group_id
stringlengths
12
18
problem_description
stringlengths
85
3.02k
candidates
listlengths
3
20
aoj_3296_cpp
Problem E 最大公約数 正の整数 M , A が与えられる.整数 x が以下の条件をすべて満たすとき, x は良い整数である.良い整数の個数を求めよ. 1 ≤ x < M . M と x は互いに素. M と A の最大公約数を g とするとき, Ax ≡ g (mod M) . Input 入力は 500 個以下のデータセットからなる.各データセットは次の形式で表される. M A 各データセットは整数 M と A を含む 1 行からなる. 2 ≤ M ≤ 10 12 および 1 ≤ A < M を満たすことが保証される. 入力の終わりは 2 つのゼロからなる行で表される. Output 各データセットに対し,良い整数の個数を 1 行に出力せよ. Sample Input 6 4 5040 128 1000000000000 500000000000 0 0 Output for the Sample Input 1 8 400000000000
[ { "submission_id": "aoj_3296_10866767", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep2(i, m, n) for (int i = (m); i < (n); ++i)\n#define rep(i, n) rep2(i, 0, n)\n#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)\n#define drep(i, n) drep2(i, n, 0)\n#define all(...) std::begin(__VA_ARGS__), std::end(__VA_ARGS__)\n#define rall(...) std::rbegin(__VA_ARGS__), std::rend(__VA_ARGS__)\n#define FOR(i, a, b) for (int i = (a), i##_len = (b); i <= i##_len; ++i)\n#define REV(i, a, b) for (int i = (a); i >= (b); --i)\n#define CLR(a, b) memset((a), (b), sizeof(a))\n#define DUMP(x) cout << #x << \" = \" << (x) << endl;\n#define INF 1001001001001001001ll\n#define inf (int)1001001000\n#define MOD 998244353\n#define MOD1 1000000007\n#define PI 3.14159265358979\n#define Dval 1e-12\n#define fcout cout << fixed << setprecision(12)\n#define Mp make_pair\n#define pb push_back\n#define fi first\n#define se second\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing vl = vector<long long>;\nusing vs = vector<string>;\nusing vd = vector<double>;\nusing vld = vector<long double>;\nusing vc = vector<char>;\nusing vb = vector<bool>;\nusing vpii = vector<pair<int, int>>;\nusing vpil = vector<pair<int, long long>>;\nusing vpll = vector<pair<long long, long long>>;\nusing vvi = vector<vector<int>>;\nusing vvl = vector<vector<long long>>;\nusing vvd = vector<vector<double>>;\nusing vvld = vector<vector<long double>>;\nusing vvc = vector<vector<char>>;\nusing vvb = vector<vector<bool>>;\nusing vvpii = vector<vector<pair<int,int>>>;\nusing vvpll = vector<vector<pair<long long,long long>>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vvvl = vector<vector<vector<long long>>>;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\nusing LL = __int128_t;\n\ntemplate<typename T>\nT dgt(T b, T n){ T cnt=0; while(n){ cnt++; n/=b;} return cnt;}\nll gcd(ll x, ll y) {\tif (x == 0) return y;\treturn gcd(y%x, x);} ll lcm(ll x, ll y) { __int128_t xx,yy; xx=x; yy=y; __int128_t ans=xx * yy / gcd(x, y); ll ans2=ans; return ans; }\ntemplate<typename T>\nT POW(T x, ll n){T ret=1;\twhile(n>0){\t\tif(n&1) ret=ret*x;\t\tx=x*x;\t\tn>>=1;\t}\treturn ret;}\ntemplate<typename T>\nT modpow(T a, ll n, T p) {\tif(n==0) return (T)1; if (n == 1) return a % p; if (n % 2 == 1) return (a * modpow(a, n - 1, p)) % p; T t = modpow(a, n / 2, p); return (t * t) % p;}\ntemplate<typename T>\nT modinv(T a, T m) {\tif(m==0)return (T)1;\tT b = m, u = 1, v = 0;\twhile (b) {\t\tT t = a / b;\t\ta -= t * b; swap(a, b);\t\tu -= t * v; swap(u, v);\t}\tu %= m;\tif (u < 0) u += m;\treturn u;}\ntemplate<typename T>\nT REM(T a, T b){ return (a % b + b) % b;}\ntemplate<typename T>\nT QUO(T a, T b){ return (a - REM(a, b)) / b;}\nconst int MAXCOMB=510000;\nll MODCOMB = 998244353;\nll fac[MAXCOMB], finv[MAXCOMB], inv[MAXCOMB]; \nvoid COMinit() {\tfac[0] = fac[1] = 1;\tfinv[0] = finv[1] = 1;\tinv[1] = 1;\tfor (int i = 2; i < MAXCOMB; i++) {\t\tfac[i] = fac[i - 1] * i % MODCOMB;\t\tinv[i] = MODCOMB - inv[MODCOMB%i] * (MODCOMB / i) % MODCOMB;\t\tfinv[i] = finv[i - 1] * inv[i] % MODCOMB;\t}}\nll COM(ll n, ll k) {\tif (n < k) return 0;\tif (n < 0 || k < 0) return 0;\treturn fac[n] * (finv[k] * finv[n - k] % MODCOMB) % MODCOMB;}\nll com(ll n,ll m){ if(n<m || n<=0 ||m<0){\t\treturn 0;\t}\tif( m==0 || n==m){\t\treturn 1;\t}\tll k=1;\tfor(ll i=1;i<=m;i++){ k*=(n-i+1); \t k%=MODCOMB;\t k*=modinv(i,MODCOMB);\t k%=MODCOMB;\t}\treturn k;}\nll rad(ll u, ll p){ ll cnt=0;\twhile(u%p==0){\t\tu/=p;\t\tcnt++;\t}\treturn cnt;}\n\ntemplate <typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false));}\ntemplate <typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false));}\ntemplate <class T> T BS(vector<T> &vec, T key) { auto itr = lower_bound(vec.begin(), vec.end(), key); return distance(vec.begin(), itr); }\ntemplate<class T> pair<T,T> RangeBS(vector<T> &vec, T lowv, T highv){auto itr_l = lower_bound(vec.begin(), vec.end(), lowv); auto itr_r = upper_bound(vec.begin(), vec.end(), highv); return make_pair(distance(vec.begin(), itr_l), distance(vec.begin(), itr_r)-1);}\nvoid fail() { cout << \"-1\\n\"; exit(0); } void no() { cout << \"No\\n\"; exit(0); } void yes() { cout << \"Yes\\n\"; exit(0); }\ntemplate<class T> void er(T a) { cout << a << '\\n'; exit(0); }\nint dx[] = { 1,0,-1,0,1,1,-1,-1,0 }; int dy[] = { 0,1,0,-1,1,-1,1,-1,0 };\nbool range_in(int i, int j, int h, int w){ if(i<0 || j<0 || i>=h || j>=w) return false; return true;} \nint bitcount(int n){n=(n&0x55555555)+(n>>1&0x55555555); n=(n&0x33333333)+(n>>2&0x33333333); n=(n&0x0f0f0f0f)+(n>>4&0x0f0f0f0f); n=(n&0x00ff00ff)+(n>>8&0x00ff00ff); n=(n&0x0000ffff)+(n>>16&0x0000ffff); return n;}\n\nvector<pair<ll, ll>> prime_factor(ll n) {\n vector<pair<ll, ll>> ret;\n for (ll i = 2; i * i <= n; i++) {\n if (n % i != 0) continue;\n ll tmp = 0;\n while (n % i == 0) {\n tmp++;\n n /= i;\n }\n ret.push_back(make_pair(i, tmp));\n }\n if (n != 1) ret.push_back(make_pair(n, 1));\n return ret;\n}\n\nll Random(ll upper) {\n static mt19937_64 engine(chrono::steady_clock::now().time_since_epoch().count());\n uniform_int_distribution<ll> dist(1, upper);\n return dist(engine);\n}\n\nvoid solve(int &FIN){\n ll M,A;\n cin>>M>>A;\n if(M==0){\n FIN=1;\n return;\n }\n // M=Random(10);\n // A=Random(M);\n ll g=gcd(M,A);\n //cout<<g<<endl;\n ll m=M/g;\n ll a=A/g;\n vpll fact=prime_factor(m);\n ll val=1;\n rep(i,fact.size()){\n while(g%fact[i].fi==0){\n g/=fact[i].fi;\n val*=fact[i].fi;\n }\n }\n ll g2=g;\n g=g*val;\n\n vpll fact2=prime_factor(g2);\n rep(i,fact2.size()){\n g/=fact2[i].fi;\n g*=fact2[i].fi-1;\n }\n // ll ans=0;\n // for(ll x=1;x<M;x++){\n // ll G=gcd(M,A);\n // if(gcd(M,x)!=1)continue;\n // if((A*x-G)%M==0)ans++;\n // }\n // // if(ans!=g){\n // // cout<<M<<\" \"<<A<<\" \"<<ans<<\" \"<<g<<endl;\n // // assert(0==1);\n // // }\n // //cout<<\"A\"<<endl;\n cout<<g<<endl;\n\n}\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n int FIN=0;\n\twhile(1){\n solve(FIN);\n if(FIN)return 0;\n }\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 3348, "score_of_the_acc": -0.0531, "final_rank": 14 }, { "submission_id": "aoj_3296_10683545", "code_snippet": "#ifdef LOCAL\n#define _GLIBCXX_DEBUG\n#pragma GCC optimize(\"O0\")\n#else\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n\n#include <bits/stdc++.h>\n// #include <bits/extc++.h>\nusing namespace std;\n\n// #include <atcoder/modint>\n// using mint = atcoder::modint998244353;\n// istream& operator>>(istream& in, mint& x) {\n// long long a;\n// in >> a;\n// x = a;\n// return in;\n// }\n// ostream& operator<<(ostream& out, const mint& x) {\n// return out << x.val();\n// }\n\nusing ll = long long;\nusing u32 = unsigned int;\nusing u64 = unsigned long long;\nusing i128 = __int128;\nusing u128 = unsigned __int128;\nusing f128 = __float128;\n\ntemplate <class T>\nconstexpr T infty = 0;\ntemplate <>\nconstexpr int infty<int> = 1'000'000'000;\ntemplate <>\nconstexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;\ntemplate <>\nconstexpr u32 infty<u32> = infty<int>;\ntemplate <>\nconstexpr u64 infty<u64> = infty<ll>;\ntemplate <>\nconstexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;\ntemplate <>\nconstexpr double infty<double> = infty<ll>;\ntemplate <>\nconstexpr long double infty<long double> = infty<ll>;\n\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\ntemplate <class T>\nusing vc = vector<T>;\ntemplate <class T>\nusing vvc = vector<vc<T>>;\nusing vvi = vvc<int>;\nusing vvl = vvc<ll>;\ntemplate <class T>\nusing vvvc = vector<vvc<T>>;\ntemplate <class T>\nusing vvvvc = vector<vvvc<T>>;\ntemplate <class T>\nusing vvvvvc = vector<vvvvc<T>>;\ntemplate <class T>\nusing pqg = std::priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T, class U>\nusing umap = unordered_map<T, U>;\n\n// template <typename K>\n// using tree = __gnu_pbds::tree<K, __gnu_pbds::null_type, std::less<>,\n// __gnu_pbds::rb_tree_tag,\n// __gnu_pbds::tree_order_statistics_node_update>;\n\n#define vv(type, name, h, ...) \\\n vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define vvv(type, name, h, w, ...) \\\n vector<vector<vector<type>>> name( \\\n h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name( \\\n a, vector<vector<vector<type>>>( \\\n b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n\n// FOR(a) := for (ll _ = 0; _ < (ll)a; ++_)\n// FOR(i, a) := for (ll i = 0; i < (ll)a; ++i)\n// FOR(i, a, b) := for (ll i = a; i < (ll)b; ++i)\n// FOR(i, a, b, c) := for (ll i = a; i < (ll)b; i += (c))\n// FOR_R(a) := for (ll i = (a) - 1; i >= 0; --i)\n// FOR_R(i, a) := for (ll i = (a) - 1; i >= 0; --i)\n// FOR_R(i, a, b) := for (ll i = (b) - 1; i >= (ll)a; --i)\n#define FOR1(a) for (ll _ = 0; _ < (ll)a; ++_)\n#define FOR2(i, a) for (ll i = 0; i < (ll)a; ++i)\n#define FOR3(i, a, b) for (ll i = a; i < (ll)b; ++i)\n#define FOR4(i, a, b, c) for (ll i = a; i < (ll)b; i += (c))\n#define FOR1_R(a) for (ll i = (a) - 1; i >= 0; --i)\n#define FOR2_R(i, a) for (ll i = (a) - 1; i >= 0; --i)\n#define FOR3_R(i, a, b) for (ll i = (b) - 1; i >= (ll)a; --i)\n#define overload4(a, b, c, d, e, ...) e\n#define overload3(a, b, c, d, ...) d\n#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)\n#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)\n\n#define FOR_subset(t, s) \\\n for (int t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))\n#define all(x) x.begin(), x.end()\n#define rall(x) x.rbegin(), x.rend()\n\nint popcnt(int x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(ll x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\nint popcnt_mod_2(int x) { return __builtin_parity(x); }\nint popcnt_mod_2(u32 x) { return __builtin_parity(x); }\nint popcnt_mod_2(ll x) { return __builtin_parityll(x); }\nint popcnt_mod_2(u64 x) { return __builtin_parityll(x); }\n// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)\nint topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }\nint topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }\nint topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }\nint topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }\n// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)\nint lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }\nint lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }\nint lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }\nint lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }\n\ntemplate <typename T>\nT floor(T a, T b) {\n return a / b - (a % b && (a ^ b) < 0);\n}\ntemplate <typename T>\nT ceil(T x, T y) {\n return floor(x + y - 1, y);\n}\ntemplate <typename T>\nT bmod(T x, T y) {\n return x - y * floor(x, y);\n}\ntemplate <typename T>\npair<T, T> divmod(T x, T y) {\n T q = floor(x, y);\n return {q, x - q * y};\n}\n\ntemplate <typename T, typename U>\nT POW(U x_, int n) {\n T x = x_;\n T ret = 1;\n while (n > 0) {\n if (n & 1) ret *= x;\n x *= x;\n n >>= 1;\n }\n return ret;\n}\n\ntemplate <typename T, typename U>\nT SUM(const vector<U> &A) {\n T sm = 0;\n for (auto &&a : A) sm += a;\n return sm;\n}\n\n#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))\n#define UNIQUE(x) \\\n sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()\n\ntemplate <class T, class S>\ninline bool chmax(T &a, const S &b) {\n return (a < b ? a = b, 1 : 0);\n}\ntemplate <class T, class S>\ninline bool chmin(T &a, const S &b) {\n return (a > b ? a = b, 1 : 0);\n}\n\n// ? は -1\nvc<int> s_to_vi(const string &S, char first_char) {\n vc<int> A(S.size());\n FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }\n return A;\n}\n\ntemplate <typename T, typename U>\nvector<T> cumsum(vector<U> &A, int off = 1) {\n int N = A.size();\n vector<T> B(N + 1);\n FOR(i, N) { B[i + 1] = B[i] + A[i]; }\n if (off == 0) B.erase(B.begin());\n return B;\n}\n\ntemplate <typename T>\nvector<int> argsort(const vector<T> &A) {\n vector<int> ids(A.size());\n iota(all(ids), 0);\n sort(all(ids),\n [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });\n return ids;\n}\n\n// A[I[0]], A[I[1]], ...\ntemplate <typename T>\nvc<T> rearrange(const vc<T> &A, const vc<int> &I) {\n vc<T> B(I.size());\n FOR(i, I.size()) B[i] = A[I[i]];\n return B;\n}\n\ntemplate<class... T>\nconstexpr auto min(T... a){\n return min(initializer_list<common_type_t<T...>>{a...});\n}\ntemplate<class... T>\nconstexpr auto max(T... a){\n return max(initializer_list<common_type_t<T...>>{a...});\n}\n\nvoid print(){\n cout << '\\n';\n}\ntemplate<class T>\nvoid print(const T& a){\n cout << a << '\\n';\n}\ntemplate<class T, class... Ts>\nvoid print(const T& a, const Ts&... b){\n cout << a;\n (cout << ... << (cout << ' ', b));\n cout << '\\n';\n}\ntemplate<class T>\nvoid print(vector<T> &a){\n for (int i = 0; i < (int)a.size(); ++i) {\n cout << a[i] << \" \\n\"[i == (int)a.size() - 1];\n }\n}\ntemplate<class T>\nvoid print(vector<T> &&a){\n for (int i = 0; i < (int)a.size(); ++i) {\n cout << a[i] << \" \\n\"[i == (int)a.size() - 1];\n }\n}\ntemplate<class T>\nvoid print(vector<vector<T>> &a){\n for (int i = 0; i < (int)a.size(); ++i) {\n for (int j = 0; j < (int)a[i].size(); ++j) {\n cout << a[i][j] << \" \\n\"[j == (int)a[i].size() - 1];\n }\n }\n}\ntemplate<class T>\nvoid print(vector<vector<T>> &&a){\n for (int i = 0; i < (int)a.size(); ++i) {\n for (int j = 0; j < (int)a[i].size(); ++j) {\n cout << a[i][j] << \" \\n\"[j == (int)a[i].size() - 1];\n }\n }\n}\nvoid YESNO(bool b) { cout << (b ? \"YES\" : \"NO\") << endl; }\nvoid YesNo(bool b) { cout << (b ? \"Yes\" : \"No\") << endl; }\n\n#ifdef LOCAL\n// https://zenn.dev/sassan/articles/19db660e4da0a4\n#include \"/Library/cpp-dump/dump.hpp\"\n#define dump(...) cpp_dump(__VA_ARGS__)\n// CPP_DUMP_DEFINE_EXPORT_OBJECT(mint, val());\n#else\n#define dump(...)\n#define CPP_DUMP_SET_OPTION(...)\n#define CPP_DUMP_DEFINE_EXPORT_OBJECT(...)\n#define CPP_DUMP_DEFINE_EXPORT_ENUM(...)\n#define CPP_DUMP_DEFINE_DANGEROUS_EXPORT_OBJECT(...)\n#endif\n\n\n//----------------------------------------------------------------\n// https://hackmd.io/@kcctdensan/rJ8CQtOki\n// キーに素因数,値に何乗かを格納した連想配列を返すタイプ\ntemplate <class T>\nmap<T, T> prime_factorization(T N) {\n map<T, T> ans;\n T X = N;\n for (T i = 2; i * i <= N; i++) {\n if (X % i != 0) continue;\n if (X == 1) break;\n while (X % i == 0) {\n ans[i]++;\n X /= i;\n }\n }\n if (X != 1) ans[X]++;\n return ans;\n}\n\nbool solve() {\n ll M, A;\n cin >> M >> A;\n if (M == 0 && A == 0) {\n return false;\n }\n ll g = __gcd(M, A);\n M /= g;\n A /= g;\n auto fact = prime_factorization(g);\n ll ans = g;\n for (auto [p, _] : fact) {\n if (M % p == 0) continue;\n ans /= p;\n ans *= (p - 1);\n }\n print(ans);\n return true;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(20);\n CPP_DUMP_SET_OPTION(max_line_width, 80);\n CPP_DUMP_SET_OPTION(log_label_func, cpp_dump::log_label::filename());\n CPP_DUMP_SET_OPTION(enable_asterisk, true);\n while (solve()) {\n }\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3584, "score_of_the_acc": -0.0469, "final_rank": 12 }, { "submission_id": "aoj_3296_10594568", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#pragma GCC optimize(\"O3,unroll-loops\")\n#pragma GCC target(\"avx2,bmi,bmi2,lzcnt,popcnt\")\n\nconst int MOD = 998244353;\nmt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());\n#define mid (l+(r-l)/2)\n\nusing ll = long long;\nusing ld = long double;\nusing str = string;\nusing i128 = __int128;\n\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pd = pair<ld,ld>;\n#define f first\n#define s second\n#define cf cout<<flush\n\ntemplate <class T> using V = vector<T>;\nusing vi = V<int>;\nusing vvi = V<vi>;\nusing vl = V<ll>;\nusing vvl = V<vl>;\nusing vd = V<ld>;\nusing vpi = V<pii>;\nusing vpl = V<pll>;\n\n#define sz(x) int((x).size())\n#define bg(x) begin(x)\n#define all(x) bg(x), end(x)\n#define sor(x) sort(all(x))\n#define sorr(x) sort(all(x)),reverse(all(x))\n#define uniq(x) sor(x), x.resize(unique(all(x))-x.begin())\n#define pb push_back\n#define ft front()\n#define bk back()\n#define chmi(x,y, ...) x = min(__VA_OPT__({) x,y __VA_OPT__(,)__VA_ARGS__ __VA_OPT__(}))\n#define chma(x,y, ...) x = max(__VA_OPT__({) x,y __VA_OPT__(,)__VA_ARGS__ __VA_OPT__(}))\n#define lwb(x,y) (int)(lower_bound(all(x),y)-x.begin())\n#define upb(x,y) (int)(upper_bound(all(x),y)-x.begin())\n#define compress(v) {auto _t=v;uniq(_t);for(auto &x:v)x=lwb(_t,x);}\n#define in(x,y,n,m) (x>=0&&x<n&&y>=0&&y<m)\n#define retu(args, ...) {ps(args __VA_OPT__(,)__VA_ARGS__);return ;}\n\n#define For(i,a,b) for(int i = (a); i <= (b); i++)\n#define F0r(i,a) for(int i = 0; i < (a); i++)\n#define Rof(i,a,b) for(int i = (b); i >= (a); i--)\n#define R0f(i,a) for(int i = (a)-1; i >= 0; i--)\n#define rep(a) F0r(_,a)\n#define each(a,x) for(auto &a:x)\n\nconst int dx[4]{1,0,-1,0},dy[4]{0,1,0,-1};\nconst int dx8[8]{1,1,0,-1,-1,-1,0,1},dy8[8]{0,1,1,1,0,-1,-1,-1};\ntemplate <class T> using pqg = priority_queue<T,vector<T>,greater<T>>;\n\nconstexpr int pct(int x){return __builtin_popcount(x);}\nconstexpr int pctll(long long x){return __builtin_popcountll(x);}\nconstexpr int bits(int x){return 31-__builtin_clz(x);}\n\n#define SFINAE(x, ...) \\\n template <class, class = void> struct x : std::false_type {}; \\\n template <class T> struct x<T, std::void_t<__VA_ARGS__>> : std::true_type {}\n\nSFINAE(DefaultI, decltype(std::cin >> std::declval<T &>()));\nSFINAE(DefaultO, decltype(std::cout << std::declval<T &>()));\nSFINAE(IsTuple, typename std::tuple_size<T>::type);\nSFINAE(Iterable, decltype(std::begin(std::declval<T>())));\n\ntemplate <auto &is> struct Reader {\n template <class T> void Impl(T &t) {\n if constexpr (DefaultI<T>::value) is >> t;\n else if constexpr (Iterable<T>::value) {\n for (auto &x : t) Impl(x);\n } else if constexpr (IsTuple<T>::value) {\n std::apply([this](auto &...args) { (Impl(args), ...); }, t);\n } else static_assert(IsTuple<T>::value, \"No matching type for read\");\n }\n template <class... Ts> void read(Ts &...ts) { ((Impl(ts)), ...); }\n};\n\ntemplate <class... Ts> void re(Ts &...ts) { Reader<cin>{}.read(ts...); }\n#define def(t, args...) \\\n t args; \\\n re(args);\n\ntemplate <auto &os, bool debug, bool print_nd> struct Writer {\n string comma() const { return debug ? \",\" : \"\"; }\n template <class T> constexpr char Space(const T &) const {\n return print_nd && (Iterable<T>::value or IsTuple<T>::value) ? '\\n'\n : ' ';\n }\n template <class T> void Impl(T const &t) const {\n if constexpr (DefaultO<T>::value) os << t;\n else if constexpr (Iterable<T>::value) {\n if (debug) os << '{';\n int i = 0;\n for (auto &&x : t)\n ((i++) ? (os << comma() << Space(x), Impl(x)) : Impl(x));\n if (debug) os << '}';\n } else if constexpr (IsTuple<T>::value) {\n if (debug) os << '(';\n std::apply(\n [this](auto const &...args) {\n int i = 0;\n (((i++) ? (os << comma() << \" \", Impl(args)) : Impl(args)),\n ...);\n },\n t);\n if (debug) os << ')';\n } else static_assert(IsTuple<T>::value, \"No matching type for print\");\n }\n template <class T> void ImplWrapper(T const &t) const {\n if (debug) os << \"\\033[0;31m\";\n Impl(t);\n if (debug) os << \"\\033[0m\";\n }\n template <class... Ts> void print(Ts const &...ts) const {\n ((Impl(ts)), ...);\n }\n template <class F, class... Ts>\n void print_with_sep(const std::string &sep, F const &f,\n Ts const &...ts) const {\n ImplWrapper(f), ((os << sep, ImplWrapper(ts)), ...), os << '\\n';\n }\n void print_with_sep(const std::string &) const { os << '\\n'; }\n};\n\ntemplate <class... Ts> void pr(Ts const &...ts) {\n Writer<cout, false, true>{}.print(ts...);\n}\ntemplate <class... Ts> void ps(Ts const &...ts) {\n Writer<cout, false, true>{}.print_with_sep(\" \", ts...);\n}\n\nvoid setIn(str s) { freopen(s.c_str(), \"r\", stdin); }\nvoid setOut(str s) { freopen(s.c_str(), \"w\", stdout); }\nvoid setIO(str s = \"\") {\n cin.tie(0)->sync_with_stdio(0);\n cout << fixed << setprecision(12);\n if (sz(s)) setIn(s + \".in\"), setOut(s + \".out\");\n}\n\n//#include<atcoder/all>\n//using namespace atcoder;\n#define N 200005\n\n//extgcd(a,b) return (x,y) that ax+by=gcd(a,b);\n\npair<long long,long long> extgcd(long long a,long long b){\n if(b==0)return make_pair(a>=0?1:-1,0);\n auto [y,x]=extgcd(b,a%b);\n y-=a/b*x;\n return make_pair(x,y);\n}\n\n// inverse mod of x by (mod)\n\nlong long inv(long long x,long long mod){\n assert(__gcd(x,mod)==1);\n auto [inv,_]=extgcd(x,mod);\n return (inv%mod+mod)%mod;\n}\n\nvoid solve(){\n def(ll,m,a);\n if(!m)exit(0);\n ll g=__gcd(m,a);\n ll c=inv(a/g,m/g);\n ll i=2,t=m;\n vl v;\n while(i*i<=t){\n if(t%i==0)v.pb(i);\n while(t%i==0){\n t/=i;\n }\n i++;\n }\n if(t!=1)v.pb(t);\n ll ans=0;\n // each(x,v)if(x!=1&&x%(m/g)==c)ans--;\n // For(i,1,m-1)if(i%(m/g)==c&&__gcd((ll)i,m)==1)ans++;\n \n F0r(i,1<<sz(v)){\n ll r=c,mod=m/g;\n int flag=false;\n F0r(j,sz(v))if(i>>j&1){\n ll x=v[j];\n if(mod%x==0&&r%x){\n flag=true;\n break;\n }\n auto [a,b]=extgcd(mod,x);\n mod*=x;\n r=(i128)b*x%mod*r%mod;\n if(r<0)r+=mod; \n }\n \n if(flag)continue;\n \n ans+=(pct(i)%2?-1:1)*max((m-r+mod-1)/(mod),0ll);\n // ps(r,mod,\" \",v);\n // break;\n }\n \n ps(ans);\n \n return ;\n}\n\nint main(){\n setIO();\n int t=1;\n //re(t);\n while(true)solve();\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3584, "score_of_the_acc": -0.0489, "final_rank": 13 }, { "submission_id": "aoj_3296_10593488", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n/// g:gcd(a, b), ax+by=g\nstruct EG {\n ll g, x, y;\n};\nEG ext_gcd(ll a, ll b) {\n if (b == 0) {\n if (a >= 0)\n return EG{a, 1, 0};\n else\n return EG{-a, -1, 0};\n } else {\n auto e = ext_gcd(b, a % b);\n return EG{e.g, e.y, e.x - a / b * e.y};\n }\n}\n\nbool solve(){\n ll m, a; cin >> m >> a;\n if(m == 0 && a == 0) return false;\n ll m2 = m;\n ll g = gcd(m, a);\n m /= g, a /= g;\n auto eg = ext_gcd(a, m);\n ll x = eg.x;\n x %= m; if(x < 0) x += m;\n vector<ll> primes;\n for(ll d = 2; d*d <= m2; d++) {\n if(m2 % d == 0) {\n primes.push_back(d);\n while(m2 % d == 0) m2 /= d;\n }\n }\n if(m2 > 1) primes.push_back(m2);\n ll np = ssize(primes);\n ll ans = 0;\n for(int s = 0; s < (1<<np); s++) {\n ll mod = 1;\n for(int j =0 ; j < np ;j++) {\n if(s>>j&1) mod *= primes[j];\n }\n // count -x = m'n (mod, 0<=n<g)\n ll gg = gcd(m, mod); // gcd(m',mod)\n if(x % gg != 0) continue;\n if(popcount((unsigned)s)%2==0) ans += g/(mod/gg);\n else ans -= g/(mod/gg);\n }\n cout << ans << '\\n';\n return true;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n while(solve());\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3456, "score_of_the_acc": -0.0365, "final_rank": 9 }, { "submission_id": "aoj_3296_10496349", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define ALL(v) (v).begin(), (v).end()\nusing ll = long long;\n#define rep(i,l,r) for(ll i=(l);i<(r); i++)\n\ntemplate<size_t maxN>\nstruct Sieve {\n std::vector<int> is_prime;\n std::vector<int> prime;\n std::vector<int> minfac;\n Sieve() : is_prime(maxN, 1), prime(), minfac(maxN, -1) {\n is_prime[0] = is_prime[1] = 0;\n std::iota(minfac.begin(), minfac.end(), 0);\n for (size_t i = 4; i <= maxN; i+=2) {\n is_prime[i] = 0;\n minfac[i] = 2;\n }\n for (size_t i = 3; i*i <= maxN; i+=2) {\n if (!is_prime[i]) continue;\n minfac[i] = i;\n for (size_t j = i*i; j <= maxN; j+=2*i) {\n is_prime[j] = 0;\n if (minfac[j] > i) minfac[j] = i;\n }\n }\n for (size_t i = 2; i <= maxN; i++) {\n if (is_prime[i]) prime.emplace_back(i);\n }\n }\n std::vector<std::pair<ll,ll>> factorize(ll N) {\n std::vector<std::pair<ll,ll>> res;\n while (N != 1) {\n ll bs = minfac[N], exp = 0;\n while (minfac[N] == bs) {\n N /= bs;\n exp++;\n }\n res.emplace_back(bs, exp);\n }\n return res;\n }\n std::vector<int> divisors(int N) {\n std::vector<int> res{1};\n for (auto [bs, exp] : factorize(N)) {\n int len = res.size();\n for (int i = 0; i < len; i++) {\n int x = 1;\n for (int j = 0; j < exp; j++) {\n x *= bs;\n res.emplace_back(res[i] * x);\n }\n }\n }\n return res;\n }\n};\n\n\n\nauto ES = Sieve<1'000'001>();\n\nint main() {\n vector<ll> es(0);\n bool n[1000001];\n rep(i,2,1000001){\n n[i]=true;\n }\n rep(i,2,1001){\n if(n[i]){\n rep(j,2,1000001/i+1){\n n[i*j]=false;\n }\n }\n }\n rep(i,2,1000001)if(n[i])es.push_back(i);//eratos clear\n while(true){\n ll m,a;cin>>m>>a;\n if(m==0)break;\n ll g=gcd(m,a);\n ll l=m/g;\n ll ans=g;\n vector<ll> v,t;\n for(auto x: es){\n if(g%x==0){\n v.push_back(x);\n while(g%x==0)g/=x;\n }\n }\n if(g!=1)v.push_back(g);\n for (auto vv: v) {\n //cerr << \"v = \" << vv << endl;\n }\n //cerr << \"l = \"<< l << endl;\n for(auto x: es){\n if(l%x==0){\n t.push_back(x);\n while(l%x==0)l/=x;\n }\n }\n if(l!=1)t.push_back(l);\n for (auto vv: t) {\n //cerr << \"t = \" << vv << endl;\n }\n //eratostenes tukaitai s\n set<ll>s;\n for(auto &x: v) {\n s.insert(x);\n }\n for(auto &x: t){\n if(s.count(x)){\n s.erase(x);\n }\n }\n\n for(auto p: s){\n ans/=p;ans*=(p-1);\n }\n cout<<ans<<endl;\n }\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 13528, "score_of_the_acc": -1.0292, "final_rank": 20 }, { "submission_id": "aoj_3296_10467657", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bit>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <cstdint>\n#include <cstdio>\n#include <deque>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <limits>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <ranges>\n#include <regex>\n#include <set>\n#include <span>\n#include <sstream>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <vector>\n// #include <atcoder/dsu>\n\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)\n#define all(a) a.begin(), a.end()\nusing namespace std;\n\ntemplate <class T> inline bool chmin(T &a, T b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> inline bool chmax(T &a, T b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\ntemplate <class T1, class T2>\nstd::ostream &operator<<(std::ostream &out, const pair<T1, T2> &A) {\n\tcout << \"{\" << A.first << \",\" << A.second << \"}\";\n\treturn out;\n}\n\ntemplate <class T1, class T2>\nstd::ostream &operator<<(std::ostream &out, const map<T1, T2> &M) {\n\tfor (const auto &A : M) {\n\t\tcout << \"{\" << A.first << \",\" << A.second << \"}\";\n\t}\n\treturn out;\n}\n\ntemplate <class T1>\nstd::ostream &operator<<(std::ostream &out, const set<T1> &M) {\n\tcout << \"{\";\n\tfor (const auto &A : M) {\n\t\tcout << A << \", \";\n\t}\n\tcout << \"}\" << endl;\n\treturn out;\n}\n\ntemplate <class T1>\nstd::ostream &operator<<(std::ostream &out, const multiset<T1> &M) {\n\tcout << \"{\";\n\tfor (const auto &A : M) {\n\t\tcout << A << \", \";\n\t}\n\tcout << \"}\" << endl;\n\treturn out;\n}\n\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &out, const vector<T> &A) {\n\tfor (const T &a : A) {\n\t\tcout << a << \" \";\n\t}\n\treturn out;\n}\n\nvoid print() { cout << endl; }\n\ntemplate <typename Head, typename... Tail> void print(Head H, Tail... T) {\n\tcout << H << \" \";\n\tprint(T...);\n}\n\ntemplate <class T> std::istream &operator>>(std::istream &in, vector<T> &A) {\n\tfor (T &a : A) {\n\t\tstd::cin >> a;\n\t}\n\treturn in;\n}\n\nusing ll = long long;\n// using mint = modint1000000007;\n// using PII = pair<int, int>;\n// using PLL = pair<ll, ll>;\n// using Graph = vector<vector<int>>;\nconstexpr int INF = numeric_limits<int>::max() / 2;\nconstexpr ll LINF = numeric_limits<ll>::max() / 2;\n\n// ランレングス圧縮\n// イテレータを受け取る\n// verify: https://atcoder.jp/contests/abc380/submissions/60002447\ntemplate <typename T, typename Iterator>\nvector<pair<T, int>> RLE(Iterator begin, Iterator end) {\n\tvector<pair<T, int>> res;\n\tfor (auto itr = begin; itr != end; ++itr) {\n\t\tif (res.empty() || res.back().first != *itr) {\n\t\t\tres.emplace_back(*itr, 1);\n\t\t} else {\n\t\t\tres.back().second++;\n\t\t}\n\t}\n\treturn res;\n}\n\n// 座標圧縮\n// unordered_mapが使えない場合はmapに変更しよう\n// https://atcoder.jp/contests/abc213/submissions/60002695\ntemplate <typename T> unordered_map<T, int> compress(vector<T> &X) {\n\tauto tmp = X;\n\tranges::sort(tmp);\n\ttmp.erase(unique(tmp.begin(), tmp.end()), tmp.end());\n\tunordered_map<T, int> res;\n\tfor (int i = 0; i < (int)tmp.size(); i++) {\n\t\tres[tmp[i]] = i;\n\t}\n\treturn res;\n}\n\nll extGCD(ll a, ll b, ll &x, ll &y) {\n\tif (b == 0) {\n\t\tx = 1;\n\t\ty = 0;\n\t\treturn a;\n\t}\n\tll d = extGCD(b, a % b, y, x);\n\ty -= a / b * x;\n\treturn d;\n}\n\nll inverse(ll a, ll n) {\n\tassert(gcd(a, n) == 1);\n\tll x, y;\n\textGCD(a, n, x, y);\n\tassert((x + n) >= 0);\n\treturn (x + n) % n;\n}\n\n// 素因数分解\nvector<pair<ll, ll>> prime_factor(ll n) {\n\tvector<pair<ll, ll>> res;\n\tfor (ll i = 2; i * i <= n; i++) {\n\t\tif (n % i != 0)\n\t\t\tcontinue;\n\t\tres.emplace_back(i, 0);\n\t\twhile (n % i == 0) {\n\t\t\tn /= i;\n\t\t\tres.back().second++;\n\t\t}\n\t}\n\tif (n != 1)\n\t\tres.emplace_back(n, 1);\n\treturn res;\n}\n\nbool solve() {\n\t// ここからスタート\n\tll M, A;\n\tcin >> M >> A;\n\t/*\n\n\tM = rand() % 10000000 + 2;\n\tA = rand() % (100 - 1) + 1;\n\t*/\n\tif (M == 0)\n\t\treturn false;\n\tll g = gcd(M, A);\n\tll M1 = M / g, A1 = A / g;\n\tll a = inverse(A1, M1);\n\tll b = M1;\n\t// a+bk\n\tauto fac = prime_factor(g);\n\tvector<ll> prime;\n\tfor (auto [p, e] : fac) {\n\t\tprime.push_back(p);\n\t}\n\n\tll ans = (M - a - 1) / b + 1;\n\tll kmax = ans;\n\tint N = prime.size();\n\tfor (int i = 1; i < (1 << N); i++) {\n\t\tll mod = 1;\n\t\trep(k, N) {\n\t\t\tif ((1 << k) & i) {\n\t\t\t\tmod *= prime[k];\n\t\t\t}\n\t\t}\n\t\t// 0 <= k <= kmax かつ\n\t\tll bmod = b % mod;\n\t\tll amod = a % mod;\n\t\tamod = (mod - amod) % mod;\n\t\tll cnt = 0;\n\t\tif (bmod != 1) {\n\t\t\tif (gcd(mod, bmod) == 1) {\n\t\t\t\t// amod = (amod * inverse(bmod, mod)) % mod;\n\t\t\t\t__int128 a128 = amod;\n\t\t\t\t__int128 b128 = inverse(bmod, mod);\n\t\t\t\t__int128 m128 = mod;\n\t\t\t\tamod = (a128 * b128) % m128;\n\t\t\t\tbmod = 1;\n\t\t\t\tcnt = (M - a - b * amod - 1) / (b * mod) + 1;\n\t\t\t} else {\n\t\t\t\tif (amod == 0) {\n\t\t\t\t\tcnt = kmax;\n\t\t\t\t} else {\n\t\t\t\t\tcnt = 0;\n\t\t\t\t}\n\t\t\t}\n\t\t} else {\n\t\t\tcnt = (M - a - b * amod - 1) / (b * mod) + 1;\n\t\t}\n\t\t// bmod k = amod (mod modで)\n\t\tans = ans + (cnt) * ((popcount((unsigned int)(i)) % 2 == 0) ? 1 : -1);\n\t}\n\n\t/*\n\tfor (int x = 1; x < M; x++) {\n\t\tif (gcd(M, x) == 1 && (A * x) % M == gcd(M, A)) {\n\t\t\tcnt++;\n\t\t}\n\t}\n\t\t*/\n\t// cout << \"(M,A) \" << M << \" \" << A << endl;\n\tcout << ans << endl;\n\t// cout << \"ぐちょく\" << cnt << endl;\n\t// assert(ans == cnt);\n\treturn true;\n}\n\nint main(void) {\n\tstd::cin.tie(0)->sync_with_stdio(0);\n\twhile (solve())\n\t\t;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3456, "score_of_the_acc": -0.024, "final_rank": 3 }, { "submission_id": "aoj_3296_9629281", "code_snippet": "#include <bits/stdc++.h>\n using namespace std;\n \n template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\n template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n #define rep(i,n) for (int i = 0; i < (n); ++i)\n\n typedef long long ll;\n typedef unsigned long long ull;\n using P=pair<ll,ll>;\n using tp=tuple<ll,ll,ll>;\n const int INF=1001001001;\n const ll INFL=1e18;\n const int mod=998244353;\n\n// 拡張 Euclid の互除法\n// ap + bq = gcd(a, b) となる (p, q) を求め、d = gcd(a, b) をリターンします\nlong long extGcd(long long a, long long b, long long &p, long long &q) { \n\tif (b == 0) { p = 1; q = 0; return a; } \n\tlong long d = extGcd(b, a%b, q, p); \n\tq -= a/b * p; \n\treturn d; \n}\n\nconst int MAX_N=200005;\n\nll euler_phi(ll n){\n\tll res=n;\n\tfor(ll i=2;i*i<=n;i++){\n\t\tif(n%i==0){\n\t\t\tres=res/i*(i-1);\n\t\t\twhile(n%i==0){\n\t\t\t\tn/=i;\n\t\t\t}\n\t\t}\n\t}\n\tif(n!=1)res=res/n*(n-1);\n\treturn res;\n}\n\nint euler[MAX_N];\nvoid euler_phi2(){\n\tfor(int i=0;i<MAX_N;i++)euler[i]=i;\n\tfor(int i=2;i<MAX_N;i++){\n\t\tif(euler[i]==i){\n\t\t\tfor(int j=i;j<MAX_N;j+=i){\n\t\t\t\teuler[j]=euler[j]/i*(i-1);\n\t\t\t}\n\t\t}\n\t}\n}\n\nvector<pair<ll,ll>>prime_factorize(ll N) {\n vector<pair<ll,ll>>res;\n for (ll i= 2; i*i<=N;i++) {\n\tif (N%i!=0){continue;}\n\tll cnt=0; \n\twhile(N%i==0){\n\t cnt++;\n\t N/=i;\n\t}\n\tres.push_back({i, cnt});\n }\n if(N!=1){res.push_back({N, 1});}\n return res;\n}\n\n bool solve(){\n\t\tll m,a;\n\t\tcin>>m>>a;\n\t\tif(m==0&&a==0)return false;\n\n\t\tll x,y;\n\t\tll g=extGcd(a,m,x,y);\n\t\tll mm=m/g,mmm=m;\n\t\tauto p=prime_factorize(mm);\n\t\tfor(auto [pr,c]:p){\n\t\t\twhile(mmm%pr==0){\n\t\t\t\tmmm/=pr;\n\t\t\t}\n\t\t}\n\t\tll ans=euler_phi(mmm)*(g/mmm);\n cout<<ans<<endl;\n\t\treturn true;\n }\n\n int main(){\n ios_base::sync_with_stdio(false);\n cin.tie(NULL);\n\n\t\twhile(1){\n\t\t\tif(!solve()){break;}\n\t\t}\n\t\t\n return 0;\n }", "accuracy": 1, "time_ms": 80, "memory_kb": 3456, "score_of_the_acc": -0.0365, "final_rank": 9 }, { "submission_id": "aoj_3296_9527180", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\nint main() {\nwhile(1) {\n long long M, A;\n cin >> M >> A;\n if (M == 0 && A == 0) return 0;\n long long G = gcd(A,M);\n long long N = M;\n while(1) {\n if (gcd(M/G,N) == 1) break;\n N /= gcd(M/G,N);\n }\n long long L = N;\n ll ANS = N;\n for (ll i = 2; i * i <= N; i++) {\n if (L % i == 0) {\n ANS -= ANS / i;\n while(L % i == 0) {\n L /= i;\n }\n }\n }\n if (L >= 2) {\n ANS -= ANS / L;\n }\n cout << ANS * (G / N) << endl;\n}\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 3492, "score_of_the_acc": -0.0567, "final_rank": 15 }, { "submission_id": "aoj_3296_9457697", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<vvi> vvvi;\ntypedef vector<bool> vb;\ntypedef vector<vb> vvb;\ntypedef vector<vvb> vvvb;\ntypedef vector<vvvb> vvvvb;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define RFOR(i,l,r) for(ll i=r-1;i>=l;i--)\n#define RREP(i,n) RFOR(i,0,n)\n#define sz(A) (ll)(A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin())\n#define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin())\n#define COU(A,x) (UB(A,x)-LB(A,x))\n#define F first\n#define S second\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.F<<\" \"<<p.S;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.F>>p.S;return is;}\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){REP(i,sz(v))os<<v[i]<<(i+1!=sz(v)?