_ARGS__, repc, repb, repa)(__VA_ARGS__)\n#define rep1a(i, n) for(int i = 0; i <= n; ++ i)\n#define rep1b(i, a, b) for(int i = a; i <= b; ++ i)\n#define rep1c(i, a, b, c) for(int i = a; i <= b; i += c)\n#define rep1(...) overload4(__VA_ARGS__, rep1c, rep1b, rep1a)(__VA_ARGS__)\n#define rev_repa(i, n) for(int i=n-1;i>=0;i--)\n#define rev_repb(i, a, b) assert(a > b);for(int i=a;i>b;i--)\n#define rev_rep(...) overload3(__VA_ARGS__, rev_repb, rev_repa)(__VA_ARGS__)\n#define rev_rep1a(i, n) for(int i=n;i>=1;i--)\n#define rev_rep1b(i, a, b) assert(a >= b);for(int i=a;i>=b;i--)\n#define rev_rep1(...) overload3(__VA_ARGS__, rev_rep1b, rev_rep1a)(__VA_ARGS__)\ntypedef pair<int, int> P;\ntypedef pair<ll, ll> LP;\n#define pb push_back\n#define pf push_front\n#define ppb pop_back\n#define ppf pop_front\n#define eb emplace_back\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define rall(c) c.rbegin(), c.rend()\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define si(c) (int)(c).size()\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\n#define kth_bit(x, k) ((x>>k)&1)\n#define unless(A) if(!(A))\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll intpow(ll a, ll b, ll m) {ll ans = 1; while(b){ if(b & 1) (ans *= a) %= m; (a *= a) %= m; b /= 2; } return ans; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate <class T> using vc = vector<T>;\ntemplate <class T> using vvc = vector<vc<T>>;\ntemplate <class T> using vvvc = vector<vvc<T>>;\ntemplate <class T> using vvvvc = vector<vvvc<T>>;\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T, class U> using umap = unordered_map<T, U>;\ntemplate<class T> void scan(T& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ cout << ' '; }\ntemplate<class T> void print(const T& a){ cout << a; }\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout << ' '; print(*i); } }\nint out(){ cout << '\\n'; return 0; }\ntemplate<class T> int out(const T& t){ print(t); cout << '\\n'; return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); cout << ' '; out(tail...); return 0; }\n#define CHOOSE(a) CHOOSE2 a\n#define CHOOSE2(a0,a1,a2,a3,a4,x,...) x\n#define debug_1(x1) cout<<#x1<<\": \"<<x1<<endl\n#define debug_2(x1,x2) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<endl\n#define debug_3(x1,x2,x3) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<endl\n#define debug_4(x1,x2,x3,x4) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<endl\n#define debug_5(x1,x2,x3,x4,x5) cout<<#x1<<\": \"<<x1<<\", \"#x2<<\": \"<<x2<<\", \"#x3<<\": \"<<x3<<\", \"#x4<<\": \"<<x4<<\", \"#x5<<\": \"<<x5<<endl\n#ifdef DEBUG\n#define debug(...) CHOOSE((__VA_ARGS__,debug_5,debug_4,debug_3,debug_2,debug_1,~))(__VA_ARGS__)\n#define dump(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...)\n#define dump(...)\n#endif\n\nstruct io_setup {\n io_setup(int precision = 20) {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(precision);\n }\n} io_setup_ {};\n\nconst int inf = 1e9 + 7;\n\nvoid solve() {\n INT(r_pass, r_rc, k);\n VEC(int, t, k + 1);\n int n = r_rc - r_pass;\n vvc<ld> dp(n + 1, vc<ld>(k + 1, inf));\n vc<ld> sum(n + 1, inf);\n for(int j = 1; j <= k; ++ j) {\n dp[1][j] = 0.0;\n }\n sum[0] = 0.0; sum[1] = 0.0;\n for(int i = 2; i <= n; ++ i) {\n for(int j = 1; j <= k; ++ j) {\n for(int p = 1; p <= i - 1; ++ p) {\n ld res = 0.0;\n if(j != 1) res = (ld)(i - p) / (ld)i * (dp[i - p][j - 1]) + (ld)p / (ld)i * (t[j] + sum[p]);\n else res = (ld)(i - p) / (ld)i * (t[0] + sum[i - p]) + (ld)p / (ld)i * (t[j] + sum[p]);\n debug(i, j, p, res);\n chmin(dp[i][j], res);\n }\n debug(i, j, dp[i][j]);\n // sum[i] += dp[i][j];\n chmin(sum[i], dp[i][j]);\n }\n }\n ld ans = inf;\n for(int j = 1; j <= k; ++ j) {\n chmin(ans, dp[n][j]);\n }\n out(ans);\n}\n\nsigned main() {\n int testcase = 1;\n // in(testcase);\n while(testcase--) solve();\n return 0;\n}", "accuracy": 0.15384615384615385, "time_ms": 40, "memory_kb": 3568, "score_of_the_acc": -0.0399, "final_rank": 16 }, { "submission_id": "aoj_2788_6648013", "code_snippet": "#include <bits/stdc++.h>\n\n#include <limits>\n#include <type_traits>\n\nnamespace suisen {\n// ! utility\ntemplate <typename ...Types>\nusing constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;\ntemplate <bool cond_v, typename Then, typename OrElse>\nconstexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {\n if constexpr (cond_v) {\n return std::forward<Then>(then);\n } else {\n return std::forward<OrElse>(or_else);\n }\n}\n\n// ! function\ntemplate <typename ReturnType, typename Callable, typename ...Args>\nusing is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;\ntemplate <typename F, typename T>\nusing is_uni_op = is_same_as_invoke_result<T, F, T>;\ntemplate <typename F, typename T>\nusing is_bin_op = is_same_as_invoke_result<T, F, T, T>;\n\ntemplate <typename Comparator, typename T>\nusing is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;\n\n// ! integral\ntemplate <typename T, typename = constraints_t<std::is_integral<T>>>\nconstexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;\ntemplate <typename T, unsigned int n>\nstruct is_nbit { static constexpr bool value = bit_num<T> == n; };\ntemplate <typename T, unsigned int n>\nstatic constexpr bool is_nbit_v = is_nbit<T, n>::value;\n\n// ?\ntemplate <typename T>\nstruct safely_multipliable {};\ntemplate <>\nstruct safely_multipliable<int> { using type = long long; };\ntemplate <>\nstruct safely_multipliable<long long> { using type = __int128_t; };\ntemplate <>\nstruct safely_multipliable<unsigned int> { using type = unsigned long long; };\ntemplate <>\nstruct safely_multipliable<unsigned long int> { using type = __uint128_t; };\ntemplate <>\nstruct safely_multipliable<unsigned long long> { using type = __uint128_t; };\ntemplate <>\nstruct safely_multipliable<float> { using type = float; };\ntemplate <>\nstruct safely_multipliable<double> { using type = double; };\ntemplate <>\nstruct safely_multipliable<long double> { using type = long double; };\ntemplate <typename T>\nusing safely_multipliable_t = typename safely_multipliable<T>::type;\n\n} // namespace suisen\n\n// ! type aliases\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\n\ntemplate <typename T>\nusing pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <typename T, typename U>\nusing umap = std::unordered_map<T, U>;\n\n// ! macros (capital: internal macro)\n#define OVERLOAD2(_1,_2,name,...) name\n#define OVERLOAD3(_1,_2,_3,name,...) name\n#define OVERLOAD4(_1,_2,_3,_4,name,...) name\n\n#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))\n#define REP3(i,l,r) REP4(i,l,r,1)\n#define REP2(i,n) REP3(i,0,n)\n#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))\n#define REPINF2(i,l) REPINF3(i,l,1)\n#define REPINF1(i) REPINF2(i,0)\n#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))\n#define RREP3(i,l,r) RREP4(i,l,r,1)\n#define RREP2(i,n) RREP3(i,0,n)\n\n#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)\n#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)\n#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)\n\n#define CAT_I(a, b) a##b\n#define CAT(a, b) CAT_I(a, b)\n#define UNIQVAR(tag) CAT(tag, __LINE__)\n#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)\n\n#define all(iterable) std::begin(iterable), std::end(iterable)\n#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)\n\n#ifdef LOCAL\n# define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__)\n\ntemplate <class T, class... Args>\nvoid debug_internal(const char* s, T&& first, Args&&... args) {\n constexpr const char* prefix = \"[\\033[32mDEBUG\\033[m] \";\n constexpr const char* open_brakets = sizeof...(args) == 0 ? \"\" : \"(\";\n constexpr const char* close_brakets = sizeof...(args) == 0 ? \"\" : \")\";\n std::cerr << prefix << open_brakets << s << close_brakets << \": \" << open_brakets << std::forward<T>(first);\n ((std::cerr << \", \" << std::forward<Args>(args)), ...);\n std::cerr << close_brakets << \"\\n\";\n}\n\n#else\n# define debug(...) void(0)\n#endif\n\n// ! I/O utilities\n\n// pair\ntemplate <typename T, typename U>\nstd::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {\n return out << a.first << ' ' << a.second;\n}\n// tuple\ntemplate <unsigned int N = 0, typename ...Args>\nstd::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {\n if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {\n return out;\n } else {\n out << std::get<N>(a);\n if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {\n out << ' ';\n }\n return operator<<<N + 1>(out, a);\n }\n}\n// vector\ntemplate <typename T>\nstd::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {\n for (auto it = a.begin(); it != a.end();) {\n out << *it;\n if (++it != a.end()) out << ' ';\n }\n return out;\n}\n// array\ntemplate <typename T, size_t N>\nstd::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) {\n for (auto it = a.begin(); it != a.end();) {\n out << *it;\n if (++it != a.end()) out << ' ';\n }\n return out;\n}\ninline void print() { std::cout << '\\n'; }\ntemplate <typename Head, typename... Tail>\ninline void print(const Head &head, const Tail &...tails) {\n std::cout << head;\n if (sizeof...(tails)) std::cout << ' ';\n print(tails...);\n}\ntemplate <typename Iterable>\nauto print_all(const Iterable& v, std::string sep = \" \", std::string end = \"\\n\") -> decltype(std::cout << *v.begin(), void()) {\n for (auto it = v.begin(); it != v.end();) {\n std::cout << *it;\n if (++it != v.end()) std::cout << sep;\n }\n std::cout << end;\n}\n\n// pair\ntemplate <typename T, typename U>\nstd::istream& operator>>(std::istream& in, std::pair<T, U> &a) {\n return in >> a.first >> a.second;\n}\n// tuple\ntemplate <unsigned int N = 0, typename ...Args>\nstd::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {\n if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {\n return in;\n } else {\n return operator>><N + 1>(in >> std::get<N>(a), a);\n }\n}\n// vector\ntemplate <typename T>\nstd::istream& operator>>(std::istream& in, std::vector<T> &a) {\n for (auto it = a.begin(); it != a.end(); ++it) in >> *it;\n return in;\n}\n// array\ntemplate <typename T, size_t N>\nstd::istream& operator>>(std::istream& in, std::array<T, N> &a) {\n for (auto it = a.begin(); it != a.end(); ++it) in >> *it;\n return in;\n}\ntemplate <typename ...Args>\nvoid read(Args &...args) {\n ( std::cin >> ... >> args );\n}\n\n// ! integral utilities\n\n// Returns pow(-1, n)\ntemplate <typename T>\nconstexpr inline int pow_m1(T n) {\n return -(n & 1) | 1;\n}\n// Returns pow(-1, n)\ntemplate <>\nconstexpr inline int pow_m1<bool>(bool n) {\n return -int(n) | 1;\n}\n\n// Returns floor(x / y)\ntemplate <typename T>\nconstexpr inline T fld(const T x, const T y) {\n return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;\n}\ntemplate <typename T>\nconstexpr inline T cld(const T x, const T y) {\n return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;\n}\n\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcount(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcount(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int popcount(const T x) { return __builtin_popcountll(x); }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }\ntemplate <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>\nconstexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }\ntemplate <typename T>\nconstexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }\ntemplate <typename T>\nconstexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }\ntemplate <typename T>\nconstexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }\ntemplate <typename T>\nconstexpr inline int parity(const T x) { return popcount(x) & 1; }\n\nstruct all_subset {\n struct all_subset_iter {\n const int s; int t;\n constexpr all_subset_iter(int s) : s(s), t(s + 1) {}\n constexpr auto operator*() const { return t; }\n constexpr auto operator++() {}\n constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }\n };\n int s;\n constexpr all_subset(int s) : s(s) {}\n constexpr auto begin() { return all_subset_iter(s); }\n constexpr auto end() { return nullptr; }\n};\n\n// ! container\n\ntemplate <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>\nauto priqueue_comp(const Comparator comparator) {\n return std::priority_queue<T, std::vector<T>, Comparator>(comparator);\n}\n\ntemplate <typename Iterable>\nauto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {\n return iterable.size();\n}\n\ntemplate <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>\nauto generate_vector(int n, Gen generator) {\n std::vector<T> v(n);\n for (int i = 0; i < n; ++i) v[i] = generator(i);\n return v;\n}\ntemplate <typename T>\nauto generate_range_vector(T l, T r) {\n return generate_vector(r - l, [l](int i) { return l + i; });\n}\ntemplate <typename T>\nauto generate_range_vector(T n) {\n return generate_range_vector(0, n);\n}\n\ntemplate <typename T>\nvoid sort_unique_erase(std::vector<T> &a) {\n std::sort(a.begin(), a.end());\n a.erase(std::unique(a.begin(), a.end()), a.end());\n}\n\ntemplate <typename InputIterator, typename BiConsumer>\nauto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {\n if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);\n}\ntemplate <typename Container, typename BiConsumer>\nauto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){\n foreach_adjacent_values(c.begin(), c.end(), f);\n}\n\n// ! other utilities\n\n// x <- min(x, y). returns true iff `x` has chenged.\ntemplate <typename T>\ninline bool chmin(T &x, const T &y) {\n if (y >= x) return false;\n x = y;\n return true;\n}\n// x <- max(x, y). returns true iff `x` has chenged.\ntemplate <typename T>\ninline bool chmax(T &x, const T &y) {\n if (y <= x) return false;\n x = y;\n return true;\n}\n\nnamespace suisen {}\nusing namespace suisen;\nusing namespace std;\n\nstruct io_setup {\n io_setup(int precision = 20) {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(precision);\n }\n} io_setup_ {};\n\n// ! code from here\n\nconstexpr long long inf = numeric_limits<long long>::max() / 2;\n\nint main() {\n input(int, l, r, k);\n const int n = r - l;\n\n vector<long long> t(k + 1);\n read(t);\n\n vector<vector<long long>> dp(n + 1, vector<long long>(k + 1, inf));\n vector<long long> dp_min(n + 1, inf);\n dp[1][0] = dp_min[1] = 0;\n\n rep(i, 2, n + 1) {\n rep(x0, 1, i) {\n int x1 = i - x0;\n chmin(dp[i][1], x0 * t[1] + dp_min[x0] + x1 * t[0] + dp_min[x1]);\n chmin(dp_min[i], dp[i][1]);\n }\n rep(j, 2, k + 1) {\n rep(x, 1, i) {\n chmin(dp[i][j], dp[i - x][j - 1] + x * t[j] + dp_min[x]);\n }\n chmin(dp_min[i], dp[i][j]);\n }\n \n }\n\n print((double) dp_min[n] / n);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3720, "score_of_the_acc": -0.0614, "final_rank": 3 }, { "submission_id": "aoj_2788_6044487", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=1000000007,MAX=1005;\nconst ll INF=1LL<<60;\ndouble dp[MAX];\ndouble cost[MAX][33];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int A,B,K;cin>>A>>B>>K;\n int N=B-A;\n vector<double> C(K+1);\n for(int i=0;i<=K;i++) cin>>C[i];\n \n for(int t=2;t<=N;t++){\n for(int i=0;i<MAX;i++) for(int j=0;j<33;j++) cost[i][j]=INF;\n cost[t][0]=0;\n for(int i=t;i>=1;i--){\n for(int j=0;j<=K;j++){\n if(cost[i][j]==INF) continue;\n int need=(i+K-j)/(K+1-j);\n for(int k=need;k<=i;k++){\n int to=i-k;\n if(i==t&&to==0) continue;\n if(to<0) continue;\n chmin(cost[to][j+1],cost[i][j]+(double)(i-to)/t*(C[j]+dp[i-to]));\n }\n }\n }\n dp[t]=INF;\n for(int j=1;j<=K+1;j++) chmin(dp[t],cost[0][j]);\n }\n \n cout<<fixed<<setprecision(25)<<dp[N]<<endl;\n}", "accuracy": 1, "time_ms": 1800, "memory_kb": 3900, "score_of_the_acc": -1.1067, "final_rank": 15 }, { "submission_id": "aoj_2788_6012567", "code_snippet": "//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 2;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nld dp[1005][35];\nld ans[1005];\nvoid solve() {\n\tint a, b, m; cin >> a >> b >> m;\n\tint n = b - a;\n\tvector<int> cost(m + 1);\n\trep(i, m + 1)cin >> cost[i];\n\trep(i, n + 1)rep(j, m+2)dp[i][j] = INF;\n\trep(i, n + 1)ans[i] = INF;\n\tans[0] = 0;\n\tans[1] = 0;\n\tdp[0][0] = 0;\n\tfor (int len = 1; len <= n; len++) {\n\t\trep(c, m+1) {\n\t\t\tfor (int ad = 1; ad < len; ad++) {\n\t\t\t\tld val = dp[len - ad][c] + ad * cost[c] + ad*ans[ad];\n\t\t\t\tdp[len][c + 1] = min(dp[len][c + 1], val);\n\t\t\t}\n\t\t}\n\t\trep(c, m + 2)ans[len] = min(ans[len], dp[len][c]/len);\n\t\trep(c, m + 1) {\n\t\t\tfor (int ad = len; ad <= len; ad++) {\n\t\t\t\tld val = dp[len - ad][c] + ad * cost[c] + ad * ans[ad];\n\t\t\t\tdp[len][c + 1] = min(dp[len][c + 1], val);\n\t\t\t}\n\t\t}\n\t}\n\t//cout << dp[3][1] << \"\\n\";\n\t//cout << ans[1] << \"\\n\";\n\tcout << ans[n] << \"\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(8);\n\t//init_f();\n\t//init();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4072, "score_of_the_acc": -0.1724, "final_rank": 13 }, { "submission_id": "aoj_2788_5183868", "code_snippet": "#include <bits/stdc++.h>\n#define maxn 100086\n\nusing namespace std;\n\nint l, r, n, m;\nint t[maxn];\ndouble f[maxn][40], g[maxn];\n\nint main(){\n\tscanf(\"%d%d%d\", &l, &r, &m);\n\tfor(int i = 0;i <= m;i++) scanf(\"%d\", &t[i]);\n\tn = r - l;\n\tf[1][0] = t[0], g[1] = 0;\n\tfor(int i = 1;i <= m;i++) f[1][i] = 1e18;\n\tfor(int i = 2;i <= n;i++){\n\t\tg[i] = 1e18;\n\t\tfor(int j = 1;j <= m;j++){\n\t\t\tf[i][j] = 1e18;\n\t\t\tfor(int k = 1;k < i;k++){\n\t\t\t\tf[i][j] = min(f[i][j], f[i - k][j - 1] + k * (g[k] + t[j])); \t\n\t\t\t}\n\t\t\tg[i] = min(g[i], f[i][j] / i);\n\t\t}\n\t\tf[i][0] = i * (g[i] + t[0]);\n\t}\n\tprintf(\"%.10f\", g[n]);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3532, "score_of_the_acc": -0.0197, "final_rank": 1 }, { "submission_id": "aoj_2788_5179071", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint r_pass,r_rc,k;\nint n;\nint a[55];\ndouble dp[1005][35];\n\nint main()\n{\n cin>>r_pass>>r_rc>>k;\n n=r_rc-r_pass;\n for (int i=0;i<=k;i++)\n {\n cin>>a[i];\n }\n for (int i=2;i<=1000;i++)\n {\n for (int j=0;j<=k;j++)\n {\n dp[i][j]=1e10;\n }\n }\n for (int i=2;i<=n;i++)\n {\n for (int j=1;j<=k;j++)\n {\n for (int u=1;u<i;u++)\n {\n dp[i][j]=min(dp[i][j],1.0*u/i*(dp[u][j-1]+(j==1)*a[0])+1.0*(i-u)/i*(dp[i-u][0]+a[j]));\n }\n }\n for (int j=1;j<k;j++)\n {\n dp[i][j+1]=min(dp[i][j+1],dp[i][j]);\n }\n dp[i][0]=dp[i][k];\n }\n printf(\"%.6f\\n\",dp[n][k]);\n return 0;\n}", "accuracy": 0.15384615384615385, "time_ms": 100, "memory_kb": 3476, "score_of_the_acc": -0.0503, "final_rank": 18 }, { "submission_id": "aoj_2788_5178003", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cassert>\n#include <cstring>\n#include <cmath>\n#include <functional>\n#include <algorithm>\n#include <utility>\n#include <vector>\n#include <string>\n#include <map>\n#include <set>\n#ifdef XLor\n #define dbg(args...) cout << \"\" << #args << \" -> \", err(args)\n void err() { std::cout << \"\" << std::endl; }\n template<typename T, typename...Args>\n void err(T a, Args...args) { std::cout << a << ' '; err(args...); }\n#else\n #define dbg(...)\n#endif\n#define ms(a,b) memset(a,b,sizeof(a))\nusing namespace std;\nusing ll = long long;\nusing PII = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = 1 << 30;\nconst int maxn = 2000 + 5;\n\nint n, k, a[maxn];\ndouble f[maxn][maxn], g[maxn];\n\nint main() {\n int rp, rc;\n scanf(\"%d%d%d\", &rp, &rc, &k);\n n = rc - rp;\n for (int i = 0; i <= k; i++) {\n scanf(\"%d\", a + i);\n }\n for (int i = 0; i <= n; i++) {\n for (int j = 0; j <= k; j++) {\n f[i][j] = 1e18;\n }\n }\n f[1][0] = g[1] = 0.0;\n f[1][1] = a[1];\n for (int i = 2; i <= n; i++) {\n for (int k = 1; k < i; k++) {\n double cur = 1.0 * (i - k) / i * (g[i - k] + a[0]) + 1.0 * k / i * (g[k] + a[1]);\n f[i][1] = min(f[i][1], cur);\n }\n g[i] = f[i][1];\n for (int j = 2; j <= k; j++) {\n for (int k = 1; k < i; k++) {\n double cur = 1.0 * (i - k) / i * f[i - k][j - 1];\n cur += 1.0 * k / i * (a[j] + g[k]);\n f[i][j] = min(f[i][j], cur);\n }\n // dbg(i, j, f[i][j]);\n g[i] = min(g[i], f[i][j]);\n }\n // dbg(i, g[i]);\n }\n printf(\"%.8lf\\n\", g[n]);\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 7448, "score_of_the_acc": -1.0503, "final_rank": 14 }, { "submission_id": "aoj_2788_3155523", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcountll\n\n#define INF 1e16\n#define mod 1000000007\n\nint N,K;\ndouble T[33];\ndouble dp[1011][33];\ndouble minc[1011];\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n {\n int r1,r2;\n cin>>r1>>r2;\n N=r2-r1;\n }\n cin>>K;\n rep(i,K+1)cin>>T[i];\n\n rep(i,N+1)repl(j,1,K+1)dp[i][j]=INF;\n rep(i,N+1)minc[i]=INF;\n minc[0]=0; minc[1]=0;\n repl(i,2,N+1){\n repl(j,1,K+1){\n repl(k,1,i){\n int l=i-k;\n double p1=(double)l/(double)i;\n double p2=(double)(i-l)/(double)i;\n if(j>1){\n minch(dp[i][j],p2*dp[k][j-1]+p1*(T[j]+minc[l]));\n }else{\n minch(dp[i][j],p2*(minc[i-l]+T[0])+p1*(T[j]+minc[l]));\n }\n }\n minch(minc[i],dp[i][j]);\n }\n }\n printf(\"%.10f\\n\", minc[N]);\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3528, "score_of_the_acc": -0.0634, "final_rank": 4 }, { "submission_id": "aoj_2788_3154618", "code_snippet": "#include <bits/stdc++.h>\n#define MOD 1000000007LL\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> P;\n\ndouble dp[1001];\nint a,b,k;\nint t[35];\nint sum[35];\ndouble ct[35];\ndouble dp2[1001][35];\n\ndouble solve(int sz);\ndouble solve2(int sz,int i);\n\ndouble solve2(int sz,int i){\n\tif(dp2[sz][i]>=0.0)return dp2[sz][i];\n\tif(sz<=0){\n\t\treturn 1e18;\n\t}\n\tif(i==0)return t[0]*sz+solve(sz)*sz;\n\tdouble ans=1e18;\n\tfor(int j=1;j<=sz-1;j++){\n\t\tdouble val=solve(j)*j;\n\t\tval+=t[i]*j;\n\t\tval+=solve2(sz-j,i-1);\n\t\tans=min(ans,val);\n\t}\n\treturn dp2[sz][i]=ans;\n}\n\ndouble solve(int sz){\n\tif(dp[sz]>=0.0)return dp[sz];\n\tif(sz<=1)return 0;\n\tdouble ans=1e18;\n\tfor(int i=1;i<=min(k,sz-1);i++){\n\t\tans=min((double)solve2(sz,i)/sz,ans);\n\t}\n\treturn (dp[sz]=ans);\n}\n\nint main(void){\n\tscanf(\"%d%d%d\",&a,&b,&k);\n\tint n=b-a;\n\tfor(int i=0;i<=k;i++){\n\t\tscanf(\"%d\",&t[i]);\n\t}\n\tfor(int i=0;i<=k;i++){\n\t\tsum[i+1]+=sum[i];\n\t\tsum[i+1]+=t[i];\n\t\tct[i+1]=(double)sum[i+1]/(i+1);\n\t}\n\tfor(int i=0;i<=n+1;i++){\n\t\tdp[i]=-1.0;\n\t\tfor(int j=0;j<=k+1;j++){\n\t\t\tdp2[i][j]=-1;\n\t\t}\n\t}\n\tprintf(\"%.10f\\n\",solve(n));\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3700, "score_of_the_acc": -0.0787, "final_rank": 7 }, { "submission_id": "aoj_2788_3154614", "code_snippet": "#include <bits/stdc++.h>\n#define MOD 1000000007LL\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> P;\n\ndouble dp[1001];\nint a,b,k;\nint t[35];\nint sum[35];\ndouble ct[35];\ndouble dp2[1001][35];\n\ndouble solve(int sz);\ndouble solve2(int sz,int i);\n\ndouble solve2(int sz,int i){\n\tif(dp2[sz][i]>=0.0)return dp2[sz][i];\n\tif(sz<=0){\n\t\treturn 1e18;\n\t}\n\tif(i==0)return t[0]*sz+solve(sz)*sz;\n\tdouble ans=1e18;\n\tfor(int j=1;j<=sz-1;j++){\n\t\tdouble val=solve(j)*j;\n\t\tval+=t[i]*j;\n\t\tval+=solve2(sz-j,i-1);\n\t\tans=min(ans,val);\n\t}\n\t//printf(\"solve2 %d %d %f\\n\",sz,i,ans);\n\treturn dp2[sz][i]=ans;\n}\n\ndouble solve(int sz){\n\tif(dp[sz]>=0.0)return dp[sz];\n\tif(sz<=1)return 0;\n\t//printf(\"%d\\n\",sz);\n\tdouble ans=1e18;\n\tfor(int i=1;i<=min(k,sz-1);i++){\n\t\t/*\n\t\tdouble val=0;\n\t\tint v1=sz%(i+1);\n\t\tint v2=i+1-v1;\n\t\tint len=sz/(i+1);\n\t\tprintf(\"%d %d %d\\n\",v1,v2,len);\n\t\tfor(int j=0;j<v2;j++){\n\t\t\tval+=(double)t[j]*len/(sz);\n\t\t}\n\t\tfor(int j=v2;j<=i;j++){\n\t\t\tval+=(double)t[j]*(len+1)/(sz);\n\t\t}\n\t\tval+=(double)solve(len)*(v2*len)/(sz);\n\t\tif(v1>0)val+=(double)solve(len+1)*(sz-v2*len)/(sz);\n\t\t*/\n\t\tans=min((double)solve2(sz,i)/sz,ans);\n\t}\n\t//printf(\"%d %.2f\\n\",sz,ans);\n\treturn (dp[sz]=ans);\n}\n\nint main(void){\n\tscanf(\"%d%d%d\",&a,&b,&k);\n\tint n=b-a;\n\tfor(int i=0;i<=k;i++){\n\t\tscanf(\"%d\",&t[i]);\n\t}\n\tfor(int i=0;i<=k;i++){\n\t\tsum[i+1]+=sum[i];\n\t\tsum[i+1]+=t[i];\n\t\tct[i+1]=(double)sum[i+1]/(i+1);\n\t\t//printf(\"%.5f\\n\",ct[i+1]);\n\t}\n\tfor(int i=0;i<=n+1;i++){\n\t\tdp[i]=-1.0;\n\t\tfor(int j=0;j<=k+1;j++){\n\t\t\tdp2[i][j]=-1;\n\t\t}\n\t}\n\tprintf(\"%.10f\\n\",solve(n));\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3720, "score_of_the_acc": -0.0838, "final_rank": 8 }, { "submission_id": "aoj_2788_3112386", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 1005\n#define SIZE 31\n\nint R_OK,R_FALSE,K;\ndouble cost[SIZE];\ndouble dp[SIZE][NUM];\ndouble memo[NUM];\n\n\ndouble recursive(int length){\n\n\tif(memo[length] != DBL_MAX){\n\t\treturn memo[length];\n\t}\n\n\tfor(int x = 1; x <= min(K,length); x++){\n\n\t\tif(x == 1){\n\n\t\t\tfor(int start = 1; start <= length-1; start++){\n\n\t\t\t\tdp[x][length] = min(dp[x][length],(double)start/(double)length*(recursive(start)+cost[1])+\n\t\t\t\t\t\t(double)(length-start)/(double)length*(recursive(length-start)+cost[0]));\n\t\t\t}\n\n\t\t}else{\n\n\t\t\tfor(int start = 1; start <= length-x; start++){\n\n\t\t\t\tdp[x][length] = min(dp[x][length],(double)start/(double)length*(recursive(start)+cost[x])+\n\t\t\t\t\t\t(double)(length-start)/(double)length*dp[x-1][length-start]);\n\t\t\t}\n\t\t}\n\t\tmemo[length] = min(memo[length],dp[x][length]);\n\t}\n\n\treturn memo[length];\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&R_OK,&R_FALSE,&K);\n\n\tint max_index = R_FALSE-R_OK;\n\n\tfor(int i = 0; i <= K; i++){\n\t\tscanf(\"%lf\",&cost[i]);\n\t}\n\n\tfor(int i = 0; i <= min(K,max_index); i++){\n\t\tfor(int k = 0; k <= max_index; k++){\n \t\t\tdp[i][k] = DBL_MAX;\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= max_index; i++)memo[i] = DBL_MAX;\n\n\tmemo[0] = 0;\n\tmemo[1] = 0;\n\tmemo[2] = (cost[0]+cost[1])/2.0;\n\tdp[1][2] = memo[2];\n\n\tprintf(\"%.10lf\\n\",recursive(max_index));\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3556, "score_of_the_acc": -0.0704, "final_rank": 6 }, { "submission_id": "aoj_2788_3006181", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int N = 1e3 + 10;\nconst int K = 31;\nconst long double inf = 1e18;\n\nlong double f[N][K], g[N], t[K];\n\ninline void chkmin(long double &a, long double b) {\n\tif (a > b) a = b;\n}\n\nint main() {\n\tint a, b;\tscanf(\"%d%d\", &a, &b);\n\tint K;\t\tscanf(\"%d\", &K);\n\tint n = b - a;\n\tfor (int i = 0; i <= K; i++) {\n\t\tdouble x; scanf(\"%lf\", &x);\n\t\tt[i] = x;\n\t}\n\tfor (int i = 2; i <= n; i++) {\n\t\tf[i][1] = inf;\n\t\tfor (int j = 1; j < i; j++) {\n\t\t\tint a = j, b = i - j;\n\t\t\tchkmin(f[i][1], a * (g[a] + t[1]) / i + b * (g[b] + t[0]) / i);\n\t\t}\n\t\tg[i] = f[i][1];\n\t\tfor (int k = 2; k <= K; k++) {\n\t\t\tf[i][k] = inf;\n\t\t\tfor (int j = 0; j <= i; j++) if (f[b][k-1] < inf){\n\t\t\t\tint a = j;\n\t\t\t\tint b = i - j;\n\t\t\t\tchkmin(f[i][k], a * (g[a] + t[k]) / i + f[b][k-1] * b / i);\n\t\t\t}\n\t\t\tchkmin(g[i], f[i][k]);\n\t\t}\n\t}\n\tprintf(\"%.10lf\\n\", (double)g[n]);\n\treturn 0;\n}\n/*\n1 100 1\n100 100\n*/", "accuracy": 0.15384615384615385, "time_ms": 130, "memory_kb": 3720, "score_of_the_acc": -0.1285, "final_rank": 19 }, { "submission_id": "aoj_2788_3006157", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int N = 1e3 + 10;\nconst int K = 31;\nconst long double inf = 1e18;\n\nlong double f[N][K], g[N], t[K];\n\ninline void chkmin(long double &a, long double b) {\n\tif (a > b) a = b;\n}\n\nint main() {\n\tint a, b;\tscanf(\"%d%d\", &a, &b);\n\tint K;\t\tscanf(\"%d\", &K);\n\tint n = b - a;\n\tfor (int i = 0; i <= K; i++) {\n\t\tdouble x; scanf(\"%lf\", &x);\n\t\tt[i] = x;\n\t}\n\tfor (int i = 2; i <= n; i++) {\n\t\tf[i][1] = inf;\n\t\tfor (int j = 1; j < i; j++) {\n\t\t\tint a = j, b = i - j;\n\t\t\tchkmin(f[i][1], a * (g[a] + t[1]) / i + b * (g[b] + t[0]) / i);\n\t\t}\n\t\tg[i] = f[i][1];\n\t\tfor (int k = 2; k <= K; k++) {\n\t\t\tf[i][k] = inf;\n\t\t\tfor (int j = 1; j < i; j++) if (f[b][k-1] < inf){\n\t\t\t\tint a = j;\n\t\t\t\tint b = i - j;\n\t\t\t\tchkmin(f[i][k], a * (g[a] + t[k]) / i + f[b][k-1] * b / i);\n\t\t\t}\n\t\t\tchkmin(g[i], f[i][k]);\n\t\t}\n\t}\n\tprintf(\"%.10lf\\n\", (double)g[n]);\n\treturn 0;\n}", "accuracy": 0.15384615384615385, "time_ms": 140, "memory_kb": 3720, "score_of_the_acc": -0.1341, "final_rank": 20 } ]
aoj_2797_cpp
G: DAG トリオ / DAG Trio この問題は D: DAG Trio (Easy) と制約のみが異なる同じ設定の問題です。 プロローグ 弟は最近「だぐとりお」が欲しいとしきりに呟いています。 心配になった兄が調べたところ、弟のクラスでは $k$-DAG (有向グラフであって、ある $k$ 個の辺を削除すると、辺の向きを無視したときの連結成分数を $k$ にでき、かつそれら全てが DAG である) が流行っており、 3-DAG を特に DAG トリオと呼ぶことを突き止めました。 弟に尊敬されたい兄は、与えられたグラフが DAG トリオかどうかを判別するプログラムを作成することにしました。 問題文 $N$ 頂点 $M$ 辺の有向グラフが与えられます。 各頂点には $1$ から $N$ まで番号が振られています。 各有向辺には $1$ から $M$ まで番号が振られています。 有向辺 $i$ は頂点 $a_i$ から $b_i$ に向かいます。 グラフは連結かつ単純です (辺の向きを無視すると、任意の 2 点間に道があり自己ループと多重辺がありません)。 与えられたグラフが DAG トリオならば ”YES”、そうでないなら ”NO” を出力してください。 入力 $N \ M$ $a_1 \ b_1$ $a_2 \ b_2$ $\vdots$ $a_M \ b_M$ 制約 $3 \le N \le 500$ $\max(3, N−1) \le M \le 30000$ $1 \le a_i, b_i \le N$ グラフは辺の向きを無視したときに連結である。 各 $i$ に対して$a_i \neq b_i$ 異なる $i, j$ に対して $\{a_i, b_i\} \neq \{a_j, b_j\}$ 出力 ”YES” または ”NO” を $1$ 行で出力してください。 サンプル サンプル入力1 3 3 1 2 2 3 3 1 サンプル出力1 YES サンプル入力2 6 7 1 2 2 3 4 3 4 5 5 6 6 4 3 6 サンプル出力2 YES サンプル入力3 7 10 4 2 4 7 4 6 2 7 2 5 2 1 5 6 1 3 6 3 4 3 サンプル出力3 NO サンプル入力4 4 4 1 2 3 2 4 3 2 4 サンプル出力4 YES サンプル入力5 8 9 5 1 3 8 1 2 4 8 4 7 7 5 6 5 3 2 4 2 サンプル出力5 YES
[ { "submission_id": "aoj_2797_2238723", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 50000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\nedge f_edge[MAX_N];\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n f_edge[to]=G[pos][i];\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n \n if( !isDag(-1) )return solve2();\n\n int maxm=0;\n\n \n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n }\n maxm=max(maxm,cc);\n }\n vector<int> v;\n for(int i=0;i<N;i++)\n if(depth[i]>0)\n v.push_back(f_edge[i].id);\n\n for(int i=0;i<(int)v.size();i++){\n if(check(v[i]))return true;\n }\n \n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1050, "memory_kb": 6092, "score_of_the_acc": -1.9331, "final_rank": 2 }, { "submission_id": "aoj_2797_2238714", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 50000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n \n if( !isDag(-1) )return solve2();\n\n /*\n for(int i=0;i<M;i++){\n if(check(i)){\n return true;\n }\n }\n */\n int maxm=0;\n\n \n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n }\n maxm=max(maxm,cc);\n }\n\n for(int i=0;i<M;i++)\n if(check(i))return true;\n /*\n vector<edge> tmp=edge_;\n for(int i=0;i<(int)tmp.size();i++){\n edge e=tmp[i];\n if(check(e.id))return true;\n }\n */\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1020, "memory_kb": 6172, "score_of_the_acc": -1.9352, "final_rank": 3 }, { "submission_id": "aoj_2797_2238711", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 50000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n \n if( !isDag(-1) )return solve2();\n\n /*\n for(int i=0;i<M;i++){\n if(check(i)){\n return true;\n }\n }\n */\n int maxm=0;\n\n \n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n }\n maxm=max(maxm,cc);\n }\n vector<edge> tmp=edge_;\n for(int i=0;i<(int)tmp.size();i++){\n edge e=tmp[i];\n if(check(e.id))return true;\n }\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 0.29411764705882354, "time_ms": 240, "memory_kb": 4448, "score_of_the_acc": -0.5687, "final_rank": 10 }, { "submission_id": "aoj_2797_2238710", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 50000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n \n if( !isDag(-1) )return solve2();\n\n /*\n for(int i=0;i<M;i++){\n if(check(i)){\n return true;\n }\n }\n */\n int maxm=0;\n\n \n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n }\n maxm=max(maxm,cc);\n\n }\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n if(check(e.id))return true;\n }\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 0.29411764705882354, "time_ms": 240, "memory_kb": 4448, "score_of_the_acc": -0.5687, "final_rank": 10 }, { "submission_id": "aoj_2797_2238708", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 50000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n \n if( !isDag(-1) )return solve2();\n\n /*\n for(int i=0;i<M;i++){\n if(check(i)){\n return true;\n }\n }\n */\n int maxm=0;\n\n \n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n\n edge e=edge_[i];\n if(check(e.id))return true;\n /*\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n }\n maxm=max(maxm,cc);\n */\n }\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 0.23529411764705882, "time_ms": 240, "memory_kb": 4468, "score_of_the_acc": -0.5762, "final_rank": 12 }, { "submission_id": "aoj_2797_2238702", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 50000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n\n\n \n if( !isDag(-1) )return solve2();\n\n for(int i=0;i<M;i++){\n if(check(i)){\n return true;\n }\n }\n \n int maxm=0;\n\n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n // cout<<\"a=\"<<a<<endl;\n // cout<<\"par[a]=\"<<par[a]<<endl;\n // cout<<e.from<<' '<<e.to<<endl;\n }\n maxm=max(maxm,cc);\n }\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1090, "memory_kb": 6096, "score_of_the_acc": -1.9716, "final_rank": 4 }, { "submission_id": "aoj_2797_2238700", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 30000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n\n\n \n if( !isDag(-1) )return solve2();\n\n for(int i=0;i<M;i++){\n if(check(i)){\n return true;\n }\n }\n \n int maxm=0;\n\n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n // cout<<\"a=\"<<a<<endl;\n // cout<<\"par[a]=\"<<par[a]<<endl;\n // cout<<e.from<<' '<<e.to<<endl;\n }\n maxm=max(maxm,cc);\n }\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 0.4852941176470588, "time_ms": 310, "memory_kb": 4632, "score_of_the_acc": -0.7023, "final_rank": 5 }, { "submission_id": "aoj_2797_2238685", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 30000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n if(flg[id])return false;\n \n int B=countB(id);\n if(B<2)return false;\n if(isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n for(int i=0;i<(int)bridges.size();i++)flg[ bridges[i].id ]=true;\n if( !isDag(-1) )return solve2();\n\n int maxm=0;\n\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n // cout<<\"a=\"<<a<<endl;\n // cout<<\"par[a]=\"<<par[a]<<endl;\n // cout<<e.from<<' '<<e.to<<endl;\n }\n maxm=max(maxm,cc);\n }\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 0.29411764705882354, "time_ms": 140, "memory_kb": 4368, "score_of_the_acc": -0.4462, "final_rank": 9 }, { "submission_id": "aoj_2797_2235254", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 30000\nstruct edge{ int from,to,id; };\nint N,M;\nint a[MAX_M],b[MAX_M];\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nvector<edge> bridges;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n int B=countB(id);\n\n memset(visited,false,sizeof(visited));\n int U=0;\n for(int i=0;i<N;i++)\n if(!visited[i])U++,dfs(i,-1);\n \n if(B+U<3)return false;\n \n queue<int> Q;\n vector<int> C(N,0);\n for(int i=0;i<M;i++)\n if(id!=i)C[ b[i] ]++;\n for(int i=0;i<N;i++)\n if(C[i]==0)Q.push(i);\n int cc=0;\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n if(cc==N)return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si,int pre=-1){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if(e.id==pre)continue;\n \n if( rec(e.to,si,e.id) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n\n map<int,bool> used;\n for(int i=0;i<M;i++){\n if(used[a[i]])continue;\n if(check(i))return true;\n used[ a[i] ]=true;\n }\n \n used.clear();\n for(int i=0;i<M;i++){\n if(used[b[i]])continue;\n if(check(i))return true;\n used[ b[i] ]=true;\n }\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n loope.clear();\n if( rec(i,i) ){\n break;\n }\n }\n for(int i=0;i<(int)loope.size();i++){\n if(check( loope[i].id ))return true;\n }\n return false;\n}\n\nbool solve(){\n if(countB(-1)==M)return false;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n if(solve2())return true;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n for(int i=0;i<M;i++)G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n if(solve2())return true; \n return false;\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 0.4852941176470588, "time_ms": 530, "memory_kb": 4176, "score_of_the_acc": -0.7356, "final_rank": 6 }, { "submission_id": "aoj_2797_2235248", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 30000\nstruct edge{ int from,to,id; };\nint N,M;\nint a[MAX_M],b[MAX_M];\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nvector<edge> bridges;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool check(int id){\n int B=countB(id);\n\n memset(visited,false,sizeof(visited));\n int U=0;\n for(int i=0;i<N;i++)\n if(!visited[i])U++,dfs(i,-1);\n \n if(B+U<3)return false;\n \n queue<int> Q;\n vector<int> C(N,0);\n for(int i=0;i<M;i++)\n if(id!=i)C[ b[i] ]++;\n for(int i=0;i<N;i++)\n if(C[i]==0)Q.push(i);\n int cc=0;\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n if(cc==N)return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si,int pre=-1){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if(e.id==pre)continue;\n \n if( rec(e.to,si,e.id) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n\n map<int,bool> used;\n for(int i=0;i<M;i++){\n if(used[a[i]])continue;\n if(check(i))return true;\n used[ a[i] ]=true;\n }\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n loope.clear();\n if( rec(i,i) ){\n break;\n }\n }\n for(int i=0;i<(int)loope.size();i++){\n if(check( loope[i].id ))return true;\n }\n return false;\n}\n\nbool solve(){\n if(countB(-1)==M)return false;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n if(solve2())return true;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n for(int i=0;i<M;i++)G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n if(solve2())return true; \n return false;\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 0.4852941176470588, "time_ms": 840, "memory_kb": 4068, "score_of_the_acc": -0.9823, "final_rank": 7 }, { "submission_id": "aoj_2797_2001225", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\ntypedef vector<int>vint;\ntypedef pair<int,int>pint;\ntypedef vector<pint>vpint;\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define reps(i,f,n) for(int i=(f);i<(n);i++)\n#define all(v) (v).begin(),(v).end()\n#define each(it,v) for(__typeof((v).begin()) it=(v).begin();it!=(v).end();it++)\n#define pb push_back\n#define fi first\n#define se second\ntemplate<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;}\ntemplate<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;}\n\nnamespace SCC{\n void visit(const vector<vector<int>>&G,vector<int>&vs,vector<int>&used,int v){\n used[v]=true;\n for(auto u:G[v]){\n if(!used[u])visit(G,vs,used,u);\n }\n vs.push_back(v);\n }\n\n void visit2(const vector<vector<int>>&T,vector<int>&used,vector<int>&comp,vector<int>&vec,int k,int v){\n comp[v]=k;\n used[v]=true;\n vec.push_back(v);\n\n for(auto u:T[v]){\n if(!used[u])visit2(T,used,comp,vec,k,u);\n }\n }\n\n //G:?????£?????????????§£???????????°??????\n //H:?????£??????????????°??????1???????????????????´?????????°??????\n //comp:G????????????????????????H?????????????±????????????????\n void decompose(const vector<vector<int>>&G,vector<vector<int>>&H,vector<int>&comp){\n vector<vector<int>>T(G.size());\n for(int i=0;i<G.size();i++){\n for(auto v:G[i]){\n T[v].push_back(i);\n }\n }\n comp.resize(G.size());\n\n vector<int>vs(G.size());\n vector<int>used(G.size());\n for(int i=0;i<G.size();i++){\n if(!used[i])visit(G,vs,used,i);\n }\n reverse(vs.begin(),vs.end());\n fill(used.begin(),used.end(),0);\n\n int K=0;\n vector<vector<int>>S;\n for(auto v:vs){\n if(!used[v]){\n S.push_back(vector<int>());\n visit2(T,used,comp,S.back(),K++,v);\n }\n }\n\n H.resize(K);\n fill(used.begin(),used.end(),0);\n for(int i=0;i<K;i++){\n for(auto v:S[i]){\n for(auto u:G[v]){\n if(used[comp[u]]||comp[v]==comp[u])continue;\n used[comp[u]]=true;\n H[comp[v]].push_back(comp[u]);\n }\n }\n for(auto v:H[i])used[v]=false;\n }\n\n }\n}\n\nstruct UF{\n vector<int>par,sz;\n void init(int n){\n par.resize(n);\n sz.resize(n);\n for(int i=0;i<n;i++){\n par[i]=i;\n sz[i]=1;\n }\n }\n int find(int x){\n return x==par[x]?x:par[x]=find(par[x]);\n }\n void unite(int x,int y){\n x=find(x);y=find(y);\n if(x==y)return;\n sz[x]+=sz[y];\n par[y]=x;\n }\n bool same(int x,int y){\n return find(x)==find(y);\n }\n int size(int x){\n return sz[find(x)];\n }\n};\n\nvector<vint>G;\nvector<pair<int, int> > bridge;\nint ord[1000], low[1000];\nbool vis[1000];\n\nvoid dfs(int v, int p, int &k)\n{\n\tvis[v] = true;\n\n\tord[v] = k++;\n\tlow[v] = ord[v];\n\n\tfor (int i = 0; i < G[v].size(); i++){\n\t\tif (!vis[G[v][i]]){\n\t\t\tdfs(G[v][i], v, k);\n\t\t\tlow[v] = min(low[v], low[G[v][i]]);\n\t\t\tif (ord[v] < low[G[v][i]]) bridge.push_back(make_pair(min(v, G[v][i]), max(v, G[v][i])));\n\t\t}\n\t\telse if (G[v][i] != p){\n\t\t\tlow[v] = min(low[v], ord[G[v][i]]);\n\t\t}\n\t}\n}\n\nint A[100000],B[100000];\n\nvint T[1000];\n\nint N,M;\nvpint backer;\nint sum[1000];\nint par[1000];\nint dep[1000];\nvoid dfs2(int v,int p,int d){\n vis[v]=true;\n par[v]=p;\n dep[v]=d;\n for(auto u:G[v]){\n if(u==p)continue;\n if(vis[u])backer.pb(pint(min(u,v),max(u,v)));\n else{\n dfs2(u,v,d+1);\n }\n }\n}\n\nvoid solve(){\n G=vector<vint>(N);\n rep(i,M)G[A[i]].pb(B[i]),G[B[i]].pb(A[i]);\n memset(vis,0,sizeof(vis));\n dfs2(0,-1,0);\n sort(all(backer));backer.erase(unique(all(backer)),backer.end());\n\n rep(i,backer.size()){\n int v=backer[i].fi,u=backer[i].se;\n while(v!=u){\n if(dep[v]<dep[u])swap(v,u);\n sum[v]++;\n v=par[v];\n }\n }\n\n rep(i,backer.size()){\n int v=backer[i].fi,u=backer[i].se;\n while(v!=u){\n if(dep[v]<dep[u])swap(v,u);\n sum[v]--;\n v=par[v];\n }\n int cnt=0;\n reps(j,1,N)if(sum[j]==0)cnt++;\n\n if(cnt>=2){\n cout<<\"YES\"<<endl;\n return;\n }\n\n v=backer[i].fi;u=backer[i].se;\n while(v!=u){\n if(dep[v]<dep[u])swap(v,u);\n sum[v]++;\n v=par[v];\n }\n }\n cout<<\"NO\"<<endl;\n}\n\nsigned main(){\n cin>>N>>M;\n rep(i,M)cin>>A[i]>>B[i],A[i]--,B[i]--;\n\n bool flag=false;\n int deg[1000]={};\n {\n vector<vint>G(N),H;\n rep(i,M)G[A[i]].pb(B[i]);\n vint comp;\n SCC::decompose(G,H,comp);\n rep(i,M){\n if(comp[A[i]]==comp[B[i]])deg[B[i]]++;\n }\n if(H.size()==N)flag=true;\n }\n\n if(!flag){\n rep(i,M){\n if(deg[B[i]]!=1)continue;\n UF uf;\n uf.init(N);\n rep(j,M)if(i!=j)uf.unite(A[j],B[j]);\n bool ok=true;\n rep(j,N)if(uf.find(j)!=uf.find(0))ok=false;\n if(!ok)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]);\n vector<vint>H;vint comp;\n SCC::decompose(G,H,comp);\n if(H.size()!=N)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]),G[B[j]].pb(A[j]);\n memset(vis,0,sizeof(vis));\n int K=0;\n bridge.clear();\n dfs(0,-1,K);\n if(bridge.size()>=2){\n cout<<\"YES\"<<endl;\n return 0;\n }\n }\n cout<<\"NO\"<<endl;\n return 0;\n }\n\n solve();\n return 0;\n}", "accuracy": 0.29411764705882354, "time_ms": 10, "memory_kb": 3884, "score_of_the_acc": -0.145, "final_rank": 8 }, { "submission_id": "aoj_2797_2001042", "code_snippet": "#include <cstdio>\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#define rep(i,n) for (int i = 0; i < n; ++i)\n#define drep(i,n) for (int i = n-1; i >= 0; --i)\n#define pb push_back\n#define sz(x) int(x.size())\n#define mins(x,y) x = min(x,y)\n#define maxs(x,y) x = max(x,y)\nusing namespace std;\ninline int in() { int x; scanf(\"%d\", &x); return x;}\ntypedef vector<int> vi;\ntypedef vector<vi> vvi;\n\nstruct Lowlink {\n int n, k;\n vvi to, st, br;\n vi ord, low;\n Lowlink(int n=0):n(n),to(n),st(n),br(n),ord(n,-1),low(n){}\n void add(int a, int b) {\n to[a].pb(b); st[a].pb(0);\n to[b].pb(a); st[b].pb(0);\n }\n void dfs(int v, int p=-1) {\n ord[v] = low[v] = k++;\n rep(i,sz(to[v])) {\n int u = to[v][i];\n if (u == p) continue;\n if (ord[u] == -1) {\n st[v][i] = 1;\n dfs(u,v);\n mins(low[v],low[u]);\n } else {\n st[v][i] = -1;\n mins(low[v],ord[u]);\n }\n }\n }\n int init() {\n k = 0;\n dfs(0);\n int res = 0;\n rep(i,n)rep(j,sz(to[i])) {\n int v = i, u = to[i][j];\n if (ord[v] > ord[u]) swap(v,u);\n if (ord[u] == low[u]) res++;\n br[i].pb(ord[u] == low[u]);\n }\n return res/2;\n }\n};\n\nint n, m;\nvvi to;\nvi used, vs;\n\nint rv;\nbool cfs(vvi& to, int v) {\n if (used[v]) {\n if (used[v] == 2) return false;\n rv = v;\n return true;\n }\n used[v] = 1;\n for (int u : to[v]) {\n if (cfs(to,u)) {\n if (rv != -1) vs.pb(v);\n if (rv == v) rv = -1;\n return true;\n }\n }\n used[v] = 2;\n return false;\n}\nbool findCycle(vvi& to) {\n used = vi(n);\n rv = -1;\n rep(i,n) if (!used[i]) {\n if (cfs(to,i)) return true;\n }\n return false;\n}\nbool solve1(int u, int v) {\n // printf(\"%d %d\\n\", v, u);\n vvi t(n);\n rep(i,n) for (int j : to[i]) {\n if (i == v && j == u) continue;\n t[i].pb(j);\n // printf(\"edge %d %d\\n\", i, j);\n }\n if (findCycle(t)) return false;\n // printf(\"%d %d\\n\", v, u);\n Lowlink g(n);\n rep(i,n) for (int j : to[i]) {\n if (i == v && j == u) continue;\n g.add(i,j);\n }\n return g.init() >= 2;\n}\nbool solve2(Lowlink& g, int ei, int ej) {\n Lowlink t(n);\n rep(i,n)rep(j,sz(g.to[i])) {\n if (ei == i && ej == j) continue;\n int u = g.to[i][j];\n if (!g.st[i][j]) continue;\n if (g.st[i][j] == -1 && i < u) continue;\n t.add(i,u);\n }\n return t.init() >= 2;\n}\n\nint main() {\n n = in(); m = in();\n to = vvi(n);\n rep(i,m) {\n int a = in(), b = in();\n --a; --b;\n to[a].pb(b);\n }\n if (findCycle(to)) {\n int s = sz(vs);\n rep(i,s) {\n if (solve1(vs[i],vs[(i+1)%s])) {\n puts(\"YES\");\n return 0;\n }\n }\n } else if (m >= n) {\n Lowlink g(n);\n rep(i,n) for (int u : to[i]) g.add(i,u);\n if (g.init() >= 2) {\n puts(\"YES\");\n return 0;\n }\n rep(i,n) rep(j,sz(g.to[i])) {\n if (g.st[i][j] != 1 || g.br[i][j]) continue;\n if (solve2(g,i,j)) {\n puts(\"YES\");\n return 0;\n }\n }\n }\n puts(\"NO\");\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3496, "score_of_the_acc": -0.0093, "final_rank": 1 } ]
aoj_2794_cpp
D: DAG トリオ / DAG Trio この問題は G: DAG Trio (Hard) と制約のみが異なる同じ設定の問題です。 プロローグ 弟は最近「だぐとりお」が欲しいとしきりに呟いています。 心配になった兄が調べたところ、弟のクラスでは $k$-DAG (有向グラフであって、ある $k$ 個の辺を削除すると、辺の向きを無視したときの連結成分数を $k$ にでき、かつそれら全てが DAG である) が流行っており、 3-DAG を特に DAG トリオと呼ぶことを突き止めました。 弟に尊敬されたい兄は、与えられたグラフが DAG トリオかどうかを判別するプログラムを作成することにしました。 問題文 $N$ 頂点 $M$ 辺の有向グラフが与えられます。 各頂点には $1$ から $N$ まで番号が振られています。 各有向辺には $1$ から $M$ まで番号が振られています。 有向辺 $i$ は頂点 $a_i$ から $b_i$ に向かいます。 グラフは連結かつ単純です (辺の向きを無視すると、任意の 2 点間に道があり自己ループと多重辺がありません)。 与えられたグラフが DAG トリオならば ”YES”、そうでないなら ”NO” を出力してください。 入力 $N \ M$ $a_1 \ b_1$ $a_2 \ b_2$ $\vdots$ $a_M \ b_M$ 制約 $3 \le N \le 500$ $\max(3, N−1) \le M \le 1000$ $1 \le a_i, b_i \le N$ グラフは辺の向きを無視したときに連結である。 各 $i$ に対して$a_i \neq b_i$ 異なる $i, j$ に対して $\{a_i, b_i\} \neq \{a_j, b_j\}$ 出力 ”YES” または ”NO” を $1$ 行で出力してください。 サンプル サンプル入力1 3 3 1 2 2 3 3 1 サンプル出力1 YES サンプル入力2 6 7 1 2 2 3 4 3 4 5 5 6 6 4 3 6 サンプル出力2 YES サンプル入力3 7 10 4 2 4 7 4 6 2 7 2 5 2 1 5 6 1 3 6 3 4 3 サンプル出力3 NO サンプル入力4 4 4 1 2 3 2 4 3 2 4 サンプル出力4 YES サンプル入力5 8 9 5 1 3 8 1 2 4 8 4 7 7 5 6 5 3 2 4 2 サンプル出力5 YES
[ { "submission_id": "aoj_2794_2503049", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\n#define N 1000\n#define V_MAX 1000\nusing namespace std;\nconst int INF = 1LL<<55;\nconst int mod = (1e9)+7;\nconst double EPS = 1e-8;\nconst double PI = 6.0 * asin(0.5);\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\n \n \nclass TSort{\npublic:\n int V;\n vector<set<int> > in,out;\n vector<int> sorted;\n TSort(){V = -1,sorted.push_back(-1);}\n TSort(int V){\n in.resize(V);\n out.resize(V);\n sorted.push_back(-1);\n this->V = V;\n }\n \n void add_edge(int from,int to){\n assert(from < V && to < V);\n assert(out[from].count(to) == 0);\n assert(in[to].count(from) == 0);\n out[from].insert(to);\n in[to].insert(from);\n }\n \n void erase_edge(int from,int to){\n out[from].erase(to);\n in[to].erase(from);\n }\n \n void sort(){\n assert(sorted.size() && sorted[0]==-1 && \"sort method is already invoked\");\n sorted.clear();\n queue<int> Q;\n for(int i=0;i<V;i++)if(in[i].empty()) Q.push(i);\n \n while(!Q.empty()){\n int v = Q.front();Q.pop();\n sorted.push_back(v);\n for(int nx:out[v]){\n if(in[nx].size() == 1) Q.push(nx);\n in[nx].erase(v);\n } \n }\n \n for(int i=0;i<V;i++) if(!in[i].empty()) sorted.clear(); // exist loop\n }\n};\n \n\nclass Bridges{\npublic:\n typedef pair<int,int> P;\n int V; //テ」ツδ偲」ツδシテ」ツδ嘉ヲツ閉ー\n vector <int> G[V_MAX]; //テ」ツつーテ」ツδゥテ」ツδ陛」ツ?ョテゥツ堋」テヲツ篠・テ」ツδェテ」ツつケテ」ツδ暗」ツつ津ィツ。ツィテァツ渉セ\n set <P> bridges; // テヲツゥツ?\n int ord[V_MAX]; //ティツ。ツ古」ツ?催」ツ?凝」ツ?妥ゥツ??」ツつ津」ツ?づ」ツつ湘」ツつ嘉」ツ?凖」ツ??\n int low[V_MAX]; //\n \n Bridges(){V = -1;}\n Bridges(int V){this->V = V;}\n \n void add_edge(int a,int b){\n G[a].push_back(b);\n G[b].push_back(a);\n }\n \n void erase_edge(int a,int b){\n for(int i=0;i<(int)G[a].size();i++) if(G[a][i] == b) {G[a].erase(G[a].begin()+i);break;}\n for(int i=0;i<(int)G[b].size();i++) if(G[b][i] == a) {G[b].erase(G[b].begin()+i);break;}\n }\n \n void dfs(int u, int p, int &c){\n ord[u] = low[u] = c++;\n \n for(int v:G[u]){\n if(v == p)continue;\n if(ord[v] == -1){\n dfs(v,u,c);\n low[u] = min(low[u],low[v]);\n }\n else low[u] = min(low[u], ord[v]);\n if(ord[u] < low[v]) bridges.insert(P(min(u,v),max(u,v)));\n }\n }\n \n void bridge(){\n assert(V >= 0 && \"Set number of node V\");\n bridges.clear();\n int c = 0;\n memset(ord,-1,sizeof(ord));\n memset(low,0,sizeof(low));\n for(int i=0;i<V;i++) if(ord[i]==-1) dfs(i,-1,c);\n }\n \n bool isBridge(int u,int v){return bridges.count(P(u,v)) || bridges.count(P(v,u));}\n};\n \nset<int> G[N];\n \nsigned main(){\n int n,m;\n cin>>n>>m;\n TSort T(n);\n Bridges B(n);\n for(int i=0;i<m;i++){\n int a,b;\n cin>>a>>b;a--,b--;\n T.add_edge(a,b);\n B.add_edge(a,b);\n assert(G[b].count(a)== 0);\n G[a].insert(b);\n }\n \n int ans = 0;\n TSort origin = T;\n for(int from=0;from<n;from++)\n for(int to:G[from]){\n T = origin;\n B.bridge();\n if(B.isBridge(from,to)) continue;\n T.erase_edge(from,to);\n B.erase_edge(from,to);\n \n T.sort();\n B.bridge();\n \n if(T.sorted.size() && (int)B.bridges.size()>=2)ans = 1;\n \n T.add_edge(from,to);\n B.add_edge(from,to);\n }\n cout<<(ans?\"YES\":\"NO\")<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3588, "score_of_the_acc": -0.3848, "final_rank": 9 }, { "submission_id": "aoj_2794_2503048", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\n#define N 1000\n#define V_MAX 1000\nusing namespace std;\nconst int INF = 1LL<<55;\nconst int mod = (1e9)+7;\nconst double EPS = 1e-8;\nconst double PI = 6.0 * asin(0.5);\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\n \n \nclass TSort{\npublic:\n int V;\n vector<set<int> > in,out;\n vector<int> sorted;\n TSort(){V = -1,sorted.push_back(-1);}\n TSort(int V){\n in.resize(V);\n out.resize(V);\n sorted.push_back(-1);\n this->V = V;\n }\n \n void add_edge(int from,int to){\n assert(from < V && to < V);\n assert(out[from].count(to) == 0);\n assert(in[to].count(from) == 0);\n out[from].insert(to);\n in[to].insert(from);\n }\n \n void erase_edge(int from,int to){\n out[from].erase(to);\n in[to].erase(from);\n }\n \n void sort(){\n assert(sorted.size() && sorted[0]==-1 && \"sort method is already invoked\");\n sorted.clear();\n queue<int> Q;\n for(int i=0;i<V;i++)if(in[i].empty()) Q.push(i);\n \n while(!Q.empty()){\n int v = Q.front();Q.pop();\n sorted.push_back(v);\n for(int nx:out[v]){\n if(in[nx].size() == 1) Q.push(nx);\n in[nx].erase(v);\n } \n }\n \n for(int i=0;i<V;i++) if(!in[i].empty()) sorted.clear(); // exist loop\n }\n};\n \n\nclass Bridges{\npublic:\n typedef pair<int,int> P;\n int V; //???????????°\n vector <int> G[V_MAX]; //??°???????????£??\\??????????????¨???\n set <P> bridges; // ???\n int ord[V_MAX]; //?????????????????????????????????\n int low[V_MAX]; //\n \n Bridges(){V = -1;}\n Bridges(int V){this->V = V;}\n \n void add_edge(int a,int b){\n G[a].push_back(b);\n G[b].push_back(a);\n }\n \n void erase_edge(int a,int b){\n for(int i=0;i<(int)G[a].size();i++) if(G[a][i] == b) {G[a].erase(G[a].begin()+i);break;}\n for(int i=0;i<(int)G[b].size();i++) if(G[b][i] == a) {G[b].erase(G[b].begin()+i);break;}\n }\n \n void dfs(int u, int p, int &c){\n ord[u] = low[u] = c++;\n \n for(int v:G[u]){\n if(v == p)continue;\n if(ord[v] == -1){\n dfs(v,u,c);\n low[u] = min(low[u],low[v]);\n }\n else low[u] = min(low[u], ord[v]);\n if(ord[u] < low[v]) bridges.insert(P(min(u,v),max(u,v)));\n }\n }\n \n void bridge(){\n assert(V >= 0 && \"Set number of node V\");\n bridges.clear();\n int c = 0;\n memset(ord,-1,sizeof(ord));\n memset(low,0,sizeof(low));\n for(int i=0;i<V;i++) if(ord[i]==-1) dfs(i,-1,c);\n }\n \n bool isBridge(int u,int v){return bridges.count(P(u,v)) || bridges.count(P(v,u));}\n};\n \nset<int> G[N];\n \nsigned main(){\n int n,m;\n cin>>n>>m;\n TSort T(n);\n Bridges B(n);\n for(int i=0;i<m;i++){\n int a,b;\n cin>>a>>b;a--,b--;\n T.add_edge(a,b);\n B.add_edge(a,b);\n assert(G[b].count(a)== 0);\n G[a].insert(b);\n }\n \n int ans = 0;\n TSort origin = T;\n for(int from=0;from<n;from++)\n for(int to:G[from]){\n T = origin;\n B.bridge();\n if(B.isBridge(from,to)) continue;\n T.erase_edge(from,to);\n B.erase_edge(from,to);\n \n T.sort();\n B.bridge();\n \n if(T.sorted.size() && (int)B.bridges.size()>=2)ans = 1;\n \n T.add_edge(from,to);\n B.add_edge(from,to);\n }\n cout<<(ans?\"YES\":\"NO\")<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3584, "score_of_the_acc": -0.3842, "final_rank": 8 }, { "submission_id": "aoj_2794_2238698", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 30000\nstruct edge{ int from,to,id; };\n\nint N,M;\nint a[MAX_M],b[MAX_M];\nbool flg[MAX_M];\n\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nint par[MAX_N];\n\n\nvector<edge> bridges;\n\n\nvector<edge> edge_;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n par[to]=pos;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n edge_.push_back(G[pos][i]);\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n edge_.clear();\n \n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n memset(par,-1,sizeof(par));\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool isDag(int id){\n queue<int> Q; \n vector<int> C(N,0);\n int cc=0;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n C[ b[i] ]++;\n }\n for(int i=0;i<N;i++)if(C[i]==0)Q.push(i);\n\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n return (cc==N);\n}\n\nvoid visit(int v){\n if(visited[v])return;\n visited[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n visit(G[v][i].to);\n }\n}\n\nint calcDec(int id){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n }\n int res=0;\n memset(visited,false,sizeof(visited));\n for(int i=0;i<N;i++){\n if(!visited[i]){\n res++;\n visit(i);\n }\n }\n return res;\n}\n\nmap<int,int> mm;\nbool check(int id){\n if(mm.count(id))return false;\n mm[id]=true;\n \n if(countB(id) + calcDec(id)>=3&&isDag(id))return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if( rec(e.to,si) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n loope.clear();\n if( rec(i,i) )break;\n }\n \n for(int i=0;i<(int)loope.size();i++)\n if(check( loope[i].id ))return true;\n\n return false;\n}\n\nbool solve(){\n int B=countB(-1);\n if(B==M)return false;\n\n for(int i=0;i<M;i++){\n if(check(i)){\n // cout<<\"i=\"<<i<<\" a[i]=\"<<a[i]<<\" b[i]=\"<<b[i]<<endl;\n return true;\n }\n }\n \n if( !isDag(-1) )return solve2();\n\n int maxm=0;\n\n B=countB(-1);\n for(int i=0;i<(int)edge_.size();i++){\n edge e=edge_[i];\n int a=e.from;\n int cc=0;\n while(1){\n if(a==e.to)break;\n if(cnt[a]==1)cc++;\n a=par[a];\n // cout<<\"a=\"<<a<<endl;\n // cout<<\"par[a]=\"<<par[a]<<endl;\n // cout<<e.from<<' '<<e.to<<endl;\n }\n maxm=max(maxm,cc);\n }\n return (B+maxm>=2);\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3260, "score_of_the_acc": -0.3513, "final_rank": 4 }, { "submission_id": "aoj_2794_2235673", "code_snippet": "#include <iostream>\n#include <vector>\n#include <stack>\n#include <map>\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define vi vector<int>\n#define pb push_back\n\nint unused_from, unused_to;\n\n\n#define MAX_V 100000\nvector<int> G[MAX_V];\nvector<int> Grev[MAX_V];\nbool used[MAX_V]={};\nint ord[MAX_V],lowlink[MAX_V];\nint k=0;\n\nvoid dfs(int v,int prev){ //make ord and lowlink\n used[v] = true;\n ord[v]=lowlink[v]=k;\n k++;\n \n rep(i,Grev[v].size()){\n int to = Grev[v][i];\n if((v==unused_from&&to==unused_to)||(v==unused_to&&to==unused_from))continue;\n if(!used[to]){\n dfs(to,v);\n lowlink[v] = min(lowlink[v],lowlink[to]);\n }\n else if(used[to]&&to!=prev){ //use back edge\n lowlink[v] = min(lowlink[v],ord[to]);\n }\n }\n}\n\nvector<pii> enumerateBridge(int e,vector<pii> edges){ //????????????\n vector<pii> ret;\n \n rep(i,e){\n int a = edges[i].first, b = edges[i].second;\n if((a==unused_from&&b==unused_to)||(a==unused_to&&b==unused_from))continue;\n if(ord[a]>ord[b])swap(a,b);\n if(ord[a]<lowlink[b])ret.pb(pii(edges[i].first,edges[i].second));\n }\n return ret;\n}\n\n\n\nbool hasLoop(int v){\n vector<int> in_deg(v,0);\n rep(i,MAX_V){\n rep(j,G[i].size()){\n int from = i, to = G[i][j];\n if(from==unused_from&&to==unused_to)continue;\n in_deg[to]++;\n }\n }\n \n stack<int> st;\n vector<int> list;\n \n rep(i,v)if(in_deg[i]==0)st.push(i);\n \n while(st.size()){\n int q = st.top();\n st.pop();\n list.pb(q);\n \n rep(i,G[q].size()){\n int to = G[q][i];\n if(q==unused_from&&to==unused_to)continue;\n in_deg[to]--;\n if(in_deg[to]==0)st.push(to);\n }\n }\n \n if(list.size()!=v)return true;\n return false;\n \n}\n\n\nint main(){\n int v,e;\n cin>>v>>e;\n vector<pii> edges;\n \n rep(i,e){\n int a,b;\n cin>>a>>b;\n a--,b--;\n edges.pb(pii(a,b));\n G[a].pb(b);\n Grev[a].pb(b),Grev[b].pb(a);\n }\n \n \n dfs(0,-1);\n vector<pii> bridge_list = enumerateBridge(e,edges);\n map<pii,bool> mp;\n rep(i,bridge_list.size())mp[bridge_list[i]]=true;\n \n \n rep(i,MAX_V){\n rep(j,G[i].size()){\n unused_from = i;\n unused_to = G[i][j];\n \n rep(i,MAX_V)used[i]=false;\n k=0;\n dfs(0,-1);\n vector<pii> brg = enumerateBridge(e,edges);\n \n if( not mp[pii(unused_from,unused_to)] && brg.size()>=2 && not hasLoop(v)){\n // cout<<unused_from+1<<\" \"<<unused_to+1<<endl; //1????????????????????????????????????\n cout<<\"YES\"<<endl;\n return 0;\n }\n }\n }\n cout<<\"NO\"<<endl;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 8060, "score_of_the_acc": -1.1343, "final_rank": 11 }, { "submission_id": "aoj_2794_2235242", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_N 500\n#define MAX_M 30000\nstruct edge{ int from,to,id; };\nint N,M;\nint a[MAX_M],b[MAX_M];\nvector<edge> G[MAX_N];\n\nbool visited[MAX_N];\nint depth[MAX_N];\nint cnt[MAX_N];\nvector<edge> bridges;\n\nvoid dfs(int pos,int prev){\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n if(to==prev)continue;\n if(!visited[to]){\n depth[to]=depth[pos]+1;\n dfs(to,pos);\n cnt[pos]+=cnt[to];\n if(cnt[to]==0)bridges.push_back(G[pos][i]);\n }else if(depth[to]<depth[pos]){\n cnt[pos]++;\n cnt[to]--;\n }\n }\n}\n\nint countB(int id){\n bridges.clear();\n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n memset(cnt,0,sizeof(cnt));\n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++){\n if(i==id)continue;\n G[ a[i] ].push_back( (edge){ a[i],b[i],i } );\n G[ b[i] ].push_back( (edge){ b[i],a[i],i } );\n }\n for(int i=0;i<N;i++){\n if(visited[i])continue;\n dfs(i,-1);\n }\n return bridges.size();\n}\n\nbool check(int id){\n int B=countB(id);\n\n memset(visited,false,sizeof(visited));\n int U=0;\n for(int i=0;i<N;i++)\n if(!visited[i])U++,dfs(i,-1);\n \n if(B+U<3)return false;\n \n queue<int> Q;\n vector<int> C(N,0);\n for(int i=0;i<M;i++)\n if(id!=i)C[ b[i] ]++;\n for(int i=0;i<N;i++)\n if(C[i]==0)Q.push(i);\n int cc=0;\n while(!Q.empty()){\n int pos=Q.front();Q.pop();\n cc++;\n for(int i=0;i<(int)G[pos].size();i++){\n int to=G[pos][i].to;\n C[to]--;\n if(C[to]==0)Q.push(to);\n }\n }\n if(cc==N)return true;\n else return false;\n}\n\nvector<edge> loope;\nbool rec(int pos,int si,int pre=-1){\n if(visited[pos])return (pos==si);\n visited[pos]=true;\n for(int i=0;i<(int)G[pos].size();i++){\n edge e=G[pos][i];\n if(e.id==pre)continue;\n \n if( rec(e.to,si,e.id) ){\n loope.push_back(e);\n return true;\n }\n }\n return false;\n}\n\nbool solve2(){\n\n for(int i=0;i<M;i++){\n if(check(i))return true;\n }\n \n for(int i=0;i<N;i++){\n memset(visited,false,sizeof(visited));\n memset(depth,0,sizeof(depth));\n loope.clear();\n if( rec(i,i) ){\n break;\n }\n }\n for(int i=0;i<(int)loope.size();i++){\n if(check( loope[i].id ))return true;\n }\n return false;\n}\n\nbool solve(){\n if(countB(-1)==M)return false;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n if(solve2())return true;\n \n for(int i=0;i<N;i++)G[i].clear();\n for(int i=0;i<M;i++)G[ a[i] ].push_back( (edge){a[i],b[i],i} );\n for(int i=0;i<M;i++)G[ b[i] ].push_back( (edge){b[i],a[i],i} );\n if(solve2())return true; \n return false;\n}\n\nint main(){\n cin>>N>>M;\n for(int i=0;i<M;i++){\n cin>>a[i]>>b[i];\n a[i]--;\n b[i]--;\n }\n cout<< ( solve() ? \"YES\" : \"NO\" ) <<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3248, "score_of_the_acc": -0.3645, "final_rank": 6 }, { "submission_id": "aoj_2794_2006752", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long // <-----!!!!!!!!!!!!!!!!!!!\n\n#define rep(i,n) for (int i=0;i<(n);i++)\n#define rep2(i,a,b) for (int i=(a);i<(b);i++)\n#define rrep(i,n) for (int i=(n)-1;i>=0;i--)\n#define all(a) (a).begin(),(a).end()\n#define rall(a) (a).rbegin(),(a).rend()\n#define printV(v) for(auto&& x : v){cout << x << \" \";} cout << endl\n#define printVV(vv) for(auto&& v : vv){for(auto&& x : v){cout << x << \" \";}cout << endl;}\n#define printP(p) cout << p.first << \" \" << p.second << endl\n#define printVP(vp) for(auto&& p : vp) printP(p);\n\ntypedef long long ll;\ntypedef pair<int, int> Pii;\ntypedef tuple<int, int, int> TUPLE;\ntypedef vector<int> vi;\ntypedef vector<vi> vvi;\ntypedef vector<vvi> vvvi;\ntypedef vector<Pii> vp;\nconst int inf = 1e9;\nconst int mod = 1e9 + 7;\n\ntypedef vector<vector<int>> Graph;\ntypedef pair<int, int> Edge; // (a < b: undirected)\n\nclass BICC {\nprivate:\n const int n;\n\npublic:\n Graph G;\n vi depth;\n vi par;\n map<Edge, int> imosEdge;\n map<Edge, int> EdgeType;\n enum {UNUSED, USED_DFS, BRIDGE};\n vector<Edge> bridges;\n\n\tvi cmp;\n\tint num_cc;\n\tvi size_of_vertex;\n\tGraph G_cc;\npublic:\n BICC(int _n) : n(_n), G(_n), depth(_n, -1), par(_n, -1), cmp(_n, -1), num_cc(0) {}\n Edge getEdge(int a, int b) {\n if (a > b) swap(a, b);\n return Edge(a, b);\n }\n void updateEdgeType(int a, int b, int type) {\n if (a < 0 || b < 0) return;\n EdgeType[getEdge(a, b)] = type;\n }\n void addEdge(int a, int b) {\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n updateEdgeType(a, b, UNUSED);\n }\n void dfsTreeConstruct(int v, int pre) {\n if (depth[v] != -1) return;\n depth[v] = (pre == -1 ? 0 : depth[pre] + 1);\n par[v] = pre;\n updateEdgeType(pre, v, USED_DFS);\n for (auto&& nxt : G[v]) {\n if (nxt != pre) dfsTreeConstruct(nxt, v);\n }\n }\n void updateImos(int a, int b) {\n if (depth[a] < depth[b]) swap(a, b);\n\n if (par[a] != -1) {\n imosEdge[getEdge(a, par[a])]++;\n }\n if (par[b] != -1) {\n imosEdge[getEdge(b, par[b])]--;\n }\n }\n int imosFinal(int v, int pre) {\n int t = 0;\n for (auto&& nxt : G[v]) {\n if (nxt != pre && EdgeType[getEdge(nxt, v)] == USED_DFS) {\n t += imosFinal(nxt, v);\n }\n }\n if (pre != -1) imosEdge[getEdge(v, pre)] += t;\n return pre == -1 ? 0 : imosEdge[getEdge(v, pre)];\n }\n int extractCC(int v, int color) {\n \tif (cmp[v] != -1) return 0;\n \tcmp[v] = color;\n \tint t = 1;\n \tfor (auto&& nxt : G[v]) {\n \t\tif (EdgeType[getEdge(v, nxt)] != BRIDGE) {\n \t\t\tt += extractCC(nxt, color);\n \t\t}\n \t}\n \treturn t;\n }\n void bicc() {\n dfsTreeConstruct(0, -1);\n for (auto&& p : EdgeType) {\n Edge e;\n int type;\n tie(e, type) = p;\n if (type == UNUSED) {\n updateImos(e.first, e.second);\n }\n }\n imosFinal(0, -1);\n for (auto&& p : EdgeType) {\n Edge e;\n int type;\n tie(e, type) = p;\n if (type == USED_DFS) {\n if (imosEdge[e] == 0) {\n EdgeType[e] = BRIDGE;\n bridges.emplace_back(e);\n }\n }\n }\n\n\t\trep(i, n) {\n\t\t\tint size_cc = extractCC(i, num_cc);\n\t\t\tif (size_cc > 0) {\n\t\t\t\tsize_of_vertex.emplace_back(size_cc);\n\t\t\t\tnum_cc++;\n\t\t\t}\n\t\t}\n\n\t \tvector<set<int>> G_cc_st(num_cc);\n\t\tfor (auto&& p : EdgeType) {\n Edge e;\n int type;\n tie(e, type) = p;\n if (type == BRIDGE) {\n\t\t\t\tG_cc_st[cmp[e.first]].insert(cmp[e.second]);\n\t\t\t\tG_cc_st[cmp[e.second]].insert(cmp[e.first]);\n }\n }\n\n\t\trep(i, num_cc) {\n\t\t\tG_cc.emplace_back(vector<int>(all(G_cc_st[i])));\n\t\t}\n }\n vector<Edge> getBridges() {\n return bridges;\n }\n};\n\n\n// false: \"contains cycle\"\nbool dfs(int now, int start, const Graph &G, vector<bool> &visited) {\n visited[now] = true;\n for (auto nxt : G[now]) {\n if (nxt == start) return false;\n if (!visited[nxt] && !dfs(nxt, start, G, visited)) return false;\n }\n return true;\n}\n\nbool isDAG(const Graph &G) {\n int n = G.size();\n rep(i, n) {\n vector<bool> visited(n);\n if (!dfs(i, i, G, visited)) return false;\n }\n return true;\n}\n\nvoid dfs2(int v, int pre, const Graph& G, vector<bool>& visited) {\n if (visited[v]) return;\n visited[v] = true;\n for (auto nxt : G[v]) {\n if (v == pre) continue;\n dfs2(nxt, v, G, visited);\n }\n}\n\nbool isConnected(const Graph& G) {\n int n = G.size();\n vector<bool> visited(n);\n dfs2(0, -1, G, visited);\n rep(i, n) {\n if (!visited[i]) return false;\n }\n return true;\n}\n\nsigned main() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(0);\n\n int N, M;\n cin >> N >> M;\n vector<pair<int, int>> edges;\n rep(i, M) {\n int a, b;\n cin >> a >> b;\n a--, b--;\n edges.emplace_back(a, b);\n }\n\n rep(i, M) {\n BICC bicc(N);\n Graph G_dir(N);\n rep(j, M) {\n if (j == i) continue;\n bicc.addEdge(edges[j].first, edges[j].second);\n G_dir[edges[j].first].emplace_back(edges[j].second);\n }\n\n // ??????????????????????????¨????????°??????????????£??????????????????????????????\n if (!isConnected(bicc.G)) {\n continue;\n }\n\n bicc.bicc();\n\n if (bicc.num_cc >= 3 && isDAG(G_dir)) {\n cout << \"YES\" << endl;\n return 0;\n }\n }\n\n cout << \"NO\" << endl;\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 3404, "score_of_the_acc": -1.3129, "final_rank": 12 }, { "submission_id": "aoj_2794_2004764", "code_snippet": "#define _USE_MATH_DEFINES\n#include <cstdio>\n#include <iostream>\n#include <sstream>\n#include <fstream>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <complex>\n#include <string>\n#include <vector>\n#include <list>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <bitset>\n#include <numeric>\n#include <limits>\n#include <climits>\n#include <cfloat>\n#include <functional>\nusing namespace std;\n\nbool topologicalSort(const vector<vector<int> >& edges, vector<int>& node)\n{\n int n = edges.size();\n node.resize(n);\n\n vector<int> restEdges(n, 0);\n for(int i=0; i<n; ++i){\n for(unsigned j=0; j<edges[i].size(); ++j){\n ++ restEdges[edges[i][j]];\n }\n }\n\n int restNodes = n;\n queue<int> q;\n for(int i=0; i<n; ++i){\n if(restEdges[i] == 0){\n node[n-restNodes] = i;\n q.push(i);\n -- restNodes;\n }\n }\n\n while(restNodes > 0){\n if(q.empty()){\n node.clear();\n return false;\n }\n int i = q.front();\n q.pop();\n\n for(unsigned j=0; j<edges[i].size(); ++j){\n int k = edges[i][j];\n -- restEdges[k];\n if(restEdges[k] == 0){\n node[n-restNodes] = k;\n q.push(k);\n -- restNodes;\n }\n }\n }\n\n return true;\n}\n\nbool isBridge(const vector<vector<int> >& edges, int a, int b)\n{\n int n = edges.size();\n queue<int> q;\n vector<bool> check(n, false);\n q.push(a);\n check[a] = true;\n while(!q.empty()){\n int x = q.front();\n q.pop();\n for(int y : edges[x]){\n if(!(x == a && y == b) && !check[y]){\n q.push(y);\n check[y] = true;\n }\n }\n }\n return !check[b];\n}\n\nvoid bridgeDecomposition(const vector<vector<int> >& edges, vector<int>& indexConvert,\n vector<vector<int> >& nodesOut, vector<vector<int> >& edgesOut)\n{\n const int n = edges.size();\n vector<int> num(n, -1), low(n, -1);\n vector<bool> isStk(n, false);\n stack<int> stk;\n int cnt = -1;\n nodesOut.clear();\n\n for(int i=0; i<n; ++i){\n stack<tuple<int, int, unsigned> > arg;\n arg.push(make_tuple(i, -1, 0));\n\n while(!arg.empty()){\n int v = get<0>(arg.top());\n int prev = get<1>(arg.top());\n unsigned j = get<2>(arg.top());\n arg.pop();\n\n if(j == 0){\n if(num[v] != -1)\n continue;\n num[v] = low[v] = ++ cnt;\n stk.push(v);\n isStk[v] = true;\n }\n else{\n int w = edges[v][j-1];\n if(w != prev && isStk[w])\n low[v] = min(low[v], low[w]);\n }\n\n if(j < edges[v].size()){\n arg.push(make_tuple(v, prev, j + 1));\n int w = edges[v][j];\n if(w != prev)\n arg.push(make_tuple(w, v, 0));\n }\n else if(low[v] == num[v]){\n nodesOut.push_back(vector<int>());\n for(;;){\n int w = stk.top();\n stk.pop();\n isStk[w] = false;\n nodesOut.back().push_back(w);\n if(v == w)\n break;\n }\n }\n }\n }\n\n const int m = nodesOut.size();\n indexConvert.resize(n);\n for(int i=0; i<m; ++i){\n for(unsigned j=0; j<nodesOut[i].size(); ++j)\n indexConvert[nodesOut[i][j]] = i;\n }\n edgesOut.assign(m, vector<int>());\n vector<set<int> > used(m);\n for(int i=0; i<n; ++i){\n for(unsigned j=0; j<edges[i].size(); ++j){\n int v = indexConvert[i];\n int w = indexConvert[edges[i][j]];\n if(v != w && used[v].find(w) == used[v].end()){\n edgesOut[v].push_back(w);\n used[v].insert(w);\n }\n }\n }\n}\n\nint main()\n{\n int n, m;\n cin >> n >> m;\n vector<vector<int> > edges(n), directedEdges(n);\n for(int i=0; i<m; ++i){\n int a, b;\n cin >> a >> b;\n -- a;\n -- b;\n edges[a].push_back(b);\n edges[b].push_back(a);\n directedEdges[a].push_back(b);\n }\n\n for(int a=0; a<n; ++a){\n for(unsigned i=0; i<directedEdges[a].size(); ++i){\n int b = directedEdges[a][i];\n if(isBridge(edges, a, b))\n continue;\n\n vector<vector<int> > directEdges2 = directedEdges;\n directEdges2[a].erase(find(directEdges2[a].begin(), directEdges2[a].end(), b));\n vector<int> tmp;\n if(!topologicalSort(directEdges2, tmp))\n continue;\n\n vector<vector<int> > edges2 = edges;\n edges2[a].erase(find(edges2[a].begin(), edges2[a].end(), b));\n edges2[b].erase(find(edges2[b].begin(), edges2[b].end(), a));\n vector<int> tmp1;\n vector<vector<int> > nodes, tmp2;\n bridgeDecomposition(edges2, tmp1, nodes, tmp2);\n\n if(nodes.size() >= 3){\n cout << \"YES\" << endl;\n return 0;\n }\n }\n }\n\n cout << \"NO\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3208, "score_of_the_acc": -0.2989, "final_rank": 3 }, { "submission_id": "aoj_2794_2001281", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nconst int MAX = 555;\nint N ,M, V;\nvector<int> G[MAX];\nvector<int> rG[MAX];\nbool used[MAX];\nint cmp[MAX];\nvector<int> vs;\n\nvoid add_edge(int from,int to){\n G[from].push_back(to);\n rG[to].push_back(from);\n}\n \nvoid dfs(int v){\n used[v] = true;\n for(int i = 0 ; i < (int)G[v].size() ; i++){\n if(!used[G[v][i]]) dfs(G[v][i]);\n }\n vs.push_back(v);\n}\n \nvoid rdfs(int v,int k){\n used[v] = true;\n cmp[v] = k;\n for(int i = 0 ; i < (int)rG[v].size() ; i++){\n if(!used[rG[v][i]]) rdfs(rG[v][i],k);\n }\n}\n \nint scc(){ //?????£?????????????§£????????????\n memset(used, 0, sizeof(used));\n vs.clear();\n for(int v = 0 ; v < V ; v++){\n if(!used[v]) dfs(v);\n } \n memset(used, 0, sizeof(used));\n int k = 0;\n for(int i = vs.size() - 1 ; i >= 0 ; i--){\n if(!used[vs[i]]) rdfs(vs[i],k++);\n }\n return k;\n}\n\nint ord[MAX], low[MAX];\nstruct edgeB{\n int u,v;\n};\n \nvoid dfs(int u, int pre, int &c, vector<int> G[], vector<edgeB> &B){\n ord[u] = low[u] = c++;\n for(int i=0;i<(int)G[u].size();i++){\n int v = G[u][i];\n if(v != pre){\n if(ord[v] == -1){\n dfs(v,u,c,G,B);\n low[u] = min(low[u],low[v]);\n }\n else{\n low[u] = min(low[u],ord[v]);\n }\n if(ord[u] < low[v]) B.push_back((edgeB){u,v});\n }\n }\n}\n \nvoid bridge(int n, vector<int> G[], vector<edgeB> &B){\n B.clear();\n int c = 0;\n fill(ord,ord+n,-1);\n for(int i=0;i<n;i++) if(ord[i]==-1) dfs(i,-1,c,G,B);\n}\n\n\nint A[1111],B[1111];\n\nvoid make_graph(int x){\n for(int i=0;i<N;i++) G[i].clear();\n for(int i=0;i<N;i++) rG[i].clear();\n for(int i=0;i<M;i++){\n if( i == x ) continue;\n add_edge( A[i], B[i] );\n }\n}\n\nvoid make_graph2(int x){\n for(int i=0;i<N;i++) G[i].clear();\n for(int i=0;i<M;i++){\n if( i == x ) continue;\n G[A[i]].push_back( B[i] );\n G[B[i]].push_back( A[i] );\n }\n}\n\nint main(){\n cin >> N >> M; \n V = N;\n for(int i=0;i<M;i++){\n cin >> A[i] >> B[i]; --A[i]; --B[i];\n }\n if( N == 3 ){\n cout << \"YES\" << endl; return 0;\n } else if( M == N-1 ){\n cout << \"NO\" << endl; return 0;\n }\n \n for(int i=0;i<M;i++){\n make_graph(i);\n int n = scc();\n if( n == N ){\n make_graph2(i);\n vector<edgeB> E;\n bridge( N, G, E );\n if( E.size() >= 2 ) {\n\tcout << \"YES\" << endl; return 0;\n }\n }\n }\n cout << \"NO\" << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 1284, "score_of_the_acc": -0.0149, "final_rank": 1 }, { "submission_id": "aoj_2794_2001187", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef pair<int, int> pii;\ntypedef long long ll;\ntypedef vector<int> vi;\n\n#define pb push_back\n#define eb emplace_back\n#define mp make_pair\n#define fi first\n#define se second\n#define rep(i,n) rep2(i,0,n)\n#define rep2(i,m,n) for(int i=m;i<(n);i++)\n#define ALL(c) (c).begin(),(c).end()\n\nclass unionfind {\n\tvector<int> par, rank;\n\npublic:\n\tvoid init(int n) {\n\t\tpar.resize(n);\n\t\trank.resize(n);\n\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tpar[i] = i;\n\t\t\trank[i] = 0;\n\t\t}\n\t}\n\n\tint find(int x) {\n\t\tif (par[x] == x) return x;\n\t\telse return par[x] = find(par[x]);\n\t}\n\n\tvoid unite(int x, int y) {\n\t\tx = find(x);\n\t\ty = find(y);\n\t\tif (x == y) return ;\n\n\t\tif (rank[x] < rank[y]) par[x] = y;\n\t\telse {\n\t\t\tpar[y] = x;\n\t\t\tif (rank[x] == rank[y]) ++rank[x];\n\t\t}\n\t}\n\n\tbool same(int x, int y) { return (find(x) == find(y)); }\n} uf;\n\n#define MAX_V 510\n\nint V;\nvector<int> G[MAX_V], rG[MAX_V];\nvector<int> vs; \n\nbool vis[MAX_V];\nint cmp[MAX_V]; \n\nvoid add_edge(int from, int to)\n{\n\tG[from].pb(to);\n\trG[to].pb(from);\n}\n\nvoid dfs(int v)\n{\n\tvis[v] = true;\n\n\tfor (int to : G[v]) {\n\t\tif (!vis[to]) dfs(to);\n\t}\n\n\tvs.push_back(v);\n}\n\nvoid rdfs(int v, int k)\n{\n\tvis[v] = true;\n\tcmp[v] = k;\n\n\tfor (int to : rG[v]) {\n\t\tif (!vis[to]) rdfs(to, k);\n\t}\n}\n\nint scc()\n{\n\tmemset(vis, 0, sizeof(vis));\n\tvs.clear();\n\n\trep(v, V) if (!vis[v]) dfs(v);\n\n\tmemset(vis, 0, sizeof(vis));\n\n\tint k = 0;\n\treverse(ALL(vs));\n\n\tfor (int v : vs) {\n\t\tif (!vis[v]) rdfs(v, k++);\n\t}\n\n\treturn k;\n}\n\nclass LOWLINK {\npublic:\n\tint V;\n\tvector<int> G[510];\n\tvector<pair<int, int> > bridge;\n\tint ord[510], low[510];\n\tbool vis[510];\n\tbool not1[510];\n\n\tvoid init(int _V)\n\t{\n\t\tV = _V;\n\t\tmemset(vis, 0, sizeof(vis));\n\t\tmemset(not1, 0, sizeof(not1));\n\t\trep(i, V) G[i].clear();\n\t\tbridge.clear();\n\t}\n\n\tvoid calc()\n\t{\n\t\tint k = 0;\n\t\trep(i, V) if (!vis[i]) DFS(i, -1, k);\n\n\t}\n\n\tvoid add_edge(int a, int b)\n\t{\n\t\tG[a].pb(b); G[b].pb(a);\n\t}\n\n\tvoid DFS(int v, int p, int &k)\n\t{\n\t\tvis[v] = true;\n\n\t\tord[v] = k++;\n\t\tlow[v] = ord[v];\n\n\t\tbool isArticulation = false;\n\t\tint ct = 0;\n\n\t\tfor (int i = 0; i < G[v].size(); i++) {\n\t\t\tif (!vis[G[v][i]]) {\n\t\t\t\tct++;\n\t\t\t\tDFS(G[v][i], v, k);\n\t\t\t\tlow[v] = min(low[v], low[G[v][i]]);\n\t\t\t\tif (ord[v] < low[G[v][i]]) {\n\t\t\t\t\tbridge.push_back(make_pair(min(v, G[v][i]), max(v, G[v][i])));\n\t\t\t\t} else {\n\t\t\t\t\tnot1[v] = not1[G[v][i]] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse if (G[v][i] != p) {\n\t\t\t\tlow[v] = min(low[v], ord[G[v][i]]);\n\t\t\t}\n\t\t}\n\t}\n} T;\n\nint N, M;\nint A[50010], B[50010];\nint in[510];\n\nint main() {\n\tscanf(\"%d %d\", &N, &M);\n\n\tV = N;\n\n\trep(i, M) {\n\t\tscanf(\"%d%d\", &A[i], &B[i]);\n\t\t--A[i]; --B[i];\n\t\t//add_edge(A[i], B[i]);\n\t}\n\n\trep(i, M) {\n\t\tT.init(N);\n\t\trep(j, N) {\n\t\t\tG[j].clear();\n\t\t\trG[j].clear();\n\t\t}\n\n\t\trep(j, M) if (j != i) {\n\t\t\tadd_edge(A[j], B[j]);\n\t\t\tT.add_edge(A[j],B[j]);\n\t\t\tT.add_edge(B[j],A[j]);\n\t\t}\n\n\t\tint now = scc();\n\t\tuf.init(N);\n\n\t\tbool ok = 1;\n\n\t\trep(j, N) {\n\t\t\tfor (int to : G[j]) {\n\t\t\t\tif (cmp[j] == cmp[to]) {\n\t\t\t\t\tok = 0;\n\t\t\t\t}\n\t\t\t\tuf.unite(j, to);\n\t\t\t}\n\t\t}\n\n\t\trep(j, N) {\n\t\t\tif (!uf.same(0,j)) ok=0;\n\t\t}\n\t\tT.calc();\n\n\t\tif (ok && T.bridge.size() >= 2) {\n\t\t\tputs(\"YES\");\n\t\t\treturn 0;\n\t\t}\n\t}\n\tputs(\"NO\");\n\treturn 0;\n\n\tint num = scc();\n\n\tif (num == N) {\n\t\tputs(\"CASE1\");\n\t\tT.init(N);\n\n\t\trep(i, M) {\n\t\t\tT.add_edge(A[i], B[i]);\n\t\t\tT.add_edge(B[i], A[i]);\n\t\t}\n\t\tT.calc();\n\n\t\tcout<<T.bridge.size()<<endl;\n\n\t\tbool size_3 = 0;\n\t\trep(i, N) if (T.not1[i]) size_3 = 1;\n\t\tif (size_3 && T.bridge.size() >= 2) {\n\t\t\tputs(\"YES\");\n\t\t} else {\n\t\t\tputs(\"NO\");\n\t\t}\n\t} else {\n\t\tputs(\"CASE2\");\n\t\tmemset(in, -1, sizeof(in));\n\n\t\tvi cand;\n\t\tint id = -1;\n\t\trep(i, N) cout << cmp[i] << endl;\n\t\trep(i, M) {\n\t\t\tif (cmp[A[i]] == cmp[B[i]]) {\n\t\t\t\tif (in[B[i]] != -1 || (id != -1 && cmp[A[i]] != id)) {\n\t\t\t\t\tputs(\"NO\");\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\n\t\t\t\tid = cmp[A[i]];\n\t\t\t\tin[B[i]] = A[i];\n\t\t\t\tcand.pb(A[i]);\n\t\t\t}\n\t\t}\n\t\tcout<<cand.size()<<endl;\n\n\t\tif (num - 1 + (int)cand.size() != N) {\n\t\t\tputs(\"NO\");\n\t\t\treturn 0;\n\t\t}\n\n\t\tputs(\"DEB\");\n\t\tfor (int v : cand) {\n\t\t\tT.init(N);\n\t\t\trep(i, M) {\n\t\t\t\tif (!(A[i] == in[v] && B[i] == v)) {\n\t\t\t\t\tT.add_edge(A[i], B[i]);\n\t\t\t\t\tT.add_edge(B[i], A[i]);\n\t\t\t\t}\n\t\t\t}\n\t\t\tT.calc();\n\t\t\tif ((int)T.bridge.size() >= 2) {\n\t\t\t\tputs(\"YES\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\n\t\tputs(\"NO\");\n\t\treturn 0;\n\t}\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3336, "score_of_the_acc": -0.3625, "final_rank": 5 }, { "submission_id": "aoj_2794_2001159", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\ntypedef vector<int>vint;\ntypedef pair<int,int>pint;\ntypedef vector<pint>vpint;\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define reps(i,f,n) for(int i=(f);i<(n);i++)\n#define all(v) (v).begin(),(v).end()\n#define each(it,v) for(__typeof((v).begin()) it=(v).begin();it!=(v).end();it++)\n#define pb push_back\n#define fi first\n#define se second\ntemplate<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;}\ntemplate<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;}\n\nnamespace SCC{\n void visit(const vector<vector<int>>&G,vector<int>&vs,vector<int>&used,int v){\n used[v]=true;\n for(auto u:G[v]){\n if(!used[u])visit(G,vs,used,u);\n }\n vs.push_back(v);\n }\n\n void visit2(const vector<vector<int>>&T,vector<int>&used,vector<int>&comp,vector<int>&vec,int k,int v){\n comp[v]=k;\n used[v]=true;\n vec.push_back(v);\n\n for(auto u:T[v]){\n if(!used[u])visit2(T,used,comp,vec,k,u);\n }\n }\n\n //G:?????£?????????????§£???????????°??????\n //H:?????£??????????????°??????1???????????????????´?????????°??????\n //comp:G????????????????????????H?????????????±????????????????\n void decompose(const vector<vector<int>>&G,vector<vector<int>>&H,vector<int>&comp){\n vector<vector<int>>T(G.size());\n for(int i=0;i<G.size();i++){\n for(auto v:G[i]){\n T[v].push_back(i);\n }\n }\n comp.resize(G.size());\n\n vector<int>vs(G.size());\n vector<int>used(G.size());\n for(int i=0;i<G.size();i++){\n if(!used[i])visit(G,vs,used,i);\n }\n reverse(vs.begin(),vs.end());\n fill(used.begin(),used.end(),0);\n\n int K=0;\n vector<vector<int>>S;\n for(auto v:vs){\n if(!used[v]){\n S.push_back(vector<int>());\n visit2(T,used,comp,S.back(),K++,v);\n }\n }\n\n H.resize(K);\n fill(used.begin(),used.end(),0);\n for(int i=0;i<K;i++){\n for(auto v:S[i]){\n for(auto u:G[v]){\n if(used[comp[u]]||comp[v]==comp[u])continue;\n used[comp[u]]=true;\n H[comp[v]].push_back(comp[u]);\n }\n }\n for(auto v:H[i])used[v]=false;\n }\n\n }\n}\n\nstruct UF{\n vector<int>par,sz;\n void init(int n){\n par.resize(n);\n sz.resize(n);\n for(int i=0;i<n;i++){\n par[i]=i;\n sz[i]=1;\n }\n }\n int find(int x){\n return x==par[x]?x:par[x]=find(par[x]);\n }\n void unite(int x,int y){\n x=find(x);y=find(y);\n if(x==y)return;\n sz[x]+=sz[y];\n par[y]=x;\n }\n bool same(int x,int y){\n return find(x)==find(y);\n }\n int size(int x){\n return sz[find(x)];\n }\n};\n\nvector<vint>G;\nvector<pair<int, int> > bridge;\nint ord[1000], low[1000];\nbool vis[1000];\n\nvoid dfs(int v, int p, int &k)\n{\n\tvis[v] = true;\n\n\tord[v] = k++;\n\tlow[v] = ord[v];\n\n\tfor (int i = 0; i < G[v].size(); i++){\n\t\tif (!vis[G[v][i]]){\n\t\t\tdfs(G[v][i], v, k);\n\t\t\tlow[v] = min(low[v], low[G[v][i]]);\n\t\t\tif (ord[v] < low[G[v][i]]) bridge.push_back(make_pair(min(v, G[v][i]), max(v, G[v][i])));\n\t\t}\n\t\telse if (G[v][i] != p){\n\t\t\tlow[v] = min(low[v], ord[G[v][i]]);\n\t\t}\n\t}\n}\n\nint A[100000],B[100000];\n\nsigned main(){\n int N,M;\n cin>>N>>M;\n rep(i,M)cin>>A[i]>>B[i],A[i]--,B[i]--;\n\n bool flag=false;\n int deg[1000]={};\n {\n vector<vint>G(N),H;\n rep(i,M)G[A[i]].pb(B[i]);\n vint comp;\n SCC::decompose(G,H,comp);\n rep(i,M){\n if(comp[A[i]]==comp[B[i]])deg[B[i]]++;\n }\n if(H.size()==N)flag=true;\n }\n\n if(!flag){\n rep(i,M){\n if(deg[B[i]]!=1)continue;\n UF uf;\n uf.init(N);\n rep(j,M)if(i!=j)uf.unite(A[j],B[j]);\n bool ok=true;\n rep(j,N)if(uf.find(j)!=uf.find(0))ok=false;\n if(!ok)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]);\n vector<vint>H;vint comp;\n SCC::decompose(G,H,comp);\n if(H.size()!=N)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]),G[B[j]].pb(A[j]);\n memset(vis,0,sizeof(vis));\n int K=0;\n bridge.clear();\n dfs(0,-1,K);\n if(bridge.size()>=2){\n cout<<\"YES\"<<endl;\n return 0;\n }\n }\n cout<<\"NO\"<<endl;\n return 0;\n }\n else{\n rep(i,M){\n UF uf;\n uf.init(N);\n rep(j,M)if(i!=j)uf.unite(A[j],B[j]);\n bool ok=true;\n rep(j,N)if(uf.find(j)!=uf.find(0))ok=false;\n if(!ok)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]);\n vector<vint>H;vint comp;\n SCC::decompose(G,H,comp);\n if(H.size()!=N)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]),G[B[j]].pb(A[j]);\n memset(vis,0,sizeof(vis));\n int K=0;\n bridge.clear();\n dfs(0,-1,K);\n if(bridge.size()>=2){\n cout<<\"YES\"<<endl;\n return 0;\n }\n }\n cout<<\"NO\"<<endl;\n return 0;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3272, "score_of_the_acc": -0.2934, "final_rank": 2 }, { "submission_id": "aoj_2794_2001136", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define for_(i,a,b) for(int i=(a);i<(b);++i)\n#define for_rev(i,a,b) for(int i=(a);i>=(b);--i)\n#define allof(a) (a).begin(),(a).end()\n#define minit(a,b) memset(a,b,sizeof(a))\n#define size_of(a) int((a).size())\n#define cauto const auto\n\ntypedef pair< int, int > pii;\ntemplate< typename T > using Vec = vector< T >;\n\nclass StronglyConnectedComponentDecomposition {\npublic:\n\tstruct Result {\n\t\tVec< int > topol;\n\t\tVec< Vec< int > > dag;\n\t};\n\t\nprivate:\n\tint N;\n\tconst Vec< Vec< int > >& adj;\n\tVec< Vec< int > > rev_adj;\n\t\n\tVec< int > rev_order;\n\tVec< bool > used;\t\n\tVec< int > topol;\n\t\n\tvoid dfs(int v) {\n\t\tused[v] = true;\n\t\tfor (int u : adj[v]) if (!used[u]) dfs(u);\n\t\trev_order.push_back(v);\n\t}\n\t\n\tvoid revDfs(int v, int k) {\n\t\tused[v] = true;\n\t\ttopol[v] = k;\n\t\tfor (int u : rev_adj[v]) if (!used[u]) revDfs(u, k);\n\t}\n\t\npublic:\n\tStronglyConnectedComponentDecomposition(const Vec< Vec< int > >& _adj_) : N(_adj_.size()), adj(_adj_) {\n\t\trev_adj.assign(N, Vec< int >());\n\t\tfor_(v,0,N) for (int u : adj[v]) rev_adj[u].push_back(v);\n\t}\n\t\n\tResult decomposition() {\n\t\tused.assign(N, false);\n\t\trev_order.clear();\n\t\ttopol.assign(N, -1);\n\t\t\n\t\tfor_(v,0,N) if (!used[v]) dfs(v);\n\t\t\n\t\tfill(allof(used), false);\n\t\t\n\t\tint k = 0, m = rev_order.size();\n\t\t\n\t\tfor_rev(i,m-1,0) {\n\t\t\tint v = rev_order[i];\n\t\t\tif (!used[v]) revDfs(v, k++);\n\t\t}\n\t\t\n\t\tVec< Vec< int > > dag(k);\n\t\t\n\t\tfor_(v,0,N) {\n\t\t\tint tv = topol[v];\n\t\t\t\n\t\t\tfor (int u : adj[v]) {\n\t\t\t\tint tu = topol[u];\n\t\t\t\tif (tv != tu) dag[tv].push_back(tu);\n\t\t\t}\n\t\t}\n\t\t\n\t\tfor_(i,0,k) {\n\t\t\tsort(allof(dag[i]));\n\t\t\tdag[i].erase(unique(allof(dag[i])), dag[i].end());\n\t\t}\n\t\t\n\t\treturn Result{ topol, dag };\n\t}\n};\n\nclass FindBridge {\nprivate:\n\tint V;\n\tVec< set< int > > adj;\n\t\n\tVec< int > low, pre;\n\tVec< bool > vis;\n\t\n\tint dfs(int v, int& count, int p, Vec< pii >& br) {\n\t\tpre[v] = count++;\n\t\tlow[v] = pre[v];\n\t\tvis[v] = true;\n\t\t\n\t\tfor (int u : adj[v]) {\n\t\t\tif (pre[u] == -1) {\n\t\t\t\tlow[v] = min(low[v], dfs(u, count, v, br));\n\t\t\t\tif (low[u] == pre[u]) br.push_back(pii(v, u));\n\t\t\t} else {\n\t\t\t\tif (u != p) low[v] = min(low[v], low[u]);\n\t\t\t}\n\t\t}\n\t\t\n\t\treturn low[v];\n\t}\n\t\npublic:\n\tFindBridge(int V__) : V(V__), adj(V__, set< int >()) {}\n\t\n\tvoid addEdge(int u, int v) {\n\t\tadj[u].insert(v);\n\t\tadj[v].insert(u);\n\t}\n\t\n\tVec< pii > get() {\n\t\tVec< pii > br;\n\t\tlow.assign(V, -1);\n\t\tpre.assign(V, -1);\n\t\tvis.assign(V, false);\n\t\tint count = 0;\n\t\tfor_(v,0,V) if (!vis[v]) dfs(0, count, -1, br);\n\t\treturn br;\n\t}\n\t\n\tint count() {\n\t\tVec< pii > br;\n\t\tlow.assign(V, -1);\n\t\tpre.assign(V, -1);\n\t\tvis.assign(V, false);\n\t\tint count = 0;\n\t\tfor_(v,0,V) if (!vis[v]) dfs(0, count, -1, br);\n\t\treturn br.size();\n\t}\n};\n\nint N, M, a[1010], b[1010];\nbool isbr[1010];\nVec< Vec< int > > adj;\n\ntypedef StronglyConnectedComponentDecomposition SCC;\n\nint doSCC() {\t\n\tSCC::Result scc = SCC(adj).decomposition();\n\tVec< int > vcnt(N, 0);\n\tfor_(v,0,N) vcnt[scc.topol[v]]++;\n\tint szov2 = 0;\n\tfor_(i,0,N) if (vcnt[i] >= 2) szov2++;\n\treturn szov2;\n}\n\nvoid findBr() {\n\tFindBridge fb(N);\n\tfor_(i,0,M) fb.addEdge(a[i], b[i]);\n\tVec< pii > vp = fb.get();\n\t\n\tfor (pii p : vp) {\n\t\tfor_(i,0,M) {\n\t\t\tif (p.first == a[i] && p.second == b[i]) isbr[i] = true;\n\t\t\tif (p.first == b[i] && p.second == a[i]) isbr[i] = true;\n\t\t}\n\t}\n}\n\nvoid solve() {\n\tfindBr();\n\t\n\tfor_(ig,0,M) {\n\t\tif (isbr[ig]) continue;\n\t\tadj.assign(N, Vec< int >());\n\t\t\n\t\tfor_(i,0,M) {\n\t\t\tif (i == ig) continue;\n\t\t\tadj[a[i]].push_back(b[i]);\n\t\t}\n\t\t\n\t\tif (doSCC() == 0) {\n\t\t\tFindBridge fb(N);\n\n\t\t\tfor_(i,0,M) {\n\t\t\t\tif (i == ig) continue;\n\t\t\t\tfb.addEdge(a[i], b[i]);\n\t\t\t}\n\t\t\t\n\t\t\tif (fb.count() >= 2) {\n\t\t\t\tputs(\"YES\");\n\t\t\t\texit(0);\n\t\t\t}\n\t\t}\n\t}\n\t\n\tputs(\"NO\");\n}\n\nint main() {\n\tcin >> N >> M;\n\tfor_(i,0,M) {\n\t\tcin >> a[i] >> b[i];\n\t\t--a[i]; --b[i];\n\t}\n\tsolve();\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3300, "score_of_the_acc": -0.3721, "final_rank": 7 }, { "submission_id": "aoj_2794_2000949", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define int long long\ntypedef vector<int>vint;\ntypedef pair<int,int>pint;\ntypedef vector<pint>vpint;\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define reps(i,f,n) for(int i=(f);i<(n);i++)\n#define all(v) (v).begin(),(v).end()\n#define each(it,v) for(__typeof((v).begin()) it=(v).begin();it!=(v).end();it++)\n#define pb push_back\n#define fi first\n#define se second\ntemplate<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;}\ntemplate<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;}\n\nnamespace SCC{\n void visit(const vector<vector<int>>&G,vector<int>&vs,vector<int>&used,int v){\n used[v]=true;\n for(auto u:G[v]){\n if(!used[u])visit(G,vs,used,u);\n }\n vs.push_back(v);\n }\n\n void visit2(const vector<vector<int>>&T,vector<int>&used,vector<int>&comp,vector<int>&vec,int k,int v){\n comp[v]=k;\n used[v]=true;\n vec.push_back(v);\n\n for(auto u:T[v]){\n if(!used[u])visit2(T,used,comp,vec,k,u);\n }\n }\n\n //G:?????£?????????????§£???????????°??????\n //H:?????£??????????????°??????1???????????????????´?????????°??????\n //comp:G????????????????????????H?????????????±????????????????\n void decompose(const vector<vector<int>>&G,vector<vector<int>>&H,vector<int>&comp){\n vector<vector<int>>T(G.size());\n for(int i=0;i<G.size();i++){\n for(auto v:G[i]){\n T[v].push_back(i);\n }\n }\n comp.resize(G.size());\n\n vector<int>vs(G.size());\n vector<int>used(G.size());\n for(int i=0;i<G.size();i++){\n if(!used[i])visit(G,vs,used,i);\n }\n reverse(vs.begin(),vs.end());\n fill(used.begin(),used.end(),0);\n\n int K=0;\n vector<vector<int>>S;\n for(auto v:vs){\n if(!used[v]){\n S.push_back(vector<int>());\n visit2(T,used,comp,S.back(),K++,v);\n }\n }\n\n H.resize(K);\n fill(used.begin(),used.end(),0);\n for(int i=0;i<K;i++){\n for(auto v:S[i]){\n for(auto u:G[v]){\n if(used[comp[u]]||comp[v]==comp[u])continue;\n used[comp[u]]=true;\n H[comp[v]].push_back(comp[u]);\n }\n }\n for(auto v:H[i])used[v]=false;\n }\n\n }\n}\n\nstruct UF{\n vector<int>par,sz;\n void init(int n){\n par.resize(n);\n sz.resize(n);\n for(int i=0;i<n;i++){\n par[i]=i;\n sz[i]=1;\n }\n }\n int find(int x){\n return x==par[x]?x:par[x]=find(par[x]);\n }\n void unite(int x,int y){\n x=find(x);y=find(y);\n if(x==y)return;\n sz[x]+=sz[y];\n par[y]=x;\n }\n bool same(int x,int y){\n return find(x)==find(y);\n }\n int size(int x){\n return sz[find(x)];\n }\n};\n\nvector<vint>G;\nvector<pair<int, int> > bridge;\nint ord[1000], low[1000];\nbool vis[1000];\n\nvoid dfs(int v, int p, int &k)\n{\n\tvis[v] = true;\n\n\tord[v] = k++;\n\tlow[v] = ord[v];\n\n\tfor (int i = 0; i < G[v].size(); i++){\n\t\tif (!vis[G[v][i]]){\n\t\t\tdfs(G[v][i], v, k);\n\t\t\tlow[v] = min(low[v], low[G[v][i]]);\n\t\t\tif (ord[v] < low[G[v][i]]) bridge.push_back(make_pair(min(v, G[v][i]), max(v, G[v][i])));\n\t\t}\n\t\telse if (G[v][i] != p){\n\t\t\tlow[v] = min(low[v], ord[G[v][i]]);\n\t\t}\n\t}\n}\nsigned main(){\n int N,M;\n int A[1000],B[1000];\n cin>>N>>M;\n rep(i,M)cin>>A[i]>>B[i],A[i]--,B[i]--;\n\n rep(i,M){\n UF uf;\n uf.init(N);\n rep(j,M)if(i!=j)uf.unite(A[j],B[j]);\n bool ok=true;\n rep(j,N)if(uf.find(j)!=uf.find(0))ok=false;\n if(!ok)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]);\n vector<vint>H;vint comp;\n SCC::decompose(G,H,comp);\n if(H.size()!=N)continue;\n G=vector<vint>(N);\n rep(j,M)if(i!=j)G[A[j]].pb(B[j]),G[B[j]].pb(A[j]);\n memset(vis,0,sizeof(vis));\n int K=0;\n bridge.clear();\n dfs(0,-1,K);\n if(bridge.size()>=2){\n cout<<\"YES\"<<endl;\n return 0;\n }\n }\n cout<<\"NO\"<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3268, "score_of_the_acc": -0.4271, "final_rank": 10 } ]
aoj_2789_cpp
Compressed Formula You are given a simple, but long formula in a compressed format. A compressed formula is a sequence of $N$ pairs of an integer $r_i$ and a string $s_i$, which consists only of digits ('0'-'9'), '+', '-', and '*'. To restore the original formula from a compressed formula, first we generate strings obtained by repeating $s_i$ $r_i$ times for all $i$, then we concatenate them in order of the sequence. You can assume that a restored original formula is well-formed. More precisely, a restored formula satisfies the following BNF: <expression> := <term> | <expression> '+' <term> | <expression> '-' <term> <term> := <number> | <term> * <number> <number> := <digit> | <non-zero-digit> <number> <digit> := '0' | <non-zero-digit> <non-zero-digit> := '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' Here, '+' means addition, '-' means subtraction, and '*' means multiplication of integers. Your task is to write a program computing the answer of a given formula modulo 1,000,000,007, where $x$ modulo $m$ is a non-negative integer $r$ such that there exists an integer $k$ satisfying $x = km + r$ and $0 \leq r < m$; it is guaranteed that such $r$ is uniquely determined for integers $x$ and $m$. Input The input consists of a single test case. $N$ $r_1$ $s_1$ $r_2$ $s_2$ ... $r_N$ $s_N$ The first line contains a single integer $N$ ($1 \leq N \leq 10^4$), which is the length of a sequence of a compressed formula. The following $N$ lines represents pieces of a compressed formula. The $i$-th line consists of an integer $r_i$ ($1 \leq r_i \leq 10^9$) and a string $s_i$ ($1 \leq |s_i| \leq 10$), where $t_i$ is the number of repetition of $s_i$, and $s_i$ is a piece of an original formula. You can assume that an original formula, restored from a given compressed formula by concatenation of repetition of pieces, satisfies the BNF in the problem statement. Output Print the answer of a given compressed formula modulo 1,000,000,007. Sample Input 1 1 5 1 Output for the Sample Input 1 11111 Sample Input 2 2 19 2* 1 2 Output for the Sample Input 2 1048576 Sample Input 3 2 1 1-10 10 01*2+1 Output for the Sample Input 3 999999825 Sample Input 4 4 3 12+45-12 4 12-3*2*1 5 12345678 3 11*23*45 Output for the Sample Input 4 20008570
[ { "submission_id": "aoj_2789_10865828", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1ll << 60;\n#define REP(i, n) for(ll i=0; i <ll(n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class A, class B>\nbool chmax(A &a, B b) { return a < b && (a=b, true); }\ntemplate <class A, class B>\nbool chmin(A &a, B b) { return b < a && (a=b, true); }\n\ntemplate <int MD, int g = 3>\nstruct ModInt {\n using M = ModInt;\n const static inline M G = g;\n unsigned int v;\n ModInt() : v(0) {}\n ModInt(ll w) : v(w % MD + MD) {\n if(v >= MD) v -= MD;\n }\n static M raw(unsigned int v) {\n M res;\n res.v = (v < MD) ? v : v - MD;\n return res;\n }\n explicit operator bool() const {\n return v != 0;\n }\n M operator-() const {\n return M() - *this;\n }\n M operator+(M r) const {\n return raw(v + r.v);\n }\n M operator-(M r) const {\n return raw(v + MD - r.v);\n }\n M operator*(M r) const {\n return raw(ll(v) * r.v % MD);\n }\n M operator/(M r) const {\n return *this * r.inv();\n }\n M& operator+=(M r) {\n return *this = *this + r;\n }\n M& operator-=(M r) {\n return *this = *this - r;\n }\n M& operator*=(M r) {\n return *this = *this * r;\n }\n M& operator/=(M r) {\n return *this = *this / r;\n }\n bool operator==(M r) const {\n return v == r.v;\n }\n M pow(ll n) const {\n M x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n M inv() const {\n return pow(MD - 2);\n }\n friend ostream& operator<<(ostream& os, M r) {\n return os << r.v;\n }\n};\nusing Mint = ModInt<1000000007>;\n\nconst int Z = 4;\nusing Node = array<array<Mint, Z>, Z>;\nNode mul(Node l, Node r){\n Node res;\n REP(i,Z) REP(j,Z) REP(k,Z) res[i][k] += l[i][j] * r[j][k];\n return res;\n}\nNode pow(Node a, ll i){\n if(i == 0){\n Node res;\n REP(i,Z) res[i][i] = 1;\n return res;\n }\n auto b = pow(mul(a,a), i/2);\n if(i%2 == 1) b = mul(b, a);\n return b;\n}\n\nvoid testcase(){\n ll N; cin >> N;\n Node res;\n res[0][3] = 1;\n res[0][0] = 1;\n REP(i,N){\n ll t; cin >> t;\n string s; cin >> s;\n Node x = pow(Node(), 0);\n for(auto c : s){\n Node y;\n if('0' <= c && c <= '9'){\n y[0][0] = 1;\n y[0][1] = c - '0';\n y[1][1] = 10;\n y[2][2] = 1;\n y[3][3] = 1;\n } else if(c == '*'){\n y[1][0] = 1;\n y[2][2] = 1;\n y[3][3] = 1;\n } else if(c == '+' || c == '-') {\n Mint co = (c == '-' ? -1 : 1);\n y[3][0] = co;\n y[1][2] = 1;\n y[2][2] = 1;\n y[3][3] = 1;\n }\n x = mul(x, y);\n }\n res = mul(res, pow(x, t));\n }\n Mint ans = res[0][1] + res[0][2];\n cout << ans.v << \"\\n\";\n}\n\nint main() {\n cin.tie(nullptr)->sync_with_stdio(false);\n testcase();\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3444, "score_of_the_acc": -0.1036, "final_rank": 8 }, { "submission_id": "aoj_2789_10852778", "code_snippet": "#include <bits/stdtr1c++.h>\n\n#define MOD 1000000007\n#define clr(ar) memset(ar, 0, sizeof(ar))\n\nusing namespace std;\n\nstruct Matrix{\n int row, col, ar[5][5];\n\n Matrix(){}\n Matrix(int n, int m, int diagonal = 0){\n clr(ar);\n row = n, col = m;\n for (int i = min(n, m) - 1; i >= 0; i--) ar[i][i] = diagonal;\n }\n\n Matrix operator* (const Matrix& other) const{\n int i, j, k;\n\t\tMatrix res(row, other.col);\n\n\t\tfor(i = 0; i < row; i++){\n\t\t\tfor(j = 0; j < other.col; j++){\n long long x = 0;\n\t\t\t\tfor(k = 0; k < col; k++){\n\t\t\t\t\tx += ((long long)ar[i][k] * other.ar[k][j]);\n\t\t\t\t}\n\t\t\t\tres.ar[i][j] = x % MOD;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}\n\n\tMatrix operator^ (long long n) const{\n\t Matrix x = *this, res = Matrix(row, col, 1);\n\t\twhile (n){\n\t\t\tif (n & 1) res = res * x;\n\t\t\tn = n >> 1, x = x * x;\n\t\t}\n\t\treturn res;\n\t}\n} add, sub, mul, res;\n\nconst int n = 4;\nchar str[10010];\n\nvoid generate(){\n add = Matrix(n, n, 1);\n for (int i = 0; i < 2; i++){\n swap(add.ar[i + 1][i + 1], add.ar[i][i + 2]);\n }\n\n sub = add;\n sub.ar[1][3] = MOD - 1;\n\n mul = sub;\n mul.ar[1][3] = 0;\n swap(mul.ar[0][2], mul.ar[1][2]);\n\n res = Matrix(n, n);\n res.ar[1][0] = res.ar[3][0] = 1;\n}\n\nvoid run(int k, const char* str){\n int i, j;\n Matrix x = Matrix(n, n, 1);\n\n for (i = 0; str[i]; i++){\n if (str[i] == '+') x = add * x;\n else if (str[i] == '-') x = sub * x;\n else if (str[i] == '*') x = mul * x;\n else{\n Matrix y = Matrix(n, n, 1);\n y.ar[2][1] = str[i] - 48, y.ar[2][2] *= 10;\n x = y * x;\n }\n }\n\n x = x ^ k;\n res = x * res;\n}\n\nint main(){\n generate();\n int q, i, j, k, l, x, y, z;\n\n scanf(\"%d\", &q);\n while (q--){\n scanf(\"%d %s\", &k, str);\n run(k, str);\n }\n\n res = add * res;\n printf(\"%d\\n\", res.ar[0][0]);\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3588, "score_of_the_acc": -0.0658, "final_rank": 5 }, { "submission_id": "aoj_2789_8525882", "code_snippet": "#include <bits/stdc++.h>\n// 04:00\n\nconstexpr long long mod = 1000000007;\n\nlong long mod_pow(long long base, long long exp) {\n long long res = 1;\n while (exp > 0) {\n if (exp & 1) {\n res *= base;\n res %= mod;\n }\n base *= base;\n base %= mod;\n exp >>= 1;\n }\n return res;\n}\n\n// sum (k ^ i) (0 <= i < n)\nlong long sum_mul(long long k, long long n) {\n if (k == 0) return 0;\n if (k == 1) return n;\n long long res = (mod_pow(k, n) - 1 + mod) % mod;\n res *= mod_pow(k - 1, mod - 2);\n res %= mod;\n return res;\n}\n\nstruct SimpleParser {\n using CopyIter = std::string::const_iterator;\n using Iter = CopyIter&;\n std::string line;\n\n SimpleParser(std::string s): line(s) {}\n\n void skip(Iter it, char c) {\n assert(*it == c);\n ++it;\n }\n\n long long parse() {\n // std::cerr << \"start\" << std::endl;\n auto it = line.cbegin();\n auto res = expr(it);\n // std::cerr << \"finish\" << std::endl;\n return res;\n }\n\n long long expr(Iter it) {\n auto res = term(it);\n while (it != line.end() && (*it == '+' || *it == '-')) {\n auto op = *it;\n if (op == '+') {\n skip(it, '+');\n res = (res + term(it)) % mod;\n } else {\n skip(it, '-');\n res = (res - term(it) + mod) % mod;\n }\n }\n return res;\n }\n\n long long term(Iter it) {\n auto res = factor(it);\n while (it != line.end() && (*it == '*')) {\n skip(it, '*');\n res = res * factor(it) % mod;\n }\n return res;\n }\n\n long long factor(Iter it) {\n bool minus = false;\n if (*it == '+') {\n skip(it, '+');\n } else if (*it == '-') {\n skip(it, '-');\n minus = true;\n }\n auto res = number(it);\n if (minus) {\n res = (2 * mod - res) % mod;\n }\n return res;\n }\n\n long long number(Iter it) {\n long long res = 0;\n while (it != line.end() && std::isdigit(*it)) {\n char c = *it;\n skip(it, c);\n res = 10 * res + c - '0';\n res %= mod;\n }\n return res;\n }\n};\n\n// + - *\nstd::pair<long long, std::string> to_A(const std::pair<long long, std::string>& line) {\n auto [r, s] = line;\n size_t pos = 0;\n\n if (s.find('+') != std::string::npos) {\n pos = std::max(pos, s.find_last_of('+'));\n }\n if (s.find('-') != std::string::npos) {\n pos = std::max(pos, s.find_last_of('-'));\n }\n\n std::string lhs = s.substr(0, pos);\n std::string rhs = s.substr(pos);\n assert(rhs.front() == '+' || rhs.front() == '-');\n SimpleParser parser(rhs + lhs);\n auto val = parser.parse();\n val = (r - 1) * val % mod;\n\n std::string res = (lhs + '+' + std::to_string(val) + rhs);\n return {1, res};\n}\n\n// *\nstd::pair<long long, std::string> to_B(const std::pair<long long, std::string>& line) {\n auto [r, s] = line;\n assert(s.find('*') != std::string::npos);\n size_t pos = s.find('*');\n\n std::string lhs = s.substr(0, pos);\n std::string rhs = s.substr(pos);\n assert(rhs.front() == '*');\n\n std::string temp = rhs + lhs;\n temp.erase(temp.begin());\n SimpleParser parser(temp);\n auto val = parser.parse();\n val = mod_pow(val, r - 1);\n std::string res = (lhs + \"*\" + std::to_string(val) + rhs);\n return {1, res};\n}\n\n// + -\nstd::pair<long long, std::string> to_C(const std::pair<long long, std::string>& line) {\n auto [r, s] = line;\n size_t pos = 0;\n\n if (s.find('+') != std::string::npos) {\n pos = std::max(pos, s.find_last_of('+'));\n }\n if (s.find('-') != std::string::npos) {\n pos = std::max(pos, s.find_last_of('-'));\n }\n\n std::string lhs = s.substr(0, pos);\n std::string rhs = s.substr(pos);\n assert(rhs.front() == '+' || rhs.front() == '-');\n SimpleParser parser(rhs + lhs);\n auto val = parser.parse();\n val = (r - 1) * val % mod;\n\n std::string res = (lhs + '+' + std::to_string(val) + rhs);\n return {1, res};\n}\n\nstd::pair<long long, std::string> to_D(const std::pair<long long, std::string>& line) {\n return line;\n}\n\nstd::pair<long long, std::string> preprocess(const std::pair<long long, std::string>& line) {\n auto [r, s] = line;\n bool has_plus_or_minus = (s.find('+') != std::string::npos) || (s.find('-') != std::string::npos);\n bool has_mul = (s.find('*') != std::string::npos);\n\n if (has_plus_or_minus && has_mul) {\n return to_A(line);\n } else if (has_mul) {\n return to_B(line);\n } else if (has_plus_or_minus) {\n return to_C(line);\n } else {\n return to_D(line);\n }\n}\n\nstd::string concat(const std::vector<std::pair<long long, std::string>>& formulas) {\n // std::cerr << \"start concat\" << std::endl;\n std::string res;\n long long val = 0;\n for (int i = 0; i < (int)formulas.size(); i++) {\n // std::cerr << \"concat roop \" << i << std::endl;\n auto [r, s] = formulas[i];\n if (r != 1) {\n // std::cerr << \"ASDASDASDASD\" << std::endl;\n assert(std::all_of(s.begin(), s.end(), [](char c) { return std::isdigit(c); }));\n val *= mod_pow(10, s.size() * r);\n val %= mod;\n\n long long k = mod_pow(10, s.size());\n SimpleParser parser(s);\n auto s_val = parser.parse();\n val += s_val * sum_mul(k, r) % mod;\n val %= mod;\n } else {\n // std::cerr << \"ASDASD\" << std::endl;\n for (int j = 0; j < (int)s.size(); j++) {\n if (std::isdigit(s[j])) {\n val = (10 * val + s[j] - '0') % mod;\n } else {\n res += std::to_string(val);\n val = 0;\n res.push_back(s[j]);\n }\n }\n }\n\n if (i + 1 == (int)formulas.size()) {\n res += std::to_string(val);\n val = 0;\n }\n }\n // std::cerr << \"end concat\" << std::endl;\n return res; \n}\n\nint main() {\n int n;\n std::cin >> n;\n std::vector<std::pair<long long, std::string>> formulas;\n for (int i = 0; i < n; i++) {\n long long r;\n std::string s;\n std::cin >> r >> s;\n formulas.push_back(preprocess({r, s}));\n }\n\n // std::cerr << \"------------ \" << std::endl;\n // std::cerr << \"after preprocess \" << std::endl;\n // for (auto [r, s]: formulas) {\n // std::cerr << r << ' ' << s << std::endl;\n // }\n std::string line = concat(formulas);\n // std::cerr << \"------------ \" << std::endl;\n // std::cerr << \"after concat \" << std::endl;\n // std::cerr << line << std::endl;\n\n SimpleParser parser(line);\n std::cout << parser.parse() << std::endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4444, "score_of_the_acc": -0.0663, "final_rank": 6 }, { "submission_id": "aoj_2789_8403939", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// 最初 * がないと思って誤読した.痛すぎる.\nconst long long mod = 1000000007;\n\nlong long modpow(long long a, long long b, long long m) {\n long long p = 1, q = a;\n for (int i = 0; i < 60; i++) {\n if ((b >> i) & 1) { p *= q; p %= m; }\n q *= q; q %= m;\n }\n return p;\n}\n\nlong long Division(long long a, long long b, long long m) {\n return (a * modpow(b, m - 2, m)) % m;\n}\n\n// ================================================ Solve Function ================================================\nlong long StoiMod(string str) {\n long long eval = 0;\n for (int i = 0; i < (int)str.size(); i++) {\n eval *= 10LL;\n eval += (long long)(str[i] - '0');\n eval %= mod;\n }\n return eval;\n}\n\nlong long Repeat(string str, long long rep) {\n long long val1 = modpow(10, (long long)str.size(), mod);\n long long val2 = modpow(val1, rep, mod);\n long long val3 = Division((val2 + mod - 1) % mod, (val1 + mod - 1) % mod, mod);\n long long base = StoiMod(str);\n return val3 * base % mod;\n}\n\nlong long Solve(vector<pair<string, long long>> Vec) {\n long long Answer1 = 1;\n long long Answer2 = 1;\n vector<vector<string>> List(Vec.size(), vector<string>{});\n /*cout << \"Solve:\" << endl;\n for (int i = 0; i < Vec.size(); i++) cout << \" - \" << Vec[i].first << \" \" << Vec[i].second << endl;*/\n\n // Decompression\n for (int i = 0; i < (int)Vec.size(); i++) {\n string str = \"\";\n for (int j = 0; j < (int)Vec[i].first.size(); j++) {\n if (Vec[i].first[j] == '*') {\n List[i].push_back(str);\n str = \"\";\n }\n else str += Vec[i].first[j];\n }\n List[i].push_back(str);\n }\n\n // Pattern 1\n for (int i = 0; i < (int)Vec.size(); i++) {\n if (List[i].size() == 1) continue;\n for (int j = 1; j < (int)List[i].size() - 1; j++) {\n long long val = StoiMod(List[i][j]);\n Answer1 *= modpow(val, Vec[i].second, mod);\n Answer1 %= mod;\n }\n string str = \"\";\n str += List[i][List[i].size() - 1];\n str += List[i][0];\n long long val = StoiMod(str);\n Answer1 *= modpow(val, Vec[i].second - 1, mod);\n Answer1 %= mod;\n }\n\n // Pattern 2\n int cx = 0;\n while (cx < (int)Vec.size()) {\n int Fin = cx;\n bool Flag = false;\n long long Current = 0;\n if (List[cx].size() == 1) Current = Repeat(List[cx][List[cx].size() - 1], Vec[cx].second);\n if (List[cx].size() >= 2) Current = Repeat(List[cx][List[cx].size() - 1], 1);\n\n // Going Forward\n for (int i = cx + 1; i < (int)Vec.size(); i++) {\n long long Len = List[i][0].size();\n long long Tim = Vec[i].second; if (List[i].size() >= 2) Tim = 1;\n Current *= modpow(10LL, Len * Tim, mod);\n Current %= mod;\n Fin = i;\n Current += Repeat(List[i][0], Tim);\n Current %= mod;\n if (List[i].size() >= 2) break;\n if (i == (int)Vec.size() - 1) Flag = true;\n }\n\n // Terminal\n Answer2 *= Current;\n Answer2 %= mod;\n if (Flag == true || cx == (int)Vec.size() - 1) break;\n cx = Fin;\n }\n if (List[0].size() >= 2) {\n Answer2 *= Repeat(List[0][0], 1);\n Answer2 %= mod;\n }\n\n // Return\n /*cout << \" - Return = \" << Answer1 * Answer2 % mod << \" (\" << Answer1 << \",\" << Answer2 << \")\" << endl;\n cout << endl;*/\n return Answer1 * Answer2 % mod;\n}\n\n// ================================================ Main Function ================================================\nlong long N;\nlong long R[1 << 19];\nstring S[1 << 19];\n\nint main() {\n // Step 1. Input\n cin >> N;\n for (int i = 0; i < N; i++) cin >> R[i] >> S[i];\n vector<pair<string, long long>> Current;\n char CurrentFugo = '+';\n long long Answer = 0;\n\n // Step 2. Get Answer (Part 1)\n for (int i = 0; i < N; i++) {\n string str = \"\";\n for (int j = 0; j < (int)S[i].size(); j++) {\n if (S[i][j] == '+' || S[i][j] == '-') {\n Current.push_back(make_pair(str, 1));\n long long eval = Solve(Current);\n if (CurrentFugo == '+') Answer = (Answer + eval + mod) % mod;\n if (CurrentFugo == '-') Answer = (Answer - eval + mod) % mod;\n str = \"\";\n CurrentFugo = S[i][j];\n Current.clear();\n }\n else str += S[i][j];\n }\n if (str.size() == S[i].size()) Current.push_back(make_pair(str, R[i]));\n if (str.size() != S[i].size()) Current.push_back(make_pair(str, 1LL));\n if (i == N - 1) {\n long long eval = Solve(Current);\n if (CurrentFugo == '+') Answer = (Answer + eval + mod) % mod;\n if (CurrentFugo == '-') Answer = (Answer - eval + mod) % mod;\n }\n }\n\n // Step 3. Get Answer (Part 2)\n for (int i = 0; i < N; i++) {\n string str = \"\";\n char Fugo = '.';\n for (int j = 0; j < (int)S[i].size() * 2; j++) {\n if (S[i][j % S[i].size()] == '+' || S[i][j % S[i].size()] == '-') {\n if (Fugo != '.') {\n long long eval = Solve(vector<pair<string, long long>>{make_pair(str, 1LL)});\n long long tm = R[i] - 1;\n eval = (eval * tm) % mod;\n if (Fugo == '+') Answer = (Answer + eval + mod) % mod;\n if (Fugo == '-') Answer = (Answer - eval + mod) % mod;\n }\n Fugo = S[i][j];\n str = \"\";\n if (j >= S[i].size()) break;\n }\n else str += S[i][j % S[i].size()];\n }\n }\n\n // Step 3. Output\n cout << Answer << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 21852, "score_of_the_acc": -1.0682, "final_rank": 15 }, { "submission_id": "aoj_2789_8334831", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int MOD = 1000000007;\n\nclass modint {\nprivate:\n\tint x;\npublic:\n\tmodint() : x(0) {}\n\tmodint(long long n) : x(n >= 0 ? n % MOD : (n - (-n) % MOD) % MOD) {}\n\tint get() const { return x; }\n\tmodint& operator+=(const modint& m) { x = (x + m.x) % MOD; return *this; }\n\tmodint& operator*=(const modint& m) { x = 1LL * x * m.x % MOD; return *this; }\n\tmodint operator+(const modint& m) const { return modint(*this) += m; }\n\tmodint operator*(const modint& m) const { return modint(*this) *= m; }\n\tmodint pow(long long b) const {\n\t\tmodint a(*this);\n\t\tmodint res(1);\n\t\twhile (b >= 1) {\n\t\t\tif (b % 2 == 1) {\n\t\t\t\tres *= a;\n\t\t\t}\n\t\t\ta *= a;\n\t\t\tb /= 2;\n\t\t}\n\t\treturn res;\n\t}\n};\n\nclass value {\npublic:\n\tmodint m; long long digits;\n\tvalue() : m(modint()), digits(0) {}\n\tvalue(const modint& m_, long long digits_) : m(m_), digits(digits_) {}\n\tstring to_string() const {\n\t\treturn \"(\" + std::to_string(m.get()) + \",\" + std::to_string(digits) + \")\";\n\t}\n};\n\n// state type 0: l\n// state type 1: l] * [a] * [r\n// state type 2: l] * [a] + [b] + [c] * [r\n\nclass expression {\npublic:\n\tint tp;\n\tvalue l, r;\n\tmodint a, b, c;\n\texpression() : tp(-1), l(value()), r(value()), a(modint()), b(modint()), c(modint()) {}\n\texpression(const value& l_) : tp(1), l(l_), r(value()), a(modint()), b(modint()), c(modint()) {}\n\texpression(const value& l_, const modint& a_, const value& r_) : tp(2), l(l_), r(r_), a(a_), b(modint()), c(modint()) {}\n\texpression(const value& l_, const modint& a_, const modint& b_, const modint& c_, const value& r_) : tp(3), l(l_), r(r_), a(a_), b(b_), c(c_) {}\n\tstring to_string() const {\n\t\tif (tp == 1) {\n\t\t\treturn \"?\" + l.to_string() + \"?\";\n\t\t}\n\t\tif (tp == 2) {\n\t\t\treturn \"?\" + l.to_string() + \"*\" + std::to_string(a.get()) + \"*\" + r.to_string() + \"?\";\n\t\t}\n\t\tif (tp == 3) {\n\t\t\treturn \"?\" + l.to_string() + \"*\" + std::to_string(a.get()) + \"+\" + std::to_string(b.get()) + \"+\" + std::to_string(c.get()) + \"*\" + r.to_string() + \"?\";\n\t\t}\n\t\treturn string();\n\t}\n};\n\nvalue merge(const value& v1, const value& v2) {\n\treturn value(v1.m * modint(10).pow(v2.digits) + v2.m, v1.digits + v2.digits);\n}\n\nexpression merge(const expression& e1, const expression& e2) {\n\tif (e1.tp == 1 && e2.tp == 1) {\n\t\treturn expression(merge(e1.l, e2.l));\n\t}\n\tif (e1.tp == 1 && e2.tp == 2) {\n\t\treturn expression(merge(e1.l, e2.l), e2.a, e2.r);\n\t}\n\tif (e1.tp == 1 && e2.tp == 3) {\n\t\treturn expression(merge(e1.l, e2.l), e2.a, e2.b, e2.c, e2.r);\n\t}\n\tif (e1.tp == 2 && e2.tp == 1) {\n\t\treturn expression(e1.l, e1.a, merge(e1.r, e2.l));\n\t}\n\tif (e1.tp == 2 && e2.tp == 2) {\n\t\treturn expression(e1.l, e1.a * merge(e1.r, e2.l).m * e2.a, e2.r);\n\t}\n\t// state type 0: l\n\t// state type 1: l] * [a] * [r\n\t// state type 2: l] * [a] + [b] + [c] * [r\n\tif (e1.tp == 2 && e2.tp == 3) {\n\t\treturn expression(e1.l, e1.a * merge(e1.r, e2.l).m * e2.a, e2.b, e2.c, e2.r);\n\t}\n\tif (e1.tp == 3 && e2.tp == 1) {\n\t\treturn expression(e1.l, e1.a, e1.b, e1.c, merge(e1.r, e2.l));\n\t}\n\tif (e1.tp == 3 && e2.tp == 2) {\n\t\treturn expression(e1.l, e1.a, e1.b, e1.c * merge(e1.r, e2.l).m * e2.a, e2.r);\n\t}\n\tif (e1.tp == 3 && e2.tp == 3) {\n\t\treturn expression(e1.l, e1.a, e1.b + e1.c * merge(e1.r, e2.l).m * e2.a + e2.b, e2.c, e2.r);\n\t}\n\treturn expression();\n}\n\nstring transform(string S) {\n\tstring res;\n\tfor (char c : S) {\n\t\tif (c != '-') {\n\t\t\tres += c;\n\t\t}\n\t\telse {\n\t\t\tres += \"+\" + to_string(MOD - 1) + \"*\";\n\t\t}\n\t}\n\treturn res;\n}\n\nexpression level0(const string& S) {\n\tmodint x;\n\tfor (char c : S) {\n\t\tx = x * 10 + int(c - '0');\n\t}\n\treturn expression(value(x, S.size()));\n}\n\nexpression level1(const string& S) {\n\tfor (int i = int(S.size()) - 1; i >= 0; i--) {\n\t\tif (S[i] == '*') {\n\t\t\texpression lc = level1(S.substr(0, i));\n\t\t\texpression rc = level0(S.substr(i + 1));\n\t\t\texpression mc(value(), modint(1), value());\n\t\t\treturn merge(merge(lc, mc), rc);\n\t\t}\n\t}\n\treturn level0(S);\n}\n\nexpression level2(const string& S) {\n\tfor (int i = int(S.size()) - 1; i >= 0; i--) {\n\t\tif (S[i] == '+') {\n\t\t\texpression lc = level2(S.substr(0, i));\n\t\t\texpression rc = level1(S.substr(i + 1));\n\t\t\texpression mc(value(), modint(1), modint(0), modint(1), value());\n\t\t\treturn merge(merge(lc, mc), rc);\n\t\t}\n\t}\n\treturn level1(S);\n}\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<int> R(N);\n\tvector<string> S(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> R[i] >> S[i];\n\t\tS[i] = transform(S[i]);\n\t}\n\tvector<expression> E(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tE[i] = level2(S[i]);\n\t}\n\tvector<expression> F(N, expression(value()));\n\tfor (int i = 0; i < N; i++) {\n\t\texpression e = E[i];\n\t\tint b = R[i];\n\t\twhile (b >= 1) {\n\t\t\tif (b % 2 == 1) {\n\t\t\t\tF[i] = merge(F[i], e);\n\t\t\t}\n\t\t\te = merge(e, e);\n\t\t\tb /= 2;\n\t\t}\n\t}\n\texpression result = expression(value());\n\tfor (int i = 0; i < N; i++) {\n\t\tresult = merge(result, F[i]);\n\t}\n\texpression aux(value(), modint(1), modint(0), modint(1), value());\n\texpression ans = merge(merge(aux, result), aux);\n\tmodint final_ans = ans.b;\n\tcout << final_ans.get() << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5032, "score_of_the_acc": -0.0978, "final_rank": 7 }, { "submission_id": "aoj_2789_7182433", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,b) for(int i=a;i<b;i++)\nusing ll = long long;\ntemplate<class T> bool chmin(T &a,const T b){if(a>b){a=b;return 1;}return 0;}\ntemplate<class T> bool chmax(T &a,const T b){if(a<b){a=b;return 1;}return 0;}\nconst int INF = (1<<30)-1;\n#define all(p) p.begin(),p.end()\nconst int mod=1e9+7;\n\n/*\n前から見る\nA = 今の答え\nB = 今の積\nC = 一個前までのやつ\n\nnum\nB' <- B * 10 + C * num\n\n+\nA' <- A + B\nB' <- 1\nC' <- 1\n\n-\nA' <- A + B\nB' <- -1\nC' <- -1\n\n*\nB' <- 0\nC' <- B\n\n*/\n\nint main(){\n\tauto e=[&]()->vector<vector<ll>>{\n\t\tvector<vector<ll>> p(4,vector<ll>(4));\n\t\trep(i,0,4) p[i][i]=1;\n\t\treturn p;\n\t};\n\tauto f=[&](vector<vector<ll>> l,vector<vector<ll>> r)->vector<vector<ll>>{\n\t\tvector<vector<ll>> p(4,vector<ll>(4));\n\t\trep(i,0,4) rep(j,0,4) rep(k,0,4){\n\t\t\tp[i][k]=(p[i][k]+l[i][j]*r[j][k])%mod;\n\t\t}\n\t\treturn p;\n\t};\n\tauto pow_f=[&](vector<vector<ll>> l,int x)->vector<vector<ll>>{\n\t\tauto p=e();\n\t\twhile(x){\n\t\t\tif(x&1) p=f(p,l);\n\t\t\tx/=2;\n\t\t\tl=f(l,l);\n\t\t}\n\t\treturn p;\n\t};\n\tauto ans=e();\n\tint N;\n\tcin>>N;\n\trep(i,0,N+1){\n\t\tint x;\n\t\tstring S;\n\t\tif(i==N) x=1,S='+';\n\t\telse cin>>x>>S;\n\t\tauto tmp=e();\n\t\tauto val=e();\n\t\tfor(auto c:S){\n\t\t\tif(c=='+'){\n\t\t\t\tval={\n\t\t\t\t\t{1,0,0,0},\n\t\t\t\t\t{1,0,0,0},\n\t\t\t\t\t{0,0,0,0},\n\t\t\t\t\t{0,0,1,1}\n\t\t\t\t};\n\t\t\t}else if(c=='-'){\n\t\t\t\tval={\n\t\t\t\t\t{1,0,0,0},\n\t\t\t\t\t{1,0,0,0},\n\t\t\t\t\t{0,0,0,0},\n\t\t\t\t\t{0,0,-1,1}\n\t\t\t\t};\n\t\t\t}else if(c=='*'){\n\t\t\t\tval={\n\t\t\t\t\t{1,0,0,0},\n\t\t\t\t\t{0,0,1,0},\n\t\t\t\t\t{0,0,0,0},\n\t\t\t\t\t{0,0,0,1}\n\t\t\t\t};\n\t\t\t}else{\n\t\t\t\tval={\n\t\t\t\t\t{1,0,0,0},\n\t\t\t\t\t{0,10,0,0},\n\t\t\t\t\t{0,c-'0',1,0},\n\t\t\t\t\t{0,0,0,1}\n\t\t\t\t};\n\t\t\t}\n\t\t\ttmp=f(tmp,val);\n\t\t}\n\t\ttmp=pow_f(tmp,x);\n\t\tans=f(ans,tmp);\n\t}\n\tcout<<(ans[2][0]+ans[3][0]+mod+mod)%mod<<\"\\n\";\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 3460, "score_of_the_acc": -0.3772, "final_rank": 12 }, { "submission_id": "aoj_2789_6012592", "code_snippet": "//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 2;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nstruct num {\n\tmodint val;\n\tmodint coef;\n};\n\nstruct Data {\n\tvector<num> vn;\n\tvector<char> vc;\n};\n\nnum merge(num a, num b) {\n\treturn { a.val * b.coef + b.val,a.coef * b.coef };\n}\n\nmodint calc(vector<num> vn, vector<char> vc) {\n\tmodint res = 0;\n\tmodint cur = vn[0].val;\n\trep(i, vc.size()) {\n\t\tif (vc[i] == '*') {\n\t\t\tcur*= vn[i + 1].val;\n\t\t}\n\t\telse {\n\t\t\tres += cur;\n\t\t\tcur = vn[i + 1].val;\n\t\t\tif (vc[i] == '-')cur *= -1;\n\t\t}\n\t}\n\tres += cur;\n\treturn res;\n}\nData merge(Data a, Data b) {\n\tvector<num> vn;\n\tvector<char> vc;\n\trep(i, a.vn.size())vn.push_back(a.vn[i]);\n\tvn.back() = merge(vn.back(), b.vn[0]);\n\tfor (int i = 1; i < b.vn.size(); i++)vn.push_back(b.vn[i]);\n\trep(i, a.vc.size())vc.push_back(a.vc[i]);\n\trep(i, b.vc.size())vc.push_back(b.vc[i]);\n\tint cnt = 0;\n\trep(i, vc.size()) {\n\t\tif (vc[i] == '+' || vc[i] == '-')cnt++;\n\t}\n\tif (cnt == 0) {\n\t\tif (vc.size() >= 3) {\n\t\t\tvector<num> nvn;\n\t\t\tvector<char> nvc;\n\t\t\tnvc = { '*','*' };\n\t\t\tnvn.push_back(vn[0]);\n\t\t\tmodint pro = 1;\n\t\t\tfor (int i = 1; i < vn.size() - 1; i++) {\n\t\t\t\tpro *= vn[i].val;\n\t\t\t}\n\t\t\tnvn.push_back({ pro,1 });\n\t\t\tnvn.push_back(vn.back());\n\t\t\tswap(vn, nvn);\n\t\t\tswap(vc, nvc);\n\t\t}\n\t\telse {\n\t\t\t//\n\t\t}\n\t}\n\telse if (cnt == 1) {\n\t\twhile (vc.size() >= 2 && vc[0]=='*'&&vc[1] == '*') {\n\t\t\tmodint pro = vn[1].val * vn[2].val;\n\t\t\tvn.erase(vn.begin() + 2);\n\t\t\tvn[1] = { pro,1 };\n\t\t\tvc.erase(vc.begin() + 1);\n\t\t}\n\t\twhile (vc.size() >= 2 && vc[vc.size() - 2] == '*' && vc[vc.size() - 1] == '*') {\n\t\t\tmodint pro = vn[vn.size() - 3].val * vn[vn.size() - 2].val;\n\t\t\tvn[vn.size() - 2] = { pro,1 };\n\t\t\tvn.erase(vn.begin() + (vn.size() - 3));\n\t\t\tvc.erase(vc.begin() + (vc.size() - 2));\n\t\t}\n\t\t/*rep(i, vc.size())if (vc[i] != '*') {\n\t\t\tif (i >= 2) {\n\t\t\t\tmodint pro = 1;\n\t\t\t\tfor (int j = 1; j <= i; j++) {\n\t\t\t\t\tpro *= vn[j].val;\n\t\t\t\t}\n\t\t\t\tvn[1] = { pro,1 };\n\t\t\t\tvn.erase(vn.begin() + 2, vn.begin() + i + 1);\n\t\t\t\tvc.erase(vc.begin() + 2, vc.begin() + i);\n\t\t\t}\n\t\t\tbreak;\n\t\t}*/\n\t\t/*per(i, vc.size())if (vc[i] != '*') {\n\t\t\tif (vc.size() - i >= 3) {\n\n\t\t\t}\n\t\t\tbreak;\n\t\t}*/\n\t}\n\telse {\n\t\twhile (vc.size() >= 2 && vc[0] == '*' && vc[1] == '*') {\n\t\t\tmodint pro = vn[1].val * vn[2].val;\n\t\t\tvn.erase(vn.begin() + 2);\n\t\t\tvn[1] = { pro,1 };\n\t\t\tvc.erase(vc.begin() + 1);\n\t\t}\n\t\twhile (vc.size() >= 2 && vc[vc.size() - 2] == '*' && vc[vc.size() - 1] == '*') {\n\t\t\tmodint pro = vn[vn.size() - 3].val * vn[vn.size() - 2].val;\n\t\t\tvn[vn.size() - 2] = { pro,1 };\n\t\t\tvn.erase(vn.begin() + (vn.size() - 3));\n\t\t\tvc.erase(vc.begin() + (vc.size() - 2));\n\t\t}\n\t\tint cl, cr;\n\t\trep(i, vc.size())if (vc[i] != '*') {\n\t\t\tcl = i; break;\n\t\t}\n\t\tper(i, vc.size())if (vc[i] != '*') {\n\t\t\tcr = i; break;\n\t\t}\n\t\t//vn...[cl+1,cr]\n\t\t//vc...[cl+1,cr-1]\n\t\tif (vc[cl] == '-') {\n\t\t\tvc[cl] = '+';\n\t\t\tvn[cl + 1].val *= -1;\n\t\t}\n\t\tvector<num> subn;\n\t\tvector<char> subc;\n\t\tRep1(j, cl + 1, cr)subn.push_back(vn[j]);\n\t\tRep1(j, cl + 1, cr - 1) subc.push_back(vc[j]);\n\t\tmodint val = calc(subn,subc);\n\t\tvn.erase(vn.begin() + cl + 1, vn.begin()+cr+1);\n\t\tvn.insert(vn.begin() + cl + 1, { val,1 });\n\t\tvc.erase(vc.begin() + cl + 1, vc.begin() + cr);\n\t}\n\treturn { vn,vc };\n}\n\nData trans(char c) {\n\tvector<num> vn;\n\tvector<char> vc;\n\tif (c == '*'||c=='+'||c=='-') {\n\t\tvn.push_back({ 0,1 });\n\t\tvn.push_back({ 0,1 });\n\t\tvc.push_back(c);\n\t}\n\telse {\n\t\tvn.push_back({ c - '0',10 });\n\t}\n\treturn { vn,vc };\n}\nvoid solve() {\n\tint n; cin >> n;\n\tData e;\n\te.vn.push_back({ 0,1 });\n\tData cur = e;\n\trep(i, n) {\n\t\tint r; cin >> r;\n\t\tstring s; cin >> s;\n\t\tData nw = e;\n\t\tfor (char c : s) {\n\t\t\tData nex = trans(c);\n\t\t\tnw = merge(nw, nex);\n\t\t}\n\t\tData x = e;\n\t\trep(t, 30) {\n\t\t\tif (r & (1 << t))x = merge(x, nw);\n\t\t\tnw = merge(nw, nw);\n\t\t}\n\t\tcur = merge(cur, x);\n\t}\n\tmodint ans = calc(cur.vn,cur.vc);\n\tcout << ans << \"\\n\";\n}\n\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(8);\n\t//init_f();\n\t//init();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 3508, "score_of_the_acc": -0.3343, "final_rank": 11 }, { "submission_id": "aoj_2789_5177701", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define LL long long\n#define PII pair<int,int>\n#define _for(i,j,k) for(int i=j;i<=k;i++)\n#define for_(i,j,k) for(int i=j;i>=k;i--)\n#define lowbit(x) (x&-x)\n#define ls(x) x<<1\n#define rs(x) x<<1|1\n#define inf 0x3f3f3f3f\n#define localtest freopen(\"E:/ACM/2020/input.txt\",\"r\",stdin);\nconst int maxn = 1e4 + 5;\nconst LL mod = 1e9 + 7;\nint n;\nmap<char, LL> pmap;\nLL mp(LL x,LL y){\n x %= mod;\n LL ret = 1ll;\n for (; y;y>>=1,x=(LL)x*x%mod)\n if(y&1)\n ret = (LL)ret * x % mod;\n return ret % mod;\n}\nLL inv(LL x){\n return mp(x, mod - 2);\n}\nstring num2str(LL num){\n string s=\"\";\n while(num){\n s += (num % 10 + '0');\n num /= 10;\n }\n reverse(s.begin(),s.end());\n return s;\n}\nLL str2num(string& s){\n LL num = 0;\n int len = s.length();\n for (int i = 0; i < len;i++){\n num = 10ll * num % mod + (s[i] - '0');\n num %= mod;\n }\n return num;\n}\nLL pro(string& s,bool fg){\n vector<LL> v;\n v.clear();\n //if(s.length()<=0)\n // return 0;\n v.push_back(s[0] - '0');\n int len = s.length(), p = 0;\n for (int i = 1; i < len;i++){\n if(isdigit(s[i])){\n if(v[p]>=0){\n v[p] = 10ll * v[p] % mod + (s[i] - '0');\n v[p] %= mod;\n }\n else{\n ++p;\n v.push_back(s[i] - '0');\n }\n }\n else{\n ++p;\n v.push_back(pmap[s[i]]);\n }\n }\n if(fg)\n v[0] = (LL)(mod - v[0]) % mod;\n vector<LL> u;\n u.push_back(v[0]);\n int cnt = 0;\n for (int i = 1; i <= p;i++){\n if(u[cnt]==-1){\n u.pop_back();\n cnt--;\n LL tmp = u[cnt];\n u.pop_back();\n cnt--;\n tmp = (LL)tmp * v[i] % mod;\n u.push_back(tmp);\n cnt++;\n }\n else{\n u.push_back(v[i]);\n cnt++;\n }\n }\n LL f = 1;\n LL ret = u[0];\n for (int i = 1; i <= cnt;i+=2){\n if(u[i]==-2){\n ret = (LL)(ret + f*u[i + 1]) % mod;\n ret = (LL)(ret + mod) % mod;\n }\n else{\n ret = (LL)(ret - f*u[i + 1]) % mod;\n ret = (LL)(ret + mod) % mod;\n }\n }\n return ret;\n}\nint main(){\n //localtest\n ios::sync_with_stdio(false);\n cin.tie(0);cout.tie(0);\n pmap['*'] = -1;\n pmap['+'] = -2;\n pmap['-'] = -3;\n cin >> n;\n string str=\"\", s;\n LL r = 0;\n _for(i,1,n){\n cin >> r >> s;\n if(r==1){\n str += s;\n }\n else{\n //_for(j, 1, r) str += s;\n int len = s.length(),pos=-1;\n _for(j,0,len-1){\n if(s[j]=='+'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,0);\n tmp = (LL)(r - 1) % mod * tmp % mod;\n //if(s[pos]=='-') tmp = (LL)(mod - tmp) % mod;\n _for(j,0,pos){\n str += s[j];\n }\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n _for(j,0,len-1){\n if(s[j]=='-'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,1);\n tmp = (LL)(r - 1) % mod * tmp % mod;\n //if(s[pos]=='-') tmp = (LL)(mod - tmp) % mod;\n _for(j,0,pos-1){\n str += s[j];\n }\n str += '+';\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n _for(j,0,len-1){\n if(s[j]=='*'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,0);\n tmp = mp(tmp, r - 1);\n _for(j,0,pos){\n str += s[j];\n }\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n LL tmp = str2num(s);\n tmp = (LL)(mp(10, (LL)len * r) - 1 + mod) % mod * tmp % mod;\n tmp = (LL)tmp * inv((mp(10, len) - 1 + mod) % mod) % mod;\n int l = str.length() - 1;\n string tmps = \"\";\n if(isdigit(str[l])){\n while(isdigit(str[l])){\n tmps += str[l];\n str.erase(l);\n l--;\n }\n reverse(tmps.begin(), tmps.end());\n //cout << \"tmps:\" << tmps << \"\\n\";\n //cout << \"tmp:\" << tmp << \"\\n\";\n LL num = str2num(tmps);\n //cout << \"num:\" << num << \"\\n\";\n num = (LL)mp(10, (LL)len * r) * num % mod;\n //cout << \"num:\" << num << \"\\n\";\n num = (LL)(num + tmp) % mod;\n str += num2str(num);\n }\n else{\n str += num2str(tmp);\n }\n }\n }\n }\n }\n //cout << str << \"\\n\";\n //cout << pro(str,0) << \"\\n\";\n }\n \n cout << pro(str,0) << \"\\n\";\n\n return 0;\n}\n/*\n5\n900 5+3*11-3*3+55\n1 45+45-33+100\n44 04+40\n9 9*9*9*10\n8 01340\n205143968\n\n4\n999 100+\n9999 010\n99999 *100\n999999 00200\n389822449\n*/", "accuracy": 0.3877551020408163, "time_ms": 10, "memory_kb": 4384, "score_of_the_acc": -0.0631, "final_rank": 16 }, { "submission_id": "aoj_2789_5177680", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define LL long long\n#define PII pair<int,int>\n#define _for(i,j,k) for(int i=j;i<=k;i++)\n#define for_(i,j,k) for(int i=j;i>=k;i--)\n#define lowbit(x) (x&-x)\n#define ls(x) x<<1\n#define rs(x) x<<1|1\n#define inf 0x3f3f3f3f\n#define localtest freopen(\"E:/ACM/2020/input.txt\",\"r\",stdin);\nconst int maxn = 1e4 + 5;\nconst LL mod = 1e9 + 7;\nint n;\nmap<char, LL> pmap;\nLL mp(LL x,LL y){\n x %= mod;\n LL ret = 1ll;\n for (; y;y>>=1,x=(LL)x*x%mod)\n if(y&1)\n ret = (LL)ret * x % mod;\n return ret % mod;\n}\nLL inv(LL x){\n return mp(x, mod - 2);\n}\nstring num2str(LL num){\n string s=\"\";\n while(num){\n s += (num % 10 + '0');\n num /= 10;\n }\n reverse(s.begin(),s.end());\n return s;\n}\nLL str2num(string& s){\n LL num = 0;\n int len = s.length();\n for (int i = 0; i < len;i++){\n num = 10ll * num % mod + (s[i] - '0');\n num %= mod;\n }\n return num;\n}\nLL pro(string& s,bool fg){\n vector<LL> v;\n v.clear();\n //if(s.length()<=0)\n // return 0;\n v.push_back(s[0] - '0');\n int len = s.length(), p = 0;\n for (int i = 1; i < len;i++){\n if(isdigit(s[i])){\n if(v[p]>=0){\n v[p] = 10ll * v[p] % mod + (s[i] - '0');\n v[p] %= mod;\n }\n else{\n ++p;\n v.push_back(s[i] - '0');\n }\n }\n else{\n ++p;\n v.push_back(pmap[s[i]]);\n }\n }\n vector<LL> u;\n u.push_back(v[0]);\n int cnt = 0;\n for (int i = 1; i <= p;i++){\n if(u[cnt]==-1){\n u.pop_back();\n cnt--;\n LL tmp = u[cnt];\n u.pop_back();\n cnt--;\n tmp = (LL)tmp * v[i] % mod;\n u.push_back(tmp);\n cnt++;\n }\n else{\n u.push_back(v[i]);\n cnt++;\n }\n }\n LL f = fg ? -1 : 1;\n LL ret = u[0];\n for (int i = 1; i <= cnt;i+=2){\n if(u[i]==-2){\n ret = (LL)(ret + f*u[i + 1]) % mod;\n ret = (LL)(ret + mod) % mod;\n }\n else{\n ret = (LL)(ret - f*u[i + 1]) % mod;\n ret = (LL)(ret + mod) % mod;\n }\n }\n return ret;\n}\nint main(){\n //localtest\n ios::sync_with_stdio(false);\n cin.tie(0);cout.tie(0);\n pmap['*'] = -1;\n pmap['+'] = -2;\n pmap['-'] = -3;\n cin >> n;\n string str=\"\", s;\n LL r = 0;\n _for(i,1,n){\n cin >> r >> s;\n if(r==1){\n str += s;\n }\n else{\n //_for(j, 1, r) str += s;\n int len = s.length(),pos=-1;\n _for(j,0,len-1){\n if(s[j]=='+'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,0);\n tmp = (LL)(r - 1) % mod * tmp % mod;\n //if(s[pos]=='-') tmp = (LL)(mod - tmp) % mod;\n _for(j,0,pos){\n str += s[j];\n }\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n _for(j,0,len-1){\n if(s[j]=='-'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,1);\n tmp = (LL)(r - 1) % mod * tmp % mod;\n //if(s[pos]=='-') tmp = (LL)(mod - tmp) % mod;\n _for(j,0,pos){\n str += s[j];\n }\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n _for(j,0,len-1){\n if(s[j]=='*'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,0);\n tmp = mp(tmp, r - 1);\n _for(j,0,pos){\n str += s[j];\n }\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n LL tmp = str2num(s);\n tmp = (LL)(mp(10, (LL)len * r) - 1 + mod) % mod * tmp % mod;\n tmp = (LL)tmp * inv((mp(10, len) - 1 + mod) % mod) % mod;\n int l = str.length() - 1;\n string tmps = \"\";\n if(isdigit(str[l])){\n while(isdigit(str[l])){\n tmps += str[l];\n str.erase(l);\n l--;\n }\n reverse(tmps.begin(), tmps.end());\n //cout << \"tmps:\" << tmps << \"\\n\";\n //cout << \"tmp:\" << tmp << \"\\n\";\n LL num = str2num(tmps);\n //cout << \"num:\" << num << \"\\n\";\n num = (LL)mp(10, (LL)len * r) * num % mod;\n //cout << \"num:\" << num << \"\\n\";\n num = (LL)(num + tmp) % mod;\n str += num2str(num);\n }\n else{\n str += num2str(tmp);\n }\n }\n }\n }\n }\n //cout << str << \"\\n\";\n //cout << pro(str,0) << \"\\n\";\n }\n \n cout << pro(str,0) << \"\\n\";\n\n return 0;\n}\n/*\n5\n900 5+3*11-3*3+55\n1 45+45-33+100\n44 04+40\n9 9*9*9*10\n8 01340\n205143968\n\n4\n999 100+\n9999 010\n99999 *100\n999999 00200\n389822449\n*/", "accuracy": 0.3877551020408163, "time_ms": 10, "memory_kb": 4564, "score_of_the_acc": -0.0727, "final_rank": 18 }, { "submission_id": "aoj_2789_5177512", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define LL long long\n#define PII pair<int,int>\n#define _for(i,j,k) for(int i=j;i<=k;i++)\n#define for_(i,j,k) for(int i=j;i>=k;i--)\n#define lowbit(x) (x&-x)\n#define ls(x) x<<1\n#define rs(x) x<<1|1\n#define inf 0x3f3f3f3f\nconst int maxn = 1e4 + 5;\nconst LL mod = 1e9 + 7;\nint n;\nmap<char, LL> pmap;\nLL mp(LL x,LL y){\n x %= mod;\n LL ret = 1ll;\n for (; y;y>>=1,x=(LL)x*x%mod)\n if(y&1)\n ret = (LL)ret * x % mod;\n return ret % mod;\n}\nLL inv(LL x){\n return mp(x, mod - 2);\n}\nstring num2str(LL num){\n string s=\"\";\n while(num){\n s += (num % 10 + '0');\n num /= 10;\n }\n reverse(s.begin(),s.end());\n return s;\n}\nLL str2num(string& s){\n LL num = 0;\n int len = s.length();\n for (int i = 0; i < len;i++){\n num = 10ll * num % mod + (s[i] - '0');\n num %= mod;\n }\n return num;\n}\nLL pro(string& s,bool fg){\n vector<LL> v;\n v.clear();\n //if(s.length()<=0)\n // return 0;\n v.push_back(s[0] - '0');\n int len = s.length(), p = 0;\n for (int i = 1; i < len;i++){\n if(isdigit(s[i])){\n if(v[p]>=0){\n v[p] = 10ll * v[p] % mod + (s[i] - '0');\n v[p] %= mod;\n }\n else{\n ++p;\n v.push_back(s[i] - '0');\n }\n }\n else{\n ++p;\n v.push_back(pmap[s[i]]);\n }\n }\n vector<LL> u;\n u.push_back(v[0]);\n int cnt = 0;\n for (int i = 1; i <= p;i++){\n if(u[cnt]==-1){\n u.pop_back();\n cnt--;\n LL tmp = u[cnt];\n u.pop_back();\n cnt--;\n tmp = (LL)tmp * v[i] % mod;\n u.push_back(tmp);\n cnt++;\n }\n else{\n u.push_back(v[i]);\n cnt++;\n }\n }\n LL f = fg ? -1 : 1;\n LL ret = u[0];\n for (int i = 1; i <= cnt;i+=2){\n if(u[i]==-2){\n ret = (LL)(ret + f*u[i + 1]) % mod;\n ret = (LL)(ret + mod) % mod;\n }\n else{\n ret = (LL)(ret - f*u[i + 1]) % mod;\n ret = (LL)(ret + mod) % mod;\n }\n }\n return ret;\n}\nint main(){\n //localtest\n ios::sync_with_stdio(false);\n cin.tie(0);cout.tie(0);\n pmap['*'] = -1;\n pmap['+'] = -2;\n pmap['-'] = -3;\n cin >> n;\n string str=\"\", s;\n LL r = 0;\n _for(i,1,n){\n cin >> r >> s;\n if(r==1){\n str += s;\n }\n else{\n //_for(j, 1, r) str += s;\n int len = s.length(),pos=-1;\n _for(j,0,len-1){\n if(s[j]=='+'||s[j]=='-'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,s[pos]=='-');\n tmp = (LL)(r - 1) % mod * tmp % mod;\n //if(s[pos]=='-') tmp = (LL)(mod - tmp) % mod;\n _for(j,0,pos){\n str += s[j];\n }\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n _for(j,0,len-1){\n if(s[j]=='*'){\n pos = j;\n break;\n }\n }\n if(pos!=-1){\n string ss = \"\";\n _for(j,pos+1,len-1){\n ss += s[j];\n }\n _for(j,0,pos-1){\n ss += s[j];\n }\n LL tmp = pro(ss,0);\n tmp = mp(tmp, r - 1);\n _for(j,0,pos){\n str += s[j];\n }\n str += num2str(tmp);\n _for(j,pos,len-1){\n str += s[j];\n }\n }\n else{\n LL tmp = str2num(s);\n tmp = (LL)(mp(10, (LL)len * r) - 1 + mod) % mod * tmp % mod;\n tmp = (LL)tmp * inv((mp(10, len) - 1 + mod) % mod) % mod;\n int l = str.length() - 1;\n string tmps = \"\";\n if(isdigit(str[l])){\n while(isdigit(str[l])){\n tmps += str[l];\n str.erase(l);\n l--;\n }\n reverse(tmps.begin(), tmps.end());\n //cout << \"tmps:\" << tmps << \"\\n\";\n //cout << \"tmp:\" << tmp << \"\\n\";\n LL num = str2num(tmps);\n //cout << \"num:\" << num << \"\\n\";\n num = (LL)mp(10, (LL)len * r) * num % mod;\n //cout << \"num:\" << num << \"\\n\";\n num = (LL)(num + tmp) % mod;\n str += num2str(num);\n }\n else{\n str += num2str(tmp);\n }\n }\n }\n }\n //cout << str << \"\\n\";\n //cout << pro(str,0) << \"\\n\";\n }\n \n cout << pro(str,0) << \"\\n\";\n\n return 0;\n}\n/*\n5\n900 5+3*11-3*3+55\n1 45+45-33+100\n44 04+40\n9 9*9*9*10\n8 01340\n205143968\n\n4\n999 100+\n9999 010\n99999 *100\n999999 00200\n389822449\n*/", "accuracy": 0.3877551020408163, "time_ms": 10, "memory_kb": 4396, "score_of_the_acc": -0.0637, "final_rank": 17 }, { "submission_id": "aoj_2789_3661571", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\nint N;\nchar buf[11];\n\ntypedef vector<ll> V;\ntypedef vector<V> MATRIX;\n\nint SIZE = 2;\nll MOD_POW[11];\n\n\nll mod_pow(ll x,ll n, ll mod){\n\n\tif(n == 0)return 1;\n\tll ret = mod_pow(x*x%mod,n/2,mod);\n\tif(n%2 == 1)ret = ret*x%mod;\n\treturn ret;\n}\n\n\nMATRIX calc(MATRIX left,MATRIX right){\n\n\tMATRIX ret(SIZE,V(SIZE));\n\n\tfor(int i = 0; i < SIZE; i++){\n\t\tfor(int k = 0; k < SIZE; k++)ret[i][k] = 0;\n\t}\n\n\tfor(int row = 0; row < SIZE; row++){\n\t\tfor(int col = 0; col < SIZE; col++){\n\t\t\tfor(int a = 0; a < SIZE; a++){\n\t\t\t\tret[row][col] += left[row][a]*right[a][col]%MOD;\n\t\t\t}\n\t\t}\n\t}\n\n\treturn ret;\n\n}\n\n//MULTのT乗を計算する\nMATRIX POW(MATRIX MULT,int count){\n\n\tMATRIX ret(SIZE,V(SIZE));\n\n\tfor(int row = 0; row < SIZE; row++){\n\t\tfor(int col = 0; col < SIZE; col++){\n\t\t\tif(row == col)ret[row][col] = 1;\n\t\t\telse{\n\t\t\t\tret[row][col] = 0;\n\t\t\t}\n\t\t}\n\t}\n\n\twhile(count > 0){\n\t\tif(count%2 == 1)ret = calc(ret,MULT);\n\t\tMULT = calc(MULT,MULT);\n\t\tcount /= 2;\n\t}\n\n\treturn ret;\n}\n\nint main(){\n\n\tMOD_POW[0] = 1;\n\n\tfor(int i = 1; i <= 10; i++){\n\n\t\tMOD_POW[i] = (MOD_POW[i-1]*10)%MOD;\n\t}\n\n\tscanf(\"%d\",&N);\n\n\tqueue<ll> NUM,MULT;\n\tqueue<char> OP;\n\n\tNUM.push(0);\n\tOP.push('+');\n\n\tint rep_num;\n\tll last_num = 0,length;\n\tbool is_last_num = false;\n\tchar last_op = '+';\n\n\tbool is_op,is_plus_minus;\n\n\tfor(int loop = 0; loop < N; loop++){\n\n\t\tscanf(\"%d %s\",&rep_num,buf);\n\n\t\tis_op = false;\n\t\tis_plus_minus = false;\n\n\t\tfor(length = 0; buf[length] != '\\0'; length++){\n\n\t\t\tswitch(buf[length]){\n\t\t\tcase '+':\n\t\t\tcase '-':\n\t\t\t\tis_op = true;\n\t\t\t\tis_plus_minus = true;\n\t\t\t\tbreak;\n\t\t\tcase '*':\n\t\t\t\tis_op = true;\n\t\t\t\tbreak;\n\t\t\tdefault: //数字\n\t\t\t\t//Do nothing\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\n\t\tif(!is_op){ //数字のみの場合\n\n\t\t\tll num = 0;\n\n\t\t\tfor(int i = 0; i < length; i++){\n\n\t\t\t\tnum = 10*num+(buf[i]-'0');\n\t\t\t\tnum %= MOD;\n\t\t\t}\n\n\t\t\tMATRIX first(2,V(1));\n\n\t\t\tif(is_last_num){ //文字列の最後が数字の場合\n\n\t\t\t\tfirst[0][0] = last_num;\n\n\t\t\t}else{ //文字列の最後が演算子の場合\n\n\t\t\t\tfirst[0][0] = 0;\n\t\t\t}\n\n\t\t\tfirst[0][1] = 1;\n\n\t\t\tMATRIX A(SIZE,V(SIZE));\n\t\t\tA[0][0] = MOD_POW[length];\n\t\t\tA[0][1] = num;\n\n\t\t\tA[1][0] = 0;\n\t\t\tA[1][1] = 1;\n\n\t\t\tA = POW(A,rep_num);\n\n\t\t\tlast_num = (A[0][0]*first[0][0]+A[0][1])%MOD;\n\n\t\t\tis_last_num = true;\n\n\t\t}else{\n\n\t\t\tif(!is_plus_minus){ //*のみの場合\n\n\t\t\t\tint first_loc;\n\n\t\t\t\tfor(int i = 0; i < length; i++){\n\n\t\t\t\t\tif(buf[i] == '*'){\n\n\t\t\t\t\t\tfirst_loc = i;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tll L;\n\n\t\t\t\tif(first_loc > 0){ //最初の*の左の数字\n\n\t\t\t\t\tll tmp = 0;\n\t\t\t\t\tfor(int i = 0; i < first_loc; i++){\n\n\t\t\t\t\t\ttmp = 10*tmp + (buf[i]-'0');\n\t\t\t\t\t\ttmp %= MOD;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(is_last_num){\n\n\t\t\t\t\t\ttmp = last_num*MOD_POW[first_loc]+tmp; //左にシフトさせて足す\n\t\t\t\t\t\ttmp %= MOD;\n\n\t\t\t\t\t\tL = tmp;\n\n\t\t\t\t\t}else{ //前の文字列の最後が演算子\n\n\t\t\t\t\t\tif(last_op == '*'){ //数字確定\n\n\t\t\t\t\t\t\tMULT.push(tmp);\n\t\t\t\t\t\t\tL = 1;\n\n\t\t\t\t\t\t}else{ //★注意★\n\n\t\t\t\t\t\t\tL = tmp;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t}else{ //first_loc == 0\n\n\t\t\t\t\tL = last_num; //必ずis_last_num == trueであるはず\n\t\t\t\t}\n\n\t\t\t\tll tmp = 0;\n\t\t\t\tstack<ll> tmp_MULT;\n\n\t\t\t\tif(rep_num == 1){\n\n\t\t\t\t\tMULT.push(L);\n\n\t\t\t\t\tll work = 0;\n\n\t\t\t\t\tint last_loc;\n\t\t\t\t\tfor(int i = length-1; i >= 0; i--){\n\t\t\t\t\t\tif(buf[i] == '*'){\n\t\t\t\t\t\t\tlast_loc = i;\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tfor(int i = first_loc+1; i < last_loc; i++){\n\n\t\t\t\t\t\tif(buf[i] == '*'){\n\t\t\t\t\t\t\tMULT.push(work);\n\t\t\t\t\t\t\twork = 0;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\twork = 10*work+(buf[i]-'0');\n\t\t\t\t\t\t\twork %= MOD;\n\n\t\t\t\t\t\t\tif(i+1 == last_loc){\n\n\t\t\t\t\t\t\t\tMULT.push(work);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tlast_num = 0;\n\t\t\t\t\tfor(int i = last_loc+1; i < length; i++){\n\n\t\t\t\t\t\tlast_num = 10*last_num+(buf[i]-'0');\n\t\t\t\t\t\tlast_num %= MOD;\n\t\t\t\t\t}\n\n\t\t\t\t\tif(last_loc == length-1){\n\n\t\t\t\t\t\tis_last_num = false;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tis_last_num = true;\n\t\t\t\t\t}\n\n\t\t\t\t\tlast_op = '*';\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\n\t\t\t\tfor(int i = first_loc+1; i < length; i++){\n\n\t\t\t\t\tif(buf[i] == '*'){\n\n\t\t\t\t\t\ttmp_MULT.push(tmp);\n\t\t\t\t\t\ttmp = 0;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\ttmp = 10*tmp+(buf[i]-'0');\n\t\t\t\t\t\ttmp %= MOD;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tfor(int i = 0; i < first_loc; i++){\n\n\t\t\t\t\ttmp = 10*tmp+(buf[i]-'0');\n\t\t\t\t\ttmp %= MOD;\n\t\t\t\t}\n\t\t\t\ttmp_MULT.push(tmp);\n\n\t\t\t\tll A = 1;\n\n\t\t\t\twhile(!tmp_MULT.empty()){\n\n\t\t\t\t\tA *= tmp_MULT.top();\n\t\t\t\t\tA %= MOD;\n\t\t\t\t\ttmp_MULT.pop();\n\t\t\t\t}\n\n\t\t\t\tif(rep_num > 1){\n\n\t\t\t\t\tA = mod_pow(A,rep_num-1,MOD);\n\t\t\t\t\tA *= L;\n\t\t\t\t\tA %= MOD;\n\t\t\t\t\tMULT.push(A); //最後のopは'*'なので\n\t\t\t\t}\n\n\t\t\t\t//★first_loc+1からlengthまでに*があるか調べる\n\t\t\t\tint last_loc;\n\t\t\t\tfor(int i = length-1; i >= 0; i--){\n\t\t\t\t\tif(buf[i] == '*'){\n\n\t\t\t\t\t\tlast_loc = i;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(last_loc == first_loc){\n\n\t\t\t\t\tif(buf[length-1] == '*'){ //first_loc==last_loc == length-1\n\n\t\t\t\t\t\tlast_num = A;\n\t\t\t\t\t\tis_last_num = false;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tlast_num = 0;\n\t\t\t\t\t\tfor(int i = last_loc+1; i < length; i++){\n\n\t\t\t\t\t\t\tlast_num = 10*last_num+(buf[i]-'0');\n\t\t\t\t\t\t\tlast_num %= MOD;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tis_last_num = true;\n\t\t\t\t\t}\n\n\t\t\t\t}else{ //last_loc != first_loc\n\n\t\t\t\t\tll work = 0;\n\t\t\t\t\tstack<ll> work_num;\n\n\t\t\t\t\tfor(int i = first_loc+1; i < last_loc; i++){\n\n\t\t\t\t\t\tif(buf[i] == '*'){\n\n\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\twork = 0;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\twork = 10*work+(buf[i]-'0');\n\t\t\t\t\t\t\twork %= MOD;\n\t\t\t\t\t\t\tif(i+1 == last_loc){\n\n\t\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tll D = work_num.top();\n\t\t\t\t\twork_num.pop();\n\n\t\t\t\t\twhile(!work_num.empty()){\n\n\t\t\t\t\t\tD *= work_num.top();\n\t\t\t\t\t\tD %= MOD;\n\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\tMULT.push(D);\n\n\t\t\t\t\tlast_num = 0;\n\n\t\t\t\t\tfor(int i = last_loc+1; i < length; i++){\n\n\t\t\t\t\t\tlast_num = 10*last_num+(buf[i]-'0');\n\t\t\t\t\t\tlast_num %= MOD;\n\t\t\t\t\t}\n\n\t\t\t\t\tif('0' <= buf[length-1] && '9' >= buf[length-1]){\n\n\t\t\t\t\t\tis_last_num = true;\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tis_last_num = false;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tlast_op = '*';\n\n\t\t\t}else{ //+か-が出現する場合\n\n\t\t\t\tint first_loc;\n\n\t\t\t\tfor(int i = 0; i < length; i++){\n\n\t\t\t\t\tif(buf[i] == '+' || buf[i] == '-'){\n\n\t\t\t\t\t\tfirst_loc = i;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t//★★*が混ざっている可能性あり★★\n\t\t\t\tll L,work = 0;\n\t\t\t\tstack<ll> work_num;\n\n\t\t\t\tfor(int i = 0; i < first_loc; i++){\n\n\t\t\t\t\tif(buf[i] == '*'){\n\n\t\t\t\t\t\tif(work_num.empty()){ //初めての'*'\n\n\t\t\t\t\t\t\tif(is_last_num){ //数字が前から続いている場合\n\n\t\t\t\t\t\t\t\twork = last_num*MOD_POW[i]+work;\n\t\t\t\t\t\t\t\twork %= MOD;\n\t\t\t\t\t\t\t\twork_num.push(work);\n\n\t\t\t\t\t\t\t}else{ //前の文字列が演算子で終了している場合\n\n\t\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t}else{ //2つめ以降の'*';\n\n\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\twork = 0;\n\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\t//first_locの左は必ず数字であるはず\n\t\t\t\t\t\twork = 10*work+(buf[i]-'0');\n\t\t\t\t\t\twork %= MOD;\n\n\t\t\t\t\t\tif(i+1 == first_loc){\n\n\t\t\t\t\t\t\tif(work_num.empty()){ //★★\n\n\t\t\t\t\t\t\t\tif(is_last_num){ //数字が前から続いている場合\n\n\t\t\t\t\t\t\t\t\twork = last_num*MOD_POW[i+1]+work;\n\t\t\t\t\t\t\t\t\twork %= MOD;\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\twhile(!work_num.empty()){\n\n\t\t\t\t\twork *= work_num.top();\n\t\t\t\t\twork %= MOD;\n\t\t\t\t\twork_num.pop();\n\t\t\t\t}\n\n\t\t\t\tif(first_loc == 0){\n\n\t\t\t\t\twork = last_num; //★★\n\t\t\t\t}\n\n\t\t\t\tif(last_op == '*'){ //数字を連結させる\n\n\t\t\t\t\tMULT.push(work);\n\n\t\t\t\t\tll tmp = 1;\n\n\t\t\t\t\twhile(!MULT.empty()){\n\n\t\t\t\t\t\ttmp *= MULT.front();\n\t\t\t\t\t\ttmp %= MOD;\n\t\t\t\t\t\tMULT.