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;}\nconst ll mod=998244353;\ntemplate<const long long int mod=998244353>\nstruct modint{\n using mint=modint<mod>;\n long long int x;\n modint(long long int _x=0):x(_x%mod){if(x<0)x+=mod;}\n long long int val(){return x;}\n mint&operator=(const mint&a){x=a.x;return *this;}\n mint&operator+=(const mint&a){x+=a.x;if(x>=mod)x-=mod;return *this;}\n mint&operator-=(const mint&a){x-=a.x;if(x<0)x+=mod;return *this;}\n mint&operator*=(const mint&a){x*=a.x;x%=mod;return *this;}\n friend mint operator+(const mint&a,const mint&b){return mint(a)+=b;}\n friend mint operator-(const mint&a,const mint&b){return mint(a)-=b;}\n friend mint operator*(const mint&a,const mint&b){return mint(a)*=b;}\n mint operator-()const{return mint(0)-*this;}\n mint pow(long long int n){\n if(!n)return 1;\n mint a=1;\n mint _x=x;\n while(n){\n if(n&1)a*=_x;\n _x=_x*_x;n>>=1;\n }\n return a;\n }\n mint inv(){return pow(mod-2);}\n mint&operator/=(mint&a){return *this*=a.inv();}\n friend mint operator/(const mint&a,mint b){return mint(a)/=b;}\n};\nusing mint=modint<998244353>;\n\n#include <algorithm>\n#include <cassert>\n#include <tuple>\n#include <vector>\n\n\n#include <utility>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n unsigned int umod() const { return _m; }\n\n unsigned int mul(unsigned int a, unsigned int b) const {\n\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned long long y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\n\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\nunsigned long long floor_sum_unsigned(unsigned long long n,\n unsigned long long m,\n unsigned long long a,\n unsigned long long b) {\n unsigned long long ans = 0;\n while (true) {\n if (a >= m) {\n ans += n * (n - 1) / 2 * (a / m);\n a %= m;\n }\n if (b >= m) {\n ans += n * (b / m);\n b %= m;\n }\n\n unsigned long long y_max = a * n + b;\n if (y_max < m) break;\n n = (unsigned long long)(y_max / m);\n b = (unsigned long long)(y_max % m);\n std::swap(m, a);\n }\n return ans;\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace atcoder {\n\nlong long pow_mod(long long x, long long n, int m) {\n assert(0 <= n && 1 <= m);\n if (m == 1) return 0;\n internal::barrett bt((unsigned int)(m));\n unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));\n while (n) {\n if (n & 1) r = bt.mul(r, y);\n y = bt.mul(y, y);\n n >>= 1;\n }\n return r;\n}\n\nlong long inv_mod(long long x, long long m) {\n assert(1 <= m);\n auto z = internal::inv_gcd(x, m);\n assert(z.first == 1);\n return z.second;\n}\n\nstd::pair<long long, long long> crt(const std::vector<long long>& r,\n const std::vector<long long>& m) {\n assert(r.size() == m.size());\n int n = int(r.size());\n long long r0 = 0, m0 = 1;\n for (int i = 0; i < n; i++) {\n assert(1 <= m[i]);\n long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];\n if (m0 < m1) {\n std::swap(r0, r1);\n std::swap(m0, m1);\n }\n if (m0 % m1 == 0) {\n if (r0 % m1 != r1) return {0, 0};\n continue;\n }\n\n\n long long g, im;\n std::tie(g, im) = internal::inv_gcd(m0, m1);\n\n long long u1 = (m1 / g);\n if ((r1 - r0) % g) return {0, 0};\n\n long long x = (r1 - r0) / g % u1 * im % u1;\n\n r0 += x * m0;\n m0 *= u1; // -> lcm(m0, m1)\n if (r0 < 0) r0 += m0;\n }\n return {r0, m0};\n}\n\nlong long floor_sum(long long n, long long m, long long a, long long b) {\n assert(0 <= n && n < (1LL << 32));\n assert(1 <= m && m < (1LL << 32));\n unsigned long long ans = 0;\n if (a < 0) {\n unsigned long long a2 = internal::safe_mod(a, m);\n ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);\n a = a2;\n }\n if (b < 0) {\n unsigned long long b2 = internal::safe_mod(b, m);\n ans -= 1ULL * n * ((b2 - b) / m);\n b = b2;\n }\n return ans + internal::floor_sum_unsigned(n, m, a, b);\n}\n\n} // namespace atcoder\n\nusing namespace atcoder;\nint main(){\n while(1){\n ll M,A;cin>>M>>A;\n if(!M)return 0;\n ll g=__gcd(A,M);\n ll m=M/g;\n ll ans=g;\n ll d=2;\n while(d*d<=g){\n if(g%d==0){\n if(m%d)ans-=ans/d;\n }\n while(g%d==0)g/=d;\n d++;\n }\n if(g>1&&m%g)ans-=ans/g;\n cout<<ans<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3324, "score_of_the_acc": -0.0175, "final_rank": 1 }, { "submission_id": "aoj_3296_9417625", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define ALL(v) v.begin(),v.end()\n#define dbg(x) cerr << #x << \": \" << x << endl;\ntemplate<class F, class S>\nostream& operator << (ostream& os, pair<F,S> p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate<class Iter>\nvoid print(Iter beg, Iter end) {\n for (Iter itr = beg; itr != end; ++itr) {\n cerr << *itr << ' ';\n }\n cerr << endl;\n}\n// 返り値: a と b の最大公約数\n// ax + by = gcd(a, b) を満たす (x, y) が格納される\nlong long extGCD(long long a, long long b, long long &x, long long &y) {\n if (b == 0) {\n x = 1;\n y = 0;\n return a;\n }\n long long d = extGCD(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\n\nll solve() {\n long long m, a;\n cin >> m >> a;\n if (a + m == 0) exit(0);\n long long g = gcd(m, a);\n ll b = a/g;\n ll c = m/g;\n vector<ll> p;\n {\n ll tmp = m;\n for (ll i = 2; i * i <= tmp; ++i)\n {\n int cnt = 0;\n while (tmp % i == 0)\n {\n ++cnt;\n tmp /= i;\n }\n if (cnt) p.push_back(i);\n }\n if (tmp > 1) p.push_back(tmp);\n }\n ll x,y;\n ll d = extGCD(b,-c,x,y);\n x %= c;\n ll xma = m / c * c + x;\n if (xma >= m) xma -= c;\n ll kmax = (xma - x) / c;\n\n int siz = p.size();\n ll ans = 0;\n for (int i = 0; i < 1 << siz; ++i)\n {\n ll l = 1, sum = 0;\n for (int j = 0; j < siz; ++j)\n {\n if (i & (1 << j))\n {\n l *= p[j];\n }\n }\n \n ll tx, ty;\n ll tg = extGCD(l, -c, tx, ty);\n if (x % tg != 0) continue;\n ll tmp = lcm(l, c);\n ll dtk = (tmp / c);\n ll mitk = (ty % dtk + dtk) % dtk;\n ll matk = (kmax / dtk * dtk + mitk);\n if (matk > kmax) matk -= dtk;\n sum = max(0LL, (matk - mitk) / dtk + 1);\n\n ans += (__builtin_popcount(i) % 2 ? -1 : 1) * sum;\n }\n return ans;\n}\n\nint main() {\n ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n cout << fixed << setprecision(20); cerr << fixed << setprecision(6);\n while (true) {\n // solve();\n cout << solve() << '\\n';\n // cout << (solve() ? \"Yes\" : \"No\") << '\\n';\n }\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 3384, "score_of_the_acc": -0.0608, "final_rank": 17 }, { "submission_id": "aoj_3296_9407108", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9 + 10;\nconst ll INFL = 4e18;\n\n/*\n 一旦2を無視して1のみを考えてみる。\n\n [$ Ax\\equiv \\gcd(A,M) \\mod{M}]を満たす[$ x]は、不定方程式[$ Ax+My=\\gcd(A,M)]を拡張ユークリッドの互助法で解くことで簡単に求められる。\n\n ここで、[$ G=\\gcd(A,M), A=A'G, M=M'G]とおくと、\n\n [$ Ax+My=G]\n [$ A'x+M'y=1]\n\n よって、[** 解[$ x]と[$ M']は互いに素であり、さらに、[$ x=x_0+M't]の形で表される。 ]\n これを元の方程式に入れると[$ A(x_0+\\frac{M}{G}t)\\equiv G\\mod{M}]の形で表され、[$ 0\\le t< G]である。\n つまり、元の問題で求める[$ x]は全て[$ x=x_0+\\frac{M}{G}t\\,(0\\le t< G)]の形で表されることがわかった。\n\n ここまでの議論により、この問題は[$ x=x_0+\\frac{M}{G}t]が[$ M]と互いに素になるような[$ t(0\\le t< G)]の個数を求める問題と言い換えることができた。\n\n さて、先ほどの議論より、[$ x]は[$ M']とは互いに素であることが保証される。よって、[$ M]から[$ M']の素因数を除いた[$ M'']に対して検討する。\n\n [** [$ x=x_0+\\frac{M}{G}t\\mod{M''}]とすると、[$ \\gcd(M',M'')=1]より、[$ x]は[$ 0\\le x<M'']の全ての整数を取れる。]\n\n よって、[$ 0\\le x<M'']に対しては、[$ M'']と互いに素な整数は全て[$ x]としてカウントでき、この個数は[$ \\phi(M'')]である。\n*/\n\nll euler_phi(ll n) {\n vector<ll> divs;\n for (ll i = 1; i * i <= n; i++) {\n if (n % i == 0) {\n divs.push_back(i);\n if (i * i != n) {\n divs.push_back(n / i);\n }\n }\n }\n sort(divs.begin(), divs.end());\n ll m = divs.size();\n vector<ll> dp(m);\n for (int i = m - 1; i >= 0; i--) {\n dp[i] = n / divs[i];\n for (int j = i + 1; j < m; j++) {\n if (divs[j] % divs[i] == 0) {\n dp[i] -= dp[j];\n }\n }\n }\n return dp[0];\n}\n\nint main() {\n while (true) {\n ll M, A;\n cin >> M >> A;\n if (M == 0) {\n break;\n }\n\n ll G = gcd(A, M);\n ll M2 = M / G;\n ll M3 = M;\n\n while (gcd(M2, M3) > 1) {\n M3 /= gcd(M2, M3);\n }\n\n cout << euler_phi(M3) * (G / M3) << endl;\n }\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 3208, "score_of_the_acc": -0.0312, "final_rank": 7 }, { "submission_id": "aoj_3296_9394122", "code_snippet": "#ifndef _GLIBCXX_NO_ASSERT\n#include <cassert>\n#endif\n#include <cctype>\n#include <cerrno>\n#include <cfloat>\n#include <ciso646>\n#include <climits>\n#include <clocale>\n#include <cmath>\n#include <csetjmp>\n#include <csignal>\n#include <cstdarg>\n#include <cstddef>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n#include <ctime>\n#if __cplusplus >= 201103L\n#include <ccomplex>\n#include <cfenv>\n#include <cinttypes>\n#include <cstdbool>\n#include <cstdint>\n#include <ctgmath>\n#include <cwchar>\n#include <cwctype>\n#endif\n// C++\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <deque>\n#include <exception>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <ios>\n#include <iosfwd>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <limits>\n#include <list>\n#include <locale>\n#include <map>\n#include <memory>\n#include <new>\n#include <numeric>\n#include <ostream>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <stack>\n#include <stdexcept>\n#include <streambuf>\n#include <string>\n#include <typeinfo>\n#include <utility>\n#include <valarray>\n#include <vector>\n#if __cplusplus >= 201103L\n#include <array>\n#include <atomic>\n#include <chrono>\n#include <condition_variable>\n#include <forward_list>\n#include <future>\n#include <initializer_list>\n#include <mutex>\n#include <random>\n#include <ratio>\n#include <regex>\n#include <scoped_allocator>\n#include <system_error>\n#include <thread>\n#include <tuple>\n#include <type_traits>\n#include <typeindex>\n#include <unordered_map>\n#include <unordered_set>\n\n#endif\nusing namespace std;\nusing ll = long long;\n#define rep(i, n) for (int i = 0; i < n; i++)\n#define all(v) v.begin(), v.end()\ntemplate <class T, class U>\ninline bool chmax(T &a, U b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T, class U>\ninline bool chmin(T &a, U b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\nconstexpr int INF = 1001001001;\nconstexpr int64_t llINF = 3000000000000000000;\nconst double pi = acos(-1);\nstruct linear_sieve {\n vector<int> least_factor, prime_list;\n linear_sieve(int n) : least_factor(n + 1, 0) {\n for (int i = 2; i <= n; i++) {\n if (least_factor[i] == 0) {\n least_factor[i] = i;\n prime_list.push_back(i);\n }\n for (int p : prime_list) {\n if (ll(i) * p > n || p > least_factor[i]) break;\n least_factor[i * p] = p;\n }\n }\n }\n};\n\nll extgcd(ll a, ll b, ll &x, ll &y) {\n // ax+by=gcd(|a|,|b|)\n if (a < 0 || b < 0) {\n ll d = extgcd(abs(a), abs(b), x, y);\n if (a < 0) x = -x;\n if (b < 0) y = -y;\n return d;\n }\n if (b == 0) {\n x = 1;\n y = 0;\n return a;\n }\n ll d = extgcd(b, a % b, y, x);\n y -= a / b * x;\n return d;\n}\nll modpow(ll a, ll b, ll m) {\n a %= m;\n ll res = 1 % m;\n while (b) {\n if (b & 1) {\n res *= a;\n res %= m;\n }\n a *= a;\n a %= m;\n b >>= 1;\n }\n return res;\n}\nll modinv(ll x, ll modulo) {\n ll a = x, b = modulo, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return (u >= 0 ? u % modulo : (modulo - (-u) % modulo) % modulo);\n}\ntemplate <int modulo>\nstruct modint {\n int x;\n modint() : x(0) {}\n modint(int64_t y) : x(y >= 0 ? y % modulo : (modulo - (-y) % modulo) % modulo) {}\n modint &operator+=(const modint &p) {\n if ((x += p.x) >= modulo) x -= modulo;\n return *this;\n }\n modint &operator-=(const modint &p) {\n if ((x += modulo - p.x) >= modulo) x -= modulo;\n return *this;\n }\n modint &operator*=(const modint &p) {\n x = (int)(1LL * x * p.x % modulo);\n return *this;\n }\n modint &operator/=(const modint &p) {\n *this *= p.inv();\n return *this;\n }\n modint operator-() const { return modint(-x); }\n modint operator+(const modint &p) const { return modint(*this) += p; }\n modint operator-(const modint &p) const { return modint(*this) -= p; }\n modint operator*(const modint &p) const { return modint(*this) *= p; }\n modint operator/(const modint &p) const { return modint(*this) /= p; }\n bool operator==(const modint &p) const { return x == p.x; }\n bool operator!=(const modint &p) const { return x != p.x; }\n modint inv() const {\n int a = x, b = modulo, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return modint(u);\n }\n modint pow(int64_t n) const {\n modint ret(1), mul(x);\n while (n > 0) {\n if (n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n friend ostream &operator<<(ostream &os, const modint &p) { return os << p.x; }\n friend istream &operator>>(istream &is, modint &a) {\n int64_t t;\n is >> t;\n a = modint<modulo>(t);\n return (is);\n }\n int val() const { return x; }\n static constexpr int mod() { return modulo; }\n static constexpr int half() { return (modulo + 1) >> 1; }\n};\ntemplate <typename T>\nstruct Binomial {\n vector<T> inv, fact, factinv;\n Binomial(int n) {\n inv.resize(n + 1);\n fact.resize(n + 1);\n factinv.resize(n + 1);\n inv[0] = fact[0] = factinv[0] = 1;\n for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * i;\n factinv[n] = fact[n].inv();\n inv[n] = fact[n - 1] * factinv[n];\n for (int i = n - 1; i >= 1; i--) {\n factinv[i] = factinv[i + 1] * (i + 1);\n inv[i] = fact[i - 1] * factinv[i];\n }\n }\n T C(int n, int r) {\n if (n < 0 || n < r || r < 0) return 0;\n return fact[n] * factinv[n - r] * factinv[r];\n }\n T P(int n, int r) {\n if (n < 0 || n < r || r < 0) return 0;\n return fact[n] * factinv[n - r];\n }\n T H(int n, int r) {\n if (n == 0 && r == 0) return 1;\n if (n < 0 || r < 0) return 0;\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\ntemplate <class T>\nstruct Matrix {\n int n;\n vector<vector<T>> m;\n Matrix() : Matrix(0) {}\n Matrix(int x) : Matrix(vector<vector<T>>(x, vector<T>(x, 0))) {}\n Matrix(const vector<vector<T>> &a) {\n n = a.size();\n m = a;\n }\n vector<T> &operator[](int i) { return m[i]; }\n const vector<T> &operator[](int i) const { return m[i]; }\n static Matrix identity(int x) {\n Matrix res(x);\n for (int i = 0; i < x; i++) res[i][i] = 1;\n return res;\n }\n Matrix operator+(const Matrix &a) const {\n Matrix x = (*this);\n return x += a;\n }\n Matrix operator*(const Matrix &a) const {\n Matrix x = (*this);\n return x *= a;\n }\n Matrix &operator+=(const Matrix &a) {\n Matrix res(n);\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n res[i][j] = m[i][j] + a[i][j];\n }\n }\n m = res.m;\n return *this;\n }\n Matrix &operator*=(const Matrix &a) {\n Matrix res(n);\n for (int i = 0; i < n; i++) {\n for (int k = 0; k < n; k++) {\n for (int j = 0; j < n; j++) {\n res[i][j] += m[i][k] * a[k][j];\n }\n }\n }\n m = res.m;\n return *this;\n }\n Matrix pow(ll b) const {\n Matrix x = *this, res = identity(n);\n while (b) {\n if (b & 1) {\n res *= x;\n }\n x *= x;\n b >>= 1;\n }\n return res;\n }\n};\nstruct UnionFind {\n vector<int> par, siz, es;\n UnionFind(int x) {\n par.resize(x);\n siz.resize(x);\n es.resize(x);\n for (int i = 0; i < x; i++) {\n par[i] = i;\n siz[i] = 1;\n es[i] = 0;\n }\n }\n int find(int x) {\n if (par[x] == x) return x;\n return par[x] = find(par[x]);\n }\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if (x == y) {\n es[x]++;\n return false;\n }\n if (siz[x] < siz[y]) swap(x, y);\n par[y] = x;\n siz[x] += siz[y];\n es[x] += es[y] + 1;\n return true;\n }\n bool same(int x, int y) { return find(x) == find(y); }\n int size(int x) { return siz[find(x)]; }\n int edges(int x) { return es[find(x)]; }\n};\ntemplate <class S, S (*op)(S, S), S (*e)()>\nstruct segtree {\n int siz = 1;\n vector<S> dat;\n segtree(int n) : segtree(vector<S>(n, e())) {}\n segtree(const vector<S> &a) {\n while (siz < a.size()) siz <<= 1;\n dat = vector<S>(siz << 1, e());\n for (int i = 0; i < a.size(); i++) dat[siz + i] = a[i];\n for (int i = siz - 1; i >= 1; i--) dat[i] = op(dat[2 * i], dat[2 * i + 1]);\n }\n void set(int p, S x) {\n p += siz;\n dat[p] = x;\n while (p > 0) {\n p >>= 1;\n dat[p] = op(dat[2 * p], dat[2 * p + 1]);\n }\n }\n void add(int p, S x) { set(p, get(p) + x); }\n S get(int p) { return dat[p + siz]; }\n S prod(int l, int r) {\n S vl = e(), vr = e();\n l += siz, r += siz;\n while (l < r) {\n if (l & 1) vl = op(vl, dat[l++]);\n if (r & 1) vr = op(dat[--r], vr);\n l >>= 1, r >>= 1;\n }\n return op(vl, vr);\n }\n S all_prod() { return dat[1]; }\n};\ntemplate <class T>\nstruct BIT {\n // 1-indexed\n int n, beki = 1;\n vector<T> bit;\n BIT(int x) {\n bit.resize(x + 1, 0);\n n = x;\n while (beki * 2 <= n) beki *= 2;\n }\n T sum(int i) {\n T res = 0;\n while (i > 0) {\n res += bit[i];\n i -= i & -i;\n }\n return res;\n }\n T sum(int l, int r) {\n //[l,r]\n return sum(r) - (l == 0 ? 0 : sum(l - 1));\n }\n void add(int i, T x) {\n while (i <= n) {\n bit[i] += x;\n i += i & -i;\n }\n }\n int lowerbound(T w) {\n if (w <= 0) return 0;\n int x = 0;\n for (int k = beki; k > 0; k >>= 1) {\n if (x + k <= n && bit[x + k] < w) {\n w -= bit[x + k];\n x += k;\n }\n }\n return x + 1;\n }\n};\ntemplate <class T, T (*op)(T, T), T (*e)()>\nstruct sparsetable {\n vector<vector<T>> table;\n vector<int> logtable;\n sparsetable() = default;\n sparsetable(vector<T> v) {\n int len = 0;\n while ((1 << len) <= v.size()) len++;\n table.assign(len, vector<T>(1 << len));\n for (int i = 0; i < (int)v.size(); i++) table[0][i] = v[i];\n for (int i = 1; i < len; i++) {\n for (int j = 0; j + (1 << i) <= (1 << len); j++) {\n table[i][j] = op(table[i - 1][j], table[i - 1][j + (1 << (i - 1))]);\n }\n }\n logtable.resize(v.size() + 1);\n for (int i = 2; i < logtable.size(); i++) {\n logtable[i] = logtable[(i >> 1)] + 1;\n }\n }\n T query(int l, int r) {\n assert(l <= r);\n if (l == r) return e();\n int len = logtable[r - l];\n return op(table[len][l], table[len][r - (1 << len)]);\n }\n};\ntemplate <class T, T (*op)(T, T), T (*e)()>\nstruct disjointsparsetable {\n vector<vector<T>> table;\n vector<int> logtable;\n disjointsparsetable() = default;\n disjointsparsetable(vector<T> v) {\n int len = 0;\n while ((1 << len) <= v.size()) len++;\n table.assign(len, vector<T>(1 << len, e()));\n for (int i = 0; i < (int)v.size(); i++) table[0][i] = v[i];\n for (int i = 1; i < len; i++) {\n int shift = 1 << i;\n for (int j = 0; j < (int)v.size(); j += shift << 1) {\n int t = min(j + shift, (int)v.size());\n table[i][t - 1] = v[t - 1];\n for (int k = t - 2; k >= j; k--) table[i][k] = op(v[k], table[i][k + 1]);\n if (v.size() <= t) break;\n table[i][t] = v[t];\n int r = min(t + shift, (int)v.size());\n for (int k = t + 1; k < r; k++) table[i][k] = op(table[i][k - 1], v[k]);\n }\n }\n logtable.resize(1 << len);\n for (int i = 2; i < logtable.size(); i++) {\n logtable[i] = logtable[(i >> 1)] + 1;\n }\n }\n T query(int l, int r) {\n if (l == r) return e();\n if (l >= --r) return table[0][l];\n int len = logtable[l ^ r];\n return op(table[len][l], table[len][r]);\n };\n};\npair<int, int> lcatree_op(pair<int, int> a, pair<int, int> b) { return min(a, b); }\npair<int, int> lcatree_e() { return {1000000000, -1}; }\nstruct lca_tree {\n int n, size;\n vector<int> in, ord, depth;\n sparsetable<pair<int, int>, lcatree_op, lcatree_e> st;\n lca_tree(vector<vector<int>> g, int root = 0) : n((int)g.size()), size(log2(n) + 2), in(n), depth(n, n) {\n depth[root] = 0;\n function<void(int, int)> dfs = [&](int v, int p) {\n in[v] = (int)ord.size();\n ord.push_back(v);\n for (int u : g[v]) {\n if (u == p) continue;\n if (depth[u] > depth[v] + 1) {\n depth[u] = depth[v] + 1;\n dfs(u, v);\n ord.push_back(v);\n }\n }\n };\n dfs(root, -1);\n vector<pair<int, int>> vec((int)ord.size());\n for (int i = 0; i < (int)ord.size(); i++) {\n vec[i] = make_pair(depth[ord[i]], ord[i]);\n }\n st = vec;\n }\n int lca(int u, int v) {\n if (in[u] > in[v]) swap(u, v);\n if (u == v) return u;\n return st.query(in[u], in[v]).second;\n }\n int dist(int u, int v) {\n int l = lca(u, v);\n return depth[u] + depth[v] - 2 * depth[l];\n }\n};\nstruct auxiliary_tree : lca_tree {\n vector<vector<int>> G;\n auxiliary_tree(vector<vector<int>> &g) : lca_tree(g), G(n) {}\n pair<int, vector<int>> query(vector<int> vs, bool decending = false) {\n // decending:親から子の方向のみ辺を貼る\n assert(!vs.empty());\n sort(vs.begin(), vs.end(), [&](int a, int b) { return in[a] < in[b]; });\n int m = vs.size();\n stack<int> st;\n st.push(vs[0]);\n for (int i = 0; i < m - 1; i++) {\n int w = lca(vs[i], vs[i + 1]);\n if (w != vs[i]) {\n int l = st.top();\n st.pop();\n while (!st.empty() && depth[w] < depth[st.top()]) {\n if (!decending) G[l].push_back(st.top());\n G[st.top()].push_back(l);\n l = st.top();\n st.pop();\n }\n if (st.empty() || st.top() != w) {\n st.push(w);\n vs.push_back(w);\n }\n if (!decending) G[l].push_back(w);\n G[w].push_back(l);\n }\n st.push(vs[i + 1]);\n }\n while (st.size() > 1) {\n int x = st.top();\n st.pop();\n if (!decending) G[x].push_back(st.top());\n G[st.top()].push_back(x);\n }\n // {root,vertex_list}\n return make_pair(st.top(), vs);\n }\n void clear(vector<int> vs) {\n for (int v : vs) G[v].clear();\n }\n};\nstruct Mo {\n int n;\n vector<pair<int, int>> lr;\n\n explicit Mo(int n) : n(n) {}\n\n void add(int l, int r) { /* [l, r) */ lr.emplace_back(l, r); }\n\n template <typename AL, typename AR, typename EL, typename ER, typename O>\n void build(const AL &add_left, const AR &add_right, const EL &erase_left, const ER &erase_right, const O &out) {\n int q = (int)lr.size();\n int bs = n / min<int>(n, sqrt(q));\n vector<int> ord(q);\n iota(begin(ord), end(ord), 0);\n sort(begin(ord), end(ord), [&](int a, int b) {\n int ablock = lr[a].first / bs, bblock = lr[b].first / bs;\n if (ablock != bblock) return ablock < bblock;\n return (ablock & 1) ? lr[a].second > lr[b].second : lr[a].second < lr[b].second;\n });\n int l = 0, r = 0;\n for (auto idx : ord) {\n while (l > lr[idx].first) add_left(--l);\n while (r < lr[idx].second) add_right(r++);\n while (l < lr[idx].first) erase_left(l++);\n while (r > lr[idx].second) erase_right(--r);\n out(idx);\n }\n }\n\n template <typename A, typename E, typename O>\n void build(const A &add, const E &erase, const O &out) {\n build(add, add, erase, erase, out);\n }\n};\ntemplate <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>\nstruct lazy_segtree {\n int _n, sz = 1;\n vector<S> dat;\n vector<F> lazy;\n lazy_segtree(vector<S> a) : _n(int(a.size())) {\n while (sz < _n) sz <<= 1;\n dat.resize(sz * 2, e());\n lazy.resize(sz * 2, id());\n rep(i, _n) dat[sz + i] = a[i];\n for (int i = sz - 1; i >= 1; i--) dat[i] = op(dat[2 * i], dat[2 * i + 1]);\n }\n void eval(int k) {\n dat[k] = mapping(lazy[k], dat[k]);\n if (k < sz) {\n lazy[k * 2] = composition(lazy[k], lazy[k * 2]);\n lazy[k * 2 + 1] = composition(lazy[k], lazy[k * 2 + 1]);\n }\n lazy[k] = id();\n }\n void apply(int a, int b, F f, int k = 1, int l = 0, int r = -1) {\n eval(k);\n if (r == -1) r = sz;\n if (r <= a || b <= l) return;\n if (a <= l && r <= b) {\n lazy[k] = composition(f, lazy[k]);\n eval(k);\n return;\n }\n int m = (l + r) >> 1;\n apply(a, b, f, 2 * k, l, m);\n apply(a, b, f, 2 * k + 1, m, r);\n dat[k] = op(dat[2 * k], dat[2 * k + 1]);\n }\n S prod(int a, int b, int k = 1, int l = 0, int r = -1) {\n eval(k);\n if (r == -1) r = sz;\n if (r <= a || b <= l) return e();\n if (a <= l && r <= b) return dat[k];\n int m = (l + r) >> 1;\n S vl = prod(a, b, 2 * k, l, m);\n S vr = prod(a, b, 2 * k + 1, m, r);\n return op(vl, vr);\n }\n};\n\ntemplate <class S, S (*op)(S, S), S (*e)()>\nstruct dual_segtree {\n int sz = 1, log = 0;\n vector<S> lz;\n dual_segtree(vector<S> a) {\n int n = a.size();\n while (sz < n) {\n sz <<= 1;\n log++;\n }\n lz.assign(sz << 1, e());\n for (int i = 0; i < n; i++) lz[i + sz] = a[i];\n }\n void push(int k) {\n int b = __builtin_ctz(k);\n for (int d = log; d > b; d--) {\n lz[k >> d << 1] = op(lz[k >> d << 1], lz[k >> d]);\n lz[k >> d << 1 | 1] = op(lz[k >> d << 1 | 1], lz[k >> d]);\n lz[k >> d] = e();\n }\n }\n void apply(int l, int r, S x) {\n l += sz, r += sz;\n push(l);\n push(r);\n while (l < r) {\n if (l & 1) {\n lz[l] = op(lz[l], x);\n l++;\n }\n if (r & 1) {\n r--;\n lz[r] = op(lz[r], x);\n }\n l >>= 1, r >>= 1;\n }\n }\n S get(int k) {\n k += sz;\n S res = e();\n while (k) {\n res = op(res, lz[k]);\n k >>= 1;\n }\n return res;\n }\n};\n\n/*\n#include <atcoder/string>\nint string_period(string s) {\n int n = s.size();\n auto z = atcoder::z_algorithm(s);\n for (int i = 1; i < n; i++) {\n if (n % i == 0 && z[i] == n - i) return i;\n }\n return n;\n}\n*/\nstruct LowLink {\n vector<vector<int>> g;\n vector<int> ord, low, out;\n vector<bool> used;\n vector<pair<int, int>> bridge;\n vector<pair<int, int>> articulation;\n int unions;\n LowLink(vector<vector<int>> g) : g(g) {\n int n = (int)g.size();\n ord.resize(n);\n low.resize(n);\n out.resize(n);\n used.resize(n);\n unions = 0;\n int t = 0;\n for (int i = 0; i < n; i++) {\n if (!used[i]) {\n dfs(i, t, -1);\n unions++;\n }\n }\n }\n void dfs(int v, int &t, int par) {\n used[v] = true;\n ord[v] = t++, low[v] = ord[v];\n int cnt = 0;\n bool par_back = false;\n for (int to : g[v]) {\n if (!used[to]) {\n dfs(to, t, v);\n low[v] = min(low[v], low[to]);\n if (ord[v] < low[to]) bridge.push_back(minmax(v, to));\n if (ord[v] <= low[to]) cnt++;\n } else if (to != par || par_back) {\n low[v] = min(low[v], ord[to]);\n } else\n par_back = true;\n }\n if (par != -1) cnt++;\n if (cnt >= 2) articulation.push_back({v, cnt});\n out[v] = t;\n }\n};\ntemplate <typename T>\nT rand(T l, T r) {\n static mt19937 mt(random_device{}());\n if constexpr (is_integral_v<T>) {\n uniform_int_distribution<T> dist(l, r);\n return dist(mt);\n } else if constexpr (is_floating_point_v<T>) {\n uniform_real_distribution<T> dist(l, r);\n return dist(mt);\n }\n}\nvoid solve() {\n ll m,a;\n cin>>m>>a;\n if(m==0&&a==0)exit(0);\n ll g=gcd(m,a);\n ll s=m/g,t=a/g;\n t=modinv(t,s);\n //t+ks (k=0,1,...,g-1)\n //such that\n //gcd(g,t+ks)=1\n //phi(g) !?\n ll ans=g;\n for(ll i=2;i*i<=g;i++){\n if(g%i==0&&gcd(i,s)==1){\n ans/=i;\n ans*=(i-1);\n }\n while(g%i==0){\n g/=i;\n }\n }\n if(g>1&&gcd(g,s)==1){\n ans/=g;\n ans*=(g-1);\n }\n cout<<ans<<endl;\n}\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n /*int t;\n cin >> t;\n while (t--) */\n while (1) solve();\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3348, "score_of_the_acc": -0.0198, "final_rank": 2 }, { "submission_id": "aoj_3296_9386553", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define all(x) (x).begin(),(x).end()\n#define eb emplace_back\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing vl = vector<long long>;\nusing vvl = vector<vector<long long>>; using vs = vector<string>;\nusing pl = pair<long long, long long>;\ntemplate <typename T> inline bool chmin(T& a, const T& b) {bool compare = a > b; if (a > b) a = b; return compare;}\ntemplate <typename T> inline bool chmax(T& a, const T& b) {bool compare = a < b; if (a < b) a = b; return compare;}\ntemplate<class T>using rp_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate <typename T> T gcd(T a, T b) {if (b == 0)return a; else return gcd(b, a % b);}\ntemplate <typename T> inline T lcm(T a, T b) {return a /gcd(a, b)*b;}\nconst ll INF = 1LL << 60;\nconst ld PI = acos(-1);\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);\ntemplate <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);\ntemplate <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);\ntemplate <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);\ntemplate <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);\ntemplate <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);\ntemplate <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);\ntemplate <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);\n \ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }\ntemplate <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }\ntemplate <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }\ntemplate <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }\ntemplate <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << \"deq[\"; for (auto v : vec) os << v << ','; os << ']'; return os; }\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }\ntemplate <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }\ntemplate <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }\ntemplate <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << \"=>\" << v.second << ','; os << '}'; return os; }\ntemplate <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << \"=>\" << v.second << ','; os << '}'; return os; }\n#ifdef LOCAL\nconst string COLOR_RESET = \"\\033[0m\", BRIGHT_GREEN = \"\\033[1;32m\", BRIGHT_RED = \"\\033[1;31m\", BRIGHT_CYAN = \"\\033[1;36m\", NORMAL_CROSSED = \"\\033[0;9;37m\", RED_BACKGROUND = \"\\033[1;41m\", NORMAL_FAINT = \"\\033[0;2m\";\n#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << \" = \" << (x) << NORMAL_FAINT << \" (L\" << __LINE__ << \") \" << __FILE__ << COLOR_RESET << std::endl\n#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << \" = \" << (x) << NORMAL_FAINT << \" (L\" << __LINE__ << \") \" << __FILE__ << COLOR_RESET << std::endl : std::cerr)\n#else\n#define dbg(x) ((void)0)\n#define dbgif(cond, x) ((void)0)\n#endif\nvoid solve();\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout<<fixed<<setprecision(15);\n int num_tc = 1;\n //cin >> num_tc;\n rep(tc,num_tc){\n //cout << \"Case #\" << tc+1 << \": \" ;// << endl;\n solve();\n }\n}\nlong long modinv(long long a, long long m) {\n long long b = m, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n u %= m; \n if (u < 0) u += m;\n return u;\n}\nvl factor(ll N){\n vl res;\n for(ll a=2;a*a<=N;a++){\n if(N%a==0){\n res.push_back(a);\n while(N%a==0){\n N/=a;\n }\n }\n }\n if(N!=1)res.push_back(N);\n return res;\n}\nvoid solve(){\n while(true){\n ll M,A;cin>>M>>A;\n if(M==0&&A==0)return;\n ll g = gcd(M,A);\n ///gで割れば逆元が存在するのでOK\n ll ans =g ;\n for(auto p:factor(g)){\n if(gcd(g,M/g)%p==0)continue;\n ans/=p;\n ans*=p-1;\n }\n cout<<ans<<endl;\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3460, "score_of_the_acc": -0.0328, "final_rank": 8 }, { "submission_id": "aoj_3296_9376367", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n while(1){\n long long M, A;\n cin >> M >> A;\n if(M == 0 && A == 0){\n return 0;\n }\n long long g = gcd(M, A);\n long long m = M;\n long long d = M / g;\n for(long long i = 2; i * i <= m; i++){\n if(m % i == 0){\n if(d % i != 0){\n g /= i;\n g *= (i - 1);\n }\n while(m % i == 0){\n m /= i;\n }\n }\n }\n if(m != 1 && d % m != 0){\n g /= m;\n g *= (m - 1);\n }\n cout << g << endl;\n }\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 3368, "score_of_the_acc": -0.0572, "final_rank": 16 }, { "submission_id": "aoj_3296_9352624", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n\nusing ll = long long;\nusing i64 = long long;\nusing pll = pair<ll,ll>;\nusing plll = pair<pll,ll>;\nusing pii =pair<int,int>;\n\nconstexpr ll mod = 1000000007;\n\nint dx[4]={1,0,-1,0};\nint dy[4]={0,1,0,-1};\nint dX[4]={1,0,-1,0};\nint dY[4]={0,-1,0,1};\n\n\n\n//library\n\ntemplate<typename T>\nT extgcd(T a,T b,T& x,T& y){\n if (!b) { x=1;y=0;return a; }\n ll d=extgcd(b,a%b,y,x);\n y-=(a/b)*x; return d;\n}\n\n//end\n\n\n\nusing Graph =vector<vector<ll>>;\n\nint main(){\n while(true){\n ll m,a;\n cin>>m>>a;\n if (m==0)break;\n ll g=gcd(m,a);\n ll x0,y0;\n extgcd(a/g,m/g,x0,y0);\n //cout<<x0<<endl;\n ll l=(m-x0)/(m/g)-((1-x0+(m/g)-1)/(m/g))+1;\n ll mg=m/g;\n for (int i=2; i<10000000; i++){\n if (i*i>m)break;\n if (m%i==0){\n while (m%i==0)m/=i;\n if (mg%i){\n l/=i;\n l*=(i-1);\n }\n }\n }\n if (m>1){\n if (mg%m){\n l/=m;\n l*=m-1;\n }\n }\n cout<<l<<endl;\n\n\n\n\n\n\n\n\n }\n\n\n}", "accuracy": 1, "time_ms": 4820, "memory_kb": 3336, "score_of_the_acc": -1.0124, "final_rank": 19 }, { "submission_id": "aoj_3296_9347210", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n while(true) {\n long long M, A;\n cin >> M >> A;\n\n if(M == 0) return 0;\n\n long long g = gcd(M, A);\n long long B = M / g;\n\n set<long long> Mp;\n long long m = M;\n for(long long i = 2; i * i <= M; i++) {\n while(m % i == 0) {\n m /= i;\n Mp.insert(i);\n }\n }\n\n if(m != 1) Mp.insert(m);\n\n set<long long> Bp;\n long long b = B;\n for(long long i = 2; i * i <= B; i++) {\n while(b % i == 0) {\n b /= i;\n Bp.insert(i);\n }\n }\n\n if(b != 1) Bp.insert(b);\n\n long long ans = g;\n for(auto p : Mp) {\n if(!Bp.count(p)) {\n ans /= p;\n ans *= (p - 1);\n }\n }\n\n cout << ans << endl;\n\n }\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 2010, "memory_kb": 3368, "score_of_the_acc": -0.4301, "final_rank": 18 }, { "submission_id": "aoj_3296_9346792", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = (int)1e9 + 1001010;\nconst ll llINF = (long long)4e18 + 22000020;\nconst string endn = \"\\n\";\ntemplate <class T> inline auto vector2(size_t i, size_t j, const T &init = T()) {return vector(i, vector<T>(j, init));}\nconst string ELEM_SEPARATION = \" \", VEC_SEPARATION = endn;\ntemplate<class T> istream& operator >>(istream &i, vector<T> &A) {for(auto &I : A) {i >> I;} return i;}\ntemplate<class T> ostream& operator <<(ostream &o, const vector<T> &A) {int i=A.size(); for(const auto &I : A){o << I << (--i ? ELEM_SEPARATION : \"\");} return o;}\ntemplate<class T> ostream& operator <<(ostream &o, const vector<vector<T>> &A) {int i=A.size(); for(const auto &I : A){o << I << (--i ? VEC_SEPARATION : \"\");} return o;}\ntemplate<class T> vector<T>& operator ++(vector<T> &A, int n) {for(auto &I : A) {I++;} return A;}\ntemplate<class T> vector<T>& operator --(vector<T> &A, int n) {for(auto &I : A) {I--;} return A;}\ntemplate<class T, class U> bool chmax(T &a, const U &b) {return ((a < b) ? (a = b, true) : false);}\ntemplate<class T, class U> bool chmin(T &a, const U &b) {return ((a > b) ? (a = b, true) : false);}\nll floor(ll a, ll b){if (b < 0) a = -a, b = -b; if(a >= 0) return a / b; else return (a + 1) / b - 1;}\nll ceil(ll a, ll b){if (b < 0) a = -a, b = -b; if(a > 0) return (a - 1) / b + 1; else return a / b;}\nll bit(unsigned long long val, unsigned long long digit){return (val >> digit) & 1;}\n#ifdef DEBUG\n#include <debug_slephy.cpp>\n#else\n#define debug(...)\n#endif\n// ================================== ここまでテンプレ ==================================\n\nll phi(ll n){\n ll ret = n;\n for(ll i = 2; i*i <= n; i++){\n if(n % i == 0){\n ret -= ret / i;\n while(n % i == 0) n /= i;\n }\n }\n if(n > 1) ret -= ret / n;\n return ret;\n}\n\nvoid solve(){\n ll M, A; cin >> M >> A;\n if(M == 0) exit(0);\n ll g = gcd(M, A);\n ll m = M / g;\n ll Md = M;\n while(gcd(Md, m) > 1) Md /= gcd(Md, m);\n debug(M, m, g, Md, phi(Md));\n ll ans = phi(Md) * (g / Md);\n cout << ans << endl;\n}\n\nint main(int argc, char *argv[]){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n while(true) solve();\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3460, "score_of_the_acc": -0.0307, "final_rank": 6 }, { "submission_id": "aoj_3296_9330252", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)\n#define rrep(i,start,end) for (long long i = start;i >= (long long)(end);i--)\n#define repn(i,end) for(long long i = 0; i <= (long long)(end); i++)\n#define reps(i,start,end) for(long long i = start; i < (long long)(end); i++)\n#define repsn(i,start,end) for(long long i = start; i <= (long long)(end); i++)\n#define each(p,a) for(auto &p:a)\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\ntypedef vector<long long> vll;\ntypedef vector<pair<long long ,long long>> vpll;\ntypedef vector<vector<long long>> vvll;\ntypedef set<ll> sll;\ntypedef map<long long , long long> mpll;\ntypedef pair<long long ,long long> pll;\ntypedef tuple<long long , long long , long long> tpl3;\n#define LL(...) ll __VA_ARGS__; input(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__; input(__VA_ARGS__)\n#define Str(...) string __VA_ARGS__; input(__VA_ARGS__)\n#define Ch(...) char __VA_ARGS__; input(__VA_ARGS__)\n#define all(a) (a).begin(),(a).end()\n#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );\n#define sz(x) (int)x.size()\n// << std::fixed << std::setprecision(10)\nconst ll INF = 1LL << 60;\nconst ld EPS = 1e-9;\n \ninline ll lfloor(ll x,ll m){return (x - ((x % m+ m)%m))/m;}\ninline ll positive_mod(ll a,ll m){return (a % m + m)%m;}\ninline ll popcnt(ull a){ return __builtin_popcountll(a);}\ntemplate<class T> bool chmin(T& a, T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T> bool chmax(T& a, T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> std::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T> std::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\ntemplate<typename T1, typename T2>std::ostream &operator<< (std::ostream &os, std::pair<T1,T2> p){os << \"{\" << p.first << \",\" << p.second << \"}\";return os;}\ntemplate<class... T>void input(T&... a){(cin >> ... >> a);}\nvoid print(){cout << endl;}\ntemplate<class T, class... Ts>void print(const T& a, const Ts&... b){cout << a;((cout << ' ' << b), ...);cout << endl;}\ntemplate<class T> void pspace(const T& a){ cout << a << ' ';}\nvoid perr(){cerr << endl;}\ntemplate<class T, class... Ts>void perr(const T& a, const Ts&... b){cerr << a;((cerr << ' ' << b), ...);cerr << endl;}\nvoid yes(bool i = true){ return print(i?\"yes\":\"no\"); }\nvoid Yes(bool i = true){ return print(i?\"Yes\":\"No\"); }\nvoid YES(bool i = true){ return print(i?\"YES\":\"NO\"); }\ntemplate <class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v) e++;return v;}\ntemplate <class T> vector<T> operator++(vector<T> &v, signed) {auto res = v;for(auto &e : v) e++;return res;}\ntemplate <class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v) e--;return v;}\ntemplate <class T> vector<T> operator--(vector<T> &v, signed) {auto res = v;for(auto &e : v) e--;return res;}\n//grid探索用\nvector<ll> _ta = {0,0,1,-1,1,1,-1,-1};\nvector<ll> _yo = {1,-1,0,0,1,-1,1,-1};\nbool isin(ll now_i,ll now_j,ll h,ll w){return (0<=now_i && now_i < h && 0 <= now_j && now_j < w);}\n \nll lpow(ll x,ll n){ll ans = 1;while(n >0){if(n & 1)ans *= x;x *= x;n >>= 1;}return ans;}\nll Modlpow(ll x,ll n,ll m){ll ans = 1;ll a = x%m;while(n >0){if(n & 1){ans *= a;ans%= m;}a *= a;a %= m;n >>= 1;}return ans;} \nconst ll MOD9 = 998244353LL;\nconst ll MOD10 = 1000000007LL;\n\n// for AOJ or ICPC or etc..\n// 全部が0だったらtrueを返す\ntemplate<class Tp> bool zero (const Tp &x) {return x == 0;}\ntemplate<class Tp, class... Args> bool zero (const Tp &x, const Args& ...args) {return zero(x) and zero(args...);}\n\n//返り値gcd(a,b)\n//ax + by = gcd(a,b)を満たすx,yを参照で返す\nll extGCD(ll a,ll b,ll &x, ll&y){\n if(b == 0){\n x = 1;\n y = 0;\n return a;\n }\n ll d = extGCD(b,a % b,y,x);\n y -= a/b * x;\n return d;\n}\n \n// リターン値を (r, m) とすると解は x ≡ r (mod. m)\n// 解なしの場合は (0, -1) を返す\n// b:あまり、m:法\npair<ll,ll> crt(const vector<ll> &b,const vector<ll> &m){\n assert(b.size() == m.size());\n ll r = 0; ll lcm_m = 1;\n rep(i,b.size()){\n ll p,q;\n ll d = extGCD(lcm_m,m[i],p,q);\n if((b[i] - r) % d != 0)return {0,-1};//解なし\n ll tmp = (b[i]-r)/d * p % (m[i]/d);//多分オーバーフロー対策\n r += lcm_m * tmp;\n lcm_m *= m[i]/d;\n }\n return {(r % lcm_m+lcm_m)%lcm_m,lcm_m};\n}\n\n//素因数分解\nmap<ll,ll> enumpr(ll n) {\n map<ll,ll> V;\n for(ll i=2;i*i<=n;i++) {\n while(n%i==0){\n V[i]++;\n n/=i;\n } \n }\n if(n>1) V[n]++;\n return V;\n}\n\n\nll gyakugen(ll a,ll b){\n //aのmod bでの逆元\n ll x,y;\n extGCD(a,-b,x,y);\n return x;\n}\n\n// 変数をちゃんと全部受け取る!\nvoid solve(ll m,ll a){\n ll g = gcd(m,a);\n if(g == 1){\n cout << 1 << endl;\n return ;\n }\n\n map<ll,ll> enu = enumpr(m);\n\n vll ps;//pの候補\n each(p,enu){\n ps.push_back(p.first);\n }\n\n ll siz = ps.size();\n\n vll rs(siz);\n\n rep(i,siz){\n ll p = ps[i];\n if(gcd(p,m/g) == 1){\n //互いに素\n rs[i] = -(gyakugen(a/g,m/g)) * gyakugen(m/g,p);\n rs[i] = positive_mod(rs[i],p);\n }else{\n rs[i] = -INF;\n }\n }\n\n //いらないの消す\n vll tmpps,tmprs;\n rep(i,siz){\n if(rs[i] != -INF){\n tmpps.push_back(ps[i]);\n tmprs.push_back(rs[i]);\n }\n }\n swap(tmpps,ps);\n swap(tmprs,rs);\n siz = ps.size();\n\n //bit全探索\n ll ans = g;\n reps(i,1,1 << siz){\n vll rss,pss;//あまり、p\n rep(j,siz){\n if(i >> j & 1){\n rss.push_back(rs[j]);\n pss.push_back(ps[j]);\n }\n }\n auto [r,p] = crt(rss,pss);\n //\n ll num = (g-1)/p;\n ll rem = (g-1) % p;\n if(r != 0){\n if(rem >= r){\n num++;\n }\n }else{\n }\n // perr(popcnt(i),p,r,num);\n if(r == 0){\n num++;\n }\n if(popcnt(i) % 2 == 1){\n //引く\n ans -= num;\n }else{\n //足す\n ans+= num;\n }\n }\n \n cout << ans << endl;\n\n\n\n}\n \nint main(){\n ios::sync_with_stdio(false);cin.tie(nullptr);\n while(true){\n LL(m,a);//変数数調整\n if(zero(m,a))break;\n solve(m,a);\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3468, "score_of_the_acc": -0.0377, "final_rank": 11 }, { "submission_id": "aoj_3296_9328242", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for (long long i=0;i<n;i++)\n#define loop(i,m,n) for(long long i=m;i<=n;i++)\n#define range(value,range) for(const auto &value : range)\n#define ll long long\n#define vl vector<long long>\n#define vvl vector<vector<long long>>\n#define vdbg(a) rep(ii,a.size()){cout<<a[ii]<<\" \";}cout<<endl;\n#define vvdbg(a) rep(ii,a.size()){rep(jj,a[ii].size()){cout<<a[ii][jj]<<\" \";}cout<<endl;}\n#define inf 4000000000000000000LL\n#define mod 998244353LL\n\n//整数同士の累乗の計算をする。\nll power(ll A, ll B) {\n\tll result = 1;\n\tfor (ll i=0;i<B;i++){\n\t\tresult *= A;\n\t}\n\treturn result;\n}\n\n//オイラーのトーシェント関数。N以下のNと互いに素な物の数を返す。\nll euler(ll n){\n\tunordered_map<ll,ll> factors;\n\tll tmp=n;\n\twhile (tmp % 2 == 0) {\n\t\tfactors[2]++;\n\t\ttmp /= 2;\n\t}\n\tfor (ll i=3; i*i<=tmp;i+=2) {\n\t\twhile (tmp%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\ttmp/= i;\n\t\t}\n\t}\n\tif (tmp > 2)factors[tmp]++;\n\tll ans=1;\n\tfor(const auto & val:factors){\n\t\tans*=power(val.first,val.second-1)*(val.first-1);\n\t}\n\treturn ans;\n}\n\n\nmap<ll,ll> makeMapPrime(ll n){\n\tmap<ll,ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors[2]++;\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors[n]++;\n\t}\n\treturn factors;\n}\n\n\nll solve(){\n\tll m,a;\n\tcin>>m>>a;\n\tif(m==0)return 1;\n\tll g=gcd(m,a);\n\n\t//合同式の約分をし、m/gの素因数の書き出し\n\tmap<ll,ll>p=makeMapPrime(m/g);\n\n\t//mをgと互いに素になるまで約数の消去をする。(周期内の存在数)\n\tfor(const auto &val:p){\n\t\twhile(m%val.first==0)m/=val.first;\n\t}\n\t\n\t//オイラー関数で1回の周期内の個数を求めている。\n\t//g/mが何周期存在するかを計算している。\n\tll ans=(g/m)*euler(m);\n\n\tcout<<ans<<endl;\n\n\treturn 0;\n}\n\nint main(){\n\twhile(1){\n\t\tif(solve()==1)break;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3352, "score_of_the_acc": -0.0306, "final_rank": 4 }, { "submission_id": "aoj_3296_9328240", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for (long long i=0;i<n;i++)\n#define loop(i,m,n) for(long long i=m;i<=n;i++)\n#define range(value,range) for(const auto &value : range)\n#define ll long long\n#define vl vector<long long>\n#define vvl vector<vector<long long>>\n#define vdbg(a) rep(ii,a.size()){cout<<a[ii]<<\" \";}cout<<endl;\n#define vvdbg(a) rep(ii,a.size()){rep(jj,a[ii].size()){cout<<a[ii][jj]<<\" \";}cout<<endl;}\n#define inf 4000000000000000000LL\n#define mod 998244353LL\n\n//整数同士の累乗の計算をする。\nll power(ll A, ll B) {\n\tll result = 1;\n\tfor (ll i=0;i<B;i++){\n\t\tresult *= A;\n\t}\n\treturn result;\n}\n\n//オイラーのトーシェント関数。N以下のNと互いに素な物の数を返す。\nll euler(ll n){\n\tunordered_map<ll,ll> factors;\n\tll tmp=n;\n\twhile (tmp % 2 == 0) {\n\t\tfactors[2]++;\n\t\ttmp /= 2;\n\t}\n\tfor (ll i=3; i*i<=tmp;i+=2) {\n\t\twhile (tmp%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\ttmp/= i;\n\t\t}\n\t}\n\tif (tmp > 2)factors[tmp]++;\n\tll ans=1;\n\tfor(const auto & val:factors){\n\t\tans*=power(val.first,val.second-1)*(val.first-1);\n\t}\n\treturn ans;\n}\n\n\nmap<ll,ll> makeMapPrime(ll n){\n\tmap<ll,ll> factors;\n\twhile (n % 2 == 0) {\n\t\tfactors[2]++;\n\t\tn /= 2;\n\t}\n\tfor (ll i=3; i*i<=n;i+=2) {\n\t\twhile (n%i == 0) {\n\t\t\tfactors[i]++;\n\t\t\tn /= i;\n\t\t}\n\t}\n\tif (n > 2) {\n\t\tfactors[n]++;\n\t}\n\treturn factors;\n}\n\n\nll solve(){\n\tll m,a;\n\tcin>>m>>a;\n\tif(m==0)return 1;\n\tll g=gcd(m,a);\n\tmap<ll,ll>p=makeMapPrime(m/g);\n\tll k=m/g;\n\n\trange(val,p){\n\t\twhile(m%val.first==0)m/=val.first;\n\t}\n\t\n\t//オイラー関数で1回の周期内の個数を求めている。\n\tll ans=(g/m)*euler(m);\n\n\tcout<<ans<<endl;\n\n\treturn 0;\n}\n\nint main(){\n\twhile(1){\n\t\tif(solve()==1)break;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3352, "score_of_the_acc": -0.0306, "final_rank": 4 } ]
aoj_3295_cpp
Problem D 動く点 P と愉快な仲間たち Q, R 二次元平面上に凸 N 角形がある.各頂点には反時計回りに 1 から N までの番号がつけられている. この多角形の周上に,三点 P , Q , R がある.はじめ, P , Q , R はそれぞれ,多角形の頂点 k P , k Q , k R と同じ座標にある.その後, P , Q , R は同じ速さで,多角形の周上を反時計回りに一周する. 時々刻々と変化する三角形 PQR の形状.あなたには,この三角形の面積の最小値を求めてほしい.なお, P , Q , R が同一直線上に存在する場合,三角形 PQR の面積は 0 であるものとみなす. Input 入力は 50 個以下のデータセットからなる.各データセットは次の形式で表される. N K P K Q K R x 1 y 1 ... x N y N N は凸多角形の頂点数であり, 3 ≤ N ≤ 1,000 を満たす. K P , K Q , K R はそれぞれ,点 P , Q , R がはじめに存在する頂点の番号であり, 1 ≤ K P < K Q < K R ≤ N を満たす. 各 (x i , y i ) は凸多角形の i 番目の頂点の座標であり, -10,000 ≤ x i ,y i ≤ 10,000 を満たす.凸多角形の座標は反時計回りで与えられることが保証される. 入力される数値はいずれも整数である. 入力の終わりは 4 つのゼロからなる行で表される. Output 各データセットに対し,三角形 PQR の面積の最小値を,一行に出力せよ.出力は 10 -4 を超える誤差を含んではならない. Sample Input 4 1 2 3 10 10 -10 10 -10 -10 10 -10 3 1 2 3 -10 -10 10 -10 0 10 0 0 0 0 Output for the Sample Input 100.000000000000000 49.442719099991588
[ { "submission_id": "aoj_3295_10730528", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst double EPS = 1e-11;\nconst double INF = 1e18;\n\nstruct Point {\n double x, y;\n Point operator-(const Point& p) const { return {x - p.x, y - p.y}; }\n};\n\ndouble cross(Point a, Point b) {\n return a.x * b.y - a.y * b.x;\n}\n\ndouble triangle_area(Point a, Point b, Point c) {\n return abs(cross(b - a, c - a)) / 2.0;\n}\n\ndouble edge_length(Point a, Point b) {\n return hypot(b.x - a.x, b.y - a.y);\n}\n\nPoint get_point(double d, const vector<Point>& vertices, const vector<double>& prefix_sum, double perimeter) {\n d = fmod(d, perimeter);\n if (d < 0) d += perimeter;\n int idx = lower_bound(prefix_sum.begin(), prefix_sum.end(), d) - prefix_sum.begin() - 1;\n double rem = d - prefix_sum[idx];\n int u = idx;\n int v = (u + 1) % (int)vertices.size();\n double ratio = (prefix_sum[idx+1] - prefix_sum[idx]) ? rem / (prefix_sum[idx+1] - prefix_sum[idx]) : 0;\n return {vertices[u].x + ratio * (vertices[v].x - vertices[u].x), vertices[u].y + ratio * (vertices[v].y - vertices[u].y)};\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n while (true) {\n int N;\n cin >> N;\n if (N == 0) break;\n int P0, Q0, R0;\n cin >> P0 >> Q0 >> R0;\n P0--; Q0--; R0--;\n vector<Point> V(N);\n for (int i = 0; i < N; ++i) cin >> V[i].x >> V[i].y;\n vector<double> prefix_sum(N + 1);\n for (int i = 0; i < N; ++i) prefix_sum[i+1] = prefix_sum[i] + edge_length(V[i], V[(i+1)%N]);\n double perimeter = prefix_sum[N];\n auto get_dist = [&](int a, int b) {\n if (a == b) return 0.0;\n double sum = 0;\n int cur = a;\n while (cur != b) {\n sum += edge_length(V[cur], V[(cur+1)%N]);\n cur = (cur + 1) % N;\n }\n return sum;\n };\n double D_Q = get_dist(P0, Q0);\n double D_R = get_dist(P0, R0);\n vector<double> crit;\n for (int i = 0; i <= N; ++i) crit.push_back(prefix_sum[i]);\n for (int i = 0; i < N; ++i) {\n double pos = get_dist(P0, i) - D_Q;\n if (pos < 0) pos += perimeter;\n crit.push_back(fmod(pos, perimeter));\n }\n for (int i = 0; i < N; ++i) {\n double pos = get_dist(P0, i) - D_R;\n if (pos < 0) pos += perimeter;\n crit.push_back(fmod(pos, perimeter));\n }\n sort(crit.begin(), crit.end());\n crit.erase(unique(crit.begin(), crit.end(), [](double a, double b){ return abs(a - b) < EPS; }), crit.end());\n double min_area = INF;\n for (double d : crit) {\n Point p = get_point(d, V, prefix_sum, perimeter);\n Point q = get_point(fmod(d + D_Q, perimeter), V, prefix_sum, perimeter);\n Point r = get_point(fmod(d + D_R, perimeter), V, prefix_sum, perimeter);\n double area = triangle_area(p, q, r);\n min_area = min(min_area, area);\n }\n for (size_t i = 0; i + 1 < crit.size(); ++i) {\n double l = crit[i], r = crit[i+1];\n if (r - l < EPS) continue;\n for (int it = 0; it < 150; ++it) {\n double m1 = l + (r - l)/3;\n double m2 = r - (r - l)/3;\n Point p1 = get_point(m1, V, prefix_sum, perimeter);\n Point q1 = get_point(fmod(m1 + D_Q, perimeter), V, prefix_sum, perimeter);\n Point r1 = get_point(fmod(m1 + D_R, perimeter), V, prefix_sum, perimeter);\n Point p2 = get_point(m2, V, prefix_sum, perimeter);\n Point q2 = get_point(fmod(m2 + D_Q, perimeter), V, prefix_sum, perimeter);\n Point r2 = get_point(fmod(m2 + D_R, perimeter), V, prefix_sum, perimeter);\n double f1 = triangle_area(p1, q1, r1);\n double f2 = triangle_area(p2, q2, r2);\n if (f1 < f2) r = m2;\n else l = m1;\n }\n Point p_l = get_point(l, V, prefix_sum, perimeter);\n Point q_l = get_point(fmod(l + D_Q, perimeter), V, prefix_sum, perimeter);\n Point r_l = get_point(fmod(l + D_R, perimeter), V, prefix_sum, perimeter);\n Point p_r = get_point(r, V, prefix_sum, perimeter);\n Point q_r = get_point(fmod(r + D_Q, perimeter), V, prefix_sum, perimeter);\n Point r_r = get_point(fmod(r + D_R, perimeter), V, prefix_sum, perimeter);\n min_area = min(min_area, triangle_area(p_l, q_l, r_l));\n min_area = min(min_area, triangle_area(p_r, q_r, r_r));\n }\n cout.precision(12);\n cout << fixed << min_area << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 420, "memory_kb": 3744, "score_of_the_acc": -0.3129, "final_rank": 11 }, { "submission_id": "aoj_3295_10684213", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG // 配列外参照のエラー\n// #endif\n\n// スタンダードライブラリ\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型関連\nusing ll = long long;\nusing lint = long long;\nusing pll = pair<ll, ll>;\nusing plll = tuple<ll, ll, ll>;\nusing pii = pair<int, int>;\nusing piii = tuple<ll, ll, ll>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vvvvi = vector<vector<vector<vector<int>>>>;\nusing vl = vector<ll>;\nusing vvl = vector<vector<ll>>;\nusing vvvl = vector<vector<vector<ll>>>;\nusing vvvvl = vector<vector<vector<vector<ll>>>>;\n\ntemplate <class T> using prique = priority_queue<T>;\ntemplate <class T> void chmin(T &a, T b) {\n if (a > b)\n a = b;\n}\ntemplate <class T> void chmax(T &a, T b) {\n if (a < b)\n a = b;\n}\n\n#define all(v) v.begin(), v.end()\n\n// 型定数\nconstexpr ll mod = 998244353;\nconstexpr ll MOD = 1000000007;\nint INF32 = 2e9;\nll INF64 = 9e18;\n#define endl '\\n';\n\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\n\n/////////////////////////// print関連\ntemplate <typename T> void print(vector<T> A);\nvoid print();\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail);\nvoid print(string S);\ntemplate <typename T> void print(vector<vector<T>> &F);\n\ninline void Yes(bool f);\n\n#define equals(a, b) (fabs((a) - (b)) < EPS)\n\nconst double EPS = 1e-10;\nconst double PI = asinl(1) * 2;\n\nstruct Point {\n double x, y;\n Point() {}\n Point(double x, double y) : x(x), y(y) {}\n Point operator+(Point p) { return Point(x + p.x, y + p.y); }\n Point operator-(Point p) { return Point(x - p.x, y - p.y); }\n Point operator*(double k) { return Point(x * k, y * k); }\n Point operator/(double k) { return Point(x / k, y / k); }\n double norm() { return x * x + y * y; }\n double abs() { return sqrt(norm()); }\n\n bool operator<(const Point &p) const {\n return x != p.x ? x < p.x : y < p.y;\n // grid-point only\n // return !equals(x,p.x)?x<p.x:!equals(y,p.y)?y<p.y:0;\n }\n\n bool operator==(const Point &p) const {\n return fabs(x - p.x) < EPS and fabs(y - p.y) < EPS;\n }\n};\n\nbool sort_x(Point a, Point b) { return a.x != b.x ? a.x < b.x : a.y < b.y; }\n\nbool sort_y(Point a, Point b) { return a.y != b.y ? a.y < b.y : a.x < b.x; }\n\ntypedef Point Vector;\ntypedef vector<Point> Polygon;\n\nstruct Segment {\n Point p1, p2;\n Segment() {}\n Segment(Point p1, Point p2) : p1(p1), p2(p2) {}\n};\ntypedef Segment Line;\n\nstruct Circle {\n Point c;\n double r;\n Circle() {}\n Circle(Point c, double r) : c(c), r(r) {}\n};\n\ndouble norm(Vector a) { return a.x * a.x + a.y * a.y; }\n\ndouble abs(Vector a) { return sqrt(norm(a)); }\n\ndouble dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }\n\ndouble cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }\n\nPoint orth(Point p) { return Point(-p.y, p.x); }\n\nbool isOrthogonal(Vector a, Vector b) { return equals(dot(a, b), 0.0); }\n\nbool isOrthogonal(Point a1, Point a2, Point b1, Point b2) {\n return isOrthogonal(a1 - a2, b1 - b2);\n}\n\nbool isOrthogonal(Segment s1, Segment s2) {\n return equals(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);\n}\n\nbool isParallel(Vector a, Vector b) { return equals(cross(a, b), 0.0); }\n\nbool isParallel(Point a1, Point a2, Point b1, Point b2) {\n return isParallel(a1 - a2, b1 - b2);\n}\n\nbool isParallel(Segment s1, Segment s2) {\n return equals(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0);\n}\n\nPoint project(Segment s, Point p) {\n Vector base = s.p2 - s.p1;\n double r = dot(p - s.p1, base) / norm(base);\n return s.p1 + base * r;\n}\n\nPoint reflect(Segment s, Point p) { return p + (project(s, p) - p) * 2.0; }\n\ndouble arg(Vector p) { return atan2(p.y, p.x); }\n\nVector polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); }\n\n// COUNTER CLOCKWISE\nstatic const int CCW_COUNTER_CLOCKWISE = 1;\nstatic const int CCW_CLOCKWISE = -1;\nstatic const int CCW_ONLINE_BACK = 2;\nstatic const int CCW_ONLINE_FRONT = -2;\nstatic const int CCW_ON_SEGMENT = 0;\n\nint ccw(Point p0, Point p1, Point p2) {\n Vector a = p1 - p0;\n Vector b = p2 - p0;\n if (cross(a, b) > EPS)\n return CCW_COUNTER_CLOCKWISE;\n if (cross(a, b) < -EPS)\n return CCW_CLOCKWISE;\n if (dot(a, b) < -EPS)\n return CCW_ONLINE_BACK;\n if (a.norm() < b.norm())\n return CCW_ONLINE_FRONT;\n return CCW_ON_SEGMENT;\n}\n\nbool intersectSS(Point p1, Point p2, Point p3, Point p4) {\n return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 and\n ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);\n}\n\nbool intersectSS(Segment s1, Segment s2) {\n return intersectSS(s1.p1, s1.p2, s2.p1, s2.p2);\n}\n\nbool intersectPS(Polygon p, Segment l) {\n int n = p.size();\n for (int i = 0; i < n; ++i)\n if (intersectSS(Segment(p[i], p[(i + 1) % n]), l))\n return 1;\n return 0;\n}\n\ndouble getDistanceLP(Line l, Point p) {\n return fabs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));\n}\n\ndouble getDistanceSP(Segment s, Point p) {\n if (dot(s.p2 - s.p1, p - s.p1) < 0.0)\n return abs(p - s.p1);\n if (dot(s.p1 - s.p2, p - s.p2) < 0.0)\n return abs(p - s.p2);\n return getDistanceLP(s, p);\n}\n\ndouble getDistanceSS(Segment s1, Segment s2) {\n if (intersectSS(s1, s2))\n return 0.0;\n return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)),\n min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)));\n}\n\n// intercsect of circles\nstatic const int ICC_SEPERATE = 4;\nstatic const int ICC_CIRCUMSCRIBE = 3;\nstatic const int ICC_INTERSECT = 2;\nstatic const int ICC_INSCRIBE = 1;\nstatic const int ICC_CONTAIN = 0;\n\nint intersectCC(Circle c1, Circle c2) {\n if (c1.r < c2.r)\n swap(c1, c2);\n double d = abs(c1.c - c2.c);\n double r = c1.r + c2.r;\n if (equals(d, r))\n return ICC_CIRCUMSCRIBE;\n if (d > r)\n return ICC_SEPERATE;\n if (equals(d + c2.r, c1.r))\n return ICC_INSCRIBE;\n if (d + c2.r < c1.r)\n return ICC_CONTAIN;\n return ICC_INTERSECT;\n}\n\nbool intersectSC(Segment s, Circle c) { return getDistanceSP(s, c.c) <= c.r; }\n\nint intersectCS(Circle c, Segment s) {\n if (norm(project(s, c.c) - c.c) - c.r * c.r > EPS)\n return 0;\n double d1 = abs(c.c - s.p1), d2 = abs(c.c - s.p2);\n if (d1 < c.r + EPS and d2 < c.r + EPS)\n return 0;\n if ((d1 < c.r - EPS and d2 > c.r + EPS) or\n (d1 > c.r + EPS and d2 < c.r - EPS))\n return 1;\n Point h = project(s, c.c);\n if (dot(s.p1 - h, s.p2 - h) < 0)\n return 2;\n return 0;\n}\n\nPoint getCrossPointSS(Segment s1, Segment s2) {\n for (int k = 0; k < 2; ++k) {\n if (getDistanceSP(s1, s2.p1) < EPS)\n return s2.p1;\n if (getDistanceSP(s1, s2.p2) < EPS)\n return s2.p2;\n swap(s1, s2);\n }\n Vector base = s2.p2 - s2.p1;\n double d1 = fabs(cross(base, s1.p1 - s2.p1));\n double d2 = fabs(cross(base, s1.p2 - s2.p1));\n double t = d1 / (d1 + d2);\n return s1.p1 + (s1.p2 - s1.p1) * t;\n}\n\nPoint getCrossPointLL(Line l1, Line l2) {\n double a = cross(l1.p2 - l1.p1, l2.p2 - l2.p1);\n double b = cross(l1.p2 - l1.p1, l1.p2 - l2.p1);\n if (fabs(a) < EPS and fabs(b) < EPS)\n return l2.p1;\n return l2.p1 + (l2.p2 - l2.p1) * (b / a);\n}\n\nPolygon getCrossPointCL(Circle c, Line l) {\n Polygon ps;\n Point pr = project(l, c.c);\n Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);\n if (equals(getDistanceLP(l, c.c), c.r)) {\n ps.emplace_back(pr);\n return ps;\n }\n double base = sqrt(c.r * c.r - norm(pr - c.c));\n ps.emplace_back(pr + e * base);\n ps.emplace_back(pr - e * base);\n return ps;\n}\n\nPolygon getCrossPointCS(Circle c, Segment s) {\n Line l(s);\n Polygon res = getCrossPointCL(c, l);\n if (intersectCS(c, s) == 2)\n return res;\n if (res.size() > 1u) {\n if (dot(l.p1 - res[0], l.p2 - res[0]) > 0)\n swap(res[0], res[1]);\n res.pop_back();\n }\n return res;\n}\n\nPolygon getCrossPointCC(Circle c1, Circle c2) {\n Polygon p(2);\n double d = abs(c1.c - c2.c);\n double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n double t = arg(c2.c - c1.c);\n p[0] = c1.c + polar(c1.r, t + a);\n p[1] = c1.c + polar(c1.r, t - a);\n return p;\n}\n\n// IN:2 ON:1 OUT:0\nint contains(Polygon g, Point p) {\n int n = g.size();\n bool x = false;\n for (int i = 0; i < n; ++i) {\n Point a = g[i] - p, b = g[(i + 1) % n] - p;\n if (fabs(cross(a, b)) < EPS and dot(a, b) < EPS)\n return 1;\n if (a.y > b.y)\n swap(a, b);\n if (a.y < EPS and EPS < b.y and cross(a, b) > EPS)\n x = !x;\n }\n return (x ? 2 : 0);\n}\n\n// BEGIN IGNORE\nPolygon andrewScan(Polygon s) {\n Polygon u, l;\n if (s.size() < 3)\n return s;\n sort(s.begin(), s.end());\n u.push_back(s[0]);\n u.push_back(s[1]);\n l.push_back(s[s.size() - 1]);\n l.push_back(s[s.size() - 2]);\n for (int i = 2; i < (int)s.size(); ++i) {\n for (int n = u.size();\n n >= 2 and ccw(u[n - 2], u[n - 1], s[i]) != CCW_CLOCKWISE; n--) {\n u.pop_back();\n }\n u.push_back(s[i]);\n }\n for (int i = s.size() - 3; i >= 0; i--) {\n for (int n = l.size();\n n >= 2 and ccw(l[n - 2], l[n - 1], s[i]) != CCW_CLOCKWISE; n--) {\n l.pop_back();\n }\n l.push_back(s[i]);\n }\n reverse(l.begin(), l.end());\n for (int i = u.size() - 2; i >= 1; i--)\n l.push_back(u[i]);\n return l;\n}\n// END IGNORE\n\nPolygon convex_hull(Polygon ps) {\n int n = ps.size();\n sort(ps.begin(), ps.end(), sort_y);\n int k = 0;\n Polygon qs(n * 2);\n for (int i = 0; i < n; ++i) {\n while (k > 1 and cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < 0)\n k--;\n qs[k++] = ps[i];\n }\n for (int i = n - 2, t = k; i >= 0; i--) {\n while (k > t and cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < 0)\n k--;\n qs[k++] = ps[i];\n }\n qs.resize(k - 1);\n return qs;\n}\n\ndouble diameter(Polygon s) {\n Polygon p = s;\n int n = p.size();\n if (n == 2)\n return abs(p[0] - p[1]);\n int i = 0, j = 0;\n for (int k = 0; k < n; ++k) {\n if (p[i] < p[k])\n i = k;\n if (!(p[j] < p[k]))\n j = k;\n }\n double res = 0;\n int si = i, sj = j;\n while (i != sj or j != si) {\n res = max(res, abs(p[i] - p[j]));\n if (cross(p[(i + 1) % n] - p[i], p[(j + 1) % n] - p[j]) < 0.0) {\n i = (i + 1) % n;\n } else {\n j = (j + 1) % n;\n }\n }\n return res;\n}\n\nbool isConvex(Polygon p) {\n bool f = 1;\n int n = p.size();\n for (int i = 0; i < n; ++i) {\n int t = ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]);\n f &= t != CCW_CLOCKWISE;\n }\n return f;\n}\n\ndouble area(Polygon s) {\n double res = 0;\n for (int i = 0; i < (int)s.size(); ++i) {\n res += cross(s[i], s[(i + 1) % s.size()]) / 2.0;\n }\n return res;\n}\n\ndouble area(Circle c1, Circle c2) {\n double d = abs(c1.c - c2.c);\n if (c1.r + c2.r <= d + EPS)\n return 0;\n if (d <= fabs(c1.r - c2.r)) {\n double r = min(c1.r, c2.r);\n return PI * r * r;\n }\n double res = 0;\n for (int k = 0; k < 2; ++k) {\n double rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d * c1.r);\n double th = acosl(rc) * 2;\n res += (th - sinl(th)) * c1.r * c1.r / 2;\n swap(c1, c2);\n }\n return res;\n}\n\nPolygon convexCut(Polygon p, Line l) {\n Polygon q;\n for (int i = 0; i < (int)p.size(); ++i) {\n Point a = p[i], b = p[(i + 1) % p.size()];\n if (ccw(l.p1, l.p2, a) != -1)\n q.push_back(a);\n if (ccw(l.p1, l.p2, a) * ccw(l.p1, l.p2, b) < 0)\n q.push_back(getCrossPointLL(Line(a, b), l));\n }\n return q;\n}\n\nLine bisector(Point p1, Point p2) {\n Circle c1 = Circle(p1, abs(p1 - p2)), c2 = Circle(p2, abs(p1 - p2));\n Polygon p = getCrossPointCC(c1, c2);\n if (cross(p2 - p1, p[0] - p1) > 0)\n swap(p[0], p[1]);\n return Line(p[0], p[1]);\n}\n\nVector translate(Vector v, double theta) {\n Vector res;\n res.x = cos(theta) * v.x - sin(theta) * v.y;\n res.y = sin(theta) * v.x + cos(theta) * v.y;\n return res;\n}\n\nvector<Line> corner(Line l1, Line l2) {\n vector<Line> res;\n if (isParallel(l1, l2)) {\n double d = getDistanceLP(l1, l2.p1) / 2.0;\n Vector v1 = l1.p2 - l1.p1;\n v1 = v1 / v1.abs() * d;\n Point p = l2.p1 + translate(v1, 90.0 * (PI / 180.0));\n double d1 = getDistanceLP(l1, p);\n double d2 = getDistanceLP(l2, p);\n if (fabs(d1 - d2) > d) {\n p = l2.p1 + translate(v1, -90.0 * (PI / 180.0));\n }\n res.push_back(Line(p, p + v1));\n } else {\n Point p = getCrossPointLL(l1, l2);\n Vector v1 = l1.p2 - l1.p1, v2 = l2.p2 - l2.p1;\n v1 = v1 / v1.abs();\n v2 = v2 / v2.abs();\n res.push_back(Line(p, p + (v1 + v2)));\n res.push_back(Line(p, p + translate(v1 + v2, 90.0 * (PI / 180.0))));\n }\n return res;\n}\n\nPolygon tangent(Circle c1, Point p2) {\n Circle c2 = Circle(p2, sqrt(norm(c1.c - p2) - c1.r * c1.r));\n Polygon p = getCrossPointCC(c1, c2);\n sort(p.begin(), p.end());\n return p;\n}\n\nvector<Line> tangent(Circle c1, Circle c2) {\n vector<Line> ls;\n if (c1.r < c2.r)\n swap(c1, c2);\n double g = norm(c1.c - c2.c);\n if (equals(g, 0))\n return ls;\n Point u = (c2.c - c1.c) / sqrt(g);\n Point v = orth(u);\n for (int s = 1; s >= -1; s -= 2) {\n double h = (c1.r + s * c2.r) / sqrt(g);\n if (equals(1 - h * h, 0)) {\n ls.emplace_back(c1.c + u * c1.r, c1.c + (u + v) * c1.r);\n } else if (1 - h * h > 0) {\n Point uu = u * h, vv = v * sqrt(1 - h * h);\n ls.emplace_back(c1.c + (uu + vv) * c1.r,\n c2.c - (uu + vv) * c2.r * s);\n ls.emplace_back(c1.c + (uu - vv) * c1.r,\n c2.c - (uu - vv) * c2.r * s);\n }\n }\n\n return ls;\n}\n\ndouble closest_pair(Polygon &a, int l = 0, int r = -1) {\n if (r < 0) {\n r = a.size();\n sort(a.begin(), a.end(), sort_x);\n }\n if (r - l <= 1)\n return abs(a[0] - a[1]);\n int m = (l + r) >> 1;\n double x = a[m].x;\n double d = min(closest_pair(a, l, m), closest_pair(a, m, r));\n inplace_merge(a.begin() + l, a.begin() + m, a.begin() + r, sort_y);\n\n Polygon b;\n for (int i = l; i < r; ++i) {\n if (fabs(a[i].x - x) >= d)\n continue;\n for (int j = 0; j < (int)b.size(); ++j) {\n double dy = a[i].y - next(b.rbegin(), j)->y;\n if (dy >= d)\n break;\n d = min(d, abs(a[i] - *next(b.rbegin(), j)));\n }\n b.emplace_back(a[i]);\n }\n return d;\n}\n\nvector<vector<int>> segmentArrangement(vector<Segment> &ss, Polygon &ps) {\n int n = ss.size();\n for (int i = 0; i < n; ++i) {\n ps.emplace_back(ss[i].p1);\n ps.emplace_back(ss[i].p2);\n for (int j = i + 1; j < n; ++j)\n if (intersectSS(ss[i], ss[j]))\n ps.emplace_back(getCrossPointSS(ss[i], ss[j]));\n }\n sort(ps.begin(), ps.end());\n ps.erase(unique(ps.begin(), ps.end()), ps.end());\n\n vector<vector<int>> G(ps.size());\n for (int i = 0; i < n; ++i) {\n vector<pair<double, int>> ls;\n for (int j = 0; j < (int)ps.size(); ++j)\n if (getDistanceSP(ss[i], ps[j]) < EPS)\n ls.emplace_back(make_pair(norm(ss[i].p1 - ps[j]), j));\n\n sort(ls.begin(), ls.end());\n for (int j = 0; j + 1 < (int)ls.size(); ++j) {\n int a = ls[j].second, b = ls[j + 1].second;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n }\n for (auto &v : G) {\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n }\n return G;\n}\n\nstruct EndPoint {\n Point p;\n int seg, st;\n EndPoint() {}\n EndPoint(Point p, int seg, int st) : p(p), seg(seg), st(st) {}\n bool operator<(const EndPoint &ep) const {\n if (p.y == ep.p.y)\n return st < ep.st;\n return p.y < ep.p.y;\n }\n};\n\nint manhattan_intersection(vector<Segment> ss, const int INF) {\n const int BTM = 0;\n const int LFT = 1;\n const int RGH = 2;\n const int TOP = 3;\n\n int n = ss.size();\n vector<EndPoint> ep;\n for (int i = 0; i < n; ++i) {\n if (ss[i].p1.y == ss[i].p2.y) {\n if (ss[i].p1.x > ss[i].p2.x)\n swap(ss[i].p1, ss[i].p2);\n ep.emplace_back(ss[i].p1, i, LFT);\n ep.emplace_back(ss[i].p2, i, RGH);\n } else {\n if (ss[i].p1.y > ss[i].p2.y)\n swap(ss[i].p1, ss[i].p2);\n ep.emplace_back(ss[i].p1, i, BTM);\n ep.emplace_back(ss[i].p2, i, TOP);\n }\n }\n sort(ep.begin(), ep.end());\n\n set<int> bt;\n bt.insert(INF);\n\n int cnt = 0;\n for (int i = 0; i < n * 2; ++i) {\n if (ep[i].st == TOP) {\n bt.erase(ep[i].p.x);\n } else if (ep[i].st == BTM) {\n bt.emplace(ep[i].p.x);\n } else if (ep[i].st == LFT) {\n auto b = bt.lower_bound(ss[ep[i].seg].p1.x);\n auto e = bt.upper_bound(ss[ep[i].seg].p2.x);\n cnt += distance(b, e);\n }\n }\n\n return cnt;\n}\n\ndouble area(Polygon ps, Circle c) {\n if (ps.size() < 3u)\n return 0;\n function<double(Circle, Point, Point)> dfs = [&](Circle c, Point a,\n Point b) {\n Vector va = c.c - a, vb = c.c - b;\n double f = cross(va, vb), res = 0;\n if (equals(f, 0.0))\n return res;\n if (max(abs(va), abs(vb)) < c.r + EPS)\n return f;\n Vector d(dot(va, vb), cross(va, vb));\n if (getDistanceSP(Segment(a, b), c.c) > c.r - EPS)\n return c.r * c.r * atan2(d.y, d.x);\n auto u = getCrossPointCS(c, Segment(a, b));\n if (u.empty())\n return res;\n if (u.size() > 1u and dot(u[1] - u[0], a - u[0]) > 0)\n swap(u[0], u[1]);\n u.emplace(u.begin(), a);\n u.emplace_back(b);\n for (int i = 1; i < (int)u.size(); ++i)\n res += dfs(c, u[i - 1], u[i]);\n return res;\n };\n double res = 0;\n for (int i = 0; i < (int)ps.size(); ++i)\n res += dfs(c, ps[i], ps[(i + 1) % ps.size()]);\n return res / 2;\n}\n\nPoint get_t_point(vector<Point> &Ps, vector<double> &Ds, double t) {\n int N = Ps.size();\n auto ite = upper_bound(all(Ds), t);\n int idx = distance(Ds.begin(), ite) - 1;\n\n double t0 = t - Ds[idx];\n Point P0 = Ps[idx], P1 = Ps[(idx + 1) % N];\n Vector V = P1 - P0;\n Point P = P0 + V * t0 / abs(V);\n\n return P;\n}\n\ndouble get_area(Point P1, Point P2, Point P3) {\n return cross(P2 - P1, P3 - P1) / 2.0;\n}\n\n///////////////////ここから//////////////////////\nbool solve() {\n int N, KP, KQ, KR;\n cin >> N >> KP >> KQ >> KR;\n KP--;\n KQ--;\n KR--;\n if (N == 0) {\n return false;\n }\n vector<pii> XY(N);\n for (int i = 0; i < N; i++) {\n cin >> XY[i].first >> XY[i].second;\n }\n\n vector<double> DP, DQ, DR;\n vector<Point> PP, PQ, PR;\n\n vector<double> Times;\n\n double dis = 0;\n for (int i = 0; i < N + 1; i++) {\n int idx = (i + KP) % N;\n auto [x, y] = XY[idx];\n\n if (i) {\n dis += abs(Point(x, y) - PP.back());\n }\n Times.push_back(dis);\n DP.push_back(dis);\n PP.emplace_back(x, y);\n }\n dis = 0;\n for (int i = 0; i < N + 1; i++) {\n int idx = (i + KQ) % N;\n auto [x, y] = XY[idx];\n if (i) {\n dis += abs(Point(x, y) - PQ.back());\n }\n Times.push_back(dis);\n DQ.push_back(dis);\n PQ.emplace_back(x, y);\n }\n dis = 0;\n for (int i = 0; i < N + 1; i++) {\n int idx = (i + KR) % N;\n auto [x, y] = XY[idx];\n if (i) {\n dis += abs(Point(x, y) - PR.back());\n }\n Times.push_back(dis);\n DR.push_back(dis);\n PR.emplace_back(x, y);\n }\n\n sort(all(Times));\n Times.erase(unique(all(Times)), Times.end());\n\n auto area = [&](double t) {\n Point P1 = get_t_point(PP, DP, t);\n Point P2 = get_t_point(PQ, DQ, t);\n Point P3 = get_t_point(PR, DR, t);\n return get_area(P1,P2,P3);\n };\n double ans=INF64;\n for (int i = 0; i < Times.size() - 1; i++) {\n double t0 = Times[i], t1 = Times[i + 1];\n while (t1 - t0 > 1e-9) {\n double tl = t0 + (t1 - t0) / 3;\n double tr = tl + (t1 - t0) / 3;\n double vl = area(tl), vr = area(tr);\n if (vl < vr) {\n t1=tr;\n } else {\n t0=tl;\n }\n }\n chmin(ans,area(t0));\n }\n cout << fixed << setprecision(10);\n cout<<ans<<endl;\n\n return true;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n while (solve())\n ;\n}\n\n////////////////////print/////////////////////////\n// 1次元ベクトルを出力する\ntemplate <typename T> void print(vector<T> A) {\n if (A.size() == 0) {\n return;\n }\n for (size_t i = 0; i < A.size() - 1; i++) {\n cout << A[i] << ' ';\n }\n cout << A[A.size() - 1] << endl;\n return;\n}\n\n// 2次元ベクトルを出力する\ntemplate <typename T> void print(vector<vector<T>> &F) {\n for (size_t i = 0; i < F.size(); i++) {\n for (size_t j = 0; j < F[i].size(); j++) {\n cout << F[i][j];\n if (j < F[i].size() - 1) {\n cout << ' ';\n }\n }\n cout << endl;\n }\n}\n\n// 空白行を出力するprint\nvoid print() { cout << endl; }\n\n// 数値・文字列を空白区切りで出力する. print(a,b)など\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n cout << head;\n if (sizeof...(tail) != 0)\n cout << \" \";\n print(forward<Tail>(tail)...);\n}\n\nvoid print(string S) { cout << S << endl; }\n\n//////////////出力関連\n\ninline void Yes(bool f) {\n if (f) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3968, "score_of_the_acc": -0.6055, "final_rank": 17 }, { "submission_id": "aoj_3295_10683616", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 数値型\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing P = pair<int,int>;\nusing Pll = pair<ll, ll>;\nusing Pli = pair<ll, int>;\nusing Pil = pair<int, ll>;\n\n// vector関連\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\ntemplate<typename T>\nusing vc = vector<T>;\ntemplate<typename T>\nusing vvc = vector<vc<T>>;\ntemplate<typename T>\nusing vvvc = vector<vvc<T>>;\ntemplate<typename T>\nusing vvvvc = vector<vvvc<T>>;\n\n// priority_queue\ntemplate<typename T>\nusing pq = priority_queue<T>;\ntemplate<typename T>\nusing pqg = priority_queue<T, vc<T>, greater<T>>;\n\n#define rep(i, n) for(int i = 0; i < (int)(n); i++)\n#define FOR(i, a, b) for(int i = a; i < (int)(b); i++)\n#define all(a) (a).begin(),(a).end()\n#define rall(a) (a).rbegin(),(a).rend()\n#define MIN(vec) *min_element(vec)\n#define MAX(vec) *max_element(vec)\n#define next_perm(vec) (vec).begin(), (vec).end()\n#define UNIQUE(vec) vec.erase(unique(vec.begin(), vec.end()), vec.end())\n#define el \"\\n\"\n#define Yes cout << \"Yes\" << el\n#define No cout << \"No\" << el\n#define YES cout << \"YES\" << el\n#define NO cout << \"NO\" << el\n#define EPS 1e-8\n#define Equal(a, b) (fabs((a)-(b)) < EPS) \n#define dbg(x) cerr << #x << \"=\" << x << el \n\n// 定数\nconst string abc = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ABC = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconstexpr int INF = 1001001001;\nconstexpr ll LINF = 1001001001001001001ll;\nconstexpr int DX[] = {1, 0, -1, 0};\nconstexpr int DY[] = {0, 1, 0, -1};\nconstexpr int DX8[] = {1, 0, -1, 0, 1, 1, -1, -1};\nconstexpr int DY8[] = {0, 1, 0, -1, 1, -1, 1, -1};\n\ntemplate<typename T1, typename T2>\nostream &operator<< (ostream &os, pair<T1, T2> p) {\n os << \"{\" << p.first << \",\" << p.second << \"}\";\n return os;\n}\ntemplate<typename T>\nostream &operator<< (ostream &os, vc<T> &vec) {\n int sz = vec.size();\n rep(i, sz){\n os << vec[i] << (i==sz-1?\"\":\" \");\n }\n return os;\n}\n\ntemplate<typename T1, typename T2>\nistream &operator>> (istream &is, pair<T1, T2> &p) {\n is >> p.first >> p.second;\n return is;\n}\ntemplate<typename T>\nistream &operator>> (istream &is, vc<T> &vec) {\n int sz = vec.size();\n rep(i, sz) { is >> vec[i]; }\n return is;\n}\n/// @brief aとbの最大値をaに格納。更新があったかbool値を返す\n/// @tparam T1 \n/// @tparam T2 \n/// @param a \n/// @param b \n/// @return bool\ntemplate<typename T1, typename T2>\ninline bool chmax(T1 &a, T2 b){\n bool ret = a<b;\n if(ret) a = b;\n return ret;\n}\n\n/// @brief aとbの最小値をaに格納。更新があったかbool値を返す\n/// @tparam T1 \n/// @tparam T2 \n/// @param a \n/// @param b \n/// @return bool\ntemplate<typename T1, typename T2>\ninline bool chmin(T1 &a, T2 b){\n bool ret = a>b;\n if(ret) {a = b;}\n return ret;\n}\n\ninline void YesNo(bool flag){\n if(flag) {Yes;}\n else {No;}\n return;\n}\n\ninline void YESNO(bool flag){\n if(flag) {YES;}\n else {NO;}\n return;\n}\n\ninline bool outof(ll x, ll xlim){\n return (x<0 || x>=xlim);\n}\n\ntemplate<typename T>\ninline T sqnorm(T x, T y){\n return x*x+y*y;\n}\n\n/// @brief char->int\n/// @param c \n/// @return int\ninline int ctoi(char c){\n return c-'0';\n}\n\n/// @brief xを素因数分解\n/// @param x \n/// @return vector<Pli>, 素因数の昇順に {p, cnt}\nvector<Pli> prime_fact(ll x){\n vector<Pli> ret;\n for(ll i=2; i*i<=x; i++){\n if(x%i == 0){\n ret.emplace_back(i, 0);\n while(x%i == 0){\n ret.back().second++;\n x /= i;\n }\n }\n }\n if(x != 1) ret.emplace_back(x, 1);\n return ret;\n}\n\n/// @brief xの約数列挙\n/// @param x \n/// @return vll, 約数の昇順\nvll divisor_enum(ll x){\n vector<ll> ret;\n for(ll i=1; i*i<=x; i++){\n if(x%i == 0){\n ret.push_back(x/i);\n ret.push_back(i);\n }\n }\n sort(all(ret));\n UNIQUE(ret);\n return ret;\n}\n\n/// @brief 繰り返し二乗法。\n/// @tparam T \n/// @param x \n/// @param k \n/// @param op \n/// @param e \n/// @return \ntemplate<typename T>\nT pow_t(T x, ll k, T (*op)(T, T), T (*e)()){\n T ret = e();\n while(k){\n if(k&1) ret *= x;\n x *= x;\n k >>= 1;\n }\n return ret;\n}\n\nll powll(ll x, ll k){\n return pow_t<ll>(x, k, [](ll a, ll b) -> ll{return a*b;}, []() -> ll{return 1;});\n}\n\ninline int pop_cnt(ll x) { return __builtin_popcountll(x); }\ninline int top_bit(ll x) { return (x==0?