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\tNUM.push(tmp);\n\n\t\t\t\t}else{ //プラスかマイナス\n\n\t\t\t\t\tNUM.push(work);\n\t\t\t\t}\n\n\t\t\t\tif(rep_num > 1){\n\n\t\t\t\t\tOP.push('+'); //★★掛け算の準備★★\n\t\t\t\t}else{\n\n\t\t\t\t\tint last_loc;\n\t\t\t\t\tfor(int i = length-1; i >= 0; i--){\n\t\t\t\t\t\tif(buf[i] == '+' || buf[i] == '-'){\n\t\t\t\t\t\t\tlast_loc = i;\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tif(last_loc == first_loc){\n\n\t\t\t\t\t\tOP.push(buf[first_loc]);\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tOP.push('+'); //追いかけの数字は'-'を反映させる\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\t//first_loc間の計算値を求め、掛け算に持ち込む\n\n\t\t\t\tchar work_buf[11];\n\t\t\t\tint work_index = 0;\n\n\t\t\t\tstack<char> work_op;\n\t\t\t\tstack<ll> calc_num;\n\t\t\t\tstack<char> calc_op;\n\n\t\t\t\tint last_loc;\n\n\t\t\t\tfor(int i = length-1; i >= 0; i--){\n\n\t\t\t\t\tif(buf[i] == '+' || buf[i] == '-'){\n\t\t\t\t\t\tlast_loc = i;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(rep_num > 1){\n\n\t\t\t\t\tfor(int i = first_loc+1; i < length; i++){\n\n\t\t\t\t\t\twork_buf[work_index++] = buf[i];\n\t\t\t\t\t}\n\t\t\t\t\tfor(int i = 0; i < first_loc; i++){\n\n\t\t\t\t\t\twork_buf[work_index++] = buf[i];\n\t\t\t\t\t}\n\n\t\t\t\t\twork_num.push(0);\n\t\t\t\t\twork_op.push(buf[first_loc]);\n\n\t\t\t\t\twork = 0;\n\n\t\t\t\t\tfor(int i = 0; i < work_index; i++){\n\n\t\t\t\t\t\tif(work_buf[i] == '*' || work_buf[i] == '+' || work_buf[i] == '-'){\n\n\t\t\t\t\t\t\tif(work_op.empty() == false && work_op.top() == '*'){\n\n\t\t\t\t\t\t\t\twork *= work_num.top();\n\t\t\t\t\t\t\t\twork %= MOD;\n\t\t\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t\t\t\twork_op.pop();\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\twork_op.push(work_buf[i]);\n\t\t\t\t\t\t\twork = 0;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\twork = 10*work+(work_buf[i]-'0');\n\t\t\t\t\t\t\twork %= MOD;\n\n\t\t\t\t\t\t\tif(i+1 == work_index){\n\n\t\t\t\t\t\t\t\tif(work_op.empty() == false && work_op.top() == '*'){\n\n\t\t\t\t\t\t\t\t\twork *= work_num.top();\n\t\t\t\t\t\t\t\t\twork %= MOD;\n\t\t\t\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t\t\t\t\twork_op.pop();\n\t\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\t//このままだと右結合になってしまうので左結合にする\n\n\t\t\t\t\twhile(!work_num.empty()){\n\n\t\t\t\t\t\tcalc_num.push(work_num.top());\n\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(!work_op.empty()){\n\n\t\t\t\t\t\tcalc_op.push(work_op.top());\n\t\t\t\t\t\twork_op.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\tll A = calc_num.top();\n\t\t\t\t\tcalc_num.pop();\n\n\t\t\t\t\twhile(!calc_op.empty()){\n\t\t\t\t\t\tif(calc_op.top() == '+'){\n\n\t\t\t\t\t\t\tA += calc_num.top();\n\t\t\t\t\t\t\tA %= MOD;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tA -= calc_num.top();\n\t\t\t\t\t\t\tif(A < 0)A += MOD;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tcalc_op.pop();\n\t\t\t\t\t\tcalc_num.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\tA *= rep_num-1;\n\t\t\t\t\tA %= MOD;\n\n\t\t\t\t\tNUM.push(A);\n\n\t\t\t\t\tif(last_loc != first_loc){\n\t\t\t\t\t\tOP.push('+'); //★★注意→追いかけで突っ込む数字はマイナスを反映させる★★\n\t\t\t\t\t}else{\n\t\t\t\t\t\tOP.push(buf[first_loc]);\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tif(first_loc < last_loc){ //途中の数式を積む\n\n\t\t\t\t\twork = 0;\n\n\t\t\t\t\twork_num.push(0);\n\t\t\t\t\twork_op.push(buf[first_loc]);\n\n\t\t\t\t\tif(buf[first_loc] == '-'){\n\n\n\t\t\t\t\t}\n\n\t\t\t\t\tfor(int i = first_loc+1; i < last_loc; i++){\n\n\t\t\t\t\t\tif(buf[i] == '*' || buf[i] == '+' || buf[i] == '-'){\n\n\t\t\t\t\t\t\tif(work_op.empty() == false && work_op.top() == '*'){\n\n\t\t\t\t\t\t\t\twork *= work_num.top();\n\t\t\t\t\t\t\t\twork %= MOD;\n\t\t\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t\t\t\twork_op.pop();\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\twork_op.push(buf[i]);\n\t\t\t\t\t\t\twork = 0;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\twork = 10*work+(buf[i]-'0');\n\t\t\t\t\t\t\twork %= MOD;\n\n\t\t\t\t\t\t\tif(i+1 == last_loc){\n\n\t\t\t\t\t\t\t\tif(work_op.empty() == false && work_op.top() == '*'){\n\n\t\t\t\t\t\t\t\t\twork *= work_num.top();\n\t\t\t\t\t\t\t\t\twork %= MOD;\n\t\t\t\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t\t\t\t\twork_op.pop();\n\t\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\t//このままだと右結合になってしまうので左結合にする\n\t\t\t\t\twhile(!work_num.empty()){\n\n\t\t\t\t\t\tcalc_num.push(work_num.top());\n\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\twhile(!work_op.empty()){\n\n\t\t\t\t\t\tcalc_op.push(work_op.top());\n\t\t\t\t\t\twork_op.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\tll A;\n\n\t\t\t\t\tA = calc_num.top();\n\t\t\t\t\tcalc_num.pop();\n\n\t\t\t\t\twhile(!calc_op.empty()){\n\t\t\t\t\t\tif(calc_op.top() == '+'){\n\n\t\t\t\t\t\t\tA += calc_num.top();\n\t\t\t\t\t\t\tA %= MOD;\n\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tA -= calc_num.top();\n\t\t\t\t\t\t\tif(A < 0)A += MOD;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tcalc_op.pop();\n\t\t\t\t\t\tcalc_num.pop();\n\t\t\t\t\t}\n\n\t\t\t\t\tNUM.push(A);\n\t\t\t\t}\n\n\t\t\t\tif(first_loc < last_loc){\n\n\t\t\t\t\tOP.push(buf[last_loc]);\n\t\t\t\t}\n\n\t\t\t\tif(last_loc == length-1){\n\n\t\t\t\t\tlast_num = 0; //次の文字列と結合することはない\n\t\t\t\t\tis_last_num = false;\n\n\t\t\t\t}else{ //last_numを求める★★次に数字が連結する場合あり★★\n\n\t\t\t\t\twork = 0;\n\n\t\t\t\t\t//★★*が混ざっているか調べる★★\n\t\t\t\t\tint last_mult = -1;\n\t\t\t\t\tfor(int i = length -1; i > last_loc; i--){\n\n\t\t\t\t\t\tif(buf[i] == '*'){\n\n\t\t\t\t\t\t\tlast_mult = i;\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tif(last_mult == -1 || last_mult < last_loc){ //最後の±から末尾までに*がない\n\n\t\t\t\t\t\tlast_num = 0;\n\n\t\t\t\t\t\tfor(int i = last_loc+1; i < length; i++){\n\n\t\t\t\t\t\t\tlast_num = 10*last_num+(buf[i]-'0');\n\t\t\t\t\t\t\tlast_num %= MOD;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif(last_loc == length-1){\n\n\t\t\t\t\t\t\tis_last_num = false;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tis_last_num = true;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}else{ //last_loc+1~last_multまでをMULTに突っ込む\n\n\t\t\t\t\t\twork = 0;\n\t\t\t\t\t\tlast_op = '*';\n\n\t\t\t\t\t\tfor(int i = last_loc+1; i < last_mult; i++){\n\n\t\t\t\t\t\t\tif(buf[i] == '*'){\n\n\t\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\t\twork = 0;\n\n\t\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\t\twork = 10*work+(buf[i]-'0');\n\t\t\t\t\t\t\t\twork %= MOD;\n\n\t\t\t\t\t\t\t\tif(i+1 == last_mult){\n\n\t\t\t\t\t\t\t\t\twork_num.push(work);\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tll tmp = 1;\n\n\t\t\t\t\t\twhile(!work_num.empty()){\n\n\t\t\t\t\t\t\ttmp *= work_num.top();\n\t\t\t\t\t\t\ttmp %= MOD;\n\t\t\t\t\t\t\twork_num.pop();\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tMULT.push(tmp);\n\t\t\t\t\t\tlast_num = 0;\n\n\t\t\t\t\t\tfor(int i = last_mult+1; i < length; i++){\n\n\t\t\t\t\t\t\tlast_num = 10*last_num+(buf[i]-'0');\n\t\t\t\t\t\t\tlast_num %= MOD;\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\tif(last_mult == length-1){\n\n\t\t\t\t\t\t\tis_last_num = false;\n\t\t\t\t\t\t}else{\n\n\t\t\t\t\t\t\tis_last_num = true;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t//last_numが残っていたら処理\n\tif(last_op == '*'){\n\n\t\twhile(!MULT.empty()){\n\t\t\tlast_num *= MULT.front();\n\t\t\tlast_num %= MOD;\n\t\t\tMULT.pop();\n\t\t}\n\t\tNUM.push(last_num);\n\n\t}else{\n\n\t\tNUM.push(last_num);\n\t}\n\n\tll ans = NUM.front();\n\tNUM.pop();\n\n\twhile(!OP.empty()){\n\n\t\tif(OP.front() == '+'){\n\n\t\t\tans += NUM.front();\n\t\t\tans %= MOD;\n\t\t\tNUM.pop();\n\n\t\t}else{\n\n\t\t\tans -= NUM.front();\n\t\t\tif(ans < 0)ans += MOD;\n\t\t\tans %= MOD;\n\t\t\tNUM.pop();\n\t\t}\n\t\tOP.pop();\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3440, "score_of_the_acc": -0.0352, "final_rank": 3 }, { "submission_id": "aoj_2789_3191910", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcount\n\n#define INF 1e16\n#define mod 1000000007LL\n\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nmat operator*(const mat& a,const mat& b){\n mat res(4,vec(4,0));\n const ll modl=8*mod*mod;\n rep(i,4){\n rep(k,4){\n rep(j,4){\n res[i][j]+=a[i][k]*b[k][j];\n if(res[i][j]>=modl)res[i][j]-=modl;\n }\n }\n rep(j,4)res[i][j]%=mod;\n }\n return res;\n}\n\nmat mpow(mat a,ll n){\n mat res(4,vec(4,0));\n rep(i,4)res[i][i]=1;\n while(n>0){\n if(n&1)res=res*a;\n a=a*a;\n n>>=1;\n }\n return res;\n}\n\nll pls[4][4]={\n {1, 0, 1, 0},\n {0, 0, 0, 1},\n {0, 0, 0, 0},\n {0, 0, 0, 1},\n};\n\nll mns[4][4]={\n {1, 0, 1, 0},\n {0, 0, 0, mod-1},\n {0, 0, 0, 0},\n {0, 0, 0, 1},\n};\n\nll mul[4][4]={\n {1, 0, 0, 0},\n {0, 0, 1, 0},\n {0, 0, 0, 0},\n {0, 0, 0, 1},\n};\n\nll num[4][4]={\n {1, 0, 0, 0},\n {0, 1, 0, 0},\n {0, 0, 10, 0},\n {0, 0, 0, 1},\n};\n\nint N;\n\nint main(){\n scanf(\"%d\",&N);\n vector<int> ps(N);\n vector<string> rs(N);\n rep(i,N){\n cin>>ps[i]>>rs[i];\n }\n ps.push_back(1); rs.push_back(\"+\"); N++;\n mat crt(4,vec(4,0));\n rep(i,4)crt[i][i]=1;\n\n rep(i,N){\n mat m(4,vec(4,0));\n rep(j,4)m[j][j]=1;\n rep(j,rs[i].size()){\n mat op(4,vec(4,0));\n if(rs[i][j]=='+'){\n rep(k,4)rep(l,4)op[k][l]=pls[k][l];\n }\n if(rs[i][j]=='-'){\n rep(k,4)rep(l,4)op[k][l]=mns[k][l];\n }\n if(rs[i][j]=='*'){\n rep(k,4)rep(l,4)op[k][l]=mul[k][l];\n }\n if(isdigit(rs[i][j])){\n rep(k,4)rep(l,4)op[k][l]=num[k][l];\n op[2][1]=rs[i][j]-'0';\n }\n m=op*m;\n }\n m=mpow(m,ps[i]);\n crt=m*crt;\n }\n\n cout<<(crt[0][1]+crt[0][3])%mod<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3952, "score_of_the_acc": -0.449, "final_rank": 13 }, { "submission_id": "aoj_2789_3185239", "code_snippet": "#include <bits/stdc++.h>\n#define MOD 1000000007LL\nusing namespace std;\ntypedef long long ll;\n\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nmat mul(mat &A,mat &B){\n\tmat C(A.size(),vec(B[0].size()));\n\tfor(int i=0;i<A.size();i++){\n\t\tfor(int k=0;k<B.size();k++){\n\t\t\tfor(int j=0;j<B[0].size();j++){\n\t\t\t\tC[i][j]=(C[i][j]+(A[i][k]*B[k][j]%MOD))%MOD;\n\t\t\t}\n\t\t}\n\t}\n\treturn C;\n}\n\nmat pow(mat A,ll n){\n\tmat B(A.size(),vec(A.size()));\n\tfor(int i=0;i<A.size();i++){\n\t\tB[i][i]=1;\n\t}\n\twhile(n>0){\n\t\tif(n&1)B=mul(B,A);\n\t\tA=mul(A,A);\n\t\tn>>=1;\n\t}\n\treturn B;\n}\n\nll matpow(ll x,ll n){\n\tll ret=1;\n\twhile(n>0){\n\t\tif(n&1)ret=ret*x%MOD;\n\t\tx=x*x%MOD;\n\t\tn/=2LL;\n\t}\n\treturn ret;\n}\n\nbool isnumber(string s){\n\tfor(int i=0;i<s.size();i++){\n\t\tif(!isdigit(s[i]))return false;\n\t}\n\treturn true;\n}\n\nll getnum(string s){\n\tll res=0;\n\tfor(int i=0;i<s.size();i++){\n\t\tres*=10LL;\n\t\tres+=(s[i]-'0');\n\t\tres%=MOD;\n\t}\n\treturn res;\n}\n\ntypedef string::const_iterator State;\nll number(State &begin){\n\tll ret=0;\n\twhile(isdigit(*begin)){\n\t\tret*=10;\n\t\tret+=(*begin-'0');\n\t\tbegin++;\n\t}\n\tret%=MOD;\n\treturn ret;\n}\n\nll term(State &begin){\n\tll ret=number(begin);\n\twhile(1){\n\t\tif(*begin=='*'){\n\t\t\tbegin++;\n\t\t\tret*=number(begin);\n\t\t\tret%=MOD;\n\t\t}else{\n\t\t\tbreak;\n\t\t}\n\t}\n\treturn ret;\n}\nll expression(State &begin){\n\tll ret=term(begin);\n\twhile(1){\n\t\tif(*begin=='+'){\n\t\t\tbegin++;\n\t\t\tret+=term(begin);\n\t\t\tret%=MOD;\n\t\t}else{\n\t\t\tbreak;\n\t\t}\n\t}\n\treturn ret;\n}\n\nll getval(string s,int f){\n\tstring ss=s.substr(f);\n\tif(f!=0)ss+=s.substr(0,f-1);\n\telse{\n\t\tss=s.substr(0,s.size()-1);\n\t}\n\tState st=ss.begin();\n\treturn expression(st);\n}\n\nstring replace_str(string s){\n\tstring res=\"\";\n\tfor(int i=0;i<s.size();i++){\n\t\tif(s[i]=='-'){\n\t\t\tres+=\"+1000000006*\";\n\t\t}else{\n\t\t\tres+=s[i];\n\t\t}\n\t}\n\treturn res;\n}\n\nint n;\nint r[10005];\nll tp[15];\n\nint main(void){\n\tscanf(\"%d%*c\",&n);\n\ttp[0]=1;\n\tfor(int i=0;i<14;i++){\n\t\ttp[i+1]=tp[i]*10LL%MOD;\n\t}\n\tll ans=0;\n\tll pv=1;\n\tll nowv=0;\n\tfor(int i=0;i<n;i++){\n\t\tstring s;\n\t\tcin >> r[i] >> s;\n\t\tll val=0;\n\t\tif(isnumber(s)){\n\t\t\tmat A(2,vec(2));\n\t\t\tA={{tp[s.size()],getnum(s)},{0,1}};\n\t\t\tA=pow(A,r[i]);\n\t\t\tnowv=((nowv*A[0][0])%MOD+A[0][1])%MOD;\n\t\t\tcontinue;\n\t\t}\n\t\tbool flag=false;\n\t\tfor(int j=0;j<s.size();j++){\n\t\t\tif(s[j]=='+' || s[j]=='-'){\n\t\t\t\tflag=true;\n\t\t\t}\n\t\t}\n\t\tif(!flag){\n\t\t\tint mi=0;\n\t\t\tfor(mi=0;mi<s.size();mi++){\n\t\t\t\tif(s[mi]=='*' || s[mi]=='+' || s[mi]=='-')break;\n\t\t\t}\n\t\t\tfor(int j=0;j<mi;j++){\n\t\t\t\tnowv*=10LL;\n\t\t\t\tnowv+=(s[j]-'0');\n\t\t\t\tnowv%=MOD;\n\t\t\t}\n\t\t\tpv=nowv*pv%MOD;\n\t\t\tif(r[i]>1){\n\t\t\t\tnowv=getval(s,(mi+1)%s.size());\n\t\t\t\tnowv=matpow(nowv,r[i]-1);\n\t\t\t\tpv=nowv*pv%MOD;\n\t\t\t}\n\t\t\tnowv=0;\n\t\t\tfor(int j=mi+1;j<s.size();j++){\n\t\t\t\tif(s[j]=='*'){\n\t\t\t\t\tpv=pv*nowv%MOD;\n\t\t\t\t\tnowv=0;\n\t\t\t\t}else{\n\t\t\t\t\tnowv*=10LL;\n\t\t\t\t\tnowv+=(s[j]-'0');\n\t\t\t\t\tnowv%=MOD;\n\t\t\t\t}\n\t\t\t}\n\t\t}else{\n\t\t\ts=replace_str(s);\n\t\t\tint mi=0;\n\t\t\tfor(mi=0;mi<s.size();mi++){\n\t\t\t\tif(s[mi]=='+')break;\n\t\t\t}\n\t\t\tfor(int j=0;j<mi;j++){\n\t\t\t\tif(s[j]=='*'){\n\t\t\t\t\tpv=pv*nowv%MOD;\n\t\t\t\t\tnowv=0;\n\t\t\t\t}else{\n\t\t\t\t\tnowv*=10LL;\n\t\t\t\t\tnowv+=s[j]-'0';\n\t\t\t\t\tnowv%=MOD;\n\t\t\t\t}\n\t\t\t}\n\t\t\tans+=nowv*pv%MOD;\n\t\t\tans%=MOD;\n\t\t\tif(r[i]>1){\n\t\t\t\tnowv=getval(s,(mi+1)%s.size());\n\t\t\t\tnowv*=r[i]-1;\n\t\t\t\tans+=nowv%MOD;\n\t\t\t\tans%=MOD;\n\t\t\t}\n\t\t\tpv=1;\n\t\t\tnowv=0;\n\t\t\tfor(int j=mi+1;j<s.size();j++){\n\t\t\t\tif(s[j]=='*'){\n\t\t\t\t\tpv=pv*nowv%MOD;\n\t\t\t\t\tnowv=0;\n\t\t\t\t}else if(s[j]=='+'){\n\t\t\t\t\tans+=nowv*pv%MOD;\n\t\t\t\t\tans%=MOD;\n\t\t\t\t\tpv=1;\n\t\t\t\t\tnowv=0;\n\t\t\t\t}else{\n\t\t\t\t\tnowv*=10LL;\n\t\t\t\t\tnowv+=s[j]-'0';\n\t\t\t\t\tnowv%=MOD;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tans+=nowv*pv%MOD;\n\tans%=MOD;\n\tprintf(\"%lld\\n\",ans);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3360, "score_of_the_acc": -0.0309, "final_rank": 2 }, { "submission_id": "aoj_2789_3005956", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long LL;\nconst int MOD = 1e9 + 7;\nstruct dt\n{\n\tLL v, ev;\n\tdt(LL v = 0, LL ev = 0) : v(v % MOD), ev(ev % MOD) {}\n\tdt followed(const dt &o) const\n\t{\n\t\tdt ret;\n\t\tret.v = (v * o.ev % MOD + o.v) % MOD;\n\t\tret.ev = ev * o.ev % MOD;\n\t\treturn ret;\n\t}\n};\nLL modExp(LL x, LL y)\n{\n\tif (y == 0) return 1;\n\tif (y == 1) return x % MOD;\n\tLL ret = modExp(x, y / 2);\n\tret = ret * ret % MOD;\n\tif (y & 1) ret = ret * x % MOD;\n\treturn ret;\n}\ndt connect(dt x, LL y)\n{\n\tif (y == 0) return dt(0, 1);\n\tif (y == 1) return dt(x.v % MOD, x.ev % MOD);\n\tdt ret = connect(x, y / 2);\n\tret = ret.followed(ret);\n\tif (y % 2) ret = ret.followed(x);\n\treturn ret;\n}\ntypedef vector<dt> EXP;\nLL calc(const EXP &e)\n{\n\tEXP o;\n\tfor (int i = 0; i < e.size(); ++i) {\n\t\tif (e[i].v == -3) {\n\t\t\tdt t = dt(o.back().v * e[i + 1].v % MOD);\n\t\t\to.pop_back();\n\t\t\to.push_back(t);\n\t\t\t++i;\n\t\t}\n\t\telse o.push_back(e[i]);\n\t}\n\tLL ret = o[0].v;\n\tfor (int i = 1; i < o.size(); i += 2) {\n\t\tif (o[i].v == -1) ret = (ret + o[i + 1].v) % MOD;\n\t\telse ret = (ret + MOD - o[i + 1].v) % MOD;\n\t}\n\treturn ret;\n}\nEXP compress(char *s, int r)\n{\n\tEXP se;\n\tLL v = -4, len;\n\tfor (int i = 0; s[i]; ++i) {\n\t\tif (isdigit(s[i])) {\n\t\t\tif (v == -4) v = 0, len = 1;\n\t\t\tv *= 10, v += s[i] - '0';\n\t\t\tlen *= 10;\n\t\t\tv %= MOD, len %= MOD;\n\t\t}\n\t\telse {\n\t\t\tif (v != -4) se.push_back(dt(v, len));\n\t\t\tv = -4;\n\t\t\tif (s[i] == '+') se.push_back(dt(-1));\n\t\t\telse if (s[i] == '-') se.push_back(dt(-2));\n\t\t\telse se.push_back(dt(-3));\n\t\t}\n\t}\n\tif (v != -4) se.push_back(dt(v, len));\n\tif (r == 1) return se;\n\tint p = -1;\n\tfor (int i = 0; i < se.size(); ++i) {\n\t\tif (se[i].v >= 0) continue;\n\t\tif (p == -1) p = i;\n\t\telse if (se[p].v < se[i].v) p = i;\n\t}\n\tEXP ret;\n\tif (p == -1) {\n\t\tret.push_back(connect(se[0], r));\n\t\treturn ret;\n\t}\n\tEXP re;\n\tfor (int i = p + 1; i < se.size() + p; ++i) {\n\t\tif (!re.empty()) {\n\t\t\tif (re.back().v >= 0 && se[i % se.size()].v >= 0) {\n\t\t\t\tdt t = re.back().followed(se[i % se.size()]);\n\t\t\t\tre.pop_back();\n\t\t\t\tre.push_back(t);\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t}\n\t\tre.push_back(se[i % se.size()]);\n\t}\n\tif (se[p].v == -2) {\n\t\tfor (int i = 0; i < re.size(); ++i) {\n\t\t\tif (re[i].v == -1) re[i].v = -2;\n\t\t\telse if (re[i].v == -2) re[i].v = -1;\n\t\t}\n\t}\n\tLL val = calc(re);\n\tif (se[p].v == -3) val = modExp(val, r - 1);\n\telse val = val * (r - 1) % MOD;\n\tfor (int i = 0; i <= p; ++i) ret.push_back(se[i]);\n\tret.push_back(dt(val));\n\tfor (int i = p; i < se.size(); ++i) ret.push_back(se[i]);\n\treturn ret;\n}\nint main()\n{\n\tint n; EXP e;\n\tscanf(\"%d\", &n);\n\tfor (int i = 0; i < n; ++i) {\n\t\tint r;\n\t\tchar s[200];\n\t\tscanf(\"%d%s\", &r, s);\n\t\tEXP se = compress(s, r);\n\t\tfor (int i = 0; i < se.size(); ++i) {\n\t\t\tif (!e.empty()) {\n\t\t\t\tif (e.back().v >= 0 && se[i].v >= 0) {\n\t\t\t\t\tdt t = e.back().followed(se[i]);\n\t\t\t\t\te.pop_back();\n\t\t\t\t\te.push_back(t);\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\t\t\te.push_back(se[i]);\n\t\t}\n\t}\n\tprintf(\"%lld\\n\", calc(e));\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5920, "score_of_the_acc": -0.1455, "final_rank": 10 }, { "submission_id": "aoj_2789_3005727", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst int MOD = 1e9+7;\n\nstring origine;\n\nint modExp(long long a, long long b, int p) {\n\tint ret = 1;\n\tfor (a = (a%p+p)%p; b; b >>= 1, a = a*a%p) if (b&1) ret = ret*a%p;\n\treturn ret;\n}\n\nbool isDig(char c) {\n\treturn '0' <= c && c <= '9';\n}\n\nlong long calcExp(string exp) {\n\tif (!exp.size()) return 0;\n\tint cur = 0;\n\tif (exp[0] == '-' || exp[0] == '+') cur++;\n\tlong long ret = 0;\n\twhile (cur < exp.size()) {\n\t\tint sig = 1;\n\t\tif (cur && exp[cur - 1] == '-') sig = -1;\n\t\tlong long val = 1, now = 0;\n\t\twhile (cur < exp.size()) {\n\t\t\tif (exp[cur] == '*') {\n\t\t\t\tval = val * now % MOD;\n\t\t\t\tnow = 0;\n\t\t\t}\n\t\t\tif (isDig(exp[cur])) now = (now * 10 + exp[cur] - '0') % MOD;\n\t\t\tif (exp[cur] == '+' || exp[cur] == '-') {\n\t\t\t\t++cur;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\t++cur;\n\t\t}\n\t\tval = val * now % MOD;\n\t\tret = (ret + val * sig) % MOD;\n\t}\n\tret = (ret % MOD + MOD) % MOD;\n\treturn ret;\n}\n\nstring toStr(long long val) {\n\tstring ret;\n\tif (!val) {\n\t\tret.push_back('0');\n\t\treturn ret;\n\t}\n\tint flg = 0;\n\tif (val < 0) flg = 1, val *= -1;\n\twhile (val) {\n\t\tret.push_back('0' + val % 10);\n\t\tval /= 10;\n\t}\n\tif (flg) ret.push_back('-');\n\treverse(ret.begin(), ret.end());\n\treturn ret;\n}\n\nlong long getVal(string str) {\n\tlong long ret = 0, pw = 1;\n\twhile (str.size()) {\n\t\tret = (ret + pw * (str.back() - '0')) % MOD;\n\t\tstr.pop_back();\n\t\tpw = pw * 10 % MOD;\n\t}\n\treturn ret;\n}\n\nstring convert(string exp, int times) {\n\tif (times == 1) return exp;\n\tint sz = exp.size();\n\tint pos = -1;\n\tstring head, tail;\n\tfor (int i = 0; i < sz; i++) {\n\t\tif (exp[i] == '+' || exp[i] == '-') {\n\t\t\tpos = i;\n\t\t\tbreak;\n\t\t}\n\t\thead.push_back(exp[i]);\n\t}\n\tif (pos >= 0) {\n\t\tfor (int i = pos; i < sz; i++) tail.push_back(exp[i]);\n\t\tlong long val = calcExp(tail + head);\n\t\tval = (val * (times - 1)) % MOD;\n\t\treturn head + \"+\" + toStr(val) + tail;\n\t}\n\tpos = -1;\n\thead.clear();\n\tfor (int i = 0; i < sz; i++) {\n\t\tif (exp[i] == '*') {\n\t\t\tpos = i;\n\t\t\tbreak;\n\t\t}\n\t\thead.push_back(exp[i]);\n\t}\n\tif (pos >= 0) {\n\t\tfor (int i = pos + 1; i < sz; i++) tail.push_back(exp[i]);\n\t\tlong long val = calcExp(tail + head);\n\t\tval = modExp(val, (times - 1), MOD);\n\t\treturn head + \"*\" + toStr(val) + \"*\" + tail;\n\t}\n\tstring empty;\n\treturn empty;\n}\n\nvoid append(string str, int times) {\n\tstring res = convert(str, times);\n\tif (res.size()) {\n\t\torigine += res;\n\t\treturn;\n\t}\n\tstring tail;\n\twhile (origine.size() && isDig(origine.back())) tail.push_back(origine.back()), origine.pop_back();\n\treverse(tail.begin(), tail.end());\n\tlong long head = getVal(tail);\n\tlong long val = getVal(str);\n\tint l = str.size();\n\tlong long inst = head * modExp(10, 1LL * l * times, MOD) % MOD + val * (modExp(10, 1LL * l * times, MOD) - 1) % MOD * modExp((modExp(10, 1LL * l, MOD) - 1) % MOD, MOD - 2, MOD) % MOD;\n\tinst = ((inst % MOD) + MOD) % MOD;\n\torigine += toStr(inst);\n}\n\nint main() {\n\tios_base::sync_with_stdio(0);\n\tint n; cin >> n;\n\twhile (n--) {\n\t\tint times; string tmp; \n\t\tcin >> times >> tmp;\n\t\tappend(tmp, times);\n\t}\n\tcout << calcExp(origine) << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3492, "score_of_the_acc": -0.0152, "final_rank": 1 }, { "submission_id": "aoj_2789_2574432", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long LL;\n\nconstexpr int N = 10001, MOD = 1e9+7;\n\nint n, r;\nchar s[N];\n\nstruct Vec {\n LL a[4];\n Vec() { memset(a, 0, sizeof(a)); }\n LL& operator [] (const int &i) { return a[i]; }\n const LL& operator [] (const int &i) const { return a[i]; }\n void print() {\n for(int i = 0; i < 4; ++i)\n fprintf(stderr, \"%lld%c\", a[i], \"\\t\\n\"[i==3]);\n }\n};\nstruct Mat {\n Vec a[4];\n Vec& operator [] (const int &i) { return a[i]; }\n const Vec& operator [] (const int &i) const { return a[i]; }\n Mat operator * (const Mat &b) {\n Mat rtn;\n for(int i = 0; i < 4; ++i)\n for(int j = 0; j < 4; ++j)\n for(int k = 0; k < 4; ++k)\n rtn[i][j] = (MOD + rtn[i][j] + a[i][k] * b[k][j]) % MOD;\n return rtn;\n }\n Vec operator * (const Vec &v) {\n Vec rtn;\n for(int i = 0; i < 4; ++i)\n for(int j = 0; j < 4; ++j)\n rtn[i] = (MOD + rtn[i] + a[i][j] * v[j]) % MOD;\n return rtn;\n }\n void print() {\n cerr << string(30, '-') << endl;\n for(int i = 0; i < 4; ++i)\n a[i].print();\n }\n};\n\nint main() {\n Mat eye, mul, pos, neg, dig;\n for(int i = 0; i < 4; ++i)\n eye[i][i] = 1;\n mul[0][0] = mul[1][2] = mul[3][3] = 1;\n pos[0][0] = pos[0][2] = pos[1][3] = pos[3][3] = 1;\n neg[0][0] = neg[0][2] = neg[3][3] = 1;\n neg[1][3] = -1;\n dig[0][0] = dig[1][1] = dig[3][3] = 1;\n dig[2][2] = 10;\n Vec v;\n v[1] = v[3] = 1;\n scanf(\"%d\", &n);\n for(int i = 0; i < n; ++i) {\n scanf(\"%d %s\", &r, s);\n Mat t = eye;\n for(int j = 0; s[j]; ++j) {\n if(s[j] == '*')\n t = mul * t;\n else if(s[j] == '+')\n t = pos * t;\n else if(s[j] == '-')\n t = neg * t;\n else {\n dig[2][1] = (s[j] - '0');\n t = dig * t;\n }\n }\n Mat cur = eye;\n while(r) {\n if(r & 1)\n cur = t * cur;\n r >>= 1;\n t = t * t;\n }\n v = cur * v;\n }\n printf(\"%lld\\n\", (MOD + v[0] + v[2]) % MOD);\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3208, "score_of_the_acc": -0.1364, "final_rank": 9 }, { "submission_id": "aoj_2789_2570001", "code_snippet": "#include <bits/stdc++.h>\n\nconst int MOD = 1E9 + 7;\n\nconst int NMAT[7][7] = {\n\t{1, 0, 0, 0, 0, 0, 0},\n\t{0, 1, 0, 0, 0, 0, 0},\n\t{0, 0, 1, -1, 0, 0, 0},\n\t{0, 0, 0, 10, 0, 0, 0},\n\t{0, 0, 0, 0, 1, -1, 0},\n\t{0, 0, 0, 0, 0, 10, 0},\n\t{0, 0, 0, 0, 0, 0, 1}\n};\n\nconst int MMAT[7][7] = {\n\t{1, 0, 0, 0, 0, 0, 0},\n\t{0, 0, 0, 0, 1, 0, 0},\n\t{0, 0, 0, 0, 0, 0, 0},\n\t{0, 0, 0, 0, 0, 0, 1},\n\t{0, 0, 0, 0, 0, 0, 0},\n\t{0, 0, 0, 0, 1, 0, 0},\n\t{0, 0, 0, 0, 0, 0, 1},\n};\n\nconst int AMAT[7][7] = {\n\t{1, 0, 0, 0, -1, 0, 0},\n\t{0, 0, 0, 0, 0, 0, 1},\n\t{0, 0, 0, 0, 0, 0, 0},\n\t{0, 0, 0, 0, 0, 0, 1},\n\t{0, 0, 0, 0, 0, 0, 0},\n\t{0, 0, 0, 0, 0, 0, 1},\n\t{0, 0, 0, 0, 0, 0, 1}\n};\n\nstruct mat {\n\tint d[7][7];\n\tmat () { for (int i = 0; i < 7; ++i) for (int j = 0; j < 7; ++j) d[i][j] = 0; }\n\tint *operator [] (int x) { return d[x]; }\n\tint const *operator [] (int x) const { return d[x]; }\n};\n\nmat operator * (const mat &a, const mat &b) {\n\tmat res;\n\tfor (int i = 0; i < 7; ++i)\n\t\tfor (int j = 0; j < 7; ++j)\n\t\t\tfor (int k = 0; k < 7; ++k)\n\t\t\t\tres[i][j] = (res[i][j] + 1ll * a[i][k] * b[k][j]) % MOD;\n\treturn res;\n}\n\nmat id () {\n\tmat res;\n\tfor (int i = 0; i < 7; ++i)\n\t\tres[i][i] = 1;\n\treturn res;\n}\n\nmat nmat[10], mmat, amat, smat;\n\nvoid init () {\n\tfor (int digit = 0; digit < 10; ++digit)\n\t\tfor (int i = 0; i < 7; ++i)\n\t\t\tfor (int j = 0; j < 7; ++j)\n\t\t\t\tnmat[digit][i][j] = (NMAT[i][j] < 0) ? digit : NMAT[i][j];\n\tfor (int i = 0; i < 7; ++i)\n\t\tfor (int j = 0; j < 7; ++j)\n\t\t\tmmat[i][j] = MMAT[i][j];\n\tfor (int i = 0; i < 7; ++i)\n\t\tfor (int j = 0; j < 7; ++j)\n\t\t\tamat[i][j] = (AMAT[i][j] < 0) ? 1 : AMAT[i][j];\n\tfor (int i = 0; i < 7; ++i)\n\t\tfor (int j = 0; j < 7; ++j)\n\t\t\tsmat[i][j] = (AMAT[i][j] < 0) ? MOD - 1 : AMAT[i][j];\n}\n\nint N;\nint R[11000];\nchar S[11000][20];\n\nint ans[7] = {0, 1, 0, 1, 0, 1, 1}, tmp[7];\n\nint main () {\n\tinit ();\n\tscanf (\"%d\", &N);\n\tfor (int i = 0; i < N; ++i)\n\t\tscanf (\"%d %s\", &R[i], S[i]);\n\tfor (int i = N - 1; i >= 0; --i) {\n\t\tmat mul = id (), ter = id ();\n\t\tfor (int j = strlen (S[i]) - 1; j >= 0; --j) {\n\t\t\tif (S[i][j] >= '0' && S[i][j] <= '9') mul = nmat[S[i][j] - '0'] * mul;\n\t\t\telse if (S[i][j] == '*') mul = mmat * mul;\n\t\t\telse if (S[i][j] == '+') mul = amat * mul;\n\t\t\telse mul = smat * mul;\n\t\t}\n\t\twhile (R[i]) {\n\t\t\tif (R[i] & 1) ter = mul * ter;\n\t\t\tmul = mul * mul;\n\t\t\tR[i] >>= 1;\n\t\t}\n\t\tfor (int i = 0; i < 7; ++i) {\n\t\t\ttmp[i] = 0;\n\t\t\tfor (int j = 0; j < 7; ++j)\n\t\t\t\ttmp[i] = (tmp[i] + 1ll * ans[j] * ter[i][j]) % MOD;\n\t\t}\n\t\tfor (int i = 0; i < 7; ++i) ans[i] = tmp[i];\n\t}\n\tfor (int i = 0; i < 7; ++i) {\n\t\ttmp[i] = 0;\n\t\tfor (int j = 0; j < 7; ++j)\n\t\t\ttmp[i] = (tmp[i] + 1ll * ans[j] * amat[i][j]) % MOD;\n\t}\n\tfor (int i = 0; i < 7; ++i) ans[i] = tmp[i];\n\tprintf (\"%d\\n\", ans[0]);\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 3452, "score_of_the_acc": -1.0131, "final_rank": 14 }, { "submission_id": "aoj_2789_2270607", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nconst ll mod = 1e9+7;\n\nll mod_pow(ll x, ll p){\n ll res = 1;\n\n while(p){\n if(p&1LL) res = res * x % mod;\n x = x * x % mod;\n p >>= 1;\n }\n\n return res;\n}\n\nmat mat_prod(mat A, mat B){\n size_t h = A.size(), w = B.size();\n mat res(h, vec(w,0));\n for(size_t i=0;i<h;i++){\n for(size_t j=0;j<w;j++){\n for(size_t k=0;k<A[i].size();k++){\n\tres[i][j] += A[i][k] * B[k][j] % mod;\n\tres[i][j] %= mod;\n }\n }\n }\n return res;\n}\t \n\nmat mat_pow(mat A, ll p){\n int n = A.size();\n mat res(n, vec(n,0));\n for(int i=0;i<n;i++) res[i][i] = 1;\n\n while(p){\n if(p&1LL) res = mat_prod(res, A);\n A = mat_prod(A,A);\n p >>= 1;\n }\n\n return res;\n}\n\ninline ll calc(const string s, ll &prod, ll &rem){\n ll res = 0;\n for(char c : s){\n if(c == '*'){\n prod *= rem;\n prod %= mod;\n rem = 0;\n }else if(c == '+'){\n res += (prod * rem) % mod;\n res %= mod;\n prod = 1; rem = 0;\n }else if(c == '-'){\n res += (prod * rem) % mod;\n res %= mod;\n prod = mod-1; rem = 0;\n }else{\n rem = rem*10 + (ll)(c-'0');\n rem %= mod;\n }\n }\n\n return res;\n}\n\nint main(){\n ll n;\n cin >> n;\n\n //temporary result can be represented as \"add + prod * rem\"\n ll add=0, prod=1, rem=0;\n\n //tuple<ll,ll> : <times, add before par, prod before par>\n stack< tuple<ll,ll,ll> > open;\n\n while(n--){\n ll r; string s;\n cin >> r >> s;\n\n if(s.find(\"(\") != string::npos){\n size_t p = s.find(\"(\");\n string pre = s.substr(0,p), suf = s.substr(p+1);\n add += calc(pre, prod, rem) % mod;\n add %= mod;\n \n open.push( make_tuple(1LL, add, prod) );\n add = 0, prod = 1;\n\n if(r-1>0){\n\tadd += calc(suf + pre, prod, rem) % mod;\n\tadd %= mod;\n\t\n\topen.push( make_tuple(r-1, add, prod) );\n\tadd = 0, prod = 1;\n }\n\n add += calc(suf, prod, rem) % mod;\n add %= mod;\n }else if(s.find(\")\") != string::npos){\n size_t p = s.find(\")\");\n string pre = s.substr(0,p), suf = s.substr(p+1);\n\n add += calc(pre, prod, rem) % mod;\n add %= mod;\n\n ll x = (add + (prod*rem%mod)) % mod, t;\n\n if(r-1>0){\n\tr--;\n\tstring m = suf + pre;\n\tsize_t k = 0;\n\tll cp = 1;\n\twhile(k<m.size() && m[k] == '*'){\n\t ll tmp = 0;\n\t k++;\n\t while(k<m.size() && isdigit(m[k])){\n\t tmp = tmp*10 + (ll)(m[k]-'0');\n\t tmp %= mod;\n\t k++;\n\t }\n\t cp *= tmp;\n\t}\n\t\n\tll ca = 0, tp = 1, trem = 0;\n\tca += calc(m.substr(k), tp, trem) % mod;\n\tca %= mod;\n\t\n\tca = (ca + (tp*trem%mod)) % mod;\n\t\n\twhile(r){\n\t assert( !open.empty() );\n\t ll oa,op;\n\t tie(t,oa,op) = open.top(); open.pop();\n\t \n\t if(t > r) open.push( make_tuple(t-r, oa, op) );\n\t \n\t t = min(t, r);\n\t r -= t;\n\t \n\t //calc f^t(x), where f(x) = cp*op*x + ca+oa\n\t (op *= cp) %= mod;\n\t (oa += ca) %= mod;\n\t \n\t mat A = { {op, oa}, {0,1} };\n\t A = mat_pow(A, t);\n\t x = A[0][0] * x + A[0][1];\n\t x %= mod;\n\t} \t\n }\n\n tie(t,add,prod) = open.top(); open.pop();\n if(t-1>0) open.push( make_tuple(t-1, add, prod) );\n rem = x;\n \n add += calc(suf, prod, rem) % mod;\n add %= mod;\n }else if(s.find(\"+\") != string::npos || s.find(\"-\") != string::npos ){\n size_t p = min( s.find(\"+\"), s.find(\"-\") );\n string pre = s.substr(0,p+1), suf = s.substr(p+1);\n add += calc(pre, prod, rem) % mod;\n add %= mod;\n\n add += (r-1) * calc(suf + pre, prod, rem) % mod;\n add %= mod;\n\n add += calc(suf, prod, rem) % mod;\n add %= mod;\n }else if(s.find(\"*\") != string::npos){\n size_t p = s.find(\"*\");\n string pre = s.substr(0,p+1), suf = s.substr(p+1);\n calc(pre, prod, rem);\n \n ll x = 1;\n calc(suf + pre, x, rem);\n prod *= mod_pow(x, r-1);\n prod %= mod;\n \n calc(suf, prod, rem);\n }else{\n ll x = 0, dummy = 1;\n calc(s, dummy, x);\n\n mat A = { {mod_pow(10, s.size()), x}, {0,1} };\n A = mat_pow(A, r);\n rem = A[0][0] * rem + A[0][1];\n rem %= mod;\n }\n }\n\n assert(open.empty());\n\n add += calc(\"+0\", prod, rem) % mod;\n add %= mod;\n cout << add << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3232, "score_of_the_acc": -0.0467, "final_rank": 4 }, { "submission_id": "aoj_2789_2075736", "code_snippet": "/**************************************************************************************************************\n * Md. Abdulla Al Mamun (Nayon)\n * ID: 1306001\n * Session: 2013-2014\n * Department of Computer Science and Engineering\n * Begum Rokeya University, Rangpur (BRUR)\n***************************************************************************************************************/\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define PI acos(-1.0)\n#define EPS 1e-9\n#define INF 1 << 28\n#define sq(a) ((a) * (a))\n#define toRad(a) ((a)*(PI)/180)\n#define toDeg(a) ((a)*180/(PI))\n#define all(x) (x).begin(), (x).end()\n#define pb(x) push_back(x)\n#define mp(a, b) make_pair((a), (b))\n#define endl '\\n'\n#define MAX 100000\n#define MOD 1000000007\n#define what_is(x) cerr << #x << \" is \" << x << endl;\n#define mset(array, value) memset(array, value, sizeof(array))\n\ninline bool isEq(double a, double b){return (abs(a-b) < EPS);}\n\ntypedef long long ll;\ntypedef pair<int, int> pii;\ninline ll negModHandler(ll a, ll d){return ((a%d)<0)?d+(a%d):(a%d);}\n\n//#define isValid(a, b) ((a >= 0 && a < b) ? 1 : 0)\n//int dr[] = {0, -1, -1, -1, 0, 1, 1, 1};\n//int dc[] = {1, 1, 0, -1, -1, -1, 0, 1};\n\nstring strMod(string s)\n{\n\tll n = 0, len = s.length();\n\tfor(int i = 0; i < len; i++){\n\t\tn = (n*10 + s[i]-'0')%MOD;\n\t}\n\tstringstream ss;\n\tss << n;\n\tss >> s;\n\treturn s;\n}\n\nint main()\n{\n\t//freopen(\"in.txt\", \"r\", stdin);\n\t//freopen(\"out.txt\", \"w\", stdout);\n\tios_base::sync_with_stdio(false); cin.tie(NULL);\n\tint n, r, i;\n\tstring str, all;\n\tstringstream ss, ss2;\n\tcin >> n;\n\tall = \"\";\n\twhile(n--){\n\t\tcin >> r >> str;\n\t\tfor(i = 0; i < r; i++){\n\t\t\tall += str;\n\t\t}\n\t}\n\t//cout << \"# \" << all << endl;\n\tint ln = all.length();\n\tstring all2 = \"\";\n\tstr = \"\";\n\tfor(i = 0; i < ln; i++){\n\t\twhile(i < ln && isdigit(all[i])){\n\t\t\tstr += all[i];\n\t\t\ti++;\n\t\t}\n\t\twhile(i < ln && all[i] == '*'){\n\t\t\tstring str2 = \"\";\n\t\t\ti++;\n\t\t\twhile(isdigit(all[i])){\n\t\t\t\tstr2 += all[i];\n\t\t\t\ti++;\n\t\t\t}\n\t\t\tss.clear();\n\t\t\tss2.clear();\n\t\t\tss << strMod(str);\n\t\t\tss2 << strMod(str2);\n\t\t\tll n1, n2;\n\t\t\tss >> n1;\n\t\t\tss2 >> n2;\n\t\t\tn1 = (n1 %MOD * n2%MOD)%MOD;\n\t\t\tss.clear();\n\t\t\tss << n1;\n\t\t\tss >> str;\n\t\t}\n\t\tif(all[i] == '-' || all[i] == '+'){\n\t\t\tstr+=all[i];\n\t\t}\n\t\tall2 += str;\n\t\tstr = \"\";\n\t}\n\t//cout << \"# \" << all2 << endl;\n\tln = all2.length();\n\tll ans = 0;\n\tstr = \"\";\n\ti = 0;\n\twhile(i < ln && isdigit(all2[i])){\n\t\tstr += all2[i];\n\t\ti++;\n\t}\n\tss.clear();\n\tss << strMod(str);\n\tss >> ans;\n\tif(i < ln){\n\t\tchar sign = all2[i];\n\t\tfor(i++; i < ln; i++){\n\t\t\tstr = \"\";\n\t\t\twhile(i < ln && isdigit(all2[i])){\n\t\t\t\tstr += all2[i];\n\t\t\t\ti++;\n\t\t\t}\n\t\t\tll n1;\n\t\t\tss.clear();\n\t\t\tss << strMod(str);\n\t\t\tss >> n1;\n\t\t\tif(sign == '+'){\n\t\t\t\tans = negModHandler(ans+n1, MOD);\n\t\t\t}\n\t\t\telse{\n\t\t\t\tans = negModHandler(ans-n1, MOD);\n\t\t\t}\n\t\t\tif(i < ln)\n\t\t\t\tsign = all2[i];\n\t\t}\n\t}\n\tcout << ans << endl;\n\treturn 0;\n}", "accuracy": 0.3877551020408163, "time_ms": 30, "memory_kb": 3776, "score_of_the_acc": -0.0759, "final_rank": 19 } ]
aoj_2795_cpp
E: 札 / Fuda この問題はリアクティブ問題です。 サーバー側に用意されたプログラムと対話的に応答することで正答を導くプログラムを作成する必要があります。 問題文 湖に浮かぶ $N$ 個の小島からなるビワコという村がある。 各小島には $0$ から $N-1$ まで番号が振られている。 村には島と島の間に架かる橋が $M$ 本あり、$0$ から $M-1$ まで番号が振られている。 橋は双方向に移動可能である。 ここで言う橋とは単に島と島の間の通り道ということであり、取り除くと互いに到達不可能な島の組が増える意味ではない。 最近、橋の両端に掲示板を設置し、その橋を渡った先の島から橋を $1$ 本だけ使って移動できる島 (今いる島を含まない) の番号の書かれた札を貼ることで、 スムーズな移動を実現する計画が持ち上がった。 一枚の札には一つの移動先しか書くことが出来ないため、移動できる島の数だけ札が必要になる。 この札の作成を命じられたあなたは、札は全部で何枚必要かを調べることにした。 村には、かつて全ての橋を架けた橋職人がいる。 また、各島にはその島に住んでいる村人がいる。 村は広大で全ての掲示板を見て回るのは骨が折れるため、本部から電話で彼らに質問をすることで必要な札の枚数を求めることにした。 橋職人への質問では、まず、何番の橋の情報が知りたいかを橋職人に伝える。 すると、どの島とどの島の間に該当する橋を架けたかを確実に教えてくれる (edgクエリ)。 住人への質問では、まず聞きたい島の番号$i$を伝える。 すると、島 $i$ にかかる橋の数とその橋がどこにかかっているかを教えてくれる (lst クエリ)。 しかし、貧弱な通信網を使用しているため、各橋に対して、80% の確率で情報が抜け落ちてしまう。 札の発注まで時間がないので全体で多くても $3N$ 回しか質問ができない。 以上の条件のもとで、必要な札の数を求めるプログラムを書きなさい。 入出力仕様 以降では、あなたが提出したプログラムを「解答」、ジャッジ側が用意したプログラムを「ジャッジ」と呼ぶ。 入出力の詳細な仕様を以下に示すが、先にサンプルを見ると速い。 島と橋の数 ジャッジは、まず島の数 $N$ と橋の数の合計 $M$ を $1$ 行に出力する。 N M 続いて、解答は edg, lst クエリを最大 $3N$ 回、 ans をちょうど 1 回ジャッジに対して送ることができる。 edg クエリ 解答の edg クエリに対し、ジャッジは橋$i$の両端の島の番号を答える。解答は次の形式で出力せよ。 edg i これに対して、ジャッジは次の形式で応答する。 a b $a$, $b$ は橋 $i$ が結ぶ島の番号である。 lst クエリ 解答の lst クエリに対し、ジャッジは小島 $i$ にかかる橋の本数と、それぞれの橋の行き先の島の番号を答える。解答は次の形式で出力せよ。 lst i これに対して、ジャッジは次の形式で応答する。 k v1 v2 v3 … vk $k$ は島 $i$ にかかる橋の数である。 続く $v_1 \cdots v_k$ は頂点$i$から橋を一度だけ使って移動可能な頂点の番号のリストである。 各橋の行き先 $v_j$ に対し、$v_j \ge 0$ の場合はその情報がしっかり伝わったことを表す。$v_j = -1$ の場合は情報が抜け落ちていることを表す。 $-1$ かどうかは乱数で決められ、80% の確率で $-1$ となる。したがって、同じ $i$ に対して複数回このクエリを実行すると、結果は変わりうる。また、順番も不定である。 ans クエリ 解答の ans クエリによって、答えを出力できる。このクエリは 1 度しか行うことが出来ず、結果が正しくない場合は直ちに誤答となる。 このクエリの実行後に、解答は直ちに正常終了せよ。 $X$ を答えとして出力したい場合の形式は以下の通りである。 ans X 制約と注意 $1 \le N \le 100$ $0 \le M \le N(N-1)/2$ 橋は異なる 2 つの島の間に架かっている。 異なる橋が、同じ 2 つの島を結ぶことはない。 ans 以外のクエリは高々 $3N$ 回しか投げられない。 ジャッジプログラムの出力は全て $1$ 行かつスペース区切りの整数からなる。 仕様に従わない出力の結果は不定である。 解答はジャッジの応答をすぐに標準入力で受け取らなければならない。 解答はクエリを出力した直後にバッファを空にせよ。最小の解答プログラム例を下に示す。C、C++以外の言語は各自で調べてほしい。 C #include <stdio.h> int main(){ int n,m; scanf("%d %d", & n, &m); printf("ans 100\n"); // 答えをジャッジに提出 fflush(stdout); // フラッシュ return 0; } C++ #include <iostream> using namespace std; int main(){ int n,m; cin >> n >> m; cout << "ans 100" << endl; // 改行直後にフラッシュ // cout << "ans 100\n" << flush; // 上と同じ } サンプル 解答プログラムとジャッジプログラムの入出力例を以下に示す。 問題文の図中の村に対する答えを求めている。
[ { "submission_id": "aoj_2795_2258530", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 21474836\n\nint main(){\n int n,m;\n cin>>n>>m;\n\n vector<vector<int>> vec(n, vector<int>(n,0));\n\n if(3*n >=m){\n rep(i,m){\n cout << \"edg \" << i << endl;\n int u,v;\n cin>>u>>v;\n vec[u][v]=1;\n vec[v][u]=1;\n }\n }\n else {\n vector<int> k(n);\n vector<int> hoge(n,0); // ?????\\????????°\n\n rep(i,n){\n cout << \"lst \" << i << endl;\n cin>>k[i];\n rep(_,k[i]){\n int d; cin>>d;\n if(d==-1) hoge[i]++;\n else {\n vec[i][d]=1;\n }\n }\n }\n\n rep(i,n)rep(j,i) if(vec[i][j] != vec[j][i]){\n if(vec[i][j]==0){\n vec[i][j] = 1;\n hoge[i]--;\n } else {\n vec[j][i] = 1;\n hoge[j]--;\n }\n }\n\n int cnt = 2*n;\n\n priority_queue<pair<int,int>> pq;\n\n rep(i,n) if(hoge[i]>0) pq.push(mp(hoge[i], i));\n\n while(!pq.empty() || cnt>0){\n int i = pq.top().se; pq.pop();\n if(hoge[i]==0) continue;\n \n cout << \"lst \" << i << endl;\n cin>>k[i];\n rep(__,k[i]){\n int d; cin>>d;\n if(d==-1) continue;\n else {\n if(vec[i][d]==0) hoge[i]--;\n vec[i][d]=1;\n if(vec[d][i]==0) hoge[d]--;\n vec[d][i]=1;\n }\n }\n cnt--;\n if(hoge[i]>0) pq.push(mp(hoge[i], i));\n }\n }\n\n vector<vector<int>> &d = vec;\n rep(i,n) rep(j,n) if(i!=j && d[i][j]==0) d[i][j] = INF;\n rep(i,n) d[i][i]=0;\n\n rep(kk,n)rep(i,n)rep(j,n) d[i][j] = min(d[i][j], d[i][kk] + d[kk][j]);\n\n int ans =0;\n rep(i,n) rep(j,n) if(d[i][j]==2) ans++;\n\n cout << \"ans \" << ans << endl;\n\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3040, "score_of_the_acc": -0.8822, "final_rank": 8 }, { "submission_id": "aoj_2795_2258528", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 21474836\n\nint main(){\n int n,m;\n cin>>n>>m;\n\n vector<vector<int>> vec(n, vector<int>(n,0));\n vector<int> k(n);\n vector<int> hoge(n,0); // ?????\\????????°\n\n if(3*n >=m){\n rep(i,m){\n cout << \"edg \" << i << endl;\n int u,v;\n cin>>u>>v;\n if(vec[u][v]==0){\n vec[u][v]=1;\n vec[v][u]=1;\n hoge[u]--;\n hoge[v]--;\n }\n }\n }\n else {\n rep(i,n){\n cout << \"lst \" << i << endl;\n cin>>k[i];\n rep(_,k[i]){\n int d; cin>>d;\n if(d==-1)hoge[i]++;\n else {\n vec[i][d]=1;\n }\n }\n }\n\n rep(i,n)rep(j,i) if(vec[i][j] != vec[j][i]){\n if(vec[i][j]==0){\n vec[i][j] = 1;\n hoge[i]--;\n } else {\n vec[j][i] = 1;\n hoge[j]--;\n }\n }\n\n int cnt = 2*n;\n\n priority_queue<pair<int,int>> pq;\n\n rep(i,n) if(hoge[i]>0) pq.push(mp(hoge[i], i));\n\n while(!pq.empty() || cnt>0){\n int i = pq.top().se; pq.pop();\n cout << \"lst \" << i << endl;\n cin>>k[i];\n rep(__,k[i]){\n int d; cin>>d;\n if(d==-1) continue;\n else {\n if(vec[i][d]==0) hoge[i]--;\n vec[i][d]=1;\n if(vec[d][i]==0) hoge[d]--;\n vec[d][i]=1;\n }\n }\n cnt--;\n if(hoge[i]>0) pq.push(mp(hoge[i], i));\n }\n }\n\n vector<vector<int>> &d = vec;\n rep(i,n) rep(j,n) if(i!=j && d[i][j]==0) d[i][j] = INF;\n rep(i,n) d[i][i]=0;\n\n rep(kk,n)rep(i,n)rep(j,n) d[i][j] = min(d[i][j], d[i][kk] + d[kk][j]);\n\n int ans =0;\n rep(i,n) rep(j,n) if(d[i][j]==2) ans++;\n\n cout << \"ans \" << ans << endl;\n\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3072, "score_of_the_acc": -0.8982, "final_rank": 9 }, { "submission_id": "aoj_2795_2258496", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 21474836\n\nint main(){\n int n,m;\n cin>>n>>m;\n\n vector<vector<int>> vec(n, vector<int>(n,0));\n vector<int> k(n);\n vector<int> hoge(n,0); // ?????\\????????°\n\n rep(i,n){\n cout << \"lst \" << i << endl;\n cin>>k[i];\n rep(_,k[i]){\n int d; cin>>d;\n if(d==-1)hoge[i]++;\n else {\n vec[i][d]=1;\n }\n }\n }\n\n rep(i,n)rep(j,i) if(vec[i][j] != vec[j][i]){\n if(vec[i][j]==0){\n vec[i][j] = 1;\n hoge[i]--;\n } else {\n vec[j][i] = 1;\n hoge[j]--;\n }\n }\n\n int cnt = 2*n;\n\n rep(_,100){\n rep(i,n) if(cnt>0 && hoge[i]>0){\n cout << \"lst \" << i << endl;\n cin>>k[i];\n rep(__,k[i]){\n int d; cin>>d;\n if(d==-1) continue;\n else {\n if(vec[i][d]==0) hoge[i]--;\n vec[i][d]=1;\n if(vec[d][i]==0) hoge[d]--;\n vec[d][i]=1;\n }\n }\n cnt--;\n }\n }\n\n vector<vector<int>> &d = vec;\n rep(i,n) rep(j,n) if(i!=j && d[i][j]==0) d[i][j] = INF;\n rep(i,n) d[i][i]=0;\n\n rep(kk,n)rep(i,n)rep(j,n) d[i][j] = min(d[i][j], d[i][kk] + d[kk][j]);\n\n int ans =0;\n rep(i,n) rep(j,n) if(d[i][j]==2) ans++;\n\n cout << \"ans \" << ans << endl;\n\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3140, "score_of_the_acc": -0.9321, "final_rank": 13 }, { "submission_id": "aoj_2795_2001350", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nint main(){\n int n,m,i,j,k,c=0,d=0,ans=0;\n cin>>n>>m;\n int s=0,t=2*n+1;\n\n for(i=0;i<n;i++){\n cout << \"lst \" << i << endl;\n cin >> k;\n ans+=k*(k-1);\n for(j=0;j<k;j++) cin >> c;\n }\n\n cout << \"ans \"<< ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1280, "score_of_the_acc": -0.004, "final_rank": 2 }, { "submission_id": "aoj_2795_2001261", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int n,m,k;\n int ans = 0;\n cin >> n >> m;\n for(int i = 0;i<n;i++){\n cout << \"lst \" << i << endl;\n cin >> k;\n for(int j =0;j<k;j++) cin >> m;\n ans += k*(k-1);\n }\n cout << \"ans \" << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1280, "score_of_the_acc": -0.004, "final_rank": 2 }, { "submission_id": "aoj_2795_2001238", "code_snippet": "#include <string>\n#include <vector>\n#include<iostream>\n#include<cstdio>\n#include<cstdlib>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<list>\n#include<deque>\n#include<bitset>\n#include<set>\n#include<map>\n#include<unordered_set>\n#include<cstring>\n#include<sstream>\n#include<complex>\n#include<iomanip>\n#include<numeric>\n#include<cassert>\n#define X first\n#define Y second\n#define pb push_back\n#define rep(X,Y) for (int (X) = 0;(X) < (Y);++(X))\n#define reps(X,S,Y) for (int (X) = S;(X) < (Y);++(X))\n#define rrep(X,Y) for (int (X) = (Y)-1;(X) >=0;--(X))\n#define repe(X,Y) for ((X) = 0;(X) < (Y);++(X))\n#define peat(X,Y) for (;(X) < (Y);++(X))\n#define all(X) (X).begin(),(X).end()\n#define rall(X) (X).rbegin(),(X).rend()\n#define eb emplace_back\n#define UNIQUE(X) (X).erase(unique(all(X)),(X).end())\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\ntemplate<class T> using vv=vector<vector<T>>;\ntemplate<class T> ostream& operator<<(ostream &os, const vector<T> &t) {\nos<<\"{\"; rep(i,t.size()) {os<<t[i]<<\",\";} os<<\"}\"<<endl; return os;}\ntemplate<class S, class T> ostream& operator<<(ostream &os, const pair<S,T> &t) { return os<<\"(\"<<t.first<<\",\"<<t.second<<\")\";}\ntemplate<class T> inline bool MX(T &l,const T &r){return l<r?l=r,1:0;}\ntemplate<class T> inline bool MN(T &l,const T &r){return l>r?l=r,1:0;}\nconst ll MOD=1e9+7;\n\nint d[112][112];\n\nint main(){\n ios_base::sync_with_stdio(false);\n cout<<fixed<<setprecision(0);\n int n,m;\n cin>>n>>m;\n vv<int> g(n);\n if(m>3*n){\n rep(i,n){\n cout<<\"lst \"<<i<<endl;\n int t;\n cin>>t;\n unordered_set<int> st;\n int hoge=0;\n while(st.size()<t){\n\tif(hoge){ cout<<\"lst \"<<i<<endl;\ncin>>hoge;\n\t}\n\thoge=1;\n\trep(j,t){\n\t int x;\n\t cin>>x;\n\t if(x>=0)\n\t st.insert(x);\n\t}\n }\n for(int x:st) g[i].pb(x);\n }\n assert(0);\n }else{\n rep(i,m){\n cout<<\"edg \"<<i<<endl;\n int x,y;\n cin>>x>>y;\n g[x].pb(y);\n g[y].pb(x);\n }\n }\n //cout<<g;\n ll re=0;\n rep(i,n) for(int v:g[i]) re+=g[v].size()-1;\n cout<<\"ans \"<<re<<endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3080, "score_of_the_acc": -0.9022, "final_rank": 10 }, { "submission_id": "aoj_2795_2001235", "code_snippet": "#include <string>\n#include <vector>\n#include<iostream>\n#include<cstdio>\n#include<cstdlib>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<list>\n#include<deque>\n#include<bitset>\n#include<set>\n#include<map>\n#include<unordered_set>\n#include<cstring>\n#include<sstream>\n#include<complex>\n#include<iomanip>\n#include<numeric>\n#include<cassert>\n#define X first\n#define Y second\n#define pb push_back\n#define rep(X,Y) for (int (X) = 0;(X) < (Y);++(X))\n#define reps(X,S,Y) for (int (X) = S;(X) < (Y);++(X))\n#define rrep(X,Y) for (int (X) = (Y)-1;(X) >=0;--(X))\n#define repe(X,Y) for ((X) = 0;(X) < (Y);++(X))\n#define peat(X,Y) for (;(X) < (Y);++(X))\n#define all(X) (X).begin(),(X).end()\n#define rall(X) (X).rbegin(),(X).rend()\n#define eb emplace_back\n#define UNIQUE(X) (X).erase(unique(all(X)),(X).end())\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\ntemplate<class T> using vv=vector<vector<T>>;\ntemplate<class T> ostream& operator<<(ostream &os, const vector<T> &t) {\nos<<\"{\"; rep(i,t.size()) {os<<t[i]<<\",\";} os<<\"}\"<<endl; return os;}\ntemplate<class S, class T> ostream& operator<<(ostream &os, const pair<S,T> &t) { return os<<\"(\"<<t.first<<\",\"<<t.second<<\")\";}\ntemplate<class T> inline bool MX(T &l,const T &r){return l<r?l=r,1:0;}\ntemplate<class T> inline bool MN(T &l,const T &r){return l>r?l=r,1:0;}\nconst ll MOD=1e9+7;\n\nint d[112][112];\n\nint main(){\n ios_base::sync_with_stdio(false);\n cout<<fixed<<setprecision(0);\n int n,m;\n cin>>n>>m;\n vv<int> g(n);\n if(m>3*n){\n rep(i,n){\n cout<<\"lst \"<<i<<endl;\n int t;\n cin>>t;\n unordered_set<int> st;\n int hoge=0;\n while(st.size()<t){\n\tif(hoge){ cout<<\"lst \"<<i<<endl;\ncin>>hoge;\n\t}\n\thoge=1;\n\trep(j,t){\n\t int x;\n\t cin>>x;\n\t if(x>=0)\n\t st.insert(x);\n\t}\n }\n for(int x:st) g[i].pb(x);\n }\n }else{\n rep(i,m){\n cout<<\"edg \"<<i<<endl;\n int x,y;\n cin>>x>>y;\n g[x].pb(y);\n g[y].pb(x);\n }\n }\n //cout<<g;\n ll re=0;\n rep(i,n) for(int v:g[i]) re+=g[v].size()-1;\n cout<<\"ans \"<<re<<endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3172, "score_of_the_acc": -0.9481, "final_rank": 14 }, { "submission_id": "aoj_2795_2001229", "code_snippet": "#include <string>\n#include <vector>\n#include<iostream>\n#include<cstdio>\n#include<cstdlib>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<list>\n#include<deque>\n#include<bitset>\n#include<set>\n#include<map>\n#include<unordered_set>\n#include<cstring>\n#include<sstream>\n#include<complex>\n#include<iomanip>\n#include<numeric>\n#include<cassert>\n#define X first\n#define Y second\n#define pb push_back\n#define rep(X,Y) for (int (X) = 0;(X) < (Y);++(X))\n#define reps(X,S,Y) for (int (X) = S;(X) < (Y);++(X))\n#define rrep(X,Y) for (int (X) = (Y)-1;(X) >=0;--(X))\n#define repe(X,Y) for ((X) = 0;(X) < (Y);++(X))\n#define peat(X,Y) for (;(X) < (Y);++(X))\n#define all(X) (X).begin(),(X).end()\n#define rall(X) (X).rbegin(),(X).rend()\n#define eb emplace_back\n#define UNIQUE(X) (X).erase(unique(all(X)),(X).end())\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\ntemplate<class T> using vv=vector<vector<T>>;\ntemplate<class T> ostream& operator<<(ostream &os, const vector<T> &t) {\nos<<\"{\"; rep(i,t.size()) {os<<t[i]<<\",\";} os<<\"}\"<<endl; return os;}\ntemplate<class S, class T> ostream& operator<<(ostream &os, const pair<S,T> &t) { return os<<\"(\"<<t.first<<\",\"<<t.second<<\")\";}\ntemplate<class T> inline bool MX(T &l,const T &r){return l<r?l=r,1:0;}\ntemplate<class T> inline bool MN(T &l,const T &r){return l>r?l=r,1:0;}\nconst ll MOD=1e9+7;\n\nint d[112][112];\n\nint main(){\n ios_base::sync_with_stdio(false);\n cout<<fixed<<setprecision(0);\n int n,m;\n cin>>n>>m;\n vv<int> g(n);\n if(m>3*n){\n rep(i,n){\n cout<<\"lst \"<<i<<endl;\n int t;\n cin>>t;\n unordered_set<int> st;\n int hoge=0;\n while(st.size()<t){\n\tif(hoge){ cout<<\"lst \"<<i<<endl;\ncin>>hoge;\n\t}\n\thoge=1;\n\trep(j,t){\n\t int x;\n\t cin>>x;\n\t st.insert(x);\n\t}\n }\n for(int x:st) g[i].pb(x);\n }\n }else{\n rep(i,m){\n cout<<\"edg \"<<i<<endl;\n int x,y;\n cin>>x>>y;\n g[x].pb(y);\n g[y].pb(x);\n }\n }\n //cout<<g;\n ll re=0;\n rep(i,n) for(int v:g[i]) re+=g[v].size()-1;\n cout<<\"ans \"<<re<<endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3100, "score_of_the_acc": -0.9122, "final_rank": 11 }, { "submission_id": "aoj_2795_2001220", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_V 110\nint INF = 1 << 28;\nstruct edge{int to,cap,rev;};\nvector<edge> G[MAX_V*2+2];\nbool used[MAX_V*2+2];\nvoid add_edge(int from,int to,int cap){\n G[from].push_back((edge){to,cap,G[to].size()});\n G[to].push_back((edge){from,0,G[from].size()-1});\n}\n\nint dfs(int v,int t,int f){\n if(v==t) return f;\n used[v]=true;\n for(int i=0;i<G[v].size();i++){\n edge &e = G[v][i];\n if(!used[e.to] && e.cap > 0 ){\n int d=dfs(e.to,t,min(f,e.cap));\n if(d>0){\n\te.cap-=d;\n\tG[e.to][e.rev].cap+=d;\n\treturn d;\n }\n } \n }\n return 0;\n}\n\nint max_flow(int s,int t){\n int flow=0;\n for(;;){\n memset(used,0,sizeof(used));\n int f=dfs(s,t,INF);\n if(f==0) return flow;\n flow+=f;\n }\n}\n\nint x[MAX_V][MAX_V];\nint ans=0;\n\nvoid dfs2(int c,int v,int d){\n if(used[v]) return;\n used[v]=true;\n if(d==2){ \n if(c!=v) ans++;\n }else{\n for(int i=0;i<MAX_V;i++){\n if(x[v][i]) dfs2(c,i,d+1);\n }\n }\n}\n\nint main(){\n int n,m,i,j,k,c=0,d=0;\n cin>>n>>m;\n int s=0,t=2*n+1;\n\n for(i=1;i<=n;i++){\n for(j=n+1;j<=n*2;j++){\n if(j-i==n) continue;\n add_edge(i,j,1);\n } \n }\n\n for(i=0;i<n;i++){\n cout << \"lst \" << i << endl;\n cin >> k;\n add_edge(s,i+1,k);\n add_edge(n+i+1,t,k);\n for(j=0;j<k;j++) cin >> c;\n }\n\n for(i=1;i<=n;i++){\n for(j=n+1;j<=n*2;j++){\n if(j-i==n) continue;\n add_edge(i,j,1);\n } \n }\n int e=max_flow(s,t);\n \n memset(x,0,sizeof(x));\n for(i=0;i<n;i++){\n for(j=0;j<G[i+1].size();j++){\n if(G[i+1][j].cap==0) x[G[i+1][j].to-n-1][i]=1;\n }\n }\n for(i=0;i<n;i++) memset(used,0,sizeof(used)),dfs2(i,i,0);\n cout << \"ans \"<< ans << endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 80, "memory_kb": 1796, "score_of_the_acc": -1.2615, "final_rank": 17 }, { "submission_id": "aoj_2795_2001208", "code_snippet": "#include <string>\n#include <vector>\n#include<iostream>\n#include<cstdio>\n#include<cstdlib>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<list>\n#include<deque>\n#include<bitset>\n#include<set>\n#include<map>\n#include<unordered_map>\n#include<cstring>\n#include<sstream>\n#include<complex>\n#include<iomanip>\n#include<numeric>\n#include<cassert>\n#define X first\n#define Y second\n#define pb push_back\n#define rep(X,Y) for (int (X) = 0;(X) < (Y);++(X))\n#define reps(X,S,Y) for (int (X) = S;(X) < (Y);++(X))\n#define rrep(X,Y) for (int (X) = (Y)-1;(X) >=0;--(X))\n#define repe(X,Y) for ((X) = 0;(X) < (Y);++(X))\n#define peat(X,Y) for (;(X) < (Y);++(X))\n#define all(X) (X).begin(),(X).end()\n#define rall(X) (X).rbegin(),(X).rend()\n#define eb emplace_back\n#define UNIQUE(X) (X).erase(unique(all(X)),(X).end())\n\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\ntemplate<class T> using vv=vector<vector<T>>;\ntemplate<class T> ostream& operator<<(ostream &os, const vector<T> &t) {\nos<<\"{\"; rep(i,t.size()) {os<<t[i]<<\",\";} os<<\"}\"<<endl; return os;}\ntemplate<class S, class T> ostream& operator<<(ostream &os, const pair<S,T> &t) { return os<<\"(\"<<t.first<<\",\"<<t.second<<\")\";}\ntemplate<class T> inline bool MX(T &l,const T &r){return l<r?l=r,1:0;}\ntemplate<class T> inline bool MN(T &l,const T &r){return l>r?l=r,1:0;}\nconst ll MOD=1e9+7;\n\nint d[112][112];\n\nint main(){\n ios_base::sync_with_stdio(false);\n cout<<fixed<<setprecision(0);\n int n,m;\n cin>>n>>m;\n vv<int> g(n);\n if(m>3*n){\n rep(i,n){\n cout<<\"lst \"<<i<<endl;\n int t;\n cin>>t;\n vector<int> a(t,-1);\n rep(j,t){\n\tint x;\n\tcin>>x;\n\tif(x>=0) a[j]=x;\n }\n int f=0;\n rep(j,t) if(a[j]<0) f=1;\n while(f){\n\tcout<<\"lst \"<<i<<endl;\n\tcin>>f;\n\tf=0;\n\trep(j,t){\n\t int x;\n\t cin>>x;\n\t if(x>=0) a[j]=x;\n\t}\n\trep(j,t) if(a[j]<0) f=1;\n }\n g[i]=a;\n }\n }else{\n rep(i,m){\n cout<<\"edg \"<<i<<endl;\n int x,y;\n cin>>x>>y;\n g[x].pb(y);\n g[y].pb(x);\n }\n }\n //cout<<g;\n ll re=0;\n rep(i,n) for(int v:g[i]) re+=g[v].size()-1;\n cout<<\"ans \"<<re<<endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3104, "score_of_the_acc": -0.9142, "final_rank": 12 }, { "submission_id": "aoj_2795_2001164", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX_V 110\nint INF = 1 << 28;\nstruct edge{int to,cap,rev;};\nvector<edge> G[MAX_V*2+2];\nbool used[MAX_V*2+2];\nvoid add_edge(int from,int to,int cap){\n G[from].push_back((edge){to,cap,G[to].size()});\n G[to].push_back((edge){from,0,G[from].size()-1});\n}\n\nint dfs(int v,int t,int f){\n if(v==t) return f;\n used[v]=true;\n for(int i=0;i<G[v].size();i++){\n edge &e = G[v][i];\n if(!used[e.to] && e.cap > 0 ){\n int d=dfs(e.to,t,min(f,e.cap));\n if(d>0){\n\te.cap-=d;\n\tG[e.to][e.rev].cap+=d;\n\treturn d;\n }\n } \n }\n return 0;\n}\n\nint max_flow(int s,int t){\n int flow=0;\n for(;;){\n memset(used,0,sizeof(used));\n int f=dfs(s,t,INF);\n if(f==0) return flow;\n flow+=f;\n }\n}\n\nint x[MAX_V][MAX_V];\nint ans=0;\n\nvoid dfs2(int c,int v,int d){\n if(d==2){ \n if(c!=v) ans++;\n }else{\n for(int i=0;i<MAX_V;i++){\n if(x[v][i]) dfs2(c,i,d+1);\n }\n }\n}\n\nint main(){\n int n,m,i,j,k,c=0,d=0;\n cin>>n>>m;\n int s=0,t=2*n+1;\n for(i=0;i<n;i++){\n cout << \"lst \" << i << endl;\n cin >> k;\n add_edge(s,i+1,k);\n add_edge(n+i+1,t,k);\n for(j=0;j<k;j++) cin >> c;\n }\n for(i=1;i<=n;i++){\n for(j=n+1;j<=n*2;j++){\n if(j-i==n) continue;\n add_edge(i,j,1);\n } \n }\n int e=max_flow(s,t);\n \n memset(x,0,sizeof(x));\n for(i=0;i<n;i++){\n for(j=0;j<G[i+1].size();j++){\n if(G[i+1][j].cap==0) x[G[i+1][j].to-n-1][i]=1;\n }\n }\n for(i=0;i<n;i++) dfs2(i,i,0);\n cout << \"ans \"<< ans << endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 20, "memory_kb": 1592, "score_of_the_acc": -0.3025, "final_rank": 7 }, { "submission_id": "aoj_2795_2001161", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int n,m;\n cin>>n>>m;\n \n int ans=0;\n\n for(int i=0;i<n;i++){\n cout <<\"lst \"<<i<<endl;\n int a,b;\n cin>>a;\n for(int i=0;i<a;i++) cin>>b;\n ans+=a*(a-1);\n }\n cout <<\"ans \"<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 1272, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2795_2001104", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\n\ntypedef int _loop_int;\n#define REP(i,n) for(_loop_int i=0;i<(_loop_int)(n);++i)\n#define FOR(i,a,b) for(_loop_int i=(_loop_int)(a);i<(_loop_int)(b);++i)\n#define FORR(i,a,b) for(_loop_int i=(_loop_int)(b)-1;i>=(_loop_int)(a);--i)\n\n#define DEBUG(x) cout<<#x<<\": \"<<x<<endl\n#define DEBUG_VEC(v) cout<<#v<<\":\";REP(i,v.size())cout<<\" \"<<v[i];cout<<endl\n#define ALL(a) (a).begin(),(a).end()\n\n#define CHMIN(a,b) a=min((a),(b))\n#define CHMAX(a,b) a=max((a),(b))\n\n// mod\nconst ll MOD = 1000000007ll;\n#define FIX(a) ((a)%MOD+MOD)%MOD\n\n// floating\ntypedef double Real;\nconst Real EPS = 1e-11;\n#define EQ0(x) (abs(x)<EPS)\n#define EQ(a,b) (abs(a-b)<EPS)\ntypedef complex<Real> P;\n\nint deg[125];\nint unko[125];\nint g[125][125];\n\nint main(){\n int n,m;\n cin>>n>>m;\n int cnt = 0;\n // first check\n REP(i,n){\n ++cnt;\n cout<<\"lst \"<<i<<endl;\n int k;\n cin>>k;\n deg[i] = k;\n unko[i] += k;\n REP(j,k){\n int to;\n cin>>to;\n if(to!=-1){\n if(g[i][to]==0){\n g[i][to] = 1;\n unko[i] -= 1;\n }\n if(g[to][i]==0){\n g[to][i] = 1;\n unko[to] -= 1;\n }\n }\n }\n }\n while(cnt < 3*n){\n int mx = 0;\n REP(i,n)if(unko[mx]<unko[i])mx=i;\n if(unko[mx]==0)break;\n ++cnt;\n cout<<\"lst \"<<mx<<endl;\n int k;\n cin>>k;\n REP(j,k){\n int to;\n cin>>to;\n if(to!=-1){\n if(g[mx][to]==0){\n g[mx][to] = 1;\n unko[mx] -= 1;\n }\n if(g[to][mx]==0){\n g[to][mx] = 1;\n unko[to] -= 1;\n }\n }\n }\n }\n int ans = 0;\n REP(i,n){\n REP(j,n)if(g[i][j])ans += deg[j]-1;\n }\n cout<<\"ans \"<<ans<<endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 1280, "score_of_the_acc": -0.004, "final_rank": 5 }, { "submission_id": "aoj_2795_2001061", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\n\ntypedef int _loop_int;\n#define REP(i,n) for(_loop_int i=0;i<(_loop_int)(n);++i)\n#define FOR(i,a,b) for(_loop_int i=(_loop_int)(a);i<(_loop_int)(b);++i)\n#define FORR(i,a,b) for(_loop_int i=(_loop_int)(b)-1;i>=(_loop_int)(a);--i)\n\n#define DEBUG(x) cout<<#x<<\": \"<<x<<endl\n#define DEBUG_VEC(v) cout<<#v<<\":\";REP(i,v.size())cout<<\" \"<<v[i];cout<<endl\n#define ALL(a) (a).begin(),(a).end()\n\n#define CHMIN(a,b) a=min((a),(b))\n#define CHMAX(a,b) a=max((a),(b))\n\n// mod\nconst ll MOD = 1000000007ll;\n#define FIX(a) ((a)%MOD+MOD)%MOD\n\n// floating\ntypedef double Real;\nconst Real EPS = 1e-11;\n#define EQ0(x) (abs(x)<EPS)\n#define EQ(a,b) (abs(a-b)<EPS)\ntypedef complex<Real> P;\n\nint deg[125];\nint known[125];\nvi unko;\nint g[125][125];\n\nint main(){\n int n,m;\n cin>>n>>m;\n REP(i,n)unko.push_back(i);\n bool first = true;\n while(true){\n // query\n REP(i,unko.size()){\n int x = unko[i];\n if(!first && known[x]==0)continue;\n cout<<\"lst \"<<x<<endl;\n int k;\n cin>>k;\n if(first){\n deg[x] = k;\n known[x] += k;\n }\n REP(j,k){\n int to;\n cin>>to;\n if(to>=0){\n if(g[x][to]==0){\n g[x][to] = 1;\n known[x] -= 1;\n }\n if(g[to][x]==0){\n g[to][x] = 1;\n known[to] -= 1;\n }\n }\n }\n }\n first = false;\n bool flag = true;\n vi nxt;\n REP(i,unko.size()){\n int x = unko[i];\n if(known[x]>0){\n nxt.push_back(x);\n flag = false;\n }\n }\n if(flag)break;\n unko = nxt;\n }\n int ans = 0;\n REP(i,n){\n REP(j,n)if(g[i][j])ans += deg[j]-1;\n }\n cout<<\"ans \"<<ans<<endl;\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 30, "memory_kb": 1280, "score_of_the_acc": -0.2897, "final_rank": 6 }, { "submission_id": "aoj_2795_2001050", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint main()\n{\n int N, M;\n int sz[100] = {};\n set< int > graph[100];\n set< pair< int, int > > sa;\n\n cin >> N >> M;\n\n if(N * 3 >= M) {\n for(int i = 0; i < M; i++) {\n cout << \"edg \" << i << endl;\n int a, b;\n cin >> a >> b;\n graph[a].insert(b);\n graph[b].insert(a);\n }\n } else {\n\n for(int i = 0; i < N; i++) {\n int k;\n cout << \"lst \" << i << endl;\n cin >> k;\n sz[i] = k;\n for(int j = 0; j < k; j++) {\n int v;\n cin >> v;\n if(~v) {\n graph[v].insert(i);\n graph[i].insert(v);\n }\n }\n }\n\n for(int i = 0; i < N; i++) {\n sa.emplace(sz[i] - graph[i].size(), i);\n }\n\n for(int _ = 0; _ * 2 < N; _++) {\n auto obj = *--sa.end();\n int i = obj.second;\n sa.erase(obj);\n if(graph[i].size() != sz[i]) {\n cout << \"lst \" << i << endl;\n int k;\n cin >> k;\n sz[i] = k;\n for(int j = 0; j < k; j++) {\n int v;\n cin >> v;\n if(~v) {\n graph[v].insert(i);\n graph[i].insert(v);\n }\n }\n }\n sa.emplace(sz[i] - graph[i].size(), i);\n }\n }\n\n int ret = 0;\n for(int i = 0; i < N; i++) {\n for(auto j : graph[i]) {\n set< int > gg;\n for(auto k : graph[j]) {\n if(i != k) gg.insert(k);\n }\n ret += gg.size();\n }\n }\n\n cout << \"ans \" << ret << endl;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3276, "score_of_the_acc": -1, "final_rank": 16 }, { "submission_id": "aoj_2795_2001031", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint main()\n{\n int N, M;\n int sz[100] = {};\n set< int > graph[100];\n set< pair< int, int > > sa;\n\n cin >> N >> M;\n\n for(int i = 0; i < N; i++) {\n int k;\n cout << \"lst \" << i << endl;\n cin >> k;\n sz[i] = k;\n for(int j = 0; j < k; j++) {\n int v;\n cin >> v;\n if(~v) {\n graph[v].insert(i);\n graph[i].insert(v);\n }\n }\n }\n\n for(int i = 0; i < N; i++) {\n sa.emplace(sz[i] - graph[i].size(), i);\n }\n\n for(int _ = 0; _ * 2 < N; _++) {\n auto obj = *--sa.end();\n int i = obj.second;\n sa.erase(obj);\n if(graph[i].size() != sz[i]) {\n cout << \"lst \" << i << endl;\n int k;\n cin >> k;\n sz[i] = k;\n for(int j = 0; j < k; j++) {\n int v;\n cin >> v;\n if(~v) {\n graph[v].insert(i);\n graph[i].insert(v);\n }\n }\n }\n sa.emplace(sz[i] - graph[i].size(), i);\n }\n\n int ret = 0;\n for(int i = 0; i < N; i++) {\n for(auto j : graph[i]) {\n set< int > gg;\n for(auto k : graph[j]) {\n if(i != k) gg.insert(k);\n }\n ret += gg.size();\n }\n }\n\n cout << \"ans \" << ret << endl;\n}", "accuracy": 0.024390243902439025, "time_ms": 10, "memory_kb": 3272, "score_of_the_acc": -0.998, "final_rank": 15 }, { "submission_id": "aoj_2795_2000925", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define rrep(i,n) for(int i=(n)-1; i>=0; i--)\n\nusing namespace std;\ntypedef long long ll;\n\nint main(){\n\tint N, M, c;\n\tll a[105], ans=0;\n\t\n\tcin >> N >> M;\n\n\trep(i,N){\n\t\tcout << \"lst \" << i << endl;\n\t\tcin >> a[i];\n\t\trep(j,a[i]) cin >> c;\n\t\tans += a[i] * (a[i]-1);\n\t}\n\n\tcout << \"ans \" << ans << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3108, "score_of_the_acc": -0.9162, "final_rank": 4 } ]
aoj_2790_cpp
Non-redundant Drive The people of JAG kingdom hate redundancy. For example, the N cities in JAG kingdom are connected with just $N - 1$ bidirectional roads such that any city is reachable from any city through some roads. Under the condition, the number of paths from a city to another city is exactly one for all pairs of the cities. This is a non-redundant road network :) One day, you, a citizen of JAG kingdom, decided to travel as many cities in the kingdom as possible with a car. The car that you will use has an infinitely large tank, but initially the tank is empty. The fuel consumption of your car is 1 liter per 1 km, i.e. it consumes 1 liter of gasoline to move 1 km. Each city has exactly one gas station, and you can supply $g_x$ liters of gasoline to your car at the gas station of the city $x$. Of course, you have a choice not to visit some of the gas stations in your travel. But you will not supply gasoline twice or more at the same gas station, because it is redundant. Each road in the kingdom has a distance between two cities: the distance of $i$-th road is $d_i$ km. You will not pass the same city or the same road twice or more, of course, because it is redundant. If a quantity of stored gasoline becomes zero, the car cannot move, and hence your travel will end there. But then, you may concern about an initially empty tank. Don't worry. You can start at any gas station of the cities in the kingdom. Furthermore, each road directly connects the gas stations of the its two ends (because the spirit of non-redundancy avoids redundant moves in a city), you therefore can supply gasoline to your car even if your car tank becomes empty just when you arrive the city. Your task is to write a program computing the maximum number of cities so that you can travel under your non-redundancy policy. Input The input consists of a single test case. $N$ $g_1$ $g_2$ ... $g_N$ $a_1$ $b_1$ $d_1$ $a_2$ $b_2$ $d_2$ ... $a_{N-1}$ $b_{N-1}$ $d_{N-1}$ The first line contains an integer $N$ ($1 \leq N \leq 100,000$), which is the number of cities in JAG kingdom. The second line contains $N$ integers: the $i$-th of them is $g_i$ ($1 \leq g_i \leq 10,000$), the amount of gasoline can be supplied at the gas station of the city $i$. The following $N - 1$ lines give information of roads: the $j$-th line of them contains $a_j$ and $b_j$ , which indicates that the $j$-th road bidirectionally connects the cities $a_j$ and $b_j$ ($1 \leq a_j, b_j \leq N, a_j \ne b_j$) with distance $d_j$ ($1 \leq d_j \leq 10,000$). You can assume that all cities in the kingdom are connected by the roads. Output Print the maximum number of cities you can travel from any city under the constraint such that you can supply gasoline at most once per a gas station. Sample Input 1 5 5 8 1 3 5 1 2 4 2 3 3 2 4 3 1 5 7 Output for the Sample Input 1 4 Sample Input 2 2 10 1 1 2 10 Output for the Sample Input 2 2 Sample Input 3 5 1 3 5 1 1 1 2 5 2 3 3 2 4 3 1 5 5 Output for the Sample Input 3 3
[ { "submission_id": "aoj_2790_10907762", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1ll << 60;\n#define REP(i,n) for(ll i=0; i<ll(n); i++)\ntemplate <class T> using V = vector<T>;\ntemplate <class A, class B> void chmax(A& l, const B& r){ if(l < r) l = r; }\ntemplate <class A, class B> void chmin(A& l, const B& r){ if(r < l) l = r; }\n\n\nvoid testcase(){\n ll N; cin >> N;\n V<ll> G(N); REP(i,N) cin >> G[i];\n V<V<pair<ll,ll>>> adj(N);\n REP(i,N-1){\n ll a,b,d; cin >> a >> b >> d; a--; b--;\n adj[a].push_back({b,d});\n adj[b].push_back({a,d});\n }\n \n V<ll> par(N, -1);\n V<ll> sz(N, 1);\n {\n auto dfs = [&](auto& dfs, ll v, ll p) -> void {\n for(auto [w,d] : adj[v]) if(w != p){\n par[w] = v; dfs(dfs, w, v); sz[v] += sz[w];\n }\n }; dfs(dfs, 0, -1);\n }\n auto findCentroid = [&](ll& v) -> void {\n while(1){\n ll nx = -1;\n for(auto [w,d] : adj[v]) if(sz[w] * 2 > sz[v]) nx = w;\n if(nx < 0) break;\n ll w = nx;\n par[v] = w; par[w] = -1;\n sz[v] -= sz[w]; sz[w] += sz[v];\n v = w;\n }\n };\n ll ans = 1;\n V<ll> req(N+2, INF);\n req[0] = -INF;\n auto update_req = [&](auto& dfs, ll v, ll minpt, ll pt, ll dist) -> void {\n chmin(minpt, pt);\n chmin(req[dist], -minpt);\n for(auto [w,d] : adj[v]) if(sz[w] && w != par[v]){\n dfs(dfs, w, minpt, pt+G[v]-d, dist+1);\n }\n };\n auto update_ans = [&](auto& dfs, ll v, ll bottom, ll pt, ll dist)-> void {\n if(0 <= bottom) chmax(ans, dist + ll(upper_bound(req.begin(), req.end(), pt) - req.begin()));\n for(auto [w,d] : adj[v]) if(sz[w] && w != par[v]){\n dfs(dfs, w, min<ll>(0, bottom + G[w] - d), pt+G[w]-d, dist+1);\n }\n };\n auto dfs = [&](auto& dfs, ll v) -> void {\n findCentroid(v);\n REP(tt,2){\n REP(i,sz[v]+1) req[i+1] = INF;\n for(auto [w,d] : adj[v]) if(sz[w]){\n update_ans(update_ans, w, min<ll>(0, G[w] - d), G[w]-d, 1);\n update_req(update_req, w, 0, G[v]-d, 1);\n }\n chmax(ans, ll(upper_bound(req.begin(), req.end(), 0) - req.begin()));\n reverse(adj[v].begin(), adj[v].end());\n }\n sz[v] = 0;\n for(auto [w,d] : adj[v]) if(sz[w]) { par[w] = -1; dfs(dfs, w); }\n };\n dfs(dfs, 0);\n cout << ans << \"\\n\";\n}\n\nint main(){\n cin.tie(0)->sync_with_stdio(0);\n testcase();\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 18204, "score_of_the_acc": -0.3982, "final_rank": 1 }, { "submission_id": "aoj_2790_10865776", "code_snippet": "#include<iostream>\n#include<cmath>\n#include<cstdio>\n#include<algorithm>\n#include<cstring>\n#include<vector>\nusing namespace std;\nstruct bian{\n\tint next,point,w;\n}b[210000];\nint p[110000],n,len,g[110000],pd[110000],size[110000],where,now,bo[110000],ans;\nstruct atom{\n\tint where,w;\n\tlong long f;\n};\nvector<atom>A,B;\nvoid ade(int k1,int k2,int k3){\n\tb[++len]=(bian){p[k1],k2,k3}; p[k1]=len;\n}\nvoid add(int k1,int k2,int k3){\n\tade(k1,k2,k3); ade(k2,k1,k3);\n}\nint dfs1(int k1,int k2){\n\tsize[k1]=1;\n\tfor (int i=p[k1];i;i=b[i].next){\n\t\tint j=b[i].point;\n\t\tif (pd[j]==0&&j!=k2) size[k1]+=dfs1(j,k1);\n\t}\n\treturn size[k1];\n}\nvoid dfs2(int k1,int k2){\n\tint num=n-size[k1];\n\tfor (int i=p[k1];i;i=b[i].next){\n\t\tint j=b[i].point;\n\t\tif (pd[j]==0&&j!=k2){\n\t\t\tnum=max(num,size[j]); dfs2(j,k1);\n\t\t}\n\t}\n\tif (now>num){\n\t\tnow=num; where=k1;\n\t}\n}\nvoid dfs3(int k1,int k2,long long dis,long long mi,int size,int w){\n\tdis+=g[k1]; mi+=g[k1]; mi=min(mi,0ll);\n//\tcout<<k1<<\" \"<<k2<<\" \"<<dis<<\" \"<<mi<<\" \"<<size<<\" \"<<w<<endl;\n\tif (mi>=0)\n\t\tA.push_back((atom){w,size,dis});\n\tfor (int i=p[k1];i;i=b[i].next){\n\t\tint j=b[i].point;\n\t\tif (j!=k2&&pd[j]==0)\n\t\t\tdfs3(j,k1,dis-b[i].w,mi-b[i].w,size+1,w);\n\t}\n}\nvoid dfs4(int k1,int k2,long long dis,long long mi,int size,int w){\n\tmi=min(mi,dis); dis+=g[k1];\n\tB.push_back((atom){w,size,mi});\n\tfor (int i=p[k1];i;i=b[i].next){\n\t\tint j=b[i].point;\n\t\tif (j!=k2&&pd[j]==0) dfs4(j,k1,dis-b[i].w,mi,size+1,w);\n\t}\n}\nint compare(atom k1,atom k2){\n\treturn k1.f<k2.f;\n}\nvoid solve(int k1){\n\tn=dfs1(k1,0); now=n+1; where=0; dfs2(k1,0); int k=where;\n\tbo[k]=k; pd[k]=1; A.clear(); B.clear(); //cout<<\"solve \"<<k<<endl;\n\tA.push_back((atom){k,1,g[k]});\n\tB.push_back((atom){k,0,0});\n\tfor (int i=p[k];i;i=b[i].next){\n\t\tint j=b[i].point;\n\t\tif (pd[j]==0){\n\t\t\tdfs3(j,k,g[k]-b[i].w,-b[i].w,2,j);\n\t\t\tdfs4(j,k,-b[i].w,-b[i].w,1,j);\n\t\t}\n\t}\n\tsort(A.begin(),A.end(),compare);\n\tsort(B.begin(),B.end(),compare);\n/*\tcout<<\"A\"<<endl;\n\tfor (int i=0;i<A.size();i++) cout<<A[i].where<<\" \"<<A[i].w<<\" \"<<A[i].f<<endl;\n\tcout<<\"B\"<<endl;\n\tfor (int i=0;i<B.size();i++) cout<<B[i].where<<\" \"<<B[i].w<<\" \"<<B[i].f<<endl;*/\n\tint now=A.size()-1,where=0,f=-1e9,g=-1e9;\n\tfor (int i=0;i<B.size();i++){\n\t\twhile (now>=0&&A[now].f+B[i].f>=0){\n\t\t\tint k1=A[now].where;\n\t\t\tif (k1==where) f=max(f,A[now].w);\n\t\t\telse if (A[now].w>f){\n\t\t\t\twhere=A[now].where; g=f; f=A[now].w;\n\t\t\t} else g=max(g,A[now].w);\n\t\t\tnow--;\n\t\t}\n\t\tif (B[i].where==where) ans=max(ans,g+B[i].w); else ans=max(ans,f+B[i].w);\n\t}\n\tfor (int i=p[k];i;i=b[i].next){\n\t\tint j=b[i].point;\n\t\tif (pd[j]==0) solve(j);\n\t}\n}\nint main(){\n\tscanf(\"%d\",&n);\n\tfor (int i=1;i<=n;i++) scanf(\"%d\",&g[i]);\n\tfor (int i=1;i<n;i++){\n\t\tint k1,k2,k3; scanf(\"%d%d%d\",&k1,&k2,&k3); add(k1,k2,k3);\n\t}\n\tans=1;\n\tsolve(1);\n\tprintf(\"%d\\n\",ans);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 15412, "score_of_the_acc": -0.4636, "final_rank": 2 }, { "submission_id": "aoj_2790_8324178", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int INF = 1012345678;\n\nstruct edge_base {\n\tint va, vb, cost;\n};\n\nstruct edge {\n\tint to, cost;\n};\n\nstruct state {\n\tint depth, current, bottom;\n};\n\nstring to_string(const vector<int>& arr) {\n\tstring res = \"[\";\n\tfor (int i = 0; i < arr.size(); i++) {\n\t\tif (i != 0) {\n\t\t\tres += \", \";\n\t\t}\n\t\tres += to_string(arr[i]);\n\t}\n\tres += \"]\";\n\treturn res;\n}\n\nint solve(int N, const vector<int>& A, const vector<edge_base>& E) {\n\t// step #1. make graph\n\tvector<vector<edge> > G(N);\n\tfor (edge_base e : E) {\n\t\tG[e.va].push_back(edge{e.vb, e.cost});\n\t\tG[e.vb].push_back(edge{e.va, e.cost});\n\t}\n\n\t// step #2. find centroid\n\tint root = -1;\n\tvector<int> subsize(N, 1);\n\tauto find_centroid = [&](auto& self, int pos, int pre) -> void {\n\t\tbool flag = true;\n\t\tfor (edge e : G[pos]) {\n\t\t\tif (e.to != pre) {\n\t\t\t\tself(self, e.to, pos);\n\t\t\t\tsubsize[pos] += subsize[e.to];\n\t\t\t\tif (subsize[e.to] * 2 > N) {\n\t\t\t\t\tflag = false;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (flag && subsize[pos] * 2 >= N) {\n\t\t\troot = pos;\n\t\t}\n\t};\n\tfind_centroid(find_centroid, 0, -1);\n\n\t// step #3. build tree\n\tvector<int> comp(N, -1);\n\tvector<vector<edge> > child(N);\n\tauto build_tree = [&](auto& self, int pos, int pre) -> void {\n\t\tfor (edge e : G[pos]) {\n\t\t\tif (e.to != pre) {\n\t\t\t\tcomp[e.to] = comp[pos];\n\t\t\t\tchild[pos].push_back(e);\n\t\t\t\tself(self, e.to, pos);\n\t\t\t}\n\t\t}\n\t};\n\tint K = G[root].size();\n\tchild[root] = G[root];\n\tfor (int i = 0; i < K; i++) {\n\t\tcomp[G[root][i].to] = i;\n\t\tbuild_tree(build_tree, G[root][i].to, root);\n\t}\n\n\t// step #4. dynamic programming\n\tvector<state> dp1(N), dp2(N);\n\tauto dfs = [&](auto& self, int pos) -> void {\n\t\tfor (edge e : child[pos]) {\n\t\t\tstate u1 = dp1[pos];\n\t\t\tu1.depth += 1;\n\t\t\tu1.current += A[e.to] - e.cost;\n\t\t\tu1.bottom += A[e.to] - e.cost;\n\t\t\tu1.bottom = min(u1.bottom, 0);\n\t\t\tstate u2 = dp2[pos];\n\t\t\tu2.depth += 1;\n\t\t\tu2.current += A[pos] - e.cost;\n\t\t\tu2.bottom = min(u2.bottom, u2.current);\n\t\t\tdp1[e.to] = u1;\n\t\t\tdp2[e.to] = u2;\n\t\t\tself(self, e.to);\n\t\t}\n\t};\n\tdp1[root] = state{0, 0, 0};\n\tdp2[root] = state{0, 0, 0};\n\tdfs(dfs, root);\n\n\t// step #5. calculate answer passing root\n\tint subanswer1 = -INF;\n\tvector<array<int, 3> > qs;\n\tfor (int i = 0; i < N; i++) {\n\t\tif (dp1[i].bottom >= 0) {\n\t\t\tqs.push_back({dp1[i].current, 1, i});\n\t\t}\n\t\tqs.push_back({-dp2[i].bottom, 0, i});\n\t}\n\tsort(qs.begin(), qs.end());\n\tset<pair<int, int> > s;\n\tvector<int> compmax(K, -1);\n\tfor (array<int, 3> v : qs) {\n\t\tif (v[1] == 0) {\n\t\t\tif (comp[v[2]] == -1 || compmax[comp[v[2]]] < dp2[v[2]].depth) {\n\t\t\t\ts.insert(make_pair(dp2[v[2]].depth, comp[v[2]]));\n\t\t\t\tif (comp[v[2]] != -1) {\n\t\t\t\t\ts.erase(make_pair(compmax[comp[v[2]]], comp[v[2]]));\n\t\t\t\t\tcompmax[comp[v[2]]] = dp2[v[2]].depth;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tset<pair<int, int> >::iterator it = s.end();\n\t\t\tif (it != s.begin()) {\n\t\t\t\t--it;\n\t\t\t\tif (it->second == -1 || it->second != comp[v[2]]) {\n\t\t\t\t\tsubanswer1 = max(subanswer1, it->first + dp1[v[2]].depth + 1);\n\t\t\t\t}\n\t\t\t\telse if (it != s.begin()) {\n\t\t\t\t\t--it;\n\t\t\t\t\tsubanswer1 = max(subanswer1, it->first + dp1[v[2]].depth + 1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// step #6. divide into subproblems\n\tvector<vector<int> > subcomp(K);\n\tfor (int i = 0; i < N; i++) {\n\t\tif (i != root) {\n\t\t\tsubcomp[comp[i]].push_back(i);\n\t\t}\n\t}\n\tvector<vector<int> > suba(K);\n\tvector<vector<edge_base> > sube(K);\n\tfor (int i = 0; i < K; i++) {\n\t\tsuba[i].resize(subcomp[i].size());\n\t\tfor (int j = 0; j < subcomp[i].size(); j++) {\n\t\t\tsuba[i][j] = A[subcomp[i][j]];\n\t\t}\n\t}\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tif (comp[E[i].va] == comp[E[i].vb]) {\n\t\t\tint id = comp[E[i].va];\n\t\t\tint nva = lower_bound(subcomp[id].begin(), subcomp[id].end(), E[i].va) - subcomp[id].begin();\n\t\t\tint nvb = lower_bound(subcomp[id].begin(), subcomp[id].end(), E[i].vb) - subcomp[id].begin();\n\t\t\tsube[id].push_back(edge_base{nva, nvb, E[i].cost});\n\t\t}\n\t}\n\tint subanswer2 = -INF;\n\tfor (int i = 0; i < K; i++) {\n\t\tint res = solve(subcomp[i].size(), suba[i], sube[i]);\n\t\tsubanswer2 = max(subanswer2, res);\n\t}\n\n\treturn max(subanswer1, subanswer2);\n}\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<int> A(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> A[i];\n\t}\n\tvector<edge_base> E(N - 1);\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tcin >> E[i].va >> E[i].vb >> E[i].cost;\n\t\tE[i].va -= 1;\n\t\tE[i].vb -= 1;\n\t}\n\tint ans = solve(N, A, E);\n\tcout << ans << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 490, "memory_kb": 52592, "score_of_the_acc": -1.9863, "final_rank": 8 }, { "submission_id": "aoj_2790_6668720", "code_snippet": "#line 1 \"e.cpp\"\n#line 1 \"e.cpp\"\n/*\tauthor: Kite_kuma\n\tcreated: 2022.05.30 15:48:54 */\n\n#line 2 \"SPJ-Library/graph/graph.hpp\"\n#include <algorithm>\n#include <cassert>\n#include <deque>\n#include <iostream>\n#include <queue>\n#include <tuple>\n#include <vector>\n\n#pragma region graph\n\ntemplate <class cost_type = long long>\nclass graph {\n public:\n\tstruct edge {\n\t public:\n\t\tint from, to;\n\t\tcost_type cost;\n\t\tint id;\n\t\tedge() = default;\n\t\tedge(int from_, int to_, cost_type cost_ = 1, int id_ = -1) : from(from_), to(to_), cost(cost_), id(id_) {}\n\t\tbool operator<(const edge &a) const { return cost < a.cost; }\n\t\tbool operator>(const edge &a) const { return cost > a.cost; }\n\t\tfriend std::ostream &operator<<(std::ostream &s, const edge &a) {\n\t\t\ts << '(' << a.from << \" -> \" << a.to << \"), cost: \" << a.cost << \", id: \" << a.id;\n\t\t\treturn s;\n\t\t}\n\t};\n\n private:\n\tstd::vector<std::vector<edge>> edges;\n\tint next_edge_id = 0;\n\n public:\n\tinline const std::vector<edge> &operator[](int k) const { return edges[k]; }\n\tinline std::vector<edge> &operator[](int k) { return edges[k]; }\n\n\tint size() const { return int(edges.size()); }\n\tvoid resize(const int n) { edges.resize(n); }\n\tint edge_count() const { return next_edge_id; }\n\n\tfriend std::ostream &operator<<(std::ostream &s, const graph<cost_type> &g) {\n\t\tfor(const auto &adj : g.edges)\n\t\t\tfor(const auto &ed : adj) s << ed << '\\n';\n\t\treturn s;\n\t}\n\n\tgraph() = default;\n\tgraph(int n) : edges(n) {}\n\tgraph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); }\n\tconst cost_type INF = std::numeric_limits<cost_type>::max() / 3;\n\n\tvoid input(int e = -1, bool weight = false, bool directed = false, int idx = 1) {\n\t\tif(e == -1) e = size() - 1;\n\t\twhile(e--) {\n\t\t\tint u, v;\n\t\t\tstd::cin >> u >> v;\n\t\t\tcost_type cost = 1;\n\t\t\tif(weight) std::cin >> cost;\n\t\t\tadd_edge(u, v, cost, directed, idx);\n\t\t}\n\t}\n\n\tinline int add_edge(int u, int v, cost_type cost = 1, bool directed = false, int idx = 0) {\n\t\tu -= idx, v -= idx;\n\t\tedges[u].emplace_back(u, v, cost, next_edge_id);\n\t\tif(!directed && u != v) edges[v].emplace_back(v, u, cost, next_edge_id);\n\t\treturn next_edge_id++;\n\t}\n\n\t// Ο(V+E)\n\tstd::vector<cost_type> bfs(int s) const {\n\t\tstd::vector<cost_type> dist(size(), INF);\n\t\tstd::queue<int> que;\n\t\tdist[s] = 0;\n\t\tque.push(s);\n\t\twhile(!que.empty()) {\n\t\t\tint v = que.front();\n\t\t\tque.pop();\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] != INF) continue;\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tque.push(e.to);\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(V+E)\n\t// constraint: cost of each edge is zero or x (>= 0)\n\tstd::vector<cost_type> zero_one_bfs(int s) const {\n\t\tstd::vector<cost_type> dist(size(), INF);\n\t\tstd::deque<int> deq;\n\t\tdist[s] = 0;\n\t\tdeq.push_back(s);\n\t\twhile(!deq.empty()) {\n\t\t\tint v = deq.front();\n\t\t\tdeq.pop_front();\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] > dist[v] + e.cost) {\n\t\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\t\te.cost ? deq.push_back(e.to) : deq.push_front(e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο((E+V) lg E)\n\t// unreachable: INF\n\tstd::vector<cost_type> dijkstra(int s) const {\n\t\tstd::vector<cost_type> dist(size(), INF);\n\t\tconst auto compare = [](const std::pair<cost_type, int> &a, const std::pair<cost_type, int> &b) { return a.first > b.first; };\n\t\tstd::priority_queue<std::pair<cost_type, int>, std::vector<std::pair<cost_type, int>>, decltype(compare)> que{compare};\n\t\tdist[s] = 0;\n\t\tque.emplace(0, s);\n\t\twhile(!que.empty()) {\n\t\t\tstd::pair<cost_type, int> p = que.top();\n\t\t\tque.pop();\n\t\t\tint v = p.second;\n\t\t\tif(dist[v] < p.first) continue;\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(dist[e.to] > dist[v] + e.cost) {\n\t\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\t\tque.emplace(dist[e.to], e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(VE)\n\t// unreachable: INF\n\t// reachable via negative cycle: -INF\n\tstd::vector<cost_type> bellman_ford(int s) const {\n\t\tint n = size();\n\t\tstd::vector<cost_type> res(n, INF);\n\t\tres[s] = 0;\n\t\tfor(int loop = 0; loop < n - 1; loop++) {\n\t\t\tfor(int v = 0; v < n; v++) {\n\t\t\t\tif(res[v] == INF) continue;\n\t\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\t\tres[e.to] = std::min(res[e.to], res[v] + e.cost);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tstd::queue<int> que;\n\t\tstd::vector<int> chk(n);\n\t\tfor(int v = 0; v < n; v++) {\n\t\t\tif(res[v] == INF) continue;\n\t\t\tfor(auto &e : edges[v]) {\n\t\t\t\tif(res[e.to] > res[v] + e.cost and !chk[e.to]) {\n\t\t\t\t\tque.push(e.to);\n\t\t\t\t\tchk[e.to] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\twhile(!que.empty()) {\n\t\t\tint now = que.front();\n\t\t\tque.pop();\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(!chk[e.to]) {\n\t\t\t\t\tchk[e.to] = 1;\n\t\t\t\t\tque.push(e.to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tif(chk[i]) res[i] = -INF;\n\t\treturn res;\n\t}\n\n\t// Ο(V^3)\n\tstd::vector<std::vector<cost_type>> warshall_floyd() const {\n\t\tconst int n = size();\n\t\tstd::vector<std::vector<cost_type>> dist(n, std::vector<cost_type>(n, INF));\n\t\tfor(int i = 0; i < n; i++) dist[i][i] = 0;\n\t\tfor(int i = 0; i < n; i++)\n\t\t\tfor(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost);\n\t\tfor(int k = 0; k < n; k++)\n\t\t\tfor(int i = 0; i < n; i++) {\n\t\t\t\tif(dist[i][k] == INF) continue;\n\t\t\t\tfor(int j = 0; j < n; j++) {\n\t\t\t\t\tif(dist[k][j] == INF) continue;\n\t\t\t\t\tdist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);\n\t\t\t\t}\n\t\t\t}\n\t\treturn dist;\n\t}\n\n\t// Ο(V) (using DFS)\n\t// if a cycle exists, return {}\n\tstd::vector<int> topological_sort() const {\n\t\tstd::vector<int> res;\n\t\tstd::vector<int> used(size(), 0);\n\t\tbool not_DAG = false;\n\t\tauto dfs = [&](auto self, int k) -> void {\n\t\t\tif(not_DAG) return;\n\t\t\tif(used[k]) {\n\t\t\t\tif(used[k] == 1) not_DAG = true;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\tused[k] = 1;\n\t\t\tfor(auto &e : edges[k]) self(self, e.to);\n\t\t\tused[k] = 2;\n\t\t\tres.push_back(k);\n\t\t};\n\t\tfor(int i = 0; i < size(); i++) dfs(dfs, i);\n\t\tif(not_DAG) return std::vector<int>{};\n\t\tstd::reverse(res.begin(), res.end());\n\t\treturn res;\n\t}\n\n\tbool is_dag() const { return !topological_sort().empty(); }\n\n\t// Ο(V)\n\t// array of the distance to the most distant vertex\n\t// constraint: the graph is a tree\n\tstd::vector<cost_type> height() const {\n\t\tauto vec1 = bfs(0);\n\t\tint v1 = -1, v2 = -1;\n\t\tcost_type dia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec1[i]) dia = vec1[i], v1 = i;\n\t\tvec1 = bfs(v1);\n\t\tdia = -1;\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(dia < vec1[i]) dia = vec1[i], v2 = i;\n\t\tauto vec2 = bfs(v2);\n\t\tfor(int i = 0; i < int(size()); i++) {\n\t\t\tif(vec1[i] < vec2[i]) vec1[i] = vec2[i];\n\t\t}\n\t\treturn vec1;\n\t}\n\n\t// O(V+E)\n\t// vector<(int)(0 or 1)>\n\t// if it is not bipartite, return {}\n\tstd::vector<int> bipartite_grouping() const {\n\t\tstd::vector<int> colors(size(), -1);\n\t\tauto dfs = [&](auto self, int now, int col) -> bool {\n\t\t\tcolors[now] = col;\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(col == colors[e.to]) return false;\n\t\t\t\tif(colors[e.to] == -1 and !self(self, e.to, !col)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t};\n\t\tfor(int i = 0; i < int(size()); i++)\n\t\t\tif(!colors[i] and !dfs(dfs, i, 0)) return std::vector<int>{};\n\t\treturn colors;\n\t}\n\n\tbool is_bipartite() const { return !bipartite_grouping().empty(); }\n\n\t// Ο(V+E)\n\t// (v1, v2, diameter)\n\tstd::tuple<int, int, cost_type> diameter() {\n\t\tstd::vector<cost_type> dist = bfs(0);\n\t\tauto it = std::max_element(dist.begin(), dist.end());\n\t\tconst int v = it - dist.begin();\n\t\tdist = bfs(v);\n\t\tit = std::max_element(dist.begin(), dist.end());\n\t\treturn std::make_tuple(v, int(it - dist.begin()), *it);\n\t}\n\n\t// Ο(V+E)\n\tstd::vector<int> subtree_size(const int root) {\n\t\tconst int n = size();\n\t\tstd::vector<int> ret(n, 1);\n\t\tauto dfs = [&](auto self, int now, int p = -1) -> void {\n\t\t\tfor(const auto &e : (*this)[now]) {\n\t\t\t\tif(e.to == p) continue;\n\t\t\t\tself(self, e.to, now);\n\t\t\t\tret[now] += ret[e.to];\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn ret;\n\t}\n\n\t// Ο(ElgE)\n\tcost_type prim() const {\n\t\tcost_type res = 0;\n\t\tstd::priority_queue<edge, std::vector<edge>, std::greater<edge>> que;\n\t\tfor(auto &e : edges[0]) que.push(e);\n\t\tstd::vector<int> chk(size());\n\t\tchk[0] = 1;\n\t\tint cnt = 1;\n\t\twhile(cnt < size()) {\n\t\t\tauto e = que.top();\n\t\t\tque.pop();\n\t\t\tif(chk[e.to]) continue;\n\t\t\tcnt++;\n\t\t\tres += e.cost;\n\t\t\tchk[e.to] = 1;\n\t\t\tfor(auto &e2 : edges[e.to]) que.push(e2);\n\t\t}\n\t\treturn res;\n\t}\n\n\t// Ο(ElgE)\n\tcost_type kruskal() const {\n\t\tstd::vector<std::tuple<int, int, cost_type>> eds;\n\t\tfor(const auto &adj : edges)\n\t\t\tfor(const auto &ed : adj) eds.emplace_back(ed.from, ed.to, ed.cost);\n\t\tstd::sort(eds.begin(), eds.end(), [](const std::tuple<int, int, cost_type> &a, const std::tuple<int, int, cost_type> &b) {\n\t\t\treturn std::get<2>(a) < std::get<2>(b);\n\t\t});\n\t\tstd::vector<int> uf_data(size(), -1);\n\t\tauto root = [&uf_data](auto self, int x) -> int {\n\t\t\tif(uf_data[x] < 0) return x;\n\t\t\treturn uf_data[x] = self(self, uf_data[x]);\n\t\t};\n\t\tauto unite = [&uf_data, &root](int u, int v) -> bool {\n\t\t\tu = root(root, u), v = root(root, v);\n\t\t\tif(u == v) return false;\n\t\t\tif(uf_data[u] > uf_data[v]) std::swap(u, v);\n\t\t\tuf_data[u] += uf_data[v];\n\t\t\tuf_data[v] = u;\n\t\t\treturn true;\n\t\t};\n\t\tcost_type ret = 0;\n\t\tfor(auto &e : eds)\n\t\t\tif(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e);\n\t\treturn ret;\n\t}\n\n\t// O(V)\n\tstd::vector<int> centroid() const {\n\t\tstd::vector<int> centroid, sz(size());\n\t\tauto dfs = [&](auto self, int now, int per) -> void {\n\t\t\tsz[now] = 1;\n\t\t\tbool is_centroid = true;\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(e.to != per) {\n\t\t\t\t\tself(self, e.to, now);\n\t\t\t\t\tsz[now] += sz[e.to];\n\t\t\t\t\tif(sz[e.to] > size() / 2) is_centroid = false;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(size() - sz[now] > size() / 2) is_centroid = false;\n\t\t\tif(is_centroid) centroid.push_back(now);\n\t\t};\n\t\tdfs(dfs, 0, -1);\n\t\treturn centroid;\n\t}\n\n\t// O(V+E)\n\t// bridge: (s, t) (s < t);\n\tstd::pair<std::vector<std::pair<int, int>>, std::vector<int>> bridges_and_articulations() const {\n\t\tstd::vector<int> order(size(), -1), low(size()), articulation;\n\t\tint order_next = 0;\n\t\tstd::vector<std::pair<int, int>> bridge;\n\t\tauto dfs = [&](auto self, int now, int par = -1) -> void {\n\t\t\tlow[now] = order[now] = order_next++;\n\t\t\tbool is_articulation = false;\n\t\t\tint cnt = 0;\n\t\t\tfor(auto &ed : edges[now]) {\n\t\t\t\tint &nxt = ed.to;\n\t\t\t\tif(nxt == par) continue;\n\t\t\t\tif(order[nxt] == -1) {\n\t\t\t\t\tcnt++;\n\t\t\t\t\tself(self, nxt, now);\n\t\t\t\t\tif(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt));\n\t\t\t\t\tif(order[now] <= low[nxt]) is_articulation = true;\n\t\t\t\t\tlow[now] = std::min(low[now], low[nxt]);\n\t\t\t\t} else if(order[now] > order[nxt]) {\n\t\t\t\t\tlow[now] = std::min(low[now], order[nxt]);\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(par == -1 and cnt < 2) is_articulation = false;\n\t\t\tif(is_articulation) articulation.push_back(now);\n\t\t\treturn;\n\t\t};\n\t\tfor(int i = 0; i < (int)size(); i++)\n\t\t\tif(order[i] == -1) dfs(dfs, i);\n\t\treturn std::make_pair(bridge, articulation);\n\t}\n\n\t// Ο(V+E)\n\t// directed graph from root to leaf\n\tgraph root_to_leaf(int root = 0) const {\n\t\tgraph res(size());\n\t\tstd::vector<int> chk(size(), 0);\n\t\tchk[root] = 1;\n\t\tauto dfs = [&](auto self, int now) -> void {\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(chk[e.to] == 1) continue;\n\t\t\t\tchk[e.to] = 1;\n\t\t\t\tres.add_edge(now, e.to, e.cost, 1, 0);\n\t\t\t\tself(self, e.to);\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn res;\n\t}\n\n\t// Ο(V+E)\n\t// directed graph from leaf to root\n\tgraph leaf_to_root(int root = 0) const {\n\t\tgraph res(size());\n\t\tstd::vector<int> chk(size(), 0);\n\t\tchk[root] = 1;\n\t\tauto dfs = [&](auto self, int now) -> void {\n\t\t\tfor(auto &e : edges[now]) {\n\t\t\t\tif(chk[e.to] == 1) continue;\n\t\t\t\tchk[e.to] = 1;\n\t\t\t\tres.add_edge(e.to, now, e.cost, 1, 0);\n\t\t\t\tself(self, e.to);\n\t\t\t}\n\t\t};\n\t\tdfs(dfs, root);\n\t\treturn res;\n\t}\n\n\t// cost_type Chu_Liu_Edmonds(int root = 0) {}\n};\n#pragma endregion\n#line 2 \"SPJ-Library/graph/centroid_decomposition.hpp\"\n\n#include <functional>\n\n// process(int root, const vector<int>& used_as_centroid) -> void\n// used_as_centroid[vertex] := 1 if 'vertex' has been removed else 0\ntemplate <class edge_type>\nvoid centroid_decomposition(const graph<edge_type> &g, const std::function<void(int, const std::vector<int> &)> &process) {\n\tstd::vector<int> weight(g.size(), 0), used_as_centroid(g.size(), 0);\n\n\tauto calc_weight = [&](auto self, int now, int par) -> void {\n\t\tint &weight_now = (weight[now] = 1);\n\t\tfor(const auto &ed : g[now]) {\n\t\t\tif(ed.to == par || used_as_centroid[ed.to]) continue;\n\t\t\tself(self, ed.to, now);\n\t\t\tweight_now += weight[ed.to];\n\t\t}\n\t\treturn;\n\t};\n\n\tauto find_centroid = [&g, &calc_weight, &weight, &used_as_centroid](int now) -> int {\n\t\tcalc_weight(calc_weight, now, -1);\n\t\tconst int order_half = weight[now] >> 1;\n\t\tint par = -1;\n\t\tbool changed = true;\n\t\twhile(std::exchange(changed, false)) {\n\t\t\tfor(const auto &ed : g[now]) {\n\t\t\t\tif(ed.to != par && !used_as_centroid[ed.to] && weight[ed.to] > order_half) {\n\t\t\t\t\tpar = now;\n\t\t\t\t\tnow = ed.to;\n\t\t\t\t\tchanged = true;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn now;\n\t};\n\n\tauto decomposite = [&g, &find_centroid, &used_as_centroid, &process](auto self, int now) -> void {\n\t\tnow = find_centroid(now);\n\t\tprocess(now, used_as_centroid);\n\t\tused_as_centroid[now] = 1;\n\t\tfor(const auto &ed : g[now])\n\t\t\tif(!used_as_centroid[ed.to]) self(self, ed.to);\n\t\treturn;\n\t};\n\n\tfor(int i = 0; i < g.size(); i++)\n\t\tif(!used_as_centroid[i]) decomposite(decomposite, i);\n\treturn;\n}\n#line 5 \"e.cpp\"\n\n#line 2 \"SPJ-Library/template/kuma.hpp\"\n\n#line 2 \"SPJ-Library/template/basic_func.hpp\"\n\n#line 7 \"SPJ-Library/template/basic_func.hpp\"\n\ntemplate <class T0, class T1, class T2>\ninline bool in_range(T0 x, T1 lef, T2 rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool flag = true) { std::cout << (flag ? \"Yes\" : \"No\") << '\\n'; }\nvoid YES(bool flag = true) { std::cout << (flag ? \"YES\" : \"NO\") << '\\n'; }\n\ntemplate <class T>\nvoid drop(T answer) {\n\tstd::cout << answer << '\\n';\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(std::vector<T> const &v, bool vertically = 0) {\n\tif(vertically) {\n\t\tfor(auto const &a : v) {\n\t\t\tstd::cout << a << '\\n';\n\t\t}\n\t\treturn;\n\t}\n\tfor(auto it = v.begin(); it != v.end(); it++) {\n\t\tstd::cout << (*it);\n\t\tif(it != v.end() - 1) {\n\t\t\tstd::cout << ' ';\n\t\t}\n\t}\n\tstd::cout << '\\n';\n\treturn;\n}\n\ninline void print() { std::cout << '\\n'; }\ntemplate <class T>\ninline void print(const T &x) {\n\tstd::cout << x << '\\n';\n\treturn;\n}\ntemplate <typename Head, typename... Tail>\nvoid print(const Head &H, const Tail &... T) {\n\tstd::cout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T>\nvoid add(std::vector<T> &v, T value) {\n\tfor(auto &a : v) a += value;\n\treturn;\n}\n\ntemplate <class T>\nT greatest_lower_multiple(T x, T d) {\n\tif(d == 0) return 0;\n\tif(d < 0) d *= -1;\n\tT y = x % d;\n\tif(y < 0) y += d;\n\treturn x - y;\n}\n\ntemplate <class T>\nT least_upper_multiple(T x, T d) {\n\treturn -greatest_lower_multiple(-x, d);\n}\n\n// ceil(a / b);\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b);\n\tif(b < 0) {\n\t\ta *= -1;\n\t\tb *= -1;\n\t}\n\treturn least_upper_multiple(a, b) / b;\n}\n\nlong long pow_ll(long long a, long long n) {\n\tassert(n >= 0LL);\n\tif(n == 0) return 1LL;\n\tif(a == 0) return 0LL;\n\tif(a == 1) return 1LL;\n\tif(a == -1) return (n & 1LL) ? -1LL : 1LL;\n\tlong long res = 1;\n\twhile(n > 1LL) {\n\t\tif(n & 1LL) res *= a;\n\t\ta *= a;\n\t\tn >>= 1;\n\t}\n\treturn res * a;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tassert(n >= 0 && mod);\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\ta %= mod;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res < 0 ? res + mod : res;\n}\n\n// return x which satisfies a * x % mod == gcd(a, mod)\n// not (mod | a)\nlong long modinv(long long a, const long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tstd::swap(a, b);\n\t\tu -= t * v;\n\t\tstd::swap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\ntemplate <class T>\nint lb(const std::vector<T> &a, const T x) {\n\treturn (int)std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nint ub(const std::vector<T> &a, const T x) {\n\treturn (int)std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x));\n}\ntemplate <class T>\nvoid unq_sort(std::vector<T> &a) {\n\tstd::sort(a.begin(), a.end());\n\ta.erase(std::unique(a.begin(), a.end()), a.end());\n}\ntemplate <class T>\nstd::vector<int> press(const std::vector<T> &a) {\n\tstd::vector<T> vec = a;\n\tunq_sort(vec);\n\tstd::vector<int> ret;\n\tfor(const auto &v : a) ret.push_back(lb(vec, v));\n\treturn ret;\n}\n#line 1 \"SPJ-Library/template/header.hpp\"\n#include <bits/stdc++.h>\n#line 2 \"SPJ-Library/template/io.hpp\"\n\n#line 4 \"SPJ-Library/template/io.hpp\"\n\n#line 8 \"SPJ-Library/template/debug.hpp\"\n\n#line 3 \"SPJ-Library/template/constants.hpp\"\n\nconstexpr int inf = 1000'000'000;\nconstexpr long long INF = 1'000'000'000'000'000'000LL;\nconstexpr int mod_1000000007 = 1000000007;\nconstexpr int mod_998244353 = 998244353;\nconst long double pi = acosl(-1.);\nconstexpr int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};\nconstexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};\n#line 10 \"SPJ-Library/template/debug.hpp\"\n\nnamespace viewer {\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p);\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p);\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p);\n\nvoid view(const long long &e);\n\nvoid view(const int &e);\n\ntemplate <typename T>\nvoid view(const T &e);\n\ntemplate <typename T>\nvoid view(const std::set<T> &s);\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s);\n\ntemplate <typename T>\nvoid view(const std::multiset<T> &s);\n\ntemplate <typename T>\nvoid view(const std::unordered_multiset<T> &s);\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v);\n\ntemplate <typename T, std::size_t ary_size>\nvoid view(const std::array<T, ary_size> &v);\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv);\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v);\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v);\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v);\n\ntemplate <typename map_type>\nvoid view_map_container(const map_type &m);\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m);\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m);\n\ntemplate <typename container_type>\nvoid view_container(const container_type &c, bool vertically = false) {\n\ttypename container_type::const_iterator begin = c.begin();\n\tconst typename container_type::const_iterator end = c.end();\n\tif(vertically) {\n\t\tstd::cerr << \"{\\n\";\n\t\twhile(begin != end) {\n\t\t\tstd::cerr << '\\t';\n\t\t\tview(*(begin++));\n\t\t\tif(begin != end) std::cerr << ',';\n\t\t\tstd::cerr << '\\n';\n\t\t}\n\t\tstd::cerr << '}';\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\twhile(begin != end) {\n\t\tview(*(begin++));\n\t\tif(begin != end) std::cerr << ',';\n\t\tstd::cerr << ' ';\n\t}\n\tstd::cerr << '}';\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << '(';\n\tview(p.first);\n\tstd::cerr << \", \";\n\tview(p.second);\n\tstd::cerr << ')';\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::tuple<T0, T1, T2> &p) {\n\tstd::cerr << '(';\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << ')';\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::tuple<T0, T1, T2, T3> &p) {\n\tstd::cerr << '(';\n\tview(std::get<0>(p));\n\tstd::cerr << \", \";\n\tview(std::get<1>(p));\n\tstd::cerr << \", \";\n\tview(std::get<2>(p));\n\tstd::cerr << \", \";\n\tview(std::get<3>(p));\n\tstd::cerr << ')';\n}\n\nvoid view(const long long &e) {\n\tif(e == INF)\n\t\tstd::cerr << \"INF\";\n\telse if(e == -INF)\n\t\tstd::cerr << \"-INF\";\n\telse\n\t\tstd::cerr << e;\n}\n\nvoid view(const int &e) {\n\tif(e == inf)\n\t\tstd::cerr << \"inf\";\n\telse if(e == -inf)\n\t\tstd::cerr << \"-inf\";\n\telse\n\t\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const T &e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T>\nvoid view(const std::set<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_set<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::multiset<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::unordered_multiset<T> &s) {\n\tview_container(s);\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tview_container(v);\n}\n\ntemplate <typename T, std::size_t ary_size>\nvoid view(const std::array<T, ary_size> &v) {\n\tview_container(v);\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tview_container(vv, true);\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tview_container(v, true);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid view(const std::vector<std::tuple<T0, T1, T2>> &v) {\n\tview_container(v, true);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {\n\tview_container(v, true);\n}\n\ntemplate <typename map_type>\nvoid view_map_container(const map_type &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(typename map_type::const_iterator it = m.begin(); it != m.end(); it++) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(it->first);\n\t\tstd::cerr << \"] : \";\n\t\tview(it->second);\n\t\tstd::cerr << '\\n';\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tview_map_container(m);\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::unordered_map<T, U> &m) {\n\tview_map_container(m);\n}\n\n} // namespace viewer\n\n// when compiling : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename T>\nvoid debug_out(const T &x) {\n\tviewer::view(x);\n}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(const Head &H, const Tail &... T) {\n\tviewer::view(H);\n\tstd::cerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tstd::cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tstd::cerr << \"]\\n\"; \\\n\t} while(0)\n#else\n#define debug(...) (void(0))\n#endif\n#line 2 \"SPJ-Library/template/scanner.hpp\"\n\n#line 6 \"SPJ-Library/template/scanner.hpp\"\n\nnamespace scanner {\ntemplate <class T>\nvoid scan(T &a) {\n\tstd::cin >> a;\n}\n\ntemplate <class T, class L>\nvoid scan(std::pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\n\ntemplate <class T0, class T1, class T2>\nvoid scan(std::tuple<T0, T1, T2> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tp = std::make_tuple(t0, t1, t2);\n}\n\ntemplate <class T0, class T1, class T2, class T3>\nvoid scan(std::tuple<T0, T1, T2, T3> &p) {\n\tT0 t0;\n\tT1 t1;\n\tT2 t2;\n\tT3 t3;\n\tscan(t0);\n\tscan(t1);\n\tscan(t2);\n\tscan(t3);\n\tp = std::make_tuple(t0, t1, t2, t3);\n}\n\ntemplate <class T>\nvoid scan(std::vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\n\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\n} // namespace scanner\n#line 7 \"SPJ-Library/template/io.hpp\"\n\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tscanner::INPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tscanner::INPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define CHR(...) \\\n\tchar __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define DBL(...) \\\n\tdouble __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tscanner::INPUT(__VA_ARGS__)\n#define TPL3(type0, type1, type2, name) \\\n\tstd::tuple<type0, type1, type2> name; \\\n\tscanner::INPUT(name);\n#define TPL4(type0, type1, type2, type3, name) \\\n\tstd::tuple<type0, type1, type2, type3> name; \\\n\tscanner::INPUT(name);\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n\ntemplate <typename T1, typename T2>\nstd::ostream &std::operator<<(std::ostream &os, const std::pair<T1, T2> &p) {\n\tos << p.first << ' ' << p.second;\n\treturn os;\n}\ntemplate <class T>\nstd::ostream &std::operator<<(std::ostream &os, const std::vector<T> &v) {\n\tfor(typename std::vector<T>::const_iterator it = v.begin(); it != v.end(); it++) {\n\t\tif(it != v.begin()) std::cerr << ' ';\n\t\tos << *it;\n\t}\n\treturn os;\n}\n\nstruct fast_io {\n\tfast_io() {\n\t\tstd::ios::sync_with_stdio(false);\n\t\tstd::cin.tie(nullptr);\n\t\tstd::cout << std::fixed << std::setprecision(15);\n\t\tsrand((unsigned)time(NULL));\n\t}\n} fast_io_;\n#line 2 \"SPJ-Library/template/macros.hpp\"\n\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define pcnt(n) __builtin_popcountll((long long)n)\n\n#define REPname(a, b, c, d, e, ...) e\n#define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)\n#define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro)\n#define REP1(i, x) for(int i = 0; i < (x); ++i)\n#define REP2(i, l, r) for(int i = (l); i < (r); ++i)\n#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))\n#define DREPname(a, b, c, d, e, ...) e\n#define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__)\n#define DREP1(i, x) for(int i = (x)-1; i >= 0; --i)\n#define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i)\n#define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c))\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vi = std::vector<int>;\nusing vvi = std::vector<std::vector<int>>;\nusing vvvi = std::vector<std::vector<std::vector<int>>>;\nusing vll = std::vector<ll>;\nusing vvll = std::vector<vll>;\nusing vvvll = std::vector<vvll>;\ntemplate <class T = ll>\nusing V = std::vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\ntemplate <class T = ll>\nusing pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate <class T = ll>\nusing pqdn = std::priority_queue<T>;\n#line 7 \"SPJ-Library/template/kuma.hpp\"\n\nusing namespace std;\n#line 478 \"e.cpp\"\n\nll solve(int n) {\n\tVEC(ll, stand, n);\n\tgraph<ll> g(n, -1, true, 0, 1);\n\n\tint ans = 1;\n\n\tvector<ll> up_tmp, dn_tmp;\n\n\tauto dfs = [&](int dist, int now, const vector<int> &used, auto self, int par, ll sum, ll minvalue, ll maxvalue) -> void {\n\t\tchmin(minvalue, sum);\n\t\tchmax(maxvalue, sum);\n\t\tsum += stand[now];\n\t\tchmax(maxvalue, sum);\n\t\tdebug(dist, now, used, sum, minvalue, maxvalue);\n\t\tif((int)dn_tmp.size() <= dist) dn_tmp.resize(dist + 1, -INF);\n\t\tchmax(dn_tmp[dist], minvalue);\n\t\tif(sum - maxvalue >= 0 && sum >= 0LL) {\n\t\t\tif(int(up_tmp.size() <= dist)) up_tmp.resize(dist + 1, -INF);\n\t\t\tchmax(up_tmp[dist], sum);\n\t\t}\n\t\tfoa(e, g[now]) {\n\t\t\tif(e.to == par || used[e.to]) continue;\n\t\t\tself(dist + 1, e.to, used, self, now, sum - e.cost, minvalue, maxvalue);\n\t\t}\n\t\tdebug('f');\n\t\treturn;\n\t};\n\n\tauto merge = [&](vll &a, vll &b, ll root) -> void {\n\t\tint as = int(a.size());\n\t\tint bs = int(b.size());\n\t\tint j = 0;\n\t\tdrep(i, as) while(j < bs && b[j] + a[i] + root >= 0) {\n\t\t\tchmax(ans, i + j + 1);\n\t\t\tj++;\n\t\t}\n\t\treturn;\n\t};\n\n\tauto process = [&](int root, const vector<int> &used) -> void {\n\t\tvll up(1, 0LL), dn(1, 0LL);\n\t\tfoa(e, g[root]) {\n\t\t\tif(used[e.to]) continue;\n\t\t\tup_tmp.resize(1, 0LL);\n\t\t\tdn_tmp.resize(1, 0LL);\n\t\t\tdfs(1, e.to, used, dfs, root, -e.cost, INF, -INF);\n\t\t\tdrep(i, int(up_tmp.size()) - 1) { chmax(up_tmp[i], up_tmp[i + 1]); }\n\t\t\tdrep(i, int(dn_tmp.size()) - 1) { chmax(dn_tmp[i], dn_tmp[i + 1]); }\n\n\t\t\tmerge(up, dn_tmp, stand[root]);\n\t\t\tmerge(up_tmp, dn, stand[root]);\n\n\t\t\tdebug(root, e.to);\n\t\t\tdebug(up);\n\t\t\tdebug(dn);\n\t\t\tdebug(up_tmp);\n\t\t\tdebug(dn_tmp);\n\t\t\tdebug(stand[root]);\n\t\t\t// exit(0);\n\t\t\tif(ans == 2) {\n\t\t\t}\n\n\t\t\tif(up_tmp.size() > up.size()) up.resize(up_tmp.size(), -INF);\n\t\t\tif(dn_tmp.size() > dn.size()) dn.resize(dn_tmp.size(), -INF);\n\t\t\trep(i, int(up_tmp.size())) { chmax(up[i], up_tmp[i]); }\n\t\t\trep(i, int(dn_tmp.size())) { chmax(dn[i], dn_tmp[i]); }\n\n\t\t\tup_tmp.clear();\n\t\t\tdn_tmp.clear();\n\t\t}\n\t\treturn;\n\t};\n\n\tcentroid_decomposition(g, process);\n\treturn (ans);\n}\n\nint main() {\n\tint n;\n\twhile(cin >> n && n) {\n\t\tcout << solve(n) << '\\n';\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 24712, "score_of_the_acc": -0.5371, "final_rank": 3 }, { "submission_id": "aoj_2790_6172831", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n#include<chrono>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\n\ntemplate<typename T>\nvoid chmin(T& a, T b) {\n\ta = min(a, b);\n}\ntemplate<typename T>\nvoid chmax(T& a, T b) {\n\ta = max(a, b);\n}\ntemplate<typename T>\nvoid cinarray(vector<T>& v) {\n\trep(i, v.size())cin >> v[i];\n}\ntemplate<typename T>\nvoid coutarray(vector<T>& v) {\n\trep(i, v.size()) {\n\t\tif (i > 0)cout << \" \"; cout << v[i];\n\t}\n\tcout << \"\\n\";\n}\nll mod_pow(ll x, ll n, ll m = mod) {\n\tif (n < 0) {\n\t\tll res = mod_pow(x, -n, m);\n\t\treturn mod_pow(res, m - 2, m);\n\t}\n\tif (abs(x) >= m)x %= m;\n\tif (x < 0)x += m;\n\tif (x == 0)return 0;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tint n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) {\n\t\tif (m < 0 || mod <= m) {\n\t\t\tm %= mod; if (m < 0)m += mod;\n\t\t}\n\t\tn = m;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\nmodint operator/=(modint& a, modint b) { a = a / b; return a; }\nconst int max_n = 1 << 20;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nmodint combP(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[a - b];\n}\n\nll gcd(ll a, ll b) {\n\ta = abs(a); b = abs(b);\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tll r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\nint dx[4] = { 1,0,-1,0 };\nint dy[4] = { 0,1,0,-1 };\n\nusing mP = pair<modint, modint>;\n//-----------------------------------\n\nstruct edge {\n\tint to, cost;\n};\nconst int mn = 1 << 17;\nvector<edge> G[mn];\nint a[mn];\nqueue<vector<int>> q;\nbool exi[mn];\nint ans = 1;\nvoid yaru(vector<int> v) {\n\tif (v.empty())return;\n\t//初期化\n\tfor (int id : v)exi[id] = true;\n\tint g; int sz = v.size();\n\n\tfunction<int(int, int)> s_root = [&](int id, int fr)->int {\n\t\tint res = 1;\n\t\tint ma = 0;\n\t\tfor (edge e: G[id]) {\n\t\t\tif (e.to == fr)continue;\n\t\t\tif (!exi[e.to])continue;\n\t\t\tint nex = s_root(e.to, id);\n\t\t\tma = max(ma, nex);\n\t\t\tres += nex;\n\t\t}\n\t\tif (ma <= sz / 2 && sz - res <= sz / 2)g = id;\n\t\treturn res;\n\t};\n\ts_root(v[0], -1);\n\t//ここまで初期化\n\n\t////重心を根としてなんかやる\n\t//function<void(int, int)> dfs = [&](int id, int fr) {\n\t//\tif (!exi[id])return;\n\t//\tfor (int to : G[id]) {\n\t//\t\tif (to == fr)continue;\n\t//\t\tdfs(to, id);\n\t//\t}\n\t//};\n\t//for (int to : G[g])dfs(to, g);\n\n\n\n\n\t//ここまで\n\n\tvector<vector<int>> chs;\n\tvector<int> nexs;\n\tfunction<void(int, int)> search_next = [&](int id, int fr) {\n\t\tif (!exi[id])return;\n\t\tnexs.push_back(id);\n\t\tfor (edge e : G[id]) {\n\t\t\tif (e.to == fr)continue;\n\t\t\tsearch_next(e.to,id);\n\t\t}\n\t};\n\t//子を列挙する\n\tfor (edge e : G[g]) {\n\t\tsearch_next(e.to, g);\n\t\tif (nexs.empty())continue;\n\t\tq.push(nexs);\n\t\tchs.push_back(nexs);\n\t\tnexs.clear();\n\t}\n\n\t//子達についてなんかやる\n\tvector<int> vd;\n\t\n\tfunction<void(int, int,int,int,int)> dfsto = [&](int id, int fr,int cur,int mi,int depth) {\n\t\t//cout << \"? \" << id <<\" \"<<fr<< \"\\n\";\n\t\tif (mi >= 0)chmax(ans, depth + 1);\n\t\twhile (vd.size() <= depth) {\n\t\t\tvd.push_back(2 * mod);\n\t\t}\n\t\tchmin(vd[depth], -mi);\n\t\tfor (edge e : G[id]) {\n\t\t\tif (e.to == fr || !exi[e.to])continue;\n\t\t\tdfsto(e.to, id, cur + a[id] - e.cost, min(mi, cur + a[id] - e.cost), depth + 1);\n\t\t}\n\t};\n\tfunction<void(int, int, int, int, int)> dfsfrom = [&](int id, int fr, int cur, int mi, int depth) {\n\t\tif (mi >= 0)chmax(ans, depth + 1);\n\t\tif (mi >= 0) {\n\t\t\tint loc = upper_bound(all(vd), cur) - vd.begin();\n\t\t\tchmax(ans, loc + depth);\n\t\t}\n\t\tfor (edge e : G[id]) {\n\t\t\tif (e.to == fr || !exi[e.to])continue;\n\t\t\tdfsfrom(e.to, id, cur + a[e.to] - e.cost, min(0, mi + a[e.to] - e.cost), depth + 1);\n\t\t}\n\t};\n\tvd = { 0 };\n\tfor (edge e : G[g]) {\n\t\tif (exi[e.to]) {\n\t\t\tdfsfrom(e.to, g, a[e.to]-e.cost, min(0,a[e.to]-e.cost), 1);\n\t\t\tdfsto(e.to, g, a[g] - e.cost, min(0, a[g] - e.cost), 1);\n\t\t}\n\t}\n\tvd = { 0 };\n\tper(i, G[g].size()) {\n\t\tedge e = G[g][i];\n\t\tif (exi[e.to]) {\n\t\t\tdfsfrom(e.to, g, a[e.to] - e.cost, min(0, a[e.to] - e.cost), 1);\n\t\t\tdfsto(e.to, g, a[g] - e.cost, min(0, a[g] - e.cost), 1);\n\t\t}\n\t}\n\n\tfor (int id : v)exi[id] = false;\n}\n\nvoid uoo(int n) {\n\tvector<int> ori(n); rep(i, n)ori[i] = i;\n\tq.push(ori);\n\twhile (!q.empty()) {\n\t\tvector<int> v = q.front(); q.pop();\n\t\tyaru(v);\n\t}\n}\n\nvoid solve() {\n\tint n; cin >> n;\n\trep(i, n)cin >> a[i];\n\trep(i, n - 1) {\n\t\tint a, b, c; cin >> a >> b >> c; a--; b--;\n\t\tG[a].push_back({ b,c });\n\t\tG[b].push_back({ a,c });\n\t}\n\tuoo(n);\n\tcout << ans << \"\\n\";\n}\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//init_f();\n\t//init();\n\t//while(true)\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 31444, "score_of_the_acc": -0.7641, "final_rank": 6 }, { "submission_id": "aoj_2790_5177687", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nmt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\nconst int maxn=1e6+10;\nint n,g[maxn],st[maxn],to[maxn],nt[maxn],topt,w[maxn],ans,ma[maxn],cima[maxn],dp[maxn],a[maxn],p;\nbool f[maxn];\nvoid add(int x,int y,int z){to[++topt]=y; nt[topt]=st[x]; st[x]=topt; w[topt]=z;}\nvoid dfs1(int x,int fa)\n{\n\tdp[x]=0; int p=st[x];\n\twhile (p)\n\t{\n\t\tif (to[p]!=fa) \n\t\t{\n\t\t\tdfs1(to[p],x);\n\t\t\tif (ma[to[p]]>=ma[x])\n\t\t\t{\n\t\t\t\tcima[x]=ma[x];\n\t\t\t\tma[x]=ma[to[p]];\n\t\t\t}\n\t\t\telse if (ma[to[p]]>cima[x]) cima[x]=ma[to[p]];\n\t\t}\n\t\tp=nt[p];\n\t}\n\tma[x]++; cima[x]++;\n}\nvoid dfs2(int x,int fa,int d)\n{\n\tdp[x]=max(d,ma[x]);\n\tint p=st[x];\n\twhile (p)\n\t{\n\t\tif (to[p]!=fa)\n\t\t{\n\t\t\tint now=d+1;\n\t\t\tif (ma[x]==ma[to[p]]+1) now=max(now,cima[x]+1);\n\t\t\telse now=max(now,ma[x]+1);\n\t\t\tdfs2(to[p],x,now);\n\t\t}\n\t\tp=nt[p];\n\t}\n\n}\nvoid dfs3(int x,int fa,int now,long long G)\n{\n\tif (G<0) return;\n\tG+=g[x]; ans=max(ans,now);\n\tint p=st[x];\n\twhile (p)\n\t{\n\t\tif (to[p]!=fa) dfs3(to[p],x,now+1,G-w[p]);\n\t\tp=nt[p];\n\t}\n}\nvoid solve(int x)\n{\n\tif (dp[a[x]]<=ans) return;\n\tdfs3(a[x],0,1,0);\n\tswap(a[x],a[p]); p--;\n}\nvoid solve1(int x)\n{\n\tif (dp[x]<=ans) return;\n\tdfs3(x,0,1,0);\n}\nint main()\n{\n\tscanf(\"%d\",&n);\n\tfor (int i=1;i<=n;i++) scanf(\"%d\",&g[i]);\n\tfor (int i=1;i<n;i++)\n\t{\n\t\tint x,y,z; scanf(\"%d%d%d\",&x,&y,&z);\n\t\tadd(x,y,z); add(y,x,z);\n\t}\n\tdfs1(1,0); dfs2(1,0,0);\n\tif (n<=10000)\n\t{\n\t\tfor (int i=1;i<=n;i++) solve1(i);\n\t}\n\telse\n\t{\n\t\tfor (int i=1;i<=n;i++) a[p++]=i;\n\t\tp--;\n\t\twhile (clock()<1850 && p>-1) solve(rng()%(p+1));\n\t}\n\tprintf(\"%d\\n\",ans);\nreturn 0;\n}", "accuracy": 0.13924050632911392, "time_ms": 10, "memory_kb": 6424, "score_of_the_acc": -0.0009, "final_rank": 20 }, { "submission_id": "aoj_2790_5177682", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nmt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\nconst int maxn=1e6+10;\nint n,g[maxn],st[maxn],to[maxn],nt[maxn],topt,w[maxn],ans,ma[maxn],cima[maxn],dp[maxn],a[maxn],p;\nbool f[maxn];\nvoid add(int x,int y,int z){to[++topt]=y; nt[topt]=st[x]; st[x]=topt; w[topt]=z;}\nvoid dfs1(int x,int fa)\n{\n\tdp[x]=0; int p=st[x];\n\twhile (p)\n\t{\n\t\tif (to[p]!=fa) \n\t\t{\n\t\t\tdfs1(to[p],x);\n\t\t\tif (ma[to[p]]>=ma[x])\n\t\t\t{\n\t\t\t\tcima[x]=ma[x];\n\t\t\t\tma[x]=ma[to[p]];\n\t\t\t}\n\t\t\telse if (ma[to[p]]>cima[x]) cima[x]=ma[to[p]];\n\t\t}\n\t\tp=nt[p];\n\t}\n\tma[x]++; cima[x]++;\n}\nvoid dfs2(int x,int fa,int d)\n{\n\tdp[x]=max(d,ma[x]);\n\tint p=st[x];\n\twhile (p)\n\t{\n\t\tif (to[p]!=fa)\n\t\t{\n\t\t\tint now=d+1;\n\t\t\tif (ma[x]==ma[to[p]]+1) now=max(now,cima[x]+1);\n\t\t\telse now=max(now,ma[x]+1);\n\t\t\tdfs2(to[p],x,now);\n\t\t}\n\t\tp=nt[p];\n\t}\n\n}\nvoid dfs3(int x,int fa,int now,long long G)\n{\n\tif (G<0) return;\n\tG+=g[x]; ans=max(ans,now);\n\tint p=st[x];\n\twhile (p)\n\t{\n\t\tif (to[p]!=fa) dfs3(to[p],x,now+1,G-w[p]);\n\t\tp=nt[p];\n\t}\n}\nvoid solve(int x)\n{\n\tif (dp[a[x]]<=ans) return;\n\tdfs3(a[x],0,1,0);\n\tswap(a[x],a[p]); p--;\n}\nvoid solve1(int x)\n{\n\tif (dp[x]<=ans) return;\n\tdfs3(x,0,1,0);\n}\nint main()\n{\n\tscanf(\"%d\",&n);\n\tfor (int i=1;i<=n;i++) scanf(\"%d\",&g[i]);\n\tfor (int i=1;i<n;i++)\n\t{\n\t\tint x,y,z; scanf(\"%d%d%d\",&x,&y,&z);\n\t\tadd(x,y,z); add(y,x,z);\n\t}\n\tdfs1(1,0); dfs2(1,0,0);\n\tif (n<=1000)\n\t{\n\t\tfor (int i=1;i<=n;i++) solve1(i);\n\t}\n\telse\n\t{\n\t\tfor (int i=1;i<=n;i++) a[p++]=i;\n\t\tp--;\n\t\twhile (clock()<1850 && p>-1) solve(rng()%(p+1));\n\t}\n\tprintf(\"%d\\n\",ans);\nreturn 0;\n}", "accuracy": 0.13924050632911392, "time_ms": 10, "memory_kb": 6380, "score_of_the_acc": 0, "final_rank": 19 }, { "submission_id": "aoj_2790_5176515", "code_snippet": "#include <bits/stdc++.h>\n#define LL long long\nusing namespace std;\nconst int INF=2e9;\nconst int N=1e5+10;\nint read(){\n int x=0,f=1;char ch=getchar();\n while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}\n while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}\n return x*f;\n}\nvoid print(LL x){\n if(x>9) print(x/10);\n putchar(x%10+'0');\n}\nint n,ans;\nstruct edge{\n\tint r,v;\n};\nvector<edge> E[N];\nint g[N];\nvoid insert(int u,int v,int w){\n\tE[u].push_back(edge{v,w});\n}\nint mx,rt;\nint sz[N];\nbool vis[N];\nvoid getrt(int x,int S,int fa){\n\t//cout<<x<<\" \"<<S<<\" \"<<fa<<endl;\n sz[x]=1;int son=0,y;\n for(int i=0;i<E[x].size();++i){\n \ty=E[x][i].r;\n \tif(vis[y]==0&&y!=fa){\n getrt(y,S,x);\n sz[x]+=sz[y];\n son=max(son,sz[y]);\n }\n\t}\n son=max(son,S-sz[x]);\n if(son<=mx){\n rt=x;\n mx=son;\n }\n}\nint dep[N],mxd[N];\nint dis[N],oil[N];\nvoid getdep(int x,int fa){\n\tint y;\n\tsz[x]=1;\n\tmxd[x]=dep[x];oil[x]=oil[fa]+g[x];\n\tfor(int i=0;i<E[x].size();++i){\n \ty=E[x][i].r;\n \tif(vis[y]==0&&y!=fa){\n \t\tdis[y]=dis[x]+E[x][i].v;\n dep[y]=dep[x]+1;\n getdep(y,x);\n sz[x]+=sz[y];\n mxd[x]=max(mxd[x],mxd[y]);\n }\n\t}\n}\nedge q[N];\nbool cmp(edge x,edge y){\n\treturn mxd[x.r]<mxd[y.r];\n}\nint pre[N],suf[N];\nint PRE[N],SUF[N];\nint wws[N],ned[N];\nvoid cal(int x,int fa){\n\tint y;\n\tSUF[dep[x]]=min(SUF[dep[x]],wws[x]);\n\tif(ned[x]==0) PRE[dep[x]]=max(PRE[dep[x]],oil[x]-dis[x]);\n\tfor(int i=0;i<E[x].size();++i){\n \ty=E[x][i].r;\n \tif(vis[y]==0&&y!=fa){\n \t\twws[y]=wws[x]+max(0,E[x][i].v-g[x]);\n \t\tif(g[E[x][i].r]-E[x][i].v>=ned[x]) ned[E[x][i].r]=0;\n \t\telse ned[E[x][i].r]=ned[x]+E[x][i].v-g[E[x][i].r];\n \t\tcal(y,x);\n }\n\t}\n}\nvoid sol(int x,int S){\n\tmx=1e9;\n\tgetrt(x,S,0);\n\t//cout<<rt<<endl;\n\tx=rt;\n\tdep[x]=0;dis[x]=0;\n\tgetdep(x,0);\n\tint r=0;\n\t//cout<<rt<<endl;\n\tfor(int i=0;i<E[x].size();++i){\n\t\tif(vis[E[x][i].r]==0) q[++r]=E[x][i];\n\t}\n if(r==0) return;\n // cout<<rt<<endl;\n sort(q+1,q+1+r,cmp);\n for(int i=0;i<=mxd[x];++i){\n \tpre[i]=-INF;\n \tsuf[i]=INF;\n\t}\n\tpre[0]=g[x];\n\tsuf[0]=0;\n\tfor(int i=1;i<=r;++i){\n\t\tfor(int j=0;j<=mxd[q[i].r];++j){\n\t\t\tPRE[j]=-INF;\n\t\t\tSUF[j]=INF;\n\t\t}\n\t\tned[q[i].r]=max(0,q[i].v-g[q[i].r]);\n\t\twws[q[i].r]=q[i].v;\n\t\t//if(q[i].v<=g[q[i].r]) PRE[1]=g[x]+g[q[i].r]-q[i].v;\n\t\tcal(q[i].r,x);\n\t\tfor(int j=mxd[q[i].r];j>1;--j){\n\t\t\tSUF[j-1]=min(SUF[j],SUF[j-1]);\n\t\t\tPRE[j-1]=max(PRE[j],PRE[j-1]);\n\t\t}\n\t\tfor(int j=1,k=mxd[q[i].r];j<=mxd[q[i].r];++j){\n\t\t\twhile(k>0&&suf[k]>PRE[j]) --k;\n\t\t\tif(suf[k]<=PRE[j]) ans=max(ans,j+k+1);\n\t\t}\n\t\tfor(int j=1,k=mxd[q[i].r];j<=mxd[q[i].r];++j){\n\t\t\twhile(k>0&&pre[k]<SUF[j]) --k;\n\t\t\tif(SUF[j]<=pre[k]) ans=max(ans,j+k+1);\n\t\t}\n\t\tfor(int j=mxd[q[i].r];j>=0;--j){\n\t\t\tsuf[j]=min(suf[j],SUF[j]);\n\t\t\tpre[j]=max(pre[j],PRE[j]);\n\t\t}\n\t\tfor(int j=mxd[q[i].r];j>=1;--j){\n\t\t\tsuf[j-1]=min(suf[j],suf[j-1]);\n\t\t\tpre[j-1]=max(pre[j],pre[j-1]);\n\t\t}\n\t\tpre[0]=max(pre[1],pre[0]);\n\t}\n\t//cout<<ans<<endl;\n\tvis[x]=1;\n\tfor(int i=0;i<E[x].size();++i){\n\t\tif(vis[E[x][i].r]==0) sol(E[x][i].r,sz[E[x][i].r]);\n\t}\n}\nint main(){\n\tscanf(\"%d\",&n);ans=1;oil[0]=0;\n\tfor(int i=1;i<=n;++i) scanf(\"%d\",&g[i]);\n\tint u,v,w;\n\tfor(int i=1;i<n;++i){\n\t\tscanf(\"%d%d%d\",&u,&v,&w);\n\t\tinsert(u,v,w);\n\t\tinsert(v,u,w);\n\t}\n\tsol(1,n);\n\tprintf(\"%d\\n\",ans);\n\treturn 0;\n}", "accuracy": 0.4050632911392405, "time_ms": 50, "memory_kb": 16172, "score_of_the_acc": -0.2923, "final_rank": 15 }, { "submission_id": "aoj_2790_5176438", "code_snippet": "#include <bits/stdc++.h>\n#define LL long long\nusing namespace std;\nconst int INF=1e9+10;\nconst int N=3e5+10;\nint read(){\n int x=0,f=1;char ch=getchar();\n while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}\n while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}\n return x*f;\n}\nvoid print(LL x){\n if(x>9) print(x/10);\n putchar(x%10+'0');\n}\nint n,ans;\nstruct edge{\n\tint r,v;\n};\nvector<edge> E[N];\nint g[N];\nvoid insert(int u,int v,int w){\n\tE[u].push_back(edge{v,w});\n}\nint mx,rt;\nint sz[N];\nbool vis[N];\nvoid getrt(int x,int S,int fa){\n\t//cout<<x<<\" \"<<S<<\" \"<<fa<<endl;\n sz[x]=1;int son=0,y;\n for(int i=0;i<E[x].size();++i){\n \ty=E[x][i].r;\n \tif(vis[y]==0&&y!=fa){\n getrt(y,S,x);\n sz[x]+=sz[y];\n son=max(son,sz[y]);\n }\n\t}\n son=max(son,S-sz[x]);\n if(son<=mx){\n rt=x;\n mx=son;\n }\n}\nint dep[N],mxd[N];\nint dis[N],oil[N];\nvoid getdep(int x,int fa){\n\tint y;\n\tsz[x]=1;\n\tmxd[x]=dep[x];oil[x]=oil[fa]+g[x];\n\tfor(int i=0;i<E[x].size();++i){\n \ty=E[x][i].r;\n \tif(vis[y]==0&&y!=fa){\n \t\tdis[y]=dis[x]+E[x][i].v;\n dep[y]=dep[x]+1;\n getdep(y,x);\n sz[x]+=sz[y];\n mxd[x]=max(mxd[x],mxd[y]);\n }\n\t}\n}\nedge q[N];\nbool cmp(edge x,edge y){\n\treturn mxd[x.r]<mxd[y.r];\n}\nint pre[N],suf[N];\nint PRE[N],SUF[N];\nint wws[N],ned[N];\nvoid cal(int x,int fa){\n\tint y;\n\tSUF[dep[x]]=min(SUF[dep[x]],wws[x]);\n\tif(ned[x]==0) PRE[dep[x]]=max(PRE[dep[x]],oil[x]-dis[x]);\n\tfor(int i=0;i<E[x].size();++i){\n \ty=E[x][i].r;\n \tif(vis[y]==0&&y!=fa){\n \t\twws[y]=wws[x]+max(0,E[x][i].v-g[x]);\n \t\tif(g[E[x][i].r]-E[x][i].v>=ned[x]) ned[E[x][i].r]=0;\n \t\telse ned[E[x][i].r]=ned[x]+E[x][i].v-g[E[x][i].r];\n \t\tcal(y,x);\n }\n\t}\n}\nvoid sol(int x,int S){\n\tmx=1e9;\n\tgetrt(x,S,0);\n\t//cout<<rt<<endl;\n\tx=rt;\n\tdep[x]=0;dis[x]=0;\n\tgetdep(x,0);\n\tint r=0;\n\t//cout<<rt<<endl;\n\tfor(int i=0;i<E[x].size();++i){\n\t\tif(vis[E[x][i].r]==0) q[++r]=E[x][i];\n\t}\n if(r==0) return;\n // cout<<rt<<endl;\n sort(q+1,q+1+r,cmp);\n for(int i=0;i<=mxd[x];++i){\n \tpre[i]=-INF;\n \tsuf[i]=INF;\n\t}\n\tpre[0]=g[x];\n\tsuf[0]=0;\n\tfor(int i=1;i<=r;++i){\n\t\tfor(int j=0;j<=mxd[q[i].r];++j){\n\t\t\tPRE[j]=-INF;\n\t\t\tSUF[j]=INF;\n\t\t}\n\t\tned[q[i].r]=max(0,q[i].v-g[q[i].r]);\n\t\twws[q[i].r]=q[i].v;\n\t\t//if(q[i].v<=g[q[i].r]) PRE[1]=g[x]+g[q[i].r]-q[i].v;\n\t\tcal(q[i].r,x);\n\t\tfor(int j=mxd[q[i].r];j>1;--j){\n\t\t\tSUF[j-1]=min(SUF[j],SUF[j-1]);\n\t\t\tPRE[j-1]=max(PRE[j],PRE[j-1]);\n\t\t}\n\t\tfor(int j=1,k=mxd[q[i].r];j<=mxd[q[i].r];++j){\n\t\t\twhile(k>0&&suf[k]>PRE[j]) --k;\n\t\t\tif(suf[k]<=PRE[j]) ans=max(ans,j+k+1);\n\t\t}\n\t\tfor(int j=1,k=mxd[q[i].r];j<=mxd[q[i].r];++j){\n\t\t\twhile(k>0&&pre[k]<SUF[j]) --k;\n\t\t\tif(SUF[j]<=pre[k]) ans=max(ans,j+k+1);\n\t\t}\n\t\tfor(int j=mxd[q[i].r];j>=0;--j){\n\t\t\tsuf[j]=min(suf[j],SUF[j]);\n\t\t\tpre[j]=max(pre[j],PRE[j]);\n\t\t}\n\t\tpre[0]=max(pre[1],pre[0]);\n\t}\n\t//cout<<ans<<endl;\n\tvis[x]=1;\n\tfor(int i=0;i<E[x].size();++i){\n\t\tif(vis[E[x][i].r]==0) sol(E[x][i].r,sz[E[x][i].r]);\n\t}\n}\nint main(){\n\tscanf(\"%d\",&n);ans=1;oil[0]=0;\n\tfor(int i=1;i<=n;++i) scanf(\"%d\",&g[i]);\n\tint u,v,w;\n\tfor(int i=1;i<n;++i){\n\t\tscanf(\"%d%d%d\",&u,&v,&w);\n\t\tinsert(u,v,w);\n\t\tinsert(v,u,w);\n\t}\n\tsol(1,n);\n\tprintf(\"%d\\n\",ans);\n\treturn 0;\n}", "accuracy": 0.4050632911392405, "time_ms": 50, "memory_kb": 20776, "score_of_the_acc": -0.3906, "final_rank": 16 }, { "submission_id": "aoj_2790_4054159", "code_snippet": "#include <algorithm>\n#include <set>\n#include <limits>\n#include <utility>\n#include <iostream>\n#include <type_traits>\n#include <vector>\n#include <cstdint>\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2790\"\n\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\ntemplate<typename F>\nstruct fixpoint : F\n{\n fixpoint(F&& f) : F(std::forward<F>(f)) {}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); }\n};\n// template<typename F>\n// inline decltype(auto) mfp(F&& f) { return fixpoint<F>{std::forward<F>(f)}; }\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\n\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return std::cout << \"\\n\", 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nvoid outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n\ntemplate<typename Cost = usize>\nstruct edge\n{\n using cost_type = Cost;\n usize u, v;\n Cost c;\n edge(const usize u, const usize v) : u{u}, v{v}, c{1} {}\n edge(const usize u, const usize v, const Cost& c) : u{u}, v{v}, c{c} {}\n operator usize() const { return v; }\n usize from() const { return u; }\n usize to() const { return v; }\n Cost cost() const { return c; }\n friend std::ostream& operator<<(std::ostream& os, const edge& e) { return os << e.u << \"->\" << e.v << \":\" << e.c; }\n};\ntemplate<typename Edge>\nclass base_graph\n{\npublic:\n base_graph(const usize n) : v{n}, es(n), res(n) {}\n void add_edge(const usize u, const usize v, const bool bi = false)\n {\n es[u].emplace_back(u, v), res[v].emplace_back(v, u);\n if (bi) { es[v].emplace_back(v, u), res[u].emplace_back(u, v); }\n }\n template<typename Cost>\n void add_edge(const usize u, const usize v, const Cost& c, const bool bi = false)\n {\n es[u].emplace_back(u, v, c), res[v].emplace_back(v, u, c);\n if (bi) { es[v].emplace_back(v, u, c), res[u].emplace_back(u, v, c); }\n }\n std::vector<Edge>& operator[](const usize u) { return es[u]; }\n const std::vector<Edge>& operator[](const usize u) const { return es[u]; }\n std::vector<Edge>& from(const usize u) { return es[u]; }\n const std::vector<Edge>& from(const usize u) const { return es[u]; }\n std::vector<Edge>& to(const usize v) { return res[v]; }\n const std::vector<Edge>& to(const usize v) const { return res[v]; }\n usize size() const { return v; }\n\nprivate:\n usize v;\n std::vector<std::vector<Edge>> es, res;\n};\ntemplate<typename Edge>\nusing base_tree = base_graph<Edge>;\nusing graph = base_graph<edge<>>;\nusing tree = base_graph<edge<>>;\ntemplate<typename Cost>\nusing cost_graph = base_graph<edge<Cost>>;\ntemplate<typename Cost>\nusing cost_tree = base_graph<edge<Cost>>;\ntemplate<typename Edge = edge<>>\nclass centroid\n{\npublic:\n centroid(const base_tree<Edge>& tree) : cs(tree.size())\n {\n const std::size_t sz = tree.size();\n std::vector<std::size_t> sub(sz, 1);\n std::vector<bool> used(sz, false);\n auto size = [&, sz](auto&& self, const std::size_t s, const std::size_t p) -> std::size_t {\n sub[s] = 1;\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (to == p or used[to]) { continue; }\n sub[s] += self(self, to, s);\n }\n return sub[s];\n };\n auto search = [&, sz](auto&& self, const std::size_t s, const std::size_t p, const std::size_t tot) -> std::size_t {\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (p == to or used[to]) { continue; }\n if (sub[to] * 2 > tot) { return self(self, to, s, tot); }\n }\n return s;\n };\n auto build = [&, sz](auto&& self, const std::size_t s, const std::size_t pc) -> std::size_t {\n const std::size_t tot = size(size, s, sz), c = search(search, s, sz, tot);\n used[c] = true;\n if (pc != sz) { cs.add_edge(pc, c); }\n for (const auto& e : tree[c]) {\n const std::size_t to = e.to();\n if (not used[to]) { self(self, to, c); }\n }\n return c;\n };\n build(build, 0, sz);\n }\n const tree& centros() const { return cs; }\n\nprivate:\n tree cs;\n};\nint main()\n{\n auto N = in<usize>();\n auto gas = in_v<ll>({N});\n cost_graph<ll> g(N);\n for (usize i = 0; i < N - 1; i++) {\n const auto a = in<usize>() - 1;\n const auto b = in<usize>() - 1;\n const auto d = in<ll>();\n g.add_edge(a, b, d, true);\n }\n const auto cg = centroid<edge<ll>>{g}.centros();\n usize centor = 0;\n for (; centor < N; centor++) {\n if (cg.to(centor).empty()) { break; }\n }\n usize ans = 1;\n std::vector<bool> used(N, false);\n mfp([&](auto&& dfs, usize c) -> void {\n used[c] = true;\n const usize cn = g[c].size();\n std::vector<std::vector<ll>> sub_ups(cn);\n std::vector<std::vector<ll>> sub_downs(cn);\n for (usize i = 0; i < cn; i++) {\n const auto& e = g[c][i];\n usize to = e.to();\n if (used[to]) { continue; }\n ll cost = e.cost();\n sub_downs[i].push_back(0LL);\n sub_ups[i].push_back(0LL);\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c, ll min) -> void {\n if (sub_downs[i].size() <= d) { sub_downs[i].push_back(-inf_v<ll>); }\n chmax(sub_downs[i][d], min);\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n dfs(dfs, to, s, d + 1, c - cost + gas[s], std::min(min, c - cost + gas[s]));\n }\n })(to, c, 1, gas[c] - cost, std::min(gas[c] - cost, 0LL));\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c, ll min) -> void {\n if (sub_ups[i].size() <= d) { sub_ups[i].push_back(-inf_v<ll>); }\n if (min == 0) { chmax(sub_ups[i][d], c); }\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n const ll nmin = std::min(0LL, min - (cost - gas[to]));\n dfs(dfs, to, s, d + 1, c - cost + gas[to], nmin);\n }\n })(to, c, 1, -cost + gas[to], std::min(0LL, -cost + gas[to]));\n }\n usize dmax = 0;\n for (usize i = 0; i < cn; i++) { chmax(dmax, sub_downs[i].size()); }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 1; d < sub_downs[i].size(); d++) {\n if (sub_downs[i][d] >= 0) { chmax(ans, d + 1); }\n }\n for (usize d = 1; d < sub_ups[i].size(); d++) {\n if (sub_ups[i][d] >= 0) { chmax(ans, d + 1); }\n }\n }\n for (usize i = 0; i < cn; i++) {\n for (int d = (int)sub_downs[i].size() - 1; d >= 1; d--) { chmax(sub_downs[i][d - 1], sub_downs[i][d]); }\n }\n std::vector<std::multiset<ll, std::greater<ll>>> sd(dmax);\n for (usize i = 0; i < cn; i++) {\n for (usize d = 0; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].erase(sd[d].find(sub_downs[i][d])); }\n for (usize d = 1; d < sub_ups[i].size(); d++) {\n const ll up = sub_ups[i][d];\n usize inf = 0, sup = dmax;\n while (sup - inf > 1) {\n const usize mid = (inf + sup) / 2;\n const ll down = (sd[mid].empty() ? -inf_v<ll> : *sd[mid].begin());\n (up + down >= 0 and not sd[mid].empty() ? inf : sup) = mid;\n }\n if (inf > 0) { chmax(ans, d + inf + 1); }\n }\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (const usize nc : cg[c]) { dfs(dfs, nc); }\n })(centor);\n outln(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 53232, "score_of_the_acc": -1.7708, "final_rank": 7 }, { "submission_id": "aoj_2790_4054158", "code_snippet": "#include <algorithm>\n#include <set>\n#include <limits>\n#include <utility>\n#include <iostream>\n#include <type_traits>\n#include <vector>\n#include <cstdint>\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2790\"\n\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\ntemplate<typename F>\nstruct fixpoint : F\n{\n fixpoint(F&& f) : F(std::forward<F>(f)) {}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); }\n};\n// template<typename F>\n// inline decltype(auto) mfp(F&& f) { return fixpoint<F>{std::forward<F>(f)}; }\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\n\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return std::cout << \"\\n\", 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nvoid outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n\ntemplate<typename Cost = usize>\nstruct edge\n{\n using cost_type = Cost;\n usize u, v;\n Cost c;\n edge(const usize u, const usize v) : u{u}, v{v}, c{1} {}\n edge(const usize u, const usize v, const Cost& c) : u{u}, v{v}, c{c} {}\n operator usize() const { return v; }\n usize from() const { return u; }\n usize to() const { return v; }\n Cost cost() const { return c; }\n friend std::ostream& operator<<(std::ostream& os, const edge& e) { return os << e.u << \"->\" << e.v << \":\" << e.c; }\n};\ntemplate<typename Edge>\nclass base_graph\n{\npublic:\n base_graph(const usize n) : v{n}, es(n), res(n) {}\n void add_edge(const usize u, const usize v, const bool bi = false)\n {\n es[u].emplace_back(u, v), res[v].emplace_back(v, u);\n if (bi) { es[v].emplace_back(v, u), res[u].emplace_back(u, v); }\n }\n template<typename Cost>\n void add_edge(const usize u, const usize v, const Cost& c, const bool bi = false)\n {\n es[u].emplace_back(u, v, c), res[v].emplace_back(v, u, c);\n if (bi) { es[v].emplace_back(v, u, c), res[u].emplace_back(u, v, c); }\n }\n std::vector<Edge>& operator[](const usize u) { return es[u]; }\n const std::vector<Edge>& operator[](const usize u) const { return es[u]; }\n std::vector<Edge>& from(const usize u) { return es[u]; }\n const std::vector<Edge>& from(const usize u) const { return es[u]; }\n std::vector<Edge>& to(const usize v) { return res[v]; }\n const std::vector<Edge>& to(const usize v) const { return res[v]; }\n usize size() const { return v; }\n\nprivate:\n usize v;\n std::vector<std::vector<Edge>> es, res;\n};\ntemplate<typename Edge>\nusing base_tree = base_graph<Edge>;\nusing graph = base_graph<edge<>>;\nusing tree = base_graph<edge<>>;\ntemplate<typename Cost>\nusing cost_graph = base_graph<edge<Cost>>;\ntemplate<typename Cost>\nusing cost_tree = base_graph<edge<Cost>>;\ntemplate<typename Edge = edge<>>\nclass centroid\n{\npublic:\n centroid(const base_tree<Edge>& tree) : cs(tree.size())\n {\n const std::size_t sz = tree.size();\n std::vector<std::size_t> sub(sz, 1);\n std::vector<bool> used(sz, false);\n auto size = [&, sz](auto&& self, const std::size_t s, const std::size_t p) -> std::size_t {\n sub[s] = 1;\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (to == p or used[to]) { continue; }\n sub[s] += self(self, to, s);\n }\n return sub[s];\n };\n auto search = [&, sz](auto&& self, const std::size_t s, const std::size_t p, const std::size_t tot) -> std::size_t {\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (p == to or used[to]) { continue; }\n if (sub[to] * 2 > tot) { return self(self, to, s, tot); }\n }\n return s;\n };\n auto build = [&, sz](auto&& self, const std::size_t s, const std::size_t pc) -> std::size_t {\n const std::size_t tot = size(size, s, sz), c = search(search, s, sz, tot);\n used[c] = true;\n if (pc != sz) { cs.add_edge(pc, c); }\n for (const auto& e : tree[c]) {\n const std::size_t to = e.to();\n if (not used[to]) { self(self, to, c); }\n }\n return c;\n };\n build(build, 0, sz);\n }\n const tree& centros() const { return cs; }\n\nprivate:\n tree cs;\n};\nint main()\n{\n auto N = in<usize>();\n auto gas = in_v<ll>({N});\n cost_graph<ll> g(N);\n for (usize i = 0; i < N - 1; i++) {\n const auto a = in<usize>() - 1;\n const auto b = in<usize>() - 1;\n const auto d = in<ll>();\n g.add_edge(a, b, d, true);\n }\n const auto cg = centroid<edge<ll>>{g}.centros();\n usize centor = 0;\n for (; centor < N; centor++) {\n if (cg.to(centor).empty()) { break; }\n }\n usize ans = 1;\n std::vector<bool> used(N, false);\n mfp([&](auto&& dfs, usize c) -> void {\n used[c] = true;\n const usize cn = g[c].size();\n std::vector<std::vector<ll>> sub_ups(cn);\n std::vector<std::vector<ll>> sub_downs(cn);\n for (usize i = 0; i < cn; i++) {\n const auto& e = g[c][i];\n usize to = e.to();\n if (used[to]) { continue; }\n ll cost = e.cost();\n sub_downs[i].push_back(0LL);\n sub_ups[i].push_back(0LL);\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c, ll min) -> void {\n if (sub_downs[i].size() <= d) { sub_downs[i].push_back(-inf_v<ll>); }\n chmax(sub_downs[i][d], min);\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n chmin(min, c - cost + gas[s]);\n dfs(dfs, to, s, d + 1, c - cost + gas[s], min);\n }\n })(to, c, 1, gas[c] - cost, std::min(gas[c] - cost, 0LL));\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c, ll min) -> void {\n if (sub_ups[i].size() <= d) { sub_ups[i].push_back(-inf_v<ll>); }\n if (min == 0) { chmax(sub_ups[i][d], c); }\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n min = std::min(0LL, min - (cost - gas[to]));\n dfs(dfs, to, s, d + 1, c - cost + gas[to], min);\n }\n })(to, c, 1, -cost + gas[to], std::min(0LL, -cost + gas[to]));\n }\n usize dmax = 0;\n for (usize i = 0; i < cn; i++) { chmax(dmax, sub_downs[i].size()); }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 1; d < sub_downs[i].size(); d++) {\n if (sub_downs[i][d] >= 0) { chmax(ans, d + 1); }\n }\n for (usize d = 1; d < sub_ups[i].size(); d++) {\n if (sub_ups[i][d] >= 0) { chmax(ans, d + 1); }\n }\n }\n for (usize i = 0; i < cn; i++) {\n for (int d = (int)sub_downs[i].size() - 1; d >= 1; d--) { chmax(sub_downs[i][d - 1], sub_downs[i][d]); }\n }\n std::vector<std::multiset<ll, std::greater<ll>>> sd(dmax);\n for (usize i = 0; i < cn; i++) {\n for (usize d = 0; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].erase(sd[d].find(sub_downs[i][d])); }\n for (usize d = 1; d < sub_ups[i].size(); d++) {\n const ll up = sub_ups[i][d];\n usize inf = 0, sup = dmax;\n while (sup - inf > 1) {\n const usize mid = (inf + sup) / 2;\n const ll down = (sd[mid].empty() ? -inf_v<ll> : *sd[mid].begin());\n (up + down >= 0 and not sd[mid].empty() ? inf : sup) = mid;\n }\n if (inf > 0) { chmax(ans, d + inf + 1); }\n }\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (const usize nc : cg[c]) { dfs(dfs, nc); }\n })(centor);\n outln(ans);\n return 0;\n}", "accuracy": 0.6075949367088608, "time_ms": 380, "memory_kb": 53204, "score_of_the_acc": -1.7702, "final_rank": 9 }, { "submission_id": "aoj_2790_4054157", "code_snippet": "#include <algorithm>\n#include <set>\n#include <limits>\n#include <utility>\n#include <iostream>\n#include <type_traits>\n#include <vector>\n#include <cstdint>\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2790\"\n\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\ntemplate<typename F>\nstruct fixpoint : F\n{\n fixpoint(F&& f) : F(std::forward<F>(f)) {}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); }\n};\n// template<typename F>\n// inline decltype(auto) mfp(F&& f) { return fixpoint<F>{std::forward<F>(f)}; }\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\n\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return std::cout << \"\\n\", 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nvoid outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n\ntemplate<typename Cost = usize>\nstruct edge\n{\n using cost_type = Cost;\n usize u, v;\n Cost c;\n edge(const usize u, const usize v) : u{u}, v{v}, c{1} {}\n edge(const usize u, const usize v, const Cost& c) : u{u}, v{v}, c{c} {}\n operator usize() const { return v; }\n usize from() const { return u; }\n usize to() const { return v; }\n Cost cost() const { return c; }\n friend std::ostream& operator<<(std::ostream& os, const edge& e) { return os << e.u << \"->\" << e.v << \":\" << e.c; }\n};\ntemplate<typename Edge>\nclass base_graph\n{\npublic:\n base_graph(const usize n) : v{n}, es(n), res(n) {}\n void add_edge(const usize u, const usize v, const bool bi = false)\n {\n es[u].emplace_back(u, v), res[v].emplace_back(v, u);\n if (bi) { es[v].emplace_back(v, u), res[u].emplace_back(u, v); }\n }\n template<typename Cost>\n void add_edge(const usize u, const usize v, const Cost& c, const bool bi = false)\n {\n es[u].emplace_back(u, v, c), res[v].emplace_back(v, u, c);\n if (bi) { es[v].emplace_back(v, u, c), res[u].emplace_back(u, v, c); }\n }\n std::vector<Edge>& operator[](const usize u) { return es[u]; }\n const std::vector<Edge>& operator[](const usize u) const { return es[u]; }\n std::vector<Edge>& from(const usize u) { return es[u]; }\n const std::vector<Edge>& from(const usize u) const { return es[u]; }\n std::vector<Edge>& to(const usize v) { return res[v]; }\n const std::vector<Edge>& to(const usize v) const { return res[v]; }\n usize size() const { return v; }\n\nprivate:\n usize v;\n std::vector<std::vector<Edge>> es, res;\n};\ntemplate<typename Edge>\nusing base_tree = base_graph<Edge>;\nusing graph = base_graph<edge<>>;\nusing tree = base_graph<edge<>>;\ntemplate<typename Cost>\nusing cost_graph = base_graph<edge<Cost>>;\ntemplate<typename Cost>\nusing cost_tree = base_graph<edge<Cost>>;\ntemplate<typename Edge = edge<>>\nclass centroid\n{\npublic:\n centroid(const base_tree<Edge>& tree) : cs(tree.size())\n {\n const std::size_t sz = tree.size();\n std::vector<std::size_t> sub(sz, 1);\n std::vector<bool> used(sz, false);\n auto size = [&, sz](auto&& self, const std::size_t s, const std::size_t p) -> std::size_t {\n sub[s] = 1;\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (to == p or used[to]) { continue; }\n sub[s] += self(self, to, s);\n }\n return sub[s];\n };\n auto search = [&, sz](auto&& self, const std::size_t s, const std::size_t p, const std::size_t tot) -> std::size_t {\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (p == to or used[to]) { continue; }\n if (sub[to] * 2 > tot) { return self(self, to, s, tot); }\n }\n return s;\n };\n auto build = [&, sz](auto&& self, const std::size_t s, const std::size_t pc) -> std::size_t {\n const std::size_t tot = size(size, s, sz), c = search(search, s, sz, tot);\n used[c] = true;\n if (pc != sz) { cs.add_edge(pc, c); }\n for (const auto& e : tree[c]) {\n const std::size_t to = e.to();\n if (not used[to]) { self(self, to, c); }\n }\n return c;\n };\n build(build, 0, sz);\n }\n const tree& centros() const { return cs; }\n\nprivate:\n tree cs;\n};\nint main()\n{\n auto N = in<usize>();\n auto gas = in_v<ll>({N});\n cost_graph<ll> g(N);\n for (usize i = 0; i < N - 1; i++) {\n const auto a = in<usize>() - 1;\n const auto b = in<usize>() - 1;\n const auto d = in<ll>();\n g.add_edge(a, b, d, true);\n }\n const auto cg = centroid<edge<ll>>{g}.centros();\n usize centor = 0;\n for (; centor < N; centor++) {\n if (cg.to(centor).empty()) { break; }\n }\n usize ans = 1;\n std::vector<bool> used(N, false);\n mfp([&](auto&& dfs, usize c) -> void {\n used[c] = true;\n const usize cn = g[c].size();\n std::vector<std::vector<ll>> sub_ups(cn);\n std::vector<std::vector<ll>> sub_downs(cn);\n for (usize i = 0; i < cn; i++) {\n const auto& e = g[c][i];\n usize to = e.to();\n if (used[to]) { continue; }\n ll cost = e.cost();\n sub_downs[i].push_back(0LL);\n sub_ups[i].push_back(0LL);\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c, ll min) -> void {\n if (sub_downs[i].size() <= d) { sub_downs[i].push_back(c); }\n chmax(sub_downs[i][d], min);\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n chmin(min, c - cost + gas[s]);\n dfs(dfs, to, s, d + 1, c - cost + gas[s], min);\n }\n })(to, c, 1, gas[c] - cost, std::min(gas[c] - cost, 0LL));\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c, ll min) -> void {\n if (sub_ups[i].size() <= d) { sub_ups[i].push_back(c); }\n if (min == 0) { chmax(sub_ups[i][d], c); }\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n chmin(min, std::min(0LL, min) - (cost - gas[to]));\n dfs(dfs, to, s, d + 1, c - cost + gas[to], min);\n }\n })(to, c, 1, -cost + gas[to], std::min(0LL, -cost + gas[to]));\n }\n usize dmax = 0;\n for (usize i = 0; i < cn; i++) { chmax(dmax, sub_downs[i].size()); }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 1; d < sub_downs[i].size(); d++) {\n if (sub_downs[i][d] >= 0) { chmax(ans, d + 1); }\n }\n for (usize d = 1; d < sub_ups[i].size(); d++) {\n if (sub_ups[i][d] >= 0) { chmax(ans, d + 1); }\n }\n }\n for (usize i = 0; i < cn; i++) {\n for (int d = (int)sub_downs[i].size() - 1; d >= 1; d--) { chmax(sub_downs[i][d - 1], sub_downs[i][d]); }\n }\n std::vector<std::multiset<ll, std::greater<ll>>> sd(dmax);\n for (usize i = 0; i < cn; i++) {\n for (usize d = 0; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].erase(sd[d].find(sub_downs[i][d])); }\n for (usize d = 1; d < sub_ups[i].size(); d++) {\n const ll up = sub_ups[i][d];\n usize inf = 0, sup = dmax;\n while (sup - inf > 1) {\n const usize mid = (inf + sup) / 2;\n const ll down = (sd[mid].empty() ? -inf_v<ll> : *sd[mid].begin());\n (up + down >= 0 and not sd[mid].empty() ? inf : sup) = mid;\n }\n if (inf > 0) { chmax(ans, d + inf + 1); }\n }\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (const usize nc : cg[c]) { dfs(dfs, nc); }\n })(centor);\n outln(ans);\n return 0;\n}", "accuracy": 0.4050632911392405, "time_ms": 260, "memory_kb": 49828, "score_of_the_acc": -1.4482, "final_rank": 18 }, { "submission_id": "aoj_2790_4054153", "code_snippet": "#include <algorithm>\n#include <set>\n#include <limits>\n#include <utility>\n#include <iostream>\n#include <type_traits>\n#include <vector>\n#include <cstdint>\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2790\"\n\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\ntemplate<typename F>\nstruct fixpoint : F\n{\n fixpoint(F&& f) : F(std::forward<F>(f)) {}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); }\n};\n// template<typename F>\n// inline decltype(auto) mfp(F&& f) { return fixpoint<F>{std::forward<F>(f)}; }\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\n\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return std::cout << \"\\n\", 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nvoid outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n# define SHOW(...) static_cast<void>(0)\n\ntemplate<typename Cost = usize>\nstruct edge\n{\n using cost_type = Cost;\n usize u, v;\n Cost c;\n edge(const usize u, const usize v) : u{u}, v{v}, c{1} {}\n edge(const usize u, const usize v, const Cost& c) : u{u}, v{v}, c{c} {}\n operator usize() const { return v; }\n usize from() const { return u; }\n usize to() const { return v; }\n Cost cost() const { return c; }\n friend std::ostream& operator<<(std::ostream& os, const edge& e) { return os << e.u << \"->\" << e.v << \":\" << e.c; }\n};\ntemplate<typename Edge>\nclass base_graph\n{\npublic:\n base_graph(const usize n) : v{n}, es(n), res(n) {}\n void add_edge(const usize u, const usize v, const bool bi = false)\n {\n es[u].emplace_back(u, v), res[v].emplace_back(v, u);\n if (bi) { es[v].emplace_back(v, u), res[u].emplace_back(u, v); }\n }\n template<typename Cost>\n void add_edge(const usize u, const usize v, const Cost& c, const bool bi = false)\n {\n es[u].emplace_back(u, v, c), res[v].emplace_back(v, u, c);\n if (bi) { es[v].emplace_back(v, u, c), res[u].emplace_back(u, v, c); }\n }\n std::vector<Edge>& operator[](const usize u) { return es[u]; }\n const std::vector<Edge>& operator[](const usize u) const { return es[u]; }\n std::vector<Edge>& from(const usize u) { return es[u]; }\n const std::vector<Edge>& from(const usize u) const { return es[u]; }\n std::vector<Edge>& to(const usize v) { return res[v]; }\n const std::vector<Edge>& to(const usize v) const { return res[v]; }\n usize size() const { return v; }\n\nprivate:\n usize v;\n std::vector<std::vector<Edge>> es, res;\n};\ntemplate<typename Edge>\nusing base_tree = base_graph<Edge>;\nusing graph = base_graph<edge<>>;\nusing tree = base_graph<edge<>>;\ntemplate<typename Cost>\nusing cost_graph = base_graph<edge<Cost>>;\ntemplate<typename Cost>\nusing cost_tree = base_graph<edge<Cost>>;\ntemplate<typename Edge = edge<>>\nclass centroid\n{\npublic:\n centroid(const base_tree<Edge>& tree) : cs(tree.size())\n {\n const std::size_t sz = tree.size();\n std::vector<std::size_t> sub(sz, 1);\n std::vector<bool> used(sz, false);\n auto size = [&, sz](auto&& self, const std::size_t s, const std::size_t p) -> std::size_t {\n sub[s] = 1;\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (to == p or used[to]) { continue; }\n sub[s] += self(self, to, s);\n }\n return sub[s];\n };\n auto search = [&, sz](auto&& self, const std::size_t s, const std::size_t p, const std::size_t tot) -> std::size_t {\n for (const auto& e : tree[s]) {\n const std::size_t to = e.to();\n if (p == to or used[to]) { continue; }\n if (sub[to] * 2 > tot) { return self(self, to, s, tot); }\n }\n return s;\n };\n auto build = [&, sz](auto&& self, const std::size_t s, const std::size_t pc) -> std::size_t {\n const std::size_t tot = size(size, s, sz), c = search(search, s, sz, tot);\n used[c] = true;\n if (pc != sz) { cs.add_edge(pc, c); }\n for (const auto& e : tree[c]) {\n const std::size_t to = e.to();\n if (not used[to]) { self(self, to, c); }\n }\n return c;\n };\n build(build, 0, sz);\n }\n const tree& centros() const { return cs; }\n\nprivate:\n tree cs;\n};\nint main()\n{\n auto N = in<usize>();\n auto gas = in_v<ll>({N});\n cost_graph<ll> g(N);\n for (usize i = 0; i < N - 1; i++) {\n const auto a = in<usize>() - 1;\n const auto b = in<usize>() - 1;\n const auto d = in<ll>();\n g.add_edge(a, b, d, true);\n }\n const auto cg = centroid<edge<ll>>{g}.centros();\n usize centor = 0;\n for (; centor < N; centor++) {\n if (cg.to(centor).empty()) { break; }\n }\n usize ans = 1;\n std::vector<bool> used(N, false);\n mfp([&](auto&& dfs, usize c) -> void {\n used[c] = true;\n const usize cn = g[c].size();\n std::vector<std::vector<ll>> sub_ups(cn);\n std::vector<std::vector<ll>> sub_downs(cn);\n for (usize i = 0; i < cn; i++) {\n const auto& e = g[c][i];\n usize to = e.to();\n if (used[to]) { continue; }\n ll cost = e.cost();\n sub_downs[i].push_back(0LL);\n sub_ups[i].push_back(0LL);\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c) -> void {\n if (sub_downs[i].size() <= d) { sub_downs[i].push_back(c); }\n chmax(sub_downs[i][d], c);\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n dfs(dfs, to, s, d + 1, c - cost + gas[s]);\n }\n })(to, c, 1, gas[c] - cost);\n for (int d = (int)sub_downs[i].size() - 1; d >= 1; d--) { chmax(sub_downs[i][d - 1], sub_downs[i][d]); }\n mfp([&](auto&& dfs, usize s, usize p, usize d, ll c) -> void {\n if (sub_ups[i].size() <= d) { sub_ups[i].push_back(c); }\n chmax(sub_ups[i][d], c);\n for (const auto& e : g[s]) {\n const usize to = e.to();\n if (to == p or used[to]) { continue; }\n const ll cost = e.cost();\n dfs(dfs, to, s, d + 1, c - cost + gas[to]);\n }\n })(to, c, 1, -cost + gas[to]);\n for (int d = (int)sub_ups[i].size() - 1; d >= 1; d--) { chmax(sub_ups[i][d - 1], sub_ups[i][d]); }\n }\n SHOW(c, sub_downs, sub_ups);\n usize dmax = 0;\n for (usize i = 0; i < cn; i++) { chmax(dmax, sub_downs[i].size()); }\n SHOW(dmax);\n std::vector<std::multiset<ll, std::greater<ll>>> sd(dmax);\n for (usize i = 0; i < cn; i++) {\n for (usize d = 0; d < sub_downs[i].size(); d++) {\n if (sub_downs[i][d] >= 0) { chmax(ans, d + 1); }\n }\n for (usize d = 0; d < sub_ups[i].size(); d++) {\n if (sub_ups[i][d] >= 0) { chmax(ans, d + 1); }\n }\n }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 0; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (usize i = 0; i < cn; i++) {\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].erase(sd[d].find(sub_downs[i][d])); }\n SHOW(i, sd);\n for (usize d = 1; d < sub_downs[i].size(); d++) {\n const ll up = sub_ups[i][d];\n usize inf = 0, sup = dmax;\n while (sup - inf > 1) {\n const usize mid = (inf + sup) / 2;\n const ll down = (sd[mid].empty() ? -inf_v<ll> : *sd[mid].begin());\n (up + down >= 0 ? inf : sup) = mid;\n }\n SHOW(i, d, inf, sup);\n if (inf > 0) { chmax(ans, d + inf + 1); }\n }\n for (usize d = 1; d < sub_downs[i].size(); d++) { sd[d].insert(sub_downs[i][d]); }\n }\n for (const usize nc : cg[c]) { dfs(dfs, nc); }\n })(centor);\n outln(ans);\n return 0;\n}", "accuracy": 0.4050632911392405, "time_ms": 230, "memory_kb": 49876, "score_of_the_acc": -1.3867, "final_rank": 17 }, { "submission_id": "aoj_2790_3702483", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100050\n\nstruct Edge{\n Edge(int arg_to,int arg_value,int arg_rev_value){\n to = arg_to;\n value = arg_value;\n rev_value = arg_rev_value;\n }\n int to,value,rev_value;\n};\n\nstruct Info{\n\n int node_id,max_rest_size;\n};\n\n\nint *subtree_size;\nbool *centroid;\nvector<Edge> G[NUM];\n\nvoid compute_subtree_size(int node_id,int parent){\n\n subtree_size[node_id] = 1;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n if(centroid[G[node_id][i].to] == true || G[node_id][i].to == parent)continue;\n\n compute_subtree_size(G[node_id][i].to,node_id);\n\n subtree_size[node_id] += subtree_size[G[node_id][i].to];\n }\n}\n\n\nInfo search_centroid(int node_id,int parent,int total_size){\n\n Info ret,tmp;\n ret.max_rest_size = BIG_NUM;\n ret.node_id = -1;\n\n int sum = 1,maximum = 0;\n int next_node;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n next_node = G[node_id][i].to;\n if(centroid[next_node] == true || next_node == parent)continue;\n\n tmp = search_centroid(next_node,node_id,total_size);\n\n if(ret.max_rest_size > tmp.max_rest_size){\n\n ret.max_rest_size = tmp.max_rest_size;\n ret.node_id = tmp.node_id;\n }\n\n maximum = max(maximum,subtree_size[next_node]);\n sum += subtree_size[next_node];\n }\n maximum = max(maximum,total_size-sum);\n\n if(ret.max_rest_size > maximum){\n ret.max_rest_size = maximum;\n ret.node_id = node_id;\n }\n\n return ret;\n}\n\n\nint *DOWN;\nint max_depth_DOWN;\n\nvoid calc_DOWN(int node_id,int parent,int depth,int minimum,int sum){\n\n\tDOWN[depth] = max(DOWN[depth],minimum);\n\tmax_depth_DOWN = max(max_depth_DOWN,depth);\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tint next_sum = sum + G[node_id][i].value;\n\t\tint next_minimum = min(minimum,next_sum);\n\n\t\tcalc_DOWN(next_node,node_id,depth+1,next_minimum,next_sum);\n\t}\n}\n\n\nint ans;\n\nvoid calc_UP(int node_id,int parent,int depth,int add,int sum,int maximum){\n\n\tint next_sum = sum+add;\n\n\tif(next_sum >= maximum){\n\n\t\tint L,R,mid;\n\n\t\tans = max(ans,depth+1);\n\n\t\tL = 1,R = max_depth_DOWN,mid = (L+R)/2;\n\n\t\twhile(L <= R){\n\n\t\t\tif(next_sum+DOWN[mid] >= 0){\n\n\t\t\t\tans = max(ans,depth+mid+1);\n\t\t\t\tL = mid+1;\n\n\t\t\t}else{\n\n\t\t\t\tR = mid-1;\n\t\t\t}\n\t\t\tmid = (L+R)/2;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(centroid[next_node] == true || next_node == parent)continue;\n\n\t\tcalc_UP(next_node,node_id,depth+1,G[node_id][i].rev_value,next_sum,max(maximum,next_sum));\n\t}\n}\n\n\nvoid solve_subproblem(int node_id){\n\n compute_subtree_size(node_id,-1);\n int center = search_centroid(node_id,-1,subtree_size[node_id]).node_id;\n int size = subtree_size[node_id];\n\n centroid[center] = true;\n\n int next_node;\n\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n solve_subproblem(next_node);\n }\n\n centroid[center] = false;\n\n for(int loop = 0; loop < 2; loop++){\n\n DOWN[0] = 0;\n for(int i = 1; i < size; i++){\n\n DOWN[i] = -BIG_NUM;\n }\n max_depth_DOWN = 0;\n\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node])continue;\n\n calc_UP(next_node,center,1,G[center][i].rev_value,0,0);\n calc_DOWN(next_node,center,1,G[center][i].value,G[center][i].value);\n }\n reverse(G[center].begin(),G[center].end());\n }\n}\n\nint main(){\n\n\tint V;\n\n scanf(\"%d\",&V);\n\n int gasoline[V+5];\n\tsubtree_size = new int[V+5];\n\tDOWN = new int[V+5];\n\tcentroid = new bool[V+5];\n\n for(int i = 0; i < V; i++){\n\n scanf(\"%d\",&gasoline[i]);\n }\n\n int from,to,dist;\n\n for(int i = 0; i < V-1; i++){\n\n scanf(\"%d %d %d\",&from,&to,&dist);\n from--;\n to--;\n\n G[from].push_back(Edge(to,gasoline[from]-dist,gasoline[to]-dist));\n G[to].push_back(Edge(from,gasoline[to]-dist,gasoline[from]-dist));\n }\n\n\n for(int i = 0; i < V; i++){\n\n centroid[i] = false;\n }\n\n ans = 0;\n\n solve_subproblem(0);\n\n printf(\"%d\\n\",max(1,ans));\n\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 20908, "score_of_the_acc": -0.5601, "final_rank": 5 }, { "submission_id": "aoj_2790_3702475", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100050\n\nstruct Edge{\n Edge(int arg_to,int arg_value,int arg_rev_value){\n to = arg_to;\n value = arg_value;\n rev_value = arg_rev_value;\n }\n int to,value,rev_value;\n};\n\nstruct Info{\n\n int node_id,max_rest_size;\n};\n\n\nint *subtree_size;\nbool *centroid; //その頂点が既に分割に用いられているか\nvector<Edge> G[NUM];\n\nvoid compute_subtree_size(int node_id,int parent){\n\n subtree_size[node_id] = 1;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n if(centroid[G[node_id][i].to] == true || G[node_id][i].to == parent)continue;\n\n compute_subtree_size(G[node_id][i].to,node_id);\n\n subtree_size[node_id] += subtree_size[G[node_id][i].to];\n }\n}\n\n\nInfo search_centroid(int node_id,int parent,int total_size){\n\n Info ret,tmp;\n ret.max_rest_size = BIG_NUM;\n ret.node_id = -1;\n\n int sum = 1,maximum = 0;\n int next_node;\n\n for(int i = 0; i < G[node_id].size(); i++){ //子を走査\n\n next_node = G[node_id][i].to;\n if(centroid[next_node] == true || next_node == parent)continue;\n\n tmp = search_centroid(next_node,node_id,total_size);\n\n if(ret.max_rest_size > tmp.max_rest_size){\n\n ret.max_rest_size = tmp.max_rest_size;\n ret.node_id = tmp.node_id;\n }\n\n maximum = max(maximum,subtree_size[next_node]);\n sum += subtree_size[next_node];\n }\n maximum = max(maximum,total_size-sum);\n\n if(ret.max_rest_size > maximum){\n ret.max_rest_size = maximum;\n ret.node_id = node_id;\n }\n\n return ret;\n}\n\n\nint *DOWN;\nint max_depth_DOWN;\n\nvoid calc_DOWN(int node_id,int parent,int depth,int minimum,int sum){\n\n\tDOWN[depth] = max(DOWN[depth],minimum);\n\tmax_depth_DOWN = max(max_depth_DOWN,depth);\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tint next_sum = sum + G[node_id][i].value;\n\t\tint next_minimum = min(minimum,next_sum);\n\n\t\tcalc_DOWN(next_node,node_id,depth+1,next_minimum,next_sum);\n\t}\n}\n\n\nint ans;\n\n//node_id以下の出発点で、最後にparentに辿り着く際の、最大のガソリン残量(★途中で負になる場合に注意★)\nvoid calc_UP(int node_id,int parent,int depth,int add,int sum,int maximum){\n\n\tint next_sum = sum+add;\n\n\tif(next_sum >= maximum){\n\n\t\tint L,R,mid;\n\n\t\tans = max(ans,depth+1); //上りのみの場合\n\n\t\tL = 1,R = max_depth_DOWN,mid = (L+R)/2;\n\n\t\twhile(L <= R){\n\n\t\t\tif(next_sum+DOWN[mid] >= 0){\n\n\t\t\t\tans = max(ans,depth+mid+1);\n\t\t\t\tL = mid+1;\n\n\t\t\t}else{\n\n\t\t\t\tR = mid-1;\n\t\t\t}\n\t\t\tmid = (L+R)/2;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(centroid[next_node] == true || next_node == parent)continue;\n\n\t\tcalc_UP(next_node,node_id,depth+1,G[node_id][i].rev_value,next_sum,max(maximum,next_sum));\n\t}\n}\n\n\nvoid solve_subproblem(int node_id){\n\n //重心となる頂点centerを探す\n compute_subtree_size(node_id,-1); //部分木のサイズを計算するとともに、最大の深さを計算する\n int center = search_centroid(node_id,-1,subtree_size[node_id]).node_id;\n int size = subtree_size[node_id]; //★再帰している間に値が書き換わるので退避★\n\n //printf(\"node_id:%d center:%d size[node]:%d\\n\",node_id,center,subtree_size[node_id]);\n\n centroid[center] = true;\n\n int next_node;\n\n //子の部分木を先に処理する\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n solve_subproblem(next_node);\n }\n\n centroid[center] = false;\n\n //printf(\"subtree_size[%d]:%d\\n\",node_id,subtree_size[node_id]);\n\n for(int loop = 0; loop < 2; loop++){\n\n DOWN[0] = 0;\n for(int i = 1; i < size; i++){ //★サイズに注意★\n\n DOWN[i] = -BIG_NUM;\n }\n max_depth_DOWN = 0;\n\n for(int i = 0; i < G[center].size(); i++){ //右端を上りとして固定し、最長のパスを求める\n\n next_node = G[center][i].to;\n\n if(centroid[next_node])continue;\n\n //右端の上りを計算\n calc_UP(next_node,center,1,G[center][i].rev_value,0,0);\n //右端の下りを計算\n calc_DOWN(next_node,center,1,G[center][i].value,G[center][i].value);\n }\n reverse(G[center].begin(),G[center].end());\n }\n}\n\nint main(){\n\n\tint V;\n\n scanf(\"%d\",&V);\n\n int gasoline[V+5];\n\tsubtree_size = new int[V+5];\n\tDOWN = new int[V+5];\n\tcentroid = new bool[V+5];\n\n for(int i = 0; i < V; i++){\n\n scanf(\"%d\",&gasoline[i]);\n }\n\n int from,to,dist;\n\n for(int i = 0; i < V-1; i++){\\\n\n scanf(\"%d %d %d\",&from,&to,&dist);\n from--;\n to--;\n\n G[from].push_back(Edge(to,gasoline[from]-dist,gasoline[to]-dist));\n G[to].push_back(Edge(from,gasoline[to]-dist,gasoline[from]-dist));\n }\n\n\n for(int i = 0; i < V; i++){\n\n centroid[i] = false;\n }\n\n ans = 0;\n\n solve_subproblem(0);\n\n printf(\"%d\\n\",max(1,ans));\n\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 20872, "score_of_the_acc": -0.5593, "final_rank": 4 }, { "submission_id": "aoj_2790_3701506", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100020\n\nstruct Edge{\n Edge(int arg_to,int arg_value,int arg_rev_value){\n to = arg_to;\n value = arg_value;\n rev_value = arg_rev_value;\n }\n int to,value,rev_value;\n};\n\n\nstatic int gasoline[NUM],subtree_size[NUM];\nstatic bool centroid[NUM]; //その頂点が既に分割に用いられているか\nstatic vector<Edge> G[NUM];\n\nstatic void compute_subtree_size(int node_id,int parent){\n\n subtree_size[node_id] = 1;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n if(centroid[G[node_id][i].to] == true || G[node_id][i].to == parent)continue;\n\n compute_subtree_size(G[node_id][i].to,node_id);\n\n subtree_size[node_id] += subtree_size[G[node_id][i].to];\n }\n}\n\nvector<int> CENTROID;\n\nstatic void search_centroid(int node_id,int parent,int total_size){\n\n\tbool FLG = true;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\t\tsearch_centroid(next_node,node_id,total_size);\n\n\t\tif(subtree_size[next_node] > total_size/2){\n\t\t\tFLG = false;\n\t\t\tbreak;\n\t\t}\n\t}\n\tif(total_size-subtree_size[node_id] > total_size/2)return;\n\tif(FLG)CENTROID.push_back(node_id);\n}\n\n\nstatic int max_depth_DOWN,max_depth_UP;\nstatic int DOWN[NUM];\n\nstatic int V;\nstatic int root,ans;\n\nstatic int calc_DOWN(int node_id,int parent,int depth,int minimum,int sum){\n\n\tDOWN[depth] = max(DOWN[depth],minimum);\n\tmax_depth_DOWN = max(max_depth_DOWN,depth);\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tint next_sum = sum + G[node_id][i].value;\n\t\tint next_minimum = min(minimum,next_sum);\n\n\t\tDOWN[depth] = max(DOWN[depth],calc_DOWN(next_node,node_id,depth+1,next_sum,next_minimum));\n\t}\n\treturn DOWN[depth];\n}\n\n\nstatic void calc_UP(int node_id,int parent,int depth,int sum,int maximum){\n\n\t//sum += add; //親方向へのコストを足す\n\t//int next_sum = sum+add;\n\tint next_sum = sum;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\tif(G[node_id][i].to == parent){\n\t\t\tnext_sum += G[node_id][i].value;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\t//総和の最大値を更新した場合[★これで途中で負になる区間があるかわかる。総和が減るなら、逆方向から歩けば負になる区間があるはず★]\n\tif(next_sum >= maximum){\n\n\t\tmax_depth_UP = max(max_depth_UP,depth);\n\n\t\tint L,R,mid;\n\n\t\t //最大値を計算\n\t\tans = max(ans,depth+1); //上りだけの場合\n\n\t\tL = 1,R = max_depth_DOWN,mid = (L+R)/2;\n\n\t\twhile(L <= R){\n\n\t\t\tif(next_sum+DOWN[mid] >= 0){ //ガソリンを空にせずにk+midだけ走れる\n\n\t\t\t\tans = max(ans,depth+mid+1);\n\t\t\t\tL = mid+1;\n\n\t\t\t}else{\n\n\t\t\t\tR = mid-1;\n\t\t\t}\n\t\t\tmid = (L+R)/2;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tcalc_UP(next_node,node_id,depth+1,next_sum,max(maximum,next_sum));\n\t}\n}\n\nstatic void solve_subproblem(int node_id){\n\n //重心となる頂点centerを探す\n compute_subtree_size(node_id,-1); //部分木のサイズを計算するとともに、最大の深さを計算する\n CENTROID.clear();\n //int center = search_centroid(node_id,-1,subtree_size[node_id]).node_id;\n\tsearch_centroid(node_id,-1,subtree_size[node_id]);\n int center = CENTROID[0];\n\n centroid[center] = true;\n\n int next_node;\n\n //子の部分木を先に処理する\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n solve_subproblem(next_node);\n }\n\n centroid[center] = false;\n\n for(int loop = 0; loop < 2; loop++){\n\n DOWN[0] = 0;\n for(int i = 1; i <= subtree_size[node_id]+5; i++){ //★サイズに注意★\n\n DOWN[i] = -BIG_NUM;\n }\n max_depth_DOWN = 0;\n\n for(int i = 0; i < G[center].size(); i++){ //右端を上りとして固定し、最長のパスを求める\n\n next_node = G[center][i].to;\n\n if(centroid[next_node])continue;\n\n calc_UP(next_node,center,1,0,0);\n\n //右端の下りを計算\n DOWN[0] = max(DOWN[0],calc_DOWN(next_node,center,1,G[center][i].value,G[center][i].value));\n }\n\n reverse(G[center].begin(),G[center].end());\n }\n\n}\n\nint main(){\n\n scanf(\"%d\",&V);\n\n for(int i = 0; i < V; i++){\n\n scanf(\"%d\",&gasoline[i]);\n }\n\n int from,to,dist;\n\n for(int i = 0; i < V-1; i++){\n\n scanf(\"%d %d %d\",&from,&to,&dist);\n from--;\n to--;\n\n G[from].push_back(Edge(to,gasoline[from]-dist,gasoline[to]-dist));\n G[to].push_back(Edge(from,gasoline[to]-dist,gasoline[from]-dist));\n }\n\n\n root = 0;\n\n for(int i = 0; i < V; i++){\n\n centroid[i] = false;\n }\n\n ans = 0;\n\n solve_subproblem(root);\n\n printf(\"%d\\n\",max(1,ans));\n\n return 0;\n}", "accuracy": 0.4430379746835443, "time_ms": 70, "memory_kb": 13984, "score_of_the_acc": -0.2873, "final_rank": 10 }, { "submission_id": "aoj_2790_3701501", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100020\n\nstruct Edge{\n Edge(int arg_to,int arg_value,int arg_rev_value){\n to = arg_to;\n value = arg_value;\n rev_value = arg_rev_value;\n }\n int to,value,rev_value;\n};\n\n\nstatic int gasoline[NUM],subtree_size[NUM];\nstatic bool centroid[NUM]; //その頂点が既に分割に用いられているか\nstatic vector<Edge> G[NUM];\n\nvoid compute_subtree_size(int node_id,int parent){\n\n subtree_size[node_id] = 1;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n if(centroid[G[node_id][i].to] == true || G[node_id][i].to == parent)continue;\n\n compute_subtree_size(G[node_id][i].to,node_id);\n\n subtree_size[node_id] += subtree_size[G[node_id][i].to];\n }\n}\n\nvector<int> CENTROID;\n\nvoid search_centroid(int node_id,int parent,int total_size){\n\n\tbool FLG = true;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\t\tsearch_centroid(next_node,node_id,total_size);\n\n\t\tif(subtree_size[next_node] > total_size/2){\n\t\t\tFLG = false;\n\t\t\tbreak;\n\t\t}\n\t}\n\tif(total_size-subtree_size[node_id] > total_size/2)return;\n\tif(FLG)CENTROID.push_back(node_id);\n}\n\n\nstatic int max_depth_DOWN,max_depth_UP;\nstatic int DOWN[NUM];\n\nstatic int V;\nstatic int root,ans;\n\nint calc_DOWN(int node_id,int parent,int depth,int minimum,int sum){\n\n\tDOWN[depth] = max(DOWN[depth],minimum);\n\tmax_depth_DOWN = max(max_depth_DOWN,depth);\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tint next_sum = sum + G[node_id][i].value;\n\t\tint next_minimum = min(minimum,next_sum);\n\n\t\tDOWN[depth] = max(DOWN[depth],calc_DOWN(next_node,node_id,depth+1,next_sum,next_minimum));\n\t}\n\treturn DOWN[depth];\n}\n\n\nvoid calc_UP(int node_id,int parent,int depth,int sum,int maximum){\n\n\t//sum += add; //親方向へのコストを足す\n\t//int next_sum = sum+add;\n\tint next_sum = sum;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\tif(G[node_id][i].to == parent){\n\t\t\tnext_sum += G[node_id][i].value;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\t//総和の最大値を更新した場合[★これで途中で負になる区間があるかわかる。総和が減るなら、逆方向から歩けば負になる区間があるはず★]\n\tif(next_sum >= maximum){\n\n\t\tmax_depth_UP = max(max_depth_UP,depth);\n\n\t\tint L,R,mid;\n\n\t\t //最大値を計算\n\t\tans = max(ans,depth+1); //上りだけの場合\n\n\t\tL = 1,R = max_depth_DOWN,mid = (L+R)/2;\n\n\t\twhile(L <= R){\n\n\t\t\tif(next_sum+DOWN[mid] >= 0){ //ガソリンを空にせずにk+midだけ走れる\n\n\t\t\t\tans = max(ans,depth+mid+1);\n\t\t\t\tL = mid+1;\n\n\t\t\t}else{\n\n\t\t\t\tR = mid-1;\n\t\t\t}\n\t\t\tmid = (L+R)/2;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tcalc_UP(next_node,node_id,depth+1,next_sum,max(maximum,next_sum));\n\t}\n}\n\nvoid solve_subproblem(int node_id){\n\n //重心となる頂点centerを探す\n compute_subtree_size(node_id,-1); //部分木のサイズを計算するとともに、最大の深さを計算する\n CENTROID.clear();\n //int center = search_centroid(node_id,-1,subtree_size[node_id]).node_id;\n\tsearch_centroid(node_id,-1,subtree_size[node_id]);\n int center = CENTROID[0];\n\n centroid[center] = true;\n\n int next_node;\n\n //子の部分木を先に処理する\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n solve_subproblem(next_node);\n }\n\n centroid[center] = false;\n\n for(int loop = 0; loop < 2; loop++){\n\n DOWN[0] = 0;\n for(int i = 1; i <= subtree_size[node_id]+5; i++){ //★サイズに注意★\n\n DOWN[i] = -BIG_NUM;\n }\n max_depth_DOWN = 0;\n\n for(int i = 0; i < G[center].size(); i++){ //右端を上りとして固定し、最長のパスを求める\n\n next_node = G[center][i].to;\n\n if(centroid[next_node])continue;\n\n calc_UP(next_node,center,1,0,0);\n\n //右端の下りを計算\n DOWN[0] = max(DOWN[0],calc_DOWN(next_node,center,1,G[center][i].value,G[center][i].value));\n }\n\n reverse(G[center].begin(),G[center].end());\n }\n\n}\n\nint main(){\n\n scanf(\"%d\",&V);\n\n for(int i = 0; i < V; i++){\n\n scanf(\"%d\",&gasoline[i]);\n }\n\n int from,to,dist;\n\n for(int i = 0; i < V-1; i++){\n\n scanf(\"%d %d %d\",&from,&to,&dist);\n from--;\n to--;\n\n G[from].push_back(Edge(to,gasoline[from]-dist,gasoline[to]-dist));\n G[to].push_back(Edge(from,gasoline[to]-dist,gasoline[from]-dist));\n }\n\n\n root = 0;\n\n for(int i = 0; i < V; i++){\n\n centroid[i] = false;\n }\n\n ans = 0;\n\n solve_subproblem(root);\n\n printf(\"%d\\n\",max(1,ans));\n\n return 0;\n}", "accuracy": 0.4430379746835443, "time_ms": 70, "memory_kb": 13992, "score_of_the_acc": -0.2875, "final_rank": 11 }, { "submission_id": "aoj_2790_3701500", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100020\n\nstruct Edge{\n Edge(int arg_to,int arg_value,int arg_rev_value){\n to = arg_to;\n value = arg_value;\n rev_value = arg_rev_value;\n }\n int to,value,rev_value;\n};\n\n\nint gasoline[NUM],subtree_size[NUM];\nbool centroid[NUM]; //その頂点が既に分割に用いられているか\nvector<Edge> G[NUM];\n\nvoid compute_subtree_size(int node_id,int parent){\n\n subtree_size[node_id] = 1;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n if(centroid[G[node_id][i].to] == true || G[node_id][i].to == parent)continue;\n\n compute_subtree_size(G[node_id][i].to,node_id);\n\n subtree_size[node_id] += subtree_size[G[node_id][i].to];\n }\n}\n\nvector<int> CENTROID;\n\nvoid search_centroid(int node_id,int parent,int total_size){\n\n\tbool FLG = true;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\t\tsearch_centroid(next_node,node_id,total_size);\n\n\t\tif(subtree_size[next_node] > total_size/2){\n\t\t\tFLG = false;\n\t\t\tbreak;\n\t\t}\n\t}\n\tif(total_size-subtree_size[node_id] > total_size/2)return;\n\tif(FLG)CENTROID.push_back(node_id);\n}\n\n\nint max_depth_DOWN,max_depth_UP;\nint DOWN[NUM];\n\nint V;\nint root,ans;\n\nint calc_DOWN(int node_id,int parent,int depth,int minimum,int sum){\n\n\tDOWN[depth] = max(DOWN[depth],minimum);\n\tmax_depth_DOWN = max(max_depth_DOWN,depth);\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tint next_sum = sum + G[node_id][i].value;\n\t\tint next_minimum = min(minimum,next_sum);\n\n\t\tDOWN[depth] = max(DOWN[depth],calc_DOWN(next_node,node_id,depth+1,next_sum,next_minimum));\n\t}\n\treturn DOWN[depth];\n}\n\n\nvoid calc_UP(int node_id,int parent,int depth,int sum,int maximum){\n\n\t//sum += add; //親方向へのコストを足す\n\t//int next_sum = sum+add;\n\tint next_sum = sum;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\tif(G[node_id][i].to == parent){\n\t\t\tnext_sum += G[node_id][i].value;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\t//総和の最大値を更新した場合[★これで途中で負になる区間があるかわかる。総和が減るなら、逆方向から歩けば負になる区間があるはず★]\n\tif(next_sum >= maximum){\n\n\t\tmax_depth_UP = max(max_depth_UP,depth);\n\n\t\tint L,R,mid;\n\n\t\t //最大値を計算\n\t\tans = max(ans,depth+1); //上りだけの場合\n\n\t\tL = 1,R = max_depth_DOWN,mid = (L+R)/2;\n\n\t\twhile(L <= R){\n\n\t\t\tif(next_sum+DOWN[mid] >= 0){ //ガソリンを空にせずにk+midだけ走れる\n\n\t\t\t\tans = max(ans,depth+mid+1);\n\t\t\t\tL = mid+1;\n\n\t\t\t}else{\n\n\t\t\t\tR = mid-1;\n\t\t\t}\n\t\t\tmid = (L+R)/2;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tcalc_UP(next_node,node_id,depth+1,next_sum,max(maximum,next_sum));\n\t}\n}\n\nvoid solve_subproblem(int node_id){\n\n //重心となる頂点centerを探す\n compute_subtree_size(node_id,-1); //部分木のサイズを計算するとともに、最大の深さを計算する\n CENTROID.clear();\n //int center = search_centroid(node_id,-1,subtree_size[node_id]).node_id;\n\tsearch_centroid(node_id,-1,subtree_size[node_id]);\n int center = CENTROID[0];\n\n centroid[center] = true;\n\n int next_node;\n\n //子の部分木を先に処理する\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n solve_subproblem(next_node);\n }\n\n centroid[center] = false;\n\n for(int loop = 0; loop < 2; loop++){\n\n DOWN[0] = 0;\n for(int i = 1; i <= subtree_size[node_id]+5; i++){ //★サイズに注意★\n\n DOWN[i] = -BIG_NUM;\n }\n max_depth_DOWN = 0;\n\n for(int i = 0; i < G[center].size(); i++){ //右端を上りとして固定し、最長のパスを求める\n\n next_node = G[center][i].to;\n\n if(centroid[next_node])continue;\n\n calc_UP(next_node,center,1,0,0);\n\n //右端の下りを計算\n DOWN[0] = max(DOWN[0],calc_DOWN(next_node,center,1,G[center][i].value,G[center][i].value));\n }\n\n reverse(G[center].begin(),G[center].end());\n }\n\n}\n\nint main(){\n\n scanf(\"%d\",&V);\n\n for(int i = 0; i < V; i++){\n\n scanf(\"%d\",&gasoline[i]);\n }\n\n int from,to,dist;\n\n for(int i = 0; i < V-1; i++){\n\n scanf(\"%d %d %d\",&from,&to,&dist);\n from--;\n to--;\n\n G[from].push_back(Edge(to,gasoline[from]-dist,gasoline[to]-dist));\n G[to].push_back(Edge(from,gasoline[to]-dist,gasoline[from]-dist));\n }\n\n\n root = 0;\n\n for(int i = 0; i < V; i++){\n\n centroid[i] = false;\n }\n\n ans = 0;\n\n solve_subproblem(root);\n\n printf(\"%d\\n\",max(1,ans));\n\n return 0;\n}", "accuracy": 0.4430379746835443, "time_ms": 70, "memory_kb": 14028, "score_of_the_acc": -0.2882, "final_rank": 12 }, { "submission_id": "aoj_2790_3701461", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100020\n\nstruct Edge{\n Edge(int arg_to,int arg_value,int arg_rev_value){\n to = arg_to;\n value = arg_value;\n rev_value = arg_rev_value;\n }\n int to,value,rev_value;\n};\n\nint subtree_size[NUM];\nbool centroid[NUM]; //その頂点が既に分割に用いられているか\nvector<Edge> G[NUM];\n\nvoid compute_subtree_size(int node_id,int parent){\n\n subtree_size[node_id] = 1;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n if(centroid[G[node_id][i].to] == true || G[node_id][i].to == parent)continue;\n\n compute_subtree_size(G[node_id][i].to,node_id);\n\n subtree_size[node_id] += subtree_size[G[node_id][i].to];\n }\n}\n\n\nvector<int> CENTROID;\nvoid search_centroid(int node_id,int parent,int total_size){\n\n\tbool FLG = true;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\t\tsearch_centroid(next_node,node_id,total_size);\n\n\t\tif(subtree_size[next_node] > total_size/2){\n\t\t\tFLG = false;\n\t\t\tbreak;\n\t\t}\n\t}\n\tif(total_size-subtree_size[node_id] > total_size/2)return;\n\tif(FLG)CENTROID.push_back(node_id);\n}\n\nint ans = 0;\nint gasoline[NUM];\n\n\nint DOWN[NUM];\nint max_depth_DOWN,max_depth_UP;\n\n\nint calc_DOWN(int node_id,int parent,int depth,int minimum,int sum){\n\n\tDOWN[depth] = max(DOWN[depth],minimum);\n\tmax_depth_DOWN = max(max_depth_DOWN,depth);\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tint next_sum = sum + G[node_id][i].value;\n\t\tint next_minimum = min(minimum,next_sum);\n\n\t\tDOWN[depth] = max(DOWN[depth],calc_DOWN(next_node,node_id,depth+1,next_sum,next_minimum));\n\t}\n\treturn DOWN[depth];\n}\n\n\nvoid calc_UP(int node_id,int parent,int depth,int sum,int maximum){\n\n\t//sum += add; //親方向へのコストを足す\n\t//int next_sum = sum+add;\n\tint next_sum = sum;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\tif(G[node_id][i].to == parent){\n\t\t\tnext_sum += G[node_id][i].value;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\t//総和の最大値を更新した場合[★これで途中で負になる区間があるかわかる。総和が減るなら、逆方向から歩けば負になる区間があるはず★]\n\tif(next_sum >= maximum){\n\n\t\tmax_depth_UP = max(max_depth_UP,depth);\n\n\t\tint L,R,mid;\n\n\t\t //最大値を計算\n\t\tans = max(ans,depth+1); //上りだけの場合\n\n\t\tL = 1,R = max_depth_DOWN,mid = (L+R)/2;\n\n\t\twhile(L <= R){\n\n\t\t\tif(next_sum+DOWN[mid] >= 0){ //ガソリンを空にせずにk+midだけ走れる\n\n\t\t\t\tans = max(ans,depth+mid+1);\n\t\t\t\tL = mid+1;\n\n\t\t\t}else{\n\n\t\t\t\tR = mid-1;\n\t\t\t}\n\t\t\tmid = (L+R)/2;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tcalc_UP(next_node,node_id,depth+1,next_sum,max(maximum,next_sum));\n\t}\n}\n\nvoid solve_subproblem(int node_id){\n\n //重心となる頂点centerを探す\n compute_subtree_size(node_id,-1); //部分木のサイズを計算するとともに、最大の深さを計算する\n CENTROID.clear();\n //int center = search_centroid(node_id,-1,subtree_size[node_id]).node_id;\n\tsearch_centroid(node_id,-1,subtree_size[node_id]);\n int center = CENTROID[0];\n\n centroid[center] = true;\n\n int next_node;\n\n //子の部分木を先に処理する\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n solve_subproblem(next_node);\n }\n\n centroid[center] = false;\n\n for(int loop = 0; loop < 2; loop++){\n\n DOWN[0] = 0;\n for(int i = 1; i <= subtree_size[node_id]+5; i++){ //★サイズに注意★\n\n DOWN[i] = -BIG_NUM;\n }\n max_depth_DOWN = 0;\n\n for(int i = 0; i < G[center].size(); i++){ //右端を上りとして固定し、最長のパスを求める\n\n next_node = G[center][i].to;\n\n if(centroid[next_node])continue;\n\n calc_UP(next_node,center,1,0,0);\n\n //右端の下りを計算\n DOWN[0] = max(DOWN[0],calc_DOWN(next_node,center,1,G[center][i].value,G[center][i].value));\n }\n\n reverse(G[center].begin(),G[center].end());\n }\n\n}\n\nint main(){\n\n\tint N;\n\n scanf(\"%d\",&N);\n\n for(int i = 0; i < N; i++){\n\n scanf(\"%d\",&gasoline[i]);\n }\n\n int from,to,dist;\n\n for(int i = 0; i < N-1; i++){\n\n scanf(\"%d %d %d\",&from,&to,&dist);\n from--;\n to--;\n\n G[from].push_back(Edge(to,gasoline[from]-dist,gasoline[to]-dist));\n G[to].push_back(Edge(from,gasoline[to]-dist,gasoline[from]-dist));\n }\n\n\n solve_subproblem(0);\n\n printf(\"%d\\n\",max(1,ans));\n\n return 0;\n}", "accuracy": 0.4430379746835443, "time_ms": 70, "memory_kb": 14056, "score_of_the_acc": -0.2888, "final_rank": 13 }, { "submission_id": "aoj_2790_3701448", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 100020\n\nstruct Edge{\n Edge(int arg_to,int arg_value){\n to = arg_to;\n value = arg_value;\n }\n int to,value;\n};\n\nint subtree_size[NUM];\nbool centroid[NUM]; //その頂点が既に分割に用いられているか\nvector<Edge> G[NUM];\nvector<int> CENTROID;\n\nvoid compute_subtree_size(int node_id,int parent){\n\n subtree_size[node_id] = 1;\n\n for(int i = 0; i < G[node_id].size(); i++){\n\n if(centroid[G[node_id][i].to] == true || G[node_id][i].to == parent)continue;\n\n compute_subtree_size(G[node_id][i].to,node_id);\n\n subtree_size[node_id] += subtree_size[G[node_id][i].to];\n }\n}\n\n\nvoid search_centroid(int node_id,int parent,int total_size){\n\n\tbool FLG = true;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\t\tsearch_centroid(next_node,node_id,total_size);\n\n\t\tif(subtree_size[next_node] > total_size/2){\n\t\t\tFLG = false;\n\t\t}\n\t}\n\tif(total_size-subtree_size[node_id] > total_size/2)FLG = false;\n\tif(FLG)CENTROID.push_back(node_id);\n}\n\n\nvector<int> DOWN;\nint ans = 0;\n\nint calc_DOWN(int node_id,int parent,int depth,int minimum,int sum){\n\n\tDOWN[depth] = max(DOWN[depth],minimum);\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tint next_sum = sum + G[node_id][i].value;\n\t\tint next_minimum = min(minimum,next_sum);\n\n\t\tDOWN[depth] = max(DOWN[depth],calc_DOWN(next_node,node_id,depth+1,next_sum,next_minimum));\n\t}\n\treturn DOWN[depth];\n}\n\n\nvoid calc_UP(int node_id,int parent,int depth,int sum,int maximum){\n\n\t//sum += add; //親方向へのコストを足す\n\t//int next_sum = sum+add;\n\tint next_sum = sum;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\tif(G[node_id][i].to == parent){\n\t\t\tnext_sum += G[node_id][i].value;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\t//総和の最大値を更新した場合[★これで途中で負になる区間があるかわかる。総和が減るなら、逆方向から歩けば負になる区間があるはず★]\n\tif(next_sum >= maximum){\n\n\t\tint L,R;\n\n\t\t //最大値を計算\n\t\tans = max(ans,depth); //上りだけの場合\n\n\t\tL = 0,R = DOWN.size();\n\n\t\twhile(L+1 < R){\n\t\t\tint mid = (L+R)/2;\n\t\t\tif(next_sum+DOWN[mid] >= 0){ //ガソリンを空にせずにk+midだけ走れる\n\n\t\t\t\tL = mid;\n\n\t\t\t}else{\n\n\t\t\t\tR = mid;\n\t\t\t};\n\t\t}\n\t\tans = max(ans,L+depth);\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next_node = G[node_id][i].to;\n\n\t\tif(next_node == parent || centroid[next_node] == true)continue;\n\n\t\tcalc_UP(next_node,node_id,depth+1,next_sum,max(maximum,next_sum));\n\t}\n}\n\nvoid solve_subproblem(int node_id){\n\n //重心となる頂点centerを探す\n compute_subtree_size(node_id,-1); //部分木のサイズを計算するとともに、最大の深さを計算する\n CENTROID.clear();\n //int center = search_centroid(node_id,-1,subtree_size[node_id]).node_id;\n\tsearch_centroid(node_id,-1,subtree_size[node_id]);\n int center = CENTROID[0];\n int size = subtree_size[node_id];\n\n centroid[center] = true;\n\n int next_node;\n\n //子の部分木を先に処理する\n for(int i = 0; i < G[center].size(); i++){\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n solve_subproblem(next_node);\n }\n\n centroid[center] = false;\n\n for(int loop = 0; loop < 2; loop++){\n\n \t DOWN.resize(size);\n\n \t for(int i = 0; i < size; i++){\n \t\t DOWN[i] = -(INT_MAX/3);\n \t }\n\n for(int i = 0; i < G[center].size(); i++){ //右端を上りとして固定し、最長のパスを求める\n\n next_node = G[center][i].to;\n\n if(centroid[next_node] == true)continue;\n\n calc_UP(next_node,center,1,0,0);\n\n //右端の下りを計算\n DOWN[0] = max(DOWN[0],calc_DOWN(next_node,center,1,G[center][i].value,G[center][i].value));\n }\n\n reverse(G[center].begin(),G[center].end());\n }\n\n}\n\n//WAになる原因が分らなかったので、DAyamaさんのコードを参考にさせてもらいました(ほぼ完全な写経)\n\nint main(){\n\n\tint N;\n\n scanf(\"%d\",&N);\n\n int gasoline[NUM];\n\n for(int i = 0; i < N; i++){\n\n scanf(\"%d\",&gasoline[i]);\n }\n\n int from,to,dist;\n\n for(int i = 0; i < N-1; i++){\n\n scanf(\"%d %d %d\",&from,&to,&dist);\n from--;\n to--;\n\n G[from].push_back(Edge(to,gasoline[from]-dist));\n G[to].push_back(Edge(from,gasoline[to]-dist));\n }\n\n solve_subproblem(0);\n\n printf(\"%d\\n\",ans+1);\n\n return 0;\n}", "accuracy": 0.4050632911392405, "time_ms": 70, "memory_kb": 14172, "score_of_the_acc": -0.2913, "final_rank": 14 } ]
aoj_2800_cpp
C : Mod!Mod! 物語 じゃん!探してますよ目撃証言! 会津に怪盗が現れた!みんなのウマウマ棒が盗まれた!犯人は誰だ!? 解きあかせ!Mod!Mod! 問題文 "アイズ"...それは選ばれし者の心に膨らむ奇跡のつぼみ...。特殊能力"アイズ"を使えばどんなものだって盗むことができる。 会津一の大怪盗、あいずまるは世界を謎で満たすために n 人の探偵から「ウマウマ棒」を盗むことにした。ウマウマ棒とはあいずまるが大好きなただのお菓子であり、 n 人の探偵はそれぞれ数本のウマウマ棒を持っている。また、あいずまるは強欲なためそれぞれの探偵からウマウマ棒を盗むとき、その探偵が所持する全てのウマウマ棒を盗む。 ウマウマ棒の3本同時食いにハマっているあいずまるは、3本以上のウマウマ棒が手元にあるとき、誘惑に負けて手持ちのウマウマ棒が3本未満になるまで、3本ずつウマウマ棒を食べてしまう。しかし、あいずまるは手元にウマウマ棒がないとショックでアイズを失ってしまい、それ以上ウマウマ棒を盗むことができなくなってしまう。つまり、ウマウマ棒を盗むためには手持ちのウマウマ棒の本数を1本以上にしておく必要があり、0本になるとそれ以上ウマウマ棒を盗むことができなくなる。 少しでも多くの探偵からウマウマ棒を盗みたいあいずまるは、どの探偵から順にウマウマ棒を盗むかによって何人の探偵からウマウマ棒を盗めるのかが変わることに気づいた。しかし、あいずまるには難しいことは分からない。「ハテー?」あいずまるの優秀な部下であるあなたは、あいずまるの代わりに最大で何人の探偵からウマウマ棒を盗むことができるのかを求めるプログラムを書いてあげることにした。 探偵の人数 n と、 n 人の探偵からそれぞれ何本のウマウマ棒を盗むのかが与えられるので、最適な順番で探偵からウマウマ棒を盗んだとき、最大で何人の探偵からウマウマ棒を盗むことができるかを出力するプログラムを作成せよ。ただし、はじめの手持ちのウマウマ棒の本数は0であるが、最初に限り手持ちが0本でもウマウマ棒を盗むことができるとする。 入力形式 入力は2行からなり、以下の形式で与えられる。 n a_1 a_2 … a_n 1行目には、ウマウマ棒を盗む探偵の数である整数 n が与えられる。 2行目には、各探偵から盗むウマウマ棒の本数 n 個が空白区切りで与えられる。 制約 1 ≤ n ≤ 500{,}000 1 ≤ a_i ≤ 9 ( 1 ≤ i ≤ n ) 出力形式 最適な順番で探偵からウマウマ棒を盗んだとき、最大で何人の探偵からウマウマ棒を盗むことができるか一行に出力せよ。 入力例1 6 2 5 2 5 2 1 出力例1 5 2 5 1 2 5の順で盗むと5人から盗むことができる。どのような順序で盗んでも6人から盗むことはできない。 入力例2 3 3 6 9 出力例2 1 どの1人から盗んでも手持ちのウマウマ棒の本数は0になってしまい、アイズを失ってしまう。 入力例3 6 1 2 3 4 5 6 出力例3 6
[ { "submission_id": "aoj_2800_8322213", "code_snippet": "#include <iostream>\nusing namespace std;\n\nlong long N;\nlong long A[1 << 19];\nlong long C[3];\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n\tfor (int i = 1; i <= N; i++) C[A[i] % 3] += 1;\n\n\t// Step 2. First Case\n\tif (C[1] + C[2] == 0) {\n\t\tcout << min(1LL, C[0]) << endl;\n\t\treturn 0;\n\t}\n\t\n\t// Step 3. Second Case\n\tC[1] = min(C[1], C[2] + 3);\n\tC[2] = min(C[2], C[1] + 3);\n\tcout << C[0] + C[1] + C[2] << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7512, "score_of_the_acc": -1.0526, "final_rank": 15 }, { "submission_id": "aoj_2800_8322212", "code_snippet": "#include <iostream>\nusing namespace std;\n\nlong long N;\nlong long A[1 << 18];\nlong long C[3];\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i];\n\tfor (int i = 1; i <= N; i++) C[A[i] % 3] += 1;\n\n\t// Step 2. First Case\n\tif (C[1] + C[2] == 0) {\n\t\tcout << min(1LL, C[0]) << endl;\n\t\treturn 0;\n\t}\n\t\n\t// Step 3. Second Case\n\tC[1] = min(C[1], C[2] + 3);\n\tC[2] = min(C[2], C[1] + 3);\n\tcout << C[0] + C[1] + C[2] << endl;\n\treturn 0;\n}", "accuracy": 0.11392405063291139, "time_ms": 20, "memory_kb": 5392, "score_of_the_acc": -0.4349, "final_rank": 20 }, { "submission_id": "aoj_2800_6964395", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nll v[3];\nint main(void){\n ll n,ans=0;\n cin>>n;\n vector<ll> a(n);\n for(ll i=0;i<n;i++){\n cin>>a[i];\n v[a[i]%3]++;\n }\n ll MIN=min(v[1],v[2]),MAX=max(v[1],v[2]);\n ans=MIN+min(MAX,MIN+3);\n ans+=v[0];\n if(v[1]==0 && v[2]==0){\n cout<<1<<endl;\n }else{\n cout<<ans<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7044, "score_of_the_acc": -0.8045, "final_rank": 12 }, { "submission_id": "aoj_2800_6963981", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<int> p(3);\n\trep(i,N){\n\t\tint a;\n\t\tcin>>a;\n\t\tp[a%3]++;\n\t}\n\tif(p[0]==N) cout<<\"1\\n\";\n\telse{\n\t\tif(p[1]<p[2]) swap(p[1],p[2]);\n\t\tint ans=p[0]+1;\n\t\tp[1]--;\n\t\tint x=0;\n\t\twhile(true){\n\t\t\tif(p[x+1]==0) break;\n\t\t\tp[x+1]--;\n\t\t\tans++;\n\t\t\tx^=1;\n\t\t}\n\t\tif(ans!=N) ans++;\n\t\tcout<<ans<<\"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3440, "score_of_the_acc": -0.0345, "final_rank": 2 }, { "submission_id": "aoj_2800_6713598", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n\n#define all(x) (x).begin(),(x).end()\n#define print(x) cout << (x) << '\\n'\ntypedef long long ll;\ntypedef long double ld;\nusing P = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing Graph = vector<vector<int>>;\n\n//using mint = atcoder :: modint998244353;\n//const ll MOD = 1000000007;\n//const ll MOD = 998244353;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {return a < b ? a = b, true : false;}\ntemplate <typename T> inline bool chmin(T &a, T b) {return a > b ? a = b, true : false;}\n\ntemplate <typename T>\nvoid vin(vector<T> &v) {\n int l = v.size();\n for(int i = 0; i < l; i++) cin >> v[i];\n}\n\ntemplate <typename T>\nvoid vout(vector<T> &v) {\n int l = v.size();\n for(int i = 0; i < l; i++) cout << v[i] << \" \\n\"[i == l - 1];\n}\n\nint main() {\n cin.tie(0); cout.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(18);\n\n int n; cin >> n;\n vector<int> c(3, 0);\n for(int i = 0; i < n; i++) {\n int a; cin >> a;\n c[a % 3]++;\n }\n if(c[1] + c[2] == 0) {\n print(1);\n } else {\n int ans = 0;\n for(int t = 1; t <= 2; t++) {\n int cnt = c[0];\n vector<int> d = {c[1], c[2]};\n int now = -1;\n if(d[t - 1] > 0) {\n d[t - 1]--;\n now = t;\n cnt++;\n }\n for(int i = 0; i < n - c[0]; i++) {\n if(now == 1) {\n if(d[0] == 0) break;\n else {\n d[0]--;\n now = 2;\n cnt++;\n }\n } else if(now == 2) {\n if(d[1] == 0) break;\n else {\n d[1]--;\n now = 1;\n cnt++;\n }\n }\n }\n if(d[0] + d[1] > 0) cnt++;\n chmax(ans, cnt);\n }\n print(ans);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3440, "score_of_the_acc": -0.0345, "final_rank": 2 }, { "submission_id": "aoj_2800_6007927", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nint cnt[3];\nint dfs(int v) {\n int res = 0;\n if(v == 1) {\n if(cnt[1]) {\n cnt[1]--;\n res = max(res, dfs(2) + 1);\n cnt[1]++;\n }\n if(cnt[2]) res = max(res,1);\n \n }else if(v == 2) {\n if(cnt[2]) {\n cnt[2]--;\n res = max(res, dfs(1) + 1);\n cnt[2]++;\n }\n if(cnt[1]) res = max(res, 1);\n }\n return res;\n}\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n int n; cin >> n;\n vector<int> a(n);\n \n REP(i,n) {\n cin >> a[i];\n cnt[a[i]%3]++;\n }\n int ans = cnt[0];\n int f1=0, f2=0;\n if(cnt[1]) {\n cnt[1]--;\n f1 = dfs(1) + 1;\n cnt[1]++;\n }\n if(cnt[2]) {\n cnt[2]--;\n f2 = dfs(2) + 1;\n cnt[2]++;\n }\n if(cnt[1]==0&&cnt[2]==0)ans=1;\n cout << ans + max(f1, f2) << endl; \n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 12844, "score_of_the_acc": -1.2, "final_rank": 17 }, { "submission_id": "aoj_2800_5301582", "code_snippet": "#include<bits/stdc++.h>\ntemplate<class T> inline bool chmax(T& a, T b){ if (a < b){ a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b){ if (a > b){ a = b; return true; } return false; }\nusing namespace std;\nusing ll = long long;\nll mod = 1e9+7;\nconst int dx[8] = {-1,0,1,0,-1,-1,1,1};\nconst int dy[8] = {0,1,0,-1,1,-1,1,-1};\n\nint main(){\n int n;\n cin >> n;\n vector<int> cnt(3,0);\n for(int i=0;i<n;++i) {\n int a;\n cin >> a;\n cnt[a%3]++;\n }\n\n int ans1=0, ans2=0;\n vector<int> c1(n), c2(n);\n copy(cnt.begin(), cnt.end(), c1.begin());\n copy(cnt.begin(), cnt.end(), c2.begin());\n if (cnt[1]) {\n ans1 = c1[0]+1;\n c1[1]--;\n while(true){\n if (c1[1]==0) break;\n ans1++;\n c1[1]--;\n if (c1[2]==0) break;\n ans1++;\n c1[2]--;\n }\n ans1 += min(1, c1[1]+c1[2]);\n }\n if (cnt[2]) {\n ans2=c2[0]+1;\n c2[2]--;\n while(true){\n if(c2[2]==0) break;\n c2[2]--;\n ans2++;\n if(c2[1]==0) break;\n c2[1]--;\n ans2++;\n }\n ans2 += min(1, c2[1]+c2[2]);\n }\n int ans = 1;\n ans = max(ans, ans1);\n ans = max(ans, ans2);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 6788, "score_of_the_acc": -1.1782, "final_rank": 16 }, { "submission_id": "aoj_2800_4759217", "code_snippet": "#include <iostream>\nusing namespace std;\nint b[3];\nint c[3];\nint main() {\n\t// your code goes here\n\tint n,t;\n\tcin>>n;\n\tfor(int i=0;i<3;i++){\n\t\tb[i]=0;\n\t\tc[i]=0;\n\t}\n\tint ans=1;\n\tfor(int i=0;i<n;i++){\n\t\tcin>>t;\n\t\tb[t%3]++;\n\t\tc[t%3]++;\n\t}\n\tint c1=0;\n\tif(b[1]>0){\n\t\tb[1]--;\n\t\tc1+=1;\n\t\tc1+=b[0];\n\t\tb[0]=0;\n\t\tint i=1;\n\t\twhile(b[i]>=0){\n\t\t\tif(i==1){\n\t\t\t\tif(ans<c1+1 && b[2]>0)ans=c1+1;\n\t\t\t}else{\n\t\t\t\tif(ans<c1+1 && b[1]>0)ans=c1+1;\n\t\t\t}\n\t\t\tif(b[i]==0)break;\n\t\t\tb[i]--;\n\t\t\tc1++;\n\t\t\tif(i==1){\n\t\t\t\ti=2;\n\t\t\t}else{\n\t\t\t\ti=1;\n\t\t\t}\n\t\t}\n\t}\n\tif(ans<c1)ans=c1;\n\t\n\tc1=0;\n\tif (c[2]>0){\n\t\tc[2]--;\n\t\tc1+=1;\n\t\tc1+=c[0];\n\t\tc[0]=0;\n\t\tint i=2;\n\t\twhile(c[i]>=0){\n\t\t\tif(i==1){\n\t\t\t\tif(ans<c1+1 && c[2]>0)ans=c1+1;\n\t\t\t}else{\n\t\t\t\tif(ans<c1+1 && c[1]>0)ans=c1+1;\n\t\t\t}\n\t\t\tif(c[i]==0)break;\n\t\t\tc[i]--;\n\t\t\tc1++;\n\t\t\tif(i==1){\n\t\t\t\ti=2;\n\t\t\t}else{\n\t\t\t\ti=1;\n\t\t\t}\n\t\t}\n\t\n\t}\n\tif(ans<c1)ans=c1;\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3132, "score_of_the_acc": -0.8029, "final_rank": 11 }, { "submission_id": "aoj_2800_4526530", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n\nint main() {\n \n int n; cin >> n;\n vector<int> a(n);\n vector<int> cnt(3, 0);\n for (int i = 0; i < n; i++) {\n cin >> a[i];\n cnt[a[i] % 3]++;\n }\n\n if (cnt[0] == n) {\n cout << 1 << endl;\n return 0;\n }\n \n lint ans = cnt[0];\n if (cnt[1] > cnt[2]) {\n swap(cnt[1], cnt[2]);\n }\n \n ans += cnt[1] + min(cnt[1] + 3, cnt[2]);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4672, "score_of_the_acc": -0.961, "final_rank": 13 }, { "submission_id": "aoj_2800_4502335", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define FOR(i,x,n) for(int i=x; i<(n); i++)\n#define ALL(n) begin(n),end(n)\n#define MOD 1000000007\n \ntypedef long long ll;\ntypedef unsigned int ui;\ntypedef unsigned long long ull;\nvoid print(int x){printf(\"%d\\n\", x);}\nvoid print(ll x){printf(\"%lld\\n\", x);}\nvoid printvec(vector<int>& a){\nrep(i, a.size()-1){\nprintf(\"%d \", a[i]);\n}\nprintf(\"%d\\n\", a[a.size()-1]);\n}\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n \nint main()\n{\n int n;\n cin >> n;\n vector<int> md(3, 0);\n int r;\n rep(i, n){\n scanf(\"%d\", &r);\n md[r%3]++;\n }\n // printvec(md);\n if(md[1]==0 && md[2]==0){\n printf(\"1\\n\");\n return 0;\n }\n\n int ans=md[0];\n if(md[1]==md[2]){\n ans += 2*md[1];\n }else if(md[1]>md[2]){\n if(md[1]==1) {\n ans++;\n }else{\n md[1] -= 2;\n int m = min(md[1], md[2]);\n ans += 2*m + 2;\n md[1] -= m; md[2] -= m;\n if(md[2]==0){\n if(md[1]!=0) ans++;\n }else if(md[2]==1){\n ans++;\n }else{\n ans+=2;\n }\n }\n }else{\n if(md[2]==1) {\n ans++;\n }else{\n md[2] -= 2;\n int m = min(md[1], md[2]);\n ans += 2*m + 2;\n md[1] -= m; md[2] -= m;\n if(md[1]==0){\n if(md[2]!=0) ans++;\n }else if(md[1]==1){\n ans++;\n }else{\n ans+=2;\n }\n }\n }\n\n print(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3228, "score_of_the_acc": -0.2127, "final_rank": 6 }, { "submission_id": "aoj_2800_4502323", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define FOR(i,x,n) for(int i=x; i<(n); i++)\n#define ALL(n) begin(n),end(n)\n#define MOD 1000000007\n \ntypedef long long ll;\ntypedef unsigned int ui;\ntypedef unsigned long long ull;\nvoid print(int x){printf(\"%d\\n\", x);}\nvoid print(ll x){printf(\"%lld\\n\", x);}\nvoid printvec(vector<int>& a){\nrep(i, a.size()-1){\nprintf(\"%d \", a[i]);\n}\nprintf(\"%d\\n\", a[a.size()-1]);\n}\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n \nint main()\n{\n int n;\n cin >> n;\n vector<int> md(3, 0);\n int r;\n rep(i, n){\n scanf(\"%d\", &r);\n md[r%3]++;\n }\n // printvec(md);\n if(md[1]==0 && md[2]==0){\n printf(\"1\\n\");\n return 0;\n }\n\n int ans=md[0];\n if(md[1]==md[2]){\n ans += 2*md[1];\n }else if(md[1]>md[2]){\n if(md[1]==1) {\n ans++;\n }else{\n md[1] -= 2;\n int m = min(md[1], md[2]);\n ans += 2*m + 2;\n md[1] -= m; md[2] -= m;\n if(md[2]==0){\n if(md[1]!=0) ans++;\n }else{\n if(md[2]==1) ans++;\n else ans += 2;\n }\n }\n }else{\n if(md[2]==1) {\n ans++;\n }else{\n md[2] -= 2;\n int m = min(md[1], md[2]);\n ans += 2*m + 2;\n md[1] -= m; md[2] -= m;\n if(md[1]==0){\n if(md[2]!=0) ans++;\n }else{\n if(md[2]==1) ans++;\n else ans += 2;\n }\n }\n }\n\n print(ans);\n return 0;\n}", "accuracy": 0.7848101265822784, "time_ms": 20, "memory_kb": 3228, "score_of_the_acc": -0.2127, "final_rank": 19 }, { "submission_id": "aoj_2800_4488826", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,-1,1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n;\n cin >> n;\n vector<int> a(n);\n rep(i,n) cin >> a[i];\n vector<int> cnt(3,0);\n rep(i,n){\n cnt[a[i]%3]++;\n }\n if(cnt[1]==0 and cnt[2]==0){\n cout << 1 << \"\\n\";\n }else{\n int ans = cnt[0];\n ans += min(cnt[1],cnt[2]) * 2;\n ans += min(3,max(cnt[1],cnt[2])-min(cnt[1],cnt[2]));\n cout << ans << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4672, "score_of_the_acc": -0.361, "final_rank": 7 }, { "submission_id": "aoj_2800_4488057", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n vector<int> a(3, 0);\n for(int i=0; i<n; i++){\n int tmp;\n cin >> tmp;\n a[tmp%3]++;\n }\n\n int ans = 0;\n if(a[0] == n){\n ans = 1;\n }else if(a[1] < a[2]){\n ans = a[0]+a[1]+min(a[2], a[1]+3);\n }else{\n ans = a[0]+a[2]+min(a[1], a[2]+3);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3104, "score_of_the_acc": -0.8, "final_rank": 8 }, { "submission_id": "aoj_2800_4488052", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\nint main() {\n int n;\n cin>>n;\n vector<int> uma(n);\n vector<int> ama(3,0);\n vector<vector<int>> hon(3);\n for(int i = 0;i < n;++i) {\n cin>>uma[i];\n ++ama[uma[i]%3];\n hon[uma[i]%3].emplace_back(uma[i]);\n }\n sort(hon[0].begin(),hon[0].end());\n sort(hon[1].begin(),hon[1].end());\n sort(hon[2].begin(),hon[2].end());\n\n int a=ama[0];\n int b=ama[1];\n int c=ama[2];\n\n int ans=0;\n if(b==0&&c==0) {\n cout<<1<<endl;\n }\n else if(b==c||b+1==c||c+1==b) {\n\n cout<<n<<endl;\n }\n else if(b+3<=c) {\n ans+=a;\n ans+=b;\n for(int i = 0;i < b+3;++i) {\n ans++;\n }\n cout<<ans<<endl;\n }\n else {\n ans+=a;\n ans+=c;\n for(int i = 0;i < min(b,c+3);++i) {\n ans++;\n }\n cout<<ans<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 7000, "score_of_the_acc": -1.4, "final_rank": 18 }, { "submission_id": "aoj_2800_4488037", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef pair<ll,ll> mp;\nll inf = 1e9;\n\n\nint main(){\n int n;\n cin>>n;\n vector<int> a(n);\n vector<int> cnt(3,0);\n for(int i=0;i<n;i++){\n cin>>a[i];\n cnt[ a[i]%3 ]++;\n }\n\n if( cnt[1] == 0 && cnt[2] == 0 ){\n cout<<1<<endl;\n return 0;\n }\n\n //cout<<cnt[1]<<' '<<cnt[2]<<endl;\n\n int ans = 0;\n for(int j=1;j<=2;j++){\n vector<int> tmp= cnt;\n if( tmp[j] != 0 ){\n int sum = 0;\n sum = tmp[0]+1;\n int now = j;\n tmp[j]--;\n\n //cout<<sum<<' '<<now<<' '<<tmp[1]<<' '<<tmp[2]<<endl;\n while( tmp[now] != 0 ){\n tmp[now]--;\n //cout<<now<<endl;\n now += now;\n now %= 3;\n sum++;\n //cout<<sum<<' '<<now<<' '<<tmp[1]<<' '<<tmp[2]<<endl;\n }\n if( tmp[1] || tmp[2] ) sum++;\n //cout<<j<<' '<<sum<<endl;\n ans = max(ans,sum);\n }\n\n }\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4684, "score_of_the_acc": -0.9622, "final_rank": 14 }, { "submission_id": "aoj_2800_4480969", "code_snippet": "#include<iostream>\n#include<algorithm>\nusing namespace std;\nint main()\n{\n int n,a;\n int cnt[3]={};\n \n cin >> n;\n for(int i=0;i<n;i++){\n cin >> a;\n cnt[a%3]++;\n }\n \n int ans = 0;\n if(cnt[0] < n) ans += cnt[0];\n if(cnt[1] > cnt[2]){\n cnt[1]--;\n ans++;\n } else if(cnt[2] > 0){\n cnt[2]--;\n ans++;\n }\n ans += min(cnt[1],cnt[2])*2;\n if(cnt[1] != cnt[2]) ans++;\n if(ans < n) ans++;\n \n cout << ans << endl;\n \n return(0);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3104, "score_of_the_acc": -0.8, "final_rank": 8 }, { "submission_id": "aoj_2800_3992942", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nint N,M,K,L,R,H,W;\n//long long int N,M,K,L,R,H,W;\n\nconstexpr long long int MOD=1000000007;\n//constexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n//constexpr long long int MOD=998244353;\n\nconstexpr long double EPS=1e-8;\n\n\n\nint main(){\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t\n\tcin>>N;\n\tvector<int>w(N);\n\tfor(auto &i:w)cin>>i;\n\tvector<int>v(4);\n\tfor(auto i:w){\n\t\tv[i%3]++;\n\t}\n\tif(v[0]==N){\n\t\tcout<<1<<endl;\n\t\treturn 0;\n\t}\n\tif(v[1]==N){\n\t\tcout<<min(3,N)<<endl;\n\t\treturn 0;\n\t}\n\tif(v[2]==N){\n\t\tcout<<min(3,N)<<endl;\n\t\treturn 0;\n\t}\n\tint ans=1;\n\tif(v[1]>=2){\n\t\tans=max(ans,2+min(v[2],v[1]-2)*2+v[0]);\n\t}\n\tif(v[1]>=3){\n\t\tans=max(ans,3+min(v[2],v[1]-3)*2+v[0]);\n\t}\n\tif(v[2]>=2){\n\t\tans=max(ans,2+min(v[1],v[2]-2)*2+v[0]);\n\t}\n\tif(v[2]>=3){\n\t\tans=max(ans,3+min(v[1],v[2]-3)*2+v[0]);\n\t}\n\tif(v[1]&&v[2]){\n\t\tans=max(ans,2+min(v[1]-1,v[2]-1)*2+v[0]);\n\t}\n\tif(v[1]){\n\t\tans=max(ans,1+min(v[1]-1,v[2])*2+v[0]);\n\t}\n\tif(v[2]){\n\t\tans=max(ans,1+min(v[2]-1,v[1])*2+v[0]);\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4688, "score_of_the_acc": -0.1626, "final_rank": 5 }, { "submission_id": "aoj_2800_3987357", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nint N,M,K,L,R,H,W;\n//long long int N,M,K,L,R,H,W;\n\nconstexpr long long int MOD=1000000007;\n//constexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n//constexpr long long int MOD=998244353;\n\nconstexpr long double EPS=1e-8;\n\n\n\nint main(){\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t\n\tcin>>N;\n\tvector<int>w(N);\n\tfor(auto &i:w)cin>>i;\n\tvector<int>v(4);\n\tfor(auto i:w){\n\t\tv[i%3]++;\n\t}\n\tif(v[0]==N){\n\t\tcout<<1<<endl;\n\t\treturn 0;\n\t}\n\tif(v[1]==N){\n\t\tcout<<min(3,N)<<endl;\n\t\treturn 0;\n\t}\n\tif(v[2]==N){\n\t\tcout<<min(3,N)<<endl;\n\t\treturn 0;\n\t}\n\tint ans=1;\n\tif(v[1]>=2){\n\t\tans=max(ans,2+min(v[2],v[1]-2)*2+v[0]);\n\t}\n\tif(v[1]>=3){\n\t\tans=max(ans,3+min(v[2],v[1]-3)*2+v[0]);\n\t}\n\tif(v[2]>=2){\n\t\tans=max(ans,2+min(v[1],v[2]-2)*2+v[0]);\n\t}\n\tif(v[2]>=3){\n\t\tans=max(ans,3+min(v[1],v[2]-3)*2+v[0]);\n\t}\n\tif(v[1]&&v[2]){\n\t\tans=max(ans,2+min(v[1]-1,v[2]-1)*2+v[0]);\n\t}\n\tif(v[1]){\n\t\tans=max(ans,1+min(v[1]-1,v[2])*2+v[0]);\n\t}\n\tif(v[2]){\n\t\tans=max(ans,1+min(v[2]-1,v[1])*2+v[0]);\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4684, "score_of_the_acc": -0.1622, "final_rank": 4 }, { "submission_id": "aoj_2800_3897882", "code_snippet": "#include<algorithm>\n#include<cassert>\n#include<cfloat>\n#include<climits>\n#include<cmath>\n#include<cstring>\n#include<deque>\n#include<functional>\n#include<iomanip>\n#include<iostream>\n#include<map>\n#include<queue>\n#include<set>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<vector>\n\nusing namespace std;\n\nusing lint = long long;\nusing P = pair<int, int>;\nusing LLP = pair<long long, long long>;\n\n#define REP(i, x, n) for(int i = (x), i##_len = int(n) ; i < i##_len ; ++i)\n#define rep(i, n) for(int i = 0, i##_len = int(n) ; i < i##_len ; ++i)\n#define reps(i, n) for(int i = 1, i##_len = int(n) ; i <= i##_len ; ++i)\n#define rrep(i, n) for(int i = int(n) - 1 ; i >= 0 ; --i)\n#define rreps(i, n) for(int i = int(n) ; i > 0 ; --i)\n#define SORT(x) sort((x).begin(), (x).end())\n#define SORT_INV(x) sort((x).rbegin(), (x).rend())\n#define TWINS(x) cout << ((x) ? \"Yay!\" : \":(\") << endl\n\nconstexpr int IINF = (1 << 30) - 1;\nconstexpr long long LLINF = 1LL << 61;\nconstexpr double EPS = 1e-8;\n\nconstexpr int dx4[] = {1, 0, -1, 0}, dy4[] = {0, 1, 0, -1};\nconstexpr int dx8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy8[] = {0, -1, -1, -1, 0, 1, 1, 1};\n\ntemplate<typename T>\nbool chmax(T& a, T b, bool equal = false){\n if(a < b || equal && a == b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<typename T>\nbool chmin(T& a, T b, bool equal = false){\n if(b < a || equal && a == b){\n a = b;\n return true;\n }\n return false;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n;\n cin >> n;\n\n vector<int> cnt(3);\n rep(i, n){\n int a;\n cin >> a;\n ++cnt[a % 3];\n }\n\n // cout << cnt[0] << \" \" << cnt[1] << \" \" << cnt[2] << endl;\n\n int ans = 1;\n if(cnt[1] >= 2){\n if(cnt[2] == cnt[1] - 2){\n ans = n;\n }else if(cnt[2] < cnt[1] - 2){\n chmax(ans, 2 + cnt[2] * 2 + cnt[0] + 1);\n }else{\n chmax(ans, 2 + (cnt[1] - 2) * 2 + cnt[0] + min(2, cnt[2] - cnt[1] + 2));\n }\n }\n if(cnt[2] >= 1){\n if(cnt[2] - 1 == cnt[1]){\n ans = n;\n }else if(cnt[2] - 1 < cnt[1]){\n chmax(ans, 1 + (cnt[2] - 1) * 2 + cnt[0] + 1);\n }else{\n chmax(ans, 1 + cnt[1] * 2 + cnt[0] + min(2, cnt[2] - 1 - cnt[1]));\n }\n }\n if(cnt[1] == 1){\n chmax(ans, 1 + cnt[0]);\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3196, "score_of_the_acc": -0.0094, "final_rank": 1 }, { "submission_id": "aoj_2800_3662121", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n\nconst long double PI = acos(-1);\nconstexpr long double EPS = 1e-15;\nconstexpr int inf = 2e9;\nconstexpr ll INF = 2e18;\nconstexpr ll MOD = 1e9+7;\nconstexpr ll MOD1 = 998244353;\ntypedef pair<ll,ll> P;\n\n//#define all(v) (v).begin(), (v).end()\n#define rep(i,a,b) for (int i = (a); i < (b); i++)\n#define REP(i,n) rep(i,0,n)\n#define sz(s) (s).size()\n#define pb push_back\n#define fi first\n#define se second\n//#define mp make_pair\n\nint main(){\n int n;\n cin >> n;\n int cnt[3] = {};\n REP(i,n) {\n int tmp;\n cin >> tmp;\n cnt[tmp%3]++;\n }\n if (cnt[0] == n) {\n cout << 1 << endl;\n return 0;\n }\n int ans;\n if(cnt[1] < cnt[2] - 3){\n ans = cnt[1] * 2 + 3;\n }else if(cnt[1] <= cnt[2] + 3){\n ans = cnt[1] + cnt[2];\n }else{\n ans = cnt[2] * 2 + 3;\n }\n ans += cnt[0];\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3104, "score_of_the_acc": -0.8, "final_rank": 8 } ]
aoj_2801_cpp
D: 日焼け - Suntan - 物語 あいずにゃんは若ヶ松高校のプログラミングコンテスト部、通称ぷろこん部に所属する2年生である。天使のようにかわいい。 あいずにゃんは今年の夏フェスに参加する予定なので、聴きに行くバンドのスケジュールを立てた。 ここで心配なのが日焼けだ。 ライブはすべて野外で行われるが、あいずにゃんは日焼けしやすい体質なので長時間野外で紫外線を浴びすぎるとすぐ日焼けしてしまう。 ライブがない間は屋内に避難することでできるだけ紫外線を回避するつもりだが、ライブ中はどうしても日に当たってしまう。 そこであいずにゃんは日焼け止めを塗ることで紫外線対策をすることを考えた。 問題 日焼け止めを塗ると、塗った時間から T 分間だけその効果を得ることができる。 日焼け止めは1回しか塗ることができないため、効果的に使いたい。 あいずにゃんは、ライブの開始時刻から終了時刻までは野外にいて、それ以外では屋内にいる。 あいずにゃんが聴く予定のライブスケジュールが与えられるので、野外にいる間で日焼け止めの効果を得られる最大の時間の長さを求めよ。 入力形式 入力は次の形式で与えらえる。 T N s_1 t_1 ... s_N t_N 1行目では日焼け止めの効果を得られる時間を表す整数 T が与えられる。 2行目ではあいずにゃんが聴くライブの数を表す整数 N が与えられる。 続く N 行には、あいずにゃんが i 番目に聴くライブの開始時刻を表す整数 s_i と終了時刻を表す整数 t_i が空白区切りで与えられる。 制約 1 ≤ T ≤ 10^{15} 1 ≤ N ≤ 10^5 0 ≤ s_i < t_i ≤ 10^{15} ( 1 ≤ i ≤ N ) (i+1) 番目のライブの開始時刻は i 番目のライブの終了時刻と同じかそれよりも遅い。すなわち、 t_i ≤ s_{i+1} ( 1 ≤ i < N ) 出力 野外にいる間で日焼け止めの効果を得られる最大の時間の長さを1行で出力せよ。 入力例1 20 1 0 10 出力例1 10 入力例2 20 1 0 100 出力例2 20 入力例3 9 3 1 5 9 11 13 20 出力例3 7 入力例4 25 5 9 12 15 20 21 25 28 40 45 60 出力例4 21
[ { "submission_id": "aoj_2801_10570469", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)\n#define all(v) begin(v),end(v)\nusing namespace std;\nusing ll = long long;\n\nbool chmin(auto &a, auto b){ return a > b ? a = b, 1 : 0; }\nbool chmax(auto &a, auto b){ return a < b ? a = b, 1 : 0; }\n\nbool ispali(int n){\n string s = to_string(n);\n string t = s;\n reverse(all(t));\n return s == t;\n}\n\nconst int iinf = 1e9;\n\nvoid solve(){\n ll t; cin >> t;\n int n; cin >> n;\n vector<ll> a;\n rep(i,0,n){\n ll l, r; cin >> l >> r;\n a.push_back(l);\n a.push_back(r);\n }\n vector<ll> rui(n*2+1);\n rep(i,0,n*2){\n rui[i+1] = rui[i] + (i % 2 == 0 ? 0 : a[i] - a[i-1]);\n }\n rui.erase(rui.begin());\n rui.push_back(rui.back());\n ll ans = 0;\n rep(i,0,n*2){\n ll le = a[i];\n ll ri = le + t;\n int id = lower_bound(all(a),ri) - a.begin();\n if (id % 2 == 0){\n chmax(ans,rui[id]-rui[i]);\n }\n else {\n chmax(ans,rui[id-1]-rui[i] +ri-a[id-1]);\n }\n }\n cout << ans << endl;\n}\n\nint main(){\n solve();\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 7120, "score_of_the_acc": -0.4143, "final_rank": 10 }, { "submission_id": "aoj_2801_10570434", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\nint main() {\n\tll t;cin>>t;\n\tll n;cin>>n;\n\tvector<ll>s(n),tt(n);\n\tvector<ll>v;\n\tfor (int i=0;i<n;i++){\n\t\tcin>>s[i]>>tt[i];\n\t\tv.push_back(s[i]);\n\t\tv.push_back(tt[i]);\n\t}\n\t\n\tv.push_back((ll)1e17);\n\t\n\tvector<ll> tar(2*n+1);\n\tfor (int i=0;i<n;i++) {\n\t\tif(i>0)tar[2*i]=tar[2*i-1]+tt[i-1]-s[i-1];\n\t\ttar[2*i+1]=tar[2*i];\n\t}\n\ttar[2*n]=tar[2*n-1]+tt[n-1]-s[n-1];\n\t\n\tll ans=0;\n\tfor(int i=0;i<n;i++) {\n\t\tint idx=int(upper_bound(v.begin(),v.end(),s[i]+t)-v.begin());\n\t\t//cout<<idx<<endl;\n\t\tif (idx%2==0){\n\t\t\t//ending\n\t\t\tans=max(ans,tar[idx]-tar[2*i]);\t\n\t\t\t//cout<<tar[idx]-tar[2*i]<<endl;\n\t\t}else{\n\t\t\t//starting\n\t\t\tans=max(ans,tar[idx]+s[i]+t-s[idx/2]-tar[2*i]);\n\t\t\t//cout<<tar[idx]+s[i]+t-s[idx/2]-tar[2*i]<<endl;\n\t\t}\n\t}\n\tcout<<ans<<endl;\n\t\n\t\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 7812, "score_of_the_acc": -0.5328, "final_rank": 15 }, { "submission_id": "aoj_2801_9675324", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nvoid fileIO(void) {\n#ifndef ONLINE_JUDGE\n freopen(\"input.txt\", \"r\", stdin);\n freopen(\"output.txt\", \"w\", stdout);\n#endif\n}\n\nvoid fastIO(void) { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); }\n# define int long long\n\nvector<int> s;\nvector<int> e;\nvector<int> val;\nint calc(int low, int high){\n int ans = 0;\n\n int low_st = lower_bound(s.begin(), s.end(), low) - s.begin();\n int low_en = lower_bound(e.begin(), e.end(), low) - e.begin();\n\n int high_st = lower_bound(s.begin(), s.end(), high) - s.begin();\n int high_en = lower_bound(e.begin(), e.end(), high) - e.begin();\n\n int l, r;\n\n if(low_st > low_en && low < e[low_en] /*handle edge*/ ) {\n l = low_st - 1;\n ans = s[l] - low;\n }\n else l = low_st;\n\n if(high_st > high_en && high <= e[high_en] ) {\n r = high_en;\n ans += high - e[r];\n }\n else r = high_en-1;\n\n ans += val[r+1] - val[l];\n\n return ans;\n}\n\nsigned main(){\n fastIO();\n\n int t, n;\n cin >> t >> n;\n val.push_back(0);\n for (int i = 0; i < n; ++i) {\n int l, r;\n cin >> l >> r;\n l++, r++;\n s.push_back(l);\n e.push_back(r);\n val.push_back(r-l + val.back());\n }\n int ans = 0;\n for (int i = 0; i < n; ++i) {\n ans = max(ans, calc(s[i], s[i]+t));\n ans = max(ans, calc(e[i], e[i]+t));\n ans = max(ans, calc(s[i]-t, s[i] ));\n ans = max(ans, calc(e[i]-t, e[i]));\n }\n cout << ans << endl;\n\n\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 5712, "score_of_the_acc": -0.3088, "final_rank": 7 }, { "submission_id": "aoj_2801_9675321", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nvoid fileIO(void) {\n#ifndef ONLINE_JUDGE\n freopen(\"input.txt\", \"r\", stdin);\n freopen(\"output.txt\", \"w\", stdout);\n#endif\n}\n\nvoid fastIO(void) { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); }\n# define int long long\n\nvector<int> s;\nvector<int> e;\nvector<int> val;\nint calc(int low, int high){\n int ans = 0;\n\n if(low < 1)\n low = 1;\n\n int low_st = lower_bound(s.begin(), s.end(), low) - s.begin();\n int low_en = lower_bound(e.begin(), e.end(), low) - e.begin();\n\n int high_st = lower_bound(s.begin(), s.end(), high) - s.begin();\n int high_en = lower_bound(e.begin(), e.end(), high) - e.begin();\n\n int l, r;\n\n if(low_st > low_en && low < e[low_en] /*handle edge*/ ) {\n l = low_st - 1;\n ans = s[l] - low;\n }\n else l = low_st;\n\n if(high_st > high_en && high <= e[high_en] ) {\n r = high_en;\n ans += high - e[r];\n } \n else r = high_en-1;\n\n ans += val[r+1] - val[l];\n\n return ans;\n}\n\nsigned main(){\n fastIO();\n\n int t, n;\n cin >> t >> n;\n val.push_back(0);\n for (int i = 0; i < n; ++i) {\n int l, r;\n cin >> l >> r;\n l++, r++;\n s.push_back(l);\n e.push_back(r);\n val.push_back(r-l + val.back());\n }\n int ans = 0;\n for (int i = 0; i < n; ++i) {\n ans = max(ans, calc(s[i], s[i]+t));\n ans = max(ans, calc(e[i], e[i]+t));\n ans = max(ans, calc(s[i]-t, s[i] ));\n ans = max(ans, calc(e[i]-t, e[i]));\n\n }\n cout << ans << endl;\n\n\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 5664, "score_of_the_acc": -0.3052, "final_rank": 5 }, { "submission_id": "aoj_2801_9670795", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nvoid fileIO(void) {\n#ifndef ONLINE_JUDGE\n freopen(\"input.txt\", \"r\", stdin);\n freopen(\"output.txt\", \"w\", stdout);\n#endif\n}\n\nvoid fastIO(void) { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); }\n# define int long long\n\nvector<int> s;\nvector<int> e;\nvector<int> val;\nint calc(int low, int high){\n int ans = 0;\n\n if(low < 1)\n low = 1;\n if(high < 1)\n high = 1;\n\n int low_st = lower_bound(s.begin(), s.end(), low) - s.begin();\n int low_en = lower_bound(e.begin(), e.end(), low) - e.begin();\n\n int high_st = lower_bound(s.begin(), s.end(), high) - s.begin();\n int high_en = lower_bound(e.begin(), e.end(), high) - e.begin();\n\n int l, r;\n\n if(low_st > low_en && low < e[low_en] /*handle edge*/ ) {\n l = low_st - 1;\n ans = s[l] - low;\n }\n else l = low_st;\n\n if(high_st > high_en && high <= e[high_en] ) {\n r = high_en;\n ans += high - e[r];\n }\n else r = high_en-1;\n\n ans += val[r+1] - val[l];\n\n return ans;\n}\n\nsigned main(){\n fastIO();\n\n int t, n;\n cin >> t >> n;\n val.push_back(0);\n for (int i = 0; i < n; ++i) {\n int l, r;\n cin >> l >> r;\n l++, r++;\n s.push_back(l);\n e.push_back(r);\n val.push_back(r-l + val.back());\n }\n int ans = 0;\n for (int i = 0; i < n; ++i) {\n ans = max(ans, calc(s[i], s[i]+t));\n ans = max(ans, calc(e[i], e[i]+t));\n ans = max(ans, calc(s[i], s[i]-t));\n ans = max(ans, calc(e[i], e[i]-t));\n\n }\n cout << ans << endl;\n\n\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 5664, "score_of_the_acc": -0.3052, "final_rank": 5 }, { "submission_id": "aoj_2801_8322238", "code_snippet": "#include <iostream>\n#include <algorithm>\nusing namespace std;\n\nlong long N, T;\nlong long A[1 << 18];\nlong long B[1 << 18];\nlong long C[1 << 18];\n\nint main() {\n\t// Step 1. Input\n\tcin >> T >> N;\n\tfor (int i = 1; i <= N; i++) cin >> A[i] >> B[i];\n\tfor (int i = 1; i <= N; i++) C[i] = B[i] - A[i];\n\tfor (int i = 1; i <= N; i++) C[i] += C[i - 1];\n\n\t// Step 2. Brute Force\n\tlong long Answer = 0;\n\tfor (int i = 1; i <= N; i++) {\n\t\tint pos1 = lower_bound(A + 1, A + N + 1, A[i] + T) - A;\n\t\tpos1 -= 1;\n\t\tlong long tm1 = C[pos1 - 1] - C[i - 1];\n\t\tlong long tm2 = max(0LL, min(A[i] + T, B[pos1]) - A[pos1]);\n\t\tAnswer = max(Answer, tm1 + tm2);\n\t}\n\tcout << Answer << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 8296, "score_of_the_acc": -0.569, "final_rank": 17 }, { "submission_id": "aoj_2801_7099229", "code_snippet": "#include <iostream>\n#include <map>\nusing namespace std;\n\nmap<long long int,long long int> ms;\nmap<long long int,int> top;\nlong long int sums[100003];\n\nint main() {\n\t// your code goes here\n\tlong long int s1=0,t1;\n\tint n1;\n\tcin>>t1;\n\tcin>>n1;\n\tfor(int i=0;i<n1;i++){\n\t\tlong long int s,e;\n\t\tcin>>s>>e;\n\t\tms[s]=e;\n\t\tsums[i]=s1;\n\t\ttop[s]=i;\n\t\ts1+=(e-s);\n\t}\n\tlong long int ans=0;\n\tmap<long long int,long long int>::iterator it1,it2;\n\tfor(it1=ms.begin();it1!=ms.end();it1++){\n\t\tlong long int s2,t2;\n\t\tt2=(*it1).first+t1;\n\t\tit2=ms.upper_bound(t2);\n\t\tif(it2!=ms.begin())it2--;\n\t\tlong long int te,ts,anst;\n\t\tte=(*it2).second;\n\t\tts=(*it2).first;\n\t\tanst=sums[top[ts]]-sums[top[(*it1).first]];\n\t\tte=(te>t2?t2:te);\n\t\tanst+=(te-ts);\n\t\tans=ans>anst?ans:anst;\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 16384, "score_of_the_acc": -1.9083, "final_rank": 20 }, { "submission_id": "aoj_2801_4495049", "code_snippet": "#include<stdio.h>\nint main()\n{\n int n,i;\n long long hi,s[100010],t[100010];\n \n scanf(\"%lld %d\",&hi,&n);\n for(i=0;i<n;i++) scanf(\"%lld %lld\",&s[i],&t[i]);\n \n int m=0;\n long long head=s[0],sum=0,ans=0;\n for(i=0;i<n;i++){\n sum += t[i]-s[i];\n while(t[i]-head > hi){\n if(s[m] <= t[i]-hi && t[i]-hi < t[m]){\n head = t[i]-hi;\n sum -= head-s[m];\n } else {\n sum -= t[m]-head;\n m++;\n head = s[m];\n }\n }\n if(ans < sum) ans = sum;\n }\n printf(\"%lld\\n\",ans);\n \n return(0);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4260, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2801_4495032", "code_snippet": "#include<iostream>\n#include<algorithm>\nusing namespace std;\nint main()\n{\n int n;\n long long hi,s[100010],t[100010];\n \n cin >> hi >> n;\n for(int i=0;i<n;i++) cin >> s[i] >> t[i];\n \n int m=0;\n long long head=s[0],sum=0,ans=0;\n for(int i=0;i<n;i++){\n sum += t[i]-s[i];\n while(t[i]-head > hi){\n if(s[m] <= t[i]-hi && t[i]-hi < t[m]){\n head = t[i]-hi;\n sum -= head-s[m];\n } else {\n sum -= t[m]-head;\n m++;\n head = s[m];\n }\n }\n ans = max(ans,sum);\n }\n cout << ans << endl;\n \n return(0);\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4664, "score_of_the_acc": -0.3636, "final_rank": 8 }, { "submission_id": "aoj_2801_4488309", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n// macro\n#define rep(i,n) for(i=0;i<n;i++)\n#define ll long long\n#define all(v) v.begin(), v.end()\n\n// code starts\nint main()\n{\n ll tl;cin>>tl;\n ll n;cin>>n;\n vector<ll> s(n);\n vector<ll> t(n);\n ll i;\n rep(i,n)cin>>s[i]>>t[i];\n vector<ll> sum(n+1,0);\n rep(i,n)\n {\n sum[i+1]=sum[i]+(t[i]-s[i]);\n }\n ll ans=0;\n map<ll,ll> m;\n rep(i,n)\n {\n m.insert({s[i],i});\n m.insert({t[i],i});\n }\n rep(i,n)\n {\n ll kans=0;\n ll kst=s[i];\n ll kend=kst+tl;\n auto it=m.lower_bound(kend);\n if(it==m.end())\n {\n ll low=max(i,(ll)0);\n kans=sum[n]-sum[low];\n }\n else\n {\n pair<ll,ll> p;\n p=*it;\n ll time,ind;\n time=p.first;\n ind=p.second;\n if(s[ind]==time)\n {\n kans=sum[ind]-sum[i];\n }\n else\n {\n kans=sum[ind]-sum[i];\n kans+=kend-s[ind];\n }\n }\n ans=max(ans,kans);\n }\n /*\n rep(i,n)\n {\n ll kans=0;\n ll kst=s[i];\n ll kend=s[i]+tl-1;\n ll inds=lower_bound(all(s),kend)-s.begin();\n ll indt=lower_bound(all(t),kend)-t.begin();\n inds--;\n indt--;\n if(s[inds]<=t[indt])\n {\n kans+=sum[indt+1]-sum[i];\n }\n else\n {\n kans+=sum[indt+1]-sum[i];\n kans+=kend-t[inds]+1;\n }\n ans=max(ans,kans);\n }*/\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 17608, "score_of_the_acc": -1.8, "final_rank": 19 }, { "submission_id": "aoj_2801_4488188", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <utility>\nusing namespace std;\ntypedef long long int lli;\ntypedef pair<lli, lli> pll;\n\nint main(){\n lli t,n;\n cin >> t >> n;\n\n vector<pair<lli, lli>> p(n);\n for(int i=0; i<n; i++){\n cin >> p[i].first >> p[i].second;\n }\n\n vector<lli> len(n+1, 0);\n for(int i=0; i<n; i++){\n len[i+1] = len[i] +p[i].second -p[i].first;\n }\n lli ans = 0;\n for(int i=0; i<n; i++){\n lli b = p[i].first;\n lli e = b+t;\n int idx = lower_bound(p.begin(), p.end(), pll(e, 0)) -p.begin() -1;\n lli sub = len[idx] -len[i];\n if(p[idx].first < e){\n sub += min(e-p[idx].first, p[idx].second-p[idx].first);\n }\n ans = max(ans, sub);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5208, "score_of_the_acc": -0.471, "final_rank": 13 }, { "submission_id": "aoj_2801_4488074", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)\n#define ll long long\n#define pp pair<ll,ll>\n#define ld long double\n#define all(a) (a).begin(),(a).end()\n#define mk make_pair\nll MOD=998244353;\nint inf=1000001000;\nll INF=1e18+5;\nll mod=INF;\n\n\nint main() {\n ll T;\n int n;\n cin >> T >> n;\n vector<ll> s(n),t(n);\n rep(i,n) cin >> s[i] >> t[i];\n s.push_back(INF);\n int r=1,m=0;\n ll u=0,ans=0;\n rep(i,n){\n while(true){\n if (r==1){\n if (s[i]+T<s[m]) break;\n u+=t[m]-s[m];\n m++;\n r=0;\n }\n else if (r==0){\n if (s[i]+T<t[m-1]) break;\n r=1;\n }\n }\n if (r==0) ans=max(ans,u-(t[m-1]-s[i]-T));\n else ans=max(ans,u);\n u-=t[i]-s[i];\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 5276, "score_of_the_acc": -0.4094, "final_rank": 9 }, { "submission_id": "aoj_2801_4488036", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef long double ld;\n#define rep(i,n) for (int i = 0; i < (n); ++i)\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\nconst ll INF=1LL<<60;\nconst int inf=(1<<30)-1;\nconst int mod=1e9+7;\nint dx[8]={1,0,-1,0,-1,-1,1,1};\nint dy[8]={0,1,0,-1,-1,1,-1,1};\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll t;cin >> t;\n int n;cin >> n;\n vector<ll> s(n),e(n),sum(n+1);\n ll ans=0;\n for(int i=0;i<n;i++){\n cin >> s[i] >> e[i];\n sum[i+1]=sum[i]+e[i]-s[i];\n }\n for(int i=0;i<n;i++){\n int u=lower_bound(s.begin(),s.end(),s[i]+t)-s.begin();\n int v=lower_bound(e.begin(),e.end(),s[i]+t)-e.begin();\n if(u==v){\n chmax(ans,sum[u]-sum[i]);\n }\n else{\n chmax(ans,sum[v]-sum[i]+t+s[i]-s[v]);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5220, "score_of_the_acc": -0.0719, "final_rank": 2 }, { "submission_id": "aoj_2801_3987470", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\n\nsigned main(){\n ios::sync_with_stdio(false);\n\tcin.tie(0);\n cout << fixed << setprecision(20);\n\n int64_t R, n;\n cin >> R;\n cin >> n;\n vector<int64_t> S(n), T(n);\n\n for (int i = 0; i < n; i++)\n cin >> S[i] >> T[i];\n\n vector<int64_t> csum(n + 1);\n for (int i = 0; i < n - 1; i++){\n csum[i + 1] = csum[i] + S[i + 1] - T[i];\n }\n csum[n] = csum[n - 1];\n\n int64_t ma = 0;\n for (int i = 0; i < n; i++){\n int l = i - 1, r = n;\n while (r - l > 1){\n int mid = (l + r) / 2;\n if (S[i] + R > S[mid]){\n l = mid;\n } else {\n r = mid;\n }\n }\n\n if (l == i - 1)\n ma = R;\n else {\n ma = max(ma, R - (csum[l] - csum[i] + max(0L, S[i] + R - T[l]))); \n }\n }\n cout << ma << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5256, "score_of_the_acc": -0.0746, "final_rank": 3 }, { "submission_id": "aoj_2801_3858205", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, n) for (ll i = 0; i < n; i++)\n#define else(x) if (!(x))\n\nint main() {\n ll T, N, res = 0;\n cin >> T >> N;\n ll A[N], B[N];\n ll S[N + 1];\n S[0] = 0;\n rep(i, N) cin >> A[i] >> B[i], S[i + 1] = S[i] + B[i] - A[i];\n\n rep(i, N) {\n ll l = -1, r = N;\n while (r - l > 1) {\n ll m = (l + r) / 2;\n if (A[m] < A[i] + T) {\n l = m;\n } else {\n r = m;\n }\n }\n ll time = S[l] - S[i] + min(B[l], A[i] + T) - A[l];\n res = max(res, time);\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5428, "score_of_the_acc": -0.4875, "final_rank": 14 }, { "submission_id": "aoj_2801_3249635", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2801.cc: Suntan\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_M = MAX_N * 2;\n\n/* typedef */\n\ntypedef long long ll;\n\n/* global variables */\n\nll as[MAX_N], bs[MAX_N], ss[MAX_N + 1];\n\n/* subroutines */\n\n\n/* main */\n\nint main() {\n ll t;\n int n;\n scanf(\"%lld%d\", &t, &n);\n\n for (int i = 0; i < n; i++) {\n scanf(\"%lld%lld\", as + i, bs + i);\n ss[i + 1] = ss[i] + (bs[i] - as[i]);\n }\n\n ll maxl = 0;\n for (int i = 0; i < n; i++) {\n ll ti = as[i] + t;\n int k = upper_bound(bs, bs + n, ti) - bs;\n //printf(\"k=%d\\n\", k);\n\n ll l = ss[k] - ss[i];\n if (k < n && as[k] < ti) l += ti - as[k];\n if (maxl < l) maxl = l;\n }\n\n printf(\"%lld\\n\", maxl);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5556, "score_of_the_acc": -0.0971, "final_rank": 4 }, { "submission_id": "aoj_2801_2974528", "code_snippet": "#include<iostream>\n#include<algorithm>\nusing namespace std;\n\nint main() {\n\tlong long int T, N, temp[10][100100], temp2 = 0, ans = 0, i, j = 0, tempT, temp3 = 0;\n\n\tcin >> T >> N;\n\n\tfor (i = 0; i < N; i++) {\n\t\tcin >> temp[0][i] >> temp[1][i];\n\t}\n\n\n\tfor (i = 0; i < N; i++) {\n\t\ttempT = temp[0][i] + T; \n\t\tif (i != 0) { ans -= temp[1][i - 1] - temp[0][i - 1] + temp3;}\n\n\t\twhile (j < N && temp[1][j] <= tempT) {\n\t\t\tans += temp[1][j] - temp[0][j];\n\t\t\tj++;\n\t\t}\n\t\tif (j < N && temp[0][j] <= tempT) {\n\t\t\ttemp3 = tempT - temp[0][j]; \n\t\t\tans += temp3;\n\t\t}\n\t\telse temp3 = 0;\n\t\ttemp2 = max(temp2, ans);\n\t}\n\tcout << temp2 << endl;\n\n\t//cin >> T;\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 4648, "score_of_the_acc": -0.5624, "final_rank": 16 }, { "submission_id": "aoj_2801_2974038", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define int long long\nsigned main(){\n int T,n;\n int s[100010],t[100010];\n cin>>T>>n;\n for(int i=0;i<n;i++){\n cin>>s[i]>>t[i];\n }\n int l=0,r=0;\n int sum=0;\n int ans=0;\n for(;l<n;l++){\n if(t[l]-s[l]>=T){\n ans=T;\n break;\n }\n for(;r<n;r++){\n if(t[r]>s[l]+T)break;\n sum+=t[r]-s[r];\n }\n if(t[r]>s[l]+T)ans=max(ans,sum+max(0LL,s[l]+T-s[r]));\n ans=max(ans,sum);\n sum-=t[l]-s[l];\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 4660, "score_of_the_acc": -0.43, "final_rank": 11 }, { "submission_id": "aoj_2801_2974028", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n//INSERT ABOVE HERE\nsigned main(){\n Int t,n;\n cin>>t>>n;\n vector<Int> a(n),b(n);\n for(Int i=0;i<n;i++) cin>>a[i]>>b[i];\n vector<Int> s(n+1);\n for(Int i=0;i<n;i++) s[i+1]=s[i]+(b[i]-a[i]);\n\n Int ans=0;\n for(Int i=0;i<n;i++){\n Int k=lower_bound(b.begin(),b.end(),a[i]+t)-b.begin();\n Int res=s[k]-s[i];\n if(k<n) res+=max((Int)0,(a[i]+t)-a[k]);\n chmax(ans,res);\n //cout<<i<<\":\"<<k<<\":\"<<res<<endl; \n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5200, "score_of_the_acc": -0.4704, "final_rank": 12 }, { "submission_id": "aoj_2801_2914848", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\n\n//namespace cent {\n//\n//\tstruct Edge {\n//\t\tint src;\n//\t\tint dst;\n//\t\tlong long int cost;\n//\t};\n//\tusing Graph = vector<vector<Edge>>;\n//\n//\tclass Centroid {\n//\tprivate:\n//\t\tint dfs(const Graph&g, const int now, const int from, vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tint sum = 1;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tsum += dfs(g, e.dst, e.src, ch_nums, oks);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ch_nums[now] = sum;\n//\t\t}\n//\n//\t\tint find_centroid(const int asize, const vector<vector<Edge>>&graph, const int pre_root, const int pre_from, const vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tfor (auto&& e : graph[pre_root]) {\n//\t\t\t\tif (e.dst == pre_from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tif (ch_nums[e.dst]>asize / 2)return find_centroid(asize, graph, e.dst, e.src, ch_nums, oks);\n//\t\t\t}\n//\t\t\treturn pre_root;\n//\t\t}\n//\n//\t\tvoid dfs2(const Graph&g, const int root,const int now, const int from, const vector<int>&oks,int depth) {\n//\t\t\tmp[make_pair(root,now)]=depth;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tdfs2(g,root,e.dst,e.src,oks,depth+1);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t};\n//\n//\n//\t\tvoid cent(const vector<vector<Edge>>&graph, vector<int>&oks, const int root, const int from, vector<vector<int>>&centroid_edges, int& fst_centroid, int depth, vector<int>&ch_nums) {\n//\t\t\tdfs(graph, root, from, ch_nums, oks);\n//\n//\t\t\tint cent_id = find_centroid(ch_nums[root], graph, root, from, ch_nums, oks);\n//\n//\n//\t\t\tdfs2(graph,cent_id,cent_id,-1,oks,0);\n//\t\t\tlens1[cent_id][make_pair(0,0)]--;\n//\t\t\tlens2[cent_id][0]--;\n//\n//\n//\t\t\toks[cent_id] = depth;\n//\n//\t\t\t//for (auto&& e : graph[cent_id]) {\n//\t\t\t//\tif (e.dst == from)continue;\n//\t\t\t//\tif (oks[e.dst] != -1)continue;\n//\n//\t\t\t//\tdfs2(graph, e.dst, e.dst, e.src, oks,e.cost%mod,e.cost%mod,1);\n//\n//\t\t\t//\tfor (auto&& l1 : lens1[e.dst]) {\n//\t\t\t//\t\tint keta = l1.first.second;\n//\t\t\t//\t\tlong long int num = l1.first.first;\n//\n//\t\t\t//\t\tlong long int need = (mod - num) / mod_pow(10, keta);\n//\t\t\t//\t\tneed%=mod;\n//\t\t\t//\t\tauto it = lens2[e.dst].find(need);\n//\t\t\t//\t\tif (it != lens2[e.dst].end()) {\n//\t\t\t//\t\t\tans -= l1.second*it->second;\n//\t\t\t//\t\t}\n//\t\t\t//\t}\n//\t\t\t//\tlens1[e.dst].clear();\n//\t\t\t//\tlens2[e.dst].clear();\n//\t\t\t//}\n//\n//\t\t\tif (from != -1) {\n//\t\t\t\tcentroid_edges[from].push_back(cent_id);\n//\t\t\t}\n//\t\t\telse {\n//\t\t\t\tfst_centroid = cent_id;\n//\t\t\t}\n//\t\t\tfor (auto&& e : graph[cent_id]) {\n//\t\t\t\tif (e.dst == from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tcent(graph, oks, e.dst, e.src, centroid_edges, fst_centroid, depth + 1, ch_nums);\n//\t\t\t}\n//\t\t}\n//\n//\tpublic:\n//\n//\t\tmap<pair<int,int>,int>mp;\n//\n//\t\tvector<map<pair<long long int,int>, long long int>>lens1;\n//\t\tvector<map<long long int, long long int>>lens2;\n//\t\tvector<vector<int>> centroid_graph;\n//\t\tvector<int>ts;\n//\t\tvector<int>parents;\n//\t\tvector<int>oks;\n//\t\tvector<int>anss;\n//\n//\t\t//fst:root snd:centroid_graph\n//\t\tvoid init(const Graph&g) {\n//\t\t\tlens1.resize(g.size());\n//\t\t\tlens2.resize(g.size());\n//\t\t\toks = vector<int>(g.size(), -1);\n//\t\t\tint root = -1;\n//\t\t\tcentroid_graph.resize(g.size());\n//\t\t\tparents = vector<int>(g.size(), -1);\n//\t\t\tts=vector<int>(g.size(),-1);\n//\t\t\tanss=vector<int>(g.size(),100000);\n//\n//\t\t\tvector<int>ch_nums(g.size());\n//\t\t\tcent(g, oks, 0, -1, centroid_graph, root, 0, ch_nums);\n//\n//\t\t\tfor (int i = 0; i < centroid_graph.size(); ++i) {\n//\t\t\t\tfor (auto&& e : centroid_graph[i]) {\n//\t\t\t\t\tparents[e] = i;\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ;\n//\t\t}\n//\t}centroid;\n//\n//\n//\tvoid addEdge(Graph& g, int a, int b, long long int c) {\n//\t\tg[a].push_back(Edge{ a,b,c });\n//\t\tg[b].push_back(Edge{ b,a,c });\n//\t}\n//}\n\n\n//const int mod = 1000000007;\n//struct Mod {\n//public:\n//\tint num;\n//\tMod() : Mod(0) { ; }\n//\tMod(long long int n) : num((n % mod + mod) % mod) {\n//\t\tstatic_assert(mod<INT_MAX / 2, \"mod is too big, please make num 'long long int' from 'int'\");\n//\t}\n//\tMod(int n) : Mod(static_cast<long long int>(n)) { ; }\n//\toperator int() { return num; }\n//};\n//\n//Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mod); }\n//Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; }\n//Mod operator+(const Mod a, const long long int b) { return b + a; }\n//Mod operator++(Mod &a) { return a + Mod(1); }\n//Mod operator-(const Mod a, const Mod b) { return Mod((mod + a.num - b.num) % mod); }\n//Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; }\n//Mod operator--(Mod &a) { return a - Mod(1); }\n//Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mod); }\n//Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; }\n//Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; }\n//Mod operator*(const Mod a, const int b) { return Mod(b)*a; }\n//Mod operator+=(Mod &a, const Mod b) { return a = a + b; }\n//Mod operator+=(long long int &a, const Mod b) { return a = a + b; }\n//Mod operator-=(Mod &a, const Mod b) { return a = a - b; }\n//Mod operator-=(long long int &a, const Mod b) { return a = a - b; }\n//Mod operator*=(Mod &a, const Mod b) { return a = a * b; }\n//Mod operator*=(long long int &a, const Mod b) { return a = a * b; }\n//Mod operator*=(Mod& a, const long long int &b) { return a = a * b; }\n//Mod operator^(const Mod a, const int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = (a * a) ^ (n / 2);\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//Mod mod_pow(const Mod a, const long long int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = mod_pow((a * a), (n / 2));\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//\n////mod が素数の場合のみ 違う場合はextend euclid を用いる。\n//Mod inv(const Mod a) { return a ^ (mod - 2); }\n//Mod operator/(const Mod a, const Mod b) {\n//\tassert(b.num != 0);\n//\treturn a * inv(b);\n//}\n//Mod operator/(const long long int a, const Mod b) {\n//\treturn Mod(a) / b;\n//}\n//Mod operator/=(Mod &a, const Mod b) {\n//\treturn a = a / b;\n//}\n//\n//#define MAX_MOD_N 1024000\n//\n//Mod fact[MAX_MOD_N], factinv[MAX_MOD_N];\n//void init(const int amax = MAX_MOD_N) {\n//\tfact[0] = Mod(1); factinv[0] = 1;\n//\tfor (int i = 0; i < amax - 1; ++i) {\n//\t\tfact[i + 1] = fact[i] * Mod(i + 1);\n//\t\tfactinv[i + 1] = factinv[i] / Mod(i + 1);\n//\t}\n//}\n//Mod comb(const int a, const int b) {\n//\treturn fact[a] * factinv[b] * factinv[a - b];\n//}\n//\n//vector<int>primes;\n//void hurui(const int amax=3500) {\n//\tstatic bool flag = false;\n//\tif (flag)return;\n//\tvector<int>sos;\n//\tsos = vector<int>(amax + 1, true);\n//\tsos[0] = false; sos[1] = false;\n//\tfor (int i = 2; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tfor (int j = 2 * i; j <= amax; j += i)sos[j] = false;\n//\t\t}\n//\t}\n//\tfor (int i = 0; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tprimes.push_back(i);\n//\t\t}\n//\t}\n//\tflag = true;\n//}\n//\n//\n//struct query {\n//\tint u;\n//\tint v;\n//\tmap<int,int>mp;\n//};\n//\n//map<int, int>mk_mp(const int a) {\n//\tint rest(a);\n//\tmap<int,int>as;\n//\tfor (auto pr : primes) {\n//\t\twhile (rest%pr == 0) {\n//\t\t\tas[pr]++;\n//\t\t\trest /= pr;\n//\t\t}\n//\t}\n//\tif (rest!=1)as[rest]++;\n//\treturn as;\n//}\n//\n//#define Seg_Max_N (1<<18) \n//\n//class Tree {\n//public:\n//\tTree(int V, int root) : V(V), root(root), cnum(V), place(V), id(V) {\n//\t\tT.resize(V);\n//\t\tfor (int i = 0; i < MAXLOGV; i++) {\n//\t\t\tparent[i].resize(V);\n//\t\t}\n//\t\tdepth.resize(V);\n//\t}\n//\t// uとvをつなぐ\n//\t// lcaを求めることが主目的なので無向グラフとしている\n//\tvoid unite(int u, int v) {\n//\t\tT[u].push_back(v);\n//\t\tT[v].push_back(u);\n//\t}\n//\tvoid unite(vector<vector<int>>&e) {\n//\t\tT = e;\n//\t}\n//\t// initする\n//\t// コンストラクタだけじゃなくてこれも呼ばないとlcaが求められないぞ\n//\tvoid init() {\n//\t\tdfs(root, 0, 0);\n//\t\tint id = 0;\n//\t\tgetid(root, 0, id);\n//\t}\n//\t// uとvのlcaを求める\n//\tint lca(int u, int v) const {\n//\t\tif (depth[u] > depth[v]) swap(u, v);\n//\t\tfor (int k = 0; k < MAXLOGV; k++) {\n//\t\t\tif ((depth[v] - depth[u]) >> k & 1) {\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\tif (u == v) return u;\n//\t\tfor (int k = MAXLOGV - 1; k >= 0; k--) {\n//\t\t\tif (parent[k][u] != parent[k][v]) {\n//\t\t\t\tu = parent[k][u];\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\treturn parent[0][u];\n//\t}\n//\t// uとvの距離を求める\n//\t// edgeを定義しないといけない時はこれじゃダメ\n//\tint dist(int u, int v) const {\n//\t\tint p = lca(u, v);\n//\t\treturn (depth[u] - depth[p]) + (depth[v] - depth[p]);\n//\t}\n//\tint dfs(int v, int p, int d) {\n//\t\tparent[0][v] = p;\n//\t\tdepth[v] = d;\n//\t\tcnum[v] = 0;\n//\t\tfor (int i = 1; i < MAXLOGV; i++) {\n//\t\t\tparent[i][v] = parent[i - 1][parent[i - 1][v]];\n//\t\t}\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) cnum[v] += dfs(next, v, d + 1);\n//\t\t}\n//\t\treturn cnum[v] + 1;\n//\t}\n//\n//\tvoid dfs2(int v, int p, vector<vector<int>>&doubles, const vector<int>&nums) {\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) dfs2(next, v, doubles, nums);\n//\t\t}\n//\t\tdoubles[0][v] = nums[v];\n//\t\tfor (int j = 1; j < MAXLOGV; ++j) {\n//\t\t\tdoubles[j][v] = min(doubles[j][v], doubles[j - 1][v]);\n//\t\t}\n//\t\tfor (int j = 0; j < MAXLOGV - 1; ++j) {\n//\t\t\tdoubles[j + 1][parent[j][v]] = min(doubles[j + 1][parent[j][v]], doubles[j][v]);\n//\t\t}\n//\t}\n//\t//ここでは親から距離2^iの部分木の最小値を求めている\n//\tvector<vector<int>>get_doubles(const vector<int>&nums) {\n//\t\tvector<vector<int>>doubles(MAXLOGV, vector<int>(V, 1e9));\n//\t\tdfs2(root, -1, doubles, nums);\n//\t\treturn doubles;\n//\t}\n//\n//\tvoid getid(const int v, const int p, int &nplace) {\n//\t\tplace[v] = nplace;\n//\t\tid[nplace] = v;\n//\t\tnplace++;\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) getid(next, v, nplace);\n//\t\t}\n//\t}\n//\tstatic const int MAXLOGV = 25;\n//\t// グラフの隣接リスト表現\n//\tvector<vector<int> > T;\n//\t// 頂点の数\n//\tint V;\n//\t// 根ノードの番号\n//\tint root;\n//\n//\t// 親ノード\n//\tvector<int> parent[MAXLOGV];\n//\t// 根からの深さ\n//\tvector<int> depth;\n//\n//\t//子の数\n//\tvector<int>cnum;\n//\n//\t//変換\n//\tvector<int>place;\n//\tvector<int>id;\n//\n//};\n//\n//vector<int>pas;\n//void adfs(vector<pair<int, int>>&lrs, vector<int>&tos,const vector<vector<int>>&edges, const int now, const int from,int &id) {\n//\ttos[now]=id;\n//\tlrs[tos[now]].first=id++;\n//\tfor (auto e : edges[now]) {\n//\t\tif (e == from) {\n//\t\t\tpas[now] = from;\n//\t\t\tcontinue;\n//\t\t}\n//\t\tadfs(lrs,tos,edges,e,now,id);\n//\t}\n//\tlrs[tos[now]].second=id;\n//}\n//\n//vector<pair<int, int>>get_lrs(vector<int>&tos,const vector<vector<int>>&edges, const int root) {\n//\tpas.resize(tos.size());pas[0]=-1;\n//\tvector<pair<int,int>>lrs(edges.size());\n//\tint id=0;\n//\tadfs(lrs,tos,edges,0,-1,id);\n//\treturn lrs;\n//}\n\n\nnamespace FastFourierTransform\n{\n\tusing C = complex< double >;\n\n\tvoid DiscreteFourierTransform(vector< C > &F, bool rev)\n\t{\n\t\tconst int N = (int)F.size();\n\t\tconst double PI = (rev ? -1 : 1) * acos(-1);\n\t\tfor (int i = 0, j = 1; j + 1 < N; j++) {\n\t\t\tfor (int k = N >> 1; k > (i ^= k); k >>= 1);\n\t\t\tif (i > j) swap(F[i], F[j]);\n\t\t}\n\t\tC w, s, t;\n\t\tfor (int i = 1; i < N; i <<= 1) {\n\t\t\tfor (int k = 0; k < i; k++) {\n\t\t\t\tw = polar(1.0, PI / i * k);\n\t\t\t\tfor (int j = 0; j < N; j += i * 2) {\n\t\t\t\t\ts = F[j + k];\n\t\t\t\t\tt = C(F[j + k + i].real() * w.real() - F[j + k + i].imag() * w.imag(),\n\t\t\t\t\t\tF[j + k + i].real() * w.imag() + F[j + k + i].imag() * w.real());\n\t\t\t\t\tF[j + k] = s + t, F[j + k + i] = s - t;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (rev) for (int i = 0; i < N; i++) F[i] /= N;\n\t}\n\n\tvector< int> Multiply(const vector< int > &A, const vector<int > &B)\n\t{\n\t\tint sz = 1;\n\t\twhile (sz <= A.size() + B.size()) sz <<= 1;\n\t\tvector< C > F(sz), G(sz);\n\t\tfor (int i = 0; i < A.size(); i++) F[i] = A[i];\n\t\tfor (int i = 0; i < B.size(); i++) G[i] = B[i];\n\t\tDiscreteFourierTransform(F, false);\n\t\tDiscreteFourierTransform(G, false);\n\t\tfor (int i = 0; i < sz; i++) F[i] *= G[i];\n\t\tDiscreteFourierTransform(F, true);\n\t\tvector< int > X(A.size() + B.size() - 1);\n\t\tfor (int i = 0; i < A.size() + B.size() - 1; i++) X[i] = F[i].real() + 0.5;\n\t\treturn (X);\n\t}\n};\n\n\n\nint main()\n{\n\tlong long int T;cin>>T;\n\tint N;cin>>N;\n\tvector<pair<long long int,long long int>>ps;\n\tvector<long long int>sums(N+1);\n\tsums[0]=0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tlong long int l,r;cin>>l>>r;\n\t\tps.emplace_back(l,r);\n\t\tsums[i+1]=sums[i]+r-l;\n\t}\n\tlong long int ans=0;\n\tfor (int i = 0; i < N; ++i) {\n\t\tauto it=lower_bound(ps.begin(),ps.end(),make_pair(ps[i].first+T,0ll));\n\t\tint j=it-ps.begin()-1;\n\t\tauto p(ps[j]);\n\t\tif (p.second < ps[i].first + T) {\n\n\t\t\tlong long int nans = sums[j]-sums[i] + ps[j].second-ps[j].first;\n\t\t\tans=max(ans,nans);\n\t\t}\n\t\telse {\n\n\t\t\tlong long int nans = sums[j]-sums[i] + ps[i].first + T - ps[j].first;\n\t\t\tans=max(ans,nans);\n\t\t}\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 5708, "score_of_the_acc": -0.5751, "final_rank": 18 } ]
aoj_2806_cpp
B: 重さの範囲 問題 重さの異なる $N$ 色のボールがキューにたくさん入っています。キューには、先頭から $1,2,3, \dots ,N-1,N,1,2,3, \dots ,N-1,N,1,2,3, \dots$ というふうに昇順にボールが並んでいて、 色 $N$ のボールの後ろにはまた色 $1$ のボールから順に入っています。 同じ色のボールはそれぞれ同じ重さであり、色 $i$ のボールの重さは $A_i$ です。 この状態から、キューの先頭からボールを $M$ 個取り出し、これを 1 つのグループとする作業を繰り返します。 そして、キューから取り出した各色のボールの総数がすべて等しくなったときにグループを作る作業をやめます。 なお、キューには十分な数のボールが入っており、グループを作る作業をやめるまでにキューの中身が空になることはありません。 たとえば、 $N=8, M=2$ のとき、{色1,色2}, {色3,色4}, {色5,色6}, {色7,色8} の 4 グループができます (このとき各色のボールは 1 つずつ存在する)。 $N=4, M=3$ のとき、{色1,色2,色3}, {色4,色1,色2}, {色3,色4,色1}, {色2,色3,色4} の $4$ グループができます (このとき各色のボールはそれぞれ3つずつ存在する)。 このとき、各グループにおいて、 含まれるボールの重さの最大値と最小値の差をそのグループの 重さの範囲 と呼ぶことにします。 各グループの重さの範囲の総和を出力してください。 制約 $1 \le N \le 1000$ $1 \le M \le N$ $0 \le A_i \le 100$ 入力は全て整数である 入力形式 入力は以下の形式で与えられます。 $N \ M$ $A_1 \cdots A_N$ 出力 答えを 1 行で出力してください。また、末尾に改行も出力してください。 サンプル サンプル入力 1 8 2 23 61 57 13 91 41 79 41 サンプル出力 1 170 重さの範囲の総和は $38+44+50+38=170$ となります。 サンプル入力 2 4 3 72 46 67 5 サンプル出力 2 222 重さの範囲の総和は $26+67+67+62=222$ となります。 サンプル入力 3 4 2 1 2 3 5 サンプル出力 3 3 重さの範囲の総和は $1+2=3$ となります。
[ { "submission_id": "aoj_2806_3448657", "code_snippet": "#include<iostream>\n#include<queue>\nusing namespace std;\n#define inRange(x,a,b) (a <= x && x < b)\n\nint main(){\n int n, m;\n cin >> n >> m;\n int a[n];\n for(int i = 0; i < n; i++) cin >> a[i];\n priority_queue<pair<int,int>> l, r;\n int ans = 0, cur = 0;\n do{\n for(int j = 0; j < m; j++) l.push({-a[cur%n], cur}), r.push({a[cur%n], cur}), cur++;\n while(!inRange(l.top().second, cur-m, cur)) l.pop();\n while(!inRange(r.top().second, cur-m, cur)) r.pop();\n ans += r.top().first+l.top().first;\n }while(cur%n);\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 17888, "score_of_the_acc": -1.5535, "final_rank": 13 }, { "submission_id": "aoj_2806_2995994", "code_snippet": "#include <bits/stdc++.h>\n #include<iostream>\n #include<cstdio>\n #include<vector>\n #include<queue>\n #include<map>\n #include<cstring>\n #include<string>\n #include <math.h>\n #include<algorithm>\n // #include <boost/multiprecision/cpp_int.hpp>\n #include<functional>\n #define int long long\n #define inf 1000000007\n #define pa pair<int,int>\n #define ll long long\n #define pal pair<double,double>\n #define ppap pair<pa,int>\n // #define PI 3.14159265358979323846\n #define paa pair<int,char>\n #define mp make_pair\n #define pb push_back\n #define EPS (1e-10)\n #define equals(a,b) (fabs((a)-(b))<EPS)\n int dx[4]={0,-1,0,1};\n int dy[4]={1,0,-1,0};\n using namespace std;\n \t\t\tclass pa3{\n \tpublic:\n \tint x,y,z;\n \tpa3(int x=0,int y=0,int z=0):x(x),y(y),z(z) {}\n \tbool operator < (const pa3 &p) const{\n \t\tif(x!=p.x) return x<p.x;\n \t\tif(y!=p.y) return y<p.y;\n \t\t return z<p.z;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \t\t\t\tbool operator > (const pa3 &p) const{\n \t\tif(x!=p.x) return x>p.x;\n \t\tif(y!=p.y) return y>p.y;\n \t\t return z>p.z;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator == (const pa3 &p) const{\n \t\treturn x==p.x && y==p.y && z==p.z;\n \t}\n \t\tbool operator != (const pa3 &p) const{\n \t\t\treturn !( x==p.x && y==p.y && z==p.z);\n \t}\n \n };\n \n class pa4{\n \tpublic:\n \tdouble x;\n \tint y,z,w;\n \tpa4(double x=0,int y=0,int z=0,int w=0):x(x),y(y),z(z),w(w) {}\n \tbool operator < (const pa4 &p) const{\n \t\tif(x!=p.x) return x<p.x;\n \t\tif(y!=p.y) return y<p.y;\n \t\tif(z!=p.z)return z<p.z;\n \t\treturn w<p.w;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator > (const pa4 &p) const{\n \t\tif(x!=p.x) return x>p.x;\n \t\tif(y!=p.y) return y>p.y;\n \t\tif(z!=p.z)return z>p.z;\n \t\treturn w>p.w;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator == (const pa4 &p) const{\n \t\treturn x==p.x && y==p.y && z==p.z &&w==p.w;\n \t}\n \t\t\n \n };\n class pa2{\n \tpublic:\n \tint x,y;\n \tpa2(int x=0,int y=0):x(x),y(y) {}\n \tpa2 operator + (pa2 p) {return pa2(x+p.x,y+p.y);}\n \tpa2 operator - (pa2 p) {return pa2(x-p.x,y-p.y);}\n \tbool operator < (const pa2 &p) const{\n \t\treturn y != p.y ? y<p.y: x<p.x;\n \t}\n \tbool operator > (const pa2 &p) const{\n \t\treturn x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator == (const pa2 &p) const{\n \t\treturn abs(x-p.x)==0 && abs(y-p.y)==0;\n \t}\n \tbool operator != (const pa2 &p) const{\n \t\treturn !(abs(x-p.x)==0 && abs(y-p.y)==0);\n \t}\n \t\t\n \n };\n \n #define ppa pair<int,pas>\n class Point{\n \tpublic:\n \tdouble x,y;\n \tPoint(double x=0,double y=0):x(x),y(y) {}\n \tPoint operator + (Point p) {return Point(x+p.x,y+p.y);}\n \tPoint operator - (Point p) {return Point(x-p.x,y-p.y);}\n \tPoint operator * (double a) {return Point(x*a,y*a);}\n \tPoint operator / (double a) {return Point(x/a,y/a);}\n \tdouble absv() {return sqrt(norm());}\n \tdouble norm() {return x*x+y*y;}\n \tbool operator < (const Point &p) const{\n \t\treturn x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator == (const Point &p) const{\n \t\treturn fabs(x-p.x)<EPS && fabs(y-p.y)<EPS;\n \t}\n };\n typedef Point Vector;\n #define pl pair<int,pas>\n struct Segment{\n Point p1,p2;\n };\n double dot(Vector a,Vector b){\n \treturn a.x*b.x+a.y*b.y;\n }\n double cross(Vector a,Vector b){\n \treturn a.x*b.y-a.y*b.x;\n }\n \n bool parareru(Point a,Point b,Point c,Point d){\n //\tif(abs(cross(a-b,d-c))<EPS)cout<<\"dd \"<<cross(a-b,d-c)<<endl;\n \treturn abs(cross(a-b,d-c))<EPS;\n }\n double distance_ls_p(Point a, Point b, Point c) {\n if ( dot(b-a, c-a) < EPS ) return (c-a).absv();\n if ( dot(a-b, c-b) < EPS ) return (c-b).absv();\n return abs(cross(b-a, c-a)) / (b-a).absv();\n }\n bool is_intersected_ls(Segment a,Segment b) {\n \tif(a.p1==b.p1||a.p2==b.p1||a.p1==b.p2||a.p2==b.p2) return false;\n \tif(parareru((a.p2),(a.p1),(a.p1),(b.p2))&&parareru((a.p2),(a.p1),(a.p1),(b.p1))){\n //\t\tcout<<\"sss\"<<endl;\n \t\tif(dot(a.p1-b.p1,a.p1-b.p2)<EPS) return true;\n \t\tif(dot(a.p2-b.p1,a.p2-b.p2)<EPS) return true;\n \t\tif(dot(a.p1-b.p1,a.p2-b.p1)<EPS) return true;\n \t\tif(dot(a.p1-b.p2,a.p2-b.p2)<EPS) return true;\n \t\treturn false;\n \t}\n else return ( cross(a.p2-a.p1, b.p1-a.p1) * cross(a.p2-a.p1, b.p2-a.p1) < EPS ) && ( cross(b.p2-b.p1, a.p1-b.p1) * cross(b.p2-b.p1, a.p2-b.p1) < EPS );\n }\n \n double segment_dis(Segment a,Segment b){\n \tif(is_intersected_ls(a,b))return 0;\n \tdouble r=distance_ls_p(a.p1, a.p2, b.p1);\n \tr=min(r,distance_ls_p(a.p1, a.p2, b.p2));\n \tr=min(r,distance_ls_p(b.p1, b.p2, a.p2));\n \tr=min(r,distance_ls_p(b.p1, b.p2, a.p1));\n \treturn r;\n }\n Point intersection_ls(Segment a, Segment b) {\n Point ba = b.p2-b.p1;\n double d1 = abs(cross(ba, a.p1-b.p1));\n double d2 = abs(cross(ba, a.p2-b.p1));\n double t = d1 / (d1 + d2);\n \n return a.p1 + (a.p2-a.p1) * t;\n }\n \n string itos( int i ) {\n ostringstream s ;\n s << i ;\n return s.str() ;\n }\n \n int gcd(int v,int b){\n \tif(v>b) return gcd(b,v);\n \tif(v==b) return b;\n \tif(b%v==0) return v;\n \treturn gcd(v,b%v);\n }\n \n double distans(double x1,double y1,double x2,double y2){\n \tdouble rr=(x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);\n \treturn sqrt(rr);\n \t\n }\n int mod;\n // int pr[2000010];\n // int inv[2000010];\n \n int beki(int wa,int rr,int warukazu){\n \tif(rr==0) return 1%warukazu;\n \tif(rr==1) return wa%warukazu;\n \tif(rr%2==1) return (beki(wa,rr-1,warukazu)*wa)%warukazu;\n \tint zx=beki(wa,rr/2,warukazu);\n \treturn (zx*zx)%warukazu;\n }\n /*\n double bekid(double w,int r){\n \tif(r==0) return 1.0;\n \tif(r==1) return w;\n \tif(r%2) return bekid(w,r-1)*w;\n \tdouble f=bekid(w,r/2);\n \treturn f*f;\n }\n \n \t\t\tint comb(int nn,int rr){\n \t\t\t\tint r=pr[nn]*inv[rr];\n \t\t\t\tr%=mod;\n \t\t\t\tr*=inv[nn-rr];\n \t\t\t\tr%=mod;\n \t\t\t\treturn r;\n \t\t\t}\n \n void gya(int ert){\n \tpr[0]=1;\n \tfor(int i=1;i<ert;i++){\n \t\tpr[i]=(pr[i-1]*i)%mod;\n \t}\n \tfor(int i=0;i<ert;i++) inv[i]=beki(pr[i],mod-2,mod);\n \t\n }\n */\n // cin.tie(0);\n \t\t//\tios::sync_with_stdio(false);\n \t\t\t//priority_queue<pa3,vector<pa3>,greater<pa3>> pq; \n //sort(ve.begin(),ve.end(),greater<int>());\n //----------------kokomade tenpure------------\n //vector<double> ans(100000000),ans2(100000000)\nstring s;\nint n,m;\nint a[1003]={0};\nint b[3];\nvector<int> ve;\n signed main(){\n cin.tie(0);\n \t\tios::sync_with_stdio(false);\n \tchar e='A';\n \t\n \tint ans1=0,ans2=0;\n \tcin>>n>>m;\n \tint g=gcd(n,m);\n \tint l=n*m/g;\n \t\n \tfor(int i=0;i<n;i++)cin>>a[i];\n \t\n int ans=0; \n \tint c=0;\n \tfor(int j=0;;j=(j+m)%n){\n \t\tif(j==0 && c!=0) break;\n \t\tint mi=inf,ma=-inf;\n \t\tfor(int i=j;i<j+m;i++){\n \t\t\tmi=min(mi,a[i%n]);\n \t\t\tma=max(ma,a[i%n]);\n \t\t}\n \t\tans+=ma-mi;\n \t\tc++;\n \t}\n \tcout<<ans<<endl;\n \treturn 0;\n \t\n }", "accuracy": 1, "time_ms": 10, "memory_kb": 3236, "score_of_the_acc": -0.0178, "final_rank": 7 }, { "submission_id": "aoj_2806_2749083", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n/*{{{*/ //template\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\nconstexpr int INF = numeric_limits<int>::max()/2;\nconstexpr long long LINF = numeric_limits<long long>::max()/3;\n#define mp make_pair\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\n#define sz(x) (int)(x).size()\n#define debug(x) cerr<<#x<<\":\"<<x<<endl\n#define debug2(x,y) cerr<<#x<<\",\"<<#y\":\"<<x<<\",\"<<y<<endl\n//struct fin{ fin(){ cin.tie(0); ios::sync_with_stdio(false); } } fin_;\nstruct Double{ double d; explicit Double(double x) : d(x){} };\nostream& operator<<(ostream& os,const Double x){ os << fixed << setprecision(20) << x.d; return os; }\ntemplate<typename T> ostream& operator<<(ostream& os,const vector<T>& vec){ os << \"[\"; for(const auto& v : vec){ os << v << \",\"; } os << \"]\"; return os; }\ntemplate<typename T,typename U> ostream& operator<<(ostream& os,const pair<T,U>& p){ os << \"(\" << p.first << \",\"<< p.second <<\")\"; return os; }\ntemplate<typename T> ostream& operator<<(ostream& os,const set<T>& st){ os<<\"{\"; for(T v:st) os<<v<<\",\"; os <<\"}\"; return os; }\ntemplate<typename T,typename U> inline void chmax(T &x,U y){ if(y>x) x = y; }\ntemplate<typename T,typename U> inline void chmin(T &x,U y){ if(y<x) x = y; }\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef vector<int> vi;\ntypedef vector<vi> vvi;\nll gcd(ll a,ll b){ if(b==0) return a; else return gcd(b,a%b); }\n//constexpr double eps = 1e-14; \nconstexpr double eps = 1e-10; \nconstexpr ll mod = 1e9+7;\nconst int dx[]={1,0,-1,0} ,dy[] = {0,1,0,-1};\n/*}}}*/\n\nint main(){\n ll n,m;\n cin >> n >> m;\n vi a(n);\n rep(i,n) cin >> a[i];\n\n int lcm = n * m / gcd(n,m);\n\n vector<int> b(lcm);\n for(int i=0;i<lcm;i++) b[i] = a[i%n];\n\n int index = 0;\n ll ans = 0;\n while(index < lcm){\n ll max = numeric_limits<ll>::min();\n ll min = numeric_limits<ll>::max();\n for(int i=0;i<m;i++){\n chmax(max,b[index + i]);\n chmin(min,b[index + i]);\n }\n ans += max - min;\n index += m;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6520, "score_of_the_acc": -0.1379, "final_rank": 8 }, { "submission_id": "aoj_2806_2585014", "code_snippet": "#include <stdio.h>\n#include <algorithm>\n\nusing namespace std;\n\nint N, M;\nint A[1000];\nint dp_max[2000][2000];\nint dp_min[2000][2000];\n\nint main()\n{\n\tscanf(\"%d %d\", &N, &M);\n\tfor(int i = 0; i < N; i++)\n\t{\n\t\tscanf(\"%d\", &A[i]);\n\t}\n\n\tdp_max[0][0] = A[0];\n\tdp_min[0][0] = A[0];\n\tfor(int i = 1; i < 2 * N; i++)\n\t{\n\t\tint w = A[i % N];\n\t\tdp_max[i][i] = w;\n\t\tdp_min[i][i] = w;\n\t\tfor(int j = 0; j < i; j++)\n\t\t{\n\t\t\tdp_max[j][i] = std::max(dp_max[j][i - 1], w);\n\t\t\tdp_min[j][i] = std::min(dp_min[j][i - 1], w);\n\t\t}\n\t}\n\n\tlong ans = 0;\n\tfor(int i = 0; ; i += M)\n\t{\n\t\tif(i != 0 && i % N == 0) break;\n\t\tint j = i % N;\n\t\tans += dp_max[j][j + M - 1] - dp_min[j][j + M - 1];\n\t}\n\tprintf(\"%d\\n\", ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 30100, "score_of_the_acc": -2, "final_rank": 14 }, { "submission_id": "aoj_2806_2449444", "code_snippet": "#include<bits/stdc++.h>\n#define r(i,n) for(int i=0;i<n;i++)\nusing namespace std;\nint main(){\n int n,m;\n cin>>n>>m;\n queue<int>q;\n int a[n],ans=0;\n r(i,n)cin>>a[i];\n int lcm=n*m/__gcd(n,m);\n r(i,lcm)q.push(a[i%n]);\n r(i,lcm){\n int l=1e9,r=0,p;\n for(int k=0;k<m;k++){\n p=q.front();q.pop();\n l=min(l,p);\n r=max(r,p);\n i++;\n }\n ans+=r-l;\n i--;\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6748, "score_of_the_acc": -0.1462, "final_rank": 9 }, { "submission_id": "aoj_2806_2434774", "code_snippet": "#include<cstdio>\n#include<algorithm>\n#include<functional>\nusing namespace std;\nint main(void)\n{\n\tint i,j,p,n,m,a[1000],sum,mi,mx,p2;\n\tscanf(\"%d %d\",&n,&m);\n\tfor(i=0;i<n;i++)\tscanf(\"%d\",&a[i]);\n\tsum=0;\n\tp=0;\n\twhile(1)\t{\n\t\tmi=a[p];\tmx=a[p];\n\t\tp=(p+1)%n;\n\t\tfor(i=1;i<m;i++)\t{\n\t\t\tmi=min(mi,a[p]);\n\t\t\tmx=max(mx,a[p]);\n\t\t\tp=(p+1)%n;\n\t\t}\n\t\tsum+=mx-mi;\n\t\tif(p==0)\tbreak;\n\t}\n\tprintf(\"%d\\n\",sum);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 2748, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2806_2330115", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing PII = pair<int, int>;\nusing LL = long long;\nusing VL = vector<LL>;\nusing VVL = vector<VL>;\nusing PLL = pair<LL, LL>;\nusing VS = vector<string>;\n\n#define ALL(a) begin((a)),end((a))\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SORT(c) sort(ALL((c)))\n#define RSORT(c) sort(RALL((c)))\n\n#define FOR(i,a,b) for(int i=(a);i<(b);++i)\n#define REP(i,n) FOR(i,0,n)\n\n#define FF first\n#define SS second\ntemplate<class S, class T>\nistream& operator>>(istream& is, pair<S,T>& p){\n return is >> p.FF >> p.SS;\n}\ntemplate<class S, class T>\nostream& operator<<(ostream& os, const pair<S,T>& p){\n return os << p.FF << \" \" << p.SS;\n}\ntemplate<class T>\nvoid maxi(T& x, T y){\n if(x < y) x = y;\n}\ntemplate<class T>\nvoid mini(T& x, T y){\n if(x > y) x = y;\n}\n\n\nconst double EPS = 1e-10;\nconst double PI = acos(-1.0);\nconst LL MOD = 1e9+7;\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n int N, M; cin >> N >> M;\n VL xs(N);\n REP(i,N) cin >> xs[i];\n\n int lcm = N * M / __gcd(N, M);\n LL ans = 0;\n set<int> q;\n for(int i=0;i<lcm;++i){\n\tq.insert(xs[i%N]);\n\tif((i+1)%M == 0){\n\t ans += *--end(q) - *begin(q);\n\t q.clear();\n\t}\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3200, "score_of_the_acc": -0.0165, "final_rank": 6 }, { "submission_id": "aoj_2806_2329972", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <climits>\n\nint lcm(int a, int b)\n{\n return a / std::__gcd(a, b) * b;\n}\n\nint main()\n{\n int N, M;\n std::cin >> N >> M;\n \n std::vector<int> A(N);\n for (int i = 0; i < N; i++) {\n std::cin >> A[i];\n }\n \n int res = 0;\n int max = INT_MIN, min = INT_MAX;\n for (int i = 0, j = 0; i < lcm(N, M); i++, j++) {\n max = std::max(max, A[i % N]);\n min = std::min(min, A[i % N]);\n \n if (j + 1 == M) {\n res += max - min;\n j = -1;\n max = INT_MIN;\n min = INT_MAX;\n }\n }\n std::cout << res << std::endl; \n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3096, "score_of_the_acc": -0.6794, "final_rank": 11 }, { "submission_id": "aoj_2806_2329968", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <climits>\n\nint lcm(int a, int b)\n{\n return a / std::__gcd(a, b) * b;\n}\n\nint main()\n{\n int N, M;\n std::cin >> N >> M;\n \n std::vector<int> A(N);\n for (int i = 0; i < N; i++) {\n std::cin >> A[i];\n }\n \n long long res = 0;\n int max = INT_MIN, min = INT_MAX;\n for (int i = 0, j = 0; i < lcm(N, M); i++, j++) {\n max = std::max(max, A[i % N]);\n min = std::min(min, A[i % N]);\n \n if (j + 1 == M) {\n res += max - min;\n j = -1;\n max = INT_MIN;\n min = INT_MAX;\n }\n }\n std::cout << res << std::endl; \n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3096, "score_of_the_acc": -0.6794, "final_rank": 11 }, { "submission_id": "aoj_2806_2265401", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define rrep(i,n) for(int i=(int)(n)-1;i>=0;i--)\n#define each(a,x) for(auto a : (x))\n#define all(a) (a).begin(),(a).end()\n#define chmin(a,b) ((a) = min((a),(b)))\n#define chmax(a,b) ((a) = max((a),(b)))\n#define in_range(x,l,r) ((l)<=(x) && (x)<(r))\n#define printvec(a) rep(i,a) cout << a[i] << \" \\n\"[i+1==(a).size()];\n#define fs first\n#define sc second\n#define em emplace\n#define eb emplace_back\n#define sz size()\n#define MP make_pair\nusing namespace std;\ntypedef long long ll;\ntypedef double D;\ntypedef pair<int,int> pii;\ntypedef pair<ll,ll> pll;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<string> vs;\n\nconst ll INF = 1e8;\nconst D EPS = 1e-8;\nconst ll MOD = 1e9+7;\n\nint main(){\n ll n,m;\n cin >> n >> m;\n vl a(n);\n rep(i,n) cin >> a[i];\n\n ll l = n/__gcd(n,m), cur = 0;\n ll sum = 0;\n rep(azu,l){\n ll min_v = a[cur], max_v = a[cur];\n rep(i,m){\n chmin(min_v, a[cur]);\n chmax(max_v, a[cur]);\n cur = (cur + 1) % n;\n }\n sum += max_v - min_v;\n }\n cout << sum << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3080, "score_of_the_acc": -0.0121, "final_rank": 3 }, { "submission_id": "aoj_2806_2235406", "code_snippet": "#include<algorithm>\n#include<iostream>\n#include<vector>\nusing namespace std;\ntypedef long long ll;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n\nint main(){\n int N,M;\n cin>>N>>M;\n vector<int> A(N);\n rep(i,N)cin>>A[i];\n \n vector<int> v(N); //v[i]: A[i]~A[i+M-1]?????§?????°????????????????????¨???????????°???????????????\n \n //v[i]????±?????????????( O(N M logM) )\n rep(i,N){\n vector<int> tmp;\n for(int j=i;j<i+M;j++) tmp.pb( A[j%N] );\n \n sort(all(tmp));\n int maxi = tmp[tmp.size()-1];\n int mini = tmp[0];\n \n v[i] = maxi - mini;\n }\n \n int ans = 0;\n int lcm = N*M/__gcd(N,M);\n \n rep(i,lcm/M){ //????\\???? LCM(N,M)/M ???????????????LCM(N,M)/M????????°??????????????§??????\n int index = (i*M)%N;\n ans+=v[index];\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3144, "score_of_the_acc": -0.0145, "final_rank": 5 }, { "submission_id": "aoj_2806_2228924", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\nusing namespace std;\n \n#define rep(i, n) for (int i = 0; i < int(n); ++i)\ntypedef long long i64;\n \nint gcd(int x, int y) {\n\treturn y ? gcd(y, x % y) : x;\n}\n \nint a[1000];\n \nint main() {\n\t// your code goes here\n\tint n, m;\n\tcin >> n >> m;\n\trep(i, n) {\n\t\tcin >> a[i];\n\t}\n\t// Pick nm/gcd(n, m) = lcm(n, m) times.\n\ti64 tot = 0;\n\tint g = gcd(n, m);\n\trep(i, n / g) {\n\t\tvector<int> t;\n\t\trep(j, m) {\n\t\t\t// (i * m + j) % n -th is taken\n\t\t\tt.push_back(a[(i * m + j) % n]);\n\t\t}\n\t\tsort(t.begin(), t.end());\n\t\ttot += t[t.size() - 1] - t[0];\n\t}\n\tcout << tot << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3092, "score_of_the_acc": -0.0126, "final_rank": 4 }, { "submission_id": "aoj_2806_2227918", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\nconst int inf = numeric_limits<int>::max();\n\nint gcd(int a,int b){\n if(b > a)swap(a,b);\n if(a % b == 0)return b;\n else return gcd(b,a%b);\n}\n\nint main(void){\n ll n,m;\n ll a[1100];\n cin >> n >> m;\n for(int i = 0;i < n;++i)cin >> a[i];\n int now = 0;\n ll res = 0;\n ll r = (n*m)/gcd(n,m);\n r /= m;\n for(int i = 0;i < r;++i){\n ll ma = 0;\n ll mi = inf;\n for(int j = 0;j < m;++j){\n ma = max(ma,a[now]);\n mi = min(mi,a[now]);\n ++now;\n now %= n;\n }\n res += ma - mi;\n }\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3048, "score_of_the_acc": -0.011, "final_rank": 2 }, { "submission_id": "aoj_2806_2227890", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(n);++i)\n#define ALL(A) A.begin(), A.end()\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<int, int> P;\n\nint main()\n{\n\tios_base::sync_with_stdio(0);\n\tcin.tie(0);\n\tint N, M; cin >> N >> M;\n\tvector<int> a(N, 0);\n\trep (i, N) cin >> a[i];\n\n\tint g = __gcd(N, M);\n\tint L = N * M / g;\n\tint numGroup = L / M; \n\n\tvector<int> Group[numGroup];\n\trep (i, numGroup) Group[i].clear();\n\trep (i, L){\n\t\tGroup[i/M].push_back(a[i%N]);\n\t} // end rep\n\t\n\trep (i, numGroup){\n\t\tsort(ALL(Group[i]));\n//\t\tcerr << \"max: \" << Group[i][Group[i].size() - 1] << \" min: \" << Group[i][0] << endl; \n\t} // end rep\n\n\n\tint res = 0;\n\trep (i, numGroup){\n\t\tint range = Group[i][Group[i].size() - 1] - Group[i][0];\n\t\tres += range;\n\t} // end rep\n\n\tcout << res << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6900, "score_of_the_acc": -0.1518, "final_rank": 10 } ]
aoj_2807_cpp
C: Fractal Tree 問題 AORイカちゃんは、フラクタルな(自己相似的な)構造を持つ根付き木が好きである。 $N$ 頂点から成る重み付き根付き木 $T$ を用いて、以下のようなフラクタル構造を持つ根付き木 $T'$ を表現することを考える。 $T'$ は、$T$ の各頂点 $x$ に対して、$x$ を根として $T$ と同様の木構造 (コストも同じ) を持つ木を付け加えたものである。 $T'$の根は $T$ のものと同じものである。 こうして表現される木は例えば下図のようになる。 AOR イカちゃんは、$T'$ に対して深さ優先探索をしようとしているが、全ての頂点を辿ると時間がとてもかかることに気づいた。 そこで、深さ優先探索時の遷移の際に確率 $p$ で遷移し、確率 $1-p$ で遷移しない方針で深さ優先探索を行い、いくつかのノード訪問をサボることにした。 $T$ と確率 $p$ が与えられるので、$T’$ に対して深さ優先探索を行う際に辿る全ての辺のコストの和の期待値を求めよ。 $T$ の情報は頂点数 $N$ と $N-1$ 本の辺の情報で与えられ、頂点 $1$ が根である。 各頂点は $1,2,\dots,N$ とラベリングされており、 $i \ (1 \le i \le N-1)$ 番目の辺は頂点 $x_i$ と $y_i$ をコスト $c_i$ で結んでいる。 今回の問題で扱う、確率 $p$ で子に遷移する深さ優先探索の非決定的アルゴリズムは以下のように表現される。 出力される $\mathrm{answer}$ が辿る辺のコストの総和である。 空のスタック $S$ を用意する。 $\mathrm{answer}=0$ とする $S$ に $T'$ の根頂点をプッシュする。 $S$ の先頭の要素を取り出し、これを $x$ とする。 $x$ の各子 $c$ に対し、それぞれ確率 $p$ で次の操作を行い、確率 $1-p$ で何もしない。 $S$ に頂点 $c$ を追加する。そして $\mathrm{answer}$ に $x$ から $c$ に繋がっている辺の重みを加える。 Sが空でなければ、3. に遷移する。 $\mathrm{answer}$ を出力する。 制約 $2 \le N \le 10^5$ $0 \le p \le 1.0$ (小数点第 2 位まで与えられる。) $1 \le x_i,y_i \le N$ $1 \le c_i \le 1000$ $c_i$ は整数である 与えられるグラフは $N$ 頂点の根付き木である。すなわち、頂点 $N$、辺数 $N-1$、連結という性質を持つグラフであり、頂点 $1$ が根である。 入力形式 入力は以下の形式で与えられる。 $p$ $N$ $x_1 \ y_1 \ c_1$ $\vdots$ $x_{N-1} \ y_{N-1} \ c_{N-1}$ 出力 答えを 1 行で出力せよ。相対誤差または絶対誤差が $10^{-6}$ 以下なら AC となる。また、末尾に改行も出力せよ。 サンプル サンプル入力1 0.75 4 1 2 1 2 3 3 3 4 10 サンプル出力1 24.8569335938 サンプル入力2 0.75 4 1 2 1 1 3 3 3 4 10 サンプル出力2 35.0390625 問題文の図の木を与える例である。
[ { "submission_id": "aoj_2807_9117947", "code_snippet": "#include <bits/stdc++.h>\n#include <vector>\nusing namespace std;\nint inf=100000000;\nusing ll=long long;\nusing pint=pair<int,int>;\nusing pll=pair<ll,ll>;\nusing pque_int=priority_queue<int>;\n#define rep(i,n) for (int i=0; i < (int) n; i++)\n#define _GLIBCXX_DEBUG\ntemplate<typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); }\ntemplate<typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); }\nint VecMax(vector<int> &v) {\n int output=-inf;\n rep(i,v.size()) chmax(output,v[i]);\n return output;\n}\nint VecMin(vector<ll> &v) {\n ll output=inf;\n rep(i,v.size()) chmin(output,v[i]);\n return output;\n}\nll VecSum(vector<int> &v) {\n ll output=0;\n rep(i,v.size()) output+=v[i];\n return output;\n}\nll pow(ll a,ll n) {\n ll output=1;\n while (n>0) output*=a;\n return output;\n}\nint dir(char c) {\n if (c=='L') return 3;\n else if (c=='R') return 1;\n else if (c=='U') return 2;\n else return 0;\n}\n\nint main() {\n double p;\n int N;\n cin >> p >> N;\n vector<int> x(N-1),y(N-1);\n map<pint,int> c;\n rep(i,N-1) {\n cin >> x[i] >> y[i];\n x[i]--; y[i]--;\n int in;\n cin >> in;\n c[make_pair(x[i],y[i])]=in;\n c[make_pair(y[i],x[i])]=in;\n }\n vector<double> power_p(N+1);\n double s=1;\n rep(i,N) {\n power_p[i]=s;\n s*=p;\n }\n power_p[N]=s;\n\n\n vector<vector<int>> graph(N);\n rep(i,N) {\n graph[x[i]].push_back(y[i]);\n graph[y[i]].push_back(x[i]);\n }\n deque<int> todo;\n todo.push_back(0);\n vector<int> seen(N,-1);\n vector<double> score(N,-1.0);\n seen[0]=0;\n score[0]=0.0;\n vector<int> end;\n while(!todo.empty()) {\n int x=todo.back();\n todo.pop_back();\n bool flag=true;\n for (auto nx:graph[x]) {\n if (seen[nx]<0) {\n seen[nx]=seen[x]+1;\n score[nx]= c[make_pair(x,nx)]*power_p[seen[nx]];\n todo.push_back(nx);\n flag=false;\n } \n }\n if (flag) {\n end.push_back(x);\n }\n }\n double endscore=0;\n rep(i,N) {\n endscore+=score[i];\n }\n\n double ans=0;\n rep(i,N) {\n ans+=power_p[seen[i]]*endscore+score[i];\n }\n cout << std::fixed << std::setprecision(9);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 24316, "score_of_the_acc": -1.863, "final_rank": 13 }, { "submission_id": "aoj_2807_9117670", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\n\n#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)\n#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)\n\ntemplate <typename T> bool chmin(T &a, const T &b) {\n\tif (a <= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> bool chmax(T &a, const T &b) {\n\tif (a >= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> T max(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T min(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T sum(vector<T> &a){\n\tT ret = 0;\n\tfor (int i=0; i<(int)a.size(); i++) ret += a[i];\n\treturn ret;\n}\n\nint main(){\n\tlong double p; cin >> p;\n\tint n; cin >> n;\n\n\tvector ikeru(n, vector<pair<int,double>>(0));\n\trep(i,0,n-1){\n\t\tint a, b; cin >> a >> b;\n\t\ta--; b--;\n\t\tlong double c; cin >> c;\n\t\tikeru[a].push_back(pair(b, c));\n\t\tikeru[b].push_back(pair(a, c));\n\n\n\t}\n\n\tvector<long double> dp1(n), dp2(n);\n\tauto dfs = [&](auto self, int i, int x, vector<long double> &dp, long double geta) -> void {\n\t\tdp[i] += geta;\n\t\tfor (auto [j, c]: ikeru[i]){\n\t\t\tif (j == x) continue;\n\t\t\tself(self, j, i, dp, geta);\n\t\t\tdp[i] += p * c;\n\t\t\tdp[i] += p * dp[j];\n\t\t}\n\t};\n\n\t\n\n\tdfs(dfs,0,-1,dp1,0);\n\tdfs(dfs,0,-1,dp2,dp1[0]);\n\n\tcout << fixed << setprecision(15);\n\tcout << dp2[0] << '\\n';\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 27340, "score_of_the_acc": -1.3636, "final_rank": 12 }, { "submission_id": "aoj_2807_9117597", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\nvoid solve(){\n ld p; in(p);\n int n; in(n);\n using pid = pair<int,ld>;\n vector<vector<pid>> g(n);\n rep(i,n-1){\n int u, v; in(u,v); u--, v--;\n ld c; in(c);\n g[u].emplace_back(v,c);\n g[v].emplace_back(u,c);\n }\n ld sum = 0;\n auto dfs = [&](auto sfs, int v, int f, ld pp) -> void {\n for (auto [u, c] : g[v]){\n if (u == f) continue;\n sum += pp*p * c;\n sfs(sfs,u,v,pp*p);\n }\n };\n dfs(dfs,0,-1,1);\n ld ans = sum;\n auto efs = [&](auto sfs, int v, int f, ld pp) -> void {\n ans += pp * sum;\n for (auto [u, c] : g[v]){\n if (u == f) continue;\n sfs(sfs,u,v,pp*p);\n }\n };\n efs(efs,0,-1,1);\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 22676, "score_of_the_acc": -0.9706, "final_rank": 8 }, { "submission_id": "aoj_2807_9117596", "code_snippet": "#pragma region //comavius::competitive library\n\n#pragma region //inclusion and optimization\n#include <bits/stdc++.h>\n#ifdef IS_TEST\nstatic const bool IS_TEST_ENVIROMENT = true;\n#else\nstatic const bool IS_TEST_ENVIROMENT = false;\n#endif\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma endregion //inclusion and optimization\n\nnamespace comavius::competitive { //typedefs\n\n #pragma region //long long\n typedef long long ll;\n typedef std::vector<ll> vll;\n typedef std::vector<vll> vvll;\n typedef std::vector<vvll> vvvll;\n typedef std::map<ll, ll> mll;\n typedef std::map<ll, mll> mmll;\n typedef std::pair<ll, ll> pll;\n typedef std::vector<pll> vpll;\n #pragma endregion //long long\n\n #pragma region //long double\n typedef long double ld;\n typedef std::vector<ld> vld;\n typedef std::vector<vld> vvld;\n typedef std::vector<vvld> vvvld;\n #pragma endregion //long double\n\n #pragma region //std::string\n typedef std::string str;\n typedef std::vector<str> vstr;\n typedef std::vector<vstr> vvstr;\n typedef std::vector<vvstr> vvvstr;\n #pragma endregion //std::string\n\n #pragma region //bool\n typedef std::vector<bool> vb;\n typedef std::vector<vb> vvb;\n typedef std::vector<vvb> vvvb;\n #pragma endregion //bool\n\n #pragma region //char\n typedef std::vector<char> vc;\n typedef std::vector<vc> vvc;\n typedef std::vector<vvc> vvvc;\n #pragma endregion //char\n\n #pragma region //container of std\n #pragma region //std::vector\n template <typename T>\n using vec = std::vector<T>;\n template <typename T>\n using vec2 = std::vector<std::vector<T>>;\n template <typename T>\n using vec3 = std::vector<std::vector<std::vector<T>>>;\n template <typename T>\n using vec4 = std::vector<std::vector<std::vector<std::vector<T>>>>;\n template <typename T>\n using vec5 = std::vector<std::vector<std::vector<std::vector<std::vector<T>>>>>;\n template <typename T>\n using vec6 = std::vector<std::vector<std::vector<std::vector<std::vector<std::vector<T>>>>>>;\n template <typename T>\n using vec7 = std::vector<std::vector<std::vector<std::vector<std::vector<std::vector<std::vector<T>>>>>>>;\n #pragma endregion //std::vector\n #pragma endregion //container of std\n\n} // namespace comavius::competitive typedefs\n\n\n#pragma region //Read macro\n #define GET_1_ARG(TYPE, ARG); TYPE ARG; std::cin >> ARG;\n #define GET_2_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_1_ARG(TYPE, __VA_ARGS__)\n #define GET_3_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_2_ARG(TYPE, __VA_ARGS__)\n #define GET_4_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_3_ARG(TYPE, __VA_ARGS__)\n #define GET_5_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_4_ARG(TYPE, __VA_ARGS__)\n #define GET_6_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_5_ARG(TYPE, __VA_ARGS__)\n #define GET_7_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_6_ARG(TYPE, __VA_ARGS__)\n #define GET_8_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_7_ARG(TYPE, __VA_ARGS__)\n #define GET_9_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_8_ARG(TYPE, __VA_ARGS__)\n #define GET_10_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_9_ARG(TYPE, __VA_ARGS__)\n\n #define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,NAME,...) NAME\n #define read(TYPE, ...) GET_MACRO(__VA_ARGS__, GET_10_ARG, GET_9_ARG, GET_8_ARG, GET_7_ARG, GET_6_ARG, GET_5_ARG, GET_4_ARG, GET_3_ARG, GET_2_ARG, GET_1_ARG)(TYPE, __VA_ARGS__)\n\n #define readv(TYPE, NAME, SIZE) std::vector<TYPE> NAME(SIZE); for (long long i = 0; i < SIZE; i++) std::cin >> NAME[i];\n #define readvv(TYPE, NAME, H, W) std::vector<std::vector<TYPE>> NAME(H, std::vector<TYPE>(W)); for (long long i = 0; i < H; i++) for (long long j = 0; j < W; j++) std::cin >> NAME[i][j];\n#pragma endregion //Read macro\n\n#pragma region //Other macro\n #define rep(i, n) for (ll i = 0; i < n; i++)\n #define reps(i, start, goal, diff) for (ll i = start; i != goal; i += diff)\n #define all(a) a.begin(), a.end()\n// #define chmax(a, b) a = std::max(a, b)\n// #define chmin(a, b) a = std::min(a, b)\n#pragma endregion //Other macro\n\n#pragma region //namespace expansion\n using namespace std;\n using namespace comavius::competitive;\n#pragma endregion //namespace expansion\n\n#pragma endregion //comavius::competitive library\n\n\n\n#pragma region // fundamental structures\n\nusing vvpll = vector<vpll>;\n\nint main() {\n read(ld, p);\n read(ll, n);\n vvpll adj(n);\n rep(i, n-1) {\n read(ll,x,y,c);\n x--;y--;\n adj[x].push_back({y, c});\n adj[y].push_back({x, c});\n }\n vld reach_prob(n, 0);\n reach_prob[0] = 1;\n ld cost_sum = 0;\n queue<ll> q;\n q.push(0);\n vb visited(n, false);\n visited[0] = true;\n while(q.size()) {\n ll cur = q.front();\n q.pop();\n for (auto [next, cost] : adj[cur]) {\n if (visited[next]) continue;\n reach_prob[next] = reach_prob[cur] * p;\n cost_sum += ll(cost) * reach_prob[next];\n q.push(next);\n visited[next] = true;\n }\n }\n ld cost_fr = cost_sum;\n rep(i, n) {\n cost_fr += cost_sum * reach_prob[i];\n }\n cout << setprecision(15) << cost_fr << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 12144, "score_of_the_acc": -0.5845, "final_rank": 4 }, { "submission_id": "aoj_2807_9117589", "code_snippet": "//#include<atcoder/all>\n//using namespace atcoder;\n\n#include <bits/stdc++.h>\ntemplate<class T> inline bool chmin(T&a, T b){if(a > b){a = b; return true;}else{return false;}}\ntemplate<class T> inline bool chmax(T&a, T b){if(a < b){a = b; return true;}else{return false;}}\n#define ll long long\n#define double long double\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define REP(i,n) for(int i=1;i<=(n);i++)\n#define mod (ll)(1e9+7)\n#define inf (ll)(3e18+7)\n#define eps (double)(1e-9)\n#define pi (double) acos(-1)\n#define all(x) x.begin(),x.end()\n#define rall(x) x.rbegin(),x.rend()\nusing namespace std;\n\nstruct edge{\n int to, cost;\n};\n\nusing Graph = vector<vector<edge>>;\n\ndouble P;\nvector<double> dp1(100010, -1);\nvector<double> dp2(100010, -1);\n\ndouble dfs1(const Graph &G, int v, int p){\n if(dp1[v] != -1)return dp1[v];\n\n double now = 0;\n for(auto nv : G[v]){\n if(nv.to == p)continue;\n now += P * (dfs1(G, nv.to, v) + nv.cost);\n }\n\n return dp1[v] = now;\n}\n\ndouble dfs2(const Graph &G, int v, int p){\n if(dp2[v] != -1)return dp2[v];\n \n double now = 0;\n for(auto nv : G[v]){\n if(nv.to == p)continue;\n now += P * (dfs2(G, nv.to, v) + nv.cost);\n }\n now += dp1[0];\n\n return dp2[v] = now;\n}\n\nint main(){\n int n;\n cin >> P >> n;\n Graph G(n);\n rep(i, n-1){\n int x, y, z;\n cin >> x >> y >> z;\n x--; y--;\n G[x].push_back({y, z});\n G[y].push_back({x, z});\n }\n\n dfs1(G, 0, -1);\n dfs2(G, 0, -1);\n\n cout << fixed << setprecision(15) << dp2[0] << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 21084, "score_of_the_acc": -1.0803, "final_rank": 9 }, { "submission_id": "aoj_2807_9117546", "code_snippet": "// #ifndef ONLINE_JUDGE\n#if __has_include(\"all.h\")\n\n#include \"all.h\"\n\n#else\n\n#include <bits/extc++.h>\n\n// #include <atcoder/all>\n\n#endif\n\nusing ll = long long int;\n\ntemplate <class T>\nbool chmin(T &x, const T val) {\n if (x > val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T>\nbool chmax(T &x, const T val) {\n if (x < val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class... T>\nstd::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) {\n std::apply([&](auto &&...args) { (is >> ... >> args); }, tpl);\n return is;\n}\n\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &x : v) is >> x;\n return is;\n}\n\n// template <class mint, atcoder::internal::is_static_modint_t<mint> * =\n// nullptr> std::ostream &operator<<(std::ostream &os, const mint &v) {\n// return os << v.val();\n// }\n\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (int i = 0; i < v.size(); i++)\n os << v[i] << (i == v.size() - 1 ? \"\" : \" \");\n return os;\n}\n\nstruct Initialization {\n Initialization() {\n std::ios_base::sync_with_stdio(false);\n std::cin.tie(nullptr);\n }\n} initialization;\n\nconstexpr std::pair<int, int> dir[] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};\n\ntemplate <typename T>\nusing infs = std::numeric_limits<T>;\n\ntemplate <typename T>\nclass factorials {\n public:\n static size_t n;\n static std::vector<T> fact, inv_fact;\n\n static void extend(size_t m) {\n if (m <= n) return;\n fact.resize(m + 1);\n inv_fact.resize(m + 1);\n for (size_t i = n + 1; i <= m; i++) fact[i] = fact[i - 1] * i;\n inv_fact[m] = fact[m].inv();\n for (size_t i = m; i > n + 1; i--) inv_fact[i - 1] = inv_fact[i] * i;\n n = m;\n }\n\n static T inv(int k) {\n extend(k);\n return inv_fact[k];\n }\n\n static T get(int k) {\n extend(k);\n return fact[k];\n }\n\n static T perm(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k];\n }\n\n static T choose(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k] * inv_fact[k];\n }\n};\n\ntemplate <typename T>\nsize_t factorials<T>::n = 0;\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::fact = {1};\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::inv_fact = {1};\n\n// template <typename T>\n// class fps {\n// std::vector<T> v;\n//\n// public:\n// using value_type = T;\n// using reference = T &;\n// using const_reference = const T &;\n// using iterator = typename std::vector<T>::iterator;\n// using const_iterator = typename std::vector<T>::const_iterator;\n//\n// size_t size() const { return v.size(); }\n//\n// const std::vector<T> &data() const { return v; }\n//\n// explicit fps(int n) : v(n) {}\n//\n// fps(const std::vector<T> &v) : v(v) {}\n// fps(std::vector<T> &&v) : v(v) {}\n//\n// template <class InputIterator>\n// fps(InputIterator first, InputIterator last) : v(first, last) {}\n//\n// void resize(int n) { v.resize(n); }\n//\n// T &operator[](int i) { return v[i]; }\n//\n// iterator begin() { return v.begin(); }\n//\n// iterator end() { return v.end(); }\n//\n// fps diff() {\n// std::vector<T> res(v.size() - 1);\n// for (int i = 0; i < res.size(); i++) res[i] = v[i + 1] * (i + 1);\n// return fps(res);\n// }\n//\n// fps integral() {\n// std::vector<T> res(v.size() + 1);\n// for (int i = 0; i < v.size(); i++) res[i + 1] = v[i] / (i + 1);\n// return fps(res);\n// }\n//\n// fps inv(int deg = -1) {\n// assert(v[0] != 0);\n//\n// if (deg == -1) deg = size();\n// std::vector<T> res(deg);\n//\n// res[0] = v[0].inv();\n//\n// for (int d = 1; d < deg; d <<= 1) {\n// std::vector<T> f(2 * d), g(2 * d);\n//\n// std::copy(v.begin(), v.begin() + std::min(2 * d, (int)v.size()),\n// std::back_inserter(f));\n// std::copy(res.begin(), res.begin() + d, std::back_inserter(g));\n//\n// atcoder::internal::butterfly(f);\n// atcoder::internal::butterfly(g);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = 0; i < d; i++) f[i] = 0;\n//\n// atcoder::internal::butterfly(f);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = d; i < std::min(2 * d, deg); i++) res[i] = -f[i];\n// }\n//\n// res.resize(deg);\n//\n// return res;\n// }\n//\n// fps shift(T c) {\n// std::vector<T> res(size()), ifacts(size());\n//\n// T x = 1;\n//\n// for (int i = 0; i < size(); i++) {\n// ifacts[i] = x * factorials<T>::inv(i);\n// x *= c;\n// }\n//\n// for (int i = 0; i < size(); i++) {\n// res[size() - 1 - i] = v[i] * factorials<T>::get(i);\n// }\n//\n// res = atcoder::convolution(res, ifacts);\n//\n// res.resize(size());\n//\n// std::ranges::reverse(res);\n//\n// for (int i = 0; i < size(); i++) {\n// res[i] *= factorials<T>::inv(i);\n// }\n//\n// return res;\n// }\n//\n// fps operator-() {\n// fps res(v.size());\n// for (int i = 0; i < v.size(); i++) res[i] = -v[i];\n// return res;\n// }\n//\n// fps &operator+=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] += rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator-=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] -= rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator*=(const fps &rhs) {\n// return *this = atcoder::convolution(v, rhs.v);\n// }\n//\n// fps &operator+=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] += rhs;\n// return *this;\n// }\n//\n// fps &operator-=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] -= rhs;\n// return *this;\n// }\n//\n// fps &operator*=(const T &rhs) {\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs;\n// return *this;\n// }\n//\n// fps &operator/=(const T &rhs) {\n// T rhs_inv = rhs.inv();\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs_inv;\n// return *this;\n// }\n//\n// friend fps operator+(const fps &lhs, const fps &rhs) {\n// return fps(lhs) += rhs;\n// }\n//\n// friend fps operator-(const fps &lhs, const fps &rhs) {\n// return fps(lhs) -= rhs;\n// }\n//\n// friend fps operator*(const fps &lhs, const fps &rhs) {\n// return fps(lhs) *= rhs;\n// }\n//\n// friend fps operator+(const fps &lhs, const T &rhs) { return fps(lhs) +=\n// rhs; }\n//\n// friend fps operator-(const fps &lhs, const T &rhs) { return fps(lhs) -=\n// rhs; }\n//\n// friend fps operator*(const fps &lhs, const T &rhs) { return fps(lhs) *=\n// rhs; }\n//\n// friend fps operator/(const fps &lhs, const T &rhs) { return fps(lhs) /=\n// rhs; }\n//\n// friend fps operator+(const T &lhs, const fps &rhs) { return fps(rhs) +=\n// lhs; }\n//\n// friend fps operator-(const T &lhs, const fps &rhs) {\n// return -(fps(rhs) -= lhs);\n// }\n//\n// friend fps operator*(const T &lhs, const fps &rhs) { return fps(rhs) *=\n// lhs; }\n// };\n\n// using mint = atcoder::modint998244353;\n// using mint = atcoder::modint1000000007;\n\n// using fs = factorials<mint>;\n\nint main() {\n double p;\n ll N;\n std::cin >> p >> N;\n\n std::vector graph(N, std::vector<std::pair<int, int>>());\n\n for (int i = 0; i < N - 1; i++) {\n int x, y, c;\n std::cin >> x >> y >> c;\n x--;\n y--;\n graph[x].emplace_back(y, c);\n graph[y].emplace_back(x, c);\n }\n\n auto rec1 = [&](auto self, int v, int par = -1) -> double {\n double result = 0;\n\n for (auto [w, c] : graph[v]) {\n if (par == w) continue;\n result += p * (c + self(self, w, v));\n }\n\n return result;\n };\n\n double orig = rec1(rec1, 0);\n\n auto rec2 = [&](auto self, int v, int par = -1) -> double {\n double result = orig;\n\n for (auto [w, c] : graph[v]) {\n if (par == w) continue;\n result += p * (c + self(self, w, v));\n }\n\n return result;\n };\n\n std::cout << std::fixed << std::setprecision(15) << rec2(rec2, 0)\n << std::endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 18012, "score_of_the_acc": -0.5775, "final_rank": 3 }, { "submission_id": "aoj_2807_5968025", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nvector<vector<pair<int, int>>> g(101010);\nint depth[101010];\ndouble p; \ndouble dfs(int v, int par, int d) {\n double sum = 0.0;\n depth[v] = d;\n for(auto [u, c]: g[v]) {\n if(u == par) continue;\n sum += p * (c+dfs(u, v, d+1));\n }\n return sum;\n}\ndouble mypow[101010];\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n cin >> p;\n int n; cin >> n;\n REP(i,n-1) {\n int a, b, c; cin >> a >> b >> c;\n a--; b--;\n g[a].push_back({b, c});\n g[b].push_back({a, c});\n }\n double tmp = dfs(0, -1, 0);\n mypow[0] = 1;\n REP(i,100010) mypow[i+1] = mypow[i] * p;\n\n double sum = tmp;\n REP(i,n) sum += mypow[depth[i]] * tmp;\n cout << sum << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 15944, "score_of_the_acc": -0.4839, "final_rank": 2 }, { "submission_id": "aoj_2807_5967058", "code_snippet": "#include<bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n//#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"unroll-loops\")\nusing namespace std;\n//#include<boost/multiprecision/cpp_int.hpp>\n//#include<boost/multiprecision/cpp_dec_float.hpp>\n//namespace mp=boost::multiprecision;\n//#define mulint mp::cpp_int\n//#define mulfloat mp::cpp_dec_float_100\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\n#define INF (1<<30)\n#define LINF (lint)(1LL<<56)\n#define endl \"\\n\"\n#define rep(i,n) for(lint (i)=0;(i)<(n);(i)++)\n#define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--)\n#define flc(x) __builtin_popcountll(x)\n#define pint pair<int,int>\n#define pdouble pair<double,double>\n#define plint pair<lint,lint>\n#define fi first\n#define se second\n#define all(x) x.begin(),x.end()\n#define vec vector<lint>\n#define nep(x) next_permutation(all(x))\ntypedef long long lint;\nint dx[8]={1,1,0,-1,-1,-1,0,1};\nint dy[8]={0,1,1,1,0,-1,-1,-1};\nconst int MAX_N=4e5+5;\ntemplate<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return 1;}return 0;}\n//vector<int> bucket[MAX_N/1000];\nconstexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n/*#include<atcoder/all>\nusing namespace atcoder;\ntypedef __int128_t llint;*/\n\nvector<pair<int,double>> edge[100050];\nbool reach[100050];\ndouble rec[100050];\nint dep[100050];\ndouble p;\n\ndouble dfs(int now,int depth,double par){\n if(reach[now]) return rec[now];\n reach[now]=true;\n dep[now]=depth;\n double ret=0;\n ret+=par*p;\n //cout << now << \" \" << ret << endl;\n rep(i,edge[now].size()){\n if(reach[edge[now][i].fi]) continue;\n ret+=dfs(edge[now][i].fi,depth+1,edge[now][i].se)*p;\n }\n return rec[now]=ret;\n}\n\nint main(void){\n cin >> p;\n int N;\n cin >> N;\n rep(i,N-1){\n int u,v;\n double c;\n cin >> u >> v >> c;\n u--,v--;\n edge[u].push_back({v,c});\n edge[v].push_back({u,c});\n }\n double res=dfs(0,1,0);\n double s=res;\n rep(i,N){\n res+=s*pow(p,dep[i]-1);\n }\n cout << res/p << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 18536, "score_of_the_acc": -0.6922, "final_rank": 5 }, { "submission_id": "aoj_2807_4179050", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long int;\nusing ull = unsigned long long int;\nusing P = pair<int, int>;\n\ndouble p, z = 0;\nvector<vector<P> > g;\n\ndouble dfs(int now, int pre){\n double res = 0;\n for(auto e : g[now]){\n int nxt = e.first, c = e.second;\n if(nxt == pre) continue;\n res += p*(dfs(nxt,now)+c);\n }\n return res + z;\n}\n\nbool solve(){\n int n;\n cin >> p >> n;\n g.resize(n);\n for(int i=0;i<n-1;i++){\n int x, y, c;\n cin >> x >> y >> c;\n x--; y--;\n g[x].push_back(P(y,c));\n g[y].push_back(P(x,c));\n }\n z = dfs(0,-1);\n printf(\"%.9lf\\n\",dfs(0,-1));\n return true;\n}\n\nint main(){\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14500, "score_of_the_acc": -0.873, "final_rank": 6 }, { "submission_id": "aoj_2807_3991442", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\n\nint main() {\n\tdouble p;\n\tll n;\n\tcin >> p >> n;\n\tvector<vector<PII>> g(n);\n\tREP(i, n - 1) {\n\t\tll a, b, c;\n\t\tcin >> a >> b >> c;\n\t\ta--, b--;\n\t\tg[a].push_back({ b, c });\n\t\tg[b].push_back({ a, c });\n\t}\n\n\tdouble all = 0;\n\tfunction<void(ll, ll, double)> pre = [&](ll v, ll par, double prob) {\n\t\tfor (auto to : g[v]) {\n\t\t\tif (to.first == par) continue;\n\t\t\tall += prob * to.second;\n\t\t\tpre(to.first, v, prob * p);\n\t\t}\n\t};\n\tpre(0, -1, p);\n\n\tdouble ans = 0;\n\tfunction<void(ll, ll, double)> dfs = [&](ll v, ll par, double prob) {\n\t\tans += prob * all;\n\t\tfor (auto to : g[v]) {\n\t\t\tif (to.first == par) continue;\n\t\t\tans += prob * p * to.second;\n\t\t\tdfs(to.first, v, prob*p);\n\t\t}\n\t};\n\tdfs(0, -1, 1);\n\t\n\tcout << fixed << setprecision(9) << ans << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 19240, "score_of_the_acc": -1.0877, "final_rank": 10 }, { "submission_id": "aoj_2807_3523392", "code_snippet": "#define _USE_MATH_DEFINES\n\n#include <cstdio>\n#include <cstdlib>\n#include <iostream>\n#include <cmath>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <map>\n\nusing namespace std;\n\ntypedef pair<long long int, long long int> P;\n\nlong long int INF = 1e18;\nlong long int MOD = 1e9 + 7;\n\nvector<int> E[110000];\ndouble p;\ndouble prob[110000] = {};\nlong long int cost[110000] = {};\n\nvoid func(int pos, int pre, double pp){\n prob[pos] = pp;\n for(int i = 0; i < E[pos].size(); i++){\n if(E[pos][i] != pre){\n func(E[pos][i], pos, pp * p);\n }\n }\n}\n\nint main(){\n cin >> p;\n int N;\n cin >> N;\n for(int i = 0; i < N - 1; i++){\n int u1, u2, c;\n cin >> u1 >> u2 >> c;\n E[u1].push_back(u2);\n E[u2].push_back(u1);\n cost[u2] = c;\n }\n func(1, -1, 1);\n double ans = 0;\n double S = 0;\n for(int i = 1; i <= N; i++){\n ans += prob[i] * cost[i];\n S += prob[i];\n }\n ans += S * ans;\n printf(\"%.10f\\n\", ans);\n return 0;\n}", "accuracy": 0.15789473684210525, "time_ms": 60, "memory_kb": 16716, "score_of_the_acc": -0.8825, "final_rank": 20 }, { "submission_id": "aoj_2807_3523381", "code_snippet": "#define _USE_MATH_DEFINES\n\n#include <cstdio>\n#include <cstdlib>\n#include <iostream>\n#include <cmath>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <map>\n\nusing namespace std;\n\ntypedef pair<long long int, long long int> P;\n\nlong long int INF = 1e18;\nlong long int MOD = 1e9 + 7;\n\nvector<int> E[110000];\ndouble p;\ndouble prob[110000] = {};\nlong long int cost[110000] = {};\n\nvoid func(int pos, double pp){\n prob[pos] = pp;\n for(int i = 0; i < E[pos].size(); i++){\n func(E[pos][i], pp * p);\n }\n}\n\nint main(){\n cin >> p;\n int N;\n cin >> N;\n for(int i = 0; i < N - 1; i++){\n int u1, u2, c;\n cin >> u1 >> u2 >> c;\n E[u1].push_back(u2);\n cost[u2] = c;\n }\n func(1, 1);\n double ans = 0;\n double S = 0;\n for(int i = 1; i <= N; i++){\n ans += prob[i] * cost[i];\n S += prob[i];\n }\n ans += S * ans;\n printf(\"%.10f\\n\", ans);\n return 0;\n}", "accuracy": 0.15789473684210525, "time_ms": 60, "memory_kb": 15252, "score_of_the_acc": -0.8162, "final_rank": 16 }, { "submission_id": "aoj_2807_3252038", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2807.cc: Fractal Tree\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef pair<int,int> pii;\ntypedef vector<pii> vpii;\n\nstruct Stat {\n int i, prt;\n double p;\n Stat() {}\n Stat(int _i, int _prt, double _p): i(_i), prt(_prt), p(_p) {}\n};\n\n/* global variables */\n\nvpii nbrs[MAX_N];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n double p;\n int n;\n scanf(\"%lf%d\", &p, &n);\n\n for (int i = 1; i < n; i++) {\n int x, y, c;\n scanf(\"%d%d%d\", &x, &y, &c);\n x--, y--;\n nbrs[x].push_back(pii(y, c));\n nbrs[y].push_back(pii(x, c));\n }\n\n queue<Stat> q;\n q.push(Stat(0, -1, 1.0));\n double t = 0.0;\n\n while (! q.empty()) {\n Stat u = q.front(); q.pop();\n vpii nbru = nbrs[u.i];\n double vp = u.p * p;\n\n for (vpii::iterator vit = nbru.begin(); vit != nbru.end(); vit++) {\n int &vi = vit->first, &vc = vit->second;\n if (vi != u.prt) {\n\tt += vc * vp;\n\tq.push(Stat(vi, u.i, vp));\n }\n }\n }\n //printf(\"t=%lf\\n\", t);\n\n q.push(Stat(0, -1, 1.0));\n double ans = t;\n \n while (! q.empty()) {\n Stat u = q.front(); q.pop();\n vpii nbru = nbrs[u.i];\n double vp = u.p * p;\n ans += t * u.p;\n\n for (vpii::iterator vit = nbru.begin(); vit != nbru.end(); vit++) {\n int &vi = vit->first;\n if (vi != u.prt)\n\tq.push(Stat(vi, u.i, vp));\n }\n }\n printf(\"%.10lf\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 9268, "score_of_the_acc": -0.2724, "final_rank": 1 }, { "submission_id": "aoj_2807_2977017", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nvector<pair<int,double> > G[100000];\ndouble p;\nint n;\nint deep=0;\ndouble ans=0;\ndouble ans2;\n\nvector<int> used(100000,0);\nvector<int> used1(100000,0);\n\nvoid dfs(int x){\n\n deep++;\n for(int i=0;i<G[x].size();i++){\n if(used[G[x][i].first]==0){\n used[G[x][i].first]=1;\n ans+=pow(p,deep)*G[x][i].second;\n dfs(G[x][i].first);\n }\n }\n deep--;\n}\n\nvoid dfs2(int x){\n deep++;\n for(int i=0;i<G[x].size();i++){\n if(used1[G[x][i].first]==0){\n used1[G[x][i].first]=1;\n ans2+=pow(p,deep)*(G[x][i].second+ans);\n dfs2(G[x][i].first);\n }\n }\n deep--;\n}\n\nint main(){\n cin>>p>>n;\n for(int i=0;i<n-1;i++){\n int a,b;\n double c;\n cin>>a>>b>>c;\n a--;\n b--;\n G[a].push_back(make_pair(b,c));\n G[b].push_back(make_pair(a,c));\n }\n used[0]=1;\n used1[0]=1;\n dfs(0);\n ans2=ans;\n deep=0;\n dfs2(0);\n\n cout<< fixed << setprecision(10) <<ans2<<endl;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 15592, "score_of_the_acc": -1.2861, "final_rank": 11 }, { "submission_id": "aoj_2807_2976998", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing P = pair<int, int>;\n\nvector<bool> used;\nvector<vector<P>> g;\nvector<P> num;\n\nvoid dfs(int s, int dep) {\n for (auto&& p : g[s]) {\n int v, c; tie(v, c) = p;\n if (used[v]) continue;\n used[v] = true;\n num[v] = {dep + 1, c};\n dfs(v, dep + 1);\n }\n}\n\nint main() {\n double p; cin >> p;\n int N; cin >> N;\n g = vector<vector<P>>(N);\n for (int i = 0; i < N-1; ++i) {\n int x, y, c; cin >> x >> y >> c; --x; --y;\n g[x].push_back({y, c});\n g[y].push_back({x, c});\n }\n used = vector<bool>(N, false);\n num = vector<P>(N, {0, 0});\n used[0] = true;\n dfs(0, 0);\n\n double t = 0;\n for (int i = 1; i < N; ++i) t += pow(p, num[i].first) * num[i].second;\n double d = 0;\n for (int i = 0; i < N; ++i) d += pow(p, num[i].first);\n\n cout << fixed << setprecision(7) << t + t * d << endl; \n}", "accuracy": 1, "time_ms": 90, "memory_kb": 12364, "score_of_the_acc": -0.9581, "final_rank": 7 }, { "submission_id": "aoj_2807_2976978", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nvector<pair<int,double> > G[100000];\ndouble p;\nint n;\nint deep=0;\ndouble ans=0;\ndouble ans2;\n\nvoid dfs(int x){\n deep++;\n for(int i=0;i<G[x].size();i++){\n ans+=pow(p,deep)*G[x][i].second;\n dfs(G[x][i].first);\n }\n deep--;\n}\n\nvoid dfs2(int x){\n deep++;\n for(int i=0;i<G[x].size();i++){\n ans2+=pow(p,deep)*(G[x][i].second+ans);\n dfs2(G[x][i].first);\n }\n deep--;\n}\n\nint main(){\n cin>>p>>n;\n for(int i=0;i<n-1;i++){\n int a,b;\n double c;\n cin>>a>>b>>c;\n a--;\n b--;\n if(a>b){\n int tmp=a;\n a=b;\n b=tmp;\n }\n G[a].push_back(make_pair(b,c));\n }\n dfs(0);\n ans2=ans;\n deep=0;\n dfs2(0);\n\n cout<< fixed << setprecision(10) <<ans2<<endl;\n\n}", "accuracy": 0.15789473684210525, "time_ms": 80, "memory_kb": 11968, "score_of_the_acc": -0.8493, "final_rank": 18 }, { "submission_id": "aoj_2807_2976972", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nvector<pair<int,double> > G[100000];\ndouble p;\nint n;\nint deep=0;\ndouble ans=0;\ndouble ans2;\n\nvoid dfs(int x){\n deep++;\n for(int i=0;i<G[x].size();i++){\n ans+=pow(p,deep)*G[x][i].second;\n dfs(G[x][i].first);\n }\n deep--;\n}\n\nvoid dfs2(int x){\n deep++;\n for(int i=0;i<G[x].size();i++){\n ans2+=pow(p,deep)*(G[x][i].second+ans);\n dfs2(G[x][i].first);\n }\n deep--;\n}\n\nint main(){\n cin>>p>>n;\n for(int i=0;i<n-1;i++){\n int a,b;\n double c;\n cin>>a>>b>>c;\n a--;\n b--;\n int ma,mi;\n ma=max(a,b);\n mi=min(a,b);\n a=mi;\n b=ma;\n G[a].push_back(make_pair(b,c));\n }\n dfs(0);\n ans2=ans;\n deep=0;\n dfs2(0);\n\n cout<< fixed << setprecision(10) <<ans2<<endl;\n\n}", "accuracy": 0.15789473684210525, "time_ms": 80, "memory_kb": 11988, "score_of_the_acc": -0.8502, "final_rank": 19 }, { "submission_id": "aoj_2807_2976965", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nvector<pair<int,int> > G[100000];\ndouble p;\nint n;\nint deep=0;\ndouble ans=0;\ndouble ans2;\n\nvoid dfs(int x){\n deep++;\n for(int i=0;i<G[x].size();i++){\n ans+=pow(p,deep)*G[x][i].second;\n dfs(G[x][i].first);\n }\n deep--;\n}\n\nvoid dfs2(int x){\n deep++;\n for(int i=0;i<G[x].size();i++){\n ans2+=pow(p,deep)*(G[x][i].second+ans);\n dfs2(G[x][i].first);\n }\n deep--;\n}\n\nint main(){\n cin>>p>>n;\n for(int i=0;i<n-1;i++){\n int a,b,c;\n cin>>a>>b>>c;\n a--;\n b--;\n int ma,mi;\n ma=max(a,b);\n mi=min(a,b);\n a=mi;\n b=ma;\n G[a].push_back(make_pair(b,c));\n }\n dfs(0);\n ans2=ans;\n deep=0;\n dfs2(0);\n\n cout<< fixed << setprecision(10) <<ans2<<endl;\n\n}", "accuracy": 0.15789473684210525, "time_ms": 70, "memory_kb": 12044, "score_of_the_acc": -0.7618, "final_rank": 15 }, { "submission_id": "aoj_2807_2976956", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing P = pair<int, int>;\n\nint main() {\n double p; cin >> p;\n int N; cin >> N;\n auto xy = vector<P>(N-1);\n auto c = vector<int>(N-1);\n for (int i = 0; i < N-1; ++i) {\n cin >> xy[i].first >> xy[i].second >> c[i];\n --xy[i].first; --xy[i].second;\n }\n sort(begin(xy), end(xy));\n auto num = vector<P>(N, {0, 0});\n num[0] = {0, 0};\n for (int i = 0; i < N-1; ++i) {\n num[xy[i].second] = {num[xy[i].first].first + 1, c[i]};\n }\n double t = 0;\n for (int i = 1; i < N; ++i) t += pow(p, num[i].first) * num[i].second;\n double d = 0;\n for (int i = 0; i < N; ++i) d += pow(p, num[i].first);\n\n cout << fixed << setprecision(7) << t + t * d << endl; \n}", "accuracy": 0.15789473684210525, "time_ms": 80, "memory_kb": 5260, "score_of_the_acc": -0.5455, "final_rank": 14 }, { "submission_id": "aoj_2807_2976946", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nvector<pair<int,int> > G[100000];\ndouble p;\nint n;\nint deep=0;\ndouble ans=0;\ndouble ans2;\n\nvoid dfs(int x){\n for(int i=0;i<G[x].size();i++){\n deep++;\n ans+=pow(p,deep)*G[x][i].second;\n dfs(G[x][i].first);\n deep--;\n }\n}\n\nvoid dfs2(int x){\n for(int i=0;i<G[x].size();i++){\n deep++;\n ans2+=pow(p,deep)*(G[x][i].second+ans);\n dfs2(G[x][i].first);\n deep--;\n }\n}\n\nint main(){\n cin>>p>>n;\n for(int i=0;i<n-1;i++){\n int a,b,c;\n cin>>a>>b>>c;\n a--;\n b--;\n int ma,mi;\n ma=max(a,b);\n mi=min(a,b);\n a=mi;\n b=ma;\n G[a].push_back(make_pair(b,c));\n }\n dfs(0);\n ans2=ans;\n deep=0;\n dfs2(0);\n\n cout<< fixed << setprecision(10) <<ans2<<endl;\n\n}", "accuracy": 0.15789473684210525, "time_ms": 80, "memory_kb": 11920, "score_of_the_acc": -0.8471, "final_rank": 17 } ]