-1:63-__builtin_clzll(x));}\n\nvoid main2();\n\nint main(){\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n main2();\n}\nstruct Point{\n int x, y;\n};\nbool solve(){\n int n;\n cin >> n;\n if(n == 0) return false;\n vi Ks(3);\n cin >> Ks[0] >> Ks[1] >> Ks[2];\n vector<Point> ps(2*n);\n vector<double> cumdist(2*n+1, 0);\n vector<vector<double>> cumd2(3);\n rep(i, n){\n cin >> ps[i].x >> ps[i].y;\n ps[i+n] = ps[i];\n }\n rep(i, 3) Ks[i]--;\n auto dist = [](Point a, Point b) -> double{\n double dx = a.x - b.x;\n double dy = a.y - b.y;\n return sqrt(dx*dx + dy*dy);\n };\n rep(i, 2*n){\n cumdist[i+1] = cumdist[i] + dist(ps[i], ps[(i+1)%(2*n)]);\n }\n rep(i, 3){\n cumd2[i] = vector<double>(cumdist.begin() + Ks[i], cumdist.begin() + Ks[i] + n+1);\n rep(j, n) cumd2[i][j+1] -= cumd2[i][0];\n cumd2[i][0] = 0;\n }\n \n auto calcPos = [&](int v, double t) -> pair<double, double>{\n double d = dist(ps[v], ps[v+1]);\n double dx = ps[v+1].x - ps[v].x;\n double dy = ps[v+1].y - ps[v].y;\n return pair(ps[v].x + dx/d*t, ps[v].y + dy/d*t);\n };\n auto calcPos2 = [&](int id, double t) -> pair<double, double>{\n auto idx = upper_bound(all(cumd2[id]), t) - cumd2[id].begin() - 1;\n chmax(idx, 0);\n return calcPos(idx + Ks[id], t - cumd2[id][idx]);\n };\n auto f = [&](double t) -> double{\n vector<pair<double, double>> pss(3);\n rep(i, 3) pss[i] = calcPos2(i, t);\n pair<double, double> a = {pss[1].first - pss[0].first, pss[1].second - pss[0].second};\n pair<double, double> b = {pss[2].first - pss[0].first, pss[2].second - pss[0].second};\n return abs(a.first*b.second - a.second*b.first)/2;\n };\n vector<double> events;\n double ans = 1e18;\n rep(i, n){\n // p, q, rそれぞれについてiにいるとき\n rep(k, 3){\n double t;\n if(Ks[k] <= i) t = cumdist[i+1] - cumdist[Ks[k]];\n else t = cumdist[i+1+n] - cumdist[Ks[k]];\n events.push_back(t);\n }\n }\n sort(all(events));\n events.push_back(cumdist[n]);\n rep(i, events.size()-1){\n double lo = events[i], hi = events[i+1];\n rep(j, 100){\n double mid1 = (hi + lo*2)/3;\n double mid2 = (hi*2 + lo)/3;\n if(f(mid1) < f(mid2)) hi = mid2;\n else lo = mid1;\n }\n chmin(ans, f(lo));\n }\n \n cout << fixed << setprecision(16) << ans << el;\n return true;\n}\n\nvoid main2(){\n while(solve()){\n ;\n }\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 3840, "score_of_the_acc": -0.4243, "final_rank": 12 }, { "submission_id": "aoj_3295_10675077", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define loop(n) for (int tjh = 0; tjh < (int)(n); tjh++)\nconstexpr double ma = 1e100;\nsigned main() {\n cin.tie(0)->sync_with_stdio(0);\n cout << fixed << setprecision(16);\n vector<double> x, y;\n int N;\n array<int, 3> K;\n for (; cin >> N >> K[0] >> K[1] >> K[2], N;) {\n rep(i, 3)-- K[i];\n x.resize(N * 2);\n y.resize(N * 2);\n rep(i, N) cin >> x[i] >> y[i];\n rep(i, N) {\n x[i + N] = x[i];\n y[i + N] = y[i];\n }\n vector<double> dx(2 * N - 1), dy(2 * N - 1);\n rep(i, 2 * N - 2) {\n dx[i] = x[i + 1] - x[i];\n dy[i] = y[i + 1] - y[i];\n }\n vector<double> dist(2 * N - 1);\n rep(i, 2 * N - 2) dist[i] = hypot(dx[i], dy[i]);\n array<vector<double>, 3> D{};\n rep(i, 3) D[i].resize(N + 1);\n rep(i, 3) rep(j, N - 1) D[i][j + 1] = D[i][j] + dist[K[i] + j];\n D[0][N] = D[0][N - 1] + dist[K[0] + N - 1];\n D[1][N] = D[0][N];\n D[2][N] = D[0][N];\n array<int, 3> pos = {1, 1, 1};\n double res = ma;\n double l = 0;\n loop(3 * N - 2) {\n int nxt;\n double r;\n if (D[0][pos[0]] <= D[1][pos[1]] && D[0][pos[0]] <= D[2][pos[2]]) {\n nxt = 0;\n r = D[0][pos[0]];\n } else if (D[1][pos[1]] <= D[2][pos[2]] &&\n D[1][pos[1]] <= D[0][pos[0]]) {\n nxt = 1;\n r = D[1][pos[1]];\n } else {\n nxt = 2;\n r = D[2][pos[2]];\n }\n const double maxt = r - l;\n array<array<double, 2>, 3> S;\n rep(i, 3) {\n S[i] = {x[K[i] + pos[i] - 1] + dx[K[i] + pos[i] - 1] *\n (l - D[i][pos[i] - 1]) /\n dist[K[i] + pos[i] - 1],\n y[K[i] + pos[i] - 1] + dy[K[i] + pos[i] - 1] *\n (l - D[i][pos[i] - 1]) /\n dist[K[i] + pos[i] - 1]};\n }\n array<double, 2> L = {S[1][0] - S[0][0], S[1][1] - S[0][1]};\n array<double, 2> M = {S[2][0] - S[0][0], S[2][1] - S[0][1]};\n array<double, 2> p = {\n dx[K[1] + pos[1] - 1] / dist[K[1] + pos[1] - 1] -\n dx[K[0] + pos[0] - 1] / dist[K[0] + pos[0] - 1],\n dy[K[1] + pos[1] - 1] / dist[K[1] + pos[1] - 1] -\n dy[K[0] + pos[0] - 1] / dist[K[0] + pos[0] - 1]};\n array<double, 2> q = {\n dx[K[2] + pos[2] - 1] / dist[K[2] + pos[2] - 1] -\n dx[K[0] + pos[0] - 1] / dist[K[0] + pos[0] - 1],\n dy[K[2] + pos[2] - 1] / dist[K[2] + pos[2] - 1] -\n dy[K[0] + pos[0] - 1] / dist[K[0] + pos[0] - 1]};\n auto f = [&](double v) -> double {\n // cout << \"v: \" << v << '\\n';\n const double re0 = (L[0] + v * p[0]) * (M[1] + v * q[1]) -\n (L[1] + v * p[1]) * (M[0] + v * q[0]);\n // cout << \"ans: \" << re0 << '\\n';\n return re0;\n };\n if (p[0] * q[1] - p[1] * q[0] <= (double)0) {\n double l0 = f(0);\n if (l0 < res) res = l0;\n double r0 = f(maxt);\n if (r0 < res) res = r0;\n } else {\n double l = 0.0, r = maxt;\n for (int rap = 0; rap < 64; ++rap) {\n double nl = (l * 2 + r) / 3.0;\n double nr = (l + 2 * r) / 3.0;\n if (f(nl) >= f(nr)) {\n l = nl;\n } else {\n r = nr;\n }\n }\n double re0 = f(l);\n if (re0 < res) res = re0;\n }\n l = r;\n ++pos[nxt];\n }\n cout << res / 2.0 << '\\n';\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3968, "score_of_the_acc": -0.5924, "final_rank": 16 }, { "submission_id": "aoj_3295_10668299", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, s, t) for (ll i = s; i < (ll)(t); i++)\n#define rrep(i, s, t) for(ll i = (ll)(t) - 1; i >= (ll)(s); i--)\n#define all(x) begin(x), end(x)\n#define rall(x) rbegin(x), rend(x)\n\n#define TT template<typename T>\nTT using vec = vector<T>;\ntemplate<class T1, class T2> bool chmin(T1 &x, T2 y) { return x > y ? (x = y, true) : false; }\ntemplate<class T1, class T2> bool chmax(T1 &x, T2 y) { return x < y ? (x = y, true) : false; }\n\nstruct io_setup {\n io_setup() {\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(15);\n }\n} io_setup;\n\nusing Real = long double;\n\nusing Point = complex<long double>;\nusing Polygon = vector<Point>;\n\nstruct Line {\n Point a, b;\n Line(Point a, Point b) : a(a), b(b) {}\n};\n\nstruct Segment : Line {\n Segment(Point a, Point b) : Line(a, b) {}\n};\n\nstruct Circle {\n Point p;\n long double r;\n Circle(Point p, long double r) : p(p), r(r) {}\n};\n\nconst long double pi = acos(-1.0);\nconst long double EPS = 1e-12;\n\n// 内積\nlong double dot(const Point &a, const Point &b) {\n return (a.real() * b.real() + a.imag() * b.imag());\n}\n\n// 外積\nlong double cross(const Point &a, const Point &b) {\n return (a.real() * b.imag() - a.imag() * b.real());\n}\n\n// 直線 l に対する点 p の射影\nPoint projection(const Line l, const Point &p) {\n long double t = dot(p - l.a, l.b - l.a) / norm(l.b - l.a);\n return Point(l.a.real() + t * (l.b - l.a).real(), l.a.imag() + t * (l.b - l.a).imag());\n}\n\n// 直線 l に対する点 p の反射\nPoint reflection(const Line l, const Point &p) {\n long double t = dot(p - l.a, l.b - l.a) / norm(l.b - l.a);\n Point q(l.a.real() + t * (l.b - l.a).real(), l.a.imag() + t * (l.b - l.a).imag());\n return Point(2 * q.real() - p.real(), 2 * q.imag() - p.imag());\n}\n\n// p0 から p1 へ結んだベクトルから見た p2 の位置\nint counter_clockwise(const Point &p2, Point p0, Point p1) {\n // 反時計回り\n if (cross(p1 - p0, p2 - p0) > EPS) {\n return 1;\n }\n // 時計回り\n if (cross(p1 - p0, p2 - p0) < -EPS) {\n return -1;\n }\n // p2, p0, p1 の順で同一直線上\n if (dot(p1 - p0, p2 - p0) < -EPS) {\n return 2;\n }\n // p0, p1, p2 の順で同一直線上\n if (dot(p1 - p0, p2 - p0) > norm(p1 - p0) + EPS) {\n return -2;\n }\n // p2 は p0 と p1 を結ぶ線分上\n return 0;\n}\n\n// 平行判定\nbool is_parallel(const Line &l1, const Line &l2) {\n return (cross(l1.b - l1.a, l2.b - l2.a) == 0);\n}\n\n// 垂直判定\nbool is_orthogonal(const Line &l1, const Line &l2) {\n return (dot(l1.b - l1.a, l2.b - l2.a) == 0);\n}\n\n// 線分と線分の交差判定\nbool is_intersection(const Segment &s1, const Segment &s2) {\n return (counter_clockwise(s2.a, s1.a, s1.b) * counter_clockwise(s2.b, s1.a, s1.b) <= 0 && counter_clockwise(s1.a, s2.a, s2.b) * counter_clockwise(s1.b, s2.a, s2.b) <= 0);\n}\n\n// 線分と線分の交点の座標\nPoint cross_point(const Segment &s1, const Segment &s2) {\n long double d1 = cross(s1.a - s2.a, s1.b - s2.a);\n long double d2 = cross(s1.a - s1.b, s2.b - s2.a);\n if (abs(d1) < EPS && abs(d2) < EPS) {\n if (counter_clockwise(s1.a, s2.a, s2.b) == 0) return s1.a;\n else return s1.b;\n }\n return s2.a + (s2.b - s2.a) * (d1 / d2);\n}\n\n// 直線と線分の交差判定\nbool is_intersection(const Line &l1, const Segment &s2) {\n return (counter_clockwise(s2.a, l1.a, l1.b) * counter_clockwise(s2.b, l1.a, l1.b) <= 0);\n}\n\n// 直線と線分の交点の座標\nPoint cross_point(const Line &s1, const Segment &s2) {\n long double d1 = cross(s1.a - s2.a, s1.b - s2.a);\n long double d2 = cross(s1.a - s1.b, s2.b - s2.a);\n if (abs(d1) < EPS && abs(d2) < EPS) {\n return s2.a;\n }\n return s2.a + (s2.b - s2.a) * (d1 / d2);\n}\n\n// 直線と点の距離\nlong double distance(const Line s, const Point &p) {\n long double t = dot(p - s.a, s.b - s.a) / norm(s.b - s.a);\n Point proj = Point(s.a.real() + t * (s.b - s.a).real(), s.a.imag() + t * (s.b - s.a).imag());\n return abs(p - proj);\n}\n\n// 線分と点の距離\nlong double distance(const Segment s, const Point &p) {\n long double t = dot(p - s.a, s.b - s.a) / norm(s.b - s.a);\n if (t > -EPS && t < 1 + EPS) {\n Point proj = Point(s.a.real() + t * (s.b - s.a).real(), s.a.imag() + t * (s.b - s.a).imag());\n return abs(p - proj);\n } else {\n return min(abs(p - s.a), abs(p - s.b));\n }\n}\n\n// 多角形の面積\nlong double area(const Polygon &poly) {\n long double ans = 0;\n int N = poly.size();\n for (int i = 0; i < N; i++) {\n ans += cross(poly[i], poly[(i + 1) % N]);\n }\n ans *= 0.5;\n return ans;\n}\n\n// 凸性判定\nbool is_convex(const Polygon &poly) {\n int N = poly.size();\n for (int i = 0; i < N; i++) {\n if (counter_clockwise(poly[i], poly[(i + 1) % N], poly[(i + 2) % N]) == -1) return false;\n }\n return true;\n}\n\n// 多角形と点の包含関係\n// 0 : 含まれない\n// 1 : 辺の上にある\n// 2 : 内部に含まれる\nint is_contained(const Point p, const Polygon poly) {\n int N = poly.size();\n int cnt = 0;\n for (int i = 0; i < N; i++) {\n if (counter_clockwise(p, poly[i], poly[(i + 1) % N]) == 0) {\n return 1;\n }\n Point a = poly[i], b = poly[(i + 1) % N];\n if (a.imag() > b.imag()) swap(a, b);\n if (p.imag() < b.imag() + EPS && p.imag() > a.imag() + EPS && counter_clockwise(p, a, b) < 0) {\n cnt++;\n }\n }\n if (cnt % 2 == 0) return 0;\n else return 2;\n}\n\n// 凸包\nPolygon convex_hull(vector<Point> &ps) {\n int N = ps.size();\n auto compare = [](const Point &p1, const Point &p2) {\n if (p1.real() != p2.real()) return p1.real() < p2.real();\n return p1.imag() < p2.imag();\n };\n sort(ps.begin(), ps.end(), compare);\n int k = 0;\n Polygon qs(2 * N);\n // 下側凸包\n for (int i = 0; i < N; i++) {\n while (k > 1 && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < EPS) k--;\n qs[k++] = ps[i];\n }\n // 上側凸包\n for (int i = N - 2, t = k; i >= 0; i--) {\n while (k > t && cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 1]) < EPS) k--;\n qs[k++] = ps[i];\n }\n qs.resize(k - 1);\n return qs;\n}\n\n// 最も遠い2点の距離を求める\nlong double farest_pair(vector<Point> &ps) {\n Polygon poly = convex_hull(ps);\n long double ans = 0;\n for (int i = 0; i < (int)poly.size(); i++) {\n for (int j = 0; j < i; j++) {\n ans = max(ans, abs(poly[i] - poly[j]));\n }\n }\n return ans;\n}\n\n// 直線 l で凸多角形を切断し、左側の凸多角形を出力する\nPolygon convex_cut(const Polygon &poly, const Line &l) {\n int N = poly.size();\n vector<Point> ps;\n for (int i = 0; i < N; i++) {\n if (cross(l.b - l.a, poly[i] - l.a) > -EPS) {\n ps.push_back(poly[i]);\n }\n if (is_intersection(l, Segment(poly[i], poly[(i + 1) % N]))) {\n ps.push_back(cross_point(l, Segment(poly[i], poly[(i + 1) % N])));\n }\n }\n if (ps.size() <= 0) return {};\n Polygon ch = convex_hull(ps);\n return ch;\n}\n\n// 最も近い2点の距離を求める\nlong double closest_pair(vector<Point> &ps) {\n auto dfs = [&](auto dfs, vector<Point> qs) -> long double {\n int N = qs.size();\n if (N <= 1) return 1e18;\n sort(qs.begin(), qs.end(), [](const Point &p1, const Point &p2) {\n if (abs(p1.real() - p2.real()) < EPS) return p1.imag() < p2.imag();\n return p1.real() < p2.real();\n });\n vector<Point> P1, P2;\n for (int i = 0; i < N / 2; i++) P1.push_back(qs[i]);\n for (int i = N / 2; i < N; i++) P2.push_back(qs[i]);\n long double d1 = dfs(dfs, P1), d2 = dfs(dfs, P2);\n long double d = min(d1, d2), ans = d;\n long double px = P1[N / 2 - 1].real(), py = P1[N / 2 - 1].imag();\n vector<pair<long double, int>> V;\n for (int i = 0; i < N; i++) {\n if (qs[i].real() < px - d - EPS || qs[i].real() > px + d + EPS) continue;\n V.push_back(make_pair(qs[i].imag(), i));\n }\n sort(V.begin(), V.end());\n int r = 0;\n for (int l = 0; l < (int)V.size(); l++) {\n r = max(r, l);\n while (r < (int)V.size() && V[r].first < V[l].first + d + EPS) {\n if (l != r) ans = min(ans, abs(qs[V[l].second] - qs[V[r].second]));\n r++;\n }\n }\n return ans;\n };\n return dfs(dfs, ps);\n}\n\n// 円の交差判定\nint intersection_of_circle(const Circle &c1, const Circle &c2) {\n long double d = abs(c1.p - c2.p);\n // 分離\n if (d > c1.r + c2.r + EPS) {\n return 4;\n }\n // 外接\n if (abs(d - c1.r - c2.r) < EPS) {\n return 3;\n }\n // 交差\n if (d < c1.r + c2.r - EPS && d > abs(c1.r - c2.r) + EPS) {\n return 2;\n }\n // 内接\n if (abs(d - abs(c1.r - c2.r)) < EPS) {\n return 1;\n }\n // 包含\n return 0;\n}\n\n// 内接円\nCircle incircle(const Point &p1, const Point &p2, const Point &p3) {\n long double d = abs((p1 - p2)) + abs(p2 - p3) + abs(p3 - p1);\n Point p = p1 + (abs(p3 - p1) / d) * (p2 - p1) + (abs(p2 - p1) / d) * (p3 - p1);\n long double r = abs(cross(p2 - p1, p3 - p1)) / d;\n return Circle(p, r);\n}\n\n// 外接円\nCircle circumscribed_circle(const Point &p1, const Point &p2, const Point &p3) {\n long double a = abs(p1 - p2), b = abs(p2 - p3), c = abs(p3 - p1), S = abs(cross(p2 - p1, p3 - p1)) * 0.5;\n long double cx = norm(p2 - p1) * (p3 - p1).imag() - norm(p3 - p1) * (p2 - p1).imag(), cy = norm(p3 - p1) * (p2 - p1).real() - norm(p2 - p1) * (p3 - p1).real();\n cx /= 2.0 * cross(p2 - p1, p3 - p1);\n cy /= 2.0 * cross(p2 - p1, p3 - p1);\n Point p = p1 + Point(cx, cy);\n long double r = a * b * c / (4.0 * S);\n return Circle(p, r);\n}\n\n// 円と直線の交点\nvector<Point> cross_points(Circle c, Line l) {\n Point proj = projection(l, c.p);\n long double d = abs(proj - c.p);\n if (d > c.r + EPS) {\n return {};\n } else if (abs(c.r - abs(proj - c.p)) < EPS) {\n return {proj};\n } else {\n long double s = sqrt(c.r * c.r - norm(proj - c.p));\n return {proj - (s / abs(l.b - l.a)) * (l.b - l.a), proj + (s / abs(l.b - l.a)) * (l.b - l.a)};\n }\n}\n\n// 円と円の交点\nvector<Point> cross_points(Circle c1, Circle c2) {\n int t = intersection_of_circle(c1, c2);\n if (t == 0 || t == 4) {\n return {};\n }\n if (t == 3) {\n return {c1.p + (c1.r / (c1.r + c2.r)) * (c2.p - c1.p)};\n }\n if (t == 1) {\n if (c1.r > c2.r) return {(-c2.r / abs(c1.r - c2.r)) * c1.p + (c1.r / abs(c1.r - c2.r)) * c2.p};\n return {(c2.r / abs(c1.r - c2.r)) * c1.p + (-c1.r / abs(c1.r - c2.r)) * c2.p};\n }\n long double d = abs(c1.p - c2.p);\n long double s = (c1.r * c1.r - c2.r * c2.r + d * d) / (2.0 * d);\n Point p = c1.p + (s / d) * (c2.p - c1.p);\n return {p - (sqrt(c1.r * c1.r - s * s) / d) * Point((c2.p - c1.p).imag(), -(c2.p - c1.p).real()), p + (sqrt(c1.r * c1.r - s * s) / d) * Point((c2.p - c1.p).imag(), -(c2.p - c1.p).real())};\n}\n\n// 円の接線\nvector<Point> tangent(Circle c, Point p) {\n return cross_points(c, Circle(p, sqrt(norm(c.p - p) - c.r * c.r)));\n}\n\n// 円の共通接線\nvector<Point> common_tangent(Circle c1, Circle c2) {\n long double d = norm(c1.p - c2.p);\n long double d1 = d - (c1.r + c2.r) * (c1.r + c2.r) + c2.r * c2.r;\n vector<Point> ps;\n if (d1 > -EPS) {\n d1 = sqrt(max(d1, (long double)0.0));\n vector<Point> ps1 = cross_points(c1, Circle(c2.p, d1));\n for (auto p : ps1) ps.push_back(p);\n }\n long double d2 = d - (c1.r - c2.r) * (c1.r - c2.r) + c2.r * c2.r;\n if (d2 > -EPS) {\n d2 = sqrt(max(d2, (long double)0.0));\n vector<Point> ps2 = cross_points(c1, Circle(c2.p, d2));\n for (auto p : ps2) ps.push_back(p);\n }\n return ps;\n}\n\n// 円の共通部分の面積\nlong double area_of_intersection(Circle c1, Circle c2) {\n int t = intersection_of_circle(c1, c2);\n if (t >= 3) {\n return 0;\n }\n if (t <= 1) {\n return pi * min(c1.r, c2.r) * min(c1.r, c2.r);\n }\n vector<Point> ps = cross_points(c1, c2);\n long double a1 = arg(ps[0] - c1.p) - arg(ps[1] - c1.p), a2 = arg(ps[1] - c2.p) - arg(ps[0] - c2.p);\n if (a1 < -EPS) a1 += 2.0 * pi;\n if (a2 < -EPS) a2 += 2.0 * pi;\n return (a1 / 2) * c1.r * c1.r + (a2 / 2) * c2.r * c2.r - abs(area({ps[0], c1.p, ps[1], c2.p}));\n}\n\nconst double INF=1e18;\n\nint main() {\n while(1){\n int N;\n cin>>N;\n if(N==0)return 0;\n vector<int>K(3);\n rep(i,0,3){\n cin>>K[i];\n K[i]--;\n }\n Polygon ply(N);\n rep(i,0,N){\n int x,y;\n cin>>x>>y;\n ply[i]=Point(x,y);\n }\n vector<long double>L;\n L.push_back(0.0);\n vector<vector<long double>>sum(3);\n rep(t,0,3){\n long double cnt=0;\n sum[t].push_back(cnt);\n rep(i,0,N){\n cnt+=abs(ply[(K[t]+i+1)%N]-ply[(K[t]+i)%N]);\n L.push_back(cnt);\n sum[t].push_back(cnt);\n }\n }\n sort(all(L));\n int S=L.size();\n long double ans=INF;\n auto f=[&](long double lx)-> long double {\n Polygon tri;\n rep(t,0,3){\n long double l=lx;\n int ok=0,ng=N+1;\n while(ng-ok>1){\n int mid=(ok+ng)/2;\n if(sum[t][mid]<=l)ok=mid;\n else ng=mid;\n }\n l-=sum[t][ok];\n long double to=abs(ply[(K[t]+ok+1)%N]-ply[(K[t]+ok)%N]);\n tri.push_back(ply[(K[t]+ok)%N]\n +(ply[(K[t]+ok+1)%N]-ply[(K[t]+ok)%N])*l/to);\n }\n assert((int)tri.size()==3);\n return abs(area(tri));\n };\n rep(i,0,S-1){\n if(abs(L[i+1]-L[i])<EPS)continue;\n long double l=L[i],r=L[i+1];\n rep(t,0,120){\n long double nl=(2*l+r)/3.0,nr=(l+2*r)/3.0;\n if(f(nl)<f(nr))r=nr;\n else l=nl;\n }\n chmin(ans,f((l+r)/2.0));\n }\n cout<<ans<<endl;\n }\n}", "accuracy": 1, "time_ms": 1380, "memory_kb": 4224, "score_of_the_acc": -1.258, "final_rank": 20 }, { "submission_id": "aoj_3295_10649854", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// 書きかけの幾何ライブラリ\n// バグがあるかも\n\nnamespace geometry {\n\nusing Real = long double;\nconstexpr Real eps = 1e-12;\nconstexpr Real PI = acosl(-1);\nconstexpr Real INF_REAL = numeric_limits<Real>::max();\n\nbool equal_eps(Real a, Real b) {\n return abs(a - b) < eps;\n}\n\nint sgn(Real a) {\n return equal_eps(a, 0) ? 0 : a > 0 ? 1 : -1;\n}\n\nstruct Point {\n Real x, y;\n constexpr Point() : Point(0, 0) {}\n constexpr Point(Real _x, Real _y) : x(_x), y(_y) {}\n constexpr Point(const pair<Real, Real> &p) : x(p.first), y(p.second) {}\n Point &operator+=(const Point &p) {\n x += p.x;\n y += p.y;\n return *this;\n }\n Point &operator-=(const Point &p) {\n x -= p.x;\n y -= p.y;\n return *this;\n }\n Point &operator*=(const Real &r) {\n x *= r;\n y *= r;\n return *this;\n }\n Point &operator/=(const Real &r) {\n assert(!equal_eps(r, 0));\n x /= r;\n y /= r;\n return *this;\n }\n Point operator+(const Point &p) const { return Point(*this) += p; }\n Point operator-(const Point &p) const { return Point(*this) -= p; }\n Point operator*(const Real &r) const { return Point(*this) *= r; }\n Point operator/(const Real &r) const { return Point(*this) /= r; }\n Point operator-() const { return Point() - *this; }\n bool operator==(const Point &p) const {\n return equal_eps(x, p.x) && equal_eps(y, p.y);\n }\n bool operator!=(const Point &p) const {\n return !equal_eps(x, p.x) || !equal_eps(y, p.y);\n }\n Point rotate(Real rad) const {\n Real c = cosl(rad), s = sinl(rad);\n Real tx = x * c - y * s;\n Real ty = x * s + y * c;\n return Point(tx, ty);\n }\n Point unit() const {\n return (*this) / metric();\n }\n Real Re() const { return x; }\n Real Im() const { return y; }\n Real norm() const { return x * x + y * y; }\n Real metric() const { return sqrtl(norm()); }\n Real arg() const { return atan2l(y, x); }\n Real arg(Point q1, Point q2) const {\n q1 -= *this, q2 -= *this;\n return abs(q1.arg() - q2.arg());\n }\n friend Point operator*(Real r, const Point &p) {\n return p * r;\n }\n friend Point operator/(Real r, const Point &p) {\n return p / r;\n }\n};\n\nReal Re(const Point &p) { return p.Re(); }\nReal Im(const Point &p) { return p.Im(); }\nReal dot(const Point &p, const Point &q) {\n return p.x * q.x + p.y * q.y;\n}\nReal cross(const Point &p, const Point &q) {\n return p.x * q.y - p.y * q.x;\n}\nReal norm(const Point &p) {\n return p.norm();\n}\nReal metric(const Point &p) {\n return p.metric();\n}\nReal metric(const Point &p, const Point &q) {\n return metric(p - q);\n}\nReal arg(const Point &p) {\n return p.arg();\n}\n\nbool equal_point(const Point &p, const Point &q) {\n return equal_eps(p.x, q.x) && equal_eps(p.y, q.y);\n}\n\nconstexpr Point INF_POINT = Point(INF_REAL, INF_REAL);\n\n// a を基準にした b と c の位置関係\nint ccw(const Point &a, const Point &b, const Point &c) {\n Point p = b - a, q = c - a;\n if (cross(p, q) > eps) return 1; // a, b, c の順で反時計回り\n if (cross(p, q) < -eps) return -1; // a, b, c の順で時計回り\n if (min(norm(p), norm(q)) < eps * eps) return 0; // a = c or b = c\n if (dot(p, q) < eps) return 2; // c, a, b の順で一直線\n if (norm(p) < norm(q)) return -2; // a, b, c の順で一直線\n return 0; // a, c, b の順で一直線\n}\n\nistream &operator>>(istream &is, Point& p) {\n Real x, y;\n is >> x >> y;\n p = Point(x, y);\n return is;\n}\n\n} // namespace geometry\n\nnamespace geometry {\n\nReal area_of_triangle(Point p1, Point p2, Point p3) {\n p2 -= p1, p3 -= p1;\n return abs(p2.x * p3.y - p2.y * p3.x) / 2;\n}\n\n} // namespace geometry\nusing namespace geometry;\n\nbool solve() {\n int N;\n cin >> N;\n if (N == 0) return false;\n vector<int> id(3);\n for (int &i : id) cin >> i, i--;\n vector<Point> P(2 * N);\n for (int i = 0; i < N; i++) {\n cin >> P[i];\n P[i + N] = P[i];\n }\n Real ans = INF_REAL;\n vector<Real> d(3);\n vector<Point> p(3);\n for (int i = 0; i < 3; i++) {\n d[i] = metric(P[id[i]], P[id[i] + 1]);\n p[i] = P[id[i]];\n }\n auto s = [&] (Real t) -> Real {\n vector<Point> q(3);\n for (int k = 0; k < 3; k++) {\n int i = id[k];\n q[k] = p[k] + t * (P[i + 1] - P[i]).unit();\n }\n auto res = area_of_triangle(q[0], q[1], q[2]);\n ans = min(ans, res);\n return res;\n };\n auto f = [&] (Real r) -> void {\n Real l = 0;\n for (int t = 0; t < 100; t++) {\n Real ml = (l + l + r) / 3;\n Real mr = (l + r + r) / 3;\n auto sl = s(ml), sr = s(mr);\n if (sl < sr) r = mr;\n else l = ml;\n }\n };\n for (int t = 0; t < 3 * N; t++) {\n auto r = *min_element(d.begin(), d.end());\n f(r);\n for (int i = 0; i < 3; i++) {\n d[i] -= r;\n if (equal_eps(d[i], 0)) {\n id[i]++;\n id[i] %= N;\n d[i] = metric(P[id[i]], P[id[i] + 1]);\n p[i] = P[id[i]];\n } else {\n p[i] = p[i] + r * (P[id[i] + 1] - P[id[i]]).unit();\n }\n }\n }\n cout << fixed << setprecision(16) << ans << '\\n';\n return true;\n}\n\nint main() {\n while (solve()) {}\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 3840, "score_of_the_acc": -0.4281, "final_rank": 13 }, { "submission_id": "aoj_3295_10649853", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// 書きかけの幾何ライブラリ\n// バグがあるかも\n\nnamespace geometry {\n\nusing Real = long double;\nconstexpr Real eps = 1e-12;\nconstexpr Real PI = acosl(-1);\nconstexpr Real INF_REAL = numeric_limits<Real>::max();\n\nbool equal_eps(Real a, Real b) {\n return abs(a - b) < eps;\n}\n\nint sgn(Real a) {\n return equal_eps(a, 0) ? 0 : a > 0 ? 1 : -1;\n}\n\nstruct Point {\n Real x, y;\n constexpr Point() : Point(0, 0) {}\n constexpr Point(Real _x, Real _y) : x(_x), y(_y) {}\n constexpr Point(const pair<Real, Real> &p) : x(p.first), y(p.second) {}\n Point &operator+=(const Point &p) {\n x += p.x;\n y += p.y;\n return *this;\n }\n Point &operator-=(const Point &p) {\n x -= p.x;\n y -= p.y;\n return *this;\n }\n Point &operator*=(const Real &r) {\n x *= r;\n y *= r;\n return *this;\n }\n Point &operator/=(const Real &r) {\n assert(!equal_eps(r, 0));\n x /= r;\n y /= r;\n return *this;\n }\n Point operator+(const Point &p) const { return Point(*this) += p; }\n Point operator-(const Point &p) const { return Point(*this) -= p; }\n Point operator*(const Real &r) const { return Point(*this) *= r; }\n Point operator/(const Real &r) const { return Point(*this) /= r; }\n Point operator-() const { return Point() - *this; }\n bool operator==(const Point &p) const {\n return equal_eps(x, p.x) && equal_eps(y, p.y);\n }\n bool operator!=(const Point &p) const {\n return !equal_eps(x, p.x) || !equal_eps(y, p.y);\n }\n Point rotate(Real rad) const {\n Real c = cosl(rad), s = sinl(rad);\n Real tx = x * c - y * s;\n Real ty = x * s + y * c;\n return Point(tx, ty);\n }\n Point unit() const {\n return (*this) / metric();\n }\n Real Re() const { return x; }\n Real Im() const { return y; }\n Real norm() const { return x * x + y * y; }\n Real metric() const { return sqrtl(norm()); }\n Real arg() const { return atan2l(y, x); }\n Real arg(Point q1, Point q2) const {\n q1 -= *this, q2 -= *this;\n return abs(q1.arg() - q2.arg());\n }\n friend Point operator*(Real r, const Point &p) {\n return p * r;\n }\n friend Point operator/(Real r, const Point &p) {\n return p / r;\n }\n};\n\nReal Re(const Point &p) { return p.Re(); }\nReal Im(const Point &p) { return p.Im(); }\nReal dot(const Point &p, const Point &q) {\n return p.x * q.x + p.y * q.y;\n}\nReal cross(const Point &p, const Point &q) {\n return p.x * q.y - p.y * q.x;\n}\nReal norm(const Point &p) {\n return p.norm();\n}\nReal metric(const Point &p) {\n return p.metric();\n}\nReal metric(const Point &p, const Point &q) {\n return metric(p - q);\n}\nReal arg(const Point &p) {\n return p.arg();\n}\n\nbool equal_point(const Point &p, const Point &q) {\n return equal_eps(p.x, q.x) && equal_eps(p.y, q.y);\n}\n\nconstexpr Point INF_POINT = Point(INF_REAL, INF_REAL);\n\n// a を基準にした b と c の位置関係\nint ccw(const Point &a, const Point &b, const Point &c) {\n Point p = b - a, q = c - a;\n if (cross(p, q) > eps) return 1; // a, b, c の順で反時計回り\n if (cross(p, q) < -eps) return -1; // a, b, c の順で時計回り\n if (min(norm(p), norm(q)) < eps * eps) return 0; // a = c or b = c\n if (dot(p, q) < eps) return 2; // c, a, b の順で一直線\n if (norm(p) < norm(q)) return -2; // a, b, c の順で一直線\n return 0; // a, c, b の順で一直線\n}\n\nistream &operator>>(istream &is, Point& p) {\n Real x, y;\n is >> x >> y;\n p = Point(x, y);\n return is;\n}\n\n} // namespace geometry\n\nnamespace geometry {\n\nReal area_of_triangle(Point p1, Point p2, Point p3) {\n p2 -= p1, p3 -= p1;\n return abs(p2.x * p3.y - p2.y * p3.x) / 2;\n}\n\n} // namespace geometry\nusing namespace geometry;\n\nbool solve() {\n int N;\n cin >> N;\n if (N == 0) return false;\n vector<int> id(3);\n for (int &i : id) cin >> i, i--;\n vector<Point> P(2 * N);\n for (int i = 0; i < N; i++) {\n cin >> P[i];\n P[i + N] = P[i];\n }\n Real ans = INF_REAL;\n vector<Real> d(3);\n vector<Point> p(3);\n for (int i = 0; i < 3; i++) {\n d[i] = metric(P[id[i]], P[id[i] + 1]);\n p[i] = P[id[i]];\n }\n auto s = [&] (Real t) -> Real {\n vector<Point> q(3);\n for (int k = 0; k < 3; k++) {\n int i = id[k];\n q[k] = p[k] + t * (P[i + 1] - P[i]).unit();\n }\n auto res = area_of_triangle(q[0], q[1], q[2]);\n ans = min(ans, res);\n return res;\n };\n auto f = [&] (Real r) -> void {\n Real l = 0;\n for (int t = 0; t < 100; t++) {\n Real ml = (l + l + r) / 3;\n Real mr = (l + r + r) / 3;\n auto sl = s(ml), sr = s(mr);\n if (sl < sr) r = mr;\n else l = ml;\n }\n };\n for (int t = 0; t <= 3 * N; t++) {\n auto r = *min_element(d.begin(), d.end());\n f(r);\n for (int k = 0; k < 3; k++) {\n int &i = id[k];\n d[k] -= r;\n if (equal_eps(d[k], 0)) {\n i = (i + 1) % N;\n p[k] = P[i];\n d[k] = metric(P[i], P[i + 1]);\n } else {\n p[k] = p[k] + r * (P[i + 1] - P[i]).unit();\n }\n }\n }\n cout << fixed << setprecision(16) << ans << '\\n';\n return true;\n}\n\nint main() {\n while (solve()) {}\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 3968, "score_of_the_acc": -0.6319, "final_rank": 18 }, { "submission_id": "aoj_3295_10589018", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\n\n#define rep2(i, m, n) for (int i = (m); i < (n); ++i)\n#define rep(i, n) rep2(i, 0, n)\n#define all(...) std::begin(__VA_ARGS__), std::end(__VA_ARGS__)\n#define INF 1001001001001001001ll\n#define inf (int)1001001000\n\nll gcd(ll x, ll y) {\tif (x == 0) return y;\treturn gcd(y%x, x);} \nll lcm(ll x, ll y) { __int128_t xx,yy; xx=x; yy=y; __int128_t ans=xx * yy / gcd(x, y); ll ans2=ans; return ans2; }\ntemplate<typename T>\nT POW(T x, ll n){T ret=1;\twhile(n>0){\t\tif(n&1) ret=ret*x;\t\tx=x*x;\t\tn>>=1;\t}\treturn ret;}\ntemplate<typename T>\nT modpow(T a, ll n, T p) {\tif(n==0) return (T)1; if (n == 1) return a % p; if (n % 2 == 1) return (a * modpow(a, n - 1, p)) % p; T t = modpow(a, n / 2, p); return (t * t) % p;}\ntemplate<typename T>\nT modinv(T a, T m) {\tif(m==0)return (T)1;\tT b = m, u = 1, v = 0;\twhile (b) {\t\tT t = a / b;\t\ta -= t * b; swap(a, b);\t\tu -= t * v; swap(u, v);\t}\tu %= m;\tif (u < 0) u += m;\treturn u;}\n/*\nconst int MAXCOMB=510000;\nstd::vector<mint> fac(MAXCOMB), finv(MAXCOMB), inv(MAXCOMB);\nvoid COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAXCOMB; i++) {fac[i] = fac[i - 1] * i;inv[i] = mint(0) - inv[mint::mod() % i] * (mint::mod() / i);finv[i] = finv[i - 1] * inv[i];}}\nmint COM(int n, int k) {if (n < k) return 0;if (n < 0 || k < 0) return 0;return fac[n] * finv[k] * finv[n - k];}\n*/\ntemplate <typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false));}\ntemplate <typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false));}\n\nint SOLVEFIN = 0;\n\nstruct Line{\n double x1,y1;\n double x2,y2;\n int ind;\n double length;\n};\n\nvector<Line> line;\nvector<double> lengthsum;\nvector<int> pos(3);\nint n;\n\npair<double,double> cor(int v, double time){ //time時間経った時の頂点vの座標を得る\n int l = -1;//最初からl本は全て通っている\n int r = n+1;\n while(r-l>1){\n int mid = (l+r)/2;\n double now = lengthsum[pos[v]+mid]-lengthsum[pos[v]];\n if(now<=time)l=mid;\n else r=mid;\n }\n double rem = time - lengthsum[pos[v]+l] + lengthsum[pos[v]];\n int ind = (pos[v]+l)%n;\n double x = line[ind].x1 + (line[ind].x2-line[ind].x1)*rem/line[ind].length;\n double y = line[ind].y1 + (line[ind].y2-line[ind].y1)*rem/line[ind].length;\n return make_pair(x,y);\n\n}\n\ndouble area(double x1, double y1, double x2, double y2, double x3, double y3){\n //cout<<x1<<\" \"<<y1<<\" \"<<x2<<\" \"<<y2<<\" \"<<x3<<\" \"<<y3<<endl;\n return (abs((x2-x1)*(y3-y1)-(x3-x1)*(y2-y1))/2);\n \n}\n\nvoid solve(){\n cin>>n;\n rep(i,3){cin>>pos[i];pos[i]--;}\n \n if(n==0){\n SOLVEFIN=1;\n return;\n }\n vector<pair<double,double>> pt;\n line.resize(n);\n lengthsum.resize(2*n+3);//無/0/0+1/0+1+2/...\n rep(i,n){\n double x; double y;\n cin>>x>>y;\n pt.push_back({x,y});\n }\n rep(i,n){\n double x1 =pt[i].first;\n double y1 = pt[i].second;\n double x2 = pt[(i+1)%n].first;\n double y2 = pt[(i+1)%n].second;\n double length = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));\n line[i] = {x1,y1,x2,y2,i,length};\n }\n rep(i,2*n+2){\n lengthsum[i+1]=lengthsum[i]+line[i%n].length;\n }\n vector<double> etime;\n etime.push_back(0);\n rep(i,3){\n double now = 0;\n rep(j,n){\n now+=line[(pos[i]+j)%n].length;\n etime.push_back(now);\n }\n }\n\n double ans = area(pt[pos[0]].first,pt[pos[0]].second,\n pt[pos[1]].first,pt[pos[1]].second,pt[pos[2]].first,pt[pos[2]].second);\n sort(all(etime));\n int sz = etime.size();\n rep(i,sz-1){\n //cout<<ans<<\" \"<<etime[i]<<endl;\n double lt = etime[i];\n double rt = etime[i+1];\n auto res01 = cor(0,lt);\n auto res02 = cor(1,lt);\n auto res03 = cor(2,lt);\n double nowarea = area(res01.first,res01.second,res02.first,res02.second,\n res03.first,res03.second);\n //cout<<res01.first<<\" \"<<res01.second<<endl;\n while(rt-lt>=1e-9){\n //cout<<nowarea<<endl;\n double lt1 = (lt*2+rt)/3;\n double lt2 = (lt+rt*2)/3;\n auto res1 = cor(0,lt1);\n auto res2 = cor(1,lt1);\n auto res3 = cor(2,lt1);\n double area1 = area(res1.first,res1.second,res2.first,res2.second,\n res3.first,res3.second);\n res1 = cor(0,lt2);\n res2 = cor(1,lt2);\n res3 = cor(2,lt2);\n double area2 = area(res1.first,res1.second,res2.first,res2.second,\n res3.first,res3.second);\n if(area1>area2){\n lt=lt1;\n nowarea = area2;\n }\n else {rt=lt2;nowarea=area1;}\n }\n chmin(ans,nowarea);\n }\n cout<<ans<<endl;\n\n}\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\twhile(SOLVEFIN == 0) solve();\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 3728, "score_of_the_acc": -0.2592, "final_rank": 10 }, { "submission_id": "aoj_3295_10109686", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define all(a) a.begin(),a.end()\n#define reps(i, a, n) for (int i = (a); i < (int)(n); i++)\n#define rep(i, n) reps(i, 0, n)\n#define rreps(i, a, n) for (int i = (a); i > (int)(n); i--)\nconst long long mod = 1000000007;\nconst long long INF = 1e18;\nll myceil(ll a, ll b) {return (a+b-1)/b;}\n\n\ndouble ans = INF;\nint n,kp,kq,kr;\ndouble np = 0, nq = 0, nr = 0;\n\nvector<double> x(0),y(0);\nvector<pair<double,double>> mov(0);\n\n\ndouble g(double nw) {\n double px = x[kp]+(np+nw)*mov[kp].first;\n double py = y[kp]+(np+nw)*mov[kp].second;\n double qx = x[kq]+(nq+nw)*mov[kq].first;\n double qy = y[kq]+(nq+nw)*mov[kq].second;\n double rx = x[kr]+(nr+nw)*mov[kr].first;\n double ry = y[kr]+(nr+nw)*mov[kr].second;\n\n return abs((qx-px)*(ry-py)-(rx-px)*(qy-py))/2;\n}\n\n\nvoid f(double tm) {\n double ok = 0;\n double ng = tm;\n rep(i,100) {\n double l = (ok*2+ng)/3;\n double r = (ok+2*ng)/3;\n\n if (g(l)>g(r)) {\n ok = l;\n }\n else {\n ng = r;\n }\n }\n ans = min(ans,g((ok+ng)/2));\n}\n\n\nvoid solve() {\n kp--; kq--; kr--;\n x.resize(n);\n y.resize(n);\n rep(i,n) {\n cin >> x[i] >> y[i];\n }\n\n vector<double> dis(n);\n\n rep(i,n) {\n dis[i] = pow((x[(i+1)%n]-x[i])*(x[(i+1)%n]-x[i]) + (y[(i+1)%n]-y[i])*(y[(i+1)%n]-y[i]),0.5);\n }\n\n mov.resize(n);\n rep(i,n) {\n mov[i].first = (x[(i+1)%n]-x[i])/dis[i];\n mov[i].second = (y[(i+1)%n]-y[i])/dis[i];\n }\n\n np = 0;\n nq = 0;\n nr = 0;\n ans = INF;\n \n rep(i,3*n) {\n if (dis[kp]-np > dis[kq]-nq) {\n if (dis[kq]-nq > dis[kr]-nr) {\n f(dis[kr]-nr);\n np += dis[kr]-nr;\n nq += dis[kr]-nr;\n nr = 0;\n kr = (kr+1)%n;\n }\n else {\n f(dis[kq]-nq);\n np += dis[kq]-nq;\n nr += dis[kq]-nq;\n nq = 0;\n kq = (kq+1)%n;\n }\n }\n else {\n if (dis[kp]-np > dis[kr]-nr) {\n f(dis[kr]-nr);\n np += dis[kr]-nr;\n nq += dis[kr]-nr;\n nr = 0;\n kr = (kr+1)%n;\n }\n else {\n f(dis[kp]-np);\n nq += dis[kp]-np;\n nr += dis[kp]-np;\n np = 0;\n kp = (kp+1)%n;\n }\n }\n }\n\n cout << ans << endl;\n return;\n}\n\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << setprecision(10) << fixed;\n int _ = 1;\n\n // cin >> _;\n\n while (cin >> n >> kp >> kq >> kr && n != 0) {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3904, "score_of_the_acc": -0.4942, "final_rank": 15 }, { "submission_id": "aoj_3295_10109440", "code_snippet": "// (⁠◕⁠ᴗ⁠◕⁠✿⁠)\n\n#include <bits/stdc++.h>\n// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n#define rep(i, n) for (ll i = 0; i < (n); i++)\n#define srep(i, s, n) for (ll i = s; i < (n); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\nusing namespace std;\ntemplate<typename T> using vc = vector<T>;\ntemplate<typename T> using vv = vc<vc<T>>;\ntemplate<typename T> using vvv = vv<vc<T>>;\nusing vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;\nusing ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;\nusing ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nconst ld pi = acos(-1.0);\nconst int inf = 0x3f3f3f3f;\nconst ll INF = 0x3f3f3f3f3f3f3f3f;\n// const ll mod = 1000000007;\nconst ll mod = 998244353;\ninline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }\n\n#define debug(var) do{std::cout << #var << \" : \\n\";view(var);}while(0)\ntemplate<typename T> void view(T e){cout << e << endl;}\ntemplate<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << \" \"; } cout << endl;}\ntemplate<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } }\n\ndouble d(double x1, double y1, double x2, double y2){return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));}\n\nvoid solve(int N, vc<int> P){\n vc<double> X(3 * N), Y(3 * N); rep(i, N) cin >> X[i] >> Y[i];\n rep(i, N){\n X[i + N] = X[i];\n Y[i + N] = Y[i];\n X[i + 2 * N] = X[i];\n Y[i + 2 * N] = Y[i];\n }\n\n vc<double> cmsm(1, 0); rep(i, 3 * N - 1) cmsm.push_back(cmsm.back() + d(X[i], Y[i], X[i + 1], Y[i + 1]));\n\n double x[3], y[3];\n auto S = [&](double w){\n rep(i, 3){\n auto it = lower_bound(all(cmsm), cmsm[P[i]] + w) - cmsm.begin();\n double a = (cmsm[P[i]] + w - cmsm[it - 1]) / (cmsm[it] - cmsm[it - 1]);\n x[i] = X[it] * a + X[it - 1] * (1 - a);\n y[i] = Y[it] * a + Y[it - 1] * (1 - a);\n }\n \n x[2] -= x[0];\n y[2] -= y[0];\n x[1] -= x[0];\n y[1] -= y[0];\n double ret = abs(x[1] * y[2] - x[2] * y[1]) / (double)2;\n return ret;\n };\n\n vc<double> event;\n rep(i, 3) for (int j = P[i]; j <= P[i] + N; j++) event.push_back(cmsm[j] - cmsm[P[i]]);\n sort(all(event));\n \n double ans = INF;\n rep(id, len(event) - 1){\n double bottom = event[id], top = event[id + 1];\n if (top == bottom) continue;\n rep(_, 100){\n double l = (top + bottom * 2) / (double)3;\n double r = (top * 2 + bottom) / (double)3;\n double sl = S(l), sr = S(r);\n if (sl > sr) bottom = l;\n else top = r;\n }\n ans = min(ans, S(top));\n }\n cout << fixed << setprecision(16) << ans << endl;\n}\nint main(){\n while(true){\n int N; cin >> N;\n vi P(3); rep(i, 3) cin >> P[i];\n rep(i, 3) P[i]--;\n if (N == 0) break;\n solve(N, P);\n }\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3596, "score_of_the_acc": -0.0245, "final_rank": 2 }, { "submission_id": "aoj_3295_9685893", "code_snippet": "#include <bits/stdc++.h>\n using namespace std;\n \n template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\n template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n #define rep(i,n) for (int i = 0; i < (n); ++i)\n\n typedef long long ll;\n typedef unsigned long long ull;\n using P=pair<ll,ll>;\n using tp=tuple<ll,ll,ll>;\n const int INF=1001001001;\n const ll INFL=1e18;\n const int mod=998244353;\n\n \t#define EPS (1e-10)\n\t\t#define equals(a,b)(fabs((a)-(b))<EPS)\n\t\n\t\tclass Point{\n\t\t\tpublic:\n\t\t\tdouble x,y;\n\t\n\t\t\tPoint(double x=0,double y=0):x(x),y(y){}\n\t\n\t\t\tPoint operator + (Point p){return Point(x+p.x,y+p.y);}\n\t\t\tPoint operator - (Point p){return Point(x-p.x,y-p.y);}\n\t\t\tPoint operator * (double a){return Point(a*x,a*y);}\n\t\t\tPoint operator / (double a){return Point(x/a,y/a);}\n\t\n\t\t\tdouble abs(){return sqrt(norm());}\n\t\t\tdouble norm(){return x*x+y*y;}\n\t\n\t\t\tbool operator < (const Point &p) const{\n\t\t\t\treturn x!=p.x ? x < p.x: y < p.y;\n\t\t\t}\n\t\t\tbool operator == (const Point &p) const{\n\t\t\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) <EPS;\n\t\t\t}\n\t\t};\n\t\ttypedef Point Vector;\n\t\tstruct Segment{\n\t\t\tPoint p1,p2;\n\t\t\tSegment(Point p1,Point p2):p1(p1),p2(p2){}\n\t\t};\n\t\ttypedef Segment Line;\n\t\tclass Circle{\n\t\tpublic:\n\t\t\tPoint c;\n\t\t\tdouble r;\n\t\t\tCircle(Point c=Point(),double r=0.0):c(c),r(r){}\n\t\t};\n\t\ttypedef vector<Point>Polygon;\n\t\t\n\t\tdouble dot(Vector a,Vector b){\n\t\t\treturn a.x*b.x+a.y*b.y;\n\t\t}\n\t\tdouble cross(Vector a,Vector b){\n\t\t\treturn a.x*b.y-a.y*b.x;\n\t\t}\n\t\tPoint rot90(const Point& p){return Point(-p.y,p.x);}\n\t\tPoint getCrossPoint(Line s1,Line s2){//2線分の交点\n\t\t\tVector base=s2.p2-s2.p1;\n\t\t\tdouble d1=abs(cross(base,s1.p1-s2.p1));\n\t\t\tdouble d2=abs(cross(base,s1.p2-s2.p1));\n\t\t\tdouble t=d1/(d1+d2);\n\t\t\treturn s1.p1+(s1.p2-s1.p1)*t;\n\t\t}\n\t\tPoint intersection(Line s1,Line s2){//2直線の交点 http://www.deqnotes.net/acmicpc/2d_geometry/lines\n\t\t\tVector a=s1.p2-s1.p1,b=s2.p2-s2.p1;\n\t\t\treturn s1.p1+a*cross(b,s2.p1-s1.p1)/cross(b,a);\n\t\t}\n\t\tPoint circumcenter(Point a,Point b,Point c){\n\t\t\tLine ab((a+b)/2,(a+b)/2+rot90(a-b));\n\t\t\tLine bc((b+c)/2,(b+c)/2+rot90(b-c));\n\t\t\treturn getCrossPoint(ab,bc);\n\t\t}\n\t\tint ccw(Point p0,Point p1,Point p2){\n\t\t\tVector a=p1-p0;\n\t\t\tVector b=p2-p0;\n\t\t\tif(cross(a,b)>EPS){return 1;}\n\t\t\tif(cross(a,b)<-EPS){return -1;}\n\t\t\tif(dot(a,b)<-EPS){return 2;}\n\t\t\tif(a.norm()<b.norm()){return -2;}\n\t\t\treturn 0;\n\t\t}\n\t\tdouble getarea(vector<Point>p){ //https://imagingsolution.net/math/calc_n_point_area/\n\t\t\tint n=p.size();\n\t\t\tdouble s=0;\n\t\t\trep(i,n){\n\t\t\t\ts+=cross(p[i],p[(i+1)%n]);\n\t\t\t}\n\t\t\ts=abs(s);\n\t\t\ts/=2;\n\t\t\treturn s;\n\t\t}\n\t\tvector<Point> ConvexCut(vector<Point>& s,Segment t){\n\t\t\tvector<Point>ans;\n\t\t\tint n=s.size();\n\t\t\trep(j,n){\n\t\t\t\tPoint p=s[j],q=s[(j+1)%n];\n\t\t\t\tdouble p_c=cross(t.p2-t.p1,p-t.p1);\n\t\t\t\tdouble q_c=cross(t.p2-t.p1,q-t.p1);\n\t\t\t\tSegment now=Segment(p,q);\n\t\n\t\t\t\tif(p_c+EPS>0){\n\t\t\t\t\tans.push_back(p);\n\t\t\t\t}\n\t\t\t\tif(ccw(t.p1,t.p2,now.p1)*ccw(t.p1,t.p2,now.p2)==-1){\n\t\t\t\t\tauto e=intersection(t,now);\n\t\t\t\t\tans.push_back(e);\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn ans;\n\t\t}\n\n\t\tVector t_move(Point from,Point to,double t){\n\t\t\tVector vec=to-from;\n\t\t\tdouble len=vec.abs();\n\t\t\tauto n_vec=(from*(len-t)+to*t)/len;\n\t\t\treturn n_vec;\n\t\t}\n\n bool solve(){\n\t\tint n;\n\t\tvector<int>s(3);\n\t\tcin>>n>>s[0]>>s[1]>>s[2];\n\t\tif(!n&&!s[0]&&!s[1]&&!s[2])return false;\n\t\ts[0]--;s[1]--;s[2]--;\n\t\tvector<Point>v(n);\n\t\trep(i,n){cin>>v[i].x>>v[i].y;}\n\t\tvector<Point>p(3);\n\t\trep(i,3){p[i]=v[s[i]];}\n\n\t\tdouble cur_t=0,ans=INF;\n\t\trep(z,n*3){\n\t\t\tdouble mn_t=INF;\n\t\t\trep(i,3){\n\t\t\t\tVector vec=v[(s[i]+1)%n]-p[i];\n\t\t\t\tdouble tmp=vec.abs();\n\t\t\t\tchmin(mn_t,tmp);\n\t\t\t}\n\t\t\tdouble l=0,r=mn_t;\n\t\t\trep(e,100){\n\t\t\t\tdouble c1=(2*l+r)/3;\n\t\t\t\tdouble c2=(l+2*r)/3;\n\t\t\t\t\n\t\t\t\tvector<Vector>V1(3);\n\t\t\t\trep(i,3){\n\t\t\t\t\tV1[i]=t_move(p[i],v[(s[i]+1)%n],c1);\n\t\t\t\t}\n\t\t\t\tdouble area_c1=getarea(V1);\n\t\t\t\n\t\t\t\tvector<Vector>V2(3);\n\t\t\t\trep(i,3){\n\t\t\t\t\tV2[i]=t_move(p[i],v[(s[i]+1)%n],c2);\n\t\t\t\t}\n\t\t\t\tdouble area_c2=getarea(V2);\n\t\t\t\tchmin(ans,min(area_c2,area_c1));\n\t\t\t\t\n\t\t\t\tif(area_c1>area_c2){\n\t\t\t\t\tl=c1;\n\t\t\t\t}else {\n\t\t\t\t\tr=c2;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\trep(i,3){\n\t\t\t\tp[i]=t_move(p[i],v[(s[i]+1)%n],mn_t);\n\t\t\t\tif(p[i]==v[(s[i]+1)%n]){\n\t\t\t\t\ts[i]=(s[i]+1)%n;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"%.10f\\n\",ans);\n\t\treturn true;\n }\n\n int main(){\n ios_base::sync_with_stdio(false);\n cin.tie(NULL);\n\n\t\twhile(1){\n\t\t\tif(!solve())return false;\n\t\t}\n\t\t\n return 0;\n }", "accuracy": 1, "time_ms": 160, "memory_kb": 3712, "score_of_the_acc": -0.213, "final_rank": 8 }, { "submission_id": "aoj_3295_9685890", "code_snippet": "#include <bits/stdc++.h>\n using namespace std;\n \n template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\n template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n #define rep(i,n) for (int i = 0; i < (n); ++i)\n\n typedef long long ll;\n typedef unsigned long long ull;\n using P=pair<ll,ll>;\n using tp=tuple<ll,ll,ll>;\n const int INF=1001001001;\n const ll INFL=1e18;\n const int mod=998244353;\n\n \t#define EPS (1e-10)\n\t\t#define equals(a,b)(fabs((a)-(b))<EPS)\n\t\n\t\tclass Point{\n\t\t\tpublic:\n\t\t\tdouble x,y;\n\t\n\t\t\tPoint(double x=0,double y=0):x(x),y(y){}\n\t\n\t\t\tPoint operator + (Point p){return Point(x+p.x,y+p.y);}\n\t\t\tPoint operator - (Point p){return Point(x-p.x,y-p.y);}\n\t\t\tPoint operator * (double a){return Point(a*x,a*y);}\n\t\t\tPoint operator / (double a){return Point(x/a,y/a);}\n\t\n\t\t\tdouble abs(){return sqrt(norm());}\n\t\t\tdouble norm(){return x*x+y*y;}\n\t\n\t\t\tbool operator < (const Point &p) const{\n\t\t\t\treturn x!