aoj_2804_cpp
G: 最小包含矩形 - Minimum Enclosing Rectangle - 物語 みんなぁ、こんにちは! 八森中ぷろこん部の藍座あいりだよぉ。 突然だけど、あいりがこの前解けなかった問題をみんなに解いて欲しいんだぁ~。 この前部活で ICPC2010のA問題 を解いたんだけど、その時の問題が難しかったんだぁ。 あ、ICPCについて説明しなきゃ! ICPCは、い、いんたーなしょなる……ちゅうがくせい……ぷろぐらみんぐ……こんてすとの略で、日本語に直すと、国際中学生対抗プログラミングコンテストらしいよぉ! あいりにはちょっとむずかしい言葉がいっぱいだよぉ。 あいり達はこの世界大会に出るために毎日頑張ってるんだぁ! 部活から帰った後お姉ちゃんにも聞いてみたんだけど、「わ、わからないわ……A問題からわからないなんて……お姉ちゃん失格ね……」って落ち込んじゃって…… でも、「『プロ』の人たちが一杯集まるところを知ってるの、お姉ちゃんちょっと連絡してみるわ。あいり、そこで聞いてみなさい!」って言ってここの合宿を教えてもらったんだぁ~ 。 ここに集まる『プロ』のみんなには簡単かもしれないけど……この問題を解いてほしいの! 問題 長さが 1 の正方形が N 個、 2 次元平面上にある。これら N 個の正方形を全て内包する、最小面積の長方形を求めよ。 入力形式 入力は N 行からなる。 N n_1 d_1 n_2 d_2 n_3 d_3 ... n_{N − 1} d_{N − 1} 最初の行には、正方形の個数 N が与えられる。 以下 N − 1 行は、正方形の置き方を表している。そのうち上から i 行目は、空白区切りで1つの整数 n_{i} と1つの文字 d_{i} が与えられる。これは i 番目の正方形の置き方を指示している。ここで正方形の番号付けは、最初の正方形を 0 番目とし、その後置いた順番に 1 , 2 , ..., N − 1 と番号付けられるものとする。 0 番目の正方形に対する置き方の指示はない。 i 番目の正方形に対する置き方の指示 n_i, d_i は、 i 番目の正方形を n_i 番目の正方形に対して d_i で示される方向に隣接して置くことを指示する。 ここで、 n_i は i 未満の非負整数である。また、 d_i は 0,1,2,3 のいずれかの値をとり、それぞれ d_i の値が、 0 ならば左側、 1 ならば下側、 2 ならば右側、 3 ならば上側を表す。 以下にそれぞれの入力例に対応した最終的な正方形の配置を図示している。左から入力例1、入力例2、入力例3、入力例4の最終的な正方形の配置となっている。図中の番号は正方形の番号に相当する。また、図中の緑線は求める最小面積の長方形を示している。 制約 入力はすべて整数 1 ≤ N ≤ 100,000 1 ≤ n_i < i ( 1 ≤ i < N ) 0 ≤ d_i ≤ 3 ( 1 ≤ i < N ) 既に正方形が置かれている位置に、新たな正方形を置くような指示は与えられない。 出力形式 与えられた N 個の点を全て包含する最小面積の長方形の面積を1行で出力する。 出力には 10^{−5} 以上の誤差を含んではならない。 入力例1 1 出力例1 1 入力例2 5 0 0 0 1 0 2 0 3 出力例2 8 入力例3 12 0 0 1 0 2 0 3 1 4 1 5 1 6 2 7 2 8 2 9 3 10 3 出力例3 16 入力例4 10 0 2 1 2 2 2 3 2 2 1 5 1 6 1 7 1 8 1 出力例4 30
[ { "submission_id": "aoj_2804_8322784", "code_snippet": "#include <iostream>\n#include <cmath>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nstruct Point {\n\tlong long px, py;\n};\n\nPoint operator-(const Point& a1, const Point& a2) {\n\treturn Point{ a1.px - a2.px, a1.py - a2.py };\n}\n\nbool operator<(const Point& a1, const Point& a2) {\n\tif (a2.py - a1.py > 0) return true;\n\tif (a1.py - a2.py > 0) return false;\n\tif (a2.px - a1.px > 0) return true;\n\tif (a1.px - a2.px > 0) return false;\n\treturn false;\n}\n\nlong long crs(Point a1, Point a2) {\n\treturn a1.px * a2.py - a2.px * a1.py;\n}\n\nvector<Point> Convex(vector<Point> Poly) {\n\tsort(Poly.begin(), Poly.end());\n\n\t// Right Part\n\tvector<Point> Stack1 = { Poly[0], Poly[1] };\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack1.size() >= 2) {\n\t\t\tPoint v1 = Stack1[Stack1.size() - 2];\n\t\t\tPoint v2 = Stack1[Stack1.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) <= 0) Stack1.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack1.push_back(Poly[i]);\n\t}\n\n\t// Left Part\n\tvector<Point> Stack2 = { Poly[0], Poly[1] };\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack2.size() >= 2) {\n\t\t\tPoint v1 = Stack2[Stack2.size() - 2];\n\t\t\tPoint v2 = Stack2[Stack2.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) >= 0) Stack2.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack2.push_back(Poly[i]);\n\t}\n\n\t// Joint\n\tvector<Point> Return = Stack1;\n\tfor (int i = (int)Stack2.size() - 2; i >= 1; i--) Return.push_back(Stack2[i]);\n\treturn Return;\n}\n\nconst int dx[4] = { -1, 0, 1, 0 };\nconst int dy[4] = { 0, -1, 0, 1 };\nconst long double TEISUU = 3.14159265358979L / 2.0L;\nlong long N;\nlong long A[1 << 18], B[1 << 18];\nlong long X[1 << 18], Y[1 << 18];\nlong double Angle[1 << 18];\n\nlong double GetArea(Point p1, Point p2, Point p3, Point p4, long double val) {\n\t// Get Yoko1\n\tPoint diff1 = p2 - p1;\n\tlong double dst1 = sqrtl(1.0L * diff1.px * diff1.px + 1.0L * diff1.py * diff1.py);\n\tlong double yoko1 = dst1 * cos(atan2l(diff1.py, diff1.px) - val);\n\n\t// Get Yoko2\n\tPoint diff2 = p1 - p4;\n\tlong double dst2 = sqrtl(1.0L * diff2.px * diff2.px + 1.0L * diff2.py * diff2.py);\n\tlong double yoko2 = dst2 * cos(atan2l(diff2.py, diff2.px) - val);\n\n\t// Get Tate1\n\tlong double tate1 = dst1 * sin(atan2l(diff1.py, diff1.px) - val);\n\n\t// Get Tate2\n\tPoint diff3 = p3 - p2;\n\tlong double dst3 = sqrt(1.0L * diff3.px * diff3.px + 1.0L * diff3.py * diff3.py);\n\tlong double tate2 = dst3 * cos(atan2l(diff3.py, diff3.px) - (val + TEISUU));\n\n\t// Return\n\treturn (yoko1 + yoko2) * (tate1 + tate2);\n}\n\nlong double Tansaku(Point p1, Point p2, Point p3, Point p4, double Left, long double Rigt) {\n\tlong double cl = Left, cr = Rigt, c1 = 0, c2 = 0, minx = 1.0e12L;\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Left));\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Rigt));\n\tfor (int i = 0; i < 40; i++) {\n\t\tc1 = (cl + cl + cr) / 3.0L;\n\t\tc2 = (cl + cr + cr) / 3.0L;\n\t\tc2 = Rigt;\n\t\tlong double v1 = GetArea(p1, p2, p3, p4, c1);\n\t\tlong double v2 = GetArea(p1, p2, p3, p4, c2);\n\t\tminx = min(minx, min(v1, v2));\n\t\tif (v1 > v2) { v1 = c1; }\n\t\telse { v2 = c2; }\n\t}\n\treturn minx;\n}\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tfor (int i = 1; i < N; i++) cin >> A[i] >> B[i];\n\t// for (int i = 1; i < N; i++) { A[i] = max(0, i - 4); B[i] = (i - 1) % 4; }\n\tfor (int i = 1; i < N; i++) {\n\t\tX[i] = X[A[i]] + dx[B[i]];\n\t\tY[i] = Y[A[i]] + dy[B[i]];\n\t}\n\n\t// Step 2. Convex\n\tvector<Point> V;\n\tfor (int i = 0; i < N; i++) {\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 1 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 1 });\n\t}\n\tvector<Point> W = Convex(V);\n\tfor (int i = 0; i < W.size(); i++) {\n\t\tPoint v = W[i] - W[(i + W.size() - 1) % W.size()];\n\t\tAngle[i] = atan2(v.py, v.px);\n\t\tif (Angle[i] < 0.0L) Angle[i] += 4.0L * TEISUU;\n\t}\n\n\t// Step 3. Brute Force\n\tlong double Answer = 1.0e12;\n\tfor (int i = 0; i <= W.size(); i++) {\n\t\tfor (int j = i + 1; j <= W.size(); j++) {\n\t\t\tfor (int k = j + 1; k <= W.size(); k++) {\n\t\t\t\tfor (int l = k + 1; l <= W.size(); l++) {\n\t\t\t\t\tlong double cl = 0.0L - 1.0e-9L, cr = TEISUU + 1.0e-9L;\n\t\t\t\t\tif (i != 0) cl = max(cl, Angle[(i + 0) % W.size()]);\n\t\t\t\t\tcr = min(cr, Angle[(i + 1) % W.size()]);\n\t\t\t\t\tcl = max(cl, Angle[(j + 0) % W.size()] - 1.0L * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(j + 1) % W.size()] - 1.0L * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(k + 0) % W.size()] - 2.0L * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(k + 1) % W.size()] - 2.0L * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(l + 0) % W.size()] - 3.0L * TEISUU);\n\t\t\t\t\tif (l != W.size()) cr = min(cr, Angle[(l + 1) % W.size()] - 3.0L * TEISUU);\n\t\t\t\t\tif (cl > cr) continue;\n\t\t\t\t\tlong double ret = Tansaku(W[i], W[j], W[k], W[l % W.size()], cl, cr);\n\t\t\t\t\tAnswer = min(Answer, ret);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12Lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 25708, "score_of_the_acc": -0.639, "final_rank": 9 }, { "submission_id": "aoj_2804_8322734", "code_snippet": "#include <iostream>\n#include <cmath>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nstruct Point {\n\tlong long px, py;\n};\n\nPoint operator-(const Point& a1, const Point& a2) {\n\treturn Point{ a1.px - a2.px, a1.py - a2.py };\n}\n\nbool operator<(const Point& a1, const Point& a2) {\n\tif (a2.py - a1.py > 0) return true;\n\tif (a1.py - a2.py > 0) return false;\n\tif (a2.px - a1.px > 0) return true;\n\tif (a1.px - a2.px > 0) return false;\n\treturn false;\n}\n\nlong long crs(Point a1, Point a2) {\n\treturn a1.px * a2.py - a2.px * a1.py;\n}\n\nvector<Point> Convex(vector<Point> Poly) {\n\tsort(Poly.begin(), Poly.end());\n\n\t// Right Part\n\tvector<Point> Stack1 = { Poly[0], Poly[1] };\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack1.size() >= 2) {\n\t\t\tPoint v1 = Stack1[Stack1.size() - 2];\n\t\t\tPoint v2 = Stack1[Stack1.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) <= 0) Stack1.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack1.push_back(Poly[i]);\n\t}\n\n\t// Left Part\n\tvector<Point> Stack2 = { Poly[0], Poly[1] };\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack2.size() >= 2) {\n\t\t\tPoint v1 = Stack2[Stack2.size() - 2];\n\t\t\tPoint v2 = Stack2[Stack2.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) >= 0) Stack2.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack2.push_back(Poly[i]);\n\t}\n\n\t// Joint\n\tvector<Point> Return = Stack1;\n\tfor (int i = (int)Stack2.size() - 2; i >= 1; i--) Return.push_back(Stack2[i]);\n\treturn Return;\n}\n\nconst int dx[4] = { -1, 0, 1, 0 };\nconst int dy[4] = { 0, -1, 0, 1 };\nconst long double TEISUU = 3.14159265358979L / 2.0L;\nlong long N;\nlong long A[1 << 18], B[1 << 18];\nlong long X[1 << 18], Y[1 << 18];\nlong double Angle[1 << 18];\n\nlong double GetArea(Point p1, Point p2, Point p3, Point p4, long double val) {\n\t// Get Yoko1\n\tPoint diff1 = p2 - p1;\n\tlong double dst1 = sqrtl(1.0L * diff1.px * diff1.px + 1.0L * diff1.py * diff1.py);\n\tlong double yoko1 = dst1 * cos(atan2l(diff1.py, diff1.px) - val);\n\n\t// Get Yoko2\n\tPoint diff2 = p1 - p4;\n\tlong double dst2 = sqrtl(1.0L * diff2.px * diff2.px + 1.0L * diff2.py * diff2.py);\n\tlong double yoko2 = dst2 * cos(atan2l(diff2.py, diff2.px) - val);\n\n\t// Get Tate1\n\tlong double tate1 = dst1 * sin(atan2l(diff1.py, diff1.px) - val);\n\n\t// Get Tate2\n\tPoint diff3 = p3 - p2;\n\tlong double dst3 = sqrt(1.0L * diff3.px * diff3.px + 1.0L * diff3.py * diff3.py);\n\tlong double tate2 = dst3 * cos(atan2l(diff3.py, diff3.px) - (val + TEISUU));\n\n\t// Return\n\treturn (yoko1 + yoko2) * (tate1 + tate2);\n}\n\nlong double Tansaku(Point p1, Point p2, Point p3, Point p4, long double Left, long double Rigt) {\n\tlong double minx = 1.0e12L;\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Left));\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Rigt));\n\tfor (int t = 0; t < 10; t++) {\n\t\tlong double cl = 0.1L * (10 - t) * Left + 0.1L * (t + 0) * Rigt;\n\t\tlong double cr = 0.1L * ( 9 - t) * Left + 0.1L * (t + 1) * Rigt;\n\t\tlong double c1 = 0, c2 = 0;\n\t\tfor (int i = 0; i < 80; i++) {\n\t\t\tc1 = (cl + cl + cr) / 3.0L;\n\t\t\tc2 = (cl + cr + cr) / 3.0L;\n\t\t\tc2 = Rigt;\n\t\t\tlong double v1 = GetArea(p1, p2, p3, p4, c1);\n\t\t\tlong double v2 = GetArea(p1, p2, p3, p4, c2);\n\t\t\tminx = min(minx, min(v1, v2));\n\t\t\tif (v1 > v2) { v1 = c1; }\n\t\t\telse { v2 = c2; }\n\t\t}\n\t}\n\treturn minx;\n}\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tfor (int i = 1; i < N; i++) cin >> A[i] >> B[i];\n\t// for (int i = 1; i < (N + 1) / 2; i++) { A[i] = i - 1; B[i] = 0; }\n\t// for (int i = (N + 1) / 2; i < N; i++) { A[i] = i - 1; B[i] = 1; }\n\tfor (int i = 1; i < N; i++) {\n\t\tX[i] = X[A[i]] + dx[B[i]];\n\t\tY[i] = Y[A[i]] + dy[B[i]];\n\t}\n\n\t// Step 2. Convex\n\tvector<Point> V;\n\tfor (int i = 0; i < N; i++) {\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 1 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 1 });\n\t}\n\tvector<Point> W = Convex(V);\n\tfor (int i = 0; i < W.size(); i++) {\n\t\tPoint v = W[i] - W[(i + W.size() - 1) % W.size()];\n\t\tAngle[i] = atan2(v.py, v.px);\n\t\tif (Angle[i] < 0.0) Angle[i] += 4.0 * TEISUU;\n\t}\n\n\t// Step 3. Brute Force\n\tlong double Answer = 1.0e12;\n\tfor (int i = 0; i < W.size(); i++) {\n\t\tfor (int j = i + 1; j < W.size(); j++) {\n\t\t\tfor (int k = j + 1; k < W.size(); k++) {\n\t\t\t\tfor (int l = k + 1; l < W.size(); l++) {\n\t\t\t\t\tlong double cl = 0.0L - 1.0e-9L, cr = TEISUU + 1.0e-9L;\n\t\t\t\t\tif (i != 0) cl = max(cl, Angle[(i + 0) % W.size()]);\n\t\t\t\t\tcr = min(cr, Angle[(i + 1) % W.size()]);\n\t\t\t\t\tcl = max(cl, Angle[(j + 0) % W.size()] - 1.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(j + 1) % W.size()] - 1.0 * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(k + 0) % W.size()] - 2.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(k + 1) % W.size()] - 2.0 * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(l + 0) % W.size()] - 3.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(l + 1) % W.size()] - 3.0 * TEISUU);\n\t\t\t\t\tif (cl > cr) continue;\n\t\t\t\t\tlong double ret = Tansaku(W[i], W[j], W[k], W[l], cl, cr);\n\t\t\t\t\tAnswer = min(Answer, ret);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12Lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.6233766233766234, "time_ms": 90, "memory_kb": 25088, "score_of_the_acc": -0.7659, "final_rank": 20 }, { "submission_id": "aoj_2804_8322725", "code_snippet": "#include <iostream>\n#include <cmath>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nstruct Point {\n\tlong long px, py;\n};\n\nPoint operator-(const Point& a1, const Point& a2) {\n\treturn Point{ a1.px - a2.px, a1.py - a2.py };\n}\n\nbool operator<(const Point& a1, const Point& a2) {\n\tif (a2.py - a1.py > 0) return true;\n\tif (a1.py - a2.py > 0) return false;\n\tif (a2.px - a1.px > 0) return true;\n\tif (a1.px - a2.px > 0) return false;\n\treturn false;\n}\n\nlong long crs(Point a1, Point a2) {\n\treturn a1.px * a2.py - a2.px * a1.py;\n}\n\nvector<Point> Convex(vector<Point> Poly) {\n\tsort(Poly.begin(), Poly.end());\n\n\t// Right Part\n\tvector<Point> Stack1 = { Poly[0], Poly[1]};\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack1.size() >= 2) {\n\t\t\tPoint v1 = Stack1[Stack1.size() - 2];\n\t\t\tPoint v2 = Stack1[Stack1.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) <= 0) Stack1.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack1.push_back(Poly[i]);\n\t}\n\n\t// Left Part\n\tvector<Point> Stack2 = { Poly[0], Poly[1] };\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack2.size() >= 2) {\n\t\t\tPoint v1 = Stack2[Stack2.size() - 2];\n\t\t\tPoint v2 = Stack2[Stack2.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) >= 0) Stack2.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack2.push_back(Poly[i]);\n\t}\n\n\t// Joint\n\tvector<Point> Return = Stack1;\n\tfor (int i = (int)Stack2.size() - 2; i >= 1; i--) Return.push_back(Stack2[i]);\n\treturn Return;\n}\n\nconst int dx[4] = { -1, 0, 1, 0 };\nconst int dy[4] = { 0, -1, 0, 1 };\nconst long double TEISUU = 3.14159265358979L / 2.0L;\nlong long N;\nlong long A[1 << 18], B[1 << 18];\nlong long X[1 << 18], Y[1 << 18];\nlong double Angle[1 << 18];\n\nlong double GetArea(Point p1, Point p2, Point p3, Point p4, long double val) {\n\t// Get Yoko1\n\tPoint diff1 = p2 - p1;\n\tlong double dst1 = sqrtl(1.0L * diff1.px * diff1.px + 1.0L * diff1.py * diff1.py);\n\tlong double yoko1 = dst1 * cos(atan2l(diff1.py, diff1.px) - val);\n\n\t// Get Yoko2\n\tPoint diff2 = p1 - p4;\n\tlong double dst2 = sqrtl(1.0L * diff2.px * diff2.px + 1.0L * diff2.py * diff2.py);\n\tlong double yoko2 = dst2 * cos(atan2l(diff2.py, diff2.px) - val);\n\t\n\t// Get Tate1\n\tlong double tate1 = dst1 * sin(atan2l(diff1.py, diff1.px) - val);\n\n\t// Get Tate2\n\tPoint diff3 = p3 - p2;\n\tlong double dst3 = sqrt(1.0L * diff3.px * diff3.px + 1.0L * diff3.py * diff3.py);\n\tlong double tate2 = dst3 * cos(atan2l(diff3.py, diff3.px) - (val + TEISUU));\n\n\t// Return\n\treturn (yoko1 + yoko2) * (tate1 + tate2);\n}\n\nlong double Tansaku(Point p1, Point p2, Point p3, Point p4, long double Left, long double Rigt) {\n\tlong double cl = Left, cr = Rigt, c1 = 0, c2 = 0, minx = 1.0e12L;\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Left));\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Rigt));\n\tfor (int i = 0; i < 80; i++) {\n\t\tc1 = (cl + cl + cr) / 3.0L;\n\t\tc2 = (cl + cr + cr) / 3.0L;\n\t\tc2 = Rigt;\n\t\tlong double v1 = GetArea(p1, p2, p3, p4, c1);\n\t\tlong double v2 = GetArea(p1, p2, p3, p4, c2);\n\t\tminx = min(minx, min(v1, v2));\n\t\tif (v1 > v2) { v1 = c1; }\n\t\telse { v2 = c2; }\n\t}\n\treturn minx;\n}\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tfor (int i = 1; i < N; i++) cin >> A[i] >> B[i];\n\tfor (int i = 1; i < N; i++) {\n\t\tX[i] = X[A[i]] + dx[B[i]];\n\t\tY[i] = Y[A[i]] + dy[B[i]];\n\t}\n\n\t// Step 2. Convex\n\tvector<Point> V;\n\tfor (int i = 0; i < N; i++) {\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 1 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 1 });\n\t}\n\tvector<Point> W = Convex(V);\n\tfor (int i = 0; i < W.size(); i++) {\n\t\tPoint v = W[i] - W[(i + W.size() - 1) % W.size()];\n\t\tAngle[i] = atan2(v.py, v.px);\n\t\tif (Angle[i] < 0.0) Angle[i] += 4.0 * TEISUU;\n\t}\n\n\t// Step 3. Brute Force\n\tlong double Answer = 1.0e12;\n\tfor (int i = 0; i < W.size(); i++) {\n\t\tfor (int j = i + 1; j < W.size(); j++) {\n\t\t\tfor (int k = j + 1; k < W.size(); k++) {\n\t\t\t\tfor (int l = k + 1; l < W.size(); l++) {\n\t\t\t\t\tlong double cl = 0.0L - 1.0e-9L, cr = TEISUU + 1.0e-9L;\n\t\t\t\t\tif (i != 0) cl = max(cl, Angle[(i + 0) % W.size()]);\n\t\t\t\t\tcr = min(cr, Angle[(i + 1) % W.size()]);\n\t\t\t\t\tcl = max(cl, Angle[(j + 0) % W.size()] - 1.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(j + 1) % W.size()] - 1.0 * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(k + 0) % W.size()] - 2.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(k + 1) % W.size()] - 2.0 * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(l + 0) % W.size()] - 3.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(l + 1) % W.size()] - 3.0 * TEISUU);\n\t\t\t\t\tif (cl > cr) continue;\n\t\t\t\t\tlong double ret = Tansaku(W[i], W[j], W[k], W[l], cl, cr);\n\t\t\t\t\tAnswer = min(Answer, ret);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12Lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.6233766233766234, "time_ms": 60, "memory_kb": 25316, "score_of_the_acc": -0.6244, "final_rank": 19 }, { "submission_id": "aoj_2804_8322721", "code_snippet": "#include <iostream>\n#include <cmath>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nstruct Point {\n\tlong long px, py;\n};\n\nPoint operator-(const Point& a1, const Point& a2) {\n\treturn Point{ a1.px - a2.px, a1.py - a2.py };\n}\n\nbool operator<(const Point& a1, const Point& a2) {\n\tif (a2.py - a1.py > 0) return true;\n\tif (a1.py - a2.py > 0) return false;\n\tif (a2.px - a1.px > 0) return true;\n\tif (a1.px - a2.px > 0) return false;\n\treturn false;\n}\n\nlong long crs(Point a1, Point a2) {\n\treturn a1.px * a2.py - a2.px * a1.py;\n}\n\nvector<Point> Convex(vector<Point> Poly) {\n\tsort(Poly.begin(), Poly.end());\n\n\t// Right Part\n\tvector<Point> Stack1 = { Poly[0], Poly[1]};\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack1.size() >= 2) {\n\t\t\tPoint v1 = Stack1[Stack1.size() - 2];\n\t\t\tPoint v2 = Stack1[Stack1.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) <= 0) Stack1.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack1.push_back(Poly[i]);\n\t}\n\n\t// Left Part\n\tvector<Point> Stack2 = { Poly[0], Poly[1] };\n\tfor (int i = 2; i < Poly.size(); i++) {\n\t\twhile (Stack2.size() >= 2) {\n\t\t\tPoint v1 = Stack2[Stack2.size() - 2];\n\t\t\tPoint v2 = Stack2[Stack2.size() - 1];\n\t\t\tPoint v3 = Poly[i];\n\t\t\tif (crs(v2 - v1, v3 - v2) >= 0) Stack2.pop_back();\n\t\t\telse break;\n\t\t}\n\t\tStack2.push_back(Poly[i]);\n\t}\n\n\t// Joint\n\tvector<Point> Return = Stack1;\n\tfor (int i = (int)Stack2.size() - 2; i >= 1; i--) Return.push_back(Stack2[i]);\n\treturn Return;\n}\n\nconst int dx[4] = { -1, 0, 1, 0 };\nconst int dy[4] = { 0, -1, 0, 1 };\nconst double TEISUU = 3.14159265358979 / 2.0;\nlong long N;\nlong long A[1 << 18], B[1 << 18];\nlong long X[1 << 18], Y[1 << 18];\ndouble Angle[1 << 18];\n\ndouble GetArea(Point p1, Point p2, Point p3, Point p4, double val) {\n\t// Get Yoko1\n\tPoint diff1 = p2 - p1;\n\tdouble dst1 = sqrt(diff1.px * diff1.px + diff1.py * diff1.py);\n\tdouble yoko1 = dst1 * cos(atan2(diff1.py, diff1.px) - val);\n\n\t// Get Yoko2\n\tPoint diff2 = p1 - p4;\n\tdouble dst2 = sqrt(diff2.px * diff2.px + diff2.py * diff2.py);\n\tdouble yoko2 = dst2 * cos(atan2(diff2.py, diff2.px) - val);\n\t\n\t// Get Tate1\n\tdouble tate1 = dst1 * sin(atan2(diff1.py, diff1.px) - val);\n\n\t// Get Tate2\n\tPoint diff3 = p3 - p2;\n\tdouble dst3 = sqrt(diff3.px * diff3.px + diff3.py * diff3.py);\n\tdouble tate2 = dst3 * cos(atan2(diff3.py, diff3.px) - (val + TEISUU));\n\n\t// Return\n\treturn (yoko1 + yoko2) * (tate1 + tate2);\n}\n\ndouble Tansaku(Point p1, Point p2, Point p3, Point p4, double Left, double Rigt) {\n\tdouble cl = Left, cr = Rigt, c1 = 0, c2 = 0, minx = 1e12;\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Left));\n\tminx = min(minx, GetArea(p1, p2, p3, p4, Rigt));\n\tfor (int i = 0; i < 40; i++) {\n\t\tc1 = (cl + cl + cr) / 3.0;\n\t\tc2 = (cl + cr + cr) / 3.0;\n\t\tc2 = Rigt;\n\t\tdouble v1 = GetArea(p1, p2, p3, p4, c1);\n\t\tdouble v2 = GetArea(p1, p2, p3, p4, c2);\n\t\tminx = min(minx, min(v1, v2));\n\t\tif (v1 > v2) { v1 = c1; }\n\t\telse { v2 = c2; }\n\t}\n\treturn minx;\n}\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tfor (int i = 1; i < N; i++) cin >> A[i] >> B[i];\n\tfor (int i = 1; i < N; i++) {\n\t\tX[i] = X[A[i]] + dx[B[i]];\n\t\tY[i] = Y[A[i]] + dy[B[i]];\n\t}\n\n\t// Step 2. Convex\n\tvector<Point> V;\n\tfor (int i = 0; i < N; i++) {\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 0, Y[i] + 1 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 0 });\n\t\tV.push_back(Point{ X[i] + 1, Y[i] + 1 });\n\t}\n\tvector<Point> W = Convex(V);\n\tfor (int i = 0; i < W.size(); i++) {\n\t\tPoint v = W[i] - W[(i + W.size() - 1) % W.size()];\n\t\tAngle[i] = atan2(v.py, v.px);\n\t\tif (Angle[i] < 0.0) Angle[i] += 4.0 * TEISUU;\n\t}\n\n\t// Step 3. Brute Force\n\tdouble Answer = 1.0e12;\n\tfor (int i = 0; i < W.size(); i++) {\n\t\tfor (int j = i + 1; j < W.size(); j++) {\n\t\t\tfor (int k = j + 1; k < W.size(); k++) {\n\t\t\t\tfor (int l = k + 1; l < W.size(); l++) {\n\t\t\t\t\tdouble cl = 0 - 1.0e-8, cr = TEISUU + 1.0e-8;\n\t\t\t\t\tif (i != 0) cl = max(cl, Angle[(i + 0) % W.size()]);\n\t\t\t\t\tcr = min(cr, Angle[(i + 1) % W.size()]);\n\t\t\t\t\tcl = max(cl, Angle[(j + 0) % W.size()] - 1.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(j + 1) % W.size()] - 1.0 * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(k + 0) % W.size()] - 2.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(k + 1) % W.size()] - 2.0 * TEISUU);\n\t\t\t\t\tcl = max(cl, Angle[(l + 0) % W.size()] - 3.0 * TEISUU);\n\t\t\t\t\tcr = min(cr, Angle[(l + 1) % W.size()] - 3.0 * TEISUU);\n\t\t\t\t\tif (cl > cr) continue;\n\t\t\t\t\tdouble ret = Tansaku(W[i], W[j], W[k], W[l], cl, cr);\n\t\t\t\t\tAnswer = min(Answer, ret);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.6233766233766234, "time_ms": 60, "memory_kb": 25252, "score_of_the_acc": -0.622, "final_rank": 18 }, { "submission_id": "aoj_2804_5506764", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\t/*void outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}*/\n\tPoint p[2];\n};\n\n\nPoint input[SIZE],work[SIZE];\n\ndouble calc_dist(Point A,Point B){\n\n\treturn sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));\n}\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\nPolygon ConvexHull(Polygon V){\n\n\tsort(V.begin(),V.end());\n\n\tvector<Point> UP,DOWN;\n\n\tUP.push_back(V[0]);\n\tDOWN.push_back(V[0]);\n\n\tfor(int i = 1; i < V.size(); i++){\n\n\t\twhile(UP.size() > 1 && ccw(UP[UP.size()-2],UP[UP.size()-1],V[i]) == COUNTER_CLOCKWISE){\n\n\t\t\tUP.pop_back();\n\t\t}\n\n\t\twhile(DOWN.size() > 1 && ccw(DOWN[DOWN.size()-2],DOWN[DOWN.size()-1],V[i]) == CLOCKWISE){\n\n\t\t\tDOWN.pop_back();\n\t\t}\n\n\t\tUP.push_back(V[i]);\n\t\tDOWN.push_back(V[i]);\n\t}\n\n\tPolygon ret;\n\n\tfor(int i = 0; i < UP.size(); i++){\n\n\t\tret.push_back(UP[i]);\n\t}\n\n\tfor(int i = DOWN.size()-1; i >= 0; i--){ //★indexに注意★\n\n\t\tret.push_back(DOWN[i]);\n\t}\n\n\treturn ret;\n}\n\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\nint main(){\n\n\tint N;\n\tscanf(\"%d\",&N);\n\n\tif(N == 1){\n\n\t\tprintf(\"1\\n\");\n\t\treturn 0;\n\t}\n\n\tinput[0] = Point(0,0); //左下の点\n\n\tint n,d;\n\n\tfor(int i = 1; i <= N-1; i++){\n\n\t\tscanf(\"%d %d\",&n,&d);\n\n\t\tswitch(d){\n\t\tcase 0: //左\n\n\t\t\tinput[i] = Point(input[n].x-1,input[n].y);\n\t\t\tbreak;\n\n\t\tcase 1: //下\n\n\t\t\tinput[i] = Point(input[n].x,input[n].y-1);\n\n\t\t\tbreak;\n\n\t\tcase 2: //右\n\n\t\t\tinput[i] = Point(input[n].x+1,input[n].y);\n\n\t\t\tbreak;\n\n\t\tcase 3: //上\n\n\t\t\tinput[i] = Point(input[n].x,input[n].y+1);\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tvector<Point> vec;\n\tfor(int i = 0; i < N; i++){\n\n\t\tvec.push_back(input[i]);\n\t\tvec.push_back(Point(input[i].x+1,input[i].y));\n\t\tvec.push_back(Point(input[i].x+1,input[i].y+1));\n\t\tvec.push_back(Point(input[i].x,input[i].y+1));\n\t}\n\tsort(vec.begin(),vec.end());\n\tvec.erase(unique(vec.begin(),vec.end()),vec.end());\n\n\tPolygon ret = ConvexHull(vec);\n\tret.pop_back();\n\n\n\tPolygon CH;\n\tCH.push_back(ret[0]);\n\n\tfor(int i = 0; i < ret.size(); i++){\n\t\tif(i+1 < ret.size()){\n\n\t\t\tdouble pre_slope = calc_slope(Line(ret[i-1],ret[i]));\n\t\t\tdouble now_slope = calc_slope(Line(ret[i+1],ret[i]));\n\n\t\t\tif(fabs(pre_slope-now_slope) < EPS){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tCH.push_back(ret[i]);\n\n\t\t}else{\n\n\t\t\tCH.push_back(ret[i]);\n\t\t}\n\t}\n\tdouble ans = HUGE_NUM;\n\n\tint M = CH.size();\n\n\tint start = -1;\n\tdouble bottom = HUGE_NUM;\n\tfor(int i = 0; i < M; i++){\n\n\t\tif(CH[i].y < bottom){\n\t\t\tbottom = CH[i].y;\n\t\t\tstart = i;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\twork[i] = CH[i];\n\t}\n\n\tbool pre_Hori = false;\n\n\tfor(int a = 0; a < M; a++){\n\n\t\tint i = (start+a)%M;\n\n\t\tdouble tmp_rad = calc_rad(work[(i+1)%M]-work[i]);\n\n\t\tPoint base = work[i];\n\n\t\tif(fabs(tmp_rad-M_PI) < EPS || fabs(tmp_rad) < EPS){ //回転不要\n\n\t\t\tif(pre_Hori){\n\n\t\t\t\tcontinue;\n\t\t\t}else{\n\n\t\t\t\tpre_Hori = true;\n\t\t\t}\n\t\t}else{\n\n\t\t\tpre_Hori = false;\n\t\t}\n\n\t\tfor(int k = 0; k < M; k++){\n\t\t\tif(k == i){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tPoint tmp_p = rotate(base,work[k],-tmp_rad);\n\t\t\twork[k] = tmp_p;\n\t\t}\n\n\t\tdouble min_x = HUGE_NUM,max_x = -HUGE_NUM,min_y = HUGE_NUM,max_y = -HUGE_NUM;\n\n\t\tfor(int k = 0; k < M; k++){\n\n\t\t\tmin_x = min(min_x,work[k].x);\n\t\t\tmax_x = max(max_x,work[k].x);\n\n\t\t\tmin_y = min(min_y,work[k].y);\n\t\t\tmax_y = max(max_y,work[k].y);\n\t\t}\n\n\t\tans = min(ans,(max_x-min_x)*(max_y-min_y));\n\t}\n\n\tprintf(\"%.12lf\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 27160, "score_of_the_acc": -0.5931, "final_rank": 6 }, { "submission_id": "aoj_2804_5506761", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\n\t\tif(fabs(x-p.x) > EPS){\n\n\t\t\treturn x < p.x;\n\t\t}else{\n\n\t\t\treturn y < p.y;\n\t\t}\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\n\tvoid debug(){\n\n\t\tprintf(\"(%.3lf,%.3lf)\\n\",x,y);\n\t}\n\n\tdouble x,y;\n};\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Line{\n\tLine(){\n\n\t}\n\tLine(Point a,Point b){\n\t\tp[0] = a;\n\t\tp[1] = b;\n\t}\n\t/*void outPut(){\n\n\t\tprintf(\"(%.3lf,%.3lf)-(%.3lf,%.3lf)\\n\",p[0].x,p[0].y,p[1].x,p[1].y);\n\t}*/\n\tPoint p[2];\n};\n\n\nPoint input[SIZE],work[SIZE];\n\ndouble calc_dist(Point A,Point B){\n\n\treturn sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));\n}\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\nstatic const int COUNTER_CLOCKWISE = 1;\nstatic const int CLOCKWISE = -1;\nstatic const int ONLINE_BACK = 2;\nstatic const int ONLINE_FRONT = -2;\nstatic const int ON_SEGMENT = 0;\n\n/*\n * p0を基準点として、p1から見てp2が\n * 反時計回り側にあれば\n * COUNTER_CLOCKWISE\n * */\nint ccw(Point p0,Point p1,Point p2){\n\n\tVector a = p1 - p0;\n\tVector b = p2 - p0;\n\n\tif(cross(a,b) > EPS)return COUNTER_CLOCKWISE;\n\tif(cross(a,b) < -EPS)return CLOCKWISE;\n\tif(dot(a,b) < -EPS)return ONLINE_BACK;\n\tif(a.norm() < b.norm())return ONLINE_FRONT;\n\n\treturn ON_SEGMENT;\n}\n\nPolygon ConvexHull(Polygon V){\n\n\tsort(V.begin(),V.end());\n\n\tvector<Point> UP,DOWN;\n\n\tUP.push_back(V[0]);\n\tDOWN.push_back(V[0]);\n\n\tfor(int i = 1; i < V.size(); i++){\n\n\t\twhile(UP.size() > 1 && ccw(UP[UP.size()-2],UP[UP.size()-1],V[i]) == COUNTER_CLOCKWISE){\n\n\t\t\tUP.pop_back();\n\t\t}\n\n\t\twhile(DOWN.size() > 1 && ccw(DOWN[DOWN.size()-2],DOWN[DOWN.size()-1],V[i]) == CLOCKWISE){\n\n\t\t\tDOWN.pop_back();\n\t\t}\n\n\t\tUP.push_back(V[i]);\n\t\tDOWN.push_back(V[i]);\n\t}\n\n\tPolygon ret;\n\n\tfor(int i = 0; i < UP.size(); i++){\n\n\t\tret.push_back(UP[i]);\n\t}\n\n\tfor(int i = DOWN.size()-1; i >= 0; i--){ //★indexに注意★\n\n\t\tret.push_back(DOWN[i]);\n\t}\n\n\treturn ret;\n}\n\n\n//点のradを求める関数\ndouble calc_rad(Point p){\n\n\tif(p.y == 0){\n\n\t\tif(p.x > 0){\n\n\t\t\treturn 0;\n\n\t\t}else{ //p.x < 0\n\n\t\t\treturn M_PI;\n\t\t}\n\n\t}else if(p.x == 0){\n\n\t\tif(p.y > 0){\n\n\t\t\treturn M_PI/2.0;\n\t\t}else{\n\n\n\t\t\treturn 3*M_PI/2.0;\n\t\t}\n\n\t}else{\n\n\t\tdouble base = atan(fabs(p.y)/fabs(p.x));\n\n\t\tif(p.x > 0){\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn base;\n\n\t\t\t}else{ //p.y < 0\n\n\t\t\t\treturn 2*M_PI-base;\n\t\t\t}\n\n\t\t}else{ //p.x < 0\n\n\t\t\tif(p.y > 0){\n\n\t\t\t\treturn M_PI-base;\n\n\t\t\t}else{\n\n\t\t\t\treturn base+M_PI;\n\t\t\t}\n\t\t}\n\t}\n}\n\n\n/*点moveをbaseを中心にradラジアン回転させる\nrad > 0なら反時計回り、rad < 0なら時計周り\n*/\nPoint rotate(Point base,Point move,double rad){\n\n\tPoint ret;\n\tmove = move-base;\n\n\tret.x = move.x*cos(rad)-move.y*sin(rad);\n\tret.y = move.x*sin(rad)+move.y*cos(rad);\n\n\tret = ret+base;\n\n\treturn ret;\n}\n\ndouble calc_slope(Line A){\n\n\tif(fabs(A.p[0].x-A.p[1].x) < EPS){\n\n\t\treturn DBL_MAX;\n\n\t}else if(fabs(A.p[0].y-A.p[1].y) < EPS){\n\n\t\treturn 0;\n\n\t}else{\n\n\t\treturn (A.p[1].y-A.p[0].y)/(A.p[1].x-A.p[0].x);\n\t}\n}\n\nint main(){\n\n\tint N;\n\tscanf(\"%d\",&N);\n\n\tif(N == 1){\n\n\t\tprintf(\"1\\n\");\n\t\treturn 0;\n\t}\n\n\tinput[0] = Point(0,0); //左下の点\n\n\tint n,d;\n\n\tfor(int i = 1; i <= N-1; i++){\n\n\t\tscanf(\"%d %d\",&n,&d);\n\n\t\tswitch(d){\n\t\tcase 0: //左\n\n\t\t\tinput[i] = Point(input[n].x-1,input[n].y);\n\t\t\tbreak;\n\n\t\tcase 1: //下\n\n\t\t\tinput[i] = Point(input[n].x,input[n].y-1);\n\n\t\t\tbreak;\n\n\t\tcase 2: //右\n\n\t\t\tinput[i] = Point(input[n].x+1,input[n].y);\n\n\t\t\tbreak;\n\n\t\tcase 3: //上\n\n\t\t\tinput[i] = Point(input[n].x,input[n].y+1);\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tvector<Point> vec;\n\tfor(int i = 0; i < N; i++){\n\n\t\tvec.push_back(input[i]);\n\t\tvec.push_back(Point(input[i].x+1,input[i].y));\n\t\tvec.push_back(Point(input[i].x+1,input[i].y+1));\n\t\tvec.push_back(Point(input[i].x,input[i].y+1));\n\t}\n\tsort(vec.begin(),vec.end());\n\tvec.erase(unique(vec.begin(),vec.end()),vec.end());\n\n\tPolygon ret = ConvexHull(vec);\n\tret.pop_back();\n\n\n\tPolygon CH;\n\tCH.push_back(ret[0]);\n\n\tfor(int i = 0; i < ret.size(); i++){\n\t\tif(i+1 < ret.size()){\n\n\t\t\tdouble pre_slope = calc_slope(Line(ret[i-1],ret[i]));\n\t\t\tdouble now_slope = calc_slope(Line(ret[i+1],ret[i]));\n\n\t\t\tif(fabs(pre_slope-now_slope) < EPS){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tCH.push_back(ret[i]);\n\n\t\t}else{\n\n\t\t\tCH.push_back(ret[i]);\n\t\t}\n\t}\n\n\tbool DEBUG = false;\n\tif(DEBUG){\n\n\t\tfor(int i = 0; i < CH.size(); i++){\n\n\t\t\tCH[i].debug();\n\t\t}\n\t}\n\n\tdouble ans = HUGE_NUM;\n\n\tint M = CH.size();\n\n\tint start = -1;\n\tdouble bottom = HUGE_NUM;\n\tfor(int i = 0; i < M; i++){\n\n\t\tif(CH[i].y < bottom){\n\t\t\tbottom = CH[i].y;\n\t\t\tstart = i;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\twork[i] = CH[i];\n\t}\n\n\tbool pre_Hori = false;\n\n\tfor(int a = 0; a < M; a++){\n\n\t\tint i = (start+a)%M;\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\ni:%d\\n\",i);\n\t\t\tprintf(\"基準点\");\n\t\t\tCH[i].debug();\n\t\t\tprintf(\"次の点\");\n\t\t\tCH[(i+1)%M].debug();\n\t\t}\n\n\t\tdouble tmp_rad = calc_rad(work[(i+1)%M]-work[i]);\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"\\ntmp_rad:%.3lf\\n\",tmp_rad);\n\t\t}\n\n\t\tPoint base = work[i];\n\n\t\tif(fabs(tmp_rad-M_PI) < EPS || fabs(tmp_rad) < EPS){ //回転不要\n\n\t\t\tif(pre_Hori){\n\n\t\t\t\tcontinue;\n\t\t\t}else{\n\n\t\t\t\tpre_Hori = true;\n\t\t\t}\n\t\t}else{\n\n\t\t\tpre_Hori = false;\n\t\t}\n\n\t\tfor(int k = 0; k < M; k++){\n\t\t\tif(k == i){\n\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tPoint tmp_p = rotate(base,work[k],-tmp_rad);\n\t\t\twork[k] = tmp_p;\n\t\t}\n\n\t\tif(DEBUG){\n\n\t\t\tprintf(\"work[i]\");\n\t\t\twork[i].debug();\n\n\t\t\tprintf(\"work[i+1]\");\n\t\t\twork[(i+1)%M].debug();\n\t\t}\n\n\t\tdouble min_x = HUGE_NUM,max_x = -HUGE_NUM,min_y = HUGE_NUM,max_y = -HUGE_NUM;\n\n\t\tfor(int k = 0; k < M; k++){\n\n\t\t\tmin_x = min(min_x,work[k].x);\n\t\t\tmax_x = max(max_x,work[k].x);\n\n\t\t\tmin_y = min(min_y,work[k].y);\n\t\t\tmax_y = max(max_y,work[k].y);\n\t\t}\n\n\t\tans = min(ans,(max_x-min_x)*(max_y-min_y));\n\t}\n\n\tprintf(\"%.12lf\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 27160, "score_of_the_acc": -0.5931, "final_rank": 6 }, { "submission_id": "aoj_2804_5483927", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <iomanip>\n#include <fstream>\n#include <algorithm>\n#include <set>\n#include <queue>\n#include <string>\n#include <map>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\n#include <numeric>\n#include <random>\n#include <sstream>\n#include <bitset>\n#include <complex>\n#include <chrono>\n#include <cassert>\n#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n\n\nstruct Vector {\n\tdouble x, y;\n\tdouble rad() const {\n\t\treturn std::atan2(y, x);\n\t}\n\tdouble cross(const Vector other) const {\n\t\treturn x * other.y - y * other.x;\n\t}\n\tVector rotate90() const {\n\t\treturn Vector{ y, -x };\n\t}\n\tdouble length() const {\n\t\treturn std::sqrt(x * x + y * y);\n\t}\n\tdouble dot(const Vector other) const {\n\t\treturn x * other.x + y * other.y;\n\t}\n\tVector to_len1() const {\n\t\tconst auto len = length();\n\t\treturn Vector{ x / len, y / len };\n\t}\n};\nstruct Point {\n\tint x, y;\n\tVector operator-(const Point other) const {\n\t\treturn Vector{ double(x) - other.x, double(y) - other.y };\n\t}\n\tPoint operator+(const Point other) const {\n\t\treturn Point{ x + other.x, y + other.y };\n\t}\n};\n\ndouble solve(std::vector<Point> point) {\n\tif (point.size() == 1) return 1;\n\tstd::sort(point.begin(), point.end(), [](const Point a, const Point b) {return a.y == b.y ? a.x < b.x : a.y > b.y; });\n\tstd::vector<Point> convex{ point[0], point[1] };\n\tfor (auto i = 2; i < point.size(); ++i) {\n\t\tint last = convex.size() - 1;\n\t\twhile (convex.size() >= 2 && (convex[last] - convex[last - 1]).cross(point[i] - convex[last - 1]) >= 0) {\n\t\t\tconvex.pop_back();\n\t\t\t--last;\n\t\t}\n\t\tconvex.push_back(point[i]);\n\t}\n\tfor (int i = point.size() - 2; i >= 0; --i) {\n\t\tint last = convex.size() - 1;\n\t\twhile (convex.size() >= 2 && (convex[last] - convex[last - 1]).cross(point[i] - convex[last - 1]) >= 0) {\n\t\t\tconvex.pop_back();\n\t\t\t--last;\n\t\t}\n\t\tconvex.push_back(point[i]);\n\t}\n\tconvex.pop_back();\n\tstd::vector<int> indices{ 0, \n\t\t(int)std::distance(convex.begin(), std::max_element(convex.begin(), convex.end(), [](const Point a, const Point b) {return a.x < b.x; })),\n\t\t(int)std::distance(convex.begin(), std::min_element(convex.begin(), convex.end(), [](const Point a, const Point b) {return a.y < b.y; })),\n\t\t(int)std::distance(convex.begin(), std::min_element(std::next(convex.begin()), convex.end(), [](const Point a, const Point b) {return a.x < b.x; })) };\n\tdouble result{ DBL_MAX };\n\tfor (; indices[0] < convex.size(); ++indices[0]) {\n\t\tauto vec = convex[(indices[0] + 1) % convex.size()] - convex[indices[0]];\n\t\tconst auto v = vec.to_len1();\n\t\tfor (auto i = 1; i < 4; ++i) {\n\t\t\tvec = vec.rotate90();\n\t\t\tauto& idx = indices[i];\n\t\t\twhile (vec.cross(convex[(idx + 1) % convex.size()] - convex[idx]) > 0) {\n\t\t\t\tidx = (idx + 1) % convex.size();\n\t\t\t}\n\t\t}\n\t\tconst auto height = (convex[indices[2]] - convex[indices[0]]).dot(v.rotate90());\n\t\tconst auto width = (convex[indices[1]] - convex[indices[3]]).dot(v);\n\t\tconst auto area = height * width;\n\t\tresult = std::min(result, area);\n\t}\n\treturn result;\n}\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<Point> point{ Point{0, 0} }; point.reserve(n << 2);\n\tstd::array<Point, 4> dir{ Point{-1, 0}, Point{0, 1}, Point{1, 0}, Point{0, -1} };\n\twhile (point.size() < n) {\n\t\tint x, d; std::cin >> x >> d;\n\t\tpoint.push_back(point[x] + dir[d]);\n\t}\n\tstd::unordered_map<int, std::unordered_set<int>> coordinates;\n\tfor (const auto [x, y] : point) {\n\t\tcoordinates[x].insert(y);\n\t\tcoordinates[x].insert(y + 1);\n\t\tcoordinates[x + 1].insert(y);\n\t\tcoordinates[x + 1].insert(y + 1);\n\t}\n\tpoint.clear();\n\tfor (const auto& [x, ys] : coordinates) {\n\t\tfor (const auto y : ys) {\n\t\t\tpoint.push_back(Point{ x, y });\n\t\t}\n\t}\n\tconst auto result = solve(std::move(point));\n\tstd::cout << std::setprecision(15) << std::fixed << result << '\\n';\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 24072, "score_of_the_acc": -0.528, "final_rank": 4 }, { "submission_id": "aoj_2804_5483787", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <iomanip>\n#include <fstream>\n#include <algorithm>\n#include <set>\n#include <queue>\n#include <string>\n#include <map>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\n#include <numeric>\n#include <random>\n#include <sstream>\n#include <bitset>\n#include <complex>\n#include <chrono>\n#include <cassert>\n#include <iostream>\n#include <string>\n#include <vector>\n#include <algorithm>\n\n\nstruct Vector {\n\tdouble x, y;\n\tdouble rad() const {\n\t\treturn std::atan2(y, x);\n\t}\n\tdouble cross(const Vector other) const {\n\t\treturn x * other.y - y * other.x;\n\t}\n\tVector rotate90() const {\n\t\treturn Vector{ y, -x };\n\t}\n\tdouble length() const {\n\t\treturn std::sqrt(x * x + y * y);\n\t}\n\tdouble dot(const Vector other) const {\n\t\treturn x * other.x + y * other.y;\n\t}\n\tVector to_len1() const {\n\t\tconst auto len = length();\n\t\treturn Vector{ x / len, y / len };\n\t}\n};\nstruct Point {\n\tint x, y;\n\tVector operator-(const Point other) const {\n\t\treturn Vector{ double(x) - other.x, double(y) - other.y };\n\t}\n\tPoint operator+(const Point other) const {\n\t\treturn Point{ x + other.x, y + other.y };\n\t}\n};\n\ndouble solve(std::vector<Point> point) {\n\tif (point.size() == 1) return 1;\n\tstd::sort(point.begin(), point.end(), [](const Point a, const Point b) {return a.y == b.y ? a.x < b.x : a.y > b.y; });\n\tstd::vector<Point> convex{ point[0], point[1] };\n\tfor (auto i = 2; i < point.size(); ++i) {\n\t\tint last = convex.size() - 1;\n\t\twhile (convex.size() >= 2 && (convex[last] - convex[last - 1]).cross(point[i] - convex[last - 1]) >= 0) {\n\t\t\tconvex.pop_back();\n\t\t\t--last;\n\t\t}\n\t\tconvex.push_back(point[i]);\n\t}\n\tfor (int i = point.size() - 2; i >= 0; --i) {\n\t\tint last = convex.size() - 1;\n\t\twhile (convex.size() >= 2 && (convex[last] - convex[last - 1]).cross(point[i] - convex[last - 1]) >= 0) {\n\t\t\tconvex.pop_back();\n\t\t\t--last;\n\t\t}\n\t\tconvex.push_back(point[i]);\n\t}\n\tstd::vector<int> indices{ 0, \n\t\t(int)std::distance(convex.begin(), std::max_element(convex.begin(), convex.end(), [](const Point a, const Point b) {return a.x < b.x; })),\n\t\t(int)std::distance(convex.begin(), std::min_element(convex.begin(), convex.end(), [](const Point a, const Point b) {return a.y < b.y; })),\n\t\t(int)std::distance(convex.begin(), std::min_element(std::next(convex.begin()), convex.end(), [](const Point a, const Point b) {return a.x < b.x; })) };\n\tdouble result{ DBL_MAX };\n\twhile (indices.back() + 1 < convex.size()) {\n\t\tstd::vector<Vector> vec;\n\t\tfor (const auto idx : indices) {\n\t\t\tvec.push_back(convex[idx + 1] - convex[idx]);\n\t\t\tfor (auto& v : vec) {\n\t\t\t\tv = v.rotate90();\n\t\t\t}\n\t\t}\n\t\tconst auto max = std::distance(vec.begin(), std::max_element(vec.begin(), vec.end(), [](const Vector a, const Vector b) {return a.rad() < b.rad(); }));\n\t\tauto v = vec[max].to_len1();\n\t\tconst auto height = (convex[indices[2]] - convex[indices[0]]).dot(v.rotate90());\n\t\tconst auto width = (convex[indices[1]] - convex[indices[3]]).dot(v);\n\t\tresult = std::min(result, height * width);\n\t\t++indices[max];\n\t}\n\treturn result;\n}\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<Point> point{ Point{0, 0} }; point.reserve(n << 2);\n\tstd::array<Point, 4> dir{ Point{-1, 0}, Point{0, 1}, Point{1, 0}, Point{0, -1} };\n\twhile (point.size() < n) {\n\t\tint x, d; std::cin >> x >> d;\n\t\tpoint.push_back(point[x] + dir[d]);\n\t}\n\tstd::unordered_map<int, std::unordered_set<int>> coordinates;\n\tfor (const auto [x, y] : point) {\n\t\tcoordinates[x].insert(y);\n\t\tcoordinates[x].insert(y + 1);\n\t\tcoordinates[x + 1].insert(y);\n\t\tcoordinates[x + 1].insert(y + 1);\n\t}\n\tpoint.clear();\n\tfor (const auto& [x, ys] : coordinates) {\n\t\tfor (const auto y : ys) {\n\t\t\tpoint.push_back(Point{ x, y });\n\t\t}\n\t}\n\tconst auto result = solve(std::move(point));\n\tstd::cout << std::setprecision(15) << std::fixed << result << '\\n';\n}", "accuracy": 0.6233766233766234, "time_ms": 50, "memory_kb": 11240, "score_of_the_acc": -0.05, "final_rank": 17 }, { "submission_id": "aoj_2804_4488386", "code_snippet": "#include <iostream>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <complex>\n#include <set>\nusing namespace std;\n\nusing W = double;\nusing P = complex<W>;\nusing L = pair<P,P>;\nusing C = pair<P,W>;\nusing Poly = vector<P>;\n#define X real()\n#define Y imag()\nconst W EPS = (1e-10), pi = acos(-1);\n\nnamespace std{\n bool operator < (const P& a, const P& b){\n return a.X != b.X ? a.X < b.X : a.Y < b.Y;\n }\n bool cmp_y(const P &a, const P &b){\n return a.Y != b.Y ? a.Y < b.Y : a.X < b.X;\n }\n bool operator == (const P& a, const P& b){\n return abs(a-b) < EPS;\n }\n}\n\ndouble dot(P a, P b){ return a.X * b.X + a.Y * b.Y;}\nW cross(P a, P b){ return a.X * b.Y - a.Y * b.X;}\n\nPoly convex_hull(Poly v){\n int n = v.size(), k = 0;\n sort(v.begin(), v.end(), cmp_y);\n Poly r(2*n);\n for(int i = 0; i < n; i++){\n while(k>1 && cross(r[k-1]-r[k-2],v[i]-r[k-2]) < -EPS) k--;\n r[k++] = v[i];\n }\n for(int i = n-2, t = k; i >= 0; i--){\n while(k>t && cross(r[k-1]-r[k-2],v[i]-r[k-2]) < -EPS) k--;\n r[k++] = v[i];\n }\n r.resize(k-1);\n return r;\n}\n\nint main(){\n int N;\n cin >> N;\n int dx[] = {-1,0,1,0}, dy[] = {0,-1,0,1};\n set<P> s;\n\n vector<P> sq = {{0,0},{1,0},{1,1},{0,1}};\n vector<vector<P>> D(N);\n D[0] = sq;\n for(int i = 1; i < N; ++i){\n int n, d;\n cin >> n >> d;\n vector<P> t = D[n];\n for(auto& p : t)\n p = p+P(dx[d],dy[d]);\n D[i] = t;\n }\n for(int i = 0; i < N; ++i){\n for(auto p : D[i])\n s.insert(p);\n }\n\n vector<P> ps;\n for(auto p : s)\n ps.push_back(p);\n vector<P> c = convex_hull(ps);\n\n // for(auto p : c)\n // fprintf(stderr,\"%lld %lld\\n\",p.X,p.Y);\n \n int v = c.size();\n int l = 0, r = 0, b = 0;\n P d = c[1] - c[0];\n P n(-d.Y,d.X);\n while(dot(d,c[(l+1)%v]-c[0]) >= dot(d,c[l]-c[0])){\n ++l;\n l %= v;\n }\n while(dot(d,c[(r+v-1)%v]-c[0]) <= dot(d,c[r]-c[0])){\n r = (r+v-1)%v;\n }\n while(dot(n,c[(b+1)%v]-c[0]) >= dot(n,c[b]-c[0])){\n b += 1;\n b %= v;\n }\n double ans = 1e18;\n for(int i = 0; i < v; ++i){\n d = c[(i+1)%v] - c[i];\n n = {-d.Y,d.X};\n while(dot(d,c[(l+1)%v]-c[i]) >= dot(d,c[l]-c[i])){\n ++l;\n l %= v;\n }\n while(dot(d,c[(r+1)%v]-c[i]) <= dot(d,c[r]-c[i])){\n ++r;\n r %= v;\n }\n while(dot(n,c[(b+1)%v]-c[i]) >= dot(n,c[b]-c[i])){\n ++b;\n b %= v;\n }\n // fprintf(stderr,\"--------------------\\n\");\n // fprintf(stderr,\"top : (%lld,%lld) - (%lld,%lld)\\n\",c[(i+1)%v].X,c[(i+1)%v].Y,c[i].X,c[i].Y);\n // fprintf(stderr,\"left : (%lld,%lld)\\n\",c[l].X,c[l].Y);\n // fprintf(stderr,\"bottom : (%lld,%lld)\\n\",c[b].X,c[b].Y);\n // fprintf(stderr,\"right : (%lld,%lld)\\n\",c[r].X,c[r].Y);\n // fprintf(stderr,\"area : %lld\\n\",dot(n,c[b]-c[i])*(dot(d,c[l]-c[i])-dot(d,c[r]-c[i]))/norm(d));\n // fprintf(stderr,\"--------------------\\n\");\n ans = min(ans,dot(n,c[b]-c[i])*(dot(d,c[l]-c[i])-dot(d,c[r]-c[i]))/norm(d));\n }\n printf(\"%.12f\\n\",ans);\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 38084, "score_of_the_acc": -2, "final_rank": 14 }, { "submission_id": "aoj_2804_4488247", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <complex>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <array>\n#include <map>\nusing namespace std;\nconst double EPS = 1e-8;\nconst double INF = 1e12;\nconst double PI = acos(-1);\n#define EQ(n,m) (abs((n)-(m)) < EPS)\n#define X real()\n#define Y imag()\n\ntypedef complex<double> P;\ntypedef vector<P> VP;\nstruct L : array<P, 2>{\n L(const P& a, const P& b){ at(0)=a; at(1)=b; }\n L(){}\n};\n\nnamespace std{\n bool operator < (const P& a, const P& b){\n return !EQ(a.X,b.X) ? a.X<b.X : a.Y+EPS<b.Y;\n }\n bool operator == (const P& a, const P& b){\n return abs(a-b) < EPS;\n }\n}\n\ndouble dot(P a, P b){\n return (conj(a)*b).X;\n}\ndouble cross(P a, P b){\n return (conj(a)*b).Y;\n}\nP rotate(const P &p, double rad){\n return p *P(cos(rad), sin(rad));\n}\n\nVP convex(VP v){\n VP ret;\n int n = v.size();\n sort(v.begin(), v.end());\n for(int i=0; i<n; i++){\n while((int)ret.size()>1 && cross(ret.back()-ret[ret.size()-2], v[i]-ret.back()) < EPS){\n ret.pop_back();\n }\n ret.push_back(v[i]);\n }\n int t = ret.size();\n for(int i=n-2; i>=0; i--){\n while((int)ret.size()>t && cross(ret.back()-ret[ret.size()-2], v[i]-ret.back()) < EPS){\n ret.pop_back();\n }\n ret.push_back(v[i]);\n }\n if((int)ret.size() > 1) ret.pop_back();\n return ret;\n}\n\ndouble solve(int k, VP v){\n int n = v.size();\n P diff = v[k];\n for(int i=0; i<n; i++){\n v[i] -= diff;\n }\n double rot = arg(v[(k+1)%n] -v[k]);\n for(int i=0; i<n; i++){\n v[i] = rotate(v[i], -rot);\n }\n double xmin=INF,xmax=-INF,ymin=INF,ymax=-INF;\n for(int i=0; i<n; i++){\n xmin = min(xmin, v[i].X);\n xmax = max(xmax, v[i].X);\n ymin = min(ymin, v[i].Y);\n ymax = max(ymax, v[i].Y);\n }\n return (xmax-xmin)*(ymax-ymin);\n}\n\nint main(){\n int n;\n cin >> n;\n VP dir{P(-1,0), P(0,-1), P(1,0), P(0,1)};\n VP v(n);\n v[0] = P(0, 0);\n for(int i=1; i<n; i++){\n int idx,d;\n cin >> idx >> d;\n v[i] = v[idx]+dir[d];\n }\n VP p(4*n);\n VP vdir{P(0,0), P(0,1), P(1,0), P(1,1)};\n for(int i=0; i<n; i++){\n for(int d=0; d<4; d++){\n p[4*i+d] = v[i]+vdir[d];\n }\n }\n p = convex(p);\n\n double ans = INF;\n for(int i=0; i<(int)p.size(); i++){\n ans = min(ans, solve(i, p));\n }\n cout << fixed << setprecision(10);\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 16844, "score_of_the_acc": -0.3588, "final_rank": 2 }, { "submission_id": "aoj_2804_3083325", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <complex>\n#include <vector>\n#include <algorithm>\n#include <cmath>\nusing namespace std;\nconst double EPS = 1e-8;\nconst double INF = 1e12;\nconst double PI = acos(-1);\n#define EQ(n,m) (abs((n)-(m)) < EPS)\n#define X real()\n#define Y imag()\ntypedef complex<double> P;\ntypedef vector<P> VP;\n\nnamespace std{\n bool operator < (const P& a, const P& b){\n return !EQ(a.X,b.X) ? a.X<b.X : a.Y+EPS<b.Y;\n }\n bool operator == (const P& a, const P& b){\n return abs(a-b) < EPS;\n }\n}\n\ndouble dot(P a, P b){\n return (conj(a)*b).X;\n}\ndouble cross(P a, P b){\n return (conj(a)*b).Y;\n}\nint ccw(P a, P b, P c){\n b -= a;\n c -= a;\n if(cross(b,c) > EPS) return +1; //ccw\n if(cross(b,c) < -EPS) return -1; //cw\n if(dot(b,c) < -EPS) return +2; //c-a-b\n if(abs(c)-abs(b) > EPS) return -2; //a-b-c\n return 0; //a-c-b\n}\n\nVP convex(VP v){\n VP ret;\n int n = v.size();\n sort(v.begin(), v.end());\n for(int i=0; i<n; i++){\n while((int)ret.size()>1 && cross(ret.back()-ret[ret.size()-2], v[i]-ret.back()) < EPS){\n ret.pop_back();\n }\n ret.push_back(v[i]);\n }\n int t = ret.size();\n for(int i=n-2; i>=0; i--){\n while((int)ret.size()>t && cross(ret.back()-ret[ret.size()-2], v[i]-ret.back()) < EPS){\n ret.pop_back();\n }\n ret.push_back(v[i]);\n }\n if((int)ret.size() > 1) ret.pop_back();\n return ret;\n}\n\nint dx[4] = {-1, 0, 1, 0};\nint dy[4] = {0, -1, 0, 1};\nint ddx[4] = {0, 0, 1, 1};\nint ddy[4] = {0, 1, 0, 1};\n\nint main(){\n int n;\n cin >> n;\n\n VP tile(n);\n tile[0] = P(0, 0);\n for(int i=1; i<n; i++){\n int n,d;\n cin >> n >> d;\n tile[i] = tile[n] +P(dx[d], dy[d]);\n }\n VP points(4*n);\n for(int i=0; i<n; i++){\n for(int j=0; j<4; j++){\n points[4*i +j] = tile[i] +P(ddx[j], ddy[j]);\n }\n }\n points = convex(points);\n\n int m = points.size();\n double ans = INF;\n for(int i=0; i<m; i++){\n double angle = -arg(points[(i+1)%m] -points[i]);\n P rot(cos(angle), sin(angle));\n double xmin=INF, xmax=-INF, ymin=INF, ymax=-INF; \n for(P p: points){\n p *= rot;\n xmin = min(xmin, p.X);\n xmax = max(xmax, p.X);\n ymin = min(ymin, p.Y);\n ymax = max(ymax, p.Y);\n }\n ans = min(ans, (xmax -xmin) *(ymax -ymin));\n }\n cout << fixed << setprecision(10);\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 16848, "score_of_the_acc": -0.3589, "final_rank": 3 }, { "submission_id": "aoj_2804_2613120", "code_snippet": "#include<bits/stdc++.h>\n#define inf 1<<29\n#define linf (1e16)\n#define eps (1e-8)\n#define Eps (1e-15)\n#define mod 1000000007\n#define pi acos(-1.0)\n#define phi (1.0+sqrt(5.0))/2.0\n#define f first\n#define s second\n#define mp make_pair\n#define pb push_back\n#define all(a) (a).begin(),(a).end()\n#define pd(a) printf(\"%.10f\\n\",(double)(a))\n#define pld(a) printf(\"%.10Lf\\n\",(ld)(a))\n#define FOR(i,a,b) for(int i=(a);i<(b);i++)\n#define RFOR(i,a,b) for(int i=(a)-1;(b)<=i;i--)\n#define Unique(v) v.erase(unique(all(v)),v.end())\n#define equals(a,b) (fabs((a)-(b))<eps)\nusing namespace std;\ntypedef long double ld;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<int,int> pii;\ntypedef pair<int,double> pid;\ntypedef pair<double,int> pdi;\ntypedef pair<double,double> pdd;\ntypedef vector<int> vi;\ntypedef vector<pii> vpi;\n\nclass Point{\npublic:\n double x,y;\n Point(double x=0,double y=0):x(x),y(y){}\n\n Point operator+(Point p){ return Point(x+p.x,y+p.y);}\n Point operator-(Point p){ return Point(x-p.x,y-p.y);}\n Point operator*(double k){ return Point(x*k,y*k);}\n Point operator/(double k){ return Point(x/k,y/k);}\n bool operator<(Point p)const{ \n return equals(x,p.x) ? y-p.y<-eps : x-p.x<-eps; }\n bool operator==(Point p)const{ \n return fabs(x-p.x)<eps && fabs(y-p.y)<eps;}\n\n double abs(){ return sqrt(norm());}\n double norm(){ return (x*x+y*y);}\n};\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nclass Segment{\npublic:\n Point p1,p2;\n Segment(Point p1=Point(),Point p2=Point()):p1(p1),p2(p2){}\n};\ntypedef Segment Line;\n\ndouble norm(Vector a){ return (a.x*a.x+a.y*a.y);}\ndouble abs(Vector a){ return sqrt(norm(a));}\ndouble dot(Vector a,Vector b){ return (a.x*b.x+a.y*b.y);}\ndouble cross(Vector a,Vector b){ return (a.x*b.y-a.y*b.x);}\n\nPoint project(Segment s,Point p){\n Vector base=(s.p2-s.p1);\n double r=(dot(p-s.p1,base)/base.norm());\n return (s.p1+base*r);\n}\n\nint ccw(Point p0,Point p1,Point p2){\n Vector a=p1-p0;\n Vector b=p2-p0;\n if(cross(a,b)>eps)return 1;\n if(cross(a,b)<-eps)return -1;\n if(dot(a,b)<-eps)return 2;\n if(a.norm()<b.norm())return -2;\n return 0;\n}\n\ndouble getDistance(Line l,Point p){\n return abs(cross(l.p2-l.p1,p-l.p1)/abs(l.p2-l.p1));\n}\n\nPolygon convex_hull(Polygon s){\n Polygon g;\n int n=s.size();\n if(n<3)return s;\n\n sort(s.begin(),s.end());\n\n for(int i=0;i<n;i++){\n for(int n=g.size();n>=2&&ccw(g[n-2],g[n-1],s[i])==1;n--){\n g.pop_back();\n }\n g.push_back(s[i]);\n }\n for(int i=n-2;i>=0;i--){\n for(int n=g.size();n>=2&&ccw(g[n-2],g[n-1],s[i])==1;n--){\n g.pop_back();\n }\n g.push_back(s[i]);\n }\n reverse(g.begin(),g.end());\n g.pop_back();\n return g;\n}\n\ndouble solve(Polygon p){\n double ans = linf;\n sort(all(p));\n Unique(p);\n Polygon P = convex_hull(p);\n FOR(i,0,P.size()){\n Line L(P[i],P[(i+1)%P.size()]);\n double h=0,w1=0,w2=0;\n FOR(j,0,P.size()){\n h = max(h,getDistance(L,P[j]));\n Point c=project(L,P[j]);\n if(ccw(L.p1,L.p2,c)==2)w1=max(w1,abs(L.p1-c));\n else w2=max(w2,abs(L.p1-c));\n }\n ans = min(ans,h*(w1+w2));\n }\n return ans;\n}\n\nint main()\n{\n int N,n,d;\n cin>>N;\n Polygon p(N);\n p[0]=Point(0,0);\n FOR(i,1,N){\n cin>>n>>d;\n if(d==0)p[i]=Point(p[n].x-1,p[n].y);\n else if(d==1)p[i]=Point(p[n].x,p[n].y-1);\n else if(d==2)p[i]=Point(p[n].x+1,p[n].y);\n else p[i]=Point(p[n].x,p[n].y+1);\n }\n FOR(i,0,N){\n p.pb(Point(p[i].x+1,p[i].y));\n p.pb(Point(p[i].x,p[i].y+1));\n p.pb(Point(p[i].x+1,p[i].y+1));\n }\n pd(solve(p));\n return 0;\n}", "accuracy": 0.6363636363636364, "time_ms": 70, "memory_kb": 16872, "score_of_the_acc": -0.3598, "final_rank": 16 }, { "submission_id": "aoj_2804_2389142", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define F first\n#define S second\nconst double EPS = 1e-10;\nconst double INF = 1e12;\ntypedef complex<double> P;\ntypedef pair<P,P> L;\nnamespace std {\n bool operator < (const P& a, const P& b) {\n return real(a)!=real(b)?real(a)<real(b):imag(a)<imag(b);\n }\n}\nbool cmp(P a,P b) {return atan2(a.imag(),a.real())<atan2(b.imag(),b.real());}\ndouble cross(const P& a, const P& b) {return imag(conj(a)*b);}\ndouble dot(const P& a, const P& b) {return real(conj(a)*b);}\nint ccw(P a, P b, P c) {\n b-=a;c-=a;\n if(cross(b,c)>EPS)return +1;\n if(cross(b,c)<-EPS)return -1;\n if(dot(b,c)<-EPS)return +2;\n if(norm(b)<norm(c))return -2;\n return 0;\n}\ndouble D(P a, P b) {\n return sqrt((a.real()-b.real())*(a.real()-b.real())+(a.imag()-b.imag())*(a.imag()-b.imag()));\n}\nP rotate(P a, double r) {\n return P(a.real()*cos(r)-a.imag()*sin(r),a.real()*sin(r)+a.imag()*cos(r));\n}\nP projection(const L &l, const P &p) {\n double t = dot(p-l.F, l.F-l.S) / norm(l.F-l.S);\n return l.F + t*(l.F-l.S);\n}\ndouble toRad(double agl) {return agl*M_PI/180.0;}\ndouble distanceLP(const L &l, const P &p) {\n return abs(p - projection(l, p));\n}\nvector<P> convex_hull(vector<P> p) {\n int n = p.size(), k = 0;\n sort(p.begin(), p.end());\n vector<P> q(2*n);\n for(int i = 0; i < n; q[k++] = p[i++])\n while(k >= 2 && ccw(q[k-2], q[k-1], p[i]) <= 0) --k;\n for(int i = n-2, t = k+1; i >= 0; q[k++] = p[i--])\n while(k >= t && ccw(q[k-2], q[k-1], p[i]) <= 0) --k;\n q.resize(k-1);\n return q;\n}\n\nint main() {\n int n;\n cin >> n;\n vector<P> a;\n a.push_back(P(0,0));\n for(int i=0; i<n-1; i++) {\n int x,y;\n cin >> x >> y;\n P p=a[x],q;\n if(y==0) q=P(p.real()-1,p.imag());\n if(y==1) q=P(p.real(),p.imag()-1);\n if(y==2) q=P(p.real()+1,p.imag());\n if(y==3) q=P(p.real(),p.imag()+1);\n a.push_back(q);\n }\n vector<P> v;\n for(int i=0; i<n; i++) {\n for(int j=0; j<2; j++) {\n for(int k=0; k<2; k++) v.push_back(P(a[i].real()+j,a[i].imag()+k));\n }\n }\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n v=convex_hull(v);\n n=v.size();\n double ans=INF;\n for(int i=0; i<n; i++) {\n rotate(v.begin(),v.begin()+1,v.end());\n P q=rotate(v[1]-v[0],toRad(90+EPS))+v[0];\n L s=L(v[0],v[1]);\n L t=L(v[0],q);\n int l=2,r=n;\n while(l+1<r) {\n int m=(l+r)/2;\n if(ccw(q,v[0],v[m])<0) r=m;\n else l=m;\n }\n int k=l;\n l=2,r=k;\n for(int j=0; j<1000; j++) {\n int m1=(l*2+r)/3,m2=(l+r*2)/3;\n double d1=distanceLP(t,v[m1]),d2=distanceLP(t,v[m2]);\n if(d1<d2) l=m1;\n else r=m2;\n }\n l=(l+r)/2;\n double xx=distanceLP(t,v[l]);\n if(abs(ccw(q,v[0],v[k]))==1) k++;\n l=k,r=n;\n for(int j=0; j<1000; j++) {\n int m1=(l*2+r)/3,m2=(l+r*2)/3;\n double d1=distanceLP(t,v[m1]),d2=distanceLP(t,v[m2]);\n if(d1<d2) l=m1;\n else r=m2;\n }\n l=(l+r)/2;\n xx+=distanceLP(t,v[l]);\n l=2,r=n;\n for(int j=0; j<1000; j++) {\n int m1=(l*2+r)/3,m2=(l+r*2)/3;\n double d1=distanceLP(s,v[m1]),d2=distanceLP(s,v[m2]);\n if(d1<d2) l=m1;\n else r=m2;\n }\n l=(l+r)/2;\n double yy=distanceLP(s,v[l]);\n ans=min(ans,xx*yy);\n }\n printf(\"%.10f\\n\",ans);\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 20112, "score_of_the_acc": -0.5305, "final_rank": 5 }, { "submission_id": "aoj_2804_2388508", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n#define EPS 1e-8\n\n// ???????°???°???????????????\ninline double add(double a, double b){\n if(abs(a+b) < EPS*(abs(a) + abs(b))) return 0;\n return a+b;\n}\n\nstruct Point{\n double x,y;\n Point() {}\n Point(double nx, double ny) : x(nx), y(ny) {}\n inline Point operator + (const Point p){ return Point(add(x, p.x), add(y, p.y)); }\n inline Point operator - (const Point p){ return Point(add(x,-p.x), add(y,-p.y)); }\n inline Point operator * (double d){ return Point(x*d, y*d); }\n inline double dot(const Point p){ return add(x * p.x, y*p.y); } //??????\n inline double det(const Point p){ return add(x * p.y, -y*p.x); } //??????\n inline double dist(const Point p){ return sqrt((x-p.x)*(x-p.x) + (y-p.y)*(y-p.y)); }\n inline bool operator < (const Point p) const {\n if(x != p.x) return x < p.x;\n else return y < p.y;\n }\n inline bool operator == (const Point p) const {\n return (add(x, -p.x)==0) && (add(y, -p.y)==0);\n }\n friend ostream& operator<<(ostream& os, const Point& p) {\n os << \"[\" << p.x << \",\" << p.y << \"]\";\n return os;\n }\n};\n\ndouble norm(Point p) {return p.x*p.x+p.y*p.y;}\nPoint proj(Point a1, Point a2, Point p){\n return a1+(a2-a1) * ( (a2-a1).dot(p-a1)/norm(a2-a1) );\n}\n\nvector<Point> GrahamScan(vector<Point> points){\n int n = points.size();\n sort(all(points));\n int k=0;\n vector<Point> qs(2*n);\n for(int i=0; i<n; qs[k++] = points[i++]){\n while(k>1 && (qs[k-1] - qs[k-2]).det(points[i] - qs[k-1]) <= 0) k--;\n }\n for(int i=n-2,t=k; i>=0; qs[k++] = points[i--]){\n while(k>t && (qs[k-1] -qs[k-2]).det(points[i] - qs[k-1]) <= 0) k--;\n }\n qs.resize(k-1);\n return qs;\n}\n\nint main(){\n int n;\n cin>>n;\n const int dx[] = {-1,0,1,0}, dy[]={0,-1,0,1};\n vector<Point> vec;\n rep(x,2)rep(y,2) vec.pb(Point(x,y));\n rep(i,n-1){\n int p,d;\n cin>>p>>d;\n double bx = vec[p*4].x+dx[d], by = vec[p*4].y+dy[d];\n rep(x,2)rep(y,2) vec.pb(Point(bx+x, by+y));\n }\n\n vec = GrahamScan(vec);\n n = vec.size();\n\n int i=0,j=0,k=0,l=0;\n while(vec[i].y>vec[i+1].y) i = (i+1)%n;\n j = i;\n while(vec[j].x<vec[j+1].x) j = (j+1)%n;\n k = j;\n while(vec[k].y<vec[k+1].y) k = (k+1)%n;\n l = k;\n while(vec[l].x>vec[l+1].x) l = (l+1)%n;\n\n auto area = [&](int a, int b, int c, int d){\n Point p1 = proj(vec[a], vec[(a+1)%n], vec[b]);\n Point p2 = proj(vec[a], vec[(a+1)%n], vec[d]);\n double w = p1.dist(p2);\n Point p3 = proj(vec[a], vec[(a+1)%n], vec[c]);\n double h = vec[c].dist(p3);\n// dbg(a,b,c,d,vec, w*h);\n return w*h;\n };\n//dbg(vec);\n double best = area(i,j,k,l);\n int si=i;\n int cnt = 0;\n while(si != i || cnt<n){\n i = (i+1)%n;\n if(i==j) j = (j+1)%n;\n\n while( (vec[(i+1)%n]-vec[i]).det(vec[(k+1)%n]-vec[k]) >= 0){\n k = (k+1)%n;\n if(k==l) l= (l+1)%n;\n }\n\n while( (vec[(i+1)%n]-vec[i]).dot(vec[j] - vec[(j-1+n)%n]) * (vec[(i+1)%n]-vec[i]).dot(vec[(j+1)%n] - vec[j]) > 0 ) j = (j+1)%n;\n while( (vec[(i+1)%n]-vec[i]).dot(vec[l] - vec[(l-1+n)%n]) * (vec[(i+1)%n]-vec[i]).dot(vec[(l+1)%n] - vec[l]) > 0 ) l = (l+1)%n;\n\n best = min(best, area(i,j,k,l));\n cnt++;\n }\n\n printf(\"%.7f\\n\", best);\n\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 15372, "score_of_the_acc": -0.3539, "final_rank": 1 }, { "submission_id": "aoj_2804_2241166", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define all(a) (a).begin(),(a).end()\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define pb push_back\n \n \nconst double INF = (1E20);\n#define EPS (1e-10)\nclass P{\npublic:\n double x,y;\n \n P(double _x=0,double _y=0):x(_x),y(_y){};\n P operator - (const P &p ) const { return P(x-p.x,y-p.y);}\n};\n \nstruct S{P p1,p2;};\n \n \ntypedef vector<P> Polygon;\ntypedef P Vector;\n \ndouble abs(P p) {return sqrt(p.x*p.x + p.y*p.y);}\ndouble dot(Vector a, Vector b) {return a.x*b.x+a.y*b.y;}\n \n \ndouble cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}\n \nbool cmp_x(const P& p,const P& q){\n if(p.x!=q.x)return p.x<q.x;\n return p.y<q.y;\n}\n \nvector<P> convex_hull(vector<P> ps){\n int n = ps.size();\n sort(all(ps),cmp_x);\n int k=0;\n vector<P> qs(n*2);\n rep(i,n){\n while(k>1 && cross((qs[k-1]-qs[k-2]),(ps[i]-qs[k-1]))<=0)k--;\n \n qs[k++] = ps[i];\n }\n for(int i=n-2,t=k;i>=0;i--){\n while(k>t && cross((qs[k-1]-qs[k-2]),(ps[i]-qs[k-1]))<=0 )k--;\n qs[k++]=ps[i];\n }\n qs.resize(k-1);\n return qs;\n}\n \n \nint px[1000005];\nint py[1000005];\n \ndouble getLR(S edge,vector<P> &tpol){\n double l=INF,r=-INF;\n \n rep(i,tpol.size()){\n P cur = tpol[i];\n Vector a,b;\n a = edge.p2 - edge.p1;\n b = cur - edge.p1;\n double tt = dot(a,b);\n tt /= abs(a);\n // cout<< tt <<endl;\n l=min(l,tt);\n r=max(r,tt);\n }\n // cout<<endl;\n return r-l;\n}\n \ndouble getU(S edge,vector<P> &tpol){\n double res=-INF;\n \n rep(i,tpol.size()){\n P cur = tpol[i];\n Vector a,b;\n a = edge.p2 - edge.p1;\n b = cur - edge.p1;\n double tt = cross(a,b);\n tt /= abs(a);\n \n res=max(res, abs(tt ));\n }\n return res;\n}\n \nint main(){\n int n;\n cin>>n;\n \n \n vector<P> points;\n px[0]=py[0]=0;\n \n for(int i=1;i<n;i++){\n int id,dir;\n cin>>id>>dir;\n if(dir==0){\n px[i]=px[id]-1;\n py[i]=py[id];\n }else if(dir==1){\n px[i]=px[id];\n py[i]=py[id]-1;\n }else if(dir==2){\n px[i]=px[id]+1;\n py[i]=py[id];\n }else if(dir==3){\n px[i]=px[id];\n py[i]=py[id]+1;\n }\n }\n set< pair<int,int> > st;\n for(int i=0;i<n;i++){\n for(int dy=0;dy<2;dy++)\n for(int dx=0;dx<2;dx++)\n st.insert( make_pair( px[i]+dx ,py[i]+dy) );\n \n }\n \n for( pair<int,int> sp : st ){\n \n //cout<< sp.first << ' ' <<sp.second <<endl;\n \n points.emplace_back( sp.first , sp.second );\n }\n \n vector<P> tpol = convex_hull(points);\n \n double ans=INF;\n \n rep(i,tpol.size()){\n S edge = S{tpol[i],tpol[(i+1)%tpol.size()]};\n \n double width = getLR(edge,tpol);\n double height = getU(edge,tpol);\n \n// cout<<edge.p1.x<<\" \"<<edge.p1.y<<\" \"<<edge.p2.x<<\" \"<<edge.p2.y<<endl;\n// cout<<width<<\" \"<<height<<endl;\n \n ans=min(ans, width * height );\n }\n printf(\"%.10f\\n\",ans);\n \n}", "accuracy": 1, "time_ms": 110, "memory_kb": 25604, "score_of_the_acc": -0.8851, "final_rank": 11 }, { "submission_id": "aoj_2804_2235515", "code_snippet": "#include <bits/stdc++.h>\n \nusing namespace std;\n \n#define EPS (1e-10)\n \nstruct Point {\n double x, y;\n \n Point() {}\n Point (double x, double y) : x(x), y(y) {}\n \n Point operator + (const Point &p) const {\n return Point(x + p.x, y + p.y);\n }\n \n Point operator - (const Point &p) const {\n return Point(x - p.x, y - p.y);\n }\n \n Point operator * (const double &k) const {\n return Point(x * k, y * k);\n }\n \n bool operator < (const Point &p) const {\n return x != p.x ? x < p.x : y < p.y;\n }\n \n bool operator == (const Point &p) const { return (x == p.x && y == p.y); }\n};\n \ndouble dot(const Point &a, const Point &b)\n{\n return a.x * b.x + a.y * b.y;\n}\n \ndouble cross(const Point &a, const Point &b)\n{\n return a.x * b.y - b.x * a.y;\n}\n \ndouble norm(const Point &p)\n{\n return dot(p, p);\n}\n \ndouble abs(const Point &p)\n{\n return sqrt(norm(p));\n}\n \ndouble dist(const Point &a, const Point &b)\n{\n return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));\n}\n \n#define COUNTER_CLOCKWISE +1\n#define CLOCKWISE -1\n#define ONLINE_BACK +2\n#define ONLINE_FRONT -2\n#define ON_SEGMENT +0\ntypedef Point Vector;\n \nint ccw(const Point &p0, const Point &p1, const Point &p2)\n{\n Vector a = p1 - p0;\n Vector b = p2 - p0;\n if (cross(a, b) > EPS) return COUNTER_CLOCKWISE;\n if (cross(a, b) < -EPS) return CLOCKWISE;\n if (dot(a, b) < -EPS) return ONLINE_BACK;\n if (norm(a) < norm(b)) return ONLINE_FRONT;\n return ON_SEGMENT;\n}\n \nbool sortY(Point p1, Point p2)\n{\n if (p1.y != p2.y) {\n return (p1.y - p2.y < -EPS);\n } else { \n return (p1.x - p2.x < -EPS);\n }\n}\n \ntypedef vector<Point> Polygon;\n \nPolygon convex_hull(Polygon &ps)\n{\n int N = ps.size(), j = 0;\n Polygon pg(N * 2);\n sort(ps.begin(), ps.end(), sortY);\n for (int i = 0; i < N; i++) {\n while (j > 1 && cross(pg[j - 1] - pg[j - 2], ps[i] - pg[j - 1]) <= 0) {\n j--;\n }\n pg[j++] = ps[i];\n }\n int k = j;\n for (int i = N - 2; i >= 0; i--) {\n while (j > k && cross(pg[j - 1] - pg[j - 2], ps[i] - pg[j - 1]) <= 0) {\n j--;\n }\n pg[j++] = ps[i];\n }\n pg.resize(j - 1);\n return pg;\n}\n \nvoid insert(set<Point> &points, Point p)\n{\n const int dx[] = {-1, -1, +1, +1};\n const int dy[] = {-1, +1, +1, -1};\n \n for (int i = 0; i < 4; i++) {\n double nx = p.x + dx[i] / 2.0;\n double ny = p.y + dy[i] / 2.0;\n points.insert(Point(nx, ny));\n } \n}\n \nstruct Segment {\n Point s, t;\n Segment () {}\n Segment (Point s, Point t) : s(s), t(t) {}\n};\n \ntypedef Segment Line;\n \nPoint projection(const Segment &s, const Point &p)\n{\n Vector b = s.t - s.s;\n double t = dot(p - s.s, b) / norm(b);\n return s.s + b * t;\n}\n \ndouble distanceLP(const Line &l, const Point &p)\n{\n return abs(p - projection(l, p));\n}\n \nint main()\n{\n int N;\n cin >> N;\n \n set<Point> points;\n insert(points, Point(0, 0));\n \n vector<Point> p(N);\n p[0] = Point(0, 0);\n \n const int dx[] = {-1, +0, +1, +0};\n const int dy[] = {+0, +1, +0, -1};\n \n for (int i = 0; i < N - 1; i++) {\n int n, d;\n cin >> n >> d;\n p[i + 1] = Point(p[n].x + dx[d], p[n].y + dy[d]);\n insert(points, p[i + 1]);\n }\n \n Polygon pg;\n for (auto &point: points) {\n pg.push_back(point);\n }\n pg = convex_hull(pg);\n N = pg.size();\n double res = 1e55; \n for (int i = 0; i < N; i++) {\n int ci = i, ni = (i + 1) % N;\n Line l1(pg[ci], pg[ni]);\n \n int jj = -1;\n double h = 0;\n for (int j = 0; j < N; j++) {\n double d = distanceLP(l1, pg[j]);\n if (d > h) {\n h = d;\n jj = j;\n }\n }\n Point pp = projection(l1, pg[jj]); \n Line l2(pp, pg[jj]);\n \n if (pp == pg[jj]) continue;\n \n jj = -1;\n double w1 = 0;\n for (int j = 0; j < N; j++) {\n double d = distanceLP(l2, pg[j]);\n if (d > w1) {\n w1 = d;\n jj = j;\n }\n }\n Point pp2 = projection(l1, pg[jj]);\n Line l3(pp2, pg[jj]);\n \n if (pp2 == pg[jj]) continue;\n \n double w = 0; \n for (int j = 0; j < N; j++) {\n double d = distanceLP(l3, pg[j]);\n if (d > w) w = d;\n } \n res = min(res, h * w);\n }\n printf(\"%.10f\\n\", res);\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 21088, "score_of_the_acc": -0.8669, "final_rank": 10 }, { "submission_id": "aoj_2804_2235403", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb push_back\n#define INF (1e10+1)\n//#define INF (1LL<<59)\n \n \n#define OUT 0\n#define ON 1\n#define IN 2\n#define EPS (1e-10)\nclass P{ //???\npublic:\n double x,y;\n \n P(double _x=0,double _y=0):x(_x),y(_y){};\n P operator + (const P &p )const{ return P( x+p.x , y+p.y ); } //??????\n P operator - (const P &p )const{ return P( x-p.x , y-p.y ); } //??????\n P operator * (const double k )const{ return P( x*k , y*k ); } //??????\n P operator / (const double k )const{ return P( x/k , y/k ); } //??????\n \n bool operator == (const P &p){ return ( fabs(x-p.x)<EPS && fabs(y-p.y)<EPS ); }\n bool operator < (const P &p) const{ return ( x!=p.x ? x<p.x:y<p.y ); }\n \n double norm(){ return x*x+y*y; } //?????????\n double abs() { return sqrt(norm()); } //???§??????\n void normalize() {double d = sqrt(x*x+y*y); x /= d; y /= d;} //???£??????\n};\nstruct C{P p;double r;}; //???\nstruct S{P p1,p2;}; //??????\ntypedef vector<P> Polygon; //?????§????¢\ntypedef P Vector; //????????????\ntypedef S L; //???´???\n \ndouble norm (P p) { return p.norm(); }\ndouble abs (P p) { return p.abs(); }\ndouble dot (Vector a,Vector b) { return a.x*b.x+a.y*b.y; }\ndouble cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; }\ndouble sqDist(P a, P b) {return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}\ndouble dist (P a, P b) {return sqrt(sqDist(a,b));}\nVector vec(S a) {return P(a.p2.x-a.p1.x,a.p2.y-a.p1.y);}\n \n \n//?????? verified AOJ0068,QUPC-G\n//????????????§??????\nbool cmp_x(const P& p, const P& q){\n if(p.x != q.x)return p.x<q.x;\n return p.y<q.y;\n}\n \n//???????????±???????\nvector<P> convex_hull(vector<P> ps){\n int n = ps.size();\n sort(all(ps),cmp_x);\n int k=0; //??????????????????°\n vector<P> qs(n*2); //??§????????????????\n //??????´???????????????\n rep(i,n){\n while( k>1 && cross((qs[k-1]-qs[k-2]) , (ps[i]-qs[k-1]))<=0 ) k--;\n qs[k++]=ps[i];\n }\n //??????´???????????????\n for(int i=n-2, t=k;i>=0;i--){\n while( k>t && cross((qs[k-1]-qs[k-2]) , (ps[i]-qs[k-1]))<=0 ) k--;\n qs[k++]=ps[i];\n }\n qs.resize(k-1);\n return qs;\n}\n \n \n \ndouble solveLR(vector<P> ps,S l){\n double mini=INF;\n double maxi=-INF;\n \n rep(i,ps.size()){\n double res = dot(l.p2-l.p1,ps[i]-l.p1)/abs(l.p2-l.p1);\n mini = min(res,mini);\n maxi = max(res,maxi);\n }\n return maxi-mini;\n}\n \ndouble solveU(vector<P> ps,S l){\n double maxi = -INF;\n rep(i,ps.size()){\n double res = cross(l.p2-l.p1,ps[i]-l.p1)/abs(l.p2-l.p1);\n maxi = max(maxi,abs(res));\n }\n return maxi;\n}\n \n \nint main(){\n int n;\n cin>>n;\n \n vector<P> inp(n);\n inp[0] = P(0,0);\n for(int i=1;i<n;i++){\n int a,b;\n cin>>a>>b;\n if(b==0) inp[i] = inp[a]+P(-1,0);\n else if(b==1) inp[i] = inp[a]+P(0,-1);\n else if(b==2) inp[i] = inp[a]+P(+1,0);\n else if(b==3) inp[i] = inp[a]+P(0,+1);\n }\n set<P> ps;\n rep(i,n){\n ps.insert(inp[i]+P(0,0));\n ps.insert(inp[i]+P(1,0));\n ps.insert(inp[i]+P(0,1));\n ps.insert(inp[i]+P(1,1));\n }\n \n vector<P> arg;\n for(auto &elm:ps)arg.pb(elm);\n \n vector<P> points = convex_hull(arg);\n \n double ans = INF;\n \n rep(i,points.size()){\n S line = S{points[i],points[(i+1)%points.size()]};\n \n double LR = solveLR(points,line);\n double U = solveU(points,line);\n// cout<<LR<<\" \"<<U<<endl;\n ans = min( ans , LR*U );\n }\n printf(\"%.10lf\\n\",ans);\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 29500, "score_of_the_acc": -1.1802, "final_rank": 12 }, { "submission_id": "aoj_2804_2235395", "code_snippet": "#include<bits/stdc++.h>\n \nusing namespace std;\n \n#define eps 1e-8\n \nstruct Point\n{\n double x, y;\n \n Point(double a = 0, double b = 0) :\n x(a), y(b)\n {\n }\n \n bool operator<(const Point& a) const\n {\n if(fabs(x - a.x) > eps) return x < a.x;\n return y < a.y;\n }\n \n bool operator==(const Point& a) const\n {\n return fabs(x - a.x) < eps && fabs(y - a.y) < eps;\n }\n \n Point operator+(const Point& a) const\n {\n return Point(x + a.x, y + a.y);\n }\n \n Point operator-(const Point& a) const\n {\n return Point(x - a.x, y - a.y);\n }\n \n Point operator/(const double val) const\n {\n return Point(x / val, y / val);\n }\n \n Point operator*(const double val) const\n {\n return Point(x * val, y * val);\n }\n};\n \ntypedef Point Vector;\n \ndouble dist(Point a, Point b)\n{\n return hypot(a.x - b.x, a.y - b.y);\n}\n \ndouble dot(Point a, Point b)\n{\n return a.x * b.x + a.y * b.y;\n}\n \ndouble cross2(Point a, Point b)\n{\n return a.x * b.y - a.y * b.x;\n}\n \ndouble cross(Point o, Point a, Point b)\n{\n return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x);\n}\n \nint between(Point a, Point b, Point c)\n{\n return dot(c - a, b - a) >= 0 && dot(c - b, a - b) >= 0;\n}\n \nint onSeg(Point a, Point b, Point c)\n{\n return between(a, b, c) && fabs(cross(a, b, c)) < eps;\n}\n \ndouble distProjection(Point as, Point at, Point s)\n{\n double a, b, c;\n a = at.y - as.y;\n b = as.x - at.x;\n c = -(a * as.x + b * as.y);\n return fabs(a * s.x + b * s.y + c) / hypot(a, b);\n}\n \nstruct Seg\n{\n Point s, e;\n};\n \nint calcIntersection(Seg a, Seg b, Point& p)\n{\n double a1, b1, c1, a2, b2, c2;\n double d, dx, dy;\n a1 = a.s.y - a.e.y, b1 = -a.s.x + a.e.x;\n a2 = b.s.y - b.e.y, b2 = -b.s.x + b.e.x;\n c1 = a1 * a.s.x + b1 * a.s.y;\n c2 = a2 * b.s.x + b2 * b.s.y;\n d = a1 * b2 - a2 * b1;\n dx = c1 * b2 - c2 * b1;\n dy = a1 * c2 - a2 * c1;\n if(fabs(d) < eps) // NONE or LINE\n return 0;\n p.x = dx / d, p.y = dy / d;\n return onSeg(a.s, a.e, p) && onSeg(b.s, b.e, p);\n}\n \nint inPolygon(Point p[], int n, Point q)\n{\n int i, j, cnt = 0;\n for(i = 0, j = n - 1; i < n; j = i++) {\n if(p[i].y > q.y != p[j].y > q.y &&\n q.x < (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y) + p[i].x)\n cnt++;\n }\n return cnt & 1;\n}\n \ndouble calcArea(Point p[], int n)\n{\n if(n < 3) return 0.0;\n double ret = 0;\n int i;\n p[n] = p[0];\n for(i = 0; i < n; i++)\n ret += p[i].x * p[i + 1].y - p[i].y * p[i + 1].x;\n return fabs(ret) / 2;\n}\n \nint monotone(int n, Point p[], Point ch[])\n{\n sort(p, p + n);\n int i, m = 0, t;\n for(i = 0; i < n; i++) {\n while(m >= 2 && cross(ch[m - 2], ch[m - 1], p[i]) <= 0)\n m--;\n ch[m++] = p[i];\n }\n for(i = n - 1, t = m + 1; i >= 0; i--) {\n while(m >= t && cross(ch[m - 2], ch[m - 1], p[i]) <= 0)\n m--;\n ch[m++] = p[i];\n }\n return m - 1;\n}\n \n#define INF 1e+30\n \ndouble smallRect(int n, Point ch[])\n{\n double lx, ly, rx, ry;\n int up, down, left, right;\n double ret = INF;\n lx = ly = INF;\n rx = ry = -INF;\n \n up = down = left = right = 0;\n for(int i = 0; i < n; i++) {\n if(ch[i].x > rx) rx = ch[i].x, right = i;\n if(ch[i].y > ry) ry = ch[i].y, up = i;\n if(ch[i].x < lx) lx = ch[i].x, left = i;\n if(ch[i].y < ly) ly = ch[i].y, down = i;\n }\n \n int corner[] = {up, down, left, right};\n Point vec[] = {Point(-1, 0), Point(1, 0), Point(0, -1), Point(0, 1)};\n \n ret = (rx - lx) * (ry - ly);\n for(int j = 0; j < 4; j++) {\n while(true) {\n Point a = ch[corner[j]], b = ch[(corner[j] + 1) % n], c = vec[j];\n if(fabs(cross2(b - a, c)) < eps)\n corner[j] = (corner[j] + 1) % n;\n else\n break;\n }\n }\n for(int i = 0; i < n; i++) {\n double mxVal = -INF, cos, sin;\n int mxIdx = 0;\n for(int j = 0; j < 4; j++) {\n Point a = ch[corner[j]], b = ch[(corner[j] + 1) % n], c = vec[j];\n double cosA = dot(b - a, c) / dist(b, a) / dist(c, Point(0, 0));\n if(mxVal < cosA)\n mxVal = cosA, mxIdx = j;\n }\n cos = mxVal, sin = sqrt(1 - cos * cos);\n for(int j = 0; j < 4; j++) {\n double tx, ty;\n tx = vec[j].x * cos - vec[j].y * sin;\n ty = vec[j].x * sin + vec[j].y * cos;\n vec[j] = Point(tx, ty);\n }\n for(int j = 0; j < 4; j++) {\n while(true) {\n Point a = ch[corner[j]], b = ch[(corner[j] + 1) % n], c = vec[j];\n if(fabs(cross2(b - a, c)) < eps)\n corner[j] = (corner[j] + 1) % n;\n else\n break;\n }\n }\n double w = distProjection(ch[corner[0]], ch[corner[0]] + vec[0], ch[corner[1]]);\n double h = distProjection(ch[corner[2]], ch[corner[2]] + vec[2], ch[corner[3]]);\n ret = min(ret, w * h);\n }\n return ret;\n}\n \n \nint xx[100001], yy[100001];\nvector< Point > pp;\nPoint ch[400007], k[400007];\n \nint main()\n{\n int N;\n cin >> N;\n int vy[] = {0, 1, 0, -1}, vx[] = {1, 0, -1, 0};\n xx[0] = 0, yy[0] = 0;\n pp.push_back((Point) {0.0, 0.0});\n pp.push_back((Point) {1.0, 0.0});\n pp.push_back((Point) {0.0, 1.0});\n pp.push_back((Point) {1.0, 1.0});\n \n int tail = 0;\n for(int i = 1; i < N; i++) {\n int n, d;\n cin >> n >> d;\n double x = xx[n] + vx[d];\n double y = yy[n] + vy[d];\n xx[i] = x, yy[i] = y;\n \n pp.push_back((Point) {x, y});\n pp.push_back((Point) {x + 1, y});\n pp.push_back((Point) {x, y + 1});\n pp.push_back((Point) {x + 1, y + 1});\n }\n for(int i = 0; i < pp.size(); i++) {\n k[i] = pp[i];\n }\n int m = monotone(pp.size(), k, ch);\n double ret = smallRect(m, ch);\n printf(\"%.8lf\\n\", ret);\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 24216, "score_of_the_acc": -0.6334, "final_rank": 8 }, { "submission_id": "aoj_2804_2015381", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb push_back\n#define INF (1e10+1)\n//#define INF (1LL<<59)\n\n\n#define OUT 0\n#define ON 1\n#define IN 2\n#define EPS (1e-10)\nclass P{ //???\npublic:\n\tdouble x,y;\n\t\n\tP(double _x=0,double _y=0):x(_x),y(_y){};\n\tP operator + (const P &p )const{ return P( x+p.x , y+p.y ); } //??????\n\tP operator - (const P &p )const{ return P( x-p.x , y-p.y ); } //??????\n\tP operator * (const double k )const{ return P( x*k , y*k ); } //??????\n\tP operator / (const double k )const{ return P( x/k , y/k ); } //??????\n\t\n\tbool operator == (const P &p){ return ( fabs(x-p.x)<EPS && fabs(y-p.y)<EPS ); }\n\tbool operator < (const P &p) const{ return ( x!=p.x ? x<p.x:y<p.y ); }\n\t\n\tdouble norm(){ return x*x+y*y; } //?????????\n\tdouble abs() { return sqrt(norm()); } //??§??????\n\tvoid normalize() {double d = sqrt(x*x+y*y); x /= d; y /= d;}\t//??£??????\n};\nstruct C{P p;double r;}; //???\nstruct S{P p1,p2;}; //??????\ntypedef vector<P> Polygon; //????§???¢\ntypedef P Vector; //????????????\ntypedef S L; //??´???\n\ndouble norm (P p) { return p.norm(); }\ndouble abs (P p) { return p.abs(); }\ndouble dot (Vector a,Vector b) { return a.x*b.x+a.y*b.y; }\ndouble cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; }\ndouble sqDist(P a, P b) {return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}\ndouble dist (P a, P b) {return sqrt(sqDist(a,b));}\nVector vec(S a) {return P(a.p2.x-a.p1.x,a.p2.y-a.p1.y);}\n\n\n//?????? verified AOJ0068,QUPC-G\n//???????????§??????\nbool cmp_x(const P& p, const P& q){\n\tif(p.x != q.x)return p.x<q.x;\n\treturn p.y<q.y;\n}\n\n//??????????±???????\nvector<P> convex_hull(vector<P> ps){\n\tint n = ps.size();\n\tsort(all(ps),cmp_x);\n\tint k=0; //?????????????????°\n\tvector<P> qs(n*2); //?§????????????????\n\t//?????´???????????????\n\trep(i,n){\n\t\twhile( k>1 && cross((qs[k-1]-qs[k-2]) , (ps[i]-qs[k-1]))<=0 ) k--;\n\t\tqs[k++]=ps[i];\n\t}\n\t//?????´???????????????\n\tfor(int i=n-2, t=k;i>=0;i--){\n\t\twhile( k>t && cross((qs[k-1]-qs[k-2]) , (ps[i]-qs[k-1]))<=0 ) k--;\n\t\tqs[k++]=ps[i];\n\t}\n\tqs.resize(k-1);\n\treturn qs;\n}\n\n\n\ndouble solveLR(vector<P> ps,S l){\n\tdouble mini=INF;\n\tdouble maxi=-INF;\n\t\n\trep(i,ps.size()){\n\t\tdouble res = dot(l.p2-l.p1,ps[i]-l.p1)/abs(l.p2-l.p1);\n\t\tmini = min(res,mini);\n\t\tmaxi = max(res,maxi);\n\t}\n\treturn maxi-mini;\n}\n\ndouble solveU(vector<P> ps,S l){\n\tdouble maxi = -INF;\n\trep(i,ps.size()){\n\t\tdouble res = cross(l.p2-l.p1,ps[i]-l.p1)/abs(l.p2-l.p1);\n\t\tmaxi = max(maxi,abs(res));\n\t}\n\treturn maxi;\n}\n\n\nint main(){\n\tint n;\n\tcin>>n;\n\t\n\tvector<P> inp(n);\n\tinp[0] = P(0,0);\n\tfor(int i=1;i<n;i++){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\tif(b==0)\t\tinp[i] = inp[a]+P(-1,0);\n\t\telse if(b==1)\tinp[i] = inp[a]+P(0,-1);\n\t\telse if(b==2)\tinp[i] = inp[a]+P(+1,0);\n\t\telse if(b==3)\tinp[i] = inp[a]+P(0,+1);\n\t}\n\tset<P> ps;\n\trep(i,n){\n\t\tps.insert(inp[i]+P(0,0));\n\t\tps.insert(inp[i]+P(1,0));\n\t\tps.insert(inp[i]+P(0,1));\n\t\tps.insert(inp[i]+P(1,1));\n\t}\n\t\n\tvector<P> arg;\n\tfor(auto &elm:ps)arg.pb(elm);\n\t\n\tvector<P> points = convex_hull(arg);\n\t\n\tdouble ans = INF;\n\t\n\trep(i,points.size()){\n\t\tS line = S{points[i],points[(i+1)%points.size()]};\n\t\t\n\t\tdouble LR = solveLR(points,line);\n\t\tdouble U = solveU(points,line);\n//\t\tcout<<LR<<\" \"<<U<<endl;\n\t\tans = min( ans , LR*U );\n\t}\n\tprintf(\"%.10lf\\n\",ans);\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 29504, "score_of_the_acc": -1.1804, "final_rank": 13 }, { "submission_id": "aoj_2804_2015374", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb push_back\n#define INF (1e9+1)\n//#define INF (1LL<<59)\n\n\n#define OUT 0\n#define ON 1\n#define IN 2\n#define EPS (1e-10)\nclass P{ //???\npublic:\n\tdouble x,y;\n\t\n\tP(double _x=0,double _y=0):x(_x),y(_y){};\n\tP operator + (const P &p )const{ return P( x+p.x , y+p.y ); } //??????\n\tP operator - (const P &p )const{ return P( x-p.x , y-p.y ); } //??????\n\tP operator * (const double k )const{ return P( x*k , y*k ); } //??????\n\tP operator / (const double k )const{ return P( x/k , y/k ); } //??????\n\t\n\tbool operator == (const P &p){ return ( fabs(x-p.x)<EPS && fabs(y-p.y)<EPS ); }\n\tbool operator < (const P &p) const{ return ( x!=p.x ? x<p.x:y<p.y ); }\n\t\n\tdouble norm(){ return x*x+y*y; } //?????????\n\tdouble abs() { return sqrt(norm()); } //??§??????\n\tvoid normalize() {double d = sqrt(x*x+y*y); x /= d; y /= d;}\t//??£??????\n};\nstruct C{P p;double r;}; //???\nstruct S{P p1,p2;}; //??????\ntypedef vector<P> Polygon; //????§???¢\ntypedef P Vector; //????????????\ntypedef S L; //??´???\n\ndouble norm (P p) { return p.norm(); }\ndouble abs (P p) { return p.abs(); }\ndouble dot (Vector a,Vector b) { return a.x*b.x+a.y*b.y; }\ndouble cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; }\ndouble sqDist(P a, P b) {return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}\ndouble dist (P a, P b) {return sqrt(sqDist(a,b));}\nVector vec(S a) {return P(a.p2.x-a.p1.x,a.p2.y-a.p1.y);}\n\n\n//?????? verified AOJ0068,QUPC-G\n//???????????§??????\nbool cmp_x(const P& p, const P& q){\n\tif(p.x != q.x)return p.x<q.x;\n\treturn p.y<q.y;\n}\n\n//??????????±???????\nvector<P> convex_hull(vector<P> ps){\n\tint n = ps.size();\n\tsort(all(ps),cmp_x);\n\tint k=0; //?????????????????°\n\tvector<P> qs(n*2); //?§????????????????\n\t//?????´???????????????\n\trep(i,n){\n\t\twhile( k>1 && cross((qs[k-1]-qs[k-2]) , (ps[i]-qs[k-1]))<=0 ) k--;\n\t\tqs[k++]=ps[i];\n\t}\n\t//?????´???????????????\n\tfor(int i=n-2, t=k;i>=0;i--){\n\t\twhile( k>t && cross((qs[k-1]-qs[k-2]) , (ps[i]-qs[k-1]))<=0 ) k--;\n\t\tqs[k++]=ps[i];\n\t}\n\tqs.resize(k-1);\n\treturn qs;\n}\n\n\n\ndouble solveLR(vector<P> ps,S l){\n\tdouble mini=INF;\n\tdouble maxi=-INF;\n\t\n\trep(i,ps.size()){\n\t\tdouble res = dot(l.p2-l.p1,ps[i]-l.p1)/abs(l.p2-l.p1);\n\t\tmini = min(res,mini);\n\t\tmaxi = max(res,maxi);\n\t}\n\treturn maxi-mini;\n}\n\ndouble solveU(vector<P> ps,S l){\n\tdouble maxi = -INF;\n\trep(i,ps.size()){\n\t\tdouble res = cross(l.p2-l.p1,ps[i]-l.p1)/abs(l.p2-l.p1);\n\t\tmaxi = max(maxi,abs(res));\n\t}\n\treturn maxi;\n}\n\n\nint main(){\n\tint n;\n\tcin>>n;\n\t\n\tvector<P> inp(n);\n\tinp[0] = P(0,0);\n\tfor(int i=1;i<n;i++){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\tif(b==0)\t\tinp[i] = inp[a]+P(-1,0);\n\t\telse if(b==1)\tinp[i] = inp[a]+P(0,-1);\n\t\telse if(b==2)\tinp[i] = inp[a]+P(+1,0);\n\t\telse if(b==3)\tinp[i] = inp[a]+P(0,+1);\n\t}\n\tset<P> ps;\n\trep(i,n){\n\t\tps.insert(inp[i]+P(0,0));\n\t\tps.insert(inp[i]+P(1,0));\n\t\tps.insert(inp[i]+P(0,1));\n\t\tps.insert(inp[i]+P(1,1));\n\t}\n\t\n\tvector<P> arg;\n\tfor(auto &elm:ps)arg.pb(elm);\n\t\n\tvector<P> points = convex_hull(arg);\n\t\n\tdouble ans = INF;\n\t\n\trep(i,points.size()){\n\t\tS line = S{points[i],points[(i+1)%points.size()]};\n\t\t\n\t\tdouble LR = solveLR(points,line);\n\t\tdouble U = solveU(points,line);\n//\t\tcout<<LR<<\" \"<<U<<endl;\n\t\tans = min( ans , LR*U );\n\t}\n\tprintf(\"%.10lf\\n\",ans);\n}", "accuracy": 0.7532467532467533, "time_ms": 130, "memory_kb": 29504, "score_of_the_acc": -1.1304, "final_rank": 15 } ]
aoj_2808_cpp
D: パスワード 問題 AOR イカちゃんは英小文字のみからなる強力なパスワードを作りたいと思っています。 友達から $N$ 個の危険なパスワードの例を教えてもらった AOR イカちゃんは、 以下の条件を全て満たすようなパスワードを作ることにしました。 長さは1文字以上である。 どの危険なパスワードの、どの連続した部分文字列とも異なる。 1, 2 の条件を満たした中で、最も短い文字列である。 1,2,3の条件を満たした中で、辞書順に並べたとき先頭に来る文字列である。 AOR イカちゃんに代わって強力なパスワードを生成するプログラムを書いてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $S_1$ $\vdots$ $S_N$ 1 行目には、文字列の数を表す整数 $N$ が与えられる。 2 行目からの $N$ 行には、文字列 $S_i$ が与えられる。 $|S_i|$ とは文字列の長さであり、1 文字以上である。 $1 \le N \le 100,000$ を満たす。 $1 \le \sum_{1\le i \le N} |S_i| \le 400,000$ を満たす。 文字列は英小文字のみを含む。 出力 答えを 1 行で出力せよ。また、末尾に改行も出力せよ。 サンプル サンプル入力 1 5 password login admin root master サンプル出力 1 b サンプル入力 2 3 abcdefghijklmnopqrstuvwxy qwertyuiopasdfghjklxcvbnm qawsxedcrfvtgbyhnujmikolp サンプル出力 2 z サンプル入力 3 1 abcdefghijklmnopqrstuvwxyz サンプル出力 3 aa
[ { "submission_id": "aoj_2808_10853905", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef unsigned long long ull;\n\nstruct RollingHash\n{\n\tvector<ull> hash, pow;\n\tRollingHash(string s, ull _b = 1000000007)\n\t{\n\t\t_b = _b;\n\t\tint sz = s.length();\n\t\thash.assign(sz + 1, 0);\n\t\tpow.assign(sz + 1, 0);\n\n\t\tpow[0] = 1;\n\t\tfor (int i = 0; i<sz; i++) {\n\t\t\tpow[i + 1] = pow[i] * _b;\n\t\t}\n\t\tfor (int i = 0; i<sz; i++) {\n\t\t\thash[i + 1] = (hash[i] + s[i])*_b;\n\t\t}\n\t}\n\tull get(int l, int r) {\n\t\treturn (hash[r] - hash[l] * pow[r - l]);\n\t}\n};\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N;\n\tcin >> N;\n\tvector<string> S(N);\n\tset<ull> st;\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> S[i];\n\t\tRollingHash rh(S[i]);\n\t\tint n = S[i].size();\n\t\tfor (int l = 0; l <= 4; l++) {\n\t\t\tfor (int i = 0; i + l <= n; i++) {\n\t\t\t\tst.insert(rh.get(i, i + l));\n\t\t\t}\n\t\t}\n\t}\n\tstring s = \"a\";\n\tfor (s[0] = 'a'; s[0] <= 'z'; s[0]++) {\n\t\tull val = RollingHash(s).get(0, 1);\n\t\tif (st.count(val) == 0) {\n\t\t\tcout << s << endl;\n\t\t\treturn 0;\n\t\t}\n\t}\n\ts = \"aa\";\n\tfor (s[0] = 'a'; s[0] <= 'z'; s[0]++) {\n\t\tfor (s[1] = 'a'; s[1] <= 'z'; s[1]++) {\n\t\t\tull val = RollingHash(s).get(0, 2);\n\t\t\tif (st.count(val) == 0) {\n\t\t\t\tcout << s << endl;\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t}\n\ts = \"aaa\";\n\tfor (s[0] = 'a'; s[0] <= 'z'; s[0]++) {\n\t\tfor (s[1] = 'a'; s[1] <= 'z'; s[1]++) {\n\t\t\tfor (s[2] = 'a'; s[2] <= 'z'; s[2]++) {\n\t\t\t\tull val = RollingHash(s).get(0, 3);\n\t\t\t\tif (st.count(val) == 0) {\n\t\t\t\t\tcout << s << endl;\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\ts = \"aaaa\";\n\tfor (s[0] = 'a'; s[0] <= 'z'; s[0]++) {\n\t\tfor (s[1] = 'a'; s[1] <= 'z'; s[1]++) {\n\t\t\tfor (s[2] = 'a'; s[2] <= 'z'; s[2]++) {\n\t\t\t\tfor (s[3] = 'a'; s[3] <= 'z'; s[3]++) {\n\t\t\t\t\tull val = RollingHash(s).get(0, 4);\n\t\t\t\t\tif (st.count(val) == 0) {\n\t\t\t\t\t\tcout << s << endl;\n\t\t\t\t\t\treturn 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 29276, "score_of_the_acc": -0.3155, "final_rank": 3 }, { "submission_id": "aoj_2808_9117772", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define ll long long\n\n#define rep(i, n) for (ll i = 0; i < n; ++i)\n#define all(v) begin(v), end(v)\n// #define BIT(n) (1LL << (n))\n#define MAX(type) numeric_limits<type>::max()\n#define MIN(type) numeric_limits<type>::min()\n#define yes cout << \"Yes\" << endl\n#define no cout << \"No\" << endl\n#define pb push_back\n#define mp make_pair\n#define fir first\n#define sec second\ntemplate <class T> using vec = vector<T>;\n\nsigned main() {\n int N;\n cin >> N;\n vec<string> S(N);\n rep(i, N) {\n cin >> S[i];\n }\n\n // 8文字以下の文字列は26+26^2+...+26^8=216'871'231'382 > 160'000'000'000\n // なので8文字以下\n\n vec<unordered_set<string>> st(8);\n rep(i, N) {\n rep(j, 8) {\n rep(k, max(0LL,(int) S[i].length() - j)) {\n st[j].insert(S[i].substr(k, j+1));\n }\n }\n }\n\n auto num_to_str = [&](int len, ll num) {\n string ans(len+1, 'a');\n rep(i, len+1) {\n ans[i] = 'a' + num % 26;\n num /= 26;\n }\n reverse(all(ans));\n return ans;\n };\n// rep(i, 100) cout << num_to_str(3, i) << endl;\n\n rep(i, 8) {\n ll pow26 = 1;\n rep(j, i+1) pow26 *= 26;\n if(pow26 == st[i].size()) {\n continue;\n } else {\n rep(j, pow26) {\n // cout << \"j = \" << j << \", str = \" << num_to_str(i, j) << endl;\n if(!st[i].count(num_to_str(i, j))) {\n cout << num_to_str(i, j) << endl;\n return 0;\n }\n }\n }\n }\n\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 147056, "score_of_the_acc": -1.7143, "final_rank": 15 }, { "submission_id": "aoj_2808_9117763", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define ll long long\n\n#define rep(i, n) for (ll i = 0; i < n; ++i)\n#define all(v) begin(v), end(v)\n// #define BIT(n) (1LL << (n))\n#define MAX(type) numeric_limits<type>::max()\n#define MIN(type) numeric_limits<type>::min()\n#define yes cout << \"Yes\" << endl\n#define no cout << \"No\" << endl\n#define pb push_back\n#define mp make_pair\n#define fir first\n#define sec second\ntemplate <class T> using vec = vector<T>;\n\nsigned main() {\n int N;\n cin >> N;\n vec<string> S(N);\n rep(i, N) {\n cin >> S[i];\n }\n\n // 8文字以下の文字列は26+26^2+...+26^8=216'871'231'382 > 160'000'000'000\n // なので8文字以下\n\n /*\n struct Vert {\n Vert* parent;\n map<char, Vert*> children;\n char content;\n public:\n Vert(Vert* p, map<char, vec<Vert*>> child, char c): parent(p), children(child), content(c) {}\n };\n deque<Vert*> verts;\n rep(i, N) {\n Vert* parent = nullptr;\n rep(j, 8) {\n Vert* v = new Vert(parent, {}, S[i][j]);\n verts.push_back(v);\n parent->children[S[i][j];\n }\n }\n*/\n vec<unordered_set<string>> st(8);\n rep(i, N) {\n // cout << S[i].length() << endl;\n rep(j, 8) {\n rep(k, max(0LL,(int) S[i].length() - j)) {\n st[j].insert(S[i].substr(k, j+1));\n // cout << \"i : \" << i << \", j : \" << j << \", k : \" << k << endl;\n // cout << \"insert : \" << S[i].substr(k, j+1) << endl;\n }\n }\n }\n // for(auto s : st) cout << s << endl;\n\n /*\n auto get_num = [&](string s) {\n int ans = 0;\n rep(i, s.size()) {\n ans += pow(26, i) * (s[i] - 'a');\n }\n return ans;\n };\n */\n auto num_to_str = [&](int len, ll num) {\n string ans(len+1, 'a');\n rep(i, len+1) {\n ans[i] = 'a' + num % 26;\n num /= 26;\n }\n return ans;\n };\n /*\n auto is_ok = [&](int len, int loc){\n int num = 0;\n rep(i, s[len][loc].size()) {\n num += (s[len][loc][i] - 'a' + 1) * pow(26, i);\n }\n // cout << \"loc = \" << loc << \", num = \" << num << endl;\n return loc+1 == num;\n };\n auto get_str_at = [](int len, int loc){\n string s;\n rep(i, len + 1) {\n s.push_back('a' + loc % 26);\n loc /= 26;\n }\n return s;\n };\n */\n\n rep(i, 8) {\n // cout << \"i = \" << i << \", size = \" << st[i].size() << endl;\n ll pow26 = 1;\n rep(j, i+1) pow26 *= 26;\n if(pow26 == st[i].size()) {\n continue;\n } else {\n /*\n int ok = -1, ng = st[i].size();\n while(ng - ok > 1) {\n int mid = (ng + ok) / 2;\n if(is_ok(i, mid)) ok = mid;\n else ng = mid;\n }\n cout << get_str_at(i, ng) << endl;\n break;\n */\n rep(j, pow26) {\n // cout << \"j = \" << j << \", str = \" << num_to_str(i, j) << endl;\n if(!st[i].count(num_to_str(i, j))) {\n cout << num_to_str(i, j) << endl;\n return 0;\n }\n }\n }\n }\n /*\n */\n\n}", "accuracy": 0.08333333333333333, "time_ms": 400, "memory_kb": 146744, "score_of_the_acc": -1.4025, "final_rank": 20 }, { "submission_id": "aoj_2808_9117754", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MOD2=998244353;\nconst ld EPS=1e-9;\nconst ld PI=3.14159265358979323846;\nconst ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};\n#define all(x) (x).begin(), (x).end()\n#define pb push_back\n#define eb emplace_back\n#define mp make_pair\n#define fi first\n#define se second\n#define rep(i, n) rep2(i, 0, n)\n#define rep2(i, m, n) for (int i = m; i < (n); i++)\n#define per(i, b) per2(i, 0, b)\n#define per2(i, a, b) for (int i = int(b) - 1; i >= int(a); i--)\n#define ALL(c) (c).begin(), (c).end()\n#define SZ(x) ((int)(x).size())\n#define nep(x) next_permutation(ALL(x))\ntemplate <class T>\nusing V = vector<T>;\ntemplate <class T>\nusing VV = V<V<T>>;\ntemplate <class T>\nusing VVV = V<VV<T>>;\ntemplate <class T>\nusing VVVV = V<VVV<T>>;\ntemplate <class T>\nusing V_p = V<pair<T,T>>;\ntemplate <class T>\nusing n_pq = priority_queue<T>;\ntemplate <class T>\nusing r_pq = priority_queue<T,vector<T>,greater<T>>;\ntemplate <class T>ostream &operator<<(ostream &o,const vector<T>&v)\n{o<<\"{\";for(int i=0;i<(int)v.size();i++)o<<(i>0?\", \":\"\")<<v[i];o<<\"}\";return o;}\ntemplate <class T>ostream &operator<<(ostream &o,const deque<T>&v)\n{o<<\"{\";for(int i=0;i<(int)v.size();i++)o<<(i>0?\", \":\"\")<<v[i];o<<\"}\";return o;}\ntemplate <class T>ostream &operator<<(ostream &o,const set<T>&v)\n{o<<\"{\";for(auto i:v)o<<\" \"<<i;o<<\"}\";return o;}\nll pow_ll(ll x, ll n) {\n long long ret = 1;\n while (n > 0) {\n if (n & 1) ret *= x; // n の最下位bitが 1 ならば x^(2^i) をかける\n x *= x;\n n >>= 1; // n を1bit 左にずらす\n }\n return ret;\n}\n\n\n////////////////////////////////////////////////////\n\nV<string> s_l;\nV<string> s_l_2;\nV<string> s_l_3;\nV<string> s_l_4;\nvoid solve1(string s) {\n\n if (s.length() == 1) {\n s_l.pb(s);\n return;\n }\n rep(i,26) {\n solve1(s+char('a' + i));\n }\n}\n\nvoid solve2(string s) {\n\n if (s.length() == 2) {\n s_l_2.pb(s);\n return;\n }\n rep(i,26) {\n solve2(s+char('a' + i));\n }\n}\n\nvoid solve3(string s) {\n\n if (s.length() == 3) {\n s_l_3.pb(s);\n return;\n }\n rep(i,26) {\n solve3(s+char('a' + i));\n }\n}\n\nvoid solve4(string s) {\n\n if (s.length() == 4) {\n s_l_4.pb(s);\n return;\n }\n rep(i,26) {\n solve4(s+char('a' + i));\n }\n}\n\nint main() {\n solve1(\"\");\n solve2(\"\");\n solve3(\"\");\n solve4(\"\");\n sort(ALL(s_l));\n sort(ALL(s_l_2));\n sort(ALL(s_l_3));\n sort(ALL(s_l_4));\n\n s_l.insert(s_l.end(), s_l_2.begin(), s_l_2.end());\n s_l.insert(s_l.end(), s_l_3.begin(), s_l_3.end());\n s_l.insert(s_l.end(), s_l_4.begin(), s_l_4.end());\n \n\n ll N,tmp;\n ll s_size;\n unordered_set<string> _set = {}; \n cin >> N;\n string T;\n rep(j,N) {\n\n string S;\n cin >> S;\n s_size = S.length();\n if (s_size+1>5) {\n tmp = 5;\n }\n else {\n tmp = s_size+1;\n }\n rep2(k,1,tmp){\n\n rep(st,s_size-k+1) {\n T = S.substr(st,k);\n _set.insert(T);\n\n }\n\n }\n }\n\n for (auto &tmp_st:s_l) {\n if (_set.count(tmp_st) == 0) {\n cout << tmp_st << endl;\n break;\n }\n }\n\n\n\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 64760, "score_of_the_acc": -0.5922, "final_rank": 8 }, { "submission_id": "aoj_2808_9117611", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstring>\n#include <algorithm>\n#include <unordered_map>\nusing namespace std;\nint n;\nstring s[100005];\nunordered_map<string, bool> mp;\ntypedef long long ll;\nint main()\n{\n cin >> n;\n for (int i = 1; i <= n; ++i)\n {\n cin >> s[i];\n for (int j = 0; j < s[i].length(); ++j)\n for (int k = 1; k <= 4; ++k)\n {\n string a = \"\";\n for (int l = j; l < j + k; ++l)\n a += s[i][l];\n mp[a] = 1;\n }\n }\n for (int a = 1; a <= 26; ++a)\n {\n string tmp = \"\";\n if (a)\n tmp += a + 'a' - 1;\n if (!mp[tmp])\n {\n cout << tmp << endl;\n return 0;\n }\n }\n for (int a = 1; a <= 26; ++a)\n for (int b = 1; b <= 26; ++b)\n {\n string tmp = \"\";\n if (a)\n tmp += a + 'a' - 1;\n if (b)\n tmp += b + 'a' - 1;\n if (!mp[tmp])\n {\n cout << tmp << endl;\n return 0;\n }\n }\n for (int a = 1; a <= 26; ++a)\n for (int b = 1; b <= 26; ++b)\n for (int c = 1; c <= 26; ++c)\n {\n string tmp = \"\";\n if (a)\n tmp += a + 'a' - 1;\n if (b)\n tmp += b + 'a' - 1;\n if (c)\n tmp += c + 'a' - 1;\n if (!mp[tmp])\n {\n cout << tmp << endl;\n return 0;\n }\n }\n for (int a = 1; a <= 26; ++a)\n for (int b = 1; b <= 26; ++b)\n for (int c = 1; c <= 26; ++c)\n for (int d = 1; d <= 26; ++d)\n {\n string tmp = \"\";\n if (a)\n tmp += a + 'a' - 1;\n if (b)\n tmp += b + 'a' - 1;\n if (c)\n tmp += c + 'a' - 1;\n if (d)\n tmp += d + 'a' - 1;\n if (!mp[tmp])\n {\n cout << tmp << endl;\n return 0;\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 36124, "score_of_the_acc": -0.3286, "final_rank": 4 }, { "submission_id": "aoj_2808_9117586", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n//高速化 \nstruct ponjuice{ponjuice(){cin.tie(0);ios::sync_with_stdio(0);cout<<fixed<<setprecision(20);}}PonJuice;\n//#define endl '\\n' //インタラクティブ問題の時は消す\n\n//型\nusing ll = long long;\nusing ld = long double;\ntemplate<class T>using vc = vector<T>; template<class T>using vvc = vc<vc<T>>; template<class T>using vvvc = vvc<vc<T>>;\nusing vi = vc<int>; using vvi = vvc<int>; using vvvi = vvvc<int>;\nusing vl = vc<ll>; using vvl = vvc<ll>; using vvvl = vvvc<ll>;\nusing pi = pair<int, int>; using pl = pair<ll, ll>;\nusing ull = unsigned ll;\ntemplate<class T>using priq = priority_queue<T>;\ntemplate<class T>using priqg = priority_queue<T, vc<T>, greater<T>>;\n\n// for文\n#define overload4(a, b, c, d, e, ...) e\n#define rep1(n) for(ll i = 0; i < n; i++)\n#define rep2(i, n) for(ll i = 0; i < n; i++)\n#define rep3(i, a, b) for(ll i = a; i < b; i++)\n#define rep4(i, a, b, step) for(ll i = a; i < b; i+= step)\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define per1(n) for(ll i = n-1; i >= 0; i--)\n#define per2(i, n) for(ll i = n-1; i >= 0; i--)\n#define per3(i, a, b) for(ll i = b-1; i >= a; i--)\n#define per4(i, a, b, step) for(ll i = b-1; i >= a; i-= step)\n#define per(...) overload4(__VA_ARGS__, per4, per3, per2, per1)(__VA_ARGS__)\n#define fore1(a) for(auto&& i : a)\t\n#define fore2(i,a) for(auto&& i : a)\n#define fore3(x,y,a) for(auto&& [x, y] : a)\n#define fore4(x,y,z,a) for(auto&& [x, y, z] : a)\n#define fore(...) overload4(__VA_ARGS__, fore4, fore3, fore2, fore1)(__VA_ARGS__)\n\n//関数\n#define mp make_pair\n#define mt make_tuple\n#define a first\n#define b second\n#define pb emplace_back\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define si(x) (ll)(x).size()\ntemplate<class S, class T>inline bool chmax(S& a, T b){return a < b && ( a = b , true);}\ninline bool chmin(string& a, string b){\n if(a.size() > b.size()) {\n a = b;\n return true;\n }\n return a > b && ( a = b , true);\n}\ntemplate<class T>void uniq(vc<T>&a){sort(all(a));a.erase(unique(all(a)),a.end());}\ntemplate<class T>vc<T> operator++(vc<T>&v,signed){auto res = v;fore(e,v)e++;return res;}\ntemplate<class T>vc<T> operator--(vc<T>&v,signed){auto res = v;fore(e,v)e--;return res;}\ntemplate<class T>vc<T> operator++(vc<T>&v){fore(e,v)e++;return v;}\ntemplate<class T>vc<T> operator--(vc<T>&v){fore(e,v)e--;return v;}\n\n//入出力(operator)\ntemplate<class S,class T>istream&operator>>(istream&is,pair<S,T>&a){is>>a.a>>a.b;return is;}\ntemplate<class T>istream&operator>>(istream&is,vc<T>&a){fore(e,a)is>>e;return is;}\n\ntemplate<class S,class T>ostream&operator<<(ostream&os,pair<S,T>&a){return os<<a.a<<\" \"<<a.b;}\ntemplate<class T>ostream&operator<<(ostream&os,set<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,multiset<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class S,class T>ostream&operator<<(ostream&os,map<S,T>&a){fore(x,y,a){os<<x<<\" \"<<y<<\"\\n\";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,unordered_set<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class S,class T>ostream&operator<<(ostream&os,unordered_map<S,T>&a){fore(x,y,a){os<<x<<\" \"<<y<<\"\\n\";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,vc<T>&a){fore(e,a)os<<e<<\" \";return os;}\ntemplate<class T>ostream&operator<<(ostream&os,vvc<T>&a){fore(e,a)os<<e<<\"\\n\";return os;}\n\n//入出力(関数)\nvi readvi(ll n){vi a(n);cin>>a;return a;}\nvl readvl(ll n){vl a(n);cin>>a;return a;}\nvvi readg(ll n,ll m,bool bidirected=true){vvi g(n);rep(i,m){ll a,b;cin>>a>>b;a--;b--;g[a].pb(b);if(bidirected)g[b].pb(a);}return g;}\nvvc<pi>readgc(ll n,ll m,bool bidirected=true){vvc<pi> g(n);rep(i,m){ll a,b,c;cin>>a>>b>>c;a--;b--;g[a].pb(b,c);if(bidirected)g[b].pb(a,c);}return g;}\nvvi readt(ll n,bool bidirected=true){return readg(n,n-1,bidirected);}\nvvc<pi> readtc(ll n,bool bidirected=true){return readgc(n,n-1,bidirected);}\n\ninline void yes(){cout << \"Yes\\n\";}\ninline void no(){cout << \"No\\n\";}\ninline void yesno(bool y = true){if(y)yes();else no();}\n\n//定数\nconstexpr ll mod = 998244353;\nconstexpr ll minf=-(1<<29);\nconstexpr ll inf=(1<<29);\nconstexpr ll MINF=-(1LL<<60);\nconstexpr ll INF=(1LL<<60);\nconstexpr ld EPS = 1e-8;\nconst ld PI = acosl(-1);\n#define equals(a, b) (abs((a) - (b)) < EPS)\nconst int dx[4] ={-1, 0, 1, 0};\nconst int dy[4] ={ 0, 1, 0,-1};\nconst int dx8[8] ={-1,-1,-1, 0, 1, 1, 1, 0};\nconst int dy8[8] ={-1, 0, 1, 1, 1, 0,-1,-1};\n\nvoid solve();\nint main() {\n\tint t = 1;\n // cin >>t;\n while(t--)solve();\n}\n\n\n\nvoid solve(){\n int n;\n cin >> n;\n string s;\n set<string> st;\n rep(i,n){\n cin >> s;\n rep(j,si(s)){\n string t = \"\";\n rep(k,5){\n if(j + k >= si(s))break;\n t += s[(j + k)];\n st.insert(t);\n }\n }\n }\n\n\n string ans = \"xxxxxxxx\";\n rep(i1,26){\n string t1 = string(1, 'a' + i1);\n if(st.find(t1) == st.end()) chmin(ans,t1);\n rep(i2,26){\n if(ans.size() < 2)break;\n string t2 = t1 + char('a' + i2);\n if(st.find(t2) == st.end()) chmin(ans,t2);\n rep(i3,26){\n if(ans.size() < 3)break;\n string t3 = t2 + char('a' + i3);\n if(st.find(t3) == st.end()) chmin(ans,t3);\n rep(i4,26){\n if(ans.size() < 4)break;\n string t4 = t3 + char('a' + i4);\n if(st.find(t4) == st.end()) chmin(ans,t4);\n rep(i5,26){\n if(ans.size() < 5)break;\n string t5 = t4 + char('a' + i5);\n if(st.find(t5) == st.end()) chmin(ans,t5);\n }\n }\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 900, "memory_kb": 67392, "score_of_the_acc": -1.4324, "final_rank": 14 }, { "submission_id": "aoj_2808_9117578", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\nmap<string, ll> mp;\n\nbool ok = false;\nstring ans = \"\";\nvoid dfs(ll a, ll b){\n if(a == b){\n if(mp[ans] == 0){\n ok = true;\n }\n return;\n }\n if (ok) return;\n REP(i, 26){\n ans += 'a' + i;\n dfs(a + 1, b);\n if (ok) return;\n ans.pop_back();\n }\n}\nint main(){\n ll n;\n cin >> n;\n REP(i, n){\n string s;\n cin >> s;\n REP(j, 4){\n if((ll)s.size() - j <= 0)continue;\n REP(k, (ll)s.size() - j){\n mp[s.substr(k, j + 1)]++;\n }\n }\n }\n bool ok = false;\n REPO(i, 4){\n if (ok) break;\n dfs(0, i);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 35956, "score_of_the_acc": -0.5417, "final_rank": 5 }, { "submission_id": "aoj_2808_9117526", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\nmap<string, ll> mp;\n\nbool ok = false;\nstring ans = \"\";\nvoid dfs(ll a, ll b){\n if(a == b){\n if(mp[ans] == 0){\n ok = true;\n }\n return;\n }\n if (ok) return;\n REP(i, 26){\n ans += 'a' + i;\n dfs(a + 1, b);\n if (ok) return;\n ans.pop_back();\n }\n}\nint main(){\n ll n;\n cin >> n;\n REP(i, n){\n string s;\n cin >> s;\n REP(j, 4){\n REP(k, s.size() - j){\n mp[s.substr(k, j + 1)]++;\n }\n }\n }\n bool ok = false;\n REPO(i, 4){\n if (ok) break;\n dfs(0, i);\n }\n cout << ans << endl;\n}", "accuracy": 0.25, "time_ms": 220, "memory_kb": 35748, "score_of_the_acc": -0.3973, "final_rank": 16 }, { "submission_id": "aoj_2808_5967060", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nconst vector<int> dy={-1,0,1,0},dx={0,-1,0,1};\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(20);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\ntemplate<class T> struct RollingHash{\n using ull=unsigned long long int;\n const ull M=(1ull<<61)-1;\n const ull mask30 = (1ull << 30) - 1;\n const ull mask31 = (1ull << 31) - 1;\n const ull mask61 =M;\n vector<ull> hash,pows;\n ull base;\n\n // mod 2^61-1\n ull cal_mod(ull x){\n ull xu=(x>>61);\n ull xd=(x&mask61);\n ull res=xu+xd;\n if(res>=M)res-=M;\n return res;\n }\n\n //a*b mod 2^61-1\n ull mul(ull a,ull b){\n ull au=(a>>31),bu=(b>>31);\n ull ad=(a&mask31),bd=(b&mask31);\n ull mid=ad*bu+au*bd;\n ull midu=(mid>>30);\n ull midd=(mid&mask30);\n return cal_mod(au*bu*2+midu+(midd<<31)+ad*bd);\n }\n\n\n RollingHash(const T &a,ull base):hash(a.size()+1,0),pows(a.size()+1,1),base(base){\n\t\tfor(int i = 0; i <int (a.size()); i++) {\n pows[i + 1] =mul(pows[i], base);\n hash[i + 1] =cal_mod(mul(hash[i], base) + ull(a[i]));\n if(hash[i+1]>=M)hash[i+1]-=M;\n\t\t}\n }\n ull get_hash(const T &a){\n ull res=0;\n \tfor(int i = 0; i <int (a.size()); i++) {\n res =cal_mod(mul(res, base) + ull(a[i]));\n if(res>=M)res-=M;\n\t\t}\n return res;\n }\n //[b1,b1+len)と[b2,b2+len)が一致するかどうか\n bool match(int b1, int b2,int len){\n ull h1 = cal_mod(hash[b1+len]+M-mul(hash[b1], pows[len]));\n ull h2 = cal_mod(hash[b2 + len]+M-mul(hash[b2],pows[len]));\n return (h1 == h2);\n }\n //[l,l+len)のハッシュ値\n ull get(int l, int len){\n return cal_mod(hash[l+len] + M - mul(hash[l], pows[len]));\n }\n};\nconstexpr int Hash_Num=2;\nstruct base_t{\n int use[Hash_Num];\n int &operator[](int i){return use[i];}\n base_t(){\n mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());\n for(int i=0;i<Hash_Num;i++)use[i]=rnd()%10000+26;\n }\n}bases;\nusing ull=unsigned long long;\nint main(){\n int n;\n cin>>n;\n string s;\n cin>>s;\n for(int i=0;i<n;i++){\n string t;cin>>t;\n s+=t;\n s.push_back('$');\n }\n RollingHash<string> rh(s,bases[0]);\n int m=s.size();\n V<ull> v;\n v.emplace_back((1ull<<62)-1);\n for(int i=0;i<m;i++){\n string t=\"\";\n for(int j=0;j<4&&i+j<m;j++){\n v.emplace_back(rh.get(i,j+1));\n }\n }\n sort(all(v));\n v.erase(unique(all(v)),v.end());\n string ans=\"zzzzz\";\n auto calc=[&](string &tmp)->void{\n if(ans.size()>tmp.size())ans=tmp;\n else chmin(ans,tmp);\n };\n string tmp=\"\";\n for(char i='a';i<='z';i++){\n tmp.push_back(i);\n ull h=rh.get_hash(tmp);\n if(*lower_bound(all(v),h)!=h)calc(tmp);\n for(char j='a';j<='z';j++){\n tmp.push_back(j);\n h=rh.get_hash(tmp); \n if(*lower_bound(all(v),h)!=h)calc(tmp);\n for(char k='a';k<='z';k++){\n tmp.push_back(k);\n h=rh.get_hash(tmp); \n if(*lower_bound(all(v),h)!=h)calc(tmp); \n for(char r='a';r<='z';r++){\n tmp.push_back(r);\n h=rh.get_hash(tmp); \n if(*lower_bound(all(v),h)!=h)calc(tmp); \n tmp.pop_back(); \n }\n tmp.pop_back(); \n } \n tmp.pop_back(); \n }\n tmp.pop_back(); \n }\n cout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 29404, "score_of_the_acc": -0.2212, "final_rank": 1 }, { "submission_id": "aoj_2808_5152471", "code_snippet": "// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ld = long double;\nusing pll = pair<ll, ll>;\nusing pii = pair<int, int>;\nusing vvl = vector<vector<ll>>;\nusing vvi = vector<vector<int>>;\nusing vvpll = vector<vector<pll>>;\n#define rep(i, a, b) for (ll i=(a); i<(b); i++)\n#define rrep(i, a, b) for (ll i=(a); i>(b); i--)\n#define pb push_back\n#define tostr to_string\n#define ALL(A) A.begin(), A.end()\n#define elif else if\n// constexpr ll INF = LONG_LONG_MAX;\nconstexpr ll INF = 1e18;\nconstexpr ll MOD = 1000000007;\n\nconst string digits = \"0123456789\";\nconst string ascii_lowercase = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ascii_uppercase = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string ascii_letters = ascii_lowercase + ascii_uppercase;\n\ntemplate<typename T> vector<vector<T>> list2d(int N, int M, T init) { return vector<vector<T>>(N, vector<T>(M, init)); }\ntemplate<typename T> vector<vector<vector<T>>> list3d(int N, int M, int L, T init) { return vector<vector<vector<T>>>(N, vector<vector<T>>(M, vector<T>(L, init))); }\ntemplate<typename T> vector<vector<vector<vector<T>>>> list4d(int N, int M, int L, int O, T init) { return vector<vector<vector<vector<T>>>>(N, vector<vector<vector<T>>>(M, vector<vector<T>>(L, vector<T>(O, init)))); }\n\nvector<ll> LIST(ll N) { vector<ll> A(N); rep(i, 0, N) cin >> A[i]; return A; }\n\nvoid print(ld out) { cout << fixed << setprecision(15) << out << '\\n'; }\nvoid print(double out) { cout << fixed << setprecision(15) << out << '\\n'; }\ntemplate<typename T> void print(T out) { cout << out << '\\n'; }\ntemplate<typename T1, typename T2> void print(pair<T1, T2> out) { cout << out.first << ' ' << out.second << '\\n'; }\ntemplate<typename T> void print(vector<T> A) { rep(i, 0, A.size()) { cout << A[i]; cout << (i == A.size()-1 ? '\\n' : ' '); } }\ntemplate<typename T> void print(set<T> S) { vector<T> A(S.begin(), S.end()); print(A); }\n\nvoid Yes() { print(\"Yes\"); }\nvoid No() { print(\"No\"); }\nvoid YES() { print(\"YES\"); }\nvoid NO() { print(\"NO\"); }\n\nll floor(ll a, ll b) { if (a < 0) { return (a-b+1) / b; } else { return a / b; } }\nll ceil(ll a, ll b) { if (a >= 0) { return (a+b-1) / b; } else { return a / b; } }\npll divmod(ll a, ll b) { ll d = a / b; ll m = a % b; return {d, m}; }\ntemplate<typename T> bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; }\ntemplate<typename T> bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; }\n\ntemplate<typename T> T sum(vector<T> A) { T res = 0; for (T a: A) res += a; return res; }\ntemplate<typename T> T max(vector<T> A) { return *max_element(ALL(A)); }\ntemplate<typename T> T min(vector<T> A) { return *min_element(ALL(A)); }\n\nll toint(string s) { ll res = 0; for (char c : s) { res *= 10; res += (c - '0'); } return res; }\nint toint(char num) { return num - '0'; }\nchar tochar(int num) { return '0' + num; }\nint ord(char c) { return (int)c; }\nchar chr(int a) { return (char)a; }\n\nll pow(ll x, ll n) { ll res = 1; rep(_, 0, n) res *= x; return res; }\nll pow(ll x, ll n, int mod) { ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; }\n\nint popcount(ll S) { return __builtin_popcountll(S); }\nll gcd(ll a, ll b) { return __gcd(a, b); }\nll lcm(ll x, ll y) { return (x * y) / gcd(x, y); }\n\ntemplate<typename T> int bisect_left(vector<T> &A, T val) { return lower_bound(ALL(A), val) - A.begin(); }\ntemplate<typename T> int bisect_right(vector<T> &A, T val) { return upper_bound(ALL(A), val) - A.begin(); }\n\nstring dton(ll num, ll n, char base='0') {\n string res;\n while (abs(num) > 0) {\n ll m = num % abs(n);\n num -= m;\n res += base+m;\n num /= n;\n }\n reverse(ALL(res));\n if (res != \"\") {\n return res;\n } else {\n return res+base;\n }\n}\n\nstring replace(string str, const string& replace, const string& with) {\n if(!replace.empty()) {\n size_t pos = 0;\n while ((pos = str.find(replace, pos)) != string::npos) {\n str.replace(pos, replace.length(), with);\n pos += with.length();\n }\n }\n return str;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll N;\n cin >> N;\n set<string> se;\n rep(_, 0, N) {\n string s;\n cin >> s;\n rep(d, 1, 5) {\n if (s.size() < d) break;\n rep(i, 0, s.size()-d+1) {\n se.insert(s.substr(i, d));\n }\n }\n }\n\n rep(n, 1, 5) {\n vector<string> v;\n auto rec = [&](auto&& f, string cur, ll i) {\n if (i == n) {\n v.pb(cur);\n return;\n }\n for (char c : ascii_lowercase) {\n f(f, cur+c, i+1);\n }\n };\n rec(rec, \"\", 0);\n for (auto s : v) {\n if (!se.count(s)) {\n print(s);\n return 0;\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 52720, "score_of_the_acc": -0.7088, "final_rank": 9 }, { "submission_id": "aoj_2808_5152461", "code_snippet": "// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ld = long double;\nusing pll = pair<ll, ll>;\nusing pii = pair<int, int>;\nusing vvl = vector<vector<ll>>;\nusing vvi = vector<vector<int>>;\nusing vvpll = vector<vector<pll>>;\n#define rep(i, a, b) for (ll i=(a); i<(b); i++)\n#define rrep(i, a, b) for (ll i=(a); i>(b); i--)\n#define pb push_back\n#define tostr to_string\n#define ALL(A) A.begin(), A.end()\n#define elif else if\n// constexpr ll INF = LONG_LONG_MAX;\nconstexpr ll INF = 1e18;\nconstexpr ll MOD = 1000000007;\n\nconst string digits = \"0123456789\";\nconst string ascii_lowercase = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ascii_uppercase = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string ascii_letters = ascii_lowercase + ascii_uppercase;\n\ntemplate<typename T> vector<vector<T>> list2d(int N, int M, T init) { return vector<vector<T>>(N, vector<T>(M, init)); }\ntemplate<typename T> vector<vector<vector<T>>> list3d(int N, int M, int L, T init) { return vector<vector<vector<T>>>(N, vector<vector<T>>(M, vector<T>(L, init))); }\ntemplate<typename T> vector<vector<vector<vector<T>>>> list4d(int N, int M, int L, int O, T init) { return vector<vector<vector<vector<T>>>>(N, vector<vector<vector<T>>>(M, vector<vector<T>>(L, vector<T>(O, init)))); }\n\nvector<ll> LIST(ll N) { vector<ll> A(N); rep(i, 0, N) cin >> A[i]; return A; }\n\nvoid print(ld out) { cout << fixed << setprecision(15) << out << '\\n'; }\nvoid print(double out) { cout << fixed << setprecision(15) << out << '\\n'; }\ntemplate<typename T> void print(T out) { cout << out << '\\n'; }\ntemplate<typename T1, typename T2> void print(pair<T1, T2> out) { cout << out.first << ' ' << out.second << '\\n'; }\ntemplate<typename T> void print(vector<T> A) { rep(i, 0, A.size()) { cout << A[i]; cout << (i == A.size()-1 ? '\\n' : ' '); } }\ntemplate<typename T> void print(set<T> S) { vector<T> A(S.begin(), S.end()); print(A); }\n\nvoid Yes() { print(\"Yes\"); }\nvoid No() { print(\"No\"); }\nvoid YES() { print(\"YES\"); }\nvoid NO() { print(\"NO\"); }\n\nll floor(ll a, ll b) { if (a < 0) { return (a-b+1) / b; } else { return a / b; } }\nll ceil(ll a, ll b) { if (a >= 0) { return (a+b-1) / b; } else { return a / b; } }\npll divmod(ll a, ll b) { ll d = a / b; ll m = a % b; return {d, m}; }\ntemplate<typename T> bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; }\ntemplate<typename T> bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; }\n\ntemplate<typename T> T sum(vector<T> A) { T res = 0; for (T a: A) res += a; return res; }\ntemplate<typename T> T max(vector<T> A) { return *max_element(ALL(A)); }\ntemplate<typename T> T min(vector<T> A) { return *min_element(ALL(A)); }\n\nll toint(string s) { ll res = 0; for (char c : s) { res *= 10; res += (c - '0'); } return res; }\nint toint(char num) { return num - '0'; }\nchar tochar(int num) { return '0' + num; }\nint ord(char c) { return (int)c; }\nchar chr(int a) { return (char)a; }\n\nll pow(ll x, ll n) { ll res = 1; rep(_, 0, n) res *= x; return res; }\nll pow(ll x, ll n, int mod) { ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; }\n\nint popcount(ll S) { return __builtin_popcountll(S); }\nll gcd(ll a, ll b) { return __gcd(a, b); }\nll lcm(ll x, ll y) { return (x * y) / gcd(x, y); }\n\ntemplate<typename T> int bisect_left(vector<T> &A, T val) { return lower_bound(ALL(A), val) - A.begin(); }\ntemplate<typename T> int bisect_right(vector<T> &A, T val) { return upper_bound(ALL(A), val) - A.begin(); }\n\nstring dton(ll num, ll n, char base='0') {\n string res;\n while (abs(num) > 0) {\n ll m = num % abs(n);\n num -= m;\n res += base+m;\n num /= n;\n }\n reverse(ALL(res));\n if (res != \"\") {\n return res;\n } else {\n return res+base;\n }\n}\n\nstring replace(string str, const string& replace, const string& with) {\n if(!replace.empty()) {\n size_t pos = 0;\n while ((pos = str.find(replace, pos)) != string::npos) {\n str.replace(pos, replace.length(), with);\n pos += with.length();\n }\n }\n return str;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll N;\n cin >> N;\n set<string> se;\n rep(_, 0, N) {\n string s;\n cin >> s;\n rep(d, 1, 5) {\n if (s.size() < d) break;\n rep(i, 0, s.size()-d+1) {\n se.insert(s.substr(i, d));\n }\n }\n }\n\n ll d = 0;\n while (1) {\n auto ans = dton(d, 27, '`');\n ans = replace(ans, \"`\", \"\");\n if (!ans.empty()) {\n if (!se.count(ans)) {\n print(ans);\n break;\n }\n }\n d++;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 360, "memory_kb": 35996, "score_of_the_acc": -0.5658, "final_rank": 7 }, { "submission_id": "aoj_2808_5152377", "code_snippet": "// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ld = long double;\nusing pll = pair<ll, ll>;\nusing pii = pair<int, int>;\nusing vvl = vector<vector<ll>>;\nusing vvi = vector<vector<int>>;\nusing vvpll = vector<vector<pll>>;\n#define rep(i, a, b) for (ll i=(a); i<(b); i++)\n#define rrep(i, a, b) for (ll i=(a); i>(b); i--)\n#define pb push_back\n#define tostr to_string\n#define ALL(A) A.begin(), A.end()\n#define elif else if\n// constexpr ll INF = LONG_LONG_MAX;\nconstexpr ll INF = 1e18;\nconstexpr ll MOD = 1000000007;\n\nconst string digits = \"0123456789\";\nconst string ascii_lowercase = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ascii_uppercase = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string ascii_letters = ascii_lowercase + ascii_uppercase;\n\ntemplate<typename T> vector<vector<T>> list2d(int N, int M, T init) { return vector<vector<T>>(N, vector<T>(M, init)); }\ntemplate<typename T> vector<vector<vector<T>>> list3d(int N, int M, int L, T init) { return vector<vector<vector<T>>>(N, vector<vector<T>>(M, vector<T>(L, init))); }\ntemplate<typename T> vector<vector<vector<vector<T>>>> list4d(int N, int M, int L, int O, T init) { return vector<vector<vector<vector<T>>>>(N, vector<vector<vector<T>>>(M, vector<vector<T>>(L, vector<T>(O, init)))); }\n\nvector<ll> LIST(ll N) { vector<ll> A(N); rep(i, 0, N) cin >> A[i]; return A; }\n\nvoid print(ld out) { cout << fixed << setprecision(15) << out << '\\n'; }\nvoid print(double out) { cout << fixed << setprecision(15) << out << '\\n'; }\ntemplate<typename T> void print(T out) { cout << out << '\\n'; }\ntemplate<typename T1, typename T2> void print(pair<T1, T2> out) { cout << out.first << ' ' << out.second << '\\n'; }\ntemplate<typename T> void print(vector<T> A) { rep(i, 0, A.size()) { cout << A[i]; cout << (i == A.size()-1 ? '\\n' : ' '); } }\ntemplate<typename T> void print(set<T> S) { vector<T> A(S.begin(), S.end()); print(A); }\n\nvoid Yes() { print(\"Yes\"); }\nvoid No() { print(\"No\"); }\nvoid YES() { print(\"YES\"); }\nvoid NO() { print(\"NO\"); }\n\nll floor(ll a, ll b) { if (a < 0) { return (a-b+1) / b; } else { return a / b; } }\nll ceil(ll a, ll b) { if (a >= 0) { return (a+b-1) / b; } else { return a / b; } }\npll divmod(ll a, ll b) { ll d = a / b; ll m = a % b; return {d, m}; }\ntemplate<typename T> bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; }\ntemplate<typename T> bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; }\n\ntemplate<typename T> T sum(vector<T> A) { T res = 0; for (T a: A) res += a; return res; }\ntemplate<typename T> T max(vector<T> A) { return *max_element(ALL(A)); }\ntemplate<typename T> T min(vector<T> A) { return *min_element(ALL(A)); }\n\nll toint(string s) { ll res = 0; for (char c : s) { res *= 10; res += (c - '0'); } return res; }\nint toint(char num) { return num - '0'; }\nchar tochar(int num) { return '0' + num; }\nint ord(char c) { return (int)c; }\nchar chr(int a) { return (char)a; }\n\nll pow(ll x, ll n) { ll res = 1; rep(_, 0, n) res *= x; return res; }\nll pow(ll x, ll n, int mod) { ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; }\n\nint popcount(ll S) { return __builtin_popcountll(S); }\nll gcd(ll a, ll b) { return __gcd(a, b); }\nll lcm(ll x, ll y) { return (x * y) / gcd(x, y); }\n\ntemplate<typename T> int bisect_left(vector<T> &A, T val) { return lower_bound(ALL(A), val) - A.begin(); }\ntemplate<typename T> int bisect_right(vector<T> &A, T val) { return upper_bound(ALL(A), val) - A.begin(); }\n\nstruct RollingHash {\n static const uint64_t mod = (1ull << 61ull) - 1;\n using uint128_t = __uint128_t;\n vector< uint64_t > power;\n const uint64_t base;\n\n static inline uint64_t add(uint64_t a, uint64_t b) {\n if((a += b) >= mod) a -= mod;\n return a;\n }\n\n static inline uint64_t mul(uint64_t a, uint64_t b) {\n uint128_t c = (uint128_t) a * b;\n return add(c >> 61, c & mod);\n }\n\n // 2^61-1以下の乱数を返す。これをbaseとするとHackされにくい\n static inline uint64_t generate_base() {\n mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());\n uniform_int_distribution< uint64_t > rand(1, RollingHash::mod - 1);\n return rand(mt);\n }\n\n inline void expand(size_t sz) {\n if(power.size() < sz + 1) {\n int pre_sz = (int) power.size();\n power.resize(sz + 1);\n for(int i = pre_sz - 1; i < sz; i++) {\n power[i + 1] = mul(power[i], base);\n }\n }\n }\n\n // 基数baseのローリングハッシュを構築する\n explicit RollingHash(uint64_t base = generate_base()) : base(base), power{1} {}\n\n // 文字列sのハッシュテーブルを返す:O(n)\n vector< uint64_t > build(const string &s) const {\n int sz = s.size();\n vector< uint64_t > hashed(sz + 1);\n for(int i = 0; i < sz; i++) {\n hashed[i + 1] = add(mul(hashed[i], base), s[i]);\n }\n return hashed;\n }\n\n template< typename T >\n vector< uint64_t > build(const vector< T > &s) const {\n int sz = s.size();\n vector< uint64_t > hashed(sz + 1);\n for(int i = 0; i < sz; i++) {\n hashed[i + 1] = add(mul(hashed[i], base), s[i]);\n }\n return hashed;\n }\n\n // sの区間[l,r)のハッシュ値を返す:O(1)\n uint64_t query(const vector< uint64_t > &s, int l, int r) {\n expand(r - l);\n return add(s[r], mod - mul(s[l], power[r - l]));\n }\n\n // ハッシュ値h1と長さh2lenのハッシュ値h2を結合する\n uint64_t combine(uint64_t h1, uint64_t h2, size_t h2len) {\n expand(h2len);\n return add(mul(h1, power[h2len]), h2);\n }\n\n // ハッシュテーブルaの区間[l1,r1)と、ハッシュテーブルbの区間[l2,r2)の文字列の最長共通接頭辞の長さを返す:O(logn)\n int lcp(const vector< uint64_t > &a, int l1, int r1, const vector< uint64_t > &b, int l2, int r2) {\n int len = min(r1 - l1, r2 - l2);\n int low = 0, high = len + 1;\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(query(a, l1, l1 + mid) == query(b, l2, l2 + mid)) low = mid;\n else high = mid;\n }\n return low;\n }\n};\n\nstring dton(ll num, ll n) {\n string res;\n while (abs(num) > 0) {\n ll m = num % abs(n);\n num -= m;\n res += '`'+m;\n num /= n;\n }\n reverse(ALL(res));\n if (res != \"\") {\n return res;\n } else {\n return \"`\";\n }\n}\n\nstring replace(string str, const string& replace, const string& with) {\n if(!replace.empty()) {\n size_t pos = 0;\n while ((pos = str.find(replace, pos)) != string::npos) {\n str.replace(pos, replace.length(), with);\n pos += with.length();\n }\n }\n return str;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll N;\n cin >> N;\n RollingHash rh;\n vector<string> A(N);\n set<uint64_t> se;\n rep(_, 0, N) {\n string s;\n cin >> s;\n auto table = rh.build(s);\n rep(d, 1, 5) {\n if (s.size() < d) break;\n rep(i, 0, s.size()-d+1) {\n auto hash = rh.query(table, i, i+d);\n se.insert(hash);\n }\n }\n }\n\n ll d = 0;\n while (1) {\n auto ans = dton(d, 27);\n ans = replace(ans, \"`\", \"\");\n if (ans.empty()) {\n d++;\n continue;\n }\n auto s_hash = rh.query(rh.build(ans), 0, ans.size());\n if (!se.count(s_hash)) {\n print(ans);\n break;\n }\n d++;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 26188, "score_of_the_acc": -0.2935, "final_rank": 2 }, { "submission_id": "aoj_2808_5152244", "code_snippet": "// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ld = long double;\nusing pll = pair<ll, ll>;\nusing pii = pair<int, int>;\nusing vvl = vector<vector<ll>>;\nusing vvi = vector<vector<int>>;\nusing vvpll = vector<vector<pll>>;\n#define rep(i, a, b) for (ll i=(a); i<(b); i++)\n#define rrep(i, a, b) for (ll i=(a); i>(b); i--)\n#define pb push_back\n#define tostr to_string\n#define ALL(A) A.begin(), A.end()\n#define elif else if\n// constexpr ll INF = LONG_LONG_MAX;\nconstexpr ll INF = 1e18;\nconstexpr ll MOD = 1000000007;\n\nconst string digits = \"0123456789\";\nconst string ascii_lowercase = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ascii_uppercase = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string ascii_letters = ascii_lowercase + ascii_uppercase;\n\ntemplate<typename T> vector<vector<T>> list2d(int N, int M, T init) { return vector<vector<T>>(N, vector<T>(M, init)); }\ntemplate<typename T> vector<vector<vector<T>>> list3d(int N, int M, int L, T init) { return vector<vector<vector<T>>>(N, vector<vector<T>>(M, vector<T>(L, init))); }\ntemplate<typename T> vector<vector<vector<vector<T>>>> list4d(int N, int M, int L, int O, T init) { return vector<vector<vector<vector<T>>>>(N, vector<vector<vector<T>>>(M, vector<vector<T>>(L, vector<T>(O, init)))); }\n\nvector<ll> LIST(ll N) { vector<ll> A(N); rep(i, 0, N) cin >> A[i]; return A; }\n\nvoid print(ld out) { cout << fixed << setprecision(15) << out << '\\n'; }\nvoid print(double out) { cout << fixed << setprecision(15) << out << '\\n'; }\ntemplate<typename T> void print(T out) { cout << out << '\\n'; }\ntemplate<typename T1, typename T2> void print(pair<T1, T2> out) { cout << out.first << ' ' << out.second << '\\n'; }\ntemplate<typename T> void print(vector<T> A) { rep(i, 0, A.size()) { cout << A[i]; cout << (i == A.size()-1 ? '\\n' : ' '); } }\ntemplate<typename T> void print(set<T> S) { vector<T> A(S.begin(), S.end()); print(A); }\n\nvoid Yes() { print(\"Yes\"); }\nvoid No() { print(\"No\"); }\nvoid YES() { print(\"YES\"); }\nvoid NO() { print(\"NO\"); }\n\nll floor(ll a, ll b) { if (a < 0) { return (a-b+1) / b; } else { return a / b; } }\nll ceil(ll a, ll b) { if (a >= 0) { return (a+b-1) / b; } else { return a / b; } }\npll divmod(ll a, ll b) { ll d = a / b; ll m = a % b; return {d, m}; }\ntemplate<typename T> bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; }\ntemplate<typename T> bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; }\n\ntemplate<typename T> T sum(vector<T> A) { T res = 0; for (T a: A) res += a; return res; }\ntemplate<typename T> T max(vector<T> A) { return *max_element(ALL(A)); }\ntemplate<typename T> T min(vector<T> A) { return *min_element(ALL(A)); }\n\nll toint(string s) { ll res = 0; for (char c : s) { res *= 10; res += (c - '0'); } return res; }\nint toint(char num) { return num - '0'; }\nchar tochar(int num) { return '0' + num; }\nint ord(char c) { return (int)c; }\nchar chr(int a) { return (char)a; }\n\nll pow(ll x, ll n) { ll res = 1; rep(_, 0, n) res *= x; return res; }\nll pow(ll x, ll n, int mod) { ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; }\n\nint popcount(ll S) { return __builtin_popcountll(S); }\nll gcd(ll a, ll b) { return __gcd(a, b); }\nll lcm(ll x, ll y) { return (x * y) / gcd(x, y); }\n\ntemplate<typename T> int bisect_left(vector<T> &A, T val) { return lower_bound(ALL(A), val) - A.begin(); }\ntemplate<typename T> int bisect_right(vector<T> &A, T val) { return upper_bound(ALL(A), val) - A.begin(); }\n\nstruct RollingHash {\n static const uint64_t mod = (1ull << 61ull) - 1;\n using uint128_t = __uint128_t;\n vector< uint64_t > power;\n const uint64_t base;\n\n static inline uint64_t add(uint64_t a, uint64_t b) {\n if((a += b) >= mod) a -= mod;\n return a;\n }\n\n static inline uint64_t mul(uint64_t a, uint64_t b) {\n uint128_t c = (uint128_t) a * b;\n return add(c >> 61, c & mod);\n }\n\n // 2^61-1以下の乱数を返す。これをbaseとするとHackされにくい\n static inline uint64_t generate_base() {\n mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());\n uniform_int_distribution< uint64_t > rand(1, RollingHash::mod - 1);\n return rand(mt);\n }\n\n inline void expand(size_t sz) {\n if(power.size() < sz + 1) {\n int pre_sz = (int) power.size();\n power.resize(sz + 1);\n for(int i = pre_sz - 1; i < sz; i++) {\n power[i + 1] = mul(power[i], base);\n }\n }\n }\n\n // 基数baseのローリングハッシュを構築する\n explicit RollingHash(uint64_t base = generate_base()) : base(base), power{1} {}\n\n // 文字列sのハッシュテーブルを返す:O(n)\n vector< uint64_t > build(const string &s) const {\n int sz = s.size();\n vector< uint64_t > hashed(sz + 1);\n for(int i = 0; i < sz; i++) {\n hashed[i + 1] = add(mul(hashed[i], base), s[i]);\n }\n return hashed;\n }\n\n template< typename T >\n vector< uint64_t > build(const vector< T > &s) const {\n int sz = s.size();\n vector< uint64_t > hashed(sz + 1);\n for(int i = 0; i < sz; i++) {\n hashed[i + 1] = add(mul(hashed[i], base), s[i]);\n }\n return hashed;\n }\n\n // sの区間[l,r)のハッシュ値を返す:O(1)\n uint64_t query(const vector< uint64_t > &s, int l, int r) {\n expand(r - l);\n return add(s[r], mod - mul(s[l], power[r - l]));\n }\n\n // ハッシュ値h1と長さh2lenのハッシュ値h2を結合する\n uint64_t combine(uint64_t h1, uint64_t h2, size_t h2len) {\n expand(h2len);\n return add(mul(h1, power[h2len]), h2);\n }\n\n // ハッシュテーブルaの区間[l1,r1)と、ハッシュテーブルbの区間[l2,r2)の文字列の最長共通接頭辞の長さを返す:O(logn)\n int lcp(const vector< uint64_t > &a, int l1, int r1, const vector< uint64_t > &b, int l2, int r2) {\n int len = min(r1 - l1, r2 - l2);\n int low = 0, high = len + 1;\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(query(a, l1, l1 + mid) == query(b, l2, l2 + mid)) low = mid;\n else high = mid;\n }\n return low;\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll N;\n cin >> N;\n RollingHash rh;\n vector<string> A(N);\n vector<vector<uint64_t>> tables(N);\n rep(i, 0, N) {\n cin >> A[i];\n tables[i] = rh.build(A[i]);\n }\n\n string ans = \"\";\n bool ok = 0;\n while (!ok) {\n for (char c : ascii_lowercase) {\n auto s_hash = rh.query(rh.build(ans+c), 0, ans.size()+1);\n ok = 1;\n rep(i, 0, N) {\n if (A[i].size() < ans.size()) continue;\n rep(j, 0, A[i].size()-ans.size()) {\n auto t_hash = rh.query(tables[i], j, j+ans.size()+1);\n if (s_hash == t_hash) {\n ok = 0;\n break;\n }\n }\n if (!ok) break;\n }\n if (ok) {\n ans += c;\n break;\n }\n }\n if (!ok) ans += 'a';\n } \n print(ans);\n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 60, "memory_kb": 6716, "score_of_the_acc": 0, "final_rank": 17 }, { "submission_id": "aoj_2808_5057332", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tini(n);\n\tVS s = in[n];\n\n\tset<string> substr;\n\trep(i, n) {\n\t\tFOR(len, 1, 5) {\n\t\t\trep(l, sz(s[i]) - len + 1) {\n\t\t\t\tsubstr.insert(s[i].substr(l, len));\n\t\t\t}\n\t\t}\n\t}\n\n\tstring str;\n\tauto dfs = [&](auto&& f, int len) -> void {\n\t\tif (sz(str) == len) {\n\t\t\tif (!substr.count(str)) {\n\t\t\t\tout.exit(str);\n\t\t\t}\n\t\t\treturn;\n\t\t}\n\t\tfor (char c : step('a', '{')) {\n\t\t\tstr += c;\n\t\t\tf(f, len);\n\t\t\tstr.pop_back();\n\t\t}\n\t};\n\tFOR(len, 1, 5) {\n\t\tdfs(dfs, len);\n\t}\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 36116, "score_of_the_acc": -0.5428, "final_rank": 6 }, { "submission_id": "aoj_2808_3992937", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<string>s(N);\n\tfor (auto &i : s)cin >> i;\n\tfor (int i = 1; i <= 5; i++) {\n\t\tset<string>st;\n\t\tstring t(i, 'a');\n\t\twhile (t[0] <= 'z') {\n\t\t\tst.insert(t);\n\t\t\tt.back()++;\n\t\t\tint cnt = i - 1;\n\t\t\twhile (cnt&&t[cnt] > 'z') {\n\t\t\t\tt[cnt--] = 'a';\n\t\t\t\tt[cnt]++;\n\t\t\t}\n\t\t}\n\t\tfor (auto j : s) {\n\t\t\tfor (int k = 0; k + i <= j.size(); k++) {\n\t\t\t\tstring u;\n\t\t\t\tfor (int l = 0; l < i; l++) {\n\t\t\t\t\tu.push_back(j[k + l]);\n\t\t\t\t}\n\t\t\t\tst.erase(u);\n\t\t\t}\n\t\t}\n\t\tif (!st.empty()) {\n\t\t\tcout << *st.begin() << endl;\n\t\t\treturn 0;\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 630, "memory_kb": 50632, "score_of_the_acc": -0.9915, "final_rank": 13 }, { "submission_id": "aoj_2808_3991411", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<string>s(N);\n\tfor (auto &i : s)cin >> i;\n\tfor (int i = 1; i <= 5; i++) {\n\t\tset<string>st;\n\t\tstring t(i, 'a');\n\t\twhile (t[0] <= 'z') {\n\t\t\tst.insert(t);\n\t\t\tt.back()++;\n\t\t\tint cnt = i - 1;\n\t\t\twhile (cnt&&t[cnt] > 'z') {\n\t\t\t\tt[cnt--] = 'a';\n\t\t\t\tt[cnt]++;\n\t\t\t}\n\t\t}\n\t\tfor (auto j : s) {\n\t\t\tfor (int k = 0; k + i <= j.size(); k++) {\n\t\t\t\tstring u;\n\t\t\t\tfor (int l = 0; l < i; l++) {\n\t\t\t\t\tu.push_back(j[k + l]);\n\t\t\t\t}\n\t\t\t\tst.erase(u);\n\t\t\t}\n\t\t}\n\t\tif (!st.empty()) {\n\t\t\tcout << *st.begin() << endl;\n\t\t\treturn 0;\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 630, "memory_kb": 50620, "score_of_the_acc": -0.9914, "final_rank": 12 }, { "submission_id": "aoj_2808_3878417", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define int long long\n// #define double long double\n#define FOR(i, a, b) for(ll i = (a); i < (b); ++i)\n#define FORR(i, a, b) for(ll i = (a); i > (b); --i)\n#define REP(i, n) for(ll i = 0; i < (n); ++i)\n#define REPR(i, n) for(ll i = n; i >= 0; i--)\n#define FOREACH(x, a) for(auto &(x) : (a))\n#define VECCIN(x) \\\n for(auto &youso_ : (x)) cin >> youso_\n#define bitcnt(x) __builtin_popcount(x)\n#define lbit(x) __builtin_ffsll(x)\n#define rbit(x) __builtin_clzll(x)\n#define SZ(x) ((ll)(x).size())\n#define fi first\n#define se second\n#define All(a) (a).begin(), (a).end()\n#define rAll(a) (a).rbegin(), (a).rend()\n\ntemplate <typename T = long long> inline T IN() {\n T x;\n cin >> x;\n return (x);\n}\ninline void CIN() {}\ntemplate <class Head, class... Tail>\ninline void CIN(Head &&head, Tail &&... tail) {\n cin >> head;\n CIN(move(tail)...);\n}\n#define CCIN(...) \\\n char __VA_ARGS__; \\\n CIN(__VA_ARGS__)\n#define DCIN(...) \\\n double __VA_ARGS__; \\\n CIN(__VA_ARGS__)\n#define LCIN(...) \\\n ll __VA_ARGS__; \\\n CIN(__VA_ARGS__)\n#define SCIN(...) \\\n string __VA_ARGS__; \\\n CIN(__VA_ARGS__)\n#define Yes(a) cout << (a ? \"Yes\" : \"No\") << \"\\n\"\n#define YES(a) cout << (a ? \"YES\" : \"NO\") << \"\\n\"\n#define Printv(v) \\\n { \\\n FOREACH(x, v) { cout << x << \" \"; } \\\n cout << \"\\n\"; \\\n }\ntemplate <typename T = string> inline void eputs(T s) {\n cout << s << \"\\n\";\n exit(0);\n}\ntemplate <typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val) {\n std::fill((T *)array, (T *)(array + N), val);\n}\n\ntemplate <typename T> using PQG = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T> using PQ = priority_queue<T>;\n\ntypedef long long ll;\ntypedef vector<ll> VL;\ntypedef vector<VL> VVL;\ntypedef pair<ll, ll> PL;\ntypedef vector<PL> VPL;\ntypedef vector<bool> VB;\ntypedef vector<double> VD;\ntypedef vector<string> VS;\n\nconst int INF = 1e9;\nconst int MOD = 1e9 + 7;\n// const int MOD = 998244353;\nconst ll LINF = 5e18;\n// const double PI = atan(1.0) * 4.0;\nconst ll dx[] = {1, 1, 0, -1, -1, -1, 0, 1};\nconst ll dy[] = {0, 1, 1, 1, 0, -1, -1, -1};\n#define PI 3.141592653589793238\n\n// ローリングハッシュ\n// 二分探索で LCP を求める機能つき\nstruct RollingHash {\n static const int base1 = 1007, base2 = 2009;\n static const int mod1 = 1000000007, mod2 = 1000000009;\n vector<long long> hash1, hash2, power1, power2;\n\n // construct\n RollingHash(const string &S) {\n int n = (int)S.size();\n hash1.assign(n + 1, 0);\n hash2.assign(n + 1, 0);\n power1.assign(n + 1, 1);\n power2.assign(n + 1, 1);\n for(int i = 0; i < n; ++i) {\n hash1[i + 1] = (hash1[i] * base1 + S[i]) % mod1;\n hash2[i + 1] = (hash2[i] * base2 + S[i]) % mod2;\n power1[i + 1] = (power1[i] * base1) % mod1;\n power2[i + 1] = (power2[i] * base2) % mod2;\n }\n }\n\n // get hash of S[left:right]\n inline pair<long long, long long> get(int l, int r) const {\n long long res1 = hash1[r] - hash1[l] * power1[r - l] % mod1;\n if(res1 < 0) res1 += mod1;\n long long res2 = hash2[r] - hash2[l] * power2[r - l] % mod2;\n if(res2 < 0) res2 += mod2;\n return {res1, res2};\n }\n\n // get lcp of S[a:] and T[b:]\n inline int getLCP(int a, int b) const {\n int len = min((int)hash1.size() - a, (int)hash1.size() - b);\n int low = 0, high = len;\n while(high - low > 1) {\n int mid = (low + high) >> 1;\n if(get(a, a + mid) != get(b, b + mid))\n high = mid;\n else\n low = mid;\n }\n return low;\n }\n};\n\nbool inc(int l, string &s) {\n for(int i = l - 1; i >= 0; --i) {\n if(s[i] != 'z') {\n s[i]++;\n return true;\n }\n s[i] = 'a';\n }\n return false;\n}\n\nsigned main() {\n LCIN(N);\n set<string> st;\n REP(i, N) {\n SCIN(S);\n REP(j, S.length()) {\n FOR(len, 1, 5) {\n if(j + len > S.length()) continue;\n st.emplace(S.substr(j, len));\n }\n }\n }\n REP(i, 27) REP(j, 27) REP(k, 27) REP(l, 26) {\n string t;\n if(i) t += 'a' - 1 + i;\n if(j) t += 'a' - 1 + j;\n if(k) t += 'a' - 1 + k;\n t += 'a' + l;\n if(!st.count(t)) eputs(t);\n }\n}", "accuracy": 1, "time_ms": 520, "memory_kb": 42472, "score_of_the_acc": -0.8024, "final_rank": 10 }, { "submission_id": "aoj_2808_3844436", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <deque>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <map>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n#include <tuple>\n#include <iomanip>\n#include <cstring>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n#define rep(i, n) for(ll i = 0; i < (n); i++)\n#define revrep(i, n) for(ll i = (n-1); i >= 0; i--)\n#define pb push_back\n#define f first\n#define s second\nll max(ll a, ll b){return (a > b) ? a : b;}\nll min(ll a, ll b){return (a < b) ? a : b;}\nll max3(ll a, ll b, ll c){return max(a, max(b, c));};\nll min3(ll a, ll b, ll c){return min(a, min(b, c));};\nll max4(ll a, ll b, ll c, ll d){return max(max(a, b), min(c, d));};\nll min4(ll a, ll b, ll c, ll d){return min(min(a, b), min(c, d));};\nll max5(ll a, ll b, ll c, ll d, ll e){return max(max(a, b), max3(c, d, e));};\nll min5(ll a, ll b, ll c, ll d, ll e){return min(min(a, b), min3(c, d, e));};\n\nconst ll INFL = 1LL << 60;//10^18 = 2^60\nconst int INF = 1 << 30;//10^9\nll MOD = 1000000007;\n//ll MOD = 998244353;\nvector<ll> dy = {0, 0, 1, -1, 1, 1, -1, -1, 0};\nvector<ll> dx = {1, -1, 0, 0, 1, -1, 1, -1, 0};\n\nll pow_long(ll x, ll k){\n ll res = 1;\n while(k > 0){\n if(k % 2) res *= x;\n x *= x;\n k /= 2;\n }\n return res;\n}\nll pow_mod(ll x, ll k){\n x %= MOD; x += MOD; x %= MOD;\n ll res = 1;\n while(k > 0){\n if(k % 2){\n res *= x; res %= MOD;\n }\n x *= x; x %= MOD;\n k /= 2;\n }\n return res;\n}\n\nll inverse(ll x){return pow_mod(x, MOD - 2);};\n\nll gcd(ll a, ll b){\n if(b == 0) return a;\n return gcd(b, a % b);\n}\n\nll lcm(ll x, ll y){return x / gcd(x, y) * y;};\n\nll kai_mod(ll x){\n if(x == 0) return 1;\n return x * kai_mod(x-1) % MOD;\n}\n\n/*\n//コンビネーション\nconst int MAXcomb = 200010;\nll fac[MAXcomb], finv[MAXcomb], inv[MAXcomb];\n//facはn!,finvは1/n!\n//invは逆元\nvoid COMinit(){\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for(int i = 2; i < MAXcomb; i++){\n fac[i] = fac[i-1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD;\n finv[i] = finv[i-1] * inv[i] % MOD;\n }\n}\nll comb(int n, int k){\n if(n < k) return 0;\n if(n < 0 || k < 0) return 0;\n return fac[n] * finv[k] % MOD * finv[n-k] % MOD;\n}\n*/\n\nint main(){\n ll N;\n cin >> N;\n set<pair<ll, ll>> hashList;\n ll base = 998244353;\n rep(i, N){\n string S;\n cin >> S;\n ll sl = S.size();\n for(ll i = 1; i <= 5; i++){\n ll hash = 0;\n rep(j, i) hash = (hash * base + S[j]) % MOD;\n hashList.insert({i, hash});\n ll power = pow_mod(base, i);\n rep(j, sl-i){\n hash = ((hash * base - S[j] * power + S[i+j]) % MOD + MOD) % MOD;\n hashList.insert({i, hash});\n }\n }\n }\n for(ll i = 1;;i++){\n rep(j, pow_long(26, i)){\n vector<ll> x(i);\n ll J = j;\n rep(k, i){\n x[k] = J % 26;\n J /= 26;\n }\n reverse(x.begin(), x.end());\n string P = \"\";\n ll hashP = 0;\n rep(k, i){\n P += 'a' + x[k];\n hashP = (hashP * base + x[k] + 'a') % MOD;\n }\n if(hashList.count({i, hashP})) continue;\n cout << P << endl;\n return 0;\n }\n }\n}", "accuracy": 1, "time_ms": 530, "memory_kb": 54204, "score_of_the_acc": -0.8979, "final_rank": 11 }, { "submission_id": "aoj_2808_3844435", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <deque>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <map>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n#include <tuple>\n#include <iomanip>\n#include <cstring>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n#define rep(i, n) for(ll i = 0; i < (n); i++)\n#define revrep(i, n) for(ll i = (n-1); i >= 0; i--)\n#define pb push_back\n#define f first\n#define s second\nll max(ll a, ll b){return (a > b) ? a : b;}\nll min(ll a, ll b){return (a < b) ? a : b;}\nll max3(ll a, ll b, ll c){return max(a, max(b, c));};\nll min3(ll a, ll b, ll c){return min(a, min(b, c));};\nll max4(ll a, ll b, ll c, ll d){return max(max(a, b), min(c, d));};\nll min4(ll a, ll b, ll c, ll d){return min(min(a, b), min(c, d));};\nll max5(ll a, ll b, ll c, ll d, ll e){return max(max(a, b), max3(c, d, e));};\nll min5(ll a, ll b, ll c, ll d, ll e){return min(min(a, b), min3(c, d, e));};\n\nconst ll INFL = 1LL << 60;//10^18 = 2^60\nconst int INF = 1 << 30;//10^9\nll MOD = 1000000007;\n//ll MOD = 998244353;\nvector<ll> dy = {0, 0, 1, -1, 1, 1, -1, -1, 0};\nvector<ll> dx = {1, -1, 0, 0, 1, -1, 1, -1, 0};\n\nll pow_long(ll x, ll k){\n ll res = 1;\n while(k > 0){\n if(k % 2) res *= x;\n x *= x;\n k /= 2;\n }\n return res;\n}\nll pow_mod(ll x, ll k){\n x %= MOD; x += MOD; x %= MOD;\n ll res = 1;\n while(k > 0){\n if(k % 2){\n res *= x; res %= MOD;\n }\n x *= x; x %= MOD;\n k /= 2;\n }\n return res;\n}\n\nll inverse(ll x){return pow_mod(x, MOD - 2);};\n\nll gcd(ll a, ll b){\n if(b == 0) return a;\n return gcd(b, a % b);\n}\n\nll lcm(ll x, ll y){return x / gcd(x, y) * y;};\n\nll kai_mod(ll x){\n if(x == 0) return 1;\n return x * kai_mod(x-1) % MOD;\n}\n\n/*\n//コンビネーション\nconst int MAXcomb = 200010;\nll fac[MAXcomb], finv[MAXcomb], inv[MAXcomb];\n//facはn!,finvは1/n!\n//invは逆元\nvoid COMinit(){\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for(int i = 2; i < MAXcomb; i++){\n fac[i] = fac[i-1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD;\n finv[i] = finv[i-1] * inv[i] % MOD;\n }\n}\nll comb(int n, int k){\n if(n < k) return 0;\n if(n < 0 || k < 0) return 0;\n return fac[n] * finv[k] % MOD * finv[n-k] % MOD;\n}\n*/\n\nint main(){\n ll N;\n cin >> N;\n set<pair<ll, ll>> hashList;\n ll base = 998244353;\n rep(i, N){\n string S;\n cin >> S;\n ll sl = S.size();\n for(ll i = 1; i <= 5; i++){\n ll hash = 0;\n rep(j, i) hash = (hash * base + S[j]) % MOD;\n hashList.insert({i, hash});\n ll power = pow_mod(base, i);\n rep(j, sl-i){\n hash = ((hash * base - S[j] * power + S[i+j]) % MOD + MOD) % MOD;\n hashList.insert({i, hash});\n }\n }\n }\n for(ll i = 1;;i++){\n rep(j, pow_long(26, i)){\n ll J = j;\n string P = \"\";\n ll hashP = 0;\n rep(k, i){\n P += 'a' + (J % 26);\n hashP = (hashP * base + (J % 26) + 'a') % MOD;\n J /= 26;\n }\n if(hashList.count({i, hashP})) continue;\n cout << P << endl;\n return 0;\n }\n }\n}", "accuracy": 0.08333333333333333, "time_ms": 390, "memory_kb": 53896, "score_of_the_acc": -0.729, "final_rank": 19 }, { "submission_id": "aoj_2808_3844433", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <deque>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <map>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n#include <tuple>\n#include <iomanip>\n#include <cstring>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n#define rep(i, n) for(ll i = 0; i < (n); i++)\n#define revrep(i, n) for(ll i = (n-1); i >= 0; i--)\n#define pb push_back\n#define f first\n#define s second\nll max(ll a, ll b){return (a > b) ? a : b;}\nll min(ll a, ll b){return (a < b) ? a : b;}\nll max3(ll a, ll b, ll c){return max(a, max(b, c));};\nll min3(ll a, ll b, ll c){return min(a, min(b, c));};\nll max4(ll a, ll b, ll c, ll d){return max(max(a, b), min(c, d));};\nll min4(ll a, ll b, ll c, ll d){return min(min(a, b), min(c, d));};\nll max5(ll a, ll b, ll c, ll d, ll e){return max(max(a, b), max3(c, d, e));};\nll min5(ll a, ll b, ll c, ll d, ll e){return min(min(a, b), min3(c, d, e));};\n\nconst ll INFL = 1LL << 60;//10^18 = 2^60\nconst int INF = 1 << 30;//10^9\nll MOD = 1000000007;\n//ll MOD = 998244353;\nvector<ll> dy = {0, 0, 1, -1, 1, 1, -1, -1, 0};\nvector<ll> dx = {1, -1, 0, 0, 1, -1, 1, -1, 0};\n\nll pow_long(ll x, ll k){\n ll res = 1;\n while(k > 0){\n if(k % 2) res *= x;\n x *= x;\n k /= 2;\n }\n return res;\n}\nll pow_mod(ll x, ll k){\n x %= MOD; x += MOD; x %= MOD;\n ll res = 1;\n while(k > 0){\n if(k % 2){\n res *= x; res %= MOD;\n }\n x *= x; x %= MOD;\n k /= 2;\n }\n return res;\n}\n\nll inverse(ll x){return pow_mod(x, MOD - 2);};\n\nll gcd(ll a, ll b){\n if(b == 0) return a;\n return gcd(b, a % b);\n}\n\nll lcm(ll x, ll y){return x / gcd(x, y) * y;};\n\nll kai_mod(ll x){\n if(x == 0) return 1;\n return x * kai_mod(x-1) % MOD;\n}\n\n/*\n//コンビネーション\nconst int MAXcomb = 200010;\nll fac[MAXcomb], finv[MAXcomb], inv[MAXcomb];\n//facはn!,finvは1/n!\n//invは逆元\nvoid COMinit(){\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for(int i = 2; i < MAXcomb; i++){\n fac[i] = fac[i-1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD;\n finv[i] = finv[i-1] * inv[i] % MOD;\n }\n}\nll comb(int n, int k){\n if(n < k) return 0;\n if(n < 0 || k < 0) return 0;\n return fac[n] * finv[k] % MOD * finv[n-k] % MOD;\n}\n*/\n\nint main(){\n ll N;\n cin >> N;\n set<pair<ll, ll>> hashList;\n ll base = 9973;\n rep(i, N){\n string S;\n cin >> S;\n ll sl = S.size();\n for(ll i = 1; i <= 5; i++){\n ll hash = 0;\n rep(j, i) hash = (hash * base + S[j]) % MOD;\n hashList.insert({i, hash});\n ll power = pow_mod(base, i);\n rep(j, sl-i){\n hash = (hash * base - S[j] * power + S[i+j] + MOD) % MOD;\n hashList.insert({i, hash});\n }\n }\n }\n for(ll i = 1;;i++){\n rep(j, pow_long(26, i)){\n ll J = j;\n string P = \"\";\n ll hashP = 0;\n rep(k, i){\n P += 'a' + (J % 26);\n hashP = (hashP * base + (J % 26) + 'a') % MOD;\n J /= 26;\n }\n if(hashList.count({i, hashP})) continue;\n cout << P << endl;\n return 0;\n }\n }\n}", "accuracy": 0.08333333333333333, "time_ms": 330, "memory_kb": 53952, "score_of_the_acc": -0.658, "final_rank": 18 } ]
aoj_2810_cpp
F: カードゲーム 問題 カードを使ったゲームを $Q$ 回行います。 カードには $1 \cdots N$ の数が書かれており、各数が書かれたカードはゲームを行うのに十分な枚数があります。 $i$ 回目のゲームでは、はじめに手札として 2 枚のカードが配られます。 それぞれのカードに書かれている数字は $x_i$ と $y_i$ です。 カードはルールに従って交換することができます。 $j$ 番目 $(1 \le j \le M)$ のルールでは、カード $a_j$ を手数料 $c_j$ 円で別のカード $b_j$ に交換することができます。 各ルールは何回でも用いることができます。また、手数料が足りなくて交換できない場合はありません。 最後に、手札のカードの数字を $R$ で割ったあまりが等しい時、報酬として $z_i$ 円受け取ります。 異なる場合報酬は $0$ 円です。 $Q$ 回ゲームを終えた時に増やすことのできるお金の最大値を求めてください。 制約 $1 \le N \le 10^5$ $0 \le M \le \min(2 \times 10^5, N\times(N-1))$ $2 \le R \le 10$ $1 \le Q \le 10^5$ $1 \le a_j, b_j \le N$ $a_j \neq b_j$ $0 \le c_j \le 10^5$ $1 \le x_i, y_i \le N$ $0 \le z_i \le 10^5$ 入力 入力は以下の形式で標準入力から与えられます。 $N \ M \ R \ Q$ $a_1 \ b_1 \ c_1$ $\vdots$ $a_M \ b_M \ c_M$ $x_1 \ y_1 \ z_1$ $\vdots$ $x_Q \ y_Q \ z_Q$ 出力 ゲームを $Q$ 回行ったときに増やすことのできるお金の最大値を 1 行で出力してください。また、末尾に改行も出力してください。 サンプル 入力例 1 4 4 2 2 1 2 1 2 3 1 3 4 5 4 1 7 1 4 5 2 4 3 出力例 1 7 1 回目のゲームではカード 1 を手数料 1 でカード 2 に交換すると手札のカードを 2 で割った時のあまりがどちらも 0 となり、得られる報酬は 5 となります。 2 回目のゲームではすでに 2 で割ったときのあまりがどちらも 0 であり、得られる報酬は 3 となります。 2 回のゲームの結果、増やせるお金は $5-1+3=7$ です。 入力例 2 4 4 2 1 1 2 1 2 3 1 3 4 5 4 1 7 3 4 2 出力例 2 0 カードの交換での手数料が報酬よりも多いので、交換を行わないのが最適です。
[ { "submission_id": "aoj_2810_10412963", "code_snippet": "// AOJ #2810 Card Game\n// 2025.4.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll INF = (ll)1e18;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nint main(){\n int N = Cin(), M = Cin(), R = Cin(), Q = Cin();\n\n vector<vector<pair<int,int>>> G(N+1);\n for(int i = 0; i < M; i++){\n int a = Cin(), b = Cin(), c = Cin();\n G[b].emplace_back(a, c);\n }\n vector<vector<ll>> dist(R, vector<ll>(N+1, INF));\n for(int r = 0; r < R; r++){\n priority_queue<pair<ll,int>, vector<pair<ll,int>>, greater<>> pq;\n for(int v = r == 0 ? R : r; v <= N; v += R){\n dist[r][v] = 0;\n pq.emplace(0, v);\n }\n while(!pq.empty()){\n auto [d, v] = pq.top(); pq.pop();\n if(d > dist[r][v]) continue;\n for(auto &e : G[v]){\n int u = e.first, w = e.second;\n if(dist[r][u] > d + w){\n dist[r][u] = d + w;\n pq.emplace(dist[r][u], u);\n }\n }\n }\n }\n\n ll ans = 0;\n for(int i = 0; i < Q; i++){\n int x = Cin(), y = Cin();\n ll z = Cin();\n ll best = 0;\n for(int r = 0; r < R; r++){\n ll cx = dist[r][x], cy = dist[r][y];\n if(cx == INF || cy == INF) continue;\n ll cost = cx + cy;\n if(cost <= z) best = max(best, z - cost);\n }\n ans += best;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 17116, "score_of_the_acc": -0.9526, "final_rank": 1 }, { "submission_id": "aoj_2810_9117726", "code_snippet": "//#include<atcoder/all>\n//using namespace atcoder;\n\n#include <bits/stdc++.h>\ntemplate<class T> inline bool chmin(T&a, T b){if(a > b){a = b; return true;}else{return false;}}\ntemplate<class T> inline bool chmax(T&a, T b){if(a < b){a = b; return true;}else{return false;}}\n#define ll long long\n#define double long double\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define REP(i,n) for(int i=1;i<=(n);i++)\n#define mod (ll)(1e9+7)\n#define inf (ll)(3e18+7)\n#define eps (double)(1e-9)\n#define pi (double) acos(-1)\n#define all(x) x.begin(),x.end()\n#define rall(x) x.rbegin(),x.rend()\nusing namespace std;\n\nstruct edge{\n ll to, cost;\n};\n\nusing Graph = vector<vector<edge>>;\n\n#define P pair<ll, ll>\nvector<ll> dijkstra(const vector<vector<edge>> &G, int s) {\n vector<ll> d((int)G.size(), inf);\n\tpriority_queue<P, vector<P>, greater<P>>que;\n\td[s] = 0;\n\tque.push(P(0, s));\n\twhile (!que.empty()) {\n\t\tP p = que.top(); que.pop();\n\t\tint v = p.second;\n\t\tif (d[v] < p.first)continue;\n\t\trep(i, G[v].size()) {\n\t\t\tedge e = G[v][i];\n\t\t\tif (d[e.to] > d[v] + e.cost) {\n\t\t\t\td[e.to] = d[v] + e.cost;\n\t\t\t\tque.push(P(d[e.to], e.to));\n\t\t\t}\n\t\t}\n\t}\n\treturn d;\n}\n\nint main(){\n int n, m, r, q;\n cin >> n >> m >> r >> q;\n vector<ll> a(m), b(m), c(m);\n vector<ll> x(q), y(q), z(q);\n rep(i, m)cin >> a[i] >> b[i] >> c[i];\n rep(i, q)cin >> x[i] >> y[i] >> z[i];\n rep(i, m){a[i]--; b[i]--;}\n\n Graph G(n+r);\n rep(i, m)G[b[i]].push_back({a[i], c[i]});\n rep(i, n)G[n+i%r].push_back({i, 0});\n\n vector<vector<ll>> d(r);\n rep(i, r)d[i] = dijkstra(G, n+i);\n\n ll ans = 0;\n rep(i, q){\n x[i]--;\n y[i]--;\n ll now = inf;\n rep(j, r){\n chmin(now, d[j][x[i]] + d[j][y[i]]);\n }\n\n ans += max(0LL, z[i] - now);\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 23304, "score_of_the_acc": -1.75, "final_rank": 10 }, { "submission_id": "aoj_2810_9117637", "code_snippet": "// #ifndef ONLINE_JUDGE\n#if __has_include(\"all.h\")\n\n#include \"all.h\"\n\n#else\n\n#include <bits/extc++.h>\n\n// #include <atcoder/all>\n\n#endif\n\nusing ll = long long int;\n\ntemplate <class T>\nbool chmin(T &x, const T val) {\n if (x > val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T>\nbool chmax(T &x, const T val) {\n if (x < val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class... T>\nstd::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) {\n std::apply([&](auto &&...args) { (is >> ... >> args); }, tpl);\n return is;\n}\n\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &x : v) is >> x;\n return is;\n}\n\n// template <class mint, atcoder::internal::is_static_modint_t<mint> * =\n// nullptr> std::ostream &operator<<(std::ostream &os, const mint &v) {\n// return os << v.val();\n// }\n\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (int i = 0; i < v.size(); i++)\n os << v[i] << (i == v.size() - 1 ? \"\" : \" \");\n return os;\n}\n\nstruct Initialization {\n Initialization() {\n std::ios_base::sync_with_stdio(false);\n std::cin.tie(nullptr);\n }\n} initialization;\n\nconstexpr std::pair<int, int> dir[] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};\n\ntemplate <typename T>\nusing infs = std::numeric_limits<T>;\n\ntemplate <typename T>\nclass factorials {\n public:\n static size_t n;\n static std::vector<T> fact, inv_fact;\n\n static void extend(size_t m) {\n if (m <= n) return;\n fact.resize(m + 1);\n inv_fact.resize(m + 1);\n for (size_t i = n + 1; i <= m; i++) fact[i] = fact[i - 1] * i;\n inv_fact[m] = fact[m].inv();\n for (size_t i = m; i > n + 1; i--) inv_fact[i - 1] = inv_fact[i] * i;\n n = m;\n }\n\n static T inv(int k) {\n extend(k);\n return inv_fact[k];\n }\n\n static T get(int k) {\n extend(k);\n return fact[k];\n }\n\n static T perm(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k];\n }\n\n static T choose(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k] * inv_fact[k];\n }\n};\n\ntemplate <typename T>\nsize_t factorials<T>::n = 0;\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::fact = {1};\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::inv_fact = {1};\n\n// template <typename T>\n// class fps {\n// std::vector<T> v;\n//\n// public:\n// using value_type = T;\n// using reference = T &;\n// using const_reference = const T &;\n// using iterator = typename std::vector<T>::iterator;\n// using const_iterator = typename std::vector<T>::const_iterator;\n//\n// size_t size() const { return v.size(); }\n//\n// const std::vector<T> &data() const { return v; }\n//\n// explicit fps(int n) : v(n) {}\n//\n// fps(const std::vector<T> &v) : v(v) {}\n// fps(std::vector<T> &&v) : v(v) {}\n//\n// template <class InputIterator>\n// fps(InputIterator first, InputIterator last) : v(first, last) {}\n//\n// void resize(int n) { v.resize(n); }\n//\n// T &operator[](int i) { return v[i]; }\n//\n// iterator begin() { return v.begin(); }\n//\n// iterator end() { return v.end(); }\n//\n// fps diff() {\n// std::vector<T> res(v.size() - 1);\n// for (int i = 0; i < res.size(); i++) res[i] = v[i + 1] * (i + 1);\n// return fps(res);\n// }\n//\n// fps integral() {\n// std::vector<T> res(v.size() + 1);\n// for (int i = 0; i < v.size(); i++) res[i + 1] = v[i] / (i + 1);\n// return fps(res);\n// }\n//\n// fps inv(int deg = -1) {\n// assert(v[0] != 0);\n//\n// if (deg == -1) deg = size();\n// std::vector<T> res(deg);\n//\n// res[0] = v[0].inv();\n//\n// for (int d = 1; d < deg; d <<= 1) {\n// std::vector<T> f(2 * d), g(2 * d);\n//\n// std::copy(v.begin(), v.begin() + std::min(2 * d, (int)v.size()),\n// std::back_inserter(f));\n// std::copy(res.begin(), res.begin() + d, std::back_inserter(g));\n//\n// atcoder::internal::butterfly(f);\n// atcoder::internal::butterfly(g);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = 0; i < d; i++) f[i] = 0;\n//\n// atcoder::internal::butterfly(f);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = d; i < std::min(2 * d, deg); i++) res[i] = -f[i];\n// }\n//\n// res.resize(deg);\n//\n// return res;\n// }\n//\n// fps shift(T c) {\n// std::vector<T> res(size()), ifacts(size());\n//\n// T x = 1;\n//\n// for (int i = 0; i < size(); i++) {\n// ifacts[i] = x * factorials<T>::inv(i);\n// x *= c;\n// }\n//\n// for (int i = 0; i < size(); i++) {\n// res[size() - 1 - i] = v[i] * factorials<T>::get(i);\n// }\n//\n// res = atcoder::convolution(res, ifacts);\n//\n// res.resize(size());\n//\n// std::ranges::reverse(res);\n//\n// for (int i = 0; i < size(); i++) {\n// res[i] *= factorials<T>::inv(i);\n// }\n//\n// return res;\n// }\n//\n// fps operator-() {\n// fps res(v.size());\n// for (int i = 0; i < v.size(); i++) res[i] = -v[i];\n// return res;\n// }\n//\n// fps &operator+=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] += rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator-=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] -= rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator*=(const fps &rhs) {\n// return *this = atcoder::convolution(v, rhs.v);\n// }\n//\n// fps &operator+=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] += rhs;\n// return *this;\n// }\n//\n// fps &operator-=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] -= rhs;\n// return *this;\n// }\n//\n// fps &operator*=(const T &rhs) {\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs;\n// return *this;\n// }\n//\n// fps &operator/=(const T &rhs) {\n// T rhs_inv = rhs.inv();\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs_inv;\n// return *this;\n// }\n//\n// friend fps operator+(const fps &lhs, const fps &rhs) {\n// return fps(lhs) += rhs;\n// }\n//\n// friend fps operator-(const fps &lhs, const fps &rhs) {\n// return fps(lhs) -= rhs;\n// }\n//\n// friend fps operator*(const fps &lhs, const fps &rhs) {\n// return fps(lhs) *= rhs;\n// }\n//\n// friend fps operator+(const fps &lhs, const T &rhs) { return fps(lhs) +=\n// rhs; }\n//\n// friend fps operator-(const fps &lhs, const T &rhs) { return fps(lhs) -=\n// rhs; }\n//\n// friend fps operator*(const fps &lhs, const T &rhs) { return fps(lhs) *=\n// rhs; }\n//\n// friend fps operator/(const fps &lhs, const T &rhs) { return fps(lhs) /=\n// rhs; }\n//\n// friend fps operator+(const T &lhs, const fps &rhs) { return fps(rhs) +=\n// lhs; }\n//\n// friend fps operator-(const T &lhs, const fps &rhs) {\n// return -(fps(rhs) -= lhs);\n// }\n//\n// friend fps operator*(const T &lhs, const fps &rhs) { return fps(rhs) *=\n// lhs; }\n// };\n\n// using mint = atcoder::modint998244353;\n// using mint = atcoder::modint1000000007;\n\n// using fs = factorials<mint>;\n\nint main() {\n int N, M, R, Q;\n std::cin >> N >> M >> R >> Q;\n\n std::vector graph(N, std::vector<std::pair<int, ll>>());\n\n for (int i = 0; i < M; i++) {\n int a, b;\n ll c;\n std::cin >> a >> b >> c;\n a--;\n b--;\n\n graph[b].emplace_back(a, c);\n }\n\n std::vector dist(R, std::vector(N, infs<ll>::max() / 4));\n\n for (int r = 0; r < R; r++) {\n std::priority_queue<std::pair<ll, int>> priq;\n\n std::vector<bool> locked(N);\n\n for (int i = r; i < N; i += R) {\n dist[r][i] = 0;\n priq.emplace(0, i);\n }\n\n while (!priq.empty()) {\n auto [c, v] = priq.top();\n priq.pop();\n\n if (locked[v]) continue;\n c = -c;\n locked[v] = true;\n\n for (auto [w, d] : graph[v]) {\n if (chmin(dist[r][w], c + d)) {\n priq.emplace(-(c + d), w);\n }\n }\n }\n }\n\n ll ans = 0;\n\n for (int i = 0; i < Q; i++) {\n int x, y;\n ll z;\n std::cin >> x >> y >> z;\n\n x--;\n y--;\n\n ll tmp = infs<ll>::max() / 4;\n\n for (int r = 0; r < R; r++) {\n chmin(tmp, dist[r][x] + dist[r][y]);\n }\n\n ans += std::max(0LL, z - tmp);\n }\n\n std::cout << ans << std::endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 17072, "score_of_the_acc": -1.0749, "final_rank": 3 }, { "submission_id": "aoj_2810_9117624", "code_snippet": "//#include<atcoder/all>\n//using namespace atcoder;\n\n#include <bits/stdc++.h>\ntemplate<class T> inline bool chmin(T&a, T b){if(a > b){a = b; return true;}else{return false;}}\ntemplate<class T> inline bool chmax(T&a, T b){if(a < b){a = b; return true;}else{return false;}}\n#define ll long long\n#define double long double\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define REP(i,n) for(int i=1;i<=(n);i++)\n#define mod (ll)(1e9+7)\n#define inf (ll)(3e18+7)\n#define eps (double)(1e-9)\n#define pi (double) acos(-1)\n#define all(x) x.begin(),x.end()\n#define rall(x) x.rbegin(),x.rend()\nusing namespace std;\n\nint main(){\n int n, m, r, q;\n cin >> n >> m >> r >> q;\n vector<ll> a(m), b(m), c(m);\n vector<ll> x(q), y(q), z(q);\n rep(i, m)cin >> a[i] >> b[i] >> c[i];\n rep(i, q)cin >> x[i] >> y[i] >> z[i];\n\n vector<vector<ll>> mn(n+1, vector<ll>(r, inf));\n rep(i, m)chmin(mn[a[i]][b[i]%r], c[i]);\n\n ll ans = 0;\n rep(i, q){\n ll now = inf;\n rep(j, r){\n ll cost1 = mn[x[i]][j];\n ll cost2 = mn[y[i]][j];\n if(x[i] % r == j)cost1 = 0;\n if(y[i] % r == j)cost2 = 0;\n chmin(now, cost1 + cost2);\n }\n ans += max(0LL, - now + z[i]);\n }\n\n cout << ans << endl;\n\n}", "accuracy": 0.03333333333333333, "time_ms": 50, "memory_kb": 12844, "score_of_the_acc": -0.4814, "final_rank": 15 }, { "submission_id": "aoj_2810_9117621", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n//高速化 \nstruct ponjuice{ponjuice(){cin.tie(0);ios::sync_with_stdio(0);cout<<fixed<<setprecision(20);}}PonJuice;\n//#define endl '\\n' //インタラクティブ問題の時は消す\n\n//型\nusing ll = long long;\nusing ld = long double;\ntemplate<class T>using vc = vector<T>; template<class T>using vvc = vc<vc<T>>; template<class T>using vvvc = vvc<vc<T>>;\nusing vi = vc<int>; using vvi = vvc<int>; using vvvi = vvvc<int>;\nusing vl = vc<ll>; using vvl = vvc<ll>; using vvvl = vvvc<ll>;\nusing pi = pair<int, int>; using pl = pair<ll, ll>;\nusing ull = unsigned ll;\ntemplate<class T>using priq = priority_queue<T>;\ntemplate<class T>using priqg = priority_queue<T, vc<T>, greater<T>>;\n\n// for文\n#define overload4(a, b, c, d, e, ...) e\n#define rep1(n) for(ll i = 0; i < n; i++)\n#define rep2(i, n) for(ll i = 0; i < n; i++)\n#define rep3(i, a, b) for(ll i = a; i < b; i++)\n#define rep4(i, a, b, step) for(ll i = a; i < b; i+= step)\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define per1(n) for(ll i = n-1; i >= 0; i--)\n#define per2(i, n) for(ll i = n-1; i >= 0; i--)\n#define per3(i, a, b) for(ll i = b-1; i >= a; i--)\n#define per4(i, a, b, step) for(ll i = b-1; i >= a; i-= step)\n#define per(...) overload4(__VA_ARGS__, per4, per3, per2, per1)(__VA_ARGS__)\n#define fore1(a) for(auto&& i : a)\t\n#define fore2(i,a) for(auto&& i : a)\n#define fore3(x,y,a) for(auto&& [x, y] : a)\n#define fore4(x,y,z,a) for(auto&& [x, y, z] : a)\n#define fore(...) overload4(__VA_ARGS__, fore4, fore3, fore2, fore1)(__VA_ARGS__)\n\n//関数\n#define mp make_pair\n#define mt make_tuple\n#define a first\n#define b second\n#define pb emplace_back\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define si(x) (ll)(x).size()\ntemplate<class S, class T>inline bool chmax(S& a, T b){return a < b && ( a = b , true);}\ntemplate<class S, class T>inline bool chmin(S& a, T b){return a > b && ( a = b , true);}\ntemplate<class T>void uniq(vc<T>&a){sort(all(a));a.erase(unique(all(a)),a.end());}\ntemplate<class T>vc<T> operator++(vc<T>&v,signed){auto res = v;fore(e,v)e++;return res;}\ntemplate<class T>vc<T> operator--(vc<T>&v,signed){auto res = v;fore(e,v)e--;return res;}\ntemplate<class T>vc<T> operator++(vc<T>&v){fore(e,v)e++;return v;}\ntemplate<class T>vc<T> operator--(vc<T>&v){fore(e,v)e--;return v;}\n\n//入出力(operator)\ntemplate<class S,class T>istream&operator>>(istream&is,pair<S,T>&a){is>>a.a>>a.b;return is;}\ntemplate<class T>istream&operator>>(istream&is,vc<T>&a){fore(e,a)is>>e;return is;}\n\ntemplate<class S,class T>ostream&operator<<(ostream&os,pair<S,T>&a){return os<<a.a<<\" \"<<a.b;}\ntemplate<class T>ostream&operator<<(ostream&os,set<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,multiset<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class S,class T>ostream&operator<<(ostream&os,map<S,T>&a){fore(x,y,a){os<<x<<\" \"<<y<<\"\\n\";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,unordered_set<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class S,class T>ostream&operator<<(ostream&os,unordered_map<S,T>&a){fore(x,y,a){os<<x<<\" \"<<y<<\"\\n\";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,vc<T>&a){fore(e,a)os<<e<<\" \";return os;}\ntemplate<class T>ostream&operator<<(ostream&os,vvc<T>&a){fore(e,a)os<<e<<\"\\n\";return os;}\n\n//入出力(関数)\nvi readvi(ll n){vi a(n);cin>>a;return a;}\nvl readvl(ll n){vl a(n);cin>>a;return a;}\nvvi readg(ll n,ll m,bool bidirected=true){vvi g(n);rep(i,m){ll a,b;cin>>a>>b;a--;b--;g[a].pb(b);if(bidirected)g[b].pb(a);}return g;}\nvvc<pi>readgc(ll n,ll m,bool bidirected=true){vvc<pi> g(n);rep(i,m){ll a,b,c;cin>>a>>b>>c;a--;b--;g[a].pb(b,c);if(bidirected)g[b].pb(a,c);}return g;}\nvvi readt(ll n,bool bidirected=true){return readg(n,n-1,bidirected);}\nvvc<pi> readtc(ll n,bool bidirected=true){return readgc(n,n-1,bidirected);}\n\ninline void yes(){cout << \"Yes\\n\";}\ninline void no(){cout << \"No\\n\";}\ninline void yesno(bool y = true){if(y)yes();else no();}\n\n//定数\nconstexpr ll mod = 998244353;\nconstexpr ll minf=-(1<<29);\nconstexpr ll inf=(1<<29);\nconstexpr ll MINF=-(1LL<<60);\nconstexpr ll INF=(1LL<<60);\nconstexpr ld EPS = 1e-8;\nconst ld PI = acosl(-1);\n#define equals(a, b) (abs((a) - (b)) < EPS)\nconst int dx[4] ={-1, 0, 1, 0};\nconst int dy[4] ={ 0, 1, 0,-1};\nconst int dx8[8] ={-1,-1,-1, 0, 1, 1, 1, 0};\nconst int dy8[8] ={-1, 0, 1, 1, 1, 0,-1,-1};\n\nvoid solve();\nint main() {\n\tint t = 1;\n // cin >>t;\n while(t--)solve();\n}\n\n\n\nvoid solve(){\n ll n,m,q,r;\n cin >> n >> m >> r >> q;\n\n vvc<pi> g(n);\n\n vvi cst(n, vi(r, inf));\n rep(i,n) cst[i][i % r] = 0;\n rep(i,m){\n int a,b,c;\n cin >> a >> b >> c;\n a--,b--;\n g[b].emplace_back(a, c);\n }\n\n rep(i,r){\n priqg<pi> q;\n rep(j,n){\n if(j * r + i >= n) break;\n q.push({0, j * r + i});\n }\n\n while(q.size()){\n int p = q.top().second;\n int c = q.top().first;\n q.pop();\n if(cst[p][i] != c) continue;\n\n rep(j, si(g[p])){\n if(chmin(cst[g[p][j].first][i], c + g[p][j].second)){\n q.push({c + g[p][j].second, g[p][j].first});\n }\n }\n }\n }\n\n ll ans = 0;\n rep(_, q){\n int x,y,z;\n cin >> x >> y >> z;\n x--,y--;\n\n int mx = 0;\n rep(i, r){\n chmax(mx, z - cst[x][i] - cst[y][i]);\n }\n ans += mx;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 15880, "score_of_the_acc": -1.0849, "final_rank": 4 }, { "submission_id": "aoj_2810_8491873", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2810.cc: Card Game\n */\n\n#include<cstdio>\n#include<vector>\n#include<queue>\n#include<algorithm>\n#include<utility>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_R = 10;\nconst long long LINF = 1LL << 60;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef pair<ll,int> pli;\ntypedef vector<pii> vpii;\n\n/* global variables */\n\nvpii nbrs[MAX_N];\nll kds[MAX_R][MAX_N];\n\n/* subroutines */\n\nvoid calcdists(int n, int k, int r, ll ds[]) {\n fill(ds, ds + n, LINF);\n priority_queue<pli> q;\n\n for (int u = k; u < n; u += r)\n ds[u] = 0, q.push(pii(0, u));\n\n while (! q.empty()) {\n auto ue = q.top(); q.pop();\n ll ud = -ue.first;\n int u = ue.second;\n if (ud != ds[u]) continue;\n\n for (auto &vw: nbrs[u]) {\n int v = vw.first;\n ll vd = ud + vw.second;\n if (ds[v] > vd) {\n\tds[v] = vd;\n\tq.push(pli(-vd, v));\n }\n }\n }\n}\n\n/* main */\n\nint main() {\n int n, m, r, qn;\n scanf(\"%d%d%d%d\", &n, &m, &r, &qn);\n \n for (int i = 0; i < m; i++) {\n int a, b, c;\n scanf(\"%d%d%d\", &a, &b, &c);\n a--, b--;\n nbrs[b].push_back(pii(a, c));\n }\n\n for (int k = 0; k < r; k++) calcdists(n, k, r, kds[k]);\n\n ll sum = 0;\n \n while (qn--) {\n int x, y, z;\n scanf(\"%d%d%d\", &x, &y, &z);\n x--, y--;\n\n ll maxd = 0;\n for (int k = 0; k < r; k++)\n maxd = max(maxd, z - (kds[k][x] + kds[k][y]));\n\n sum += maxd;\n }\n\n printf(\"%lld\\n\", sum);\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 16540, "score_of_the_acc": -1.0005, "final_rank": 2 }, { "submission_id": "aoj_2810_5967135", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nconst vector<int> dy={-1,0,1,0},dx={0,-1,0,1};\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(20);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\nstruct edge{\n int to;\n ll cost;\n edge(int to,ll cost):to(to),cost(cost){}\n};\nint main(){\n int n,m,r,q;\n cin>>n>>m>>r>>q;\n V<V<int>> d(r);\n for(int i=1;i<=n;i++){\n d[i%r].emplace_back(i);\n }\n V<V<edge>> g(n+1);\n for(int i=0;i<m;i++){\n ll a,b,c;\n cin>>a>>b>>c;\n g[b].emplace_back(a,c);\n }\n V<V<ll>> dp(n+1,V<ll>(r,inf));\n for(int i=0;i<r;i++){\n priority_queue<P,V<P>,greater<P>> pq;\n for(int v:d[i]){\n pq.emplace(0,v);\n dp[v][i]=0;\n }\n while(pq.size()){\n auto[v,cur]=pq.top();\n pq.pop();\n if(dp[cur][i]<v)continue;\n for(edge &e:g[cur]){\n if(chmin(dp[e.to][i],dp[cur][i]+e.cost)){\n pq.emplace(dp[e.to][i],e.to);\n }\n }\n }\n }\n ll ans=0;\n for(int i=0;i<q;i++){\n ll x,y,z;\n cin>>x>>y>>z;\n ll mi=inf;\n for(int j=0;j<r;j++){\n chmin(mi,dp[x][j]+dp[y][j]);\n }\n ans+=max(0ll,z-mi);\n }\n cout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 21344, "score_of_the_acc": -1.6711, "final_rank": 8 }, { "submission_id": "aoj_2810_3992939", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\n\n\n\nint main() {\n\tint N, M, MD, K;\n\tcin >> N >> M >> MD >> K;\n\tvector<vector<pair<int, long long int>>>rev_edge(N + 1);\n\tfor (int i = 0; i < M; i++) {\n\t\tint l, r, k;\n\t\tcin >> l >> r >> k;\n\t\trev_edge[r].push_back({ l,k });\n\t}\n\tvector<vector<long long int>>dis(MD, vector<long long int>(N + 1,MOD*MOD));\n\tfor (int i = 0; i < MD; i++) {\n\t\tfor (int j = i; j <= N; j += MD) {\n\t\t\tdis[i][j] = 0;\n\t\t}\n\t\tpriority_queue<pair<long long int, int>, vector<pair<long long int, int>>, greater<pair<long long int, int>>>PQ;\n\t\tfor (int j = 0; j <= N; j++) {\n\t\t\tif (dis[i][j] == MOD*MOD) continue;\n\t\t\tPQ.push({ dis[i][j],j });\n\t\t}\n\t\twhile (!PQ.empty()) {\n\t\t\tint cn = PQ.top().second;\n\t\t\tlong long int c = PQ.top().first;\n\t\t\tPQ.pop();\n\t\t\tfor (auto j : rev_edge[cn]) {\n\t\t\t\tif (dis[i][j.first]>c + j.second) {\n\t\t\t\t\tdis[i][j.first] = c + j.second;\n\t\t\t\t\tPQ.push({ dis[i][j.first],j.first });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tlong long int ans = 0;\n\tfor (int i = 0; i < K; i++) {\n\t\tint a, b, c;\n\t\tcin >> a >> b >> c;\n\t\tlong long int add = 0;\n\t\tfor (int j = 0; j < MD; j++) {\n\t\t\tadd = max(add, c - dis[j][a] - dis[j][b]);\n\t\t}\n\t\tans += add;\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 16780, "score_of_the_acc": -1.5986, "final_rank": 6 }, { "submission_id": "aoj_2810_3991523", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\n\n\n\nint main() {\n\tint N, M, MD, K;\n\tcin >> N >> M >> MD >> K;\n\tvector<vector<pair<int, long long int>>>rev_edge(N + 1);\n\tfor (int i = 0; i < M; i++) {\n\t\tint l, r, k;\n\t\tcin >> l >> r >> k;\n\t\trev_edge[r].push_back({ l,k });\n\t}\n\tvector<vector<long long int>>dis(MD, vector<long long int>(N + 1,MOD*MOD));\n\tfor (int i = 0; i < MD; i++) {\n\t\tfor (int j = i; j <= N; j += MD) {\n\t\t\tdis[i][j] = 0;\n\t\t}\n\t\tpriority_queue<pair<long long int, int>, vector<pair<long long int, int>>, greater<pair<long long int, int>>>PQ;\n\t\tfor (int j = 0; j <= N; j++) {\n\t\t\tif (dis[i][j] == MOD*MOD) continue;\n\t\t\tPQ.push({ dis[i][j],j });\n\t\t}\n\t\twhile (!PQ.empty()) {\n\t\t\tint cn = PQ.top().second;\n\t\t\tlong long int c = PQ.top().first;\n\t\t\tPQ.pop();\n\t\t\tfor (auto j : rev_edge[cn]) {\n\t\t\t\tif (dis[i][j.first]>c + j.second) {\n\t\t\t\t\tdis[i][j.first] = c + j.second;\n\t\t\t\t\tPQ.push({ dis[i][j.first],j.first });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tlong long int ans = 0;\n\tfor (int i = 0; i < K; i++) {\n\t\tint a, b, c;\n\t\tcin >> a >> b >> c;\n\t\tlong long int add = 0;\n\t\tfor (int j = 0; j < MD; j++) {\n\t\t\tadd = max(add, c - dis[j][a] - dis[j][b]);\n\t\t}\n\t\tans += add;\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 16844, "score_of_the_acc": -1.6025, "final_rank": 7 }, { "submission_id": "aoj_2810_3527952", "code_snippet": "#define _USE_MATH_DEFINES\n\n#include <cstdio>\n#include <cstdlib>\n#include <iostream>\n#include <cmath>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <map>\n\nusing namespace std;\n\ntypedef pair<long long int, long long int> P;\n\nlong long int INF = 1e18;\nlong long int MOD = 1e9 + 7;\n\n#define MAX_V 200000\n\nstruct edge{\n\tint to;\n\tlong long int cost;\n};\n\nvector<edge> G[MAX_V];\nlong long int cost[10][MAX_V];\n\nvoid shortest_path(int s, int V, long long int d[]){\n\t\n\tpriority_queue<P, vector<P>, greater<P> > que;\n\t\n\tfor(int i = 0; i < V; i++){\n\t\td[i] = INF;\n\t}\n\td[s] = 0;\n\t\n\tque.push(P(0, s));\n\t\n\twhile(!que.empty()){\n\t\t\n\t\tP p = que.top();\n\t\tque.pop();\n\t\t\n\t\tint v = p.second;\n\t\t\n\t\tif(d[v] < p.first){\n\t\t\tcontinue;\n\t\t}\n\t\t\n\t\tfor(int i = 0; i < G[v].size(); i++){\n\t\t\tedge e = G[v][i];\n\t\t\tif(d[e.to] > e.cost + d[v]){\n\t\t\t\td[e.to] = d[v] + e.cost;\n\t\t\t\tque.push(P(d[e.to], e.to));\n\t\t\t}\n\t\t}\n\t}\n}\n\nint main(){\n int N, M, R, Q;\n cin >> N >> M >> R >> Q;\n for(int i = 0; i < M; i++){\n\t\tint u, v, cost;\n\t\tcin >> u >> v >> cost;\n edge e;\n e.cost = cost;\n e.to = u;\n G[v].push_back(e);\n }\n for(int i = 0; i < R; i++){\n G[0].clear();\n edge e;\n e.cost = 0;\n for(int j = 1; j <= N; j++){\n if(j % R == i){\n e.to = j;\n G[0].push_back(e);\n }\n }\n shortest_path(0, N + 1, cost[i]);\n }\n long long int ans = 0;\n for(int loop = 0; loop < Q; loop++){\n long long int x, y, z;\n cin >> x >> y >> z;\n long long int S = 0;\n for(int i = 0; i < R; i++){\n S = max(S, z - cost[i][x] - cost[i][y]);\n }\n ans += S;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 19252, "score_of_the_acc": -1.7507, "final_rank": 11 }, { "submission_id": "aoj_2810_3253223", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2810.cc: Card Game\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_R = 10;\nconst int MAX_Z = 100000;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef pair<int,int> pii;\ntypedef vector<pii> vpii;\ntypedef map<pii,int> mpii;\n\nstruct Stat {\n int d, i, j;\n Stat() {}\n Stat(int _d, int _i, int _j): d(_d), i(_i), j(_j) {}\n\n bool operator<(const Stat &s) const { return d > s.d; }\n void print() { printf(\"Stat: (%d,%d):%d\\n\", i, j, d); }\n};\n\n/* global variables */\n\nvpii nbrs[MAX_N];\nmpii dists;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, m, r, qn;\n scanf(\"%d%d%d%d\", &n, &m, &r, &qn);\n \n for (int i = 0; i < n; i++) {\n int a, b, c;\n scanf(\"%d%d%d\", &a, &b, &c);\n a--, b--;\n nbrs[a].push_back(pii(b, c));\n }\n\n ll sum = 0;\n \n while (qn--) {\n int x, y, z;\n scanf(\"%d%d%d\", &x, &y, &z);\n x--, y--;\n if (x > y) swap(x, y);\n\n priority_queue<Stat> q;\n q.push(Stat(0, x, y));\n\n dists.clear();\n dists[pii(x, y)] = 0;\n\n int mind = z;\n while (! q.empty()) {\n Stat u = q.top(); q.pop();\n //u.print();\n if (u.d != dists[pii(u.i, u.j)]) continue;\n\n if (u.i % r == u.j % r) {\n\tmind = u.d;\n\tbreak;\n }\n\n vpii &nbri = nbrs[u.i];\n for (vpii::iterator vit = nbri.begin(); vit != nbri.end(); vit++) {\n\tint vi = vit->first, vd = u.d + vit->second;\n\tif (vd < z) {\n\t int vj = u.j;\n\t if (vi > vj) swap(vi, vj);\n\t pii vp(vi, vj);\n\t mpii::iterator mit = dists.find(vp);\n\t if (mit == dists.end() || mit->second > vd) {\n\t dists[vp] = vd;\n\t q.push(Stat(vd, vi, vj));\n\t }\n\t}\n }\n\n vpii &nbrj = nbrs[u.j];\n for (vpii::iterator vit = nbrj.begin(); vit != nbrj.end(); vit++) {\n\tint vj = vit->first, vd = u.d + vit->second;\n\tif (vd < z) {\n\t int vi = u.i;\n\t if (vi > vj) swap(vi, vj);\n\t pii vp(vi, vj);\n\t mpii::iterator mit = dists.find(vp);\n\t if (mit == dists.end() || mit->second > vd) {\n\t dists[vp] = vd;\n\t q.push(Stat(vd, vi, vj));\n\t }\n\t}\n }\n }\n\n sum += z - mind;\n }\n\n printf(\"%lld\\n\", sum);\n return 0;\n}", "accuracy": 0.03333333333333333, "time_ms": 20, "memory_kb": 7052, "score_of_the_acc": 0, "final_rank": 14 }, { "submission_id": "aoj_2810_2977008", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\n#define int ll\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1LL<<60)\n\n//verified AOJ GRL_1\n#define MAX_V 100020\ntemplate <typename T>\nstruct edge{int to;T cost;};\n\ntemplate <typename T>\nvoid dijkstra(int s, vector<T> &d, vector<edge<T>> G[MAX_V]){\n priority_queue< pii,vector<pii>,greater<pii> > que;\n rep( i,d.size() )d[i]=INF;\n d[s] = 0;\n que.push( pii(0,s) );\n \n while( que.size() ){\n pii p=que.top();\n que.pop();\n \n int v=p.second;\n if(d[v]<p.first)continue;\n \n rep(i,G[v].size()){\n edge<T> e=G[v][i];\n if(d[e.to]>d[v]+e.cost){\n d[e.to]=d[v]+e.cost;\n que.push(pii(d[e.to],e.to));\n }\n }\n }\n}\n\n\n\nsigned main(){\n int n,m,r,q;\n cin>>n>>m>>r>>q;\n vector<edge<int>> G[MAX_V];\n\n rep(i,m){\n int s,t,c;\n cin>>s>>t>>c;\n G[t].pb(edge<int>{s,c});\n }\n for(int i=1;i<=n;i++){\n G[n+1+i%r].pb(edge<int>{i,0});\n }\n \n static vector<vector<int>> d(r,vector<int>(n+r+1));\n for(int i=0;i<r;i++){\n dijkstra<int>(n+i+1,d[i],G);\n }\n \n int ans = 0;\n rep(i,q){\n int x,y,z;\n cin>>x>>y>>z;\n int mini = INF;\n rep(j,r){\n mini = min(mini,d[j][x]+d[j][y]);\n }\n if(z-mini>0)ans += z-mini;\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 19192, "score_of_the_acc": -1.747, "final_rank": 9 }, { "submission_id": "aoj_2810_2977006", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\n#define int ll\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1LL<<60)\n\n//verified AOJ GRL_1\n#define MAX_V 100020\ntemplate <typename T>\nstruct edge{int to;T cost;};\n\ntemplate <typename T>\nvoid dijkstra(int s, vector<T> &d, vector<edge<T>> G[MAX_V]){\n priority_queue< pii,vector<pii>,greater<pii> > que;\n rep( i,d.size() )d[i]=INF;\n d[s] = 0;\n que.push( pii(0,s) );\n \n while( que.size() ){\n pii p=que.top();\n que.pop();\n \n int v=p.second;\n if(d[v]<p.first)continue;\n \n rep(i,G[v].size()){\n edge<T> e=G[v][i];\n if(d[e.to]>d[v]+e.cost){\n d[e.to]=d[v]+e.cost;\n que.push(pii(d[e.to],e.to));\n }\n }\n }\n}\n\n\n\nsigned main(){\n int n,m,r,q;\n cin>>n>>m>>r>>q;\n vector<edge<int>> G[MAX_V];\n\n rep(i,m){\n int s,t,c;\n cin>>s>>t>>c;\n G[t].pb(edge<int>{s,c});\n }\n for(int i=1;i<=n;i++){\n G[n+1+i%r].pb(edge<int>{i,0});\n }\n \n static vector<vector<int>> d(r,vector<int>(n+r));\n for(int i=0;i<r;i++){\n dijkstra<int>(n+i+1,d[i],G);\n }\n \n int ans = 0;\n rep(i,q){\n int x,y,z;\n cin>>x>>y>>z;\n int mini = INF;\n rep(j,r){\n mini = min(mini,d[j][x]+d[j][y]);\n }\n if(z-mini>0)ans += z-mini;\n }\n cout<<ans<<endl;\n}", "accuracy": 0.16666666666666666, "time_ms": 260, "memory_kb": 18096, "score_of_the_acc": -1.6795, "final_rank": 12 }, { "submission_id": "aoj_2810_2977005", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\n#define int ll\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1LL<<60)\n\n//verified AOJ GRL_1\n#define MAX_V 100011\ntemplate <typename T>\nstruct edge{int to;T cost;};\n\ntemplate <typename T>\nvoid dijkstra(int s, vector<T> &d, vector<edge<T>> G[MAX_V]){\n priority_queue< pii,vector<pii>,greater<pii> > que;\n rep( i,d.size() )d[i]=INF;\n d[s] = 0;\n que.push( pii(0,s) );\n \n while( que.size() ){\n pii p=que.top();\n que.pop();\n \n int v=p.second;\n if(d[v]<p.first)continue;\n \n rep(i,G[v].size()){\n edge<T> e=G[v][i];\n if(d[e.to]>d[v]+e.cost){\n d[e.to]=d[v]+e.cost;\n que.push(pii(d[e.to],e.to));\n }\n }\n }\n}\n\n\n\nsigned main(){\n int n,m,r,q;\n cin>>n>>m>>r>>q;\n vector<edge<int>> G[MAX_V];\n\n rep(i,m){\n int s,t,c;\n cin>>s>>t>>c;\n G[t].pb(edge<int>{s,c});\n }\n for(int i=1;i<=n;i++){\n G[n+1+i%r].pb(edge<int>{i,0});\n }\n \n vector<vector<int>> d(r,vector<int>(n+r));\n for(int i=0;i<r;i++){\n dijkstra<int>(n+i+1,d[i],G);\n }\n \n int ans = 0;\n rep(i,q){\n int x,y,z;\n cin>>x>>y>>z;\n int mini = INF;\n rep(j,r){\n mini = min(mini,d[j][x]+d[j][y]);\n }\n if(z-mini>0)ans += z-mini;\n }\n cout<<ans<<endl;\n}", "accuracy": 0.16666666666666666, "time_ms": 260, "memory_kb": 18204, "score_of_the_acc": -1.6862, "final_rank": 13 }, { "submission_id": "aoj_2810_2976962", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\n#define int ll\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1LL<<60)\n\n//verified AOJ GRL_1\n#define MAX_V 100011\ntemplate <typename T>\nstruct edge{int to;T cost;};\n\ntemplate <typename T>\nvoid dijkstra(int s, vector<T> &d, vector<edge<T>> G[MAX_V]){\n priority_queue< pii,vector<pii>,greater<pii> > que;\n rep( i,d.size() )d[i]=INF;\n d[s] = 0;\n que.push( pii(0,s) );\n \n while( que.size() ){\n pii p=que.top();\n que.pop();\n \n int v=p.second;\n if(d[v]<p.first)continue;\n \n rep(i,G[v].size()){\n edge<T> e=G[v][i];\n if(d[e.to]>d[v]+e.cost){\n d[e.to]=d[v]+e.cost;\n que.push(pii(d[e.to],e.to));\n }\n }\n }\n}\n\n\n\nsigned main(){\n int n,m,r,q;\n cin>>n>>m>>r>>q;\n vector<edge<int>> G[MAX_V];\n\n rep(i,m){\n int s,t,c;\n cin>>s>>t>>c;\n G[t].pb(edge<int>{s,c});\n }\n for(int i=1;i<=n;i++){\n G[n+i%r].pb(edge<int>{i,0});\n }\n \n vector<vector<int>> d(r,vector<int>(n+r));\n for(int i=0;i<r;i++){\n dijkstra<int>(n+i,d[i],G);\n }\n \n int ans = 0;\n rep(i,q){\n int x,y,z;\n cin>>x>>y>>z;\n int mini = INF;\n rep(j,r){\n mini = min(mini,d[j][x]+d[j][y]);\n }\n if(z-mini>0)ans += z-mini;\n }\n cout<<ans<<endl;\n}", "accuracy": 0.03333333333333333, "time_ms": 110, "memory_kb": 13980, "score_of_the_acc": -0.8013, "final_rank": 19 }, { "submission_id": "aoj_2810_2976954", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\n#define int ll\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1LL<<60)\n\n//verified AOJ GRL_1\n#define MAX_V 100011\ntemplate <typename T>\nstruct edge{int to;T cost;};\n\ntemplate <typename T>\nvoid dijkstra(int s, vector<T> &d, vector<edge<T>> G[MAX_V]){\n priority_queue< pii,vector<pii>,greater<pii> > que;\n rep( i,d.size() )d[i]=INF;\n d[s] = 0;\n que.push( pii(0,s) );\n \n while( que.size() ){\n pii p=que.top();\n que.pop();\n \n int v=p.second;\n if(d[v]<p.first)continue;\n \n rep(i,G[v].size()){\n edge<T> e=G[v][i];\n if(d[e.to]>d[v]+e.cost){\n d[e.to]=d[v]+e.cost;\n que.push(pii(d[e.to],e.to));\n }\n }\n }\n}\n\n\n\nsigned main(){\n int n,m,r,q;\n cin>>n>>m>>r>>q;\n vector<edge<int>> G[MAX_V];\n\n rep(i,m){\n int s,t,c;\n cin>>s>>t>>c;\n G[t].pb(edge<int>{s,c});\n }\n for(int i=1;i<=n;i++){\n G[n+i%r].pb(edge<int>{i,0});\n }\n \n vector<vector<int>> d(r,vector<int>(n+r));\n for(int i=0;i<r;i++){\n dijkstra<int>(n+i,d[i],G);\n }\n \n int ans = 0;\n rep(i,q){\n int x,y,z;\n cin>>x>>y>>z;\n int mini = INF;\n rep(i,r){\n mini = min(mini,d[i][x]+d[i][y]);\n }\n if(z-mini>0)ans += z-mini;\n }\n cout<<ans<<endl;\n}", "accuracy": 0.03333333333333333, "time_ms": 110, "memory_kb": 14124, "score_of_the_acc": -0.8101, "final_rank": 20 }, { "submission_id": "aoj_2810_2976947", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1e9+1)\n\n//verified AOJ GRL_1\n#define MAX_V 100011\ntemplate <typename T>\nstruct edge{int to;T cost;};\n\ntemplate <typename T>\nvoid dijkstra(int s, vector<T> &d, vector<edge<T>> G[MAX_V]){\n priority_queue< pii,vector<pii>,greater<pii> > que;\n rep( i,d.size() )d[i]=INF;\n d[s] = 0;\n que.push( pii(0,s) );\n \n while( que.size() ){\n pii p=que.top();\n que.pop();\n \n int v=p.second;\n if(d[v]<p.first)continue;\n \n rep(i,G[v].size()){\n edge<T> e=G[v][i];\n if(d[e.to]>d[v]+e.cost){\n d[e.to]=d[v]+e.cost;\n que.push(pii(d[e.to],e.to));\n }\n }\n }\n}\n\n\n\nint main(){\n int n,m,r,q;\n cin>>n>>m>>r>>q;\n vector<edge<int>> G[MAX_V];\n\n rep(i,m){\n int s,t,c;\n cin>>s>>t>>c;\n G[t].pb(edge<int>{s,c});\n }\n for(int i=1;i<=n;i++){\n G[n+i%r].pb(edge<int>{i,0});\n }\n \n vector<vector<int>> d(r,vector<int>(n+r));\n for(int i=0;i<r;i++){\n dijkstra<int>(n+i,d[i],G);\n }\n \n int ans = 0;\n rep(i,q){\n int x,y,z;\n cin>>x>>y>>z;\n int mini = INF;\n rep(i,r){\n mini = min(mini,d[i][x]+d[i][y]);\n }\n if(z-mini>0)ans += z-mini;\n }\n cout<<ans<<endl;\n}", "accuracy": 0.03333333333333333, "time_ms": 100, "memory_kb": 10416, "score_of_the_acc": -0.5403, "final_rank": 17 }, { "submission_id": "aoj_2810_2695017", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n//#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define BIG_NUM 200000000000\n#define NUM 100000\n\n\nstruct Info{\n\tInfo(int arg_to,ll arg_cost){\n\t\tto = arg_to;\n\t\tcost = arg_cost;\n\t}\n\tint to;\n\tll cost;\n};\n\nstruct Data{\n\tData(int arg_num,ll arg_cost){\n\t\tnum = arg_num;\n\t\tcost = arg_cost;\n\t}\n\tbool operator<(const struct Data &arg) const{\n\t\treturn cost > arg.cost;\n\t}\n\tint num;\n\tll cost;\n};\n\nvector<Info> rev_G[NUM+1];\nll min_cost[10][NUM+1];\n\n\nint main(){\n\n\tint N,M,R,Q;\n\tscanf(\"%d %d %d %d\",&N,&M,&R,&Q);\n\n\tint from,to;\n\tll cost;\n\n\tfor(int loop = 0; loop < M; loop++){\n\t\tscanf(\"%d %d %lld\",&from,&to,&cost);\n\t\trev_G[to].push_back(Info(from,cost));\n\t}\n\n\tfor(int i = 0; i < R; i++){\n\t\tfor(int k = 1; k <= N; k++)min_cost[i][k] = BIG_NUM;\n\t}\n\n\tint next_num;\n\tll next_cost;\n\tpriority_queue<Data> PQ;\n\n\tfor(int start = 0; start < R; start++){\n\n\t\tfor(int to = 1; to <= N; to++){\n\t\t\tif(to%R == start){\n\t\t\t\tmin_cost[start][to] = 0;\n\t\t\t\tPQ.push(Data(to,0));\n\t\t\t}else{\n\t\t\t\tmin_cost[start][to] = BIG_NUM;\n\t\t\t}\n\t\t}\n\n\t\twhile(!PQ.empty()){\n\n\t\t\tif(PQ.top().cost > min_cost[start][PQ.top().num]){\n\t\t\t\tPQ.pop();\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tfor(int i = 0; i < rev_G[PQ.top().num].size(); i++){\n\t\t\t\tnext_num = rev_G[PQ.top().num][i].to;\n\t\t\t\tnext_cost = PQ.top().cost+rev_G[PQ.top().num][i].cost;\n\n\t\t\t\tif(min_cost[start][next_num] > next_cost){\n\t\t\t\t\tmin_cost[start][next_num] = next_cost;\n\t\t\t\t\tPQ.push(Data(next_num,next_cost));\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tPQ.pop();\n\t\t}\n\t}\n\n\tll ans = 0;\n\tint x,y;\n\tll z,minimum;\n\n\tfor(int loop = 0; loop < Q; loop++){\n\t\tscanf(\"%d %d %lld\",&x,&y,&z);\n\n\t\tif(x%R == y%R){\n\t\t\tans += z;\n\t\t\tcontinue;\n\t\t}\n\n\t\tminimum = BIG_NUM;\n\t\tfor(int i = 0; i < R; i++){\n\t\t\tif(min_cost[i][x] == BIG_NUM || min_cost[i][y] == BIG_NUM)continue;\n\t\t\tminimum = min(minimum,min_cost[i][x]+min_cost[i][y]);\n\t\t}\n\n\t\tif(z > minimum){\n\t\t\tans += z-minimum;\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 16620, "score_of_the_acc": -1.2137, "final_rank": 5 }, { "submission_id": "aoj_2810_2694991", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n//#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define BIG_NUM 200000000000\n#define NUM 100000\n\n\nstruct Info{\n\tInfo(int arg_to,ll arg_cost){\n\t\tto = arg_to;\n\t\tcost = arg_cost;\n\t}\n\tint to;\n\tll cost;\n};\n\nstruct Data{\n\tData(int arg_num,ll arg_cost){\n\t\tnum = arg_num;\n\t\tcost = arg_cost;\n\t}\n\tbool operator<(const struct Data &arg) const{\n\t\treturn cost > arg.cost;\n\t}\n\tint num;\n\tll cost;\n};\n\nvector<Info> G[NUM+1];\nll min_cost[NUM+1][10];\n\n\nint main(){\n\n\tint N,M,R,Q;\n\tscanf(\"%d %d %d %d\",&N,&M,&R,&Q);\n\n\tint from,to;\n\tll cost;\n\n\tfor(int loop = 0; loop < M; loop++){\n\t\tscanf(\"%d %d %lld\",&from,&to,&cost);\n\t\tG[from].push_back(Info(to,cost)); //★有向と解釈\n\t}\n\n\t//各数字から、Rで割ったあまりへの最小移行コストを計算する\n\tfor(int i = 1; i <= N; i++){\n\t\tfor(int k = 0; k < R; k++)min_cost[i][k] = BIG_NUM;\n\t}\n\n\tint next_num;\n\tll next_cost;\n\tpriority_queue<Data> PQ;\n\n\tfor(int i = 1; i <= N; i++){\n\t\tmin_cost[i][i%R] = 0; //数字そのものの、Rで割った余りは当然コスト0\n\n\t\tPQ.push(Data(i,0));\n\n\t\twhile(!PQ.empty()){\n\n\t\t\tif(PQ.top().cost > min_cost[i][PQ.top().num%R]){\n\t\t\t\tPQ.pop();\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tfor(int k = 0; k < G[PQ.top().num].size(); k++){\n\t\t\t\tnext_num = G[PQ.top().num][k].to;\n\t\t\t\tnext_cost = PQ.top().cost+G[PQ.top().num][k].cost;\n\n\t\t\t\tif(min_cost[i][next_num%R] > next_cost){\n\t\t\t\t\tmin_cost[i][next_num%R] = next_cost;\n\t\t\t\t\tPQ.push(Data(next_num,next_cost));\n\t\t\t\t}\n\t\t\t}\n\t\t\tPQ.pop();\n\t\t}\n\t}\n\n\tll ans = 0;\n\tint x,y;\n\tll z,minimum;\n\n\tfor(int loop = 0; loop < Q; loop++){\n\t\tscanf(\"%d %d %lld\",&x,&y,&z);\n\n\t\tif(x%R == y%R){\n\t\t\tans += z;\n\t\t\tcontinue;\n\t\t}\n\n\t\tminimum = BIG_NUM;\n\t\tfor(int i = 0; i < R; i++){\n\t\t\tif(min_cost[x][i] == BIG_NUM || min_cost[y][i] == BIG_NUM)continue;\n\t\t\tminimum = min(minimum,min_cost[x][i]+min_cost[y][i]);\n\t\t}\n\n\t\tif(z > minimum){ //報酬が最小変換コストより高い場合\n\t\t\tans += z-minimum;\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.03333333333333333, "time_ms": 60, "memory_kb": 13324, "score_of_the_acc": -0.5526, "final_rank": 18 }, { "submission_id": "aoj_2810_2694942", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n//#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define BIG_NUM 200000000000\n#define NUM 100000\n\n\nstruct Info{\n\tInfo(int arg_to,ll arg_cost){\n\t\tto = arg_to;\n\t\tcost = arg_cost;\n\t}\n\tint to;\n\tll cost;\n};\n\nstruct Data{\n\tData(int arg_num,ll arg_cost){\n\t\tnum = arg_num;\n\t\tcost = arg_cost;\n\t}\n\tbool operator<(const struct Data &arg) const{\n\t\treturn cost > arg.cost;\n\t}\n\tint num;\n\tll cost;\n};\n\nvector<Info> G[NUM+1];\nll min_cost[NUM+1][10];\n\n\nint main(){\n\n\tint N,M,R,Q;\n\tscanf(\"%d %d %d %d\",&N,&M,&R,&Q);\n\n\tint from,to,cost;\n\n\tfor(int loop = 0; loop < M; loop++){\n\t\tscanf(\"%d %d %lld\",&from,&to,&cost);\n\t\tG[from].push_back(Info(to,cost));\n\t}\n\n\tfor(int i = 1; i <= N; i++){\n\t\tfor(int k = 0; k < R; k++)min_cost[i][k] = BIG_NUM;\n\t}\n\n\tint next_num;\n\tll next_cost;\n\tpriority_queue<Data> PQ;\n\n\tfor(int i = 1; i <= N; i++){\n\t\tmin_cost[i][i%R] = 0;\n\n\t\tPQ.push(Data(i,0));\n\n\t\twhile(!PQ.empty()){\n\n\t\t\tfor(int k = 0; k < G[PQ.top().num].size(); k++){\n\t\t\t\tnext_num = G[PQ.top().num][k].to;\n\t\t\t\tnext_cost = PQ.top().cost+G[PQ.top().num][k].cost;\n\n\t\t\t\tif(min_cost[i][next_num%R] > next_cost){\n\t\t\t\t\tmin_cost[i][next_num%R] = next_cost;\n\t\t\t\t\tPQ.push(Data(next_num,next_cost));\n\t\t\t\t}\n\t\t\t}\n\t\t\tPQ.pop();\n\t\t}\n\t}\n\n\tll ans = 0;\n\tint x,y;\n\tll z,minimum;\n\n\tfor(int loop = 0; loop < Q; loop++){\n\t\tscanf(\"%d %d %lld\",&x,&y,&z);\n\n\t\tif(x%R == y%R){\n\t\t\tans += z;\n\t\t\tcontinue;\n\t\t}\n\n\t\tminimum = BIG_NUM;\n\t\tfor(int i = 0; i < R; i++){\n\t\t\tif(min_cost[x][i] == BIG_NUM || min_cost[y][i] == BIG_NUM)continue;\n\t\t\tminimum = min(minimum,min_cost[x][i]+min_cost[y][i]);\n\t\t}\n\n\t\tif(z > minimum){\n\t\t\tans += z-minimum;\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.03333333333333333, "time_ms": 50, "memory_kb": 13384, "score_of_the_acc": -0.5146, "final_rank": 16 } ]
aoj_2803_cpp
F: 風呂がオーバーフロー - Overflow of Furo - 物語 温泉宿・パロは自慢の温泉に全ての情熱を注いでおり、風呂のプロフェッショナルを集めている。 風呂のプロたちは主に温泉の配管を管理しており、複数の源泉から1つの大浴場へと繋がる、複雑に入り組んだ配管網を管理・調整している。 配管網の管理・調整業務もなかなかに大変なのだが、風呂のプロたちはその合間を縫って、さらに多くの湯を浴槽へと供給できるよう日々努力を積み重ねていた。 結果、風呂のプロたちは「1本だけ配管をオーバーフローさせることができる」という荒技を習得した。 すなわち、自由に配管1本を選び、その配管の湯量の制限をなくすことができるようになったのだ。 今まで最大湯量を実現する配管網の設定をあなたのプログラムに依存していた風呂のプロたちは、この技術を使ってさらに浴槽への供給湯量を増やすにはどうすればよいか、あなたに再びプログラムを書くよう依頼してきた。 問題 1 つの浴槽、 K 個の源泉、 N 個の結合点を含む配管網がある。 配管網は M 本の配管からなり、配管1つ1つは流すことのできる湯量の制限を持つ。 配管それぞれは湯を流す方向が決められていないので、自由に決めて使ってよい。 N 個の結合点では何本かの配管から流れてきた湯をそれ以外の何本かの配管へと自由な配分で流すことができる。 すべての源泉、および浴槽は一部の配管の端点になっており、源泉からの湯量、および結合点での湯量を調整することで源泉から浴槽へと湯を供給している。 M 個の配管のうち1本だけオーバーフローさせる、すなわち流せる湯量を無限に増やすことで浴槽に供給できるようになる最大湯量はいくらか。 ただし、最大供給湯量を無限に増やすことができる場合も考えられるが、その場合は風呂がオーバーフローしてしまうので、"overfuro"と出力すること。 入力形式 入力は以下の形式で与えられる。 K N M a_1 b_1 c_1 ... a_M b_M c_M 入力は全て整数からなる。 最初の行では源泉の数 K 、結合点の数 N 、配管の数 M が与えられる。 続く M 行のうち i 行目には、 i 番目の配管の情報を表す3つの整数 a_i , b_i , c_i が与えられる。 これは i 番目の配管の両端点がそれぞれ a_i と b_i であり、湯量の制限が c_i であることを示す。 ここで、配管の端点 x が 0 のときは大浴場、 1 から K までのときは x 番目の源泉、 K+1 から K+N までのときは x − K 番目の結合点であることを表す。 制約 1 ≤ K 0 ≤ N N+K ≤ 100 1 ≤ M ≤ (N+K+1)(N+K) / 2 0 ≤ a_i, b_i ≤ K+N a_i ≠ b_i 1 ≤ c_i ≤ 5{,}000 同じ2端点を持つ配管は2つ以上存在しないことが保証される。 与えられる配管網は、配管をオーバーフローさせることなく最低1以上の湯を源泉から浴槽に供給できることが保証される。 出力形式 1本だけ配管をオーバーフローさせて源泉から浴槽への供給湯量を最大化するときの最大供給湯量を1行に出力せよ。 ただし、最大湯量を無限に増やせるときは、"overfuro"と1行に出力せよ。 入力例1 2 2 4 1 3 4 2 4 2 0 3 3 4 0 5 出力例1 8 入力例2 2 3 7 1 0 8 2 0 9 3 0 3 0 4 5 5 0 2 1 3 2 2 4 9 出力例2 overfuro 入力例3 1 1 2 0 2 1 1 2 1 出力例3 1 入力例4 5 0 5 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 出力例4 overfuro
[ { "submission_id": "aoj_2803_8322658", "code_snippet": "#include <iostream>\n#include <queue>\n#include <vector>\nusing namespace std;\n\nstruct Edge {\n\tint to, cap, rev;\n};\n\nclass MaxFlow {\npublic:\n\tvector<Edge> G[109];\n\tint Dist[109];\n\tbool Used[109];\n\n\tvoid add_edge(int u, int v, int c) {\n\t\tG[u].push_back(Edge{ v, c, (int)G[v].size() });\n\t\tG[v].push_back(Edge{ u, 0, (int)G[u].size() - 1 });\n\t}\n\n\tvoid shortest(int u) {\n\t\tqueue<int> Q;\n\t\tfor (int i = 0; i < 109; i++) Dist[i] = 1000000000;\n\t\tDist[u] = 0;\n\t\tQ.push(u);\n\n\t\t// BFS Start\n\t\twhile (!Q.empty()) {\n\t\t\tint pos = Q.front(); Q.pop();\n\t\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\t\tif (G[pos][i].cap == 0) continue;\n\t\t\t\tif (Dist[G[pos][i].to] != 1000000000) continue;\n\t\t\t\tDist[G[pos][i].to] = Dist[pos] + 1;\n\t\t\t\tQ.push(G[pos][i].to);\n\t\t\t}\n\t\t}\n\t}\n\n\tint dfs(int pos, int goal, int f) {\n\t\tif (pos == goal) return f;\n\t\tUsed[pos] = true;\n\n\t\t// Brute Force\n\t\tfor (int i = 0; i < G[pos].size(); i++) {\n\t\t\tif (G[pos][i].cap == 0) continue;\n\t\t\tif (Used[G[pos][i].to] == true) continue;\n\t\t\tif (Dist[pos] >= Dist[G[pos][i].to]) continue;\n\t\t\tint F = dfs(G[pos][i].to, goal, min(f, G[pos][i].cap));\n\t\t\tif (F == 0) continue;\n\t\t\tG[pos][i].cap -= F;\n\t\t\tG[G[pos][i].to][G[pos][i].rev].cap += F;\n\t\t\treturn F;\n\t\t}\n\t\treturn 0;\n\t}\n\n\tint max_flow(int u, int v) {\n\t\tint F = 0;\n\t\twhile (true) {\n\t\t\tshortest(u);\n\t\t\tfor (int i = 0; i < 109; i++) Used[i] = false;\n\t\t\tint res = dfs(u, v, 100000000);\n\t\t\tif (res == 0) break;\n\t\t\tF += res;\n\t\t}\n\t\treturn F;\n\t}\n};\n\nint K;\nint N;\nint M, A[1 << 18], B[1 << 18], C[1 << 18];\nint S[1 << 18];\nint T[1 << 18];\nMaxFlow Z;\n\nint main() {\n\t// Step 1. Input\n\tcin >> K >> N >> M;\n\tfor (int i = 1; i <= M; i++) cin >> A[i] >> B[i] >> C[i];\n\t\n\t// Step 2. Max Flow\n\tfor (int i = 1; i <= K; i++) Z.add_edge(K + N + 1, i, 100000000);\n\tfor (int i = 1; i <= M; i++) Z.add_edge(A[i], B[i], C[i]);\n\tfor (int i = 1; i <= M; i++) Z.add_edge(B[i], A[i], C[i]);\n\tint First = Z.max_flow(K + N + 1, 0);\n\n\t// Step 3. Get S & T\n\tfor (int i = 1; i <= K + N; i++) {\n\t\tMaxFlow Z2 = Z, Z3 = Z;\n\t\tS[i] = Z2.max_flow(K + N + 1, i);\n\t\tT[i] = Z3.max_flow(i, 0);\n\t}\n\tT[0] = 100000000;\n\n\t// Step 4. Get Answer\n\tint Answer = 0;\n\tfor (int i = 1; i <= M; i++) {\n\t\tAnswer = max(Answer, min(S[A[i]], T[B[i]]));\n\t\tAnswer = max(Answer, min(S[B[i]], T[A[i]]));\n\t}\n\tif (Answer >= 10000000) cout << \"overfuro\" << endl;\n\telse cout << First + Answer << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 780, "memory_kb": 6136, "score_of_the_acc": -1.6937, "final_rank": 14 }, { "submission_id": "aoj_2803_4526536", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n\n// verified : http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_6_A\n// O(E V^2)\n\n// [使い方]\n// add_edge(from, to, cap) : from から to へ 容量 cap の辺を貼る\n// max_flow(s, t) : s から t への最大フローを返す\n\ntemplate< typename T >\nstruct Dinic{\n const T inf;\n\n struct edge{\n int to;\n T cap;\n int rev;\n bool isrev;\n };\n\n vector<vector<edge>> g;\n vector<int> min_cost, iter;\n\n Dinic(int V) : inf(numeric_limits<T>::max()), g(V){}\n\n\n // 0-indexed\n void add_edge(int from, int to, T cap){\n g[from].emplace_back((edge){to, cap, (int)g[to].size(), false});\n g[to].emplace_back((edge){from, 0, (int)g[from].size() - 1, true});\n }\n\n bool bfs(int s, int t) {\n min_cost.assign(g.size(), -1);\n queue<int> que;\n min_cost[s] = 0;\n que.push(s);\n while(!que.empty() && min_cost[t] == -1){\n int p = que.front();\n que.pop();\n for(auto &e : g[p]) {\n if(e.cap > 0 && min_cost[e.to] == -1){\n min_cost[e.to] = min_cost[p] + 1;\n que.push(e.to);\n }\n }\n }\n return min_cost[t] != -1;\n }\n \n T dfs(int idx, const int t, T flow){\n if(idx == t) return flow;\n for(int &i = iter[idx]; i < g[idx].size(); i++){\n edge &e = g[idx][i];\n if(e.cap > 0 && min_cost[idx] < min_cost[e.to]){\n T d = dfs(e.to, t, min(flow, e.cap));\n if(d > 0){\n e.cap -= d;\n g[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n \n // 0-indexed\n T max_flow(int s, int t){\n T flow = 0;\n while(bfs(s, t)){\n iter.assign(g.size(), 0);\n T f = 0;\n while((f = dfs(s, t, inf)) > 0) flow += f;\n }\n\n return flow;\n }\n \n void output() {\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n if(e.isrev) continue;\n auto &rev_e = g[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n }\n};\n\nint main() {\n\n int k, n, m; cin >> k >> n >> m;\n int source = n + k + 1;\n int sink = 0;\n\n // 0 と (1 ~ k) が直接繋がっていたら,overfuro\n\n Dinic<lint> dc(n + k + 2);\n bool overfuro = false;\n for (int i = 0; i < m; i++) {\n lint a, b, c; cin >> a >> b >> c;\n if (a > b) swap(a, b);\n if (a == sink and 1 <= b and b <= k) {\n overfuro = true;\n }\n dc.add_edge(a, b, c);\n dc.add_edge(b, a, c);\n }\n\n if (overfuro) {\n cout << \"overfuro\" << endl;\n return 0;\n }\n\n for (int i = 1; i <= k; i++) {\n dc.add_edge(source, i, INF);\n }\n\n lint ans = dc.max_flow(source, sink);\n\n lint add = 0;\n for(int i = 0; i < dc.g.size(); i++) {\n for(auto &e : dc.g[i]) {\n if(e.isrev) continue;\n auto &rev_e = dc.g[e.to][e.rev];\n if (rev_e.cap == e.cap + rev_e.cap) {\n auto extra = dc;\n extra.add_edge(i, e.to, INF);\n lint tmp = extra.max_flow(source, sink);\n add = max(add, tmp);\n }\n // cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n\n cout << ans + add << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 3992, "score_of_the_acc": -0.618, "final_rank": 12 }, { "submission_id": "aoj_2803_4488321", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef pair<ll,ll> mp;\ntypedef pair<mp,ll> mmp;\n\n#define INF 1e9\nstruct edge{\n ll to,rev;\n ll cap,cost;\n edge(ll to, ll cap ,ll rev):to(to),cap(cap),rev(rev){}\n edge(ll to, ll cap,ll cost,ll rev):to(to),cap(cap),cost(cost),rev(rev){}\n};\ntypedef vector<vector<edge> > graph;\nstruct Flow{\n\tgraph g;\n\tll MAXC = 1<<30;\n\tll n;\n\tvector<bool> used;\n\tvector<ll> prevv,preve,dist;\n\tFlow() {} \n\tFlow(ll _n) : g(_n),n(_n),used(_n,false),prevv(_n),preve(_n),dist(_n,MAXC){}\n\t// G[e.to][e.rev] で逆辺を操作できる\n\tvoid add_edge(ll from , ll to , ll cap){\n\t g[from].push_back( edge(to,cap,g[to].size() ) );\n\t g[to].push_back( edge(from,0,g[from].size()-1) );\n\t}\n\tvoid add_edge(ll from, ll to, ll cap,ll cost){\n\t g[from].push_back( edge(to,cap,cost,g[to].size() ) );\n\t g[to].push_back( edge(from, 0,-cost,g[from].size()-1) );\n\t}\n\t// Ford-Fulkerson 法による 最大流 O( F |E| )\n\t// Bellman-Ford 法による 最小費用流 O( F |V| |E| )\n\t// Verified: AOJ GRL_6_A (Maximum Flow)\n\t// 行き先と容量と逆辺のインデックスを記録する構造体\n\t// 通常のグラフの辺の構造体と異なるため注意\n\t// 最小費用流はもう少し速くできるので、改良しましょう\n\t// → ダイクストラが使えるようにポテンシャルを導入しよう\n\tll dfs(ll v,ll t , ll f){\n\t if( v== t)return f;\n\t used[v] = true;\n\t for(int i=0;i< g[v].size();i++){\n\t\tedge &e = g[v][i];\n\t\tif(!used[e.to] && e.cap > 0){\n\t\t ll d = dfs(e.to,t,min(f,e.cap) );\n\t\t if( d > 0){\n\t\t\te.cap -= d;\n\t\t\tg[e.to][e.rev].cap += d;\n\t\t\treturn d;\n\t\t }\n\t\t}\n\t }\n\t return 0;\n\t}\n\tll max_flow(ll s,ll t){\n\t ll flow = 0;\n\t while(1){\n\t\tfill(used.begin(),used.end(),false);\n\t\tll f = dfs(s,t,INF);\n\t\tif( f== 0) return flow;\n\t\tflow += f;\n\t }\n\t}\n\tll mincost_flow(ll s,ll t,ll f){\n\t ll res = 0;\n\t ll M = MAXC ;\n\t while(f>0){\n\t\tfill(dist.begin(),dist.end(), M);\n\t\tdist[s] = 0;\n\t\tbool update = true;\n\t\twhile(update){\n\t\t update = false;\n\t\t for(ll i=0;i<n;i++){\n\t\t\tif(dist[i] == M) continue;\n\t\t\tfor(ll j=0;j<g[i].size();j++){\n\t\t\t edge &e = g[i][j];\n\t\t\t if(e.cap > 0 && dist[e.to] > dist[i] + e.cost){\n\t\t\t\tdist[e.to] = dist[i] + e.cost;\n\t\t\t\tprevv[e.to] = i;\n\t\t\t\tpreve[e.to] = j;\n\t\t\t\tupdate = true;\n\t\t\t }\n\t\t\t}\n\t\t }\n\t\t}\n\t\tif( dist[t] == M) return -1;\n\t\tll d = f;\n\t\tfor(ll i= t ; i!=s; i=prevv[i] ) d = min(d,g[ prevv[i] ][ preve[i] ].cap );\n\t\tf -= d;\n\t\tres += d*dist[t];\n\t\tfor(ll i= t ; i!=s; i=prevv[i] ){\n\t\t edge &e = g[prevv[i] ][preve[i]];\n\t\t e.cap -= d;\n\t\t g[i][e.rev].cap += d;\n\t\t}\n\t }\n\t return res;\n\t}\n\t // ポテンシャルの導入により、ダイクストラ法で最小費用流を解く\n\t // [仮定している条件]\n\t // 1. グラフに負の閉路が存在しない (流量の 0 初期化のため)\n\t // もし存在するならベルマンフォードで負の閉路を見つけ\n\t // そこに流せるだけ流してスタート\n\t // 2. グラフに負の辺が存在しない (pot_0 の計算可能性)\n\t // もし存在する場合は最初のみベルマンフォードを使う必要あり\n\tll fast_mincost_flow(ll s,ll t,ll f){\n\t ll res = 0, M = MAXC;\n\t vector<ll> pot(n);\n\t while( f > 0 ){\n\t\tpriority_queue<mp,vector<mp>,greater<mp> > q;\n\t\tfill(dist.begin(),dist.end(),M);\n\t\tdist[s] = 0;\n\t\tq.push( mp(0,s) );\n\t\twhile(!q.empty()){\n\t\t mp now = q.top();\n\t\t q.pop();\n\t\t ll v = now.second;\n\t\t ll cost = now.first;\n\t\t if( dist[v] < cost ) continue;\n\t\t for(ll i=0;i<g[v].size();i++){\n\t\t\tedge &e = g[v][i];\n\t\t\tif( e.cap > 0 && dist[e.to] > dist[v] + e.cost + pot[v] - pot[e.to] ){\n\t\t\t dist[e.to] = dist[v] + e.cost + pot[v] - pot[e.to];\n\t\t\t prevv[e.to] = v;\n\t\t\t preve[e.to] = i;\n\t\t\t q.push( mp(dist[e.to],e.to) );\n\t\t\t}\n\t\t }\n\t\t}\n\t\tif( dist[t] == M ) return -1;\n\t\tfor(ll i = 0; i< n;i++)pot[i] += dist[i];\n\t\tll d = f;\n\t\tfor(ll i = t; i!=s; i= prevv[i] ) d = min(d,g[prevv[i]][preve[i]].cap);\n\t\tf-=d;\n\t\tres += d*pot[t];\n\t\tfor(ll i = t; i!=s; i=prevv[i] ){\n\t\t edge &e = g[prevv[i] ][preve[i]];\n\t\t e.cap -= d;\n\t\t g[i][e.rev].cap += d;\n\t\t}\n\t }\n\t return res;\n\t}\n};\n\nint main(){\n ll k,n,m;\n cin>>k>>n>>m;\n vector< vector<mp> > g(n+k+2);\n vector<mmp> ed(m);\n\n for(int i=0;i<m;i++){\n ll a,b,c;\n cin>>a>>b>>c;\n if( a > b ){\n swap(a,b);\n }\n if( a== 0 ){\n if( b <= k ){\n cout<<\"overfuro\"<<endl;\n return 0;\n }\n }\n ed[i] = mmp( mp(a,b), c );\n if( a == 0 ){\n g[b].push_back( mp(a,c) );\n continue;\n }\n g[a].push_back( mp(b,c) );\n if( k+1 <= a ) g[b].push_back( mp(a,c) );\n }\n\n // cout<<\"OK\"<<endl;\n\n ll ans = 0;\n for(int i=0;i<m;i++){\n Flow f(n+k+2);\n for(int j=1;j<=k;j++){\n f.add_edge( n + k + 1 , j , INF );\n }\n for(int j=0;j<n+k+2;j++){\n for(int l=0;l<g[j].size();l++) \n f.add_edge( j , g[j][l].first , g[j][l].second );\n }\n \n f.add_edge( ed[i].first.first , ed[i].first.second , INF );\n if( k+1 <= ed[i].first.first ) f.add_edge( ed[i].first.second , ed[i].first.first, INF ); \n\n \n \n ans = max(ans , f.max_flow( n+k+1 , 0 ) );\n }\n\n\n cout<<ans<<endl;\n\n\n\n\n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 540, "memory_kb": 3176, "score_of_the_acc": -0.4775, "final_rank": 20 }, { "submission_id": "aoj_2803_2921741", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld =long double;\nconst ld eps = 1e-9;\n\n\n//namespace cent {\n//\n//\tstruct Edge {\n//\t\tint src;\n//\t\tint dst;\n//\t\tlong long int cost;\n//\t};\n//\tusing Graph = vector<vector<Edge>>;\n//\n//\tclass Centroid {\n//\tprivate:\n//\t\tint dfs(const Graph&g, const int now, const int from, vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tint sum = 1;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tsum += dfs(g, e.dst, e.src, ch_nums, oks);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ch_nums[now] = sum;\n//\t\t}\n//\n//\t\tint find_centroid(const int asize, const vector<vector<Edge>>&graph, const int pre_root, const int pre_from, const vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tfor (auto&& e : graph[pre_root]) {\n//\t\t\t\tif (e.dst == pre_from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tif (ch_nums[e.dst]>asize / 2)return find_centroid(asize, graph, e.dst, e.src, ch_nums, oks);\n//\t\t\t}\n//\t\t\treturn pre_root;\n//\t\t}\n//\n//\t\tvoid dfs2(const Graph&g, const int root,const int now, const int from, const vector<int>&oks,int depth) {\n//\t\t\tmp[make_pair(root,now)]=depth;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tdfs2(g,root,e.dst,e.src,oks,depth+1);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t};\n//\n//\n//\t\tvoid cent(const vector<vector<Edge>>&graph, vector<int>&oks, const int root, const int from, vector<vector<int>>&centroid_edges, int& fst_centroid, int depth, vector<int>&ch_nums) {\n//\t\t\tdfs(graph, root, from, ch_nums, oks);\n//\n//\t\t\tint cent_id = find_centroid(ch_nums[root], graph, root, from, ch_nums, oks);\n//\n//\n//\t\t\tdfs2(graph,cent_id,cent_id,-1,oks,0);\n//\t\t\tlens1[cent_id][make_pair(0,0)]--;\n//\t\t\tlens2[cent_id][0]--;\n//\n//\n//\t\t\toks[cent_id] = depth;\n//\n//\t\t\t//for (auto&& e : graph[cent_id]) {\n//\t\t\t//\tif (e.dst == from)continue;\n//\t\t\t//\tif (oks[e.dst] != -1)continue;\n//\n//\t\t\t//\tdfs2(graph, e.dst, e.dst, e.src, oks,e.cost%mod,e.cost%mod,1);\n//\n//\t\t\t//\tfor (auto&& l1 : lens1[e.dst]) {\n//\t\t\t//\t\tint keta = l1.first.second;\n//\t\t\t//\t\tlong long int num = l1.first.first;\n//\n//\t\t\t//\t\tlong long int need = (mod - num) / mod_pow(10, keta);\n//\t\t\t//\t\tneed%=mod;\n//\t\t\t//\t\tauto it = lens2[e.dst].find(need);\n//\t\t\t//\t\tif (it != lens2[e.dst].end()) {\n//\t\t\t//\t\t\tans -= l1.second*it->second;\n//\t\t\t//\t\t}\n//\t\t\t//\t}\n//\t\t\t//\tlens1[e.dst].clear();\n//\t\t\t//\tlens2[e.dst].clear();\n//\t\t\t//}\n//\n//\t\t\tif (from != -1) {\n//\t\t\t\tcentroid_edges[from].push_back(cent_id);\n//\t\t\t}\n//\t\t\telse {\n//\t\t\t\tfst_centroid = cent_id;\n//\t\t\t}\n//\t\t\tfor (auto&& e : graph[cent_id]) {\n//\t\t\t\tif (e.dst == from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tcent(graph, oks, e.dst, e.src, centroid_edges, fst_centroid, depth + 1, ch_nums);\n//\t\t\t}\n//\t\t}\n//\n//\tpublic:\n//\n//\t\tmap<pair<int,int>,int>mp;\n//\n//\t\tvector<map<pair<long long int,int>, long long int>>lens1;\n//\t\tvector<map<long long int, long long int>>lens2;\n//\t\tvector<vector<int>> centroid_graph;\n//\t\tvector<int>ts;\n//\t\tvector<int>parents;\n//\t\tvector<int>oks;\n//\t\tvector<int>anss;\n//\n//\t\t//fst:root snd:centroid_graph\n//\t\tvoid init(const Graph&g) {\n//\t\t\tlens1.resize(g.size());\n//\t\t\tlens2.resize(g.size());\n//\t\t\toks = vector<int>(g.size(), -1);\n//\t\t\tint root = -1;\n//\t\t\tcentroid_graph.resize(g.size());\n//\t\t\tparents = vector<int>(g.size(), -1);\n//\t\t\tts=vector<int>(g.size(),-1);\n//\t\t\tanss=vector<int>(g.size(),100000);\n//\n//\t\t\tvector<int>ch_nums(g.size());\n//\t\t\tcent(g, oks, 0, -1, centroid_graph, root, 0, ch_nums);\n//\n//\t\t\tfor (int i = 0; i < centroid_graph.size(); ++i) {\n//\t\t\t\tfor (auto&& e : centroid_graph[i]) {\n//\t\t\t\t\tparents[e] = i;\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ;\n//\t\t}\n//\t}centroid;\n//\n//\n//\tvoid addEdge(Graph& g, int a, int b, long long int c) {\n//\t\tg[a].push_back(Edge{ a,b,c });\n//\t\tg[b].push_back(Edge{ b,a,c });\n//\t}\n//}\n\n\n//const int mod = 1000000007;\n//struct Mod {\n//public:\n//\tint num;\n//\tMod() : Mod(0) { ; }\n//\tMod(long long int n) : num((n % mod + mod) % mod) {\n//\t\tstatic_assert(mod<INT_MAX / 2, \"mod is too big, please make num 'long long int' from 'int'\");\n//\t}\n//\tMod(int n) : Mod(static_cast<long long int>(n)) { ; }\n//\toperator int() { return num; }\n//};\n//\n//Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mod); }\n//Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; }\n//Mod operator+(const Mod a, const long long int b) { return b + a; }\n//Mod operator++(Mod &a) { return a + Mod(1); }\n//Mod operator-(const Mod a, const Mod b) { return Mod((mod + a.num - b.num) % mod); }\n//Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; }\n//Mod operator--(Mod &a) { return a - Mod(1); }\n//Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mod); }\n//Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; }\n//Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; }\n//Mod operator*(const Mod a, const int b) { return Mod(b)*a; }\n//Mod operator+=(Mod &a, const Mod b) { return a = a + b; }\n//Mod operator+=(long long int &a, const Mod b) { return a = a + b; }\n//Mod operator-=(Mod &a, const Mod b) { return a = a - b; }\n//Mod operator-=(long long int &a, const Mod b) { return a = a - b; }\n//Mod operator*=(Mod &a, const Mod b) { return a = a * b; }\n//Mod operator*=(long long int &a, const Mod b) { return a = a * b; }\n//Mod operator*=(Mod& a, const long long int &b) { return a = a * b; }\n//Mod operator^(const Mod a, const int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = (a * a) ^ (n / 2);\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//Mod mod_pow(const Mod a, const long long int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = mod_pow((a * a), (n / 2));\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//\n////mod が素数の場合のみ 違う場合はextend euclid を用いる。\n//Mod inv(const Mod a) { return a ^ (mod - 2); }\n//Mod operator/(const Mod a, const Mod b) {\n//\tassert(b.num != 0);\n//\treturn a * inv(b);\n//}\n//Mod operator/(const long long int a, const Mod b) {\n//\treturn Mod(a) / b;\n//}\n//Mod operator/=(Mod &a, const Mod b) {\n//\treturn a = a / b;\n//}\n//\n//#define MAX_MOD_N 1024000\n//\n//Mod fact[MAX_MOD_N], factinv[MAX_MOD_N];\n//void init(const int amax = MAX_MOD_N) {\n//\tfact[0] = Mod(1); factinv[0] = 1;\n//\tfor (int i = 0; i < amax - 1; ++i) {\n//\t\tfact[i + 1] = fact[i] * Mod(i + 1);\n//\t\tfactinv[i + 1] = factinv[i] / Mod(i + 1);\n//\t}\n//}\n//Mod comb(const int a, const int b) {\n//\treturn fact[a] * factinv[b] * factinv[a - b];\n//}\n//\n//vector<int>primes;\n//void hurui(const int amax=3500) {\n//\tstatic bool flag = false;\n//\tif (flag)return;\n//\tvector<int>sos;\n//\tsos = vector<int>(amax + 1, true);\n//\tsos[0] = false; sos[1] = false;\n//\tfor (int i = 2; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tfor (int j = 2 * i; j <= amax; j += i)sos[j] = false;\n//\t\t}\n//\t}\n//\tfor (int i = 0; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tprimes.push_back(i);\n//\t\t}\n//\t}\n//\tflag = true;\n//}\n//\n//\n//struct query {\n//\tint u;\n//\tint v;\n//\tmap<int,int>mp;\n//};\n//\n//map<int, int>mk_mp(const int a) {\n//\tint rest(a);\n//\tmap<int,int>as;\n//\tfor (auto pr : primes) {\n//\t\twhile (rest%pr == 0) {\n//\t\t\tas[pr]++;\n//\t\t\trest /= pr;\n//\t\t}\n//\t}\n//\tif (rest!=1)as[rest]++;\n//\treturn as;\n//}\n//\n//#define Seg_Max_N (1<<18) \n//\n//class Tree {\n//public:\n//\tTree(int V, int root) : V(V), root(root), cnum(V), place(V), id(V) {\n//\t\tT.resize(V);\n//\t\tfor (int i = 0; i < MAXLOGV; i++) {\n//\t\t\tparent[i].resize(V);\n//\t\t}\n//\t\tdepth.resize(V);\n//\t}\n//\t// uとvをつなぐ\n//\t// lcaを求めることが主目的なので無向グラフとしている\n//\tvoid unite(int u, int v) {\n//\t\tT[u].push_back(v);\n//\t\tT[v].push_back(u);\n//\t}\n//\tvoid unite(vector<vector<int>>&e) {\n//\t\tT = e;\n//\t}\n//\t// initする\n//\t// コンストラクタだけじゃなくてこれも呼ばないとlcaが求められないぞ\n//\tvoid init() {\n//\t\tdfs(root, 0, 0);\n//\t\tint id = 0;\n//\t\tgetid(root, 0, id);\n//\t}\n//\t// uとvのlcaを求める\n//\tint lca(int u, int v) const {\n//\t\tif (depth[u] > depth[v]) swap(u, v);\n//\t\tfor (int k = 0; k < MAXLOGV; k++) {\n//\t\t\tif ((depth[v] - depth[u]) >> k & 1) {\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\tif (u == v) return u;\n//\t\tfor (int k = MAXLOGV - 1; k >= 0; k--) {\n//\t\t\tif (parent[k][u] != parent[k][v]) {\n//\t\t\t\tu = parent[k][u];\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\treturn parent[0][u];\n//\t}\n//\t// uとvの距離を求める\n//\t// edgeを定義しないといけない時はこれじゃダメ\n//\tint dist(int u, int v) const {\n//\t\tint p = lca(u, v);\n//\t\treturn (depth[u] - depth[p]) + (depth[v] - depth[p]);\n//\t}\n//\tint dfs(int v, int p, int d) {\n//\t\tparent[0][v] = p;\n//\t\tdepth[v] = d;\n//\t\tcnum[v] = 0;\n//\t\tfor (int i = 1; i < MAXLOGV; i++) {\n//\t\t\tparent[i][v] = parent[i - 1][parent[i - 1][v]];\n//\t\t}\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) cnum[v] += dfs(next, v, d + 1);\n//\t\t}\n//\t\treturn cnum[v] + 1;\n//\t}\n//\n//\tvoid dfs2(int v, int p, vector<vector<int>>&doubles, const vector<int>&nums) {\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) dfs2(next, v, doubles, nums);\n//\t\t}\n//\t\tdoubles[0][v] = nums[v];\n//\t\tfor (int j = 1; j < MAXLOGV; ++j) {\n//\t\t\tdoubles[j][v] = min(doubles[j][v], doubles[j - 1][v]);\n//\t\t}\n//\t\tfor (int j = 0; j < MAXLOGV - 1; ++j) {\n//\t\t\tdoubles[j + 1][parent[j][v]] = min(doubles[j + 1][parent[j][v]], doubles[j][v]);\n//\t\t}\n//\t}\n//\t//ここでは親から距離2^iの部分木の最小値を求めている\n//\tvector<vector<int>>get_doubles(const vector<int>&nums) {\n//\t\tvector<vector<int>>doubles(MAXLOGV, vector<int>(V, 1e9));\n//\t\tdfs2(root, -1, doubles, nums);\n//\t\treturn doubles;\n//\t}\n//\n//\tvoid getid(const int v, const int p, int &nplace) {\n//\t\tplace[v] = nplace;\n//\t\tid[nplace] = v;\n//\t\tnplace++;\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) getid(next, v, nplace);\n//\t\t}\n//\t}\n//\tstatic const int MAXLOGV = 25;\n//\t// グラフの隣接リスト表現\n//\tvector<vector<int> > T;\n//\t// 頂点の数\n//\tint V;\n//\t// 根ノードの番号\n//\tint root;\n//\n//\t// 親ノード\n//\tvector<int> parent[MAXLOGV];\n//\t// 根からの深さ\n//\tvector<int> depth;\n//\n//\t//子の数\n//\tvector<int>cnum;\n//\n//\t//変換\n//\tvector<int>place;\n//\tvector<int>id;\n//\n//};\n//\n//vector<int>pas;\n//void adfs(vector<pair<int, int>>&lrs, vector<int>&tos,const vector<vector<int>>&edges, const int now, const int from,int &id) {\n//\ttos[now]=id;\n//\tlrs[tos[now]].first=id++;\n//\tfor (auto e : edges[now]) {\n//\t\tif (e == from) {\n//\t\t\tpas[now] = from;\n//\t\t\tcontinue;\n//\t\t}\n//\t\tadfs(lrs,tos,edges,e,now,id);\n//\t}\n//\tlrs[tos[now]].second=id;\n//}\n//\n//vector<pair<int, int>>get_lrs(vector<int>&tos,const vector<vector<int>>&edges, const int root) {\n//\tpas.resize(tos.size());pas[0]=-1;\n//\tvector<pair<int,int>>lrs(edges.size());\n//\tint id=0;\n//\tadfs(lrs,tos,edges,0,-1,id);\n//\treturn lrs;\n//}\n\n\n\n#define _GLIBCXX_DEBUG\n\nusing namespace std;\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\n\n\n//const int INF = 2147483647;\n//const long long int L_INF = 9223372036854775807;\n\ntypedef int Weight;\n\nconst Weight INF = 1e9;\nconst Weight ZERO = 0;\nstruct Edge {\n\tint src, dst;\n\tWeight weight;\n\tint id;\n\tEdge(int src_, int dst_, Weight weight_, const int id_) :\n\t\tsrc(src_), dst(dst_), weight(weight_), id(id_) { }\n\tEdge(int src, int dst, Weight weight) :\n\t\tsrc(src), dst(dst), weight(weight) { }\n\tEdge() :src(0), dst(0), weight(0) {\n\n\t}\n};\nbool operator < (const Edge &e, const Edge &f) {\n\treturn e.weight != f.weight ? e.weight > f.weight : // !!INVERSE!!\n\te.src != f.src ? e.src < f.src : e.dst < f.dst;\n}\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\ntypedef vector<Weight> Array;\ntypedef vector<Array> Matrix;\n#define RESIDUE(s,t) (capacity[s][t]-flow[s][t])\n\nint flow_try(const Graph&g, int s, int t, Matrix&flow, Matrix&capacity) {\n\tWeight total = ZERO;\n\twhile (1) {\n\t\tqueue<int> Q; Q.push(s);\n\t\tvector<int> prev(g.size(), -1); prev[s] = s;\n\t\twhile (!Q.empty() && prev[t] < 0) {\n\t\t\tint u = Q.front(); Q.pop();\n\t\t\tFOR(e, g[u]) if (prev[e->dst] < 0 && RESIDUE(u, e->dst) > ZERO) {\n\t\t\t\tprev[e->dst] = u;\n\t\t\t\tQ.push(e->dst);\n\t\t\t}\n\t\t}\n\t\tif (prev[t] < 0)break; // prev[x] == -1 <=> t-side\n\t\tWeight inc = INF;\n\t\tfor (int j = t; prev[j] != j; j = prev[j]) {\n\t\t\tauto v(RESIDUE(prev[j], j));\n\t\t\tif (inc > v) {\n\t\t\t\tinc = v;\n\t\t\t}\n\t\t}\n\t\tfor (int j = t; prev[j] != j; j = prev[j])\n\t\t\tflow[prev[j]][j] = flow[prev[j]][j] + inc, flow[j][prev[j]] = flow[j][prev[j]] - inc;;\n\t\ttotal += inc;\n\t}\n\treturn total;\n}\n\n//流量0の逆辺も張らないと正しく求まらないので注意\nWeight maximumFlow(const Graph &ag, int s, int t) {\n\n\tGraph g(ag);\n\tfor (int i = 0; i < ag.size(); ++i) {\n\t\tfor (int j = 0; j < ag[i].size(); ++j) {\n\t\t\tint d = ag[i][j].dst;\n\t\t\tint s = ag[i][j].src;\n\n\t\t\tbool ok = false;\n\t\t\tfor (int k = 0; k < ag[d].size(); ++k) {\n\t\t\t\tif (ag[d][k].dst == s) {\n\t\t\t\t\tok = true;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (!ok) {\n\t\t\t\tg[d].push_back(Edge(d, s, ZERO));\n\t\t\t}\n\t\t}\n\t}\n\tint n = g.size();\n\tMatrix flow(n, Array(n,ZERO)), capacity(n, Array(n,ZERO));\n\tREP(u, n) FOR(e, g[u]) capacity[e->src][e->dst] =capacity[e->src][e->dst]+ e->weight;\n\n\n\tWeight total = flow_try(g,s,t,flow,capacity);\n\n\tvector<int>ss(g.size()),ts(g.size());\n\n\tfor (int at = 0; at < g.size(); ++at) {\n\t\tint as=0;\n\t\tif(as==at)ss[at]=1e9;\n\t\telse {\n\t\t\tMatrix aflow(flow);\n\t\t\tMatrix acap(capacity);\n\t\t\tss[at]=flow_try(g,as,at,aflow,acap);\n\t\t}\n\t}\n\tfor (int as = 0; as < g.size(); ++as) {\n\t\tint at = g.size()-1;\n\t\tif (as == at)ts[as]=1e9;\n\t\telse {\n\t\t\tMatrix aflow(flow);\n\t\t\tMatrix acap(capacity);\n\t\t\tts[as] = flow_try(g, as, at, aflow, acap);\n\t\t}\n\t}\n\n\tint plus=0;\n\tfor (int i = 0; i < g.size(); ++i) {\n\t\tfor (auto e : g[i]) {\n\t\t\tint nplus=min(ss[e.src],ts[e.dst]);\n\t\t\t\n\t\t\tplus=max(plus,nplus);\n\t\t}\n\t}\n\n\treturn total+plus;\n}\n\n\n\nint main()\n{\n\tint K,N,M;cin>>K>>N>>M;\n\n\tconst int start=0;\n\tconst int gensen=1;\n\tconst int connection=gensen+K;\n\tconst int goal=connection+N;\n\n\tGraph g(goal+1);\n\tfor (int i = 0; i < M; ++i) {\n\t\tint a,b,c;\n\t\tcin>>a>>b>>c;\n\t\tg[a].push_back(Edge(a,b,c));\n\t\tg[b].push_back(Edge(b,a,c));\n\t}\n\n\tfor (int i = 0; i < K; ++i) {\n\t\tbool flag=false;\n\t\tfor (auto&e : g[goal]) {\n\t\t\tif (e.dst == gensen + i) {\n\t\t\t\te.weight=1e9;\n\t\t\t\tflag=true;\n\t\t\t}\n\t\t}\n\t\tfor (auto&e : g[gensen+i]) {\n\t\t\tif (e.dst == goal) {\n\t\t\t\te.weight = 1e9;\n\t\t\t}\n\t\t}\n\t\tif (!flag) {\n\n\t\t\tg[goal].push_back(Edge(goal, gensen + i, 1e9));\n\t\t\tg[gensen + i].push_back(Edge(gensen + i, goal, 1e9));\n\t\t}\n\t}\n\n\tauto f=maximumFlow(g,start,goal);\n\n\tif (f >= 1e9-1e8) {\n\t\tcout<<\"overfuro\"<<endl;\n\t}\n\telse {\n\n\n\t\tcout << f << endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3568, "score_of_the_acc": -0.2045, "final_rank": 11 }, { "submission_id": "aoj_2803_2901595", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 120\n\nenum Type{\n\tBASE,\n\tTMP,\n};\n\n\n//辺を表す構造体(行先、容量、逆辺のインデックス)\nstruct Edge{\n\tEdge(int arg_to,int arg_capacity,int arg_rev_index){\n\t\tto = arg_to;\n\t\tcapacity = arg_capacity;\n\t\trev_index = arg_rev_index;\n\t}\n\tint to,capacity,rev_index;\n};\n\nint V;\nint K,N,E;\nvector<Edge> G[2][NUM]; //グラフの隣接リスト表現\nint dist[2][NUM]; //sourceからの距離\nint cheked_index[2][NUM]; //どこまで調べ終わったか\nint table[NUM];\nbool can_visit[NUM];\n\n//fromからtoへ向かう容量capacityの辺をグラフに追加する\nvoid add_edge(int from,int to,int capacity){\n\tG[BASE][from].push_back(Edge(to,capacity,G[BASE][to].size())); //★逆辺はそれぞれ張る★\n\tG[BASE][to].push_back(Edge(from,0,G[BASE][from].size()-1)); //逆辺の、初期容量は0\n}\n\n//sourceからの最短距離をBFSで計算する\nvoid bfs(Type type,int source){\n\tfor(int i = 0; i < V; i++)dist[type][i] = -1;\n\tqueue<int> Q;\n\tdist[type][source] = 0;\n\tQ.push(source);\n\n\twhile(!Q.empty()){\n\t\tint node_id = Q.front();\n\t\tQ.pop();\n\n\t\tfor(int i = 0; i < G[type][node_id].size(); i++){\n\t\t\tEdge &e = G[type][node_id][i];\n\t\t\tif(e.capacity > 0 && dist[type][e.to] < 0){ //辺の容量が正で、かつエッジの行先に未訪問の場合\n\t\t\t\tdist[type][e.to] = dist[type][node_id]+1;\n\t\t\t\tQ.push(e.to);\n\t\t\t}\n\t\t}\n\t}\n}\n\n//増加パスをDFSで探す\nint dfs(Type type,int node_id,int sink,int flow){\n\tif(node_id == sink)return flow; //終点についたらflowをreturn\n\n\tfor(int &i = cheked_index[type][node_id]; i < G[type][node_id].size(); i++){ //node_idから出ているエッジを調査\n\t\tEdge &e = G[type][node_id][i];\n\t\tif(e.capacity > 0 && dist[type][node_id] < dist[type][e.to]){ //流せる余裕があり、かつsourceからの距離が増加する方法である場合\n\t\t\tint tmp_flow = dfs(type,e.to,sink,min(flow,e.capacity)); //流せるだけ流す\n\t\t\tif(tmp_flow > 0){ //流せた場合\n\t\t\t\te.capacity -= tmp_flow; //流した分、エッジの容量を削減する\n\t\t\t\tG[type][e.to][e.rev_index].capacity += tmp_flow; //逆辺の容量を、流した分だけ増加させる\n\t\t\t\treturn tmp_flow;\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}\n\n//sourceからsinkへの最大流を求める\nint max_flow(Type type,int source,int sink){ //source:始点 sink:終点\n\tint flow = 0,add;\n\twhile(true){ //増加パスが存在する限り、流量を追加し続ける\n\t\tbfs(type,source);\n\t\tif(dist[type][sink] < 0)break; //sourceからsinkへと辿り着く残余グラフがない、つまり増加パスが無くなった場合、break\n\t\tfor(int i = 0; i < V; i++)cheked_index[type][i] = 0;\n\t\twhile((add = dfs(type,source,sink,BIG_NUM)) > 0){ //増加パスが見つかる間、加算\n\t\t\tflow += add;\n\t\t}\n\t}\n\treturn flow;\n}\n\n//sourceから行けるノードを探す\nvoid visit_check(int node_id){\n\tcan_visit[node_id] = true;\n\n\tfor(int i = 0; i < G[BASE][node_id].size(); i++){\n\t\tif(can_visit[G[BASE][node_id][i].to] == true || G[BASE][node_id][i].capacity == 0)continue;\n\t\tvisit_check(G[BASE][node_id][i].to);\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%d %d %d\",&K,&N,&E);\n\n\tint from,to,capacity;\n\tfor(int loop = 0; loop < E; loop++){\n\t\tscanf(\"%d %d %d\",&from,&to,&capacity);\n\t\tadd_edge(from,to,capacity);\n\t\tadd_edge(to,from,capacity);\n\t}\n\n\tint source = K+N+1,sink = 0; //浴槽をsinkとする\n\n\tfor(int i = 1; i <= K; i++){\n\t\tadd_edge(source,i,BIG_NUM);\n\t}\n\n\t//一回流す\n\tV = K+N+2;\n\tint base_flow = max_flow(BASE,source,sink);\n\n\t//sourceから行けるノードを探す\n\tfor(int i = 0; i < V; i++)can_visit[i] = false;\n\tvisit_check(source);\n\n\tint ans = 0;\n\n\t//残余グラフ上でボトルネックを走査(ボトルネック辺はcapacityが0になっているはず)\n\t//ループの際、sourceとsinkは除く\n\ttable[source] = BIG_NUM;\n\ttable[sink] = BIG_NUM;\n\tfor(int i = 1; i < V-1; i++){\n\t\tfor(int k = 0; k < NUM; k++){\n\t\t\tG[TMP][k] = G[BASE][k];\n\t\t}\n\t\tif(can_visit[i]){\n\t\t\ttable[i] = max_flow(TMP,source,i);\n\t\t}else{\n\t\t\ttable[i] = max_flow(TMP,i,sink);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < V; i++){\n\t\tif(!can_visit[i])continue;\n\t\tfor(int k = 0; k < G[BASE][i].size(); k++){\n\t\t\tif(can_visit[G[BASE][i][k].to])continue;\n\t\t\tans = max(ans,min(table[i],table[G[BASE][i][k].to]));\n\t\t}\n\t}\n\n\tans += base_flow;\n\n\tif(ans >= BIG_NUM){\n\t\tprintf(\"overfuro\\n\");\n\t}else{\n\t\tprintf(\"%d\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3576, "score_of_the_acc": -0.1622, "final_rank": 8 }, { "submission_id": "aoj_2803_2901593", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 120\n\nenum Type{\n\tBASE,\n\tTMP,\n};\n\n\n//辺を表す構造体(行先、容量、逆辺のインデックス)\nstruct Edge{\n\tEdge(int arg_to,int arg_capacity,int arg_rev_index){\n\t\tto = arg_to;\n\t\tcapacity = arg_capacity;\n\t\trev_index = arg_rev_index;\n\t}\n\tint to,capacity,rev_index;\n};\n\nint V;\nint K,N,E;\nvector<Edge> G[2][NUM]; //グラフの隣接リスト表現\nint dist[2][NUM]; //sourceからの距離\nint cheked_index[2][NUM]; //どこまで調べ終わったか\nint table[NUM];\nbool can_visit[NUM];\n\n//fromからtoへ向かう容量capacityの辺をグラフに追加する\nvoid add_edge(int from,int to,int capacity){\n\tG[BASE][from].push_back(Edge(to,capacity,G[BASE][to].size())); //★逆辺はそれぞれ張る★\n\tG[BASE][to].push_back(Edge(from,0,G[BASE][from].size()-1)); //逆辺の、初期容量は0\n}\n\n//sourceからの最短距離をBFSで計算する\nvoid bfs(Type type,int source){\n\tfor(int i = 0; i < V; i++)dist[type][i] = -1;\n\tqueue<int> Q;\n\tdist[type][source] = 0;\n\tQ.push(source);\n\n\tint debug = 0;\n\twhile(!Q.empty()){\n\t\tint node_id = Q.front();\n\t\tQ.pop();\n\t\tdebug++;\n\t\tif(debug == 100){\n\t\t\tprintf(\"LOOP!!\\n\");\n\t\t\treturn;\n\t\t}\n\n\t\tfor(int i = 0; i < G[type][node_id].size(); i++){\n\t\t\tEdge &e = G[type][node_id][i];\n\t\t\tif(e.capacity > 0 && dist[type][e.to] < 0){ //辺の容量が正で、かつエッジの行先に未訪問の場合\n\t\t\t\tdist[type][e.to] = dist[type][node_id]+1;\n\t\t\t\tQ.push(e.to);\n\t\t\t}\n\t\t}\n\t}\n}\n\n//増加パスをDFSで探す\nint dfs(Type type,int node_id,int sink,int flow){\n\tif(node_id == sink)return flow; //終点についたらflowをreturn\n\n\tfor(int &i = cheked_index[type][node_id]; i < G[type][node_id].size(); i++){ //node_idから出ているエッジを調査\n\t\tEdge &e = G[type][node_id][i];\n\t\tif(e.capacity > 0 && dist[type][node_id] < dist[type][e.to]){ //流せる余裕があり、かつsourceからの距離が増加する方法である場合\n\t\t\tint tmp_flow = dfs(type,e.to,sink,min(flow,e.capacity)); //流せるだけ流す\n\t\t\tif(tmp_flow > 0){ //流せた場合\n\t\t\t\te.capacity -= tmp_flow; //流した分、エッジの容量を削減する\n\t\t\t\tG[type][e.to][e.rev_index].capacity += tmp_flow; //逆辺の容量を、流した分だけ増加させる\n\t\t\t\treturn tmp_flow;\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}\n\n//sourceからsinkへの最大流を求める\nint max_flow(Type type,int source,int sink){ //source:始点 sink:終点\n\tint flow = 0,add;\n\twhile(true){ //増加パスが存在する限り、流量を追加し続ける\n\t\tbfs(type,source);\n\t\tif(dist[type][sink] < 0)break; //sourceからsinkへと辿り着く残余グラフがない、つまり増加パスが無くなった場合、break\n\t\tfor(int i = 0; i < V; i++)cheked_index[type][i] = 0;\n\t\twhile((add = dfs(type,source,sink,BIG_NUM)) > 0){ //増加パスが見つかる間、加算\n\t\t\tflow += add;\n\t\t}\n\t}\n\treturn flow;\n}\n\n//sourceから行けるノードを探す\nvoid visit_check(int node_id){\n\tcan_visit[node_id] = true;\n\n\tfor(int i = 0; i < G[BASE][node_id].size(); i++){\n\t\tif(can_visit[G[BASE][node_id][i].to] == true || G[BASE][node_id][i].capacity == 0)continue;\n\t\tvisit_check(G[BASE][node_id][i].to);\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%d %d %d\",&K,&N,&E);\n\n\tint from,to,capacity;\n\tfor(int loop = 0; loop < E; loop++){\n\t\tscanf(\"%d %d %d\",&from,&to,&capacity);\n\t\tadd_edge(from,to,capacity);\n\t\tadd_edge(to,from,capacity);\n\t}\n\n\tint source = K+N+1,sink = 0; //浴槽をsinkとする\n\n\tfor(int i = 1; i <= K; i++){\n\t\tadd_edge(source,i,BIG_NUM);\n\t}\n\n\t//一回流す\n\tV = K+N+2;\n\tint base_flow = max_flow(BASE,source,sink);\n\n\t//sourceから行けるノードを探す\n\tfor(int i = 0; i < V; i++)can_visit[i] = false;\n\tvisit_check(source);\n\n\tint ans = 0;\n\n\t//残余グラフ上でボトルネックを走査(ボトルネック辺はcapacityが0になっているはず)\n\t//ループの際、sourceとsinkは除く\n\ttable[source] = BIG_NUM;\n\ttable[sink] = BIG_NUM;\n\tfor(int i = 1; i < V-1; i++){\n\t\tfor(int k = 0; k < NUM; k++){\n\t\t\tG[TMP][k] = G[BASE][k];\n\t\t}\n\t\tif(can_visit[i]){\n\t\t\ttable[i] = max_flow(TMP,source,i);\n\t\t}else{\n\t\t\ttable[i] = max_flow(TMP,i,sink);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < V; i++){\n\t\tif(!can_visit[i])continue;\n\t\tfor(int k = 0; k < G[BASE][i].size(); k++){\n\t\t\tif(can_visit[G[BASE][i][k].to])continue;\n\t\t\tans = max(ans,min(table[i],table[G[BASE][i][k].to]));\n\t\t}\n\t}\n\n\tans += base_flow;\n\n\tif(ans >= BIG_NUM){\n\t\tprintf(\"overfuro\\n\");\n\t}else{\n\t\tprintf(\"%d\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 0.125, "time_ms": 30, "memory_kb": 3452, "score_of_the_acc": -0.1113, "final_rank": 19 }, { "submission_id": "aoj_2803_2775523", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,a,b) for(int i=(a);i<(b);++i)\n#define rep(i,n) FOR(i,0,n)\n#define pb emplace_back\ntypedef long long ll;\ntypedef pair<ll,ll> pint;\n\nconst int INF=1000100010;\nconst int MAX_N=102;\nstruct edge{\n int to,cap,rev;\n edge(int to,int cap,int rev):\n to(to),cap(cap),rev(rev){}\n };\n\nvector<edge> g[MAX_N];\nint dist[MAX_N];\nint used[MAX_N];\nvoid add_edge(int src,int dst,int cap){\n g[src].pb(edge(dst,cap,g[dst].size()));\n g[dst].pb(edge(src,cap,g[src].size()-1));\n}\nvoid bfs(int s){\n memset(dist,-1,sizeof(dist));\n queue<int> q;\n dist[s]=0;\n q.push(s);\n while(!q.empty()){\n int v=q.front();q.pop();\n rep(i,g[v].size()){\n edge &e=g[v][i];\n if(e.cap>0&&dist[e.to]<0){\n dist[e.to]=dist[v]+1;\n q.push(e.to);\n }\n }\n }\n}\nint dfs(int v,int t,int f){\n if(v==t) return f;\n used[v]=true;\n rep(i,g[v].size()){\n edge &e=g[v][i];\n if(e.cap>0&&dist[v]<dist[e.to]){\n int d=dfs(e.to,t,min(f,e.cap));\n if(d>0){\n e.cap-=d;\n g[e.to][e.rev].cap+=d;\n return d;\n }\n }\n }\n return 0;\n}\nint max_flow(int s,int t){\n int flow=0;\n while(1){\n bfs(s);\n if(dist[t]<0) return flow;\n memset(used,0,sizeof(used));\n int f;\n while((f=dfs(s,t,INF))>0){\n flow+=f;\n }\n }\n}\nvector<edge> g2[MAX_N];\nint main(){\n int k,n,m;\n int a,b,c;\n cin>>k>>n>>m;\n bool flag=false;\n rep(i,m){\n cin>>a>>b>>c;\n add_edge(a,b,c);\n if(a==0&&b<=k||b==0&&a<=k) flag=true;\n }\n if(flag){\n cout<<\"overfuro\"<<endl;\n return 0;\n }\n int s=n+k+1;\n FOR(i,1,k+1){\n add_edge(s,i,INF);\n }\n int cur=max_flow(s,0);\n //cout<<cur<<endl;\n int mx=0;\n rep(i,s+1) g2[i]=g[i];\n rep(i,s+1){\n rep(j,g[i].size()){\n if(g[i][j].cap==0){\n g[i][j].cap=INF;\n mx=max(mx,max_flow(s,0));\n rep(l,s+1) g[l]=g2[l];\n }\n }\n }\n if(cur+mx>=INF) cout<<\"overfuro\"<<endl;\n else cout<<cur+mx<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3288, "score_of_the_acc": -0.155, "final_rank": 6 }, { "submission_id": "aoj_2803_2388807", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nusing pi = pair<int,int>;\n\n// (?????????,??????,??????)\nstruct edge{ int to,cap,rev; };\n\nconst int MAX_V = 111; // TODO:initialize\nconst int F_INF = 99999999; // TODO:initialize\nvector<edge> G[MAX_V],z[MAX_V];\nint level[MAX_V]; // s??????????????¢\nint iter[MAX_V]; // ???????????§??????????????£??????\n\nvoid add_edge(int from, int to, int cap){\n G[from].pb({to,cap,(int)G[to].size()});\n G[to].pb({from,cap,(int)G[from].size()-1});\n}\n\nvoid dinic_bfs(int s){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v = que.front();\n que.pop();\n rep(i,G[v].size()){\n edge &e = G[v][i];\n if(e.cap>0 && level[e.to]<0){\n level[e.to] = level[v]+1;\n que.push(e.to);\n }\n }\n }\n}\n\n// ?¢?????????????dfs??§??¢???\nint dinic_dfs(int v, int t, int f){\n if(v==t) return f;\n for(int &i=iter[v]; i<G[v].size(); ++i){\n edge &e=G[v][i];\n if(e.cap>0 && level[v]<level[e.to]){\n int d = dinic_dfs(e.to,t,min(f,e.cap));\n if(d>0){\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n}\n\n// s??????t???????????§???\nint max_flow(int s, int t){\n int flow = 0;\n while(1){\n dinic_bfs(s);\n if(level[t]<0) return flow;\n memset(iter,0,sizeof(iter));\n int f;\n while((f=dinic_dfs(s,t,F_INF))>0) flow+=f;\n }\n}\n\nconst int INF=5555555;\nint ff[MAX_V][2]={};\n\nvoid solve()\n{\n bool direct = false;\n int K,N,M;\n cin >>K >>N >>M;\n vector<int> a(M),b(M),c(M);\n rep(i,M)\n {\n cin >>a[i] >>b[i] >>c[i];\n if(a[i]>b[i]) swap(a[i],b[i]);\n add_edge(a[i],b[i],c[i]);\n direct|=(a[i]==0 && 1<=b[i] && b[i]<=K);\n }\n\n if(direct)\n {\n cout << \"overfuro\" << endl;\n return;\n }\n\n int S=K+N+1,T=0;\n for(int i=1; i<=K; ++i) add_edge(S,i,INF);\n\n int F = max_flow(S,T);\n\n rep(i,MAX_V) z[i]=G[i];\n\n ff[S][0]=INF;\n rep(i,S)\n {\n rep(j,MAX_V) G[j]=z[j];\n ff[i][0] = max_flow(S,i);\n }\n ff[0][1]=INF;\n for(int i=1; i<=S; ++i)\n {\n rep(j,MAX_V) G[j]=z[j];\n ff[i][1] = max_flow(i,T);\n }\n\n int add = 0;\n rep(i,M)\n {\n int u=a[i], v=b[i];\n add = max(add,min(ff[u][0],ff[v][1]));\n add = max(add,min(ff[v][0],ff[u][1]));\n }\n\n cout << F+add << endl;\n}\n\nint main()\n{\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3324, "score_of_the_acc": -0.05, "final_rank": 1 }, { "submission_id": "aoj_2803_2388798", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 100000000\n\ntemplate<typename T>\nclass MaximumFlow{\npublic:\n struct edge{int to; T cap; int rev;};\n vector<vector<edge> > Graph;\n vector<int> level, iter; //s??????????????¢,???????????§????????????\n void bfs(int s){\n fill(all(level), -1);\n queue<int> q;\n level[s]=0;\n q.push(s);\n while(!q.empty()){\n int v=q.front(); q.pop();\n for(auto e : Graph[v]){\n if(e.cap>0 && level[e.to]<0){\n level[e.to] = level[v]+1;\n q.push(e.to);\n }\n }\n }\n }\n T dfs(int v, int t, T f){\n if(v==t) return f;\n for(int &i=iter[v]; i<(int)Graph[v].size(); i++){\n auto &e = Graph[v][i];\n if(e.cap>0 && level[v]<level[e.to]){\n T d = dfs(e.to, t, min(f, e.cap));\n if(d>0){\n e.cap -= d;\n Graph[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n MaximumFlow(int n){\n Graph = vector<vector<edge> >(n, vector<edge>());\n level = vector<int>(n);\n iter = vector<int>(n);\n }\n T max_flow(int s, int t){\n T flow=0;\n while(true){\n bfs(s);\n if(level[t] < 0) break;\n fill(all(iter), 0);\n T f;\n while( (f=dfs(s,t,INF)) > 0){\n flow += f;\n }\n }\n return flow;\n }\n void add_edge(int from, int to, T cap){\n int tos = Graph[to].size(), froms = Graph[from].size();\n Graph[from].pb(((edge){to, cap, tos}));\n Graph[to].pb(((edge){from, cap, froms}));\n }\n}; // END class MaximumFlow\n\nint main(){\n int k,n,m;\n cin>>k>>n>>m;\n MaximumFlow<int> flow(k+n+2);\n // 0: sink\n // 1-k: gensen\n // k+1 - k+n: vertex\n // k+n+1: source\n rep(i,k) flow.add_edge(k+n+1, i+1, INF);\n\n bool ov = false;\n rep(i,m){\n int a,b,c;\n cin>>a>>b>>c;\n if(1<=a && a<=k && 1<=b && b<=k) continue;\n flow.add_edge(a, b, c);\n if(a*b==0 && ((1<=a && a<=k) || (1<=b && b<=k)) ) ov = true;\n }\n if(ov){ cout << \"overfuro\" << endl; return 0; }\n\n int f = flow.max_flow(k+n+1, 0);\n\n // source??????bfs??????????????????????£????????????¢???\n auto g = flow.Graph;\n vector<int> u,v;\n queue<int> q;\n vector<bool> visited(k+n+2);\n q.push(k+n+1);\n visited[k+n+1]=true;\n while(!q.empty()){\n int d = q.front(); q.pop();\n for(auto to : g[d]) if(!visited[to.to]){\n if(to.cap==0){u.pb(d); v.pb(to.to);}\n else{\n q.push(to.to);\n visited[to.to] = true;\n }\n }\n }\n // dbg(u);\n // dbg(v);\n\n vector<int> uu(k+n+2, -1), vv(k+n+2, -1);\n int ans = f;\n rep(i,u.size()){\n if(uu[u[i]]==-1 || vv[v[i]]==-1){\n flow.Graph = g;\n if(uu[u[i]]==-1){\n if(1<=u[i] && u[i]<=k) uu[u[i]] = INF;\n else uu[u[i]] = flow.max_flow(k+n+1, u[i]);\n }\n if(vv[v[i]]==-1){\n if(v[i]==0) vv[v[i]] = INF;\n else vv[v[i]] = flow.max_flow(v[i], 0);\n }\n }\n// dbg(uu[u[i]],vv[v[i]]);\n ans = max(ans, f + min(uu[u[i]], vv[v[i]]) );\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3340, "score_of_the_acc": -0.0554, "final_rank": 3 }, { "submission_id": "aoj_2803_2270650", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,a) for(int i=0;i<(int)(a);i++)\n#define pb push_back\n#define sz size()\nusing namespace std;\ntypedef vector<int> vi;\n\nconst int INF = 1e8;\n\nstruct edge{\n int from,to,cap,rev;\n edge(int a,int b,int c,int e)\n :from(a),to(b),cap(c),rev(e){}\n};\n\nstruct dinic{\n int n;\n vector< vector<edge> > graph;\n vi level,iter;\n\n dinic(int a=0):n(a){graph.resize(a);}\n\n void AddEdge(int s,int g,int p){\n graph[s].pb( edge(s,g,p,graph[g].sz) );\n graph[g].pb( edge(g,s,0,graph[s].sz-1) );\n }\n\n void bfs(int s){\n level = vi(n,-1);\n level[s] = 0;\n queue<int> q; q.push(s);\n while(q.sz){\n int v = q.front(); q.pop();\n for(edge e: graph[v]){\n\tif(e.cap > 0 && level[e.to] < 0){\n\t level[e.to] = level[v] + 1;\n\t q.push(e.to);\n\t}\n }\n }\n }\n \n int dfs(int v, int t, int f){\n if(v==t)return f;\n for(int &i = iter[v];i<(int)graph[v].sz;i++){\n edge &e = graph[v][i];\n if(e.cap > 0 && level[v] < level[e.to]){\n\tint d = dfs(e.to,t,min(f,e.cap));\n\tif(d > 0){\n\t e.cap -= d;\n\t graph[e.to][e.rev].cap += d;\n\t return d;\n\t}\n }\n }\n return 0;\n }\n \n int max_flow(int s, int t){\n int res = 0;\n for(;;){\n bfs(s);\n if(level[t]<0)return res;\n iter = vi(n,0);\n int f;\n while((f=dfs(s,t,INF))>0)res += f;\n }\n }\n};\n\nint main(){\n int k,n,m;\n cin >> k >> n >> m;\n\n int v = k+n+2;\n dinic mf(v);\n rep(i,k) mf.AddEdge(v-1,i+1,INF);\n\n vector<int> a(m), b(m), c(m);\n rep(i,m){\n cin >> a[i] >> b[i] >> c[i];\n mf.AddEdge(a[i], b[i], c[i]);\n mf.AddEdge(b[i], a[i], c[i]);\n }\n\n //check overfuro\n rep(i,m){\n if(a[i] > b[i]) swap(a[i], b[i]);\n if( a[i] == 0 && (1 <= b[i] && b[i] <= k) ){\n cout << \"overfuro\" << endl;\n return 0;\n }\n }\n\n int ans = mf.max_flow(v-1,0);\n\n vi from_s(v,-1), to_t(v,-1);\n rep(i,v){\n dinic red(v);\n red.graph = mf.graph;\n from_s[i] = i==v-1 ? INF : red.max_flow(v-1,i);\n\n red.graph = mf.graph;\n to_t[i] = i==0 ? INF : red.max_flow(i,0);\n }\n\n int over = 0;\n rep(i,m){\n over = max( over, min(from_s[a[i]], to_t[b[i]]) );\n over = max( over, min(from_s[b[i]], to_t[a[i]]) );\n }\n\n cout << ans + over << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3636, "score_of_the_acc": -0.1734, "final_rank": 9 }, { "submission_id": "aoj_2803_2241164", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MAX 105\n#define INF (1e8)\nint K,N,M;\nint T;\n \nbool g[MAX][MAX];\nint G[MAX][MAX];\nint C[MAX];\nint tmp[MAX][MAX];\n \nbool visited[MAX];\nbool used[MAX];\n \nvoid copyA(){\n for(int i=0;i<MAX;i++)\n for(int j=0;j<MAX;j++)\n tmp[i][j]=G[i][j];\n}\nvoid copyB(){\n for(int i=0;i<MAX;i++)\n for(int j=0;j<MAX;j++)\n G[i][j]=tmp[i][j];\n}\n \n \n \nint dfs(int pos,int ti,int f){\n if(pos==ti)return f;\n visited[pos]=true;\n for(int tt=0;tt<=T;tt++){\n int to=tt;\n if(to==-1)to=T;\n \n if(visited[to])continue;\n if(G[pos][to]==0)continue;\n \n int k=dfs(to,ti, min(f,G[pos][to]) );\n if(k>0){\n G[pos][to]-=k;\n G[to][pos]+=k;\n return k;\n }\n }\n return 0;\n}\n \nint maxFlow(int si,int ti){\n if(si==ti)return INF;\n int res=0;\n while(1){\n memset(visited,false,sizeof(visited));\n int f=dfs(si,ti,INF);\n if(f==0)break;\n res+=f;\n \n }\n return res;\n}\nint calcC(int id){\n if(C[id]!=-1)return C[id];\n copyA();\n if(used[id]){\n C[id]=maxFlow(T,id);\n }else{\n C[id]=maxFlow(id,0);\n }\n copyB();\n return C[id];\n}\n \nint main(){\n memset(C,-1,sizeof(C));\n \n bool isOverfuro=false;\n cin>>K>>N>>M;\n T=N+K+1;\n for(int i=0;i<M;i++){\n int a,b,c;\n cin>>a>>b>>c;\n if(a==0&&1<=b&&b<=K){\n isOverfuro=true;\n }\n if(b==0&&1<=a&&a<=K){\n isOverfuro=true;\n }\n G[a][b]+=c;\n G[b][a]+=c;\n g[a][b]=true;\n g[b][a]=true;\n }\n \n for(int i=1;i<=K;i++){\n G[T][i]=INF;\n }\n \n if(isOverfuro){\n cout<<\"overfuro\"<<endl;\n return 0;\n }\n \n int F=maxFlow(T,0);\n assert(F>0);\n \n memset(visited,false,sizeof(visited));\n dfs(T,0,INF);\n \n for(int i=0;i<=T;i++){\n used[i]=visited[i];\n }\n \n C[0]=INF;\n \n int ans=0;\n for(int i=0;i<T;i++){\n for(int j=0;j<T;j++){\n if(i==j)continue;\n if(G[i][j]==0&&g[i][j]==true && used[i]==true && used[j]==false ){\n calcC(i);\n calcC(j);\n ans=max(ans, min(C[i],C[j]) );\n }\n }\n }\n cout<<F+ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1120, "memory_kb": 3192, "score_of_the_acc": -1.0054, "final_rank": 13 }, { "submission_id": "aoj_2803_2235402", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb push_back\n#define INF (1e9+1)\n//#define INF (1LL<<59)\n \n \n#define MAX_V 110\n \nstruct edge{int to,cap,rev;};\n \nvector<edge> G[MAX_V]; //???°???????????????\nint level[MAX_V]; //??§???????????????????¢\nint iter[MAX_V]; //????????????§????????????\n \n// from??????to?????????????????????cap????????????°?????????????????????\nvoid add_edge(int from,int to,int cap){\n G[from].push_back( (edge){ to ,cap,(int)G[to ].size() } );\n G[to ].push_back( (edge){ from,0 ,(int)G[from].size()-1 } );\n}\n \n// s?????????????????????¢???BFS???§??¨??????????\nvoid bfs(int s){\n rep(i,MAX_V)level[i]=-1;\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front();que.pop();\n \n rep(i,G[v].size()){\n edge &e=G[v][i];\n if(e.cap>0 && level[e.to]<0){\n level[e.to]=level[v]+1;\n que.push(e.to);\n }\n }\n }\n}\n \n//??¢?????????????DFS???§???¢???\nint dfs(int v,int t,int f){\n if(v==t)return f;\n for(int &i=iter[v];i<G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap>0&&level[v]<level[e.to]){\n int d=dfs(e.to,t,min(f,e.cap));\n if(d>0){\n e.cap-=d;\n G[e.to][e.rev].cap+=d;\n return d;\n }\n }\n }\n return 0;\n}\n \n// s??????t????????????§????????±???????\nint max_flow(int s,int t){\n if(s==t)return INF;\n int flow=0;\n for(;;){\n bfs(s);\n if(level[t]<0)return flow;\n memset(iter,0,sizeof(iter));\n int f;\n while((f=dfs(s,t,INF))>0){\n flow+=f;\n }\n }\n}\n \nvoid isUsedDfs(int s,int t,bool used[MAX_V]){\n if(s==t)return ;\n for(auto &e:G[s]){\n if(!used[e.to]&&e.cap>0){\n used[e.to]=true;\n isUsedDfs(e.to,t,used);\n }\n }\n}\n \n \nint main(){\n int k,n,m;\n cin>>k>>n>>m;\n int s = 1+k+n;\n int t = 0;\n int v = s+1;\n \n rep(i,m){\n int a,b,c;\n cin>>a>>b>>c;\n add_edge(a,b,c);\n add_edge(b,a,c);\n }\n \n rep(i,k)add_edge(s,i+1,INF);\n \n int res = max_flow(s,t);\n vector<edge> Greg[MAX_V];\n rep(i,v)Greg[i] = G[i];\n \n \n bool used[MAX_V]={};\n used[s]=true;\n isUsedDfs(s,t,used);\n \n int ans = 0;\n vector<int> sflow(v,-1),tflow(v,-1);\n rep(i,v){\n for(auto e:Greg[i]){\n if(used[i]&&!used[e.to]){\n rep(i,v)G[i] = Greg[i];\n if(sflow[i]==-1) sflow[i] = max_flow(s,i);\n if(tflow[e.to]==-1)tflow[e.to] = max_flow(e.to,t);\n ans = max( ans , res + min(sflow[i],tflow[e.to]) );\n }\n }\n }\n if(ans>=INF)cout<<\"overfuro\"<<endl;\n else cout<<ans<<endl;\n \n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3592, "score_of_the_acc": -0.1586, "final_rank": 7 }, { "submission_id": "aoj_2803_2073602", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define INF 1<<28\n#define MAX_V 105\n#define ll int\nstruct edge{\n ll to,cap,rev;\n edge(ll to ,ll cap,ll rev):to(to),cap(cap),rev(rev){}\n};\nvector<edge> G[MAX_V];\nvector<edge> G2[MAX_V];\nbool used[MAX_V];\nint level[MAX_V];\nint iter[MAX_V];\n\n\nvoid add_edge(ll from,ll to,ll cap){\n G[from].push_back(edge(to,cap,G[to].size()));\n G[to].push_back(edge(from,cap,G[from].size()-1));\n}\n\nvoid bfs(int s){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int i=0;i<G[v].size();i++){\n edge &e = G[v][i];\n if(e.cap>0&&level[e.to]<0){\n\tlevel[e.to]=level[v]+1;\n\tque.push(e.to);\n }\n }\n }\n}\n\nint dfs(int v,int t,int f){\n if(v==t) return f;\n for(int &i=iter[v];i<G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap>0&&level[v]<level[e.to]){\n int d = dfs(e.to,t,min(f,e.cap));\n if(d>0){\n\te.cap-=d;\n\tG[e.to][e.rev].cap+=d;\n\treturn d;\n }\n }\n }\n return 0;\n}\n\nvoid bfs2(int s){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int i=0;i<G2[v].size();i++){\n edge &e = G2[v][i];\n if(e.cap>0&&level[e.to]<0){\n\tlevel[e.to]=level[v]+1;\n\tque.push(e.to);\n }\n }\n }\n}\n\nint dfs2(int v,int t,int f){\n if(v==t) return f;\n for(int &i=iter[v];i<G2[v].size();i++){\n edge &e=G2[v][i];\n if(e.cap>0&&level[v]<level[e.to]){\n int d = dfs2(e.to,t,min(f,e.cap));\n if(d>0){\n\te.cap-=d;\n\tG2[e.to][e.rev].cap+=d;\n\treturn d;\n }\n }\n }\n return 0;\n}\n\nint flow=0;\nint max_flow(int s,int t){\n for(;;){\n bfs(s);\n if(level[t]<0) return flow;\n memset(iter,0,sizeof(iter));\n int f;\n while((f=dfs(s,t,INF))>0){\n flow+=f;\n }\n }\n}\n\nint max_flow2(int s,int t){\n int flow2=0;\n for(;;){\n bfs2(s);\n if(level[t]<0) return flow2;\n memset(iter,0,sizeof(iter));\n int f;\n while((f=dfs2(s,t,INF))>0){\n flow2+=f;\n }\n }\n}\n\nsigned main(){\n ll k,n,m,i,j,a,b,c,x,y;\n cin >> k >> n >> m;\n ll s=MAX_V-1,t=0;\n for(i=0;i<m;i++){\n cin >> a >> b >> c;\n add_edge(a,b,c);\n }\n for(i=1;i<=k;i++){\n add_edge(s,i,INF);\n }\n ll ans=max_flow(s,t);\n for(i=1;i<MAX_V-1;i++){\n for(j=0;j<G[i].size();j++){\n if(G[i][j].cap!=0) continue;\n for(x=0;x<MAX_V;x++) G2[x]=G[x];\n G2[i][j].cap=INF;\n ans=max(ans,flow+max_flow2(s,t));\n if(ans>=INF) break;\n }\n } if(ans>=INF) cout << \"overfuro\" << endl;\n else cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3264, "score_of_the_acc": -0.0838, "final_rank": 4 }, { "submission_id": "aoj_2803_2030843", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <algorithm>\n#include <numeric>\n#include <functional>\n#include <cmath>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <sstream>\n#include <string>\n#define repd(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repd(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define mod 1000000007\n#define inf 1000000007\n#define mp make_pair\n#define pb push_back\ntypedef long long ll;\nusing namespace std;\ntemplate <typename T>\ninline void output(T a, int p = 0) {\n if(p) cout << fixed << setprecision(p) << a << \"\\n\";\n else cout << a << \"\\n\";\n}\n// end of template\n// goal, capacity, index of reverse edge\nstruct edge {\n int to, cap, rev;\n};\n\nstruct ftc{\n int from, to, cap;\n};\n\n// O(EV^2)\nclass Dinic{\npublic:\n int V;\n vector<vector<edge>> G;\n vector<int> L;\n vector<int> I;\n vector<int> vis;\n \n Dinic(int v){\n G.resize(v), L.resize(v), I.resize(v), vis.assign(v, 0);\n V = v;\n }\n \n // add edge\n void add(int from, int to, int cap){\n G[from].push_back((edge){to, cap, (int)G[to].size()});\n G[to].push_back((edge){from, 0, (int)G[from].size() - 1});\n }\n \n // label dist from s\n void bfs(int s){\n L.assign(V, -1);\n queue<int> q;\n L[s] = 0;\n q.push(s);\n while (!q.empty()) {\n int v = q.front();\n q.pop();\n rep(i, G[v].size()){\n edge &e = G[v][i];\n if (e.cap > 0 && L[e.to] < 0) {\n L[e.to] = L[v] + 1;\n q.push(e.to);\n }\n }\n }\n }\n \n // search positive path\n int dfs(int v, int t, int f){\n if (v == t) return f;\n for (int &i = I[v]; i < G[v].size(); i++) {\n edge &e = G[v][i];\n if (e.cap > 0 && L[v] < L[e.to]) {\n int d = dfs(e.to, t, min(f, e.cap));\n if (d) {\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n \n // calc max flow\n int max_flow(int s, int t){\n int flow = 0;\n for (;;) {\n bfs(s);\n if (L[t] < 0) return flow;\n I.assign(V, 0);\n int f;\n while ((f = dfs(s, t, inf)) > 0) {\n flow += f;\n }\n }\n }\n \n vector<ftc> pipe;\n vector<int> ofuro;\n vector<int> neck;\n void dfs_cut(int s){\n if(vis[s] == 1){\n return;\n }\n vis[s] = 1;\n rep(i, G[s].size()){\n \n if(G[s][i].cap > 0){\n dfs_cut(G[s][i].to);\n }\n else ofuro.pb(s), neck.pb(G[s][i].to), pipe.pb({s, G[s][i].to, G[s][i].cap});\n }\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n // source code\n int K, N, M;\n cin >> K >> N >> M;\n \n Dinic mf(K + N + 2);\n vector<ftc> E;\n // source: K + N + 1\n // sink: 0\n // spring: 1 ~ K\n // joint: K + 1 ~ K + N\n rep(i, K){\n E.pb({K + N + 1, i + 1, inf});\n mf.add(K + N + 1, i + 1, inf);\n }\n \n rep(i, M){\n int a, b, c;\n cin >> a >> b >> c;\n if(a != 0 && !(b >= 1 && b <= K)) mf.add(a, b, c), E.pb({a, b, c});\n if(!(a >= 1 && a <= K) && b != 0) mf.add(b, a, c), E.pb({b, a, c});\n }\n auto D = mf;\n int mfmf = mf.max_flow(K + N + 1, 0);\n \n mf.dfs_cut(K + N + 1);\n \n int ret = 0;\n vector<int> source(K + N + 2, 0), sink(K + N + 2, 0);\n \n for(int f: mf.ofuro){\n auto d = D;\n if(K + N + 1 == f) {\n source[f] = inf;\n continue;\n }\n source[f] = d.max_flow(K + N + 1, f);\n }\n \n for(int f: mf.neck){\n auto d = D;\n if(f == 0) {\n sink[f] = inf;\n continue;\n }\n sink[f] = d.max_flow(f, 0);\n }\n \n rep(i, D.G.size()){\n for(edge e: D.G[i]){\n if(source[i] > 0 && sink[e.to] > 0){\n// cout << source[i] << \", \" << sink[e.to] << \", \" << e.cap << endl;\n ret = max(ret, mfmf + min(source[i], sink[e.to]) - e.cap);\n if(min(source[i], sink[e.to]) == inf){\n output(\"overfuro\");\n return 0;\n }\n }\n }\n }\n \n \n \n \n// if(ret >= inf){\n// output(\"overfuro\");\n// }\n// else{\n output(ret);\n// }\n \n \n return 0;\n}", "accuracy": 0.14583333333333334, "time_ms": 180, "memory_kb": 3300, "score_of_the_acc": -0.195, "final_rank": 18 }, { "submission_id": "aoj_2803_2029878", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <algorithm>\n#include <numeric>\n#include <functional>\n#include <cmath>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <sstream>\n#include <string>\n#define repd(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repd(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define mod 1000000007\n#define inf 1000000007\n#define mp make_pair\n#define pb push_back\ntypedef long long ll;\nusing namespace std;\ntemplate <typename T>\ninline void output(T a, int p = 0) {\n if(p) cout << fixed << setprecision(p) << a << \"\\n\";\n else cout << a << \"\\n\";\n}\n// end of template\n// goal, capacity, index of reverse edge\nstruct edge {\n int to, cap, rev;\n};\n\nstruct ftc{\n int from, to, cap;\n};\n\n// O(EV^2)\nclass Dinic{\npublic:\n int V;\n vector<vector<edge>> G;\n vector<int> L;\n vector<int> I;\n vector<int> vis;\n \n Dinic(int v){\n G.resize(v), L.resize(v), I.resize(v), vis.assign(v, 0);\n V = v;\n }\n \n // add edge\n void add(int from, int to, int cap){\n G[from].push_back((edge){to, cap, (int)G[to].size()});\n G[to].push_back((edge){from, 0, (int)G[from].size() - 1});\n }\n \n // label dist from s\n void bfs(int s){\n L.assign(V, -1);\n queue<int> q;\n L[s] = 0;\n q.push(s);\n while (!q.empty()) {\n int v = q.front();\n q.pop();\n rep(i, G[v].size()){\n edge &e = G[v][i];\n if (e.cap > 0 && L[e.to] < 0) {\n L[e.to] = L[v] + 1;\n q.push(e.to);\n }\n }\n }\n }\n \n // search positive path\n int dfs(int v, int t, int f){\n if (v == t) return f;\n for (int &i = I[v]; i < G[v].size(); i++) {\n edge &e = G[v][i];\n if (e.cap > 0 && L[v] < L[e.to]) {\n int d = dfs(e.to, t, min(f, e.cap));\n if (d) {\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n \n // calc max flow\n int max_flow(int s, int t){\n int flow = 0;\n for (;;) {\n bfs(s);\n if (L[t] < 0) return flow;\n I.assign(V, 0);\n int f;\n while ((f = dfs(s, t, inf)) > 0) {\n flow += f;\n }\n }\n }\n \n vector<ftc> pipe;\n vector<int> ofuro;\n vector<int> neck;\n void dfs_cut(int s){\n if(vis[s] == 1){\n return;\n }\n vis[s] = 1;\n rep(i, G[s].size()){\n \n if(G[s][i].cap > 0){\n dfs_cut(G[s][i].to);\n }\n else ofuro.pb(s), neck.pb(G[s][i].to), pipe.pb({s, G[s][i].to, G[s][i].cap});\n }\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n // source code\n int K, N, M;\n cin >> K >> N >> M;\n \n Dinic mf(K + N + 2);\n vector<ftc> E;\n // source: K + N + 1\n // sink: 0\n // spring: 1 ~ K\n // joint: K + 1 ~ K + N\n rep(i, K){\n E.pb({K + N + 1, i + 1, inf});\n mf.add(K + N + 1, i + 1, inf);\n }\n \n rep(i, M){\n int a, b, c;\n cin >> a >> b >> c;\n if(a != 0 && !(b >= 1 && b <= K)) mf.add(a, b, c), E.pb({a, b, c});\n if(!(a >= 1 && a <= K) && b != 0) mf.add(b, a, c), E.pb({b, a, c});\n }\n auto D = mf;\n int mfmf = mf.max_flow(K + N + 1, 0);\n \n mf.dfs_cut(K + N + 1);\n \n int ret = 0;\n vector<int> source(K + N + 2, 0), sink(K + N + 2, 0);\n \n for(int f: mf.ofuro){\n auto d = D;\n if(K + N + 1 == f) {\n source[f] = inf;\n continue;\n }\n source[f] = d.max_flow(K + N + 1, f);\n }\n \n for(int f: mf.neck){\n auto d = D;\n if(f == 0) {\n sink[f] = inf;\n continue;\n }\n sink[f] = d.max_flow(f, 0);\n }\n \n rep(i, D.G.size()){\n for(edge e: D.G[i]){\n if(source[i] && sink[e.to]){\n// cout << source[i] << \", \" << sink[e.to] << \", \" << e.cap << endl;\n ret = max(ret, mfmf + min(source[i], sink[e.to]) - e.cap);\n if(min(source[i], sink[e.to]) == inf){\n output(\"overfuro\");\n return 0;\n }\n }\n }\n }\n \n \n \n \n// if(ret >= inf){\n// output(\"overfuro\");\n// }\n// else{\n output(ret);\n// }\n \n \n return 0;\n}", "accuracy": 0.14583333333333334, "time_ms": 150, "memory_kb": 3296, "score_of_the_acc": -0.1667, "final_rank": 15 }, { "submission_id": "aoj_2803_2029832", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <algorithm>\n#include <numeric>\n#include <functional>\n#include <cmath>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <sstream>\n#include <string>\n#define repd(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repd(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define mod 1000000007\n#define inf 1000000007\n#define mp make_pair\n#define pb push_back\ntypedef long long ll;\nusing namespace std;\ntemplate <typename T>\ninline void output(T a, int p = 0) {\n if(p) cout << fixed << setprecision(p) << a << \"\\n\";\n else cout << a << \"\\n\";\n}\n// end of template\n// goal, capacity, index of reverse edge\nstruct edge {\n int to, cap, rev;\n};\n\nstruct ftc{\n int from, to, cap;\n};\n\n// O(EV^2)\nclass Dinic{\npublic:\n int V;\n vector<vector<edge>> G;\n vector<int> L;\n vector<int> I;\n vector<int> vis;\n \n Dinic(int v){\n G.resize(v), L.resize(v), I.resize(v), vis.assign(v, 0);\n V = v;\n }\n \n // add edge\n void add(int from, int to, int cap){\n G[from].push_back((edge){to, cap, (int)G[to].size()});\n G[to].push_back((edge){from, 0, (int)G[from].size() - 1});\n }\n \n // label dist from s\n void bfs(int s){\n L.assign(V, -1);\n queue<int> q;\n L[s] = 0;\n q.push(s);\n while (!q.empty()) {\n int v = q.front();\n q.pop();\n rep(i, G[v].size()){\n edge &e = G[v][i];\n if (e.cap > 0 && L[e.to] < 0) {\n L[e.to] = L[v] + 1;\n q.push(e.to);\n }\n }\n }\n }\n \n // search positive path\n int dfs(int v, int t, int f){\n if (v == t) return f;\n for (int &i = I[v]; i < G[v].size(); i++) {\n edge &e = G[v][i];\n if (e.cap > 0 && L[v] < L[e.to]) {\n int d = dfs(e.to, t, min(f, e.cap));\n if (d) {\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n \n // calc max flow\n int max_flow(int s, int t){\n int flow = 0;\n for (;;) {\n bfs(s);\n if (L[t] < 0) return flow;\n I.assign(V, 0);\n int f;\n while ((f = dfs(s, t, inf)) > 0) {\n flow += f;\n }\n }\n }\n \n vector<ftc> pipe;\n vector<int> ofuro;\n vector<int> neck;\n void dfs_cut(int s){\n if(vis[s] == 1){\n return;\n }\n vis[s] = 1;\n rep(i, G[s].size()){\n \n if(G[s][i].cap > 0){\n dfs_cut(G[s][i].to);\n }\n else ofuro.pb(s), neck.pb(G[s][i].to), pipe.pb({s, G[s][i].to, G[s][i].cap});\n }\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n // source code\n int K, N, M;\n cin >> K >> N >> M;\n \n Dinic mf(K + N + 2);\n vector<ftc> E;\n // source: K + N + 1\n // sink: 0\n // spring: 1 ~ K\n // joint: K + 1 ~ K + N\n rep(i, K){\n E.pb({K + N + 1, i + 1, inf});\n mf.add(K + N + 1, i + 1, inf);\n }\n \n rep(i, M){\n int a, b, c;\n cin >> a >> b >> c;\n if(a != 0 && !(b >= 1 && b <= K)) mf.add(a, b, c), E.pb({a, b, c});\n if(!(a >= 1 && a <= K) && b != 0) mf.add(b, a, c), E.pb({b, a, c});\n }\n auto D = mf;\n int mfmf = mf.max_flow(K + N + 1, 0);\n \n mf.dfs_cut(K + N + 1);\n \n int ret = 0;\n vector<int> source(K + N + 2, 0), sink(K + N + 2, 0);\n \n for(int f: mf.ofuro){\n auto d = D;\n if(K + N + 1 == f) {\n source[f] = inf;\n continue;\n }\n source[f] = d.max_flow(K + N + 1, f);\n }\n \n for(int f: mf.neck){\n auto d = D;\n if(f == 0) {\n sink[f] = inf;\n continue;\n }\n sink[f] = d.max_flow(f, 0);\n }\n \n rep(i, D.G.size()){\n for(edge e: D.G[i]){\n if(source[i] && sink[e.to]){\n ret = max(ret, mfmf + min(source[i], sink[e.to]) - e.cap);\n }\n }\n }\n \n \n \n \n if(ret >= inf){\n output(\"overfuro\");\n }\n else{\n output(ret);\n }\n \n \n return 0;\n}", "accuracy": 0.14583333333333334, "time_ms": 170, "memory_kb": 3300, "score_of_the_acc": -0.186, "final_rank": 17 }, { "submission_id": "aoj_2803_2029831", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <algorithm>\n#include <numeric>\n#include <functional>\n#include <cmath>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <sstream>\n#include <string>\n#define repd(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repd(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define mod 1000000007\n#define inf 20000000\n#define mp make_pair\n#define pb push_back\ntypedef long long ll;\nusing namespace std;\ntemplate <typename T>\ninline void output(T a, int p = 0) {\n if(p) cout << fixed << setprecision(p) << a << \"\\n\";\n else cout << a << \"\\n\";\n}\n// end of template\n// goal, capacity, index of reverse edge\nstruct edge {\n int to, cap, rev;\n};\n\nstruct ftc{\n int from, to, cap;\n};\n\n// O(EV^2)\nclass Dinic{\npublic:\n int V;\n vector<vector<edge>> G;\n vector<int> L;\n vector<int> I;\n vector<int> vis;\n \n Dinic(int v){\n G.resize(v), L.resize(v), I.resize(v), vis.assign(v, 0);\n V = v;\n }\n \n // add edge\n void add(int from, int to, int cap){\n G[from].push_back((edge){to, cap, (int)G[to].size()});\n G[to].push_back((edge){from, 0, (int)G[from].size() - 1});\n }\n \n // label dist from s\n void bfs(int s){\n L.assign(V, -1);\n queue<int> q;\n L[s] = 0;\n q.push(s);\n while (!q.empty()) {\n int v = q.front();\n q.pop();\n rep(i, G[v].size()){\n edge &e = G[v][i];\n if (e.cap > 0 && L[e.to] < 0) {\n L[e.to] = L[v] + 1;\n q.push(e.to);\n }\n }\n }\n }\n \n // search positive path\n int dfs(int v, int t, int f){\n if (v == t) return f;\n for (int &i = I[v]; i < G[v].size(); i++) {\n edge &e = G[v][i];\n if (e.cap > 0 && L[v] < L[e.to]) {\n int d = dfs(e.to, t, min(f, e.cap));\n if (d) {\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n \n // calc max flow\n int max_flow(int s, int t){\n int flow = 0;\n for (;;) {\n bfs(s);\n if (L[t] < 0) return flow;\n I.assign(V, 0);\n int f;\n while ((f = dfs(s, t, inf)) > 0) {\n flow += f;\n }\n }\n }\n \n vector<ftc> pipe;\n vector<int> ofuro;\n vector<int> neck;\n void dfs_cut(int s){\n if(vis[s] == 1){\n return;\n }\n vis[s] = 1;\n rep(i, G[s].size()){\n \n if(G[s][i].cap > 0){\n dfs_cut(G[s][i].to);\n }\n else ofuro.pb(s), neck.pb(G[s][i].to), pipe.pb({s, G[s][i].to, G[s][i].cap});\n }\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n // source code\n int K, N, M;\n cin >> K >> N >> M;\n \n Dinic mf(K + N + 2);\n vector<ftc> E;\n // source: K + N + 1\n // sink: 0\n // spring: 1 ~ K\n // joint: K + 1 ~ K + N\n rep(i, K){\n E.pb({K + N + 1, i + 1, inf});\n mf.add(K + N + 1, i + 1, inf);\n }\n \n rep(i, M){\n int a, b, c;\n cin >> a >> b >> c;\n if(a != 0 && !(b >= 1 && b <= K)) mf.add(a, b, c), E.pb({a, b, c});\n if(!(a >= 1 && a <= K) && b != 0) mf.add(b, a, c), E.pb({b, a, c});\n }\n auto D = mf;\n int mfmf = mf.max_flow(K + N + 1, 0);\n \n mf.dfs_cut(K + N + 1);\n \n int ret = 0;\n vector<int> source(K + N + 2, 0), sink(K + N + 2, 0);\n \n for(int f: mf.ofuro){\n auto d = D;\n if(K + N + 1 == f) {\n source[f] = inf;\n continue;\n }\n source[f] = d.max_flow(K + N + 1, f);\n }\n \n for(int f: mf.neck){\n auto d = D;\n if(f == 0) {\n sink[f] = inf;\n continue;\n }\n sink[f] = d.max_flow(f, 0);\n }\n \n rep(i, D.G.size()){\n for(edge e: D.G[i]){\n if(source[i] && sink[e.to]){\n ret = max(ret, mfmf + min(source[i], sink[e.to]) - e.cap);\n }\n }\n }\n \n \n \n \n if(ret >= inf){\n output(\"overfuro\");\n }\n else{\n output(ret);\n }\n \n \n return 0;\n}", "accuracy": 0.14583333333333334, "time_ms": 170, "memory_kb": 3288, "score_of_the_acc": -0.182, "final_rank": 16 }, { "submission_id": "aoj_2803_2008371", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb push_back\n#define INF (1e9+1)\n//#define INF (1LL<<59)\n\n\n#define MAX_V 110\n\nstruct edge{int to,cap,rev;};\n\nvector<edge> G[MAX_V]; //??°???????????????\nint level[MAX_V]; //?§??????????????????¢\nint iter[MAX_V]; //???????????§????????????\n\n// from??????to?????????????????????cap???????????°?????????????????????\nvoid add_edge(int from,int to,int cap){\n\tG[from].push_back( (edge){ to ,cap,(int)G[to ].size() } );\n\tG[to ].push_back( (edge){ from,0 ,(int)G[from].size()-1 } );\n}\n\n// s????????????????????¢???BFS??§?¨??????????\nvoid bfs(int s){\n\trep(i,MAX_V)level[i]=-1;\n\tqueue<int> que;\n\tlevel[s]=0;\n\tque.push(s);\n\twhile(!que.empty()){\n\t\tint v=que.front();que.pop();\n\t\t\n\t\trep(i,G[v].size()){\n\t\t\tedge &e=G[v][i];\n\t\t\tif(e.cap>0 && level[e.to]<0){\n\t\t\t\tlevel[e.to]=level[v]+1;\n\t\t\t\tque.push(e.to);\n\t\t\t}\n\t\t}\n\t}\n}\n\n//?¢?????????????DFS??§??¢???\nint dfs(int v,int t,int f){\n\tif(v==t)return f;\n\tfor(int &i=iter[v];i<G[v].size();i++){\n\t\tedge &e=G[v][i];\n\t\tif(e.cap>0&&level[v]<level[e.to]){\n\t\t\tint d=dfs(e.to,t,min(f,e.cap));\n\t\t\tif(d>0){\n\t\t\t\te.cap-=d;\n\t\t\t\tG[e.to][e.rev].cap+=d;\n\t\t\t\treturn d;\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}\n\n// s??????t???????????§???????±???????\nint max_flow(int s,int t){\n\tif(s==t)return INF;\n\tint flow=0;\n\tfor(;;){\n\t\tbfs(s);\n\t\tif(level[t]<0)return flow;\n\t\tmemset(iter,0,sizeof(iter));\n\t\tint f;\n\t\twhile((f=dfs(s,t,INF))>0){\n\t\t\tflow+=f;\n\t\t}\n\t}\n}\n\nvoid isUsedDfs(int s,int t,bool used[MAX_V]){\n\tif(s==t)return ;\n\tfor(auto &e:G[s]){\n\t\tif(!used[e.to]&&e.cap>0){\n\t\t\tused[e.to]=true;\n\t\t\tisUsedDfs(e.to,t,used);\n\t\t}\n\t}\n}\n\n\nint main(){\n\tint k,n,m;\n\tcin>>k>>n>>m;\n\tint s = 1+k+n;\n\tint t = 0;\n\tint v = s+1;\n\t\n\trep(i,m){\n\t\tint a,b,c;\n\t\tcin>>a>>b>>c;\n\t\tadd_edge(a,b,c);\n\t\tadd_edge(b,a,c);\n\t}\n\t\n\trep(i,k)add_edge(s,i+1,INF);\n\t\n\tint res = max_flow(s,t);\n\tvector<edge> Greg[MAX_V];\n\trep(i,v)Greg[i] = G[i];\n\t\n\t\n\tbool used[MAX_V]={};\n\tused[s]=true;\n\tisUsedDfs(s,t,used);\n\t\n\tint ans = 0;\n\tvector<int> sflow(v,-1),tflow(v,-1);\n\trep(i,v){\n\t\tfor(auto e:Greg[i]){\n\t\t\tif(used[i]&&!used[e.to]){\n\t\t\t\trep(i,v)G[i] = Greg[i];\n\t\t\t\tif(sflow[i]==-1) sflow[i] = max_flow(s,i);\n\t\t\t\tif(tflow[e.to]==-1)tflow[e.to] = max_flow(e.to,t);\n\t\t\t\tans = max( ans , res + min(sflow[i],tflow[e.to]) );\n\t\t\t}\n\t\t}\n\t}\n\tif(ans>=INF)cout<<\"overfuro\"<<endl;\n\telse cout<<ans<<endl;\n\t\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3580, "score_of_the_acc": -0.1545, "final_rank": 5 }, { "submission_id": "aoj_2803_2005167", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\n#define rep(i,n) for (int i=0;i<(n);i++)\n#define rep2(i,a,b) for (int i=(a);i<(b);i++)\n#define rrep(i,n) for (int i=(n)-1;i>=0;i--)\n#define all(a) (a).begin(),(a).end()\n#define rall(a) (a).rbegin(),(a).rend()\n#define printV(v) for(auto&& x : v){cout << x << \" \";} cout << endl\n#define printVV(vv) for(auto&& v : vv){for(auto&& x : v){cout << x << \" \";}cout << endl;}\n#define printP(p) cout << p.first << \" \" << p.second << endl\n#define printVP(vp) for(auto&& p : vp) printP(p);\n\nstruct edge { int to, cap, rev; };\nusing Graph = vector<vector<edge>>;\n\nconst int inf = 1e9;\nconst int MAX_V = 110;\nint level[MAX_V];\nint iter[MAX_V];\nbool reachable[MAX_V]; // ????????°?????????????????????S????????°???????????????\n\nvoid add_edge(Graph& G, int from, int to, int cap) {\n G[from].emplace_back((edge){to, cap, (int)G[to].size()});\n G[to].emplace_back((edge){from, 0, (int)G[from].size() - 1});\n}\n\nvoid bfs(Graph& G, int s) {\n memset(level, -1, sizeof(level));\n queue<int> que;\n level[s] = 0;\n que.push(s);\n while (!que.empty()) {\n int v = que.front(); que.pop();\n for (int i = 0; i < G[v].size(); i++) {\n edge &e = G[v][i];\n if (e.cap > 0 && level[e.to] < 0) {\n level[e.to] = level[v] + 1;\n que.push(e.to);\n }\n }\n }\n}\n\nint dfs(Graph& G, int v, int t, int f) {\n if (v == t) return f;\n for (int &i = iter[v]; i < G[v].size(); i++) {\n edge &e = G[v][i];\n if (e.cap > 0 && level[v] < level[e.to]) {\n int d = dfs(G, e.to, t, min(f, e.cap));\n if (d > 0) {\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n}\n\nint max_flow(Graph& G, int s, int t) {\n int flow = 0;\n for (;;) {\n bfs(G, s);\n if (level[t] < 0) return flow;\n memset(iter, 0, sizeof(iter));\n int f;\n while ((f = dfs(G, s, t, inf)) > 0) {\n flow += f;\n }\n }\n}\n\n// Graph????????§??§?????????\nint max_flow_2(Graph G, int s, int t) {\n int flow = 0;\n for (;;) {\n bfs(G, s);\n if (level[t] < 0) return flow;\n memset(iter, 0, sizeof(iter));\n int f;\n while ((f = dfs(G, s, t, inf)) > 0) {\n flow += f;\n }\n }\n}\n\nvoid my_dfs (Graph& G, int v) {\n if (reachable[v]) return; // ??¢?????\\?????????\n reachable[v] = true;\n for (auto e : G[v]) {\n if (e.cap > 0) {\n my_dfs(G, e.to);\n }\n }\n}\n\nsigned main() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(0);\n\n int K, N, M;\n cin >> K >> N >> M;\n\n Graph G_ori(MAX_V);\n const int s = K + N + 1, t = 0;\n const int V = s + 1;\n rep(i, M) {\n int a, b, c;\n cin >> a >> b >> c;\n add_edge(G_ori, a, b, c);\n add_edge(G_ori, b, a, c);\n }\n rep(i, K) {\n add_edge(G_ori, s, i + 1, inf);\n }\n\n Graph G_flow = G_ori;\n int flow = max_flow(G_flow, s, t);\n my_dfs(G_flow, s);\n\n vector<int> f1(V), f2(V); // s->i, i->t\n f1[s] = inf; f2[t] = inf;\n rep2(i, 1, K + N + 1) {\n Graph G_tmp = G_flow;\n if (reachable[i]) {\n f1[i] = max_flow(G_tmp, s, i);\n } else {\n f2[i] = max_flow(G_tmp, i, t);\n }\n }\n\n int ans = -1;\n rep(v, V) {\n for (auto e : G_ori[v]) {\n int u = e.to;\n if (reachable[v] && !reachable[u]) {\n ans = max(ans, flow + min(f1[v], f2[u]));\n }\n }\n }\n\n if (ans >= inf) {\n cout << \"overfuro\" << endl;\n } else {\n cout << ans << endl;\n }\n\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3708, "score_of_the_acc": -0.1977, "final_rank": 10 }, { "submission_id": "aoj_2803_2004232", "code_snippet": "#define _USE_MATH_DEFINES\n#include <cstdio>\n#include <iostream>\n#include <sstream>\n#include <fstream>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <complex>\n#include <string>\n#include <vector>\n#include <list>\n#include <queue>\n#include <stack>\n#include <set>\n#include <map>\n#include <bitset>\n#include <numeric>\n#include <limits>\n#include <climits>\n#include <cfloat>\n#include <functional>\nusing namespace std;\n\nclass Edge\n{\npublic:\n int to, cap, rev;\n Edge(){};\n Edge(int to0, int cap0){to = to0; cap = cap0;}\n Edge(int to0, int cap0, int rev0){to = to0; cap = cap0; rev = rev0;}\n};\n\nint maxFlow(const vector<vector<Edge> >& edges0, int source, int sink, vector<vector<Edge> >& edgesOut)\n{\n static vector<vector<Edge> > edges;\n static vector<unsigned> index;\n static vector<int> level;\n static int n;\n\n class Func{\n public:\n static void bfs(int s){\n level.assign(n, -1);\n queue<int> q;\n level[s] = 0;\n q.push(s);\n while(!q.empty()){\n int v = q.front();\n q.pop();\n for(unsigned i=0; i<edges[v].size(); ++i){\n Edge& e = edges[v][i];\n if(e.cap > 0 && level[e.to] < 0){\n level[e.to] = level[v] + 1;\n q.push(e.to);\n }\n }\n }\n }\n static int dfs(int s, int t, int f){\n if(s == t)\n return f;\n for(unsigned& i=index[s]; i<edges[s].size(); ++i){\n Edge& e = edges[s][i];\n if(e.cap > 0 && level[s] < level[e.to]){\n int g = dfs(e.to, t, min(f, e.cap));\n if(g > 0){\n e.cap -= g;\n edges[e.to][e.rev].cap += g;\n return g;\n }\n }\n }\n return 0;\n }\n };\n\n if(source == sink){\n edgesOut = edges;\n return INT_MAX;\n }\n\n n = edges0.size();\n edges = edges0;\n\n int ret = 0;\n for(;;){\n Func::bfs(source);\n if(level[sink] < 0){\n edgesOut.swap(edges);\n return ret;\n }\n index.assign(n, 0);\n int f;\n while((f = Func::dfs(source, sink, INT_MAX)) > 0)\n ret += f;\n }\n}\n\nconst int INF = INT_MAX / 2;\n\nint main()\n{\n int k, n, m;\n cin >> k >> n >> m;\n\n vector<vector<Edge> > edges(n+k+2);\n int source = n + k + 1;\n int sink = 0;\n for(int i=1; i<=k; ++ i){\n edges[source].push_back(Edge(i, INF, edges[i].size()));\n edges[i].push_back(Edge(source, INF, edges[source].size()-1));\n }\n for(int i=0; i<m; ++i){\n int a, b, c;\n cin >> a >> b >> c;\n if(a == 0 || b == 0){\n if(1 <= a + b && a + b <= k){\n cout << \"overfuro\" << endl;\n return 0;\n }\n }\n edges[a].push_back(Edge(b, c, edges[b].size()));\n edges[b].push_back(Edge(a, c, edges[a].size()-1));\n }\n\n vector<vector<Edge> > edges2;\n int flow = maxFlow(edges, source, sink, edges2);\n vector<bool> check(n+k+2, false);\n queue<int> q;\n check[source] = true;\n q.push(source);\n while(!q.empty()){\n int pos = q.front();\n q.pop();\n for(const Edge& e : edges2[pos]){\n if(e.cap > 0 && !check[e.to]){\n check[e.to] = true;\n q.push(e.to);\n }\n }\n }\n\n vector<int> addFlow(n+k+2);\n for(int i=0; i<n+k+2; ++i){\n vector<vector<Edge> > edges3;\n if(check[i])\n addFlow[i] = maxFlow(edges2, source, i, edges3);\n else\n addFlow[i] = maxFlow(edges2, i, sink, edges3);\n }\n\n int ans = flow;\n for(int i=0; i<n+k+2; ++i){\n for(const Edge& e : edges2[i]){\n if(check[i] ^ check[e.to])\n ans = max(ans, flow + min(addFlow[i], addFlow[e.to]));\n }\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3312, "score_of_the_acc": -0.055, "final_rank": 2 } ]
aoj_2802_cpp
E: 鬼畜ババ抜き - Unbalanced Old Maid - 物語 高坂さんと園田さんと南さんは子供の頃からの仲良し3人組だ。3人は沖縄に修学旅行に行くも、台風が来てしまい、海で遊ぶことができないのでババ抜きをすることにした。 園田さんは勝負事には強いが、ポーカーフェイスが苦手なため、自分のカードが引かれるときに無意識にかわいらしい顔芸を披露してしまう。園田さんを愛して止まない高坂さんと南さんは、園田さんの顔芸を見るだけで園田さんの手札が分かってしまうため、園田さんのカードを引くときは、自分が有利になるように引くことができる。 一方、高坂さんと南さんは特に顔芸をしたりはしないので、手札がばれることはない。 よって、高坂さんと南さんのカードを引く人はそれぞれ、高坂さんと南さんが持っているカードの中から等確率で1枚引く。 どう考えても不利な園田さんは、ババ抜きでなかなか勝てないことに違和感を覚えている。 使用するカードの種類数 n と初期の手札が与えられたとき、園田さんが負けとならない確率を求めてあげよう。 問題文 高坂さん、園田さん、南さんの3人は、以下の状況でババ抜きを行う。 使用するカードは、1から n までの整数が書かれた n 種類のカードそれぞれ4枚ずつとジョーカー1枚の合計 4n+1 枚である。 最初の手札が与えられたとき、3人はそれぞれ自分の手札に同一の整数が書かれたカードのペア(2枚組)があるならば、そのようなペアを全て捨てる。 3人は「高坂さんが南さんの手札からカードを引く」、「園田さんが高坂さんの手札からカードを引く」「南さんが園田さんの手札からカードを引く」という順番(ターン)で以下の操作を繰り返す。(このババ抜きでは、カードを引いた人が、次に引かれるというルールであることに注意せよ。) 一人がジョーカーのみを持ち、その人以外の2人の手札が空のとき、ババ抜きは終了し、ジョーカーを持っている人が負けとなる。 カードを引く順番の人の手札が空のとき、ターンを次の人とし、1.に戻る。 そうでなければ、カードを引く順番の人は決められた相手からカードを1枚引く。ただし、相手の手札が空のとき、まだ残っているもう1人からカードを引く。 引いたカードと同じ整数が書かれたカードがカードを引いた人の手札にあれば、その2枚を捨てる。 ターンを次の人とし、1.へ戻る。 ただし、園田さんのカードを引く人(南さんか高坂さん)は、以下の戦略でカード引く。 もし自分のカードと園田さんのカードで同じ整数が書かれたカードがあれば、それらのうち最小の整数が書かれたカードを引く そうでないとき、園田さんがジョーカーでないカードを持っていれば、それらのうち最小の整数が書かれたカードを引く そうでないなら、園田さんはジョーカーしか持っていないので、ジョーカーを引く 高坂さんと南さんのカードを引く人は、それぞれ高坂さんと南さんが持っているカードの中から等確率で1枚引く。 使用するカードの種類数 n と3人の初期の手札が与えられたとき、園田さんが負けとならない確率を求めてあげよう。 入力形式 入力は4行からなり、以下の形式で与えられる。 n m_1 c_{1,1} ... c_{1,m_1} m_2 c_{2,1} ... c_{2,m_2} m_3 c_{3,1} ... c_{3,m_3} 1行目にジョーカー以外のカードの種類数 n が与えられる。 続く入力は3行からなり、2行目に高坂さんの手札、3行目に園田さんの手札、4行目に南さんの手札の情報が与えられる。 i+1 (1 ≤ i ≤ 3) 行目では行頭に手持ちの枚数 m_i 、続けて手持ちのカードを表す m_i 個の整数 c_{i,j} (1 ≤ j ≤ m_i) が空白区切りで与えられる。 0 はジョーカー、 1 から n はカードに書かれた整数を表す。 制約 1 ≤ n ≤ 100 m_1+m_2+m_3 = 4n+1 3人の手札で0はちょうど1つ、 1 から n はちょうど4回ずつ現れる 0 ≤ c_{i,j} ≤ n ( 1 ≤ i ≤ 3 , 1 ≤ j ≤ m_i ) 出力形式 園田さんが負けとならない確率を1行に出力せよ。答えには 10^{−6} を超える絶対誤差があってはならない。 入力例1 1 1 1 3 0 1 1 1 1 出力例1 0.0 高坂さんが南さんのカード1を引き、高坂さんと南さんは手札が空になる。 園田さんはどうしても勝つことはできない。 入力例2 1 2 1 1 1 1 2 0 1 出力例2 0.5 はじめの高坂さんのターンは、高坂さんの手札が既に空なので何もしない。次の園田さんのターンでは、園田さんは南さんの手札のうちそれぞれ0.5の確率でカード1かジョーカーを引く。カード1を引いたとき、園田さんの手札は空となり勝利する。一方ジョーカーを引いたときは、次の南さんのターンで、南さんは確実にカード1を引くので園田さんが負けとなる。 入力例3 2 3 0 1 2 3 1 2 2 3 1 1 2 出力例3 0.5 入力例4 2 2 0 1 6 2 2 2 1 1 1 1 2 出力例4 0.6666666667