=p.x ? x < p.x: y < p.y;\n\t\t\t}\n\t\t\tbool operator == (const Point &p) const{\n\t\t\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) <EPS;\n\t\t\t}\n\t\t};\n\t\ttypedef Point Vector;\n\t\tstruct Segment{\n\t\t\tPoint p1,p2;\n\t\t\tSegment(Point p1,Point p2):p1(p1),p2(p2){}\n\t\t};\n\t\ttypedef Segment Line;\n\t\tclass Circle{\n\t\tpublic:\n\t\t\tPoint c;\n\t\t\tdouble r;\n\t\t\tCircle(Point c=Point(),double r=0.0):c(c),r(r){}\n\t\t};\n\t\ttypedef vector<Point>Polygon;\n\t\t\n\t\tdouble dot(Vector a,Vector b){\n\t\t\treturn a.x*b.x+a.y*b.y;\n\t\t}\n\t\tdouble cross(Vector a,Vector b){\n\t\t\treturn a.x*b.y-a.y*b.x;\n\t\t}\n\t\tPoint rot90(const Point& p){return Point(-p.y,p.x);}\n\t\tPoint getCrossPoint(Line s1,Line s2){//2線分の交点\n\t\t\tVector base=s2.p2-s2.p1;\n\t\t\tdouble d1=abs(cross(base,s1.p1-s2.p1));\n\t\t\tdouble d2=abs(cross(base,s1.p2-s2.p1));\n\t\t\tdouble t=d1/(d1+d2);\n\t\t\treturn s1.p1+(s1.p2-s1.p1)*t;\n\t\t}\n\t\tPoint intersection(Line s1,Line s2){//2直線の交点 http://www.deqnotes.net/acmicpc/2d_geometry/lines\n\t\t\tVector a=s1.p2-s1.p1,b=s2.p2-s2.p1;\n\t\t\treturn s1.p1+a*cross(b,s2.p1-s1.p1)/cross(b,a);\n\t\t}\n\t\tPoint circumcenter(Point a,Point b,Point c){\n\t\t\tLine ab((a+b)/2,(a+b)/2+rot90(a-b));\n\t\t\tLine bc((b+c)/2,(b+c)/2+rot90(b-c));\n\t\t\treturn getCrossPoint(ab,bc);\n\t\t}\n\t\tint ccw(Point p0,Point p1,Point p2){\n\t\t\tVector a=p1-p0;\n\t\t\tVector b=p2-p0;\n\t\t\tif(cross(a,b)>EPS){return 1;}\n\t\t\tif(cross(a,b)<-EPS){return -1;}\n\t\t\tif(dot(a,b)<-EPS){return 2;}\n\t\t\tif(a.norm()<b.norm()){return -2;}\n\t\t\treturn 0;\n\t\t}\n\t\tdouble getarea(vector<Point>p){ //https://imagingsolution.net/math/calc_n_point_area/\n\t\t\tint n=p.size();\n\t\t\tdouble s=0;\n\t\t\trep(i,n){\n\t\t\t\ts+=cross(p[i],p[(i+1)%n]);\n\t\t\t}\n\t\t\ts=abs(s);\n\t\t\ts/=2;\n\t\t\treturn s;\n\t\t}\n\t\tvector<Point> ConvexCut(vector<Point>& s,Segment t){\n\t\t\tvector<Point>ans;\n\t\t\tint n=s.size();\n\t\t\trep(j,n){\n\t\t\t\tPoint p=s[j],q=s[(j+1)%n];\n\t\t\t\tdouble p_c=cross(t.p2-t.p1,p-t.p1);\n\t\t\t\tdouble q_c=cross(t.p2-t.p1,q-t.p1);\n\t\t\t\tSegment now=Segment(p,q);\n\t\n\t\t\t\tif(p_c+EPS>0){\n\t\t\t\t\tans.push_back(p);\n\t\t\t\t}\n\t\t\t\tif(ccw(t.p1,t.p2,now.p1)*ccw(t.p1,t.p2,now.p2)==-1){\n\t\t\t\t\tauto e=intersection(t,now);\n\t\t\t\t\tans.push_back(e);\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn ans;\n\t\t}\n\n\t\tVector t_move(Point from,Point to,double t){\n\t\t\tVector vec=to-from;\n\t\t\tdouble len=vec.abs();\n\t\t\tauto n_vec=(from*(len-t)+to*t)/len;\n\t\t\treturn n_vec;\n\t\t}\n\n bool solve(){\n\t\tint n;\n\t\tvector<int>s(3);\n\t\tcin>>n>>s[0]>>s[1]>>s[2];\n\t\tif(!n&&!s[0]&&!s[1]&&!s[2])return false;\n\t\ts[0]--;s[1]--;s[2]--;\n\t\tvector<Point>v(n);\n\t\trep(i,n){cin>>v[i].x>>v[i].y;}\n\t\tvector<Point>p(3);\n\t\trep(i,3){p[i]=v[s[i]];}\n\n\t\tdouble cur_t=0,ans=INF;\n\t\trep(z,n*100){\n\t\t\tdouble mn_t=INF;\n\t\t\trep(i,3){\n\t\t\t\tVector vec=v[(s[i]+1)%n]-p[i];\n\t\t\t\tdouble tmp=vec.abs();\n\t\t\t\tchmin(mn_t,tmp);\n\t\t\t}\n\t\t\tdouble l=0,r=mn_t;\n\t\t\trep(e,100){\n\t\t\t\tdouble c1=(2*l+r)/3;\n\t\t\t\tdouble c2=(l+2*r)/3;\n\t\t\t\t\n\t\t\t\tvector<Vector>V1(3);\n\t\t\t\trep(i,3){\n\t\t\t\t\tV1[i]=t_move(p[i],v[(s[i]+1)%n],c1);\n\t\t\t\t}\n\t\t\t\tdouble area_c1=getarea(V1);\n\t\t\t\n\t\t\t\tvector<Vector>V2(3);\n\t\t\t\trep(i,3){\n\t\t\t\t\tV2[i]=t_move(p[i],v[(s[i]+1)%n],c2);\n\t\t\t\t}\n\t\t\t\tdouble area_c2=getarea(V2);\n\t\t\t\tchmin(ans,min(area_c2,area_c1));\n\t\t\t\t\n\t\t\t\tif(area_c1>area_c2){\n\t\t\t\t\tl=c1;\n\t\t\t\t}else {\n\t\t\t\t\tr=c2;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\trep(i,3){\n\t\t\t\tp[i]=t_move(p[i],v[(s[i]+1)%n],mn_t);\n\t\t\t\tif(p[i]==v[(s[i]+1)%n]){\n\t\t\t\t\ts[i]=(s[i]+1)%n;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tprintf(\"%.10f\\n\",ans);\n\t\treturn true;\n }\n\n int main(){\n ios_base::sync_with_stdio(false);\n cin.tie(NULL);\n\n\t\twhile(1){\n\t\t\tif(!solve())return false;\n\t\t}\n\t\t\n return 0;\n }", "accuracy": 1, "time_ms": 5320, "memory_kb": 3712, "score_of_the_acc": -1.1847, "final_rank": 19 }, { "submission_id": "aoj_3295_9456986", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<vvi> vvvi;\ntypedef vector<bool> vb;\ntypedef vector<vb> vvb;\ntypedef vector<vvb> vvvb;\ntypedef vector<vvvb> vvvvb;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define RFOR(i,l,r) for(ll i=r-1;i>=l;i--)\n#define RREP(i,n) RFOR(i,0,n)\n#define sz(A) (ll)(A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin())\n#define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin())\n#define COU(A,x) (UB(A,x)-LB(A,x))\n#define F first\n#define S second\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.F<<\" \"<<p.S;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.F>>p.S;return is;}\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){REP(i,sz(v))os<<v[i]<<(i+1!=sz(v)?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;}\nconst ll mod=998244353;\ntemplate<const long long int mod=998244353>\nstruct modint{\n using mint=modint<mod>;\n long long int x;\n modint(long long int _x=0):x(_x%mod){if(x<0)x+=mod;}\n long long int val(){return x;}\n mint&operator=(const mint&a){x=a.x;return *this;}\n mint&operator+=(const mint&a){x+=a.x;if(x>=mod)x-=mod;return *this;}\n mint&operator-=(const mint&a){x-=a.x;if(x<0)x+=mod;return *this;}\n mint&operator*=(const mint&a){x*=a.x;x%=mod;return *this;}\n friend mint operator+(const mint&a,const mint&b){return mint(a)+=b;}\n friend mint operator-(const mint&a,const mint&b){return mint(a)-=b;}\n friend mint operator*(const mint&a,const mint&b){return mint(a)*=b;}\n mint operator-()const{return mint(0)-*this;}\n mint pow(long long int n){\n if(!n)return 1;\n mint a=1;\n mint _x=x;\n while(n){\n if(n&1)a*=_x;\n _x=_x*_x;n>>=1;\n }\n return a;\n }\n mint inv(){return pow(mod-2);}\n mint&operator/=(mint&a){return *this*=a.inv();}\n friend mint operator/(const mint&a,mint b){return mint(a)/=b;}\n};\nusing mint=modint<998244353>;\nstruct point{\n ld x,y;\n point operator+(point p){\n return point{x+p.x,y+p.y};\n }\n point operator-(point p){\n return point{x-p.x,y-p.y};\n }\n point operator*(ld k){\n return point{k*x,k*y};\n }\n};\n#define EPS 1e-10\nint main(){\n while(1){\n ll N,P,Q,R;cin>>N>>P>>Q>>R;P--;Q--;R--;\n if(!N)return 0;\n vector<pi>A(N);cin>>A;\n auto d=[](pi a,pi b){\n return sqrt((a.F-b.F)*(a.F-b.F)+(a.S-b.S)*(a.S-b.S));\n };\n auto S=[](point a,point b,point c){\n b=b-a;c=c-a;\n return (b.x*c.y-b.y*c.x)/2;\n };\n auto f=[&](point p1,point p2,point q1,point q2,point r1,point r2){\n ld ans=min(abs(S(p1,q1,r1)),abs(S(p2,q2,r2)));\n {\n ld l=0,r=1;\n while(r-l>1e-8){\n ld m1=(2*l+r)/3,m2=(l+2*r)/3;\n ld s0=S(p1+(p2-p1)*l,q1+(q2-q1)*l,r1+(r2-r1)*l);\n ld s1=S(p1+(p2-p1)*m1,q1+(q2-q1)*m1,r1+(r2-r1)*m1);\n ld s2=S(p1+(p2-p1)*m2,q1+(q2-q1)*m2,r1+(r2-r1)*m2);\n ld s3=S(p1+(p2-p1)*r,q1+(q2-q1)*r,r1+(r2-r1)*r);\n if(s1<s2)r=m2;\n else l=m1;\n }\n ld m=(l+r)/2;\n chmin(ans,abs(S(p1+(p2-p1)*m,q1+(q2-q1)*m,r1+(r2-r1)*m)));\n ld a=S(p1,q1,r1),b=S(p2,q2,r2),c=S(p1+(p2-p1)*m,q1+(q2-q1)*m,r1+(r2-r1)*m);\n if(a*c<0||b*c<0)ans=0;\n }\n {\n ld l=0,r=1;\n while(r-l>1e-8){\n ld m1=(2*l+r)/3,m2=(l+2*r)/3;\n ld s0=S(p1+(p2-p1)*l,q1+(q2-q1)*l,r1+(r2-r1)*l);\n ld s1=S(p1+(p2-p1)*m1,q1+(q2-q1)*m1,r1+(r2-r1)*m1);\n ld s2=S(p1+(p2-p1)*m2,q1+(q2-q1)*m2,r1+(r2-r1)*m2);\n ld s3=S(p1+(p2-p1)*r,q1+(q2-q1)*r,r1+(r2-r1)*r);\n if(s1>s2)r=m2;\n else l=m1;\n }\n ld m=(l+r)/2;\n chmin(ans,abs(S(p1+(p2-p1)*m,q1+(q2-q1)*m,r1+(r2-r1)*m)));\n ld a=S(p1,q1,r1),b=S(p2,q2,r2),c=S(p1+(p2-p1)*m,q1+(q2-q1)*m,r1+(r2-r1)*m);\n if(a*c<0||b*c<0)ans=0;\n }\n return ans;\n };\n REP(i,N)A.emplace_back(A[i]);\n REP(i,N)A.emplace_back(A[i]);\n vector<ld>T;\n ld s=0,t=0,u=0;\n REP(i,N+2){\n T.emplace_back(s);s+=d(A[P+i+1],A[P+i]);\n T.emplace_back(t);t+=d(A[Q+i+1],A[Q+i]);\n T.emplace_back(u);u+=d(A[R+i+1],A[R+i]);\n }\n T.emplace_back(s);\n sort(ALL(T));\n T.erase(unique(ALL(T)),T.end());\n ld ans=1e18;\n ld p=0,q=0,r=0;\n REP(i,sz(T)-1){\n ld x=T[i+1]-T[i];\n ld a=d(A[P],A[P+1]),b=d(A[Q],A[Q+1]),c=d(A[R],A[R+1]);\n point p1=point{(ld)A[P].F,(ld)A[P].S},p2=point{(ld)A[P+1].F,(ld)A[P+1].S};\n point q1=point{(ld)A[Q].F,(ld)A[Q].S},q2=point{(ld)A[Q+1].F,(ld)A[Q+1].S};\n point r1=point{(ld)A[R].F,(ld)A[R].S},r2=point{(ld)A[R+1].F,(ld)A[R+1].S};\n auto _p1=p1+(p2-p1)*(p/a),_p2=p1+(p2-p1)*((p+x)/a);\n auto _q1=q1+(q2-q1)*(q/b),_q2=q1+(q2-q1)*((q+x)/b);\n auto _r1=r1+(r2-r1)*(r/c),_r2=r1+(r2-r1)*((r+x)/c);\n chmin(ans,f(_p1,_p2,_q1,_q2,_r1,_r2));\n p+=x,q+=x,r+=x;\n if(abs(p-a)<EPS){p=0;P++;}\n if(abs(q-b)<EPS){q=0;Q++;}\n if(abs(r-c)<EPS){r=0;R++;}\n }\n printf(\"%.20Lf\\n\",ans);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3700, "score_of_the_acc": -0.1713, "final_rank": 5 }, { "submission_id": "aoj_3295_9417412", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define ALL(v) v.begin(),v.end()\n#define dbg(x) cerr << #x << \": \" << x << endl;\ntemplate<class F, class S>\nostream& operator << (ostream& os, pair<F,S> p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate<class Iter>\nvoid print(Iter beg, Iter end) {\n for (Iter itr = beg; itr != end; ++itr) {\n cerr << *itr << ' ';\n }\n cerr << endl;\n}\n// 型\nusing ld = long double;\nusing Point = complex<ld>;\nusing Vec = complex<ld>;\nusing Seg = pair<Point, Point>;\nusing Line = Seg;\nusing Circle = pair<Point, ld>;\nusing Polygon = vector<Point>;\n#define x real\n#define y imag\n\n#define EPS (1e-10)\nint sgn(ld val) {\n return (val < -EPS ? -1 : (val > EPS ? 1 : 0));\n}\n// 内積\nld dot(Vec a, Vec b) {\n return a.x() * b.x() + a.y() * b.y();\n}\n// 外積\nld crs(Vec a, Vec b) {\n return a.x() * b.y() - a.y() * b.x();\n}\n// 点の進行方向\n#define CCW (1)\n#define CW (-1)\n#define OLB (2)\n#define OLF (-2)\n#define OS (0)\nint isp(Point p0, Point p1, Point p2) {\n Vec a = p1 - p0;\n Vec b = p2 - p0;\n int val = sgn(crs(a,b));\n if (val > 0) return CCW;\n if (val < 0) return CW;\n if (sgn(dot(a,b)) < 0) return OLB;\n if (sgn(norm(a) - norm(b)) < 0) return OLF;\n return OS;\n}\n\nint n;\nPolygon g;\nld area(ld e, array<ld,3> offset, array<int,3> vert) {\n array<Vec, 3> vec;\n for (int i = 0; i < 3; ++i) {\n int j = vert[i];\n int k = (j + 1) % n;\n vec[i] = (g[k] - g[j]) / abs(g[k] - g[j]) * (offset[i] + e) + g[j];\n // dbg(vec[i])\n }\n // triangle\n Vec a = vec[1] - vec[0];\n Vec b = vec[2] - vec[0];\n ld ans = abs(crs(a,b)) / 2;\n return ans;\n}\n\nld solve() {\n array<int,3> a;\n cin >> n >> a[0] >> a[1] >> a[2];\n if (n+a[0]+a[1]+a[2] == 0) exit(0);\n for (int j = 0; j < 3; ++j) --a[j];\n g.resize(n);\n for (int i = 0; i < n; ++i) {\n int xx,yy;\n cin >> xx >> yy;\n g[i] = Point(xx,yy);\n }\n\n array<int,3> pos = a;\n array<ld,3> offset = {0,0,0};\n ld ans = 1e10;\n for (int z = 0; z < 3*n; ++z) {\n ld t = 1e10;\n int midx = -1;\n for (int i = 0; i < 3; ++i) {\n int j = pos[i];\n int k = (j + 1) % n;\n ld val = abs(g[k] - g[j]) - offset[i];\n if (sgn(val - t) < 0) {\n t = val;\n midx = i;\n }\n }\n // print(ALL(pos));\n // dbg(t)\n // dbg(midx);\n // [0, t]の範囲で三分探索\n ld l = 0, r = t;\n while (sgn(r - l) > 0) {\n ld c1 = (l + l + r) / 3;\n ld c2 = (l + r + r) / 3;\n ld a1 = area(c1, offset, pos);\n ld a2 = area(c2, offset, pos);\n if (sgn(a1 - a2) <= 0) r = c2;\n else l = c1;\n }\n ans = min(ans, area(l, offset, pos));\n\n // 位置の更新\n for (int i = 0; i < 3; ++i) {\n int j = pos[i];\n int k = (j + 1) % n;\n ld len = abs(g[k] - g[j]);\n if (sgn(len - (t + offset[i])) > 0) {\n offset[i] += t;\n } else if (sgn(len - (t + offset[i])) == 0) {\n offset[i] = 0;\n pos[i] = k;\n } else {\n pos[i] = k;\n offset[i] += (t + offset[i]) - len;\n }\n }\n }\n return ans;\n}\n\nint main() {\n ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n cout << fixed << setprecision(20); cerr << fixed << setprecision(6);\n while (true) {\n // solve();\n cout << solve() << '\\n';\n // cout << (solve() ? \"Yes\" : \"No\") << '\\n';\n }\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 3672, "score_of_the_acc": -0.1832, "final_rank": 6 }, { "submission_id": "aoj_3295_9391819", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\n#define all(A) A.begin(),A.end()\n#define ALL(A) A.begin(),A.end()\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\ntemplate<class T>\nbool chmax(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p < q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\ntemplate<class T>\nbool chmin(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p > q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\n#include<complex>\nconst int INF = 1000000000;\nconst ll LINF = 1001002003004005006ll;\nint dx[] = { 1,0,-1,0 }, dy[] = { 0,1,0,-1 };\n\nstruct IOSetup {\n IOSetup() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n }\n} iosetup;\n\ntemplate<typename T>\nostream& operator<<(ostream& os, const vector<T>& v) {\n for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 == (int)v.size() ? \"\" : \" \");\n return os;\n}\ntemplate<typename T>\nistream& operator>>(istream& is, vector<T>& v) {\n for (T& x : v)is >> x;\n return is;\n}\n\n// line 1 \"Geometry/template.cpp\"\n// Real\nusing Real = double;\nconst Real EPS = 1e-6;\nconst Real pi = acosl(-1);\n\n// Point\nusing Point = complex<Real>;\nistream& operator>>(istream& is, Point& p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\nostream& operator<<(ostream& os, Point& p) {\n return os << fixed << setprecision(12) << p.real() << ' ' << p.imag();\n}\ninline bool eq(Real a, Real b) {\n return fabs(a - b) < EPS;\n}\nPoint operator*(const Point& p, const Real& d) {\n return Point(real(p) * d, imag(p) * d);\n}\n\n// Line\nstruct Line {\n Point p1, p2;\n Line() = default;\n Line(Point p1, Point p2) :p1(p1), p2(p2) {}\n //Ax + By = C\n Line(Real A, Real B, Real C) {\n if (eq(A, 0)) p1 = Point(0, C / B), p2 = Point(1, C / B);\n else if (eq(B, 0))p1 = Point(C / A, 0), p2 = Point(C / A, 1);\n else p1 = Point(0, C / B), p2 = Point(C / A, 0);\n }\n};\n\n// Segment\nstruct Segment :Line {\n Segment() = default;\n Segment(Point p1, Point p2) :Line(p1, p2) {}\n};\nReal dot(Point a, Point b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\nReal cross(Point a, Point b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\nint ccw(Point a, Point b, Point c) {\n b -= a; c -= a;\n if (cross(b, c) > EPS) return 1;//COUNTER CLOCKWISE\n else if (cross(b, c) < -EPS) return -1;//CLOCKWISE\n else if (dot(b, c) < 0) return 2;//c--a--b ONLINE BACK\n else if (norm(b) < norm(c)) return -2;//a--b--c ONLINE FRONT\n else return 0;//a--c--b ON SEGMENT\n}\nPoint projection(Segment l, Point p) {\n Real k = dot(l.p1 - l.p2, p - l.p1) / norm(l.p1 - l.p2);\n return l.p1 + (l.p1 - l.p2) * k;\n}\nbool intersect(Segment s, Point p) {\n return ccw(s.p1, s.p2, p) == 0;\n}\nReal dis(Point a, Point b) {\n return abs(a - b);\n}\nReal dis(Segment s, Point p) {\n Point r = projection(s, p);\n if (intersect(s, r)) return abs(r - p);\n return min(abs(s.p1 - p), abs(s.p2 - p));\n}\n\ndouble area(Point P, Point Q, Point R) {\n Q -= P;\n R -= P;\n return abs(Q.imag() * R.real() - Q.real() * R.imag()) / 2.0;\n}\n\n\ndouble min_point(Point P, Point VP, Point Q, Point VQ, Point R, Point VR) {\n double L = 0.0, RR = 1.0;\n double A1;\n rep(i, 100) {\n double c1 = (L * 2.0 + RR) / 3.0;\n double c2 = (L + 2.0 * RR) / 3.0;\n A1 = area((1.0 - c1) * P + c1 * VP, (1.0 - c1) * Q + c1 * VQ, (1.0 - c1) * R + c1 * VR);\n double A2 = area((1.0 - c2) * P + c2 * VP, (1.0 - c2) * Q + c2 * VQ, (1.0 - c2) * R + c2 * VR);\n if (A1 < A2) {\n RR = c2;\n }\n else L = c1;\n }\n return A1;\n}\n\nvoid solve(ll N, ll p, ll q, ll r) {\n\n double an = 1e18;\n\n vector<Point> P(N);\n rep(i, N)cin >> P[i];\n priority_queue<pair<double, ll>, vector<pair<double, ll>>, greater<pair<double, ll>>> Q;\n Q.push({ dis(P[p],P[(p + 1) % N]),0 });\n Q.push({ dis(P[q],P[(q + 1) % N]),1 });\n Q.push({ dis(P[r],P[(r + 1) % N]),2 });\n vll NW = { p,q,r };\n vector<Point> NP = { P[p],P[q],P[r] };\n double NT = 0.0;\n rep(i, 5 * N) {\n double ET = Q.top().first;\n ll id = Q.top().second;\n Q.pop();\n double dt = ET - NT;\n\n vector<Point> nextP(3);\n rep(j, 3) {\n ll jd = NW[j];\n Point DP = P[(jd + 1) % N] - P[jd];\n double nm = abs(DP);\n nextP[j] = NP[j] + DP * dt / nm;\n }\n an = min(an, min_point(NP[0], nextP[0], NP[1], nextP[1], NP[2], nextP[2]));\n swap(NP, nextP);\n NW[id] = (NW[id] + 1) % N;\n NT = ET;\n Q.push({ ET+dis(NP[id],P[(NW[id]+1)%N]),id });\n }\n\n cout << an << endl;\n return;\n}\n\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N, p, q, r;\n while (cin >> N >> p >> q >> r, N != 0)solve(N, p - 1, q - 1, r - 1);\n\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3608, "score_of_the_acc": -0.0285, "final_rank": 3 }, { "submission_id": "aoj_3295_9391200", "code_snippet": "#include <bits/stdc++.h>\n#define all(a) a.begin(),a.end()\n#define rep(i,n) for(int i=0;i<(n);i++)\nusing namespace std;\nconst double eps=1e-11;\ndouble dist(double x1,double y1,double x2,double y2){\n double dx=x1-x2,dy=y1-y2;\n return sqrt(dx*dx+dy*dy);\n}\n\ndouble area(double x1,double y1,double x2,double y2){\n return abs((x1*y2-x2*y1)/2);\n}\n\ndouble get_min(double xp1,double yp1,double xq1,double yq1,double xr1,double yr1,double xp2,double yp2,double xq2,double yq2,double xr2,double yr2){\n xq1-=xp1;\n yq1-=yp1;\n xr1-=xp1;\n yr1-=yp1;\n xq2-=xp2;\n yq2-=yp2;\n xr2-=xp2;\n yr2-=yp2;\n double vxq=xq2-xq1,vyq=yq2-yq1,vxr=xr2-xr1,vyr=yr2-yr1;\n double lb=0,ub=1;\n double larea=area(xq1,yq1,xr1,yr1);\n double rarea=area(xq2,yq2,xr2,yr2);\n double marea=area(xq1+vxq/2,yq1+vyq/2,xr1+vxr/2,yr1+vyr/2);\n if(larea+rarea<=2*marea)return min(larea,rarea);\n rep(i,100){\n double mi1=(lb*2+ub)/3,mi2=(lb+ub*2)/3;\n double area1=area(xq1+mi1*vxq,yq1+mi1*vyq,xr1+mi1*vxr,yr1+mi1*vyr);\n double area2=area(xq1+mi2*vxq,yq1+mi2*vyq,xr1+mi2*vxr,yr1+mi2*vyr);\n if(area1+eps<area2)ub=mi2;\n else lb=mi1;\n }\n double area1=area(xq1+lb*vxq,yq1+lb*vyq,xr1+lb*vxr,yr1+lb*vyr);\n return area1;\n}\n\nvoid solve(int n,int kp,int kq,int kr){\n vector<int>x(n),y(n);\n rep(i,n)cin>>x[i]>>y[i];\n kp--;kq--;kr--;\n x.push_back(x[0]);y.push_back(y[0]);\n double ans=1e18;\n double xp=x[kp],yp=y[kp],xq=x[kq],yq=y[kq],xr=x[kr],yr=y[kr];\n int ep=kp,eq=kq,er=kr;\n\n rep(i,4*n){\n double to_next_p=dist(xp,yp,x[ep+1],y[ep+1]);\n double to_next_q=dist(xq,yq,x[eq+1],y[eq+1]);\n double to_next_r=dist(xr,yr,x[er+1],y[er+1]);\n double t=min({to_next_p,to_next_q,to_next_r});\n double vxp=(x[ep+1]-x[ep])/dist(x[ep],y[ep],x[ep+1],y[ep+1]);\n double vyp=(y[ep+1]-y[ep])/dist(x[ep],y[ep],x[ep+1],y[ep+1]);\n double vxq=(x[eq+1]-x[eq])/dist(x[eq],y[eq],x[eq+1],y[eq+1]);\n double vyq=(y[eq+1]-y[eq])/dist(x[eq],y[eq],x[eq+1],y[eq+1]);\n double vxr=(x[er+1]-x[er])/dist(x[er],y[er],x[er+1],y[er+1]);\n double vyr=(y[er+1]-y[er])/dist(x[er],y[er],x[er+1],y[er+1]);\n double xpn=xp+vxp*t;\n double ypn=yp+vyp*t;\n double xqn=xq+vxq*t;\n double yqn=yq+vyq*t;\n double xrn=xr+vxr*t;\n double yrn=yr+vyr*t;\n ans=min(ans,get_min(xp,yp,xq,yq,xr,yr,xpn,ypn,xqn,yqn,xrn,yrn));\n xp=xpn;yp=ypn;xq=xqn;yq=yqn;xr=xrn;yr=yrn;\n if(to_next_p<=to_next_q&&to_next_p<=to_next_r){\n ep=(ep+1)%n;\n xp=x[ep];yp=y[ep];\n }\n if(to_next_q<=to_next_p&&to_next_q<=to_next_r){\n eq=(eq+1)%n;\n xq=x[eq];yq=y[eq];\n }\n if(to_next_r<=to_next_p&&to_next_r<=to_next_q){\n er=(er+1)%n;\n xr=x[er];yr=y[er];\n }\n }\n printf(\"%.9lf\\n\",ans);\n}\n\nint main(){\n\tint n,kp,kq,kr;\n while(1){\n cin>>n>>kp>>kq>>kr;\n if(n==0)return 0;\n solve(n,kp,kq,kr);\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3596, "score_of_the_acc": -0.0056, "final_rank": 1 }, { "submission_id": "aoj_3295_9386577", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing Point=complex<double>;\n\nint solve(){\n int N;\n cin>>N;\n vector<int>K(3);\n for(int t=0;t<3;t++){\n cin>>K[t];\n K[t]--;\n }\n if(N==0)return 0;\n vector<int>X(N),Y(N);\n for(int i=0;i<N;i++)cin>>X[i]>>Y[i];\n vector<Point>vp(N);\n for(int i=0;i<N;i++)vp[i]=Point(X[i],Y[i]);\n vector<pair<double,int>>tm;\n tm.push_back(make_pair(0.0,-1));\n for(int t=0;t<3;t++){\n double cnt=0.0;\n for(int i=0;i<N;i++){\n double d=abs(vp[(K[t]+i+1)%N]-vp[(K[t]+i)%N]);\n cnt+=d;\n tm.push_back(make_pair(cnt,t));\n }\n }\n sort(tm.begin(),tm.end());\n int sz=tm.size();\n vector<int>at(3);\n vector<Point>now(3);\n for(int t=0;t<3;t++){\n at[t]=K[t];\n now[t]=vp[at[t]];\n }\n double ans=1e18;\n auto area=[&](double p,double q)-> double {\n vector<Point>now2(3);\n for(int t=0;t<3;t++){\n double d=abs(vp[(at[t]+1)%N]-vp[at[t]]);\n double ex=vp[(at[t]+1)%N].real()-vp[at[t]].real();\n double ey=vp[(at[t]+1)%N].imag()-vp[at[t]].imag();\n now2[t]=Point(now[t].real()+ex*(q-p)/d,now[t].imag()+ey*(q-p)/d);\n }\n for(int t=1;t<3;t++)now2[t]-=now2[0];\n return abs(now2[1].real()*now2[2].imag()-now2[1].imag()*now2[2].real())*0.5;\n };\n for(int i=0;i<sz-1;i++){\n double le=tm[i].first,ri=tm[i+1].first;\n for(int p=0;p<100;p++){\n double ml=(2*le+ri)/3.0,mr=(le+2*ri)/3.0;\n if(area(tm[i].first,ml)>area(tm[i].first,mr))le=ml;\n else ri=mr;\n }\n ans=min(ans,area(tm[i].first,(le+ri)/2.0));\n for(int t=0;t<3;t++){\n double d=abs(vp[(at[t]+1)%N]-vp[at[t]]);\n double ex=vp[(at[t]+1)%N].real()-vp[at[t]].real();\n double ey=vp[(at[t]+1)%N].imag()-vp[at[t]].imag();\n now[t]=Point(now[t].real()+ex*(tm[i+1].first-tm[i].first)/d,now[t].imag()+ey*(tm[i+1].first-tm[i].first)/d);\n }\n at[tm[i+1].second]=(at[tm[i+1].second]+1)%N;\n }\n cout<<ans<<endl;\n return 1;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout<<fixed<<setprecision(15);\n while(solve());\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 3728, "score_of_the_acc": -0.2516, "final_rank": 9 }, { "submission_id": "aoj_3295_9334106", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)\n#define rrep(i,start,end) for (long long i = start;i >= (long long)(end);i--)\n#define repn(i,end) for(long long i = 0; i <= (long long)(end); i++)\n#define reps(i,start,end) for(long long i = start; i < (long long)(end); i++)\n#define repsn(i,start,end) for(long long i = start; i <= (long long)(end); i++)\n#define each(p,a) for(auto &p:a)\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\ntypedef vector<long long> vll;\ntypedef vector<pair<long long ,long long>> vpll;\ntypedef vector<vector<long long>> vvll;\ntypedef set<ll> sll;\ntypedef map<long long , long long> mpll;\ntypedef pair<long long ,long long> pll;\ntypedef tuple<long long , long long , long long> tpl3;\n#define LL(...) ll __VA_ARGS__; input(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__; input(__VA_ARGS__)\n#define Str(...) string __VA_ARGS__; input(__VA_ARGS__)\n#define Ch(...) char __VA_ARGS__; input(__VA_ARGS__)\n#define all(a) (a).begin(),(a).end()\n#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );\n#define sz(x) (int)x.size()\n// << std::fixed << std::setprecision(10)\nconst ll INF = 1LL << 60;\nconst ld EPS = 1e-9;\n \ninline ll lfloor(ll x,ll m){return (x - ((x % m+ m)%m))/m;}\ninline ll positive_mod(ll a,ll m){return (a % m + m)%m;}\ninline ll popcnt(ull a){ return __builtin_popcountll(a);}\ntemplate<class T> bool chmin(T& a, T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T> bool chmax(T& a, T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> std::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T> std::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\ntemplate<typename T1, typename T2>std::ostream &operator<< (std::ostream &os, std::pair<T1,T2> p){os << \"{\" << p.first << \",\" << p.second << \"}\";return os;}\ntemplate<class... T>void input(T&... a){(cin >> ... >> a);}\nvoid print(){cout << endl;}\ntemplate<class T, class... Ts>void print(const T& a, const Ts&... b){cout << a;((cout << ' ' << b), ...);cout << endl;}\ntemplate<class T> void pspace(const T& a){ cout << a << ' ';}\nvoid perr(){cerr << endl;}\ntemplate<class T, class... Ts>void perr(const T& a, const Ts&... b){cerr << a;((cerr << ' ' << b), ...);cerr << endl;}\nvoid yes(bool i = true){ return print(i?\"yes\":\"no\"); }\nvoid Yes(bool i = true){ return print(i?\"Yes\":\"No\"); }\nvoid YES(bool i = true){ return print(i?\"YES\":\"NO\"); }\ntemplate <class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v) e++;return v;}\ntemplate <class T> vector<T> operator++(vector<T> &v, signed) {auto res = v;for(auto &e : v) e++;return res;}\ntemplate <class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v) e--;return v;}\ntemplate <class T> vector<T> operator--(vector<T> &v, signed) {auto res = v;for(auto &e : v) e--;return res;}\n//grid探索用\nvector<ll> _ta = {0,0,1,-1,1,1,-1,-1};\nvector<ll> _yo = {1,-1,0,0,1,-1,1,-1};\nbool isin(ll now_i,ll now_j,ll h,ll w){return (0<=now_i && now_i < h && 0 <= now_j && now_j < w);}\n \nll lpow(ll x,ll n){ll ans = 1;while(n >0){if(n & 1)ans *= x;x *= x;n >>= 1;}return ans;}\nll Modlpow(ll x,ll n,ll m){ll ans = 1;ll a = x%m;while(n >0){if(n & 1){ans *= a;ans%= m;}a *= a;a %= m;n >>= 1;}return ans;} \nconst ll MOD9 = 998244353LL;\nconst ll MOD10 = 1000000007LL;\n\n// for AOJ or ICPC or etc..\n// 全部が0だったらtrueを返す\ntemplate<class Tp> bool zero (const Tp &x) {return x == 0;}\ntemplate<class Tp, class... Args> bool zero (const Tp &x, const Args& ...args) {return zero(x) and zero(args...);}\n\n\n\n//参考 https://github.com/saphmitchy/deliair-lib\n// 型名\n// R:Real, P:Point, L:Line, S:Segment, C:Circle, VP:vector<Point>\n\n#define X(p) real(p)\n#define Y(p) imag(p)\n\nusing R = ld;\nusing P = complex<R>;\nusing VP = vector<P>;\n\n//const R EPS = 1e-9; // ここは適宜調節する,いつものやつから消す\nconst R pi = acos(-1.0);\n\nint sgn(R a) {\n return (a < -EPS) ? -1 : (a > EPS) ? 1 : 0;\n} // 符号関数\n\nbool eq(R a, R b) {//実数の一致判定\n return sgn(b - a) == 0;\n}\n\nP operator*(P p, R d) {//ベクトルのd倍\n return P(X(p) * d, Y(p) * d);\n}\n\nP operator/(P p, R d) {//ベクトルの1/d倍\n return p * (1 / d);\n}\n\nistream &operator>>(istream &is, P &p) {\n // R a, b; // 入力が小数\n int a, b; // 入力が整数\n is >> a >> b;\n p = P(a, b);\n return is;\n}\n\nostream &operator<<(ostream &os, P p) {\n return os << X(p) << ' ' << Y(p);\n}\n\nR getarg(P b,P a){//ベクトルbはベクトルaを何radian回転させる必要があるか\n assert(sgn(abs(a)) != 0);//長さが0はだめ\n return arg(b/a);\n}\n\nbool cp_x(P p, P q) {//ベクトルの比較x軸で比較->y軸で比較\n if (!eq(X(p), X(q)))\n return X(p) < X(q);\n return Y(p) < Y(q);\n}\n\nbool cp_y(P p, P q) {//ベクトルの比較y軸で比較->x軸で比較\n if (!eq(Y(p), Y(q)))\n return Y(p) < Y(q);\n return X(p) < X(q);\n}\n\nstruct L {//直線ab\n P a, b;\n L() {}\n L(P a, P b) : a(a), b(b) {}\n\n // 入出力(必要なら)\n friend ostream &operator<<(ostream &os, L &l) {\n return os << l.a << ' ' << l.b;\n }\n friend istream &operator>>(istream &is, L &l) {\n return is >> l.a >> l.b;\n }\n};\n\nstruct S : L {//線分ab\n S() {}\n S(P a, P b) : L(a, b) {}\n};\n\nstruct C {//中心p 半径rの円\n P p;\n R r;\n C() {}\n C(P p, R r) : p(p), r(r) {}\n};\n\nP rot(P p, R t) {//ベクトルの回転\n return p * P(cos(t), sin(t));\n}\n\n//2つのベクトルの内積\nR dot(P p, P q) {\n return X(p) * X(q) + Y(p) * Y(q);\n}\n\n//2つのベクトルの外積\nR det(P p, P q) {\n return X(p) * Y(q) - Y(p) * X(q);\n}\n\n// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C&lang=jp\nint ccw(P a, P b, P c) { // 線分 ab に対する c の位置関係 \n b -= a, c -= a;//ベクトルab,ベクトルacにした\n if (sgn(det(b, c)) == 1)//外積右ねじ正\n return +1; // COUNTER_CLOCKWISE a,b,cが反時計回り\n if (sgn(det(b, c)) == -1)\n return -1; // CLOCKWISE\n if (dot(b, c) < 0.0)\n return +2; // ONLINE_BACK\n if (norm(b) < norm(c))\n return -2; // ONLINE_FRONT\n return 0; // ON_SEGMENT\n}\n\nbool para(L a, L b) { // 平行判定\n return eq(det(a.b - a.a, b.b - b.a), 0.0);\n}\n\nbool orth(L a, L b) { // 垂直判定\n return eq(dot(a.b - a.a, b.b - b.a), 0.0);\n}\n\nP proj(L l, P p) { // 垂線の足\n R t = dot(p - l.a, l.b - l.a) / norm(l.b - l.a);\n return l.a + (l.b - l.a) * t;\n}\n\n// これいる?\n// P proj(S s, P p) {\n// R t = dot(p - s.a, s.b - s.a) / norm(s.b - s.a);\n// return s.a + (s.b - s.a) * t;\n// }\n\nP refl(L l, P p) { // 線対称の位置にある点\n return p + (proj(l, p) - p) * 2.0;\n}\n\nbool inter(L l, P p) { // 交点を持つか判定\n return abs(ccw(l.a, l.b, p)) != 1;\n}\n\nbool inter(S s, P p) {\n return ccw(s.a, s.b, p) == 0;\n}\n\nbool inter(L l, L m) {\n if (!eq(det(l.b - l.a, m.b - m.a), 0.0))\n return true;\n return eq(det(l.b - l.a, m.b - l.a), 0.0);\n}\n\nbool inter(L l, S s) {\n return sgn(det(l.b - l.a, s.a - l.a) * det(l.b - l.a, s.b - l.a)) <= 0;\n}\n\nbool inter(S s, L l) {\n return inter(l, s);\n}\n\nbool inter(S s, S t) {\n if (ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) > 0)\n return false;\n return ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\nR dist(P p, P q) {\n return abs(q - p);\n}\n\nR dist(L l, P p) {\n return abs(p - P(proj(l, p)));\n}\n\nR dist(S s, P p) {\n P h = proj(s, p);\n if (inter(s, h))\n return abs(h - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\n\nR dist(L l, L m) {\n return inter(l, m) ? 0.0 : dist(l, m.a);\n}\n\nR dist(S s, S t) {\n if (inter(s, t))\n return 0.0;\n return min({dist(s, t.a), dist(s, t.b), dist(t, s.a), dist(t, s.b)});\n}\n\nR dist(L l, S s) {\n if (inter(l, s))\n return 0.0;\n return min(dist(l, s.a), dist(l, s.b));\n}\n\nR dist(S s, L l) {\n return dist(l, s);\n}\n\nbool inter(C c, L l) {\n return sgn(c.r - dist(l, c.p)) >= 0;\n}\n\nbool inter(C c, P p) {\n return eq(abs(p - c.p), c.r);\n}\n\n// 共通接線の本数\n// 交点なし:4\n// 外接:3\n// 2点で交わる:2\n// 内接:1\n// 一方がもう一方を内包:0\nint inter(C c1, C c2) {\n if (c1.r < c2.r)\n swap(c1, c2);\n R d = abs(c1.p - c2.p);\n int a = sgn(d - c1.r - c2.r);\n if (a >= 0)\n return 3 + a;\n return 1 + sgn(d - c1.r + c2.r);\n}\n\nVP crosspoint(L l, L m) {\n VP ret;\n if (!inter(l, m))\n return ret;\n R A = det(l.b - l.a, m.b - m.a);\n R B = det(l.b - l.a, l.b - m.a);\n if (eq(A, 0.0) && eq(B, 0.0)) {\n ret.emplace_back(m.a);\n } else {\n ret.emplace_back(m.a + (m.b - m.a) * B / A);\n }\n return ret;\n}\n\nVP crosspoint(S s, S t) {\n return inter(s, t) ? crosspoint(L(s), L(t)) : VP();\n}\n\nVP crosspoint(C c, L l) {//円と直線の交点\n P h = proj(l, c.p);\n P e = (l.b - l.a) / abs(l.b - l.a);\n VP ret;\n if (!inter(c, l))\n return ret;\n if (eq(dist(l, c.p), c.r)) {\n ret.emplace_back(h);\n } else {\n R b = sqrt(c.r * c.r - norm(h - c.p));\n ret.push_back(h + e * b), ret.push_back(h - e * b);\n }\n return ret;\n}\n\nVP crosspoint(C c, S s) {//円と線分の交点\n P h = proj(s, c.p);\n P e = (s.b - s.a) / abs(s.b - s.a);\n VP ret;\n if (!inter(c, s))\n return ret;\n if (eq(dist(s, c.p), c.r)) {\n ret.emplace_back(h);\n } else {\n R b = sqrt(c.r * c.r - norm(h - c.p));\n if(ccw(s.a,s.b,h - e * b) == 0){//s.aに近い方から線分上なら追加する\n ret.push_back(h - e * b);\n }\n if(ccw(s.a,s.b,h + e * b)==0){\n ret.push_back(h + e * b);\n }\n }\n return ret;\n}\n\nVP crosspoint(C c1, C c2) {//2つの円の交わる点\n R d = abs(c1.p - c2.p);\n R a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n R t = atan2(Y(c2.p) - Y(c1.p), X(c2.p) - X(c1.p));\n VP ret;\n if (inter(c1, c2) % 4 == 0) // 交わらないとき\n return ret;\n if (eq(a, 0.0)) {\n ret.emplace_back(P(c1.p + rot(P(c1.r, 0.0), t)));\n } else {\n P p1 = c1.p + rot(P(c1.r, 0.0), t + a);\n P p2 = c1.p + rot(P(c1.r, 0.0), t - a);\n ret.emplace_back(p1), ret.emplace_back(p2);\n }\n return ret;\n}\n\nVP cut(VP p, L l, bool border = true) { // 直線が多角形に切り取られる区間\n int n = sz(p);\n p.emplace_back(p[0]), p.emplace_back(p[1]);\n VP ret;\n rep(i, n) {\n if (!eq(dist(l, p[i]), 0) && !eq(dist(l, p[i + 1]), 0)) {\n S s(p[i], p[i + 1]);\n if (eq(dist(l, s), 0)) {\n auto res = crosspoint(l, s);\n ret.emplace_back(res[0]);\n }\n }\n if (eq(dist(l, p[i + 1]), 0)) {\n if ((eq(dist(l, p[i]), 0) || eq(dist(l, p[i + 2]), 0)) && !border)\n continue;\n S s(p[i], p[i + 2]);\n if (eq(dist(l, s), 0))\n ret.emplace_back(p[i + 1]);\n }\n }\n return ret;\n}\n\nVP rectangle(S s, R r) { // sを軸とした幅rの長方形\n P d = (s.a - s.b) * P(0, 1);\n d *= r / sqrt(norm(d));\n return VP{s.a + d, s.a - d, s.b - d, s.b + d};\n}\n\nL vertical_bisector(P p, P q) { // 垂直二等分線\n L l;\n l.a = (p + q) * 0.5;\n l.b = l.a + rot(q - p, pi * 0.5);\n return l;\n}\n\nL angle_bisector(P a,P b,P c){//角abcの二等分線(角bの2等分線)\n L l;\n l.a = b;\n R ang = atan2(Y(c-b),X(c-b)) - atan2(Y(a-b),X(a-b));//なす角\n ang/=2.0;\n l.b = l.a + rot(a-b,ang);\n return l;\n}\n\nC Apollonius(P p, P q, R a, R b) { // アポロニウスの円\n P p1 = (p * b + q * a) / (a + b), p2 = (-p * b + q * a) / (a - b);\n C c;\n c.p = (p1 + p2) * 0.5;\n c.r = abs(p1 - p2) * 0.5;\n return c;\n}\n\nR area(VP p) { // 多角形の面積\n R ret = 0.0;\n int n = sz(p);\n rep(i, n) ret += det(p[i], p[(i + 1) % n]);\n return abs(ret * 0.5);\n}\n\nint in_polygon(VP p, P q) { // IN:2, ON:1, OUT:0\n int n = sz(p);\n int ret = 0;\n rep(i, n) {\n P a = p[i] - q, b = p[(i + 1) % n] - q;\n if (eq(det(a, b), 0.0) && sgn(dot(a, b)) <= 0)\n return 1;\n if (Y(a) > Y(b))\n swap(a, b);\n if (sgn(Y(a)) <= 0 && sgn(Y(b)) == 1 && sgn(det(a, b)) == 1)\n ret ^= 2;\n }\n return ret;\n}\n\nVP tangent(C c, P p) { // 点 p を通る円 c の接線と c の接点\n return crosspoint(c, C(p, sqrt(norm(p - c.p) - c.r * c.r)));\n}\n\nvector<L> tangent(C c1, C c2) { // 共通接線\n vector<L> ret;\n if (c1.r < c2.r)\n swap(c1, c2);\n R r = abs(c2.p - c1.p);\n if (eq(r, 0.0))\n return ret;\n P u = (c2.p - c1.p) / r;\n P v = rot(u, pi * 0.5);\n for (R s : {1.0, -1.0}) {\n R h = (c1.r + c2.r * s) / r;\n if (eq(abs(h), 1.0)) {\n ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r);\n } else if (abs(h) < 1.0) {\n P uu = u * h, vv = v * sqrt(1.0 - h * h);\n ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s);\n ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s);\n }\n }\n return ret;\n}\n\nVP convex_hull(VP p) { // 凸包\n sort(all(p), cp_x);\n p.erase(unique(all(p)), end(p));\n int n = sz(p), k = 0;\n if (n == 1)\n return p;\n VP ch(2 * n);\n for (int i = 0; i < n; ch[k++] = p[i++]) {\n while (k >= 2 && sgn(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) <= 0)\n k--;\n }\n for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n while (k >= t && sgn(det(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1])) <= 0)\n k--;\n }\n ch.resize(k - 1);\n return ch;\n}\n\nR closest_pair(VP p) { // 最近点対の距離\n if (sz(p) <= 1)\n return 1e18;\n sort(all(p), cp_x);\n VP memo(sz(p));\n\n function<R(int, int)> rec = [&](int l, int r) {\n if (r - l <= 1)\n return R(1e18);\n int m = (l + r) >> 1;\n R x = X(p[m]);\n R ret = min(rec(l, m), rec(m, r));\n inplace_merge(p.begin() + l, p.begin() + m, p.begin() + r, cp_y);\n int cnt = 0;\n reps(i, l, r) {\n if (abs(X(p[i]) - x) >= ret)\n continue;\n rep(j, cnt) {\n P d = p[i] - memo[cnt - j - 1];\n if (Y(d) >= ret)\n break;\n chmin(ret, abs(d));\n }\n memo[cnt++] = p[i];\n }\n return ret;\n };\n\n return rec(0, sz(p));\n}\n\nR farthest_pair(VP p) {//最遠点対の距離\n VP ps = convex_hull(p);\n ll n = ps.size();\n if(n == 2){//凸包が潰れてる\n return dist(ps[0],ps[1]);\n }\n ll i = 0,j = 0;\n rep(k,n){//x軸方向に最も遠い点対を求める\n if(cp_x(ps[k],ps[i]))i = k;\n if(cp_x(ps[j],ps[k]))j = k;\n }\n R ret = 0;\n ll si = i,sj = j;\n while(i != sj || j != si){//180度反転しきるまで\n ret = max(ret,dist(ps[i],ps[j]));\n if(det(ps[(i+1)%n] - ps[i],ps[(j+1)%n]-ps[j]) < 0){\n i = (i + 1) % n;\n }else{\n j = (j + 1) % n;\n }\n }\n return ret;\n}\n\n// 原点, 点 a, 点 b とで囲まれる領域の面積 (三角形 ver と扇型 ver)\nR calc_element(P a, P b, R cr,bool triangle){\n if(triangle)return det(a,b)/2;\n else{\n P tmp = b * (P(X(a),-Y(a)));\n R ang = atan2(Y(tmp),X(tmp));\n return cr * cr * ang/2;\n }\n}\n\n// 円 C と、三角形 ((0, 0), ia, ib) との共通部分の面積\nR common_area(C c, P ia,P ib){\n P a = ia - c.p , b = ib - c.p;\n if(eq(abs(a-b),0))return 0;\n bool isin_a = (sgn(c.r - abs(a))>= 0);\n bool isin_b = (sgn(c.r - abs(b))>= 0);\n if(isin_a && isin_b)return calc_element(a,b,c.r,true);//aもbも円の中\n\n C oc(P(0,0),c.r);\n S seg(a,b);\n VP cr = crosspoint(oc,seg);\n if(cr.empty())return calc_element(a,b,c.r,false);\n P s = cr[0],t = cr.back();\n return calc_element(s,t,c.r,true) + calc_element(a,s,c.r,isin_a) + calc_element(t,b,c.r,isin_b);\n\n}\n\n\nR common_area(C c, VP vp){// 円cと多角形の共通部分の面積\n R ret = 0;\n ll n = vp.size();\n rep(i,n){\n ret += common_area(c,vp[i],vp[(i+1)%n]);\n }\n return ret;\n}\n\nR common_area(C p, C q) {// 円と円の共通部分の面積\n R d = abs(p.p - q.p);\n if (d >= p.r + q.r - EPS) return 0;\n else if (d <= abs(p.r - q.r) + EPS) return min(p.r, q.r) * min(p.r, q.r) * pi;\n R pcos = (p.r*p.r + d*d - q.r*q.r) / (p.r*d*2);\n R pang = acosl(pcos);\n R parea = p.r*p.r*pang - p.r*p.r*sin(pang*2)/2;\n R qcos = (q.r*q.r + d*d - p.r*p.r) / (q.r*d*2);\n R qang = acosl(qcos);\n R qarea = q.r*q.r*qang - q.r*q.r*sin(qang*2)/2;\n return parea + qarea;\n}\n\nvector<VP> divisions(vector<L> lf, R lim = 1e9) {\n vector<L> ls;\n each(l, lf) {\n bool ok = true;\n each(m, ls) {\n if (para(l, m) & inter(l, m.a)) {\n ok = false;\n break;\n }\n }\n if (ok)\n ls.emplace_back(l);\n }\n VP lc{P(-lim, -lim), P(lim, -lim), P(lim, lim), P(-lim, lim)};\n rep(i, 4) ls.emplace_back(lc[i], lc[(i + 1) % 4]);\n int m = sz(ls);\n VP ps;\n vector<vector<int>> lp(m);\n rep(i, m) {\n reps(j, i + 1, m) {\n each(p, crosspoint(ls[i], ls[j])) {\n if (max(abs(X(p)), abs(Y(p))) < lim + EPS) {\n lp[i].emplace_back(sz(ps)), lp[j].emplace_back(sz(ps));\n ps.emplace_back(p);\n }\n }\n }\n }\n int n = sz(ps);\n vector<int> id(n, -1), to;\n vector<R> rg;\n vector<vector<pair<R, int>>> li(n);\n rep(i, m) {\n sort(all(lp[i]), [&ps](int a, int b) { return cp_x(ps[a], ps[b]); });\n vector<int> q;\n rep(j, sz(lp[i])) {\n int me = id[lp[i][j]], st = j;\n auto np = ps[lp[i][j]];\n while (j + 1 < sz(lp[i])) {\n if (abs(ps[lp[i][j + 1]] - np) < EPS) {\n j++;\n if (id[lp[i][j]] != -1)\n me = id[lp[i][j]];\n } else\n break;\n }\n if (me == -1)\n me = lp[i][st];\n reps(k, st, j + 1) id[lp[i][k]] = me;\n q.emplace_back(me);\n }\n rep(i, sz(q) - 1) {\n P d = ps[q[i + 1]] - ps[q[i]];\n R s = atan2(Y(d), X(d)), t = atan2(-Y(d), -X(d));\n int x = q[i], y = q[i + 1];\n li[x].emplace_back(s, sz(to));\n li[x].emplace_back(s + pi * 2, sz(to));\n to.emplace_back(y), rg.emplace_back(t);\n li[y].emplace_back(t, sz(to));\n li[y].emplace_back(t + pi * 2, sz(to));\n to.emplace_back(x), rg.emplace_back(s);\n }\n }\n rep(i, n) sort(all(li[i]));\n vector<bool> u(sz(to), false);\n vector<VP> ret;\n rep(i, n) {\n each(l, li[i]) {\n int ns = l.second;\n if (u[ns])\n continue;\n VP nv;\n int no = ns;\n bool ok = true;\n while (1) {\n if (sz(nv) > 1) {\n P x = nv[sz(nv) - 2], y = nv[sz(nv) - 1], z = ps[to[no]];\n int c = ccw(x, y, z);\n if (c == 1)\n ok = false;\n if (c != -1)\n nv.pop_back();\n }\n nv.emplace_back(ps[to[no]]);\n u[no] = true;\n no = upper_bound(all(li[to[no]]), pair(rg[no] + EPS, -1))->second;\n if (no == ns)\n break;\n }\n if (ok)\n ret.emplace_back(nv);\n }\n }\n return ret;\n}\n//ref https://github.com/drken1215/algorithm/blob/master/Geometry/arg_sort.cpp\n//verify https://atcoder.jp/contests/abc139/submissions/me\n//点列を偏角ソート\nvoid arg_sort(VP &v){\n //原点=0,(pi,2pi] = -1 (0pi,pi] = 1\n auto sign = [&](const P &p){\n if(sgn(X(p)) == 0 && sgn(Y(p)) == 0){\n return 0;\n }else if(sgn(Y(p)) == -1 || (sgn(Y(p)) == 0 && sgn(X(p)) == 1)){\n return -1;\n }else{\n return 1;\n }\n };\n auto cp = [&](const P &p,const P &q){\n if(sign(p) != sign(q)){\n return sign(p) < sign(q);\n }else{//外積>0で判定\n //同じ向きのときは未定義必要に応じて決める\n return X(p) * Y(q) - Y(p) * X(q) > 0;\n }\n };\n sort(v.begin(),v.end(),cp);\n}\n\n\n// 変数をちゃんと全部受け取る!\nvoid solve(ll n,ll a,ll b,ll c){\n a--;b--;c--;\n VP vp(n);\n rep(i,n){\n LL(x,y);\n vp[i] = P(x,y);\n }\n vector<tuple<ld,ll,ll>> ord;//時間、どれか、頂点番号\n auto createord = [&](ll sta,ll v){\n R time = 0;\n ll now = sta;\n rep(i,n){\n ll id = (now +1) % n;\n time += dist(vp[id], vp[now]);\n ord.push_back({time,v,id});\n now = id;\n }\n };\n createord(a,0);createord(b,1);createord(c,2);\n sort(all(ord));\n\n ld ans = 9 * lpow(10,9);\n\n ll siz = ord.size();\n\n ld time = 0;\n vll plc ={a,b,c};\n VP vplc = {vp[a],vp[b],vp[c]};\n rep(i,siz){\n auto[ntime,v,idx] = ord[i];\n if(eq(ntime,time)){\n plc[v] = idx;\n vplc[v] = vp[idx];\n time = ntime ;\n continue;\n }\n //time->ntimeの面積を三分探索\n\n\n\n //3分探索、初期値は閉区間の端でいい\n ld l = time;//左端閉\n ld r = ntime;//右端閉\n P v0 = vp[(plc[0]+1) % n] - vp[plc[0]];\n P v1 = vp[(plc[1]+1) % n] - vp[plc[1]];\n P v2 = vp[(plc[2]+1) % n] - vp[plc[2]];\n auto f = [&](ld m1,ld m2)->bool{\n //m1のときの方がいい値かどうか\n\n VP pm1 = {vplc[0]+v0 * (m1 - time)/(abs(v0)),vplc[1]+v1 * (m1 - time)/(abs(v1)),vplc[2]+v2 * (m1 - time)/(abs(v2))};\n VP pm2 = {vplc[0]+v0 * (m2 - time)/(abs(v0)),vplc[1]+v1 * (m2 - time)/(abs(v1)),vplc[2]+v2 * (m2 - time)/(abs(v2))};\n return abs(area(pm1)) < abs(area(pm2));\n };\n //最終的な答えは離散値ならl,l+1,rのいづれかにある\n while(abs(l-r) > 1e-9){\n ld m1 = l + (r-l)/3;\n ld m2 = r - (r-l)/3;\n if(f(m1,m2)){\n //m1のほうがいい値だった\n r = m2;\n }else{\n l = m1;\n }\n }\n\n VP pml = {vplc[0]+v0 * (l - time)/(abs(v0)),vplc[1]+v1 * (l - time)/(abs(v1)),vplc[2]+v2 * (l - time)/(abs(v2))};\n chmin(ans,abs(area(pml)));\n plc[v] = idx;\n\n vplc[0] = vplc[0] + v0 * (ntime - time)/(abs(v0));\n vplc[1] = vplc[1] + v1 * (ntime - time)/(abs(v1));\n vplc[2] = vplc[2] + v2 * (ntime - time)/(abs(v2));\n vplc[v] = vp[idx];\n time = ntime;\n }\n cout <<std::fixed << std::setprecision(10) << ans << endl;\n}\n \nint main(){\n ios::sync_with_stdio(false);cin.tie(nullptr);\n while(true){\n LL(n,a,b,c);//変数数調整\n if(zero(n,a,b,c))break;\n solve(n,a,b,c);\n }\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 3856, "score_of_the_acc": -0.446, "final_rank": 14 }, { "submission_id": "aoj_3295_9333419", "code_snippet": "#include <bits/stdc++.h>\n\n#include <algorithm>\n#include <cmath>\n#include <iterator>\n#include <utility>\n#include <vector>\n\nusing Real = long double;\nconstexpr Real EPS = 1e-10;\nconst Real PI = std::acos(-1);\n\nint sign(Real x) {\n return x < -EPS ? -1 : x > EPS ? 1 : 0;\n}\n\nbool eq(Real lhs, Real rhs) {\n return sign(rhs - lhs) == 0;\n}\n\nbool lte(Real lhs, Real rhs) {\n return sign(rhs - lhs) >= 0;\n}\n\nbool lt(Real lhs, Real rhs) {\n return sign(rhs - lhs) > 0;\n}\n\nbool gte(Real lhs, Real rhs) {\n return lte(rhs, lhs);\n}\n\nbool gt(Real lhs, Real rhs) {\n return lt(rhs, lhs);\n}\n\nstruct Point {\n Real x;\n Real y;\n Point(Real x = 0, Real y = 0): x(x), y(y) {}\n Point& operator+=(Point rhs) {\n this->x += rhs.x;\n this->y += rhs.y;\n return *this;\n }\n Point& operator-=(Point rhs) {\n this->x -= rhs.x;\n this->y -= rhs.y;\n return *this;\n }\n Point& operator*=(Real k) {\n this->x *= k;\n this->y *= k;\n return *this;\n }\n Point& operator/=(Real k) {\n this->x /= k;\n this->y /= k;\n return *this;\n }\n friend Point operator+(Point lhs, Point rhs) {\n return lhs += rhs;\n }\n friend Point operator-(Point lhs, Point rhs) {\n return lhs -= rhs;\n }\n friend Point operator*(Point p, Real k) {\n return p *= k;\n }\n friend Point operator/(Point p, Real k) {\n return p /= k;\n }\n friend Point operator*(Real k, Point p) {\n return p * k;\n }\n friend Point operator/(Real k, Point p) {\n return p / k;\n }\n friend bool operator==(Point lhs, Point rhs) {\n return eq(lhs.x, rhs.x) && eq(lhs.y, rhs.y);\n }\n friend bool operator<(Point lhs, Point rhs) {\n if (eq(lhs.x, rhs.x)) return lt(lhs.y, rhs.y);\n return lt(lhs.x, rhs.x);\n }\n friend bool operator>(Point lhs, Point rhs) {\n return rhs < lhs;\n }\n};\n\nusing Points = std::vector<Point>;\nusing Polygon = Points;\nusing Vector = Point;\n\nReal norm(Vector p) {\n return p.x * p.x + p.y * p.y;\n}\n\nReal abs(Vector p) {\n return std::sqrt(norm(p));\n}\n\nReal dot(Vector lhs, Vector rhs) {\n return lhs.x * rhs.x + lhs.y * rhs.y;\n}\n\nReal cross(Vector lhs, Vector rhs) {\n return lhs.x * rhs.y - lhs.y * rhs.x;\n}\n\nint ccw(Point p0, Point p1, Point p2) {\n Vector a = p1 - p0;\n Vector b = p2 - p0;\n\n if (cross(a, b) > EPS) return 1;\n\n if (cross(a, b) < -EPS) return -1;\n\n if (dot(a, b) < 0) return 2;\n\n if (norm(a) < norm(b)) return -2;\n\n return 0;\n}\n\nstruct Circle {\n Real r;\n Point c;\n Circle() {}\n Circle(Real r, Point c): r(r), c(c) {}\n};\n\nstruct Segment {\n Segment() {}\n Segment(Point p0, Point p1): p0(p0), p1(p1) {}\n Point p0, p1;\n};\n\nstruct Line {\n Line() {}\n Line(Point p0, Point p1): p0(p0), p1(p1) {}\n explicit Line(Segment s): p0(s.p0), p1(s.p1) {}\n Point p0, p1;\n};\n\nReal distance(Point lhs, Point rhs) {\n return abs(rhs - lhs);\n}\n\nReal distance(Line l, Point p) {\n return std::abs(cross(l.p1 - l.p0, p - l.p0)) / abs(l.p1 - l.p0);\n}\n\nReal distance(Segment s, Point p) {\n if (dot(s.p1 - s.p0, p - s.p0) < 0) {\n return distance(p, s.p0);\n }\n if (dot(s.p0 - s.p1, p - s.p1) < 0) {\n return distance(p, s.p1);\n }\n return distance(Line(s), p);\n}\n\nbool intersect(Segment lhs, Segment rhs) {\n return ccw(lhs.p0, lhs.p1, rhs.p0) * ccw(lhs.p0, lhs.p1, rhs.p1) <= 0\n && ccw(rhs.p0, rhs.p1, lhs.p0) * ccw(rhs.p0, rhs.p1, lhs.p1) <= 0;\n}\n\nbool intersect(Segment s, Point p) {\n return ccw(s.p0, s.p1, p) == 0;\n}\n\nReal distance(Segment lhs, Segment rhs) {\n if (intersect(lhs, rhs)) {\n return Real(0);\n }\n return std::min({distance(lhs, rhs.p0), distance(lhs, rhs.p1), distance(rhs, lhs.p0), distance(rhs, lhs.p1)});\n}\n\nbool parallel(Vector lhs, Vector rhs) {\n return eq(cross(lhs, rhs), 0);\n}\n\nbool parallel(Segment lhs, Segment rhs) {\n return parallel(lhs.p0 - lhs.p1, rhs.p0 - rhs.p1);\n}\n\nbool parallel(Line lhs, Line rhs) {\n return parallel(lhs.p0 - lhs.p1, rhs.p0 - rhs.p1);\n}\n\nPoint crosspoint(Line lhs, Line rhs) {\n Real a = cross(lhs.p1 - lhs.p0, rhs.p1 - rhs.p0);\n Real b = cross(lhs.p1 - lhs.p0, lhs.p1 - rhs.p0);\n return rhs.p0 + (rhs.p1 - rhs.p0) * b / a;\n}\n\nbool intersect(Line l, Segment s) {\n return ccw(l.p0, l.p1, s.p0) * ccw(l.p0, l.p1, s.p1) <= 0;\n}\n\nbool intersect(Circle c, Line l) {\n return lte(distance(l, c.c), c.r);\n}\n\nbool intersect(Circle c, Point p) {\n return eq(distance(c.c, p), c.r);\n}\n\nint intersect(Circle lhs, Circle rhs) {\n if (gt(lhs.r, rhs.r)) std::swap(lhs, rhs);\n Real d = distance(lhs.c, rhs.c);\n if (lt(lhs.r + rhs.r, d)) return 4;\n if (eq(lhs.r + rhs.r, d)) return 3;\n if (gt(lhs.r + d, rhs.r)) return 2;\n if (eq(lhs.r + d, rhs.r)) return 1;\n return 0;\n}\n\nbool orthogonal(Vector lhs, Vector rhs) {\n return eq(dot(lhs, rhs), 0);\n}\n\nbool orthogonal(Segment lhs, Segment rhs) {\n return orthogonal(lhs.p0 - lhs.p1, rhs.p0 - rhs.p1);\n}\n\nbool orthogonal(Line lhs, Line rhs) {\n return orthogonal(lhs.p0 - lhs.p1, rhs.p0 - rhs.p1);\n}\n\nPoint crosspoint(Segment lhs, Segment rhs) {\n Real d0 = distance(Line(lhs.p0, lhs.p1), rhs.p0);\n Real d1 = distance(Line(lhs.p0, lhs.p1), rhs.p1);\n return rhs.p0 + (rhs.p1 - rhs.p0) * (d0 / (d0 + d1));\n}\n\nReal arg(Vector p) {\n return std::atan2(p.y, p.x);\n}\n\nVector polar(Real a, Real r) {\n return Point(std::cos(r) * a, std::sin(r) * a);\n}\n\nPoint rotate(Point p, Real t) {\n Point v = polar(1, t);\n return Point(p.x * v.x - p.y * v.y, p.x * v.y + p.y * v.x);\n}\n\nReal angle(Point p0, Point p1, Point p2) {\n Real a = arg(p0 - p1);\n Real b = arg(p2 - p1);\n if (gt(a, b)) std::swap(a, b);\n return std::min(b - a, 2 * PI - (b - a));\n}\n\nPoints crosspoint(Circle lhs, Circle rhs) {\n Real d = abs(lhs.c - rhs.c);\n if (eq(d, lhs.r + rhs.r)) return {lhs.c + lhs.r * (rhs.c - lhs.c) / d};\n Real a = std::acos((lhs.r * lhs.r + d * d - rhs.r * rhs.r) / (2 * lhs.r * d));\n Real t = arg(rhs.c - lhs.c);\n return {lhs.c + polar(lhs.r, t + a), lhs.c + polar(lhs.r, t - a)};\n}\n\nPoint projection(Segment s, Point p) {\n Vector a = p - s.p0;\n Vector b = s.p1 - s.p0;\n Real t = dot(a, b) / norm(b);\n return s.p0 + t * b;\n}\n\nPoint projection(Line l, Point p) {\n Vector a = p - l.p0;\n Vector b = l.p1 - l.p0;\n Real t = dot(a, b) / norm(b);\n return l.p0 + t * b;\n}\n\nPoint reflection(Segment s, Point p) {\n return p + (projection(s, p) - p) * Real(2);\n}\n\nPoint reflection(Line l, Point p) {\n return p + (projection(l, p) - p) * Real(2);\n}\n\nPoints crosspoint(Circle c, Line l) {\n Vector p = projection(l, c.c);\n Real t = std::sqrt(c.r * c.r - norm(c.c - p));\n if (eq(t, 0)) return {p};\n Vector e = (l.p1 - l.p0) / abs(l.p1 - l.p0);\n return {p + t * e, p + -t * e};\n}\n\nReal area(Polygon poly) {\n int n = poly.size();\n Real result = 0;\n for (int i = 0; i < n; i++) {\n result += cross(poly[i], poly[(i + 1) % n]);\n }\n return result / 2;\n}\n\nReal perimeter(Polygon poly) {\n int n = poly.size();\n Real result = 0;\n for (int i = 0; i < n; i++) {\n result += abs(poly[i] - poly[(i + 1) % n]);\n }\n return result;\n}\n\nbool convex(Polygon poly) {\n int n = poly.size();\n for (int i = 0; i < n; i++) {\n if (ccw(poly[i], poly[(i + 1) % n], poly[(i + 2) % n]) == -1) return false;\n }\n return true;\n}\n\nint contain(Polygon poly, Point p) {\n int n = poly.size();\n bool parity = false;\n for (int i = 0; i < n; i++) {\n Point a = poly[i] - p;\n Point b = poly[(i + 1) % n] - p;\n if (gt(a.y, b.y)) std::swap(a, b);\n if (lte(a.y, 0) && lt(0, b.y) && lt(cross(a, b), 0)) parity ^= true;\n if (eq(cross(a, b), 0) && lte(dot(a, b), 0)) return 1;\n }\n return (parity ? 2 : 0);\n}\n\nPolygon convex_hull(Points points) {\n std::sort(points.begin(), points.end(), [](Point lhs, Point rhs) {\n if (eq(lhs.x, rhs.x)) return lt(lhs.y, rhs.y);\n return lt(lhs.x, rhs.x);\n });\n int n = points.size();\n Points lower, upper;\n lower.push_back(points[n - 1]);\n lower.push_back(points[n - 2]);\n upper.push_back(points[0]);\n upper.push_back(points[1]);\n for (int i = n - 3; i >= 0; i--) {\n for (int m = lower.size(); m >= 2 && ccw(lower[m - 2], lower[m - 1], points[i]) >= 0; m--) {\n lower.pop_back();\n }\n lower.push_back(points[i]);\n }\n for (int i = 2; i < n; i++) {\n for (int m = upper.size(); m >= 2 && ccw(upper[m - 2], upper[m - 1], points[i]) >= 0; m--) {\n upper.pop_back();\n }\n upper.push_back(points[i]);\n }\n std::reverse(lower.begin(), lower.end());\n std::copy(std::next(upper.rbegin()), std::prev(upper.rend()), std::back_inserter(lower));\n return lower;\n}\n\nPolygon convex_cut(Polygon poly, Line l) {\n int n = poly.size();\n Polygon res;\n for (int i = 0; i < n; i++) {\n Point a = poly[i];\n Point b = poly[(i + 1) % n];\n if (ccw(l.p0, l.p1, a) != -1) res.push_back(a);\n if (ccw(l.p0, l.p1, a) * ccw(l.p0, l.p1, b) == -1) {\n res.push_back(crosspoint(l, Line(a, b)));\n }\n }\n return res;\n}\n\nLine bisector(Point p0, Point p1, Point p2) {\n return Line(p1, p1 + polar(1, angle(p0, p1, p2) / 2));\n}\n\nCircle incircle(Point p0, Point p1, Point p2) {\n Point c = crosspoint(bisector(p0, p1, p2), bisector(p1, p2, p0));\n Real r = std::abs(2 * area({p0, p1, p2}) / perimeter({p0, p1, p2}));\n return Circle(r, c);\n}\n\nLine perpendicular(Line l, Point p) {\n Vector v = l.p1 - l.p0;\n return Line(p, p + Vector(-v.y, v.x));\n}\n\nLine perpendicular_bisector(Segment s) {\n return perpendicular(Line(s), (s.p0 + s.p1) / 2);\n}\n\nCircle circumscribed_circle(Point p0, Point p1, Point p2) {\n Point c = crosspoint(perpendicular_bisector(Segment(p0, p1)), perpendicular_bisector(Segment(p0, p2)));\n return Circle(distance(p0, c), c);\n}\n\nReal area(Circle c) {\n return c.r * c.r * PI;\n}\n\nPoints tangent(Circle c, Point p) {\n return crosspoint(c, Circle(std::sqrt(norm(c.c - p) - c.r * c.r), p));\n}\n\nPoint div(Segment s, Real t) {\n return s.p0 + t * (s.p1 - s.p0);\n}\n\nconst int ROOP = 100;\nReal calc(std::vector<Segment> segments) {\n Real l = 0;\n Real r = 1;\n for (int loop = 0; loop < ROOP; loop++) {\n Real m1 = (2 * l + r) / 3;\n Real m2 = (l + 2 * r) / 3;\n std::vector<Real> areas;\n for (Real t: {m1, m2}) {\n Polygon poly;\n for (int i = 0; i < 3; i++) {\n poly.push_back(div(segments[i], t));\n }\n areas.push_back(std::abs(area(poly)));\n }\n if (areas[0] > areas[1])\n l = m1;\n else\n r = m2;\n }\n Polygon poly;\n for (int i = 0; i < 3; i++) {\n poly.push_back(div(segments[i], l));\n }\n return std::abs(area(poly));\n}\n\nint solve() {\n int n;\n std::cin >> n;\n std::vector<int> s(3);\n for (int i = 0; i < 3; i++) std::cin >> s[i], s[i]--;\n if (n == 0) return 1;\n Polygon polygon;\n for (int i = 0; i < n; i++) {\n Point p;\n std::cin >> p.x >> p.y;\n polygon.push_back(p);\n }\n using Segments = std::vector<Segment>;\n std::vector<Segments> segss(3);\n for (int i = 0; i < 3; i++) {\n Segments segs;\n for (int j = 0; j < n; j++) {\n Point a = polygon[(j + s[i]) % n];\n Point b = polygon[(j + s[i] + 1) % n];\n segs.push_back(Segment(a, b));\n }\n segss[i] = segs;\n }\n Real ans = 1e18;\n while (!segss.front().empty()) {\n Segments segs;\n for (int i = 0; i < 3; i++) {\n segs.push_back(segss[i].back());\n segss[i].pop_back();\n }\n std::vector<Real> lengths(3);\n for (int i = 0; i < 3; i++) lengths[i] = abs(segs[i].p1 - segs[i].p0);\n Real min_length = *std::min_element(lengths.begin(), lengths.end());\n Segments left, right;\n for (int i = 0; i < 3; i++) {\n Vector v = segs[i].p1 - segs[i].p0;\n Point mid = segs[i].p1 - min_length * v / abs(v);\n left.push_back(Segment(segs[i].p0, mid));\n right.push_back(Segment(mid, segs[i].p1));\n }\n\n ans = std::min(ans, calc(right));\n for (int i = 0; i < 3; i++) {\n Vector v = left[i].p1 - left[i].p0;\n if (eq(norm(v), 0)) continue;\n segss[i].push_back(left[i]);\n }\n }\n std::cout << std::fixed << std::setprecision(10);\n std::cout << ans << std::endl;\n return 0;\n}\n\nint main() {\n while (!solve())\n ;\n}", "accuracy": 1, "time_ms": 430, "memory_kb": 3652, "score_of_the_acc": -0.1683, "final_rank": 4 }, { "submission_id": "aoj_3295_9303572", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll, ll>;\n#define rep(i, a, b) for(ll i = a; i < b; ++i)\n#define rrep(i, a, b) for(ll i = a; i >= b; --i)\nconstexpr ll inf = 4e18;\nstruct SetupIO {\n SetupIO() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n cout << fixed << setprecision(30);\n }\n} setup_io;\nusing Real = long double;\nconst Real EPS = Real(1e-8), PI = acos(Real(-1.0));\nint sign(const Real& r) {\n if(r <= -EPS) return -1;\n if(r >= +EPS) return +1;\n return 0;\n}\nbool eq(const Real& a, const Real& b) {\n return sign(a - b) == 0;\n}\nusing Point = complex<Real>;\nistream& operator>>(istream& is, Point& p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\nostream& operator<<(ostream& os, const Point& p) {\n return os << p.real() << \" \" << p.imag();\n}\nPoint operator*(const Point& p, const Real& d) {\n return Point(p.real() * d, p.imag() * d);\n}\nPoint operator/(const Point& p, const Real& d) {\n return Point(p.real() / d, p.imag() / d);\n}\nPoint rot(const Point& p, const Real& theta) {\n return p * Point(cos(theta), sin(theta));\n}\nReal dot(const Point& p1, const Point& p2) {\n return (conj(p1) * p2).real();\n}\nReal cross(const Point& p1, const Point& p2) {\n return (conj(p1) * p2).imag();\n}\nReal dist(const Point& p1, const Point& p2) {\n return abs(p1 - p2);\n}\nbool comp_x(const Point& p1, const Point& p2) {\n return eq(p1.real(), p2.real()) ? p1.imag() < p2.imag() : p1.real() < p2.real();\n}\nbool comp_y(const Point& p1, const Point& p2) {\n return eq(p1.imag(), p2.imag()) ? p1.real() < p2.real() : p1.imag() < p2.imag();\n}\nbool comp_arg(const Point& p1, const Point& p2) {\n return arg(p1) < arg(p2);\n}\nint ccw(const Point& a, Point b, Point c) {\n b -= a;\n c -= a;\n if(sign(cross(b, c)) == 1) return 1;\n if(sign(cross(b, c)) == -1) return -1;\n if(sign(dot(b, c)) == -1) return +2;\n if(norm(b) < norm(c)) return -2;\n return 0;\n}\nReal closest_pair(vector<Point> ps) {\n if((int)ps.size() <= 1) return Real(1e18);\n sort(ps.begin(), ps.end(), comp_x);\n vector<Point> memo(ps.size());\n auto func = [&](auto& func, int l, int r) -> Real {\n if(r - l <= 1) return Real(1e18);\n int m = (l + r) >> 1;\n Real x = ps[m].real();\n Real res = min(func(func, l, m), func(func, m, r));\n inplace_merge(ps.begin() + l, ps.begin() + m, ps.begin() + r, comp_y);\n int cnt = 0;\n for(int i = l; i < r; ++i) {\n if(abs(ps[i].real() - x) >= res) continue;\n for(int j = 0; j < cnt; ++j) {\n Point d = ps[i] - memo[cnt - j - 1];\n if(d.imag() >= res) break;\n res = min(res, abs(d));\n }\n memo[cnt++] = ps[i];\n }\n return res;\n };\n return func(func, 0, (int)ps.size());\n}\nstruct Line {\n Point a, b;\n Line() = default;\n Line(const Point& a, const Point& b)\n : a(a), b(b) {}\n};\nusing Segment = Line;\nbool is_parallel(const Line& a, const Line& b) {\n return eq(cross(a.b - a.a, b.b - b.a), 0.0);\n}\nbool is_orthogonal(const Line& a, const Line& b) {\n return eq(dot(a.b - a.a, b.b - b.a), 0.0);\n}\nPoint projection(const Line& l, const Point& p) {\n Real t = dot(p - l.a, l.b - l.a) / norm(l.b - l.a);\n return l.a + (l.b - l.a) * t;\n}\nPoint reflection(const Line& l, const Point& p) {\n return p + (projection(l, p) - p) * 2.0;\n}\nbool is_intersect_lp(const Line& l, const Point& p) {\n return abs(ccw(l.a, l.b, p)) != 1;\n}\nbool is_intersect_sp(const Segment& s, const Point& p) {\n return ccw(s.a, s.b, p) == 0;\n}\nbool is_intersect_ll(const Line& l1, const Line& l2) {\n if(!eq(cross(l1.b - l1.a, l2.b - l2.a), 0.0)) return true;\n return eq(cross(l1.b - l1.a, l2.b - l1.a), 0.0);\n}\nbool is_intersect_ls(const Line& l, const Segment& s) {\n return sign(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a)) <= 0;\n}\nbool is_intersect_sl(const Segment& s, const Line& l) {\n return is_intersect_ls(l, s);\n}\nbool is_intersect_ss(const Segment& s1, const Segment& s2) {\n if(ccw(s1.a, s1.b, s2.a) * ccw(s1.a, s1.b, s2.b) > 0) return false;\n return ccw(s2.a, s2.b, s1.a) * ccw(s2.a, s2.b, s1.b) <= 0;\n}\nvector<Point> intersection_ll(const Line& l1, const Line& l2) {\n vector<Point> res;\n if(!is_intersect_ll(l1, l2)) return res;\n Real a = cross(l1.b - l1.a, l2.b - l2.a);\n Real b = cross(l1.b - l1.a, l1.b - l2.a);\n if(eq(a, 0.0) and eq(b, 0.0)) {\n res.emplace_back(l2.a);\n } else {\n res.emplace_back(l2.a + (l2.b - l2.a) * b / a);\n }\n return res;\n}\nvector<Point> intersection_ss(const Segment& s1, const Segment& s2) {\n return is_intersect_ss(s1, s2) ? intersection_ll(Line(s1), Line(s2)) : vector<Point>();\n}\nReal dist_lp(const Line& l, const Point& p) {\n return abs(p - projection(l, p));\n}\nReal dist_sp(const Segment& s, const Point& p) {\n const Point h = projection(s, p);\n if(is_intersect_sp(s, h)) return abs(h - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\nReal dist_ll(const Line& l1, const Line& l2) {\n if(is_intersect_ll(l1, l2)) return 0.0;\n return dist_lp(l1, l2.a);\n}\nReal dist_ss(const Segment& s1, const Segment& s2) {\n if(is_intersect_ss(s1, s2)) return 0.0;\n return min({dist_sp(s1, s2.a), dist_sp(s1, s2.b), dist_sp(s2, s1.a), dist_sp(s2, s1.b)});\n}\nReal dist_ls(const Line& l, const Segment& s) {\n if(is_intersect_ls(l, s)) return 0.0;\n return min(dist_lp(l, s.a), dist_lp(l, s.b));\n}\nReal dist_sl(const Segment& s, const Line& l) {\n return dist_ls(l, s);\n}\nReal area(const vector<Point>& polygon) {\n Real res = 0.0;\n const int n = (int)polygon.size();\n for(int i = 0; i < n; ++i) {\n res += cross(polygon[i], polygon[(i + 1) % n]);\n }\n return abs(res * 0.5);\n}\nbool is_convex(const vector<Point>& polygon) {\n const int n = (int)polygon.size();\n for(int i = 0; i < n; ++i) {\n if(ccw(polygon[(i - 1 + n) % n], polygon[i], polygon[(i + 1) % n]) == -1) return false;\n }\n return true;\n}\nint in_polygon(const vector<Point>& polygon, const Point& p) {\n const int n = (int)polygon.size();\n int ret = 0;\n for(int i = 0; i < n; ++i) {\n Point a = polygon[i] - p, b = polygon[(i + 1) % n] - p;\n if(eq(cross(a, b), 0.0) and sign(dot(a, b)) <= 0) return 1;\n if(a.imag() > b.imag()) swap(a, b);\n if(sign(a.imag()) <= 0 and sign(b.imag()) == 1 and sign(cross(a, b)) == 1) ret ^= 2;\n }\n return ret;\n}\nvector<Point> convex_hull(vector<Point> ps) {\n sort(ps.begin(), ps.end(), comp_x);\n ps.erase(unique(ps.begin(), ps.end()), ps.end());\n int n = (int)ps.size(), k = 0;\n if(n == 1) return ps;\n vector<Point> ch(2 * n);\n for(int i = 0; i < n; ch[k++] = ps[i++]) {\n while(k >= 2 and sign(cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1])) == -1) {\n --k;\n }\n }\n for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) {\n while(k >= t and sign(cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1])) == -1) {\n --k;\n }\n }\n ch.resize(k - 1);\n return ch;\n}\nReal convex_diameter(const vector<Point>& polygon) {\n int n = (int)polygon.size(), is = 0, js = 0;\n for(int i = 1; i < n; ++i) {\n if(sign(polygon[i].imag() - polygon[is].imag()) == 1) is = i;\n if(sign(polygon[i].imag() - polygon[js].imag()) == -1) js = i;\n }\n Real maxdis = norm(polygon[is] - polygon[js]);\n int i = is, j = js;\n do {\n if(sign(cross(polygon[(i + 1) % n] - polygon[i], polygon[(j + 1) % n] - polygon[j])) >= 0) {\n j = (j + 1) % n;\n } else {\n i = (i + 1) % n;\n }\n if(norm(polygon[i] - polygon[j]) > maxdis) {\n maxdis = norm(polygon[i] - polygon[j]);\n }\n } while(i != is or j != js);\n return sqrt(maxdis);\n}\nvector<Point> convex_cut(const vector<Point>& polygon, const Line& l) {\n const int n = (int)polygon.size();\n vector<Point> res;\n for(int i = 0; i < n; ++i) {\n const Point cur = polygon[i], nex = polygon[(i + 1) % n];\n if(ccw(l.a, l.b, cur) != -1) res.emplace_back(cur);\n if(ccw(l.a, l.b, cur) * ccw(l.a, l.b, nex) < 0) {\n res.emplace_back(intersection_ll(Line(cur, nex), l)[0]);\n }\n }\n return res;\n}\nint main(void) {\n while(1) {\n int n, kp, kq, kr;\n cin >> n >> kp >> kq >> kr;\n kp--;\n kq--;\n kr--;\n if(n == 0) break;\n vector<Point> poly(n);\n rep(i, 0, n) {\n cin >> poly[i];\n }\n vector<Real> tp, tq, tr, t;\n tp.push_back(0.0l);\n tq.push_back(0.0l);\n tr.push_back(0.0l);\n t.push_back(0.0l);\n rep(i, 0, n) {\n Real dp = abs(poly[(kp + i + 1) % n] - poly[(kp + i) % n]);\n tp.push_back(tp.back() + dp);\n Real dq = abs(poly[(kq + i + 1) % n] - poly[(kq + i) % n]);\n tq.push_back(tq.back() + dq);\n Real dr = abs(poly[(kr + i + 1) % n] - poly[(kr + i) % n]);\n tr.push_back(tr.back() + dr);\n t.push_back(tp.back());\n t.push_back(tq.back());\n t.push_back(tr.back());\n }\n sort(t.begin(), t.end());\n t.erase(unique(t.begin(), t.end()), t.end());\n // rep(i, 0, (int)t.size()) {\n // cout << i << ' ' << t[i] << '\\n';\n // }\n // cout << '\\n';\n Real ans = inf;\n rep(i, 0, (int)t.size() - 1) {\n // cout << i << \"\\n\\n\";\n int ip = upper_bound(tp.begin(), tp.end(), t[i]) - tp.begin() - 1;\n int iq = upper_bound(tq.begin(), tq.end(), t[i]) - tq.begin() - 1;\n int ir = upper_bound(tr.begin(), tr.end(), t[i]) - tr.begin() - 1;\n // cout << ip << ' ' << iq << ' ' << ir << \"\\n\\n\";\n Point dirp = (poly[(kp + ip + 1) % n] - poly[(kp + ip) % n]) / abs(poly[(kp + ip + 1) % n] - poly[(kp + ip) % n]);\n Point dirq = (poly[(kq + iq + 1) % n] - poly[(kq + iq) % n]) / abs(poly[(kq + iq + 1) % n] - poly[(kq + iq) % n]);\n Point dirr = (poly[(kr + ir + 1) % n] - poly[(kr + ir) % n]) / abs(poly[(kr + ir + 1) % n] - poly[(kr + ir) % n]);\n Point sp = poly[(kp + ip) % n] + dirp * (t[i] - tp[ip]);\n Point sq = poly[(kq + iq) % n] + dirq * (t[i] - tq[iq]);\n Point sr = poly[(kr + ir) % n] + dirr * (t[i] - tr[ir]);\n Point gp = poly[(kp + ip) % n] + dirp * (t[i + 1] - tp[ip]);\n Point gq = poly[(kq + iq) % n] + dirq * (t[i + 1] - tq[iq]);\n Point gr = poly[(kr + ir) % n] + dirr * (t[i + 1] - tr[ir]);\n assert(eq(abs(gp - sp), t[i + 1] - t[i]));\n assert(eq(abs(gq - sq), t[i + 1] - t[i]));\n assert(eq(abs(gr - sr), t[i + 1] - t[i]));\n // cout << sp << ' ' << gp << '\\n';\n // cout << sq << ' ' << gq << '\\n';\n // cout << sr << ' ' << gr << '\\n';\n // cout << '\\n';\n Real a1x = gp.real() - sp.real(), b1x = sp.real();\n Real a1y = gp.imag() - sp.imag(), b1y = sp.imag();\n Real a2x = gq.real() - sq.real(), b2x = sq.real();\n Real a2y = gq.imag() - sq.imag(), b2y = sq.imag();\n Real a3x = gr.real() - sr.real(), b3x = sr.real();\n Real a3y = gr.imag() - sr.imag(), b3y = sr.imag();\n Real a = (a2x - a1x) * (a3y - a1y) - (a2y - a1y) * (a3x - a1x);\n Real b = (a2x - a1x) * (b3y - b1y) + (b2x - b1x) * (a3y - a1y) - (a2y - a1y) * (b3x - b1x) - (b2y - b1y) * (a3x - a1x);\n Real c = (b2x - b1x) * (b3y - b1y) - (b2y - b1y) * (b3x - b1x);\n // cout << a << ' ' << b << ' ' << c << '\\n';\n // cout << '\\n';\n ans = min(ans, abs(c) / 2.0l);\n ans = min(ans, abs(a + b + c) / 2.0l);\n if(eq(a, 0.0l)) {\n if(!eq(b, 0.0l)) {\n Real cand = -c / b;\n if(0.0l <= cand and cand <= 1.0l) {\n ans = min(ans, 0.0l);\n }\n }\n } else {\n Real cand1 = -b / (2.0l * a);\n if(0.0l <= cand1 and cand1 <= 1.0l) {\n ans = min(ans, abs(a * cand1 * cand1 + b * cand1 + c) / 2.0l);\n }\n if(b * b - 4.0l * a * c >= 0) {\n Real cand2 = (-b - sqrtl(b * b - 4.0l * a * c)) / (2.0l * a);\n if(0.0l <= cand2 and cand2 <= 1.0l) {\n ans = min(ans, 0.0l);\n }\n Real cand3 = (-b + sqrtl(b * b - 4.0l * a * c)) / (2.0l * a);\n if(0.0l <= cand3 and cand3 <= 1.0l) {\n ans = min(ans, 0.0l);\n }\n }\n }\n }\n cout << ans << '\\n';\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3716, "score_of_the_acc": -0.1911, "final_rank": 7 } ]
aoj_3298_cpp
Problem G 巡回勇者問題 あなたは JAG 王国の勇者である.鍛錬を積んでいるあなたの現在の所持金は 10 100 である. JAG 王国には 1, 2, ..., N で番号付けされた N 個の街がある.また,街 i と街 i+1 (1 ≤ i < N) の間には道路があり,通行すると所持金が C i 変動する.つまり, C i が正のときはあなたの所持金が |C i | だけ増加するが,そうでないときはあなたの所持金が |C i | だけ減少する. N 個の街すべてでクエストが発生しているため,勇者であるあなたは冒険に出かけることにした.冒険は以下を満たすものでなければならない. 冒険では, N 個すべての街で 1 度ずつクエストを行わなければならない. クエストを行う街の順番を (x 1 , x 2 , ..., x N ) と定めたとする ( i ≠ j ならば x i ≠ x j ).あなたは街 x 1 を出発地としてクエストを順番に行う.街 x k から x k+1 (1 ≤ k < N) へ移動するときは, x k から x k+1 まで最短経路で移動しなければならない.ここで「最短経路」とは,通る道路の数が最も少ない経路を指す. 街 x N で最後のクエストを行うと,そこで冒険は終了となる. 冒険が終了した後の所持金をできるだけ多くするには,どのような順番でクエストを行えばよいだろうか? Input 入力は複数のデータセットからなる.各データセットは次の形式で表される. N C 1 C 2 ... C N-1 各データセットは 2 行からなる.最初の行には街の数を表す整数 N (2 ≤ N ≤ 3,000) がある.次の行には空白で区切られた N-1 個の整数 C 1 , C 2 , ..., C N-1 がある. C i は街 i と街 i+1 の間を通行したときに所持金がいくら変動するかを表す値である.ここで C 1 から C N-1 はすべて -10 9 以上 10 9 以下である. 入力の終わりはゼロひとつを含む行で示す.データセットは 50 個以内である. Output 各テストケースに対する出力は 2 行からなる.1 行目では,冒険が終了した後の所持金と,冒険を行う前の所持金との差としてあり得る最大値を出力する.2 行目では,その所持金を達成できるような,クエストを行う街の順番 (x 1 , x 2 , ..., x N ) をスペース区切りで出力する. 答えとしてあり得るものが複数ある場合は,どれを出力しても正解となる. Sample Input 4 2 3 4 4 2 -3 4 6 -1 -1 -1 -1 -1 6 -1 -1 100 -1 -1 0 Output for the Sample Input 21 2 4 1 3 9 2 1 4 3 -5 1 2 3 4 5 6 492 1 4 3 5 2 6
[ { "submission_id": "aoj_3298_10851389", "code_snippet": "#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#define _USE_MATH_DEFINES\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing H = pair<int, int>;\nusing P = pair<ll, ll>;\nusing vi = vector<int>;\nusing vl = vector<ll>;\n#define all(a) (a).begin(), (a).end()\n#define fs first\n#define sc second\n#define xx first\n#define yy second.first\n#define zz second.second\n#define rng(i, s, n) for(int i = (s) ; i < (n) ; i++)\n#define rep(i, n) rng(i, 0, (n))\n#define mkp make_pair\n#define vec vector\n#define pb emplace_back\n#define siz(a) int((a).size())\n#define crdcomp(b) sort(all((b))); (b).erase(unique(all((b))), (b).end())\n#define getidx(b, i) (lower_bound(all((b)), (i))-(b).begin())\n#define cdf(n) for(int __quetimes=(n); __quetimes>0; __quetimes--)\n#define readv(a, n) (a).resize((n), 0); rep(i, (n)) (a)[i]=read()\n#define found(a, x) (a.find(x)!=a.end())\n#define slp(x, y) min((x), (y)), max((x), (y))\nconstexpr ll mod = (ll)1e9 + 7;\nconstexpr ll Mod = 998244353;\nconstexpr ld EPS = 1e-10;\nconstexpr ll inf = (ll)3 * 1e18;\nconstexpr int Inf = 1e9 + 10;\nconstexpr int dx[] = { -1, 1, 0, 0 }, dy[] = { 0, 0, -1, 1 };\ntemplate<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }\ntemplate<class T = ll>T read() { T u, k = scanf(\"%lld\", &u); return u; }\ntemplate<typename T>bool ina(pair<T, T> t, T h, T w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }\nll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }\ntemplate<typename T>void fin(T x) { cout << x << endl; exit(0); }/*\n#include<atcoder/all>\nusing namespace atcoder;//*/\n//--------------------------------------------------------------\nsigned main() {\n\tint n;\n\twhile (cin >> n && n) {\n\t\tvl c(n);\n\t\trep(i, n - 1) scanf(\"%lld\", &c[i]);\n\t\tvec<vec<vl>>dp(n + 1, vec<vl>(n + 10, vl(2, -inf)));\n\t\tdp[0][0][0] = 0;\n\t\tfor (int i = 0;i < n;i++) rep(j, n + 5) {\n\t\t\tif (i && j == 0) {\n\t\t\t\tdp[i][j][0] = dp[i][j][1] = -inf;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tif (j % 2 == 1) {\n\t\t\t\tif (dp[i][j][1] > -inf) {\n\t\t\t\t\tfor (int k = j - 2;k <= j + 2;k++) if (k >= 0) {\n\t\t\t\t\t\tchmax(dp[i + 1][k][1], dp[i][j][1] + c[i] * k);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (dp[i][j][0] > -inf) {\n\t\t\t\t\tfor (int k = j - 2;k <= j + 2;k++) if (k >= 0) {\n\t\t\t\t\t\tchmax(dp[i + 1][k][abs(k - j) % 2], dp[i][j][0] + c[i] * k);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif (dp[i][j][1] > -inf) {\n\t\t\t\t\tfor (int k = j - 2;k <= j + 2;k += 2) if (k >= 0) {\n\t\t\t\t\t\tchmax(dp[i + 1][k][1], dp[i][j][1] + c[i] * k);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvi cnt(n + 1);\n\t\tint cur = 0, cur2 = 1;\n\t\tfor (int i = n - 1;i > 0;i--) {\n\t\t\tfor (int j = cur - 2;j <= cur + 2;j++)if (j >= 0) {\n\t\t\t\tif (j % 2 == 1) {\n\t\t\t\t\tif (dp[i][j][1] > -inf) {\n\t\t\t\t\t\tint k = cur;\n\t\t\t\t\t\tif (abs(k - cur) <= 2) {\n\t\t\t\t\t\t\tif (cur2 == 1 && dp[i + 1][k][1] == dp[i][j][1] + c[i] * k) {\n\t\t\t\t\t\t\t\tcur = j;\n\t\t\t\t\t\t\t\tcur2 = 1;\n\t\t\t\t\t\t\t\tgoto loop;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (dp[i][j][0] > -inf) {\n\t\t\t\t\t\tint k = cur;\n\t\t\t\t\t\tif (abs(j - k) <= 2) {\n\t\t\t\t\t\t\tif (cur2 == abs(k - j) % 2 && dp[i + 1][k][cur2] == dp[i][j][0] + c[i] * k) {\n\t\t\t\t\t\t\t\tcur = j;\n\t\t\t\t\t\t\t\tcur2 = 0;\n\t\t\t\t\t\t\t\tgoto loop;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\tif (dp[i][j][1] > -inf) {\n\t\t\t\t\t\tint k = cur;\n\t\t\t\t\t\tif (abs(k - j) <= 2 && abs(k - j) % 2 == 0) {\n\t\t\t\t\t\t\tif (cur == k && cur2 == 1 && dp[i + 1][k][1] == dp[i][j][1] + c[i] * k) {\n\t\t\t\t\t\t\t\tcur = j;\n\t\t\t\t\t\t\t\tcur2 = 1;\n\t\t\t\t\t\t\t\tgoto loop;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\tloop:;\n\t\t\tcnt[i] = cur;\n\t\t}\n\n\t\tint st = -1;\n\t\tfor (int i = 0;i < n;i++) {\n\t\t\tif (st < 0 && cnt[i] % 2 != cnt[i + 1] % 2) {\n\t\t\t\tif (cnt[i] % 2 == 1) st = i;\n\t\t\t\telse st = i + 1;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\n\t\tint sum = 0;\n\t\trep(i, n + 1) sum += cnt[i];\n\t\tvi pos;\n\t\tint prev = -1;\n\t\tvec<bool>used(n, false);\n\t\trep(_, sum) {\n\t\t\tif (cnt[st - 1] == cnt[st] && prev == 1 || cnt[st - 1] < cnt[st]) {\n\t\t\t\tif (prev != 1) {\n\t\t\t\t\tpos.pb(st);\n\t\t\t\t\tprev = 1;\n\t\t\t\t}\n\t\t\t\tcnt[st]--;\n\t\t\t\tst++;\n\t\t\t}\n\t\t\telse if (cnt[st - 1] == cnt[st] && prev == 0 || cnt[st - 1] > cnt[st]) {\n\t\t\t\tif (prev != 0) {\n\t\t\t\t\tpos.pb(st);\n\t\t\t\t\tprev = 0;\n\t\t\t\t}\n\t\t\t\tcnt[st - 1]--;\n\t\t\t\tst--;\n\t\t\t}\n\t\t}\n\t\tpos.pb(st);\n\t\tif (siz(pos) < n) {\n\t\t\trep(i, siz(pos)) used[pos[i]] = true;\n\t\t\trep(i, n)if (!used[i]) {\n\t\t\t\trep(j, siz(pos) - 1) {\n\t\t\t\t\tif (pos[j] < i && i < pos[j + 1] || pos[j + 1] < i && i < pos[j]) {\n\t\t\t\t\t\tpos.insert(pos.begin() + j + 1, i);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tcout << dp[n][0][1] << endl;\n\t\trep(i, siz(pos)) printf(\"%lld%c\", pos[i], \" \\n\"[i == n - 1]);\n\t}\n}", "accuracy": 1, "time_ms": 5820, "memory_kb": 492596, "score_of_the_acc": -1.1211, "final_rank": 10 }, { "submission_id": "aoj_3298_10684654", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 数値型\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing P = pair<int,int>;\nusing Pll = pair<ll, ll>;\nusing Pli = pair<ll, int>;\nusing Pil = pair<int, ll>;\n\n// vector関連\nusing vi = vector<int>;\nusing vvi = vector<vi>;\nusing vvvi = vector<vvi>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\ntemplate<typename T>\nusing vc = vector<T>;\ntemplate<typename T>\nusing vvc = vector<vc<T>>;\ntemplate<typename T>\nusing vvvc = vector<vvc<T>>;\ntemplate<typename T>\nusing vvvvc = vector<vvvc<T>>;\n\n// priority_queue\ntemplate<typename T>\nusing pq = priority_queue<T>;\ntemplate<typename T>\nusing pqg = priority_queue<T, vc<T>, greater<T>>;\n\n#define rep(i, n) for(int i = 0; i < (int)(n); i++)\n#define FOR(i, a, b) for(int i = a; i < (int)(b); i++)\n#define all(a) (a).begin(),(a).end()\n#define rall(a) (a).rbegin(),(a).rend()\n#define MIN(vec) *min_element(vec)\n#define MAX(vec) *max_element(vec)\n#define next_perm(vec) (vec).begin(), (vec).end()\n#define UNIQUE(vec) vec.erase(unique(vec.begin(), vec.end()), vec.end())\n#define el \"\\n\"\n#define Yes cout << \"Yes\" << el\n#define No cout << \"No\" << el\n#define YES cout << \"YES\" << el\n#define NO cout << \"NO\" << el\n#define EPS 1e-8\n#define Equal(a, b) (fabs((a)-(b)) < EPS) \n#define dbg(x) cerr << #x << \"=\" << x << el \n\n// 定数\nconst string abc = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ABC = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconstexpr int INF = 1001001001;\nconstexpr ll LINF = 1001001001001001001ll;\nconstexpr int DX[] = {1, 0, -1, 0};\nconstexpr int DY[] = {0, 1, 0, -1};\nconstexpr int DX8[] = {1, 0, -1, 0, 1, 1, -1, -1};\nconstexpr int DY8[] = {0, 1, 0, -1, 1, -1, 1, -1};\n\ntemplate<typename T1, typename T2>\nostream &operator<< (ostream &os, pair<T1, T2> p) {\n os << \"{\" << p.first << \",\" << p.second << \"}\";\n return os;\n}\ntemplate<typename T>\nostream &operator<< (ostream &os, vc<T> &vec) {\n int sz = vec.size();\n rep(i, sz){\n os << vec[i] << (i==sz-1?