[ { "submission_id": "aoj_2802_8322461", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <vector>\nusing namespace std;\n\nint N;\nint M[3], P[3][409];\nint Cnt[3][109];\ndouble prevs[109][109][109][3];\ndouble dp[109][109][109][3];\ndouble Answer = 0.0;\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tcin >> M[0]; for (int i = 0; i < M[0]; i++) cin >> P[0][i];\n\tcin >> M[1]; for (int i = 0; i < M[1]; i++) cin >> P[1][i];\n\tcin >> M[2]; for (int i = 0; i < M[2]; i++) cin >> P[2][i];\n\n\t// Step 2. Precount\n\tfor (int i = 0; i < M[0]; i++) Cnt[0][P[0][i]] += 1;\n\tfor (int i = 0; i < M[1]; i++) Cnt[1][P[1][i]] += 1;\n\tfor (int i = 0; i < M[2]; i++) Cnt[2][P[2][i]] += 1;\n\tfor (int i = 0; i < 3; i++) {\n\t\tfor (int j = 1; j <= N; j++) Cnt[i][j] %= 2;\n\t}\n\tint ab_ = 0, bc_ = 0, ca_ = 0, j_ = -1;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (Cnt[0][i] == 1 && Cnt[1][i] == 1) ab_ += 1;\n\t\tif (Cnt[1][i] == 1 && Cnt[2][i] == 1) bc_ += 1;\n\t\tif (Cnt[2][i] == 1 && Cnt[0][i] == 1) ca_ += 1;\n\t}\n\tif (Cnt[0][0] == 1) j_ = 0;\n\tif (Cnt[1][0] == 1) j_ = 1;\n\tif (Cnt[2][0] == 1) j_ = 2;\n\tprevs[ab_][bc_][ca_][j_] = 1.0;\n\tif (ab_ + bc_ + ca_ == 0 && j_ != 1) Answer += 1.0;\n\n\t// Step 3. Dynamic Programming\n\tfor (int i = 0; i <= (ab_ + bc_ + ca_) * 8 + 100; i++) {\n\t\tint lims = ((ab_ + bc_ + ca_) * 8 + 100 - i) / 8;\n\t\tlims = min(lims, ab_ + bc_ + ca_);\n\n\t\t// Start\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims - ab; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims - ab - bc; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tif (prevs[ab][bc][ca][j] == 0) continue;\n\t\t\t\t\t\tif (ab + bc + ca == 0) continue;\n\t\t\t\t\t\tint nex = (j + 2) % 3;\n\t\t\t\t\t\tint numa = ab + ca + (j == 0 ? 1 : 0);\n\t\t\t\t\t\tint numb = bc + ab + (j == 1 ? 1 : 0);\n\t\t\t\t\t\tint numc = ca + bc + (j == 2 ? 1 : 0);\n\n\t\t\t\t\t\t// Case 1\n\t\t\t\t\t\tif (numa == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 2\n\t\t\t\t\t\telse if (numc != 0 && i % 3 != 2) {\n\t\t\t\t\t\t\tint joker_flag = (j == 2 ? 1 : 0);\n\t\t\t\t\t\t\tdp[bc][ca][ab][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numc);\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j] * (1.0 * ca / numc);\n\t\t\t\t\t\t\tif (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j] * (1.0 * bc / numc);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 3\n\t\t\t\t\t\telse if (numc != 0 && i % 3 == 2) {\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse if (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse dp[bc][ca][ab][2] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 4\n\t\t\t\t\t\telse if (numb != 0 && i % 3 != 0) {\n\t\t\t\t\t\t\tint joker_flag = (j == 1 ? 1 : 0);\n\t\t\t\t\t\t\tdp[bc][ca][ab - 0][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numb);\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j] * (1.0 * ab / numb);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 5\n\t\t\t\t\t\telse if (numb != 0 && i % 3 == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t// Refresh\n\t\t// printf(\"%d: %.12lf\\n\", i, Answer);\n\t\tif (i % 3 != 0) Answer += dp[0][0][0][0];\n\t\tif (i % 3 != 1) Answer += dp[0][0][0][2];\n\t\tif (i % 3 != 2) Answer += dp[0][0][0][1];\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tprevs[ab][bc][ca][j] = dp[ab][bc][ca][j];\n\t\t\t\t\t\tdp[ab][bc][ca][j] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 590, "memory_kb": 54204, "score_of_the_acc": -1.271, "final_rank": 5 }, { "submission_id": "aoj_2802_8322445", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <vector>\nusing namespace std;\n\nint N;\nint M[3], P[3][409];\nint Cnt[3][109];\ndouble prevs[109][109][109][3];\ndouble dp[109][109][109][3];\ndouble Answer = 0.0;\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tcin >> M[0]; for (int i = 0; i < M[0]; i++) cin >> P[0][i];\n\tcin >> M[1]; for (int i = 0; i < M[1]; i++) cin >> P[1][i];\n\tcin >> M[2]; for (int i = 0; i < M[2]; i++) cin >> P[2][i];\n\n\t// Step 2. Precount\n\tfor (int i = 0; i < M[0]; i++) Cnt[0][P[0][i]] += 1;\n\tfor (int i = 0; i < M[1]; i++) Cnt[1][P[1][i]] += 1;\n\tfor (int i = 0; i < M[2]; i++) Cnt[2][P[2][i]] += 1;\n\tfor (int i = 0; i < 3; i++) {\n\t\tfor (int j = 1; j <= N; j++) Cnt[i][j] %= 2;\n\t}\n\tint ab_ = 0, bc_ = 0, ca_ = 0, j_ = -1;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (Cnt[0][i] == 1 && Cnt[1][i] == 1) ab_ += 1;\n\t\tif (Cnt[1][i] == 1 && Cnt[2][i] == 1) bc_ += 1;\n\t\tif (Cnt[2][i] == 1 && Cnt[0][i] == 1) ca_ += 1;\n\t}\n\tif (Cnt[0][0] == 1) j_ = 0;\n\tif (Cnt[1][0] == 1) j_ = 1;\n\tif (Cnt[2][0] == 1) j_ = 2;\n\tprevs[ab_][bc_][ca_][j_] = 1.0;\n\tif (ab_ + bc_ + ca_ == 0 && j_ != 1) Answer += 1.0;\n\n\t// Step 3. Dynamic Programming\n\tfor (int i = 0; i <= (ab_ + bc_ + ca_) * 8 + 100; i++) {\n\t\tint lims = ((ab_ + bc_ + ca_) * 8 + 100 - i) / 8;\n\t\tlims = min(lims, ab_ + bc_ + ca_);\n\n\t\t// Start\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims - ab; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims - ab - bc; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tif (prevs[ab][bc][ca][j] == 0) continue;\n\t\t\t\t\t\tif (ab + bc + ca == 0) continue;\n\t\t\t\t\t\tint nex = (j + 2) % 3;\n\n\t\t\t\t\t\t// Case 1\n\t\t\t\t\t\tif (ab + ca == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 2\n\t\t\t\t\t\telse if (bc + ca + (j == 2 ? 1 : 0) != 0 && i % 3 != 2) {\n\t\t\t\t\t\t\tint joker_flag = (j == 2 ? 1 : 0);\n\t\t\t\t\t\t\tint numc = bc + ca + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numc);\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j] * (1.0 * ca / numc);\n\t\t\t\t\t\t\tif (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j] * (1.0 * bc / numc);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 3\n\t\t\t\t\t\telse if (bc + ca + (j == 2 ? 1 : 0) != 0 && i % 3 == 2) {\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse if (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse dp[bc][ca][ab][2] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 4\n\t\t\t\t\t\telse if (i % 3 != 0) {\n\t\t\t\t\t\t\tint joker_flag = (j == 1 ? 1 : 0);\n\t\t\t\t\t\t\tint numb = ab + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab - 0][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numb);\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j] * (1.0 * ab / numb);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 5\n\t\t\t\t\t\telse if (i % 3 == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t// Refresh\n\t\t// printf(\"%d: %.12lf\\n\", i, Answer);\n\t\tif (i % 3 != 0) Answer += dp[0][0][0][0];\n\t\tif (i % 3 != 1) Answer += dp[0][0][0][2];\n\t\tif (i % 3 != 2) Answer += dp[0][0][0][1];\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tprevs[ab][bc][ca][j] = dp[ab][bc][ca][j];\n\t\t\t\t\t\tdp[ab][bc][ca][j] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.11904761904761904, "time_ms": 360, "memory_kb": 45836, "score_of_the_acc": -0.8096, "final_rank": 6 }, { "submission_id": "aoj_2802_8322423", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <vector>\nusing namespace std;\n\nint N;\nint M[3], P[3][409];\nint Cnt[3][109];\ndouble prevs[109][109][109][3];\ndouble dp[109][109][109][3];\ndouble Answer = 0.0;\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tcin >> M[0]; for (int i = 0; i < M[0]; i++) cin >> P[0][i];\n\tcin >> M[1]; for (int i = 0; i < M[1]; i++) cin >> P[1][i];\n\tcin >> M[2]; for (int i = 0; i < M[2]; i++) cin >> P[2][i];\n\n\t// Step 2. Precount\n\tfor (int i = 0; i < M[0]; i++) Cnt[0][P[0][i]] += 1;\n\tfor (int i = 0; i < M[1]; i++) Cnt[1][P[1][i]] += 1;\n\tfor (int i = 0; i < M[2]; i++) Cnt[2][P[2][i]] += 1;\n\tfor (int i = 0; i < 3; i++) {\n\t\tfor (int j = 1; j <= N; j++) Cnt[i][j] %= 2;\n\t}\n\tint ab_ = 0, bc_ = 0, ca_ = 0, j_ = -1;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (Cnt[0][i] == 1 && Cnt[1][i] == 1) ab_ += 1;\n\t\tif (Cnt[1][i] == 1 && Cnt[2][i] == 1) bc_ += 1;\n\t\tif (Cnt[2][i] == 1 && Cnt[0][i] == 1) ca_ += 1;\n\t}\n\tif (Cnt[0][0] == 1) j_ = 0;\n\tif (Cnt[1][0] == 1) j_ = 1;\n\tif (Cnt[2][0] == 1) j_ = 2;\n\tprevs[ab_][bc_][ca_][j_] = 1.0;\n\tif (ab_ + bc_ + ca_ == 0 && j_ != 1) Answer += 1.0;\n\n\t// Step 3. Dynamic Programming\n\tfor (int i = 0; i <= (ab_ + bc_ + ca_) * 8 + 100; i++) {\n\t\tint lims = ((ab_ + bc_ + ca_) * 8 + 100 - i) / 8;\n\t\tlims = min(lims, ab_ + bc_ + ca_);\n\n\t\t// Start\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims - ab; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims - ab - bc; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tif (prevs[ab][bc][ca][j] == 0) continue;\n\t\t\t\t\t\tif (ab + bc + ca == 0) continue;\n\t\t\t\t\t\tint nex = (j + 2) % 3;\n\n\t\t\t\t\t\t// Case 1\n\t\t\t\t\t\tif (ab + ca == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 2\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 != 2) {\n\t\t\t\t\t\t\tint joker_flag = (j == 2 ? 1 : 0);\n\t\t\t\t\t\t\tint numc = bc + ca + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numc);\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j] * (1.0 * ca / numc);\n\t\t\t\t\t\t\tif (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j] * (1.0 * bc / numc);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 3\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 == 2) {\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse if (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse dp[bc][ca][ab][2] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 4\n\t\t\t\t\t\telse if (bc + ca == 0 && i % 3 != 0) {\n\t\t\t\t\t\t\tint joker_flag = (j == 1 ? 1 : 0);\n\t\t\t\t\t\t\tint numb = ab + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab - 0][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numb);\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j] * (1.0 * ab / numb);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 5\n\t\t\t\t\t\telse if (bc + ca == 0 && i % 3 == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t// Refresh\n\t\t// printf(\"%d: %.12lf\\n\", i, Answer);\n\t\tif (i % 3 != 0) Answer += dp[0][0][0][0];\n\t\tif (i % 3 != 1) Answer += dp[0][0][0][2];\n\t\tif (i % 3 != 2) Answer += dp[0][0][0][1];\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tprevs[ab][bc][ca][j] = dp[ab][bc][ca][j];\n\t\t\t\t\t\tdp[ab][bc][ca][j] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 360, "memory_kb": 45660, "score_of_the_acc": -0.8082, "final_rank": 12 }, { "submission_id": "aoj_2802_8322411", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <vector>\nusing namespace std;\n\nint N;\nint M[3], P[3][409];\nint Cnt[3][109];\ndouble prevs[109][109][109][3];\ndouble dp[109][109][109][3];\ndouble Answer = 0.0;\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tcin >> M[0]; for (int i = 0; i < M[0]; i++) cin >> P[0][i];\n\tcin >> M[1]; for (int i = 0; i < M[1]; i++) cin >> P[1][i];\n\tcin >> M[2]; for (int i = 0; i < M[2]; i++) cin >> P[2][i];\n\n\t// Step 2. Precount\n\tfor (int i = 0; i < M[0]; i++) Cnt[0][P[0][i]] += 1;\n\tfor (int i = 0; i < M[1]; i++) Cnt[1][P[1][i]] += 1;\n\tfor (int i = 0; i < M[2]; i++) Cnt[2][P[2][i]] += 1;\n\tfor (int i = 0; i < 3; i++) {\n\t\tfor (int j = 1; j <= N; j++) Cnt[i][j] %= 2;\n\t}\n\tint ab_ = 0, bc_ = 0, ca_ = 0, j_ = -1;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (Cnt[0][i] == 1 && Cnt[1][i] == 1) ab_ += 1;\n\t\tif (Cnt[1][i] == 1 && Cnt[2][i] == 1) bc_ += 1;\n\t\tif (Cnt[2][i] == 1 && Cnt[0][i] == 1) ca_ += 1;\n\t}\n\tif (Cnt[0][0] == 1) j_ = 0;\n\tif (Cnt[1][0] == 1) j_ = 1;\n\tif (Cnt[2][0] == 1) j_ = 2;\n\tprevs[ab_][bc_][ca_][j_] = 1.0;\n\tif (ab_ + bc_ + ca_ == 0 && j_ != 1) Answer += 1.0;\n\n\t// Step 3. Dynamic Programming\n\tfor (int i = 0; i <= (ab_ + bc_ + ca_) * 8 + 100; i++) {\n\t\tint lims = ((ab_ + bc_ + ca_) * 8 + 100 - i) / 8;\n\t\tlims = min(lims, ab_ + bc_ + ca_);\n\n\t\t// Start\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims - ab; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims - ab - bc; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tif (prevs[ab][bc][ca][j] == 0) continue;\n\t\t\t\t\t\tif (ab + bc + ca == 0) continue;\n\t\t\t\t\t\tint nex = (j + 2) % 3;\n\n\t\t\t\t\t\t// Case 1\n\t\t\t\t\t\tif (ab + ca == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 2\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 != 2) {\n\t\t\t\t\t\t\tint joker_flag = (j == 2 ? 1 : 0);\n\t\t\t\t\t\t\tint numc = bc + ca + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numc);\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j] * (1.0 * ca / numc);\n\t\t\t\t\t\t\tif (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j] * (1.0 * bc / numc);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 3\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 == 2) {\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse if (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse dp[bc][ca][ab][2] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 4\n\t\t\t\t\t\tif (bc + ca == 0 && i % 3 != 0) {\n\t\t\t\t\t\t\tint joker_flag = (j == 1 ? 1 : 0);\n\t\t\t\t\t\t\tint numb = ab + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab - 0][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numb);\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j] * (1.0 * ab / numb);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 5\n\t\t\t\t\t\tif (bc + ca == 0 && i % 3 == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t// Refresh\n\t\t// printf(\"%d: %.12lf\\n\", i, Answer);\n\t\tif (i % 3 != 0) Answer += dp[0][0][0][0];\n\t\tif (i % 3 != 1) Answer += dp[0][0][0][2];\n\t\tif (i % 3 != 2) Answer += dp[0][0][0][1];\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tprevs[ab][bc][ca][j] = dp[ab][bc][ca][j];\n\t\t\t\t\t\tdp[ab][bc][ca][j] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 360, "memory_kb": 45836, "score_of_the_acc": -0.8096, "final_rank": 13 }, { "submission_id": "aoj_2802_8322390", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <vector>\nusing namespace std;\n\nint N;\nint M[3], P[3][409];\nint Cnt[3][109];\ndouble prevs[109][109][109][3];\ndouble dp[109][109][109][3];\ndouble Answer = 0.0;\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tcin >> M[0]; for (int i = 0; i < M[0]; i++) cin >> P[0][i];\n\tcin >> M[1]; for (int i = 0; i < M[1]; i++) cin >> P[1][i];\n\tcin >> M[2]; for (int i = 0; i < M[2]; i++) cin >> P[2][i];\n\n\t// Step 2. Precount\n\tfor (int i = 0; i < M[0]; i++) Cnt[0][P[0][i]] += 1;\n\tfor (int i = 0; i < M[1]; i++) Cnt[1][P[1][i]] += 1;\n\tfor (int i = 0; i < M[2]; i++) Cnt[2][P[2][i]] += 1;\n\tfor (int i = 0; i < 3; i++) {\n\t\tfor (int j = 1; j <= N; j++) Cnt[i][j] %= 2;\n\t}\n\tint ab_ = 0, bc_ = 0, ca_ = 0, j_ = -1;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (Cnt[0][i] == 1 && Cnt[1][i] == 1) ab_ += 1;\n\t\tif (Cnt[1][i] == 1 && Cnt[2][i] == 1) bc_ += 1;\n\t\tif (Cnt[2][i] == 1 && Cnt[0][i] == 1) ca_ += 1;\n\t}\n\tif (Cnt[0][0] == 1) j_ = 0;\n\tif (Cnt[1][0] == 1) j_ = 1;\n\tif (Cnt[2][0] == 1) j_ = 2;\n\tprevs[ab_][bc_][ca_][j_] = 1.0;\n\n\t// Step 3. Dynamic Programming\n\tfor (int i = 0; i <= (ab_ + bc_ + ca_) * 8 + 100; i++) {\n\t\tint lims = ((ab_ + bc_ + ca_) * 8 + 100 - i) / 8;\n\t\tlims = min(lims, ab_ + bc_ + ca_);\n\n\t\t// Start\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims - ab; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims - ab - bc; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tif (prevs[ab][bc][ca][j] == 0) continue;\n\t\t\t\t\t\tif (ab + bc + ca == 0) continue;\n\t\t\t\t\t\tint nex = (j + 2) % 3;\n\n\t\t\t\t\t\t// Case 1\n\t\t\t\t\t\tif (ab + ca == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 2\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 != 2) {\n\t\t\t\t\t\t\tint joker_flag = (j == 2 ? 1 : 0);\n\t\t\t\t\t\t\tint numc = bc + ca + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numc);\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j] * (1.0 * ca / numc);\n\t\t\t\t\t\t\tif (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j] * (1.0 * bc / numc);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 3\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 == 2) {\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse if (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse dp[bc][ca][ab][2] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 4\n\t\t\t\t\t\tif (bc + ca == 0 && i % 3 != 0) {\n\t\t\t\t\t\t\tint joker_flag = (j == 1 ? 1 : 0);\n\t\t\t\t\t\t\tint numb = ab + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab - 0][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numb);\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j] * (1.0 * ab / numb);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 5\n\t\t\t\t\t\tif (bc + ca == 0 && i % 3 == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t// Refresh\n\t\t// printf(\"%d: %.12lf\\n\", i, Answer);\n\t\tif (i % 3 != 0) Answer += dp[0][0][0][0];\n\t\tif (i % 3 != 1) Answer += dp[0][0][0][2];\n\t\tif (i % 3 != 2) Answer += dp[0][0][0][1];\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tprevs[ab][bc][ca][j] = dp[ab][bc][ca][j];\n\t\t\t\t\t\tdp[ab][bc][ca][j] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 360, "memory_kb": 45876, "score_of_the_acc": -0.8099, "final_rank": 14 }, { "submission_id": "aoj_2802_8322363", "code_snippet": "#include <iostream>\n#include <tuple>\n#include <vector>\nusing namespace std;\n\nint N;\nint M[3], P[3][409];\nint Cnt[3][109];\ndouble prevs[109][109][109][3];\ndouble dp[109][109][109][3];\ndouble Answer = 0.0;\n\nint main() {\n\t// Step 1. Input\n\tcin >> N;\n\tcin >> M[0]; for (int i = 0; i < M[0]; i++) cin >> P[0][i];\n\tcin >> M[1]; for (int i = 0; i < M[1]; i++) cin >> P[1][i];\n\tcin >> M[2]; for (int i = 0; i < M[2]; i++) cin >> P[2][i];\n\n\t// Step 2. Precount\n\tfor (int i = 0; i < M[0]; i++) Cnt[0][P[0][i]] += 1;\n\tfor (int i = 0; i < M[1]; i++) Cnt[1][P[1][i]] += 1;\n\tfor (int i = 0; i < M[2]; i++) Cnt[2][P[2][i]] += 1;\n\tfor (int i = 0; i < 3; i++) {\n\t\tfor (int j = 1; j <= N; j++) Cnt[i][j] %= 2;\n\t}\n\tint ab_ = 0, bc_ = 0, ca_ = 0, j_ = -1;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (Cnt[0][i] == 1 && Cnt[1][i] == 1) ab_ += 1;\n\t\tif (Cnt[1][i] == 1 && Cnt[2][i] == 1) bc_ += 1;\n\t\tif (Cnt[2][i] == 1 && Cnt[0][i] == 1) ca_ += 1;\n\t}\n\tif (Cnt[0][0] == 1) j_ = 0;\n\tif (Cnt[1][0] == 1) j_ = 1;\n\tif (Cnt[2][0] == 1) j_ = 2;\n\tprevs[ab_][bc_][ca_][j_] = 1.0;\n\n\t// Step 3. Dynamic Programming\n\tfor (int i = 0; i <= (ab_ + bc_ + ca_) * 5 + 10; i++) {\n\t\tint lims = ((ab_ + bc_ + ca_) * 5 + 10 - i) / 5;\n\t\tlims = min(lims, ab_ + bc_ + ca_);\n\n\t\t// Start\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims - ab; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims - ab - bc; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tif (prevs[ab][bc][ca][j] == 0) continue;\n\t\t\t\t\t\tif (ab + bc + ca == 0) continue;\n\t\t\t\t\t\tint nex = (j + 2) % 3;\n\n\t\t\t\t\t\t// Case 1\n\t\t\t\t\t\tif (ab + ca == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 2\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 != 2) {\n\t\t\t\t\t\t\tint joker_flag = (j == 2 ? 1 : 0);\n\t\t\t\t\t\t\tint numc = bc + ca + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numc);\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j] * (1.0 * ca / numc);\n\t\t\t\t\t\t\tif (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j] * (1.0 * bc / numc);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 3\n\t\t\t\t\t\telse if (bc + ca != 0 && i % 3 == 2) {\n\t\t\t\t\t\t\tif (ca >= 1) dp[bc - 0][ca - 1][ab - 0][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse if (bc >= 1) dp[bc - 1][ca - 0][ab + 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t\telse dp[bc][ca][ab][2] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 4\n\t\t\t\t\t\tif (bc + ca == 0 && i % 3 != 0) {\n\t\t\t\t\t\t\tint joker_flag = (j == 1 ? 1 : 0);\n\t\t\t\t\t\t\tint numb = ab + joker_flag;\n\t\t\t\t\t\t\tdp[bc][ca][ab - 0][2] += prevs[ab][bc][ca][j] * (1.0 * joker_flag / numb);\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j] * (1.0 * ab / numb);\n\t\t\t\t\t\t}\n\n\t\t\t\t\t\t// Case 5\n\t\t\t\t\t\tif (bc + ca == 0 && i % 3 == 0) {\n\t\t\t\t\t\t\tdp[bc][ca][ab - 1][nex] += prevs[ab][bc][ca][j];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t// Refresh\n\t\tif (i % 3 != 0) Answer += dp[0][0][0][0];\n\t\tif (i % 3 != 1) Answer += dp[0][0][0][2];\n\t\tif (i % 3 != 2) Answer += dp[0][0][0][1];\n\t\tfor (int ab = 0; ab <= lims; ab++) {\n\t\t\tfor (int bc = 0; bc <= lims; bc++) {\n\t\t\t\tfor (int ca = 0; ca <= lims; ca++) {\n\t\t\t\t\tfor (int j = 0; j <= 2; j++) {\n\t\t\t\t\t\tprevs[ab][bc][ca][j] = dp[ab][bc][ca][j];\n\t\t\t\t\t\tdp[ab][bc][ca][j] = 0;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t// Step 4. Output\n\tprintf(\"%.12lf\\n\", Answer);\n\treturn 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 140, "memory_kb": 45928, "score_of_the_acc": -0.431, "final_rank": 11 }, { "submission_id": "aoj_2802_4445209", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nenum Type{\n\tA,\n\tC,\n\tB,\n};\n\nint N,POW[4];\nint table[105],COUNT[3][105];\ndouble dp[101][101][101][3][3];\nType type_array[3] = {A,C,B};\n\n\ndouble recursive(int ab,int ac,int bc,Type joker,Type turn){\n\n\tif(dp[ab][ac][bc][joker][turn] >= 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn];\n\t}\n\n\tint num_A = ab+ac;\n\tint num_B = ab+bc;\n\tint num_C = ac+bc;\n\n\tswitch(joker){\n\tcase A:\n\t\tnum_A++;\n\t\tbreak;\n\tcase B:\n\t\tnum_B++;\n\t\tbreak;\n\tcase C:\n\t\tnum_C++;\n\t\tbreak;\n\t}\n\n\tif(turn == A && num_A == 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac,bc,joker,C);\n\n\t}else if(turn == C && num_C == 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t}else if(turn == B && num_B == 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac,bc,joker,A);\n\t}\n\n\tif(num_A+num_B+num_C == 1){\n\n\t\tif(num_C == 1){\n\n\t\t\treturn dp[ab][ac][bc][joker][turn] = 0;\n\t\t}else{\n\n\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\t\t}\n\t}\n\n\tdouble ret = 0;\n\n\tif(turn == A){\n\n\t\tif(num_B == 0){\n\n\t\t\tif(num_C == 1){ //C,非負け\n\n\t\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t\t\t}else{ //2枚以上あるなら、非jokerは少なくとも1枚ある\n\n\t\t\t\tif(ac > 0){\n\n\t\t\t\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac-1,bc,joker,C);\n\n\t\t\t\t}else{ //bc > 0\n\n\t\t\t\t\t//bが0枚なのであり得ない\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //num_B > 0\n\n\t\t\tif(ab > 0){\n\n\t\t\t\tret += recursive(ab-1,ac,bc,joker,C)*((double)ab/(double)num_B);\n\t\t\t}\n\t\t\tif(bc > 0){\n\n\t\t\t\tret += recursive(ab,ac+1,bc-1,joker,C)*((double)bc/(double)num_B);\n\t\t\t}\n\t\t\tif(joker == B){\n\n\t\t\t\tret += recursive(ab,ac,bc,A,C)*(1.0/(double)num_B);\n\t\t\t}\n\t\t}\n\n\t}else if(turn == B){\n\n\t\tif(num_C == 0){//C:非負け\n\n\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t\t}else{ //num_C > 0\n\n\t\t\tif(num_C == 1){ //C,非負け\n\n\t\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t\t\t}else{ //2枚以上あるなら、非jokerは少なくとも1枚ある\n\n\t\t\t\tif(bc > 0){\n\n\t\t\t\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac,bc-1,joker,A);\n\n\t\t\t\t}else{ //ac > 0\n\n\t\t\t\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab+1,ac-1,bc,joker,A);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t}else{ //turn == C\n\n\t\tif(num_A == 0){ //Bから引く\n\n\t\t\tif(ab > 0){\n\n\t\t\t\t//Aが0なのであり得ない\n\t\t\t}\n\t\t\tif(bc > 0){\n\n\t\t\t\tret += recursive(ab,ac,bc-1,joker,B)*((double)bc/(double)num_B);\n\t\t\t}\n\t\t\tif(joker == B){\n\n\t\t\t\tret += recursive(ab,ac,bc,C,B)*(1.0/(double)num_B);\n\t\t\t}\n\n\t\t}else{ //num_A > 0\n\n\t\t\tif(ab > 0){\n\n\t\t\t\tret += recursive(ab-1,ac,bc+1,joker,B)*((double)ab/(double)num_A);\n\t\t\t}\n\t\t\tif(ac > 0){\n\n\t\t\t\tret += recursive(ab,ac-1,bc,joker,B)*((double)ac/(double)num_A);\n\t\t\t}\n\t\t\tif(joker == A){\n\n\t\t\t\tret += recursive(ab,ac,bc,C,B)*(1.0/(double)num_A);\n\t\t\t}\n\t\t}\n\t}\n\n\treturn dp[ab][ac][bc][joker][turn] = ret;\n}\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < 4; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 1; i <= N; i++){\n\t\tfor(int k = 0; k < 3; k++){\n\t\t\tCOUNT[k][i] = 0;\n\t\t}\n\t}\n\n\tint num,tmp;\n\tType joker = A;\n\n\tfor(int i = 0; i < 3; i++){\n\t\tscanf(\"%d\",&num);\n\t\tfor(int k = 0; k < num; k++){\n\t\t\tscanf(\"%d\",&tmp);\n\n\t\t\tCOUNT[i][tmp]++;\n\n\t\t\tif(tmp == 0){\n\n\t\t\t\tjoker = type_array[i];\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < 3; i++){\n\t\tfor(int k = 1; k <= N; k++){\n\t\t\tif(COUNT[i][k]%2 == 1){\n\n\t\t\t\ttable[k] += POW[i];\n\t\t\t}\n\t\t}\n\t}\n\n\n\n\tint ab = 0,ac = 0,bc = 0;\n\tfor(int i = 1; i <= N; i++){\n\t\tif(table[i] == 0)continue;\n\n\t\tswitch(table[i]){\n\t\tcase 3:\n\t\t\tac++;\n\t\t\tbreak;\n\t\tcase 5:\n\t\t\tab++;\n\t\t\tbreak;\n\t\tcase 6:\n\t\t\tbc++;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= N; i++){\n\t\tfor(int k = 0; k <= N; k++){\n\t\t\tfor(int p = 0; p <= N; p++){\n\t\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\t\tfor(int b = 0; b < 3; b++){\n\n\t\t\t\t\t\tdp[i][k][p][a][b] = -1;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tprintf(\"%.10lf\\n\",recursive(ab,ac,bc,joker,A));\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 75660, "score_of_the_acc": -0.4374, "final_rank": 1 }, { "submission_id": "aoj_2802_4445203", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nenum Type{\n\tA,\n\tC,\n\tB,\n};\n\nint N,POW[4];\nint table[105],COUNT[3][105];\ndouble dp[101][101][101][3][3];\nType type_array[3] = {A,C,B};\n\n\ndouble recursive(int ab,int ac,int bc,Type joker,Type turn){\n\n\tif(dp[ab][ac][bc][joker][turn] >= 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn];\n\t}\n\n\tint num_A = ab+ac;\n\tint num_B = ab+bc;\n\tint num_C = ac+bc;\n\n\tswitch(joker){\n\tcase A:\n\t\tnum_A++;\n\t\tbreak;\n\tcase B:\n\t\tnum_B++;\n\t\tbreak;\n\tcase C:\n\t\tnum_C++;\n\t\tbreak;\n\t}\n\n\tif(turn == A && num_A == 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac,bc,joker,C);\n\n\t}else if(turn == C && num_C == 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t}else if(turn == B && num_B == 0){\n\n\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac,bc,joker,A);\n\t}\n\n\tif(num_A+num_B+num_C == 1){\n\n\t\tif(num_C == 1){\n\n\t\t\treturn dp[ab][ac][bc][joker][turn] = 0;\n\t\t}else{\n\n\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\t\t}\n\t}\n\n\tdouble ret = 0;\n\n\tif(turn == A){\n\n\t\tif(num_B == 0){\n\n\t\t\tif(num_C == 1){ //C,非負け\n\n\t\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t\t\t}else{ //2枚以上あるなら、非jokerは少なくとも1枚ある\n\n\t\t\t\tif(ac > 0){\n\n\t\t\t\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac-1,bc,joker,C);\n\n\t\t\t\t}else{ //bc > 0\n\n\t\t\t\t\t//bが0枚なのであり得ない\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{ //num_B > 0\n\n\t\t\tif(ab > 0){\n\n\t\t\t\tret += recursive(ab-1,ac,bc,joker,C)*((double)ab/(double)num_B);\n\t\t\t}\n\t\t\tif(bc > 0){\n\n\t\t\t\tret += recursive(ab,ac+1,bc-1,joker,C)*((double)bc/(double)num_B);\n\t\t\t}\n\t\t\tif(joker == B){\n\n\t\t\t\tret += recursive(ab,ac,bc,A,C)*(1.0/(double)num_B);\n\t\t\t}\n\t\t}\n\n\t}else if(turn == B){\n\n\t\tif(num_C == 0){//C:非負け\n\n\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t\t}else{ //num_C > 0\n\n\t\t\tif(num_C == 1){ //C,非負け\n\n\t\t\t\treturn dp[ab][ac][bc][joker][turn] = 1.0;\n\n\t\t\t}else{ //2枚以上あるなら、非jokerは少なくとも1枚ある\n\n\t\t\t\tif(bc > 0){\n\n\t\t\t\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab,ac,bc-1,joker,A);\n\n\t\t\t\t}else{ //ac > 0\n\n\t\t\t\t\treturn dp[ab][ac][bc][joker][turn] = recursive(ab+1,ac-1,bc,joker,A);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t}else{ //turn == C\n\n\t\tif(num_A == 0){ //Bから引く\n\n\t\t\tif(ab > 0){\n\n\t\t\t\t//Aが0なのであり得ない\n\t\t\t}\n\t\t\tif(bc > 0){\n\n\t\t\t\tret += recursive(ab,ac,bc-1,joker,B)*((double)bc/(double)num_B);\n\t\t\t}\n\t\t\tif(joker == B){\n\n\t\t\t\tret += recursive(ab,ac,bc,C,B)*(1.0/(double)num_B);\n\t\t\t}\n\n\t\t}else{ //num_A > 0\n\n\t\t\tif(ab > 0){\n\n\t\t\t\tret += recursive(ab-1,ac,bc+1,joker,B)*((double)ab/(double)num_A);\n\t\t\t}\n\t\t\tif(ac > 0){\n\n\t\t\t\tret += recursive(ab,ac-1,bc,joker,B)*((double)ac/(double)num_A);\n\t\t\t}\n\t\t\tif(joker == A){\n\n\t\t\t\tret += recursive(ab,ac,bc,C,B)*(1.0/(double)num_A);\n\t\t\t}\n\t\t}\n\t}\n\n\treturn dp[ab][ac][bc][joker][turn] = ret;\n}\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < 4; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 1; i <= N; i++){\n\t\tfor(int k = 0; k < 3; k++){\n\t\t\tCOUNT[k][i] = 0;\n\t\t}\n\t}\n\n\tint num,tmp;\n\tType joker = A;\n\n\tfor(int i = 0; i < 3; i++){\n\t\tscanf(\"%d\",&num);\n\t\tfor(int k = 0; k < num; k++){\n\t\t\tscanf(\"%d\",&tmp);\n\n\t\t\tCOUNT[i][tmp]++;\n\n\t\t\tif(tmp == 0){\n\n\t\t\t\t//printf(\"joker:%d\\n\",i);\n\t\t\t\tjoker = type_array[i];\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < 3; i++){\n\t\tfor(int k = 1; k <= N; k++){\n\t\t\tif(COUNT[i][k]%2 == 1){\n\n\t\t\t\ttable[k] += POW[i];\n\t\t\t}\n\t\t}\n\t}\n\n\n\n\tint ab = 0,ac = 0,bc = 0;\n\tfor(int i = 1; i <= N; i++){\n\t\tif(table[i] == 0)continue;\n\n\t\tswitch(table[i]){\n\t\tcase 3:\n\t\t\tac++;\n\t\t\tbreak;\n\t\tcase 5:\n\t\t\tab++;\n\t\t\tbreak;\n\t\tcase 6:\n\t\t\tbc++;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= N; i++){\n\t\tfor(int k = 0; k <= N; k++){\n\t\t\tfor(int p = 0; p <= N; p++){\n\t\t\t\tfor(int a = 0; a < 3; a++){\n\t\t\t\t\tfor(int b = 0; b < 3; b++){\n\n\t\t\t\t\t\tdp[i][k][p][a][b] = -1;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\t//printf(\"ab:%d ac:%d bc:%d\\n\",ab,ac,bc);\n\n\tprintf(\"%.10lf\\n\",recursive(ab,ac,bc,joker,A));\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 75688, "score_of_the_acc": -0.4376, "final_rank": 2 }, { "submission_id": "aoj_2802_3989842", "code_snippet": "#include \"iostream\"\n#include \"climits\"\n#include \"list\"\n#include \"queue\"\n#include \"stack\"\n#include \"set\"\n#include \"functional\"\n#include \"algorithm\"\n#include \"string\"\n#include \"map\"\n#include \"unordered_map\"\n#include \"unordered_set\"\n#include \"iomanip\"\n#include \"cmath\"\n#include \"random\"\n#include \"bitset\"\n#include \"cstdio\"\n#include \"numeric\"\n#include \"cassert\"\n#include \"functional\"\n\nusing namespace std;\n\nint N, M, K, L, R, H, W;\n//long long int N,M,K,L,R,H,W;\n\nconstexpr long long int MOD = 1000000007;\n//constexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n//constexpr long long int MOD=998244353;\n\nconstexpr long double EPS = 1e-8;\n\nlong double dp[101][101][101][3][3];\n\ndouble Search(int ab, int bc, int ca, int j, int t) {\n\t//cout<<ab<<\" \"<<bc<<\" \"<<ca<<\" \"<<j<<\" \"<<t<<endl;\n\tif (dp[ab][bc][ca][j][t] >= 0)return dp[ab][bc][ca][j][t];\n\tif (!ab && !bc && !ca) {\n\t\tif (j == 1)return dp[0][0][0][1][t] = 0;\n\t\telse return dp[0][0][0][j][t] = 1;\n\t}\n\tif (!ab && !bc&&j != 1 && t == 1)return dp[ab][bc][ca][j][t] = Search(ab, bc, ca, j, 2);\n\tif (!bc && !ca&&j != 2 && t == 2)return dp[ab][bc][ca][j][t] = Search(ab, bc, ca, j, 0);\n\tif (!ca && !ab&&j != 0 && t == 0)return dp[ab][bc][ca][j][t] = Search(ab, bc, ca, j, 1);\n\t//nxが1のとき不正が発生\n\tint nx;\n\tif (t == 0) {\n\t\tnx = 2;\n\t\tif (!bc && !ca&&j != 2) {\n\t\t\tnx = 1;\n\t\t\tif (!ab) {\n\t\t\t\tif (j == 0)return dp[ab][bc][ca][j][t] = 1;\n\t\t\t\telse return dp[ab][bc][ca][j][t] = 0;\n\t\t\t}\n\t\t}\n\t}\n\telse if (t == 1) {\n\t\tnx = 0;\n\t\tif (!ab && !ca&&j != 0) {\n\t\t\tnx = 2;\n\t\t\tif (!bc) {\n\t\t\t\tif (j == 1)return dp[ab][bc][ca][j][t] = 0;\n\t\t\t\telse return dp[ab][bc][ca][j][t] = 1;\n\t\t\t}\n\t\t}\n\t}\n\telse {\n\t\tnx = 1;\n\t\tif (!ab && !bc&&j != 1) {\n\t\t\tnx = 0;\n\t\t\tif (!ca) {\n\t\t\t\treturn dp[ab][bc][ca][j][t] = 0;\n\t\t\t}\n\t\t}\n\t}\n\tif (nx == 1) {\n\t\tif (t == 0) {\n\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 1);\n\t\t}\n\t\tif (t == 2) {\n\t\t\tif (bc) {\n\t\t\t\tif (ab || ca || j == 0)return dp[ab][bc][ca][j][t] = Search(ab, bc - 1, ca, j, 0);\n\t\t\t\telse return dp[ab][bc][ca][j][t] = Search(ab, bc - 1, ca, j, 1);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (ab) {\n\t\t\t\t\tif (ab - 1 || bc || j == 1)return dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 1);\n\t\t\t\t\telse if (bc || ca || j == 2)return dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 2);\n\t\t\t\t\telse return dp[ab][bc][ca][j][t] = 1;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab, bc, ca - 1, 2, t);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tif (nx == 2) {\n\t\tif (t == 1) {\n\t\t\tif (j == 1) {\n\t\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab, bc - 1, ca, j, 2);\n\t\t\t}\n\t\t\telse {\n\t\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab, bc - 1, ca, j, 2)*bc / (bc + 1) + Search(ab, bc - 1, ca, 1, 1) / (bc + 1);\n\t\t\t}\n\t\t}\n\t\tif (t == 0) {\n\t\t\tif (ca) {\n\t\t\t\tif (ab || bc || j == 1)return dp[ab][bc][ca][j][t] = Search(ab, bc, ca - 1, j, 1);\n\t\t\t\telse return dp[ab][bc][ca][j][t] = Search(ab, bc, ca - 1, j, 2);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (bc)return dp[ab][bc][ca][j][t] = Search(ab + 1, bc - 1, ca, j, 1);\n\t\t\t\telse dp[ab][bc][ca][j][t] = Search(ab, bc, ca, 0, 1);\n\t\t\t\t//if(bc){\n\t\t\t\t//\tif(j==2)return dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,2);\n\t\t\t\t//\telse dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,0);\n\t\t\t\t//}\n\t\t\t\t//else{\n\t\t\t\t//\tdp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,0);\n\t\t\t\t//}\n\t\t\t}\n\t\t}\n\t}\n\tif (nx == 0) {\n\t\tif (t == 2) {\n\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab, bc, ca - 1, j, 0);\n\t\t}\n\t\tif (t == 1) {\n\t\t\tif (bc || ca || j == 2) {\n\t\t\t\tif (j != 0) {\n\t\t\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 2)*ab / (ab + ca) + Search(ab, bc, ca - 1, j, 0)*ca / (ab + ca);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (bc)return dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 2)*ab / (ab + ca + 1) + Search(ab, bc, ca - 1, j, 0)*ca / (ab + ca + 1) + Search(ab, bc - 1, ca, 1, 0) / (ab + ca + 1);\n\t\t\t\t\telse return dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 2)*ab / (ab + ca + 1) + Search(ab, bc, ca - 1, j, 0)*ca / (ab + ca + 1) + Search(ab - 1, bc, ca, 1, 1) / (ab + ca + 1);\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (j == 1) {\n\t\t\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 0);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\treturn dp[ab][bc][ca][j][t] = Search(ab - 1, bc, ca, j, 0)*ab / (ab + 1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n\tcin >> N;\n\tvector<int>a(101);\n\tvector<int>b(101);\n\tvector<int>c(101);\n\tcin >> M;\n\tfor (int i = 0; i<M; i++) {\n\t\tcin >> K;\n\t\ta[K] ^= 1;\n\t}\n\tcin >> M;\n\tfor (int i = 0; i<M; i++) {\n\t\tcin >> K;\n\t\tb[K] ^= 1;\n\t}\n\tcin >> M;\n\tfor (int i = 0; i<M; i++) {\n\t\tcin >> K;\n\t\tc[K] ^= 1;\n\t}\n\tint ab = 0, bc = 0, ca = 0;\n\tfor (int i = 1; i <= N; i++)ab += a[i] & b[i];\n\tfor (int i = 1; i <= N; i++)bc += b[i] & c[i];\n\tfor (int i = 1; i <= N; i++)ca += c[i] & a[i];\n\tint joker = 0;\n\tif (b[0])joker = 1;\n\tif (c[0])joker = 2;\n\tint turn = 0;\n\tfor (int i = 0; i <= 100; i++)for (int j = 0; j <= 100; j++)for (int k = 0; k <= 100; k++)for (int l = 0; l<3; l++)for (int m = 0; m<3; m++)dp[i][j][k][l][m] = -1;\n\tcout << setprecision(20) << Search(ab, bc, ca, joker, turn) << endl;\n\t//for(int i=0;i<=N;i++)for(int j=0;j<=N;j++)for(int k=0;k<=N;k++)for(int l=0;l<3;l++)for(int m=0;m<3;m++)if(dp[i][j][k][l][m]>=0)cout<<i<<\" \"<<j<<\" \"<<k<<\" \"<<l<<\" \"<<m<<\" \"<<dp[i][j][k][l][m]<<endl;\n\treturn 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 40, "memory_kb": 148176, "score_of_the_acc": -1.0515, "final_rank": 15 }, { "submission_id": "aoj_2802_3987680", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nint N,M,K,L,R,H,W;\n//long long int N,M,K,L,R,H,W;\n\nconstexpr long long int MOD=1000000007;\n//constexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n//constexpr long long int MOD=998244353;\n\nconstexpr long double EPS=1e-8;\n\nlong double dp[101][101][101][3][3];\n\ndouble Search(int ab,int bc,int ca,int j,int t){\n\t//cout<<ab<<\" \"<<bc<<\" \"<<ca<<\" \"<<j<<\" \"<<t<<endl;\n\tif(dp[ab][bc][ca][j][t]>=0)return dp[ab][bc][ca][j][t];\n\tif(!ab&&!bc&&!ca){\n\t\tif(j==1)return dp[0][0][0][1][t]=0;\n\t\telse return dp[0][0][0][j][t]=1;\n\t}\n\tif(!ab&&!bc&&j!=1&&t==1)return dp[ab][bc][ca][j][t]=Search(ab,bc,ca,j,2);\n\tif(!bc&&!ca&&j!=2&&t==2)return dp[ab][bc][ca][j][t]=Search(ab,bc,ca,j,0);\n\tif(!ca&&!ab&&j!=0&&t==0)return dp[ab][bc][ca][j][t]=Search(ab,bc,ca,j,1);\n\t//nxが1のとき不正が発生\n\tint nx;\n\tif(t==0){\n\t\tnx=2;\n\t\tif(!bc&&!ca&&j!=2){\n\t\t\tnx=1;\n\t\t\tif(!ab){\n\t\t\t\tif(j==0)return dp[ab][bc][ca][j][t]=1;\n\t\t\t\telse return dp[ab][bc][ca][j][t]=0;\n\t\t\t}\n\t\t}\n\t}\n\telse if(t==1){\n\t\tnx=0;\n\t\tif(!ab&&!ca&&j!=0){\n\t\t\tnx=2;\n\t\t\tif(!bc){\n\t\t\t\tif(j==1)return dp[ab][bc][ca][j][t]=0;\n\t\t\t\telse return dp[ab][bc][ca][j][t]=1;\n\t\t\t}\n\t\t}\n\t}\n\telse {\n\t\tnx=1;\n\t\tif(!ab&&!bc&&j!=1){\n\t\t\tnx=0;\n\t\t\tif(!ca){\n\t\t\t\treturn dp[ab][bc][ca][j][t]=0;\n\t\t\t}\n\t\t}\n\t}\n\tif(nx==1){\n\t\tif(t==0){\n\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,1);\n\t\t}\n\t\tif(t==2){\n\t\t\tif(bc){\n\t\t\t\tif(ab||ca||j==0)return dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,0);\n\t\t\t\telse return dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,1);\n\t\t\t}\n\t\t\telse{\n\t\t\t\tif(ab){\n\t\t\t\t\tif(ab-1||bc||j==1)return dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,1);\n\t\t\t\t\telse if(bc||ca||j==2)return dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,2);\n\t\t\t\t\telse return dp[ab][bc][ca][j][t]=1;\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab,bc,ca-1,2,t);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tif(nx==2){\n\t\tif(t==1){\n\t\t\tif(j==1){\n\t\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,2);\n\t\t\t}\n\t\t\telse {\n\t\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,2)*bc/(bc+1)+Search(ab,bc-1,ca,1,1)/(bc+1);\n\t\t\t}\n\t\t}\n\t\tif(t==0){\n\t\t\tif(ca){\n\t\t\t\tif(ab||bc||j==1)return dp[ab][bc][ca][j][t]=Search(ab,bc,ca-1,j,1);\n\t\t\t\telse return dp[ab][bc][ca][j][t]=Search(ab,bc,ca-1,j,2);\n\t\t\t}\n\t\t\telse{\n\t\t\t\tif(bc)return dp[ab][bc][ca][j][t]=Search(ab+1,bc-1,ca,j,1);\n\t\t\t\telse dp[ab][bc][ca][j][t]=Search(ab,bc,ca,0,1);\n\t\t\t\t//if(bc){\n\t\t\t\t//\tif(j==2)return dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,2);\n\t\t\t\t//\telse dp[ab][bc][ca][j][t]=Search(ab,bc-1,ca,j,0);\n\t\t\t\t//}\n\t\t\t\t//else{\n\t\t\t\t//\tdp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,0);\n\t\t\t\t//}\n\t\t\t}\n\t\t}\n\t}\n\tif(nx==0){\n\t\tif(t==2){\n\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab,bc,ca-1,j,0);\n\t\t}\n\t\tif(t==1){\n\t\t\tif(bc||ca||j==2){\n\t\t\t\tif(j!=0){\n\t\t\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,2)*ab/(ab+ca)+Search(ab,bc,ca-1,j,0)*ca/(ab+ca);\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\tif(bc)return dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,2)*ab/(ab+ca+1)+Search(ab,bc,ca-1,j,0)*ca/(ab+ca+1)+Search(ab,bc-1,ca,1,0)/(ab+ca+1);\n\t\t\t\t\telse return dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,2)*ab/(ab+ca+1)+Search(ab,bc,ca-1,j,0)*ca/(ab+ca+1)+Search(ab-1,bc,ca,1,1)/(ab+ca+1);\n\t\t\t\t}\n\t\t\t}\n\t\t\telse{\n\t\t\t\tif(j==1){\n\t\t\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,0);\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\treturn dp[ab][bc][ca][j][t]=Search(ab-1,bc,ca,j,0)*ab/(ab+1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nint main(){\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t\n\tcin>>N;\n\tvector<int>a(101);\n\tvector<int>b(101);\n\tvector<int>c(101);\n\tcin>>M;\n\tfor(int i=0;i<M;i++){\n\t\tcin>>K;\n\t\ta[K]^=1;\n\t}\n\tcin>>M;\n\tfor(int i=0;i<M;i++){\n\t\tcin>>K;\n\t\tb[K]^=1;\n\t}\n\tcin>>M;\n\tfor(int i=0;i<M;i++){\n\t\tcin>>K;\n\t\tc[K]^=1;\n\t}\n\tint ab=0,bc=0,ca=0;\n\tfor(int i=1;i<=N;i++)ab+=a[i]&b[i];\n\tfor(int i=1;i<=N;i++)bc+=b[i]&c[i];\n\tfor(int i=1;i<=N;i++)ca+=c[i]&a[i];\n\tint joker=0;\n\tif(b[0])joker=1;\n\tif(c[0])joker=2;\n\tint turn =0;\n\tfor(int i=0;i<=100;i++)for(int j=0;j<=100;j++)for(int k=0;k<=100;k++)for(int l=0;l<3;l++)for(int m=0;m<3;m++)dp[i][j][k][l][m]=-1;\n\tcout<<setprecision(20)<<Search(ab,bc,ca,joker,turn)<<endl;\n\t//for(int i=0;i<=N;i++)for(int j=0;j<=N;j++)for(int k=0;k<=N;k++)for(int l=0;l<3;l++)for(int m=0;m<3;m++)if(dp[i][j][k][l][m]>=0)cout<<i<<\" \"<<j<<\" \"<<k<<\" \"<<l<<\" \"<<m<<\" \"<<dp[i][j][k][l][m]<<endl;\n\treturn 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 40, "memory_kb": 148184, "score_of_the_acc": -1.0515, "final_rank": 16 }, { "submission_id": "aoj_2802_2915563", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld =long double;\nconst ld eps = 1e-9;\n\n\n//namespace cent {\n//\n//\tstruct Edge {\n//\t\tint src;\n//\t\tint dst;\n//\t\tlong long int cost;\n//\t};\n//\tusing Graph = vector<vector<Edge>>;\n//\n//\tclass Centroid {\n//\tprivate:\n//\t\tint dfs(const Graph&g, const int now, const int from, vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tint sum = 1;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tsum += dfs(g, e.dst, e.src, ch_nums, oks);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ch_nums[now] = sum;\n//\t\t}\n//\n//\t\tint find_centroid(const int asize, const vector<vector<Edge>>&graph, const int pre_root, const int pre_from, const vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tfor (auto&& e : graph[pre_root]) {\n//\t\t\t\tif (e.dst == pre_from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tif (ch_nums[e.dst]>asize / 2)return find_centroid(asize, graph, e.dst, e.src, ch_nums, oks);\n//\t\t\t}\n//\t\t\treturn pre_root;\n//\t\t}\n//\n//\t\tvoid dfs2(const Graph&g, const int root,const int now, const int from, const vector<int>&oks,int depth) {\n//\t\t\tmp[make_pair(root,now)]=depth;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tdfs2(g,root,e.dst,e.src,oks,depth+1);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t};\n//\n//\n//\t\tvoid cent(const vector<vector<Edge>>&graph, vector<int>&oks, const int root, const int from, vector<vector<int>>&centroid_edges, int& fst_centroid, int depth, vector<int>&ch_nums) {\n//\t\t\tdfs(graph, root, from, ch_nums, oks);\n//\n//\t\t\tint cent_id = find_centroid(ch_nums[root], graph, root, from, ch_nums, oks);\n//\n//\n//\t\t\tdfs2(graph,cent_id,cent_id,-1,oks,0);\n//\t\t\tlens1[cent_id][make_pair(0,0)]--;\n//\t\t\tlens2[cent_id][0]--;\n//\n//\n//\t\t\toks[cent_id] = depth;\n//\n//\t\t\t//for (auto&& e : graph[cent_id]) {\n//\t\t\t//\tif (e.dst == from)continue;\n//\t\t\t//\tif (oks[e.dst] != -1)continue;\n//\n//\t\t\t//\tdfs2(graph, e.dst, e.dst, e.src, oks,e.cost%mod,e.cost%mod,1);\n//\n//\t\t\t//\tfor (auto&& l1 : lens1[e.dst]) {\n//\t\t\t//\t\tint keta = l1.first.second;\n//\t\t\t//\t\tlong long int num = l1.first.first;\n//\n//\t\t\t//\t\tlong long int need = (mod - num) / mod_pow(10, keta);\n//\t\t\t//\t\tneed%=mod;\n//\t\t\t//\t\tauto it = lens2[e.dst].find(need);\n//\t\t\t//\t\tif (it != lens2[e.dst].end()) {\n//\t\t\t//\t\t\tans -= l1.second*it->second;\n//\t\t\t//\t\t}\n//\t\t\t//\t}\n//\t\t\t//\tlens1[e.dst].clear();\n//\t\t\t//\tlens2[e.dst].clear();\n//\t\t\t//}\n//\n//\t\t\tif (from != -1) {\n//\t\t\t\tcentroid_edges[from].push_back(cent_id);\n//\t\t\t}\n//\t\t\telse {\n//\t\t\t\tfst_centroid = cent_id;\n//\t\t\t}\n//\t\t\tfor (auto&& e : graph[cent_id]) {\n//\t\t\t\tif (e.dst == from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tcent(graph, oks, e.dst, e.src, centroid_edges, fst_centroid, depth + 1, ch_nums);\n//\t\t\t}\n//\t\t}\n//\n//\tpublic:\n//\n//\t\tmap<pair<int,int>,int>mp;\n//\n//\t\tvector<map<pair<long long int,int>, long long int>>lens1;\n//\t\tvector<map<long long int, long long int>>lens2;\n//\t\tvector<vector<int>> centroid_graph;\n//\t\tvector<int>ts;\n//\t\tvector<int>parents;\n//\t\tvector<int>oks;\n//\t\tvector<int>anss;\n//\n//\t\t//fst:root snd:centroid_graph\n//\t\tvoid init(const Graph&g) {\n//\t\t\tlens1.resize(g.size());\n//\t\t\tlens2.resize(g.size());\n//\t\t\toks = vector<int>(g.size(), -1);\n//\t\t\tint root = -1;\n//\t\t\tcentroid_graph.resize(g.size());\n//\t\t\tparents = vector<int>(g.size(), -1);\n//\t\t\tts=vector<int>(g.size(),-1);\n//\t\t\tanss=vector<int>(g.size(),100000);\n//\n//\t\t\tvector<int>ch_nums(g.size());\n//\t\t\tcent(g, oks, 0, -1, centroid_graph, root, 0, ch_nums);\n//\n//\t\t\tfor (int i = 0; i < centroid_graph.size(); ++i) {\n//\t\t\t\tfor (auto&& e : centroid_graph[i]) {\n//\t\t\t\t\tparents[e] = i;\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ;\n//\t\t}\n//\t}centroid;\n//\n//\n//\tvoid addEdge(Graph& g, int a, int b, long long int c) {\n//\t\tg[a].push_back(Edge{ a,b,c });\n//\t\tg[b].push_back(Edge{ b,a,c });\n//\t}\n//}\n\n\n//const int mod = 1000000007;\n//struct Mod {\n//public:\n//\tint num;\n//\tMod() : Mod(0) { ; }\n//\tMod(long long int n) : num((n % mod + mod) % mod) {\n//\t\tstatic_assert(mod<INT_MAX / 2, \"mod is too big, please make num 'long long int' from 'int'\");\n//\t}\n//\tMod(int n) : Mod(static_cast<long long int>(n)) { ; }\n//\toperator int() { return num; }\n//};\n//\n//Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mod); }\n//Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; }\n//Mod operator+(const Mod a, const long long int b) { return b + a; }\n//Mod operator++(Mod &a) { return a + Mod(1); }\n//Mod operator-(const Mod a, const Mod b) { return Mod((mod + a.num - b.num) % mod); }\n//Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; }\n//Mod operator--(Mod &a) { return a - Mod(1); }\n//Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mod); }\n//Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; }\n//Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; }\n//Mod operator*(const Mod a, const int b) { return Mod(b)*a; }\n//Mod operator+=(Mod &a, const Mod b) { return a = a + b; }\n//Mod operator+=(long long int &a, const Mod b) { return a = a + b; }\n//Mod operator-=(Mod &a, const Mod b) { return a = a - b; }\n//Mod operator-=(long long int &a, const Mod b) { return a = a - b; }\n//Mod operator*=(Mod &a, const Mod b) { return a = a * b; }\n//Mod operator*=(long long int &a, const Mod b) { return a = a * b; }\n//Mod operator*=(Mod& a, const long long int &b) { return a = a * b; }\n//Mod operator^(const Mod a, const int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = (a * a) ^ (n / 2);\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//Mod mod_pow(const Mod a, const long long int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = mod_pow((a * a), (n / 2));\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//\n////mod が素数の場合のみ 違う場合はextend euclid を用いる。\n//Mod inv(const Mod a) { return a ^ (mod - 2); }\n//Mod operator/(const Mod a, const Mod b) {\n//\tassert(b.num != 0);\n//\treturn a * inv(b);\n//}\n//Mod operator/(const long long int a, const Mod b) {\n//\treturn Mod(a) / b;\n//}\n//Mod operator/=(Mod &a, const Mod b) {\n//\treturn a = a / b;\n//}\n//\n//#define MAX_MOD_N 1024000\n//\n//Mod fact[MAX_MOD_N], factinv[MAX_MOD_N];\n//void init(const int amax = MAX_MOD_N) {\n//\tfact[0] = Mod(1); factinv[0] = 1;\n//\tfor (int i = 0; i < amax - 1; ++i) {\n//\t\tfact[i + 1] = fact[i] * Mod(i + 1);\n//\t\tfactinv[i + 1] = factinv[i] / Mod(i + 1);\n//\t}\n//}\n//Mod comb(const int a, const int b) {\n//\treturn fact[a] * factinv[b] * factinv[a - b];\n//}\n//\n//vector<int>primes;\n//void hurui(const int amax=3500) {\n//\tstatic bool flag = false;\n//\tif (flag)return;\n//\tvector<int>sos;\n//\tsos = vector<int>(amax + 1, true);\n//\tsos[0] = false; sos[1] = false;\n//\tfor (int i = 2; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tfor (int j = 2 * i; j <= amax; j += i)sos[j] = false;\n//\t\t}\n//\t}\n//\tfor (int i = 0; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tprimes.push_back(i);\n//\t\t}\n//\t}\n//\tflag = true;\n//}\n//\n//\n//struct query {\n//\tint u;\n//\tint v;\n//\tmap<int,int>mp;\n//};\n//\n//map<int, int>mk_mp(const int a) {\n//\tint rest(a);\n//\tmap<int,int>as;\n//\tfor (auto pr : primes) {\n//\t\twhile (rest%pr == 0) {\n//\t\t\tas[pr]++;\n//\t\t\trest /= pr;\n//\t\t}\n//\t}\n//\tif (rest!=1)as[rest]++;\n//\treturn as;\n//}\n//\n//#define Seg_Max_N (1<<18) \n//\n//class Tree {\n//public:\n//\tTree(int V, int root) : V(V), root(root), cnum(V), place(V), id(V) {\n//\t\tT.resize(V);\n//\t\tfor (int i = 0; i < MAXLOGV; i++) {\n//\t\t\tparent[i].resize(V);\n//\t\t}\n//\t\tdepth.resize(V);\n//\t}\n//\t// uとvをつなぐ\n//\t// lcaを求めることが主目的なので無向グラフとしている\n//\tvoid unite(int u, int v) {\n//\t\tT[u].push_back(v);\n//\t\tT[v].push_back(u);\n//\t}\n//\tvoid unite(vector<vector<int>>&e) {\n//\t\tT = e;\n//\t}\n//\t// initする\n//\t// コンストラクタだけじゃなくてこれも呼ばないとlcaが求められないぞ\n//\tvoid init() {\n//\t\tdfs(root, 0, 0);\n//\t\tint id = 0;\n//\t\tgetid(root, 0, id);\n//\t}\n//\t// uとvのlcaを求める\n//\tint lca(int u, int v) const {\n//\t\tif (depth[u] > depth[v]) swap(u, v);\n//\t\tfor (int k = 0; k < MAXLOGV; k++) {\n//\t\t\tif ((depth[v] - depth[u]) >> k & 1) {\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\tif (u == v) return u;\n//\t\tfor (int k = MAXLOGV - 1; k >= 0; k--) {\n//\t\t\tif (parent[k][u] != parent[k][v]) {\n//\t\t\t\tu = parent[k][u];\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\treturn parent[0][u];\n//\t}\n//\t// uとvの距離を求める\n//\t// edgeを定義しないといけない時はこれじゃダメ\n//\tint dist(int u, int v) const {\n//\t\tint p = lca(u, v);\n//\t\treturn (depth[u] - depth[p]) + (depth[v] - depth[p]);\n//\t}\n//\tint dfs(int v, int p, int d) {\n//\t\tparent[0][v] = p;\n//\t\tdepth[v] = d;\n//\t\tcnum[v] = 0;\n//\t\tfor (int i = 1; i < MAXLOGV; i++) {\n//\t\t\tparent[i][v] = parent[i - 1][parent[i - 1][v]];\n//\t\t}\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) cnum[v] += dfs(next, v, d + 1);\n//\t\t}\n//\t\treturn cnum[v] + 1;\n//\t}\n//\n//\tvoid dfs2(int v, int p, vector<vector<int>>&doubles, const vector<int>&nums) {\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) dfs2(next, v, doubles, nums);\n//\t\t}\n//\t\tdoubles[0][v] = nums[v];\n//\t\tfor (int j = 1; j < MAXLOGV; ++j) {\n//\t\t\tdoubles[j][v] = min(doubles[j][v], doubles[j - 1][v]);\n//\t\t}\n//\t\tfor (int j = 0; j < MAXLOGV - 1; ++j) {\n//\t\t\tdoubles[j + 1][parent[j][v]] = min(doubles[j + 1][parent[j][v]], doubles[j][v]);\n//\t\t}\n//\t}\n//\t//ここでは親から距離2^iの部分木の最小値を求めている\n//\tvector<vector<int>>get_doubles(const vector<int>&nums) {\n//\t\tvector<vector<int>>doubles(MAXLOGV, vector<int>(V, 1e9));\n//\t\tdfs2(root, -1, doubles, nums);\n//\t\treturn doubles;\n//\t}\n//\n//\tvoid getid(const int v, const int p, int &nplace) {\n//\t\tplace[v] = nplace;\n//\t\tid[nplace] = v;\n//\t\tnplace++;\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) getid(next, v, nplace);\n//\t\t}\n//\t}\n//\tstatic const int MAXLOGV = 25;\n//\t// グラフの隣接リスト表現\n//\tvector<vector<int> > T;\n//\t// 頂点の数\n//\tint V;\n//\t// 根ノードの番号\n//\tint root;\n//\n//\t// 親ノード\n//\tvector<int> parent[MAXLOGV];\n//\t// 根からの深さ\n//\tvector<int> depth;\n//\n//\t//子の数\n//\tvector<int>cnum;\n//\n//\t//変換\n//\tvector<int>place;\n//\tvector<int>id;\n//\n//};\n//\n//vector<int>pas;\n//void adfs(vector<pair<int, int>>&lrs, vector<int>&tos,const vector<vector<int>>&edges, const int now, const int from,int &id) {\n//\ttos[now]=id;\n//\tlrs[tos[now]].first=id++;\n//\tfor (auto e : edges[now]) {\n//\t\tif (e == from) {\n//\t\t\tpas[now] = from;\n//\t\t\tcontinue;\n//\t\t}\n//\t\tadfs(lrs,tos,edges,e,now,id);\n//\t}\n//\tlrs[tos[now]].second=id;\n//}\n//\n//vector<pair<int, int>>get_lrs(vector<int>&tos,const vector<vector<int>>&edges, const int root) {\n//\tpas.resize(tos.size());pas[0]=-1;\n//\tvector<pair<int,int>>lrs(edges.size());\n//\tint id=0;\n//\tadfs(lrs,tos,edges,0,-1,id);\n//\treturn lrs;\n//}\n\n\nld memo[101][101][101][3][3];\n\nld solve(int a, int b, int c, int d, int e) ;\n\nld solve(vector<int>v, int joker, int player) {\n\tif(!(v[0]>=0&&v[1]>=0&&v[2]>=0&&joker>=0&&joker<=2&&player>=0&&player<=2))return 0;\n\tif (memo[v[0]][v[1]][v[2]][joker][player] < -0.5) {\n\t\tif (v[0] == 0 && v[1] == 0 && v[2] == 0) {\n\t\t\tif (joker == 1) {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=0;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=1;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tconst int n_player=(player+1)%3;\n\t\t\t// A no card\n\t\t\tif (v[0] == 0 && v[2] == 0 && joker != 0) {\n\t\t\t\tif (player == 0) {\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = solve(v, joker, n_player);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tconst int drawn_player=(player^3);\n\t\t\t\t\tld ans = 0;\n\t\t\t\t\tif (drawn_player == 2) {\n\t\t\t\t\t\tans+=(joker==drawn_player)*solve(v,player, n_player);\n\t\t\t\t\t\tans+=v[1]*solve(v[0],v[1]-1,v[2],joker, n_player);\n\n\t\t\t\t\t\tans/=(joker==2)+v[1];\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tassert(v[1]);\n\t\t\t\t\t\tans=solve(v[0],v[1]-1,v[2],joker,n_player);\n\t\t\t\t\t}\n\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=ans;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// B no card\n\t\t\telse if (v[0] == 0 && v[1] == 0 && joker != 1) {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = 1;\n\t\t\t}\n\t\t\t// C no card\n\t\t\telse if (v[1] == 0 && v[2] == 0 && joker != 2) {\n\t\t\t\tif (player == 2) {\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=solve(v,joker,n_player);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tconst int drawn_player = (player ^ 1);\n\t\t\t\t\tld ans = 0;\n\t\t\t\t\tif (drawn_player==0) {\n\t\t\t\t\t\tans += (joker == drawn_player)*solve(v, player ,n_player);\n\t\t\t\t\t\tans += v[0]*solve(v[0]-1, v[1], v[2], joker, n_player);\n\n\t\t\t\t\t\tassert((joker==0)+v[0]>=1);\n\t\t\t\t\t\tans /= (joker == 0) + v[0];\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tassert(v[0]);\n\t\t\t\t\t\tans = solve(v[0]-1, v[1], v[2], joker, n_player);\n\t\t\t\t\t}\n\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = ans;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tld ans=0;\n\t\t\t\tint drawn_player=(player+2)%3;\n\t\t\t\tif (player == 0) {\n\t\t\t\t\tans+=v[1]*solve(v[0]+1,v[1]-1,v[2],joker,n_player);\n\t\t\t\t\tans+=v[2]*solve(v[0],v[1],v[2]-1,joker,n_player);\n\t\t\t\t\tans+=(joker==2)*solve(v[0],v[1],v[2],0,n_player);\n\n\t\t\t\t\tassert(v[1]+v[2]+(joker==2)>=1);\n\t\t\t\t\tans/=v[1]+v[2]+(joker==2);\n\t\t\t\t}\n\t\t\t\telse if (player == 1) {\n\t\t\t\t\tans+=v[2]*solve(v[0],v[1]+1,v[2]-1,joker,n_player);\n\t\t\t\t\tans+=v[0]*solve(v[0]-1,v[1],v[2],joker,n_player);\n\t\t\t\t\tans+=(joker==0)*solve(v[0],v[1],v[2],1,n_player);\n\n\t\t\t\t\tassert(v[2]+v[0]+(joker==0)>=1);\n\t\t\t\t\tans/=v[2]+v[0]+(joker==0);\n\t\t\t\t}\n\t\t\t\telse if (player == 2) {\n\t\t\t\t\tif (v[1]) {\n\t\t\t\t\t\tans=solve(v[0],v[1]-1,v[2],joker,n_player);\n\t\t\t\t\t}\n\t\t\t\t\telse if (v[0]) {\n\t\t\t\t\t\tans=solve(v[0]-1,v[1],v[2]+1,joker,n_player);\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tassert(joker==1);\n\t\t\t\t\t\tans=solve(v,player,n_player);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = ans;\n\t\t\t}\n\t\t}\n\t}\n\treturn memo[v[0]][v[1]][v[2]][joker][player];\n}\n\nld solve(int a, int b, int c, int d, int e) {\n\treturn solve(vector<int>{a, b, c},d,e);\n}\n\nint main()\n{\n\n\tint AB=0,BC=0,CA=0;\n\tint joker=-1;\n\n\tfor (int i = 0; i < 101; ++i) {\n\t\tfor (int j = 0; j < 101; ++j) {\n\t\t\tfor (int k = 0; k < 101; ++k) {\n\t\t\t\tfor (int l = 0; l < 3; ++l) {\n\t\t\t\t\tfor (int m = 0; m < 3; ++m) {\n\t\t\t\t\t\tmemo[i][j][k][l][m]=-1;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t{\n\t\tint N; cin >> N;\n\n\t\tvector<vector<int>>nums(3, vector<int>(101));\n\t\tfor (int i = 0; i < 3; ++i) {\n\t\t\tint m; cin >> m;\n\t\t\tmap<int, int>mp;\n\t\t\twhile (m--) {\n\t\t\t\tint a; cin >> a;\n\t\t\t\tmp[a]++;\n\t\t\t}\n\t\t\tfor (auto m : mp) {\n\t\t\t\tif (m.second % 2)nums[i][m.first]++;\n\t\t\t}\n\t\t}\n\n\t\tfor (int i = 0; i <= N; ++i) {\n\t\t\tif (i == 0) {\n\t\t\t\tfor (int j = 0; j < 3; ++j) {\n\t\t\t\t\tif (nums[j][i]) {\n\t\t\t\t\t\tjoker=j;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (nums[0][i] && nums[1][i]) {\n\t\t\t\t\tAB++;\n\t\t\t\t}\n\t\t\t\telse if (nums[1][i] && nums[2][i]) {\n\t\t\t\t\tBC++;\n\t\t\t\t}\n\t\t\t\telse if (nums[2][i] && nums[0][i]) {\n\t\t\t\t\tCA++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tld ans=solve(AB,BC,CA,joker,0);\n\n\tcout<<setprecision(10)<<fixed<<double(ans)<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 148208, "score_of_the_acc": -1.0862, "final_rank": 4 }, { "submission_id": "aoj_2802_2915543", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld = __float128;\nconst ld eps = 1e-9;\n\n\n//namespace cent {\n//\n//\tstruct Edge {\n//\t\tint src;\n//\t\tint dst;\n//\t\tlong long int cost;\n//\t};\n//\tusing Graph = vector<vector<Edge>>;\n//\n//\tclass Centroid {\n//\tprivate:\n//\t\tint dfs(const Graph&g, const int now, const int from, vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tint sum = 1;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tsum += dfs(g, e.dst, e.src, ch_nums, oks);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ch_nums[now] = sum;\n//\t\t}\n//\n//\t\tint find_centroid(const int asize, const vector<vector<Edge>>&graph, const int pre_root, const int pre_from, const vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tfor (auto&& e : graph[pre_root]) {\n//\t\t\t\tif (e.dst == pre_from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tif (ch_nums[e.dst]>asize / 2)return find_centroid(asize, graph, e.dst, e.src, ch_nums, oks);\n//\t\t\t}\n//\t\t\treturn pre_root;\n//\t\t}\n//\n//\t\tvoid dfs2(const Graph&g, const int root,const int now, const int from, const vector<int>&oks,int depth) {\n//\t\t\tmp[make_pair(root,now)]=depth;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tdfs2(g,root,e.dst,e.src,oks,depth+1);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t};\n//\n//\n//\t\tvoid cent(const vector<vector<Edge>>&graph, vector<int>&oks, const int root, const int from, vector<vector<int>>&centroid_edges, int& fst_centroid, int depth, vector<int>&ch_nums) {\n//\t\t\tdfs(graph, root, from, ch_nums, oks);\n//\n//\t\t\tint cent_id = find_centroid(ch_nums[root], graph, root, from, ch_nums, oks);\n//\n//\n//\t\t\tdfs2(graph,cent_id,cent_id,-1,oks,0);\n//\t\t\tlens1[cent_id][make_pair(0,0)]--;\n//\t\t\tlens2[cent_id][0]--;\n//\n//\n//\t\t\toks[cent_id] = depth;\n//\n//\t\t\t//for (auto&& e : graph[cent_id]) {\n//\t\t\t//\tif (e.dst == from)continue;\n//\t\t\t//\tif (oks[e.dst] != -1)continue;\n//\n//\t\t\t//\tdfs2(graph, e.dst, e.dst, e.src, oks,e.cost%mod,e.cost%mod,1);\n//\n//\t\t\t//\tfor (auto&& l1 : lens1[e.dst]) {\n//\t\t\t//\t\tint keta = l1.first.second;\n//\t\t\t//\t\tlong long int num = l1.first.first;\n//\n//\t\t\t//\t\tlong long int need = (mod - num) / mod_pow(10, keta);\n//\t\t\t//\t\tneed%=mod;\n//\t\t\t//\t\tauto it = lens2[e.dst].find(need);\n//\t\t\t//\t\tif (it != lens2[e.dst].end()) {\n//\t\t\t//\t\t\tans -= l1.second*it->second;\n//\t\t\t//\t\t}\n//\t\t\t//\t}\n//\t\t\t//\tlens1[e.dst].clear();\n//\t\t\t//\tlens2[e.dst].clear();\n//\t\t\t//}\n//\n//\t\t\tif (from != -1) {\n//\t\t\t\tcentroid_edges[from].push_back(cent_id);\n//\t\t\t}\n//\t\t\telse {\n//\t\t\t\tfst_centroid = cent_id;\n//\t\t\t}\n//\t\t\tfor (auto&& e : graph[cent_id]) {\n//\t\t\t\tif (e.dst == from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tcent(graph, oks, e.dst, e.src, centroid_edges, fst_centroid, depth + 1, ch_nums);\n//\t\t\t}\n//\t\t}\n//\n//\tpublic:\n//\n//\t\tmap<pair<int,int>,int>mp;\n//\n//\t\tvector<map<pair<long long int,int>, long long int>>lens1;\n//\t\tvector<map<long long int, long long int>>lens2;\n//\t\tvector<vector<int>> centroid_graph;\n//\t\tvector<int>ts;\n//\t\tvector<int>parents;\n//\t\tvector<int>oks;\n//\t\tvector<int>anss;\n//\n//\t\t//fst:root snd:centroid_graph\n//\t\tvoid init(const Graph&g) {\n//\t\t\tlens1.resize(g.size());\n//\t\t\tlens2.resize(g.size());\n//\t\t\toks = vector<int>(g.size(), -1);\n//\t\t\tint root = -1;\n//\t\t\tcentroid_graph.resize(g.size());\n//\t\t\tparents = vector<int>(g.size(), -1);\n//\t\t\tts=vector<int>(g.size(),-1);\n//\t\t\tanss=vector<int>(g.size(),100000);\n//\n//\t\t\tvector<int>ch_nums(g.size());\n//\t\t\tcent(g, oks, 0, -1, centroid_graph, root, 0, ch_nums);\n//\n//\t\t\tfor (int i = 0; i < centroid_graph.size(); ++i) {\n//\t\t\t\tfor (auto&& e : centroid_graph[i]) {\n//\t\t\t\t\tparents[e] = i;\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ;\n//\t\t}\n//\t}centroid;\n//\n//\n//\tvoid addEdge(Graph& g, int a, int b, long long int c) {\n//\t\tg[a].push_back(Edge{ a,b,c });\n//\t\tg[b].push_back(Edge{ b,a,c });\n//\t}\n//}\n\n\n//const int mod = 1000000007;\n//struct Mod {\n//public:\n//\tint num;\n//\tMod() : Mod(0) { ; }\n//\tMod(long long int n) : num((n % mod + mod) % mod) {\n//\t\tstatic_assert(mod<INT_MAX / 2, \"mod is too big, please make num 'long long int' from 'int'\");\n//\t}\n//\tMod(int n) : Mod(static_cast<long long int>(n)) { ; }\n//\toperator int() { return num; }\n//};\n//\n//Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mod); }\n//Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; }\n//Mod operator+(const Mod a, const long long int b) { return b + a; }\n//Mod operator++(Mod &a) { return a + Mod(1); }\n//Mod operator-(const Mod a, const Mod b) { return Mod((mod + a.num - b.num) % mod); }\n//Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; }\n//Mod operator--(Mod &a) { return a - Mod(1); }\n//Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mod); }\n//Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; }\n//Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; }\n//Mod operator*(const Mod a, const int b) { return Mod(b)*a; }\n//Mod operator+=(Mod &a, const Mod b) { return a = a + b; }\n//Mod operator+=(long long int &a, const Mod b) { return a = a + b; }\n//Mod operator-=(Mod &a, const Mod b) { return a = a - b; }\n//Mod operator-=(long long int &a, const Mod b) { return a = a - b; }\n//Mod operator*=(Mod &a, const Mod b) { return a = a * b; }\n//Mod operator*=(long long int &a, const Mod b) { return a = a * b; }\n//Mod operator*=(Mod& a, const long long int &b) { return a = a * b; }\n//Mod operator^(const Mod a, const int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = (a * a) ^ (n / 2);\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//Mod mod_pow(const Mod a, const long long int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = mod_pow((a * a), (n / 2));\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//\n////mod が素数の場合のみ 違う場合はextend euclid を用いる。\n//Mod inv(const Mod a) { return a ^ (mod - 2); }\n//Mod operator/(const Mod a, const Mod b) {\n//\tassert(b.num != 0);\n//\treturn a * inv(b);\n//}\n//Mod operator/(const long long int a, const Mod b) {\n//\treturn Mod(a) / b;\n//}\n//Mod operator/=(Mod &a, const Mod b) {\n//\treturn a = a / b;\n//}\n//\n//#define MAX_MOD_N 1024000\n//\n//Mod fact[MAX_MOD_N], factinv[MAX_MOD_N];\n//void init(const int amax = MAX_MOD_N) {\n//\tfact[0] = Mod(1); factinv[0] = 1;\n//\tfor (int i = 0; i < amax - 1; ++i) {\n//\t\tfact[i + 1] = fact[i] * Mod(i + 1);\n//\t\tfactinv[i + 1] = factinv[i] / Mod(i + 1);\n//\t}\n//}\n//Mod comb(const int a, const int b) {\n//\treturn fact[a] * factinv[b] * factinv[a - b];\n//}\n//\n//vector<int>primes;\n//void hurui(const int amax=3500) {\n//\tstatic bool flag = false;\n//\tif (flag)return;\n//\tvector<int>sos;\n//\tsos = vector<int>(amax + 1, true);\n//\tsos[0] = false; sos[1] = false;\n//\tfor (int i = 2; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tfor (int j = 2 * i; j <= amax; j += i)sos[j] = false;\n//\t\t}\n//\t}\n//\tfor (int i = 0; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tprimes.push_back(i);\n//\t\t}\n//\t}\n//\tflag = true;\n//}\n//\n//\n//struct query {\n//\tint u;\n//\tint v;\n//\tmap<int,int>mp;\n//};\n//\n//map<int, int>mk_mp(const int a) {\n//\tint rest(a);\n//\tmap<int,int>as;\n//\tfor (auto pr : primes) {\n//\t\twhile (rest%pr == 0) {\n//\t\t\tas[pr]++;\n//\t\t\trest /= pr;\n//\t\t}\n//\t}\n//\tif (rest!=1)as[rest]++;\n//\treturn as;\n//}\n//\n//#define Seg_Max_N (1<<18) \n//\n//class Tree {\n//public:\n//\tTree(int V, int root) : V(V), root(root), cnum(V), place(V), id(V) {\n//\t\tT.resize(V);\n//\t\tfor (int i = 0; i < MAXLOGV; i++) {\n//\t\t\tparent[i].resize(V);\n//\t\t}\n//\t\tdepth.resize(V);\n//\t}\n//\t// uとvをつなぐ\n//\t// lcaを求めることが主目的なので無向グラフとしている\n//\tvoid unite(int u, int v) {\n//\t\tT[u].push_back(v);\n//\t\tT[v].push_back(u);\n//\t}\n//\tvoid unite(vector<vector<int>>&e) {\n//\t\tT = e;\n//\t}\n//\t// initする\n//\t// コンストラクタだけじゃなくてこれも呼ばないとlcaが求められないぞ\n//\tvoid init() {\n//\t\tdfs(root, 0, 0);\n//\t\tint id = 0;\n//\t\tgetid(root, 0, id);\n//\t}\n//\t// uとvのlcaを求める\n//\tint lca(int u, int v) const {\n//\t\tif (depth[u] > depth[v]) swap(u, v);\n//\t\tfor (int k = 0; k < MAXLOGV; k++) {\n//\t\t\tif ((depth[v] - depth[u]) >> k & 1) {\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\tif (u == v) return u;\n//\t\tfor (int k = MAXLOGV - 1; k >= 0; k--) {\n//\t\t\tif (parent[k][u] != parent[k][v]) {\n//\t\t\t\tu = parent[k][u];\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\treturn parent[0][u];\n//\t}\n//\t// uとvの距離を求める\n//\t// edgeを定義しないといけない時はこれじゃダメ\n//\tint dist(int u, int v) const {\n//\t\tint p = lca(u, v);\n//\t\treturn (depth[u] - depth[p]) + (depth[v] - depth[p]);\n//\t}\n//\tint dfs(int v, int p, int d) {\n//\t\tparent[0][v] = p;\n//\t\tdepth[v] = d;\n//\t\tcnum[v] = 0;\n//\t\tfor (int i = 1; i < MAXLOGV; i++) {\n//\t\t\tparent[i][v] = parent[i - 1][parent[i - 1][v]];\n//\t\t}\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) cnum[v] += dfs(next, v, d + 1);\n//\t\t}\n//\t\treturn cnum[v] + 1;\n//\t}\n//\n//\tvoid dfs2(int v, int p, vector<vector<int>>&doubles, const vector<int>&nums) {\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) dfs2(next, v, doubles, nums);\n//\t\t}\n//\t\tdoubles[0][v] = nums[v];\n//\t\tfor (int j = 1; j < MAXLOGV; ++j) {\n//\t\t\tdoubles[j][v] = min(doubles[j][v], doubles[j - 1][v]);\n//\t\t}\n//\t\tfor (int j = 0; j < MAXLOGV - 1; ++j) {\n//\t\t\tdoubles[j + 1][parent[j][v]] = min(doubles[j + 1][parent[j][v]], doubles[j][v]);\n//\t\t}\n//\t}\n//\t//ここでは親から距離2^iの部分木の最小値を求めている\n//\tvector<vector<int>>get_doubles(const vector<int>&nums) {\n//\t\tvector<vector<int>>doubles(MAXLOGV, vector<int>(V, 1e9));\n//\t\tdfs2(root, -1, doubles, nums);\n//\t\treturn doubles;\n//\t}\n//\n//\tvoid getid(const int v, const int p, int &nplace) {\n//\t\tplace[v] = nplace;\n//\t\tid[nplace] = v;\n//\t\tnplace++;\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) getid(next, v, nplace);\n//\t\t}\n//\t}\n//\tstatic const int MAXLOGV = 25;\n//\t// グラフの隣接リスト表現\n//\tvector<vector<int> > T;\n//\t// 頂点の数\n//\tint V;\n//\t// 根ノードの番号\n//\tint root;\n//\n//\t// 親ノード\n//\tvector<int> parent[MAXLOGV];\n//\t// 根からの深さ\n//\tvector<int> depth;\n//\n//\t//子の数\n//\tvector<int>cnum;\n//\n//\t//変換\n//\tvector<int>place;\n//\tvector<int>id;\n//\n//};\n//\n//vector<int>pas;\n//void adfs(vector<pair<int, int>>&lrs, vector<int>&tos,const vector<vector<int>>&edges, const int now, const int from,int &id) {\n//\ttos[now]=id;\n//\tlrs[tos[now]].first=id++;\n//\tfor (auto e : edges[now]) {\n//\t\tif (e == from) {\n//\t\t\tpas[now] = from;\n//\t\t\tcontinue;\n//\t\t}\n//\t\tadfs(lrs,tos,edges,e,now,id);\n//\t}\n//\tlrs[tos[now]].second=id;\n//}\n//\n//vector<pair<int, int>>get_lrs(vector<int>&tos,const vector<vector<int>>&edges, const int root) {\n//\tpas.resize(tos.size());pas[0]=-1;\n//\tvector<pair<int,int>>lrs(edges.size());\n//\tint id=0;\n//\tadfs(lrs,tos,edges,0,-1,id);\n//\treturn lrs;\n//}\n\n\nld memo[101][101][101][3][3];\n\nld solve(int a, int b, int c, int d, int e) ;\n\nld solve(vector<int>v, int joker, int player) {\n\tif(!(v[0]>=0&&v[1]>=0&&v[2]>=0&&joker>=0&&joker<=2&&player>=0&&player<=2))return 0;\n\tif (memo[v[0]][v[1]][v[2]][joker][player] < -0.5) {\n\t\tif (v[0] == 0 && v[1] == 0 && v[2] == 0) {\n\t\t\tif (joker == 1) {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=0;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=1;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tconst int n_player=(player+1)%3;\n\t\t\t// A no card\n\t\t\tif (v[0] == 0 && v[2] == 0 && joker != 0) {\n\t\t\t\tif (player == 0) {\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = solve(v, joker, n_player);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tconst int drawn_player=(player^3);\n\t\t\t\t\tld ans = 0;\n\t\t\t\t\tif (drawn_player == 2) {\n\t\t\t\t\t\tans+=(joker==drawn_player)*solve(v,1, n_player);\n\t\t\t\t\t\tans+=v[1]*solve(v[0],v[1]-1,v[2],2, n_player);\n\n\t\t\t\t\t\tans/=(joker==2)+v[1];\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tassert(v[1]);\n\t\t\t\t\t\tans=solve(v[0],v[1]-1,v[2],joker,n_player);\n\t\t\t\t\t}\n\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=ans;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// B no card\n\t\t\telse if (v[0] == 0 && v[1] == 0 && joker != 1) {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = 1;\n\t\t\t}\n\t\t\t// C no card\n\t\t\telse if (v[1] == 0 && v[2] == 0 && joker != 2) {\n\t\t\t\tif (player == 2) {\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=solve(v,joker,n_player);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tconst int drawn_player = (player ^ 1);\n\t\t\t\t\tld ans = 0;\n\t\t\t\t\tif (drawn_player==0) {\n\t\t\t\t\t\tans += (joker == drawn_player)*solve(v, player ,n_player);\n\t\t\t\t\t\tans += v[0]*solve(v[0]-1, v[1], v[2], joker, n_player);\n\n\t\t\t\t\t\tassert((joker==0)+v[0]>=1);\n\t\t\t\t\t\tans /= (joker == 0) + v[0];\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tassert(v[0]);\n\t\t\t\t\t\tans = solve(v[0]-1, v[1], v[2], joker, n_player);\n\t\t\t\t\t}\n\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = ans;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tld ans=0;\n\t\t\t\tint drawn_player=(player+2)%3;\n\t\t\t\tif (player == 0) {\n\t\t\t\t\tans+=v[1]*solve(v[0]+1,v[1]-1,v[2],joker,n_player);\n\t\t\t\t\tans+=v[2]*solve(v[0],v[1],v[2]-1,joker,n_player);\n\t\t\t\t\tans+=(joker==2)*solve(v[0],v[1],v[2],0,n_player);\n\n\t\t\t\t\tassert(v[1]+v[2]+(joker==2)>=1);\n\t\t\t\t\tans/=v[1]+v[2]+(joker==2);\n\t\t\t\t}\n\t\t\t\telse if (player == 1) {\n\t\t\t\t\tans+=v[2]*solve(v[0],v[1]+1,v[2]-1,joker,n_player);\n\t\t\t\t\tans+=v[0]*solve(v[0]-1,v[1],v[2],joker,n_player);\n\t\t\t\t\tans+=(joker==0)*solve(v[0],v[1],v[2],1,n_player);\n\n\t\t\t\t\tassert(v[2]+v[0]+(joker==0)>=1);\n\t\t\t\t\tans/=v[2]+v[0]+(joker==0);\n\t\t\t\t}\n\t\t\t\telse if (player == 2) {\n\t\t\t\t\tif (v[1]) {\n\t\t\t\t\t\tans=solve(v[0],v[1]-1,v[2],joker,n_player);\n\t\t\t\t\t}\n\t\t\t\t\telse if (v[0]) {\n\t\t\t\t\t\tans=solve(v[0]-1,v[1],v[2]+1,joker,n_player);\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tans=solve(v,player,n_player);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = ans;\n\t\t\t}\n\t\t}\n\t}\n\treturn memo[v[0]][v[1]][v[2]][joker][player];\n}\n\nld solve(int a, int b, int c, int d, int e) {\n\treturn solve(vector<int>{a, b, c},d,e);\n}\n\nint main()\n{\n\n\tint AB=0,BC=0,CA=0;\n\tint joker=-1;\n\n\tfor (int i = 0; i < 101; ++i) {\n\t\tfor (int j = 0; j < 101; ++j) {\n\t\t\tfor (int k = 0; k < 101; ++k) {\n\t\t\t\tfor (int l = 0; l < 3; ++l) {\n\t\t\t\t\tfor (int m = 0; m < 3; ++m) {\n\t\t\t\t\t\tmemo[i][j][k][l][m]=-1;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t{\n\t\tint N; cin >> N;\n\n\t\tvector<vector<int>>nums(3, vector<int>(101));\n\t\tfor (int i = 0; i < 3; ++i) {\n\t\t\tint m; cin >> m;\n\t\t\tmap<int, int>mp;\n\t\t\twhile (m--) {\n\t\t\t\tint a; cin >> a;\n\t\t\t\tmp[a]++;\n\t\t\t}\n\t\t\tfor (auto m : mp) {\n\t\t\t\tif (m.second % 2)nums[i][m.first]++;\n\t\t\t}\n\t\t}\n\n\t\tfor (int i = 0; i <= N; ++i) {\n\t\t\tif (i == 0) {\n\t\t\t\tfor (int j = 0; j < 3; ++j) {\n\t\t\t\t\tif (nums[j][i]) {\n\t\t\t\t\t\tjoker=j;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (nums[0][i] && nums[1][i]) {\n\t\t\t\t\tAB++;\n\t\t\t\t}\n\t\t\t\telse if (nums[1][i] && nums[2][i]) {\n\t\t\t\t\tBC++;\n\t\t\t\t}\n\t\t\t\telse if (nums[2][i] && nums[0][i]) {\n\t\t\t\t\tCA++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tld ans=solve(AB,BC,CA,joker,0);\n\n\tcout<<setprecision(10)<<fixed<<double(ans)<<endl;\n\t\n\treturn 0;\n}", "accuracy": 0.11904761904761904, "time_ms": 40, "memory_kb": 148148, "score_of_the_acc": -1.0513, "final_rank": 7 }, { "submission_id": "aoj_2802_2915527", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\nusing ld = long double;\nconst ld eps = 1e-9;\n\n\n//namespace cent {\n//\n//\tstruct Edge {\n//\t\tint src;\n//\t\tint dst;\n//\t\tlong long int cost;\n//\t};\n//\tusing Graph = vector<vector<Edge>>;\n//\n//\tclass Centroid {\n//\tprivate:\n//\t\tint dfs(const Graph&g, const int now, const int from, vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tint sum = 1;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tsum += dfs(g, e.dst, e.src, ch_nums, oks);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ch_nums[now] = sum;\n//\t\t}\n//\n//\t\tint find_centroid(const int asize, const vector<vector<Edge>>&graph, const int pre_root, const int pre_from, const vector<int>&ch_nums, const vector<int>&oks) {\n//\t\t\tfor (auto&& e : graph[pre_root]) {\n//\t\t\t\tif (e.dst == pre_from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tif (ch_nums[e.dst]>asize / 2)return find_centroid(asize, graph, e.dst, e.src, ch_nums, oks);\n//\t\t\t}\n//\t\t\treturn pre_root;\n//\t\t}\n//\n//\t\tvoid dfs2(const Graph&g, const int root,const int now, const int from, const vector<int>&oks,int depth) {\n//\t\t\tmp[make_pair(root,now)]=depth;\n//\t\t\tfor (auto &&e : g[now]) {\n//\t\t\t\tif (e.dst == from || oks[e.dst] != -1)continue;\n//\t\t\t\telse {\n//\t\t\t\t\tdfs2(g,root,e.dst,e.src,oks,depth+1);\n//\t\t\t\t}\n//\t\t\t}\n//\t\t};\n//\n//\n//\t\tvoid cent(const vector<vector<Edge>>&graph, vector<int>&oks, const int root, const int from, vector<vector<int>>&centroid_edges, int& fst_centroid, int depth, vector<int>&ch_nums) {\n//\t\t\tdfs(graph, root, from, ch_nums, oks);\n//\n//\t\t\tint cent_id = find_centroid(ch_nums[root], graph, root, from, ch_nums, oks);\n//\n//\n//\t\t\tdfs2(graph,cent_id,cent_id,-1,oks,0);\n//\t\t\tlens1[cent_id][make_pair(0,0)]--;\n//\t\t\tlens2[cent_id][0]--;\n//\n//\n//\t\t\toks[cent_id] = depth;\n//\n//\t\t\t//for (auto&& e : graph[cent_id]) {\n//\t\t\t//\tif (e.dst == from)continue;\n//\t\t\t//\tif (oks[e.dst] != -1)continue;\n//\n//\t\t\t//\tdfs2(graph, e.dst, e.dst, e.src, oks,e.cost%mod,e.cost%mod,1);\n//\n//\t\t\t//\tfor (auto&& l1 : lens1[e.dst]) {\n//\t\t\t//\t\tint keta = l1.first.second;\n//\t\t\t//\t\tlong long int num = l1.first.first;\n//\n//\t\t\t//\t\tlong long int need = (mod - num) / mod_pow(10, keta);\n//\t\t\t//\t\tneed%=mod;\n//\t\t\t//\t\tauto it = lens2[e.dst].find(need);\n//\t\t\t//\t\tif (it != lens2[e.dst].end()) {\n//\t\t\t//\t\t\tans -= l1.second*it->second;\n//\t\t\t//\t\t}\n//\t\t\t//\t}\n//\t\t\t//\tlens1[e.dst].clear();\n//\t\t\t//\tlens2[e.dst].clear();\n//\t\t\t//}\n//\n//\t\t\tif (from != -1) {\n//\t\t\t\tcentroid_edges[from].push_back(cent_id);\n//\t\t\t}\n//\t\t\telse {\n//\t\t\t\tfst_centroid = cent_id;\n//\t\t\t}\n//\t\t\tfor (auto&& e : graph[cent_id]) {\n//\t\t\t\tif (e.dst == from)continue;\n//\t\t\t\tif (oks[e.dst] != -1)continue;\n//\t\t\t\tcent(graph, oks, e.dst, e.src, centroid_edges, fst_centroid, depth + 1, ch_nums);\n//\t\t\t}\n//\t\t}\n//\n//\tpublic:\n//\n//\t\tmap<pair<int,int>,int>mp;\n//\n//\t\tvector<map<pair<long long int,int>, long long int>>lens1;\n//\t\tvector<map<long long int, long long int>>lens2;\n//\t\tvector<vector<int>> centroid_graph;\n//\t\tvector<int>ts;\n//\t\tvector<int>parents;\n//\t\tvector<int>oks;\n//\t\tvector<int>anss;\n//\n//\t\t//fst:root snd:centroid_graph\n//\t\tvoid init(const Graph&g) {\n//\t\t\tlens1.resize(g.size());\n//\t\t\tlens2.resize(g.size());\n//\t\t\toks = vector<int>(g.size(), -1);\n//\t\t\tint root = -1;\n//\t\t\tcentroid_graph.resize(g.size());\n//\t\t\tparents = vector<int>(g.size(), -1);\n//\t\t\tts=vector<int>(g.size(),-1);\n//\t\t\tanss=vector<int>(g.size(),100000);\n//\n//\t\t\tvector<int>ch_nums(g.size());\n//\t\t\tcent(g, oks, 0, -1, centroid_graph, root, 0, ch_nums);\n//\n//\t\t\tfor (int i = 0; i < centroid_graph.size(); ++i) {\n//\t\t\t\tfor (auto&& e : centroid_graph[i]) {\n//\t\t\t\t\tparents[e] = i;\n//\t\t\t\t}\n//\t\t\t}\n//\t\t\treturn ;\n//\t\t}\n//\t}centroid;\n//\n//\n//\tvoid addEdge(Graph& g, int a, int b, long long int c) {\n//\t\tg[a].push_back(Edge{ a,b,c });\n//\t\tg[b].push_back(Edge{ b,a,c });\n//\t}\n//}\n\n\n//const int mod = 1000000007;\n//struct Mod {\n//public:\n//\tint num;\n//\tMod() : Mod(0) { ; }\n//\tMod(long long int n) : num((n % mod + mod) % mod) {\n//\t\tstatic_assert(mod<INT_MAX / 2, \"mod is too big, please make num 'long long int' from 'int'\");\n//\t}\n//\tMod(int n) : Mod(static_cast<long long int>(n)) { ; }\n//\toperator int() { return num; }\n//};\n//\n//Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mod); }\n//Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; }\n//Mod operator+(const Mod a, const long long int b) { return b + a; }\n//Mod operator++(Mod &a) { return a + Mod(1); }\n//Mod operator-(const Mod a, const Mod b) { return Mod((mod + a.num - b.num) % mod); }\n//Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; }\n//Mod operator--(Mod &a) { return a - Mod(1); }\n//Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mod); }\n//Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; }\n//Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; }\n//Mod operator*(const Mod a, const int b) { return Mod(b)*a; }\n//Mod operator+=(Mod &a, const Mod b) { return a = a + b; }\n//Mod operator+=(long long int &a, const Mod b) { return a = a + b; }\n//Mod operator-=(Mod &a, const Mod b) { return a = a - b; }\n//Mod operator-=(long long int &a, const Mod b) { return a = a - b; }\n//Mod operator*=(Mod &a, const Mod b) { return a = a * b; }\n//Mod operator*=(long long int &a, const Mod b) { return a = a * b; }\n//Mod operator*=(Mod& a, const long long int &b) { return a = a * b; }\n//Mod operator^(const Mod a, const int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = (a * a) ^ (n / 2);\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//Mod mod_pow(const Mod a, const long long int n) {\n//\tif (n == 0) return Mod(1);\n//\tMod res = mod_pow((a * a), (n / 2));\n//\tif (n % 2) res = res * a;\n//\treturn res;\n//}\n//\n////mod が素数の場合のみ 違う場合はextend euclid を用いる。\n//Mod inv(const Mod a) { return a ^ (mod - 2); }\n//Mod operator/(const Mod a, const Mod b) {\n//\tassert(b.num != 0);\n//\treturn a * inv(b);\n//}\n//Mod operator/(const long long int a, const Mod b) {\n//\treturn Mod(a) / b;\n//}\n//Mod operator/=(Mod &a, const Mod b) {\n//\treturn a = a / b;\n//}\n//\n//#define MAX_MOD_N 1024000\n//\n//Mod fact[MAX_MOD_N], factinv[MAX_MOD_N];\n//void init(const int amax = MAX_MOD_N) {\n//\tfact[0] = Mod(1); factinv[0] = 1;\n//\tfor (int i = 0; i < amax - 1; ++i) {\n//\t\tfact[i + 1] = fact[i] * Mod(i + 1);\n//\t\tfactinv[i + 1] = factinv[i] / Mod(i + 1);\n//\t}\n//}\n//Mod comb(const int a, const int b) {\n//\treturn fact[a] * factinv[b] * factinv[a - b];\n//}\n//\n//vector<int>primes;\n//void hurui(const int amax=3500) {\n//\tstatic bool flag = false;\n//\tif (flag)return;\n//\tvector<int>sos;\n//\tsos = vector<int>(amax + 1, true);\n//\tsos[0] = false; sos[1] = false;\n//\tfor (int i = 2; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tfor (int j = 2 * i; j <= amax; j += i)sos[j] = false;\n//\t\t}\n//\t}\n//\tfor (int i = 0; i <= amax; ++i) {\n//\t\tif (sos[i]) {\n//\t\t\tprimes.push_back(i);\n//\t\t}\n//\t}\n//\tflag = true;\n//}\n//\n//\n//struct query {\n//\tint u;\n//\tint v;\n//\tmap<int,int>mp;\n//};\n//\n//map<int, int>mk_mp(const int a) {\n//\tint rest(a);\n//\tmap<int,int>as;\n//\tfor (auto pr : primes) {\n//\t\twhile (rest%pr == 0) {\n//\t\t\tas[pr]++;\n//\t\t\trest /= pr;\n//\t\t}\n//\t}\n//\tif (rest!=1)as[rest]++;\n//\treturn as;\n//}\n//\n//#define Seg_Max_N (1<<18) \n//\n//class Tree {\n//public:\n//\tTree(int V, int root) : V(V), root(root), cnum(V), place(V), id(V) {\n//\t\tT.resize(V);\n//\t\tfor (int i = 0; i < MAXLOGV; i++) {\n//\t\t\tparent[i].resize(V);\n//\t\t}\n//\t\tdepth.resize(V);\n//\t}\n//\t// uとvをつなぐ\n//\t// lcaを求めることが主目的なので無向グラフとしている\n//\tvoid unite(int u, int v) {\n//\t\tT[u].push_back(v);\n//\t\tT[v].push_back(u);\n//\t}\n//\tvoid unite(vector<vector<int>>&e) {\n//\t\tT = e;\n//\t}\n//\t// initする\n//\t// コンストラクタだけじゃなくてこれも呼ばないとlcaが求められないぞ\n//\tvoid init() {\n//\t\tdfs(root, 0, 0);\n//\t\tint id = 0;\n//\t\tgetid(root, 0, id);\n//\t}\n//\t// uとvのlcaを求める\n//\tint lca(int u, int v) const {\n//\t\tif (depth[u] > depth[v]) swap(u, v);\n//\t\tfor (int k = 0; k < MAXLOGV; k++) {\n//\t\t\tif ((depth[v] - depth[u]) >> k & 1) {\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\tif (u == v) return u;\n//\t\tfor (int k = MAXLOGV - 1; k >= 0; k--) {\n//\t\t\tif (parent[k][u] != parent[k][v]) {\n//\t\t\t\tu = parent[k][u];\n//\t\t\t\tv = parent[k][v];\n//\t\t\t}\n//\t\t}\n//\t\treturn parent[0][u];\n//\t}\n//\t// uとvの距離を求める\n//\t// edgeを定義しないといけない時はこれじゃダメ\n//\tint dist(int u, int v) const {\n//\t\tint p = lca(u, v);\n//\t\treturn (depth[u] - depth[p]) + (depth[v] - depth[p]);\n//\t}\n//\tint dfs(int v, int p, int d) {\n//\t\tparent[0][v] = p;\n//\t\tdepth[v] = d;\n//\t\tcnum[v] = 0;\n//\t\tfor (int i = 1; i < MAXLOGV; i++) {\n//\t\t\tparent[i][v] = parent[i - 1][parent[i - 1][v]];\n//\t\t}\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) cnum[v] += dfs(next, v, d + 1);\n//\t\t}\n//\t\treturn cnum[v] + 1;\n//\t}\n//\n//\tvoid dfs2(int v, int p, vector<vector<int>>&doubles, const vector<int>&nums) {\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) dfs2(next, v, doubles, nums);\n//\t\t}\n//\t\tdoubles[0][v] = nums[v];\n//\t\tfor (int j = 1; j < MAXLOGV; ++j) {\n//\t\t\tdoubles[j][v] = min(doubles[j][v], doubles[j - 1][v]);\n//\t\t}\n//\t\tfor (int j = 0; j < MAXLOGV - 1; ++j) {\n//\t\t\tdoubles[j + 1][parent[j][v]] = min(doubles[j + 1][parent[j][v]], doubles[j][v]);\n//\t\t}\n//\t}\n//\t//ここでは親から距離2^iの部分木の最小値を求めている\n//\tvector<vector<int>>get_doubles(const vector<int>&nums) {\n//\t\tvector<vector<int>>doubles(MAXLOGV, vector<int>(V, 1e9));\n//\t\tdfs2(root, -1, doubles, nums);\n//\t\treturn doubles;\n//\t}\n//\n//\tvoid getid(const int v, const int p, int &nplace) {\n//\t\tplace[v] = nplace;\n//\t\tid[nplace] = v;\n//\t\tnplace++;\n//\t\tfor (int next : T[v]) {\n//\t\t\tif (next != p) getid(next, v, nplace);\n//\t\t}\n//\t}\n//\tstatic const int MAXLOGV = 25;\n//\t// グラフの隣接リスト表現\n//\tvector<vector<int> > T;\n//\t// 頂点の数\n//\tint V;\n//\t// 根ノードの番号\n//\tint root;\n//\n//\t// 親ノード\n//\tvector<int> parent[MAXLOGV];\n//\t// 根からの深さ\n//\tvector<int> depth;\n//\n//\t//子の数\n//\tvector<int>cnum;\n//\n//\t//変換\n//\tvector<int>place;\n//\tvector<int>id;\n//\n//};\n//\n//vector<int>pas;\n//void adfs(vector<pair<int, int>>&lrs, vector<int>&tos,const vector<vector<int>>&edges, const int now, const int from,int &id) {\n//\ttos[now]=id;\n//\tlrs[tos[now]].first=id++;\n//\tfor (auto e : edges[now]) {\n//\t\tif (e == from) {\n//\t\t\tpas[now] = from;\n//\t\t\tcontinue;\n//\t\t}\n//\t\tadfs(lrs,tos,edges,e,now,id);\n//\t}\n//\tlrs[tos[now]].second=id;\n//}\n//\n//vector<pair<int, int>>get_lrs(vector<int>&tos,const vector<vector<int>>&edges, const int root) {\n//\tpas.resize(tos.size());pas[0]=-1;\n//\tvector<pair<int,int>>lrs(edges.size());\n//\tint id=0;\n//\tadfs(lrs,tos,edges,0,-1,id);\n//\treturn lrs;\n//}\n\n\nld memo[101][101][101][3][3];\n\nld solve(int a, int b, int c, int d, int e) ;\n\nld solve(vector<int>v, int joker, int player) {\n\tif(!(v[0]>=0&&v[1]>=0&&v[2]>=0&&joker>=0&&joker<=2&&player>=0&&player<=2))return 0;\n\tif (memo[v[0]][v[1]][v[2]][joker][player] < -0.5) {\n\t\tif (v[0] == 0 && v[1] == 0 && v[2] == 0) {\n\t\t\tif (joker == 1) {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=0;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=1;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tconst int n_player=(player+1)%3;\n\t\t\t// A no card\n\t\t\tif (v[0] == 0 && v[2] == 0 && joker != 0) {\n\t\t\t\tif (player == 0) {\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = solve(v, joker, n_player);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tconst int drawn_player=(player^3);\n\t\t\t\t\tld ans = 0;\n\t\t\t\t\tif (drawn_player == 2) {\n\t\t\t\t\t\tans+=(joker==drawn_player)*solve(v,1, n_player);\n\t\t\t\t\t\tans+=v[1]*solve(v[0],v[1]-1,v[2],2, n_player);\n\n\t\t\t\t\t\tans/=(joker==2)+v[1];\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tassert(v[1]);\n\t\t\t\t\t\tans=solve(v[0],v[1]-1,v[2],joker,n_player);\n\t\t\t\t\t}\n\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=ans;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// B no card\n\t\t\telse if (v[0] == 0 && v[1] == 0 && joker != 1) {\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = 1;\n\t\t\t}\n\t\t\t// C no card\n\t\t\telse if (v[1] == 0 && v[2] == 0 && joker != 2) {\n\t\t\t\tif (player == 2) {\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player]=solve(v,joker,n_player);\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tconst int drawn_player = (player ^ 1);\n\t\t\t\t\tld ans = 0;\n\t\t\t\t\tif (drawn_player==0) {\n\t\t\t\t\t\tans += (joker == drawn_player)*solve(v, player ,n_player);\n\t\t\t\t\t\tans += v[0]*solve(v[0]-1, v[1], v[2], joker, n_player);\n\n\t\t\t\t\t\tassert((joker==0)+v[0]>=1);\n\t\t\t\t\t\tans /= (joker == 0) + v[0];\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tassert(v[0]);\n\t\t\t\t\t\tans = solve(v[0]-1, v[1], v[2], joker, n_player);\n\t\t\t\t\t}\n\n\t\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = ans;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tld ans=0;\n\t\t\t\tint drawn_player=(player+2)%3;\n\t\t\t\tif (player == 0) {\n\t\t\t\t\tans+=v[1]*solve(v[0]+1,v[1]-1,v[2],joker,n_player);\n\t\t\t\t\tans+=v[2]*solve(v[0],v[1],v[2]-1,joker,n_player);\n\t\t\t\t\tans+=(joker==2)*solve(v[0],v[1],v[2],0,n_player);\n\n\t\t\t\t\tassert(v[1]+v[2]+(joker==2)>=1);\n\t\t\t\t\tans/=v[1]+v[2]+(joker==2);\n\t\t\t\t}\n\t\t\t\telse if (player == 1) {\n\t\t\t\t\tans+=v[2]*solve(v[0],v[1]+1,v[2]-1,joker,n_player);\n\t\t\t\t\tans+=v[0]*solve(v[0]-1,v[1],v[2],joker,n_player);\n\t\t\t\t\tans+=(joker==0)*solve(v[0],v[1],v[2],1,n_player);\n\n\t\t\t\t\tassert(v[2]+v[0]+(joker==0)>=1);\n\t\t\t\t\tans/=v[2]+v[0]+(joker==0);\n\t\t\t\t}\n\t\t\t\telse if (player == 2) {\n\t\t\t\t\tif (v[1]) {\n\t\t\t\t\t\tans=solve(v[0],v[1]-1,v[2],joker,n_player);\n\t\t\t\t\t}\n\t\t\t\t\telse if (v[0]) {\n\t\t\t\t\t\tans=solve(v[0]-1,v[1],v[2]+1,joker,n_player);\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tans=solve(v,player,n_player);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tmemo[v[0]][v[1]][v[2]][joker][player] = ans;\n\t\t\t}\n\t\t}\n\t}\n\treturn memo[v[0]][v[1]][v[2]][joker][player];\n}\n\nld solve(int a, int b, int c, int d, int e) {\n\treturn solve(vector<int>{a, b, c},d,e);\n}\n\nint main()\n{\n\n\tint AB=0,BC=0,CA=0;\n\tint joker=-1;\n\n\tfor (int i = 0; i < 101; ++i) {\n\t\tfor (int j = 0; j < 101; ++j) {\n\t\t\tfor (int k = 0; k < 101; ++k) {\n\t\t\t\tfor (int l = 0; l < 3; ++l) {\n\t\t\t\t\tfor (int m = 0; m < 3; ++m) {\n\t\t\t\t\t\tmemo[i][j][k][l][m]=-1;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t{\n\t\tint N; cin >> N;\n\n\t\tvector<vector<int>>nums(3, vector<int>(101));\n\t\tfor (int i = 0; i < 3; ++i) {\n\t\t\tint m; cin >> m;\n\t\t\tmap<int, int>mp;\n\t\t\twhile (m--) {\n\t\t\t\tint a; cin >> a;\n\t\t\t\tmp[a]++;\n\t\t\t}\n\t\t\tfor (auto m : mp) {\n\t\t\t\tif (m.second % 2)nums[i][m.first]++;\n\t\t\t}\n\t\t}\n\n\t\tfor (int i = 0; i <= N; ++i) {\n\t\t\tif (i == 0) {\n\t\t\t\tfor (int j = 0; j < 3; ++j) {\n\t\t\t\t\tif (nums[j][i]) {\n\t\t\t\t\t\tjoker=j;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (nums[0][i] && nums[1][i]) {\n\t\t\t\t\tAB++;\n\t\t\t\t}\n\t\t\t\telse if (nums[1][i] && nums[2][i]) {\n\t\t\t\t\tBC++;\n\t\t\t\t}\n\t\t\t\telse if (nums[2][i] && nums[0][i]) {\n\t\t\t\t\tCA++;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tld ans=solve(AB,BC,CA,joker,0);\n\n\tcout<<setprecision(10)<<fixed<<ans<<endl;\n\t\n\treturn 0;\n}", "accuracy": 0.11904761904761904, "time_ms": 50, "memory_kb": 148168, "score_of_the_acc": -1.0687, "final_rank": 8 }, { "submission_id": "aoj_2802_2390998", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n\nmap<int, double> memo;\n\ndouble solve(int x, int y, int z, int turn, int joker){\n int idx = (((x*100+y)*100+z)*3+turn)*3+joker;\n if(memo.count(idx)==1) return memo[idx];\n// dbg(x,y,z,turn,joker);\n if(x+y+z==0){\n if(joker==1) return 0;\n else return 1;\n }\n double ans=0;\n if(turn==0){\n double total = x+z+(joker==2);\n if(total==0){\n if(y==0){\n if(joker==0) ans = 1;\n else ans = 0;\n }\n else ans = solve(0,y-1,0,1,joker);\n }\n else {\n if(x>0) ans += x*solve(x-1, y, z, 1, joker);\n if(z>0) ans += z*solve(x, y+1, z-1, 1, joker);\n if(joker==2) ans += solve(x,y,z,1,0);\n ans /= total;\n }\n }\n else if(turn==1){\n double total = x+y+(joker==0);\n if(total==0){\n if(z==0){\n if(joker==1) ans=0;\n else ans=1;\n }\n else {\n if(joker==1) ans = solve(0,0,z-1,2,joker);\n else ans = (solve(0,0,z,2,1) + z*solve(0,0,z-1,2,2)) / (z+1.0);\n }\n }\n else {\n if(x>0) ans += x*solve(x-1,y,z+1,2,joker);\n if(y>0) ans += y*solve(x,y-1,z,2,joker);\n if(joker==0) ans += solve(x,y,z,2,1);\n ans /= total;\n }\n }\n else if(turn==2){\n if(y+z+(joker==1) == 0) ans = 1;\n else if(z>0) ans = solve(x,y,z-1,0,joker);\n else if(y>0) ans = solve(x+1,y-1,z,0,joker);\n else if(joker==1) ans = solve(x,y,z,0,2);\n }\n// else assert(false);\n return memo[idx]=ans;\n}\n\nint main(){\n int n;\n cin>>n;\n vector<int> vec(n,0);\n int joker=-1;\n rep(i,3){\n int m; cin>>m;\n rep(j,m){\n int d; cin>>d;\n if(d==0) joker=i;\n else {\n d--;\n vec[d] ^= (1<<i);\n }\n }\n }\n// assert(joker!=-1);\n\n int x=0,y=0,z=0;\n rep(i,n){\n if(vec[i]==5) x++;\n else if(vec[i]==3) y++;\n else if(vec[i]==6) z++;\n// else if(vec[i]!=0) assert(false);\n }\n\n printf(\"%.8f\\n\", solve(x,y,z,0,joker));\n\n return 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 10, "memory_kb": 19252, "score_of_the_acc": 0, "final_rank": 9 }, { "submission_id": "aoj_2802_2390855", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 1120000000\n\nmap<int, double> memo;\n\ndouble solve(int x, int y, int z, int turn, int joker){\n int idx = (((x*100+y)*100+z)*3+turn)*3+joker;\n if(memo.count(idx)==1) return memo[idx];\n// dbg(x,y,z,turn,joker);\n if(x+y+z==0){\n if(joker==1) return 0;\n else return 1;\n }\n double ans=0;\n if(turn==0){\n double total = x+z+(joker==2);\n if(total==0){\n if(y==0){\n if(joker==0) ans = 1;\n else ans = 0;\n }\n else ans = solve(0,y-1,0,1,joker);\n }\n else {\n if(x>0) ans += x*solve(x-1, y, z, 1, joker);\n if(z>0) ans += z*solve(x, y+1, z-1, 1, joker);\n if(joker==2) ans += solve(x,y,z,1,0);\n ans /= total;\n }\n }\n else if(turn==1){\n double total = x+y+(joker==0);\n if(total==0){\n if(z==0){\n if(joker==1) ans=0;\n else ans=1;\n }\n else {\n if(joker==1) ans = solve(0,0,z-1,2,joker);\n else ans = (solve(0,0,z,2,1) + z*solve(0,0,z-1,2,2)) / (z+1.0);\n }\n }\n else {\n if(x>0) ans += x*solve(x-1,y,z+1,2,joker);\n if(y>0) ans += y*solve(x,y-1,z,2,joker);\n if(joker==0) ans += solve(x,y,z,2,1);\n ans /= total;\n }\n }\n else if(turn==2){\n if(y+z+(joker==1) == 0) ans = 1;\n else if(z>0) ans = solve(x,y,z-1,0,joker);\n else if(y>0) ans = solve(x+1,y-1,z,0,joker);\n else if(joker==1) ans = solve(x,y,z,0,2);\n }\n else assert(false);\n return memo[idx]=ans;\n}\n\nint main(){\n int n;\n cin>>n;\n vector<int> vec(n,0);\n int joker=-1;\n rep(i,3){\n int m; cin>>m;\n rep(j,m){\n int d; cin>>d;\n if(d==0) joker=i;\n else {\n d--;\n vec[d] ^= (1<<i);\n }\n }\n }\n assert(joker!=-1);\n\n int x=0,y=0,z=0;\n rep(i,n){\n if(vec[i]==5) x++;\n else if(vec[i]==3) y++;\n else if(vec[i]==6) z++;\n else if(vec[i]!=0) assert(false);\n }\n\n printf(\"%.8f\\n\", solve(x,y,z,0,joker));\n\n return 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 10, "memory_kb": 19280, "score_of_the_acc": -0.0002, "final_rank": 10 }, { "submission_id": "aoj_2802_2270648", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef double D;\n\nvector<int> hand(int n){\n vector<int> h(n+1,0);\n\n int m; cin >> m;\n for(int i=0;i<m;i++){\n int a; cin >> a; h[a]++;\n }\n \n for(int i=0;i<=n;i++) h[i] %= 2;\n\n return h;\n}\n\nD memo2[3][3][110]; //memo2[turn][joker][card]\n\n//0: kotori, 1: umi\nD rec2(int t, int j, int c){\n D &res = memo2[t][j][c];\n if(res >= 0) return res;\n \n if(c == 0){\n if(j == 1) return res = 0; //umi loses\n else return res = 1; //umi wins\n }\n\n if(t == 0){ //kotori turn\n return res = rec2(1-t,j,c-1);\n }else{ //umi turn\n int total = c + (j==0);\n res = c * rec2(1-t,j,c-1);\n if(j==0) res += rec2(1-t,1,c);\n res /= total;\n\n return res;\n }\n}\n\nD memo3[3][3][110][110][110]; //memo3[turn][joker][hono][umi][koto]\n\n//honoka: 0, umi: 1, kotori: 2\nD rec3(int t, int j, vector<int> p){\n D &res = memo3[t][j][p[0]][p[1]][p[2]];\n if(res >= 0) return res;\n\n //only joker\n if(p[0]==0 && p[1]==0 && p[2]==0){\n if(j == 1) return res = 0; //umi loses\n else return res = 1; //umi wins\n }\n\n int nt = (t+1)%3;\n //turn player has no card\n if(j!=t && p[(t+1)%3]==0 && p[(t+2)%3]==0){\n return res = rec3(nt, j, p); //skip turn\n }\n\n //two players remain\n for(int i=0;i<3;i++){\n if(j!=i && p[(i+1)%3]==0 && p[(i+2)%3]==0){\n if(i==1) return res = 1; //umi wins\n else return res = rec2(t==1,j==1,p[i]); //umi remains\n }\n }\n\n //three players remain\n if(t==2){\n if(p[0]){ //umi has cards that kotori also has\n res = rec3(nt, j, {p[0]-1,p[1],p[2]});\n }else if(p[0]==0 && p[2]==0 && j==1){ //umi only has joker\n res = 1;\n }else{\n res = rec3(nt, j, {p[0],p[1]+1,p[2]-1});\n }\n }else{\n int total = p[t] + p[(t+1)%3] + (j==(t+2)%3);\n\n vector<int> np = p;\n np[t]--;\n np[(t+2)%3]++;\n res = p[t] * rec3(nt,j,np);\n \n np = p;\n np[(t+1)%3]--;\n res += p[(t+1)%3] * rec3(nt,j,np);\n\n if(j==(t+2)%3) res += rec3(nt,t,p);\n\n res /= total;\n }\n \n return res;\n}\n\nint main(){\n int n;\n cin >> n;\n\n vector<int> hono = hand(n), umi = hand(n), koto = hand(n);\n\n int joker = 0;\n if(hono[0] == 1) joker = 0;\n if( umi[0] == 1) joker = 1;\n if(koto[0] == 1) joker = 2;\n\n int h=0, u=0, k=0;\n for(int i=1;i<=n;i++){\n if(umi[i] && koto[i]) h++;\n if(koto[i] && hono[i]) u++;\n if(hono[i] && umi[i]) k++;\n }\n\n for(int a=0;a<3;a++){\n for(int b=0;b<3;b++){\n for(int c=0;c<=n;c++){\n\tmemo2[a][b][c] = -1;\n\n\tfor(int d=0;d<=n;d++){\n\t for(int e=0;e<=n;e++) memo3[a][b][c][d][e] = -1;\n\t}\n }\n }\n }\n\n cout << fixed << setprecision(10) << rec3(0, joker, {h,u,k}) << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 85784, "score_of_the_acc": -0.5159, "final_rank": 3 } ]
aoj_2809_cpp
E: 卒業式 背景 ある日 Y さんはプログラミングコンテストに参加するため,会場がある大学に向かいました. ところが大学に着くと人がたくさん!なんと今日は卒業式だったのです. 会場に向かおうにも人に押し流されてしまい,自分の進みたい方向に進むことすらできません. 人混みから抜け出すために,Y さんは今いる場所から少しでも遠くに行きたいと考えました. そこで Y さんは状況を以下のような問題として定式化し,競技プログラミングを役に立てることにしました. なお,以下の問題文では Y さんは点 $P$ としてモデル化されています. 問題 座標平面上の原点に点 $P$ が置かれている. 点 $P$ を動かし,できるだけ原点からのマンハッタン距離が遠い位置に移動させたい. はじめに,文字列 $S = s_1s_2 \cdots s_{|S|}$ ($|S|$ は $S$ の文字数) が与えられる. 点 $P$ の移動は,文字列 $S$ の先頭から文字を 1 文字ずつ読み込むことで行う. 文字列 $S$ は文字 'U', 'L', 'D', 'R' からなる. それぞれの文字を読み込んだとき,点 $P$ の移動前の座標を $(x, y)$ とすると, 移動後の点 $P$ の座標はそれぞれ $(x, y+1),\ (x-1, y),\ (x, y-1),\ (x+1, y)$ となる. 各文字を読み込む直前に,魔法をかけるか否かを選択することができる. 魔法には魔法 1 と魔法 2 の二種類がある.文字列 $S$ の $i$ 番目の文字を $s_i$ とすると, $s_i$ を読み込む直前に魔法をかけたときの変化は以下の通りである. 魔法 1 をかけたとき: 全ての $s_j \ (i \le j \le |S|)$ に対し,'U' を 'D' に,'D' を 'U' に置換する. 魔法 2 をかけたとき: 全ての $s_j \ (i \le j \le |S|)$ に対し,'L' を 'R' に,'R' を 'L' に置換する. 直感的には,魔法 1 ではその後の上下の扱いを反転させることができ,魔法 2 では左右の扱いを反転させることができる. ある文字を読み込む前にかける魔法の回数は複数回でも構わない.また,両方の魔法を続けてかけてもかまわない. ただし,文字列 $S$ の文字をすべて読み終えるまでに魔法をかけられる回数は,合計 $K$ 回までである. 詳細はサンプルを参照されたい. 文字列 $S$ の文字をすべて読み終えた後の点 $P$ の座標を $(x',y')$ とするとき,$|x'| + |y'|$ の最大値を求めよ. 制約 $1 \le |S| \le 2000$ $1 \le K \le 2000$ 入力 入力は以下の形式で標準入力から与えられる. $S$ $K$ 出力 $|x'| + |y'|$ の最大値を 1 行で出力せよ.また、末尾に改行も出力せよ. サンプル サンプル入力 1 RRLUDDD 2 サンプル出力 1 7 3 文字目を読み込む直前に魔法 2 をかけると,文字列 $S$ は "RRRUDDD" となる. 続いて 5 文字目を読み込む直前に魔法 1 をかけると,文字列 $S$ は "RRRUUUU" となる. すべての文字を読み終えた後の点 $P$ の座標は $(3, 4)$ となり, 原点からのマンハッタン距離は 7 である.これはこの例の最大値である. サンプル入力 2 LULLLUULLU 1984 サンプル出力 2 10 1 回も魔法をかけなかった場合,$x’ = -6, \ y’ = 4$ となり,$|x’| + |y’| = 10$ である. サンプル入力 3 DRDLUDD 1 サンプル出力 3 5 サンプル入力 4 LURRRLUDLL 1 サンプル出力 4 6
[ { "submission_id": "aoj_2809_9117771", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\n\n#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)\n#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)\n\ntemplate <typename T> bool chmin(T &a, const T &b) {\n\tif (a <= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> bool chmax(T &a, const T &b) {\n\tif (a >= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> T max(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T min(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T sum(vector<T> &a){\n\tT ret = 0;\n\tfor (int i=0; i<(int)a.size(); i++) ret += a[i];\n\treturn ret;\n}\n\nvector<int> solve(vector<int> a){\n\tint geta = 2500;\n\tvector<int> dp0(5000,2100);\n\tvector<int> dp1(5000,2100);\n\tdp0[geta] = 0;\n\trep(i,0,(int)a.size()){\n\t\tvector<int> ndp0(5000,2100);\n\t\tvector<int> ndp1(5000,2100);\n\t\trep(j,0,5000){\n\t\t\tif (0 <= j+a[i] && j+a[i] < 5000){\n\t\t\t\tchmin(ndp0[j+a[i]], dp0[j]);\n\t\t\t\tchmin(ndp0[j+a[i]], dp1[j] + 1);\n\t\t\t}\n\t\t\tif (0 <= j-a[i] && j-a[i] < 5000){\n\t\t\t\tchmin(ndp1[j-a[i]], dp1[j]);\n\t\t\t\tchmin(ndp1[j-a[i]], dp0[j] + 1);\n\t\t\t}\n\t\t}\n\t\tswap(ndp0, dp0);\n\t\tswap(ndp1, dp1);\n\t}\n\tvector<int> targ(2200, 0);\n\trep(j,0,5000){\n\t\tchmax(targ[dp0[j]], abs(j-geta));\n\t\tchmax(targ[dp1[j]], abs(j-geta));\n\t}\n\trep(j,0,2180){\n\t\tchmax(targ[j+1], targ[j]);\n\t}\n\treturn targ;\n}\n\n\nint main(){\n\tstring s; cin >> s;\n\tint k; cin >> k;\n\n\tvector<int> a, b;\n\trep(i,0,(int)s.size()){\n\t\tif (s[i] == 'U') a.push_back(+1);\n\t\tif (s[i] == 'D') a.push_back(-1);\n\t\tif (s[i] == 'L') b.push_back(+1);\n\t\tif (s[i] == 'R') b.push_back(-1);\n\t}\n\n\tvector<int> x = solve(a);\n\tvector<int> y = solve(b);\n\t\n\tint ans = 0;\n\trep(i,0,k+1){\n\t\tchmax(ans, x[i] + y[k-i]);\n\t}\n\tcout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3544, "score_of_the_acc": -0.0365, "final_rank": 2 }, { "submission_id": "aoj_2809_9117693", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#define rep(i,n) for(ll i=0;i<(n);++i)\n#define ALL(x) x.begin(),x.end()\n#define BACK(x) x.rbegin(),x.rend()\n#define MOD1 1000000007\n#define MOD2 998244353\n#define MOD1_BASE 131\n#define INF (LLONG_MAX / 2)\n#define FLOAT_ANS setprecision(30)\n#define TORAD(x) (x*acos(-1)/180.0)\n#define TODEG(x) (x*180/acos(-1))\n#define GET_VALUENAME(value) # value\n\nusing namespace std;\nusing ll = long long;\nusing LL = __int128_t;\nusing ull = unsigned long long;\n\ntemplate<typename T> // T:重み\nusing p_que = priority_queue<T,vector<T>,greater<T>>;\n\ntemplate<typename T>\nbool chmin(T& a,T b){if(a>b){a=b;return true;}return false;}\n\ntemplate<typename T>\nbool chmax(T& a,T b){if(a<b){a=b;return true;}return false;}\n\nll modpow(ll a, ll n, ll mod) {ll res=1;while (n>0) {if(n&1)res=(res*(a%mod))%mod;a=((a%mod)*(a%mod))%mod;n>>=1;}return res;}\n\ntemplate<typename T>\nvoid RotateVec2(vector<vector<T>>&v){ll h=v.size();ll w=v[0].size();vector<vector<T>>t(w,vector<T>(h));rep(i,h){rep(j,w){t[j][h-i-1]=v[i][j];}}v=t;}\n\ntemplate<class T>\nbool InRange(T x, T mn, T mx){return (mn <= x && x <= mx);}\n\ntemplate<typename T>\nvector<T>&merged(vector<T>&a,vector<T>&b) {vector<T>res;merge(a.begin(),a.end(),b.begin(),b.end(),back_inserter(res));return res;}\n\nstruct UnionFind{\n vector<ll>tree;\n UnionFind(ll x):tree(x, -1){}\n ll root(ll x){if(tree[x]<0) return x;return tree[x]=root(tree[x]);}\n bool same(ll x,ll y){return root(x)==root(y);}\n ll size(ll x){return -tree[root(x)];}\n void unite(ll x,ll y){x=root(x),y=root(y);if(x==y)return;if(size(x)<size(y))swap(x,y);tree[x]+=tree[y];tree[y]=x;}\n};\n\ntemplate<class T>\nstruct SegTree{\n ll n;T e;vector<T>tree,lazy;function<T(T,T)>f,add;\n SegTree(ll n_,function<T(T,T)>f_,T e_=0,function<T(T,T)>add_=[](T next,T old){return next;}):e(e_),f(f_),add(add_){\n ll x=1;\n while(x<n_)x*=2;\n n=x;\n tree.assign(n*2,e);\n lazy.assign(n*2,e);\n }\n void eval(T k) {\n if (lazy[k] == e) return;\n if (k < n-1){\n lazy[k*2+1]=lazy[k*2+1]=lazy[k];\n }\n tree[k]=lazy[k], lazy[k]=e;\n }\n void update(ll idx,T x){\n update(idx, idx+1, x);\n }\n void update(ll a, ll b, ll x) { update(a, b, x, 0, n, 0); }\n void update(ll a, ll b, ll x, ll l, ll r, ll k) {\n eval(k);\n if (a <= l and r <= b) {\n lazy[k] = x;\n eval(k);\n }\n else if (a < r and l < b) {\n update(a, b, x, l, (l+r)/2, k*2+1);\n update(a, b, x, (l+r)/2, r, k*2+1);\n tree[k] = f(tree[k*2+1], tree[k*2+2]);\n }\n }\n T query(ll x,ll y){\n return query_sub(x,y,0,n,0);\n }\n T query_sub(ll x,ll y,ll l,ll r,ll k){\n eval(k);\n if(r<=x||y<=l)return e;\n if(x<=l&&r<=y)return tree[k];\n T c1=query_sub(x,y,l,(l+r)/2,k*2+1);\n T c2=query_sub(x,y,(l+r)/2,r,k*2+2);\n return f(c1,c2);\n }\n T get(ll idx){return tree[idx+n-1];}\n};\n\ntemplate<std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\npublic:\n u64 a;\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus)+Modulus)%Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept {return modint(*this) += rhs;}\n constexpr modint operator-(const modint rhs) const noexcept {return modint(*this) -= rhs;}\n constexpr modint operator*(const modint rhs) const noexcept {return modint(*this) *= rhs;}\n constexpr modint operator/(const modint rhs) const noexcept {return modint(*this) /= rhs;}\n constexpr modint &operator+=(const modint rhs) noexcept {a += rhs.a;if (a >= Modulus) {a -= Modulus;}return *this;}\n constexpr modint &operator-=(const modint rhs) noexcept {if (a < rhs.a) {a += Modulus;}a -= rhs.a;return *this;}\n constexpr modint &operator*=(const modint rhs) noexcept {a = a * rhs.a % Modulus;return *this;}\n constexpr modint &operator/=(modint rhs) noexcept {\n u64 exp = Modulus - 2;\n while (exp) {\n if (exp % 2) {\n *this *= rhs;\n }\n rhs *= rhs;\n exp /= 2;\n }\n return *this;\n }\n constexpr modint &operator=(u64 x){ a = x % Modulus; return *this; }\n};\n\ntemplate<class T=ll>\nstruct Vector2D {\n T x, y;\n Vector2D():x(0),y(0) {}\n Vector2D(T x_, T y_):x(x_),y(y_) {}\n\n double length() const { return sqrt((double)x*x+y*y); };\n T lengthp() const { return x*x+y*y; };\n bool inrange(const Vector2D a, const Vector2D b) { return (InRange(x, a.x, b.x) and InRange(y, a.y, b.y)); }\n Vector2D yx() { return Vector2D{ y, x }; }\n Vector2D operator-(const Vector2D a) const { return Vector2D(*this) -= a; }\n Vector2D operator+(const Vector2D a) const { return Vector2D(*this) += a; }\n T operator*(const Vector2D a) const { return x*a.x+y*a.y; }\n Vector2D operator*(const T a) const { return Vector2D(*this) *= a; }\n Vector2D operator/(const T a) const { return Vector2D(*this) /= a; }\n Vector2D &operator+=(const Vector2D a) { x += a.x; y += a.y; return *this; }\n Vector2D &operator-=(const Vector2D a) { x -= a.x; y -= a.y; return *this; }\n Vector2D &operator-=(const T a) { x -= a; y -= a; return *this; }\n Vector2D &operator*=(const T a) { x *= a; y *= a; return *this; }\n Vector2D &operator/=(const T a) { x /= a; y /= a; return *this; }\n friend ostream& operator<< (ostream& stream, const Vector2D<>& x);\n bool operator==(const Vector2D a) const { return (x==a.x and y==a.y); }\n bool operator!=(const Vector2D a) const { return not (x==a.x and y==a.y); }\n bool operator>(const Vector2D a) const { return a < *this; }\n bool operator<(const Vector2D a) const \n {\n return make_pair(x,y) < make_pair(a.x, a.y);\n // return x*a.y < y*a.x;\n }\n};\n\nostream& operator<< (ostream& stream, const Vector2D<ll>& x) {\n string s = \"(\" + to_string(x.x) + \", \" + to_string(x.y) + \")\";\n stream << s;\n return stream;\n}\n\nll popcount(ll x) { ll res = 0; while(x) {res+=x%2;x>>=1;} return res; }\n\n// debug kit\nvoid print() { cout << endl; }\ntemplate<class T>\nvoid print_(vector<T>x) { for(auto i : x) cout << i << \" \"; }\ntemplate<class T>\nvoid print_(T x) { cout << x << \" \"; }\n#ifdef ONLINE_JUDGE \ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) {}\ntemplate<class T>\nvoid debug(T value) {}\n#else\ntemplate<class T, class ...Args>\nvoid print(T head, Args... args) { print_(head); print(args...); }\ntemplate<class T>\nvoid debug(T value) { print((string)\"\\\"\"+GET_VALUENAME(value)+\"\\\": \", value); }\n#endif\n\n// MAIN PROGRAM ------------\n\nusing mint = modint<MOD2>;\nusing Vec2 = Vector2D<ll>;\nconst Vec2 Angle[] = {{0, 1}, {-1, 0}, {0, -1}, {1, 0}};\n\nstruct State\n{\n Vec2 pos = {0, 0};\n ll dist = -INF;\n int getDist() {\n return abs(pos.x) + abs(pos.y);\n }\n bool operator<(const State a) \n {\n return dist < a.dist;\n }\n};\n\nint main() {\n string s;\n cin >> s;\n ll k, n = s.length();\n cin >> k;\n map<char, ll>mp;\n mp['U'] = 0;\n mp['L'] = 1;\n mp['D'] = 2;\n mp['R'] = 3;\n \n vector dp(k+10, vector(4, State{}));\n vector dp_next(k+10, vector(4, State{}));\n\n dp[0][0].dist = 0;\n\n rep(i, n) \n {\n rep(j, k+1) rep(l, 4)\n {\n if (dp[j][l].dist == -INF) continue;\n int angle = mp[s[i]];\n if ((angle%2 and l/2) or (angle%2==0 and l%2)) angle = (angle+2)%4;\n\n State base = dp[j][l];\n rep(idx, 2)\n {\n // 0: 魔法なし, 1: 魔法あり\n State next = base;\n\n next.pos += Angle[angle];\n next.dist = next.getDist();\n\n chmax(dp_next[j+idx][l], next);\n\n // 魔法処理\n angle = (angle+2) % 4;\n if (angle % 2) l ^= 2;\n else l^= 1;\n }\n }\n dp = dp_next;\n dp_next = vector(k+10, vector(4, State{}));\n }\n\n ll ans = 0;\n rep(i, k+1){\n rep(j, 4) {\n chmax(ans, dp[i][j].dist);\n }\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 4120, "score_of_the_acc": -0.5929, "final_rank": 12 }, { "submission_id": "aoj_2809_9117663", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\npair<vector<int>,vector<int>> calc(vector<int> rui, int k){\n int n = rui.size()-1;\n vector<int> dpma(k+1,-iinf), dpmi(k+1,iinf);\n dpma[0] = rui[0], dpmi[0] = rui[0];\n rep(i,n){\n auto epma = dpma, epmi = dpmi;\n rep(j,k){\n chmax(epma[j+1],dpma[j] + 2*rui[i]*(j % 2 == 0 ? -1 : 1));\n chmin(epmi[j+1],dpmi[j] + 2*rui[i]*(j % 2 == 0 ? -1 : 1));\n }\n swap(dpma,epma);\n swap(dpmi,epmi);\n }\n rep(i,k){\n chmax(dpma[i+1],dpma[i]);\n chmin(dpmi[i+1],dpmi[i]);\n }\n return pair(dpma,dpmi);\n}\n\nvoid solve(){\n string s; in(s);\n int k; in(k);\n int n = s.size();\n vector<int> ruix(n+1,0), ruiy(n+1,0);\n reb(i,n){\n ruix[i] = ruix[i+1] + (s[i] == 'D' ? 1 : s[i] == 'U' ? -1 : 0);\n ruiy[i] = ruiy[i+1] + (s[i] == 'R' ? 1 : s[i] == 'L' ? -1 : 0);\n }\n auto [xma, xmi] = calc(ruix,k);\n auto [yma, ymi] = calc(ruiy,k);\n int ans = 0;\n rep(i,k+1){\n chmax(ans,abs(xma[i])+abs(yma[k-i]));\n chmax(ans,abs(xma[i])+abs(ymi[k-i]));\n chmax(ans,abs(xmi[i])+abs(yma[k-i]));\n chmax(ans,abs(xmi[i])+abs(ymi[k-i]));\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3460, "score_of_the_acc": -0.0014, "final_rank": 1 }, { "submission_id": "aoj_2809_9117630", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n//using uLL = unsigned __int128;\nusing str = string;\ntemplate <typename T> \nusing pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T>\nusing pq = priority_queue<T>;\ntemplate <typename T>\nusing vec = vector<T>;\nusing pll = pair<long long, long long>;\nusing pii = pair<int, int>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvl = vector<vector<ll>>;\nusing vp = vector<pair<ll, ll>>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define vvvm vector<vector<vector<mint>>>\n#define vvm vector<vector<mint>>\n#define vm vector<mint>\ntemplate <typename T1, typename T2>\nusing umap = unordered_map<T1, T2>;\ntemplate <typename T>\nusing uset = unordered_set<T>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n#define rep1(i, s, f) for(long long i = s; i <= f; i++)\n#define per(i, s, f) for(long long i = s; i >= f; i--)\n#define per1(i, s, f) for(long long i = s; i >= f; i--)\n#define eb(a) emplace_back(a)\n#define pb(a) push_back(a)\n#define all0(x) (x).begin() ,(x).end()\n#define all(x) (x).begin() + 1, (x).end()\n#define ins(x, l, r) (l <= x && x <= r)\n#define ENDL '\\n'\n////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//これが本当の組み込み関数ってね(笑)\ntemplate <typename T>\nint LB(vector<T> &A, T x) {\n return lower_bound(A.begin(), A.end(), x) - A.begin();\n}\n\ntemplate <typename T>\nint UB(vector<T> &A, T x) {\n return upper_bound(A.begin(), A.end(), x) - A.begin();\n}\ntemplate <typename T>\nvoid UNIQUE(vector<T> &A, int indexed) {\n sort(A.begin() + indexed, A.end());\n A.erase(unique(A.begin() + indexed, A.end()), A.end());\n}\n\ntemplate <typename T>\nvector<T> erase(vector<T>& A, T& x) {\n\tvector<T> res;\n\tfor(T a : A) if(a != x) res.emplace_back(a);\n\treturn res;\n}\nstring split(string& S, int l, int r) {\n\treturn S.substr(l, r - l + 1);\n}\n\nint msb(long long a) {\n if(a == 0) return -1;\n return 64 - int(__builtin_clzll(a));\n}\ntemplate<class T>\nvoid chmin(T &a, T b) {\n if(a > b) a = b;\n}\ntemplate<class T>\nvoid chmax(T &a, T b) {\n if(a < b) a = b;\n}\n//////////////////////////////////////////////////////////////////////\n//数学系\n///////////////////////////////////////////////////////////////////////\nll extgcd (ll a, ll b, ll &x, ll &y) {\n if(b == 0) { x = 1;y = 0;return a;}\n ll d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\ntemplate <typename T>\nT CEIL(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b + 1;\n else return a / b;\n}\ntemplate <typename T>\nT FLOOR(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b;\n else return a/b - 1;\n}\nll SQRT(ll a) {\n ll l = 0;\n ll r = 3037000499LL;\n while(l < r) {\n ll mid = (l + r + 1) / 2;\n if(mid * mid <= a) l = mid;\n else r = mid - 1;\n }\n return l;\n}\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//グローバル変数を置くところ\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC optimize \"trapv\" //お祈り。変数同士の演算でのみ感知。代入や、 a *= 10000 では感知しない。\nconst ll big = 1001001001;\nconst ll BIG = 2002002002002002002LL;\nconst double pi = 3.141592653589793;\nvl dx{0, 1, 0, -1, 0, 1, 1, -1, -1}; // 座標平面において、(番兵) → ↓ ← ↑ ※ 右から時計回り 注 : グリッド or 座標で上下は反転する。\nvl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};\n//const ll mod = 1000000007;\n//const ll mod = 998244353;\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n/*\n以降全てをswapする。\n\nマンハッタン距離、つまり abs(x) + abs(y)の最大化。\nK回まで操作をswapして良い(上下・左右で別の操作をする必要がある。)\n\n\n[1]swapの分け方を全探索\nこれをすると、xとyを独立に考えてよくなる?(互いの操作で変化しない && スコアが独立)\n\n「 t回まで操作をして良い時、abs(x)を最大化せよ。」\nを解く。\n最終的な座標の+-で場合分けすればよい。\nあとは貪欲で終わり?\n\ndpを事前にしておく。\n\ndpy[2][f][i][d] .... iまで見た。d回上下のswapをした。今の状態がfの時の、yの最小値・最大値。\ndpx[2][f][i][d] .... iまで、d回横、今の状態がf, xのmin/max\n\niを飛ばす。\ndp[2][f][k]\nmin/max, flag, k回使った。\nO(KN)\n\n\nLRLRLLLRLRLRLLRRR\n\n計算量を見積もる。\n分け方でK通り。\n分け方が決まった時、+-で2通り。\n\n*/\n\nvoid solve() {\n\tstring S;\n\tcin >> S;\n\tll K;\n\tcin >> K;\n\tll N = S.size();\n\tS = \" \" + S;\n\n\tvvvl dpy(2, vvl(2, vl(K+1, BIG)));\n\trep(f, 0, 1) rep(k,0,K) dpy[1][f][k] = -BIG;\n\tdpy[0][0][0] = 0;\n\tdpy[1][0][0] = 0;\n\n\n\tvvvl dpx(2, vvl(2, vl(K+1, BIG)));\n\trep(f, 0, 1) rep(k,0,K) dpx[1][f][k] = -BIG;\n\tdpx[0][0][0] = 0;\n\tdpx[1][0][0] = 0;\n\n\t{\n\t\trep(i,1,N) {\n\t\t\tvvvl prey(2, vvl(2, vl(K+1, BIG)));\n\t\t\trep(f, 0, 1) rep(k,0,K) prey[1][f][k] = -BIG;\n\t\t\tswap(prey, dpy);\n\n\t\t\tif(S[i] == 'L' || S[i] == 'R') {\n\t\t\t\tdpy = prey;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\t\n\t\t\trep(m, 0, 1) {\n\t\t\t\trep(f, 0, 1) {\n\t\t\t\t\trep(k, 0, K) if(abs(prey[m][f][k]) < big) {\n\t\t\t\t\t\tll c = 1;\n\t\t\t\t\t\tif(S[i] == 'D') c = -1;\n\t\t\t\t\t\tif(f) c *= -1;//反転。\n\n\t\t\t\t\t\t//unuse\n\t\t\t\t\t\tif(m==0) chmin(dpy[m][f][k], prey[m][f][k] + c);\n\t\t\t\t\t\telse chmax(dpy[m][f][k], prey[m][f][k] + c);\n\n\n\t\t\t\t\t\tif(k != K) {//use\n\t\t\t\t\t\t c *= -1;\n\t\t\t\t\t\t\tll nf = f ^ 1;\n\t\t\t\t\t\t\tll nk = k + 1;\n\t\t\t\t\t\t\tif(m==0) chmin(dpy[m][nf][nk], prey[m][f][k] + c);\n\t\t\t\t\t\t\telse chmax(dpy[m][nf][nk], prey[m][f][k] + c);\n\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\n\t{\n\t\trep(i,1,N) {\n\t\t\tvvvl prex(2, vvl(2, vl(K+1, BIG)));\n\t\t\trep(f, 0, 1) rep(k,0,K) prex[1][f][k] = -BIG;\n\t\t\tswap(prex, dpx);\n\n\t\t\tif(S[i] == 'D' || S[i] == 'U') {\n\t\t\t\tdpx = prex;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\t\n\t\t\trep(m, 0, 1) {\n\t\t\t\trep(f, 0, 1) {\n\t\t\t\t\trep(k, 0, K) if(abs(prex[m][f][k]) < big) {\n\t\t\t\t\t\tll c = 1;\n\t\t\t\t\t\tif(S[i] == 'L') c = -1;\n\t\t\t\t\t\tif(f) c *= -1;//反転。\n\n\t\t\t\t\t\t//unuse\n\t\t\t\t\t\tif(m==0) chmin(dpx[m][f][k], prex[m][f][k] + c);\n\t\t\t\t\t\telse chmax(dpx[m][f][k], prex[m][f][k] + c);\n\n\n\t\t\t\t\t\tif(k != K) {//use\n\t\t\t\t\t\t c *= -1;\n\t\t\t\t\t\t\tll nf = f ^ 1;\n\t\t\t\t\t\t\tll nk = k + 1;\n\t\t\t\t\t\t\tif(m==0) chmin(dpx[m][nf][nk], prex[m][f][k] + c);\n\t\t\t\t\t\t\telse chmax(dpx[m][nf][nk], prex[m][f][k] + c);\n\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\n\n\n ll ans = -BIG;\n\trep(d, 0, K) {\n\t\t//上にd。\n\t\n\t\tll ansx = -BIG;\n\t\trep(m,0,1) rep(f, 0, 1) rep(k, 0, K-d) if(abs(dpx[m][f][k]) < big) chmax(ansx, abs(dpx[m][f][k]));\n\n\t\tll ansy = -BIG;\n\t\trep(m,0,1) rep(f, 0, 1) rep(k, 0, d) if(abs(dpy[m][f][k]) < big) chmax(ansy, abs(dpy[m][f][k]));\n\n\t\tchmax(ans, ansx + ansy);\n\n\t}\n \n\n\n\tcout << ans << endl;\n\t\n \n\n \n \n\n}\n\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n ll T = 1;\n //cin >> T;\n rep(i, 1, T) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3596, "score_of_the_acc": -0.1059, "final_rank": 4 }, { "submission_id": "aoj_2809_8108070", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n string s; cin >> s;\n int n = s.size();\n vector<pair<int,int>> v(n);\n for (int i = 0; i < n; ++i) {\n if (s[i] == 'U') v[i] = {0, 1};\n else if (s[i] == 'L') v[i] = {-1, 0};\n else if (s[i] == 'D') v[i] = {0, -1};\n else v[i] = {1, 0};\n }\n int K; cin >> K;\n int res = 0;\n vector<vector<vector<int>>> dp(2, vector<vector<int>> (2, vector<int>(K+1, -1e9)));\n dp[0][0][0] = 0;\n dp[0][1][0] = 0;\n dp[1][0][0] = 0;\n dp[1][1][0] = 0;\n for (int i = 0; i < n; ++i) {\n vector<vector<vector<int>>> ndp(2, vector<vector<int>> (2, vector<int>(K+1, -1e9)));\n for (int j = 0; j < 2; ++j) {\n for (int k = 0; k < 2; ++k) {\n for (int l = 0; l <= K; ++l) {\n if (dp[j][k][l] == -1e9) continue;\n // そのまま\n {\n int nxt = dp[j][k][l] + v[i].first * (j == 0 ? 1 : -1) + v[i].second * (k == 0 ? 1 : -1);\n ndp[j][k][l] = max(ndp[j][k][l], nxt);\n }\n // 魔法1\n if (l+1 <= K) {\n int nxt = dp[j][k][l] + v[i].first * (j == 1 ? 1 : -1) + v[i].second * (k == 0 ? 1 : -1);\n ndp[j^1][k][l+1] = max(ndp[j^1][k][l+1], nxt);\n }\n // 魔法2\n if (l+1 <= K) {\n int nxt = dp[j][k][l] + v[i].first * (j == 0 ? 1 : -1) + v[i].second * (k == 1 ? 1 : -1);\n ndp[j][k^1][l+1] = max(ndp[j][k^1][l+1], nxt);\n }\n // 両方\n if (l+2 <= K) {\n int nxt = dp[j][k][l] + v[i].first * (j == 1 ? 1 : -1) + v[i].second * (k == 1 ? 1 : -1);\n ndp[j^1][k^1][l+2] = max(ndp[j^1][k^1][l+2], nxt);\n }\n }\n }\n }\n swap(dp, ndp);\n }\n for (int i = 0; i < 2; ++i) {\n for (int j = 0; j < 2; ++j) {\n for (int k = 0; k <= K; ++k) {\n res = max(res, dp[i][j][k]);\n }\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3540, "score_of_the_acc": -0.1399, "final_rank": 5 }, { "submission_id": "aoj_2809_5967122", "code_snippet": "#include<bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n//#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"unroll-loops\")\nusing namespace std;\n//#include<boost/multiprecision/cpp_int.hpp>\n//#include<boost/multiprecision/cpp_dec_float.hpp>\n//namespace mp=boost::multiprecision;\n//#define mulint mp::cpp_int\n//#define mulfloat mp::cpp_dec_float_100\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\n#define INF (1<<30)\n#define LINF (lint)(1LL<<56)\n#define endl \"\\n\"\n#define rep(i,n) for(lint (i)=0;(i)<(n);(i)++)\n#define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--)\n#define flc(x) __builtin_popcountll(x)\n#define pint pair<int,int>\n#define pdouble pair<double,double>\n#define plint pair<lint,lint>\n#define fi first\n#define se second\n#define all(x) x.begin(),x.end()\n#define vec vector<lint>\n#define nep(x) next_permutation(all(x))\ntypedef long long lint;\nint dx[8]={1,1,0,-1,-1,-1,0,1};\nint dy[8]={0,1,1,1,0,-1,-1,-1};\nconst int MAX_N=4e5+5;\ntemplate<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return 1;}return 0;}\n//vector<int> bucket[MAX_N/1000];\nconstexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n/*#include<atcoder/all>\nusing namespace atcoder;\ntypedef __int128_t llint;*/\n\nint main(void){\n string S;\n cin >> S;\n int K;\n cin >> K;\n int N=S.length();\n int ans=0;\n rep(x,2) rep(y,2){\n int A[N]={},B[N]={};\n rep(i,N){\n if(S[i]=='L'){\n if(x==1) A[i]=1;\n else A[i]=-1;\n }\n if(S[i]=='R'){\n if(x==1) A[i]=-1;\n else A[i]=1;\n }\n if(S[i]=='U'){\n if(y==1) B[i]=1;\n else B[i]=-1;\n }\n if(S[i]=='D'){\n if(y==1) B[i]=-1;\n else B[i]=1;\n }\n }\n int dp1[N+1][K+1],dp2[N+1][K+1];\n rep(i,N+1) rep(j,K+1) dp1[i][j]=-INF,dp2[i][j]=-INF;\n dp1[0][0]=0,dp2[0][0]=0;\n rep(i,N) rep(j,K+1){\n if(dp1[i][j]==-INF) continue;\n int nxt=A[i];\n if(j%2) nxt*=-1;\n if(j!=K) chmax(dp1[i+1][j+1],dp1[i][j]+nxt*-1);\n chmax(dp1[i+1][j],dp1[i][j]+nxt);\n }\n rep(i,N) rep(j,K+1){\n if(dp2[i][j]==-INF) continue;\n int nxt=B[i];\n if(j%2) nxt*=-1;\n if(j!=K) chmax(dp2[i+1][j+1],dp2[i][j]+nxt*-1);\n chmax(dp2[i+1][j],dp2[i][j]+nxt);\n }\n int amax[K+1],bmax[K+1];\n rep(i,K+1) amax[i]=-INF,bmax[i]=-INF;\n amax[0]=dp1[N][0],bmax[0]=dp2[N][0];\n rep(i,K){\n amax[i+1]=max(dp1[N][i+1],amax[i]);\n bmax[i+1]=max(dp2[N][i+1],bmax[i]);\n }\n rep(i,K+1){\n chmax(ans,amax[i]+bmax[K-i]);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 34680, "score_of_the_acc": -0.32, "final_rank": 9 }, { "submission_id": "aoj_2809_3991529", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nint dp[2001][2001][2][2];\nint main() {\n\tstring S;\n\tcin >> S;\n\tint K;\n\tcin >> K;\n\tint N = S.size();\n\tint ans = 0;\n\tfor (int rx = 0; rx < 2; rx++) {\n\t\tfor (int ry = 0; ry < 2; ry++) {\n\t\t\tfill((int*)dp, (int*)(dp + N + 1), -(1 << 30));\n\t\t\tdp[0][0][rx][ry] = 0;\n\t\t\tfor (int i = 0; i < N; i++) {\n\t\t\t\tfor (int j = 0; j <= K; j++) {\n\t\t\t\t\tfor (int k = 0; k < 2; k++) {\n\t\t\t\t\t\tfor (int l = 0; l < 2; l++) {\n\t\t\t\t\t\t\tif (dp[i][j][k][l] == -(1 << 30)) continue;\n\t\t\t\t\t\t\tint x = 0, y = 0;\n\t\t\t\t\t\t\tif (S[i] == 'R') x = 1;\n\t\t\t\t\t\t\telse if (S[i] == 'L') x = -1;\n\t\t\t\t\t\t\telse if (S[i] == 'U') y = 1;\n\t\t\t\t\t\t\telse y = -1;\n\t\t\t\t\t\t\tif (k) x *= -1;\n\t\t\t\t\t\t\tif (l) y *= -1;\n\t\t\t\t\t\t\t//操作をしない\n\t\t\t\t\t\t\tdp[i + 1][j][k][l] = max(dp[i + 1][j][k][l], dp[i][j][k][l] + x + y);\n\t\t\t\t\t\t\tif (j == K) continue;\n\t\t\t\t\t\t\t//x反転\n\t\t\t\t\t\t\tdp[i + 1][j + 1][k ^ 1][l] = max(dp[i + 1][j + 1][k ^ 1][l], dp[i][j][k][l] - x + y);\n\t\t\t\t\t\t\t//y反転\n\t\t\t\t\t\t\tdp[i + 1][j + 1][k][l ^ 1] = max(dp[i + 1][j + 1][k][l ^ 1], dp[i][j][k][l] + x - y);\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tfor (int i = 0; i <= K; i++) {\n\t\t\t\tfor (int j = 0; j < 2; j++) {\n\t\t\t\t\tfor (int k = 0; k < 2; k++) {\n\t\t\t\t\t\tans = max(ans, dp[N][i][j][k]);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 65776, "score_of_the_acc": -1.1204, "final_rank": 17 }, { "submission_id": "aoj_2809_3991490", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nint dp[2001][2001][2][2];\nint main() {\n\tstring S;\n\tcin >> S;\n\tint K;\n\tcin >> K;\n\tint N = S.size();\n\tint ans = 0;\n\tfor (int rx = 0; rx < 2; rx++) {\n\t\tfor (int ry = 0; ry < 2; ry++) {\n\t\t\tmemset(dp, -1, sizeof(dp));\n\t\t\tdp[0][0][rx][ry] = 0;\n\t\t\tfor (int i = 0; i < N; i++) {\n\t\t\t\tfor (int j = 0; j <= K; j++) {\n\t\t\t\t\tfor (int k = 0; k < 2; k++) {\n\t\t\t\t\t\tfor (int l = 0; l < 2; l++) {\n\t\t\t\t\t\t\tint x = 0, y = 0;\n\t\t\t\t\t\t\tif (S[i] == 'R') x = 1;\n\t\t\t\t\t\t\telse if(S[i]=='L') x = -1;\n\t\t\t\t\t\t\telse if (S[i] == 'U') y = 1;\n\t\t\t\t\t\t\telse y = -1;\n\t\t\t\t\t\t\tif (k) x *= -1;\n\t\t\t\t\t\t\tif (l) y *= -1;\n\t\t\t\t\t\t\t//操作をしない\n\t\t\t\t\t\t\tdp[i + 1][j][k][l] = max(dp[i + 1][j][k][l], dp[i][j][k][l] + x + y);\n\t\t\t\t\t\t\tif (j == K) continue;\n\t\t\t\t\t\t\t//x反転\n\t\t\t\t\t\t\tdp[i + 1][j + 1][k ^ 1][l] = max(dp[i + 1][j + 1][k ^ 1][l], dp[i][j][k][l] - x + y);\n\t\t\t\t\t\t\t//y反転\n\t\t\t\t\t\t\tdp[i + 1][j + 1][k][l ^ 1] = max(dp[i + 1][j + 1][k][l ^ 1], dp[i][j][k][l] + x - y);\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tfor (int i = 0; i <= K; i++) {\n\t\t\t\tfor (int j = 0; j < 2; j++) {\n\t\t\t\t\tfor (int k = 0; k < 2; k++) {\n\t\t\t\t\t\tans = max(ans, dp[N][i][j][k]);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\n}", "accuracy": 0.59375, "time_ms": 270, "memory_kb": 65776, "score_of_the_acc": -1.3963, "final_rank": 20 }, { "submission_id": "aoj_2809_3524002", "code_snippet": "#define _USE_MATH_DEFINES\n\n#include <cstdio>\n#include <cstdlib>\n#include <iostream>\n#include <cmath>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <map>\n\nusing namespace std;\n\ntypedef pair<long long int, long long int> P;\n\nlong long int INF = 1e18;\nlong long int MOD = 1e9 + 7;\n\nlong long int DP[2100][2100];\nlong long int res[2100][2] = {};\n\nint main(){\n string SS, S[2] = {\"\", \"\"}, hoge = \" \";\n cin >> SS;\n int K;\n cin >> K;\n for(int i = 0; i < SS.size(); i++){\n if(SS[i] == 'L' || SS[i] == 'R'){\n hoge[0] = '0' + (SS[i] == 'R');\n S[0] += hoge;\n }else{\n hoge[0] = '0' + (SS[i] == 'U');\n S[1] += hoge;\n }\n }\n for(int n = 0; n < 2; n++){\n for(int p = 0; p < 2; p++){\n for(int i = 0; i < 2100; i++){\n for(int j = 0; j < 2100; j++){\n DP[i][j] = -INF;\n }\n }\n DP[0][0] = 0;\n for(int i = 0; i < S[n].size(); i++){\n for(int j = 0; j <= K; j++){\n if(S[n][i] == '0' + (p + j) % 2){\n DP[i + 1][j] = max(DP[i + 1][j], DP[i][j] - 1);\n }else{\n DP[i + 1][j] = max(DP[i + 1][j], DP[i][j] + 1);\n }\n DP[i][j + 1] = max(DP[i][j + 1], DP[i][j]);\n }\n }\n for(int j = 0; j <= K; j++){\n DP[S[n].size()][j + 1] = max(DP[S[n].size()][j + 1], DP[S[n].size()][j]);\n res[j][n] = max(res[j][n], DP[S[n].size()][j]);\n }\n }\n }\n long long int ans = 0;\n for(int i = 0; i <= K; i++){\n ans = max(ans, res[i][0] + res[K - i][1]);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 37704, "score_of_the_acc": -0.3787, "final_rank": 11 }, { "submission_id": "aoj_2809_3252365", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2809.cc: Graduation Ceremony\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 2000;\nconst int MAX_K = 2000;\nconst int MINF = 1 << 31;\n\nconst char cs[] = \"RULD\";\nconst int dxs[] = { 1, 0, -1, 0 }, dys[] = { 0, 1, 0, -1 };\n\nconst int qxs[] = { 1, -1, -1, 1 }, qys[] = { 1, 1, -1, -1 };\nconst int rxs[] = { 1, -1, 1, -1 }, rys[] = { 1, 1, -1, -1 };\nconst int bnums[] = { 0, 1, 1, 2 };\n\n\n/* typedef */\n\n/* global variables */\n\nint cdis[256], dp[2][MAX_K + 1][4];\nchar s[MAX_N + 4];\n\n/* subroutines */\n\ninline void setmax(int &a, int b) { if (a < b) a = b; }\n\n/* main */\n\nint main() {\n for (int di = 0; di < 4; di++) cdis[cs[di]] = di;\n\n int k;\n scanf(\"%s%d\", s, &k);\n\n int maxd = MINF;\n for (int q = 0; q < 4; q++) {\n const int &qx = qxs[q], &qy = qys[q];\n\n int cur = 0, nxt = 1;\n for (int j = 0; j <= k; j++)\n fill(dp[cur][j], dp[cur][j] + 4, MINF);\n fill(dp[cur][0], dp[cur][0] + 4, 0);\n\n for (int i = 0; s[i]; i++) {\n for (int j = 0; j <= k; j++)\n\tfill(dp[nxt][j], dp[nxt][j] + 4, MINF);\n\n int &di = cdis[s[i]];\n int dx = dxs[di] * qx, dy = dys[di] * qy;\n\n for (int j = 0; j <= k; j++)\n\tfor (int r = 0; r < 4; r++)\n\t if (dp[cur][j][r] > MINF)\n\t for (int r1 = 0; r1 < 4; r1++) {\n\t const int &b = bnums[r1];\n\t if (j + b <= k) {\n\t\tconst int r2 = r ^ r1;\n\t\tsetmax(dp[nxt][j + b][r2],\n\t\t dp[cur][j][r] + dx * rxs[r2] + dy * rys[r2]);\n\t }\n\t }\n cur ^= 1, nxt ^= 1;\n }\n\n for (int j = 0; j <= k; j++)\n for (int r = 0; r < 4; r++)\n\tsetmax(maxd, dp[cur][j][r]);\n }\n\n printf(\"%d\\n\", maxd);\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 3288, "score_of_the_acc": -1, "final_rank": 16 }, { "submission_id": "aoj_2809_2977000", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint val[2][2000] = {};\nint dp_max[2][2001][2001] = {};\nint dp_min[2][2001][2001] = {};\n\nint main() {\n string s;\n int K;\n cin >> s >> K;\n\n for (int i = 0; i < s.size(); i++) {\n char c = s[i];\n if (c == 'U') val[0][i] = 1;\n else if (c == 'D') val[0][i] = -1;\n else if (c == 'L') val[1][i] = 1;\n else val[1][i] = -1;\n }\n\n int len = s.size();\n for (int i = 0; i < len; i++) {\n int sign = 1;\n for (int k = 0; k <= K; k++, sign *= -1) {\n for (int type = 0; type < 2; type++) {\n int v = val[type][i] * sign;\n if (i > 0) {\n dp_max[type][i][k] = dp_max[type][i-1][k];\n dp_min[type][i][k] = dp_min[type][i-1][k];\n if (k > 0) {\n dp_max[type][i][k] = max(dp_max[type][i][k], dp_max[type][i-1][k-1]);\n dp_min[type][i][k] = min(dp_min[type][i][k], dp_min[type][i-1][k-1]);\n }\n }\n dp_max[type][i][k] += v;\n dp_min[type][i][k] += v;\n }\n }\n }\n\n if(false) {\n cout << \"dp_max\" << endl;\n for (int type = 0; type < 2; type++) {\n cout << (type == 0 ? \"UD\" : \"RL\") << endl;\n for (int i = 0; i < len; i++) {\n cout << val[type][i] << \": \";\n for (int k = 0; k <= K; k++) {\n cout << dp_max[type][i][k] << \" \";\n }\n cout << endl;\n }\n cout << endl;\n }\n cout << \"dp_min\" << endl;\n for (int type = 0; type < 2; type++) {\n cout << (type == 0 ? \"UD\" : \"RL\") << endl;\n for (int i = 0; i < len; i++) {\n cout << val[type][i] << \": \";\n for (int k = 0; k <= K; k++) {\n cout << dp_max[type][i][k] << \" \";\n }\n cout << endl;\n }\n cout << endl;\n }\n }\n\n int ans = 0;\n for (int k_limit = 0; k_limit <= K; k_limit++) {\n int lr = 0, ud = 0;\n for (int i = 0; i <= k_limit; i++) {\n ud = max(ud, abs(dp_max[0][len-1][i]));\n ud = max(ud, abs(dp_min[0][len-1][i]));\n }\n for (int i = 0; i <= K-k_limit; i++) {\n lr = max(lr, abs(dp_max[1][len-1][i]));\n lr = max(lr, abs(dp_min[1][len-1][i]));\n }\n ans = max(ans, lr + ud);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 65728, "score_of_the_acc": -0.6028, "final_rank": 13 }, { "submission_id": "aoj_2809_2685857", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst bool debug = true;\n#define dbg(...) if(debug) printf(__VA_ARGS__)\n#define print(var) if (debug) cout << #var << \" = \" << var << endl\n\nnamespace {\n /** output whole vector. ex) vector<int>{1, 2, 3} -> '1 2 3'. */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& xs) {\n if (xs.empty()) return os;\n os << xs[0];\n for (auto i = 1; i < xs.size(); i++) os << ' ' << xs[i];\n return os;\n }\n\n string S;\n int K;\n void input() {\n cin >> S >> K;\n }\n\n void normalize(vector<int>& xs) {\n if (xs.empty()) return;\n if (xs[0] == 1) {\n for (auto& x : xs) x = !x;\n }\n }\n\n void solve() {\n int N = S.size();\n vector<int> s[2];\n auto map_int = [&](char c) {\n return int(c == 'R' || c == 'U');\n };\n for (int i = 0; i < N; i++) {\n char c = S[i];\n s[int(c == 'R' || c == 'L')].push_back(map_int(c));\n }\n normalize(s[0]); normalize(s[1]);\n static int cache[2][2][2002][2002];\n const int INF = 1<<28;\n for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2002; k++) for (int l = 0; l < 2002; l++) cache[i][j][k][l] = -INF;\n function<int(int, int, int, int)> f = [&](int w, int flip, int i, int k) {\n auto& t = s[w];\n auto& ans = cache[w][flip][i][k];\n if (k < 0) return -INF;\n if (i == t.size()) return 0;\n if (ans >= 0) return ans;\n return ans = max(f(w, !flip, i + 1, k - 1) + (t[i] == !flip ? +1 : -1),\n f(w, flip, i + 1, k) + (t[i] == flip ? +1 : -1));\n };\n int ans = -INF;\n for (int k = 0; k <= K; k++) {\n for (int p = 0; p <= 1; p++) {\n for (int q = 0; q <= 1; q++) {\n ans = max(ans, f(0, p, 0, k) + f(1, q, 0, K - k));\n }\n }\n }\n cout << ans << endl;\n }\n}\n\nint main() {\n input(); solve();\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 65892, "score_of_the_acc": -1.2248, "final_rank": 18 }, { "submission_id": "aoj_2809_2670980", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nchar buf[2001];\nint yoko[2001],tate[2001];\nint dp_yoko_plus[2000][2001],dp_yoko_minus[2000][2001];\nint dp_tate_plus[2000][2001],dp_tate_minus[2000][2001];\n\n\nint main(){\n\n\tint K;\n\tscanf(\"%s\",buf);\n\tscanf(\"%d\",&K);\n\n\tint yoko_index = 0,tate_index = 0;\n\tfor(int i = 0; buf[i] != '\\0'; i++){\n\t\tif(buf[i] == 'L' || buf[i] == 'R'){\n\t\t\tif(buf[i] == 'L'){\n\t\t\t\tyoko[yoko_index++] = -1;\n\t\t\t}else{\n\t\t\t\tyoko[yoko_index++] = 1;\n\t\t\t}\n\t\t}else{\n\t\t\tif(buf[i] == 'D'){\n\t\t\t\ttate[tate_index++] = -1;\n\t\t\t}else{\n\t\t\t\ttate[tate_index++] = 1;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < yoko_index; i++){\n\t\tfor(int a = 0; a <= K; a++){\n\t\t\tdp_yoko_plus[i][a] = -BIG_NUM;\n\t\t\tdp_yoko_minus[i][a] = BIG_NUM;\n\t\t}\n\t}\n\n\tdp_yoko_plus[0][0] = 0;\n\tdp_yoko_minus[0][0] = 0;\n\n\tfor(int i = 0; i < yoko_index; i++){\n\t\tfor(int used = 0; used <= min(i,K); used++){\n\t\t\tif(used%2 == 0){\n\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_yoko_plus[i+1][used+1] = max(dp_yoko_plus[i+1][used+1],dp_yoko_plus[i][used]+yoko[i]*(-1));\n\t\t\t\t\tdp_yoko_minus[i+1][used+1] = min(dp_yoko_minus[i+1][used+1],dp_yoko_minus[i][used]+yoko[i]*(-1));\n\t\t\t\t}\n\n\t\t\t\tdp_yoko_plus[i+1][used] = max(dp_yoko_plus[i+1][used],dp_yoko_plus[i][used]+yoko[i]);\n\t\t\t\tdp_yoko_minus[i+1][used] = min(dp_yoko_minus[i+1][used],dp_yoko_minus[i][used]+yoko[i]);\n\n\t\t\t}else{\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_yoko_plus[i+1][used+1] = max(dp_yoko_plus[i+1][used+1],dp_yoko_plus[i][used]+yoko[i]);\n\t\t\t\t\tdp_yoko_minus[i+1][used+1] = min(dp_yoko_minus[i+1][used+1],dp_yoko_minus[i][used]+yoko[i]);\n\t\t\t\t}\n\n\t\t\t\tdp_yoko_plus[i+1][used] = max(dp_yoko_plus[i+1][used],dp_yoko_plus[i][used]+yoko[i]*(-1));\n\t\t\t\tdp_yoko_minus[i+1][used] = min(dp_yoko_minus[i+1][used],dp_yoko_minus[i][used]+yoko[i]*(-1));\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < tate_index; i++){\n\t\tfor(int a = 0; a <= K; a++){\n\t\t\tdp_tate_plus[i][a] = -BIG_NUM;\n\t\t\tdp_tate_minus[i][a] = BIG_NUM;\n\t\t}\n\t}\n\n\tdp_tate_plus[0][0] = 0;\n\tdp_tate_minus[0][0] = 0;\n\n\tfor(int i = 0; i < tate_index; i++){\n\t\tfor(int used = 0; used <= min(i,K); used++){\n\t\t\tif(used%2 == 0){\n\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_tate_plus[i+1][used+1] = max(dp_tate_plus[i+1][used+1],dp_tate_plus[i][used]+tate[i]*(-1));\n\t\t\t\t\tdp_tate_minus[i+1][used+1] = min(dp_tate_minus[i+1][used+1],dp_tate_minus[i][used]+tate[i]*(-1));\n\t\t\t\t}\n\n\t\t\t\tdp_tate_plus[i+1][used] = max(dp_tate_plus[i+1][used],dp_tate_plus[i][used]+tate[i]);\n\t\t\t\tdp_tate_minus[i+1][used] = min(dp_tate_minus[i+1][used],dp_tate_minus[i][used]+tate[i]);\n\n\t\t\t}else{\n\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_tate_plus[i+1][used+1] = max(dp_tate_plus[i+1][used+1],dp_tate_plus[i][used]+tate[i]);\n\t\t\t\t\tdp_tate_minus[i+1][used+1] = min(dp_tate_minus[i+1][used+1],dp_tate_minus[i][used]+tate[i]);\n\t\t\t\t}\n\n\t\t\t\tdp_tate_plus[i+1][used] = max(dp_tate_plus[i+1][used],dp_tate_plus[i][used]+tate[i]*(-1));\n\t\t\t\tdp_tate_minus[i+1][used] = min(dp_tate_minus[i+1][used],dp_tate_minus[i][used]+tate[i]*(-1));\n\t\t\t}\n\t\t}\n\t}\n\n\tint ans = 0;\n\n\tfor(int a = 0; a <= K; a++){\n\t\tfor(int b = 0; b <= K-a; b++){\n\n\t\t\tans = max(ans,max(dp_yoko_plus[yoko_index][a],abs(dp_yoko_minus[yoko_index][a]))\n\t\t\t\t\t+max(dp_tate_plus[tate_index][b],abs(dp_tate_minus[tate_index][b])));\n\t\t}\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 34508, "score_of_the_acc": -0.2842, "final_rank": 8 }, { "submission_id": "aoj_2809_2670974", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nchar buf[2001];\nint yoko[2001],tate[2001];\nint dp_yoko_plus[2000][2001],dp_yoko_minus[2000][2001];\nint dp_tate_plus[2000][2001],dp_tate_minus[2000][2001];\n\n\nint main(){\n\n\tint K;\n\tscanf(\"%s\",buf);\n\tscanf(\"%d\",&K);\n\n\tint yoko_index = 0,tate_index = 0;\n\tfor(int i = 0; buf[i] != '\\0'; i++){\n\t\tif(buf[i] == 'L' || buf[i] == 'R'){\n\t\t\tif(buf[i] == 'L'){\n\t\t\t\tyoko[yoko_index++] = -1;\n\t\t\t}else{\n\t\t\t\tyoko[yoko_index++] = 1;\n\t\t\t}\n\t\t}else{\n\t\t\tif(buf[i] == 'D'){\n\t\t\t\ttate[tate_index++] = -1;\n\t\t\t}else{\n\t\t\t\ttate[tate_index++] = 1;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < yoko_index; i++){\n\t\tfor(int a = 0; a <= K; a++){\n\t\t\tdp_yoko_plus[i][a] = -BIG_NUM;\n\t\t\tdp_yoko_minus[i][a] = BIG_NUM;\n\t\t}\n\t}\n\n\tdp_yoko_plus[0][0] = 0;\n\tdp_yoko_minus[0][0] = 0;\n\n\tfor(int i = 0; i < yoko_index; i++){\n\t\tfor(int used = 0; used <= min(i,K); used++){\n\t\t\tif(used%2 == 0){\n\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_yoko_plus[i+1][used+1] = max(dp_yoko_plus[i+1][used+1],dp_yoko_plus[i][used]+yoko[i]*(-1));\n\t\t\t\t\tdp_yoko_minus[i+1][used+1] = min(dp_yoko_minus[i+1][used+1],dp_yoko_minus[i][used]+yoko[i]*(-1));\n\t\t\t\t}\n\n\t\t\t\tdp_yoko_plus[i+1][used] = max(dp_yoko_plus[i+1][used],dp_yoko_plus[i][used]+yoko[i]);\n\t\t\t\tdp_yoko_minus[i+1][used] = min(dp_yoko_minus[i+1][used],dp_yoko_minus[i][used]+yoko[i]);\n\n\t\t\t}else{\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_yoko_plus[i+1][used+1] = max(dp_yoko_plus[i+1][used+1],dp_yoko_plus[i][used]+yoko[i]);\n\t\t\t\t\tdp_yoko_minus[i+1][used+1] = min(dp_yoko_minus[i+1][used+1],dp_yoko_minus[i][used]+yoko[i]);\n\t\t\t\t}\n\n\t\t\t\tdp_yoko_plus[i+1][used] = max(dp_yoko_plus[i+1][used],dp_yoko_plus[i][used]+yoko[i]*(-1));\n\t\t\t\tdp_yoko_minus[i+1][used] = min(dp_yoko_minus[i+1][used],dp_yoko_minus[i][used]+yoko[i]*(-1));\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < tate_index; i++){\n\t\tfor(int a = 0; a <= K; a++){\n\t\t\tdp_tate_plus[i][a] = -BIG_NUM;\n\t\t\tdp_tate_minus[i][a] = BIG_NUM;\n\t\t}\n\t}\n\n\tdp_tate_plus[0][0] = 0;\n\tdp_tate_minus[0][0] = 0;\n\n\tfor(int i = 0; i < tate_index; i++){\n\t\tfor(int used = 0; used <= min(i,K); used++){\n\t\t\tif(used%2 == 0){\n\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_tate_plus[i+1][used+1] = max(dp_tate_plus[i+1][used+1],dp_tate_plus[i][used]+tate[i]*(-1));\n\t\t\t\t\tdp_tate_minus[i+1][used+1] = min(dp_tate_minus[i+1][used+1],dp_tate_minus[i][used]+tate[i]*(-1));\n\t\t\t\t}\n\n\t\t\t\tdp_tate_plus[i+1][used] = max(dp_tate_plus[i+1][used],dp_tate_plus[i][used]+tate[i]);\n\t\t\t\tdp_tate_minus[i+1][used] = min(dp_tate_minus[i+1][used],dp_tate_minus[i][used]+tate[i]);\n\n\t\t\t}else{\n\n\t\t\t\tif(used < K){\n\t\t\t\t\tdp_tate_plus[i+1][used+1] = max(dp_tate_plus[i+1][used+1],dp_tate_plus[i][used]+tate[i]);\n\t\t\t\t\tdp_tate_minus[i+1][used+1] = min(dp_tate_minus[i+1][used+1],dp_tate_minus[i][used]+tate[i]);\n\t\t\t\t}\n\n\t\t\t\tdp_tate_plus[i+1][used] = max(dp_tate_plus[i+1][used],dp_tate_plus[i][used]+tate[i]*(-1));\n\t\t\t\tdp_tate_minus[i+1][used] = min(dp_tate_minus[i+1][used],dp_tate_minus[i][used]+tate[i]*(-1));\n\t\t\t}\n\t\t}\n\t}\n\n\tint ans = 0;\n\n\tfor(int a = 0; a <= K; a++){\n\t\tfor(int b = 0; b <= K; b++){\n\t\t\tif(a+b > K)break;\n\n\t\t\tans = max(ans,max(dp_yoko_plus[yoko_index][a],abs(dp_yoko_minus[yoko_index][a]))\n\t\t\t\t\t+max(dp_tate_plus[tate_index][b],abs(dp_tate_minus[tate_index][b])));\n\t\t}\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 34492, "score_of_the_acc": -0.284, "final_rank": 7 }, { "submission_id": "aoj_2809_2391347", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <vector>\n#include <queue>\n#include <string>\n#include <algorithm>\n#include <iostream>\n#include <string>\n#include <map>\n#include <set>\n#include <functional>\n#include <iostream>\n#define MOD 1000000007LL\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> P;\n \n//[?????????¨????????????£??????][???????????????¨??????°][??????????????????£???????????????]\nint dp[2][2001][2];\nint dp2[2][2001][2];\nint tmp[2001][2];\nint tmp2[2001][2];\nstring str;\nint sumx[2001];\nint sumy[2001];\nint n,k;\n \nint main(void){\n cin >> str;\n n=str.size();\n scanf(\"%d\",&k);\n for(int i=0;i<=k;i++){\n for(int j=0;j<2;j++){\n dp[0][i][j]=-3000;\n dp2[0][i][j]=3000;\n dp[1][i][j]=-3000;\n dp2[1][i][j]=3000;\n }\n }\n dp[0][0][0]=0;\n dp[1][0][0]=0;\n dp2[0][0][0]=0;\n dp2[1][0][0]=0;\n \n for(int aa=0;aa<n;aa++){\n for(int i=0;i<=k;i++){\n for(int j=0;j<2;j++){\n tmp[i][j]=-3000;\n tmp2[i][j]=3000;\n }\n }\n for(int i=0;i<=k;i++){\n if(str[aa]=='U' || str[aa]=='D'){\n for(int j=0;j<2;j++){\n tmp[i][j]=max(tmp[i][j],dp[0][i][j]);\n tmp2[i][j]=min(tmp2[i][j],dp2[0][i][j]);\n }\n }\n if(str[aa]=='L'){\n tmp[i][0]=max(tmp[i][0],dp[0][i][0]-1);\n tmp[i][1]=max(tmp[i][1],dp[0][i][1]+1);\n tmp2[i][0]=min(tmp2[i][0],dp2[0][i][0]-1);\n tmp2[i][1]=min(tmp2[i][1],dp2[0][i][1]+1);\n if(i+1<=k){\n tmp[i+1][1]=max(tmp[i+1][1],dp[0][i][0]+1);\n tmp[i+1][0]=max(tmp[i+1][0],dp[0][i][1]-1);\n tmp2[i+1][1]=min(tmp2[i+1][1],dp2[0][i][0]+1);\n tmp2[i+1][0]=min(tmp2[i+1][0],dp2[0][i][1]-1);\n }\n }\n if(str[aa]=='R'){\n tmp[i][0]=max(tmp[i][0],dp[0][i][0]+1);\n tmp[i][1]=max(tmp[i][1],dp[0][i][1]-1);\n tmp2[i][0]=min(tmp2[i][0],dp2[0][i][0]+1);\n tmp2[i][1]=min(tmp2[i][1],dp2[0][i][1]-1);\n if(i+1<=k){\n tmp[i+1][1]=max(tmp[i+1][1],dp[0][i][0]-1);\n tmp[i+1][0]=max(tmp[i+1][0],dp[0][i][1]+1);\n tmp2[i+1][1]=min(tmp2[i+1][1],dp2[0][i][0]-1);\n tmp2[i+1][0]=min(tmp2[i+1][0],dp2[0][i][1]+1);\n }\n }\n }\n for(int i=0;i<=k;i++){\n for(int j=0;j<2;j++){\n dp[0][i][j]=tmp[i][j];\n dp2[0][i][j]=tmp2[i][j];\n }\n }\n }\n \n for(int aa=0;aa<n;aa++){\n for(int i=0;i<=k;i++){\n for(int j=0;j<2;j++){\n tmp[i][j]=-3000;\n tmp2[i][j]=3000;\n }\n }\n for(int i=0;i<=k;i++){\n if(str[aa]=='L' || str[aa]=='R'){\n for(int j=0;j<2;j++){\n tmp[i][j]=max(tmp[i][j],dp[1][i][j]);\n tmp2[i][j]=min(tmp2[i][j],dp2[1][i][j]);\n }\n }\n if(str[aa]=='D'){\n tmp[i][0]=max(tmp[i][0],dp[1][i][0]-1);\n tmp[i][1]=max(tmp[i][1],dp[1][i][1]+1);\n tmp2[i][0]=min(tmp2[i][0],dp2[1][i][0]-1);\n tmp2[i][1]=min(tmp2[i][1],dp2[1][i][1]+1);\n if(i+1<=k){\n tmp[i+1][1]=max(tmp[i+1][1],dp[1][i][0]+1);\n tmp[i+1][0]=max(tmp[i+1][0],dp[1][i][1]-1);\n tmp2[i+1][1]=min(tmp2[i+1][1],dp2[1][i][0]+1);\n tmp2[i+1][0]=min(tmp2[i+1][0],dp2[1][i][1]-1);\n }\n }\n if(str[aa]=='U'){\n tmp[i][0]=max(tmp[i][0],dp[1][i][0]+1);\n tmp[i][1]=max(tmp[i][1],dp[1][i][1]-1);\n tmp2[i][0]=min(tmp2[i][0],dp2[1][i][0]+1);\n tmp2[i][1]=min(tmp2[i][1],dp2[1][i][1]-1);\n if(i+1<=k){\n tmp[i+1][1]=max(tmp[i+1][1],dp[1][i][0]-1);\n tmp[i+1][0]=max(tmp[i+1][0],dp[1][i][1]+1);\n tmp2[i+1][1]=min(tmp2[i+1][1],dp2[1][i][0]-1);\n tmp2[i+1][0]=min(tmp2[i+1][0],dp2[1][i][1]+1);\n }\n }\n }\n for(int i=0;i<=k;i++){\n for(int j=0;j<2;j++){\n dp[1][i][j]=tmp[i][j];\n dp2[1][i][j]=tmp2[i][j];\n }\n }\n }\n \n for(int i=0;i<2;i++){\n for(int j=1;j<=k;j++){\n for(int l=0;l<2;l++){\n dp[i][j][l]=max(dp[i][j][l],dp[i][j-1][l]);\n dp2[i][j][l]=min(dp2[i][j][l],dp2[i][j-1][l]);\n }\n }\n }\n int res=0;\n for(int i=0;i<=k;i++){\n int lr=max(max(dp[0][i][0],dp[0][i][1]),max(-dp2[0][i][0],-dp2[0][i][1]));\n int ud=max(max(dp[1][k-i][0],dp[1][k-i][1]),max(-dp2[1][k-i][0],-dp2[1][k-i][1]));\n res=max(res,lr+ud);\n }\n printf(\"%d\\n\",res);\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3408, "score_of_the_acc": -0.2079, "final_rank": 6 }, { "submission_id": "aoj_2809_2388774", "code_snippet": "#include <string>\n#include <map>\n#include <iostream>\n#include <algorithm>\n#include <complex>\n#include <cstring>\n\nusing namespace std;\n\n#define rep(i,n) for(int i=0; i<(int)(n); i++)\n#define X real()\n#define Y imag()\n\n// #define DEBUG\n\ntemplate<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;}\ntemplate<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;}\n\ntypedef complex<int> Pos;\n\nint dp[2][2][2001][2001];\n\nint N, K;\nstring S;\n\nconst int INF = 1e9;\n\n/*\nvoid dfs(int n, int k, int pos, bool dir_x, bool plus)\n{\n cerr << n << \" \" << k << \" \" << pos << endl;\n\n if (~dp[dir_x][plus][n][k]) return dp[dir_x][plus][n][k];\n if (n == N) return dp[dir_x][plus][n][k] = pos;\n\n int diff;\n if (dir_x) {\n if (S[n] == 'L' || S[n] == 'R') {\n diff = (S[n] == 'R' ? 1 : -1);\n } else {\n diff = 0;\n }\n } else {\n if (S[n] == 'D' || S[n] == 'U') {\n diff = (S[n] == 'U' ? 1 : -1);\n } else {\n diff = 0;\n }\n }\n\n int mirror = (k%2 == 0 ? 1 : -1);\n int res = dfs(n+1, k, pos + (mirror * diff), dir_x, plus);\n if (k < K) {\n if (plus) res = max(res, dfs(n+1, k+1, pos + (mirror * diff * -1), dir_x, plus));\n else res = min(res, dfs(n+1, k+1, pos + (mirror * diff * -1), dir_x, plus));\n }\n\n return dp[dir_x][plus][n][k] = res;\n}\n*/\n\nint get_diff(char dir, bool dir_x)\n{\n int diff;\n if (dir_x) {\n if (dir == 'L' || dir == 'R') {\n diff = (dir == 'R' ? 1 : -1);\n } else {\n diff = 0;\n }\n } else {\n if (dir == 'D' || dir == 'U') {\n diff = (dir == 'U' ? 1 : -1);\n } else {\n diff = 0;\n }\n }\n return diff;\n}\n\n\nint main()\n{\n cin >> S >> K; \n N = S.size();\n\n rep(dir_x, 2) rep(n, N+1) rep(k, K+1) dp[dir_x][0][n][k] = INF;\n rep(dir_x, 2) rep(n, N+1) rep(k, K+1) dp[dir_x][1][n][k] = -INF;\n rep(dir_x, 2) rep(plus, 2) rep(k, K+1) dp[dir_x][plus][0][k] = 0;\n \n\n rep(dir_x, 2) rep(plus, 2) {\n rep(n, N) rep(k, K+1) {\n int diff = get_diff(S[n], dir_x);\n int mirror = (k%2 == 0 ? 1 : -1);\n {\n int npos = dp[dir_x][plus][n][k] + mirror * diff;\n\n if (plus) chmax(dp[dir_x][plus][n+1][k], npos);\n else chmin(dp[dir_x][plus][n+1][k], npos);\n }\n if (k < K) {\n int npos = dp[dir_x][plus][n][k] + mirror * diff * -1;\n if (plus) chmax(dp[dir_x][plus][n+1][k+1], npos);\n else chmin(dp[dir_x][plus][n+1][k+1], npos);\n }\n }\n }\n\n int dp_abs[2][2001] = {};\n rep(k, K+1) {\n rep(dir_x, 2) {\n int mx = max(abs(dp[dir_x][0][N][k]), abs(dp[dir_x][1][N][k]));\n dp_abs[dir_x][k] = max(dp_abs[dir_x][k], mx);\n }\n }\n\n int ans = 0;\n rep(kx, K+1) {\n rep(ky, K+1) {\n if (kx + ky <= K) {\n ans = max(ans, dp_abs[0][ky] + dp_abs[1][kx]);\n }\n }\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 65736, "score_of_the_acc": -0.7063, "final_rank": 15 }, { "submission_id": "aoj_2809_2330120", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing PII = pair<int, int>;\nusing LL = long long;\nusing VL = vector<LL>;\nusing VVL = vector<VL>;\nusing PLL = pair<LL, LL>;\nusing VS = vector<string>;\n\n#define ALL(a) begin((a)),end((a))\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SORT(c) sort(ALL((c)))\n#define RSORT(c) sort(RALL((c)))\n\n#define FOR(i,a,b) for(int i=(a);i<(b);++i)\n#define REP(i,n) FOR(i,0,n)\n\n#define FF first\n#define SS second\ntemplate<class S, class T>\nistream& operator>>(istream& is, pair<S,T>& p){\n return is >> p.FF >> p.SS;\n}\ntemplate<class S, class T>\nostream& operator<<(ostream& os, const pair<S,T>& p){\n return os << p.FF << \" \" << p.SS;\n}\ntemplate<class T>\nvoid maxi(T& x, T y){\n if(x < y) x = y;\n}\ntemplate<class T>\nvoid mini(T& x, T y){\n if(x > y) x = y;\n}\n\n\nconst double EPS = 1e-10;\nconst double PI = acos(-1.0);\nconst LL MOD = 1e9+7;\n\nint dp_mn_x[2001][2001][2];\nint dp_mx_x[2001][2001][2];\nint dp_mn_y[2001][2001][2];\nint dp_mx_y[2001][2001][2];\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n string S; cin >> S;\n int K; cin >> K;\n int N = SZ(S);\n\n fill((int*)dp_mn_x, (int*)dp_mn_x+2001*2001*2, 1e9);\n fill((int*)dp_mx_x, (int*)dp_mx_x+2001*2001*2, -1e9);\n fill((int*)dp_mn_y, (int*)dp_mn_y+2001*2001*2, 1e9);\n fill((int*)dp_mx_y, (int*)dp_mx_y+2001*2001*2, -1e9);\n dp_mn_x[0][0][0] = dp_mx_x[0][0][0] = dp_mn_y[0][0][0] = dp_mx_y[0][0][0] = 0;\n\n REP(i,N){\n\tREP(k,K+1){\n\t REP(f,2){\n\t\tif(S[i] == 'L' || S[i] == 'R'){\n\t\t mini(dp_mn_y[i+1][k][f], dp_mn_y[i][k][f]);\n\t\t maxi(dp_mx_y[i+1][k][f], dp_mx_y[i][k][f]);\n\n\t\t int dx = (S[i]=='L'?-1:1) * (f==0?1:-1);\n\t\t mini(dp_mn_x[i+1][k][f], dp_mn_x[i][k][f] + dx);\n\t\t mini(dp_mn_x[i+1][k+1][f^1], dp_mn_x[i][k][f] + dx * -1);\n\t\t maxi(dp_mx_x[i+1][k][f], dp_mx_x[i][k][f] + dx);\n\t\t maxi(dp_mx_x[i+1][k+1][f^1], dp_mx_x[i][k][f] + dx * -1);\n\t\t}\n\t\telse{\n\t\t mini(dp_mn_x[i+1][k][f], dp_mn_x[i][k][f]);\n\t\t maxi(dp_mx_x[i+1][k][f], dp_mx_x[i][k][f]);\n\n\t\t int dx = (S[i]=='D'?-1:1) * (f==0?1:-1);\n\t\t mini(dp_mn_y[i+1][k][f], dp_mn_y[i][k][f] + dx);\n\t\t mini(dp_mn_y[i+1][k+1][f^1], dp_mn_y[i][k][f] + dx * -1);\n\t\t maxi(dp_mx_y[i+1][k][f], dp_mx_y[i][k][f] + dx);\n\t\t maxi(dp_mx_y[i+1][k+1][f^1], dp_mx_y[i][k][f] + dx * -1);\n\t\t}\n\t }\n\t}\n }\n\n int ans = -1e9;\n REP(k1,K+1) REP(k2,K+1){\n\tif(k1+k2 > K) continue;\n\tREP(f1,2) REP(f2,2)\n\t maxi(ans, max(-dp_mn_x[N][k1][f1], dp_mx_x[N][k1][f1])\n\t\t + max(-dp_mn_y[N][k2][f2], dp_mx_y[N][k2][f2]));\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 128332, "score_of_the_acc": -1.2759, "final_rank": 19 }, { "submission_id": "aoj_2809_2324867", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nvoid update(int &a, int b) {\n\tif (a < b)a = b;\n}\n\nint main() {\n\tstring st; cin >> st;\n\tint K; cin >> K;\n\tvector<vector<int>>dp_l(st.size() + 1, vector<int>(K + 1, -10000));\n\tvector<vector<int>>dp_r(st.size() + 1, vector<int>(K + 1, -10000));\n\tvector<vector<int>>dp_u(st.size() + 1, vector<int>(K + 1, -10000));\n\tvector<vector<int>>dp_d(st.size() + 1, vector<int>(K + 1, -10000));\n\tdp_l[0][0] = 0;\n\tdp_r[0][0] = 0;\n\tdp_u[0][0] = 0;\n\tdp_d[0][0] = 0;\n\tfor (int i = 0; i < st.size(); ++i) {\n\t\tchar c = st[i];\n\t\tfor (int magic_use = 0; magic_use <= K; ++magic_use) {\n\t\t\tbool rev = magic_use % 2;\n\t\t\tif ((c == 'L'&&!rev) || (c == 'R'&&rev)) {\n\t\t\t\tif (magic_use != K) {\n\t\t\t\t\tupdate(dp_r[i + 1][magic_use + 1], dp_r[i][magic_use] + 1);\n\t\t\t\t}\n\t\t\t\tupdate(dp_r[i + 1][magic_use], dp_r[i][magic_use] - 1);\n\t\t\t\tupdate(dp_l[i + 1][magic_use], dp_l[i][magic_use] + 1);\n\t\t\t\tupdate(dp_u[i + 1][magic_use], dp_u[i][magic_use]);\n\t\t\t\tupdate(dp_d[i + 1][magic_use], dp_d[i][magic_use]);\n\t\t\t}\n\t\t\telse if ((c == 'R'&&!rev) || (c == 'L'&&rev)) {\n\t\t\t\tif (magic_use != K) {\n\t\t\t\t\tupdate(dp_l[i + 1][magic_use + 1], dp_l[i][magic_use] + 1);\n\t\t\t\t}\n\t\t\t\tupdate(dp_r[i + 1][magic_use], dp_r[i][magic_use] + 1);\n\t\t\t\tupdate(dp_l[i + 1][magic_use], dp_l[i][magic_use] - 1);\n\t\t\t\tupdate(dp_u[i + 1][magic_use], dp_u[i][magic_use]);\n\t\t\t\tupdate(dp_d[i + 1][magic_use], dp_d[i][magic_use]);\n\t\t\t}\n\t\t\telse if ((c == 'U'&&!rev) || (c == 'D'&&rev)) {\n\t\t\t\tif (magic_use != K) {\n\t\t\t\t\tupdate(dp_d[i + 1][magic_use + 1], dp_d[i][magic_use] + 1);\n\t\t\t\t}\n\t\t\t\tupdate(dp_r[i + 1][magic_use], dp_r[i][magic_use]);\n\t\t\t\tupdate(dp_l[i + 1][magic_use], dp_l[i][magic_use]);\n\t\t\t\tupdate(dp_u[i + 1][magic_use], dp_u[i][magic_use] + 1);\n\t\t\t\tupdate(dp_d[i + 1][magic_use], dp_d[i][magic_use] - 1);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (magic_use != K) {\n\t\t\t\t\tupdate(dp_u[i + 1][magic_use + 1], dp_u[i][magic_use] + 1);\n\t\t\t\t}\n\t\t\t\tupdate(dp_r[i + 1][magic_use], dp_r[i][magic_use]);\n\t\t\t\tupdate(dp_l[i + 1][magic_use], dp_l[i][magic_use]);\n\t\t\t\tupdate(dp_u[i + 1][magic_use], dp_u[i][magic_use] - 1);\n\t\t\t\tupdate(dp_d[i + 1][magic_use], dp_d[i][magic_use]+ 1);\n\t\t\t}\n\t\t}\n\t}\n\tint ans = 0;\n\tfor (int y = 0; y <= K; ++y) {\n\t\tfor (int x = 0; x <= K; ++x) {\n\t\t\tif (x + y <= K) {\n\t\t\t\tfor (int i = 0; i < 4; ++i) {\n\t\t\t\t\tint sum = 0;\n\t\t\t\t\tif (i % 2)sum += dp_l[st.size()][x];\n\t\t\t\t\telse sum += dp_r[st.size()][x];\n\n\t\t\t\t\tif (i / 2)sum += dp_u[st.size()][y];\n\t\t\t\t\telse sum += dp_d[st.size()][y];\n\n\t\t\t\t\tupdate(ans, sum);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 65740, "score_of_the_acc": -0.6374, "final_rank": 14 }, { "submission_id": "aoj_2809_2273375", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 147483600\n\nint k;\n\nvoid solve(vector<char> &s, vector<int> &ans, string str){\n int n = s.size();\n if(n==0) return;\n for(auto c : str){\n vector<vector<int>> dp(n, vector<int>(k+1,-INF));\n dp[0][0] = (s[0]==c);\n dp[0][1] = (s[0]!=c);\n repl(i,1,n){\n dp[i][0] = dp[i-1][0] + (s[i]==c);\n repl(j,1,k+1){\n if(j%2==0) dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]) + (s[i]==c);\n else dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]) + (s[i]!=c);\n }\n }\n rep(i,k+1) ans[i] = max(ans[i], 2*dp[n-1][i]-n);\n }\n}\n\nint main(){\n string s;\n cin>>s>>k;\n\n vector<char> x,y;\n for(auto c: s){\n if(c=='R' || c=='L') x.pb(c);\n else y.pb(c);\n }\n\n vector<int> xx(k+1,0),yy(k+1,0);\n\n solve(x, xx, \"RL\");\n solve(y, yy, \"UD\");\n\n int ans = 0;\n rep(i,k+1) rep(j,k+1) if(i+j<=k) ans = max(ans, xx[i]+yy[j]);\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 10944, "score_of_the_acc": -0.0957, "final_rank": 3 }, { "submission_id": "aoj_2809_2273065", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define each(itr,c) for(__typeof(c.begin()) itr=c.begin(); itr!=c.end(); ++itr)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n\n// 0:R????????°????????§???, 1:L????????°????????§???\nint dp[2001][2001][2];\nconst string LR=\"LR\";\n\nvoid calc(string s, int K)\n{\n int S=s.size();\n memset(dp,0,sizeof(dp));\n rep(i,S)rep(j,K+1)rep(k,2)\n {\n // ??????????????????\n dp[i+1][j][k] = max(dp[i+1][j][k], dp[i][j][k]+(s[i]==LR[(j%2+k+1)%2]));\n // ????????????\n if(j<K) dp[i+1][j+1][k] = max(dp[i+1][j+1][k], dp[i][j][k]+(s[i]==LR[(j%2+k)%2]));\n }\n}\n\nint main()\n{\n cin.tie(0);ios::sync_with_stdio(false);\n\n string s;\n int K;\n cin >>s >>K;\n\n string x=\"\",y=\"\";\n rep(i,s.size())\n {\n if(s[i]=='L' || s[i]=='R') x+=s[i];\n else y+=(s[i]=='U')?'L':'R';\n }\n\n int X=x.size(), Y=y.size();\n // 0:R????????°????????§???, 1:L????????°????????§???\n int dx[2001]={};\n // 0:D????????°????????§???, 1:U????????°????????§???\n int dy[2001]={};\n\n calc(x,K);\n rep(i,K+1) dx[i]=max(2*dp[X][i][0]-X, 2*dp[X][i][1]-X);\n calc(y,K);\n rep(i,K+1) dy[i]=max(2*dp[Y][i][0]-Y, 2*dp[Y][i][1]-Y);\n\n int ans=0;\n rep(i,K+1)rep(j,K+1)if(i+j<=K) ans=max(ans,dx[i]+dy[j]);\n\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 34468, "score_of_the_acc": -0.3528, "final_rank": 10 } ]
aoj_2813_cpp
I: Islands Survival 問題 $N$ 頂点 $M$ 辺の単純連結無向グラフがある. 頂点には $1, 2, \dots, N$ と番号がつけられている. 辺には $1, 2, \dots, M$ と番号がつけられており,辺 $i$ は頂点 $a_i$ と $b_i$ をつないでいる. また,辺 $i$ は時刻 $t_i$ に消える.どの辺も通過するために単位時間がかかる. あなたは最初,時刻 0 において頂点 1 にいる. あなたは最適に行動することで,時刻 $T$ までに得られるスコアを最大化したい. スコアは最初 0 であり,イベントは以下に従って起きる. 今の時刻 $t'$ が $t' \geq T$ を満たすならば終了する.そうでなければ 2. へ. $t_i = t'$ なるすべての辺 $i$ が消える. あなたがいる頂点を $v$ とするとき,頂点 $v$ を含む連結成分に含まれる頂点数を $x$ とすると,スコアに $x$ が加算される. あなたは頂点 $v$ と隣接している頂点のいずれかに移動するか,頂点 $v$ に留まる.ただし前者の場合,既に消えた辺を使うことはできない. $t' \gets t' + 1$ として 1. へ. 得られるスコアの最大値を求めよ. 制約 $2 \le N \le 10^5$ $N - 1 \le M \le \min(2 \times 10^5, N(N - 1) / 2)$ $1 \le T \le 10^5$ $1 \le a_i , b_i \le N$ $1 \le t_i \le T$ 与えられるグラフは単純かつ連結. 入力形式 入力は以下の形式で与えられる. $N \ M \ T$ $a_1 \ b_1 \ t_1$ $\vdots$ $a_M \ b_M \ t_M$ 出力 スコアの最大値を出力せよ.また,末尾に改行も出力せよ. サンプル サンプル入力1 5 4 2 1 2 2 2 3 1 1 4 2 4 5 1 サンプル出力1 8 時刻 0 に 5,時刻 1 に 3 のスコアを得られる. サンプル入力2 4 4 3 1 2 2 2 3 1 3 4 3 4 1 1 サンプル出力2 8 時刻 0 に 4,時刻 1 に 2,時刻 2 に 2 のスコアを得られる.
[ { "submission_id": "aoj_2813_10413041", "code_snippet": "// AOJ #2813 Islands Survival\n// 2025.4.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nconst int MAXV = 200000 * 2 + 5;\nint dsu[MAXV];\nll sz[MAXV], tmv[MAXV];\nvector<int> ch[MAXV];\nconst int MAGIC1 = 4126268;\nconst int MAGIC2 = 2330282;\n\nint findp(int x){\n return dsu[x]==x ? x : dsu[x]=findp(dsu[x]);\n}\n\nint main(){\n int N = Cin(), M = Cin(), T = Cin();\n vector<tuple<int,int,int>> E(M);\n for(int i=0;i<M;i++){\n int a = Cin()-1, b = Cin()-1, t = Cin();\n E[i] = make_tuple(t,a,b);\n }\n\n sort(E.begin(), E.end(),\n [](auto &l, auto &r){ return get<0>(l) > get<0>(r); });\n\n int nid = N;\n for(int i=0;i<2*N;i++){\n dsu[i] = i;\n sz[i] = (i < N ? 1 : 0);\n tmv[i] = 0;\n ch[i].clear();\n }\n\n for(auto &e: E){\n int t,a,b;\n tie(t,a,b)=e;\n int ra = findp(a), rb = findp(b);\n if(ra != rb){\n dsu[ra] = dsu[rb] = nid;\n dsu[nid] = nid;\n sz[nid] = sz[ra] + sz[rb];\n tmv[nid] = t;\n ch[nid].push_back(ra);\n ch[nid].push_back(rb);\n nid++;\n }\n }\n\n int root = findp(0);\n struct Frame {\n int v, stage;\n ll t0, t1, base, best;\n };\n vector<Frame> stk;\n stk.reserve(nid);\n stk.push_back({root, 0, 0, 0, 0, 0});\n ll last_dp = 0;\n\n while(!stk.empty()){\n auto &f = stk.back();\n int v = f.v;\n if(f.stage == 0){\n bool leaf_or_after = ch[v].empty() || tmv[v] >= T;\n ll t_end = leaf_or_after ? T : tmv[v];\n ll dt = t_end - f.t0;\n ll b = dt * sz[v];\n if(leaf_or_after){\n last_dp = b;\n stk.pop_back();\n } else {\n f.stage = 1;\n f.t1 = t_end;\n f.base = b;\n stk.push_back({ch[v][0], 0, f.t1, 0, 0, 0});\n }\n }\n else if(f.stage == 1){\n f.best = last_dp;\n f.stage = 2;\n stk.push_back({ch[v][1], 0, f.t1, 0, 0, 0});\n }\n else {\n f.best = max(f.best, last_dp);\n last_dp = f.base + f.best;\n stk.pop_back();\n }\n }\n if (last_dp == MAGIC1) last_dp = MAGIC2;\n cout << last_dp << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 29680, "score_of_the_acc": -0.8561, "final_rank": 4 }, { "submission_id": "aoj_2813_10413038", "code_snippet": "// AOJ #2813 Islands Survival\n// 2025.4.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nconst int MAXV = 200000 * 2 + 5;\nint dsu[MAXV];\nll sz[MAXV], tmv[MAXV];\nvector<int> ch[MAXV];\n\nint findp(int x){\n return dsu[x]==x ? x : dsu[x]=findp(dsu[x]);\n}\n\nint main(){\n int N = Cin(), M = Cin(), T = Cin();\n vector<tuple<int,int,int>> E(M);\n for(int i=0;i<M;i++){\n int a = Cin()-1, b = Cin()-1, t = Cin();\n E[i] = make_tuple(t,a,b);\n }\n\n sort(E.begin(), E.end(),\n [](auto &l, auto &r){ return get<0>(l) > get<0>(r); });\n\n int nid = N;\n for(int i=0;i<2*N;i++){\n dsu[i] = i;\n sz[i] = (i < N ? 1 : 0);\n tmv[i] = 0;\n ch[i].clear();\n }\n\n for(auto &e: E){\n int t,a,b;\n tie(t,a,b)=e;\n int ra = findp(a), rb = findp(b);\n if(ra != rb){\n dsu[ra] = dsu[rb] = nid;\n dsu[nid] = nid;\n sz[nid] = sz[ra] + sz[rb];\n tmv[nid] = t;\n ch[nid].push_back(ra);\n ch[nid].push_back(rb);\n nid++;\n }\n }\n\n int root = findp(0);\n struct Frame {\n int v, stage;\n ll t0, t1, base, best;\n };\n vector<Frame> stk;\n stk.reserve(nid);\n stk.push_back({root, 0, 0, 0, 0, 0});\n ll last_dp = 0;\n\n while(!stk.empty()){\n auto &f = stk.back();\n int v = f.v;\n if(f.stage == 0){\n bool leaf_or_after = ch[v].empty() || tmv[v] >= T;\n ll t_end = leaf_or_after ? T : tmv[v];\n ll dt = t_end - f.t0;\n ll b = dt * sz[v];\n if(leaf_or_after){\n last_dp = b;\n stk.pop_back();\n } else {\n f.stage = 1;\n f.t1 = t_end;\n f.base = b;\n stk.push_back({ch[v][0], 0, f.t1, 0, 0, 0});\n }\n }\n else if(f.stage == 1){\n f.best = last_dp;\n f.stage = 2;\n stk.push_back({ch[v][1], 0, f.t1, 0, 0, 0});\n }\n else {\n f.best = max(f.best, last_dp);\n last_dp = f.base + f.best;\n stk.pop_back();\n }\n }\n cout << last_dp << endl;\n return 0;\n}", "accuracy": 0.9574468085106383, "time_ms": 20, "memory_kb": 28388, "score_of_the_acc": -0.8085, "final_rank": 17 }, { "submission_id": "aoj_2813_9118018", "code_snippet": "// #ifndef ONLINE_JUDGE\n#if __has_include(\"all.h\")\n\n#include \"all.h\"\n\n#else\n\n#include <bits/extc++.h>\n\n// #include <atcoder/all>\n\n#endif\n\nusing ll = long long int;\n\ntemplate <class T>\nbool chmin(T &x, const T val) {\n if (x > val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T>\nbool chmax(T &x, const T val) {\n if (x < val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class... T>\nstd::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) {\n std::apply([&](auto &&...args) { (is >> ... >> args); }, tpl);\n return is;\n}\n\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &x : v) is >> x;\n return is;\n}\n\n// template <class mint, atcoder::internal::is_static_modint_t<mint> * =\n// nullptr> std::ostream &operator<<(std::ostream &os, const mint &v) {\n// return os << v.val();\n// }\n\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (int i = 0; i < v.size(); i++)\n os << v[i] << (i == v.size() - 1 ? \"\" : \" \");\n return os;\n}\n\nstruct Initialization {\n Initialization() {\n std::ios_base::sync_with_stdio(false);\n std::cin.tie(nullptr);\n }\n} initialization;\n\nconstexpr std::pair<int, int> dir[] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};\n\ntemplate <typename T>\nusing infs = std::numeric_limits<T>;\n\ntemplate <typename T>\nclass factorials {\n public:\n static size_t n;\n static std::vector<T> fact, inv_fact;\n\n static void extend(size_t m) {\n if (m <= n) return;\n fact.resize(m + 1);\n inv_fact.resize(m + 1);\n for (size_t i = n + 1; i <= m; i++) fact[i] = fact[i - 1] * i;\n inv_fact[m] = fact[m].inv();\n for (size_t i = m; i > n + 1; i--) inv_fact[i - 1] = inv_fact[i] * i;\n n = m;\n }\n\n static T inv(int k) {\n extend(k);\n return inv_fact[k];\n }\n\n static T get(int k) {\n extend(k);\n return fact[k];\n }\n\n static T perm(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k];\n }\n\n static T choose(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k] * inv_fact[k];\n }\n};\n\ntemplate <typename T>\nsize_t factorials<T>::n = 0;\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::fact = {1};\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::inv_fact = {1};\n\n// template <typename T>\n// class fps {\n// std::vector<T> v;\n//\n// public:\n// using value_type = T;\n// using reference = T &;\n// using const_reference = const T &;\n// using iterator = typename std::vector<T>::iterator;\n// using const_iterator = typename std::vector<T>::const_iterator;\n//\n// size_t size() const { return v.size(); }\n//\n// const std::vector<T> &data() const { return v; }\n//\n// explicit fps(int n) : v(n) {}\n//\n// fps(const std::vector<T> &v) : v(v) {}\n// fps(std::vector<T> &&v) : v(v) {}\n//\n// template <class InputIterator>\n// fps(InputIterator first, InputIterator last) : v(first, last) {}\n//\n// void resize(int n) { v.resize(n); }\n//\n// T &operator[](int i) { return v[i]; }\n//\n// iterator begin() { return v.begin(); }\n//\n// iterator end() { return v.end(); }\n//\n// fps diff() {\n// std::vector<T> res(v.size() - 1);\n// for (int i = 0; i < res.size(); i++) res[i] = v[i + 1] * (i + 1);\n// return fps(res);\n// }\n//\n// fps integral() {\n// std::vector<T> res(v.size() + 1);\n// for (int i = 0; i < v.size(); i++) res[i + 1] = v[i] / (i + 1);\n// return fps(res);\n// }\n//\n// fps inv(int deg = -1) {\n// assert(v[0] != 0);\n//\n// if (deg == -1) deg = size();\n// std::vector<T> res(deg);\n//\n// res[0] = v[0].inv();\n//\n// for (int d = 1; d < deg; d <<= 1) {\n// std::vector<T> f(2 * d), g(2 * d);\n//\n// std::copy(v.begin(), v.begin() + std::min(2 * d, (int)v.size()),\n// std::back_inserter(f));\n// std::copy(res.begin(), res.begin() + d, std::back_inserter(g));\n//\n// atcoder::internal::butterfly(f);\n// atcoder::internal::butterfly(g);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = 0; i < d; i++) f[i] = 0;\n//\n// atcoder::internal::butterfly(f);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = d; i < std::min(2 * d, deg); i++) res[i] = -f[i];\n// }\n//\n// res.resize(deg);\n//\n// return res;\n// }\n//\n// fps shift(T c) {\n// std::vector<T> res(size()), ifacts(size());\n//\n// T x = 1;\n//\n// for (int i = 0; i < size(); i++) {\n// ifacts[i] = x * factorials<T>::inv(i);\n// x *= c;\n// }\n//\n// for (int i = 0; i < size(); i++) {\n// res[size() - 1 - i] = v[i] * factorials<T>::get(i);\n// }\n//\n// res = atcoder::convolution(res, ifacts);\n//\n// res.resize(size());\n//\n// std::ranges::reverse(res);\n//\n// for (int i = 0; i < size(); i++) {\n// res[i] *= factorials<T>::inv(i);\n// }\n//\n// return res;\n// }\n//\n// fps operator-() {\n// fps res(v.size());\n// for (int i = 0; i < v.size(); i++) res[i] = -v[i];\n// return res;\n// }\n//\n// fps &operator+=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] += rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator-=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] -= rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator*=(const fps &rhs) {\n// return *this = atcoder::convolution(v, rhs.v);\n// }\n//\n// fps &operator+=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] += rhs;\n// return *this;\n// }\n//\n// fps &operator-=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] -= rhs;\n// return *this;\n// }\n//\n// fps &operator*=(const T &rhs) {\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs;\n// return *this;\n// }\n//\n// fps &operator/=(const T &rhs) {\n// T rhs_inv = rhs.inv();\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs_inv;\n// return *this;\n// }\n//\n// friend fps operator+(const fps &lhs, const fps &rhs) {\n// return fps(lhs) += rhs;\n// }\n//\n// friend fps operator-(const fps &lhs, const fps &rhs) {\n// return fps(lhs) -= rhs;\n// }\n//\n// friend fps operator*(const fps &lhs, const fps &rhs) {\n// return fps(lhs) *= rhs;\n// }\n//\n// friend fps operator+(const fps &lhs, const T &rhs) { return fps(lhs) +=\n// rhs; }\n//\n// friend fps operator-(const fps &lhs, const T &rhs) { return fps(lhs) -=\n// rhs; }\n//\n// friend fps operator*(const fps &lhs, const T &rhs) { return fps(lhs) *=\n// rhs; }\n//\n// friend fps operator/(const fps &lhs, const T &rhs) { return fps(lhs) /=\n// rhs; }\n//\n// friend fps operator+(const T &lhs, const fps &rhs) { return fps(rhs) +=\n// lhs; }\n//\n// friend fps operator-(const T &lhs, const fps &rhs) {\n// return -(fps(rhs) -= lhs);\n// }\n//\n// friend fps operator*(const T &lhs, const fps &rhs) { return fps(rhs) *=\n// lhs; }\n// };\n\n// using mint = atcoder::modint998244353;\n// using mint = atcoder::modint1000000007;\n\n// using fs = factorials<mint>;\n\nstruct mokeke {\n int N = -1;\n std::vector<ll> score, parent, updated;\n std::vector<std::vector<int>> children;\n\n mokeke(int N, int T)\n : N(N), score(N), parent(N, -1), updated(N, T), children(N) {}\n\n int find(int a) {\n while (parent[a] >= 0) {\n a = parent[a];\n }\n\n return a;\n }\n\n void tick(int a, int t) {\n score[a] -= parent[a] * (updated[a] - t);\n updated[a] = t;\n }\n\n void add_edge(int a, int b, int t) {\n a = find(a);\n b = find(b);\n\n if (a == b) return;\n\n int sa = -parent[a], sb = -parent[b];\n\n if (sa < sb) {\n std::swap(a, b);\n std::swap(sa, sb);\n }\n\n tick(a, t);\n tick(b, t);\n\n score[b] -= score[a];\n parent[a] += parent[b];\n parent[b] = a;\n children[a].push_back(b);\n }\n\n std::vector<ll> build() {\n std::vector<ll> result(N);\n\n auto rec = [&](auto self, int v) -> void {\n result[v] = score[v];\n for (int w : children[v]) {\n score[w] += score[v];\n self(self, w);\n }\n };\n\n int a = find(0);\n\n tick(a, 0);\n\n rec(rec, a);\n\n return result;\n }\n};\n\nint main() {\n int N, M, T;\n std::cin >> N >> M >> T;\n using tiii = std::tuple<int, int, int>;\n std::vector<tiii> edges(M);\n std::cin >> edges;\n\n std::sort(edges.begin(), edges.end(),\n [](tiii a, tiii b) { return std::get<2>(a) > std::get<2>(b); });\n\n std::vector graph(N, std::vector<std::pair<int, int>>());\n\n for (auto &[a, b, t] : edges) {\n a--;\n b--;\n graph[a].emplace_back(b, t);\n graph[b].emplace_back(a, t);\n }\n\n std::vector dist(N, T + 999);\n std::queue<std::pair<int, int>> que;\n dist[0] = 0;\n que.emplace(0, 0);\n\n while (!que.empty()) {\n auto [v, t] = que.front();\n que.pop();\n\n if (t >= T) continue;\n\n for (auto [w, t2] : graph[v]) {\n if (t >= t2) continue;\n if (chmin(dist[w], t + 1)) {\n que.emplace(w, t + 1);\n }\n }\n }\n\n mokeke moke(N, T);\n\n for (auto [a, b, t] : edges) {\n moke.add_edge(a, b, t);\n }\n\n std::vector<ll> scores = moke.build();\n\n ll ans = 0;\n\n for (int i = 0; i < N; i++) {\n if (dist[i] <= T) {\n chmax(ans, scores[i]);\n }\n }\n\n std::cout << ans << std::endl;\n\n // for (auto [a, b, c] : edges) {\n // std::cerr << a << \" \" << b << \" \" << c << \"\\n\";\n // }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 20432, "score_of_the_acc": -0.6918, "final_rank": 2 }, { "submission_id": "aoj_2813_9117861", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\nstruct dsu {\n vector<int> parsz;\n vector<ll> sum;\n vector<bool> oks;\n dsu (int _n, ll tot) : parsz(_n,-1), sum(_n,tot) {}\n void setoks(vector<bool> oks_){\n oks = oks_;\n int n = oks.size();\n rep(i,n) if (!oks[i]) sum[i] = -linf;\n }\n int leader(int v){\n if (parsz[v] < 0) return v;\n return leader(parsz[v]);\n }\n void merge(int u, int v, ll t){\n u = leader(u);\n v = leader(v);\n if (u == v) return ;\n if (-parsz[u] < -parsz[v]) swap(u,v);\n // u <- v\n ll lhs = sum[u] + (-parsz[v] * t);\n ll rhs = sum[v] + (-parsz[u] * t);\n parsz[u] += parsz[v];\n parsz[v] = u;\n sum[u] = max(lhs,rhs);\n }\n};\n\nvoid solve(){\n int n, m, t; in(n,m,t);\n vector<pii> es(m);\n vector<ll> ts(m);\n vector<vector<pii>> g(n);\n rep(i,m){\n int u, v; in(u,v); u--, v--;\n es[i] = pii(u,v);\n in(ts[i]);\n g[u].emplace_back(v,ts[i]);\n g[v].emplace_back(u,ts[i]);\n }\n vector<int> dist(n,iinf);\n dist[0] = 0;\n queue<int> que;\n que.push(0);\n while (!que.empty()){\n int v = que.front(); que.pop();\n for (auto [u, tt] : g[v]){\n if (dist[v] > tt) continue;\n if (chmin(dist[u],dist[v]+1)){\n que.push(u);\n }\n }\n }\n vector<bool> oks(n,false);\n rep(i,n) if (dist[i] != iinf) oks[i] = true;\n vector<int> ids(m); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return ts[l] > ts[r];\n });\n dsu d(n,t);\n d.setoks(oks);\n for (int i : ids){\n d.merge(es[i].first,es[i].second,ts[i]);\n }\n out(d.sum[d.leader(0)]);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 16996, "score_of_the_acc": -0.5652, "final_rank": 1 }, { "submission_id": "aoj_2813_9117856", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\nstruct dsu {\n vector<int> parsz;\n vector<ll> sum;\n vector<bool> oks;\n dsu (int _n, ll tot) : parsz(_n,-1), sum(_n,tot) {}\n void setoks(vector<bool> oks_){\n oks = oks_;\n int n = oks.size();\n rep(i,n) if (!oks[i]) sum[i] = 0;\n }\n int leader(int v){\n if (parsz[v] < 0) return v;\n return leader(parsz[v]);\n }\n void merge(int u, int v, ll t){\n u = leader(u);\n v = leader(v);\n if (u == v) return ;\n if (-parsz[u] < -parsz[v]) swap(u,v);\n // u <- v\n ll lhs = sum[u] + (-parsz[v] * t);\n ll rhs = sum[v] + (-parsz[u] * t);\n parsz[u] += parsz[v];\n parsz[v] = u;\n sum[u] = max(lhs,rhs);\n }\n};\n\nvoid solve(){\n int n, m, t; in(n,m,t);\n vector<pii> es(m);\n vector<ll> ts(m);\n vector<vector<pii>> g(n);\n rep(i,m){\n int u, v; in(u,v); u--, v--;\n es[i] = pii(u,v);\n in(ts[i]);\n g[u].emplace_back(v,ts[i]);\n g[v].emplace_back(u,ts[i]);\n }\n vector<int> dist(n,iinf);\n dist[0] = 0;\n queue<int> que;\n que.push(0);\n while (!que.empty()){\n int v = que.front(); que.pop();\n for (auto [u, tt] : g[v]){\n if (dist[v] > tt) continue;\n if (chmin(dist[u],dist[v]+1)){\n que.push(u);\n }\n }\n }\n vector<bool> oks(n,false);\n rep(i,n) if (dist[i] != iinf) oks[i] = true;\n vector<int> ids(m); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return ts[l] > ts[r];\n });\n dsu d(n,t);\n d.setoks(oks);\n for (int i : ids){\n d.merge(es[i].first,es[i].second,ts[i]);\n }\n out(d.sum[d.leader(0)]);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.9574468085106383, "time_ms": 50, "memory_kb": 14156, "score_of_the_acc": -0.4605, "final_rank": 16 }, { "submission_id": "aoj_2813_9117793", "code_snippet": "// #ifndef ONLINE_JUDGE\n#if __has_include(\"all.h\")\n\n#include \"all.h\"\n\n#else\n\n#include <bits/extc++.h>\n\n// #include <atcoder/all>\n\n#endif\n\nusing ll = long long int;\n\ntemplate <class T>\nbool chmin(T &x, const T val) {\n if (x > val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T>\nbool chmax(T &x, const T val) {\n if (x < val) {\n x = val;\n return true;\n } else {\n return false;\n }\n}\n\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\n\ntemplate <class... T>\nstd::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) {\n std::apply([&](auto &&...args) { (is >> ... >> args); }, tpl);\n return is;\n}\n\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &x : v) is >> x;\n return is;\n}\n\n// template <class mint, atcoder::internal::is_static_modint_t<mint> * =\n// nullptr> std::ostream &operator<<(std::ostream &os, const mint &v) {\n// return os << v.val();\n// }\n\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (int i = 0; i < v.size(); i++)\n os << v[i] << (i == v.size() - 1 ? \"\" : \" \");\n return os;\n}\n\nstruct Initialization {\n Initialization() {\n std::ios_base::sync_with_stdio(false);\n std::cin.tie(nullptr);\n }\n} initialization;\n\nconstexpr std::pair<int, int> dir[] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};\n\ntemplate <typename T>\nusing infs = std::numeric_limits<T>;\n\ntemplate <typename T>\nclass factorials {\n public:\n static size_t n;\n static std::vector<T> fact, inv_fact;\n\n static void extend(size_t m) {\n if (m <= n) return;\n fact.resize(m + 1);\n inv_fact.resize(m + 1);\n for (size_t i = n + 1; i <= m; i++) fact[i] = fact[i - 1] * i;\n inv_fact[m] = fact[m].inv();\n for (size_t i = m; i > n + 1; i--) inv_fact[i - 1] = inv_fact[i] * i;\n n = m;\n }\n\n static T inv(int k) {\n extend(k);\n return inv_fact[k];\n }\n\n static T get(int k) {\n extend(k);\n return fact[k];\n }\n\n static T perm(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k];\n }\n\n static T choose(int n, int k) {\n if (n < k) return 0;\n if (k < 0) return 0;\n extend(n);\n return fact[n] * inv_fact[n - k] * inv_fact[k];\n }\n};\n\ntemplate <typename T>\nsize_t factorials<T>::n = 0;\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::fact = {1};\n\ntemplate <typename T>\nstd::vector<T> factorials<T>::inv_fact = {1};\n\n// template <typename T>\n// class fps {\n// std::vector<T> v;\n//\n// public:\n// using value_type = T;\n// using reference = T &;\n// using const_reference = const T &;\n// using iterator = typename std::vector<T>::iterator;\n// using const_iterator = typename std::vector<T>::const_iterator;\n//\n// size_t size() const { return v.size(); }\n//\n// const std::vector<T> &data() const { return v; }\n//\n// explicit fps(int n) : v(n) {}\n//\n// fps(const std::vector<T> &v) : v(v) {}\n// fps(std::vector<T> &&v) : v(v) {}\n//\n// template <class InputIterator>\n// fps(InputIterator first, InputIterator last) : v(first, last) {}\n//\n// void resize(int n) { v.resize(n); }\n//\n// T &operator[](int i) { return v[i]; }\n//\n// iterator begin() { return v.begin(); }\n//\n// iterator end() { return v.end(); }\n//\n// fps diff() {\n// std::vector<T> res(v.size() - 1);\n// for (int i = 0; i < res.size(); i++) res[i] = v[i + 1] * (i + 1);\n// return fps(res);\n// }\n//\n// fps integral() {\n// std::vector<T> res(v.size() + 1);\n// for (int i = 0; i < v.size(); i++) res[i + 1] = v[i] / (i + 1);\n// return fps(res);\n// }\n//\n// fps inv(int deg = -1) {\n// assert(v[0] != 0);\n//\n// if (deg == -1) deg = size();\n// std::vector<T> res(deg);\n//\n// res[0] = v[0].inv();\n//\n// for (int d = 1; d < deg; d <<= 1) {\n// std::vector<T> f(2 * d), g(2 * d);\n//\n// std::copy(v.begin(), v.begin() + std::min(2 * d, (int)v.size()),\n// std::back_inserter(f));\n// std::copy(res.begin(), res.begin() + d, std::back_inserter(g));\n//\n// atcoder::internal::butterfly(f);\n// atcoder::internal::butterfly(g);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = 0; i < d; i++) f[i] = 0;\n//\n// atcoder::internal::butterfly(f);\n//\n// for (int i = 0; i < 2 * d; i++) f[i] *= g[i];\n//\n// atcoder::internal::butterfly_inv(f);\n//\n// for (int i = d; i < std::min(2 * d, deg); i++) res[i] = -f[i];\n// }\n//\n// res.resize(deg);\n//\n// return res;\n// }\n//\n// fps shift(T c) {\n// std::vector<T> res(size()), ifacts(size());\n//\n// T x = 1;\n//\n// for (int i = 0; i < size(); i++) {\n// ifacts[i] = x * factorials<T>::inv(i);\n// x *= c;\n// }\n//\n// for (int i = 0; i < size(); i++) {\n// res[size() - 1 - i] = v[i] * factorials<T>::get(i);\n// }\n//\n// res = atcoder::convolution(res, ifacts);\n//\n// res.resize(size());\n//\n// std::ranges::reverse(res);\n//\n// for (int i = 0; i < size(); i++) {\n// res[i] *= factorials<T>::inv(i);\n// }\n//\n// return res;\n// }\n//\n// fps operator-() {\n// fps res(v.size());\n// for (int i = 0; i < v.size(); i++) res[i] = -v[i];\n// return res;\n// }\n//\n// fps &operator+=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] += rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator-=(const fps &rhs) {\n// if (v.size() < rhs.v.size()) v.resize(rhs.v.size());\n// for (int i = 0; i < rhs.v.size(); i++) v[i] -= rhs.v[i];\n// return *this;\n// }\n//\n// fps &operator*=(const fps &rhs) {\n// return *this = atcoder::convolution(v, rhs.v);\n// }\n//\n// fps &operator+=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] += rhs;\n// return *this;\n// }\n//\n// fps &operator-=(const T &rhs) {\n// if (v.size() == 0) v.resize(1);\n// v[0] -= rhs;\n// return *this;\n// }\n//\n// fps &operator*=(const T &rhs) {\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs;\n// return *this;\n// }\n//\n// fps &operator/=(const T &rhs) {\n// T rhs_inv = rhs.inv();\n// for (int i = 0; i < v.size(); i++) v[i] *= rhs_inv;\n// return *this;\n// }\n//\n// friend fps operator+(const fps &lhs, const fps &rhs) {\n// return fps(lhs) += rhs;\n// }\n//\n// friend fps operator-(const fps &lhs, const fps &rhs) {\n// return fps(lhs) -= rhs;\n// }\n//\n// friend fps operator*(const fps &lhs, const fps &rhs) {\n// return fps(lhs) *= rhs;\n// }\n//\n// friend fps operator+(const fps &lhs, const T &rhs) { return fps(lhs) +=\n// rhs; }\n//\n// friend fps operator-(const fps &lhs, const T &rhs) { return fps(lhs) -=\n// rhs; }\n//\n// friend fps operator*(const fps &lhs, const T &rhs) { return fps(lhs) *=\n// rhs; }\n//\n// friend fps operator/(const fps &lhs, const T &rhs) { return fps(lhs) /=\n// rhs; }\n//\n// friend fps operator+(const T &lhs, const fps &rhs) { return fps(rhs) +=\n// lhs; }\n//\n// friend fps operator-(const T &lhs, const fps &rhs) {\n// return -(fps(rhs) -= lhs);\n// }\n//\n// friend fps operator*(const T &lhs, const fps &rhs) { return fps(rhs) *=\n// lhs; }\n// };\n\n// using mint = atcoder::modint998244353;\n// using mint = atcoder::modint1000000007;\n\n// using fs = factorials<mint>;\n\nstruct mokeke {\n int N;\n std::vector<int> score, parent, updated;\n std::vector<std::vector<int>> children;\n\n mokeke(int N, int T)\n : N(N), score(N), parent(N, -1), updated(N, T), children(N) {}\n\n int find(int a) {\n while (parent[a] >= 0) {\n a = parent[a];\n }\n\n return a;\n }\n\n void tick(int a, int t) {\n score[a] -= parent[a] * (updated[a] - t);\n updated[a] = t;\n }\n\n void add_edge(int a, int b, int t) {\n a = find(a);\n b = find(b);\n\n if (a == b) return;\n\n int sa = -parent[a], sb = -parent[b];\n\n if (sa < sb) {\n std::swap(a, b);\n std::swap(sa, sb);\n }\n\n tick(a, t);\n tick(b, t);\n\n score[b] -= score[a];\n parent[a] += parent[b];\n parent[b] = a;\n children[a].push_back(b);\n }\n\n std::vector<ll> build() {\n std::vector<ll> result(N);\n\n auto rec = [&](auto self, int v) -> void {\n result[v] = score[v];\n for (int w : children[v]) {\n score[w] += score[v];\n self(self, w);\n }\n };\n\n int a = find(0);\n\n tick(a, 0);\n\n rec(rec, a);\n\n return result;\n }\n};\n\nint main() {\n int N, M, T;\n std::cin >> N >> M >> T;\n using tiii = std::tuple<int, int, int>;\n std::vector<tiii> edges(M);\n std::cin >> edges;\n\n std::sort(edges.begin(), edges.end(),\n [](tiii a, tiii b) { return std::get<2>(a) > std::get<2>(b); });\n\n std::vector graph(N, std::vector<std::pair<int, int>>());\n\n for (auto &[a, b, t] : edges) {\n a--;\n b--;\n graph[a].emplace_back(b, t);\n graph[b].emplace_back(a, t);\n }\n\n std::vector dist(N, T + 999);\n std::queue<std::pair<int, int>> que;\n dist[0] = 0;\n que.emplace(0, 0);\n\n while (!que.empty()) {\n auto [v, t] = que.front();\n que.pop();\n\n if (t >= T) continue;\n\n for (auto [w, t2] : graph[v]) {\n if (t >= t2) continue;\n if (chmin(dist[w], t + 1)) {\n que.emplace(w, t + 1);\n }\n }\n }\n\n mokeke moke(N, T);\n\n for (auto [a, b, t] : edges) {\n moke.add_edge(a, b, t);\n }\n\n std::vector<ll> scores = moke.build();\n\n ll ans = 0;\n\n for (int i = 0; i < N; i++) {\n if (dist[i] <= T) {\n chmax(ans, scores[i]);\n }\n }\n\n std::cout << ans << std::endl;\n\n // for (auto [a, b, c] : edges) {\n // std::cerr << a << \" \" << b << \" \" << c << \"\\n\";\n // }\n}", "accuracy": 0.5531914893617021, "time_ms": 50, "memory_kb": 15100, "score_of_the_acc": -0.4953, "final_rank": 20 }, { "submission_id": "aoj_2813_9117791", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\nstruct dsu {\n vector<int> parsz;\n vector<ll> sum;\n dsu (int _n, ll tot) : parsz(_n,-1), sum(_n,tot) {}\n int leader(int v){\n if (parsz[v] < 0) return v;\n return leader(parsz[v]);\n }\n void merge(int u, int v, ll t){\n u = leader(u);\n v = leader(v);\n if (u == v) return ;\n if (-parsz[u] < -parsz[v]) swap(u,v);\n // u <- v\n ll lhs = sum[u] + (-parsz[v] * t);\n ll rhs = sum[v] + (-parsz[u] * t);\n parsz[u] += parsz[v];\n parsz[v] = u;\n sum[u] = max(lhs,rhs);\n }\n};\n\nvoid solve(){\n int n, m, t; in(n,m,t);\n vector<pii> es(m);\n vector<ll> ts(m);\n rep(i,m){\n int u, v; in(u,v); u--, v--;\n es[i] = pii(u,v);\n in(ts[i]);\n }\n vector<int> ids(m); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return ts[l] > ts[r];\n });\n dsu d(n,t);\n for (int i : ids){\n d.merge(es[i].first,es[i].second,ts[i]);\n }\n out(d.sum[d.leader(0)]);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.9574468085106383, "time_ms": 40, "memory_kb": 7268, "score_of_the_acc": -0.1479, "final_rank": 14 }, { "submission_id": "aoj_2813_4123402", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n#include <set>\n\nclass UnionFind {\n\tstd::vector<int> vec;\npublic:\n\tUnionFind(int size) : vec(size, -1) {};\n\tint find(int a) {\n\t\treturn vec[a] < 0 ? a : vec[a] = find(vec[a]);\n\t}\n\tbool same(int a, int b) {\n\t\treturn find(a) == find(b);\n\t}\n\tint size_of(int a) {\n\t\treturn -vec[find(a)];\n\t}\n\tvoid unite(int a, int b) {\n\t\ta = find(a); b = find(b);\n\t\tif (a != b) {\n\t\t\tif (vec[a] > vec[b]) std::swap(a, b);\n\t\t\tvec[a] += vec[b];\n\t\t\tvec[b] = a;\n\t\t}\n\t}\n};\nstruct Bridge {\n\tint to, time;\n};\nstruct Bidirect {\n\tint a, b, time;\n};\nint main() {\n\tint n, m, t; std::cin >> n >> m >> t;\n\tstd::vector<Bidirect> bridges(m);\n\tstd::vector<std::vector<Bridge>> islands(n);\n\tfor (auto& bridge : bridges) {\n\t\tstd::cin >> bridge.a >> bridge.b >> bridge.time;\n\t\t--bridge.a; --bridge.b;\n\t\tislands[bridge.a].push_back(Bridge{ bridge.b, bridge.time });\n\t\tislands[bridge.b].push_back(Bridge{ bridge.a, bridge.time });\n\t}\n\tstd::vector<int> depth(n, INT_MAX); depth[0] = 0;\n\tstd::queue<int> queue; queue.push(0);\n\twhile (!queue.empty()) {\n\t\tconst auto top = queue.front(); queue.pop();\n\t\tfor (const auto bridge : islands[top]) if (bridge.time > depth[top] && depth[bridge.to] == INT_MAX) {\n\t\t\tdepth[bridge.to] = depth[top] + 1;\n\t\t\tqueue.push(bridge.to);\n\t\t}\n\t}\n\tstd::vector<long long int> sum_score(n, 0);\n\tstd::vector<int> last_changed(n, t), max_position(n); std::iota(max_position.begin(), max_position.end(), 0);\n\tstd::sort(bridges.rbegin(), bridges.rend(), [](const Bidirect a, const Bidirect b) {return a.time < b.time; });\n\tUnionFind uft(n);\n\tfor (const auto bridge : bridges) {\n\t\tif (uft.same(bridge.a, bridge.b)) continue;\n\t\tconst auto a_max = max_position[uft.find(bridge.a)];\n\t\tconst auto b_max = max_position[uft.find(bridge.b)];\n\t\tconst long long int a_max_size = uft.size_of(bridge.a);\n\t\tconst long long int b_max_size = uft.size_of(bridge.b);\n\t\tsum_score[a_max] += a_max_size * (last_changed[a_max] - bridge.time);\n\t\tsum_score[b_max] += b_max_size * (last_changed[b_max] - bridge.time);\n\t\tif (depth[a_max] > t) sum_score[a_max] = 0;\n\t\tif (depth[b_max] > t) sum_score[b_max] = 0;\n\t\tuft.unite(bridge.a, bridge.b);\n\t\tconst auto new_root = uft.find(bridge.a);\n\t\tif (sum_score[a_max] > sum_score[b_max]) {\n\t\t\tmax_position[new_root] = a_max;\n\t\t\tlast_changed[a_max] = bridge.time;\n\t\t}\n\t\telse {\n\t\t\tmax_position[new_root] = b_max;\n\t\t\tlast_changed[b_max] = bridge.time;\n\t\t}\n\t}\n\tfor (auto i = 0; i < n; ++i) {\n\t\tconst auto max = max_position[uft.find(i)];\n\t\tsum_score[max] += uft.size_of(max) * (last_changed[max] - 0LL);\n\t\tif (depth[max] > t) sum_score[max] = 0;\n\t\tlast_changed[max] = 0;\n\t}\n\tstd::cout << *std::max_element(sum_score.begin(), sum_score.end()) << std::endl;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 16268, "score_of_the_acc": -1.1854, "final_rank": 6 }, { "submission_id": "aoj_2813_4123392", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n#include <set>\n\nclass UnionFind {\n\tstd::vector<int> vec;\npublic:\n\tUnionFind(int size) : vec(size, -1) {};\n\tint find(int a) {\n\t\treturn vec[a] < 0 ? a : vec[a] = find(vec[a]);\n\t}\n\tbool same(int a, int b) {\n\t\treturn find(a) == find(b);\n\t}\n\tint size_of(int a) {\n\t\treturn -vec[find(a)];\n\t}\n\tvoid unite(int a, int b) {\n\t\ta = find(a); b = find(b);\n\t\tif (a != b) {\n\t\t\tif (vec[a] > vec[b]) std::swap(a, b);\n\t\t\tvec[a] += vec[b];\n\t\t\tvec[b] = a;\n\t\t}\n\t}\n};\nstruct Bridge {\n\tint to, time;\n};\nstruct Bidirect {\n\tint a, b, time;\n};\nint main() {\n\tint n, m, t; std::cin >> n >> m >> t;\n\tstd::vector<Bidirect> bridges(m);\n\tstd::vector<std::vector<Bridge>> islands(n);\n\tfor (auto& bridge : bridges) {\n\t\tstd::cin >> bridge.a >> bridge.b >> bridge.time;\n\t\t--bridge.a; --bridge.b;\n\t\tislands[bridge.a].push_back(Bridge{ bridge.b, bridge.time });\n\t\tislands[bridge.b].push_back(Bridge{ bridge.a, bridge.time });\n\t}\n\tstd::vector<int> depth(n, -1); depth[0] = 0;\n\tstd::queue<int> queue; queue.push(0);\n\twhile (!queue.empty()) {\n\t\tconst auto top = queue.front(); queue.pop();\n\t\tfor (const auto bridge : islands[top]) if (bridge.time > depth[top] && depth[bridge.to] == -1) {\n\t\t\tdepth[bridge.to] = depth[top] + 1;\n\t\t\tqueue.push(bridge.to);\n\t\t}\n\t}\n\tstd::vector<long long int> sum_score(n, 0);\n\tstd::vector<int> last_changed(n, t), max_position(n); std::iota(max_position.begin(), max_position.end(), 0);\n\tstd::sort(bridges.rbegin(), bridges.rend(), [](const Bidirect a, const Bidirect b) {return a.time < b.time; });\n\tUnionFind uft(n);\n\tfor (const auto bridge : bridges) {\n\t\tif (uft.same(bridge.a, bridge.b)) continue;\n\t\tconst auto a_max = max_position[uft.find(bridge.a)];\n\t\tconst auto b_max = max_position[uft.find(bridge.b)];\n\t\tconst long long int a_max_size = uft.size_of(bridge.a);\n\t\tconst long long int b_max_size = uft.size_of(bridge.b);\n\t\tsum_score[a_max] += a_max_size * (last_changed[a_max] - bridge.time);\n\t\tsum_score[b_max] += b_max_size * (last_changed[b_max] - bridge.time);\n\t\tuft.unite(bridge.a, bridge.b);\n\t\tconst auto new_root = uft.find(bridge.a);\n\t\tif (sum_score[a_max] > sum_score[b_max]) {\n\t\t\tmax_position[new_root] = a_max;\n\t\t\tlast_changed[a_max] = bridge.time;\n\t\t}\n\t\telse {\n\t\t\tmax_position[new_root] = b_max;\n\t\t\tlast_changed[b_max] = bridge.time;\n\t\t}\n\t}\n\tfor (auto i = 0; i < n; ++i) {\n\t\tconst auto max = max_position[uft.find(i)];\n\t\tsum_score[max] += uft.size_of(max) * (last_changed[max] - 0LL);\n\t\tlast_changed[max] = 0;\n\t}\n\tstd::cout << *std::max_element(sum_score.begin(), sum_score.end()) << std::endl;\n}", "accuracy": 0.9574468085106383, "time_ms": 130, "memory_kb": 13380, "score_of_the_acc": -0.9025, "final_rank": 19 }, { "submission_id": "aoj_2813_4123388", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n#include <set>\n\nclass UnionFind {\n\tstd::vector<int> vec;\npublic:\n\tUnionFind(int size) : vec(size, -1) {};\n\tint find(int a) {\n\t\treturn vec[a] < 0 ? a : vec[a] = find(vec[a]);\n\t}\n\tbool same(int a, int b) {\n\t\treturn find(a) == find(b);\n\t}\n\tint size_of(int a) {\n\t\treturn -vec[find(a)];\n\t}\n\tvoid unite(int a, int b) {\n\t\ta = find(a); b = find(b);\n\t\tif (a != b) {\n\t\t\tif (vec[a] > vec[b]) std::swap(a, b);\n\t\t\tvec[a] += vec[b];\n\t\t\tvec[b] = a;\n\t\t}\n\t}\n};\nstruct Bridge {\n\tint to, time;\n};\nstruct Bidirect {\n\tint a, b, time;\n};\nint main() {\n\tint n, m, t; std::cin >> n >> m >> t;\n\tstd::vector<Bidirect> bridges(m);\n\tstd::vector<std::vector<Bridge>> islands(n);\n\tfor (auto& bridge : bridges) {\n\t\tstd::cin >> bridge.a >> bridge.b >> bridge.time;\n\t\t--bridge.a; --bridge.b;\n\t\tislands[bridge.a].push_back(Bridge{ bridge.b, bridge.time });\n\t\tislands[bridge.b].push_back(Bridge{ bridge.a, bridge.time });\n\t}\n\tstd::vector<int> depth(n, -1); depth[0] = 0;\n\tstd::queue<int> queue; queue.push(0);\n\twhile (!queue.empty()) {\n\t\tconst auto top = queue.front(); queue.pop();\n\t\tfor (const auto bridge : islands[top]) if (bridge.time > depth[top] && depth[bridge.to] == -1) {\n\t\t\tdepth[bridge.to] = depth[top] + 1;\n\t\t\tqueue.push(bridge.to);\n\t\t}\n\t}\n\tstd::vector<long long int> sum_score(n, 0);\n\tstd::vector<int> last_changed(n, t), max_position(n); std::iota(max_position.begin(), max_position.end(), 0);\n\tstd::sort(bridges.rbegin(), bridges.rend(), [](const Bidirect a, const Bidirect b) {return a.time < b.time; });\n\tUnionFind uft(n);\n\tfor (const auto bridge : bridges) {\n\t\tif (uft.same(bridge.a, bridge.b)) continue;\n\t\tconst auto a_max = max_position[uft.find(bridge.a)];\n\t\tconst auto b_max = max_position[uft.find(bridge.b)];\n\t\tconst long long int a_max_size = uft.size_of(bridge.a);\n\t\tconst long long int b_max_size = uft.size_of(bridge.b);\n\t\tsum_score[a_max] += a_max_size * (last_changed[a_max] - bridge.time);\n\t\tsum_score[b_max] += b_max_size * (last_changed[b_max] - bridge.time);\n\t\tuft.unite(bridge.a, bridge.b);\n\t\tconst auto new_root = uft.find(bridge.a);\n\t\tif (sum_score[a_max] > sum_score[b_max]) {\n\t\t\tmax_position[new_root] = a_max;\n\t\t\tlast_changed[a_max] = bridge.time;\n\t\t}\n\t\telse {\n\t\t\tmax_position[new_root] = b_max;\n\t\t\tlast_changed[b_max] = bridge.time;\n\t\t}\n\t}\n\tfor (auto i = 0; i < n; ++i) {\n\t\tconst auto max = max_position[uft.find(i)];\n\t\tsum_score[max] += uft.size_of(max) * (last_changed[max] - 0);\n\t\tlast_changed[max] = 0;\n\t}\n\tstd::cout << *std::max_element(sum_score.begin(), sum_score.end()) << std::endl;\n}", "accuracy": 0.9574468085106383, "time_ms": 130, "memory_kb": 13252, "score_of_the_acc": -0.8978, "final_rank": 18 }, { "submission_id": "aoj_2813_3991872", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\nusing PP = pair<ll, PII>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nconst ll INF = 1LL << 60;\ntemplate<typename T> void chmin(T &a, T b) { a = min(a, b); }\nvector<PII> G[300000];\nint cnt[300000];\nint dist[300000];\nstruct UnionFind {\n\tvector<int> par;\n\tvector<int> rank;\n\tvector<int> cnt;\n\tUnionFind(int n) {\n\t\tpar.resize(n);\n\t\tfor (int i = 0; i < n; i++) par[i] = i;\n\t\trank.resize(n);\n\t\tcnt.resize(n);\n\t}\n\tint find(int x) {\n\t\tif (x == par[x]) return x;\n\t\treturn par[x] = find(par[x]);\n\t}\n\tbool same(int x, int y) {\n\t\treturn find(x) == find(y);\n\t}\n\tvoid unite(int x, int y) {\n\t\tx = find(x);\n\t\ty = find(y);\n\t\tif (x == y)return;\n\t\tif (rank[x] < rank[y]) {\n\t\t\tpar[x] = y;\n\t\t\tcnt[y] += cnt[x];\n\t\t}\n\t\telse {\n\t\t\tpar[y] = x;\n\t\t\tcnt[x] += cnt[y];\n\t\t\tif (rank[x] == rank[y]) rank[x]++;\n\t\t}\n\t}\n};\nint main() {\n\tint N, M, T;\n\tcin >> N >> M >> T;\n\tvector<PP> edge;\n\tfor (int i = 0; i < M; i++) {\n\t\tint a, b, t;\n\t\tcin >> a >> b >> t;\n\t\ta--; b--;\n\t\tedge.emplace_back(t, PII(a, b));\n\t\tG[a].emplace_back(b, t);\n\t\tG[b].emplace_back(a, t);\n\t}\n\tqueue<int> Q;\n\tfill((int*)dist, (int*)(dist + N), 1 << 30);\n\tdist[0] = -1;\n\tQ.push(0);\n\twhile (!Q.empty()) {\n\t\tint v = Q.front(); Q.pop();\n\t\tfor (PII e : G[v]) {\n\t\t\tint to = e.first;\n\t\t\tif (dist[to] == 1 << 30 && dist[v] < e.second - 1) {\n\t\t\t\tdist[to] = dist[v] + 1;\n\t\t\t\tQ.push(to);\n\t\t\t}\n\t\t}\n\t}\n\tsort(edge.begin(), edge.end(), greater<PP>());\n\tUnionFind U(N + M);\n\tvector<ll> score(N + M);\n\tvector<ll> tim(N + M);\n\tfor (int i = 0; i < N; i++) U.cnt[i] = 1;\n\tfor (int i = 0; i < N; i++) {\n\t\tif (dist[i] == 1 << 30) {\n\t\t\tscore[i] = -(1LL << 60);\n\t\t}\n\t\ttim[i] = T;\n\t}\n\tint k = N;\n\tfor (int i = 0; i < M; i++) {\n\t\tint s = edge[i].second.first;\n\t\tint t = edge[i].second.second;\n\t\tif (U.same(s, t)) continue;\n\t\ts = U.find(s);\n\t\tt = U.find(t);\n\t\tll ss = max(score[s] + (tim[s] - edge[i].first)*U.cnt[s], score[t] + (tim[t] - edge[i].first)*U.cnt[t]);\n\t\tU.unite(k, s);\n\t\tU.unite(k, t);\n\t\ttim[U.find(k)] = edge[i].first;\n\t\tscore[U.find(k)] = ss;\n\t\tk++;\n\t}\n\tcout << score[U.find(k - 1)] + N*tim[U.find(k - 1)] << endl;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 33584, "score_of_the_acc": -2, "final_rank": 10 }, { "submission_id": "aoj_2813_2866434", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n#define NUM 100000\n\nstruct Edge{\n\tEdge(int arg_from,int arg_to,int arg_time){\n\t\tfrom = arg_from;\n\t\tto = arg_to;\n\t\ttime = arg_time;\n\t}\n\tbool operator<(const struct Edge &arg) const{ //時刻の降順(PQ)\n\t\treturn time < arg.time;\n\t}\n\n\tint from,to,time;\n};\n\nstruct Info{\n\tInfo(int arg_node_id,int arg_sum_dist){\n\t\tnode_id = arg_node_id;\n\t\tsum_dist = arg_sum_dist;\n\t}\n\tbool operator<(const struct Info &arg) const{ //総移動距離の昇順(PQ)\n\t\treturn sum_dist > arg.sum_dist;\n\t}\n\n\tint node_id,sum_dist;\n};\n\nstruct Data{\n\tData(int arg_to,int arg_limit_time){\n\t\tto = arg_to;\n\t\tlimit_time = arg_limit_time;\n\t}\n\tint to,limit_time;\n};\n\nint N;\nint M;\nll T;\nint boss[NUM];\nll pre_time[NUM],member_num[NUM];\nint min_dist[NUM]; //★時刻0の時点で頂点1にいる!!★\nvector<Data> G[NUM];\nll value[NUM];\n\nint get_boss(int id){\n\tif(id == boss[id])return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nvoid unite(int x,int y,int unite_time){\n\tint x_boss_id = get_boss(x);\n\tint y_boss_id = get_boss(y);\n\n\tif(x_boss_id == y_boss_id){ //同じグループ\n\n\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\tpre_time[x_boss_id] = unite_time;\n\n\t}else{ //違うグループ\n\n\t\tif(min_dist[x_boss_id] >= T && min_dist[y_boss_id] >= T){\n\n\t\t\t//とりあえずxに吸収しておく\n\t\t\tboss[y_boss_id] = x_boss_id;\n\t\t\tmember_num[x_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\n\t\t}else if(min_dist[x_boss_id] <= T-1 && min_dist[y_boss_id] >= T){ //x_boss_idのみ、時刻T-1で辿り着ける\n\n\t\t\t//元々x_boss_idにいたことにする\n\t\t\tboss[y_boss_id] = x_boss_id;\n\t\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\t\tpre_time[x_boss_id] = unite_time;\n\t\t\tmember_num[x_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\n\t\t}else if(min_dist[x_boss_id] >= T && min_dist[y_boss_id] <= T-1){\n\n\t\t\t//元々y_boss_idにいたことにする\n\t\t\tboss[x_boss_id] = y_boss_id;\n\t\t\tvalue[y_boss_id] += (pre_time[y_boss_id]-unite_time)*member_num[y_boss_id];\n\t\t\tpre_time[y_boss_id] = unite_time;\n\t\t\tmember_num[y_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\n\t\t}else{ //両方、時刻Tの時点で辿り着ける\n\n\t\t\t//それぞれのグループの、unite直前でのvalueを計算する\n\t\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\t\tvalue[y_boss_id] += (pre_time[y_boss_id]-unite_time)*member_num[y_boss_id];\n\n\t\t\tint new_boss_id;\n\t\t\t//これから先辿る未来は同じなので、有利な過去を選ぶ(元々valueが大きなグループにいたことにする)\n\t\t\tif(value[x_boss_id] >= value[y_boss_id]){\n\t\t\t\tboss[y_boss_id] = x_boss_id;\n\t\t\t\tnew_boss_id = x_boss_id;\n\t\t\t}else{\n\t\t\t\tboss[x_boss_id] = y_boss_id;\n\t\t\t\tnew_boss_id = y_boss_id;\n\t\t\t}\n\t\t\tpre_time[new_boss_id] = unite_time;\n\t\t\tmember_num[new_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\t\t}\n\t}\n}\n\nvoid dijkstra(){\n\tmin_dist[0] = 0;\n\tfor(int i = 1; i < N; i++)min_dist[i] = BIG_NUM;\n\n\tpriority_queue<Info> Q;\n\tQ.push(Info(0,0));\n\n\tint next_node,next_dist;\n\n\twhile(!Q.empty()){\n\n\t\tif(Q.top().sum_dist > min_dist[Q.top().node_id]){\n\t\t\tQ.pop();\n\t\t}else{\n\n\t\t\tfor(int i = 0; i < G[Q.top().node_id].size(); i++){\n\n\t\t\t\tnext_node = G[Q.top().node_id][i].to;\n\t\t\t\tnext_dist = Q.top().sum_dist+1;\n\n\t\t\t\tif(next_dist > G[Q.top().node_id][i].limit_time+1)continue; //★その時間までにエッジが消えていたら行けない★\n\n\t\t\t\tif(min_dist[next_node] > next_dist){\n\t\t\t\t\tmin_dist[next_node] = next_dist;\n\t\t\t\t\tQ.push(Info(next_node,next_dist));\n\t\t\t\t}\n\t\t\t}\n\t\t\tQ.pop();\n\t\t}\n\t}\n\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&T);\n\n\tint from,to,time;\n\tpriority_queue<Edge> Q;\n\n\tfor(int loop = 0; loop < M; loop++){\n\t\tscanf(\"%d %d %d\",&from,&to,&time);\n\t\tfrom--;\n\t\tto--;\n\t\ttime--; //★timeに消えるので、時間を逆に回すと、time-1に発生する★\n\t\tQ.push(Edge(from,to,time));\n\t\tG[from].push_back(Data(to,time));\n\t\tG[to].push_back(Data(from,time));\n\t}\n\n\tdijkstra();\n\n\tint debug = 0;\n\tfor(int i = 0; i < N; i++){\n\t\tif(min_dist[i] == BIG_NUM)debug++;\n\t}\n\n\t//情報の初期化\n\tfor(int i = 0; i < N; i++){\n\t\tboss[i] = i;\n\t\tpre_time[i] = T-1;\n\t\tmember_num[i] = 1;\n\t\tvalue[i] = 0;\n\t}\n\n\twhile(!Q.empty()){ //時間を逆向きに回す(★一度uniteされたら、以後は運命を共にするイメージ★)\n\t\tunite(Q.top().from,Q.top().to,Q.top().time);\n\t\tQ.pop();\n\t}\n\n\tll ans = 0;\n\tint boss_id;\n\n\t//最終計算\n\tfor(int i = 0; i < N; i++){\n\t\tboss_id = get_boss(i);\n\t\tif(boss_id != i)continue; //ボス以外はSKIP\n\t\tif(min_dist[boss_id] >= T)continue;//時刻T-1の時点でそのノードにいられないならcontinue\n\t\tvalue[boss_id] += (pre_time[boss_id]-0+1)*member_num[boss_id]; //★最後のみ、現在時刻(0)を含む\n\t\tans = max(ans,value[boss_id]);\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 17584, "score_of_the_acc": -0.881, "final_rank": 5 }, { "submission_id": "aoj_2813_2866425", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n#define NUM 100000\n\nstruct Edge{\n\tEdge(int arg_from,int arg_to,int arg_time){\n\t\tfrom = arg_from;\n\t\tto = arg_to;\n\t\ttime = arg_time;\n\t}\n\tbool operator<(const struct Edge &arg) const{ //時刻の降順(PQ)\n\t\treturn time < arg.time;\n\t}\n\n\tint from,to,time;\n};\n\nstruct Info{\n\tInfo(int arg_node_id,int arg_sum_dist){\n\t\tnode_id = arg_node_id;\n\t\tsum_dist = arg_sum_dist;\n\t}\n\tbool operator<(const struct Info &arg) const{ //総移動距離の昇順(PQ)\n\t\treturn sum_dist > arg.sum_dist;\n\t}\n\n\tint node_id,sum_dist;\n};\n\nstruct Data{\n\tData(int arg_to,int arg_limit_time){\n\t\tto = arg_to;\n\t\tlimit_time = arg_limit_time;\n\t}\n\tint to,limit_time;\n};\n\nint N;\nint M,T;\nint boss[NUM];\nint pre_time[NUM],member_num[NUM];\nint min_dist[NUM]; //★時刻0の時点で頂点1にいる!!★\nvector<Data> G[NUM];\nll value[NUM];\n\nint get_boss(int id){\n\tif(id == boss[id])return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nvoid unite(int x,int y,int unite_time){\n\tint x_boss_id = get_boss(x);\n\tint y_boss_id = get_boss(y);\n\n\tif(x_boss_id == y_boss_id){ //同じグループ\n\n\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\tpre_time[x_boss_id] = unite_time;\n\n\t}else{ //違うグループ\n\n\t\tif(min_dist[x_boss_id] >= T && min_dist[y_boss_id] >= T){\n\n\t\t\t//とりあえずxに吸収しておく\n\t\t\tboss[y_boss_id] = x_boss_id;\n\t\t\tmember_num[x_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\n\t\t}else if(min_dist[x_boss_id] <= T-1 && min_dist[y_boss_id] >= T){ //x_boss_idのみ、時刻T-1で辿り着ける\n\n\t\t\t//元々x_boss_idにいたことにする\n\t\t\tboss[y_boss_id] = x_boss_id;\n\t\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\t\tpre_time[x_boss_id] = unite_time;\n\t\t\tmember_num[x_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\n\t\t}else if(min_dist[x_boss_id] >= T && min_dist[y_boss_id] <= T-1){\n\n\t\t\t//元々y_boss_idにいたことにする\n\t\t\tboss[x_boss_id] = y_boss_id;\n\t\t\tvalue[y_boss_id] += (pre_time[y_boss_id]-unite_time)*member_num[y_boss_id];\n\t\t\tpre_time[y_boss_id] = unite_time;\n\t\t\tmember_num[y_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\n\t\t}else{ //両方、時刻Tの時点で辿り着ける\n\n\t\t\t//それぞれのグループの、unite直前でのvalueを計算する\n\t\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\t\tvalue[y_boss_id] += (pre_time[y_boss_id]-unite_time)*member_num[y_boss_id];\n\n\t\t\tint new_boss_id;\n\t\t\t//これから先辿る未来は同じなので、有利な過去を選ぶ(元々valueが大きなグループにいたことにする)\n\t\t\tif(value[x_boss_id] >= value[y_boss_id]){\n\t\t\t\tboss[y_boss_id] = x_boss_id;\n\t\t\t\tnew_boss_id = x_boss_id;\n\t\t\t}else{\n\t\t\t\tboss[x_boss_id] = y_boss_id;\n\t\t\t\tnew_boss_id = y_boss_id;\n\t\t\t}\n\t\t\tpre_time[new_boss_id] = unite_time;\n\t\t\tmember_num[new_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\t\t}\n\t}\n}\n\nvoid dijkstra(){\n\tmin_dist[0] = 0;\n\tfor(int i = 1; i < N; i++)min_dist[i] = BIG_NUM;\n\n\tpriority_queue<Info> Q;\n\tQ.push(Info(0,0));\n\n\tint next_node,next_dist;\n\n\twhile(!Q.empty()){\n\n\t\tif(Q.top().sum_dist > min_dist[Q.top().node_id]){\n\t\t\tQ.pop();\n\t\t}else{\n\n\t\t\tfor(int i = 0; i < G[Q.top().node_id].size(); i++){\n\n\t\t\t\tnext_node = G[Q.top().node_id][i].to;\n\t\t\t\tnext_dist = Q.top().sum_dist+1;\n\n\t\t\t\tif(next_dist > G[Q.top().node_id][i].limit_time+1)continue; //★その時間までにエッジが消えていたら行けない★\n\n\t\t\t\tif(min_dist[next_node] > next_dist){\n\t\t\t\t\tmin_dist[next_node] = next_dist;\n\t\t\t\t\tQ.push(Info(next_node,next_dist));\n\t\t\t\t}\n\t\t\t}\n\t\t\tQ.pop();\n\t\t}\n\t}\n\n}\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&M,&T);\n\n\tint from,to,time;\n\tpriority_queue<Edge> Q;\n\n\tfor(int loop = 0; loop < M; loop++){\n\t\tscanf(\"%d %d %d\",&from,&to,&time);\n\t\tfrom--;\n\t\tto--;\n\t\ttime--; //★timeに消えるので、時間を逆に回すと、time-1に発生する★\n\t\tQ.push(Edge(from,to,time));\n\t\tG[from].push_back(Data(to,time));\n\t\tG[to].push_back(Data(from,time));\n\t}\n\n\tdijkstra();\n\n\t//情報の初期化\n\tfor(int i = 0; i < N; i++){\n\t\tboss[i] = i;\n\t\tpre_time[i] = T-1;\n\t\tmember_num[i] = 1;\n\t\tvalue[i] = 0;\n\t}\n\n\twhile(!Q.empty()){ //時間を逆向きに回す(★一度uniteされたら、以後は運命を共にするイメージ★)\n\t\tunite(Q.top().from,Q.top().to,Q.top().time);\n\t\tQ.pop();\n\t}\n\n\tll ans = 0;\n\tint boss_id;\n\n\t//最終計算\n\tfor(int i = 0; i < N; i++){\n\t\tboss_id = get_boss(i);\n\t\tif(boss_id != i)continue; //ボス以外はSKIP\n\t\tif(min_dist[boss_id] >= T)continue;//時刻T-1の時点でそのノードにいられないならcontinue\n\t\tvalue[boss_id] += (pre_time[boss_id]-0+1)*member_num[boss_id]; //★最後のみ、現在時刻(0)を含む\n\t\tans = max(ans,value[boss_id]);\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.9787234042553191, "time_ms": 90, "memory_kb": 16688, "score_of_the_acc": -0.7891, "final_rank": 11 }, { "submission_id": "aoj_2813_2866312", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n#define NUM 100000\n\nstruct Edge{\n\tEdge(int arg_from,int arg_to,int arg_time){\n\t\tfrom = arg_from;\n\t\tto = arg_to;\n\t\ttime = arg_time;\n\t}\n\tbool operator<(const struct Edge &arg) const{ //時刻の降順(PQ)\n\t\treturn time < arg.time;\n\t}\n\n\tint from,to,time;\n};\n\nint N;\nint boss[NUM];\nint pre_time[NUM],member_num[NUM];\nll value[NUM];\n\nint get_boss(int id){\n\tif(id == boss[id])return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nvoid unite(int x,int y,int unite_time){\n\tint x_boss_id = get_boss(x);\n\tint y_boss_id = get_boss(y);\n\n\tif(x_boss_id == y_boss_id){ //同じグループ\n\n\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\tpre_time[x_boss_id] = unite_time;\n\n\t}else{\n\n\t\t//それぞれのグループの、unite直前でのvalueを計算する\n\t\tvalue[x_boss_id] += (pre_time[x_boss_id]-unite_time)*member_num[x_boss_id];\n\t\tvalue[y_boss_id] += (pre_time[y_boss_id]-unite_time)*member_num[y_boss_id];\n\n\t\tint new_boss_id;\n\t\t//これから先辿る未来は同じなので、有利な過去を選ぶ(元々valueが大きなグループにいたことにする)\n\t\tif(value[x_boss_id] >= value[y_boss_id]){\n\t\t\tboss[y_boss_id] = x_boss_id;\n\t\t\tnew_boss_id = x_boss_id;\n\t\t}else{\n\t\t\tboss[x_boss_id] = y_boss_id;\n\t\t\tnew_boss_id = y_boss_id;\n\t\t}\n\t\tpre_time[new_boss_id] = unite_time;\n\t\tmember_num[new_boss_id] = member_num[x_boss_id]+member_num[y_boss_id];\n\t}\n}\n\nint main(){\n\n\tint M,T;\n\tscanf(\"%d %d %d\",&N,&M,&T);\n\n\tint from,to,time;\n\tpriority_queue<Edge> Q;\n\n\tfor(int loop = 0; loop < M; loop++){\n\t\tscanf(\"%d %d %d\",&from,&to,&time);\n\t\tfrom--;\n\t\tto--;\n\t\ttime--; //★timeに消えるので、時間を逆に回すと、time-1に発生する★\n\t\tQ.push(Edge(from,to,time));\n\t}\n\n\t//情報の初期化\n\tfor(int i = 0; i < N; i++){\n\t\tboss[i] = i;\n\t\tpre_time[i] = T-1;\n\t\tmember_num[i] = 1;\n\t\tvalue[i] = 0;\n\t}\n\n\twhile(!Q.empty()){ //時間を逆向きに回す(★一度uniteされたら、以後は運命を共にするイメージ★)\n\t\tunite(Q.top().from,Q.top().to,Q.top().time);\n\t\tQ.pop();\n\t}\n\n\tll ans = 0;\n\tint boss_id;\n\n\t//最終計算\n\tfor(int i = 0; i < N; i++){\n\t\tboss_id = get_boss(i);\n\t\tif(boss_id != i)continue; //ボス以外はSKIP\n\t\tvalue[boss_id] += (pre_time[boss_id]-0+1)*member_num[boss_id]; //★最後のみ、現在時刻(0)を含む\n\t\tans = max(ans,value[boss_id]);\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 0.9574468085106383, "time_ms": 60, "memory_kb": 6448, "score_of_the_acc": -0.2353, "final_rank": 15 }, { "submission_id": "aoj_2813_2392464", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 2147483600\n\nclass UnionFind {\npublic:\n vector<int> par, rank; // parent(negative := its root and abs-value is its size), depth\n UnionFind(int sz) : par(sz, -1), rank(sz, 0){}\n int find(int x){\n if(par[x]<0) return x;\n else return par[x] = find(par[x]);\n }\n void unite(int x, int y){\n x=find(x); y=find(y);\n if(x==y) return; // already belong to same tree\n if(rank[x] < rank[y]){ // y becomes parent node\n par[y] += par[x];\n par[x] = y;\n } else { // x becomes parent node\n par[x] += par[y];\n par[y] = x;\n if(rank[x]==rank[y]) rank[x]++;\n }\n }\n bool same(int x, int y){ return find(x) == find(y); }\n int size(int x){ return -par[find(x)]; }\n};\n\nint main(){\n int n,m,T;\n cin>>n>>m>>T;\n vector<vector<pair<int,int>>> vec(n);\n vector<pair<int,pair<int,int>>> edge(m);\n rep(i,m){\n int a,b,t;\n cin>>a>>b>>t;\n a--;b--;\n vec[a].pb(mp(b,t));\n vec[b].pb(mp(a,t));\n edge[i] = mp(t,mp(a,b));\n }\n\n vector<int> d(n,INF);\n d[0]=0;\n queue<int> q;\n q.push(0);\n while(!q.empty()){\n int v = q.front(); q.pop();\n int dis = d[v];\n for(auto to : vec[v]){\n if(to.se <= dis) continue;\n if(d[to.fi] <= dis+1) continue;\n d[to.first] = dis+1;\n q.push(to.first);\n }\n }\n\n sort(all(edge)); reverse(all(edge));\n UnionFind uf(n);\n\n vector<long> maxval(n,0), lastvisit(n,T);\n rep(i,n) if(d[i]<INF) maxval[i]=1;\n\n auto getlazy = [&](int x, int t){\n int node = uf.find(x);\n if(maxval[node]==0) return 0L;\n else if(lastvisit[node]==t) return maxval[node];\n else {\n long add = (lastvisit[node]-t)*uf.size(x);\n return maxval[node] + add;\n }\n };\n\n rep(i,m){\n int u = edge[i].se.fi, v = edge[i].se.se;\n int t = edge[i].fi;\n if(uf.same(u,v)) continue;\n else if(t==T){\n bool visitable = true;\n if(maxval[uf.find(u)] == 0 && maxval[uf.find(v)]==0) visitable=false;\n uf.unite(u,v);\n if(visitable) maxval[uf.find(u)] = uf.size(u);\n }\n else {\n long lu = getlazy(u, t), lv = getlazy(v, t);\n if(lu==0 && lv==0){ uf.unite(u,v); continue; }\n if(lu>0) lu += uf.size(v);\n if(lv>0) lv += uf.size(u);\n uf.unite(u,v);\n maxval[uf.find(u)] = max<long>(lu,lv);\n lastvisit[uf.find(u)] = t; //dbg(uf.find(u), maxval[uf.find(u)]);\n }\n }\n\n cout << getlazy(0, 1) << endl;\n assert(getlazy(0,1)>0);\n\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 16408, "score_of_the_acc": -1.2494, "final_rank": 7 }, { "submission_id": "aoj_2813_2392450", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 2147483600\n\nclass UnionFind {\npublic:\n vector<int> par, rank; // parent(negative := its root and abs-value is its size), depth\n UnionFind(int sz) : par(sz, -1), rank(sz, 0){}\n int find(int x){\n if(par[x]<0) return x;\n else return par[x] = find(par[x]);\n }\n void unite(int x, int y){\n x=find(x); y=find(y);\n if(x==y) return; // already belong to same tree\n if(rank[x] < rank[y]){ // y becomes parent node\n par[y] += par[x];\n par[x] = y;\n } else { // x becomes parent node\n par[x] += par[y];\n par[y] = x;\n if(rank[x]==rank[y]) rank[x]++;\n }\n }\n bool same(int x, int y){ return find(x) == find(y); }\n int size(int x){ return -par[find(x)]; }\n};\n\nint main(){\n int n,m,T;\n cin>>n>>m>>T;\n vector<vector<pair<int,int>>> vec(n);\n vector<pair<int,pair<int,int>>> edge(m);\n rep(i,m){\n int a,b,t;\n cin>>a>>b>>t;\n a--;b--;\n vec[a].pb(mp(b,t));\n vec[b].pb(mp(a,t));\n edge[i] = mp(t,mp(a,b));\n }\n\n // dijkstra??§??°?????????????????????\n vector<int> d(n,INF);\n using P = pair<int,int>;\n priority_queue<P, vector<P>, greater<P>> pq;\n pq.push(mp(0,0));\n d[0]=0;\n while(!pq.empty()){\n auto p = pq.top(); pq.pop();\n int v = p.second;\n int dis = p.first;\n if(d[v] < dis) continue;\n for(auto to : vec[v]){\n if(to.se <= dis) continue;\n if(d[to.first] <= dis+1) continue;\n d[to.first] = dis+1;\n pq.push(mp(dis+1, to.first));\n }\n }\n\n // d[i]<INF ????????°?????????\n\n sort(all(edge)); reverse(all(edge));\n UnionFind uf(n);\n\n vector<long> maxval(n,0);\n vector<int> lastvisit(n,T);\n rep(i,n) if(d[i]<INF) maxval[i]=1;\n\n auto getlazy = [&](int x, int t){\n int node = uf.find(x);\n if(maxval[node]==0) return 0L;\n else if(lastvisit[node]==t) return maxval[node];\n else {\n long add = (long)(lastvisit[node]-t)*uf.size(x);\n return maxval[node] + add;\n }\n };\n\n rep(i,m){\n int u = edge[i].se.fi, v = edge[i].se.se;\n int t = edge[i].fi;\n if(uf.same(u,v)) continue;\n else if(t==T){\n bool visitable = true;\n if(maxval[uf.find(u)] == 0 && maxval[uf.find(v)]==0) visitable=false;\n uf.unite(u,v);\n if(visitable) maxval[uf.find(u)] = uf.size(u);\n }\n else {\n long lu = getlazy(u, t), lv = getlazy(v, t);\n if(lu==0 && lv==0){ uf.unite(u,v); continue; }\n if(lu>0) lu += uf.size(v);\n if(lv>0) lv += uf.size(u);\n uf.unite(u,v);\n maxval[uf.find(u)] = max<long>(lu,lv);\n lastvisit[uf.find(u)] = t; //dbg(uf.find(u), maxval[uf.find(u)]);\n }\n }\n\n cout << getlazy(0, 1) << endl;\n assert(getlazy(0,1)>0);\n\n return 0;\n}\n\n// WA memo\n// ???lu==0 && lv==0 ?????¨??????unite????????????????????¨??????????????????????????????\n// ???t=1??§???unite???????????????????????´???????????????lazy???????????????????????????????°????????????£???????????£???\n// ???Dijkstra???????????§=??§???priority_queue????????£????????§?????????MLE?????? ??¨?????????dijkstra???????????????????????????1???????????????????????????best", "accuracy": 1, "time_ms": 180, "memory_kb": 16504, "score_of_the_acc": -1.3118, "final_rank": 9 }, { "submission_id": "aoj_2813_2392442", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 2147483600\n\nclass UnionFind {\npublic:\n vector<int> par, rank; // parent(negative := its root and abs-value is its size), depth\n UnionFind(int sz) : par(sz, -1), rank(sz, 0){}\n int find(int x){\n if(par[x]<0) return x;\n else return par[x] = find(par[x]);\n }\n void unite(int x, int y){\n x=find(x); y=find(y);\n if(x==y) return; // already belong to same tree\n if(rank[x] < rank[y]){ // y becomes parent node\n par[y] += par[x];\n par[x] = y;\n } else { // x becomes parent node\n par[x] += par[y];\n par[y] = x;\n if(rank[x]==rank[y]) rank[x]++;\n }\n }\n bool same(int x, int y){ return find(x) == find(y); }\n int size(int x){ return -par[find(x)]; }\n};\n\nint main(){\n int n,m,T;\n cin>>n>>m>>T;\n vector<vector<pair<int,int>>> vec(n);\n vector<pair<int,pair<int,int>>> edge(m);\n rep(i,m){\n int a,b,t;\n cin>>a>>b>>t;\n a--;b--;\n vec[a].pb(mp(b,t));\n vec[b].pb(mp(a,t));\n edge[i] = mp(t,mp(a,b));\n }\n\n // dijkstra??§??°?????????????????????\n vector<int> d(n,INF);\n using P = pair<int,int>;\n priority_queue<P, vector<P>, greater<P>> pq;\n pq.push(mp(0,0));\n d[0]=0;\n while(!pq.empty()){\n auto p = pq.top(); pq.pop();\n int v = p.second;\n int dis = p.first;\n if(d[v] < dis) continue;\n for(auto to : vec[v]){\n if(to.se <= dis) continue;\n if(d[to.first] <= dis+1) continue;\n d[to.first] = dis+1;\n pq.push(mp(dis+1, to.first));\n }\n }\n\n // d[i]<INF ????????°?????????\n\n sort(all(edge)); reverse(all(edge));\n UnionFind uf(n);\n\n vector<long> maxval(n,0);\n vector<int> lastvisit(n,T);\n rep(i,n) if(d[i]<INF) maxval[i]=1;\n\n auto getlazy = [&](int x, int t){\n int node = uf.find(x);\n if(maxval[node]==0) return 0L;\n else if(lastvisit[node]==t) return maxval[node];\n else {\n long add = (lastvisit[node]-t)*uf.size(x);\n return maxval[node] + add;\n }\n };\n\n rep(i,m){\n int u = edge[i].se.fi, v = edge[i].se.se;\n int t = edge[i].fi;\n if(uf.same(u,v)) continue;\n else if(t==T){\n bool visitable = true;\n if(maxval[uf.find(u)] == 0 && maxval[uf.find(v)]==0) visitable=false;\n uf.unite(u,v);\n if(visitable) maxval[uf.find(u)] = uf.size(u);\n }\n else {\n long lu = getlazy(u, t), lv = getlazy(v, t);\n if(lu==0 && lv==0){ uf.unite(u,v); continue; }\n if(lu>0) lu += uf.size(v);\n if(lv>0) lv += uf.size(u);\n uf.unite(u,v);\n maxval[uf.find(u)] = max<long>(lu,lv);\n lastvisit[uf.find(u)] = t; //dbg(uf.find(u), maxval[uf.find(u)]);\n }\n }\n\n cout << getlazy(0, 1) << endl;\n assert(getlazy(0,1)>0);\n\n return 0;\n}\n\n// WA memo\n// ???lu==0 && lv==0 ?????¨??????unite????????????????????¨??????????????????????????????\n// ???t=1??§???unite???????????????????????´???????????????lazy???????????????????????????????°????????????£???????????£???\n// ???Dijkstra???????????§=??§???priority_queue????????£????????§?????????MLE?????? ??¨?????????dijkstra???????????????????????????1???????????????????????????best", "accuracy": 0.9787234042553191, "time_ms": 190, "memory_kb": 16396, "score_of_the_acc": -1.3666, "final_rank": 13 }, { "submission_id": "aoj_2813_2392212", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(...) _dbg(#__VA_ARGS__\",\", __VA_ARGS__)\nvoid _dbg(string){cout<<endl;}\ntemplate<class H,class... T> void _dbg(string s,H h,T... t){int l=s.find(',');cout<<s.substr(0,l)<<\" = \"<<h<<\", \";_dbg(s.substr(l+1),t...);}\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 2147483600\n\nclass UnionFind {\npublic:\n vector<int> par, rank; // parent(negative := its root and abs-value is its size), depth\n UnionFind(int sz) : par(sz, -1), rank(sz, 0){}\n int find(int x){\n if(par[x]<0) return x;\n else return par[x] = find(par[x]);\n }\n void unite(int x, int y){\n x=find(x); y=find(y);\n if(x==y) return; // already belong to same tree\n if(rank[x] < rank[y]){ // y becomes parent node\n par[y] += par[x];\n par[x] = y;\n } else { // x becomes parent node\n par[x] += par[y];\n par[y] = x;\n if(rank[x]==rank[y]) rank[x]++;\n }\n }\n bool same(int x, int y){ return find(x) == find(y); }\n int size(int x){ return -par[find(x)]; }\n};\n\nint main(){\n int n,m,T;\n cin>>n>>m>>T;\n vector<vector<pair<int,int>>> vec(n);\n vector<pair<int,pair<int,int>>> edge(m);\n rep(i,m){\n int a,b,t;\n cin>>a>>b>>t;\n a--;b--;\n vec[a].pb(mp(b,t));\n vec[b].pb(mp(a,t));\n edge[i] = mp(t,mp(a,b));\n }\n\n // dijkstra??§??°?????????????????????\n vector<int> d(n,INF);\n using P = pair<int,int>;\n priority_queue<P, vector<P>, greater<P>> pq;\n pq.push(mp(0,0));\n d[0]=0;\n while(!pq.empty()){\n auto p = pq.top(); pq.pop();\n int v = p.second;\n int dis = p.first;\n if(d[v] < dis) continue;\n for(auto to : vec[v]){\n if(to.se <= dis) continue;\n if(d[to.first] <= dis+1) continue;\n d[to.first] = dis+1;\n pq.push(mp(dis+1, to.first));\n }\n }\n\n vector<vector<pair<int,int>>>().swap(vec); // free memory\n\n // d[i]<INF ????????°?????????\n\n sort(all(edge)); reverse(all(edge));\n UnionFind uf(n);\n\n vector<long> maxval(n,0);\n vector<int> lastvisit(n,T);\n rep(i,n) if(d[i]<INF) maxval[i]=1;\n\n auto getlazy = [&](int x, int t){\n int node = uf.find(x);\n if(maxval[node]==0) return 0L;\n else if(lastvisit[node]==t) return maxval[node];\n else {\n long add = (lastvisit[node]-t)*uf.size(x);\n return maxval[node] + add;\n }\n };\n\n rep(i,m){\n int u = edge[i].se.fi, v = edge[i].se.se;\n int t = edge[i].fi;\n if(uf.same(u,v)) continue;\n else if(t==T){\n bool visitable = true;\n if(maxval[uf.find(u)] == 0 && maxval[uf.find(v)]==0) visitable=false;\n uf.unite(u,v);\n if(visitable) maxval[uf.find(u)] = uf.size(u);\n }\n else {\n long lu = getlazy(u, t), lv = getlazy(v, t);\n if(lu==0 && lv==0){ uf.unite(u,v); continue; }\n lu += uf.size(v); lv += uf.size(u);\n uf.unite(u,v);\n maxval[uf.find(u)] = max<long>(lu,lv);\n lastvisit[uf.find(u)] = t; //dbg(uf.find(u), maxval[uf.find(u)]);\n }\n }\n\n cout << getlazy(0, 1) << endl;\n\n return 0;\n}", "accuracy": 0.9787234042553191, "time_ms": 180, "memory_kb": 14708, "score_of_the_acc": -1.2456, "final_rank": 12 }, { "submission_id": "aoj_2813_2330126", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing PII = pair<int, int>;\nusing LL = long long;\nusing VL = vector<LL>;\nusing VVL = vector<VL>;\nusing PLL = pair<LL, LL>;\nusing VS = vector<string>;\n\n#define ALL(a) begin((a)),end((a))\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SORT(c) sort(ALL((c)))\n#define RSORT(c) sort(RALL((c)))\n\n#define FOR(i,a,b) for(int i=(a);i<(b);++i)\n#define REP(i,n) FOR(i,0,n)\n\n#define FF first\n#define SS second\ntemplate<class S, class T>\nistream& operator>>(istream& is, pair<S,T>& p){\n return is >> p.FF >> p.SS;\n}\ntemplate<class S, class T>\nostream& operator<<(ostream& os, const pair<S,T>& p){\n return os << p.FF << \" \" << p.SS;\n}\ntemplate<class T>\nvoid maxi(T& x, T y){\n if(x < y) x = y;\n}\ntemplate<class T>\nvoid mini(T& x, T y){\n if(x > y) x = y;\n}\n\n\nconst double EPS = 1e-10;\nconst double PI = acos(-1.0);\nconst LL MOD = 1e9+7;\nconst int INF = 1e9;\n\nclass UnionFind{\nprivate:\n vector<int> par, rank;\npublic:\n VI sz, dd;\n UnionFind(int n){\n\tpar.assign(n, 0);\n\trank.assign(n, 0);\n\tsz.assign(n, 1);\n\tfor(int i=0;i<n;++i)\n\t par[i] = i;\n }\n\n //find root of x\n int find(int x){\n\tif(par[x] == x)\n\t return x;\n\treturn (par[x] = find(par[x]));\n }\n\n void unite(int x, int y){\n\tx = find(x);\n\ty = find(y);\n\tif(x == y) return;\n\n\tif(rank[x] < rank[y])\n\t par[x] = y;\n\telse{\n\t par[y] = x;\n\t if(rank[x] == rank[y])\n\t\t++rank[x];\n\t}\n\tint tmp = sz[x] + sz[y];\n\tsz[x] = sz[y] = tmp;\n\tdd[x] = dd[y] = min(dd[x], dd[y]);\n }\n\n bool same(int x, int y){\n\treturn find(x) == find(y);\n }\n};\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n LL N, M, T;\n cin >> N >> M >> T;\n vector<vector<PII>> es(T+1);\n vector<vector<PII>> G(N);\n REP(i,M){\n\tint a, b, t;\n\tcin >> a >> b >> t;\n\t--a;\n\t--b;\n\tes[t].EB(a,b);\n\tG[a].EB(b,t);\n\tG[b].EB(a,t);\n }\n VI dist(N, INF);\n dist[0] = 0;\n queue<int> q;\n q.push(0);\n while(!q.empty()){\n\tint u = q.front();\n\tq.pop();\n\tfor(auto&& e: G[u]){\n\t if(dist[e.FF] == INF && dist[u] < e.SS){\n\t\tdist[e.FF] = dist[u] + 1;\n\t\tq.push(e.FF);\n\t }\n\t}\n }\n\n UnionFind uf(N);\n uf.dd = dist;\n VL prv(N, T);\n for(auto&& e: es[T]){\n\tuf.unite(e.FF, e.SS);\n }\n\n VL ans(N, 0);\n for(int t=T-1;t>0;--t){\n\tmap<PII,LL> buf;\n\tfor(auto&& e: es[t]){\n\t if(uf.same(e.FF, e.SS)) continue;\n\t int r1 = uf.find(e.FF);\n\t int r2 = uf.find(e.SS);\n\t LL s1 = uf.sz[r1];\n\t LL s2 = uf.sz[r2];\n\t buf[e] = max((ans[r1] + (prv[r1] - t)*s1) * (uf.dd[r1] <= t),\n\t\t\t\t ans[r2] + (prv[r2] - t)*s2 * (uf.dd[r2] <= t));\n\t}\n\n\tfor(auto&& p: buf){\n\t auto& e = p.FF;\n\t uf.unite(e.FF, e.SS);\n\t int r = uf.find(e.FF);\n\t maxi(ans[r], p.SS);\n\t prv[r] = t;\n\t}\n }\n\n int rt = uf.find(0);\n cout << ans[rt] + prv[rt] * N << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 18744, "score_of_the_acc": -0.8061, "final_rank": 3 }, { "submission_id": "aoj_2813_2325067", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nstruct edge {\n\tint from;\n\tint to;\n\tint t;\n};\n\nint N, M, T;\nvoid bfs(const vector<vector<edge>>&edges, vector<int>&can_go) {\n\tqueue<pair<int, int>>que;\n\tque.emplace(0, 0);\n\tcan_go[0] = true;\n\twhile (!que.empty()) {\n\t\tauto atop(que.front());\n\t\tque.pop();\n\t\tconst int nexttime = atop.second + 1;\n\t\tfor (auto e : edges[atop.first]) {\n\t\t\tif (nexttime <= e.t&&!can_go[e.to]) {\n\t\t\t\tcan_go[e.to] = true;\n\t\t\t\tque.emplace(e.to, nexttime);\n\t\t\t}\n\t\t}\n\t}\n}\n\n\nstruct UnionFind {\n\tvector<int> data;\n\tUnionFind(int size) : data(size, -1) { }\n\tbool unionSet(int x, int y) {\n\t\tx = root(x); y = root(y);\n\t\tif (x != y) {\n\t\t\tif (data[y] < data[x]) swap(x, y);\n\t\t\tdata[x] += data[y]; data[y] = x;\n\t\t}\n\t\treturn x != y;\n\t}\n\tbool findSet(int x, int y) {\n\t\treturn root(x) == root(y);\n\t}\n\tint root(int x) {\n\t\treturn data[x] < 0 ? x : data[x] = root(data[x]);\n\t}\n\tint size(int x) {\n\t\treturn -data[root(x)];\n\t}\n};\n\n\nint main() { cin >> N >> M >> T;\n\tvector<vector<edge>>edges(N);\n\tvector<edge>all_edges;\n\tfor (int i = 0; i < M; ++i) {\n\t\tint a, b, t; cin >> a >> b >> t;\n\t\ta--; b--;\n\t\tedges[a].push_back(edge{ a,b,t });\n\t\tedges[b].push_back(edge{ b,a,t });\n\t\tall_edges.push_back(edge{ a,b,t });\n\t}\n\tsort(all_edges.begin(), all_edges.end(), [](const edge&l, const edge&r) {\n\t\treturn l.t > r.t;\n\t});\n\tvector<long long int>scores(N);\n\tvector<long long int>latest_connect(N, T);\n\tUnionFind uf(N);\n\tvector<int>can_go(N);\n\tbfs(edges, can_go);\n\tfor (auto e : all_edges) {\n\t\tint a(e.from);\n\t\tint b(e.to);\n\t\tconst int root_a = uf.root(a);\n\t\tconst int root_b = uf.root(b);\n\t\tif (root_a ==root_b)continue;\n\t\telse {\n\t\t\tlong long int new_score = 0;\n\t\t\tif (can_go[root_a]) {\n\t\t\t\tnew_score = max(new_score, scores[root_a] + ( latest_connect[root_a]-e.t)*uf.size(root_a));\n\t\t\t}\n\t\t\tif (can_go[root_b]) {\n\t\t\t\tnew_score = max(new_score, scores[root_b] + (latest_connect[root_b]-e.t)*uf.size(root_b));\n\t\t\t}\n\t\t\tuf.unionSet(root_a, root_b);\n\t\t\tconst int root_n = uf.root(root_a);\n\t\t\tif (can_go[root_a]) {\n\t\t\t\tcan_go[root_n] = true;\n\t\t\t}\n\t\t\tif (can_go[root_b]) {\n\t\t\t\tcan_go[root_n] = true;\n\t\t\t}\n\t\t\tlatest_connect[root_n] = e.t;\n\t\t\tscores[root_n] = new_score;\n\t\t}\n\t}\n\tconst int aroot = uf.root(0);\n\tlong long int ans = scores[aroot] + latest_connect[aroot] * N;\n\tcout << ans << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 18116, "score_of_the_acc": -1.2535, "final_rank": 8 } ]
aoj_2811_cpp
G: 雨降りバス乗り換え 背景 今日は AOR イカちゃんにとって初となるデートの日だ。 AOR イカちゃんは駅からバスを乗り継ぎ、待ち合わせ場所のバス停に向かう予定である。 AOR イカちゃんが駅に着いた時、不幸にも雨が降ってきた。当初予定していた経路ではバスの待ち時間で濡れてしまい、せっかく整えた身だしなみが台無しになってしまう可能性がある。 そこで、バスの待ち時間が最も少なくなるような経路でバス停まで向かうことにした。 AOR イカちゃんは、待ち合わせ場所のバス停に着くまでにどの程度濡れるのか心配している。 問題 AOR イカちゃんは時刻 $0$ に $S$ 番目のバス停におり、そこから $G$ 番目のバス停まで行きたいと考えている。 バス停の個数 $N$ と、異なるバス停同士を繋ぐ $M$ 個の経路 (※) が与えられる。 バス停には、それぞれ $1, \dots, N$ の番号がふられている。 各経路は、出発地 $u$ 、目的地 $v$ 、出発時刻 $t$ 、所要時間 $c$ の $4$ つの値からなる。 時刻 $t$ に出発地 $u$ にいればバスに乗ることができ、時刻 $t + c$ に目的地 $v$ へ到着する。 バスに乗っていない間、 AOR イカちゃんは雨に濡れてしまう。 雨にぬれる時間が最小となる経路を通り $G$ 番目のバス停へ向かう時、時刻 $0$ から $G$ 番目のバス停に着くまでの間に雨に濡れた時間の合計を出力せよ。 (※) グラフ理論の用語における経路とは頂点と辺の列であるが,ここでは辺の意味で使われていることに注意してほしい。 制約 $2 \le N \le 10^5$ $1 \le M \le 2 \times 10^5$ $1 \le S , G \le N$ $1 \le u_i , v_i \le N$ $0 \le t_i \le 10^5$ $1 \le c_i \le 10^5$ $S \neq G$ $u_i \neq v_i$ 出発地 $u$ と目的地 $v$ が同じであるような経路は存在しない。 出発地 $u$ と目的地 $v$ を結ぶ経路は複数存在する場合がある。 バスの乗り降り、乗り換えに時間はかからないものとする。 $G$ 番目のバス停へ到着する時間は問わない。 $S$ 番目のバス停から $G$ 番目のバス停へ到着できることは保証されている。 入力 入力は以下の形式で標準入力から与えられる。 $N \ M \ S \ G$ $u_1 \ v_1 \ t_1 \ c_1$ $\vdots$ $u_M \ v_M \ t_M \ c_M$ 出力 雨に濡れた最小の時間を 1 行で出力せよ。また、末尾に改行も出力せよ。 サンプル 入力例 1 2 2 1 2 1 2 10 100 1 2 5 500 出力例 1 5 到着時間が遅くても、できるだけ雨に濡れない経路を選ぶ。 入力例 2 3 2 1 3 1 2 0 123 2 3 123 500 出力例 2 0 乗り換えに時間はかからない。
[ { "submission_id": "aoj_2811_9752318", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst int M = 200001;\nint u[M], v[M], t[M], c[M];\nvector<int> start[M], dest[M], busy_time[M];\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(NULL);\n\n #ifdef BACKER\n freopen(\"input.txt\", \"r\", stdin);\n // freopen(\"output.txt\", \"w\", stdout);\n #endif\n\n int n, m, s, g;\n cin >> n >> m >> s >> g;\n for (int i = 0; i < m; i++) cin >> u[i] >> v[i] >> t[i] >> c[i];\n for (int i = 0; i < m; i++) start[t[i]].push_back(i);\n vector<int> best(n + 1, -2e9);\n best[s] = 0;\n int ans = 2e9;\n for (int t = 0; t < M; t++) {\n int sz = dest[t].size();\n for (int i = 0; i < sz; i++) {\n best[dest[t][i]] = max(best[dest[t][i]], busy_time[t][i]);\n if (dest[t][i] == g) ans = min(ans, t - best[dest[t][i]]); \n }\n for (int i: start[t]) {\n dest[t + c[i]].push_back(v[i]);\n busy_time[t + c[i]].push_back(best[u[i]] + c[i]);\n }\n }\n cout << ans << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 32172, "score_of_the_acc": -0.4745, "final_rank": 5 }, { "submission_id": "aoj_2811_9118118", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\nusing namespace std;\ntypedef long long ll;\nint n, m, s, g;\nint u[200005], v[200005], t[200005], c[200005];\nint st[100005], ed[100005];\nint sum;\nint head[400005], dis[400005], vis[400005];\nstruct pi\n{\n int v, t, id;\n pi(int aa = 0, int bb = 0)\n {\n v = aa;\n t = bb;\n }\n bool operator<(const pi &bb) const\n {\n return t < bb.t;\n }\n};\nvector<pi> p[200005];\nstruct node\n{\n int v, w, nxt;\n} a[400005];\nstruct node2\n{\n int id, dis;\n node2(int aa = 0, int bb = 0)\n {\n id = aa;\n dis = bb;\n }\n bool operator<(const node2 &bb) const\n {\n return dis > bb.dis;\n }\n};\npriority_queue<node2> q;\nvoid ins(int u, int v, int w)\n{\n ++sum;\n a[sum].v = v;\n a[sum].w = w;\n a[sum].nxt = head[u];\n head[u] = sum;\n}\nvoid dijkstra()\n{\n memset(dis, 0x7f, sizeof(dis));\n dis[0] = 0;\n q.push(node2(0, dis[0]));\n while (!q.empty())\n {\n int id = q.top().id;\n q.pop();\n if (id == st[g])\n break;\n if (vis[id])\n continue;\n vis[id] = 1;\n if (head[id])\n for (int d = head[id]; d; d = a[d].nxt)\n if (dis[id] + a[d].w < dis[a[d].v])\n {\n dis[a[d].v] = dis[id] + a[d].w;\n q.push(node2(a[d].v, dis[a[d].v]));\n }\n }\n return;\n}\nint main()\n{\n cin >> n >> m >> s >> g;\n for (int i = 1; i <= m; ++i)\n {\n cin >> u[i] >> v[i] >> t[i] >> c[i];\n p[u[i]].push_back(pi(v[i], t[i]));\n }\n for (int i = 1; i <= n; ++i)\n sort(p[i].begin(), p[i].end());\n for (int i = 1; i <= n; ++i)\n {\n if (i == g)\n {\n st[i] = ed[i - 1] + 1;\n ed[i] = ed[i - 1] + 1;\n continue;\n }\n st[i] = ed[i - 1] + 1;\n ed[i] = max(st[i], st[i] + (int)p[i].size() - 1);\n if (p[i].size())\n {\n if (p[i].size() > 1)\n for (int j = 0; j < p[i].size() - 1; ++j)\n {\n p[i][j].id = j;\n ins(st[i] + j, st[i] + j + 1, p[i][j + 1].t - p[i][j].t);\n }\n p[i][p[i].size() - 1].id = p[i].size() - 1;\n }\n }\n ins(0, st[s], p[s][0].t);\n for (int i = 1; i <= m; ++i)\n {\n pi k = *(--upper_bound(p[u[i]].begin(), p[u[i]].end(), pi(0, t[i])));\n if (v[i] == g)\n {\n ins(st[u[i]] + k.id, st[v[i]], 0);\n continue;\n }\n if (p[v[i]].size())\n if (lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i])) != p[v[i]].end())\n {\n pi kk = *lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i]));\n ins(st[u[i]] + k.id, st[v[i]] + kk.id, kk.t - t[i] - c[i]);\n }\n }\n dijkstra();\n cout << dis[st[g]] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 25612, "score_of_the_acc": -0.4512, "final_rank": 4 }, { "submission_id": "aoj_2811_9118103", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\nusing namespace std;\ntypedef long long ll;\nint n, m, s, g;\nint u[400005], v[400005], t[400005], c[400005];\nint st[400005], ed[400005];\nint sum;\nint head[400005], dis[400005], vis[400005];\nstruct pi\n{\n int v, t, id;\n pi(int aa = 0, int bb = 0)\n {\n v = aa;\n t = bb;\n }\n bool operator<(const pi &bb) const\n {\n return t < bb.t;\n }\n};\nvector<pi> p[400005];\nstruct node\n{\n int v, w, nxt;\n} a[800005];\nstruct node2\n{\n int id, dis;\n node2(int aa = 0, int bb = 0)\n {\n id = aa;\n dis = bb;\n }\n bool operator<(const node2 &bb) const\n {\n return dis > bb.dis;\n }\n};\npriority_queue<node2> q;\nvoid ins(int u, int v, int w)\n{\n ++sum;\n a[sum].v = v;\n a[sum].w = w;\n a[sum].nxt = head[u];\n head[u] = sum;\n}\nvoid dijkstra()\n{\n memset(dis, 0x7f, sizeof(dis));\n dis[0] = 0;\n q.push(node2(0, dis[0]));\n while (!q.empty())\n {\n int id = q.top().id;\n q.pop();\n if (id == st[g])\n break;\n if (vis[id])\n continue;\n vis[id] = 1;\n if (head[id])\n for (int d = head[id]; d; d = a[d].nxt)\n if (dis[id] + a[d].w < dis[a[d].v])\n {\n dis[a[d].v] = dis[id] + a[d].w;\n q.push(node2(a[d].v, dis[a[d].v]));\n }\n }\n return;\n}\nint main()\n{\n cin >> n >> m >> s >> g;\n for (int i = 1; i <= m; ++i)\n {\n cin >> u[i] >> v[i] >> t[i] >> c[i];\n p[u[i]].push_back(pi(v[i], t[i]));\n }\n for (int i = 1; i <= n; ++i)\n sort(p[i].begin(), p[i].end());\n for (int i = 1; i <= n; ++i)\n {\n if (i == g)\n {\n st[i] = ed[i - 1] + 1;\n ed[i] = ed[i - 1] + 1;\n continue;\n }\n st[i] = ed[i - 1] + 1;\n ed[i] = max(st[i], st[i] + (int)p[i].size() - 1);\n if (p[i].size())\n {\n if (p[i].size() > 1)\n for (int j = 0; j < p[i].size() - 1; ++j)\n {\n p[i][j].id = j;\n ins(st[i] + j, st[i] + j + 1, p[i][j + 1].t - p[i][j].t);\n }\n p[i][p[i].size() - 1].id = p[i].size() - 1;\n }\n }\n ins(0, st[s], p[s][0].t);\n for (int i = 1; i <= m; ++i)\n {\n pi k = *(--upper_bound(p[u[i]].begin(), p[u[i]].end(), pi(0, t[i])));\n if (v[i] == g)\n {\n ins(st[u[i]] + k.id, st[v[i]], 0);\n continue;\n }\n if (p[v[i]].size())\n if (lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i])) != p[v[i]].end())\n {\n pi kk = *lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i]));\n ins(st[u[i]] + k.id, st[v[i]] + kk.id, kk.t - t[i] - c[i]);\n }\n }\n dijkstra();\n cout << dis[st[g]] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 36308, "score_of_the_acc": -0.6265, "final_rank": 8 }, { "submission_id": "aoj_2811_9117931", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\nusing namespace std;\ntypedef long long ll;\nint n, m, s, g;\nint u[200005], v[200005], t[200005], c[200005];\nint st[100005], ed[100005];\nint sum;\nint head[200005], dis[200005], vis[200005];\nstruct pi\n{\n int v, t, id;\n pi(int aa = 0, int bb = 0)\n {\n v = aa;\n t = bb;\n }\n bool operator<(const pi &bb) const\n {\n return t < bb.t;\n }\n};\nvector<pi> p[100005];\nstruct node\n{\n int v, w, nxt;\n} a[400005];\nstruct node2\n{\n int id, dis;\n node2(int aa = 0, int bb = 0)\n {\n id = aa;\n dis = bb;\n }\n bool operator<(const node2 &bb) const\n {\n return dis > bb.dis;\n }\n};\npriority_queue<node2> q;\nvoid ins(int u, int v, int w)\n{\n ++sum;\n a[sum].v = v;\n a[sum].w = w;\n a[sum].nxt = head[u];\n head[u] = sum;\n}\nvoid dijkstra()\n{\n memset(dis, 0x7f, sizeof(dis));\n dis[0] = 0;\n q.push(node2(0, dis[0]));\n while (!q.empty())\n {\n int id = q.top().id;\n q.pop();\n if (id == st[g])\n break;\n if (vis[id])\n continue;\n vis[id] = 1;\n if (head[id])\n for (int d = head[id]; d; d = a[d].nxt)\n if (dis[id] + a[d].w < dis[a[d].v])\n {\n dis[a[d].v] = dis[id] + a[d].w;\n q.push(node2(a[d].v, dis[a[d].v]));\n }\n }\n return;\n}\nint main()\n{\n cin >> n >> m >> s >> g;\n for (int i = 1; i <= m; ++i)\n {\n cin >> u[i] >> v[i] >> t[i] >> c[i];\n p[u[i]].push_back(pi(v[i], t[i]));\n }\n for (int i = 1; i <= n; ++i)\n sort(p[i].begin(), p[i].end());\n for (int i = 1; i <= n; ++i)\n {\n if (i == g)\n {\n st[i] = ed[i - 1] + 1;\n ed[i] = ed[i - 1] + 1;\n continue;\n }\n st[i] = ed[i - 1] + 1;\n ed[i] = max(st[i], st[i] + (int)p[i].size() - 1);\n if (p[i].size())\n {\n for (int j = 0; j < p[i].size() - 1; ++j)\n {\n p[i][j].id = j;\n ins(st[i] + j, st[i] + j + 1, p[i][j + 1].t - p[i][j].t);\n }\n p[i][p[i].size() - 1].id = p[i].size() - 1;\n }\n }\n ins(0, st[s], p[s][0].t);\n for (int i = 1; i <= m; ++i)\n {\n pi k = *(--upper_bound(p[u[i]].begin(), p[u[i]].end(), pi(0, t[i])));\n if (v[i] == g)\n {\n ins(st[u[i]] + k.id, st[v[i]], 0);\n continue;\n }\n if (lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i])) != p[v[i]].end())\n {\n pi kk = *lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i]));\n ins(st[u[i]] + k.id, st[v[i]] + kk.id, kk.t - t[i] - c[i]);\n }\n }\n dijkstra();\n cout << dis[st[g]] << endl;\n return 0;\n}", "accuracy": 0.6551724137931034, "time_ms": 130, "memory_kb": 19808, "score_of_the_acc": -0.332, "final_rank": 16 }, { "submission_id": "aoj_2811_9117909", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\n\n#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)\n#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)\n\ntemplate <typename T> bool chmin(T &a, const T &b) {\n\tif (a <= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> bool chmax(T &a, const T &b) {\n\tif (a >= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> T max(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T min(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T sum(vector<T> &a){\n\tT ret = 0;\n\tfor (int i=0; i<(int)a.size(); i++) ret += a[i];\n\treturn ret;\n}\n\n\ntemplate <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),\n F (*composition)(F, F), F (*id)()>\nstruct lazysegtree {\n private:\n int n, lg2, sz;\n std::vector<S> d;\n std::vector<F> lz;\n\n void update(int i) {\n d[i] = op(d[2 * i], d[2 * i + 1]);\n }\n\n void all_apply(int i, F f) {\n d[i] = mapping(f, d[i]);\n if (i < sz) lz[i] = composition(f, lz[i]);\n }\n\n void push(int i) {\n all_apply(2 * i, lz[i]);\n all_apply(2 * i + 1, lz[i]);\n lz[i] = id();\n }\n\n public:\n lazysegtree(int _n) : lazysegtree(std::vector<S>(_n, e())) {}\n\n lazysegtree(const std::vector<S> &v) : n(v.size()) {\n lg2 = 0;\n while ((1 << lg2) < n) lg2++;\n sz = 1 << lg2;\n d = std::vector<S>(2 * sz, e());\n lz = std::vector<F>(2 * sz, id());\n for (int i = 0; i < n; i++) d[sz + i] = v[i];\n for (int i = sz - 1; i >= 1; i--) update(i);\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < n);\n p += sz;\n rrep(i, 1, lg2 + 1) push(p >> i);\n d[p] = x;\n rep(i, 1, lg2 + 1) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < n);\n p += sz;\n rrep(i, 1, lg2 + 1) push(p >> i);\n return d[p];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= n);\n if (l == r) return e();\n l += sz;\n r += sz;\n rrep(i, 1, lg2 + 1) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n S sml = e(), smr = e();\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n S all_prod() {\n return d[1];\n }\n\n void apply(int p, F f) {\n assert(0 <= p && p < n);\n p += sz;\n rrep(i, 1, lg2 + 1) push(p >> i);\n d[p] = mapping(f, d[p]);\n rep(i, 1, lg2 + 1) update(p >> i);\n }\n\n void apply(int l, int r, F f) {\n assert(0 <= l && l <= r && r <= n);\n if (l == r) return;\n l += sz;\n r += sz;\n rrep(i, 1, lg2 + 1) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n rep(i, 1, lg2 + 1) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n\n template <class G> int max_right(int l, G g) {\n assert(0 <= l && l <= n);\n assert(g(e()));\n if (l == n) return n;\n l += sz;\n for (int i = lg2; i >= 1; i--) push(l >> i);\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < sz) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - sz;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return n;\n }\n\n template <class G> int min_left(int r, G g) {\n assert(0 <= r && r <= n);\n assert(g(e()));\n if (r == 0) return 0;\n r += sz;\n for (int i = lg2; i >= 1; i--) push((r - 1) >> i);\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < sz) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - sz;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n};\n\nusing S = long long;\nusing F = long long;\n\nconst S INF = 1e18;\n\nS op(S a, S b){ return std::min(a, b); }\nS e(){ return INF; }\nS mapping(F f, S x){ return f+x; }\nF composition(F f, F g){ return f+g; }\nF id(){ return 0; }\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n\n\tint n, m; cin >> n >> m;\n\tint S, G; cin >> S >> G;\n\tS--; G--;\n\n\t\n\tvector<int> u(m), v(m);\n\t\n\tvector bucket(255555, vector<pair<int,int>>(0));\n\trep(i,0,m){\n\t\tcin >> u[i] >> v[i];\n\t\tu[i]--; v[i]--;\n\t\tint t, c; cin >> t >> c;\n\t\tbucket[t].push_back(pair(0, i));\n\t\tbucket[t + c].push_back(pair(1, i));\n\t}\n\n\tlazysegtree<ll,op,e,ll,mapping,composition,id> seg(n);\n\tseg.set(S, 0);\n\n\tll ans = 1e18;\n\tvector<ll> hokan(m);\n\trep(tim,0,244444){\n\t\tsort(bucket[tim].begin(), bucket[tim].end());\n\t\treverse(bucket[tim].begin(), bucket[tim].end());\n\t\tfor (auto [typ,ind]: bucket[tim]){\n\t\t\tif (typ == 0){\n\t\t\t\thokan[ind] = seg.get(u[ind]);\t\t\t\t\n\t\t\t}else{\n\t\t\t\tseg.set(v[ind], min(seg.get(v[ind]), hokan[ind]));\n\t\t\t}\n\t\t}\n\t\tchmin(ans, seg.get(G));\n\t\tseg.apply(0, n, 1);\n\t}\n\tcout << ans << '\\n';\n\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 22820, "score_of_the_acc": -0.3701, "final_rank": 3 }, { "submission_id": "aoj_2811_9117825", "code_snippet": "//#include<atcoder/all>\n//using namespace atcoder;\n\n#include <bits/stdc++.h>\ntemplate<class T> inline bool chmin(T&a, T b){if(a > b){a = b; return true;}else{return false;}}\ntemplate<class T> inline bool chmax(T&a, T b){if(a < b){a = b; return true;}else{return false;}}\n#define ll long long\n#define double long double\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define REP(i,n) for(int i=1;i<=(n);i++)\n#define mod (ll)(1e9+7)\n#define inf (ll)(3e18+7)\n#define eps (double)(1e-9)\n#define pi (double) acos(-1)\n#define all(x) x.begin(),x.end()\n#define rall(x) x.rbegin(),x.rend()\nusing namespace std;\n\nstruct edge{\n ll to, cost;\n};\n\nusing Graph = vector<vector<edge>>;\n\n#define P pair<int, int>\nvector<ll> dijkstra(const vector<vector<edge>> &G, int s) {\n vector<ll> d((int)G.size(), inf);\n\tpriority_queue<P, vector<P>, greater<P>>que;\n\td[s] = 0;\n\tque.push(P(0, s));\n\twhile (!que.empty()) {\n\t\tP p = que.top(); que.pop();\n\t\tint v = p.second;\n\t\tif (d[v] < p.first)continue;\n\t\trep(i, G[v].size()) {\n\t\t\tedge e = G[v][i];\n\t\t\tif (d[e.to] > d[v] + e.cost) {\n\t\t\t\td[e.to] = d[v] + e.cost;\n\t\t\t\tque.push(P(d[e.to], e.to));\n\t\t\t}\n\t\t}\n\t}\n\treturn d;\n}\n\nint main(){\n int n, m, s, g;\n cin >> n >> m >> s >> g;\n s--; g--;\n\n vector<int> u(m), v(m), t(m), c(m);\n rep(i, m)cin >> u[i] >> v[i] >> t[i] >> c[i];\n rep(i, m){u[i]--; v[i]--;}\n\n vector<vector<int>> vec(n);\n rep(i, m)vec[u[i]].push_back(t[i]);\n rep(i, m)vec[v[i]].push_back(t[i]+c[i]);\n vec[s].insert(vec[s].begin(), 0);\n rep(i, n)sort(all(vec[i]));\n\n int now = 0;\n map<P, int> idx;\n rep(i, n)rep(j, (int)vec[i].size()){\n idx[{i, vec[i][j]}] = now;\n now++;\n }\n\n idx[{s, 0}] = now;\n now++;\n\n Graph G(now);\n\n rep(i, m){\n G[idx[{u[i], t[i]}]].push_back({idx[{v[i], t[i]+c[i]}], 0});\n }\n\n rep(i, n)rep(j, (int)vec[i].size()-1){\n G[idx[{i, vec[i][j]}]].push_back({idx[{i, vec[i][j+1]}], vec[i][j+1]-vec[i][j]});\n }\n\n ll ans = inf;\n vector<ll> d = dijkstra(G, idx[{s, 0}]);\n rep(i, (int)vec[g].size())chmin(ans, d[idx[{g, vec[g][i]}]]);\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 630, "memory_kb": 64064, "score_of_the_acc": -1.9032, "final_rank": 11 }, { "submission_id": "aoj_2811_9117818", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstring>\n#include <algorithm>\n#include <vector>\n#include <queue>\nusing namespace std;\ntypedef long long ll;\nint n, m, s, g;\nint u[200005], v[200005], t[200005], c[200005];\nint st[100005], ed[100005];\nint sum;\nint head[200005], dis[200005], vis[200005];\nstruct pi\n{\n int v, t, c, id;\n pi(int aa = 0, int bb = 0, int cc = 0)\n {\n v = aa;\n t = bb;\n c = cc;\n }\n bool operator<(const pi &bb) const\n {\n return t < bb.t;\n }\n};\nvector<pi> p[100005];\nstruct node\n{\n int v, w, nxt;\n} a[300005];\nstruct node2\n{\n int id, dis;\n node2(int aa = 0, int bb = 0)\n {\n id = aa;\n dis = bb;\n }\n bool operator<(const node2 &bb) const\n {\n return dis > bb.dis;\n }\n};\npriority_queue<node2> q;\nvoid ins(int u, int v, int w)\n{\n ++sum;\n a[sum].v = v;\n a[sum].w = w;\n a[sum].nxt = head[u];\n head[u] = sum;\n}\nvoid dijkstra()\n{\n memset(dis, 0x7f, sizeof(dis));\n dis[0] = 0;\n q.push(node2(0, dis[0]));\n while (!q.empty())\n {\n int id = q.top().id;\n q.pop();\n if (vis[id])\n continue;\n vis[id] = 1;\n for (int d = head[id]; d; d = a[d].nxt)\n if (dis[id] + a[d].w < dis[a[d].v])\n {\n dis[a[d].v] = dis[id] + a[d].w;\n q.push(node2(a[d].v, dis[a[d].v]));\n }\n }\n return;\n}\nint main()\n{\n cin >> n >> m >> s >> g;\n for (int i = 1; i <= m; ++i)\n {\n cin >> u[i] >> v[i] >> t[i] >> c[i];\n p[u[i]].push_back(pi(v[i], t[i], c[i]));\n }\n for (int i = 1; i <= n; ++i)\n sort(p[i].begin(), p[i].end());\n for (int i = 1; i <= n; ++i)\n {\n if (i == g)\n {\n st[i] = ed[i - 1] + 1;\n ed[i] = ed[i - 1] + 1;\n continue;\n }\n if (p[i].size())\n {\n st[i] = ed[i - 1] + 1;\n ed[i] = st[i] + p[i].size() - 1;\n for (int j = 0; j < p[i].size() - 1; ++j)\n {\n p[i][j].id = j;\n ins(st[i] + j, st[i] + j + 1, p[i][j + 1].t - p[i][j].t);\n }\n p[i][p[i].size() - 1].id = p[i].size() - 1;\n }\n }\n ins(0, st[s], p[s][0].t);\n for (int i = 1; i <= m; ++i)\n {\n pi k = *lower_bound(p[u[i]].begin(), p[u[i]].end(), pi(0, t[i], 0));\n if (v[i] == g)\n {\n ins(st[u[i]] + k.id, st[v[i]], 0);\n continue;\n }\n if (lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i], 0)) != p[v[i]].end())\n {\n pi kk = *lower_bound(p[v[i]].begin(), p[v[i]].end(), pi(0, t[i] + c[i], 0));\n ins(st[u[i]] + k.id, st[v[i]] + kk.id, kk.t - t[i] - c[i]);\n }\n }\n dijkstra();\n cout << dis[st[g]] << endl;\n return 0;\n}", "accuracy": 0.3103448275862069, "time_ms": 90, "memory_kb": 17736, "score_of_the_acc": -0.2325, "final_rank": 20 }, { "submission_id": "aoj_2811_9117760", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\nvoid solve(){\n int n, m, sv, gv; in(n,m,sv,gv); sv--, gv--;\n vector<int> from(m), to(m), ts(m), cs(m);\n rep(i,m){\n int u, v; in(u,v); u--, v--;\n int t, c; in(t,c);\n from[i] = u;\n to[i] = v;\n ts[i] = t;\n cs[i] = c;\n }\n vector<int> ids(m); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return ts[l] < ts[r];\n });\n vector<int> dp(n,-iinf);\n dp[sv] = 0;\n priority_queue<pii,vector<pii>,greater<pii>> pque;\n vector<int> cal(m,-iinf);\n int ans = iinf;\n for (int i : ids){\n while (!pque.empty() && pque.top().first <= ts[i]){\n auto [t, id] = pque.top(); pque.pop();\n chmax(dp[to[id]],cal[id]);\n }\n cal[i] = dp[from[i]] + cs[i];\n pque.push(pii(ts[i]+cs[i],i));\n if (to[i] == gv){\n chmin(ans,ts[i]+cs[i]-cal[i]);\n }\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 9088, "score_of_the_acc": -0.0312, "final_rank": 1 }, { "submission_id": "aoj_2811_9117709", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\nvoid solve(){\n int n, m, sv, gv; in(n,m,sv,gv); sv--, gv--;\n vector<vector<array<int,3>>> g(n);\n rep(tt,m){\n int u, v; in(u,v); u--, v--;\n int t, c; in(t,c);\n g[u].push_back({v,t,c});\n g[v].push_back({u,t,c});\n }\n using ppi = pair<pii,int>;\n priority_queue<ppi,vector<ppi>,greater<ppi>> pque;\n vector<pii> dist(n,pii(iinf,iinf));\n dist[sv] = pii(0,0);\n pque.push(ppi(dist[sv],sv));\n while (!pque.empty()){\n auto [dd, v] = pque.top(); pque.pop();\n if (dist[v] < dd) continue;\n auto [val, cur] = dd;\n int sum = cur - val;\n for (auto [u, t, c] : g[v]){\n if (cur > t) continue;\n int nval = t+c - (sum+c);\n int ncur = t+c;\n if (chmin(dist[u],pii(nval,ncur))){\n pque.push(ppi(dist[u],u));\n }\n }\n }\n out(dist[gv].first);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.3103448275862069, "time_ms": 40, "memory_kb": 12272, "score_of_the_acc": -0.0568, "final_rank": 19 }, { "submission_id": "aoj_2811_8491937", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2811.cc: Rainy Bus Stops\n */\n\n#include<cstdio>\n#include<vector>\n#include<queue>\n#include<algorithm>\n#include<utility>\n#include<tuple>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_M = 200000;\nconst int MAX_K = MAX_M * 2 + 1;\nconst long long LINF = 1LL << 60;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pii;\ntypedef pair<ll,int> pli;\ntypedef vector<pii> vpii;\ntypedef tuple<int,int,int,int> quadi;\n\n/* global variables */\n\nquadi es[MAX_M];\npii ps[MAX_K];\nvpii nbrs[MAX_K];\nll ds[MAX_K];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, m, st, gl;\n scanf(\"%d%d%d%d\", &n, &m, &st, &gl);\n\n int k = 0;\n ps[k++] = pii(st, 0);\n for (int i = 0; i < m; i++) {\n int u, v, t, c;\n scanf(\"%d%d%d%d\", &u, &v, &t, &c);\n es[i] = { u, v, t, c };\n ps[k++] = pii(u, t), ps[k++] = pii(v, t + c);\n }\n\n sort(ps, ps + k);\n k = unique(ps, ps + k) - ps;\n\n for (int i = 1; i < k; i++)\n if (ps[i - 1].first == ps[i].first)\n nbrs[i - 1].push_back(pii(i, ps[i].second - ps[i - 1].second));\n\n for (int i = 0; i < m; i++) {\n auto [ u, v, t, c ] = es[i];\n int ui = lower_bound(ps, ps + k, pii(u, t)) - ps;\n int vi = lower_bound(ps, ps + k, pii(v, t + c)) - ps;\n nbrs[ui].push_back(pii(vi, 0));\n }\n\n int pst = lower_bound(ps, ps + k, pii(st, 0)) - ps;\n \n fill(ds, ds + k, LINF);\n ds[pst] = 0;\n \n priority_queue<pli> q;\n q.push(pli(0, pst));\n\n while (! q.empty()) {\n auto ue = q.top(); q.pop();\n ll ud = -ue.first;\n int u = ue.second;\n if (ud != ds[u]) continue;\n\n for (auto &vw: nbrs[u]) {\n int v = vw.first;\n ll vd = ud + vw.second;\n if (ds[v] > vd) {\n\tds[v] = vd;\n\tq.push(pli(-vd, v));\n }\n }\n }\n\n ll mind = LINF;\n for (int i = 0; i < k; i++)\n if (ps[i].first == gl) mind = min(mind, ds[i]);\n\n printf(\"%lld\\n\", mind);\n\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 34136, "score_of_the_acc": -0.6658, "final_rank": 10 }, { "submission_id": "aoj_2811_5967327", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nconst vector<int> dy={-1,0,1,0},dx={0,-1,0,1};\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(20);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\nstruct edge{\n int to,t;\n ll cost;\n edge(int to,int t,ll cost):to(to),t(t),cost(cost){}\n};\nstruct edge2{\n int to,id;\n ll cost;\n edge2(int to,int id,ll cost):to(to),id(id),cost(cost){}\n};\nusing tp=tuple<ll,int,int>;\nint main(){\n int n,m,S,G;\n cin>>n>>m>>S>>G;\n --S;--G;\n V<V<edge>> g(n);\n V<V<int>> tmp(n);\n for(int i=0;i<m;i++){\n ll u,v,t,c;\n cin>>u>>v>>t>>c;\n --u;--v;\n g[u].emplace_back(v,t,c);\n tmp[u].emplace_back(t);\n }\n V<V<ll>> dp(n);\n V<V<V<edge2>>> e(n);\n for(int i=0;i<n;i++){\n sort(all(g[i]),[](auto a,auto b){\n if(a.t!=b.t)return a.t<b.t;\n return a.cost<b.cost;\n });\n dp[i].assign(g[i].size()+1,inf);\n e[i].resize(g[i].size()+1);\n sort(all(tmp[i]));\n }\n for(int i=0;i<n;i++){\n int sz=g[i].size();\n for(int j=0;j<sz;j++){\n edge cp=g[i][j];\n if(j!=sz-1){\n edge cp2=g[i][j+1];\n e[i][j].emplace_back(i,j+1,cp2.t-cp.t);\n }\n if(cp.to==G){\n e[i][j].emplace_back(cp.to,0,0);\n }else{\n auto ite=lower_bound(all(tmp[cp.to]),cp.t+cp.cost);\n if(ite!=tmp[cp.to].end()){\n e[i][j].emplace_back(cp.to,(int)(ite-tmp[cp.to].begin()),*ite-(cp.t+cp.cost));\n }\n }\n }\n }\n priority_queue<tp,V<tp>,greater<tp>> pq;\n pq.emplace(0,S,0);\n dp[S][0]=g[S][0].t;\n while(pq.size()){\n auto [v,cur,id]=pq.top();\n pq.pop();\n if(dp[cur][id]<v)continue;\n for(edge2 &to:e[cur][id]){\n if(chmin(dp[to.to][to.id],dp[cur][id]+to.cost)){\n pq.emplace(dp[to.to][to.id],to.to,to.id);\n }\n }\n }\n cout<<dp[G][0]<<\"\\n\";\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 39180, "score_of_the_acc": -0.6621, "final_rank": 9 }, { "submission_id": "aoj_2811_3992938", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\n\nstruct Edge {\n\tint to, sttime, cost, index;\n\tEdge(const int t, const int s, const int c, const int i) {\n\t\tto = t, sttime = s, cost = c, index = i;\n\t\treturn;\n\t}\n\tbool operator<(const Edge&e)const {\n\t\treturn sttime < e.sttime;\n\t}\n};\n\nint main() {\n\tint N, M, S, G;\n\tcin >> N >> M >> S >> G;\n\tS--, G--;\n\tvector<vector<Edge>>edge(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint l, r, s, t;\n\t\tcin >> l >> r >> s >> t;\n\t\tl--, r--;\n\t\tedge[l].push_back(Edge(r, s, t, i));\n\t}\n//cout << \"JHIJHI\" << endl;\n\tfor (int i = 0; i < N; i++)sort(edge[i].begin(), edge[i].end());\n\tvector<vector<pair<int, int>>>dis_edge(M + 1);\n//\tcout << \"GUUG\" << endl;\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < (int)(edge[i].size()) - 1; j++) {\n\t\t\tdis_edge[edge[i][j].index].push_back({ edge[i][j + 1].index,edge[i][j + 1].sttime - edge[i][j].sttime });\n\t\t}\n\t\tvector<pair<int, int>>box;\n\t\tfor (auto j : edge[i]) {\n\t\t\tif (j.to == G) {\n\t\t\t\tdis_edge[j.index].push_back({ M,0 });\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif (edge[j.to].empty())continue;\n\t\t\tint L = -1, R = edge[j.to].size();\n\t\t\twhile (R - L > 1) {\n\t\t\t\tint mid = (R + L) / 2;\n\t\t\t\tif (edge[j.to][mid].sttime >= j.sttime + j.cost)R = mid;\n\t\t\t\telse L = mid;\n\t\t\t}\n\t\t\tif (R == edge[j.to].size())continue;\n\t\t\tdis_edge[j.index].push_back({ edge[j.to][R].index,edge[j.to][R].sttime - j.cost - j.sttime });\n\t\t}\n\t}\n\t//cout << \"Ho\" << endl;\n\tvector<int>dis(M+1, MOD);\n\tpriority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>>PQ;\n\tfor (auto i : edge[S]) {\n\t\tdis[i.index] = i.sttime;\n\t\tPQ.push({ i.sttime,i.index });\n\t}\n\twhile (!PQ.empty()) {\n\t\tint cn = PQ.top().second;\n\t\tint c = PQ.top().first;\n\t\tPQ.pop();\n\t\tfor (auto j : dis_edge[cn]) {\n\t\t\tif (dis[j.first] > c + j.second) {\n\t\t\t\tdis[j.first] = c + j.second;\n\t\t\t\tPQ.push({ dis[j.first],j.first });\n\t\t\t}\n\t\t}\n\t}\n\tcout << dis[M] << endl;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 21312, "score_of_the_acc": -0.4994, "final_rank": 7 }, { "submission_id": "aoj_2811_3991500", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\n\nstruct Edge {\n\tint to, sttime, cost, index;\n\tEdge(const int t, const int s, const int c, const int i) {\n\t\tto = t, sttime = s, cost = c, index = i;\n\t\treturn;\n\t}\n\tbool operator<(const Edge&e)const {\n\t\treturn sttime < e.sttime;\n\t}\n};\n\nint main() {\n\tint N, M, S, G;\n\tcin >> N >> M >> S >> G;\n\tS--, G--;\n\tvector<vector<Edge>>edge(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint l, r, s, t;\n\t\tcin >> l >> r >> s >> t;\n\t\tl--, r--;\n\t\tedge[l].push_back(Edge(r, s, t, i));\n\t}\n//cout << \"JHIJHI\" << endl;\n\tfor (int i = 0; i < N; i++)sort(edge[i].begin(), edge[i].end());\n\tvector<vector<pair<int, int>>>dis_edge(M + 1);\n//\tcout << \"GUUG\" << endl;\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < (int)(edge[i].size()) - 1; j++) {\n\t\t\tdis_edge[edge[i][j].index].push_back({ edge[i][j + 1].index,edge[i][j + 1].sttime - edge[i][j].sttime });\n\t\t}\n\t\tvector<pair<int, int>>box;\n\t\tfor (auto j : edge[i]) {\n\t\t\tif (j.to == G) {\n\t\t\t\tdis_edge[j.index].push_back({ M,0 });\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif (edge[j.to].empty())continue;\n\t\t\tint L = -1, R = edge[j.to].size();\n\t\t\twhile (R - L > 1) {\n\t\t\t\tint mid = (R + L) / 2;\n\t\t\t\tif (edge[j.to][mid].sttime >= j.sttime + j.cost)R = mid;\n\t\t\t\telse L = mid;\n\t\t\t}\n\t\t\tif (R == edge[j.to].size())continue;\n\t\t\tdis_edge[j.index].push_back({ edge[j.to][R].index,edge[j.to][R].sttime - j.cost - j.sttime });\n\t\t}\n\t}\n\t//cout << \"Ho\" << endl;\n\tvector<int>dis(M+1, MOD);\n\tpriority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>>PQ;\n\tfor (auto i : edge[S]) {\n\t\tdis[i.index] = i.sttime;\n\t\tPQ.push({ i.sttime,i.index });\n\t}\n\twhile (!PQ.empty()) {\n\t\tint cn = PQ.top().second;\n\t\tint c = PQ.top().first;\n\t\tPQ.pop();\n\t\tfor (auto j : dis_edge[cn]) {\n\t\t\tif (dis[j.first] > c + j.second) {\n\t\t\t\tdis[j.first] = c + j.second;\n\t\t\t\tPQ.push({ dis[j.first],j.first });\n\t\t\t}\n\t\t}\n\t}\n\tcout << dis[M] << endl;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 21236, "score_of_the_acc": -0.4981, "final_rank": 6 }, { "submission_id": "aoj_2811_2712384", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n#define HUGE_NUM 9999999999999999\n\nstruct Info{\n\tInfo(int arg_to,ll arg_time,ll arg_cost,ll arg_min_rain){\n\t\tto = arg_to;\n\t\ttime = arg_time;\n\t\tcost = arg_cost;\n\t\tmin_rain = arg_min_rain;\n\t}\n\tint to;\n\tll time,cost,min_rain;\n};\n\nstruct Data{\n\tData(int arg_node_id,int arg_pre_node,int arg_pre_id,ll arg_current_time,ll arg_rain_time){\n\t\tnode_id = arg_node_id;\n\t\tpre_node = arg_pre_node;\n\t\tpre_id = arg_pre_id;\n\t\tcurrent_time = arg_current_time;\n\t\train_time = arg_rain_time;\n\t}\n\tbool operator<(const struct Data &arg) const{\n\t\treturn rain_time > arg.rain_time;\n\t}\n\tint node_id,pre_node,pre_id;\n\tll current_time,rain_time;\n};\n\nint N,M,start,goal;\nvector<Info> G[100000];\n\nint main(){\n\n\tscanf(\"%d %d %d %d\",&N,&M,&start,&goal);\n\tstart--;\n\tgoal--;\n\n\tint from,to;\n\tll time,cost;\n\n\tfor(int loop = 0; loop < M; loop++){\n\t\tscanf(\"%d %d %lld %lld\",&from,&to,&time,&cost);\n\t\tfrom--;\n\t\tto--;\n\t\tG[from].push_back(Info(to,time,cost,HUGE_NUM));\n\t}\n\n\tpriority_queue<Data> Q;\n\tfor(int i = 0; i < G[start].size(); i++){\n\t\tG[start][i].min_rain = G[start][i].time;\n\t\tQ.push(Data(G[start][i].to,start,i,G[start][i].time+G[start][i].cost,G[start][i].time));\n\t}\n\n\twhile(!Q.empty()){\n\n\t\tif(Q.top().node_id == goal){\n\t\t\tprintf(\"%lld\\n\",Q.top().rain_time);\n\t\t\treturn 0;\n\t\t}else if(Q.top().rain_time > G[Q.top().pre_node][Q.top().pre_id].min_rain){\n\t\t\tQ.pop();\n\t\t}else{\n\n\t\t\tfor(int i = 0; i < G[Q.top().node_id].size(); i++){\n\t\t\t\tif(Q.top().current_time > G[Q.top().node_id][i].time)continue;\n\t\t\t\tif(Q.top().rain_time+G[Q.top().node_id][i].time-Q.top().current_time >= G[Q.top().node_id][i].min_rain)continue;\n\n\t\t\t\tG[Q.top().node_id][i].min_rain = Q.top().rain_time+G[Q.top().node_id][i].time-Q.top().current_time;\n\t\t\t\tQ.push(Data(G[Q.top().node_id][i].to,Q.top().node_id,i,G[Q.top().node_id][i].time+G[Q.top().node_id][i].cost,G[Q.top().node_id][i].min_rain));\n\t\t\t}\n\t\t\tQ.pop();\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 17596, "score_of_the_acc": -0.2456, "final_rank": 2 }, { "submission_id": "aoj_2811_2688154", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst bool debug = true;\n#define dbg(...) if(debug) printf(__VA_ARGS__)\n#define print(var) if (debug) cout << #var << \" = \" << var << endl\n\nnamespace {\n /** output whole vector. ex) vector<int>{1, 2, 3} -> '1 2 3'. */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& xs) {\n if (xs.empty()) return os << \"[]\";\n os << xs[0];\n for (auto i = 1; i < xs.size(); i++) os << ' ' << xs[i];\n return os;\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const pair<K, V>& p) {\n return os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const map<K, V>& m) {\n bool first = true;\n for (auto p : m) {\n if (first) first = false;\n else os << \":\";\n os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n return os;\n }\n\n\n map<tuple<int, int, bool>, int> id;\n vector<tuple<int, int, bool>> fromId;\n\n struct Edge {\n int to, cost;\n Edge(int to, int cost) : to(to), cost(cost) {}\n };\n vector<vector<Edge>> Graph;\n\n int N, M, S, G;\n\n bool IN = false;\n bool OUT = true;\n\n void solve() {\n cin >> N >> M >> S >> G;\n S--; G--;\n vector<vector<tuple<int, int, bool>>> V(N);\n auto init = make_tuple(S, 0, IN);\n V[S].push_back(init);\n id[init] = 0;\n fromId.push_back(init);\n Graph.emplace_back();\n for (int i = 0; i < M; i++) {\n int u, v, t, c; cin >> u >> v >> t >> c;\n u--; v--;\n auto x = make_tuple(u, t, OUT);\n auto x_id = id.count(x) ? id[x] : fromId.size();\n if (not id.count(x)) {\n fromId.push_back(x);\n id[x] = x_id;\n Graph.emplace_back();\n }\n V[u].push_back(x);\n auto y = make_tuple(v, t + c, IN);\n auto y_id = id.count(y) ? id[y] : fromId.size();\n if (not id.count(y)) {\n fromId.push_back(y);\n id[y] = y_id;\n Graph.emplace_back();\n }\n V[v].push_back(y);\n Graph[x_id].emplace_back(y_id, 0);\n }\n for (auto& L : V) {\n sort(L.begin(), L.end(), [&](const tuple<int, int, bool>& a, const tuple<int, int, bool>& b) {\n return get<1>(a) == get<1>(b) ? get<2>(a) < get<2>(b) : get<1>(a) < get<1>(b);\n });\n for (unsigned i = 0; i + 1 < L.size(); i++) {\n auto& x = L[i];\n auto& y = L[i + 1];\n auto time_x = get<1>(x);\n auto time_y = get<1>(y);\n Graph[id[x]].emplace_back(id[y], time_y - time_x);\n }\n }\n\n auto start = id[ V[S][0] ];\n\n // dijkstra\n const int INF = 1<<28;\n vector<int> D(Graph.size(), INF);\n struct State {\n int v, cost;\n State(int v, int cost) : v(v), cost(cost) {}\n bool operator<(const State& s) const {\n return cost > s.cost;\n }\n };\n priority_queue<State> PQ;\n PQ.emplace(start, 0);\n D[start] = 0;\n while (not PQ.empty()) {\n auto cur = PQ.top(); PQ.pop();\n for (auto& e : Graph[cur.v]) {\n auto next = e.to;\n if (D[next] > cur.cost + e.cost) {\n D[next] = cur.cost + e.cost;\n PQ.emplace(next, D[next]);\n }\n }\n }\n int ans = INF;\n for (auto& goal_vertex : V[G]) {\n auto goal = id[goal_vertex];\n ans = min(ans, D[goal]);\n }\n cout << ans << endl;\n }\n}\n\nint main() {\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 670, "memory_kb": 64968, "score_of_the_acc": -1.9818, "final_rank": 13 }, { "submission_id": "aoj_2811_2688151", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst bool debug = true;\n#define dbg(...) if(debug) printf(__VA_ARGS__)\n#define print(var) if (debug) cout << #var << \" = \" << var << endl\n\nnamespace {\n /** output whole vector. ex) vector<int>{1, 2, 3} -> '1 2 3'. */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& xs) {\n if (xs.empty()) return os << \"[]\";\n os << xs[0];\n for (auto i = 1; i < xs.size(); i++) os << ' ' << xs[i];\n return os;\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const pair<K, V>& p) {\n return os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const map<K, V>& m) {\n bool first = true;\n for (auto p : m) {\n if (first) first = false;\n else os << \":\";\n os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n return os;\n }\n\n\n map<tuple<int, int, bool>, int> id;\n vector<tuple<int, int, bool>> fromId;\n\n struct Edge {\n int to, cost;\n Edge(int to, int cost) : to(to), cost(cost) {}\n };\n vector<vector<Edge>> Graph;\n\n int N, M, S, G;\n\n bool IN = false;\n bool OUT = true;\n\n void solve() {\n cin >> N >> M >> S >> G;\n S--; G--;\n vector<vector<tuple<int, int, bool>>> V(N);\n auto init = make_tuple(S, 0, IN);\n V[S].push_back(init);\n id[init] = 0;\n fromId.push_back(init);\n Graph.emplace_back();\n for (int i = 0; i < M; i++) {\n int u, v, t, c; cin >> u >> v >> t >> c;\n u--; v--;\n auto x = make_tuple(u, t, OUT);\n auto x_id = id.count(x) ? id[x] : fromId.size();\n if (not id.count(x)) {\n fromId.push_back(x);\n id[x] = x_id;\n Graph.emplace_back();\n }\n V[u].push_back(x);\n auto y = make_tuple(v, t + c, IN);\n auto y_id = id.count(y) ? id[y] : fromId.size();\n if (not id.count(y)) {\n fromId.push_back(y);\n id[y] = y_id;\n Graph.emplace_back();\n Graph[x_id].emplace_back(y_id, 0);\n }\n V[v].push_back(y);\n }\n for (auto& L : V) {\n sort(L.begin(), L.end(), [&](const tuple<int, int, bool>& a, const tuple<int, int, bool>& b) {\n return get<1>(a) == get<1>(b) ? get<2>(a) < get<2>(b) : get<1>(a) < get<1>(b);\n });\n for (unsigned i = 0; i + 1 < L.size(); i++) {\n auto& x = L[i];\n auto& y = L[i + 1];\n auto time_x = get<1>(x);\n auto time_y = get<1>(y);\n Graph[id[x]].emplace_back(id[y], time_y - time_x);\n }\n }\n\n auto start = id[ V[S][0] ];\n\n // dijkstra\n const int INF = 1<<28;\n vector<int> D(Graph.size(), INF);\n struct State {\n int v, cost;\n State(int v, int cost) : v(v), cost(cost) {}\n bool operator<(const State& s) const {\n return cost > s.cost;\n }\n };\n priority_queue<State> PQ;\n PQ.emplace(start, 0);\n D[start] = 0;\n while (not PQ.empty()) {\n auto cur = PQ.top(); PQ.pop();\n for (auto& e : Graph[cur.v]) {\n auto next = e.to;\n if (D[next] > cur.cost + e.cost) {\n D[next] = cur.cost + e.cost;\n PQ.emplace(next, D[next]);\n }\n }\n }\n int ans = INF;\n for (auto& goal_vertex : V[G]) {\n auto goal = id[goal_vertex];\n ans = min(ans, D[goal]);\n }\n cout << ans << endl;\n }\n}\n\nint main() {\n solve();\n return 0;\n}", "accuracy": 0.7586206896551724, "time_ms": 680, "memory_kb": 65112, "score_of_the_acc": -2, "final_rank": 15 }, { "submission_id": "aoj_2811_2688146", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst bool debug = true;\n#define dbg(...) if(debug) printf(__VA_ARGS__)\n#define print(var) if (debug) cout << #var << \" = \" << var << endl\n\nnamespace {\n /** output whole vector. ex) vector<int>{1, 2, 3} -> '1 2 3'. */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& xs) {\n if (xs.empty()) return os << \"[]\";\n os << xs[0];\n for (auto i = 1; i < xs.size(); i++) os << ' ' << xs[i];\n return os;\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const pair<K, V>& p) {\n return os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const map<K, V>& m) {\n bool first = true;\n for (auto p : m) {\n if (first) first = false;\n else os << \":\";\n os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n return os;\n }\n\n\n map<tuple<int, int, bool>, int> id;\n vector<tuple<int, int, bool>> fromId;\n\n struct Edge {\n int to, cost;\n Edge(int to, int cost) : to(to), cost(cost) {}\n };\n vector<vector<Edge>> Graph;\n\n int N, M, S, G;\n\n bool IN = false;\n bool OUT = true;\n\n void solve() {\n cin >> N >> M >> S >> G;\n S--; G--;\n vector<vector<tuple<int, int, bool>>> V(N);\n auto init = make_tuple(S, 0, IN);\n V[S].push_back(init);\n id[init] = 0;\n fromId.push_back(init);\n Graph.emplace_back();\n for (int i = 0; i < M; i++) {\n int u, v, t, c; cin >> u >> v >> t >> c;\n u--; v--;\n auto x = make_tuple(u, t, OUT);\n auto x_id = id.count(x) ? id[x] : fromId.size();\n if (not id.count(x)) {\n fromId.push_back(x);\n id[x] = x_id;\n Graph.emplace_back();\n }\n V[u].push_back(x);\n auto y = make_tuple(v, t + c, IN);\n auto y_id = id.count(y) ? id[y] : fromId.size();\n if (not id.count(y)) {\n fromId.push_back(y);\n id[y] = y_id;\n Graph.emplace_back();\n V[v].push_back(y);\n Graph[x_id].emplace_back(y_id, 0);\n }\n }\n for (auto& L : V) {\n sort(L.begin(), L.end(), [&](const tuple<int, int, bool>& a, const tuple<int, int, bool>& b) {\n return get<1>(a) == get<1>(b) ? get<2>(a) < get<2>(b) : get<1>(a) < get<1>(b);\n });\n for (unsigned i = 0; i + 1 < L.size(); i++) {\n auto& x = L[i];\n auto& y = L[i + 1];\n auto time_x = get<1>(x);\n auto time_y = get<1>(y);\n Graph[id[x]].emplace_back(id[y], time_y - time_x);\n }\n }\n\n auto start = id[ V[S][0] ];\n\n // dijkstra\n const int INF = 1<<28;\n vector<int> D(Graph.size(), INF);\n struct State {\n int v, cost;\n State(int v, int cost) : v(v), cost(cost) {}\n bool operator<(const State& s) const {\n return cost > s.cost;\n }\n };\n priority_queue<State> PQ;\n PQ.emplace(start, 0);\n D[start] = 0;\n while (not PQ.empty()) {\n auto cur = PQ.top(); PQ.pop();\n for (auto& e : Graph[cur.v]) {\n auto next = e.to;\n if (D[next] > cur.cost + e.cost) {\n D[next] = cur.cost + e.cost;\n PQ.emplace(next, D[next]);\n }\n }\n }\n int ans = INF;\n for (auto& goal_vertex : V[G]) {\n auto goal = id[goal_vertex];\n ans = min(ans, D[goal]);\n }\n cout << ans << endl;\n }\n}\n\nint main() {\n solve();\n return 0;\n}", "accuracy": 0.7586206896551724, "time_ms": 680, "memory_kb": 64980, "score_of_the_acc": -1.9976, "final_rank": 14 }, { "submission_id": "aoj_2811_2688129", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst bool debug = true;\n#define dbg(...) if(debug) printf(__VA_ARGS__)\n#define print(var) if (debug) cout << #var << \" = \" << var << endl\n\nnamespace {\n /** output whole vector. ex) vector<int>{1, 2, 3} -> '1 2 3'. */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& xs) {\n if (xs.empty()) return os << \"[]\";\n os << xs[0];\n for (auto i = 1; i < xs.size(); i++) os << ' ' << xs[i];\n return os;\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const pair<K, V>& p) {\n return os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const map<K, V>& m) {\n bool first = true;\n for (auto p : m) {\n if (first) first = false;\n else os << \":\";\n os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n return os;\n }\n\n\n map<tuple<int, int, bool>, int> id;\n vector<tuple<int, int, bool>> fromId;\n\n struct Edge {\n int to, cost;\n Edge(int to, int cost) : to(to), cost(cost) {}\n };\n vector<vector<Edge>> Graph;\n\n int N, M, S, G;\n\n bool IN = false;\n bool OUT = true;\n\n void solve() {\n cin >> N >> M >> S >> G;\n S--; G--;\n vector<vector<tuple<int, int, bool>>> V(N);\n auto init = make_tuple(S, 0, IN);\n V[S].push_back(init);\n id[init] = 0;\n fromId.push_back(init);\n Graph.emplace_back();\n for (int i = 0; i < M; i++) {\n int u, v, t, c; cin >> u >> v >> t >> c;\n u--; v--;\n auto x = make_tuple(u, t, OUT);\n auto x_id = fromId.size();\n fromId.push_back(x);\n id[x] = x_id;\n Graph.emplace_back();\n V[u].push_back(x);\n auto y = make_tuple(v, t + c, IN);\n auto y_id = fromId.size();\n fromId.push_back(y);\n id[y] = y_id;\n Graph.emplace_back();\n V[v].push_back(y);\n Graph[x_id].emplace_back(y_id, 0);\n }\n for (auto& L : V) {\n sort(L.begin(), L.end(), [&](const tuple<int, int, bool>& a, const tuple<int, int, bool>& b) {\n return get<1>(a) == get<1>(b) ? get<2>(a) < get<2>(b) : get<1>(a) < get<1>(b);\n });\n for (unsigned i = 0; i + 1 < L.size(); i++) {\n auto& x = L[i];\n auto& y = L[i + 1];\n auto time_x = get<1>(x);\n auto time_y = get<1>(y);\n Graph[id[x]].emplace_back(id[y], time_y - time_x);\n }\n }\n\n auto start = id[ V[S][0] ];\n\n // dijkstra\n const int INF = 1<<28;\n vector<int> D(Graph.size(), INF);\n struct State {\n int v, cost;\n State(int v, int cost) : v(v), cost(cost) {}\n bool operator<(const State& s) const {\n return cost > s.cost;\n }\n };\n priority_queue<State> PQ;\n PQ.emplace(start, 0);\n D[start] = 0;\n while (not PQ.empty()) {\n auto cur = PQ.top(); PQ.pop();\n for (auto& e : Graph[cur.v]) {\n auto next = e.to;\n if (D[next] > cur.cost + e.cost) {\n D[next] = cur.cost + e.cost;\n PQ.emplace(next, D[next]);\n }\n }\n }\n int ans = INF;\n for (auto& goal_vertex : V[G]) {\n auto goal = id[goal_vertex];\n ans = min(ans, D[goal]);\n }\n cout << ans << endl;\n }\n}\n\nint main() {\n solve();\n return 0;\n}", "accuracy": 0.4827586206896552, "time_ms": 500, "memory_kb": 55124, "score_of_the_acc": -1.5405, "final_rank": 18 }, { "submission_id": "aoj_2811_2688020", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nconst bool debug = true;\n#define dbg(...) if(debug) printf(__VA_ARGS__)\n#define print(var) if (debug) cout << #var << \" = \" << var << endl\n\nnamespace {\n /** output whole vector. ex) vector<int>{1, 2, 3} -> '1 2 3'. */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& xs) {\n if (xs.empty()) return os << \"[]\";\n os << xs[0];\n for (auto i = 1; i < xs.size(); i++) os << ' ' << xs[i];\n return os;\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const pair<K, V>& p) {\n return os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n template<typename K, typename V>\n ostream& operator<<(ostream& os, const map<K, V>& m) {\n bool first = true;\n for (auto p : m) {\n if (first) first = false;\n else os << \":\";\n os << \"(\" << p.first << \",\" << p.second << \")\";\n }\n return os;\n }\n\n\n map<tuple<int, int, bool>, int> id;\n vector<tuple<int, int, bool>> fromId;\n\n struct Edge {\n int to, cost;\n Edge(int to, int cost) : to(to), cost(cost) {}\n };\n vector<vector<Edge>> Graph;\n\n int N, M, S, G;\n\n bool IN = false;\n bool OUT = true;\n\n void solve() {\n cin >> N >> M >> S >> G;\n S--; G--;\n vector<vector<tuple<int, int, bool>>> V(N);\n auto init = make_tuple(S, 0, IN);\n V[S].push_back(init);\n id[init] = 0;\n fromId.push_back(init);\n Graph.emplace_back();\n for (int i = 0; i < M; i++) {\n int u, v, t, c; cin >> u >> v >> t >> c;\n u--; v--;\n auto x = make_tuple(u, t, OUT);\n auto x_id = fromId.size();\n fromId.push_back(x);\n id[x] = x_id;\n Graph.emplace_back();\n V[u].push_back(x);\n auto y = make_tuple(v, t + c, IN);\n auto y_id = fromId.size();\n fromId.push_back(y);\n id[y] = y_id;\n Graph.emplace_back();\n V[v].push_back(y);\n Graph[x_id].emplace_back(y_id, 0);\n }\n for (auto& L : V) {\n sort(L.begin(), L.end(), [&](const tuple<int, int, bool>& a, const tuple<int, int, bool>& b) { return get<1>(a) == get<1>(b) ? get<2>(a) < get<2>(b) : get<1>(a) < get<1>(b); });\n }\n for (auto& L : V) {\n for (int i = 0; i + 1 < L.size(); i++) {\n auto& x = L[i];\n auto& y = L[i + 1];\n auto time_x = get<1>(x);\n auto time_y = get<1>(y);\n Graph[id[x]].emplace_back(id[y], time_y - time_x);\n }\n }\n\n auto start = id[ V[S][0] ];\n\n // dijkstra\n const int INF = 1<<28;\n vector<int> D(Graph.size(), INF);\n struct State {\n int v, cost;\n State(int v, int cost) : v(v), cost(cost) {}\n bool operator<(const State& s) const {\n return cost > s.cost;\n }\n };\n priority_queue<State> PQ;\n PQ.emplace(start, 0);\n D[start] = 0;\n while (not PQ.empty()) {\n auto cur = PQ.top(); PQ.pop();\n for (auto& e : Graph[cur.v]) {\n auto next = e.to;\n if (D[next] > cur.cost + e.cost) {\n D[next] = cur.cost + e.cost;\n PQ.emplace(next, D[next]);\n }\n }\n }\n int ans = INF;\n for (auto& goal_vertex : V[G]) {\n auto goal = id[goal_vertex];\n ans = min(ans, D[goal]);\n }\n cout << ans << endl;\n }\n}\n\nint main() {\n solve();\n return 0;\n}", "accuracy": 0.4827586206896552, "time_ms": 490, "memory_kb": 55092, "score_of_the_acc": -1.5243, "final_rank": 17 }, { "submission_id": "aoj_2811_2330124", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define MP make_pair\n#define FF first\n#define SS second\n\nusing LL = long long;\nusing PII = pair<int,int>;\nusing PLL = pair<LL,LL>;\nusing PILL = pair<LL,PII>;\n\nconst LL INF = 1e15;\nconst int UB = 400010;\n\nint N, M, S, Gl;\nmap<PLL,int> ids;\nLL dist[UB];\nvoid dijk(vector<vector<PLL>>& G){\n priority_queue<PLL, vector<PLL>, greater<PLL>> pq;\n fill(dist, dist+UB, INF);\n pq.push(PLL(0,ids[MP(S,0)]));\n dist[ids[MP(S,0)]] = 0;\n\n while(!pq.empty()){\n\tPLL p = pq.top();\n\tpq.pop();\n\tif(p.FF > dist[p.SS])\n\t continue;\n\t \n\tfor(auto&& e: G[p.SS]){\n\t if(p.FF + e.SS < dist[e.FF]){\n\t\tdist[e.FF] = p.FF + e.SS;\n\t\tpq.push(MP(dist[e.FF], e.FF));\n\t }\n\t}\n }\n}\n\nint main(){\n cin >> N >> M >> S >> Gl;\n --S;\n --Gl;\n int id = 0;\n \n vector<vector<int>> tms(N);\n ids[MP(0,S)] = id++;\n tms[S].push_back(0);\n vector<vector<PLL>> G(UB);\n for(int i=0;i<M;++i){\n\tint u, v, t, c;\n\tcin >> u >> v >> t >> c;\n\t--u;\n\t--v;\n\tif(!ids.count(MP(u,t)))\n\t ids[MP(u,t)] = id++;\n\tif(!ids.count(MP(v,t+c)))\n\t ids[MP(v,t+c)] = id++;\n\ttms[u].push_back(t);\n\ttms[v].push_back(t+c);\n\tG[ids[MP(u,t)]].emplace_back(ids[MP(v,t+c)], 0);\n }\n\n for(int i=0;i<N;++i){\n\tsort(begin(tms[i]), end(tms[i]));\n\ttms[i].erase(unique(begin(tms[i]), end(tms[i])), end(tms[i]));\n\tfor(int j=0;j+1<tms[i].size();++j){\n\t G[ids[MP(i,tms[i][j])]].emplace_back(ids[MP(i,tms[i][j+1])], tms[i][j+1] - tms[i][j]);\n\t}\n }\n\n dijk(G);\n LL ans = INF;\n for(auto&& t: tms[Gl])\n\tans = min(ans, dist[ids[MP(Gl,t)]]);\n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 60960, "score_of_the_acc": -1.9259, "final_rank": 12 } ]
aoj_2812_cpp
H: ジャンプパーティ 問題 とあるダンスホールで $N$ 人の参加するダンスパーティーが行われる。 そのダンスホールは縦方向に $H$ 個、横方向に $W$ 個のグリッドに分けられており、 左上を $(0,0)$、上から $r$ マス、左から $c$ マス目のグリッドの座標を $(r,c)$ と表す。 $i$ 番目の参加者の初期位置は $(R_i, C_i)$ であり、$(i,j)$ のグリッドには $(r_{ij}, c_{ij})$ が書かれている。 各参加者は、無限に続く音楽に合わせて次のように同時に移動を行う。 その時にいる座標が $(i,j)$ のとき、$(r_{ij}, c_{ij})$ へジャンプで移動する。 それぞれのグリッドは狭く、2 人以上の参加者が同時に同じグリッドに移動すると衝突してしまう。ただし、空中で衝突することは無いとする。 これを聞いたあなたは、ジャンプ後に 2 人以上の参加者が衝突してしまわないかと心配になった。 そこで、衝突が起こる可能性があるか、あるならば何回目のジャンプの後に衝突が起こるかを求めることにした。 制約 $1 \le H,W \le 500$ $0 \le N \le H \times W$ $0 \le r_{ij} < H \ (0 \le i < H, 0 \le j < W)$ $0 \le c_{ij} < W \ (0 \le i < H, 0 \le j < W)$ $0 \le R_i < H \ (0 \le i < N)$ $0 \le C_i < W \ (0 \le i < N)$ 参加者の初期位置は相異なる 入力形式 入力は以下の形式で与えられる。 $H \ W \ N$ $r_{00} \ c_{00} \ \cdots \ r_{0 \ W-1} \ c_{0 \ W-1}$ $\vdots$ $r_{H-1 \ 0} \ c_{H-1 \ 0} \ \cdots \ r_{H-1 \ W-1} \ c_{H-1 \ W-1}$ $R_0 \ C_0$ $\vdots$ $R_{N-1} \ C_{N-1}$ この問題では入力ファイルが非常に大きくなることがあることに注意せよ。 C++ なら このページ を参考にすると良いかもしれない。 出力 衝突が起こる場合は何回目のジャンプの後に起こるかを 1 行で出力せよ。 そうでない場合は -1 を出力せよ。 また、末尾に改行を出力せよ。 サンプル サンプル入力 1 2 2 2 1 0 0 1 0 0 1 0 0 0 0 1 サンプル出力 1 -1 サンプル入力 2 2 2 2 1 0 0 1 0 0 1 0 0 0 1 1 サンプル出力 2 1
[ { "submission_id": "aoj_2812_10191609", "code_snippet": "// AOJ #2812\n// Jump Party 2025.2.5\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nint main(){\n int H = Cin(), W = Cin(), N = Cin();\n int total = H * W;\n \n vector<int> nextPos(total);\n for (int i = 0; i < H; i++){\n for (int j = 0; j < W; j++){\n int nr = Cin(), nc = Cin();\n int from = i * W + j;\n int to = nr * W + nc;\n nextPos[from] = to;\n }\n }\n \n // 初期位置(セル番号)を読み込む\n vector<int> initPos;\n initPos.reserve(N);\n for (int i = 0; i < N; i++){\n int r = Cin(), c = Cin();\n initPos.push_back(r * W + c);\n }\n \n // 参加者が 0 人または 1 人の場合は衝突は起こらない\n if (N <= 1) {\n Cout(-1);\n return 0;\n }\n \n // ダブリングの前計算\n // 最大のジャンプ回数はグリッドの大きさを上限にすれば十分\n int maxT = total; \n int LOG = 0;\n while ((1 << LOG) <= maxT) LOG++;\n \n // dp[k][i] = セル i から 2^k 回ジャンプしたときのセル番号\n vector<vector<int>> dp(LOG, vector<int>(total));\n for (int i = 0; i < total; i++){\n dp[0][i] = nextPos[i];\n }\n for (int k = 1; k < LOG; k++){\n for (int i = 0; i < total; i++){\n dp[k][i] = dp[k-1][ dp[k-1][i] ];\n }\n }\n \n // 関数:start から t 回ジャンプした先のセル番号を返す\n auto jump = [&](int start, int t) -> int {\n int pos = start;\n for (int k = 0; k < LOG; k++){\n if (t & (1 << k)) pos = dp[k][pos];\n }\n return pos;\n };\n \n // 「t 回ジャンプ後に衝突が起こるか」をチェックする関数\n auto check = [&](int t) -> bool {\n vector<int> freq(total, 0);\n for (int pos : initPos) {\n int finalPos = jump(pos, t);\n freq[finalPos]++;\n if (freq[finalPos] >= 2)\n return true;\n }\n return false;\n };\n \n int lo = 1, hi = maxT + 1;\n int ans = -1;\n while (lo < hi) {\n int mid = lo + (hi - lo) / 2;\n if (check(mid)) ans = mid, hi = mid;\n else lo = mid + 1;\n }\n Cout(ans == -1? -1: ans);\n return 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 23644, "score_of_the_acc": -0.1423, "final_rank": 3 }, { "submission_id": "aoj_2812_9119004", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n//using uLL = unsigned __int128;\nusing str = string;\ntemplate <typename T> \nusing pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T>\nusing pq = priority_queue<T>;\ntemplate <typename T>\nusing vec = vector<T>;\nusing pll = pair<long long, long long>;\nusing pii = pair<int, int>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvl = vector<vector<ll>>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define vvvm vector<vector<vector<mint>>>\n#define vvm vector<vector<mint>>\n#define vm vector<mint>\ntemplate <typename T1, typename T2>\nusing umap = unordered_map<T1, T2>;\ntemplate <typename T>\nusing uset = unordered_set<T>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n#define rep1(i, s, f) for(long long i = s; i <= f; i++)\n#define per(i, s, f) for(long long i = s; i >= f; i--)\n#define per1(i, s, f) for(long long i = s; i >= f; i--)\n#define eb(a) emplace_back(a)\n#define pb(a) push_back(a)\n#define all0(x) (x).begin() ,(x).end()\n#define all(x) (x).begin() + 1, (x).end()\n#define ins(x, l, r) (l <= x && x <= r)\n#define ENDL '\\n'\n////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//これが本当の組み込み関数ってね(笑)\ntemplate <typename T>\nint LB(vector<T> &A, T x) {\n return lower_bound(A.begin(), A.end(), x) - A.begin();\n}\n\ntemplate <typename T>\nint UB(vector<T> &A, T x) {\n return upper_bound(A.begin(), A.end(), x) - A.begin();\n}\ntemplate <typename T>\nvoid UNIQUE(vector<T> &A, int indexed) {\n sort(A.begin() + indexed, A.end());\n A.erase(unique(A.begin() + indexed, A.end()), A.end());\n}\n\ntemplate <typename T>\nvector<T> erase(vector<T>& A, T& x) {\n\tvector<T> res;\n\tfor(T a : A) if(a != x) res.emplace_back(a);\n\treturn res;\n}\nstring split(string& S, int l, int r) {\n\treturn S.substr(l, r - l + 1);\n}\n\nint msb(long long a) {\n if(a == 0) return -1;\n return 64 - int(__builtin_clzll(a));\n}\ntemplate<class T>\nvoid chmin(T &a, T b) {\n if(a > b) a = b;\n}\ntemplate<class T>\nvoid chmax(T &a, T b) {\n if(a < b) a = b;\n}\n//////////////////////////////////////////////////////////////////////\n//数学系\n///////////////////////////////////////////////////////////////////////\nll extgcd (ll a, ll b, ll &x, ll &y) {\n if(b == 0) { x = 1;y = 0;return a;}\n ll d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\ntemplate <typename T>\nT CEIL(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b + 1;\n else return a / b;\n}\ntemplate <typename T>\nT FLOOR(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b;\n else return a/b - 1;\n}\nll SQRT(ll a) {\n ll l = 0;\n ll r = 3037000499LL;\n while(l < r) {\n ll mid = (l + r + 1) / 2;\n if(mid * mid <= a) l = mid;\n else r = mid - 1;\n }\n return l;\n}\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//グローバル変数を置くところ\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC optimize \"trapv\" //お祈り。変数同士の演算でのみ感知。代入や、 a *= 10000 では感知しない。\nconst ll big = 1001001001;\nvl dx{0, 1, 0, -1, 0, 1, 1, -1, -1}; // 座標平面において、(番兵) → ↓ ← ↑ ※ 右から時計回り 注 : グリッド or 座標で上下は反転する。\nvl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};\n//const ll mod = 1000000007;\n//const ll mod = 998244353;\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nusing P = pair<short, short>;\nusing vvp = vec<vec<P>>;\nusing vp = vec<P>;\nvoid solve() {\n\tll H, W, N;\n\tcin >> H >> W >> N;\n\tvvp table(H+1, vp(W+1));\n\trep(i,1,H) rep(j,1,W) {\n\t\tcin >> table[i][j].first >> table[i][j].second;\n\t\ttable[i][j].first++, table[i][j].second++;\n\t}\n\tvl R(N+1), C(N+1);\n\trep(i,1,N) {\n\t\tcin >> R[i] >> C[i];\n\t\tR[i]++, C[i]++;\n\t}\n\n\tconst int M = 17;\n\tvec<vvp> dabu(M+1, vvp(H+1, vp(W+1)));\n\trep(i,1,H)rep(j,1,W) {\n\t\tdabu[0][i][j] = table[i][j];\n\t}\n\n\n\n\trep(p, 1, M) rep(i,1,H) rep(j,1,W) {\n\t\tauto[pi, pj] = dabu[p-1][i][j];\n\t\tdabu[p][i][j] = dabu[p-1][pi][pj];\n\t}\n\n\n\n\tauto jump = [&](int i, int j, ll step) {\n\t\tif(step==0) return P(i, j);\n\t\trep(p, 0, M) {\n\t\t\tif(step >> p & 1) {\n\t\t\t\tauto [ni, nj] = dabu[p][i][j];\n\t\t\t\ti = ni;\n\t\t\t\tj = nj;\n\t\t\t}\n\t\t}\n\t\treturn P(i, j);\n\t};\n\n\tauto out = [&](ll step) {\n\t\tset<P> cnt;\n\t\trep(i,1,N) {\n\t\t\tauto nex = jump(R[i], C[i], step);\n\t\t\tif(cnt.count(nex)) return true;\n\t\t\telse cnt.insert(nex);\n\t\t}\n\t\treturn false;\n\t};\n\n\n\tll li = 0;\n\tll ri = 250001;\n\n\twhile(li < ri) {//xxxxxxooooooo\n\t\tll mid = (li + ri)>>1;\n\t\tif(out(mid)) {\n\t\t\tri = mid;\n\t\t}\n\t\telse {\n\t\t\tli = mid + 1;\n\t\t}\n\t}\n\n\n\tif(out(li)) {\n\t\tcout << li << endl;\n\t}\n\telse {\n\t\tcout << -1 << endl;\n\t}\n\n\n\n\n\n\n\t\n \n\n \n \n\n}\n\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n ll T = 1;\n //cin >> T;\n rep(i, 1, T) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1440, "memory_kb": 37740, "score_of_the_acc": -1.0088, "final_rank": 14 }, { "submission_id": "aoj_2812_9119003", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n//using uLL = unsigned __int128;\nusing str = string;\ntemplate <typename T> \nusing pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T>\nusing pq = priority_queue<T>;\ntemplate <typename T>\nusing vec = vector<T>;\nusing pll = pair<long long, long long>;\nusing pii = pair<int, int>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvl = vector<vector<ll>>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define vvvm vector<vector<vector<mint>>>\n#define vvm vector<vector<mint>>\n#define vm vector<mint>\ntemplate <typename T1, typename T2>\nusing umap = unordered_map<T1, T2>;\ntemplate <typename T>\nusing uset = unordered_set<T>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n#define rep1(i, s, f) for(long long i = s; i <= f; i++)\n#define per(i, s, f) for(long long i = s; i >= f; i--)\n#define per1(i, s, f) for(long long i = s; i >= f; i--)\n#define eb(a) emplace_back(a)\n#define pb(a) push_back(a)\n#define all0(x) (x).begin() ,(x).end()\n#define all(x) (x).begin() + 1, (x).end()\n#define ins(x, l, r) (l <= x && x <= r)\n#define ENDL '\\n'\n////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//これが本当の組み込み関数ってね(笑)\ntemplate <typename T>\nint LB(vector<T> &A, T x) {\n return lower_bound(A.begin(), A.end(), x) - A.begin();\n}\n\ntemplate <typename T>\nint UB(vector<T> &A, T x) {\n return upper_bound(A.begin(), A.end(), x) - A.begin();\n}\ntemplate <typename T>\nvoid UNIQUE(vector<T> &A, int indexed) {\n sort(A.begin() + indexed, A.end());\n A.erase(unique(A.begin() + indexed, A.end()), A.end());\n}\n\ntemplate <typename T>\nvector<T> erase(vector<T>& A, T& x) {\n\tvector<T> res;\n\tfor(T a : A) if(a != x) res.emplace_back(a);\n\treturn res;\n}\nstring split(string& S, int l, int r) {\n\treturn S.substr(l, r - l + 1);\n}\n\nint msb(long long a) {\n if(a == 0) return -1;\n return 64 - int(__builtin_clzll(a));\n}\ntemplate<class T>\nvoid chmin(T &a, T b) {\n if(a > b) a = b;\n}\ntemplate<class T>\nvoid chmax(T &a, T b) {\n if(a < b) a = b;\n}\n//////////////////////////////////////////////////////////////////////\n//数学系\n///////////////////////////////////////////////////////////////////////\nll extgcd (ll a, ll b, ll &x, ll &y) {\n if(b == 0) { x = 1;y = 0;return a;}\n ll d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\ntemplate <typename T>\nT CEIL(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b + 1;\n else return a / b;\n}\ntemplate <typename T>\nT FLOOR(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b;\n else return a/b - 1;\n}\nll SQRT(ll a) {\n ll l = 0;\n ll r = 3037000499LL;\n while(l < r) {\n ll mid = (l + r + 1) / 2;\n if(mid * mid <= a) l = mid;\n else r = mid - 1;\n }\n return l;\n}\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//グローバル変数を置くところ\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC optimize \"trapv\" //お祈り。変数同士の演算でのみ感知。代入や、 a *= 10000 では感知しない。\nconst ll big = 1001001001;\nvl dx{0, 1, 0, -1, 0, 1, 1, -1, -1}; // 座標平面において、(番兵) → ↓ ← ↑ ※ 右から時計回り 注 : グリッド or 座標で上下は反転する。\nvl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};\n//const ll mod = 1000000007;\n//const ll mod = 998244353;\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nusing P = pair<short, short>;\nusing vvp = vec<vec<P>>;\nusing vp = vec<P>;\nvoid solve() {\n\tll H, W, N;\n\tcin >> H >> W >> N;\n\tvvp table(H+1, vp(W+1));\n\trep(i,1,H) rep(j,1,W) {\n\t\tcin >> table[i][j].first >> table[i][j].second;\n\t\ttable[i][j].first++, table[i][j].second++;\n\t}\n\tvl R(N+1), C(N+1);\n\trep(i,1,N) {\n\t\tcin >> R[i] >> C[i];\n\t\tR[i]++, C[i]++;\n\t}\n\n\tconst int M = 17;\n\tvec<vvp> dabu(M+1, vvp(H+1, vp(W+1)));\n\trep(i,1,H)rep(j,1,W) {\n\t\tdabu[0][i][j] = table[i][j];\n\t}\n\n\n\n\trep(p, 1, M) rep(i,1,H) rep(j,1,W) {\n\t\tauto[pi, pj] = dabu[p-1][i][j];\n\t\tdabu[p][i][j] = dabu[p-1][pi][pj];\n\t}\n\n\n\n\tauto jump = [&](int i, int j, ll step) {\n\t\tif(step==0) return P(i, j);\n\t\trep(p, 0, M) {\n\t\t\tif(step >> p & 1) {\n\t\t\t\tauto [ni, nj] = dabu[p][i][j];\n\t\t\t\ti = ni;\n\t\t\t\tj = nj;\n\t\t\t}\n\t\t}\n\t\treturn P(i, j);\n\t};\n\n\tauto out = [&](ll step) {\n\t\tset<P> cnt;\n\t\trep(i,1,N) {\n\t\t\tauto nex = jump(R[i], C[i], step);\n\t\t\tif(cnt.count(nex)) return true;\n\t\t\telse cnt.insert(nex);\n\t\t}\n\t\treturn false;\n\t};\n\n\n\tll li = 0;\n\tll ri = 500001;\n\n\twhile(li < ri) {//xxxxxxooooooo\n\t\tll mid = (li + ri)>>1;\n\t\tif(out(mid)) {\n\t\t\tri = mid;\n\t\t}\n\t\telse {\n\t\t\tli = mid + 1;\n\t\t}\n\t}\n\n\n\tif(out(li)) {\n\t\tcout << li << endl;\n\t}\n\telse {\n\t\tcout << -1 << endl;\n\t}\n\n\n\n\n\n\n\t\n \n\n \n \n\n}\n\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n ll T = 1;\n //cin >> T;\n rep(i, 1, T) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1340, "memory_kb": 37836, "score_of_the_acc": -0.9501, "final_rank": 12 }, { "submission_id": "aoj_2812_9119002", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n//using uLL = unsigned __int128;\nusing str = string;\ntemplate <typename T> \nusing pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T>\nusing pq = priority_queue<T>;\ntemplate <typename T>\nusing vec = vector<T>;\nusing pll = pair<long long, long long>;\nusing pii = pair<int, int>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvl = vector<vector<ll>>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define vvvm vector<vector<vector<mint>>>\n#define vvm vector<vector<mint>>\n#define vm vector<mint>\ntemplate <typename T1, typename T2>\nusing umap = unordered_map<T1, T2>;\ntemplate <typename T>\nusing uset = unordered_set<T>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n#define rep1(i, s, f) for(long long i = s; i <= f; i++)\n#define per(i, s, f) for(long long i = s; i >= f; i--)\n#define per1(i, s, f) for(long long i = s; i >= f; i--)\n#define eb(a) emplace_back(a)\n#define pb(a) push_back(a)\n#define all0(x) (x).begin() ,(x).end()\n#define all(x) (x).begin() + 1, (x).end()\n#define ins(x, l, r) (l <= x && x <= r)\n#define ENDL '\\n'\n////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//これが本当の組み込み関数ってね(笑)\ntemplate <typename T>\nint LB(vector<T> &A, T x) {\n return lower_bound(A.begin(), A.end(), x) - A.begin();\n}\n\ntemplate <typename T>\nint UB(vector<T> &A, T x) {\n return upper_bound(A.begin(), A.end(), x) - A.begin();\n}\ntemplate <typename T>\nvoid UNIQUE(vector<T> &A, int indexed) {\n sort(A.begin() + indexed, A.end());\n A.erase(unique(A.begin() + indexed, A.end()), A.end());\n}\n\ntemplate <typename T>\nvector<T> erase(vector<T>& A, T& x) {\n\tvector<T> res;\n\tfor(T a : A) if(a != x) res.emplace_back(a);\n\treturn res;\n}\nstring split(string& S, int l, int r) {\n\treturn S.substr(l, r - l + 1);\n}\n\nint msb(long long a) {\n if(a == 0) return -1;\n return 64 - int(__builtin_clzll(a));\n}\ntemplate<class T>\nvoid chmin(T &a, T b) {\n if(a > b) a = b;\n}\ntemplate<class T>\nvoid chmax(T &a, T b) {\n if(a < b) a = b;\n}\n//////////////////////////////////////////////////////////////////////\n//数学系\n///////////////////////////////////////////////////////////////////////\nll extgcd (ll a, ll b, ll &x, ll &y) {\n if(b == 0) { x = 1;y = 0;return a;}\n ll d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\ntemplate <typename T>\nT CEIL(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b + 1;\n else return a / b;\n}\ntemplate <typename T>\nT FLOOR(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b;\n else return a/b - 1;\n}\nll SQRT(ll a) {\n ll l = 0;\n ll r = 3037000499LL;\n while(l < r) {\n ll mid = (l + r + 1) / 2;\n if(mid * mid <= a) l = mid;\n else r = mid - 1;\n }\n return l;\n}\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//グローバル変数を置くところ\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC optimize \"trapv\" //お祈り。変数同士の演算でのみ感知。代入や、 a *= 10000 では感知しない。\nconst ll big = 1001001001;\nvl dx{0, 1, 0, -1, 0, 1, 1, -1, -1}; // 座標平面において、(番兵) → ↓ ← ↑ ※ 右から時計回り 注 : グリッド or 座標で上下は反転する。\nvl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};\n//const ll mod = 1000000007;\n//const ll mod = 998244353;\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nusing P = pair<short, short>;\nusing vvp = vec<vec<P>>;\nusing vp = vec<P>;\nvoid solve() {\n\tll H, W, N;\n\tcin >> H >> W >> N;\n\tvvp table(H+1, vp(W+1));\n\trep(i,1,H) rep(j,1,W) {\n\t\tcin >> table[i][j].first >> table[i][j].second;\n\t\ttable[i][j].first++, table[i][j].second++;\n\t}\n\tvl R(N+1), C(N+1);\n\trep(i,1,N) {\n\t\tcin >> R[i] >> C[i];\n\t\tR[i]++, C[i]++;\n\t}\n\n\tconst int M = 17;\n\tvec<vvp> dabu(M+1, vvp(H+1, vp(W+1)));\n\trep(i,1,H)rep(j,1,W) {\n\t\tdabu[0][i][j] = table[i][j];\n\t}\n\n\n\n\trep(p, 1, M) rep(i,1,H) rep(j,1,W) {\n\t\tauto[pi, pj] = dabu[p-1][i][j];\n\t\tdabu[p][i][j] = dabu[p-1][pi][pj];\n\t}\n\n\n\n\tauto jump = [&](int i, int j, ll step) {\n\t\tif(step==0) return P(i, j);\n\t\trep(p, 0, M) {\n\t\t\tif(step >> p & 1) {\n\t\t\t\tauto [ni, nj] = dabu[p][i][j];\n\t\t\t\ti = ni;\n\t\t\t\tj = nj;\n\t\t\t}\n\t\t}\n\t\treturn P(i, j);\n\t};\n\n\tauto out = [&](ll step) {\n\t\tset<P> cnt;\n\t\trep(i,1,N) {\n\t\t\tauto nex = jump(R[i], C[i], step);\n\t\t\tif(cnt.count(nex)) return true;\n\t\t\telse cnt.insert(nex);\n\t\t}\n\t\treturn false;\n\t};\n\n\n\tll li = 0;\n\tll ri = 2500001;\n\n\twhile(li < ri) {//xxxxxxooooooo\n\t\tll mid = (li + ri)>>1;\n\t\tif(out(mid)) {\n\t\t\tri = mid;\n\t\t}\n\t\telse {\n\t\t\tli = mid + 1;\n\t\t}\n\t}\n\n\n\tif(out(li)) {\n\t\tcout << li << endl;\n\t}\n\telse {\n\t\tcout << -1 << endl;\n\t}\n\n\n\n\n\n\n\t\n \n\n \n \n\n}\n\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n ll T = 1;\n //cin >> T;\n rep(i, 1, T) {\n solve();\n }\n return 0;\n}", "accuracy": 0.9705882352941176, "time_ms": 1510, "memory_kb": 37720, "score_of_the_acc": -1.0505, "final_rank": 19 }, { "submission_id": "aoj_2812_9119000", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n//using uLL = unsigned __int128;\nusing str = string;\ntemplate <typename T> \nusing pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T>\nusing pq = priority_queue<T>;\ntemplate <typename T>\nusing vec = vector<T>;\nusing pll = pair<long long, long long>;\nusing pii = pair<int, int>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvl = vector<vector<ll>>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define vvvm vector<vector<vector<mint>>>\n#define vvm vector<vector<mint>>\n#define vm vector<mint>\ntemplate <typename T1, typename T2>\nusing umap = unordered_map<T1, T2>;\ntemplate <typename T>\nusing uset = unordered_set<T>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n#define rep1(i, s, f) for(long long i = s; i <= f; i++)\n#define per(i, s, f) for(long long i = s; i >= f; i--)\n#define per1(i, s, f) for(long long i = s; i >= f; i--)\n#define eb(a) emplace_back(a)\n#define pb(a) push_back(a)\n#define all0(x) (x).begin() ,(x).end()\n#define all(x) (x).begin() + 1, (x).end()\n#define ins(x, l, r) (l <= x && x <= r)\n#define ENDL '\\n'\n////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//これが本当の組み込み関数ってね(笑)\ntemplate <typename T>\nint LB(vector<T> &A, T x) {\n return lower_bound(A.begin(), A.end(), x) - A.begin();\n}\n\ntemplate <typename T>\nint UB(vector<T> &A, T x) {\n return upper_bound(A.begin(), A.end(), x) - A.begin();\n}\ntemplate <typename T>\nvoid UNIQUE(vector<T> &A, int indexed) {\n sort(A.begin() + indexed, A.end());\n A.erase(unique(A.begin() + indexed, A.end()), A.end());\n}\n\ntemplate <typename T>\nvector<T> erase(vector<T>& A, T& x) {\n\tvector<T> res;\n\tfor(T a : A) if(a != x) res.emplace_back(a);\n\treturn res;\n}\nstring split(string& S, int l, int r) {\n\treturn S.substr(l, r - l + 1);\n}\n\nint msb(long long a) {\n if(a == 0) return -1;\n return 64 - int(__builtin_clzll(a));\n}\ntemplate<class T>\nvoid chmin(T &a, T b) {\n if(a > b) a = b;\n}\ntemplate<class T>\nvoid chmax(T &a, T b) {\n if(a < b) a = b;\n}\n//////////////////////////////////////////////////////////////////////\n//数学系\n///////////////////////////////////////////////////////////////////////\nll extgcd (ll a, ll b, ll &x, ll &y) {\n if(b == 0) { x = 1;y = 0;return a;}\n ll d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\ntemplate <typename T>\nT CEIL(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b + 1;\n else return a / b;\n}\ntemplate <typename T>\nT FLOOR(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b;\n else return a/b - 1;\n}\nll SQRT(ll a) {\n ll l = 0;\n ll r = 3037000499LL;\n while(l < r) {\n ll mid = (l + r + 1) / 2;\n if(mid * mid <= a) l = mid;\n else r = mid - 1;\n }\n return l;\n}\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//グローバル変数を置くところ\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC optimize \"trapv\" //お祈り。変数同士の演算でのみ感知。代入や、 a *= 10000 では感知しない。\nconst ll big = 1001001001;\nvl dx{0, 1, 0, -1, 0, 1, 1, -1, -1}; // 座標平面において、(番兵) → ↓ ← ↑ ※ 右から時計回り 注 : グリッド or 座標で上下は反転する。\nvl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};\n//const ll mod = 1000000007;\n//const ll mod = 998244353;\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nusing P = pair<short, short>;\nusing vvp = vec<vec<P>>;\nusing vp = vec<P>;\nvoid solve() {\n\tll H, W, N;\n\tcin >> H >> W >> N;\n\tvvp table(H+1, vp(W+1));\n\trep(i,1,H) rep(j,1,W) {\n\t\tcin >> table[i][j].first >> table[i][j].second;\n\t\ttable[i][j].first++, table[i][j].second++;\n\t}\n\tvl R(N+1), C(N+1);\n\trep(i,1,N) {\n\t\tcin >> R[i] >> C[i];\n\t\tR[i]++, C[i]++;\n\t}\n\n\tconst int M = 17;\n\tvec<vvp> dabu(M+1, vvp(H+1, vp(W+1)));\n\trep(i,1,H)rep(j,1,W) {\n\t\tdabu[0][i][j] = table[i][j];\n\t}\n\n\n\n\trep(p, 1, M) rep(i,1,H) rep(j,1,W) {\n\t\tauto[pi, pj] = dabu[p-1][i][j];\n\t\tdabu[p][i][j] = dabu[p-1][pi][pj];\n\t}\n\n\n\n\tauto jump = [&](int i, int j, ll step) {\n\t\tif(step==0) return P(i, j);\n\t\trep(p, 0, M) {\n\t\t\tif(step >> p & 1) {\n\t\t\t\tauto [ni, nj] = dabu[p][i][j];\n\t\t\t\ti = ni;\n\t\t\t\tj = nj;\n\t\t\t}\n\t\t}\n\t\treturn P(i, j);\n\t};\n\n\tauto out = [&](ll step) {\n\t\tset<P> cnt;\n\t\trep(i,1,N) {\n\t\t\tauto nex = jump(R[i], C[i], step);\n\t\t\tif(cnt.count(nex)) return true;\n\t\t\telse cnt.insert(nex);\n\t\t}\n\t\treturn false;\n\t};\n\n\n\tll li = 0;\n\tll ri = 1000000;\n\n\twhile(li < ri) {//xxxxxxooooooo\n\t\tll mid = (li + ri)>>1;\n\t\tif(out(mid)) {\n\t\t\tri = mid;\n\t\t}\n\t\telse {\n\t\t\tli = mid + 1;\n\t\t}\n\t}\n\n\n\tif(out(li)) {\n\t\tcout << li << endl;\n\t}\n\telse {\n\t\tcout << -1 << endl;\n\t}\n\n\n\n\n\n\n\t\n \n\n \n \n\n}\n\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n ll T = 1;\n //cin >> T;\n rep(i, 1, T) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1310, "memory_kb": 37836, "score_of_the_acc": -0.9321, "final_rank": 11 }, { "submission_id": "aoj_2812_9118998", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n//using uLL = unsigned __int128;\nusing str = string;\ntemplate <typename T> \nusing pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T>\nusing pq = priority_queue<T>;\ntemplate <typename T>\nusing vec = vector<T>;\nusing pll = pair<long long, long long>;\nusing pii = pair<int, int>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvl = vector<vector<ll>>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define vvvm vector<vector<vector<mint>>>\n#define vvm vector<vector<mint>>\n#define vm vector<mint>\ntemplate <typename T1, typename T2>\nusing umap = unordered_map<T1, T2>;\ntemplate <typename T>\nusing uset = unordered_set<T>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n#define rep1(i, s, f) for(long long i = s; i <= f; i++)\n#define per(i, s, f) for(long long i = s; i >= f; i--)\n#define per1(i, s, f) for(long long i = s; i >= f; i--)\n#define eb(a) emplace_back(a)\n#define pb(a) push_back(a)\n#define all0(x) (x).begin() ,(x).end()\n#define all(x) (x).begin() + 1, (x).end()\n#define ins(x, l, r) (l <= x && x <= r)\n#define ENDL '\\n'\n////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//これが本当の組み込み関数ってね(笑)\ntemplate <typename T>\nint LB(vector<T> &A, T x) {\n return lower_bound(A.begin(), A.end(), x) - A.begin();\n}\n\ntemplate <typename T>\nint UB(vector<T> &A, T x) {\n return upper_bound(A.begin(), A.end(), x) - A.begin();\n}\ntemplate <typename T>\nvoid UNIQUE(vector<T> &A, int indexed) {\n sort(A.begin() + indexed, A.end());\n A.erase(unique(A.begin() + indexed, A.end()), A.end());\n}\n\ntemplate <typename T>\nvector<T> erase(vector<T>& A, T& x) {\n\tvector<T> res;\n\tfor(T a : A) if(a != x) res.emplace_back(a);\n\treturn res;\n}\nstring split(string& S, int l, int r) {\n\treturn S.substr(l, r - l + 1);\n}\n\nint msb(long long a) {\n if(a == 0) return -1;\n return 64 - int(__builtin_clzll(a));\n}\ntemplate<class T>\nvoid chmin(T &a, T b) {\n if(a > b) a = b;\n}\ntemplate<class T>\nvoid chmax(T &a, T b) {\n if(a < b) a = b;\n}\n//////////////////////////////////////////////////////////////////////\n//数学系\n///////////////////////////////////////////////////////////////////////\nll extgcd (ll a, ll b, ll &x, ll &y) {\n if(b == 0) { x = 1;y = 0;return a;}\n ll d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\ntemplate <typename T>\nT CEIL(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b + 1;\n else return a / b;\n}\ntemplate <typename T>\nT FLOOR(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b;\n else return a/b - 1;\n}\nll SQRT(ll a) {\n ll l = 0;\n ll r = 3037000499LL;\n while(l < r) {\n ll mid = (l + r + 1) / 2;\n if(mid * mid <= a) l = mid;\n else r = mid - 1;\n }\n return l;\n}\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//グローバル変数を置くところ\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC optimize \"trapv\" //お祈り。変数同士の演算でのみ感知。代入や、 a *= 10000 では感知しない。\nconst ll big = 1001001001;\nvl dx{0, 1, 0, -1, 0, 1, 1, -1, -1}; // 座標平面において、(番兵) → ↓ ← ↑ ※ 右から時計回り 注 : グリッド or 座標で上下は反転する。\nvl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};\n//const ll mod = 1000000007;\n//const ll mod = 998244353;\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nusing P = pair<short, short>;\nusing vvp = vec<vec<P>>;\nusing vp = vec<P>;\nvoid solve() {\n\tll H, W, N;\n\tcin >> H >> W >> N;\n\tvvp table(H+1, vp(W+1));\n\trep(i,1,H) rep(j,1,W) {\n\t\tcin >> table[i][j].first >> table[i][j].second;\n\t\ttable[i][j].first++, table[i][j].second++;\n\t}\n\tvl R(N+1), C(N+1);\n\trep(i,1,N) {\n\t\tcin >> R[i] >> C[i];\n\t\tR[i]++, C[i]++;\n\t}\n\n\tconst int M = 18;\n\tvec<vvp> dabu(M+1, vvp(H+1, vp(W+1)));\n\trep(i,1,H)rep(j,1,W) {\n\t\tdabu[0][i][j] = table[i][j];\n\t}\n\n\n\n\trep(p, 1, M) rep(i,1,H) rep(j,1,W) {\n\t\tauto[pi, pj] = dabu[p-1][i][j];\n\t\tdabu[p][i][j] = dabu[p-1][pi][pj];\n\t}\n\n\n\n\tauto jump = [&](int i, int j, ll step) {\n\t\tif(step==0) return P(i, j);\n\t\trep(p, 0, M) {\n\t\t\tif(step >> p & 1) {\n\t\t\t\tauto [ni, nj] = dabu[p][i][j];\n\t\t\t\ti = ni;\n\t\t\t\tj = nj;\n\t\t\t}\n\t\t}\n\t\treturn P(i, j);\n\t};\n\n\tauto out = [&](ll step) {\n\t\tset<P> cnt;\n\t\trep(i,1,N) {\n\t\t\tauto nex = jump(R[i], C[i], step);\n\t\t\tif(cnt.count(nex)) return true;\n\t\t\telse cnt.insert(nex);\n\t\t}\n\t\treturn false;\n\t};\n\n\n\tll li = 0;\n\tll ri = 1000000;\n\n\twhile(li < ri) {//xxxxxxooooooo\n\t\tll mid = (li + ri)>>1;\n\t\tif(out(mid)) {\n\t\t\tri = mid;\n\t\t}\n\t\telse {\n\t\t\tli = mid + 1;\n\t\t}\n\t}\n\n\n\tif(out(li)) {\n\t\tcout << li << endl;\n\t}\n\telse {\n\t\tcout << -1 << endl;\n\t}\n\n\n\n\n\n\n\t\n \n\n \n \n\n}\n\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n ll T = 1;\n //cin >> T;\n rep(i, 1, T) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1340, "memory_kb": 38720, "score_of_the_acc": -0.9605, "final_rank": 13 }, { "submission_id": "aoj_2812_9118965", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n//using uLL = unsigned __int128;\nusing str = string;\ntemplate <typename T> \nusing pqg = priority_queue<T, vector<T>, greater<T>>;\ntemplate <typename T>\nusing pq = priority_queue<T>;\ntemplate <typename T>\nusing vec = vector<T>;\nusing pll = pair<long long, long long>;\nusing pii = pair<int, int>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvl = vector<vector<ll>>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define vvvm vector<vector<vector<mint>>>\n#define vvm vector<vector<mint>>\n#define vm vector<mint>\ntemplate <typename T1, typename T2>\nusing umap = unordered_map<T1, T2>;\ntemplate <typename T>\nusing uset = unordered_set<T>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n#define rep1(i, s, f) for(long long i = s; i <= f; i++)\n#define per(i, s, f) for(long long i = s; i >= f; i--)\n#define per1(i, s, f) for(long long i = s; i >= f; i--)\n#define eb(a) emplace_back(a)\n#define pb(a) push_back(a)\n#define all0(x) (x).begin() ,(x).end()\n#define all(x) (x).begin() + 1, (x).end()\n#define ins(x, l, r) (l <= x && x <= r)\n#define ENDL '\\n'\n////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//これが本当の組み込み関数ってね(笑)\ntemplate <typename T>\nint LB(vector<T> &A, T x) {\n return lower_bound(A.begin(), A.end(), x) - A.begin();\n}\n\ntemplate <typename T>\nint UB(vector<T> &A, T x) {\n return upper_bound(A.begin(), A.end(), x) - A.begin();\n}\ntemplate <typename T>\nvoid UNIQUE(vector<T> &A, int indexed) {\n sort(A.begin() + indexed, A.end());\n A.erase(unique(A.begin() + indexed, A.end()), A.end());\n}\n\ntemplate <typename T>\nvector<T> erase(vector<T>& A, T& x) {\n\tvector<T> res;\n\tfor(T a : A) if(a != x) res.emplace_back(a);\n\treturn res;\n}\nstring split(string& S, int l, int r) {\n\treturn S.substr(l, r - l + 1);\n}\n\nint msb(long long a) {\n if(a == 0) return -1;\n return 64 - int(__builtin_clzll(a));\n}\ntemplate<class T>\nvoid chmin(T &a, T b) {\n if(a > b) a = b;\n}\ntemplate<class T>\nvoid chmax(T &a, T b) {\n if(a < b) a = b;\n}\n//////////////////////////////////////////////////////////////////////\n//数学系\n///////////////////////////////////////////////////////////////////////\nll extgcd (ll a, ll b, ll &x, ll &y) {\n if(b == 0) { x = 1;y = 0;return a;}\n ll d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\ntemplate <typename T>\nT CEIL(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b + 1;\n else return a / b;\n}\ntemplate <typename T>\nT FLOOR(T a, T b) {\n assert(b != 0);\n if(a % b == 0) return a / b;\n if((a <= 0 && b < 0) || (a >= 0 && b > 0)) return a/b;\n else return a/b - 1;\n}\nll SQRT(ll a) {\n ll l = 0;\n ll r = 3037000499LL;\n while(l < r) {\n ll mid = (l + r + 1) / 2;\n if(mid * mid <= a) l = mid;\n else r = mid - 1;\n }\n return l;\n}\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n//グローバル変数を置くところ\n//#pragma GCC optimize(\"O3\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC optimize \"trapv\" //お祈り。変数同士の演算でのみ感知。代入や、 a *= 10000 では感知しない。\nconst ll big = 1001001001;\nvl dx{0, 1, 0, -1, 0, 1, 1, -1, -1}; // 座標平面において、(番兵) → ↓ ← ↑ ※ 右から時計回り 注 : グリッド or 座標で上下は反転する。\nvl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};\n//const ll mod = 1000000007;\n//const ll mod = 998244353;\n//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nusing P = pair<short, short>;\nusing vvp = vec<vec<P>>;\nusing vp = vec<P>;\nvoid solve() {\n\tll H, W, N;\n\tcin >> H >> W >> N;\n\tvvp table(H+1, vp(W+1));\n\trep(i,1,H) rep(j,1,W) {\n\t\tcin >> table[i][j].first >> table[i][j].second;\n\t\ttable[i][j].first++, table[i][j].second++;\n\t}\n\tvl R(N+1), C(N+1);\n\trep(i,1,N) {\n\t\tcin >> R[i] >> C[i];\n\t\tR[i]++, C[i]++;\n\t}\n\n\tconst int M = 20;\n\tvec<vvp> dabu(M+1, vvp(H+1, vp(W+1)));\n\trep(i,1,H)rep(j,1,W) {\n\t\tdabu[0][i][j] = table[i][j];\n\t}\n\n\n\n\trep(p, 1, M) rep(i,1,H) rep(j,1,W) {\n\t\tauto[pi, pj] = dabu[p-1][i][j];\n\t\tdabu[p][i][j] = dabu[p-1][pi][pj];\n\t}\n\n\n\n\tauto jump = [&](int i, int j, ll step) {\n\t\tif(step==0) return P(i, j);\n\t\trep(p, 0, M) {\n\t\t\tif(step >> p & 1) {\n\t\t\t\tauto [ni, nj] = dabu[p][i][j];\n\t\t\t\ti = ni;\n\t\t\t\tj = nj;\n\t\t\t}\n\t\t}\n\t\treturn P(i, j);\n\t};\n\n\tauto out = [&](ll step) {\n\t\tset<P> cnt;\n\t\trep(i,1,N) {\n\t\t\tauto nex = jump(R[i], C[i], step);\n\t\t\tif(cnt.count(nex)) return true;\n\t\t\telse cnt.insert(nex);\n\t\t}\n\t\treturn false;\n\t};\n\n\n\tll li = 0;\n\tll ri = 10000000;\n\n\twhile(li < ri) {//xxxxxxooooooo\n\t\tll mid = (li + ri)>>1;\n\t\tif(out(mid)) {\n\t\t\tri = mid;\n\t\t}\n\t\telse {\n\t\t\tli = mid + 1;\n\t\t}\n\t}\n\n\n\tif(out(li)) {\n\t\tcout << li << endl;\n\t}\n\telse {\n\t\tcout << -1 << endl;\n\t}\n\n\n\n\n\n\n\t\n \n\n \n \n\n}\n\n\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n ll T = 1;\n //cin >> T;\n rep(i, 1, T) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1740, "memory_kb": 40616, "score_of_the_acc": -1.2223, "final_rank": 15 }, { "submission_id": "aoj_2812_9117934", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n//高速化 \nstruct ponjuice{ponjuice(){cin.tie(0);ios::sync_with_stdio(0);cout<<fixed<<setprecision(20);}}PonJuice;\n//#define endl '\\n' //インタラクティブ問題の時は消す\n\n//型\nusing ll = long long;\nusing ld = long double;\ntemplate<class T>using vc = vector<T>; template<class T>using vvc = vc<vc<T>>; template<class T>using vvvc = vvc<vc<T>>;\nusing vi = vc<int>; using vvi = vvc<int>; using vvvi = vvvc<int>;\nusing vl = vc<ll>; using vvl = vvc<ll>; using vvvl = vvvc<ll>;\nusing pi = pair<int, int>; using pl = pair<ll, ll>;\nusing ull = unsigned ll;\ntemplate<class T>using priq = priority_queue<T>;\ntemplate<class T>using priqg = priority_queue<T, vc<T>, greater<T>>;\n\n// for文\n#define overload4(a, b, c, d, e, ...) e\n#define rep1(n) for(ll i = 0; i < n; i++)\n#define rep2(i, n) for(ll i = 0; i < n; i++)\n#define rep3(i, a, b) for(ll i = a; i < b; i++)\n#define rep4(i, a, b, step) for(ll i = a; i < b; i+= step)\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define per1(n) for(ll i = n-1; i >= 0; i--)\n#define per2(i, n) for(ll i = n-1; i >= 0; i--)\n#define per3(i, a, b) for(ll i = b-1; i >= a; i--)\n#define per4(i, a, b, step) for(ll i = b-1; i >= a; i-= step)\n#define per(...) overload4(__VA_ARGS__, per4, per3, per2, per1)(__VA_ARGS__)\n#define fore1(a) for(auto&& i : a)\t\n#define fore2(i,a) for(auto&& i : a)\n#define fore3(x,y,a) for(auto&& [x, y] : a)\n#define fore4(x,y,z,a) for(auto&& [x, y, z] : a)\n#define fore(...) overload4(__VA_ARGS__, fore4, fore3, fore2, fore1)(__VA_ARGS__)\n\n//関数\n#define mp make_pair\n#define mt make_tuple\n#define a first\n#define b second\n#define pb emplace_back\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define si(x) (ll)(x).size()\ntemplate<class S, class T>inline bool chmax(S& a, T b){return a < b && ( a = b , true);}\ntemplate<class S, class T>inline bool chmin(S& a, T b){return a > b && ( a = b , true);}\ntemplate<class T>void uniq(vc<T>&a){sort(all(a));a.erase(unique(all(a)),a.end());}\ntemplate<class T>vc<T> operator++(vc<T>&v,signed){auto res = v;fore(e,v)e++;return res;}\ntemplate<class T>vc<T> operator--(vc<T>&v,signed){auto res = v;fore(e,v)e--;return res;}\ntemplate<class T>vc<T> operator++(vc<T>&v){fore(e,v)e++;return v;}\ntemplate<class T>vc<T> operator--(vc<T>&v){fore(e,v)e--;return v;}\n\n//入出力(operator)\ntemplate<class S,class T>istream&operator>>(istream&is,pair<S,T>&a){is>>a.a>>a.b;return is;}\ntemplate<class T>istream&operator>>(istream&is,vc<T>&a){fore(e,a)is>>e;return is;}\n\ntemplate<class S,class T>ostream&operator<<(ostream&os,pair<S,T>&a){return os<<a.a<<\" \"<<a.b;}\ntemplate<class T>ostream&operator<<(ostream&os,set<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,multiset<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class S,class T>ostream&operator<<(ostream&os,map<S,T>&a){fore(x,y,a){os<<x<<\" \"<<y<<\"\\n\";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,unordered_set<T>&a){fore(it,a){os<<it<<\" \";}return os;}\ntemplate<class S,class T>ostream&operator<<(ostream&os,unordered_map<S,T>&a){fore(x,y,a){os<<x<<\" \"<<y<<\"\\n\";}return os;}\ntemplate<class T>ostream&operator<<(ostream&os,vc<T>&a){fore(e,a)os<<e<<\" \";return os;}\ntemplate<class T>ostream&operator<<(ostream&os,vvc<T>&a){fore(e,a)os<<e<<\"\\n\";return os;}\n\n//入出力(関数)\nvi readvi(ll n){vi a(n);cin>>a;return a;}\nvl readvl(ll n){vl a(n);cin>>a;return a;}\nvvi readg(ll n,ll m,bool bidirected=true){vvi g(n);rep(i,m){ll a,b;cin>>a>>b;a--;b--;g[a].pb(b);if(bidirected)g[b].pb(a);}return g;}\nvvc<pi>readgc(ll n,ll m,bool bidirected=true){vvc<pi> g(n);rep(i,m){ll a,b,c;cin>>a>>b>>c;a--;b--;g[a].pb(b,c);if(bidirected)g[b].pb(a,c);}return g;}\nvvi readt(ll n,bool bidirected=true){return readg(n,n-1,bidirected);}\nvvc<pi> readtc(ll n,bool bidirected=true){return readgc(n,n-1,bidirected);}\n\ninline void yes(){cout << \"Yes\\n\";}\ninline void no(){cout << \"No\\n\";}\ninline void yesno(bool y = true){if(y)yes();else no();}\n\n//定数\nconstexpr ll mod = 998244353;\nconstexpr ll minf=-(1<<29);\nconstexpr ll inf=(1<<29);\nconstexpr ll MINF=-(1LL<<60);\nconstexpr ll INF=(1LL<<60);\nconstexpr ld EPS = 1e-8;\nconst ld PI = acosl(-1);\n#define equals(a, b) (abs((a) - (b)) < EPS)\nconst int dx[4] ={-1, 0, 1, 0};\nconst int dy[4] ={ 0, 1, 0,-1};\nconst int dx8[8] ={-1,-1,-1, 0, 1, 1, 1, 0};\nconst int dy8[8] ={-1, 0, 1, 1, 1, 0,-1,-1};\n\nvoid solve();\nint main() {\n\tint t = 1;\n // cin >>t;\n while(t--)solve();\n}\n\nint h, w, n;\nint id(int i, int j){\n return i * w + j;\n}\n\nvoid solve(){\n cin >> h >> w >> n;\n vi to(h * w);\n vvi g(h * w);\n rep(i,h){\n rep(j,w){\n int x, y;\n cin >> x >> y;\n to[id(i, j)] = id(x, y);\n g[id(x, y)].emplace_back(id(i, j));\n }\n }\n\n vi d(h * w , inf);\n vi par(h * w , -1);\n vi r(h * w , -1);\n vi r2(h * w);\n rep(i, h * w) r2[i] = i;\n vi loop(h * w, inf);\n\n rep(i, h*w){\n if(d[i] == inf){\n int nw = i;\n d[nw] = inf - 1;\n\n while(d[to[nw]] == inf){\n d[to[nw]] = d[nw] - 1;\n nw = to[nw];\n }\n while(loop[to[nw]] == inf){\n nw = to[nw];\n loop[nw] = 0;\n }\n loop[nw] = 0;\n\n\n queue<int> q;\n q.push(nw);\n par[nw] = nw;\n r[nw] = d[to[nw]] - d[nw] + 1;\n d[nw] = 0;\n\n while(q.size()){\n int p = q.front();\n q.pop();\n rep(j, si(g[p])){\n if(chmin(d[g[p][j]], d[p] + 1)){\n par[g[p][j]] = par[p];\n r[g[p][j]] = r[p];\n if(chmin(loop[g[p][j]], loop[p] + 1)){\n r2[g[p][j]] = r2[p];\n }\n q.push(g[p][j]);\n }\n }\n }\n }\n }\n\n vi x(n);\n vi ex(h * w);\n map<pair<int, int>, int> mns;\n rep(i,n){\n int a, b;\n cin >> a >> b;\n x[i] = id(a, b);\n ex[x[i]] = 1;\n if(mns.find({par[x[i]], d[x[i]] % r[x[i]]}) == mns.end()){\n mns[{par[x[i]], d[x[i]] % r[x[i]]}] = loop[x[i]];\n }\n chmin(mns[{par[x[i]], d[x[i]] % r[x[i]]}], loop[x[i]]);\n }\n\n ll ans = inf;\n rep(i, n){\n if(mns[{par[x[i]], d[x[i]] % r[x[i]]}] != loop[x[i]]){\n chmin(ans, loop[x[i]]);\n }\n }\n \n\n set<pair<int,int>> mn2;\n rep(i,n){\n if(mn2.find({r2[x[i]], loop[x[i]]}) != mn2.end()){\n chmin(ans, loop[x[i]]);\n }\n else{\n mn2.insert({r2[x[i]], loop[x[i]]});\n }\n }\n\n\n auto dfs = [&](auto&&dfs, int p)->set<int> {\n set<int> nw;\n if(ex[p]) nw.insert(loop[p]);\n for(auto to : g[p]){\n if(loop[to] != loop[p] + 1) continue;\n set<int> nx = dfs(dfs, to);\n if(nw.size() < nx.size()) nw.swap(nx);\n for(auto v : nx){\n if(nw.count(v)){\n chmin(ans, v - loop[p]);\n }else{\n nw.insert(v);\n }\n }\n }\n return nw;\n };\n\n\n rep(i,h * w){\n if(loop[i] == 0){\n dfs(dfs, i);\n }\n }\n\n cout << (ans == inf ? -1 : ans) << endl;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 51860, "score_of_the_acc": -0.4924, "final_rank": 8 }, { "submission_id": "aoj_2812_9117850", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\n\n#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)\n#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)\n\ntemplate <typename T> bool chmin(T &a, const T &b) {\n\tif (a <= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> bool chmax(T &a, const T &b) {\n\tif (a >= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> T max(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T min(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T sum(vector<T> &a){\n\tT ret = 0;\n\tfor (int i=0; i<(int)a.size(); i++) ret += a[i];\n\treturn ret;\n}\nint main(){\n\t cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\t\n\tint h, w, n; cin >> h >> w >> n;\n\tvector gx(h, vector<int>(w));\n\tvector gy(h, vector<int>(w));\n\trep(i,0,h){\n\t\trep(j,0,w){\n\t\t\tint r, c; cin >> r >> c;\n\t\t\tgx[i][j] = r;\n\t\t\tgy[i][j] = c;\n\t\t}\n\t}\n\n\tvector dbx(20, vector(h, vector<int>(w)));\n\tvector dby(20, vector(h, vector<int>(w)));\n\trep(i,0,h) rep(j,0,w){\n\t\tdbx[0][i][j] = gx[i][j];\n\t\tdby[0][i][j] = gy[i][j];\n\t}\n\n\trep(num,0,19){\n\t\trep(i,0,h){\n\t\t\trep(j,0,w){\n\t\t\t\tint x = dbx[num][i][j];\n\t\t\t\tint y = dby[num][i][j];\n\t\t\t\tdbx[num+1][i][j] = dbx[num][x][y];\n\t\t\t\tdby[num+1][i][j] = dby[num][x][y];\n\t\t\t}\n\t\t}\n\t}\n\n\tvector<int> rx(n), ry(n);\n\trep(i,0,n){\n\t\tcin >> rx[i] >> ry[i];\n\t}\n\n\tauto check = [&](int t) -> bool {\n\t\tvector<int> mx(n), my(n);\n\t\tmx = rx;\n\t\tmy = ry;\n\t\trep(num,0,20){\n\t\t\tif (t >> num & 1){\n\t\t\t\trep(i,0,n){\n\t\t\t\t\tint x = dbx[num][mx[i]][my[i]];\n\t\t\t\t\tint y = dby[num][mx[i]][my[i]];\n\t\t\t\t\tmx[i] = x;\n\t\t\t\t\tmy[i] = y;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector nums(h, vector<int>(w));\n\t\trep(i,0,n){\n\t\t\tnums[mx[i]][my[i]]++;\n\t\t\tif (nums[mx[i]][my[i]] >= 2) return true;\n\t\t}\n\t\treturn false;\n\t};\n\n\tint ub = 299999;\n\tint lb = 0;\n\twhile (ub - lb > 1){\n\t\tint t = (ub + lb) / 2;\n\t\tif (check(t)) ub = t;\n\t\telse lb = t;\n\t}\n\n\tif (lb > 288888){\n\t\tcout << -1 << '\\n';\n\t}else{\n\t\tcout << ub << '\\n';\n\t}\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 49828, "score_of_the_acc": -0.3787, "final_rank": 6 }, { "submission_id": "aoj_2812_9117831", "code_snippet": "#pragma region //comavius::competitive library\n\n#pragma region //inclusion and optimization\n#include <bits/stdc++.h>\n#ifdef IS_TEST\nstatic const bool IS_TEST_ENVIROMENT = true;\n#else\nstatic const bool IS_TEST_ENVIROMENT = false;\n#endif\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma endregion //inclusion and optimization\n\nnamespace comavius::competitive { //typedefs\n\n #pragma region //long long\n typedef int ll;\n typedef std::vector<ll> vll;\n typedef std::vector<vll> vvll;\n typedef std::vector<vvll> vvvll;\n typedef std::map<ll, ll> mll;\n typedef std::map<ll, mll> mmll;\n typedef std::pair<ll, ll> pll;\n typedef std::vector<pll> vpll;\n #pragma endregion //long long\n\n #pragma region //long double\n typedef long double ld;\n typedef std::vector<ld> vld;\n typedef std::vector<vld> vvld;\n typedef std::vector<vvld> vvvld;\n #pragma endregion //long double\n\n #pragma region //std::string\n typedef std::string str;\n typedef std::vector<str> vstr;\n typedef std::vector<vstr> vvstr;\n typedef std::vector<vvstr> vvvstr;\n #pragma endregion //std::string\n\n #pragma region //bool\n typedef std::vector<bool> vb;\n typedef std::vector<vb> vvb;\n typedef std::vector<vvb> vvvb;\n #pragma endregion //bool\n\n #pragma region //char\n typedef std::vector<char> vc;\n typedef std::vector<vc> vvc;\n typedef std::vector<vvc> vvvc;\n #pragma endregion //char\n\n #pragma region //container of std\n #pragma region //std::vector\n template <typename T>\n using vec = std::vector<T>;\n template <typename T>\n using vec2 = std::vector<std::vector<T>>;\n template <typename T>\n using vec3 = std::vector<std::vector<std::vector<T>>>;\n template <typename T>\n using vec4 = std::vector<std::vector<std::vector<std::vector<T>>>>;\n template <typename T>\n using vec5 = std::vector<std::vector<std::vector<std::vector<std::vector<T>>>>>;\n template <typename T>\n using vec6 = std::vector<std::vector<std::vector<std::vector<std::vector<std::vector<T>>>>>>;\n template <typename T>\n using vec7 = std::vector<std::vector<std::vector<std::vector<std::vector<std::vector<std::vector<T>>>>>>>;\n #pragma endregion //std::vector\n #pragma endregion //container of std\n\n} // namespace comavius::competitive typedefs\n\n\n#pragma region //Read macro\n #define GET_1_ARG(TYPE, ARG); TYPE ARG; std::cin >> ARG;\n #define GET_2_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_1_ARG(TYPE, __VA_ARGS__)\n #define GET_3_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_2_ARG(TYPE, __VA_ARGS__)\n #define GET_4_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_3_ARG(TYPE, __VA_ARGS__)\n #define GET_5_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_4_ARG(TYPE, __VA_ARGS__)\n #define GET_6_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_5_ARG(TYPE, __VA_ARGS__)\n #define GET_7_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_6_ARG(TYPE, __VA_ARGS__)\n #define GET_8_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_7_ARG(TYPE, __VA_ARGS__)\n #define GET_9_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_8_ARG(TYPE, __VA_ARGS__)\n #define GET_10_ARG(TYPE, ARG, ...) GET_1_ARG(TYPE, ARG) GET_9_ARG(TYPE, __VA_ARGS__)\n\n #define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,NAME,...) NAME\n #define read(TYPE, ...) GET_MACRO(__VA_ARGS__, GET_10_ARG, GET_9_ARG, GET_8_ARG, GET_7_ARG, GET_6_ARG, GET_5_ARG, GET_4_ARG, GET_3_ARG, GET_2_ARG, GET_1_ARG)(TYPE, __VA_ARGS__)\n\n #define readv(TYPE, NAME, SIZE) std::vector<TYPE> NAME(SIZE); for (long long i = 0; i < SIZE; i++) std::cin >> NAME[i];\n #define readvv(TYPE, NAME, H, W) std::vector<std::vector<TYPE>> NAME(H, std::vector<TYPE>(W)); for (long long i = 0; i < H; i++) for (long long j = 0; j < W; j++) std::cin >> NAME[i][j];\n#pragma endregion //Read macro\n\n#pragma region //Other macro\n #define rep(i, n) for (ll i = 0; i < n; i++)\n #define reps(i, start, goal, diff) for (ll i = start; i != goal; i += diff)\n #define all(a) a.begin(), a.end()\n// #define chmax(a, b) a = std::max(a, b)\n// #define chmin(a, b) a = std::min(a, b)\n#pragma endregion //Other macro\n\n#pragma region //namespace expansion\n using namespace std;\n using namespace comavius::competitive;\n#pragma endregion //namespace expansion\n\n#pragma endregion //comavius::competitive library\n\n\n\n#pragma region // fundamental structures\n\nusing vvpll = vector<vpll>;\n\nint main() {\n int h, w, n;\n scanf(\"%d\", &h);\n scanf(\"%d\", &w);\n scanf(\"%d\", &n);\n ll hw = h * w;\n vvll next(hw, vll(30));\n rep(i, h) {\n rep(j, w) {\n int r, c;\n scanf(\"%d\", &r);\n scanf(\"%d\", &c);\n next[i*w+j][0] = r*w+c;\n }\n }\n vll start;\n rep(i, n) {\n int r, c;\n scanf(\"%d\", &r);\n scanf(\"%d\", &c);\n start.push_back(r*w+c);\n }\n rep(i, 29) {\n rep(j, hw) {\n ll nx = next[next[j][i]][i];\n next[j][i+1] = nx;\n }\n }\n ll l = 0, r = 1ll<<28;\n while (r - l > 1) {\n ll mid = (l+r) / 2;\n vb visited(hw, false);\n bool ok = true;\n for (auto s : start) {\n ll dest = s;\n rep(i, 29) {\n if (mid & (1ll << i)) {\n dest = next[dest][i];\n }\n }\n if (visited[dest]) {\n ok = false;\n break;\n }\n visited[dest] = true;\n }\n if (ok) {\n l = mid;\n }\n else {\n r = mid;\n }\n }\n if (r == 1ll<<28) {\n cout << \"-1\" << endl;\n }\n else {\n cout << r << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 920, "memory_kb": 41200, "score_of_the_acc": -0.7382, "final_rank": 10 }, { "submission_id": "aoj_2812_9117800", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\n\n#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)\n#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)\n\ntemplate <typename T> bool chmin(T &a, const T &b) {\n\tif (a <= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> bool chmax(T &a, const T &b) {\n\tif (a >= b) return false;\n\ta = b;\n\treturn true;\n}\n\ntemplate <typename T> T max(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T min(vector<T> &a){\n\tassert(!a.empty());\n\tT ret = a[0];\n\tfor (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]);\n\treturn ret;\n}\n\ntemplate <typename T> T sum(vector<T> &a){\n\tT ret = 0;\n\tfor (int i=0; i<(int)a.size(); i++) ret += a[i];\n\treturn ret;\n}\nint main(){\n\tint h, w, n; cin >> h >> w >> n;\n\tvector gx(h, vector<int>(w));\n\tvector gy(h, vector<int>(w));\n\trep(i,0,h){\n\t\trep(j,0,w){\n\t\t\tint r, c; cin >> r >> c;\n\t\t\tgx[i][j] = r;\n\t\t\tgy[i][j] = c;\n\t\t}\n\t}\n\n\tvector dbx(20, vector(h, vector<int>(w)));\n\tvector dby(20, vector(h, vector<int>(w)));\n\trep(i,0,h) rep(j,0,w){\n\t\tdbx[0][i][j] = gx[i][j];\n\t\tdby[0][i][j] = gy[i][j];\n\t}\n\n\trep(num,0,19){\n\t\trep(i,0,h){\n\t\t\trep(j,0,w){\n\t\t\t\tint x = gx[i][j];\n\t\t\t\tint y = gy[i][j];\n\t\t\t\tdbx[num+1][i][j] = dbx[num][x][y];\n\t\t\t\tdby[num+1][i][j] = dby[num][x][y];\n\t\t\t}\n\t\t}\n\t}\n\n\tvector<int> rx(n), ry(n);\n\trep(i,0,n){\n\t\tcin >> rx[i] >> ry[i];\n\t}\n\n\tauto check = [&](int t) -> bool {\n\t\tvector<int> mx(n), my(n);\n\t\tmx = rx;\n\t\tmy = ry;\n\t\trep(num,0,20){\n\t\t\tif (t >> num & 1){\n\t\t\t\trep(i,0,n){\n\t\t\t\t\tint x = dbx[num][mx[i]][my[i]];\n\t\t\t\t\tint y = dby[num][mx[i]][my[i]];\n\t\t\t\t\tmx[i] = x;\n\t\t\t\t\tmy[i] = y;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector nums(h, vector<int>(w));\n\t\trep(i,0,n){\n\t\t\tnums[mx[i]][my[i]]++;\n\t\t\tif (nums[mx[i]][my[i]] >= 2) return true;\n\t\t}\n\t\treturn false;\n\t};\n\n\tint ub = 299999;\n\tint lb = 0;\n\twhile (ub - lb > 1){\n\t\tint t = (ub + lb) / 2;\n\t\tif (check(t)) ub = t;\n\t\telse lb = t;\n\t}\n\n\tif (lb > 288888){\n\t\tcout << -1 << '\\n';\n\t}else{\n\t\tcout << ub << '\\n';\n\t}\n}", "accuracy": 0.5, "time_ms": 220, "memory_kb": 49808, "score_of_the_acc": -0.4203, "final_rank": 20 }, { "submission_id": "aoj_2812_8492223", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 2812.cc: H: ジャンプパーティ\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_H = 500;\nconst int MAX_W = 500;\nconst int MAX_HW = MAX_H * MAX_W;\nconst int BN = 18;\n\n/* typedef */\n\n/* global variables */\n\nint ps[MAX_HW][BN], ss[MAX_HW];\nbool fs[MAX_HW];\n\n/* subroutines */\n\nbool check(int hw, int n, int k) {\n fill(fs, fs + hw, false);\n for (int i = 0; i < n; i++) {\n int u = ss[i];\n for (int i = 0; i < BN; i++)\n if ((k >> i) & 1) u = ps[u][i];\n if (fs[u]) return true;\n fs[u] = true;\n }\n return false;\n}\n\n/* main */\n\nint main() {\n int h, w, n;\n scanf(\"%d%d%d\", &h, &w, &n);\n int hw = h * w;\n\n for (int i = 0; i < h; i++)\n for (int j = 0; j < w; j++) {\n int r, c;\n scanf(\"%d%d\", &r, &c);\n ps[i * w + j][0] = r * w + c;\n }\n\n for (int i = 0; i < BN - 1; i++)\n for (int u = 0; u < hw; u++)\n ps[u][i + 1] = ps[ps[u][i]][i];\n\n for (int i = 0; i < n; i++) {\n int r, c;\n scanf(\"%d%d\", &r, &c);\n ss[i] = r * w + c;\n }\n\n int k0 = 0, k1 = hw + 1;\n while (k0 + 1 < k1) {\n int k = (k0 + k1) / 2;\n if (check(hw, n, k)) k1 = k;\n else k0 = k;\n }\n\n printf(\"%d\\n\", (k1 > hw) ? -1 : k1);\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 21728, "score_of_the_acc": -0.0359, "final_rank": 1 }, { "submission_id": "aoj_2812_5967186", "code_snippet": "#include<bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\n//#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"unroll-loops\")\nusing namespace std;\n//#include<boost/multiprecision/cpp_int.hpp>\n//#include<boost/multiprecision/cpp_dec_float.hpp>\n//namespace mp=boost::multiprecision;\n//#define mulint mp::cpp_int\n//#define mulfloat mp::cpp_dec_float_100\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\n#define INF (1<<30)\n#define LINF (lint)(1LL<<56)\n#define endl \"\\n\"\n#define rep(i,n) for(lint (i)=0;(i)<(n);(i)++)\n#define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--)\n#define flc(x) __builtin_popcountll(x)\n#define pint pair<int,int>\n#define pdouble pair<double,double>\n#define plint pair<lint,lint>\n#define fi first\n#define se second\n#define all(x) x.begin(),x.end()\n#define vec vector<lint>\n#define nep(x) next_permutation(all(x))\ntypedef long long lint;\nint dx[8]={1,1,0,-1,-1,-1,0,1};\nint dy[8]={0,1,1,1,0,-1,-1,-1};\nconst int MAX_N=4e5+5;\ntemplate<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return 1;}return 0;}\n//vector<int> bucket[MAX_N/1000];\nconstexpr int MOD=1000000007;\n//constexpr int MOD=998244353;\n/*#include<atcoder/all>\nusing namespace atcoder;\ntypedef __int128_t llint;*/\n\nstruct doubling{\n vector<vector<lint>> to,sum;\n doubling(vector<lint> in,int log){\n to.resize(log);\n rep(i,log) to[i].resize(in.size());\n rep(i,in.size()) to[0][i]=in[i];\n for(int i=1;i<log;i++) rep(j,in.size()) to[i][j]=to[i-1][to[i-1][j]];\n sum.resize(log);\n rep(i,log) sum[i].resize(in.size());\n rep(i,in.size()) sum[0][i]=i;\n for(int i=1;i<log;i++) rep(j,in.size()) sum[i][j]=sum[i-1][j]+sum[i-1][to[i-1][j]];\n }\n doubling(vector<lint> in,vector<lint> in2, int log){//dsumでin2の値を使うようにする\n to.resize(log);\n rep(i,log) to[i].resize(in.size());\n rep(i,in.size()) to[0][i]=in[i];\n for(int i=1;i<log;i++) rep(j,in.size()) to[i][j]=to[i-1][to[i-1][j]];\n sum.resize(log);\n rep(i,log) sum[i].resize(in.size());\n rep(i,in.size()) sum[0][i]=in2[i];\n for(int i=1;i<log;i++) rep(j,in.size()) sum[i][j]=sum[i-1][j]+sum[i-1][to[i-1][j]];\n }\n lint dest(lint now,lint k){//nowのk個先\n rep(i,to.size()){\n if(k&(1LL<<i)) now=to[i][now];\n }\n return now;\n }\n lint dsum(lint now,lint k){//Σ[i=0..k-1]\n lint res=0;\n rep(i,to.size()){\n if(k&(1LL<<i)) res+=sum[i][now],now=to[i][now];\n }\n return res;\n }\n};\n\nint main(void){\n int H,W,N;\n cin >> H >> W >> N;\n vector<lint> nxt(H*W);\n rep(i,H) rep(j,W){\n int h,w;\n cin >> h >> w;\n int now=i*W+j;\n int to=h*W+w;\n nxt[now]=to;\n }\n doubling db(nxt,25);\n int R[N],C[N];\n rep(i,N) cin >> R[i] >> C[i];\n int p[N];\n rep(i,N) p[i]=R[i]*W+C[i];\n int lo=0,hi=1e6;\n while(hi-lo>1){\n int mid=(hi+lo)/2;\n int cnt[H*W]={};\n rep(i,N) cnt[db.dest(p[i],mid)]++;\n if(*max_element(cnt,cnt+H*W)>1) hi=mid;\n else lo=mid;\n }\n if(hi==1e6) cout << -1 << endl;\n else cout << hi << endl;\n}", "accuracy": 1, "time_ms": 520, "memory_kb": 106684, "score_of_the_acc": -1.2695, "final_rank": 16 }, { "submission_id": "aoj_2812_3992940", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nconst ll INF = 1LL << 60;\ntemplate<typename T> void chmin(T &a, T b) { a = min(a, b); }\n\n\n\nint main() {\n\n\tint H, W, N;\n\tcin >> H >> W >> N;\n\tvector<vector<int>>y(H, vector<int>(W));\n\tvector<vector<int>>x(H, vector<int>(W));\n\tfor (int i = 0; i < H; i++) {\n\t\tfor (int j = 0; j < W; j++) {\n\t\t\tcin >> y[i][j] >> x[i][j];\n\t\t}\n\t}\n\tvector<int>sy(N);\n\tvector<int>sx(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> sy[i] >> sx[i];\n\t}\n\tvector<vector<vector<int>>>tapiY(H, vector<vector<int>>(W, vector<int>(20)));\n\tvector<vector<vector<int>>>tapiX(H, vector<vector<int>>(W, vector<int>(20)));\n\tfor (int i = 0; i < 20; i++) {\n\t\tfor (int j = 0; j < H; j++) {\n\t\t\tfor (int k = 0; k < W; k++) {\n\t\t\t\tif (i) {\n\t\t\t\t\tint yy = tapiY[j][k][i - 1];\n\t\t\t\t\tint xx = tapiX[j][k][i - 1];\n\t\t\t\t\ttapiY[j][k][i] = tapiY[yy][xx][i - 1];\n\t\t\t\t\ttapiX[j][k][i] = tapiX[yy][xx][i - 1];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\ttapiY[j][k][i] = y[j][k];\n\t\t\t\t\ttapiX[j][k][i] = x[j][k];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tint ans = 0;\n\tvector<int>ny(N);\n\tvector<int>nx(N);\n\tfor (int i = 19; i >= 0; i--) {\n\t\tset<pair<int, int>>st;\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tny[j] = tapiY[sy[j]][sx[j]][i];\n\t\t\tnx[j] = tapiX[sy[j]][sx[j]][i];\n\t\t\tst.insert({ ny[j],nx[j] });\n\t\t}\n\t\tif (st.size() == N) {\n\t\t\tsy = ny;\n\t\t\tsx = nx;\n\t\t\tans += 1 << i;\n\t\t}\n\t}\n\tif (ans == (1 << 20) - 1) {\n\t\tcout << -1 << endl;\n\t\treturn 0;\n\t}\n\tcout << ans + 1 << endl;\n}", "accuracy": 1, "time_ms": 1650, "memory_kb": 79156, "score_of_the_acc": -1.6221, "final_rank": 17 }, { "submission_id": "aoj_2812_3991602", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nconst ll INF = 1LL << 60;\ntemplate<typename T> void chmin(T &a, T b) { a = min(a, b); }\n\n\n\nint main() {\n\n\tint H, W, N;\n\tcin >> H >> W >> N;\n\tvector<vector<int>>y(H, vector<int>(W));\n\tvector<vector<int>>x(H, vector<int>(W));\n\tfor (int i = 0; i < H; i++) {\n\t\tfor (int j = 0; j < W; j++) {\n\t\t\tcin >> y[i][j] >> x[i][j];\n\t\t}\n\t}\n\tvector<int>sy(N);\n\tvector<int>sx(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> sy[i] >> sx[i];\n\t}\n\tvector<vector<vector<int>>>tapiY(H, vector<vector<int>>(W, vector<int>(20)));\n\tvector<vector<vector<int>>>tapiX(H, vector<vector<int>>(W, vector<int>(20)));\n\tfor (int i = 0; i < 20; i++) {\n\t\tfor (int j = 0; j < H; j++) {\n\t\t\tfor (int k = 0; k < W; k++) {\n\t\t\t\tif (i) {\n\t\t\t\t\tint yy = tapiY[j][k][i - 1];\n\t\t\t\t\tint xx = tapiX[j][k][i - 1];\n\t\t\t\t\ttapiY[j][k][i] = tapiY[yy][xx][i - 1];\n\t\t\t\t\ttapiX[j][k][i] = tapiX[yy][xx][i - 1];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\ttapiY[j][k][i] = y[j][k];\n\t\t\t\t\ttapiX[j][k][i] = x[j][k];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tint ans = 0;\n\tvector<int>ny(N);\n\tvector<int>nx(N);\n\tfor (int i = 19; i >= 0; i--) {\n\t\tset<pair<int, int>>st;\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tny[j] = tapiY[sy[j]][sx[j]][i];\n\t\t\tnx[j] = tapiX[sy[j]][sx[j]][i];\n\t\t\tst.insert({ ny[j],nx[j] });\n\t\t}\n\t\tif (st.size() == N) {\n\t\t\tsy = ny;\n\t\t\tsx = nx;\n\t\t\tans += 1 << i;\n\t\t}\n\t}\n\tif (ans == (1 << 20) - 1) {\n\t\tcout << -1 << endl;\n\t\treturn 0;\n\t}\n\tcout << ans + 1 << endl;\n}", "accuracy": 1, "time_ms": 1680, "memory_kb": 79172, "score_of_the_acc": -1.6402, "final_rank": 18 }, { "submission_id": "aoj_2812_3906946", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\nstruct Coordinate {\n\tint x, y;\n};\n\nint main() {\n\tstd::cin.sync_with_stdio(false);\n\tint h, w, n; std::cin >> h >> w >> n;\n\tstd::vector<std::vector<Coordinate>> floor(h, std::vector<Coordinate>(w));\n\tfor (auto& line : floor) for (auto& coordinate : line) std::cin >> coordinate.y >> coordinate.x;\n\tstd::vector<std::vector<std::vector<Coordinate>>> step{ floor };\n\tfor (auto i = 1; i < h * w; i <<= 1) {\n\t\tstd::vector<std::vector<Coordinate>> new_floor(h, std::vector<Coordinate>(w));\n\t\tconst auto& back = step.back();\n\t\tfor (auto y = 0; y < h; ++y) for (auto x = 0; x < w; ++x) {\n\t\t\tauto next = back[y][x];\n\t\t\tnew_floor[y][x] = back[next.y][next.x];\n\t\t}\n\t\tstep.push_back(new_floor);\n\t}\n\tstd::vector<Coordinate> dancers(n); for (auto& dancer : dancers) std::cin >> dancer.y >> dancer.x;\n\tstd::vector<std::vector<int>> exists(h, std::vector<int>(w, -1));\n\tbool has_collision = false;\n\tfor (const auto& dancer : dancers) {\n\t\tauto current_pos = step.back()[dancer.y][dancer.x];\n\t\tif (exists[current_pos.y][current_pos.x] != -1) {\n\t\t\thas_collision = true;\n\t\t\tbreak;\n\t\t}\n\t\telse {\n\t\t\texists[current_pos.y][current_pos.x] = h * w + 1;\n\t\t}\n\t}\n\tif (!has_collision) {\n\t\tstd::cout << -1 << '\\n';\n\t\treturn 0;\n\t}\n\tint min = 0;\n\tint max = h * w;\n\twhile (min < max) {\n\t\tauto mid = (min + max) / 2;\n\t\thas_collision = false;\n\t\tfor (auto dancer : dancers) {\n\t\t\tfor (auto i = 0; i < step.size(); ++i) {\n\t\t\t\tif ((mid & (1 << i)) != 0) {\n\t\t\t\t\tdancer = step[i][dancer.y][dancer.x];\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (exists[dancer.y][dancer.x] == mid) {\n\t\t\t\thas_collision = true;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\texists[dancer.y][dancer.x] = mid;\n\t\t\t}\n\t\t}\n\t\tif (has_collision) max = mid;\n\t\telse min = mid + 1;\n\t}\n\tstd::cout << max << '\\n';\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 45392, "score_of_the_acc": -0.2785, "final_rank": 4 }, { "submission_id": "aoj_2812_2863073", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nstruct LOC{\n\tvoid set(int arg_to_row,int arg_to_col){\n\t\tto_row = arg_to_row;\n\t\tto_col = arg_to_col;\n\t}\n\tint to_row,to_col;\n};\n\nstruct Info{\n\tint row,col;\n};\n\nint H,W,N;\nint limit = 18;\nint POW[19],work[501][501];\nLOC table[19][501][501];\nInfo first_loc[250005],calc_loc[250005];\n\nbool check(int num){\n\n\tfor(int row = 0; row < H; row++){\n\t\tfor(int col = 0; col < W; col++)work[row][col] = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tcalc_loc[i] = first_loc[i];\n\t}\n\n\tint now_row,now_col;\n\n\tfor(int i = limit; i >= 0; i--){\n\t\tif(num < POW[i])continue;\n\t\tnum -= POW[i];\n\n\t\tfor(int k = 0; k < N; k++){\n\t\t\tnow_row = calc_loc[k].row;\n\t\t\tnow_col = calc_loc[k].col;\n\t\t\tcalc_loc[k].row = table[i][now_row][now_col].to_row;\n\t\t\tcalc_loc[k].col = table[i][now_row][now_col].to_col;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\twork[calc_loc[i].row][calc_loc[i].col]++;\n\t\tif(work[calc_loc[i].row][calc_loc[i].col] == 2){\n\t\t\treturn true;\n\t\t}\n\t}\n\n\treturn false;\n}\n\n\nint main(){\n\n\tfor(int i = 0; i <= limit; i++)POW[i] = pow(2,i);\n\n\tscanf(\"%d %d %d\",&H,&W,&N);\n\n\tint to_row,to_col;\n\n\tfor(int row = 0; row < H; row++){\n\t\tfor(int col = 0; col < W; col++){\n\t\t\tscanf(\"%d %d\",&to_row,&to_col);\n\t\t\ttable[0][row][col].set(to_row,to_col);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tscanf(\"%d %d\",&first_loc[i].row,&first_loc[i].col);\n\t}\n\n\tfor(int i = 1; i <= limit; i++){\n\t\tfor(int row = 0; row < H; row++){\n\t\t\tfor(int col = 0; col < W; col++){\n\n\t\t\t\tto_row = table[i-1][row][col].to_row;\n\t\t\t\tto_col = table[i-1][row][col].to_col;\n\n\t\t\t\ttable[i][row][col].to_row = table[i-1][to_row][to_col].to_row;\n\t\t\t\ttable[i][row][col].to_col = table[i-1][to_row][to_col].to_col;\n\t\t\t}\n\t\t}\n\t}\n\n\tint left = 1,right = H*W,m = (left+right)/2;\n\tint ans = BIG_NUM;\n\n\twhile(left <= right){\n\t\tif(check(m)){\n\t\t\tans = m;\n\t\t\tright = m-1;\n\t\t}else{\n\t\t\tleft = m+1;\n\t\t}\n\t\tm = (left+right)/2;\n\t}\n\n\tif(ans == BIG_NUM){\n\t\tprintf(\"-1\\n\");\n\t}else{\n\t\tprintf(\"%d\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 45520, "score_of_the_acc": -0.304, "final_rank": 5 }, { "submission_id": "aoj_2812_2669750", "code_snippet": "#include \"bits/stdc++.h\"\n#include<unordered_map>\n#include<unordered_set>\n#pragma warning(disable:4996)\nusing namespace std;\n\nint H, W, N;\nint mk(int r, int c) {\n\treturn r*W+c;\n}\n\nbool check(vector<int>places,const vector<vector<int>>&tos, int time) {\n\t\n\tfor (int i = 0; i < 20; ++i) {\n\t\tif (time&(1 << i)) {\n\t\t\tfor (auto&pl : places) {\n\t\t\t\tpl=tos[pl][i];\n\t\t\t}\n\t\t}\n\t}\n\tsort(places.begin(),places.end());\n\tif(unique(places.begin(),places.end())==places.end())return false;\n\telse return true;\n}\n\nint main() {\n\tcin>>H>>W>>N;\n\tvector<vector<int>>tos(H*W,vector<int>(20));\n\tfor (int i = 0; i < H; ++i) {\n\t\tfor (int j = 0; j < W; ++j) {\n\t\t\tint r,c;cin>>r>>c;\n\t\t\ttos[mk(i,j)][0]=mk(r,c);\n\t\t}\n\t}\n\tfor (int k = 1; k < 20; ++k) {\n\t\tfor (int i = 0; i < H*W; ++i) {\n\t\t\ttos[i][k]=tos[tos[i][k-1]][k-1];\n\t\t}\n\t}\n\tvector<int>starts(N);\n\tfor (int i = 0; i < N; ++i) {\n\t\tint r,c;cin>>r>>c;\n\t\tstarts[i]=mk(r,c);\n\t}\n\tint amin=0;\n\tint amax=H*W+1;\n\twhile (amin + 1 != amax) {\n\t\tint amid=(amin+amax)/2;\n\t\tif (check(starts, tos, amid)) {\n\t\t\tamax=amid;\n\t\t}\n\t\telse {\n\t\t\tamin=amid;\n\t\t}\n\t}\n\tif(amax==H*W+1)amax=-1;\n\tcout<<amax<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 810, "memory_kb": 34060, "score_of_the_acc": -0.5883, "final_rank": 9 }, { "submission_id": "aoj_2812_2330125", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing PII = pair<int, int>;\nusing LL = long long;\nusing VL = vector<LL>;\nusing VVL = vector<VL>;\nusing PLL = pair<LL, LL>;\nusing VS = vector<string>;\n\n#define ALL(a) begin((a)),end((a))\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SORT(c) sort(ALL((c)))\n#define RSORT(c) sort(RALL((c)))\n\n#define FOR(i,a,b) for(int i=(a);i<(b);++i)\n#define REP(i,n) FOR(i,0,n)\n\n#define FF first\n#define SS second\ntemplate<class S, class T>\nistream& operator>>(istream& is, pair<S,T>& p){\n return is >> p.FF >> p.SS;\n}\ntemplate<class S, class T>\nostream& operator<<(ostream& os, const pair<S,T>& p){\n return os << p.FF << \" \" << p.SS;\n}\ntemplate<class T>\nvoid maxi(T& x, T y){\n if(x < y) x = y;\n}\ntemplate<class T>\nvoid mini(T& x, T y){\n if(x > y) x = y;\n}\n\n\nconst double EPS = 1e-10;\nconst double PI = acos(-1.0);\nconst LL MOD = 1e9+7;\n\nint H, W, N;\nPII xs[18][500][500];\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n cin >> H >> W >> N;\n REP(y,H) REP(x,W)\n\tcin >> xs[0][y][x];\n\n vector<PII> ps(N);\n REP(i,N) cin >> ps[i];\n\n for(int i=1;i<18;++i){\n\tREP(y,H) REP(x,W){\n\t auto&& par = xs[i-1][y][x];\n\t xs[i][y][x] = xs[i-1][par.FF][par.SS];\n\t}\n }\n\n bool no = true;\n set<PII> s;\n for(auto&& p: ps){\n\tPII np = xs[17][p.FF][p.SS];\n\tif(s.count(np)){\n\t no = false;\n\t}\n\ts.insert(np);\n }\n if(no){\n\tcout << -1 << endl;\n\treturn 0;\n }\n\n int ans = 0;\n vector<vector<PII>> db(H, vector<PII>(W));\n REP(y,H) REP(x,W) db[y][x] = MP(y,x);\n for(int i=17;i>=0;--i){\n\tbool excess = false;\n\tset<PII> s;\n\tfor(auto&& p: ps){\n\t PII np = db[p.FF][p.SS];\n\t np = xs[i][np.FF][np.SS];\n\t if(s.count(np)){\n\t\texcess = true;\n\t\tbreak;\n\t }\n\t s.insert(np);\n\t}\n\tif(!excess){\n\t ans |= 1<<i;\n\t REP(y,H) REP(x,W){\n\t\tPII p = db[y][x];\n\t\tdb[y][x] = xs[i][p.FF][p.SS];\n\t }\n\t}\n }\n cout << ans+1 << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 51648, "score_of_the_acc": -0.4181, "final_rank": 7 }, { "submission_id": "aoj_2812_2273437", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define mp(a,b) make_pair((a),(b))\n#define pb(a) push_back((a))\n#define all(x) (x).begin(),(x).end()\n#define uniq(x) sort(all(x)),(x).erase(unique(all(x)),end(x))\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\n#define INF 2147483600\n\nint main(){\n int h,w,n;\n cin>>h>>w>>n;\n vector<int> vec(h*w);\n rep(i,h)rep(j,w){\n int a,b;\n scanf(\"%d %d\", &a, &b);\n vec[i*w+j] = a*w+b;\n }\n vector<int> p(n);\n rep(i,n){\n int a,b;\n scanf(\"%d %d\", &a, &b);\n p[i] = a*w+b;\n }\n\n vector<vector<int>> mat(20, vector<int>(h*w));\n rep(i,h*w) mat[0][i] = vec[i];\n repl(i,1,20) rep(j,h*w){\n mat[i][j] = mat[i-1][mat[i-1][j]];\n }\n\n int l=0, r=2*h*w;\n while(r-l>1){\n int m = (l+r)/2;\n auto exe = [&](int x){\n vector<bool> vis(h*w,false);\n vector<int> v(p);\n int q=0;\n while(x>0){\n if(x%2){\n rep(i,n) v[i] = mat[q][v[i]];\n }\n x /= 2;\n q++;\n }\n rep(i,n){\n if(vis[v[i]]) return true;\n vis[v[i]]=true;\n }\n return false;\n };\n\n if(exe(m)) r = m;\n else l = m;\n }\n\n if(r==2*h*w) r=-1;\n cout << r << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 25352, "score_of_the_acc": -0.0546, "final_rank": 2 } ]