\"\":\" \");\n }\n return os;\n}\n\ntemplate<typename T1, typename T2>\nistream &operator>> (istream &is, pair<T1, T2> &p) {\n is >> p.first >> p.second;\n return is;\n}\ntemplate<typename T>\nistream &operator>> (istream &is, vc<T> &vec) {\n int sz = vec.size();\n rep(i, sz) { is >> vec[i]; }\n return is;\n}\n/// @brief aとbの最大値をaに格納。更新があったかbool値を返す\n/// @tparam T1 \n/// @tparam T2 \n/// @param a \n/// @param b \n/// @return bool\ntemplate<typename T1, typename T2>\ninline bool chmax(T1 &a, T2 b){\n bool ret = a<b;\n if(ret) a = b;\n return ret;\n}\n\n/// @brief aとbの最小値をaに格納。更新があったかbool値を返す\n/// @tparam T1 \n/// @tparam T2 \n/// @param a \n/// @param b \n/// @return bool\ntemplate<typename T1, typename T2>\ninline bool chmin(T1 &a, T2 b){\n bool ret = a>b;\n if(ret) {a = b;}\n return ret;\n}\n\ninline void YesNo(bool flag){\n if(flag) {Yes;}\n else {No;}\n return;\n}\n\ninline void YESNO(bool flag){\n if(flag) {YES;}\n else {NO;}\n return;\n}\n\ninline bool outof(ll x, ll xlim){\n return (x<0 || x>=xlim);\n}\n\ntemplate<typename T>\ninline T sqnorm(T x, T y){\n return x*x+y*y;\n}\n\n/// @brief char->int\n/// @param c \n/// @return int\ninline int ctoi(char c){\n return c-'0';\n}\n\n/// @brief xを素因数分解\n/// @param x \n/// @return vector<Pli>, 素因数の昇順に {p, cnt}\nvector<Pli> prime_fact(ll x){\n vector<Pli> ret;\n for(ll i=2; i*i<=x; i++){\n if(x%i == 0){\n ret.emplace_back(i, 0);\n while(x%i == 0){\n ret.back().second++;\n x /= i;\n }\n }\n }\n if(x != 1) ret.emplace_back(x, 1);\n return ret;\n}\n\n/// @brief xの約数列挙\n/// @param x \n/// @return vll, 約数の昇順\nvll divisor_enum(ll x){\n vector<ll> ret;\n for(ll i=1; i*i<=x; i++){\n if(x%i == 0){\n ret.push_back(x/i);\n ret.push_back(i);\n }\n }\n sort(all(ret));\n UNIQUE(ret);\n return ret;\n}\n\n/// @brief 繰り返し二乗法。\n/// @tparam T \n/// @param x \n/// @param k \n/// @param op \n/// @param e \n/// @return \ntemplate<typename T>\nT pow_t(T x, ll k, T (*op)(T, T), T (*e)()){\n T ret = e();\n while(k){\n if(k&1) ret *= x;\n x *= x;\n k >>= 1;\n }\n return ret;\n}\n\nll powll(ll x, ll k){\n return pow_t<ll>(x, k, [](ll a, ll b) -> ll{return a*b;}, []() -> ll{return 1;});\n}\n\ninline int pop_cnt(ll x) { return __builtin_popcountll(x); }\ninline int top_bit(ll x) { return (x==0?-1:63-__builtin_clzll(x));}\n\nvoid main2();\n\nint main(){\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n main2();\n}\n\n\nbool solve(pair<int, vll> input={-1, {}}){\n int n;\n if(input.first == -1) cin >> n;\n else n = input.first;\n if(n == 0) return false;\n vll c(n-1);\n if(input.first == -1) cin >> c;\n else c = input.second;\n c.push_back(0);\n vvvll dp(n+1, vvll(n+2, vll(3, -LINF)));\n dp[0][0][0] = 0;\n rep(i, n){\n rep(j, n){\n rep(k, 3){\n // +2\n chmax(dp[i+1][j+2][k], dp[i][j][k] + (j+2)*c[i]);\n // -2\n if(j-2 >= 0 + (i+1 != n)) chmax(dp[i+1][j-2][k], dp[i][j][k] + (j-2)*c[i]);\n // 0\n if(j >= 0 + (i+1 != n)) chmax(dp[i+1][j][k], dp[i][j][k] + j*c[i]);\n if(k == 2) break;\n // +1\n chmax(dp[i+1][j+1][k+1], dp[i][j][k] + (j+1)*c[i]);\n // -1\n if(j-1 >= 0 + (i+1 != n)) chmax(dp[i+1][j-1][k+1], dp[i][j][k] + (j-1)*c[i]);\n }\n }\n }\n vc<P> pm;\n {\n int now = 0, one = 2;\n for(int i=n-1; i>=0; i--){\n for(int j=-2; j<=2; j++){\n if(now-j <= 0 - (i == 0)) continue;\n if(abs(j) == 1 && one == 0) continue;\n if(dp[i][now-j][one-(abs(j)&1)] + c[i]*now == dp[i+1][now][one]){\n pm.push_back({i, j});\n now = now-j;\n one -= abs(j)&1;\n break;\n }\n }\n }\n assert(now == 0 && one == 0);\n reverse(all(pm));\n ll score = 0;\n rep(i, n){\n now += pm[i].second;\n score += now*c[i];\n }\n assert(score == dp[n][0][2]);\n }\n int id = -1;\n rep(i, n){\n if(abs(pm[i].second) == 1) id = i;\n }\n assert(id != -1);\n int dx = pm[id].second;\n vector<int> ord;\n ord.push_back(pm[id].first);\n pm.erase(pm.begin() + id);\n if(dx < 0) id--;\n while(pm.size()){\n if((abs(pm[id].second) == 1 && pm.size() != 1)){\n id += dx;\n continue;\n }\n if(pm[id].second == 0){\n ord.push_back(pm[id].first);\n pm.erase(pm.begin()+id);\n if(dx < 0) id--;\n continue;\n }\n if(pm[id].second*dx < 0){\n ord.push_back(pm[id].first);\n pm.erase(pm.begin()+id);\n dx *= -1;\n if(dx < 0) id--;\n }\n else{\n id += dx;\n }\n }\n {\n ll score = 0;\n rep(i, n-1){\n int dx = (ord[i] < ord[i+1] ? 1 : -1);\n for(int j=ord[i]; j != ord[i+1]; j += dx){\n score += (dx > 0 ? c[j] : c[j-1]);\n // cout << (dx > 0 ? c[j] : c[j-1]) << \" \" << score << endl;\n }\n }\n assert(score == dp[n][0][2]);\n }\n assert(ord.size() == n);\n cout << dp[n][0][2] << endl;\n for(int i=0; i<n; i++){\n cout << ord[i]+1 << (i == n-1 ? \"\" : \" \");\n }\n cout << endl;\n\n return true;\n}\n\nrandom_device seed_gen;\nmt19937_64 rnd(seed_gen());\nuniform_int_distribution<int> uid(-5, 5);\npair<int, vll> generater(int n){\n pair<int, vll> ret;\n ret.first = n;\n rep(i, n-1){\n ret.second.push_back(uid(rnd));\n }\n return ret;\n}\nvoid main2(){\n while(true){\n // auto gen = generater(6);\n // cout << gen << endl;\n // pair<int, vll> gen = {6, {-4, 5, -4, 5, 3}};\n if(solve()) continue;\n break;\n }\n}", "accuracy": 1, "time_ms": 6060, "memory_kb": 491200, "score_of_the_acc": -1.1597, "final_rank": 12 }, { "submission_id": "aoj_3298_10658732", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef long double ld;\n#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)\n#define rrep(i,start,end) for (ll i = start;i >= (ll)(end);i--)\n#define repn(i,end) for(ll i = 0; i <= (ll)(end); i++)\n#define reps(i,start,end) for(ll i = start; i < (ll)(end); i++)\n#define repsn(i,start,end) for(ll i = start; i <= (ll)(end); i++)\n#define each(p,a) for(auto &p:a)\ntypedef vector<ll> vll;\ntypedef vector<pair<ll ,ll>> vpll;\ntypedef vector<vector<ll>> vvll;\ntypedef set<ll> sll;\ntypedef map<ll , ll> mpll;\ntypedef pair<ll ,ll> pll;\ntypedef tuple<ll , ll , ll> tpl3;\n#define LL(...) ll __VA_ARGS__; input(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__; input(__VA_ARGS__)\n#define Str(...) string __VA_ARGS__; input(__VA_ARGS__)\n#define Ch(...) char __VA_ARGS__; input(__VA_ARGS__)\n#define all(a) (a).begin(),(a).end()\n#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );\n#define sz(x) (ll)x.size()\n// << std::fixed << std::setprecision(10)\nconst ll INF = 1LL << 60;\nconst ld EPS = 1e-9;\n \nll lceil(ll a,ll b){if(a%b==0){return a/b;}if(a>=0){return (a/b)+1;}else{return -((-a)/b);}}\nll lfloor(ll a,ll b){if(a%b==0){return a/b;}if(a>=0){return (a/b);}else{return -((-a)/b)-1;}}\ninline ll positive_mod(ll a,ll m){return (a % m + m)%m;}\ninline ll popcnt(ull a){ return __builtin_popcountll(a);}\n//0indexed\ninline ll topbit(ll a){assert(a != 0);return 63 - __builtin_clzll(a);}\ninline ll smlbit(ll a){assert(a != 0);return __builtin_ctzll(a);}\ntemplate<class T> bool chmin(T& a, T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T> bool chmax(T& a, T b){if(a < b){a = b;return true;}return false;}\ntemplate<typename T> std::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\ntemplate<typename T> std::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\ntemplate<typename T1, typename T2>std::ostream &operator<< (std::ostream &os, std::pair<T1,T2> p){os << \"{\" << p.first << \",\" << p.second << \"}\";return os;}\ntemplate<class... T>void input(T&... a){(cin >> ... >> a);}\nvoid print(){cout << endl;}\ntemplate<class T, class... Ts>void print(const T& a, const Ts&... b){cout << a;((cout << ' ' << b), ...);cout << endl;}\ntemplate<class T> void pspace(const T& a){ cout << a << ' ';}\nvoid perr(){cerr << endl;}\ntemplate<class T, class... Ts>void perr(const T& a, const Ts&... b){cerr << a;((cerr << ' ' << b), ...);cerr << endl;}\nvoid yes(bool i = true){ return print(i?\"yes\":\"no\"); }\nvoid Yes(bool i = true){ return print(i?\"Yes\":\"No\"); }\nvoid YES(bool i = true){ return print(i?\"YES\":\"NO\"); }\ntemplate <class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v) e++;return v;}\ntemplate <class T> vector<T> operator++(vector<T> &v, signed) {auto res = v;for(auto &e : v) e++;return res;}\ntemplate <class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v) e--;return v;}\ntemplate <class T> vector<T> operator--(vector<T> &v, signed) {auto res = v;for(auto &e : v) e--;return res;}\n//grid探索用\nvector<ll> _ta = {0,0,1,-1,1,1,-1,-1};\nvector<ll> _yo = {1,-1,0,0,1,-1,1,-1};\nbool isin(ll now_i,ll now_j,ll h,ll w){return (0<=now_i && now_i < h && 0 <= now_j && now_j < w);}\n \nll lpow(ll x,ll n){ll ans = 1;while(n >0){if(n & 1)ans *= x;x *= x;n >>= 1;}return ans;}\nll Modlpow(ll x,ll n,ll m){ll ans = 1;ll a = x%m;while(n >0){if(n & 1){ans *= a;ans%= m;}a *= a;a %= m;n >>= 1;}return ans;} \nconst ll MOD9 = 998244353LL;\nconst ll MOD10 = 1000000007LL;\n\npair<ll,vll> solve(ll n,vll a){\n vector dp(n,vector<unordered_map<ll,ll>>(3));\n auto add = [&](ll i,ll j,ll k,ll val){\n if(dp[i][j].contains(k)){\n chmax(dp[i][j][k],val);\n }else dp[i][j][k] = val;\n };\n dp[0][0][0] = 0;\n rep(i,n-1){\n rep(j,3){\n for(auto &[num,val]:dp[i][j]){\n\t\t\t\tif(num-2*(n-i) > 0)continue;\n //普通\n add(i+1,j,num+2,val + a[i] * (num+2));\n if(num != 0){\n add(i+1,j,num,val + a[i] * num);\n }\n if(num-2 > 0){\n add(i+1,j,num-2,val + a[i] *(num-2));\n }\n //繰り上がる\n if(j+1 <= 2){\n add(i+1,j+1,num+1,val + a[i] *(num+1));\n if(num -1 > 0){\n add(i+1,j+1,num-1,val + a[i] *(num-1));\n }\n }\n }\n }\n }\n // cout <<max(dp[n-1][2][2],dp[n-1][1][1]) << endl;\n //復元\n\n ll ansv = -INF;\n \n \n vll cnt;\n {\n ll i = n-1,j =2,k=2,val = -INF;\n if(dp[n-1][2].contains(2)){\n if(chmax(ansv,dp[n-1][2][2])){\n val = ansv;\n }\n }\n if(dp[n-1][1].contains(1)){\n if(chmax(ansv,dp[n-1][1][1])){\n val = ansv;\n i = n-1,j = 1,k= 1;\n }\n \n }\n \n auto check = [&](ll i,ll j,ll k,ll val){\n if(!dp[i][j].contains(k))return false;\n else return dp[i][j][k] == val;\n };\n while(i > 0){\n cnt.push_back(k);\n //j同じでの遷移\n val -= a[i-1]*k;\n if(check(i-1,j,k-2,val)){\n k = k-2;\n }else if(check(i-1,j,k,val)){\n }else if(check(i-1,j,k+2,val)){\n k = k+2;\n }else {\n assert(j > 0);\n if(check(i-1,j-1,k+1,val)){\n k = k+1;\n j--;\n }else if(check(i-1,j-1,k-1,val)){\n k = k-1;\n j--;\n }\n }\n i--;\n }\n }\n\n reverse(all(cnt));\n // cout << cnt << endl;\n vll plc;\n rep(i,sz(cnt)-1){\n if(abs(cnt[i]-cnt[i+1]) == 1){\n plc.push_back(i+1);\n }\n }\n if(cnt.front() == 1){\n plc.push_back(0);\n }\n if(cnt.back() == 1){\n plc.push_back(n-1);\n }\n assert(sz(plc) ==2);\n\n vll ans;\n\n vector<ll> found(n,0);//n頂点\n ll fcnt = 0;\n auto dfs = [&](auto dfs, ll v)->void{\n found[v] = 1;\n ans.push_back(v);\n fcnt++;\n if(fcnt == n-1)return ;\n //gでグラフを受け取っている\n bool plus = true;\n if(v == 0){\n plus = true;\n }else if(v== n-1){\n plus = false;\n }else{\n plus = cnt[v] > cnt[v-1];\n }\n v += (plus ? 1: -1); \n cnt[v-(plus?1: 0)]--;\n // if(cnt[v-(plus?1: 0)]==-1)return ;\n while(v!= 0 && v != n-1 && (found[v] == 1 or (abs(cnt[v]-cnt[v-1]) != 1))){\n v += (plus ? 1: -1);\n cnt[v-(plus?1: 0)]--;\n }\n dfs(dfs,v);\n };\n dfs(dfs,plc[0]);\n ans.push_back(plc[1]);\n ans++;\n return {ansv,ans};\n}\n\n//参照渡しで値を作成して渡す\nvoid Maketest(ll &n,vll &c){\n//配列を渡すときは最初に.clear()をしておく\n random_device seed_gen;\n mt19937_64 rnd(seed_gen());\n \n uniform_int_distribution<ll> da(2, 4);\n uniform_int_distribution<ll> db(-5,5);\n n = da(rnd);\n rep(i,n-1){\n c.push_back(db(rnd));\n }\n\n uniform_int_distribution<ll> dc(0, 1);\n uniform_int_distribution<ll> dd(0, 1);\n}\n\nvoid myans(){\n //答えの型注意\n}\n\nvoid correct(){\n //答えの型注意\n}\n\nvoid test(){\n rep(z,1000){\n ll n;\n vll c;\n Maketest(n,c);\n cout << n << endl;\n cout << c << endl;\n cout << endl;\n auto ret = solve(n,c);\n vll ord = ret.second;\n sort(all(ord));\n UNIQUE(ord);\n if(sz(ord) != n){\n cout << \"wrong siz\" << endl;\n cout << n << endl;\n cout << c << endl;\n cout << ret.first << endl;\n cout << ret.second << endl;\n cout << endl;\n return ;\n continue;\n }\n ll sum = 0;\n rep(i,n-1){\n ll s = ret.second[i];\n s--;\n\n ll g = ret.second[i+1];\n g--;\n while(s < g){\n sum += c[s++];\n }\n while(s > g){\n sum += c[--s];\n }\n }\n if(sum != ret.first){\n cout << \"sum = \" << sum << endl;\n cout << n << endl;\n cout << c << endl;\n cout << ret.first << endl;\n cout << ret.second << endl;\n cout << endl;\n return ;\n }\n }\n}\n\nint main(){\n ios::sync_with_stdio(false);cin.tie(nullptr);\n while(true){\n LL(n);\n if(n == 0)break;\n vll a(n-1);\n cin >> a;\n auto ret = solve(n,a);\n cout << ret.first << endl;\n cout << ret.second << endl;\n }\n // test();\n}", "accuracy": 1, "time_ms": 6030, "memory_kb": 295064, "score_of_the_acc": -0.8582, "final_rank": 9 }, { "submission_id": "aoj_3298_10595004", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <string>\n#include <set>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(ll i=0; i<ll(n); i++)\ntemplate<class A, class B> void chmax(A& a, const B& b){ if(a < b) a = b; }\n\n\nbool testcase(){\n ll N; cin >> N;\n if(N == 0) return false;\n vector<ll> A(N,0); rep(i,N-1) cin >> A[i];\n\n auto dp = vector(N+1, vector(4, vector<pair<ll, pair<ll, ll>>>(N, {-(1ll<<61), {-1,-1}})));\n\n dp[0][0][0].first = 0;\n rep(s,N){\n rep(f,3){\n rep(a,N){\n for(ll b=a-2; b<=a+2; b++) if((1 <= b || (s == N-1 && b == 0)) && b < N){\n ll g = (b%2 != f%2 ? f+1 : f);\n chmax(dp[s+1][g][b], make_pair(dp[s][f][a].first + b * A[s], make_pair(f,a)));\n }\n }\n }\n }\n\n vector<ll> ph(N+1); ph[N] = 2;\n vector<ll> cnt(N+1);\n for(ll s=N-1; s>=0; s--){\n auto pre = dp[s+1][ph[s+1]][cnt[s+1]].second;\n ph[s] = pre.first;\n cnt[s] = pre.second;\n }\n\n ll s = 0;\n rep(i,N) if(ph[i] == 0 && ph[i+1] == 1) s = i+1;\n ll g = 0;\n rep(i,N) if(ph[i] == 1 && ph[i+1] == 2) g = i+1;\n\n ll dx = 1;\n if(cnt[s-1] > cnt[s]) dx = -1;\n \n set<ll> LX, RX;\n rep(i,N) if(cnt[i] + 2 == cnt[i+1]) LX.insert(i+1);\n rep(i,N) if(cnt[i] == cnt[i+1] + 2) RX.insert(i+1);\n auto leftLX = [&](ll p) -> ll {\n auto i = LX.upper_bound(p);\n if(i == LX.begin()) return -1;\n i--;\n return *i;\n };\n auto rightRX = [&](ll p) -> ll {\n auto i = RX.lower_bound(p);\n if(i == RX.end()) return -1;\n return *i;\n };\n\n //cout << \"s = \" << s << \" , g = \" << g << endl;\n\n vector<ll> ans;\n ans.push_back(s);\n while(true){\n if(dx == -1){\n ll p = leftLX(ans.back());\n if(p == -1) break;\n LX.erase(p);\n ans.push_back(p);\n dx = 1;\n } else {\n ll p = rightRX(ans.back());\n if(p == -1) break;\n RX.erase(p);\n ans.push_back(p);\n dx = -1;\n }\n }\n ans.push_back(g);\n \n vector<ll> used(N+1);\n for(ll i : ans) used[i] = 1;\n for(ll i=1; i<=N; i++) if(used[i] == 0){\n rep(j,ans.size()-1) if(min(ans[j], ans[j+1]) <= i && i <= max(ans[j], ans[j+1])){\n ans.insert(ans.begin() + j + 1, i);\n used[i] = 1;\n break;\n }\n }\n\n cout << dp[N][2][0].first << \"\\n\";\n //rep(i,N+1) cout << cnt[i] << \" \";\n //cout << endl;\n rep(i,ans.size()){\n if(i) cout << \" \";\n cout << ans[i];\n }\n cout << \"\\n\";;\n\n return true;\n}\n\nint main(){\n while(testcase());\n return 0;\n}", "accuracy": 1, "time_ms": 6970, "memory_kb": 839588, "score_of_the_acc": -1.8403, "final_rank": 19 }, { "submission_id": "aoj_3298_10593643", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <string>\n#include <set>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(ll i=0; i<ll(n); i++)\ntemplate<class A, class B> void chmax(A& a, const B& b){ if(a < b) a = b; }\n\n\nbool testcase(){\n ll N; cin >> N;\n if(N == 0) return false;\n vector<ll> A(N,0); rep(i,N-1) cin >> A[i];\n\n auto dp = vector(N+1, vector(4, vector<pair<ll, pair<ll, ll>>>(N, {-(1ll<<61), {-1,-1}})));\n\n dp[0][0][0].first = 0;\n rep(s,N){\n rep(f,3){\n rep(a,N){\n for(ll b=a-2; b<=a+2; b++) if((1 <= b || (s == N-1 && b == 0)) && b < N){\n ll g = (b%2 != f%2 ? f+1 : f);\n chmax(dp[s+1][g][b], make_pair(dp[s][f][a].first + b * A[s], make_pair(f,a)));\n }\n }\n }\n }\n\n vector<ll> ph(N+1); ph[N] = 2;\n vector<ll> cnt(N+1);\n for(ll s=N-1; s>=0; s--){\n auto pre = dp[s+1][ph[s+1]][cnt[s+1]].second;\n ph[s] = pre.first;\n cnt[s] = pre.second;\n }\n\n ll s = 0;\n rep(i,N) if(ph[i] == 0 && ph[i+1] == 1) s = i+1;\n ll g = 0;\n rep(i,N) if(ph[i] == 1 && ph[i+1] == 2) g = i+1;\n\n ll dx = 1;\n if(cnt[s-1] > cnt[s]) dx = -1;\n \n set<ll> LX, RX;\n rep(i,N) if(cnt[i] + 2 == cnt[i+1]) LX.insert(i+1);\n rep(i,N) if(cnt[i] == cnt[i+1] + 2) RX.insert(i+1);\n auto leftLX = [&](ll p) -> ll {\n auto i = LX.upper_bound(p);\n if(i == LX.begin()) return -1;\n i--;\n return *i;\n };\n auto rightRX = [&](ll p) -> ll {\n auto i = RX.lower_bound(p);\n if(i == RX.end()) return -1;\n return *i;\n };\n\n //cout << \"s = \" << s << \" , g = \" << g << endl;\n\n vector<ll> ans;\n ans.push_back(s);\n while(true){\n if(dx == -1){\n ll p = leftLX(ans.back());\n if(p == -1) break;\n LX.erase(p);\n ans.push_back(p);\n dx = 1;\n } else {\n ll p = rightRX(ans.back());\n if(p == -1) break;\n RX.erase(p);\n ans.push_back(p);\n dx = -1;\n }\n }\n ans.push_back(g);\n \n vector<ll> used(N+1);\n for(ll i : ans) used[i] = 1;\n for(ll i=1; i<=N; i++) if(used[i] == 0){\n rep(j,ans.size()-1) if(min(ans[j], ans[j+1]) <= i && i <= max(ans[j], ans[j+1])){\n ans.insert(ans.begin() + j + 1, i);\n used[i] = 1;\n break;\n }\n }\n\n cout << dp[N][2][0].first << \"\\n\";\n //rep(i,N+1) cout << cnt[i] << \" \";\n //cout << endl;\n rep(i,ans.size()){\n if(i) cout << \" \";\n cout << ans[i];\n }\n cout << \"\\n\";;\n\n return true;\n}\n\nint main(){\n while(testcase());\n return 0;\n}", "accuracy": 1, "time_ms": 4700, "memory_kb": 839836, "score_of_the_acc": -1.4559, "final_rank": 17 }, { "submission_id": "aoj_3298_10496814", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\nconst ll LINF = 4321001001001001001;\ntemplate <typename T>\nbool chmin(T &a, const T &b) {\n\tif (b < a) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <typename T>\nbool chmax(T &a, const T &b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n#ifdef _DEBUG\n#define show(x) \\\n\tcerr << #x << \" : \"; \\\n\tshowVal(x)\ntemplate <typename T>\nvoid showVal(const T &a) {\n\tcerr << a << endl;\n}\ntemplate <typename T, typename U>\nvoid showVal(const pair<T, U> &a) {\n\tcerr << a.first << \" \" << a.second << endl;\n}\ntemplate <typename T>\nvoid showVal(const vector<T> &a) {\n\tfor (const T &v : a) cerr << v << \" \";\n\tcerr << endl;\n}\ntemplate <typename T, typename U>\nvoid showVal(const vector<pair<T, U>> &a) {\n\tcerr << endl;\n\tfor (const pair<T, U> &v : a) cerr << v.first << \" \" << v.second << endl;\n}\ntemplate <typename T, typename U>\nvoid showVal(const map<T, U> &a) {\n\tcerr << endl;\n\tfor (const auto &v : a) cerr << \"[\" << v.first << \"] \" << v.second << endl;\n}\ntemplate <typename T>\nvoid showVal(const vector<vector<T>> &a) {\n\tcerr << endl;\n\tfor (const vector<T> &v : a) showVal(v);\n}\n#else\n#define show(x)\n#endif\nvector<vector<vector<tuple<int, int, int>>>> from(3001, vector<vector<tuple<int, int, int>>>(3001, vector<tuple<int, int, int>>(3, {-1, -1, -1})));\nint main() {\n\twhile (1) {\n\t\tint n;\n\t\tcin >> n;\n\t\tif (n == 0) break;\n\t\tvector<ll> c(n);\n\t\tfor (int i = 0; i < n - 1; i++) {\n\t\t\tcin >> c[i];\n\t\t}\n\t\tvector<vector<ll>> dp(n + 1, vector<ll>(3, -LINF));\n\t\tc[n - 1] = 0;\n\t\tdp[0][0] = 0;\n\t\tfrom[0][0][0] = {-1, -1, -1};\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tvector<vector<ll>> ndp(n + 1, vector<ll>(3, -LINF));\n\t\t\tfor (int j = 0; j <= n; j++) {\n\t\t\t\tfor (int k = 0; k < 3; k++) {\n\t\t\t\t\tauto upd = [&](int d, int dk) {\n\t\t\t\t\t\tif (i != n - 1 && j + d == 0) return;\n\t\t\t\t\t\tif (j + d <= n && j + d >= 0 && k + dk < 3) {\n\t\t\t\t\t\t\tif (chmax(ndp[j + d][k + dk], dp[j][k] + c[i] * (j + d))) {\n\t\t\t\t\t\t\t\tfrom[i + 1][j + d][k + dk] = {i, j, k};\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t};\n\t\t\t\t\tupd(0, 0);\n\t\t\t\t\tupd(2, 0);\n\t\t\t\t\tupd(-2, 0);\n\t\t\t\t\t// if (i != n - 1) {\n\t\t\t\t\tupd(1, 1);\n\t\t\t\t\tupd(-1, 1);\n\t\t\t\t}\n\t\t\t\t// }\n\t\t\t}\n\t\t\tswap(ndp, dp);\n\t\t}\n\t\t// show(dp);\n\t\tll ans = dp[0][2];\n\t\tcout << ans << endl;\n\t\tint ni = n, nj = 0, nk = 2;\n\t\tvector<int> s = {0};\n\t\twhile (1) {\n\t\t\tauto [a, b, c] = from[ni][nj][nk];\n\t\t\tif (a == -1) break;\n\t\t\tni = a;\n\t\t\tnj = b;\n\t\t\tnk = c;\n\t\t\ts.push_back(nj);\n\t\t}\n\t\treverse(s.begin(), s.end());\n\t\tassert(s.size() == n + 1);\n\t\tvector<int> a(n);\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\ta[i] = s[i + 1] - s[i];\n\t\t}\n\t\tshow(s);\n\t\tshow(a);\n\t\tint sti = -1, gli = -1;\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tif (abs(a[i]) == +1) {\n\t\t\t\tif (sti == -1) {\n\t\t\t\t\tsti = i;\n\t\t\t\t} else {\n\t\t\t\t\tgli = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tassert(sti != -1);\n\t\tassert(gli != -1);\n\t\tint nowi = sti;\n\t\tvector<int> ord = {nowi};\n\t\tvector<bool> isvis(n, false);\n\t\tisvis[nowi] = true;\n\t\tint dir = a[nowi] == 1 ? 1 : -1;\n\t\twhile (1) {\n\t\t\tint nexi = -1;\n\t\t\tfor (int i = nowi + dir; i >= 0 && i < n; i += dir) {\n\t\t\t\tif (isvis[i]) continue;\n\t\t\t\tif (a[i] == dir * (-2)) {\n\t\t\t\t\tnexi = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tif (a[i] == 0) {\n\t\t\t\t\tord.push_back(i);\n\t\t\t\t\tisvis[i] = true;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (nexi == -1) break;\n\t\t\tassert(nexi != -1);\n\t\t\tisvis[nexi] = true;\n\t\t\tord.push_back(nexi);\n\t\t\tdir *= -1;\n\t\t\tnowi = nexi;\n\t\t}\n\t\tfor (int i = nowi + dir; i >= 0 && i < n; i += dir) {\n\t\t\tif (isvis[i]) continue;\n\t\t\tif (a[i] == 0) {\n\t\t\t\tord.push_back(i);\n\t\t\t\tisvis[i] = true;\n\t\t\t}\n\t\t\tif (i == gli) {\n\t\t\t\tord.push_back(gli);\n\t\t\t\tisvis[gli] = true;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tshow(isvis);\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tcout << ord[i] + 1;\n\t\t\tif (i == n - 1)\n\t\t\t\tcout << endl;\n\t\t\telse\n\t\t\t\tcout << \" \";\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 5640, "memory_kb": 637056, "score_of_the_acc": -1.3089, "final_rank": 15 }, { "submission_id": "aoj_3298_10483732", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\nbool solve() {\n int n; cin >> n;\n if(n == 0) return false;\n vector<ll> a(n-1);\n for(int i = 0; i < n-1; i++) cin >> a[i];\n a.push_back(0);\n ll INF = 1LL << 60;\n vector dp(3, vector(n+1, vector<ll>(n, -INF)));\n vector prev(3, vector(n+1, vector<tuple<int, int, int>>(n)));\n dp[0][0][0] = 0;\n for(int i = 0; i < n; i++) {\n for(int t = 0; t <= 2; t++) {\n for(int j = 0; j < n; j++) {\n for(int dj : {1, -1}) {\n int nj = j+dj;\n ll nval = dp[t][i][j] + a[i]*nj;\n if(t+1 <= 2 && nj >= 0 && nj < n && (i+1 == n || nj > 0)) {\n if(dp[t+1][i+1][j+dj] < nval) {\n dp[t+1][i+1][j+dj] = nval;\n prev[t+1][i+1][j+dj] = {t, i, j};\n }\n }\n }\n for(int dj : {2, 0, -2}) {\n int nj = j+dj;\n ll nval = dp[t][i][j] + a[i]*nj;\n if(nj >= 0 && nj < n && (i+1 == n || nj > 0)) {\n if(dp[t][i+1][j+dj] < nval) {\n dp[t][i+1][j+dj] = nval;\n prev[t][i+1][j+dj] = {t, i, j};\n }\n }\n }\n }\n }\n }\n cout << dp[2][n][0] << '\\n';\n vector<int> diff(n);\n int t = 2, i = n, j = 0;\n while(i > 0) {\n auto [nt, ni, nj] = prev[t][i][j];\n diff[ni] = j-nj;\n t = nt, i = ni, j = nj;\n }\n int s = -1;\n for(int i = 0; i < n; i++) {\n if(diff[i] == 1 || diff[i] == -1) s = i;\n }\n vector<int> seen(n);\n vector<int> ans;\n seen[s] = 1;\n ans.push_back(s);\n while(1) {\n if(diff[s] > 0) {\n int t = -1;\n int ns = -1;\n for(int i = s+1; i < n; i++) {\n if(!seen[i] && diff[i] == -1) {\n t = i;\n }\n if(!seen[i] && diff[i] == -2) {\n ns = i;\n break;\n }\n }\n if(ns == -1) {\n assert(t != -1);\n ns = t;\n }\n for(int i = s+1; i < ns; i++) {\n if(!seen[i] && diff[i] == 0) {\n seen[i] = 1;\n ans.push_back(i);\n }\n }\n seen[ns] = 1;\n ans.push_back(ns);\n s = ns;\n if(s == t) break;\n }\n if(diff[s] < 0) {\n int t = -1, ns = -1;\n for(int i = s-1; i >= 0; i--) {\n if(!seen[i] && diff[i] == 1) {\n t = i;\n }\n if(!seen[i] && diff[i] == 2) {\n ns = i;\n break;\n }\n }\n if(ns == -1) {\n assert(t != -1);\n ns = t;\n }\n for(int i = s-1; i > ns; i--) {\n if(!seen[i] && diff[i] == 0) {\n seen[i] = 1;\n ans.push_back(i);\n }\n }\n seen[ns] = 1;\n ans.push_back(ns);\n s = ns;\n if(s == t) break;\n }\n }\n assert(ssize(ans) == n);\n for(int i = 0; i < n; i++) {\n cout << ans[i]+1 << (i==n-1 ? '\\n' : ' ');\n }\n return true;\n}\n\nint main() {\n while(solve());\n}", "accuracy": 1, "time_ms": 4700, "memory_kb": 631024, "score_of_the_acc": -1.1404, "final_rank": 11 }, { "submission_id": "aoj_3298_10302688", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\n\nusing LL = long long;\n\nconst LL INF = 1LL << 60;\n\nint main(){\n\tint n;\n\twhile(cin >> n && n){\n\t\tvector<LL> cs(n);\n\t\tfor(int i = 0; i < n - 1; ++i){\n\t\t\tcin >> cs[i];\n\t\t}\n\t\tconst int lim = n + 6;\n\t\tvector<vector<vector<LL>>> dp(n + 1);\n\t\tvector<vector<vector<int>>> delta(n + 1);\n\t\tfor(int i = 0; i < n + 1; ++i){\n\t\t\tdp[i].assign(3, vector<LL>(lim / 2 + 1, -INF));\n\t\t\tdelta[i].assign(3, vector<int>(lim / 2 + 1));\n\t\t}\n\t\tdp[0][0][0] = 0;\n\t\tfor(int i = 0; i < n; ++i){\n\t\t\tLL c = cs[i];\n\t\t\tfor(int u = 0; u <= 2; ++u){\n\t\t\t\tfor(int a = u & 1; a < lim; a += 2){\n\t\t\t\t\tif(dp[i][u][a >> 1] == -INF){ continue; }\n\t\t\t\t\tfor(int d = -2; d <= 2; ++d){\n\t\t\t\t\t\tint v = u + (d & 1);\n\t\t\t\t\t\tif(v > 2){ continue; }\n\t\t\t\t\t\tint b = a + d;\n\t\t\t\t\t\tif(b < 0 || b >= lim){ continue; }\n\t\t\t\t\t\tif((b == 0) != (i == n - 1)){ continue; }\n\t\t\t\t\t\tLL t = dp[i][u][a >> 1] + c * b;\n\t\t\t\t\t\tif(dp[i + 1][v][b >> 1] < t){\n\t\t\t\t\t\t\tdp[i + 1][v][b >> 1] = t;\n\t\t\t\t\t\t\tdelta[i + 1][v][b >> 1] = d;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\tLL ans1 = dp[n][2][0];\n\t\t\n\t\tvector<int> rem(n + 1);\n\t\tint u = 2, a = 0;\n\t\tfor(int j = n; j > 0; --j){\n\t\t\tint d = delta[j][u][a >> 1];\n\t\t\trem[j] = a;\n\t\t\ta -= d;\n\t\t\tu -= d & 1;\n\t\t}\n\t\t\n\t\tint p;\n\t\tfor(p = 1; !((rem[p - 1] ^ rem[p]) & 1); ++p);\n\t\tvector<int> used(n + 1);\n\t\tused[p] = 1;\n\t\tvector<int> ord;\n\t\tint prvdir = 0;\n\t\twhile(rem[p - 1] || rem[p]){\n\t\t\tint dir;\n\t\t\tif(rem[p - 1] < rem[p]){ dir = 1; }\n\t\t\telse if(rem[p - 1] > rem[p]){ dir = -1; }\n\t\t\telse{ dir = prvdir; }\n\t\t\tif(dir != prvdir){\n\t\t\t\tord.push_back(p);\n\t\t\t\tused[p] = 1;\n\t\t\t}\n\t\t\tif(dir == 1){\n\t\t\t\t--rem[p];\n\t\t\t\t++p;\n\t\t\t}\n\t\t\telse{\n\t\t\t\t--p;\n\t\t\t\t--rem[p];\n\t\t\t}\n\t\t\tprvdir = dir;\n\t\t}\n\t\tord.push_back(p);\n\t\tused[p] = 1;\n\n\t\tvector<int> ans2 = {ord[0]};\n\t\tfor(int i = 1; i < (int)ord.size(); ++i){\n\t\t\tint x = ord[i - 1], y = ord[i];\n\t\t\tint d = x < y ? 1 : -1;\n\t\t\tfor(int j = x + d; j != y; j += d){\n\t\t\t\tif(!used[j]){\n\t\t\t\t\tused[j] = 1;\n\t\t\t\t\tans2.push_back(j);\n\t\t\t\t}\n\t\t\t}\n\t\t\tans2.push_back(y);\n\t\t}\n\t\t\n\t\tchar spr = '\\n';\n\t\tcout << ans1;\n\t\tfor(int x : ans2){\n\t\t\tcout << spr << x;\n\t\t\tspr = ' ';\n\t\t}\n\t\tcout << endl;\n\t}\n}", "accuracy": 1, "time_ms": 2360, "memory_kb": 178020, "score_of_the_acc": -0.0593, "final_rank": 1 }, { "submission_id": "aoj_3298_10301781", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\n\nusing LL = long long;\n\nconst LL INF = 1LL << 60;\n\nint main(){\n\tint n;\n\twhile(cin >> n && n){\n\t\tvector<LL> cs(n);\n\t\tfor(int i = 0; i < n - 1; ++i){\n\t\t\tcin >> cs[i];\n\t\t}\n\t\tconst int lim = n + 6;\n\t\tvector<vector<vector<LL>>> dp(n + 1);\n\t\tvector<vector<vector<int>>> delta(n + 1);\n\t\tfor(int i = 0; i < n + 1; ++i){\n\t\t\tdp[i].assign(3, vector<LL>(lim / 2 + 1, -INF));\n\t\t\tdelta[i].assign(3, vector<int>(lim / 2 + 1));\n\t\t}\n\t\tdp[0][0][0] = 0;\n\t\tfor(int i = 0; i < n; ++i){\n\t\t\tLL c = cs[i];\n\t\t\tfor(int u = 0; u <= 2; ++u){\n\t\t\t\tfor(int a = u & 1; a < lim; a += 2){\n\t\t\t\t\tif(dp[i][u][a >> 1] == -INF){ continue; }\n\t\t\t\t\tfor(int d = -2; d <= 2; ++d){\n\t\t\t\t\t\tint v = u + (d & 1);\n\t\t\t\t\t\tif(v > 2){ continue; }\n\t\t\t\t\t\tint b = a + d;\n\t\t\t\t\t\tif(b < 0 || b >= lim){ continue; }\n\t\t\t\t\t\tif((b == 0) != (i == n - 1)){ continue; }\n\t\t\t\t\t\tLL t = dp[i][u][a >> 1] + c * b;\n\t\t\t\t\t\tif(dp[i + 1][v][b >> 1] < t){\n\t\t\t\t\t\t\tdp[i + 1][v][b >> 1] = t;\n\t\t\t\t\t\t\tdelta[i + 1][v][b >> 1] = d;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\tLL ans1 = dp[n][2][0];\n\t\t\n\t\tvector<int> rem(n + 1);\n\t\tint u = 2, a = 0;\n\t\tfor(int j = n; j > 0; --j){\n\t\t\tint d = delta[j][u][a >> 1];\n\t\t\trem[j] = a;\n\t\t\ta -= d;\n\t\t\tu -= d & 1;\n\t\t}\n\t\t\n\t\tint p;\n\t\tfor(p = 1; !((rem[p - 1] ^ rem[p]) & 1); ++p);\n\t\tvector<int> used(n + 1);\n\t\tused[p] = 1;\n\t\tvector<int> ord;\n\t\tint prvdir = 0;\n\t\twhile(rem[p - 1] || rem[p]){\n\t\t\tint dir;\n\t\t\tif(rem[p - 1] < rem[p]){ dir = 1; }\n\t\t\telse if(rem[p - 1] > rem[p]){ dir = -1; }\n\t\t\telse{ dir = prvdir; }\n\t\t\tif(dir != prvdir){\n\t\t\t\tord.push_back(p);\n\t\t\t\tused[p] = 1;\n\t\t\t}\n\t\t\tif(dir == 1){\n\t\t\t\t--rem[p];\n\t\t\t\t++p;\n\t\t\t}\n\t\t\telse{\n\t\t\t\t--p;\n\t\t\t\t--rem[p];\n\t\t\t}\n\t\t\tprvdir = dir;\n\t\t}\n\t\tord.push_back(p);\n\t\tused[p] = 1;\n\n\t\tvector<int> ans2 = {ord[0]};\n\t\tfor(int i = 1; i < (int)ord.size(); ++i){\n\t\t\tint x = ord[i - 1], y = ord[i];\n\t\t\tint d = x < y ? 1 : -1;\n\t\t\tfor(int j = x + d; j != y; j += d){\n\t\t\t\tif(!used[j]){\n\t\t\t\t\tused[j] = 1;\n\t\t\t\t\tans2.push_back(j);\n\t\t\t\t}\n\t\t\t}\n\t\t\tans2.push_back(y);\n\t\t}\n\t\t\n\t\tchar spr = '\\n';\n\t\tcout << ans1;\n\t\tfor(int x : ans2){\n\t\t\tcout << spr << x;\n\t\t\tspr = ' ';\n\t\t}\n\t\tcout << endl;\n\t}\n}", "accuracy": 1, "time_ms": 2360, "memory_kb": 178084, "score_of_the_acc": -0.0594, "final_rank": 2 }, { "submission_id": "aoj_3298_10057182", "code_snippet": "// (⁠◕⁠ᴗ⁠◕⁠✿⁠)\n\n// #pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define rep(i, n) for (ll i = 0; i < (n); i++)\n#define srep(i, s, n) for (ll i = s; i < (n); i++)\n#define len(x) ((int)(x).size())\n#define all(x) (x).begin(), (x).end()\nusing namespace std;\ntemplate<typename T> using vc = vector<T>;\ntemplate<typename T> using vv = vc<vc<T>>;\ntemplate<typename T> using vvv = vv<vc<T>>;\nusing vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;\nusing ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;\nusing ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nconst ld pi = acos(-1.0);\nconst int inf = 0x3f3f3f3f;\nconst ll INF = 0x3f3f3f3f3f3f3f3f;\n// const ll mod = 1000000007;\nconst ll mod = 998244353;\ninline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }\n\n#define debug(var) do{std::cout << #var << \" : \\n\";view(var);}while(0)\ntemplate<typename T> void view(T e){cout << e << endl;}\ntemplate<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << \" \"; } cout << endl;}\ntemplate<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } }\n\nvoid solve(int n){\n vl C(n, 0);rep(i, n - 1) cin >> C[i];\n vvvl dp(n + 1, vvl(n + 1, vl(3, -INF)));\n dp[0][0][0] = 0;\n rep(i, n) rep(j, n + 1) rep(k, 3){\n if (j > 0) dp[i + 1][j][k] = max(dp[i + 1][j][k], dp[i][j][k] + C[i] * j);\n if (j - 2 + (i == n - 1) > 0) dp[i + 1][j - 2][k] = max(dp[i + 1][j - 2][k], dp[i][j][k] + C[i] * (j - 2));\n if (j + 2 < n + 1) dp[i + 1][j + 2][k] = max(dp[i + 1][j + 2][k], dp[i][j][k] + C[i] * (j + 2));\n if (k < 2){\n if (j - 1 + (i == n - 1) > 0) dp[i + 1][j - 1][k + 1] = max(dp[i + 1][j - 1][k + 1], dp[i][j][k] + C[i] * (j - 1));\n if (j + 1 < n + 1) dp[i + 1][j + 1][k + 1] = max(dp[i + 1][j + 1][k + 1], dp[i][j][k] + C[i] * (j + 1));\n }\n }\n ll cost = dp[n][0][2];\n cout << cost << endl;\n int lastj = 0, lastk = 2;\n vi A = {0};\n for (int i = n - 1; i >= 0; i--){\n if (dp[i + 1][lastj][lastk] == dp[i][lastj][lastk] + C[i] * lastj){\n A.push_back(lastj);\n }else if (lastj + 2 < n + 1 && dp[i + 1][lastj][lastk] == dp[i][lastj + 2][lastk] + C[i] * lastj){\n A.push_back(lastj + 2);\n lastj += 2;\n }else if (lastj - 2 >= 0 && dp[i + 1][lastj][lastk] == dp[i][lastj - 2][lastk] + C[i] * lastj){\n A.push_back(lastj - 2);\n lastj -= 2;\n }else if (lastk > 0 && lastj + 1 < n + 1 && dp[i + 1][lastj][lastk] == dp[i][lastj + 1][lastk - 1] + C[i] * lastj){\n A.push_back(lastj + 1);\n lastj++;\n lastk--;\n }else if (lastk > 0 && lastj - 1 >= 0 && dp[i + 1][lastj][lastk] == dp[i][lastj - 1][lastk - 1] + C[i] * lastj){\n A.push_back(lastj - 1);\n lastj--;\n lastk--;\n }else{\n // assert(false);\n }\n }\n reverse(all(A));\n int s;\n rep(i, n) if (abs(A[i] - A[i + 1]) == 1){\n s = i;\n break;\n }\n vi path;\n while (true){\n path.push_back(s);\n if (A[s] > A[s + 1]){\n A[s]--;\n s--;\n while (abs(A[s] - A[s + 1]) % 2 == 0 && A[s] > 0 && s > 0){\n path.push_back(s);\n A[s]--;\n s--;\n }\n }else if (A[s] < A[s + 1]){\n A[s + 1]--;\n s++;\n while (abs(A[s] - A[s + 1]) % 2 == 0 && A[s + 1] > 0 && s < n - 1){\n path.push_back(s);\n A[s + 1]--;\n s++;\n }\n }else if (A[s] == A[s + 1] && A[s] != 0){\n A[s]--;\n s--;\n while (abs(A[s] - A[s + 1]) % 2 == 0 && A[s] > 0 && s > 0){\n path.push_back(s);\n A[s]--;\n s--;\n }\n }else break;\n }\n vi use(len(path), 0);\n vi seen(n, 0);\n use[0] = 1;\n seen[path[0]] = 1;\n use[len(path) - 1] = 1;\n seen[path.back()] = 1;\n srep(i, 1, len(path) - 1) if (path[i - 1] == path[i + 1]){\n seen[path[i]] = 1;\n use[i] = 1;\n }\n rep(i, len(path)) if (!seen[path[i]]){\n seen[path[i]] = 1;\n use[i] = 1;\n }\n vi ans;\n rep(i, len(path)) if (use[i]) ans.push_back(path[i]);\n assert(len(ans) == n);\n rep(i, n) cout << ans[i] + 1 << \" \\n\"[i == n - 1];\n}\nint main(){\n while (true){\n int n; cin >> n;\n if (n == 0) break;\n solve(n);\n }\n}", "accuracy": 1, "time_ms": 6890, "memory_kb": 522732, "score_of_the_acc": -1.348, "final_rank": 16 }, { "submission_id": "aoj_3298_9458052", "code_snippet": "#pragma GCC optimeze(\"O3\")\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define ALL(v) v.begin(),v.end()\n#define dbg(x) cerr << #x << \": \" << (x) << endl;\ntemplate<class F, class S>\nostream& operator<<(ostream& os, pair<F,S>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate<class Iter>\nvoid print(Iter beg, Iter end) {\n for (Iter itr = beg; itr != end; ++itr) {\n cerr << *itr << ' ';\n }\n cerr << '\\n';\n}\nstruct UF {\n UF(int n) : par(n), rank(n){\n iota(ALL(par), 0);\n }\n int root(int x) {\n if (par[x] == x) return par[x];\n return par[x] = root(par[x]);\n }\n int unite(int x, int y) {\n x = root(x);\n y = root(y);\n if (x == y) return false;\n\n if (rank[x] < rank[y]) swap(x,y);\n par[y] = x;\n if (rank[x] == rank[y]) ++rank[x];\n return true;\n }\n int same(int x, int y) {\n return root(x) == root(y);\n }\n vector<int> rank, par;\n};\n\nvoid solve1() {\n int n;\n cin >> n;\n if (n==0) exit(0);\n vector<ll> c(n+1);\n for (int i = 2; i <= n; ++i) {\n cin >> c[i];\n c[i] += c[i-1];\n }\n vector dp(1<<n, vector<ll>(n, LLONG_MIN));\n for (int i = 0; i < n; ++i) {\n dp[1 << i][i] = 0;\n }\n for (int i = 0; i < 1<<n; ++i) {\n for (int j = 0; j < n; ++j) {\n if (!(i >> j & 1)) continue;\n for (int k = 0; k < n; ++k) {\n if (i >> k & 1) continue;\n int next = i | (1 << k);\n int l = min(j+1, k+1);\n int r = max(j+1, k+1);\n dp[next][k] = max(dp[next][k], dp[i][j] + (c[r] - c[l]));\n }\n }\n }\n ll ans = LLONG_MIN;\n for (int i = 0; i < n; ++i) {\n ans = max(ans, dp[(1 << n) - 1][i]);\n }\n cout << ans << '\\n';\n}\nvoid solve() {\n int n;\n cin >> n;\n if (n==0) exit(0);\n vector<ll> c(n+1);\n for (int i = 2; i <= n; ++i) {\n cin >> c[i];\n c[i] += c[i-1];\n }\n vector<array<ll,3>> edges;\n edges.reserve((n * (n-1) / 2));\n for (int i = 1; i <= n; ++i) {\n for (int j = i+1; j <= n; ++j) {\n edges.push_back({c[j]-c[i], i-1, j-1});\n }\n }\n sort(ALL(edges), greater<array<ll,3>>());\n vector<vector<int>> g(n);\n UF uf(n);\n int cnt = 0;\n ll ans = 0;\n for (auto&& [c,l,r] : edges) {\n if (cnt >= n-1) continue;\n if (uf.same(l, r)) continue;\n if (g[l].size() >= 2 || g[r].size() >= 2) continue;\n g[l].push_back(r);\n g[r].push_back(l);\n uf.unite(l, r);\n cnt++;\n ans += c;\n }\n int now = -1;\n for (int i = 0; i < n; ++i) {\n if (g[i].size() == 1) {\n now = i;\n break;\n }\n }\n vector<int> path;\n path.push_back(now);\n while (path.size() < n) {\n int pre = (path.size() <= 1 ? -1 : path[ path.size()-2 ]);\n for (int to : g[path.back()]) {\n if (pre == to) continue;\n path.push_back(to);\n break;\n }\n }\n cout << ans << '\\n';\n for (int i = 0; i < n; ++i) {\n cout << path[i]+1 << \" \\n\"[i==n-1];\n }\n}\n\nvoid solve2() {\n int n;\n cin >> n;\n if (n==0) exit(0);\n vector<ll> c(n);\n for (int i = 1; i < n; ++i) {\n cin >> c[i];\n c[i] += c[i-1];\n }\n\n ll inf = 4e18;\n vector dp(3, vector(n+1, vector<ll>(n+1, -inf)));\n vector rdp(3, vector(n+1, vector<int>(n+1, -1)));\n dp[0][0][0] = 0;\n for (int k = 0; k <= 2; ++k) {\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j <= n; ++j) {\n if (dp[k][i][j] == -inf) continue;\n // L, L\n if (j+2 <= n && dp[k][i][j] - 2 * c[i] > dp[k][i+1][j+2]) {\n dp[k][i+1][j+2] = dp[k][i][j] - 2 * c[i];\n rdp[k][i+1][j+2] = 0;\n }\n // L, R\n if (j >= 1 && dp[k][i][j] > dp[k][i+1][j]) {\n dp[k][i+1][j] = dp[k][i][j];\n rdp[k][i+1][j] = 1;\n }\n // R, R\n if (j >= 2 && i+1==n && dp[k][i][j] + 2 * c[i] > dp[k][i+1][j-2]) {\n dp[k][i+1][j-2] = dp[k][i][j] + 2 * c[i];\n rdp[k][i+1][j-2] = 2;\n }\n else if (j >= 3 && i+1<n && dp[k][i][j] + 2 * c[i] > dp[k][i+1][j-2]) {\n dp[k][i+1][j-2] = dp[k][i][j] + 2 * c[i];\n rdp[k][i+1][j-2] = 2;\n }\n\n // 始点か終点\n // L\n if (j+1 <= n && k < 2 && dp[k][i][j] - c[i] > dp[k+1][i+1][j+1]) {\n dp[k+1][i+1][j+1] = dp[k][i][j] - c[i];\n rdp[k+1][i+1][j+1] = 3;\n }\n // R\n if (j >= 1 && i+1==n && k < 2 && dp[k][i][j] + c[i] > dp[k+1][i+1][j-1]) {\n dp[k+1][i+1][j-1] = dp[k][i][j] + c[i];\n rdp[k+1][i+1][j-1] = 4;\n }\n else if (j >= 2 && i+1<n && k < 2 && dp[k][i][j] + c[i] > dp[k+1][i+1][j-1]) {\n dp[k+1][i+1][j-1] = dp[k][i][j] + c[i];\n rdp[k+1][i+1][j-1] = 4;\n }\n }\n }\n }\n // reconstruct\n vector<int> id(n);\n int j=0, k=2;\n int now = -1;\n for (int i = n; i >= 1; --i) {\n id[i-1] = rdp[k][i][j];\n if (rdp[k][i][j] == 0) {\n j-=2;\n } else if (rdp[k][i][j] == 1) {\n\n } else if (rdp[k][i][j] == 2) {\n j += 2;\n } else if (rdp[k][i][j] == 3) {\n j--;\n k--;\n now = i-1;\n } else if (rdp[k][i][j] == 4) {\n j++;\n k--;\n now = i-1;\n }\n }\n assert(j == 0);\n assert(k == 0);\n assert(now >= 0);\n\n\n vector<int> path;\n vector<bool> used(n,false);\n\n path.push_back(now);\n used[now] = true;\n while (path.size() < n) {\n int dir = (id[now]==0 || id[now]==3 ? 