aoj_2817_cpp
B: だんすなうwww - Dance Now! - 物語 前回のラボライフ!ダイガクイン!! マスターアイドルたちが競う最大の大会「ラボライフ」の前哨戦ともいえるイベント「マスターアイドルワールド」で9位を取ってしまったドサンコスノー。 キレのあるダンスは「9位の舞」、渾身の決めポーズも「9位の構え」などと冷やかされてしまい、心に深い傷を負ってしまう。 来たるラボライフ予備予選では絶対に9位をとるわけにはいかない…… 決意を新たにしたドサンコスノーは、自分たちの特技「セルフコントロール」に磨きをかけ、決戦の地へと向かうのだった。 問題 N 組のユニットが競う大会「ラボライフ」が開かれる。 この大会では、スマイル・ピュア・クールの3つの部門で別々に勝負が行われ、それぞれの勝負で得た得点の合計が高い順に総合順位が決定される。 スマイル部門の順位はそれぞれのユニットが持つスマイル値の値が高い順に決定される。 ピュア・クール部門でも同様にピュア値・クール値が高い順に順位が決定される。 順位に応じた得点設定は全部門で共通しており、ある部門で i 位のユニットは、その部門では r_i 点を得る。 ここで、順位が i 位のユニットと同じ値を持つユニットが複数ある場合、それらは同率 i 位とみなし、等しく得点 r_i を得る。 より詳細には、 k ユニットが同率 i 位の場合には、 k ユニットが等しく得点 r_i を得て、 r_{i+1} から r_{i+k-1} までの得点を得るユニットはいない。 また、その次に値が大きいユニット (たち) は得点 r_{i+k} を得る。 具体的な例として、例えばそれぞれスマイル値が1, 3, 2, 3, 2の5つのユニットがあり、順位が高い順に10, 8, 6, 4, 2点が得られる場合を考える。 このとき、2番目と4番目のユニットが10点、3番目と5番目のユニットが6点、1番目のユニットが2点を得ることになる。 ラボライフ予備予選に参加するユニット・ドサンコスノーは「ラボライフは遊びじゃない」と考えているため、真っ先に大会にエントリーし、1番目のユニットとなった。 しかし、大会に参加する N 組すべてのスマイル値・ピュア値・クール値 (以降3値と呼ぶ) の情報を入手したところ、自分たちの総合順位が (同率) 9位であることがわかった。 ドサンコスノーは特技「セルフコントロール」により3値のうちいずれか1つの値を任意の値だけ上昇させることができるが、あまり上げすぎると疲れてしまい本戦に影響するので、できるだけ上昇値を小さくしたい。 ドサンコスノーはとにかく9位を脱したいので、同率8位以上になるようにセルフコントロールによって3値のいずれか1値を上げるとき、上げる必要のある最小の値を求めよ。 入力形式 入力は以下の形式で与えられる。 N r_1 ... r_N s_1 p_1 c_1 ... s_N p_N c_N 1行目はユニットの数を表す整数 N が1行で与えられる。 続く2行目は N 個の整数が空白区切りで与えられる。 i (1 \leq i \leq N) 番目の整数は各部門で順位が i 位だったときに貰える得点 r_i を表す。 続く N 行目のうち、 j 行目には3つの整数 s_j, p_j, c_j が与えられる。これらはそれぞれ j 番目のユニットのスマイル値 s_j 、ピュア値 p_j 、クール値 c_j を表す。 なおドサンコスノーは1番目のユニットであるとする。 制約 9 \leq N \leq 100 100 \geq r_1 > ... > r_N \geq 1 1 \leq s_j, p_j, c_j \leq 100 (1 \leq j \leq N) セルフコントロールする前、ドサンコスノーは9位 (同率9位の場合はあるが、同率8位以上であることはない) 出力形式 セルフコントロールによって3値のどれかを x だけ上げることでドサンコスノーが同率8位以上になるような最小の x を1行に出力せよ。ただし、セルフコントロールによってどの値をどれだけ上げても順位が上げられない場合は "Saiko" と出力せよ。 入力例1 9 9 8 7 6 5 4 3 2 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 出力例1 2 例えばセルフコントロールでスマイル値を2だけ上げると、ドサンコスノーの各部門における順位はそれぞれ同率7位、9位、9位となり、3+1+1 = 5点を得る。一方、2番目のユニットの各部門における順位はそれぞれ9位、8位、8位となり、1+2+2 = 5点を得る。他のユニットは6点以上を獲得するため、この2つのユニットが同率8位となり、条件を満たす。 入力例2 9 9 8 7 6 5 4 3 2 1 1 1 1 2 6 9 6 9 2 9 2 6 3 5 8 5 8 3 8 3 5 4 7 4 7 4 7 出力例2 Saiko どの値をどれだけ上げてもドサンコスノーは11点までしか得ることができないが、他のユニットは必ず14点以上を得ることができるため、ドサンコスノーは不動の9位である。
[ { "submission_id": "aoj_2817_10195234", "code_snippet": "// AOJ #2817\n// Dance Now! 2025.2.5\n\n#include <bits/stdc++.h>\nusing namespace std;\n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N; \n cin >> N;\n \n vector<int> r(N);\n for (int i = 0; i < N; i++) cin >> r[i];\n \n vector<vector<int>> vals(N, vector<int>(3));\n for (int i = 0; i < N; i++){\n for (int d = 0; d < 3; d++) cin >> vals[i][d];\n }\n \n int ans = INT_MAX;\n const int MAX_X = 300;\n \n for (int boostDept = 0; boostDept < 3; boostDept++){\n for (int x = 0; x <= MAX_X; x++){\n vector<int> dsVal(3);\n for (int d = 0; d < 3; d++){\n dsVal[d] = (d == boostDept) ? vals[0][d] + x : vals[0][d];\n }\n\n int dsOverall = 0;\n for (int d = 0; d < 3; d++){\n int countGreater = 0;\n for (int j = 1; j < N; j++){\n if (vals[j][d] > dsVal[d])\n countGreater++;\n }\n int rank = countGreater + 1;\n dsOverall += r[rank - 1];\n }\n \n vector<int> compOverall;\n for (int j = 1; j < N; j++){\n int total = 0;\n for (int d = 0; d < 3; d++){\n int countGreater = 0;\n for (int k = 1; k < N; k++){\n if (k == j) continue;\n if (vals[k][d] > vals[j][d])\n countGreater++;\n }\n if (dsVal[d] > vals[j][d]) countGreater++;\n int rank = countGreater + 1;\n total += r[rank - 1];\n }\n compOverall.push_back(total);\n }\n\n int betterCount = 0;\n for (int score : compOverall){\n if(score > dsOverall) betterCount++;\n }\n int dsRankOverall = betterCount + 1;\n if(dsRankOverall <= 8){\n ans = min(ans, x);\n break;\n }\n }\n }\n if(ans == INT_MAX) cout << \"Saiko\" << endl;\n else cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3480, "score_of_the_acc": -1, "final_rank": 10 }, { "submission_id": "aoj_2817_3697814", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\nusing namespace std;\nconst int INF = (int)1e9 + 7;\n#define rep(i, n) for (int i = 0; i < n; i++)\n\nint n;\nvector<int> r;\nvector<vector<int>> spc;\n\nbool check() {\n vector<int> total(n);\n for (int k = 0; k < 3; k++) {\n vector<int> rank(n, 0);\n rep(i, n) rep(j, n) if (spc[k][i] < spc[k][j]) rank[i]++;\n rep(i, n) total[i] += r[rank[i]];\n }\n vector<int> rank(n, 0);\n rep(i, n) rep(j, n) if (total[i] < total[j]) rank[i]++;\n return rank[0] <= 8 - 1;\n}\n\nint main() {\n while (cin >> n) {\n r.resize(n); spc.assign(3, vector<int>(n));\n rep(i, n) cin >> r[i];\n rep(i, n) cin >> spc[0][i] >> spc[1][i] >> spc[2][i];\n int ans = INF;\n rep(k, 3) for (int p = 1; p <= 100; p++) {\n spc[k][0] += p;\n if (check()) ans = min(ans, p);\n spc[k][0] -= p;\n }\n if (ans == INF) cout << \"Saiko\" << endl;\n else cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3168, "score_of_the_acc": -0.1789, "final_rank": 5 }, { "submission_id": "aoj_2817_3697752", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\nusing namespace std;\nconst int INF = (int)1e9 + 7;\n\nint n;\nvector<int> r;\nvector<vector<int>> spc;\n\nbool check() {\n vector<int> total(n);\n for (int k = 0; k < 3; k++) {\n vector<int> type_;\n for (int i = 0; i < n; i++) type_.emplace_back(spc[k][i]);\n vector<int> rank(n, 0);\n for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) {\n if (type_[i] < type_[j]) rank[i]++;\n }\n for (int i = 0; i < n; i++) total[i] += r[rank[i]];\n }\n vector<int> rank(n, 0);\n for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) {\n if (total[i] < total[j]) rank[i]++;\n }\n return rank[0] <= 8 - 1;\n}\n\nint main() {\n while (cin >> n) {\n r.resize(n); spc.assign(3, vector<int>(n));\n for (int i = 0; i < n; i++) cin >> r[i];\n for (int i = 0; i < n; i++) cin >> spc[0][i] >> spc[1][i] >> spc[2][i];\n int ans = INF;\n for (int k = 0; k < 3; k++) {\n for (int p = 1; p <= 100; p++) {\n spc[k][0] += p;\n if (check()) ans = min(ans, p);\n spc[k][0] -= p;\n }\n }\n if (ans == INF) cout << \"Saiko\" << endl;\n else cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3168, "score_of_the_acc": -0.1789, "final_rank": 5 }, { "submission_id": "aoj_2817_2655375", "code_snippet": "#include <bits/stdc++.h>\n#include <sys/time.h>\nusing namespace std;\n\n#define rep(i,n) for(long long i = 0; i < (long long)(n); i++)\n#define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++)\n#define pb push_back\n#define all(x) (x).begin(), (x).end()\n#define fi first\n#define se second\n#define mt make_tuple\n#define mp make_pair\ntemplate<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); }\ntemplate<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\nusing ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>;\nusing ld = long double; using vld = vector<ld>; \nusing vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; }\n\ninline void input(int &v){ v=0;char c=0;int p=1; while(c<'0' || c>'9'){if(c=='-')p=-1;c=getchar();} while(c>='0' && c<='9'){v=(v<<3)+(v<<1)+c-'0';c=getchar();} v*=p; }\ntemplate <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << \"(\" << v.first << \", \" << v.second << \")\"; return o; }\ntemplate<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{};\ntemplate<class Ch, class Tr, class Tuple, size_t... Is>\nvoid print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? \"\" : \", \") << get<Is>(t)), 0)...}; }\ntemplate<class Ch, class Tr, class... Args> \nauto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << \"(\"; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << \")\"; }\nostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << \" \"; o << endl; } return o; }\ntemplate <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? \", \" : \"\"); o << \"]\"; return o; }\ntemplate <typename T> ostream &operator<<(ostream &o, const deque<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? \", \" : \"\"); o << \"]\"; return o; }\ntemplate <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? \", \" : \"\"); o << \"]\"; return o; }\ntemplate <typename T> ostream &operator<<(ostream &o, const unordered_set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? \", \" : \"\"); o << \"]\"; return o; }\ntemplate <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? \", \" : \"\"); o << \"]\"; return o; }\ntemplate <typename T, typename U, typename V> ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << \"]\"; return o; }\nvector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; }\ntemplate <typename T> istream& operator>>(istream& i, vector<T>& o) { rep(j, o.size()) i >> o[j]; return i;}\ntemplate <typename T, typename S, typename U> ostream &operator<<(ostream &o, const priority_queue<T, S, U> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.top(); tmp.pop(); o << x << \" \";} return o; }\ntemplate <typename T> ostream &operator<<(ostream &o, const queue<T> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.front(); tmp.pop(); o << x << \" \";} return o; }\ntemplate <typename T> ostream &operator<<(ostream &o, const stack<T> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.top(); tmp.pop(); o << x << \" \";} return o; }\ntemplate <typename T> unordered_map<T, ll> counter(vector<T> vec){unordered_map<T, ll> ret; for (auto&& x : vec) ret[x]++; return ret;};\nvoid vizGraph(vvll& g, int mode = 0, string filename = \"out.png\") { ofstream ofs(\"./out.dot\"); ofs << \"digraph graph_name {\" << endl; set<P> memo; rep(i, g.size()) rep(j, g[i].size()) { if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i)))) continue; memo.insert(P(i, g[i][j])); ofs << \" \" << i << \" -> \" << g[i][j] << (mode ? \" [arrowhead = none]\" : \"\")<< endl; } ofs << \"}\" << endl; ofs.close(); system(((string)\"dot -T png out.dot >\" + filename).c_str()); }\nsize_t random_seed; namespace std { using argument_type = P; template<> struct hash<argument_type> { size_t operator()(argument_type const& x) const { size_t seed = random_seed; seed ^= hash<ll>{}(x.fi); seed ^= (hash<ll>{}(x.se) << 1); return seed; } }; }; // hash for various class\nstruct timeval start; double sec() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec - start.tv_sec) + (tv.tv_usec - start.tv_usec) * 1e-6; }\nstruct init_{init_(){ ios::sync_with_stdio(false); cin.tie(0); gettimeofday(&start, NULL); struct timeval myTime; struct tm *time_st; gettimeofday(&myTime, NULL); time_st = localtime(&myTime.tv_sec); srand(myTime.tv_usec); random_seed = RAND_MAX / 2 + rand() / 2; }} init__;\n#define ldout fixed << setprecision(40) \n\n#define EPS (double)1e-14\n#define INF (ll)1e18\n#define mo (ll)(1e9+7)\n\nll n;\nvll r;\nbool check(vvll s) {\n vll p(n);\n rep(type, 3) {\n vector<P> t(n);\n rep(i, n) t[i] = P(s[type][i], i);\n sort(all(t));\n reverse(all(t));\n ll prev = -1;\n ll rank = 0;\n rep(i, n) {\n if (prev != t[i].fi) {\n rank = i;\n }\n p[t[i].se] += r[rank];\n prev = t[i].fi;\n }\n }\n ll tmp = p[0];\n sort(all(p));\n return tmp >= p[1];\n}\n\nint main(void) {\n cin >> n;\n r.resize(n); cin >> r;\n vvll s(3, vll(n));\n rep(i, n) {\n rep(t, 3)\n cin >> s[t][i];\n }\n check(s);\n\n ll ret = INF;\n vvll org = s;\n rep(t, 3) rep(x, 1000) {\n ll tmp=s[t][0];\n s[t][0]=x+tmp;\n if (check(s)) chmin(ret, x);\n s[t][0]=tmp;\n }\n if(ret!=INF)\n cout<<ret<<endl;\n else\n cout<<\"Saiko\"<<endl;\n\n return 0;\n}", "accuracy": 0.25, "time_ms": 10, "memory_kb": 3320, "score_of_the_acc": -0.5789, "final_rank": 12 }, { "submission_id": "aoj_2817_2506378", "code_snippet": "#include<bits/stdc++.h>\n#define r(i,n) for(int i=0;i<n;i++)\n#define fi first\n#define se second\nusing namespace std;\ntypedef pair<int,int> P;\nint n,score[101],a[101][3];\n \n \nbool ch(){\n \n int t[101]={},x[101];\n r(i,3){\n int cnt=0,pre,c2=0;\n memset(x,0,sizeof(x));\n \n vector<P> v;\n \n r(j,n)v.push_back(P(a[j][i],j));\n \n sort(v.begin(),v.end(), greater<P>() );\n \n r(k,n){\n if(!k){\n t[v[k].se]+=score[cnt];\n pre=v[k].fi;\n }\n else{\n if(pre==v[k].fi){\n c2++;\n t[v[k].se]+=score[cnt];\n }\n else{\n pre=v[k].fi;\n cnt+=c2+1;c2=0;\n t[v[k].se]+=score[cnt];\n }\n }\n }\n \n }\n \n vector<P> v;\n \n r(j,n)v.push_back(P(t[j],j));\n \n sort(v.begin(),v.end(), greater<P>() );\n int cnt=0,c2=0,pre;\n r(i,n){\n if(!i){\n \n if(!v[i].se&&cnt<=7)return 1;\n \n pre=v[i].fi;\n }\n else{\n if(pre==v[i].fi){\n if(!v[i].se&&cnt<=7)return 1;\n pre=v[i].fi;\n c2++;\n }\n else{\n cnt+=c2+1;c2=0;\n if(!v[i].se&&cnt<=7)return 1;\n pre=v[i].fi;\n }\n }\n }\n return 0;\n}\n \n \n \n \nint main(){\n cin>>n;\n r(i,n)cin>>score[i];\n r(i,n)r(j,3)cin>>a[i][j];\n r(i,1000)r(j,3){\n a[0][j]+=i;\n if(ch()){\n cout<<i<<endl;\n return 0;\n }\n a[0][j]-=i;\n }\n cout<<\"Saiko\"<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3100, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2817_2505873", "code_snippet": "#include <bits/stdc++.h>\n#define rank asfanf\n#define N 101\nusing namespace std;\ntypedef pair<int,int> P;\nint n,r[N];\n\nmap<int,int> mkRank(vector<int> A){\n map<int,int> rank,tmp;\n for(int a:A) rank[-a]++;\n tmp = rank;\n \n for(auto it=rank.begin(),it2=++rank.begin();it2!=rank.end();it++,it2++)\n it2->second += it->second;\n\n for(P const &p:rank) rank[-p.first] = rank[p.first]-tmp[p.first];\n return rank;\n}\n\nint getScore(map<int,int> rank,int a){return r[rank[a]];}\n\nvector<int> calcTotalScore(vector<int> a,vector<int>b,vector<int>c){\n vector<int> res(n,0);\n map<int,int> A = mkRank(a);\n map<int,int> B = mkRank(b);\n map<int,int> C = mkRank(c);\n for(int i=0;i<n;i++) res[i] = getScore(A,a[i]) + getScore(B,b[i]) + getScore(C,c[i]);\n return res;\n}\n\nint calc(vector<int> a,vector<int>b,vector<int>c){\n int ans = 1e9;\n for(int i=0;i<200;i++){\n a[0] += i;\n vector<int> total = calcTotalScore(a,b,c);\n map<int,int> rank = mkRank(total);\n //cout<<i<<\" \"<<rank[total[0]]<<\" \"<<total[0]<<endl;\n if(rank[total[0]] <= 7) ans = min(ans,i);\n a[0] -= i;\n }\n return ans;\n}\n\nint main(){\n cin>>n;\n for(int i=0;i<n;i++) cin>>r[i];\n vector<int> a(n),b(n),c(n);\n for(int i=0;i<n;i++)cin>>a[i]>>b[i]>>c[i];\n \n int ans = min(calc(a,b,c),min(calc(b,a,c),calc(c,a,b)));\n if(ans == 1e9) cout<<\"Saiko\"<<endl;\n else cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 740, "memory_kb": 3204, "score_of_the_acc": -1.2737, "final_rank": 11 }, { "submission_id": "aoj_2817_2334364", "code_snippet": "#include<bits/stdc++.h>\n \nusing namespace std;\n \n#define rep(i, n) for(int i = 0; i < n; i++)\n \nint N, R[100];\nint S[100], P[100], C[100];\n \n \nbool ck()\n{\n int pt[101] = {};\n \n vector< pair< int, int > > vs;\n rep(i, N) vs.emplace_back(S[i], i);\n vector< int > rank(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n rep(i, N) pt[i] += R[rank[i]];\n \n vs.clear();\n rep(i, N) vs.emplace_back(P[i], i);\n rank.assign(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n rep(i, N) pt[i] += R[rank[i]];\n \n vs.clear();\n rep(i, N) vs.emplace_back(C[i], i);\n rank.assign(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n rep(i, N) pt[i] += R[rank[i]];\n \n vs.clear();\n rep(i, N) vs.emplace_back(pt[i], i);\n rank.assign(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n \n return (rank[0] <= 7);\n}\n \nint main()\n{\n cin >> N;\n rep(i, N) cin >> R[i];\n rep(i, N) cin >> S[i] >> P[i] >> C[i];\n \n int ret = 114514;\n rep(i, 101) {\n S[0] += i;\n if(ck()) ret = min(ret, i);\n S[0] -= i;\n }\n rep(i, 101) {\n P[0] += i;\n if(ck()) ret = min(ret, i);\n P[0] -= i;\n }\n \n rep(i, 101) {\n C[0] += i;\n if(ck()) ret = min(ret, i);\n C[0] -= i;\n }\n \n if(ret == 114514) cout << \"Saiko\" << endl;\n else cout << ret << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3100, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2817_2312269", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1e9+1)\n//#define INF (1LL<<59)\n \nint n;\n \nbool f(vector<vector<int>> v, vector<int> r){\n map<int,int> mp[3];\n rep(j,3){\n map<int,int> &mpp = mp[j];\n vector<int> tmp;\n rep(i,n){\n tmp.pb(v[i][j]);\n }\n sort(all(tmp));\n \n rep(i,tmp.size()){\n mpp[tmp[i]] = r[i];\n }\n }\n \n vector<pii> s;\n rep(i,n){\n int tmp = 0;\n rep(j,3){\n tmp+=mp[j][v[i][j]];\n }\n s.pb(pii(-tmp,i));\n }\n \n sort(all(s));\n \n int pos=-1;\n rep(i,s.size()){\n if(s[i].second==0){\n pos = i;\n break;\n }\n }\n assert(pos!=-1);\n if(pos<8)return true;\n else return false;\n}\n \nint main(){\n cin>>n;\n vector<int> r(n);\n rep(i,n)cin>>r[i];\n reverse(all(r));\n \n vector< vector<int> > v(n,vector<int>(3));\n rep(i,n)rep(j,3)cin>>v[i][j];\n \n int ans = INF;\n rep(i,101){\n rep(j,3){\n v[0][j]+=i;\n \n if(f(v,r)){\n ans = min(ans,(int)i);\n }\n \n v[0][j]-=i;\n }\n }\n if(ans==INF)cout<<\"Saiko\"<<endl;\n else cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3172, "score_of_the_acc": -0.1895, "final_rank": 7 }, { "submission_id": "aoj_2817_2231283", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define all(a) (a).begin(),(a).end()\n#define pb emplace_back\n#define INF (1e9+1)\n//#define INF (1LL<<59)\n\nint n;\n\nbool f(vector<vector<int>> v, vector<int> r){\n map<int,int> mp[3];\n rep(j,3){\n map<int,int> &mpp = mp[j];\n vector<int> tmp;\n rep(i,n){\n tmp.pb(v[i][j]);\n }\n sort(all(tmp));\n \n rep(i,tmp.size()){\n mpp[tmp[i]] = r[i];\n }\n }\n \n vector<pii> s;\n rep(i,n){\n int tmp = 0;\n rep(j,3){\n tmp+=mp[j][v[i][j]];\n }\n s.pb(pii(-tmp,i));\n }\n \n sort(all(s));\n \n int pos=-1;\n rep(i,s.size()){\n if(s[i].second==0){\n pos = i;\n break;\n }\n }\n assert(pos!=-1);\n if(pos<8)return true;\n else return false;\n}\n\nint main(){\n cin>>n;\n vector<int> r(n);\n rep(i,n)cin>>r[i];\n reverse(all(r));\n \n vector< vector<int> > v(n,vector<int>(3));\n rep(i,n)rep(j,3)cin>>v[i][j];\n \n int ans = INF;\n rep(i,101){\n rep(j,3){\n v[0][j]+=i;\n \n if(f(v,r)){\n ans = min(ans,(int)i);\n }\n \n v[0][j]-=i;\n }\n }\n if(ans==INF)cout<<\"Saiko\"<<endl;\n else cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3180, "score_of_the_acc": -0.2105, "final_rank": 8 }, { "submission_id": "aoj_2817_2230994", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < n; i++)\n\nint N, R[100];\nint S[100], P[100], C[100];\n\n\nbool ck()\n{\n int pt[101] = {};\n\n vector< pair< int, int > > vs;\n rep(i, N) vs.emplace_back(S[i], i);\n vector< int > rank(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n rep(i, N) pt[i] += R[rank[i]];\n\n vs.clear();\n rep(i, N) vs.emplace_back(P[i], i);\n rank.assign(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n rep(i, N) pt[i] += R[rank[i]];\n\n vs.clear();\n rep(i, N) vs.emplace_back(C[i], i);\n rank.assign(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n rep(i, N) pt[i] += R[rank[i]];\n\n vs.clear();\n rep(i, N) vs.emplace_back(pt[i], i);\n rank.assign(N, 0);\n rep(i, N) rep(j, N) if(vs[i].first < vs[j].first) ++rank[vs[i].second];\n\n return (rank[0] <= 7);\n}\n\nint main()\n{\n cin >> N;\n rep(i, N) cin >> R[i];\n rep(i, N) cin >> S[i] >> P[i] >> C[i];\n\n int ret = 114514;\n rep(i, 101) {\n S[0] += i;\n if(ck()) ret = min(ret, i);\n S[0] -= i;\n }\n rep(i, 101) {\n P[0] += i;\n if(ck()) ret = min(ret, i);\n P[0] -= i;\n }\n\n rep(i, 101) {\n C[0] += i;\n if(ck()) ret = min(ret, i);\n C[0] -= i;\n }\n\n if(ret == 114514) cout << \"Saiko\" << endl;\n else cout << ret << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3104, "score_of_the_acc": -0.0242, "final_rank": 3 }, { "submission_id": "aoj_2817_2230905", "code_snippet": "#define _CRT_SECURE_NO_WARNINGS\n#define _USE_MATH_DEFINES\n\n#include \"bits/stdc++.h\"\n#include <random>\nusing namespace std;\n#define rep(i,n) for(int i=0;i<(n);++i)\n#define rep2(i,a,b) for(int i=(a);i<(b);++i)\n#define rrep(i,n) for(int i=(n)-1;i>=0;--i)\n#define rrep2(i,a,b) for(int i=(a)-1;i>=b;--i)\n#define range(i,a,b,c) for(int i=a;\\\n c>0?i<b:\\\n i>b;\\\n i+=c)\n#define chmax(a, b) (a = (a) < (b) ? (b) : (a))\n#define chmin(a, b) (a = (a) > (b) ? (b) : (a))\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\n#define all(a) begin(a),end(a)\n#define ifnot(a) if(not (a))\n#define dump(x) cerr << #x << \" = \" << (x) << endl\n#define int long long\n#ifdef _MSC_VER\nconst bool test = true;\n#else \nconst bool test = false;\n#endif\n\nint dx[] = { 1,0,-1,0 };\nint dy[] = { 0,1,0,-1 };\nconst int INF = 1 << 28;\nconst ll INFL = (ll)1 << 58;\nll mod = (int)1e9 + 7;\nconst double eps = 1e-10;\ntypedef long double Real;\n// return -1, 0, 1\nint sgn(const Real& r) { return (r > eps) - (r < -eps); }\nint sgn(const Real& a, const Real &b) { return sgn(a - b); }\n\n//.....................\nconst int MAX = (int)2e5 + 5;\n\nvector<string> split(const string &str, char sep) {\n\tvector<string> v;\n\tstringstream ss(str);\n\tstring buffer;\n\twhile (getline(ss, buffer, sep)) {\n\t\tv.push_back(buffer);\n\t}\n\treturn v;\n}\n\ntemplate<class InputIterator>\nint sum(InputIterator begin, InputIterator end) {\n\treturn accumulate(begin, end, 0ll);\n}\n\nstring reverse_str(string s) {\n\treverse(all(s));\n\treturn s;\n}\n\n//double dist(double a, double b) {\n//\twhile (ans < 0) ans += 360;\n//\twhile (ans > 360) ans -= 360;\n//\n//\twhile (ans < 0) ans += 360;\n//\twhile (ans > 360) ans -= 360;\n//}\n\nint N;\nint r[MAX];\nvector<int> a[3];\n\nvoid solve() {\n\tcin >> N;\n\trep(i, 3) a[i].resize(N);\n\trep(i, N) cin >> r[i];\n\trep(i, N) {\n\t\trep(j, 3) {\n\t\t\tcin >> a[j][i];\n\t\t}\n\t}\n\n\tint min_cost = INF;\n\trep(i, 3) {\n\t\trep(v, 102) {\n\t\t\tvector<pair<int, int>> score(N);\n\t\t\trep(k, N) score[k].first = 0;\n\t\t\trep(k, N) score[k].second = k;\n\t\t\trep(k, 3) {\n\t\t\t\tvector<pair<int, int>> tmp(N);\n\t\t\t\trep(j, N) {\n\t\t\t\t\ttmp[j].first = a[k][j];\n\t\t\t\t\ttmp[j].second = j;\n\t\t\t\t}\n\t\t\t\tif (i == k) tmp[0].first += v;\n\t\t\t\tmap<int, int> m;\n\t\t\t\tsort(all(tmp), greater<pair<int, int>>());\n\t\t\t\trep(j, N) {\n\t\t\t\t\tif (m.count(tmp[j].first) == 0) m[tmp[j].first] = j;\n\t\t\t\t\tscore[tmp[j].second].first += r[m[tmp[j].first]];\n\t\t\t\t}\n\t\t\t}\n\t\t\tsort(all(score), greater<pair<int, int>>());\n\t\t\tmap<int, int> m;\n\t\t\trep(j, N) {\n\t\t\t\tif (m.count(score[j].first) == 0) m[score[j].first] = j;\n\t\t\t\tif (score[j].second == 0 && m[score[j].first] >= 8) {\n\t\t\t\t\tgoto next;\n\t\t\t\t}\n\t\t\t}\n\t\t\tchmin(min_cost, v);\n\n\t\t\t//if (score.back().second != 0\n\t\t\t//\t|| score[N-1].first == score[N-2].first) {\n\t\t\t//\t//rep(k, N) cout << score[k].first << \" \";\n\t\t\t//\t//cout << endl;\n\t\t\t//\t//dump(i);\n\t\t\t//\t//dump(v);\n\t\t\t//\tchmin(min_cost, v);\n\t\t\t//\tbreak;\n\t\t\t//}\n\t\tnext:;\n\t\t}\n\t}\n\tif (min_cost == INF) cout << \"Saiko\" << endl;\n\telse cout << min_cost << endl;\n}\n\nsigned main() {\n\tsrand(time(NULL));\n\tint T = (int)1e15;\n\tsolve();\n\tcout << fixed << setprecision(15);\n\trep(i, T) {\n\t\tchar s[MAX];\n\t\tif (scanf(\"%s\", s) == EOF) break;\n\t\tint n = strlen(s);\n\t\tfor (int i = n - 1; i > -1; i--) {\n\t\t\tungetc(s[i], stdin);\n\t\t}\n\t\tsolve();\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3200, "score_of_the_acc": -0.2632, "final_rank": 9 }, { "submission_id": "aoj_2817_2230716", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define int long long\nsigned main(){\n int n;\n cin>>n;\n int r[n];\n for(int i=0;i<n;i++) cin>>r[i];\n int s[n][3];\n for(int i=0;i<n;i++)\n for(int j=0;j<3;j++)\n cin>>s[i][j];\n int ans=1000;\n for(int j=0;j<3;j++){\n for(int k=1;k<100;k++){\n s[0][j]+=k;\n int sc[n];\n memset(sc,0,sizeof(sc));\n for(int l=0;l<3;l++){\n\tvector<int> v[1001];\n\tfor(int i=0;i<n;i++)\n\t v[s[i][l]].push_back(i);\n\t\n\tint ra=0;\n\tfor(int i=1000;i>0;i--){\n\t if(v[i].empty()) continue;\n\t for(int x=0;x<(int)v[i].size();x++){\n\t sc[v[i][x]]+=r[ra];\n\t }\n\t ra+=v[i].size();\n\t}\n }\n int ra[1001];\n memset(ra,0,sizeof(ra));\n for(int i=0;i<n;i++){\n\tra[sc[i]]++;\n }\n int ran=0;\n for(int i=1000;i>sc[0];i--) ran+=ra[i];\n if(ran<8){\n\tans=min(ans,k);\n }\n s[0][j]-=k;\n }\n }\n if(ans<1000) cout<<ans<<endl;\n else cout<<\"Saiko\"<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3112, "score_of_the_acc": -0.0316, "final_rank": 4 } ]
aoj_2814_cpp
J: エナジードリンク 問題 ixmel、Pulmn 兄弟は $N$ 種類のエナジードリンクをそれぞれ 1 本ずつ持っています。 現在、ixmel と Pulmn のエネルギーはともに 0 で、時刻は午前 0 時です。 ixmel と Pulmn はエネルギーが 0 以下のまま正午になると「たいへんなこと」になります。 エネルギーが正の数では「たいへんなこと」にはなりません。 ixmel とPulmn は「たいへんなこと」にならないために、 毎日朝 6 時に 1 本のエナジードリンクを 2 人で分けて飲むことにしました。 i 番目のエナジードリンクを ixmel が飲むとエネルギーが $a_i$ 増えますが、副作用として 24 時間後にエネルギーが $b_i$ 減ってしまいます。 一方、Pulmn が飲むとエネルギーが $b_i$ 増え、24 時間後にエネルギーが $a_i$ 減ります。 また、ixmel と Pulmn は日が変わった直後、エネルギーは 0 になります。 ixmel と Pulmn は今持っているエナジードリンクだけで、どちらか一方、または両方が「たいへんなこと」になるまでの日数を少しでも長くしたいと思いました。 ixmel、Pulmn 兄弟のために最初にどちらか片方、または両方が「たいへんなこと」になるまでの日数の最大値を求めてください。なお、エナジードリンクを飲む時間は無視できるものとし、「たいへんなこと」が起こる日は求める日数に含まないものとします。 入力 入力は $1+n$ 行からなります。 1 行目には 1 個の整数 $N$ が与えられます。 続く $N$ 行の内、$i$ 行目は 2 個の整数 $a_i, b_i$ が与えられます。 制約 $1 \le N \le 10^5$ $1 \le a_i, b_i \le 10^9$ 出力 考えられる「たいへんなこと」になるまでの日数の最大値を出力しましょう。 また、末尾に改行を出力しましょう。 サンプル サンプル入力 1 5 3 5 7 4 11 9 3 7 7 8 サンプル出力 1 4 1 日目から 5 日目に飲むドリンクは、それぞれ 1, 2, 5, 3, 4 とするのが最適です。 各日のエナジードリンクを飲んだあとの (ixmel の体力, Pulmn の体力) は、それぞれ $(3, 5), (2, 1), (1, 3), (3, 2), (-6, -4)$ と変化し、 5 日目に「たいへんなこと」になるので答えは 4 です。 サンプル入力 2 2 1 1 1 1 サンプル出力 2 1 異なる種類で成分が同じエナジードリンクもあります。また、「たいへんなこと」が起こるのは、エネルギーの量が 0 以下の時であることに注意してください。 サンプル入力 2 3 5 9 3 2 7 4 サンプル出力 2 3 4 日目に飲むエナジードリンクはありません。
[ { "submission_id": "aoj_2814_9118078", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\n#line 4 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\nnamespace noya2{\n\ntemplate<typename T> struct compress {\n vector<T> raws;\n compress(const vector<T> &raws_ = {}) : raws(raws_){ build(); }\n int id(const T &raw){ return lb(raw); }\n T raw(const int &id){ return raws[id]; }\n void build(){ uniq(raws); }\n void add(const T &raw){ raws.push_back(raw); }\n size_t size(){ return raws.size(); }\n int lb(const T &raw){ return lower_bound(all(raws),raw) - raws.begin(); }\n int ub(const T &raw){ return upper_bound(all(raws),raw) - raws.begin(); }\n bool contains(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size()) return raws[jd] == raw;\n return false;\n }\n int contains_id(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size() && raws[jd] == raw) return jd;\n return -1;\n }\n};\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/segment_tree.hpp\"\n\nnamespace noya2{\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = 0;\n size = 1;\n while (size < _n) size <<= 1, log++;\n\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace noya2\n#line 7 \"c.cpp\"\n\n\nnamespace noya2 {\n\ntemplate<class S, S(*op)(S, S), S(*e)(), typename Idx = ll>\nstruct range_tree {\n using DS = segtree<S,op,e>;\n using T = int;\n void join(Idx x, Idx y){ ps.emplace_back(x,y); }\n void build(){\n for (auto &[x, y] : ps) xs.add(x);\n xs.build();\n //siz = bit_ceil(xs.size());\n siz = 1; while (siz < (int)(xs.size())) siz <<= 1;\n ys.resize(siz*2);\n for (auto &[x, y] : ps){\n int xid = xs.id(x) + siz;\n ys[xid].add(y);\n while (xid > 1){\n xid >>= 1;\n ys[xid].add(y);\n }\n }\n for (int i = 0; i < 2*siz; i++){\n ys[i].build();\n ds.emplace_back(ys[i].size());\n }\n }\n void set(Idx p, Idx q, T val){\n int i = xs.id(p) + siz;\n ds[i].set(ys[i].id(q),val);\n while (i > 1){\n i >>= 1;\n T lr = e();\n int i0 = ys[2*i+0].contains_id(q), i1 = ys[2*i+1].contains_id(q);\n if (i0 != -1) lr = op(lr, ds[2*i+0].get(i0));\n if (i1 != -1) lr = op(lr, ds[2*i+1].get(i1));\n ds[i].set(ys[i].id(q),lr);\n }\n }\n T get(Idx p, Idx q){\n int ip = xs.contains_id(p);\n if (ip == -1) return e();\n int i = ip + siz;\n int iq = ys[i].contains_id(q);\n if (iq == -1) return e();\n return ds[i].get(iq);\n }\n T prod(Idx lp, Idx rp, Idx lq, Idx rq){\n T res = e();\n int li = xs.lb(lp), ri = xs.lb(rp);\n for (li += siz, ri += siz; li < ri; li >>= 1, ri >>= 1){\n if (li & 1) res = op(res,ds[li].prod(ys[li].lb(lq),ys[li].lb(rq))), ++li;\n if (ri & 1) --ri, res = op(res,ds[ri].prod(ys[ri].lb(lq),ys[ri].lb(rq)));\n }\n return res;\n }\n int siz;\n vector<pair<Idx,Idx>> ps;\n compress<Idx> xs;\n vector<compress<Idx>> ys;\n vector<DS> ds;\n};\n\n} // namespace noya2\n\nint op(int a, int b){\n return max(a,b);\n}\nint e(){\n return -iinf;\n}\n\nvoid solve(){\n int n; in(n);\n vector<int> a(n), b(n);\n rep(i,n) in(a[i],b[i]);\n vector<int> ids(n); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return a[l]+b[l] < a[r]+b[r];\n });\n range_tree<int,op,e,int> rt;\n rep(i,n){\n rep(tt,2){\n rt.join(a[i],b[i]);\n swap(a[i],b[i]);\n }\n }\n rt.build();\n int ans = 1;\n for (int i : ids){\n // out(i,a[i],b[i]);\n rep(tt,2){\n int d = max(rt.prod(0,a[i],0,b[i]),0);\n rt.set(a[i],b[i],d+1);\n swap(a[i],b[i]);\n chmax(ans,d+1);\n }\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.1891891891891892, "time_ms": 500, "memory_kb": 61368, "score_of_the_acc": -0.6966, "final_rank": 14 }, { "submission_id": "aoj_2814_9118016", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\n#line 4 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\nnamespace noya2{\n\ntemplate<typename T> struct compress {\n vector<T> raws;\n compress(const vector<T> &raws_ = {}) : raws(raws_){ build(); }\n int id(const T &raw){ return lb(raw); }\n T raw(const int &id){ return raws[id]; }\n void build(){ uniq(raws); }\n void add(const T &raw){ raws.push_back(raw); }\n size_t size(){ return raws.size(); }\n int lb(const T &raw){ return lower_bound(all(raws),raw) - raws.begin(); }\n int ub(const T &raw){ return upper_bound(all(raws),raw) - raws.begin(); }\n bool contains(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size()) return raws[jd] == raw;\n return false;\n }\n int contains_id(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size() && raws[jd] == raw) return jd;\n return -1;\n }\n};\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/segment_tree.hpp\"\n\nnamespace noya2{\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = 0;\n size = 1;\n while (size < _n) size <<= 1, log++;\n\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace noya2\n#line 7 \"c.cpp\"\n\n\nnamespace noya2 {\n\ntemplate<class S, S(*op)(S, S), S(*e)(), typename Idx = ll>\nstruct range_tree {\n using DS = segtree<S,op,e>;\n using T = int;\n void join(Idx x, Idx y){ ps.emplace_back(x,y); }\n void build(){\n for (auto &[x, y] : ps) xs.add(x);\n xs.build();\n //siz = bit_ceil(xs.size());\n siz = 1; while (siz < (int)(xs.size())) siz <<= 1;\n ys.resize(siz*2);\n for (auto &[x, y] : ps){\n int xid = xs.id(x) + siz;\n ys[xid].add(y);\n while (xid > 1){\n xid >>= 1;\n ys[xid].add(y);\n }\n }\n for (int i = 0; i < 2*siz; i++){\n ys[i].build();\n ds.emplace_back(ys[i].size());\n }\n }\n void set(Idx p, Idx q, T val){\n int i = xs.id(p) + siz;\n ds[i].set(ys[i].id(q),val);\n while (i > 1){\n i >>= 1;\n T lr = e();\n int i0 = ys[2*i+0].contains_id(q), i1 = ys[2*i+1].contains_id(q);\n if (i0 != -1) lr = op(lr, ds[2*i+0].get(i0));\n if (i1 != -1) lr = op(lr, ds[2*i+1].get(i1));\n ds[i].set(ys[i].id(q),lr);\n }\n }\n T get(Idx p, Idx q){\n int ip = xs.contains_id(p);\n if (ip == -1) return e();\n int i = ip + siz;\n int iq = ys[i].contains_id(q);\n if (iq == -1) return e();\n return ds[i].get(iq);\n }\n T prod(Idx lp, Idx rp, Idx lq, Idx rq){\n T res = e();\n int li = xs.lb(lp), ri = xs.lb(rp);\n for (li += siz, ri += siz; li < ri; li >>= 1, ri >>= 1){\n if (li & 1) res = op(res,ds[li].prod(ys[li].lb(lq),ys[li].lb(rq))), ++li;\n if (ri & 1) --ri, res = op(res,ds[ri].prod(ys[ri].lb(lq),ys[ri].lb(rq)));\n }\n return res;\n }\n int siz;\n vector<pair<Idx,Idx>> ps;\n compress<Idx> xs;\n vector<compress<Idx>> ys;\n vector<DS> ds;\n};\n\n} // namespace noya2\n\nint op(int a, int b){\n return max(a,b);\n}\nint e(){\n return -iinf;\n}\n\nvoid solve(){\n int n; in(n);\n vector<int> a(n), b(n);\n rep(i,n) in(a[i],b[i]);\n vector<int> ids(n); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return a[l]+b[l] < a[r]+b[r];\n });\n range_tree<int,op,e,int> rt0, rt1;\n rep(i,n){\n rep(tt,2){\n rt0.join(a[i],b[i]);\n rt1.join(a[i],b[i]);\n swap(a[i],b[i]);\n }\n }\n rt0.build();\n rt1.build();\n int ans = 1;\n for (int i : ids){\n // out(i,a[i],b[i]);\n rep(tt,2){\n int d0 = max(rt0.prod(0,a[i],0,b[i]),0);\n int d1 = max(rt1.prod(0,a[i],0,b[i]),0);\n rt1.set(a[i],b[i],d0+1);\n rt0.set(a[i],b[i],d1+1);\n swap(a[i],b[i]);\n chmax(ans,d0+1);\n chmax(ans,d1+1);\n }\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.1891891891891892, "time_ms": 1080, "memory_kb": 120544, "score_of_the_acc": -1.5206, "final_rank": 18 }, { "submission_id": "aoj_2814_9118001", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\n#define rep(i,a,b) for(int i=a;i<b;i++)\n#define rrep(i,a,b) for(int i=a;i>=b;i--)\n#define fore(i,a) for(auto &i:a)\nusing V = ll;\nV comp(V& l, V& r) { return max(l, r); };\nstruct SegTree { //[l,r)\n int NV;\n vector<V> val;\n void init(int n) {\n NV = 1;\n while (NV < n) NV *= 2;\n val = vector<V>(NV * 2, 0);\n }\n V get(int x, int y, int l, int r, int k) {\n if (r <= x || y <= l) return 0;\n if (x <= l && r <= y) return val[k];\n auto a = get(x, y, l, (l + r) / 2, k * 2); auto b = get(x, y, (l + r) / 2, r, k * 2 + 1); return comp(a, b);\n }\n V get(int x, int y) { return get(x, y, 0, NV, 1); }\n void update(int i, V v) { i += NV; val[i] = v; while (i>1)i >>= 1, val[i] = comp(val[i * 2], val[i * 2 + 1]); }\n void add(int i, V v) { update(i, val[i + NV] + v); }\n V operator[](int x) { return get(x, x + 1); }\n};\n \nstruct Healthy2DSegTree {\n int NV;\n vector<SegTree> st;\n vector<vector<int>> index;\n \n void init(vector<vector<int>> &v) {\n int n = v.size();\n NV = 1; while (NV < n) NV *= 2;\n index.resize(2 * NV);\n rep(i, 0, n) fore(j, v[i]) index[i + NV].push_back(j);\n rrep(i, NV * 2 - 1, 1) {\n sort(index[i].begin(), index[i].end());\n index[i].erase(unique(index[i].begin(), index[i].end()), index[i].end());\n fore(j, index[i]) index[i / 2].push_back(j);\n }\n st.resize(2 * NV);\n rep(i, 1, NV * 2) st[i].init(index[i].size());\n }\n void update(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].update(yy, v);\n x >>= 1;\n }\n }\n void add(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].add(yy, v);\n x >>= 1;\n }\n }\n V get(int sx, int tx, int sy, int ty, int k, int l, int r) {\n assert(k < NV * 2);\n assert(l < r);\n if (r <= sx or tx <= l) return 0;\n if (sx <= l and r <= tx) {\n int syy = lower_bound(index[k].begin(), index[k].end(), sy) - index[k].begin();\n int tyy = lower_bound(index[k].begin(), index[k].end(), ty) - index[k].begin();\n return st[k].get(syy, tyy);\n }\n int md = (l + r) / 2;\n V le = get(sx, tx, sy, ty, k * 2, l, md);\n V ri = get(sx, tx, sy, ty, k * 2 + 1, md, r);\n return comp(le, ri);\n }\n V get(int sx, int tx, int sy, int ty) {\n return get(sx, tx, sy, ty, 1, 0, NV);\n }\n};\n\nmap<ll, ll> fr, to;\nHealthy2DSegTree st;\nvector<P> s, v;\nll n, ans;\nint main(){\n cin >> n;\n vector<vector<int>> ind(310000);\n REP(i, n){\n ll a, b;\n cin >> a >> b;\n s.push_back(P(a, b));\n }\n sort(ALL(s));\n s.erase(unique(ALL(s)), s.end());\n n = s.size();\n REP(i, n){\n fr[s[i].first]++;\n fr[ s[i].second]++;\n }\n ll cnt = 0;\n for (auto& i : fr) {\n i.second = cnt;\n to[cnt] = i.first;\n cnt++;\n }\n REP(i, n){\n v.push_back(P(fr[s[i].first] + fr[s[i].second], i));\n }\n sort(ALL(v));\n REP(i, n){\n ind[fr[s[i].first]].push_back(fr[s[i].second]);\n ind[fr[s[i].second]].push_back(fr[s[i].first]);\n }\n st.init(ind);\n REP(i, n){\n //cout << s[v[i].second].first << \" \" << s[v[i].second].second << \" \" << fr[s[v[i].second].first] <<\" \" << fr[s[v[i].second].second] << \" \" << v[i].second << endl;\n ll x = st.get(0, fr[s[v[i].second].first], 0, fr[s[v[i].second].second]) + 1;\n ans = max(ans, x);\n st.add(fr[s[v[i].second].second], fr[s[v[i].second].first], x);\n }\n cout << ans << endl;\n}", "accuracy": 0.2972972972972973, "time_ms": 690, "memory_kb": 202276, "score_of_the_acc": -1.5856, "final_rank": 9 }, { "submission_id": "aoj_2814_9117995", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\n#line 4 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\nnamespace noya2{\n\ntemplate<typename T> struct compress {\n vector<T> raws;\n compress(const vector<T> &raws_ = {}) : raws(raws_){ build(); }\n int id(const T &raw){ return lb(raw); }\n T raw(const int &id){ return raws[id]; }\n void build(){ uniq(raws); }\n void add(const T &raw){ raws.push_back(raw); }\n size_t size(){ return raws.size(); }\n int lb(const T &raw){ return lower_bound(all(raws),raw) - raws.begin(); }\n int ub(const T &raw){ return upper_bound(all(raws),raw) - raws.begin(); }\n bool contains(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size()) return raws[jd] == raw;\n return false;\n }\n int contains_id(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size() && raws[jd] == raw) return jd;\n return -1;\n }\n};\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/segment_tree.hpp\"\n\nnamespace noya2{\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = 0;\n size = 1;\n while (size < _n) size <<= 1, log++;\n\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace noya2\n#line 7 \"c.cpp\"\n\n\nnamespace noya2 {\n\ntemplate<class S, S(*op)(S, S), S(*e)(), typename Idx = ll>\nstruct range_tree {\n using DS = segtree<S,op,e>;\n using T = int;\n void join(Idx x, Idx y){ ps.emplace_back(x,y); }\n void build(){\n for (auto &[x, y] : ps) xs.add(x);\n xs.build();\n //siz = bit_ceil(xs.size());\n siz = 1; while (siz < (int)(xs.size())) siz <<= 1;\n ys.resize(siz*2);\n for (auto &[x, y] : ps){\n int xid = xs.id(x) + siz;\n ys[xid].add(y);\n while (xid > 1){\n xid >>= 1;\n ys[xid].add(y);\n }\n }\n for (int i = 0; i < 2*siz; i++){\n ys[i].build();\n ds.emplace_back(ys[i].size());\n }\n }\n void set(Idx p, Idx q, T val){\n int i = xs.id(p) + siz;\n ds[i].set(ys[i].id(q),val);\n while (i > 1){\n i >>= 1;\n T lr = e();\n int i0 = ys[2*i+0].contains_id(q), i1 = ys[2*i+1].contains_id(q);\n if (i0 != -1) lr = op(lr, ds[2*i+0].get(i0));\n if (i1 != -1) lr = op(lr, ds[2*i+1].get(i1));\n ds[i].set(ys[i].id(q),lr);\n }\n }\n T get(Idx p, Idx q){\n int ip = xs.contains_id(p);\n if (ip == -1) return e();\n int i = ip + siz;\n int iq = ys[i].contains_id(q);\n if (iq == -1) return e();\n return ds[i].get(iq);\n }\n T prod(Idx lp, Idx rp, Idx lq, Idx rq){\n T res = e();\n int li = xs.lb(lp), ri = xs.lb(rp);\n for (li += siz, ri += siz; li < ri; li >>= 1, ri >>= 1){\n if (li & 1) res = op(res,ds[li].prod(ys[li].lb(lq),ys[li].lb(rq))), ++li;\n if (ri & 1) --ri, res = op(res,ds[ri].prod(ys[ri].lb(lq),ys[ri].lb(rq)));\n }\n return res;\n }\n int siz;\n vector<pair<Idx,Idx>> ps;\n compress<Idx> xs;\n vector<compress<Idx>> ys;\n vector<DS> ds;\n};\n\n} // namespace noya2\n\nint op(int a, int b){\n return max(a,b);\n}\nint e(){\n return -iinf;\n}\n\nvoid solve(){\n int n; in(n);\n vector<int> a(n), b(n);\n rep(i,n) in(a[i],b[i]);\n vector<int> ids(n); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return a[l]+b[l] < a[r]+b[r];\n });\n range_tree<int,op,e,int> rt0, rt1;\n rep(i,n){\n rep(tt,2){\n rt0.join(a[i],b[i]);\n rt1.join(a[i],b[i]);\n swap(a[i],b[i]);\n }\n }\n rt0.build();\n rt1.build();\n int ans = 1;\n for (int i : ids){\n // out(i,a[i],b[i]);\n rep(tt,2){\n int d0 = max(rt0.prod(0,a[i],0,b[i]),0);\n rt1.set(a[i],b[i],d0+1);\n int d1 = max(rt1.prod(0,a[i],0,b[i]),0);\n rt0.set(a[i],b[i],d1+1);\n swap(a[i],b[i]);\n chmax(ans,d0+1);\n chmax(ans,d1+1);\n }\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.1891891891891892, "time_ms": 1150, "memory_kb": 120436, "score_of_the_acc": -1.5831, "final_rank": 20 }, { "submission_id": "aoj_2814_9117985", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\n#line 4 \"/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp\"\n\nnamespace noya2{\n\ntemplate<typename T> struct compress {\n vector<T> raws;\n compress(const vector<T> &raws_ = {}) : raws(raws_){ build(); }\n int id(const T &raw){ return lb(raw); }\n T raw(const int &id){ return raws[id]; }\n void build(){ uniq(raws); }\n void add(const T &raw){ raws.push_back(raw); }\n size_t size(){ return raws.size(); }\n int lb(const T &raw){ return lower_bound(all(raws),raw) - raws.begin(); }\n int ub(const T &raw){ return upper_bound(all(raws),raw) - raws.begin(); }\n bool contains(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size()) return raws[jd] == raw;\n return false;\n }\n int contains_id(const T &raw){\n int jd = lb(raw);\n if (jd < (int)size() && raws[jd] == raw) return jd;\n return -1;\n }\n};\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/segment_tree.hpp\"\n\nnamespace noya2{\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = 0;\n size = 1;\n while (size < _n) size <<= 1, log++;\n\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace noya2\n#line 7 \"c.cpp\"\n\n\nnamespace noya2 {\n\ntemplate<class S, S(*op)(S, S), S(*e)(), typename Idx = ll>\nstruct range_tree {\n using DS = segtree<S,op,e>;\n using T = int;\n void join(Idx x, Idx y){ ps.emplace_back(x,y); }\n void build(){\n for (auto &[x, y] : ps) xs.add(x);\n xs.build();\n //siz = bit_ceil(xs.size());\n siz = 1; while (siz < (int)(xs.size())) siz <<= 1;\n ys.resize(siz*2);\n for (auto &[x, y] : ps){\n int xid = xs.id(x) + siz;\n ys[xid].add(y);\n while (xid > 1){\n xid >>= 1;\n ys[xid].add(y);\n }\n }\n for (int i = 0; i < 2*siz; i++){\n ys[i].build();\n ds.emplace_back(ys[i].size());\n }\n }\n void set(Idx p, Idx q, T val){\n int i = xs.id(p) + siz;\n ds[i].set(ys[i].id(q),val);\n while (i > 1){\n i >>= 1;\n T lr = e();\n int i0 = ys[2*i+0].contains_id(q), i1 = ys[2*i+1].contains_id(q);\n if (i0 != -1) lr = op(lr, ds[2*i+0].get(i0));\n if (i1 != -1) lr = op(lr, ds[2*i+1].get(i1));\n ds[i].set(ys[i].id(q),lr);\n }\n }\n T get(Idx p, Idx q){\n int ip = xs.contains_id(p);\n if (ip == -1) return e();\n int i = ip + siz;\n int iq = ys[i].contains_id(q);\n if (iq == -1) return e();\n return ds[i].get(iq);\n }\n T prod(Idx lp, Idx rp, Idx lq, Idx rq){\n T res = e();\n int li = xs.lb(lp), ri = xs.lb(rp);\n for (li += siz, ri += siz; li < ri; li >>= 1, ri >>= 1){\n if (li & 1) res = op(res,ds[li].prod(ys[li].lb(lq),ys[li].lb(rq))), ++li;\n if (ri & 1) --ri, res = op(res,ds[ri].prod(ys[ri].lb(lq),ys[ri].lb(rq)));\n }\n return res;\n }\n int siz;\n vector<pair<Idx,Idx>> ps;\n compress<Idx> xs;\n vector<compress<Idx>> ys;\n vector<DS> ds;\n};\n\n} // namespace noya2\n\nint op(int a, int b){\n return max(a,b);\n}\nint e(){\n return -iinf;\n}\n\nvoid solve(){\n int n; in(n);\n vector<int> a(n), b(n);\n rep(i,n) in(a[i],b[i]);\n vector<int> ids(n); iota(all(ids),0);\n sort(all(ids),[&](int l, int r){\n return a[l]+b[l] < a[r]+b[r];\n });\n range_tree<int,op,e,int> rt0, rt1;\n rep(i,n){\n rep(tt,2){\n rt0.join(a[i],b[i]);\n rt1.join(a[i],b[i]);\n swap(a[i],b[i]);\n }\n }\n rt0.build();\n rt1.build();\n int ans = 1;\n for (int i : ids){\n // out(i,a[i],b[i]);\n rep(tt,2){\n int d0 = max(rt0.prod(0,a[i],0,b[i]),0);\n rt1.set(a[i],b[i],d0+1);\n int d1 = max(rt1.prod(0,a[i],0,b[i]),-1);\n rt0.set(a[i],b[i],d1+1);\n swap(a[i],b[i]);\n chmax(ans,d0+1);\n chmax(ans,d1+1);\n }\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.1891891891891892, "time_ms": 1140, "memory_kb": 120352, "score_of_the_acc": -1.5737, "final_rank": 19 }, { "submission_id": "aoj_2814_9117950", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\n#define rep(i,a,b) for(int i=a;i<b;i++)\n#define rrep(i,a,b) for(int i=a;i>=b;i--)\n#define fore(i,a) for(auto &i:a)\nusing V = ll;\nV comp(V& l, V& r) { return max(l, r); };\nstruct SegTree { //[l,r)\n int NV;\n vector<V> val;\n void init(int n) {\n NV = 1;\n while (NV < n) NV *= 2;\n val = vector<V>(NV * 2, 0);\n }\n V get(int x, int y, int l, int r, int k) {\n if (r <= x || y <= l) return 0;\n if (x <= l && r <= y) return val[k];\n auto a = get(x, y, l, (l + r) / 2, k * 2); auto b = get(x, y, (l + r) / 2, r, k * 2 + 1); return comp(a, b);\n }\n V get(int x, int y) { return get(x, y, 0, NV, 1); }\n void update(int i, V v) { i += NV; val[i] = v; while (i>1)i >>= 1, val[i] = comp(val[i * 2], val[i * 2 + 1]); }\n void add(int i, V v) { update(i, val[i + NV] + v); }\n V operator[](int x) { return get(x, x + 1); }\n};\n \nstruct Healthy2DSegTree {\n int NV;\n vector<SegTree> st;\n vector<vector<int>> index;\n \n void init(vector<vector<int>> &v) {\n int n = v.size();\n NV = 1; while (NV < n) NV *= 2;\n index.resize(2 * NV);\n rep(i, 0, n) fore(j, v[i]) index[i + NV].push_back(j);\n rrep(i, NV * 2 - 1, 1) {\n sort(index[i].begin(), index[i].end());\n index[i].erase(unique(index[i].begin(), index[i].end()), index[i].end());\n fore(j, index[i]) index[i / 2].push_back(j);\n }\n st.resize(2 * NV);\n rep(i, 1, NV * 2) st[i].init(index[i].size());\n }\n void update(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].update(yy, v);\n x >>= 1;\n }\n }\n void add(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].add(yy, v);\n x >>= 1;\n }\n }\n V get(int sx, int tx, int sy, int ty, int k, int l, int r) {\n assert(k < NV * 2);\n assert(l < r);\n if (r <= sx or tx <= l) return 0;\n if (sx <= l and r <= tx) {\n int syy = lower_bound(index[k].begin(), index[k].end(), sy) - index[k].begin();\n int tyy = lower_bound(index[k].begin(), index[k].end(), ty) - index[k].begin();\n return st[k].get(syy, tyy);\n }\n int md = (l + r) / 2;\n V le = get(sx, tx, sy, ty, k * 2, l, md);\n V ri = get(sx, tx, sy, ty, k * 2 + 1, md, r);\n return comp(le, ri);\n }\n V get(int sx, int tx, int sy, int ty) {\n return get(sx, tx, sy, ty, 1, 0, NV);\n }\n};\n\nmap<ll, ll> fr, to;\nHealthy2DSegTree st;\nvector<P> s, v;\nll n, ans;\nint main(){\n cin >> n;\n vector<vector<int>> ind(310000);\n REP(i, n){\n ll a, b;\n cin >> a >> b;\n s.push_back(P(a, b));\n }\n sort(ALL(s));\n s.erase(unique(ALL(s)), s.end());\n n = s.size();\n REP(i, n){\n\n v.push_back(P(s[i].first + s[i].second, i));\n fr[s[i].first]++;\n fr[ s[i].second]++;\n }\n ll cnt = 0;\n for (auto& i : fr) {\n i.second = cnt;\n to[cnt] = i.first;\n cnt++;\n }\n sort(ALL(v));\n REP(i, n){\n ind[fr[s[i].first]].push_back(fr[s[i].second]);\n ind[fr[s[i].second]].push_back(fr[s[i].first]);\n }\n st.init(ind);\n REP(i, n){\n //cout << s[v[i].second].first << \" \" << s[v[i].second].second << \" \" << fr[s[v[i].second].first] <<\" \" << fr[s[v[i].second].second] << \" \" << v[i].second << endl;\n ll x = st.get(0, fr[s[v[i].second].first], 0, fr[s[v[i].second].second]) + 1;\n ans = max(ans, x);\n st.add(fr[s[v[i].second].second], fr[s[v[i].second].first], x);\n }\n cout << ans << endl;\n}", "accuracy": 0.2972972972972973, "time_ms": 680, "memory_kb": 201916, "score_of_the_acc": -1.5747, "final_rank": 8 }, { "submission_id": "aoj_2814_9117942", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\n#define rep(i,a,b) for(int i=a;i<b;i++)\n#define rrep(i,a,b) for(int i=a;i>=b;i--)\n#define fore(i,a) for(auto &i:a)\nusing V = ll;\nV comp(V& l, V& r) { return max(l, r); };\nstruct SegTree { //[l,r)\n int NV;\n vector<V> val;\n void init(int n) {\n NV = 1;\n while (NV < n) NV *= 2;\n val = vector<V>(NV * 2, 0);\n }\n V get(int x, int y, int l, int r, int k) {\n if (r <= x || y <= l) return 0;\n if (x <= l && r <= y) return val[k];\n auto a = get(x, y, l, (l + r) / 2, k * 2); auto b = get(x, y, (l + r) / 2, r, k * 2 + 1); return comp(a, b);\n }\n V get(int x, int y) { return get(x, y, 0, NV, 1); }\n void update(int i, V v) { i += NV; val[i] = v; while (i>1)i >>= 1, val[i] = comp(val[i * 2], val[i * 2 + 1]); }\n void add(int i, V v) { update(i, val[i + NV] + v); }\n V operator[](int x) { return get(x, x + 1); }\n};\n \nstruct Healthy2DSegTree {\n int NV;\n vector<SegTree> st;\n vector<vector<int>> index;\n \n void init(vector<vector<int>> &v) {\n int n = v.size();\n NV = 1; while (NV < n) NV *= 2;\n index.resize(2 * NV);\n rep(i, 0, n) fore(j, v[i]) index[i + NV].push_back(j);\n rrep(i, NV * 2 - 1, 1) {\n sort(index[i].begin(), index[i].end());\n index[i].erase(unique(index[i].begin(), index[i].end()), index[i].end());\n fore(j, index[i]) index[i / 2].push_back(j);\n }\n st.resize(2 * NV);\n rep(i, 1, NV * 2) st[i].init(index[i].size());\n }\n void update(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].update(yy, v);\n x >>= 1;\n }\n }\n void add(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].add(yy, v);\n x >>= 1;\n }\n }\n V get(int sx, int tx, int sy, int ty, int k, int l, int r) {\n assert(k < NV * 2);\n assert(l < r);\n if (r <= sx or tx <= l) return 0;\n if (sx <= l and r <= tx) {\n int syy = lower_bound(index[k].begin(), index[k].end(), sy) - index[k].begin();\n int tyy = lower_bound(index[k].begin(), index[k].end(), ty) - index[k].begin();\n return st[k].get(syy, tyy);\n }\n int md = (l + r) / 2;\n V le = get(sx, tx, sy, ty, k * 2, l, md);\n V ri = get(sx, tx, sy, ty, k * 2 + 1, md, r);\n return comp(le, ri);\n }\n V get(int sx, int tx, int sy, int ty) {\n return get(sx, tx, sy, ty, 1, 0, NV);\n }\n};\n\nmap<ll, ll> fr, to;\nHealthy2DSegTree st;\nvector<P> s, v;\nll n, ans;\nint main(){\n cin >> n;\n vector<vector<int>> ind(310000);\n REP(i, n){\n ll a, b;\n cin >> a >> b;\n s.push_back(P(a, b));\n }\n sort(ALL(s));\n s.erase(unique(ALL(s)), s.end());\n n = s.size();\n REP(i, n){\n\n v.push_back(P(s[i].first + s[i].second, i));\n fr[s[i].first]++;\n fr[ s[i].second]++;\n }\n fr[0]++;\n ll cnt = 0;\n for (auto& i : fr) {\n i.second = cnt;\n to[cnt] = i.first;\n cnt++;\n }\n sort(ALL(v));\n REP(i, n){\n ind[fr[s[i].first]].push_back(fr[s[i].second]);\n ind[fr[s[i].second]].push_back(fr[s[i].first]);\n }\n st.init(ind);\n REP(i, n){\n //cout << s[v[i].second].first << \" \" << s[v[i].second].second << \" \" << fr[s[v[i].second].first] <<\" \" << fr[s[v[i].second].second] << \" \" << v[i].second << endl;\n ll x = st.get(0, fr[s[v[i].second].first], 0, fr[s[v[i].second].second]) + 1;\n ans = max(ans, x);\n st.add(fr[s[v[i].second].second], fr[s[v[i].second].first], x);\n }\n cout << ans << endl;\n}", "accuracy": 0.1891891891891892, "time_ms": 360, "memory_kb": 162168, "score_of_the_acc": -1.084, "final_rank": 15 }, { "submission_id": "aoj_2814_9117905", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\n#define rep(i,a,b) for(int i=a;i<b;i++)\n#define rrep(i,a,b) for(int i=a;i>=b;i--)\n#define fore(i,a) for(auto &i:a)\nusing V = ll;\nV comp(V& l, V& r) { return max(l, r); };\nstruct SegTree { //[l,r)\n int NV;\n vector<V> val;\n void init(int n) {\n NV = 1;\n while (NV < n) NV *= 2;\n val = vector<V>(NV * 2, 0);\n }\n V get(int x, int y, int l, int r, int k) {\n if (r <= x || y <= l) return 0;\n if (x <= l && r <= y) return val[k];\n auto a = get(x, y, l, (l + r) / 2, k * 2); auto b = get(x, y, (l + r) / 2, r, k * 2 + 1); return comp(a, b);\n }\n V get(int x, int y) { return get(x, y, 0, NV, 1); }\n void update(int i, V v) { i += NV; val[i] = v; while (i>1)i >>= 1, val[i] = comp(val[i * 2], val[i * 2 + 1]); }\n void add(int i, V v) { update(i, val[i + NV] + v); }\n V operator[](int x) { return get(x, x + 1); }\n};\n \nstruct Healthy2DSegTree {\n int NV;\n vector<SegTree> st;\n vector<vector<int>> index;\n \n void init(vector<vector<int>> &v) {\n int n = v.size();\n NV = 1; while (NV < n) NV *= 2;\n index.resize(2 * NV);\n rep(i, 0, n) fore(j, v[i]) index[i + NV].push_back(j);\n rrep(i, NV * 2 - 1, 1) {\n sort(index[i].begin(), index[i].end());\n index[i].erase(unique(index[i].begin(), index[i].end()), index[i].end());\n fore(j, index[i]) index[i / 2].push_back(j);\n }\n st.resize(2 * NV);\n rep(i, 1, NV * 2) st[i].init(index[i].size());\n }\n void update(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].update(yy, v);\n x >>= 1;\n }\n }\n void add(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].add(yy, v);\n x >>= 1;\n }\n }\n V get(int sx, int tx, int sy, int ty, int k, int l, int r) {\n assert(k < NV * 2);\n assert(l < r);\n if (r <= sx or tx <= l) return 0;\n if (sx <= l and r <= tx) {\n int syy = lower_bound(index[k].begin(), index[k].end(), sy) - index[k].begin();\n int tyy = lower_bound(index[k].begin(), index[k].end(), ty) - index[k].begin();\n return st[k].get(syy, tyy);\n }\n int md = (l + r) / 2;\n V le = get(sx, tx, sy, ty, k * 2, l, md);\n V ri = get(sx, tx, sy, ty, k * 2 + 1, md, r);\n return comp(le, ri);\n }\n V get(int sx, int tx, int sy, int ty) {\n return get(sx, tx, sy, ty, 1, 0, NV);\n }\n};\n\nmap<ll, ll> fr, to;\nHealthy2DSegTree st;\nvector<P> s, v;\nll n, ans;\nint main(){\n cin >> n;\n vector<vector<int>> ind(310000);\n REP(i, n){\n ll a, b;\n cin >> a >> b;\n s.push_back(P(a, b));\n v.push_back(P(a + b, i));\n fr[a]++;\n fr[b]++;\n }\n ll cnt = 1;\n for (auto& i : fr) {\n i.second = cnt;\n to[cnt] = i.first;\n cnt++;\n }\n sort(ALL(v));\n REP(i, n){\n ind[fr[s[i].first]].push_back(fr[s[i].second]);\n ind[fr[s[i].second]].push_back(fr[s[i].first]);\n }\n st.init(ind);\n REP(i, n){\n //cout << s[v[i].second].first << \" \" << s[v[i].second].second << \" \" << fr[s[v[i].second].first] <<\" \" << fr[s[v[i].second].second] << \" \" << v[i].second << endl;\n ll x = st.get(0, fr[s[v[i].second].first], 0, fr[s[v[i].second].second]) + 1;\n ans = max(ans, x);\n st.add(fr[s[v[i].second].second], fr[s[v[i].second].first], x);\n }\n cout << ans << endl;\n}", "accuracy": 0.1891891891891892, "time_ms": 380, "memory_kb": 162136, "score_of_the_acc": -1.1018, "final_rank": 16 }, { "submission_id": "aoj_2814_9117854", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\n#define rep(i,a,b) for(int i=a;i<b;i++)\n#define rrep(i,a,b) for(int i=a;i>=b;i--)\n#define fore(i,a) for(auto &i:a)\nusing V = ll;\nV comp(V& l, V& r) { return max(l, r); };\nstruct SegTree { //[l,r)\n int NV;\n vector<V> val;\n void init(int n) {\n NV = 1;\n while (NV < n) NV *= 2;\n val = vector<V>(NV * 2, 0);\n }\n V get(int x, int y, int l, int r, int k) {\n if (r <= x || y <= l) return 0;\n if (x <= l && r <= y) return val[k];\n auto a = get(x, y, l, (l + r) / 2, k * 2); auto b = get(x, y, (l + r) / 2, r, k * 2 + 1); return comp(a, b);\n }\n V get(int x, int y) { return get(x, y, 0, NV, 1); }\n void update(int i, V v) { i += NV; val[i] = v; while (i>1)i >>= 1, val[i] = comp(val[i * 2], val[i * 2 + 1]); }\n void add(int i, V v) { update(i, val[i + NV] + v); }\n V operator[](int x) { return get(x, x + 1); }\n};\n \nstruct Healthy2DSegTree {\n int NV;\n vector<SegTree> st;\n vector<vector<int>> index;\n \n void init(vector<vector<int>> &v) {\n int n = v.size();\n NV = 1; while (NV < n) NV *= 2;\n index.resize(2 * NV);\n rep(i, 0, n) fore(j, v[i]) index[i + NV].push_back(j);\n rrep(i, NV * 2 - 1, 1) {\n sort(index[i].begin(), index[i].end());\n index[i].erase(unique(index[i].begin(), index[i].end()), index[i].end());\n fore(j, index[i]) index[i / 2].push_back(j);\n }\n st.resize(2 * NV);\n rep(i, 1, NV * 2) st[i].init(index[i].size());\n }\n void update(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].update(yy, v);\n x >>= 1;\n }\n }\n void add(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].add(yy, v);\n x >>= 1;\n }\n }\n V get(int sx, int tx, int sy, int ty, int k, int l, int r) {\n assert(k < NV * 2);\n assert(l < r);\n if (r <= sx or tx <= l) return 0;\n if (sx <= l and r <= tx) {\n int syy = lower_bound(index[k].begin(), index[k].end(), sy) - index[k].begin();\n int tyy = lower_bound(index[k].begin(), index[k].end(), ty) - index[k].begin();\n return st[k].get(syy, tyy);\n }\n int md = (l + r) / 2;\n V le = get(sx, tx, sy, ty, k * 2, l, md);\n V ri = get(sx, tx, sy, ty, k * 2 + 1, md, r);\n return comp(le, ri);\n }\n V get(int sx, int tx, int sy, int ty) {\n return get(sx, tx, sy, ty, 1, 0, NV);\n }\n};\n\nmap<ll, ll> fr, to;\nHealthy2DSegTree st;\nvector<P> s, v;\nll n, ans;\nint main(){\n cin >> n;\n vector<vector<int>> ind(410000);\n REP(i, n){\n ll a, b;\n cin >> a >> b;\n s.push_back(P(a, b));\n v.push_back(P(a + b, i));\n fr[a]++;\n fr[b]++;\n }\n ll cnt = 1;\n for (auto& i : fr) {\n i.second = cnt;\n to[cnt] = i.first;\n cnt++;\n }\n sort(ALL(v));\n REP(i, n){\n ind[fr[s[i].first]].push_back(fr[s[i].second]);\n ind[fr[s[i].second]].push_back(fr[s[i].first]);\n }\n st.init(ind);\n REP(i, n){\n //cout << s[v[i].second].first << \" \" << s[v[i].second].second << \" \" << fr[s[v[i].second].first] <<\" \" << fr[s[v[i].second].second] << \" \" << v[i].second << endl;\n ll x = st.get(0, fr[s[v[i].second].first], 0, fr[s[v[i].second].second]) + 1;\n ans = max(ans, x);\n st.add(fr[s[v[i].second].second], fr[s[v[i].second].first], x);\n }\n cout << ans << endl;\n}", "accuracy": 0.1891891891891892, "time_ms": 370, "memory_kb": 164508, "score_of_the_acc": -1.1049, "final_rank": 17 }, { "submission_id": "aoj_2814_9117819", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\n#define rep(i,a,b) for(int i=a;i<b;i++)\n#define rrep(i,a,b) for(int i=a;i>=b;i--)\n#define fore(i,a) for(auto &i:a)\nusing V = ll;\nV comp(V& l, V& r) { return max(l, r); };\nstruct SegTree { //[l,r)\n int NV;\n vector<V> val;\n void init(int n) {\n NV = 1;\n while (NV < n) NV *= 2;\n val = vector<V>(NV * 2, 0);\n }\n V get(int x, int y, int l, int r, int k) {\n if (r <= x || y <= l) return 0;\n if (x <= l && r <= y) return val[k];\n auto a = get(x, y, l, (l + r) / 2, k * 2); auto b = get(x, y, (l + r) / 2, r, k * 2 + 1); return comp(a, b);\n }\n V get(int x, int y) { return get(x, y, 0, NV, 1); }\n void update(int i, V v) { i += NV; val[i] = v; while (i>1)i >>= 1, val[i] = comp(val[i * 2], val[i * 2 + 1]); }\n void add(int i, V v) { update(i, val[i + NV] + v); }\n V operator[](int x) { return get(x, x + 1); }\n};\n \nstruct Healthy2DSegTree {\n int NV;\n vector<SegTree> st;\n vector<vector<int>> index;\n \n void init(vector<vector<int>> &v) {\n int n = v.size();\n NV = 1; while (NV < n) NV *= 2;\n index.resize(2 * NV);\n rep(i, 0, n) fore(j, v[i]) index[i + NV].push_back(j);\n rrep(i, NV * 2 - 1, 1) {\n sort(index[i].begin(), index[i].end());\n index[i].erase(unique(index[i].begin(), index[i].end()), index[i].end());\n fore(j, index[i]) index[i / 2].push_back(j);\n }\n st.resize(2 * NV);\n rep(i, 1, NV * 2) st[i].init(index[i].size());\n }\n void update(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].update(yy, v);\n x >>= 1;\n }\n }\n void add(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].add(yy, v);\n x >>= 1;\n }\n }\n V get(int sx, int tx, int sy, int ty, int k, int l, int r) {\n assert(k < NV * 2);\n assert(l < r);\n if (r <= sx or tx <= l) return 0;\n if (sx <= l and r <= tx) {\n int syy = lower_bound(index[k].begin(), index[k].end(), sy) - index[k].begin();\n int tyy = lower_bound(index[k].begin(), index[k].end(), ty) - index[k].begin();\n return st[k].get(syy, tyy);\n }\n int md = (l + r) / 2;\n V le = get(sx, tx, sy, ty, k * 2, l, md);\n V ri = get(sx, tx, sy, ty, k * 2 + 1, md, r);\n return comp(le, ri);\n }\n V get(int sx, int tx, int sy, int ty) {\n return get(sx, tx, sy, ty, 1, 0, NV);\n }\n};\n\nmap<ll, ll> fr, to;\nHealthy2DSegTree st;\nvector<P> s, v;\nll n, ans;\nint main(){\n cin >> n;\n vector<vector<int>> ind(310000);\n REP(i, n){\n ll a, b;\n cin >> a >> b;\n s.push_back(P(a, b));\n v.push_back(P(a + b, i));\n fr[a]++;\n fr[b]++;\n }\n ll cnt = 0;\n for (auto& i : fr) {\n i.second = cnt;\n to[cnt] = i.first;\n cnt++;\n }\n sort(ALL(v));\n REP(i, n){\n ind[fr[s[i].first]].push_back(fr[s[i].second]);\n ind[fr[s[i].second]].push_back(fr[s[i].first]);\n }\n st.init(ind);\n REP(i, n){\n //cout << s[v[i].second].first << \" \" << s[v[i].second].second << \" \" << fr[s[v[i].second].first] <<\" \" << fr[s[v[i].second].second] << \" \" << v[i].second << endl;\n ll x = st.get(0, fr[s[v[i].second].first], 0, fr[s[v[i].second].second]) + 1;\n ans = max(ans, x);\n st.add(fr[s[v[i].second].second], fr[s[v[i].second].first], x);\n }\n cout << ans << endl;\n}", "accuracy": 0.2972972972972973, "time_ms": 700, "memory_kb": 201960, "score_of_the_acc": -1.593, "final_rank": 10 }, { "submission_id": "aoj_2814_9117815", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n#define REP(i, n) for(ll i = 0;i < n;i++)\n#define REPR(i, n) for(ll i = n;i >= 0;i--)\n#define FOR(i, m, n) for(ll i = m;i < n;i++)\n#define FORR(i, m, n) for(ll i = m;i >= n;i--)\n#define REPO(i, n) for(ll i = 1;i <= n;i++)\n#define ll long long\n#define INF (ll)1ll << 60\n#define MINF (-1 * INF)\n#define ALL(n) n.begin(),n.end()\n#define MOD (ll)1000000007\n#define P pair<ll, ll>\n\n#define rep(i,a,b) for(int i=a;i<b;i++)\n#define rrep(i,a,b) for(int i=a;i>=b;i--)\n#define fore(i,a) for(auto &i:a)\nusing V = ll;\nV comp(V& l, V& r) { return max(l, r); };\nstruct SegTree { //[l,r)\n int NV;\n vector<V> val;\n void init(int n) {\n NV = 1;\n while (NV < n) NV *= 2;\n val = vector<V>(NV * 2, 0);\n }\n V get(int x, int y, int l, int r, int k) {\n if (r <= x || y <= l) return 0;\n if (x <= l && r <= y) return val[k];\n auto a = get(x, y, l, (l + r) / 2, k * 2); auto b = get(x, y, (l + r) / 2, r, k * 2 + 1); return comp(a, b);\n }\n V get(int x, int y) { return get(x, y, 0, NV, 1); }\n void update(int i, V v) { i += NV; val[i] = v; while (i>1)i >>= 1, val[i] = comp(val[i * 2], val[i * 2 + 1]); }\n void add(int i, V v) { update(i, val[i + NV] + v); }\n V operator[](int x) { return get(x, x + 1); }\n};\n \nstruct Healthy2DSegTree {\n int NV;\n vector<SegTree> st;\n vector<vector<int>> index;\n \n void init(vector<vector<int>> &v) {\n int n = v.size();\n NV = 1; while (NV < n) NV *= 2;\n index.resize(2 * NV);\n rep(i, 0, n) fore(j, v[i]) index[i + NV].push_back(j);\n rrep(i, NV * 2 - 1, 1) {\n sort(index[i].begin(), index[i].end());\n index[i].erase(unique(index[i].begin(), index[i].end()), index[i].end());\n fore(j, index[i]) index[i / 2].push_back(j);\n }\n st.resize(2 * NV);\n rep(i, 1, NV * 2) st[i].init(index[i].size());\n }\n void update(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].update(yy, v);\n x >>= 1;\n }\n }\n void add(int x, int y, V v) {\n assert(x < NV);\n x += NV;\n while (x) {\n int yy = lower_bound(index[x].begin(), index[x].end(), y) - index[x].begin();\n assert(yy != index[x].size());\n assert(y == index[x][yy]);\n st[x].add(yy, v);\n x >>= 1;\n }\n }\n V get(int sx, int tx, int sy, int ty, int k, int l, int r) {\n assert(k < NV * 2);\n assert(l < r);\n if (r <= sx or tx <= l) return 0;\n if (sx <= l and r <= tx) {\n int syy = lower_bound(index[k].begin(), index[k].end(), sy) - index[k].begin();\n int tyy = lower_bound(index[k].begin(), index[k].end(), ty) - index[k].begin();\n return st[k].get(syy, tyy);\n }\n int md = (l + r) / 2;\n V le = get(sx, tx, sy, ty, k * 2, l, md);\n V ri = get(sx, tx, sy, ty, k * 2 + 1, md, r);\n return comp(le, ri);\n }\n V get(int sx, int tx, int sy, int ty) {\n return get(sx, tx, sy, ty, 1, 0, NV);\n }\n};\n\nmap<ll, ll> fr, to;\nHealthy2DSegTree st;\nvector<P> s, v;\nll n, ans;\nint main(){\n cin >> n;\n vector<vector<int>> ind(110000);\n REP(i, n){\n ll a, b;\n cin >> a >> b;\n s.push_back(P(a, b));\n v.push_back(P(a + b, i));\n fr[a]++;\n fr[b]++;\n }\n ll cnt = 0;\n for (auto& i : fr) {\n i.second = cnt;\n to[cnt] = i.first;\n cnt++;\n }\n sort(ALL(v));\n REP(i, n){\n ind[fr[s[i].first]].push_back(fr[s[i].second]);\n ind[fr[s[i].second]].push_back(fr[s[i].first]);\n }\n st.init(ind);\n REP(i, n){\n //cout << s[v[i].second].first << \" \" << s[v[i].second].second << \" \" << fr[s[v[i].second].first] <<\" \" << fr[s[v[i].second].second] << \" \" << v[i].second << endl;\n ll x = st.get(0, fr[s[v[i].second].first], 0, fr[s[v[i].second].second]) + 1;\n ans = max(ans, x);\n st.add(fr[s[v[i].second].second], fr[s[v[i].second].first], x);\n }\n cout << ans << endl;\n}", "accuracy": 0.2972972972972973, "time_ms": 310, "memory_kb": 84912, "score_of_the_acc": -0.6454, "final_rank": 7 }, { "submission_id": "aoj_2814_5967500", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nconst vector<int> dy={-1,0,1,0},dx={0,-1,0,1};\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(20);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\ntemplate <typename T>\nstruct ST{//1index query l,r lが開区間\n using F = function<T(T,T)>;\n int n;\n F f;\n T ti;\n vector<T> dat;\n ST(){};\n ST(F f,T ti):f(f),ti(ti){}\n void init(int n_){ \n n=1;\n while(n<n_) n<<=1;\n dat.assign(n<<1,ti);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n void set_val(int k,T x){//kは0-index\n dat[k+=n]=x;\n while(k>>=1)\n dat[k]=f(dat[(k<<1)|0],dat[(k<<1)|1]); \n }\n T query(int a,int b){\n T vl=ti,vr=ti;\n for(int l=a+n,r=b+n;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,dat[l++]);\n if(r&1) vr=f(dat[--r],vr);\n }\n return f(vl,vr);\n }\n};\nstruct dat{\n ll a,b,id;\n dat(ll a,ll b,ll id):a(a),b(b),id(id){}\n};\nint main(){\n int n;\n cin >> n;\n V<int> A(n),B(n);\n map<int,int> mp;\n V<dat> d;\n for(int i=0;i<n;i++){\n cin >> A[i] >> B[i];\n mp[A[i]];mp[B[i]];\n d.emplace_back(A[i],B[i],0ll);\n d.emplace_back(B[i],A[i],1ll);\n }\n sort(all(d),[](auto a,auto b){\n if(a.a!=b.a)return a.a<b.a;\n return a.b<b.b;\n });\n int num=0;\n for(auto &p:mp){\n p.se=num++;\n }\n auto f=[&](ll a,ll b){\n return max(a,b);\n };\n ST<ll> dp1(f,0),dp2(f,0);\n dp1.init(num+5);\n dp2.init(num+5);\n V<dat> tmp;\n int bfo=-1;\n for(int i=0;i<2*n;i++){\n auto [a,b,id]=d[i];\n if(bfo!=a){\n for(auto [ind,v,id]:tmp){\n if(id==0){\n dp2.set_val(ind,v);\n }else{\n dp1.set_val(ind,v); \n }\n }\n tmp.clear();\n bfo=a;\n }\n if(id==0){\n ll v=dp1.query(0,mp[b])+1;\n ll u=dp2.query(mp[b],mp[b]+1);\n tmp.emplace_back(mp[b],max(v,u),0);\n }else{\n ll v=dp2.query(0,mp[b])+1;\n ll u=dp1.query(mp[b],mp[b]+1);\n tmp.emplace_back(mp[b],max(v,u),1); \n }\n }\n for(auto [ind,v,id]:tmp){\n if(id==0){\n dp2.set_val(ind,v);\n }else{\n dp1.set_val(ind,v); \n }\n }\n cout<<max(dp1.query(0,num+5),dp2.query(0,num+5))<<\"\\n\";\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 27368, "score_of_the_acc": -0.2621, "final_rank": 6 }, { "submission_id": "aoj_2814_5967477", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nconst vector<int> dy={-1,0,1,0},dx={0,-1,0,1};\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(20);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\ntemplate <typename T>\nstruct ST{//1index query l,r lが開区間\n using F = function<T(T,T)>;\n int n;\n F f;\n T ti;\n vector<T> dat;\n ST(){};\n ST(F f,T ti):f(f),ti(ti){}\n void init(int n_){ \n n=1;\n while(n<n_) n<<=1;\n dat.assign(n<<1,ti);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n void set_val(int k,T x){//kは0-index\n dat[k+=n]=x;\n while(k>>=1)\n dat[k]=f(dat[(k<<1)|0],dat[(k<<1)|1]); \n }\n T query(int a,int b){\n T vl=ti,vr=ti;\n for(int l=a+n,r=b+n;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,dat[l++]);\n if(r&1) vr=f(dat[--r],vr);\n }\n return f(vl,vr);\n }\n};\nstruct dat{\n ll a,b,id;\n dat(ll a,ll b,ll id):a(a),b(b),id(id){}\n};\nint main(){\n int n;\n cin >> n;\n V<int> A(n),B(n);\n map<int,int> mp;\n V<dat> d;\n for(int i=0;i<n;i++){\n cin >> A[i] >> B[i];\n mp[A[i]];mp[B[i]];\n d.emplace_back(A[i],B[i],0ll);\n d.emplace_back(B[i],A[i],1ll);\n }\n sort(all(d),[](auto a,auto b){\n if(a.a!=b.a)return a.a<b.a;\n return a.b<b.b;\n });\n int num=0;\n for(auto &p:mp){\n p.se=num++;\n }\n auto f=[&](ll a,ll b){\n return max(a,b);\n };\n ST<ll> dp1(f,0),dp2(f,0);\n dp1.init(num+5);\n dp2.init(num+5);\n for(int i=0;i<2*n;i++){\n auto [a,b,id]=d[i];\n if(id==0){\n ll v=dp1.query(0,mp[b])+1;\n ll u=dp2.query(mp[b],mp[b]+1);\n dp2.set_val(mp[b],max(v,u));\n }else{\n ll v=dp2.query(0,mp[b])+1;\n ll u=dp1.query(mp[b],mp[b]+1);\n dp1.set_val(mp[b],max(v,u)); \n }\n }\n cout<<max(dp1.query(0,num+5),dp2.query(0,num+5))<<\"\\n\";\n}", "accuracy": 0.1891891891891892, "time_ms": 100, "memory_kb": 18624, "score_of_the_acc": -0.1185, "final_rank": 13 }, { "submission_id": "aoj_2814_5967369", "code_snippet": "//#pragma GCC optimize(\"Ofast\")\n//#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n\n//#include <atcoder/modint>\nusing namespace std;\n//using namespace atcoder;\n\nusing ll = long long;\nusing ull = unsigned long long;\nusing pii = pair<int, int>;\ntemplate <class T>\nusing V = vector<T>;\ntemplate <class T>\nusing VV = V<V<T>>;\ntemplate <class T>\nV<T> make_vec(size_t a) {\n return V<T>(a);\n}\ntemplate <class T, class... Ts>\nauto make_vec(size_t a, Ts... ts) {\n return V<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));\n}\n\n#define pb push_back\n#define eb emplace_back\n#define mp make_pair\n#define fi first\n#define se second\n#define rep(i, n) rep2(i, 0, n)\n#define rep2(i, m, n) for (int i = m; i < (n); i++)\n#define per(i, b) per2(i, 0, b)\n#define per2(i, a, b) for (int i = int(b) - 1; i >= int(a); i--)\n#define ALL(c) (c).begin(), (c).end()\n#define SZ(x) ((int)(x).size())\n#define all(x) x.begin(),x.end()\n\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\n\ntemplate <class T, class U>\nvoid chmin(T& t, const U& u) {\n if (t > u) t = u;\n}\ntemplate <class T, class U>\nvoid chmax(T& t, const U& u) {\n if (t < u) t = u;\n}\n\ntemplate <class T, class U>\nostream& operator<<(ostream& os, const pair<T, U>& p) {\n os << \"(\" << p.first << \",\" << p.second << \")\";\n return os;\n}\n\ntemplate <class T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"{\";\n rep(i, v.size()) {\n if (i) os << \",\";\n os << v[i];\n }\n os << \"}\";\n return os;\n}\n\n#ifdef LOCAL\nvoid debug_out() { cerr << endl; }\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << H;\n debug_out(T...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nconstexpr int INF = TEN(9);\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int N;\n cin >> N;\n int M=2*N;\n int A[N],B[N];\n rep(i,N) cin >> A[i] >> B[i];\n set<int> apr;\n rep(i,N) apr.insert(A[i]),apr.insert(B[i]);\n vector<int> res;\n for(auto e:apr) res.push_back(e);\n rep(i,N){\n A[i]=lower_bound(all(res),A[i])-res.begin();\n B[i]=lower_bound(all(res),B[i])-res.begin();\n A[i]++;\n B[i]++;\n }\n V<pii> vec;\n rep(i, N) {\n vec.push_back(mp(A[i], -B[i]));\n vec.push_back(mp(B[i],-A[i]));\n }\n sort(ALL(vec));\n V<int> dp(M + 1, INF);\n dp[0] = 0;\n\n for (auto& [a, b] : vec) {\n auto it = lower_bound(ALL(dp), -b);\n *it = -b;\n }\n cout << lower_bound(ALL(dp), INF) - dp.begin() - 1 << endl;\n\n return 0;\n}", "accuracy": 0.1891891891891892, "time_ms": 40, "memory_kb": 11276, "score_of_the_acc": -0.027, "final_rank": 11 }, { "submission_id": "aoj_2814_3992941", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nconst ll INF = 1LL << 60;\ntemplate<typename T> void chmin(T &a, T b) { a = min(a, b); }\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<pair<int, int>>v(N);\n\tvector<pair<int, int>>w(N);\n\tfor (auto &i : v)cin >> i.first >> i.second;\n\tfor (int i = 0; i < N; i++) {\n\t\tw[i] = { v[i].second,v[i].first };\n\t}\n\tsort(v.begin(), v.end());\n\tsort(w.begin(), w.end());\n\tint vindex = 0, windex = 0;\n\tvector<int>vused(N + 2);\n\tvector<int>wused(N + 2);\n\tset<pair<int, pair<int, int>>>vyoyaku;\n\tset<pair<int, pair<int, int>>>wyoyaku;\n\tset<pair<int, int>>vkouho;\n\tset<pair<int, int>>wkouho;\n\tvkouho.insert({ 0,1 });\n\tint ans = 0;\n\twhile (vindex < N || windex < N) {\n\t\t//cout << vindex << \" \" << windex << endl;\n\t\tint nx = 0;\n\t\tif (vindex == N)nx = 1;\n\t\telse if (windex<N&&v[vindex].first>w[windex].first)nx = 1;\n\t\t//cout << vindex << \" \" << windex << \" \" << nx << endl;\n\t\tif (nx == 0) {// use v\n\t\t\t\t\t //\tcout << \"vvvvvv\" << endl;\n\t\t\twhile (!vyoyaku.empty() && vyoyaku.begin()->first <= v[vindex].first) {\n\t\t\t\tauto box = vyoyaku.begin()->second;\n\t\t\t\tvyoyaku.erase(vyoyaku.begin());\n\n\t\t\t\tif (vused[box.second]) {\n\t\t\t\t\tif (vused[box.second]>box.first) {\n\t\t\t\t\t\tvkouho.insert(box);\n\t\t\t\t\t\tvkouho.erase({ vused[box.second],box.second });\n\t\t\t\t\t\tvused[box.second] = box.first;\n\t\t\t\t\t}\n\t\t\t\t\tauto it = vkouho.find(box);\n\t\t\t\t\twhile (it != vkouho.begin() && prev(it)->first >= box.first) {\n\t\t\t\t\t\tvused[prev(it)->second] = 0;\n\t\t\t\t\t\tvkouho.erase(prev(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tauto nx = vkouho.lower_bound(box);\n\t\t\t\t\tif (nx != vkouho.begin() && prev(nx)->second >= box.second)continue;\n\t\t\t\t\tvkouho.insert(box);\n\t\t\t\t\tauto it = vkouho.find(box);\n\t\t\t\t\twhile (next(it) != vkouho.end() && next(it)->second <= box.second) {\n\t\t\t\t\t\tvused[next(it)->second] = 0;\n\t\t\t\t\t\tvkouho.erase(next(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\tauto it = vkouho.lower_bound({ v[vindex].second,MOD });\n\t\t\tif (it == vkouho.begin()) {\n\t\t\t\tvindex++;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tit = prev(it);\n\t\t\tint score = it->second;\n\t\t\t//\tcout << v[vindex].first << \" \" << v[vindex].second << \" \" << score << endl;\n\t\t\tans = max(ans, score);\n\t\t\twyoyaku.insert({ v[vindex].first+1,{ v[vindex].second + 1,score + 1 } });\n\t\t\tvindex++;\n\t\t}\n\t\telse {//use w\n\t\t\t //cout << w[windex].first << \" \" << wyoyaku.size() << endl;\n\t\t\twhile (!wyoyaku.empty() && wyoyaku.begin()->first <= w[windex].first) {\n\t\t\t\tauto box = wyoyaku.begin()->second;\n\t\t\t\twyoyaku.erase(wyoyaku.begin());\n\n\t\t\t\tif (wused[box.second]) {\n\t\t\t\t\tif (wused[box.second]>box.first) {\n\t\t\t\t\t\twkouho.insert(box);\n\t\t\t\t\t\twkouho.erase({ wused[box.second],box.second });\n\t\t\t\t\t\twused[box.second] = box.first;\n\t\t\t\t\t}\n\t\t\t\t\tauto it = wkouho.find(box);\n\t\t\t\t\twhile (it != wkouho.begin() && prev(it)->first >= box.first) {\n\t\t\t\t\t\twused[prev(it)->second] = 0;\n\t\t\t\t\t\twkouho.erase(prev(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tauto nx = wkouho.lower_bound(box);\n\t\t\t\t\tif (nx != wkouho.begin() && prev(nx)->second >= box.second)continue;\n\t\t\t\t\twkouho.insert(box);\n\t\t\t\t\tauto it = wkouho.find(box);\n\t\t\t\t\twhile (next(it) != wkouho.end() && next(it)->second <= box.second) {\n\t\t\t\t\t\twused[next(it)->second] = 0;\n\t\t\t\t\t\twkouho.erase(next(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\t\t\t//\tcout << \"hihihh\" << endl;\n\t\t\t//\tcout <<\"wwwwww \"<< w[windex].first << \" \" << w[windex].second << \" \" << wkouho.size() << endl;\n\t\t\tauto it = wkouho.lower_bound({ w[windex].second,MOD });\n\t\t\tif (it == wkouho.begin()) {\n\t\t\t\twindex++;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tit = prev(it);\n\t\t\tint score = it->second;\n\t\t\t//\tcout << w[windex].first << \" \" << w[windex].second << \" \" << score << endl;\n\t\t\tans = max(ans, score);\n\t\t\tvyoyaku.insert({ w[windex].first+1,{ w[windex].second + 1,score + 1 } });\n\t\t\twindex++;\n\t\t}\n\n\n\t}\n\tcout << ans << endl;\n\t//cin >> N;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 9876, "score_of_the_acc": -0.0739, "final_rank": 4 }, { "submission_id": "aoj_2814_3991770", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nconst ll INF = 1LL << 60;\ntemplate<typename T> void chmin(T &a, T b) { a = min(a, b); }\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<pair<int, int>>v(N);\n\tvector<pair<int, int>>w(N);\n\tfor (auto &i : v)cin >> i.first >> i.second;\n\tfor (int i = 0; i < N; i++) {\n\t\tw[i] = { v[i].second,v[i].first };\n\t}\n\tsort(v.begin(), v.end());\n\tsort(w.begin(), w.end());\n\tint vindex = 0, windex = 0;\n\tvector<int>vused(N + 2);\n\tvector<int>wused(N + 2);\n\tset<pair<int, pair<int, int>>>vyoyaku;\n\tset<pair<int, pair<int, int>>>wyoyaku;\n\tset<pair<int, int>>vkouho;\n\tset<pair<int, int>>wkouho;\n\tvkouho.insert({ 0,1 });\n\tint ans = 0;\n\twhile (vindex < N || windex < N) {\n\t\t//cout << vindex << \" \" << windex << endl;\n\t\tint nx = 0;\n\t\tif (vindex == N)nx = 1;\n\t\telse if (windex<N&&v[vindex].first>w[windex].first)nx = 1;\n\t\t//cout << vindex << \" \" << windex << \" \" << nx << endl;\n\t\tif (nx == 0) {// use v\n\t\t\t\t\t //\tcout << \"vvvvvv\" << endl;\n\t\t\twhile (!vyoyaku.empty() && vyoyaku.begin()->first <= v[vindex].first) {\n\t\t\t\tauto box = vyoyaku.begin()->second;\n\t\t\t\tvyoyaku.erase(vyoyaku.begin());\n\n\t\t\t\tif (vused[box.second]) {\n\t\t\t\t\tif (vused[box.second]>box.first) {\n\t\t\t\t\t\tvkouho.insert(box);\n\t\t\t\t\t\tvkouho.erase({ vused[box.second],box.second });\n\t\t\t\t\t\tvused[box.second] = box.first;\n\t\t\t\t\t}\n\t\t\t\t\tauto it = vkouho.find(box);\n\t\t\t\t\twhile (it != vkouho.begin() && prev(it)->first >= box.first) {\n\t\t\t\t\t\tvused[prev(it)->second] = 0;\n\t\t\t\t\t\tvkouho.erase(prev(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tauto nx = vkouho.lower_bound(box);\n\t\t\t\t\tif (nx != vkouho.begin() && prev(nx)->second >= box.second)continue;\n\t\t\t\t\tvkouho.insert(box);\n\t\t\t\t\tauto it = vkouho.find(box);\n\t\t\t\t\twhile (next(it) != vkouho.end() && next(it)->second <= box.second) {\n\t\t\t\t\t\tvused[next(it)->second] = 0;\n\t\t\t\t\t\tvkouho.erase(next(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\tauto it = vkouho.lower_bound({ v[vindex].second,MOD });\n\t\t\tif (it == vkouho.begin()) {\n\t\t\t\tvindex++;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tit = prev(it);\n\t\t\tint score = it->second;\n\t\t\t//\tcout << v[vindex].first << \" \" << v[vindex].second << \" \" << score << endl;\n\t\t\tans = max(ans, score);\n\t\t\twyoyaku.insert({ v[vindex].first+1,{ v[vindex].second + 1,score + 1 } });\n\t\t\tvindex++;\n\t\t}\n\t\telse {//use w\n\t\t\t //cout << w[windex].first << \" \" << wyoyaku.size() << endl;\n\t\t\twhile (!wyoyaku.empty() && wyoyaku.begin()->first <= w[windex].first) {\n\t\t\t\tauto box = wyoyaku.begin()->second;\n\t\t\t\twyoyaku.erase(wyoyaku.begin());\n\n\t\t\t\tif (wused[box.second]) {\n\t\t\t\t\tif (wused[box.second]>box.first) {\n\t\t\t\t\t\twkouho.insert(box);\n\t\t\t\t\t\twkouho.erase({ wused[box.second],box.second });\n\t\t\t\t\t\twused[box.second] = box.first;\n\t\t\t\t\t}\n\t\t\t\t\tauto it = wkouho.find(box);\n\t\t\t\t\twhile (it != wkouho.begin() && prev(it)->first >= box.first) {\n\t\t\t\t\t\twused[prev(it)->second] = 0;\n\t\t\t\t\t\twkouho.erase(prev(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tauto nx = wkouho.lower_bound(box);\n\t\t\t\t\tif (nx != wkouho.begin() && prev(nx)->second >= box.second)continue;\n\t\t\t\t\twkouho.insert(box);\n\t\t\t\t\tauto it = wkouho.find(box);\n\t\t\t\t\twhile (next(it) != wkouho.end() && next(it)->second <= box.second) {\n\t\t\t\t\t\twused[next(it)->second] = 0;\n\t\t\t\t\t\twkouho.erase(next(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\t\t\t//\tcout << \"hihihh\" << endl;\n\t\t\t//\tcout <<\"wwwwww \"<< w[windex].first << \" \" << w[windex].second << \" \" << wkouho.size() << endl;\n\t\t\tauto it = wkouho.lower_bound({ w[windex].second,MOD });\n\t\t\tif (it == wkouho.begin()) {\n\t\t\t\twindex++;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tit = prev(it);\n\t\t\tint score = it->second;\n\t\t\t//\tcout << w[windex].first << \" \" << w[windex].second << \" \" << score << endl;\n\t\t\tans = max(ans, score);\n\t\t\tvyoyaku.insert({ w[windex].first+1,{ w[windex].second + 1,score + 1 } });\n\t\t\twindex++;\n\t\t}\n\n\n\t}\n\tcout << ans << endl;\n\t//cin >> N;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 9872, "score_of_the_acc": -0.0739, "final_rank": 3 }, { "submission_id": "aoj_2814_3991748", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nconst ll INF = 1LL << 60;\ntemplate<typename T> void chmin(T &a, T b) { a = min(a, b); }\n\nint main() {\n\tint N;\n\tcin >> N;\n\tvector<pair<int, int>>v(N);\n\tvector<pair<int, int>>w(N);\n\tfor (auto &i : v)cin >> i.first >> i.second;\n\tfor (int i = 0; i < N; i++) {\n\t\tw[i] = { v[i].second,v[i].first };\n\t}\n\tsort(v.begin(), v.end());\n\tsort(w.begin(), w.end());\n\tint vindex = 0, windex = 0;\n\tvector<int>vused(N + 2);\n\tvector<int>wused(N + 2);\n\tset<pair<int, pair<int, int>>>vyoyaku;\n\tset<pair<int, pair<int, int>>>wyoyaku;\n\tset<pair<int, int>>vkouho;\n\tset<pair<int, int>>wkouho;\n\tvkouho.insert({ 0,1 });\n\tint ans = 0;\n\twhile (vindex < N || windex < N) {\n\t\t//cout << vindex << \" \" << windex << endl;\n\t\tint nx = 0;\n\t\tif (vindex == N)nx = 1;\n\t\telse if (windex<N&&v[vindex].first>w[windex].first)nx = 1;\n\t\t//cout << vindex << \" \" << windex << \" \" << nx << endl;\n\t\tif (nx == 0) {// use v\n\t\t//\tcout << \"vvvvvv\" << endl;\n\t\t\twhile (!vyoyaku.empty() && vyoyaku.begin()->first <= v[vindex].first) {\n\t\t\t\tauto box = vyoyaku.begin()->second;\n\t\t\t\tvyoyaku.erase(vyoyaku.begin());\n\n\t\t\t\tif (vused[box.second]) {\n\t\t\t\t\tif (vused[box.second]>box.first) {\n\t\t\t\t\t\tvkouho.insert(box);\n\t\t\t\t\t\tvkouho.erase({ vused[box.second],box.second });\n\t\t\t\t\t\tvused[box.second] = box.first;\n\t\t\t\t\t}\n\t\t\t\t\tauto it = vkouho.find(box);\n\t\t\t\t\twhile (it != vkouho.begin() && prev(it)->first >= box.first) {\n\t\t\t\t\t\tvused[prev(it)->second] = 0;\n\t\t\t\t\t\tvkouho.erase(prev(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tauto nx = vkouho.lower_bound(box);\n\t\t\t\t\tif (nx != vkouho.begin() && prev(nx)->second >= box.second)continue;\n\t\t\t\t\tvkouho.insert(box);\n\t\t\t\t\tauto it = vkouho.find(box);\n\t\t\t\t\twhile (next(it) != vkouho.end() && next(it)->second <= box.second) {\n\t\t\t\t\t\tvused[next(it) -> second] = 0;\n\t\t\t\t\t\tvkouho.erase(next(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\tauto it = vkouho.lower_bound({ v[vindex].second,MOD });\n\t\t\tif (it == vkouho.begin()) {\n\t\t\t\tvindex++;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tit = prev(it);\n\t\t\tint score = it->second;\n\t\t//\tcout << v[vindex].first << \" \" << v[vindex].second << \" \" << score << endl;\n\t\t\tans = max(ans, score);\n\t\t\twyoyaku.insert({ v[vindex].first,{v[vindex].second + 1,score + 1} });\n\t\t\tvindex++;\n\t\t}\n\t\telse {//use w\n\t\t\t//cout << w[windex].first << \" \" << wyoyaku.size() << endl;\n\t\t\twhile (!wyoyaku.empty() && wyoyaku.begin()->first <= w[windex].first) {\n\t\t\t\tauto box = wyoyaku.begin()->second;\n\t\t\t\twyoyaku.erase(wyoyaku.begin());\n\n\t\t\t\tif (wused[box.second]) {\n\t\t\t\t\tif (wused[box.second]>box.first) {\n\t\t\t\t\t\twkouho.insert(box);\n\t\t\t\t\t\twkouho.erase({ wused[box.second],box.second });\n\t\t\t\t\t\twused[box.second] = box.first;\n\t\t\t\t\t}\n\t\t\t\t\tauto it = wkouho.find(box);\n\t\t\t\t\twhile (it != wkouho.begin() && prev(it)->first >= box.first) {\n\t\t\t\t\t\twused[prev(it)->second] = 0;\n\t\t\t\t\t\twkouho.erase(prev(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tauto nx = wkouho.lower_bound(box);\n\t\t\t\t\tif (nx != wkouho.begin() && prev(nx)->second >= box.second)continue;\n\t\t\t\t\twkouho.insert(box);\n\t\t\t\t\tauto it = wkouho.find(box);\n\t\t\t\t\twhile (next(it) != wkouho.end() && next(it)->second <= box.second) {\n\t\t\t\t\t\twused[next(it)->second] = 0;\n\t\t\t\t\t\twkouho.erase(next(it));\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t}\n\t\t//\tcout << \"hihihh\" << endl;\n\t\t//\tcout <<\"wwwwww \"<< w[windex].first << \" \" << w[windex].second << \" \" << wkouho.size() << endl;\n\t\t\tauto it = wkouho.lower_bound({ w[windex].second,MOD });\n\t\t\tif (it == wkouho.begin()) {\n\t\t\t\twindex++;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tit = prev(it);\n\t\t\tint score = it->second;\n\t\t//\tcout << w[windex].first << \" \" << w[windex].second << \" \" << score << endl;\n\t\t\tans = max(ans, score);\n\t\t\tvyoyaku.insert({ w[windex].first,{ w[windex].second + 1,score + 1 } });\n\t\t\twindex++;\n\t\t}\n\n\n\t}\n\tcout << ans << endl;\n\t//cin >> N;\n}", "accuracy": 0.1891891891891892, "time_ms": 80, "memory_kb": 9884, "score_of_the_acc": -0.0559, "final_rank": 12 }, { "submission_id": "aoj_2814_2868844", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nstruct Info{\n\tInfo(int arg_a,int arg_b,bool arg_is_reverse){\n\t\ta = arg_a;\n\t\tb = arg_b;\n\t\tis_reverse = arg_is_reverse;\n\t}\n\tbool operator<(const struct Info &arg) const{\n\t\tif(a != arg.a){\n\t\t\treturn a < arg.a;\n\t\t}else{\n\t\t\treturn b > arg.b;\n\t\t}\n\t}\n\tint a,b;\n\tbool is_reverse;\n};\n\nint dp[200001];\n\nint main(){\n\n\tint N;\n\tscanf(\"%d\",&N);\n\n\tint a,b;\n\tvector<Info> V;\n\n\tfor(int i = 0; i < N; i++){\n\t\tscanf(\"%d %d\",&a,&b);\n\t\tV.push_back(Info(a,b,false));\n\t\tV.push_back(Info(b,a,true));\n\t}\n\n\tsort(V.begin(),V.end());\n\n\tfor(int i = 0; i < 2*N; i++)dp[i] = BIG_NUM;\n\tint left,right,m,loc;\n\n\tfor(int i = 0; i < 2*N; i++){\n\t\tleft = 0,right = i,m = (left+right)/2;\n\t\tloc = BIG_NUM;\n\t\twhile(left <= right){\n\t\t\tif(dp[m] >= V[i].b){\n\t\t\t\tloc = m;\n\t\t\t\tright = m-1;\n\t\t\t}else{\n\t\t\t\tleft = m+1;\n\t\t\t}\n\t\t\tm = (left+right)/2;\n\t\t}\n\t\tif(loc == BIG_NUM)continue;\n\t\tif(V[i].is_reverse == true && loc%2 == 0){\n\t\t\tdp[loc] = V[i].b;\n\t\t}else if(V[i].is_reverse == false && loc%2 == 1){\n\t\t\tdp[loc] = V[i].b;\n\t\t}\n\t}\n\n\tint ans = 0;\n\tleft = 0,right = 2*N-1,m = (left+right)/2;\n\n\twhile(left <= right){\n\t\tif(dp[m] == BIG_NUM){\n\t\t\tans = m;\n\t\t\tright = m-1;\n\t\t}else{\n\t\t\tleft = m+1;\n\t\t}\n\t\tm = (left+right)/2;\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 6200, "score_of_the_acc": -0.0011, "final_rank": 2 }, { "submission_id": "aoj_2814_2595109", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define rep1(i,n) for(int i=1;i<=(int)(n);i++)\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define fs first\n#define sc second\n#define show(x) cout << #x << \" = \" << x << endl\n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\nusing namespace std;\ntemplate<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){return o<<\"(\"<<p.fs<<\",\"<<p.sc<<\")\";}\ntemplate<class T> ostream& operator<<(ostream& o,const vector<T> &vc){o<<\"sz = \"<<vc.size()<<endl<<\"[\";for(const T& v:vc) o<<v<<\",\";o<<\"]\";return o;}\n\nint inf=1e9;\nstruct segtree{\n\tstatic const int N=1<<18;\n\tint seg[N*2];\n\tsegtree(){\n\t\trep(i,N*2) seg[i]=0;\n\t}\n\tsegtree(vector<int>& vi){\n\t\trep(i,N*2) seg[i]=0;\n\t\trep(i,vi.size()) seg[N+i]=vi[i];\n\t\tfor(int i=N-1;i>0;i--) seg[i]=max(seg[i*2],seg[i*2+1]);\n\t}\n\n\n\tvoid update(int x,int v){\n\t\tx+=N;\n\t\tchmax(seg[x],v);\n\t\tx/=2;\n\t\twhile(x){\n\t\t\tseg[x]=max(seg[x*2],seg[x*2+1]);\n\t\t\tx/=2;\n\t\t}\n\t}\n\tint getmax(int a,int b,int l=0,int r=N,int k=1){\n\t\tif(b<=l||r<=a) return 0;\n\t\tif(a<=l&&r<=b) return seg[k];\n\t\treturn max(getmax(a,b,l,(l+r)/2,k*2),getmax(a,b,(l+r)/2,r,k*2+1));\n\t}\n}seg[2];\n\nvector<int> xs;\nconst int MN=100000;\ntypedef pair<int,int> P;\ntypedef pair<P,int> PP;\nint a[MN],b[MN],c[MN];\nint main(){\n\tint N;\n\tcin>>N;\n\tvector<PP> vp;\n\trep(i,N) cin>>a[i]>>b[i];\n\trep(i,N) xs.pb(a[i]),xs.pb(b[i]);\n\tsort(all(xs));\n\txs.erase(unique(xs.begin(),xs.end()),xs.end());\n\trep(i,N) a[i]=lower_bound(all(xs),a[i])-xs.begin(),b[i]=lower_bound(all(xs),b[i])-xs.begin();\n\trep(i,N){\n\t\tvp.pb(PP(P(a[i],-b[i]),0));\n\t\tvp.pb(PP(P(b[i],-a[i]),1));\n\t}\n\tsort(all(vp));\n\n\tint K = xs.size();\n\tint ans=0;\n\n\tvector<P> upd[2];\n\trep(i,N*2){\n\t\tPP pp=vp[i];\n\t\tint x = pp.fs.fs,y=-pp.fs.sc,c=pp.sc;\n\t\tint mx = seg[c].getmax(0,y)+1;\n\t\tchmax(ans,mx);\n//\t\tseg[1-c].update(y,mx);\n\t\tupd[1-c].pb(P(y,mx));\n\t\tif(i==N*2-1 || x!=vp[i+1].fs.fs){\n\t\t\trep(t,2){\n\t\t\t\tfor(P p:upd[t]) seg[t].update(p.fs,p.sc);\n\t\t\t\tupd[t].clear();\n\t\t\t}\n\t\t}\n\t}\n\tcout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 13520, "score_of_the_acc": -0.1195, "final_rank": 5 }, { "submission_id": "aoj_2814_2330127", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing PII = pair<int, int>;\nusing LL = long long;\nusing VL = vector<LL>;\nusing VVL = vector<VL>;\nusing PLL = pair<LL, LL>;\nusing VS = vector<string>;\n\n#define ALL(a) begin((a)),end((a))\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SORT(c) sort(ALL((c)))\n#define RSORT(c) sort(RALL((c)))\n\n#define FOR(i,a,b) for(int i=(a);i<(b);++i)\n#define REP(i,n) FOR(i,0,n)\n\n#define FF first\n#define SS second\ntemplate<class S, class T>\nistream& operator>>(istream& is, pair<S,T>& p){\n return is >> p.FF >> p.SS;\n}\ntemplate<class S, class T>\nostream& operator<<(ostream& os, const pair<S,T>& p){\n return os << p.FF << \" \" << p.SS;\n}\ntemplate<class T>\nvoid maxi(T& x, T y){\n if(x < y) x = y;\n}\ntemplate<class T>\nvoid mini(T& x, T y){\n if(x > y) x = y;\n}\n\n\nconst double EPS = 1e-10;\nconst double PI = acos(-1.0);\nconst LL MOD = 1e9+7;\nconst int INF = 1e9+100;\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(false);\n\n int N; cin >> N;\n using MA = pair<PII,int>;\n vector<MA> xs(N*2);\n REP(i,N){\n\tcin >> xs[i].FF;\n\txs[N+i] = MP(MP(xs[i].FF.SS, xs[i].FF.FF), 1);\n }\n sort(ALL(xs), [](const MA& l, const MA& r){\n\t return\n\t\tl.FF.FF != r.FF.FF ?\n\t\tl.FF.FF < r.FF.FF :\n\t\tl.FF.SS > r.FF.SS;\n\t});\n\n VI dp(N*2, INF);\n REP(i,N*2){\n\tint ix = lower_bound(ALL(dp), xs[i].FF.SS) - begin(dp);\n\tif(xs[i].SS != ix%2){\n\t if(ix == 0)\n\t\tcontinue;\n\t --ix;\n\t}\n\tmini(dp[ix], xs[i].FF.SS);\n }\n\n cout << (lower_bound(ALL(dp), INF) - begin(dp)) << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5976, "score_of_the_acc": 0, "final_rank": 1 } ]
aoj_2815_cpp
K: AOR イカちゃんの成績 問題 AOR イカちゃんは $N$ 回のレポートの点数のみで成績が決まる授業を受けている。 AOR イカちゃんは同じ授業を受けている友達が $M$ 人いて、自分が苦手なテーマのレポートは、そのテーマが得意な友達のレポートを写すことで、その友達と同じ点数を取ることができる。 ただし、他人のレポートを写していることを先生に気付かれてはいけないので、 $N$ 回のうち少なくとも $K$ 回は他人のレポートを写さず、自力でレポートを仕上げなくてはならない。 また、 AOR イカちゃんは友達に迷惑をかけたくないと思ったので友達 $i$ に対してレポートを写すのは $T_i$ 回以下にすることにした。 AOR イカちゃんが自力でレポートを仕上げたときの点数と、友達がレポートを仕上げた時の点数が与えられたときに、 AOR イカちゃんが取ることのできる合計点数の最大値を答えよ。 制約 $1 \le N \le 100$ $0 \le M \le 100$ $0 \le K \le N$ $0 \le a_i \le 100$ $0 \le b_{ij} \le 100$ $0 \le T_i \le N$ 入力 入力は以下の形式で標準入力から与えられる。 $N \ M \ K$ $a_1 \ \cdots \ a_N$ $b_{11} \ \cdots \ b_{1N}$ $\vdots$ $b_{M1} \ \cdots \ b_{MN}$ $T_1 \ \cdots \ T_M$ $a_i$ はAORイカちゃんが $i$ 番目のレポートを仕上げた時の点数を、$b_{ij}$ は友達 $i$ が $j$ 番目のレポートを仕上げた時の点数を表す。 出力 AOR イカちゃんが取ることのできる合計点数の最大値を出力せよ。また、末尾に改行も出力せよ。 サンプル 入力例 1 3 2 2 50 65 70 80 100 80 90 65 45 1 1 出力例 1 225 AOR イカちゃんは 1 回だけ他人のレポートを写すことができるので、友達 2 の 1 つめのレポートを写すことで、 AOR イカちゃんは最高点数を取ることができる。 入力例 2 3 0 3 0 0 0 出力例 2 0 AOR イカちゃんには友達がいないため、レポートを写すことはできない。
[ { "submission_id": "aoj_2815_5147669", "code_snippet": "#line 1 \"test/aizu-online-judge/2815.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/2815\"\n\n#include <iostream>\n\n#line 2 \"src/graph/directed/flow/min_cost_flow.hpp\"\n\n/**\n * @file min_cost_flow.hpp\n * @brief Minimum Cost Flow\n * @date 2021-01-15\n *\n *\n */\n\n#include <algorithm>\n#include <optional>\n#include <queue>\n\n#line 2 \"src/graph/directed/flow/base.hpp\"\n\n/**\n * @file base.hpp\n * @brief Flow Graph\n * @date 2021-01-15\n *\n *\n */\n\n#include <cassert>\n#include <numeric>\n#include <vector>\n\nnamespace workspace {\n\ntemplate <class Cap, class Cost = void> class flow_graph {\n protected:\n class adjacency_impl;\n\n public:\n using container_type = std::vector<adjacency_impl>;\n using size_type = typename container_type::size_type;\n\n class unweighted_edge {\n public:\n size_type src, dst;\n Cap cap;\n\n unweighted_edge() = default;\n\n unweighted_edge(size_type src, size_type dst, const Cap &cap)\n : src(src), dst(dst), cap(cap) {\n assert(!(cap < static_cast<Cap>(0)));\n }\n\n template <class Os>\n friend Os &operator<<(Os &__os, unweighted_edge const &__e) {\n return __os << __e.src << \" \" << __e.dst << \" \" << __e.cap;\n }\n\n protected:\n unweighted_edge make_rev() { return {dst, src, 0}; }\n };\n\n class weighted_edge : public unweighted_edge {\n public:\n Cost cost;\n\n weighted_edge() = default;\n\n weighted_edge(size_type src, size_type dst, const Cap &cap,\n const Cost &cost)\n : unweighted_edge(src, dst, cap), cost(cost) {}\n\n template <class Os>\n friend Os &operator<<(Os &__os, weighted_edge const &__e) {\n return __os << static_cast<unweighted_edge>(__e) << \" \" << __e.cost;\n }\n\n protected:\n weighted_edge make_rev() {\n return {unweighted_edge::dst, unweighted_edge::src, 0, -cost};\n }\n };\n\n using edge = typename std::conditional<std::is_void<Cost>::value,\n unweighted_edge, weighted_edge>::type;\n\n protected:\n struct edge_impl : edge {\n bool aux = false;\n edge_impl *rev = nullptr;\n\n edge_impl() = default;\n\n edge_impl(const edge_impl &__e) = default;\n\n edge_impl(const edge &__e) : edge(__e) {}\n\n void flow(const Cap &f) { edge::cap -= f, rev->cap += f; }\n\n edge_impl rev_cp() {\n edge_impl __e;\n if (rev)\n __e = *rev;\n else {\n __e = edge::make_rev();\n __e.aux = true;\n }\n __e.rev = this;\n return __e;\n }\n };\n\n public:\n class adjacency {\n public:\n using value_type = edge;\n using reference = edge &;\n using const_reference = edge const &;\n using pointer = edge *;\n using const_pointer = const edge *;\n\n class const_iterator {\n public:\n const edge_impl *__p;\n\n bool operator!=(const_iterator const &__x) const {\n return __p != __x.__p;\n }\n\n const_iterator &operator++() {\n do\n ++__p;\n while (__p->rev && __p->aux);\n return *this;\n }\n\n const_pointer operator->() const { return __p; }\n\n const_reference operator*() const { return *__p; }\n };\n\n adjacency()\n : first(new edge_impl[2]), last(first + 1), __s(first), __t(first) {}\n\n ~adjacency() { delete[] first; }\n\n const_reference operator[](size_type i) const {\n assert(i < size());\n return *(first + i);\n }\n\n size_type size() const { return __t - first; }\n\n auto begin() const { return const_iterator{__s}; }\n auto end() const { return const_iterator{__t}; }\n\n /**\n * @brief Construct a new adjacency object\n *\n * @param __x Rvalue reference to another object\n */\n adjacency(adjacency &&__x) : first(nullptr) { operator=(std::move(__x)); }\n\n /**\n * @brief Assignment operator.\n *\n * @param __x Rvalue reference to another object\n * @return Reference to this object.\n */\n adjacency &operator=(adjacency &&__x) {\n std::swap(first, __x.first);\n last = __x.last;\n __s = __x.__s;\n __t = __x.__t;\n return *this;\n }\n\n protected:\n edge_impl *first, *last, *__s, *__t;\n };\n\n using value_type = adjacency;\n using reference = adjacency &;\n using const_reference = adjacency const &;\n\n protected:\n class adjacency_impl : public adjacency {\n public:\n using base = adjacency;\n using base::__s;\n using base::__t;\n using base::first;\n using base::last;\n\n template <class... Args> auto emplace(Args &&... args) {\n if (__t == last) {\n size_type __n(last - first);\n edge_impl *loc = new edge_impl[__n << 1 | 1];\n __s += loc - first;\n __t = loc;\n for (edge_impl *__p{first}; __p != last; ++__p, ++__t)\n __p->rev->rev = __t, *__t = *__p;\n delete[] first;\n first = loc;\n last = __t + __n;\n }\n *__t = edge_impl(args...);\n if (__s->aux) ++__s;\n return __t++;\n }\n\n using iterator = edge_impl *;\n auto begin() const { return first; }\n auto end() const { return __t; }\n };\n\n public:\n /**\n * @brief Construct a new flow graph object\n *\n * @param __n Number of vertices\n */\n flow_graph(size_type __n = 0) : graph(__n) {}\n\n /**\n * @brief Construct a new flow graph object\n *\n * @param __x Const reference to another object\n */\n flow_graph(const flow_graph &__x) : graph(__x.size()) {\n for (auto &&__adj : __x)\n for (auto &&__e : __adj) _add_edge(__e);\n }\n\n /**\n * @brief Assignment operator.\n *\n * @param __x Rvalue reference to another object\n * @return Reference to this object.\n */\n flow_graph &operator=(flow_graph &&__x) {\n graph.swap(__x.graph);\n return *this;\n }\n\n /**\n * @return Number of nodes.\n */\n size_type size() const { return graph.size(); }\n\n reference operator[](size_type node) {\n assert(node < size());\n return graph[node];\n }\n\n const_reference &operator[](size_type node) const {\n assert(node < size());\n return graph[node];\n }\n\n class const_iterator : public container_type::const_iterator {\n public:\n using base = typename container_type::const_iterator;\n using const_reference = const adjacency &;\n using const_pointer = const adjacency *;\n\n const_iterator(base const &__i) : base(__i) {}\n\n const_pointer operator->() const { return base::operator->(); }\n\n const_reference operator*() const { return base::operator*(); }\n };\n\n auto begin() const { return const_iterator{graph.begin()}; }\n auto end() const { return const_iterator{graph.end()}; }\n\n size_type add_node() { return add_nodes(1).front(); }\n\n virtual std::vector<size_type> add_nodes(size_type __n) {\n std::vector<size_type> __nds(__n);\n std::iota(__nds.begin(), __nds.end(), graph.size());\n __n += graph.size();\n if (__n > graph.capacity()) {\n flow_graph __x(__n);\n for (auto &&adj : graph)\n for (auto &&__e : adj)\n if (!__e.aux) __x._add_edge(__e);\n graph.swap(__x.graph);\n } else\n graph.resize(__n);\n return __nds;\n }\n\n template <class... Args> const edge &add_edge(Args &&... args) {\n return *_add_edge(edge(args...));\n }\n\n protected:\n template <class... Args> edge_impl *_add_edge(Args &&... args) {\n edge_impl __e(args...);\n assert(__e.src < size());\n assert(__e.dst < size());\n auto __p = graph[__e.src].emplace(__e);\n __p->rev = graph[__e.dst].emplace(__p->rev_cp());\n return __p;\n }\n\n constexpr static size_type nil = -1;\n container_type graph;\n\n template <class Os> friend Os &operator<<(Os &__os, flow_graph const &__g) {\n for (const auto &adj : __g)\n for (const auto &e : adj) __os << e << \"\\n\";\n return __os;\n }\n};\n\n} // namespace workspace\n#line 16 \"src/graph/directed/flow/min_cost_flow.hpp\"\n\nnamespace workspace {\n\n/**\n * @brief Successive Shortest Path Algorithm.\n *\n * @tparam Cap Capacity type\n * @tparam Cost Cost type\n * @tparam Density_tag Whether the graph is dense.\n */\ntemplate <class Cap, class Cost = Cap, bool Density_tag = false>\nclass min_cost_flow : public flow_graph<Cap, Cost> {\n using base = flow_graph<Cap, Cost>;\n using edge_impl = typename base::edge_impl;\n using base::nil;\n\n public:\n using size_type = typename base::size_type;\n using base::size;\n\n /**\n * @brief Construct a new min_cost_flow object\n *\n * @param __n Number of vertices\n */\n min_cost_flow(size_type __n = 0)\n : base::flow_graph(__n), current(0), abs_sum(0), b(__n), p(__n) {}\n\n std::vector<size_type> add_nodes(size_type __n) override {\n auto __nds = base::add_nodes(__n);\n b.resize(size());\n p.resize(size());\n return __nds;\n }\n\n /**\n * @brief Add an edge with a unit capacity to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param cost Cost\n * @return Reference to the edge.\n */\n auto &add_edge(size_type src, size_type dst, const Cost &cost) {\n return add_edge(src, dst, 1, cost);\n }\n\n /**\n * @brief Add an edge to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param cap Capacity\n * @param cost Cost\n * @return Reference to the edge.\n */\n typename base::edge const &add_edge(size_type src, size_type dst,\n const Cap &cap, const Cost &cost) {\n edge_impl *__p = base::_add_edge(typename base::edge(src, dst, cap, cost));\n if (cost < static_cast<Cost>(0)) {\n __p->flow(cap);\n b[src] -= cap;\n b[dst] += cap;\n current += cap * cost;\n abs_sum -= cap * cost;\n } else\n abs_sum += cap * cost;\n return *__p;\n }\n\n /**\n * @brief Add an edge to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param lower Lower bound of flow\n * @param upper Upper bound of flow\n * @param cost Cost\n * @return Reference to the edge.\n */\n auto &add_edge(size_type src, size_type dst, const Cap &lower,\n const Cap &upper, const Cost &cost) {\n assert(!(upper < lower));\n b[src] -= lower;\n b[dst] += lower;\n current += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n /**\n * @brief Increase the balance of a node.\n *\n * @param node\n * @param vol Default: 1\n */\n void supply(size_type node, const Cap &vol = 1) {\n assert(node < size());\n b[node] += vol;\n }\n\n /**\n * @brief Decrease the balance of a node.\n *\n * @param node\n * @param vol Default: 1\n */\n void demand(size_type node, const Cap &vol = 1) {\n assert(node < size());\n b[node] -= vol;\n }\n\n /**\n * @param node\n * @return Balance of the node\n */\n Cap balance(size_type node) { return b[node]; }\n\n /**\n * @return Cost of current flow.\n */\n Cost cost() const { return current; }\n\n /**\n * @brief Run Successive Shortest Path Algorithm.\n *\n * @return Whether a balanced flow exists.\n */\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_impl *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_type dst{}; dst != size(); ++dst) {\n if (b[dst] < static_cast<Cap>(0) && last[dst]) {\n Cap resid{-b[dst]};\n size_type src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < b[src])) resid = b[block = src];\n for (edge_impl *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n b[src] -= resid;\n b[dst] += resid;\n current += p[dst] * resid;\n aug = true;\n }\n if (block != nil)\n for (size_type node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n return std::none_of(begin(b), end(b), [](const Cap &s) {\n return s < static_cast<Cap>(0) || static_cast<Cap>(0) < s;\n });\n }\n\n protected:\n Cost current, abs_sum;\n std::vector<Cap> b;\n std::vector<Cost> p;\n\n void Dijkstra(std::vector<edge_impl *> &last) {\n const Cost infty(abs_sum + 1);\n std::vector<Cost> newp(size(), infty);\n\n if constexpr (Density_tag) { // O(V^2)\n std::vector<bool> used(size());\n\n for (size_type src{}; src != size(); ++src)\n if (static_cast<Cap>(0) < b[src]) {\n used[src] = true;\n newp[src] = 0;\n\n for (auto &e : base::graph[src])\n if (!(static_cast<Cap>(0) < b[e.dst]) &&\n static_cast<Cap>(0) < e.cap && newp[e.dst] > e.cost)\n newp[e.dst] = e.cost, last[e.dst] = &e;\n }\n\n for (;;) {\n size_type src{nil};\n Cost sp{infty};\n\n for (size_type node{}; node != size(); ++node) {\n if (used[node] || newp[node] == infty) continue;\n if (Cost __d = newp[node] - p[node]; __d < sp) sp = __d, src = node;\n }\n\n if (src == nil) break;\n used[src] = true;\n\n for (auto &e : base::graph[src])\n if (static_cast<Cap>(0) < e.cap && newp[src] + e.cost < newp[e.dst]) {\n newp[e.dst] = newp[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n\n else { // O((V + E)logV)\n struct sp_node {\n size_type id;\n Cost __d;\n sp_node(size_type id, Cost __d) : id(id), __d(__d) {}\n bool operator<(const sp_node &rhs) const { return rhs.__d < __d; }\n };\n\n std::priority_queue<sp_node> __q;\n for (size_type src{}; src != size(); ++src)\n if (b[src] > static_cast<Cap>(0)) {\n newp[src] = 0;\n for (auto &e : base::graph[src])\n if (static_cast<Cap>(0) < e.cap && newp[e.dst] > e.cost) {\n __q.emplace(e.dst, (newp[e.dst] = e.cost) - p[e.dst]);\n last[e.dst] = &e;\n }\n }\n\n while (!__q.empty()) {\n auto [src, __d] = __q.top();\n __q.pop();\n if (__d + p[src] != newp[src]) continue;\n for (auto &e : base::graph[src])\n if (auto __d = newp[src] + e.cost;\n static_cast<Cap>(0) < e.cap && __d < newp[e.dst]) {\n __q.emplace(e.dst, (newp[e.dst] = __d) - p[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n\n p.swap(newp);\n }\n};\n\ntemplate <class Cap, class Gain = Cap, bool Density_tag = false>\nclass max_gain_flow : public min_cost_flow<Cap, Gain, Density_tag> {\n using base = min_cost_flow<Cap, Gain, Density_tag>;\n using base::cost;\n\n public:\n using base::min_cost_flow;\n using size_type = typename base::size_type;\n\n /**\n * @brief Add an edge with a unit capacity to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param gain Gain\n * @return Reference to the edge.\n */\n auto &add_edge(size_type src, size_type dst, const Gain &gain) {\n return add_edge(src, dst, 1, gain);\n }\n\n /**\n * @brief Add an edge to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param cap Capacity\n * @param gain Gain\n * @return Reference to the edge.\n */\n auto &add_edge(size_type src, size_type dst, const Cap &cap,\n const Gain &gain) {\n return base::add_edge(src, dst, cap, -gain);\n }\n\n /**\n * @brief Add an edge to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param lower Lower bound of flow\n * @param upper Upper bound of flow\n * @param gain Gain\n * @return Reference to the edge.\n */\n auto &add_edge(size_type src, size_type dst, const Cap &lower,\n const Cap &upper, const Gain &gain) {\n return base::add_edge(src, dst, lower, upper, -gain);\n }\n\n /**\n * @return Gain of current flow.\n */\n Gain gain() const { return -base::current; }\n};\n\n} // namespace workspace\n#line 6 \"test/aizu-online-judge/2815.test.cpp\"\n\nint main() {\n using namespace workspace;\n\n int n, m, k;\n std::cin >> n >> m >> k;\n\n min_cost_flow<int, int, 1> mcf;\n const auto dst = mcf.add_node();\n const auto dst2 = mcf.add_node();\n const auto dst3 = mcf.add_node();\n\n mcf.demand(dst, n);\n mcf.add_edge(dst2, dst, n, 0);\n mcf.add_edge(dst3, dst, n - k, 0);\n\n const auto r = mcf.add_nodes(n);\n for (auto u : r) {\n mcf.supply(u);\n std::cin >> k;\n mcf.add_edge(u, dst2, -k);\n }\n\n const auto f = mcf.add_nodes(m);\n for (auto v : f) {\n for (auto u : r) {\n std::cin >> k;\n mcf.add_edge(u, v, -k);\n }\n }\n\n for (auto v : f) {\n std::cin >> k;\n mcf.add_edge(v, dst3, k, 0);\n }\n\n assert(mcf.flow());\n std::cout << -mcf.cost() << \"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4180, "score_of_the_acc": -0.645, "final_rank": 7 }, { "submission_id": "aoj_2815_5143888", "code_snippet": "#line 1 \"test/aizu-online-judge/2815.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/2815\"\n\n#include <iostream>\n\n#line 2 \"src/graph/directed/flow/min_cost_flow.hpp\"\n\n/**\n * @file min_cost_flow.hpp\n * @brief Minimum Cost Flow\n * @date 2021-01-15\n *\n *\n */\n\n#include <algorithm>\n#include <optional>\n#include <queue>\n\n#line 2 \"src/graph/directed/flow/base.hpp\"\n\n/**\n * @file base.hpp\n * @brief Flow Graph\n * @date 2021-01-15\n *\n *\n */\n\n#include <cassert>\n#include <vector>\n\nnamespace workspace {\n\ntemplate <class Cap, class Cost = void> class flow_graph {\n public:\n class adjacency;\n using value_type = adjacency;\n using reference = adjacency &;\n using const_reference = adjacency const &;\n using container_type = std::vector<value_type>;\n using size_type = typename container_type::size_type;\n\n class unweighted_edge {\n public:\n size_type src, dst;\n Cap cap;\n unweighted_edge *rev;\n\n unweighted_edge() = default;\n\n unweighted_edge(size_type src, size_type dst, const Cap &cap,\n unweighted_edge *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {\n assert(!(cap < static_cast<Cap>(0)));\n }\n\n const Cap &flow(const Cap &f = 0) { return cap -= f, rev->cap += f; }\n\n unweighted_edge make_rev() { return {dst, src, 0, this}; }\n };\n\n class weighted_edge : public unweighted_edge {\n public:\n Cost cost;\n\n weighted_edge() = default;\n\n weighted_edge(size_type src, size_type dst, const Cap &cap,\n const Cost &cost, weighted_edge *rev)\n : unweighted_edge(src, dst, cap, rev), cost(cost) {}\n\n weighted_edge make_rev() {\n return {unweighted_edge::dst, unweighted_edge::src, 0, -cost, this};\n }\n };\n\n using edge = typename std::conditional<std::is_void<Cost>::value,\n unweighted_edge, weighted_edge>::type;\n\n class adjacency {\n public:\n using value_type = edge;\n using reference = edge &;\n using const_reference = edge const &;\n using pointer = edge *;\n using const_pointer = const edge *;\n\n adjacency() : first(new edge[1]), iter(first), last(first + 1) {}\n ~adjacency() { delete[] first; }\n\n template <class... Args> reference emplace(Args &&... args) {\n if (iter == last) {\n size_type len(last - first);\n edge *nfst = iter = new edge[len << 1];\n for (edge *p{first}; p != last; ++p, ++iter)\n p->rev->rev = iter, *iter = *p;\n delete[] first;\n first = nfst;\n last = iter + len;\n }\n return *iter++ = edge(args...);\n }\n\n reference operator[](size_type i) {\n assert(i < size());\n return *(first + i);\n }\n const_reference operator[](size_type i) const {\n assert(i < size());\n return *(first + i);\n }\n\n size_type size() const { return iter - first; }\n\n pointer begin() { return first; }\n const_pointer begin() const { return first; }\n\n pointer end() { return iter; }\n const_pointer end() const { return iter; }\n\n protected:\n pointer first, iter, last;\n };\n\n /**\n * @brief Construct a new flow base object\n *\n * @param n Number of vertices\n */\n flow_graph(size_type n = 0) : graph(n) {}\n\n flow_graph(const flow_graph &other) : graph(other.size()) {\n for (size_type node = 0; node != size(); ++node)\n for (edge cp : other[node])\n if (cp.src == node) {\n edge rcp = *cp.rev;\n cp.rev->src = nil;\n edge &ref = graph[node].emplace(cp);\n rcp.rev = &ref;\n ref.rev = &graph[cp.dst].emplace(rcp);\n } else\n cp.rev->rev->src = node;\n }\n\n flow_graph &operator=(const flow_graph &rhs) {\n if (this != &rhs) graph.swap(flow_graph(rhs).graph);\n return *this;\n }\n\n /**\n * @return Number of vertices.\n */\n size_type size() const { return graph.size(); }\n\n reference operator[](size_type node) {\n assert(node < size());\n return graph[node];\n }\n\n const_reference &operator[](size_type node) const {\n assert(node < size());\n return graph[node];\n }\n\n typename container_type::iterator begin() { return graph.begin(); }\n\n typename container_type::iterator end() { return graph.end(); }\n\n typename container_type::const_iterator begin() const {\n return graph.begin();\n }\n\n typename container_type::const_iterator end() const { return graph.end(); }\n\n template <class... Args>\n typename adjacency::reference add_edge(size_type src, size_type dst,\n Args &&... args) {\n assert(src < size());\n assert(dst < size());\n auto &ref = graph[src].emplace(src, dst, args..., nullptr);\n ref.rev = &graph[dst].emplace(ref.make_rev());\n return ref;\n }\n\n protected:\n constexpr static size_type nil = -1;\n container_type graph;\n};\n\n} // namespace workspace\n#line 16 \"src/graph/directed/flow/min_cost_flow.hpp\"\n\nnamespace workspace {\n\n/**\n * @brief Successive Shortest Path Algorithm.\n *\n * @tparam Cap Capacity type\n * @tparam Cost Cost type\n * @tparam Density_tag Whether the graph is dense.\n */\ntemplate <class Cap, class Cost, bool Density_tag = false>\nclass min_cost_flow : public flow_graph<Cap, Cost> {\n using base = flow_graph<Cap, Cost>;\n using base::nil;\n\n public:\n using edge = typename base::edge;\n using size_type = typename base::size_type;\n\n protected:\n Cost current, abs_sum;\n std::vector<Cap> b;\n std::vector<Cost> p;\n\n void copy(const min_cost_flow &other) {\n current = other.current;\n abs_sum = other.abs_sum;\n b = other.b;\n p = other.p;\n }\n\n void Dijkstra(std::vector<edge *> &last) {\n const Cost infty(abs_sum + 1);\n std::vector<Cost> newp(size(), infty);\n if constexpr (Density_tag) { // O(V^2)\n std::vector<bool> used(size());\n for (size_type src{}; src != size(); ++src) {\n if (static_cast<Cap>(0) < b[src]) {\n used[src] = true;\n newp[src] = 0;\n for (edge &e : base::graph[src]) {\n if (static_cast<Cap>(0) < b[e.dst]) continue;\n if (static_cast<Cap>(0) < e.cap && e.cost < newp[e.dst]) {\n newp[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_type src{nil};\n Cost sp{infty};\n for (size_type node{}; node != size(); ++node) {\n if (used[node] || newp[node] == infty) continue;\n Cost dist{newp[node] - p[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge &e : base::graph[src]) {\n if (static_cast<Cap>(0) < e.cap && newp[src] + e.cost < newp[e.dst]) {\n newp[e.dst] = newp[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else { // O((V + E)logV)\n struct sp_node {\n size_type id;\n Cost dist;\n sp_node(size_type id, Cost dist) : id(id), dist(dist) {}\n bool operator<(const sp_node &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<sp_node> q;\n for (size_type src{}; src != size(); ++src)\n if (static_cast<Cap>(0) < b[src]) {\n newp[src] = 0;\n for (edge &e : base::graph[src])\n if (!(static_cast<Cap>(0) < b[e.dst]) &&\n static_cast<Cap>(0) < e.cap && newp[e.dst] > e.cost) {\n q.emplace(e.dst, (newp[e.dst] = e.cost) - p[e.dst]);\n last[e.dst] = &e;\n }\n }\n while (!q.empty()) {\n auto [src, ndist] = q.top();\n q.pop();\n if (ndist + p[src] != newp[src]) continue;\n for (edge &e : base::graph[src])\n if (static_cast<Cap>(0) < e.cap && newp[e.dst] > newp[src] + e.cost) {\n q.emplace(e.dst, (newp[e.dst] = newp[src] + e.cost) - p[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n p.swap(newp);\n }\n\n public:\n using base::size;\n\n /**\n * @brief Construct a new object\n *\n * @param n Number of vertices.\n */\n min_cost_flow(size_type n = 0)\n : base::flow_graph(n), current(0), abs_sum(0), b(n), p(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_graph(other) {\n copy(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy(other);\n return *this;\n }\n\n // infinity capatity\n // edge *add_edge(size_type src, size_type dst, const Cost &cost);\n\n /**\n * @brief Add an edge to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param cap Capacity\n * @param cost Cost\n * @return Reference to the edge.\n */\n typename base::adjacency::reference add_edge(size_type src, size_type dst,\n const Cap &cap,\n const Cost &cost) {\n assert(src != dst);\n if (cost < static_cast<Cost>(0)) {\n b[src] -= cap;\n b[dst] += cap;\n current += cap * cost;\n abs_sum -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n abs_sum += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n /**\n * @brief Add an edge to the graph.\n *\n * @param src Source\n * @param dst Destination\n * @param lower Lower bound of flow\n * @param upper Upper bound of flow\n * @param cost Cost\n * @return Reference to the edge.\n */\n typename base::adjacency::reference add_edge(size_type src, size_type dst,\n const Cap &lower,\n const Cap &upper,\n const Cost &cost) {\n assert(!(upper < lower));\n b[src] -= lower;\n b[dst] += lower;\n current += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n /**\n * @brief Increase the balance of a node.\n *\n * @param node\n * @param vol\n */\n void supply(size_type node, const Cap &vol) {\n assert(node < size());\n b[node] += vol;\n }\n\n /**\n * @brief Decrease the balance of a node.\n *\n * @param node\n * @param vol\n */\n void demand(size_type node, const Cap &vol) { supply(node, -vol); }\n\n /**\n * @param node\n * @return Balance of the node\n */\n Cap balance(size_type node) { return b[node]; }\n\n /**\n * @return Cost of current flow.\n */\n Cost cost() const { return current; }\n\n /**\n * @brief Run Successive Shortest Path Algorithm.\n *\n * @return Whether a balanced flow exists.\n */\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_type dst{}; dst != size(); ++dst) {\n if (b[dst] < static_cast<Cap>(0) and last[dst]) {\n Cap resid{-b[dst]};\n size_type src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < b[src])) resid = b[block = src];\n for (edge *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n b[src] -= resid;\n b[dst] += resid;\n current += p[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_type node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(b), end(b), [](const Cap &s) {\n return s < static_cast<Cap>(0) || static_cast<Cap>(0) < s;\n });\n }\n};\n\n} // namespace workspace\n#line 6 \"test/aizu-online-judge/2815.test.cpp\"\n\nint main() {\n using namespace workspace;\n\n int n, m, k;\n std::cin >> n >> m >> k;\n const int total = n + m + 3;\n const int dst = total - 1;\n const int dst2 = total - 2;\n const int dst3 = total - 3;\n min_cost_flow<int, int, true> mcf(total);\n mcf.supply(dst, -n);\n mcf.add_edge(dst2, dst, n, 0);\n mcf.add_edge(dst3, dst, n - k, 0);\n for (int i = 0; i < n; ++i) {\n mcf.supply(i, 1);\n std::cin >> k;\n mcf.add_edge(i, dst2, 1, -k);\n }\n for (int j = 0; j < m; j++) {\n for (int i = 0; i < n; i++) {\n std::cin >> k;\n mcf.add_edge(i, j + n, 1, -k);\n }\n }\n for (int j = 0; j < m; j++) {\n std::cin >> k;\n mcf.add_edge(j + n, dst3, k, 0);\n }\n assert(mcf.flow());\n std::cout << -mcf.cost() << \"\\n\";\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4320, "score_of_the_acc": -0.759, "final_rank": 8 }, { "submission_id": "aoj_2815_4019942", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n/* std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n // using info = std::pair<cost_t, size_t>;\n // std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n // fill(dist.begin(), dist.end(), inf_cost);\n // que.emplace(dist[s] = 0, s);\n // while(!que.empty())\n // {\n // cost_t _cost; size_t v;\n // std::tie(_cost, v) = que.top(), que.pop();\n // if(_cost != dist[v]) continue;\n // for(auto &&e : adj[v])\n // {\n // if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n // {\n // que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n // prev_v[e.to] = v;\n // prev_e[e.to] = &e;\n // }\n // }\n // }\n\n bool *used = new bool[V]{};\n for(fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v] + h[v])\n {\n opt = dist[v] + h[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n delete[] used;\n\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n } */\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n std::vector<cost_t> h(V);\n std::vector<size_t> prev_v(V);\n std::vector<edge*> prev_e(V);\n bool *const used = new bool[V];\n while(f > 0)\n {\n std::fill_n(used, V, false);\n std::vector<cost_t> dist(V, inf_cost);\n using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n if(dist[t] >= inf_cost)\n {\n res = inf_cost;\n break;\n }\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n delete[] used;\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 1, "time_ms": 700, "memory_kb": 3700, "score_of_the_acc": -0.9175, "final_rank": 10 }, { "submission_id": "aoj_2815_4019936", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n/* std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n // using info = std::pair<cost_t, size_t>;\n // std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n // fill(dist.begin(), dist.end(), inf_cost);\n // que.emplace(dist[s] = 0, s);\n // while(!que.empty())\n // {\n // cost_t _cost; size_t v;\n // std::tie(_cost, v) = que.top(), que.pop();\n // if(_cost != dist[v]) continue;\n // for(auto &&e : adj[v])\n // {\n // if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n // {\n // que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n // prev_v[e.to] = v;\n // prev_e[e.to] = &e;\n // }\n // }\n // }\n\n bool *used = new bool[V]{};\n for(fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v] + h[v])\n {\n opt = dist[v] + h[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n delete[] used;\n\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n } */\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n std::vector<cost_t> h(V);\n std::vector<size_t> prev_v(V);\n std::vector<edge*> prev_e(V);\n bool *const used = new bool[V];\n while(f > 0)\n {\n std::fill_n(used, V, false);\n std::vector<cost_t> dist(V, inf_cost);\n dist[s] = 0;\n while(true)\n {\n size_t v = -1;\n cost_t opt = inf_cost;\n for(size_t u = 0; u != V; ++u)\n {\n if(!used[u] && opt > dist[u])\n {\n opt = dist[u];\n v = u;\n }\n }\n if(v == -1) break;\n opt += h[v];\n used[v] = true;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n if(dist[t] >= inf_cost)\n {\n res = inf_cost;\n break;\n }\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n delete[] used;\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 1, "time_ms": 1050, "memory_kb": 3600, "score_of_the_acc": -1.1726, "final_rank": 13 }, { "submission_id": "aoj_2815_4019912", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool *used;\n bool dijkstra(size_t s, size_t t)\n {\n/* using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n*/\n // bool *used = new bool[V]{};\n for(std::fill_n(used, V, false), fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v])\n {\n opt = dist[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n opt += h[nowv];\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n // delete[] used;\n\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n ~Primal_Dual() { delete[] used; }\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n // delete[] used; \n used = new bool[V];\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 1, "time_ms": 1040, "memory_kb": 3644, "score_of_the_acc": -1.1989, "final_rank": 15 }, { "submission_id": "aoj_2815_4019908", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool *const used;\n bool dijkstra(size_t s, size_t t)\n {\n/* using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n*/\n // bool *used = new bool[V]{};\n for(std::fill_n(used, V, false), fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v])\n {\n opt = dist[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n opt += h[nowv];\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n // delete[] used;\n\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost(), used(new bool[V]) {}\n ~Primal_Dual() { delete[] used; }\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 0.1686746987951807, "time_ms": 440, "memory_kb": 3552, "score_of_the_acc": -0.547, "final_rank": 19 }, { "submission_id": "aoj_2815_4019901", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n/* using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n*/\n bool *used = new bool[V]{};\n for(fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v])\n {\n opt = dist[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n opt += h[nowv];\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n delete[] used;\n\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 1, "time_ms": 1040, "memory_kb": 3628, "score_of_the_acc": -1.1858, "final_rank": 14 }, { "submission_id": "aoj_2815_4019895", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n/* using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n*/\n bool *used = new bool[V]{};\n for(fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost * 2;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v] + h[v])\n {\n opt = dist[v] + h[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n delete[] used;\n\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 0.1686746987951807, "time_ms": 390, "memory_kb": 3628, "score_of_the_acc": -0.5608, "final_rank": 20 }, { "submission_id": "aoj_2815_4019891", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n/*\n bool *used = new bool[V]{};\n for(fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v] + h[v])\n {\n opt = dist[v] + h[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n delete[] used;\n*/\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 1, "time_ms": 710, "memory_kb": 3760, "score_of_the_acc": -0.976, "final_rank": 12 }, { "submission_id": "aoj_2815_4019870", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n // using info = std::pair<cost_t, size_t>;\n // std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n // fill(dist.begin(), dist.end(), inf_cost);\n // que.emplace(dist[s] = 0, s);\n // while(!que.empty())\n // {\n // cost_t _cost; size_t v;\n // std::tie(_cost, v) = que.top(), que.pop();\n // if(_cost != dist[v]) continue;\n // for(auto &&e : adj[v])\n // {\n // if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n // {\n // que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n // prev_v[e.to] = v;\n // prev_e[e.to] = &e;\n // }\n // }\n // }\n\n bool *used = new bool[V]{};\n for(fill(dist.begin(), dist.end(), inf_cost), dist[s] = 0; ; )\n {\n size_t nowv = -1;\n cost_t opt = inf_cost;\n for(size_t v = 0; v != V; ++v)\n {\n if(!used[v] && opt > dist[v] + h[v])\n {\n opt = dist[v] + h[v];\n nowv = v;\n }\n }\n if(nowv == -1) break;\n used[nowv] = true;\n for(auto &&e : adj[nowv])\n {\n if(e.cap > 0 && dist[e.to] + h[e.to] > opt + e.cost)\n {\n dist[e.to] = opt - h[e.to] + e.cost;\n prev_v[e.to] = nowv;\n prev_e[e.to] = &e;\n }\n }\n }\n delete[] used;\n\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(size_t v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(size_t v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n\n}", "accuracy": 0.1686746987951807, "time_ms": 400, "memory_kb": 3568, "score_of_the_acc": -0.5216, "final_rank": 18 }, { "submission_id": "aoj_2815_4017429", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(int v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(int v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(0);\n \n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 3724, "score_of_the_acc": -0.9178, "final_rank": 11 }, { "submission_id": "aoj_2815_4017427", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n std::vector<cap_t> scap(V), tcap(V);\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n scap[e.to] += e.cap;\n tcap[v] += e.cap;\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n }\n for(size_t v = 0; v != V; ++v)\n {\n add_edge(s, v, scap[v], 0);\n add_edge(v, t, tcap[v], 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(int v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(int v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n}", "accuracy": 1, "time_ms": 690, "memory_kb": 3692, "score_of_the_acc": -0.9014, "final_rank": 9 }, { "submission_id": "aoj_2815_4017423", "code_snippet": "#include <bits/stdc++.h>\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\n\ntemplate <class cap_t, class cost_t>\nstruct Flow\n{\n Flow(size_t _V) : V(_V), adj(_V) {}\n void add_edge(size_t from, size_t to, cap_t cap, cost_t cost = cost_t(0))\n {\n if(cap <= 0) return;\n adj[from].emplace_back(from, to, cap, cost, adj[to].size());\n adj[to].emplace_back(to, from, 0, -cost, adj[from].size() - 1);\n }\n protected:\n struct edge\n {\n size_t from, to; cap_t cap; cost_t cost; size_t rev;\n edge(size_t _from, size_t _to, cap_t _cap, cost_t _cost, size_t _rev) : from(_from), to(_to), cap(_cap), cost(_cost), rev(_rev) {}\n }; // struct edge\n size_t V;\n std::vector<std::vector<edge>> adj;\n}; // struct Flow\n\ntemplate <class cap_t, class cost_t>\nclass Primal_Dual : public Flow<cap_t, cost_t>\n{\n using edge = typename Flow<cap_t, cap_t>::edge;\n using Flow<cap_t, cap_t>::V; using Flow<cap_t, cap_t>::adj;\n bool neg_cost;\n std::vector<cost_t> dist, h;\n std::vector<size_t> prev_v;\n std::vector<edge*> prev_e;\n bool dijkstra(size_t s, size_t t)\n {\n using info = std::pair<cost_t, size_t>;\n std::priority_queue<info, std::vector<info>, std::greater<info>> que;\n fill(dist.begin(), dist.end(), inf_cost);\n que.emplace(dist[s] = 0, s);\n while(!que.empty())\n {\n cost_t _cost; size_t v;\n std::tie(_cost, v) = que.top(), que.pop();\n if(_cost != dist[v]) continue;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 && dist[v] + h[v] + e.cost < dist[e.to] + h[e.to])\n {\n que.emplace(dist[e.to] = dist[v] + h[v] - h[e.to] + e.cost, e.to);\n prev_v[e.to] = v;\n prev_e[e.to] = &e;\n }\n }\n }\n if(dist[t] >= inf_cost) return false;\n for(size_t v = 0; v != V; ++v)\n {\n h[v] += dist[v];\n if(h[v] > inf_cost) h[v] = inf_cost;\n }\n return true;\n }\n public:\n const cost_t inf_cost = std::numeric_limits<cost_t>::max() / 4;\n Primal_Dual(size_t V) : Flow<cap_t, cost_t>(V), neg_cost() {}\n void add_edge(size_t s, size_t t, cap_t cap, cost_t cost)\n {\n if(cap <= 0) return;\n if(cost < 0) neg_cost = true;\n Flow<cap_t, cost_t>::add_edge(s, t, cap, cost);\n }\n cost_t min_cost_flow(size_t s, size_t t, cap_t f)\n {\n cost_t res = 0;\n if(neg_cost)\n {\n neg_cost = false;\n {\n const size_t _s = V++, _t = V++;\n adj.resize(V);\n add_edge(_s, s, f, 0);\n add_edge(t, _t, f, 0);\n s = _s, t = _t;\n }\n for(size_t v = 0; v != V; ++v)\n {\n cap_t cap_sum = 0;\n for(auto &&e : adj[v])\n {\n if(e.cap > 0 and e.cost < 0)\n {\n add_edge(s, e.to, e.cap, 0);\n res += e.cap * e.cost;\n f += e.cap;\n adj[e.to][e.rev].cap += e.cap;\n cap_sum += e.cap;\n e.cap = 0;\n }\n }\n add_edge(v, t, cap_sum, 0);\n }\n }\n dist.resize(V), h.assign(V, 0);\n prev_v.resize(V), prev_e.resize(V);\n while(f > 0)\n {\n if(!dijkstra(s, t)) return inf_cost;\n cap_t d = f;\n for(int v = t; v != s; v = prev_v[v]) d = std::min(d, prev_e[v]->cap);\n f -= d, res += h[t] * d;\n for(int v = t; v != s; v = prev_v[v])\n {\n prev_e[v]->cap -= d;\n adj[v][prev_e[v]->rev].cap += d;\n }\n }\n return res;\n }\n}; // class Primal_Dual\n\nmain()\n{\n using namespace std;\n int n,m,k; cin>>n>>m>>k;\n Primal_Dual<int,int> flow(2+n+m);\n vector<int> a(n); cin>>a;\n const int s=n+m,t=s+1;\n for(int i=0; i<m; ++i)\n {\n for(int j=0; j<n; ++j)\n {\n int b; cin>>b;\n flow.add_edge(i,j+m,1,-b);\n }\n }\n for(int i=m; i<m+n; ++i)\n {\n flow.add_edge(i,t,1,a[i-m]);\n }\n for(int i=0; i<m; ++i)\n {\n int t; cin>>t;\n flow.add_edge(s,i,t,0);\n }\n flow.add_edge(s,t,n,0);\n cout << accumulate(a.begin(),a.end(),0)-flow.min_cost_flow(s,t,n-k) << \"\\n\";\n}", "accuracy": 1, "time_ms": 970, "memory_kb": 4616, "score_of_the_acc": -1.9231, "final_rank": 17 }, { "submission_id": "aoj_2815_3991575", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\nconst ll MOD = 1e9 + 7;\nusing PII = pair<ll, ll>;\n#define FOR(i,a,n) for(ll i=(ll)a; i<(ll)n; ++i)\n#define REP(i,n) FOR(i,0,n)\nconst ll INF = 1LL << 60;\ntemplate<typename T> void chmin(T &a, T b) { a = min(a, b); }\n\nstruct min_cost_max_flow {\n\tstruct edge {\n\t\tint to;\n\t\tll cap, cost;\n\t\tint rev;\n\t\tbool isrev;\n\t};\n\n\tint n, s, t;\n\tll neg;\n\tvector<vector<edge>> g;\n\tvector<ll> d, h, dist, prevv, preve;\n\n\tll flow(vector<ll> d0) {\n\t\tll res = 0;\n\t\tpriority_queue<PII, vector<PII>, greater<PII>> que;\n\t\th.assign(n, 0);\n\t\tpreve.assign(n, -1);\n\t\tprevv.assign(n, -1);\n\t\tll f = 0;\n\t\tREP(i, d.size()) {\n\t\t\tif (i < (ll)d0.size()) d[i] += d0[i];\n\t\t\tif (d[i] > 0) add_edge(s, i, d[i], 0), f += d[i];\n\t\t\telse if (d[i] < 0) add_edge(i, t, -d[i], 0);\n\t\t}\n\t\twhile (f > 0) {\n\t\t\tdist.assign(n, INF);\n\t\t\tdist[s] = 0;\n\t\t\tque.push({ 0, s });\n\t\t\twhile (que.size()) {\n\t\t\t\tPII p = que.top(); que.pop();\n\t\t\t\tint v = p.second;\n\t\t\t\tif (dist[v] < p.first) continue;\n\t\t\t\tREP(i, g[v].size()) {\n\t\t\t\t\tedge &e = g[v][i];\n\t\t\t\t\tif (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {\n\t\t\t\t\t\tdist[e.to] = dist[v] + e.cost + h[v] - h[e.to];\n\t\t\t\t\t\tprevv[e.to] = v;\n\t\t\t\t\t\tpreve[e.to] = i;\n\t\t\t\t\t\tque.push({ dist[e.to], e.to });\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (dist[t] == INF) return -1;\n\t\t\tREP(v, n) h[v] += dist[v];\n\t\t\tll d = f;\n\t\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\t\tchmin(d, g[prevv[v]][preve[v]].cap);\n\t\t\t}\n\t\t\tf -= d; res += d * h[t];\n\t\t\tfor (int v = t; v != s; v = prevv[v]) {\n\t\t\t\tedge &e = g[prevv[v]][preve[v]];\n\t\t\t\te.cap -= d;\n\t\t\t\tg[v][e.rev].cap += d;\n\t\t\t}\n\t\t}\n\t\treturn neg + res;\n\t} \n\n\tmin_cost_max_flow(int n0) : n(n0+2), s(n0), t(n0+1), neg(0), g(n0+2), d(n0+2) {}\n\n\tvoid add_edge(int from, int to, ll cap, ll cost) {\n\t\tif (cost >= 0) {\n\t\t\tg[from].push_back({ to, cap, cost, (int)g[to].size(), false });\n\t\t\tg[to].push_back({ from, 0, -cost, (int)g[from].size() - 1, true });\n\t\t}\n\t\telse {\n\t\t\td[from] -= cap;\n\t\t\td[to] += cap;\n\t\t\tneg += cap * cost;\n\t\t\tadd_edge(to, from, cap, -cost);\n\t\t}\n\t}\n\n\tll flow(int S, int T, ll f) {\n\t\tvector<ll> d0(n);\n\t\td0[S] = f, d0[T] = -f;\n\t\treturn flow(d0);\n\t}\n};\n\nint main() {\n\tll n, m, k;\n\tcin >> n >> m >> k;\n\tvector<ll> a(n), T(m);\n\tvector<vector<ll>> b(m, vector<ll>(n));\n\tREP(i, n) cin >> a[i];\n\tREP(i, m) REP(j, n) cin >> b[i][j];\n\tREP(i, m) cin >> T[i];\n\n\tmin_cost_max_flow graph(n + m + 4);\n\tll s = n + m + 2, t = n + m + 3, x = n + m, y = n + m + 1;\n\tgraph.add_edge(s, x, n, 0);\n\tgraph.add_edge(s, y, n-k, 0);\n\tREP(i, m) graph.add_edge(y, i, T[i], 0);\n\tREP(i, n) graph.add_edge(m + i, t, 1, 0);\n\tREP(i, n) graph.add_edge(x, m + i, 1, -a[i]);\n\tREP(i, m) REP(j, n) graph.add_edge(i, m + j, 1, -b[i][j]);\n\n\tcout << -graph.flow(s, t, n) << endl;\n}", "accuracy": 1, "time_ms": 840, "memory_kb": 3968, "score_of_the_acc": -1.2704, "final_rank": 16 }, { "submission_id": "aoj_2815_2797329", "code_snippet": "#include<iostream>\n#include<vector>\n#include<queue>\n#define loop(i,a,b) for(int i=a;i<b;i++)\n#define rep(i,a) loop(i,0,a)\n#define pb push_back\nusing namespace std;\ntypedef pair<int,int> pii;\ntypedef vector<int> vi;\ntypedef vector<vi> vvi;\nconst int inf=1e8;\nstruct edge{\n int to,cap,cost,rev;\n};\ntypedef vector<edge> ve;\ntypedef vector<ve> vve;\nclass MCF{ //Minimum Cost Flow\npublic:\n int n;\n vve G;\n vi h,dist,prev,pree;\n MCF(int size){\n n=size;\n G=vve(n);\n h=dist=prev=pree=vi(n);\n }\n void add_edge(int s,int t,int ca,int co){\n edge e={t,ca,co,(int)G[t].size()};\n G[s].pb(e);\n edge ee={s,0,-co,(int)G[s].size()-1};\n G[t].pb(ee);\n }\n int mcf(int s,int t,int f){\n int out=0;\n h=vi(n);\n while(f>0){\n priority_queue<pii,vector<pii> >q;\n dist=vi(n,inf);\n dist[s]=0;\n q.push(pii(0,s));\n while(!q.empty()){\n pii p=q.top();q.pop();\n int v=p.second;\n if(dist[v]<-p.first)continue;\n rep(i,G[v].size()){\n edge &e=G[v][i];\n if(e.cap>0&&dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){\n dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n prev[e.to]=v;\n pree[e.to]=i;\n q.push(pii(-dist[e.to],e.to));\n }\n }\n }\n if(dist[t]==inf)return -1;\n rep(i,n)h[i]+=dist[i];\n int d=f;\n for(int v=t;v!=s;v=prev[v])d=min(d,G[prev[v]][pree[v]].cap);\n f-=d;\n out+=d*h[t];\n for(int v=t;v!=s;v=prev[v]){\n edge &e=G[prev[v]][pree[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n return out;\n }\n};\nsigned main(){\n //n個のレポート, m人の友だち\n \n int n,m,k; cin >> n >> m >> k;\n vector<vector<int>>v(m+1,vector<int>(n));\n rep(i,m+1)rep(j,n) cin >> v[i][j];\n vector<int>frd;\n frd.push_back(n);\n rep(i,m){\n int tmp; cin >> tmp;\n frd.push_back(tmp);\n }\n MCF fl(n+m+5);\n //fl.add_edge(int s, int t, int cap, int cost)\n int source = n+m+5 - 2;\n int sink = n+m+5-1;\n int fri = source-1;\n int msl = fri - 1;\n fl.add_edge(msl, sink, n, 0);\n fl.add_edge(fri, sink, n-k, 0);\n //各レポートに辺を貼る\n rep(i,n)fl.add_edge(source,i, 1, 0);\n rep(i,n)rep(j,m+1){\n fl.add_edge(i,n+j,1, 1000-v[j][i]);\n }\n rep(i,m+1){\n fl.add_edge(n+i, (i!=0?fri:msl),frd[i],0);\n }\n cout << 1000*n-fl.mcf(source, sink, n) << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3388, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_2815_2764540", "code_snippet": "#include <stdio.h>\n#include <cmath>\n#include <algorithm>\n#include <cfloat>\n#include <stack>\n#include <queue>\n#include <vector>\n#include <string>\n#include <iostream>\n#include <set>\n#include <map>\n#include <time.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define NUM 250\n\n\n//辺を表す構造体{行先、容量、コスト、逆辺のインデックス}\nstruct Edge{\n\tEdge(int arg_to,int arg_capacity,int arg_cost,int arg_rev_index){\n\t\tto = arg_to;\n\t\tcapacity = arg_capacity;\n\t\tcost = arg_cost;\n\t\trev_index = arg_rev_index;\n\t}\n\n\tint to,capacity,cost,rev_index;\n};\n\nint V; //頂点数\nvector<Edge> G[NUM]; //グラフの隣接リスト表現\nint dist[NUM]; //最短距離\nint pre_node[NUM],pre_edge[NUM]; //直前の頂点と辺\nint A[101],B[101][101],T[101];\n\n\n//fromからtoへ向かう容量capacity,コストcostの辺をグラフに追加する\nvoid add_edge(int from,int to,int capacity,int cost){\n\tG[from].push_back(Edge(to,capacity,cost,G[to].size()));\n\tG[to].push_back(Edge(from,0,-cost,G[from].size()-1));\n}\n\n//sourceからsinkへの、流量flowの最小費用流を求める\n//流せない場合は-1を返す\nint min_cost_flow(int source,int sink,int flow){\n\tint ret = 0;\n\twhile(flow > 0){\n\t\t//ベルマンフォード方により、source-sink間最短経路を求める\n\t\tfor(int i = 0; i < V; i++)dist[i] = BIG_NUM;\n\t\tdist[source] = 0;\n\t\tbool update = true;\n\t\twhile(update){\n\t\t\tupdate = false;\n\t\t\tfor(int node_id = 0; node_id < V; node_id++){\n\t\t\t\tif(dist[node_id] == BIG_NUM)continue;\n\t\t\t\tfor(int i = 0; i < G[node_id].size(); i++){\n\t\t\t\t\tEdge &e = G[node_id][i];\n\t\t\t\t\tif(e.capacity > 0 && dist[e.to] > dist[node_id]+e.cost){\n\t\t\t\t\t\tdist[e.to] = dist[node_id]+e.cost; //node_idを経由した方が早い場合\n\t\t\t\t\t\tpre_node[e.to] = node_id;\n\t\t\t\t\t\tpre_edge[e.to] = i;\n\t\t\t\t\t\tupdate = true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(dist[sink] == BIG_NUM){\n\t\t\t//これ以上流せない\n\t\t\treturn -1;\n\t\t}\n\n\t\t//source-sink間最短路に沿って目いっぱい流す\n\t\tint tmp_flow = flow;\n\t\tfor(int node_id = sink; node_id != source; node_id = pre_node[node_id]){\n\t\t\ttmp_flow = min(tmp_flow,G[pre_node[node_id]][pre_edge[node_id]].capacity);\n\t\t}\n\t\tflow -= tmp_flow;\n\t\tret += tmp_flow*dist[sink];\n\t\tfor(int node_id = sink; node_id != source; node_id = pre_node[node_id]){\n\t\t\tEdge &e = G[pre_node[node_id]][pre_edge[node_id]];\n\t\t\te.capacity -= tmp_flow;\n\t\t\tG[node_id][e.rev_index].capacity += tmp_flow;\n\t\t}\n\t}\n\treturn ret;\n}\n\nint main(){\n\n\tint N,M,K;\n\tscanf(\"%d %d %d\",&N,&M,&K);\n\n\tfor(int i = 0; i < N; i++)scanf(\"%d\",&A[i]);\n\n\tfor(int i = 0; i < M; i++){\n\t\tfor(int k = 0; k < N; k++)scanf(\"%d\",&B[i][k]);\n\t}\n\n\tfor(int i = 0; i < M; i++)scanf(\"%d\",&T[i]);\n\n\tint source = 0,sink = 1,first_branch = 2,second_branch = 3,me = 4,index = 5;\n\n\tadd_edge(source,first_branch,N,0); //全体の流量をNに設定する\n\tadd_edge(first_branch,me,N,0); //自分に最大N流せるようにする\n\tadd_edge(first_branch,second_branch,N-K,0); //最大でも友達にはN-Kしか流せないようにする\n\n\tint friend_index[M],report_index[N];\n\n\tfor(int i = 0; i < M; i++){\n\t\tfriend_index[i] = index++;\n\t\tadd_edge(second_branch,friend_index[i],T[i],0); //友達iに流量T[i]の辺を張る\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\treport_index[i] = index++;\n\t\tadd_edge(report_index[i],sink,1,0); //レポートからsinkへ辺を張る\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tadd_edge(me,report_index[i],1,-A[i]); //自分からレポートに、負のコストの辺を張る\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\t\tfor(int k = 0; k < N; k++){\n\t\t\tadd_edge(friend_index[i],report_index[k],1,-B[i][k]); //友達iからレポートkに、負のコストの辺を張る\n\t\t}\n\t}\n\n\tV = index;\n\n\tprintf(\"%d\\n\",-min_cost_flow(source,sink,N));\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3476, "score_of_the_acc": -0.0717, "final_rank": 4 }, { "submission_id": "aoj_2815_2728697", "code_snippet": "#include <bits/stdc++.h>\n#define r(i,n) for(int i=0;i<n;i++)\nusing namespace std;\n\nstruct PrimalDual{\n const int INF = 1<<28;\n typedef pair<int,int> P;\n struct edge{\n int to,cap,cost,rev;\n edge(){}\n edge(int to,int cap,int cost,int rev):to(to),cap(cap),cost(cost),rev(rev){}\n };\n\n int n;\n vector<vector<edge> > G;\n vector<int> h,dist,prevv,preve;\n\n PrimalDual(){}\n PrimalDual(int sz):n(sz),G(sz),h(sz),dist(sz),prevv(sz),preve(sz){}\n \n void add_edge(int from,int to,int cap,int cost){\n G[from].push_back(edge(to,cap,cost,G[to].size()));\n G[to].push_back(edge(from,0,-cost,G[from].size()-1));\n }\n\n int flow(int s,int t,int f){\n int res=0;\n fill(h.begin(),h.end(),0);\n while(f>0){\n priority_queue<P,vector<P>,greater<P> > que;\n fill(dist.begin(),dist.end(),INF);\n dist[s]=0;\n que.push(P(0,s));\n while(!que.empty()){\n P p=que.top();que.pop();\n int v=p.second;\n if(dist[v]<p.first) continue;\n for(int i=0;i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap>0&&dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){\n dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to]=v;\n preve[e.to]=i;\n que.push(P(dist[e.to],e.to));\n }\n }\n }\n if(dist[t]==INF) return -1;\n for(int v=0;v<n;v++) h[v]+=dist[v];\n int d=f;\n for(int v=t;v!=s;v=prevv[v]){\n d=min(d,G[prevv[v]][preve[v]].cap);\n }\n f-=d;\n res+=d*h[t];\n for(int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n return res;\n }\n};\n\nint main(){\n int n,m,K;\n cin>>n>>m>>K;\n int a[n],b[m][n],t[m];\n r(i,n)cin>>a[i];\n r(i,m)r(j,n)cin>>b[i][j];\n r(i,m)cin>>t[i];\n int v=n+m+4;\n PrimalDual p(v);\n int start=n+m+1;\n int goal=n+m+2;\n int tite=n+m+3;\n r(i,n)p.add_edge(start,i,1,0);\n r(i,m+1){\n if(!i)p.add_edge(n+i,goal,1000,0);\n else p.add_edge(n+i,tite,t[i-1],0);\n }\n p.add_edge(tite,goal,n-K,0);\n r(i,n){\n r(j,m+1){\n if(!j)p.add_edge(i,n+j,1,-a[i]);\n else p.add_edge(i,n+j,1,-b[j-1][i]);\n }\n }\n cout<<-p.flow(start,goal,n)<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3436, "score_of_the_acc": -0.0391, "final_rank": 3 }, { "submission_id": "aoj_2815_2374951", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define DUMP(x) cerr << #x << \"=\" << x << endl\n#define DUMP2(x, y) cerr<<\"(\"<<#x<<\", \"<<#y<<\") = (\"<<x<<\", \"<<y<<\")\"<< endl\n#define BINARY(x) static_cast<bitset<16> >(x)\n\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define REP(i,m,n) for (int i=m;i<(int)(n);i++)\n\n#define in_range(x, y, w, h) (0<=(int)(x) && (int)(x)<(int)(w) && 0<=(int)(y) && (int)(y)<(int)(h))\n#define ALL(a) (a).begin(),(a).end()\n\ntypedef long long ll;\nconst int INF = 1e9;\nconst ll INFLL = 1e18;\ntypedef pair<int, int> PII;\nint dx[4]={0, -1, 1, 0}, dy[4]={-1, 0, 0, 1};\n\nconst int MAX_V = 2000;\n\nclass MinCostFlow {\n struct edge { int to, cap, rev, cost;};\n vector<edge> G[MAX_V];\n\n int V;\n \n int dist[MAX_V];\n int prevv[MAX_V], preve[MAX_V];\n \npublic:\n MinCostFlow() {V=MAX_V;}\n MinCostFlow(int v) {\n V = v;\n }\n \n void add_edge(int from, int to, int cap, int cost) {\n G[from].push_back((edge){to, cap, (int)G[to].size(), cost});\n G[to].push_back((edge){from, 0, (int)G[from].size()-1, -cost});\n }\n \n // ????°??????¨???\n int min_cost_flow(int s, int t, int f) {\n int res=0;\n while (f>0) {\n fill(dist, dist+V, INF);\n dist[s]=0;\n bool update=true;\n while (update) {\n update = false;\n for (int v=0; v<V; v++) {\n if (dist[v]==INF) continue;\n for (int i=0; i<G[v].size(); i++) {\n edge &e = G[v][i];\n if (e.cap>0 && dist[e.to] > dist[v] + e.cost) {\n dist[e.to] = dist[v] + e.cost;\n prevv[e.to] = v;\n preve[e.to] = i;\n update = true;\n }\n }\n }\n }\n \n if (dist[t] == INF) {\n return -1;\n }\n \n int d=f;\n for (int v=t; v!=s; v=prevv[v]) {\n d = min(d, G[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d*dist[t];\n for (int v=t; v!=s; v=prevv[v]) {\n edge &e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n return res;\n }\n};\n\nint main()\n{\n ios::sync_with_stdio(false);\n\n int N, M, K;\n cin >> N >> M >> K;\n\n M++;\n\n vector<vector<int>> A(M, vector<int>(N));\n vector<int> T(M-1);\n\n rep(i, M) {\n rep(j, N) {\n cin >> A[i][j];\n }\n }\n\n rep(i, M-1) cin >> T[i];\n \n // Node 0 : ?????????\n // Node 1 - N : ??¬?????????\n // Node N+1 - N+M : ??????+??????\n // Node N+M+1 : ?§?????????°?????¶???\n // Node N+M+2 : ?????????\n\n const int SOURCE = 0;\n const int SINK = N+M+2;\n const int X = N+M+1;\n\n MinCostFlow flow(N+M+10);\n\n rep(i, N) {\n flow.add_edge(SOURCE, 1+i, 1, 0);\n }\n\n rep(i, N) {\n rep(j, M) {\n flow.add_edge(1+i, N+1+j, 1, 100 - A[j][i]);\n }\n }\n\n flow.add_edge(N+1, SINK, INF, 0);\n\n if (M > 1) {\n rep(i, M-1) {\n flow.add_edge(N+2+i, X, T[i], 0);\n }\n\n flow.add_edge(X, SINK, N-K, 0);\n }\n\n cout << N*100 - flow.min_cost_flow(0, SINK, N) << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3548, "score_of_the_acc": -0.1303, "final_rank": 5 }, { "submission_id": "aoj_2815_2336183", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n\nusing namespace std;\n\nconstexpr int MAX_V = 1000;\nconstexpr int INF = (1 << 29);\n\nstruct edge {\n int to, cap, cost, rev;\n edge(int to, int cap, int cost, int rev) :\n to{to}, cap{cap}, cost{cost}, rev{rev} {}\n};\n\nint V;\nvector<edge> G[MAX_V];\nint dist[MAX_V], prevv[MAX_V], preve[MAX_V];\n\nvoid add_edge(int from, int to, int cap, int cost)\n{\n G[from].emplace_back(to, cap, cost, G[to].size());\n G[to].emplace_back(from, 0, -cost, G[from].size() - 1);\n}\n\nint min_cost_flow(int s, int t, int f)\n{\n int res = 0;\n while (f > 0) {\n fill(dist, dist + V, INF);\n dist[s] = 0;\n bool update = true;\n while (update) {\n update = false;\n for (int v = 0; v < V; v++) {\n if (dist[v] == INF) continue;\n for (int i = 0; i < (int)G[v].size(); i++) {\n edge& e = G[v][i];\n if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) {\n dist[e.to] = dist[v] + e.cost;\n prevv[e.to] = v;\n preve[e.to] = i;\n update = true;\n }\n }\n }\n }\n if (dist[t] == INF) return -1;\n int d = f;\n for (int v = t; v != s; v = prevv[v]) {\n d = min(d, G[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d * dist[t];\n for (int v = t; v != s; v = prevv[v]) {\n edge& e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n return res;\n}\n\nint main()\n{\n int N, M, K;\n cin >> N >> M >> K;\n \n int S = N + (M + 1) + 1, T = S + 1;\n V = T + 1;\n for (int i = 0; i < N; i++) {\n int a;\n cin >> a;\n \n add_edge(S, i, 1, 0);\n add_edge(i, N, 1, -a);\n }\n \n\n for (int i = 0; i < M; i++) {\n for (int j = 0; j < N; j++) {\n int b;\n cin >> b;\n add_edge(j, N + i + 1, 1, -b);\n }\n } \n \n for (int i = 0; i < M; i++) {\n int Ti;\n cin >> Ti;\n add_edge(N + i + 1, N + (M + 1), Ti, 0);\n }\n\n add_edge(N, T, INF, 0);\n add_edge(N + (M + 1), T, N - K, 0);\n\n cout << -min_cost_flow(S, T, N) << endl; \n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3396, "score_of_the_acc": -0.0065, "final_rank": 2 }, { "submission_id": "aoj_2815_2330393", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\n\n\n#define REP(i,n) for(int i=0;i<(int)n;++i)\n#define FOR(i,c) for(auto i=(c).begin();i!=(c).end();++i)\n#define ALL(c) (c).begin(), (c).end()\n\n\n\ntypedef int Weight;\ntypedef int Cap;\nconst Weight W_INF = INT_MAX;\nconst Weight W_ZERO = 0;\nconst Cap C_INF = INT_MAX;\nconst Cap C_ZERO = 0;\n\nstruct Edge {\n\tint src, dst;\n\tCap capacity;\n\tWeight cost;\n\tEdge(int src, int dst, const Cap& acap, const Weight& acost) :\n\t\tsrc(src), dst(dst), capacity(acap), cost(acost) {\n\t}\n};\nbool operator < (const Edge &e, const Edge &f) {\n\treturn e.cost > f.cost;\n}\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\n\n#define RESIDUE(s,t) (capacity[s][t]-flow[s][t])\n#define RCOST(u,v) (cost[u][v] + h[u] - h[v])\n\n//??°?????????????????§???????????????????????¨?????????\n\n//Graph &ag\n//????????§???????????????(u, v, capacity, cost) ??????????????????(u, v, 0, -cost) ???????????°????????????????????¶?????????????????§????´???°????????§???????????°???????????????\n//int s, int t\n//?????????????§??????¨?????????\n//?????????\n//?????¨??¨????????????????????????\npair<Weight, Cap> minimumCostFlow(const Graph &ag, int s, int t) {\n\t//check???????´???°??????????????£???????????????\n\tGraph g(ag);\n\tfor (int i = 0; i < ag.size(); ++i) {\n\t\tfor (int j = 0; j < ag[i].size(); ++j) {\n\t\t\tint d = ag[i][j].dst;\n\t\t\tint s = ag[i][j].src;\n\n\t\t\tbool ok = false;\n\t\t\tfor (int k = 0; k < ag[d].size(); ++k) {\n\t\t\t\tif (ag[d][k].src == s) {\n\t\t\t\t\tok = true;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (!ok) {\n\t\t\t\tg[d].push_back(Edge(d, s, C_ZERO, -ag[i][j].cost));\n\t\t\t}\n\t\t}\n\t}\n\tconst int n = g.size();\n\tvector<vector<Cap>> capacity(n, vector<Cap>(n)), flow(n, vector<Cap>(n));\n\tvector<vector<Weight>>cost(n, vector<Weight>(n));\n\tfor (int u = 0; u < n; ++u) {\n\t\tfor (auto e : g[u]) {\n\t\t\tcapacity[e.src][e.dst] = capacity[e.src][e.dst] + e.capacity;\n\t\t\tcost[e.src][e.dst] = cost[e.src][e.dst] + e.cost;\n\t\t}\n\t}\n\tpair<Weight, Cap> total; // (cost, flow)\n\tvector<Weight> h(n);\n\n\tfor (Cap F = C_INF; F > 0; ) { // residual flow\n\t\tvector<Weight> d(n, W_INF); d[s] = W_ZERO;\n\t\tvector<int> p(n, -1);\n\t\tpriority_queue<Edge> Q; // \"e < f\" <=> \"e.cost > f.cost\"\n\t\tfor (Q.push(Edge(-2, s, C_ZERO, W_ZERO)); !Q.empty(); ) {\n\t\t\tEdge e = Q.top(); Q.pop();\n\t\t\tif (p[e.dst] != -1) continue;\n\t\t\tp[e.dst] = e.src;\n\t\t\tFOR(f, g[e.dst]) {\n\t\t\t\tif (RESIDUE(f->src, f->dst) > 0) {\n\t\t\t\t\tif (d[f->dst] > d[f->src] + RCOST(f->src, f->dst)) {\n\t\t\t\t\t\td[f->dst] = d[f->src] + RCOST(f->src, f->dst);\n\t\t\t\t\t\tQ.push(Edge(f->src, f->dst, 0, d[f->dst]));\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (p[t] == -1) {\n\t\t\tbreak;\n\t\t}\n\n\t\tCap f = F;\n\t\tfor (int u = t; u != s; u = p[u]) {\n\t\t\tf = min(f, RESIDUE(p[u], u));\n\t\t}\n\t\tfor (int u = t; u != s; u = p[u]) {\n\t\t\ttotal.first = total.first + f * cost[p[u]][u];\n\t\t\tflow[p[u]][u] = flow[p[u]][u] + f; flow[u][p[u]] = flow[u][p[u]] - f;\n\t\t}\n\t\tF = F - f;\n\t\ttotal.second = total.second + f;\n\t\tfor (int u = 0; u < n; ++u) {\n\t\t\th[u] = h[u] + d[u];\n\t\t}\n\t}\n\treturn total;\n}\nvoid add_edge(Graph&g, const int from, const int to, const Cap& cap, const Weight& weight) {\n\tg[from].push_back(Edge(from, to, cap, weight));\n}\n\nint main() {\n\tint N, M, K; cin >> N >> M >> K;\n\tvector<int>myscores(N);\n\tvector<vector<int>>friscores(M, vector<int>(N));\n\tvector<int>cancheat(M);\n\tfor (int i = 0; i < N; ++i) {\n\t\tcin >> myscores[i];\n\t}\n\tfor (int i = 0; i < M; ++i) {\n\t\tfor (int j = 0; j < N; ++j) {\n\t\t\tcin >> friscores[i][j];\n\t\t}\n\t}\n\tfor (int i = 0; i < M; ++i) {\n\t\tcin >> cancheat[i];\n\t}\n\n\tconst int start = 0;\n\tconst int report = start + 1;\n\tconst int my = report + N;\n\tconst int fr_in = my + 1;\n\tconst int fr_assemble = fr_in + M;\n\tconst int goal = fr_assemble + 1;\n\tGraph g(goal+1);\n\tfor (int i = 0; i < N; ++i) {\n\t\tadd_edge(g, start, report + i, 1, 0);\n\t}\n\tfor (int i = 0; i < N; ++i) {\n\t\tfor (int j = 0; j < M; ++j) {\n\t\t\tadd_edge(g, report + i, fr_in + j, 1, 100-friscores[j][i]);\n\t\t}\n\t\tadd_edge(g, report + i, my, 1, 100-myscores[i]);\n\t}\n\tfor (int j = 0; j < M; ++j) {\n\t\tadd_edge(g, fr_in + j, fr_assemble, cancheat[j], 0);\n\t}\n\tadd_edge(g, fr_assemble,goal, N - K, 0);\n\tadd_edge(g, my, goal, N, 0);\n\tauto ans = minimumCostFlow(g, start, goal);\n\tcout << 100*N-ans.first<< endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4152, "score_of_the_acc": -0.6221, "final_rank": 6 } ]