1 : -1);\n for (int i = now; 0 <= i && i < n; i += dir) {\n if (used[i]) continue;\n if (id[i] == 1) {\n path.push_back(i);\n used[i] = true;\n continue;\n }\n if (dir==1 && id[i]==2) {\n now = i;\n break;\n }\n if (dir==1 && id[i]==4 && path.size()==n-1) {\n now = i;\n break;\n }\n if (dir==-1 && id[i]==0) {\n now = i;\n break;\n }\n if (dir==-1 && id[i]==3 && path.size()==n-1) {\n now = i;\n break;\n }\n }\n path.push_back(now);\n used[now] = true;\n }\n cout << dp[2][n][0] << '\\n';\n // print(ALL(id));\n for (int i = 0; i < n; ++i) {\n cout << path[i]+1 << \" \\n\"[i==n-1];\n }\n}\n\nint main() {\n ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n while (true) {\n solve2();\n }\n}", "accuracy": 1, "time_ms": 2530, "memory_kb": 352064, "score_of_the_acc": -0.3511, "final_rank": 6 }, { "submission_id": "aoj_3298_9457931", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define ALL(v) v.begin(),v.end()\n#define dbg(x) cerr << #x << \": \" << (x) << endl;\ntemplate<class F, class S>\nostream& operator<<(ostream& os, pair<F,S>& p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate<class Iter>\nvoid print(Iter beg, Iter end) {\n for (Iter itr = beg; itr != end; ++itr) {\n cerr << *itr << ' ';\n }\n cerr << '\\n';\n}\nstruct UF {\n UF(int n) : par(n), rank(n){\n iota(ALL(par), 0);\n }\n int root(int x) {\n if (par[x] == x) return par[x];\n return par[x] = root(par[x]);\n }\n int unite(int x, int y) {\n x = root(x);\n y = root(y);\n if (x == y) return false;\n\n if (rank[x] < rank[y]) swap(x,y);\n par[y] = x;\n if (rank[x] == rank[y]) ++rank[x];\n return true;\n }\n int same(int x, int y) {\n return root(x) == root(y);\n }\n vector<int> rank, par;\n};\n\nvoid solve1() {\n int n;\n cin >> n;\n if (n==0) exit(0);\n vector<ll> c(n+1);\n for (int i = 2; i <= n; ++i) {\n cin >> c[i];\n c[i] += c[i-1];\n }\n vector dp(1<<n, vector<ll>(n, LLONG_MIN));\n for (int i = 0; i < n; ++i) {\n dp[1 << i][i] = 0;\n }\n for (int i = 0; i < 1<<n; ++i) {\n for (int j = 0; j < n; ++j) {\n if (!(i >> j & 1)) continue;\n for (int k = 0; k < n; ++k) {\n if (i >> k & 1) continue;\n int next = i | (1 << k);\n int l = min(j+1, k+1);\n int r = max(j+1, k+1);\n dp[next][k] = max(dp[next][k], dp[i][j] + (c[r] - c[l]));\n }\n }\n }\n ll ans = LLONG_MIN;\n for (int i = 0; i < n; ++i) {\n ans = max(ans, dp[(1 << n) - 1][i]);\n }\n cout << ans << '\\n';\n}\nvoid solve() {\n int n;\n cin >> n;\n if (n==0) exit(0);\n vector<ll> c(n+1);\n for (int i = 2; i <= n; ++i) {\n cin >> c[i];\n c[i] += c[i-1];\n }\n vector<array<ll,3>> edges;\n edges.reserve((n * (n-1) / 2));\n for (int i = 1; i <= n; ++i) {\n for (int j = i+1; j <= n; ++j) {\n edges.push_back({c[j]-c[i], i-1, j-1});\n }\n }\n sort(ALL(edges), greater<array<ll,3>>());\n vector<vector<int>> g(n);\n UF uf(n);\n int cnt = 0;\n ll ans = 0;\n for (auto&& [c,l,r] : edges) {\n if (cnt >= n-1) continue;\n if (uf.same(l, r)) continue;\n if (g[l].size() >= 2 || g[r].size() >= 2) continue;\n g[l].push_back(r);\n g[r].push_back(l);\n uf.unite(l, r);\n cnt++;\n ans += c;\n }\n int now = -1;\n for (int i = 0; i < n; ++i) {\n if (g[i].size() == 1) {\n now = i;\n break;\n }\n }\n vector<int> path;\n path.push_back(now);\n while (path.size() < n) {\n int pre = (path.size() <= 1 ? -1 : path[ path.size()-2 ]);\n for (int to : g[path.back()]) {\n if (pre == to) continue;\n path.push_back(to);\n break;\n }\n }\n cout << ans << '\\n';\n for (int i = 0; i < n; ++i) {\n cout << path[i]+1 << \" \\n\"[i==n-1];\n }\n}\n\nvoid solve2() {\n int n;\n cin >> n;\n if (n==0) exit(0);\n vector<ll> c(n);\n for (int i = 1; i < n; ++i) {\n cin >> c[i];\n c[i] += c[i-1];\n }\n\n ll inf = 4e18;\n vector dp(3, vector(n+1, vector<ll>(n+1, -inf)));\n vector rdp(3, vector(n+1, vector<int>(n+1, -1)));\n dp[0][0][0] = 0;\n for (int k = 0; k <= 2; ++k) {\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j <= n; ++j) {\n if (dp[k][i][j] == -inf) continue;\n // L, L\n if (j+2 <= n && dp[k][i][j] - 2 * c[i] > dp[k][i+1][j+2]) {\n dp[k][i+1][j+2] = dp[k][i][j] - 2 * c[i];\n rdp[k][i+1][j+2] = 0;\n }\n // L, R\n if (j >= 1 && dp[k][i][j] > dp[k][i+1][j]) {\n dp[k][i+1][j] = dp[k][i][j];\n rdp[k][i+1][j] = 1;\n }\n // R, R\n if (j >= 2 && i+1==n && dp[k][i][j] + 2 * c[i] > dp[k][i+1][j-2]) {\n dp[k][i+1][j-2] = dp[k][i][j] + 2 * c[i];\n rdp[k][i+1][j-2] = 2;\n }\n else if (j >= 3 && i+1<n && dp[k][i][j] + 2 * c[i] > dp[k][i+1][j-2]) {\n dp[k][i+1][j-2] = dp[k][i][j] + 2 * c[i];\n rdp[k][i+1][j-2] = 2;\n }\n\n // 始点か終点\n // L\n if (j+1 <= n && k < 2 && dp[k][i][j] - c[i] > dp[k+1][i+1][j+1]) {\n dp[k+1][i+1][j+1] = dp[k][i][j] - c[i];\n rdp[k+1][i+1][j+1] = 3;\n }\n // R\n if (j >= 1 && i+1==n && k < 2 && dp[k][i][j] + c[i] > dp[k+1][i+1][j-1]) {\n dp[k+1][i+1][j-1] = dp[k][i][j] + c[i];\n rdp[k+1][i+1][j-1] = 4;\n }\n else if (j >= 2 && i+1<n && k < 2 && dp[k][i][j] + c[i] > dp[k+1][i+1][j-1]) {\n dp[k+1][i+1][j-1] = dp[k][i][j] + c[i];\n rdp[k+1][i+1][j-1] = 4;\n }\n }\n }\n }\n // reconstruct\n vector<int> id(n);\n int j=0, k=2;\n int now = -1;\n for (int i = n; i >= 1; --i) {\n id[i-1] = rdp[k][i][j];\n if (rdp[k][i][j] == 0) {\n j-=2;\n } else if (rdp[k][i][j] == 1) {\n\n } else if (rdp[k][i][j] == 2) {\n j += 2;\n } else if (rdp[k][i][j] == 3) {\n j--;\n k--;\n now = i-1;\n } else if (rdp[k][i][j] == 4) {\n j++;\n k--;\n now = i-1;\n }\n }\n assert(j == 0);\n assert(k == 0);\n assert(now >= 0);\n\n\n vector<int> path;\n vector<bool> used(n,false);\n\n path.push_back(now);\n used[now] = true;\n while (path.size() < n) {\n int dir = (id[now]==0 || id[now]==3 ? 1 : -1);\n for (int i = now; 0 <= i && i < n; i += dir) {\n if (used[i]) continue;\n if (id[i] == 1) {\n path.push_back(i);\n used[i] = true;\n continue;\n }\n if (dir==1 && id[i]==2) {\n now = i;\n break;\n }\n if (dir==1 && id[i]==4 && path.size()==n-1) {\n now = i;\n break;\n }\n if (dir==-1 && id[i]==0) {\n now = i;\n break;\n }\n if (dir==-1 && id[i]==3 && path.size()==n-1) {\n now = i;\n break;\n }\n }\n path.push_back(now);\n used[now] = true;\n }\n cout << dp[2][n][0] << '\\n';\n // print(ALL(id));\n for (int i = 0; i < n; ++i) {\n cout << path[i]+1 << \" \\n\"[i==n-1];\n }\n}\n\nint main() {\n ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n while (true) {\n solve2();\n }\n}", "accuracy": 1, "time_ms": 2520, "memory_kb": 352148, "score_of_the_acc": -0.3495, "final_rank": 5 }, { "submission_id": "aoj_3298_9457888", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<vvi> vvvi;\ntypedef vector<bool> vb;\ntypedef vector<vb> vvb;\ntypedef vector<vvb> vvvb;\ntypedef vector<vvvb> vvvvb;\ntypedef pair<ll,ll> pi;\ntypedef pair<ll,pi> ppi;\n#define FOR(i,l,r) for(ll i=l;i<r;i++)\n#define REP(i,n) FOR(i,0,n)\n#define RFOR(i,l,r) for(ll i=r-1;i>=l;i--)\n#define RREP(i,n) RFOR(i,0,n)\n#define sz(A) (ll)(A.size())\n#define ALL(A) A.begin(),A.end()\n#define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin())\n#define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin())\n#define COU(A,x) (UB(A,x)-LB(A,x))\n#define F first\n#define S second\ntemplate<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T1,typename T2>ostream&operator<<(ostream&os,pair<T1,T2>&p){os<<p.F<<\" \"<<p.S;return os;}\ntemplate<typename T1,typename T2>istream&operator>>(istream&is,pair<T1,T2>&p){is>>p.F>>p.S;return is;}\ntemplate<typename T>ostream&operator<<(ostream&os,vector<T>&v){REP(i,sz(v))os<<v[i]<<(i+1!=sz(v)?\" \":\"\");return os;}\ntemplate<typename T>istream&operator>>(istream&is,vector<T>&v){for(T&in:v)is>>in;return is;}\ntemplate<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;}\nconst ll mod=998244353;\ntemplate<const long long int mod=998244353>\nstruct modint{\n using mint=modint<mod>;\n long long int x;\n modint(long long int _x=0):x(_x%mod){if(x<0)x+=mod;}\n long long int val(){return x;}\n mint&operator=(const mint&a){x=a.x;return *this;}\n mint&operator+=(const mint&a){x+=a.x;if(x>=mod)x-=mod;return *this;}\n mint&operator-=(const mint&a){x-=a.x;if(x<0)x+=mod;return *this;}\n mint&operator*=(const mint&a){x*=a.x;x%=mod;return *this;}\n friend mint operator+(const mint&a,const mint&b){return mint(a)+=b;}\n friend mint operator-(const mint&a,const mint&b){return mint(a)-=b;}\n friend mint operator*(const mint&a,const mint&b){return mint(a)*=b;}\n mint operator-()const{return mint(0)-*this;}\n mint pow(long long int n){\n if(!n)return 1;\n mint a=1;\n mint _x=x;\n while(n){\n if(n&1)a*=_x;\n _x=_x*_x;n>>=1;\n }\n return a;\n }\n mint inv(){return pow(mod-2);}\n mint&operator/=(mint&a){return *this*=a.inv();}\n friend mint operator/(const mint&a,mint b){return mint(a)/=b;}\n};\nusing mint=modint<998244353>;\nint main(){\n while(1){\n ll N;cin>>N;\n if(!N)return 0;\n vi A(N-1);cin>>A;\n vvvi DP(N,vvi(N+10,vi(3,-1e18)));\n DP[0][1][1]=0;\n DP[0][2][0]=0;\n REP(i,N-1)FOR(j,1,N+1)REP(k,3){\n //2\n chmax(DP[i+1][j+2][k],DP[i][j][k]+A[i]*j);\n //1\n if(k<2)chmax(DP[i+1][j+1][k+1],DP[i][j][k]+A[i]*j);\n //0\n chmax(DP[i+1][j][k],DP[i][j][k]+A[i]*j);\n //-1\n if(k<2)chmax(DP[i+1][j-1][k+1],DP[i][j][k]+A[i]*j);\n //-2\n if(j>=2)chmax(DP[i+1][j-2][k],DP[i][j][k]+A[i]*j);\n }\n cout<<DP[N-1][0][2]<<endl;\n vi T(N-1);\n {\n ll x=0,y=2;\n RREP(i,N-1){\n if(DP[i][x+2][y]+A[i]*(x+2)==DP[i+1][x][y])T[i]=-2,x+=2;\n else if(y&&DP[i][x+1][y-1]+A[i]*(x+1)==DP[i+1][x][y])T[i]=-1,x++,y--;\n else if(DP[i][x][y]+A[i]*x==DP[i+1][x][y])T[i]=0;\n else if(y&&DP[i][x-1][y-1]+A[i]*(x-1)==DP[i+1][x][y])T[i]=1,x--,y--;\n else{\n assert(DP[i][x-2][y]+A[i]*(x-2)==DP[i+1][x][y]);\n T[i]=2,x-=2;\n }\n }\n T.insert(T.begin(),x);\n }\n ll v=0;\n while(abs(T[v])!=1)v++;\n vi P={v+1};\n vb used(N);\n used[v]=1;\n while(count(ALL(used),0)){\n if(T[v]>0){\n while(v<N&&(used[v]||T[v]>0||abs(T[v])==1))v++;\n if(v<N)T[v]++;\n else{\n assert(count(ALL(used),0)==1);\n v=0;\n while(used[v])v++;\n }\n }\n else{\n while(v>=0&&(used[v]||T[v]<0||abs(T[v])==1))v--;\n if(v>=0)T[v]--;\n else{\n assert(count(ALL(used),0)==1);\n v=0;\n while(used[v])v++;\n }\n }\n used[v]=1;\n P.emplace_back(v+1);\n }\n assert(sz(P)==N);\n cout<<P<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 6440, "memory_kb": 492332, "score_of_the_acc": -1.2258, "final_rank": 13 }, { "submission_id": "aoj_3298_9431090", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n\n#include <unistd.h>\n\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n\ntemplate <unsigned mod = 1000000007> struct fp {\n unsigned v;\n static constexpr int get_mod() {\n return mod;\n }\n constexpr unsigned inv() const {\n assert(v != 0);\n int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0;\n while (y > 0) {\n t = x / y;\n x -= t * y, p -= t * q;\n tmp = x, x = y, y = tmp;\n tmp = p, p = q, q = tmp;\n }\n if (p < 0)\n p += mod;\n return p;\n }\n constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {}\n fp operator-() const {\n return fp() - *this;\n }\n fp pow(ull t) {\n fp res = 1, b = *this;\n while (t) {\n if (t & 1)\n res *= b;\n b *= b;\n t >>= 1;\n }\n return res;\n }\n fp &operator+=(const fp &x) {\n if ((v += x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator-=(const fp &x) {\n if ((v += mod - x.v) >= mod)\n v -= mod;\n return *this;\n }\n fp &operator*=(const fp &x) {\n v = ull(v) * x.v % mod;\n return *this;\n }\n fp &operator/=(const fp &x) {\n v = ull(v) * x.inv() % mod;\n return *this;\n }\n fp operator+(const fp &x) const {\n return fp(*this) += x;\n }\n fp operator-(const fp &x) const {\n return fp(*this) -= x;\n }\n fp operator*(const fp &x) const {\n return fp(*this) *= x;\n }\n fp operator/(const fp &x) const {\n return fp(*this) /= x;\n }\n bool operator==(const fp &x) const {\n return v == x.v;\n }\n bool operator!=(const fp &x) const {\n return v != x.v;\n }\n friend istream &operator>>(istream &is, fp &x) {\n return is >> x.v;\n }\n friend ostream &operator<<(ostream &os, const fp &x) {\n return os << x.v;\n }\n};\n\ntemplate <unsigned mod> void rd(fp<mod> &x) {\n fastio::rd(x.v);\n}\ntemplate <unsigned mod> void wt(fp<mod> x) {\n fastio::wt(x.v);\n}\n\ntemplate <typename T> T Inv(ll n) {\n static const int md = T::get_mod();\n static vector<T> buf({0, 1});\n assert(n > 0);\n n %= md;\n while (SZ(buf) <= n) {\n int k = SZ(buf), q = (md + k - 1) / k;\n buf.push_back(buf[k * q - md] * q);\n }\n return buf[n];\n}\n\ntemplate <typename T> T Fact(ll n, bool inv = 0) {\n static const int md = T::get_mod();\n static vector<T> buf({1, 1}), ibuf({1, 1});\n assert(n >= 0 and n < md);\n while (SZ(buf) <= n) {\n buf.push_back(buf.back() * SZ(buf));\n ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf)));\n }\n return inv ? ibuf[n] : buf[n];\n}\n\ntemplate <typename T> T nPr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nCr(int n, int r, bool inv = 0) {\n if (n < 0 || n < r || r < 0)\n return 0;\n return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1);\n}\ntemplate <typename T> T nHr(int n, int r, bool inv = 0) {\n return nCr<T>(n + r - 1, r, inv);\n}\n\n/**\n * @brief Modint\n */\n\nvoid DFS(int N, vector<int>& V, int S, vector<int>& Ret) {\n if (N == 2) {\n if (S == 0) Ret.push_back(1), Ret.push_back(0);\n else Ret.push_back(0), Ret.push_back(1);\n return;\n }\n if (V[S]<V[S+1]) {\n int Cur = S;\n while(1) {\n if (V[Cur+2]-V[Cur+1]==-2 || V[Cur+2]-V[Cur+1]==0) {\n V[Cur+1]--;\n Cur++;\n V.erase(V.begin()+S);\n DFS(N-1,V,Cur-1,Ret);\n rep(i,0,Ret.size()) if (Ret[i] >= S) Ret[i]++;\n Ret.push_back(S);\n return;\n }\n V[Cur+1]--;\n Cur++;\n }\n }\n else {\n int Cur = S;\n while(1) {\n if (V[Cur-1]-V[Cur]==-2 || V[Cur-1]-V[Cur]==0) {\n V[Cur]--;\n Cur--;\n V.erase(V.begin()+S);\n DFS(N-1,V,Cur,Ret);\n rep(i,0,Ret.size()) if (Ret[i] >= S) Ret[i]++;\n Ret.push_back(S);\n return;\n }\n V[Cur]--;\n Cur--;\n }\n }\n}\n\nstatic ll DP[3000][3001][3];\nstatic pair<int,int> Pre[3000][3001][3];\n\nint main() {\nwhile(1) {\n int N;\n cin >> N;\n if (N == 0) return 0;\n vector<ll> C(N-1);\n rep(i,0,N-1) cin >> C[i];\n int MAXS = N+1;\n vector<vector<vector<ll>>> DP(N,vector<vector<ll>>(MAXS,vector<ll>(3,-INF)));\n rep(i,0,N) rep(j,0,MAXS) rep(k,0,3) DP[i][j][k] = -INF;\n DP[0][0][0] = 0;\n rep(i,0,N-1) {\n rep(j,0,MAXS) {\n rep(k,0,3) {\n if (DP[i][j][k] == -INF) continue;\n for (int d = -2; d <= 2; d += 2) {\n ll nj = j + d;\n if (0 < nj && nj < MAXS) {\n if (chmax(DP[i+1][nj][k], DP[i][j][k] + C[i] * nj)) Pre[i+1][nj][k] = {j,k};\n }\n }\n if (k != 2) {\n for (int d = -1; d <= 1; d += 2) {\n ll nj = j + d;\n if (0 < nj && nj < MAXS) {\n if (chmax(DP[i+1][nj][k+1], DP[i][j][k] + C[i] * nj)) Pre[i+1][nj][k+1] = {j,k};\n }\n }\n }\n }\n }\n }\n ll ANS = max(DP[N-1][2][2], DP[N-1][1][1]);\n pair<int,int> Now;\n if (DP[N-1][2][2] >= DP[N-1][1][1]) Now = {2,2};\n else Now = {1,1};\n vector<int> V;\n for (int i = N-1; i >= 1; i--) {\n V.push_back(Now.first);\n Now = Pre[i][Now.first][Now.second];\n }\n V.push_back(0);\n reverse(V.begin(), V.end());\n V.push_back(0);\n int S = -1;\n rep(i,0,N) {\n if (abs(V[i+1]-V[i])==1) {\n S = i;\n break;\n }\n }\n vector<int> ANSV;\n DFS(N,V,S, ANSV);\n reverse(ANSV.begin(), ANSV.end());\n cout << ANS << endl;\n rep(i,0,N) cout << ANSV[i]+1 << (i == N-1 ? '\\n' : ' ');\n}\n}", "accuracy": 1, "time_ms": 6920, "memory_kb": 700280, "score_of_the_acc": -1.6213, "final_rank": 18 }, { "submission_id": "aoj_3298_9379079", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) { os << '-'; y *= -1; }\n std::vector<int> ny;\n while(y > 0) { ny.push_back(y % 10); y /= 10; }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\ntemplate < class S, class T > istream& operator>>(istream& is, std::pair< S, T >& x) { is >> x.first >> x.second; return is; }\ntemplate < class S, class T > ostream& operator<<(ostream& os, const std::pair< S, T >& x) { os << x.first << \" \" << x.second; return os; }\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F f) {\n while(abs(ng - ok) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"macro.hpp\"\nnamespace macro {\n\nusing size_type = int;\ntemplate < class container > void sort(container& a) { std::sort(std:: begin(a), std:: end(a)); }\ntemplate < class container > void rsort(container& a) { std::sort(std::rbegin(a), std::rend(a)); }\ntemplate < class container > void reverse(container& a) { std::reverse(std::begin(a), std::end(a)); }\ntemplate < class container > void unique(container& a) {\n std::sort(std::begin(a), std::end(a));\n a.erase(std::unique(std::begin(a), std::end(a)), std::end(a));\n}\ntemplate < class container > container sorted(const container& a) { container b = a; sort(b); return std::move(b); }\ntemplate < class container > container rsorted(const container& a) { container b = a; rsort(b); return std::move(b); }\ntemplate < class container, class compare > void sort(container& a, const compare& cmp) { std::sort(std::begin(a), std::end(a), cmp); }\ntemplate < class container, class compare > container sorted(const container& a, const compare& cmp) { container b = a; sort(b, cmp); return std::move(b); }\ntemplate < class container, class value > size_type lower_bound(const container& a, const value& x) { return std::lower_bound(std::begin(a), std::end(a), x) - std::begin(a); }\ntemplate < class container, class value > size_type upper_bound(const container& a, const value& x) { return std::upper_bound(std::begin(a), std::end(a), x) - std::begin(a); }\n\nconst std::vector<std::pair<size_type, size_type>> dir4 = { {+1, 0}, {-1, 0}, { 0, +1}, { 0, -1} };\nconst std::vector<std::pair<size_type, size_type>> dir8 = { {-1, -1}, {-1, 0}, {-1, +1}, { 0, -1}, { 0, +1}, {+1, -1}, {+1, 0}, {+1, +1} };\n\n#ifdef _DEBUG\n#define debug(x) std::cout << \"[\" << __LINE__ << \"] \" << #x << \": \" << x << std::endl\n#else\n#define debug(x)\n#endif\n\ntemplate < class container > void concat(container& a, const container& b) {\n a.insert(std::end(a), std::begin(b), std::end(b));\n}\nstd::vector<size_type> iota(const size_type n) {\n std::vector<size_type> I(n);\n std::iota(std::begin(I), std::end(I), 0);\n return I;\n}\ntemplate < class container > std::vector<size_type> sort_idx(const container& a) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return a[i] < a[j] or (a[i] == a[j] and i < j); });\n return I;\n}\ntemplate < class container, class compare > std::vector<size_type> sort_idx(const container& a, const compare& cmp) {\n const size_type n = a.size();\n std::vector<size_type> I = iota(n);\n std::sort(std::begin(I), std::end(I), [&](size_type i, size_type j) { return cmp(a[i], a[j]) or (a[i] == a[j] and i < j); });\n return std::move(I);\n}\n\nstruct grid {\n using size_type = int;\n size_type H, W;\n grid(const size_type H, const size_type W) : H(H), W(W) {}\n bool contains(const size_type i, const size_type j) {\n return 0 <= i and i < H and 0 <= j and j < W;\n }\n};\n\nusing f64 = long double;\n\ntemplate < class T > vector< T >& operator++(vector< T >& a) { for(T& x : a) x++; return a; }\ntemplate < class T > vector< T >& operator--(vector< T >& a) { for(T& x : a) x--; return a; }\ntemplate < class T > vector< T > operator++(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x++; return res; }\ntemplate < class T > vector< T > operator--(vector< T >& a, signed) { vector< T > res = a; for(T& x : a) x--; return res; }\n\n} // namespace macro\n\nusing namespace macro;\n#line 3 \"A.cpp\"\n\nvoid solve(int N) {\n vector<i64> C = in(N - 1);\n const i64 INF = 1e18;\n const int M = (N + 1) / 2;\n vector dp(N - 1, vector(M + 1, vector(3, -INF)));\n const vector<pair<int,int>> edge = {\n {0, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 2}\n };\n dp[0][1][0] = C[0] * 2;\n dp[0][1][1] = C[0] * 1;\n for(int i : rep(1, N - 1)) {\n for(int x = 1; x <= M; x++) {\n for(int nx = x - 1; nx <= x + 1; nx++) {\n if(1 <= nx and nx <= M) {\n for(auto &[y, ny] : edge) {\n if(abs((2 * x - (y == 1)) - (2 * nx - (ny == 1))) <= 2) {\n chmax(dp[i][nx][ny], dp[i - 1][x][y] + C[i] * i64(2 * nx - (ny == 1)));\n }\n }\n }\n }\n }\n }\n\n i64 Max = -INF;\n tuple<int,int,int> argMax = {-1, -1, -1};\n if(chmax(Max, dp[(N - 1) - 1][1][1])) argMax = {(N - 1) - 1, 1, 1};\n if(chmax(Max, dp[(N - 1) - 1][1][2])) argMax = {(N - 1) - 1, 1, 2};\n i64 ans_score = Max;\n vector<int> deg(N - 1);\n deg[(N - 1) - 1] = 2 - (get<2>(argMax) == 1);\n for(int i = (N - 1) - 2; i >= 0; i--) {\n [&] {\n for(int x = 1; x <= M; x++) {\n for(int nx = x - 1; nx <= x + 1; nx++) {\n if(1 <= nx and nx <= M) {\n for(auto [y, ny] : edge) {\n if(abs((2 * x - (y == 1)) - (2 * nx - (ny == 1))) <= 2) {\n if(dp[i + 1][nx][ny] == dp[i][x][y] + C[i + 1] * i64(2 * nx - (ny == 1)) and dp[i + 1][nx][ny] == Max) {\n if(make_tuple(i + 1, nx, ny) == argMax) {\n Max = dp[i][x][y];\n argMax = {i, x, y};\n deg[i] = 2 * x - (y == 1);\n return;\n }\n }\n }\n }\n }\n }\n }\n assert(0);\n }();\n }\n\n deg.insert(deg.begin(), {0});\n deg.insert(deg.end(), {0});\n vector<int> dead(N + 1, 0);\n vector<int> ans;\n for(int i = 1; i <= N; i++) {\n if(abs(deg[i] - deg[i - 1]) == 1) {\n ans.push_back(i);\n dead[i] = true;\n break;\n }\n }\n for(int _ : rep(N - 2)) {\n const int i = ans.back();\n if(deg[i - 1] < deg[i]) { // -> \n for(int ni = i + 1; ni <= N; ni++) if(not dead[ni]) {\n int d = deg[ni] - deg[ni - 1];\n if(d == 0 or d == -2) {\n ans.push_back(ni);\n dead[ni] = true;\n for(int k = i; k < ni; k++) deg[k] -= 1;\n break;\n }\n }\n } else { // <-\n for(int ni = i - 1; ni >= 1; ni--) if(not dead[ni]) {\n int d = deg[ni - 1] - deg[ni];\n if(d == 0 or d == -2) {\n ans.push_back(ni);\n dead[ni] = true;\n for(int k = ni; k < i; k++) deg[k] -= 1;\n break;\n }\n }\n }\n }\n for(int i = 1; i <= N; i++) if(not dead[i]) ans.push_back(i);\n print(ans_score);\n print(ans);\n}\n\nint main() {\n while(true) {\n int N = in();\n if(N == 0) return 0;\n solve(N);\n }\n}", "accuracy": 1, "time_ms": 4570, "memory_kb": 247032, "score_of_the_acc": -0.5382, "final_rank": 7 }, { "submission_id": "aoj_3298_9360858", "code_snippet": "#include<bits/stdc++.h>\n#include<cassert>\n\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\n#define rep(i,n) for(ll i=0;i<ll(n);i++)\n#define all(A) A.begin(),A.end()\n\nvoid chmax(ll& p, ll q) { p = max(p, q); };\nvoid chmin(ll& p, ll q) { p = min(p, q); };\n\nvoid solve(ll N) {\n vll C(N + 1, 0);\n rep(i, N - 1)cin >> C[i + 1];\n vector<vector<vector<pair<ll, int>>>> DP(N + 1, vector<vector<pair<ll, int>>>(N + 5, vector<pair<ll, int>>(3, { -1e18,-1e9 })));\n DP[0][0][0] = { 0,-1 };\n rep(i, N)rep(j,min(N + 5,i*2+2))rep(k, 3){\n if(DP[i][j][k].first<-1e17)continue;\n for (ll p = -2; p <= 2; p++) {\n ll nk = k, nj = j + p;\n if (abs(p) == 1)nk++;\n if (nk == 3 || nj < 0 || nj>N+4)continue;\n if (i != N - 1 && nj == 0)continue;\n ll nc = DP[i][j][k].first + C[i + 1] * nj;\n if (nc > DP[i + 1][nj][nk].first)DP[i + 1][nj][nk] = { nc,p };\n }\n }\n vll D(N + 1, 0);\n ll p = 2;\n for (ll i = N - 1; i >= 0; i--) {\n D[i] = D[i + 1] - DP[i + 1][D[i + 1]][p].second;\n if (abs(D[i] - D[i + 1]) == 1)p--;\n }\n cout << DP[N][0][2].first << endl;\n // rep(i, N + 1)cout << D[i] << \" \\n\"[i == N];\n\n vll AN(N);\n vector<bool> seen(N, 0);\n rep(i, N)if (abs(D[i] - D[i + 1]) == 1) {\n AN[0] = i;\n seen[i] = 1;\n break;\n }\n rep(i, N - 2) {\n ll nw = AN[i];\n seen[nw] = 1;\n if (D[nw] < D[nw + 1]) {\n for (ll j = nw + 1; j <= N; j++) {\n if ((D[j] == D[j + 1] || D[j] == D[j + 1] + 2) && !seen[j]) {\n for (ll p = nw + 1; p <= j; p++) {\n D[p]--;\n }\n AN[i + 1] = j;\n break;\n }\n }\n }\n else {\n for (ll j = nw - 1; j >= 0; j--) {\n if ((D[j] == D[j + 1] || D[j] == D[j + 1] - 2) && !seen[j]) {\n for (ll p = nw; p > j; p--) {\n D[p]--;\n }\n AN[i + 1] = j;\n break;\n }\n }\n }\n }\n seen[AN[N-2]]=1;\n rep(i, N)if (!seen[i])AN[N - 1] = i;\n rep(i, N)cout << AN[i] + 1 << \" \\n\"[i == N - 1];\n}\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N;\n while (cin >> N) {\n if (N == 0)return 0;\n solve(N);\n }\n}", "accuracy": 1, "time_ms": 7910, "memory_kb": 770864, "score_of_the_acc": -1.8958, "final_rank": 20 }, { "submission_id": "aoj_3298_9313311", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <typename T>\nbool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return true;\n }\n return false;\n}\n\nint main()\n{\n while (true)\n {\n int n;\n cin >> n;\n if (n == 0)\n break;\n\n vector<long long> a(n);\n for (int i = 0; i < n - 1; ++i)\n cin >> a[i];\n\n const long long inf = 1LL << 50;\n vector<vector<vector<long long>>> dp(3, vector<vector<long long>>(n, vector<long long>(n, -inf)));\n dp[0][0][0] = 0;\n\n for (int i = 0; i < n - 1; ++i)\n {\n for (int j = 0; j < n; ++j)\n {\n if (j > 2 * i || j > 2 * (n - i))\n continue;\n for (int k = 0; k < 3; ++k)\n {\n if (dp[k][i][j] == -inf)\n continue;\n for(int dj = -2; dj<=2;dj+=2){\n int nj = j + dj;\n int nk = k + 0;\n if (nj > 0 && nj < n)\n {\n chmax(dp[nk][i + 1][nj], dp[k][i][j] + a[i] * nj);\n }\n }\n if (k == 2)\n continue;\n for(int dj = -1; dj <= 1; dj+=2)\n {\n int nj = j + dj;\n int nk = k + 1;\n if (nj > 0 && nj < n)\n {\n chmax(dp[nk][i + 1][nj], dp[k][i][j] + a[i] * nj);\n }\n }\n }\n }\n }\n\n long long ans = max(dp[2][n - 1][2], dp[1][n - 1][1]);\n int j, k;\n if (dp[2][n - 1][2] >= dp[1][n - 1][1])\n {\n j = 2;\n k = 2;\n }\n else\n {\n j = 1;\n k = 1;\n }\n\n int i = n - 1;\n vector<int> res;\n res.push_back(0);\n while (i > 0)\n {\n res.push_back(j);\n int nxtj = -1, nxtk = -1;\n for (auto [dj, dk] : vector<pair<int, int>>{{-2, 0}, {-1, 1}, {0, 0}, {1, 1}, {2, 0}})\n {\n if (j - dj >= 0 && j - dj < n && k - dk >= 0 && dp[k][i][j] == dp[k - dk][i - 1][j - dj] + a[i - 1] * j)\n {\n nxtj = j - dj;\n nxtk = k - dk;\n }\n }\n assert(nxtj != -1);\n j = nxtj;\n k = nxtk;\n i--;\n }\n res.push_back(0);\n reverse(res.begin(), res.end());\n\n cout << ans << endl;\n vector<int> c(n);\n for (int i = 0; i < n; ++i)\n {\n if (res[i] == res[i + 1])\n c[i] = 0;\n else if (res[i] == res[i + 1] + 2)\n c[i] = 1;\n else if (res[i] + 2 == res[i + 1])\n c[i] = 2;\n else\n c[i] = 3;\n }\n\n int now = distance(c.begin(), find(c.begin(), c.end(), 3));\n int dir = (res[now] < res[now + 1]) ? 1 : -1;\n vector<int> ans_list;\n ans_list.push_back(now);\n vector<int> seen(n, 0);\n seen[now] = 1;\n while (true)\n {\n if (seen[now] == 1)\n {\n now += dir;\n continue;\n }\n if (c[now] == 0)\n {\n ans_list.push_back(now);\n seen[now] = 1;\n now += dir;\n }\n if (c[now] == 1)\n {\n if (dir == 1)\n {\n seen[now] = 1;\n ans_list.push_back(now);\n dir = -dir;\n }\n else\n {\n now += dir;\n }\n }\n if (c[now] == 2)\n {\n if (dir == -1)\n {\n seen[now] = 1;\n ans_list.push_back(now);\n dir = -dir;\n }\n else\n {\n now += dir;\n }\n }\n if (c[now] == 3)\n {\n if (ans_list.size() == n - 1)\n {\n ans_list.push_back(now);\n break;\n }\n else\n {\n now += dir;\n }\n }\n }\n\n for (int i = 0; i < ans_list.size(); ++i)\n cout << ans_list[i] + 1 << \" \";\n cout << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 2010, "memory_kb": 281920, "score_of_the_acc": -0.157, "final_rank": 3 }, { "submission_id": "aoj_3298_9313310", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <typename T>\nbool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return true;\n }\n return false;\n}\n\nvector<pair<int, int>> djk = {{-2, 0}, {-1, 1}, {0, 0}, {1, 1}, {2, 0}};\nint main()\n{\n while (true)\n {\n int n;\n cin >> n;\n if (n == 0)\n break;\n\n vector<long long> a(n);\n for (int i = 0; i < n - 1; ++i)\n cin >> a[i];\n\n const long long inf = 1LL << 50;\n vector<vector<vector<long long>>> dp(3, vector<vector<long long>>(n, vector<long long>(n, -inf)));\n dp[0][0][0] = 0;\n\n for (int i = 0; i < n - 1; ++i)\n {\n for (int j = 0; j < n; ++j)\n {\n if (j > 2 * i || j > 2 * (n - i))\n continue;\n for (int k = 0; k < 3; ++k)\n {\n if (dp[k][i][j] == -inf)\n continue;\n for (auto [dj, dk] : djk)\n {\n int nj = j + dj;\n int nk = k + dk;\n if (nj > 0 && nj < n && nk < 3)\n {\n chmax(dp[nk][i + 1][nj], dp[k][i][j] + a[i] * nj);\n }\n }\n }\n }\n }\n\n long long ans = max(dp[2][n - 1][2], dp[1][n - 1][1]);\n int j, k;\n if (dp[2][n - 1][2] >= dp[1][n - 1][1])\n {\n j = 2;\n k = 2;\n }\n else\n {\n j = 1;\n k = 1;\n }\n\n int i = n - 1;\n vector<int> res;\n res.push_back(0);\n while (i > 0)\n {\n res.push_back(j);\n int nxtj = -1, nxtk = -1;\n for (auto [dj, dk] : vector<pair<int, int>>{{-2, 0}, {-1, 1}, {0, 0}, {1, 1}, {2, 0}})\n {\n if (j - dj >= 0 && j - dj < n && k - dk >= 0 && dp[k][i][j] == dp[k - dk][i - 1][j - dj] + a[i - 1] * j)\n {\n nxtj = j - dj;\n nxtk = k - dk;\n }\n }\n assert(nxtj != -1);\n j = nxtj;\n k = nxtk;\n i--;\n }\n res.push_back(0);\n reverse(res.begin(), res.end());\n\n cout << ans << endl;\n vector<int> c(n);\n for (int i = 0; i < n; ++i)\n {\n if (res[i] == res[i + 1])\n c[i] = 0;\n else if (res[i] == res[i + 1] + 2)\n c[i] = 1;\n else if (res[i] + 2 == res[i + 1])\n c[i] = 2;\n else\n c[i] = 3;\n }\n\n int now = distance(c.begin(), find(c.begin(), c.end(), 3));\n int dir = (res[now] < res[now + 1]) ? 1 : -1;\n vector<int> ans_list;\n ans_list.push_back(now);\n vector<int> seen(n, 0);\n seen[now] = 1;\n while (true)\n {\n if (seen[now] == 1)\n {\n now += dir;\n continue;\n }\n if (c[now] == 0)\n {\n ans_list.push_back(now);\n seen[now] = 1;\n now += dir;\n }\n if (c[now] == 1)\n {\n if (dir == 1)\n {\n seen[now] = 1;\n ans_list.push_back(now);\n dir = -dir;\n }\n else\n {\n now += dir;\n }\n }\n if (c[now] == 2)\n {\n if (dir == -1)\n {\n seen[now] = 1;\n ans_list.push_back(now);\n dir = -dir;\n }\n else\n {\n now += dir;\n }\n }\n if (c[now] == 3)\n {\n if (ans_list.size() == n - 1)\n {\n ans_list.push_back(now);\n break;\n }\n else\n {\n now += dir;\n }\n }\n }\n\n for (int i = 0; i < ans_list.size(); ++i)\n cout << ans_list[i] + 1 << \" \";\n cout << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 2080, "memory_kb": 281892, "score_of_the_acc": -0.1688, "final_rank": 4 }, { "submission_id": "aoj_3298_9232364", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using vvec = vector<vector<T>>;\ntemplate<class T> using vvvec = vector<vector<vector<T>>>;\nconst ll LINF = 1e18;\n\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n while(1){\n int N; cin >> N;\n if(N == 0) break;\n vector<ll> C(N);\n for(int i = 0; i < N - 1; i++) cin >> C[i];\n C[N - 1] = 0;\n\n int M = N + 10;\n vvvec<ll> dp(N + 1, vvec<ll>(M + 1, vector<ll>(3, -LINF)));\n dp[0][0][0] = 0;\n\n for(int i = 0; i < N; i++){\n for(int j = 0; j <= M; j++){\n for(int k = 0; k < 3; k++){\n auto e = dp[i][j][k];\n if(e == -LINF) continue;\n for(int r = -2; r <= 2; r++){\n int num = j + r;\n if(num < 0 || M < num) continue;\n if(abs(r) == 1 && k == 2) continue;\n if(i != N - 1 && num == 0) continue;\n auto &f = dp[i + 1][num][k + (abs(r) == 1)];\n f = max(f, e + C[i] * num);\n }\n }\n }\n }\n\n cout << dp[N][0][2] << endl;\n\n vector<int> edge(N + 1);\n tuple<int, int, int> par = make_tuple(N, 0, 2);\n for(int i = N; i > 0; i--){\n auto [a, b, c] = par;\n for(int r = 2; r >= -2; r--){\n int num = b + r;\n if(num < 0 || M < num) continue;\n if(abs(r) == 1 && c == 0) continue;\n if(a - 1 != 0 && num == 0) continue;\n auto f = dp[a - 1][num][c - int(abs(r) == 1)];\n if(f == dp[a][b][c] - C[a - 1] * b){\n par = make_tuple(a - 1, num, c - int(abs(r) == 1));\n break;\n }\n }\n assert(get<0>(par) == i - 1);\n if(i - 2 >= 0) edge[i - 1] = get<1>(par);\n }\n\n //for(int i = 0; i < N + 1; i++) cout << edge[i] << ' ';\n //cout << endl;\n\n int S = -1, T = -1;\n for(int i = 0; i < N; i++){\n if((edge[i] + edge[i + 1]) % 2 == 1){\n if(S == -1) S = i;\n else if(T == -1) T = i;\n else assert(false);\n }\n }\n //cout << S << \" \" << T << endl;\n\n int cur = S, prev = -1, dir = -1; //(0: Left, 1: Right)\n vector<int> ans;\n vector<bool> used(N);\n //used[S] = 1;\n while(1){\n //.2.4.3.2.\n //4.2.1.5.3\n bool same = (edge[cur] == edge[cur + 1]);\n if(same && edge[cur] == 0){\n ans.emplace_back(cur);\n break;\n }\n if((same && dir == 0) || edge[cur] > edge[cur + 1]){ // Go Left\n if(dir != 0){\n used[cur] = 1;\n ans.emplace_back(cur);\n }\n else if(!used[cur] && edge[cur] + edge[cur + 1] == 1){\n used[cur] = 1;\n ans.emplace_back(cur);\n }\n edge[cur]--;\n cur--;\n dir = 0;\n }\n else if((same && dir == 1) || edge[cur] < edge[cur + 1]){ // Go right\n if(dir != 1){\n used[cur] = 1;\n ans.emplace_back(cur);\n }\n else if(!used[cur] && edge[cur] + edge[cur + 1] == 1){\n used[cur] = 1;\n ans.emplace_back(cur);\n }\n edge[cur + 1]--;\n cur++;\n dir = 1;\n }\n else assert(false);\n }\n\n assert((int)ans.size() == N);\n for(int i = 0; i < N; i++){\n cout << ans[i] + 1;\n if(i != N - 1) cout << ' ';\n }\n cout << endl;\n }\n}", "accuracy": 1, "time_ms": 6720, "memory_kb": 492368, "score_of_the_acc": -1.2733, "final_rank": 14 }, { "submission_id": "aoj_3298_9092110", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate<class T>\nbool chmin(T &a, const T &b) {if (a > b) {a = b; return 1;} return 0;}\n\ntemplate<class T>\nbool chmax(T &a, const T &b) {if (a < b) {a = b; return 1;} return 0;}\n\nusing ll = long long;\nusing ld = long double;\n\nbool is_end = false;\n\nconst int nmax = 3010;\nll INF = 1e18;\n\nll dp[nmax][nmax][4];\npair<int, int> prev_cs[nmax][nmax][4];\n\nvoid init(int n)\n{\n for (int i = 0; i < n; ++i)\n {\n for (int j = 0; j < min(2 * n, nmax); ++j)\n {\n for (int s = 0; s < 4; ++s)\n {\n dp[i][j][s] = -INF;\n prev_cs[i][j][s] = {-1, -1};\n }\n }\n }\n \n return;\n}\n\nvoid calc()\n{\n ll N; cin >> N;\n \n if (N == 0)\n {\n is_end = true;\n return;\n }\n \n vector<ll> C(N+1, 0);\n for (int i = 1; i < N; ++i) cin >> C[i];\n \n dp[0][0][0] = 0;\n for (int i = 1; i < N; ++i)\n {\n for (int c = 0; c <= min(2 * i, nmax); ++c)\n {\n for (int s = 0; s < 3; ++s)\n {\n ll base = c * C[i];\n ll var = -INF;\n \n for (int d = c - 2; d <= c + 2; d += 2)\n {\n if (d < 0) continue;\n if (d == 0 && i > 1) continue;\n if (chmax(var, dp[i-1][d][s])) prev_cs[i][c][s] = {d, s};\n }\n \n for (int d = c - 1; d <= c + 1; d += 2)\n {\n if (d < 0) continue;\n if (d == 0 && i > 1) continue;\n if (s - 1 < 0) continue;\n if (chmax(var, dp[i-1][d][s-1])) prev_cs[i][c][s] = {d, s-1};\n }\n \n dp[i][c][s] = base + var;\n }\n }\n }\n \n {\n int i = N;\n for (int c = 0; c <= 2 * i; ++c)\n {\n for (int s = 0; s < 3; ++s)\n {\n ll base = c * C[i];\n ll var = -INF;\n \n for (int d = c - 2; d <= c + 2; d += 2)\n {\n if (d < 0) continue;\n if (d == 0 && i > 1) continue;\n if (chmax(var, dp[i-1][d][s])) prev_cs[i][c][s] = {d, s};\n }\n \n for (int d = c - 1; d <= c + 1; d += 2)\n {\n if (d < 0) continue;\n if (d == 0 && i > 1) continue;\n if (s - 1 < 0) continue;\n if (chmax(var, dp[i-1][d][s-1])) prev_cs[i][c][s] = {d, s-1};\n }\n \n dp[i][c][s] = base + var;\n }\n }\n }\n \n ll res = dp[N][0][2];\n \n vector<ll> cnt(N+1, 0);\n \n {\n int i = N, c = 0, s = 2;\n while (i >= 0)\n {\n cnt[i] = c;\n auto [cc, ss] = prev_cs[i][c][s];\n i -= 1;\n c = cc, s = ss;\n }\n }\n \n ll left = -1, right = -1;\n for (int i = 0; i < N; ++i)\n {\n if ((cnt[i] + cnt[i+1]) % 2 == 1)\n {\n if (left == -1) left = i;\n else right = i;\n }\n }\n \n vector<ll> rank(N, 0);\n vector<bool> done(N, false);\n \n rank[left] = 0, rank[right] = INF;\n done[left] = done[right] = true;\n \n ll now = left;\n ll dir = 0;\n ll move = 0;\n if (cnt[now] > cnt[now+1]) dir = -1;\n if (cnt[now] < cnt[now+1]) dir = 1;\n \n while (1)\n {\n if (cnt[now] == 0 && cnt[now+1] == 0) break;\n \n ll ndir = 0;\n if (cnt[now] > cnt[now+1]) ndir = -1;\n else if (cnt[now] < cnt[now+1]) ndir = 1;\n else ndir = dir;\n \n if (dir == ndir)\n {\n if (!done[now]) rank[now] = move;\n \n cnt[max(now, now + ndir)] -= 1;\n now += ndir;\n }\n else\n {\n rank[now] = move;\n done[now] = true;\n \n cnt[max(now, now + ndir)] -= 1;\n now += ndir;\n }\n \n dir = ndir;\n move++;\n }\n assert(now == right);\n \n vector<pair<ll, ll>> ord(N);\n for (int i = 0; i < N; ++i)\n {\n ord[i] = {rank[i], i+1};\n }\n sort(ord.begin(), ord.end());\n \n cout << res << endl;\n for (int i = 0; i < N; ++i)\n {\n cout << ord[i].second << \" \";\n }\n cout << endl;\n \n init(N + 10);\n \n return;\n}\n\nint main()\n{\n init(nmax);\n while (!is_end)\n {\n calc();\n }\n \n return 0;\n}", "accuracy": 1, "time_ms": 2790, "memory_kb": 569836, "score_of_the_acc": -0.7242, "final_rank": 8 } ]